human/dist/human.node.js

4141 lines
2.2 MiB

var __create=Object.create;var __defProp=Object.defineProperty;var __getProtoOf=Object.getPrototypeOf;var __hasOwnProp=Object.prototype.hasOwnProperty;var __getOwnPropNames=Object.getOwnPropertyNames;var __getOwnPropDesc=Object.getOwnPropertyDescriptor;var __markAsModule=target=>__defProp(target,"__esModule",{value:true});var __commonJS=(callback,module2)=>()=>{if(!module2){module2={exports:{}};callback(module2.exports,module2)}return module2.exports};var __export=(target,all)=>{__markAsModule(target);for(var name in all)__defProp(target,name,{get:all[name],enumerable:true})};var __exportStar=(target,module2,desc)=>{__markAsModule(target);if(typeof module2==="object"||typeof module2==="function"){for(let key of __getOwnPropNames(module2))if(!__hasOwnProp.call(target,key)&&key!=="default")__defProp(target,key,{get:()=>module2[key],enumerable:!(desc=__getOwnPropDesc(module2,key))||desc.enumerable})}return target};var __toModule=module2=>{if(module2&&module2.__esModule)return module2;return __exportStar(__defProp(__create(__getProtoOf(module2)),"default",{value:module2,enumerable:true}),module2)};var require_lib=__commonJS(exports2=>{__export(exports2,{FetchError:()=>FetchError,Headers:()=>Headers,Request:()=>Request,Response:()=>Response,default:()=>lib_default});const stream=__toModule(require("stream"));const http2=__toModule(require("http"));const url=__toModule(require("url"));const https2=__toModule(require("https"));const zlib2=__toModule(require("zlib"));const Readable=stream.default.Readable;const BUFFER=Symbol("buffer");const TYPE=Symbol("type");class Blob2{constructor(){this[TYPE]="";const blobParts=arguments[0];const options=arguments[1];const buffers=[];let size=0;if(blobParts){const a=blobParts;const length=Number(a.length);for(let i=0;i<length;i++){const element=a[i];let buffer2;if(element instanceof Buffer){buffer2=element}else if(ArrayBuffer.isView(element)){buffer2=Buffer.from(element.buffer,element.byteOffset,element.byteLength)}else if(element instanceof ArrayBuffer){buffer2=Buffer.from(element)}else if(element instanceof Blob2){buffer2=element[BUFFER]}else{buffer2=Buffer.from(typeof element==="string"?element:String(element))}size+=buffer2.length;buffers.push(buffer2)}}this[BUFFER]=Buffer.concat(buffers);let type=options&&options.type!==void 0&&String(options.type).toLowerCase();if(type&&!/[^\u0020-\u007E]/.test(type)){this[TYPE]=type}}get size(){return this[BUFFER].length}get type(){return this[TYPE]}text(){return Promise.resolve(this[BUFFER].toString())}arrayBuffer(){const buf=this[BUFFER];const ab=buf.buffer.slice(buf.byteOffset,buf.byteOffset+buf.byteLength);return Promise.resolve(ab)}stream(){const readable=new Readable;readable._read=function(){};readable.push(this[BUFFER]);readable.push(null);return readable}toString(){return"[object Blob]"}slice(){const size=this.size;const start=arguments[0];const end=arguments[1];let relativeStart,relativeEnd;if(start===void 0){relativeStart=0}else if(start<0){relativeStart=Math.max(size+start,0)}else{relativeStart=Math.min(start,size)}if(end===void 0){relativeEnd=size}else if(end<0){relativeEnd=Math.max(size+end,0)}else{relativeEnd=Math.min(end,size)}const span=Math.max(relativeEnd-relativeStart,0);const buffer2=this[BUFFER];const slicedBuffer=buffer2.slice(relativeStart,relativeStart+span);const blob=new Blob2([],{type:arguments[2]});blob[BUFFER]=slicedBuffer;return blob}}Object.defineProperties(Blob2.prototype,{size:{enumerable:true},type:{enumerable:true},slice:{enumerable:true}});Object.defineProperty(Blob2.prototype,Symbol.toStringTag,{value:"Blob",writable:false,enumerable:false,configurable:true});function FetchError(message,type,systemError){Error.call(this,message);this.message=message;this.type=type;if(systemError){this.code=this.errno=systemError.code}Error.captureStackTrace(this,this.constructor)}FetchError.prototype=Object.create(Error.prototype);FetchError.prototype.constructor=FetchError;FetchError.prototype.name="FetchError";let convert;try{convert=require("encoding").convert}catch(e){}const INTERNALS=Symbol("Body internals");const PassThrough=stream.default.PassThrough;function Body(body2){var _this=this;var _ref=arguments.length>1&&arguments[1]!==void 0?arguments[1]:{},_ref$size=_ref.size;let size=_ref$size===void 0?0:_ref$size;var _ref$timeout=_ref.timeout;let timeout=_ref$timeout===void 0?0:_ref$timeout;if(body2==null){body2=null}else if(isURLSearchParams(body2)){body2=Buffer.from(body2.toString())}else if(isBlob(body2));else if(Buffer.isBuffer(body2));else if(Object.prototype.toString.call(body2)==="[object ArrayBuffer]"){body2=Buffer.from(body2)}else if(ArrayBuffer.isView(body2)){body2=Buffer.from(body2.buffer,body2.byteOffset,body2.byteLength)}else if(body2 instanceof stream.default);else{body2=Buffer.from(String(body2))}this[INTERNALS]={body:body2,disturbed:false,error:null};this.size=size;this.timeout=timeout;if(body2 instanceof stream.default){body2.on("error",function(err){const error=err.name==="AbortError"?err:new FetchError(`Invalid response body while trying to fetch ${_this.url}: ${err.message}`,"system",err);_this[INTERNALS].error=error})}}Body.prototype={get body(){return this[INTERNALS].body},get bodyUsed(){return this[INTERNALS].disturbed},arrayBuffer(){return consumeBody.call(this).then(function(buf){return buf.buffer.slice(buf.byteOffset,buf.byteOffset+buf.byteLength)})},blob(){let ct=this.headers&&this.headers.get("content-type")||"";return consumeBody.call(this).then(function(buf){return Object.assign(new Blob2([],{type:ct.toLowerCase()}),{[BUFFER]:buf})})},json(){var _this2=this;return consumeBody.call(this).then(function(buffer2){try{return JSON.parse(buffer2.toString())}catch(err){return Body.Promise.reject(new FetchError(`invalid json response body at ${_this2.url} reason: ${err.message}`,"invalid-json"))}})},text(){return consumeBody.call(this).then(function(buffer2){return buffer2.toString()})},buffer(){return consumeBody.call(this)},textConverted(){var _this3=this;return consumeBody.call(this).then(function(buffer2){return convertBody(buffer2,_this3.headers)})}};Object.defineProperties(Body.prototype,{body:{enumerable:true},bodyUsed:{enumerable:true},arrayBuffer:{enumerable:true},blob:{enumerable:true},json:{enumerable:true},text:{enumerable:true}});Body.mixIn=function(proto){for(const name of Object.getOwnPropertyNames(Body.prototype)){if(!(name in proto)){const desc=Object.getOwnPropertyDescriptor(Body.prototype,name);Object.defineProperty(proto,name,desc)}}};function consumeBody(){var _this4=this;if(this[INTERNALS].disturbed){return Body.Promise.reject(new TypeError(`body used already for: ${this.url}`))}this[INTERNALS].disturbed=true;if(this[INTERNALS].error){return Body.Promise.reject(this[INTERNALS].error)}let body2=this.body;if(body2===null){return Body.Promise.resolve(Buffer.alloc(0))}if(isBlob(body2)){body2=body2.stream()}if(Buffer.isBuffer(body2)){return Body.Promise.resolve(body2)}if(!(body2 instanceof stream.default)){return Body.Promise.resolve(Buffer.alloc(0))}let accum=[];let accumBytes=0;let abort=false;return new Body.Promise(function(resolve,reject){let resTimeout;if(_this4.timeout){resTimeout=setTimeout(function(){abort=true;reject(new FetchError(`Response timeout while trying to fetch ${_this4.url} (over ${_this4.timeout}ms)`,"body-timeout"))},_this4.timeout)}body2.on("error",function(err){if(err.name==="AbortError"){abort=true;reject(err)}else{reject(new FetchError(`Invalid response body while trying to fetch ${_this4.url}: ${err.message}`,"system",err))}});body2.on("data",function(chunk){if(abort||chunk===null){return}if(_this4.size&&accumBytes+chunk.length>_this4.size){abort=true;reject(new FetchError(`content size at ${_this4.url} over limit: ${_this4.size}`,"max-size"));return}accumBytes+=chunk.length;accum.push(chunk)});body2.on("end",function(){if(abort){return}clearTimeout(resTimeout);try{resolve(Buffer.concat(accum,accumBytes))}catch(err){reject(new FetchError(`Could not create Buffer from response body for ${_this4.url}: ${err.message}`,"system",err))}})})}function convertBody(buffer2,headers){if(typeof convert!=="function"){throw new Error("The package `encoding` must be installed to use the textConverted() function")}const ct=headers.get("content-type");let charset="utf-8";let res,str;if(ct){res=/charset=([^;]*)/i.exec(ct)}str=buffer2.slice(0,1024).toString();if(!res&&str){res=/<meta.+?charset=(['"])(.+?)\1/i.exec(str)}if(!res&&str){res=/<meta[\s]+?http-equiv=(['"])content-type\1[\s]+?content=(['"])(.+?)\2/i.exec(str);if(!res){res=/<meta[\s]+?content=(['"])(.+?)\1[\s]+?http-equiv=(['"])content-type\3/i.exec(str);if(res){res.pop()}}if(res){res=/charset=(.*)/i.exec(res.pop())}}if(!res&&str){res=/<\?xml.+?encoding=(['"])(.+?)\1/i.exec(str)}if(res){charset=res.pop();if(charset==="gb2312"||charset==="gbk"){charset="gb18030"}}return convert(buffer2,"UTF-8",charset).toString()}function isURLSearchParams(obj){if(typeof obj!=="object"||typeof obj.append!=="function"||typeof obj.delete!=="function"||typeof obj.get!=="function"||typeof obj.getAll!=="function"||typeof obj.has!=="function"||typeof obj.set!=="function"){return false}return obj.constructor.name==="URLSearchParams"||Object.prototype.toString.call(obj)==="[object URLSearchParams]"||typeof obj.sort==="function"}function isBlob(obj){return typeof obj==="object"&&typeof obj.arrayBuffer==="function"&&typeof obj.type==="string"&&typeof obj.stream==="function"&&typeof obj.constructor==="function"&&typeof obj.constructor.name==="string"&&/^(Blob|File)$/.test(obj.constructor.name)&&/^(Blob|File)$/.test(obj[Symbol.toStringTag])}function clone(instance){let p1,p2;let body2=instance.body;if(instance.bodyUsed){throw new Error("cannot clone body after it is used")}if(body2 instanceof stream.default&&typeof body2.getBoundary!=="function"){p1=new PassThrough;p2=new PassThrough;body2.pipe(p1);body2.pipe(p2);instance[INTERNALS].body=p1;body2=p2}return body2}function extractContentType(body2){if(body2===null){return null}else if(typeof body2==="string"){return"text/plain;charset=UTF-8"}else if(isURLSearchParams(body2)){return"application/x-www-form-urlencoded;charset=UTF-8"}else if(isBlob(body2)){return body2.type||null}else if(Buffer.isBuffer(body2)){return null}else if(Object.prototype.toString.call(body2)==="[object ArrayBuffer]"){return null}else if(ArrayBuffer.isView(body2)){return null}else if(typeof body2.getBoundary==="function"){return`multipart/form-data;boundary=${body2.getBoundary()}`}else if(body2 instanceof stream.default){return null}else{return"text/plain;charset=UTF-8"}}function getTotalBytes(instance){const body2=instance.body;if(body2===null){return 0}else if(isBlob(body2)){return body2.size}else if(Buffer.isBuffer(body2)){return body2.length}else if(body2&&typeof body2.getLengthSync==="function"){if(body2._lengthRetrievers&&body2._lengthRetrievers.length==0||body2.hasKnownLength&&body2.hasKnownLength()){return body2.getLengthSync()}return null}else{return null}}function writeToStream(dest,instance){const body2=instance.body;if(body2===null){dest.end()}else if(isBlob(body2)){body2.stream().pipe(dest)}else if(Buffer.isBuffer(body2)){dest.write(body2);dest.end()}else{body2.pipe(dest)}}Body.Promise=global.Promise;const invalidTokenRegex=/[^\^_`a-zA-Z\-0-9!#$%&'*+.|~]/;const invalidHeaderCharRegex=/[^\t\x20-\x7e\x80-\xff]/;function validateName(name){name=`${name}`;if(invalidTokenRegex.test(name)||name===""){throw new TypeError(`${name} is not a legal HTTP header name`)}}function validateValue(value){value=`${value}`;if(invalidHeaderCharRegex.test(value)){throw new TypeError(`${value} is not a legal HTTP header value`)}}function find(map,name){name=name.toLowerCase();for(const key in map){if(key.toLowerCase()===name){return key}}return void 0}const MAP=Symbol("map");class Headers{constructor(){let init2=arguments.length>0&&arguments[0]!==void 0?arguments[0]:void 0;this[MAP]=Object.create(null);if(init2 instanceof Headers){const rawHeaders=init2.raw();const headerNames=Object.keys(rawHeaders);for(const headerName of headerNames){for(const value of rawHeaders[headerName]){this.append(headerName,value)}}return}if(init2==null);else if(typeof init2==="object"){const method=init2[Symbol.iterator];if(method!=null){if(typeof method!=="function"){throw new TypeError("Header pairs must be iterable")}const pairs=[];for(const pair of init2){if(typeof pair!=="object"||typeof pair[Symbol.iterator]!=="function"){throw new TypeError("Each header pair must be iterable")}pairs.push(Array.from(pair))}for(const pair of pairs){if(pair.length!==2){throw new TypeError("Each header pair must be a name/value tuple")}this.append(pair[0],pair[1])}}else{for(const key of Object.keys(init2)){const value=init2[key];this.append(key,value)}}}else{throw new TypeError("Provided initializer must be an object")}}get(name){name=`${name}`;validateName(name);const key=find(this[MAP],name);if(key===void 0){return null}return this[MAP][key].join(", ")}forEach(callback){let thisArg=arguments.length>1&&arguments[1]!==void 0?arguments[1]:void 0;let pairs=getHeaders(this);let i=0;while(i<pairs.length){var _pairs$i=pairs[i];const name=_pairs$i[0],value=_pairs$i[1];callback.call(thisArg,value,name,this);pairs=getHeaders(this);i++}}set(name,value){name=`${name}`;value=`${value}`;validateName(name);validateValue(value);const key=find(this[MAP],name);this[MAP][key!==void 0?key:name]=[value]}append(name,value){name=`${name}`;value=`${value}`;validateName(name);validateValue(value);const key=find(this[MAP],name);if(key!==void 0){this[MAP][key].push(value)}else{this[MAP][name]=[value]}}has(name){name=`${name}`;validateName(name);return find(this[MAP],name)!==void 0}delete(name){name=`${name}`;validateName(name);const key=find(this[MAP],name);if(key!==void 0){delete this[MAP][key]}}raw(){return this[MAP]}keys(){return createHeadersIterator(this,"key")}values(){return createHeadersIterator(this,"value")}[Symbol.iterator](){return createHeadersIterator(this,"key+value")}}Headers.prototype.entries=Headers.prototype[Symbol.iterator];Object.defineProperty(Headers.prototype,Symbol.toStringTag,{value:"Headers",writable:false,enumerable:false,configurable:true});Object.defineProperties(Headers.prototype,{get:{enumerable:true},forEach:{enumerable:true},set:{enumerable:true},append:{enumerable:true},has:{enumerable:true},delete:{enumerable:true},keys:{enumerable:true},values:{enumerable:true},entries:{enumerable:true}});function getHeaders(headers){let kind=arguments.length>1&&arguments[1]!==void 0?arguments[1]:"key+value";const keys=Object.keys(headers[MAP]).sort();return keys.map(kind==="key"?function(k){return k.toLowerCase()}:kind==="value"?function(k){return headers[MAP][k].join(", ")}:function(k){return[k.toLowerCase(),headers[MAP][k].join(", ")]})}const INTERNAL=Symbol("internal");function createHeadersIterator(target,kind){const iterator=Object.create(HeadersIteratorPrototype);iterator[INTERNAL]={target,kind,index:0};return iterator}const HeadersIteratorPrototype=Object.setPrototypeOf({next(){if(!this||Object.getPrototypeOf(this)!==HeadersIteratorPrototype){throw new TypeError("Value of `this` is not a HeadersIterator")}var _INTERNAL=this[INTERNAL];const target=_INTERNAL.target,kind=_INTERNAL.kind,index=_INTERNAL.index;const values=getHeaders(target,kind);const len=values.length;if(index>=len){return{value:void 0,done:true}}this[INTERNAL].index=index+1;return{value:values[index],done:false}}},Object.getPrototypeOf(Object.getPrototypeOf([][Symbol.iterator]())));Object.defineProperty(HeadersIteratorPrototype,Symbol.toStringTag,{value:"HeadersIterator",writable:false,enumerable:false,configurable:true});function exportNodeCompatibleHeaders(headers){const obj=Object.assign({__proto__:null},headers[MAP]);const hostHeaderKey=find(headers[MAP],"Host");if(hostHeaderKey!==void 0){obj[hostHeaderKey]=obj[hostHeaderKey][0]}return obj}function createHeadersLenient(obj){const headers=new Headers;for(const name of Object.keys(obj)){if(invalidTokenRegex.test(name)){continue}if(Array.isArray(obj[name])){for(const val of obj[name]){if(invalidHeaderCharRegex.test(val)){continue}if(headers[MAP][name]===void 0){headers[MAP][name]=[val]}else{headers[MAP][name].push(val)}}}else if(!invalidHeaderCharRegex.test(obj[name])){headers[MAP][name]=[obj[name]]}}return headers}const INTERNALS$1=Symbol("Response internals");const STATUS_CODES=http2.default.STATUS_CODES;class Response{constructor(){let body2=arguments.length>0&&arguments[0]!==void 0?arguments[0]:null;let opts=arguments.length>1&&arguments[1]!==void 0?arguments[1]:{};Body.call(this,body2,opts);const status=opts.status||200;const headers=new Headers(opts.headers);if(body2!=null&&!headers.has("Content-Type")){const contentType=extractContentType(body2);if(contentType){headers.append("Content-Type",contentType)}}this[INTERNALS$1]={url:opts.url,status,statusText:opts.statusText||STATUS_CODES[status],headers,counter:opts.counter}}get url(){return this[INTERNALS$1].url||""}get status(){return this[INTERNALS$1].status}get ok(){return this[INTERNALS$1].status>=200&&this[INTERNALS$1].status<300}get redirected(){return this[INTERNALS$1].counter>0}get statusText(){return this[INTERNALS$1].statusText}get headers(){return this[INTERNALS$1].headers}clone(){return new Response(clone(this),{url:this.url,status:this.status,statusText:this.statusText,headers:this.headers,ok:this.ok,redirected:this.redirected})}}Body.mixIn(Response.prototype);Object.defineProperties(Response.prototype,{url:{enumerable:true},status:{enumerable:true},ok:{enumerable:true},redirected:{enumerable:true},statusText:{enumerable:true},headers:{enumerable:true},clone:{enumerable:true}});Object.defineProperty(Response.prototype,Symbol.toStringTag,{value:"Response",writable:false,enumerable:false,configurable:true});const INTERNALS$2=Symbol("Request internals");const parse_url=url.default.parse;const format_url=url.default.format;const streamDestructionSupported="destroy"in stream.default.Readable.prototype;function isRequest(input){return typeof input==="object"&&typeof input[INTERNALS$2]==="object"}function isAbortSignal(signal){const proto=signal&&typeof signal==="object"&&Object.getPrototypeOf(signal);return!!(proto&&proto.constructor.name==="AbortSignal")}class Request{constructor(input){let init2=arguments.length>1&&arguments[1]!==void 0?arguments[1]:{};let parsedURL;if(!isRequest(input)){if(input&&input.href){parsedURL=parse_url(input.href)}else{parsedURL=parse_url(`${input}`)}input={}}else{parsedURL=parse_url(input.url)}let method=init2.method||input.method||"GET";method=method.toUpperCase();if((init2.body!=null||isRequest(input)&&input.body!==null)&&(method==="GET"||method==="HEAD")){throw new TypeError("Request with GET/HEAD method cannot have body")}let inputBody=init2.body!=null?init2.body:isRequest(input)&&input.body!==null?clone(input):null;Body.call(this,inputBody,{timeout:init2.timeout||input.timeout||0,size:init2.size||input.size||0});const headers=new Headers(init2.headers||input.headers||{});if(inputBody!=null&&!headers.has("Content-Type")){const contentType=extractContentType(inputBody);if(contentType){headers.append("Content-Type",contentType)}}let signal=isRequest(input)?input.signal:null;if("signal"in init2)signal=init2.signal;if(signal!=null&&!isAbortSignal(signal)){throw new TypeError("Expected signal to be an instanceof AbortSignal")}this[INTERNALS$2]={method,redirect:init2.redirect||input.redirect||"follow",headers,parsedURL,signal};this.follow=init2.follow!==void 0?init2.follow:input.follow!==void 0?input.follow:20;this.compress=init2.compress!==void 0?init2.compress:input.compress!==void 0?input.compress:true;this.counter=init2.counter||input.counter||0;this.agent=init2.agent||input.agent}get method(){return this[INTERNALS$2].method}get url(){return format_url(this[INTERNALS$2].parsedURL)}get headers(){return this[INTERNALS$2].headers}get redirect(){return this[INTERNALS$2].redirect}get signal(){return this[INTERNALS$2].signal}clone(){return new Request(this)}}Body.mixIn(Request.prototype);Object.defineProperty(Request.prototype,Symbol.toStringTag,{value:"Request",writable:false,enumerable:false,configurable:true});Object.defineProperties(Request.prototype,{method:{enumerable:true},url:{enumerable:true},headers:{enumerable:true},redirect:{enumerable:true},clone:{enumerable:true},signal:{enumerable:true}});function getNodeRequestOptions(request){const parsedURL=request[INTERNALS$2].parsedURL;const headers=new Headers(request[INTERNALS$2].headers);if(!headers.has("Accept")){headers.set("Accept","*/*")}if(!parsedURL.protocol||!parsedURL.hostname){throw new TypeError("Only absolute URLs are supported")}if(!/^https?:$/.test(parsedURL.protocol)){throw new TypeError("Only HTTP(S) protocols are supported")}if(request.signal&&request.body instanceof stream.default.Readable&&!streamDestructionSupported){throw new Error("Cancellation of streamed requests with AbortSignal is not supported in node < 8")}let contentLengthValue=null;if(request.body==null&&/^(POST|PUT)$/i.test(request.method)){contentLengthValue="0"}if(request.body!=null){const totalBytes=getTotalBytes(request);if(typeof totalBytes==="number"){contentLengthValue=String(totalBytes)}}if(contentLengthValue){headers.set("Content-Length",contentLengthValue)}if(!headers.has("User-Agent")){headers.set("User-Agent","node-fetch/1.0 (+https://github.com/bitinn/node-fetch)")}if(request.compress&&!headers.has("Accept-Encoding")){headers.set("Accept-Encoding","gzip,deflate")}let agent=request.agent;if(typeof agent==="function"){agent=agent(parsedURL)}if(!headers.has("Connection")&&!agent){headers.set("Connection","close")}return Object.assign({},parsedURL,{method:request.method,headers:exportNodeCompatibleHeaders(headers),agent})}function AbortError(message){Error.call(this,message);this.type="aborted";this.message=message;Error.captureStackTrace(this,this.constructor)}AbortError.prototype=Object.create(Error.prototype);AbortError.prototype.constructor=AbortError;AbortError.prototype.name="AbortError";const PassThrough$1=stream.default.PassThrough;const resolve_url=url.default.resolve;function fetch2(url2,opts){if(!fetch2.Promise){throw new Error("native promise missing, set fetch.Promise to your favorite alternative")}Body.Promise=fetch2.Promise;return new fetch2.Promise(function(resolve,reject){const request=new Request(url2,opts);const options=getNodeRequestOptions(request);const send=(options.protocol==="https:"?https2.default:http2.default).request;const signal=request.signal;let response=null;const abort=function abort2(){let error=new AbortError("The user aborted a request.");reject(error);if(request.body&&request.body instanceof stream.default.Readable){request.body.destroy(error)}if(!response||!response.body)return;response.body.emit("error",error)};if(signal&&signal.aborted){abort();return}const abortAndFinalize=function abortAndFinalize2(){abort();finalize()};const req=send(options);let reqTimeout;if(signal){signal.addEventListener("abort",abortAndFinalize)}function finalize(){req.abort();if(signal)signal.removeEventListener("abort",abortAndFinalize);clearTimeout(reqTimeout)}if(request.timeout){req.once("socket",function(socket){reqTimeout=setTimeout(function(){reject(new FetchError(`network timeout at: ${request.url}`,"request-timeout"));finalize()},request.timeout)})}req.on("error",function(err){reject(new FetchError(`request to ${request.url} failed, reason: ${err.message}`,"system",err));finalize()});req.on("response",function(res){clearTimeout(reqTimeout);const headers=createHeadersLenient(res.headers);if(fetch2.isRedirect(res.statusCode)){const location=headers.get("Location");const locationURL=location===null?null:resolve_url(request.url,location);switch(request.redirect){case"error":reject(new FetchError(`uri requested responds with a redirect, redirect mode is set to error: ${request.url}`,"no-redirect"));finalize();return;case"manual":if(locationURL!==null){try{headers.set("Location",locationURL)}catch(err){reject(err)}}break;case"follow":if(locationURL===null){break}if(request.counter>=request.follow){reject(new FetchError(`maximum redirect reached at: ${request.url}`,"max-redirect"));finalize();return}const requestOpts={headers:new Headers(request.headers),follow:request.follow,counter:request.counter+1,agent:request.agent,compress:request.compress,method:request.method,body:request.body,signal:request.signal,timeout:request.timeout,size:request.size};if(res.statusCode!==303&&request.body&&getTotalBytes(request)===null){reject(new FetchError("Cannot follow redirect with body being a readable stream","unsupported-redirect"));finalize();return}if(res.statusCode===303||(res.statusCode===301||res.statusCode===302)&&request.method==="POST"){requestOpts.method="GET";requestOpts.body=void 0;requestOpts.headers.delete("content-length")}resolve(fetch2(new Request(locationURL,requestOpts)));finalize();return}}res.once("end",function(){if(signal)signal.removeEventListener("abort",abortAndFinalize)});let body2=res.pipe(new PassThrough$1);const response_options={url:request.url,status:res.statusCode,statusText:res.statusMessage,headers,size:request.size,timeout:request.timeout,counter:request.counter};const codings=headers.get("Content-Encoding");if(!request.compress||request.method==="HEAD"||codings===null||res.statusCode===204||res.statusCode===304){response=new Response(body2,response_options);resolve(response);return}const zlibOptions={flush:zlib2.default.Z_SYNC_FLUSH,finishFlush:zlib2.default.Z_SYNC_FLUSH};if(codings=="gzip"||codings=="x-gzip"){body2=body2.pipe(zlib2.default.createGunzip(zlibOptions));response=new Response(body2,response_options);resolve(response);return}if(codings=="deflate"||codings=="x-deflate"){const raw=res.pipe(new PassThrough$1);raw.once("data",function(chunk){if((chunk[0]&15)===8){body2=body2.pipe(zlib2.default.createInflate())}else{body2=body2.pipe(zlib2.default.createInflateRaw())}response=new Response(body2,response_options);resolve(response)});return}if(codings=="br"&&typeof zlib2.default.createBrotliDecompress==="function"){body2=body2.pipe(zlib2.default.createBrotliDecompress());response=new Response(body2,response_options);resolve(response);return}response=new Response(body2,response_options);resolve(response)});writeToStream(req,request)})}fetch2.isRedirect=function(code){return code===301||code===302||code===303||code===307||code===308};fetch2.Promise=global.Promise;var lib_default=fetch2});var require_tf_es2017=__commonJS((exports2,module2)=>{(function(global2,factory){typeof exports2==="object"&&typeof module2!=="undefined"?factory(exports2):typeof define==="function"&&define.amd?define(["exports"],factory):(global2=global2||self,factory(global2.tf=global2.tf||{}))})(exports2,function(exports3){"use strict";const EPSILON_FLOAT32=1e-7;const EPSILON_FLOAT16=1e-4;class DataStorage2{constructor(backend2,dataMover){this.backend=backend2;this.dataMover=dataMover;this.data=new WeakMap;this.dataIdsCount=0}get(dataId){if(!this.data.has(dataId)){this.dataMover.moveData(this.backend,dataId)}return this.data.get(dataId)}set(dataId,value){this.dataIdsCount++;this.data.set(dataId,value)}has(dataId){return this.data.has(dataId)}delete(dataId){this.dataIdsCount--;return this.data.delete(dataId)}numDataIds(){return this.dataIdsCount}}class KernelBackend2{time(f){return notYetImplemented("time")}read(dataId){return notYetImplemented("read")}readSync(dataId){return notYetImplemented("readSync")}numDataIds(){return notYetImplemented("numDataIds")}disposeData(dataId){return notYetImplemented("disposeData")}write(values,shape,dtype){return notYetImplemented("write")}move(dataId,values,shape,dtype){return notYetImplemented("move")}memory(){return notYetImplemented("memory")}floatPrecision(){return notYetImplemented("floatPrecision")}epsilon(){return this.floatPrecision()===32?EPSILON_FLOAT32:EPSILON_FLOAT16}batchMatMul(a,b,transposeA,transposeB){return notYetImplemented("batchMatMul")}fusedBatchMatMul({a,b,transposeA,transposeB,bias,activation:activation2,preluActivationWeights}){return notYetImplemented("fusedBatchMatMul")}slice(x,begin,size){return notYetImplemented("slice")}stridedSlice(x,begin,end,strides){return notYetImplemented("stridedSlice")}unstack(x,axis){return notYetImplemented("unstack")}reverse(a,axis){return notYetImplemented("reverse")}concat(tensors,axis){return notYetImplemented("concat")}neg(a){return notYetImplemented("neg")}add(a,b){return notYetImplemented("add")}addN(tensors){return notYetImplemented("addN")}subtract(a,b){return notYetImplemented("subtract")}multiply(a,b){return notYetImplemented("multiply")}realDivide(a,b){return notYetImplemented("realDivide")}floorDiv(a,b){return notYetImplemented("floorDiv")}sum(x,axes){return notYetImplemented("sum")}prod(x,axes){return notYetImplemented("prod")}unsortedSegmentSum(x,segmentIds,numSegments){return notYetImplemented("unsortedSegmentSum")}argMin(x,axis){return notYetImplemented("argMin")}argMax(x,axis){return notYetImplemented("argMax")}equal(a,b){return notYetImplemented("equal")}notEqual(a,b){return notYetImplemented("notEqual")}less(a,b){return notYetImplemented("less")}lessEqual(a,b){return notYetImplemented("lessEqual")}greater(a,b){return notYetImplemented("greater")}greaterEqual(a,b){return notYetImplemented("greaterEqual")}logicalNot(a){return notYetImplemented("logicalNot")}logicalAnd(a,b){return notYetImplemented("logicalAnd")}logicalOr(a,b){return notYetImplemented("logicalOr")}where(condition){return notYetImplemented("where")}select(condition,a,b){return notYetImplemented("select")}topk(x,k,sorted){return notYetImplemented("topk")}min(x,axes){return notYetImplemented("min")}minimum(a,b){return notYetImplemented("minimum")}mod(a,b){return notYetImplemented("mod")}max(x,axes){return notYetImplemented("max")}maximum(a,b){return notYetImplemented("maximum")}all(x,axes){return notYetImplemented("all")}any(x,axes){return notYetImplemented("any")}squaredDifference(a,b){return notYetImplemented("squaredDifference")}ceil(x){return notYetImplemented("ceil")}floor(x){return notYetImplemented("floor")}round(x){return notYetImplemented("round")}sign(x){return notYetImplemented("sign")}isNaN(x){return notYetImplemented("isNaN")}isInf(x){return notYetImplemented("isInf")}isFinite(x){return notYetImplemented("isFinite")}pow(a,b){return notYetImplemented("pow")}exp(x){return notYetImplemented("exp")}expm1(x){return notYetImplemented("expm1")}softmax(x,dim){return notYetImplemented("softmax")}log(x){return notYetImplemented("log")}log1p(x){return notYetImplemented("log1p")}sqrt(x){return notYetImplemented("sqrt")}rsqrt(x){return notYetImplemented("rsqrt")}square(x){return notYetImplemented("square")}reciprocal(x){return notYetImplemented("reciprocal")}relu(x){return notYetImplemented("relu")}relu6(x){return notYetImplemented("relu6")}prelu(x,a){return notYetImplemented("prelu")}elu(x){return notYetImplemented("elu")}eluDer(dy,y){return notYetImplemented("eluDer")}selu(x){return notYetImplemented("selu")}int(x){return notYetImplemented("int")}clip(x,min3,max3){return notYetImplemented("clip")}abs(x){return notYetImplemented("abs")}complexAbs(x){return notYetImplemented("complexAbs")}sigmoid(x){return notYetImplemented("sigmoid")}softplus(x){return notYetImplemented("softplus")}sin(x){return notYetImplemented("sin")}cos(x){return notYetImplemented("cos")}tan(x){return notYetImplemented("tan")}asin(x){return notYetImplemented("asin")}acos(x){return notYetImplemented("acos")}atan(x){return notYetImplemented("atan")}atan2(a,b){return notYetImplemented("atan2")}sinh(x){return notYetImplemented("sinh")}cosh(x){return notYetImplemented("cosh")}tanh(x){return notYetImplemented("tanh")}asinh(x){return notYetImplemented("asinh")}acosh(x){return notYetImplemented("acosh")}atanh(x){return notYetImplemented("atanh")}erf(x){return notYetImplemented("erf")}step(x,alpha){return notYetImplemented("step")}fusedConv2d({input:input2,filter,convInfo,bias,activation:activation2,preluActivationWeights}){return notYetImplemented("fusedConv2d")}conv2d(x,filter,convInfo){return notYetImplemented("conv2d")}conv2dDerInput(dy,filter,convInfo){return notYetImplemented("conv2dDerInput")}conv2dDerFilter(x,dY,convInfo){return notYetImplemented("conv2dDerFilter")}fusedDepthwiseConv2D({input:input2,filter,convInfo,bias,activation:activation2,preluActivationWeights}){return notYetImplemented("fusedDepthwiseConv2D")}depthwiseConv2D(input2,filter,convInfo){return notYetImplemented("depthwiseConv2D")}depthwiseConv2DDerInput(dy,filter,convInfo){return notYetImplemented("depthwiseConv2DDerInput")}depthwiseConv2DDerFilter(x,dY,convInfo){return notYetImplemented("depthwiseConv2DDerFilter")}conv3d(x,filter,convInfo){return notYetImplemented("conv3d")}conv3dDerInput(dy,filter,convInfo){return notYetImplemented("conv3dDerInput")}conv3dDerFilter(x,dY,convInfo){return notYetImplemented("conv3dDerFilter")}maxPool(x,convInfo){return notYetImplemented("maxPool")}maxPoolBackprop(dy,x,y,convInfo){return notYetImplemented("maxPoolBackprop")}avgPool(x,convInfo){return notYetImplemented("avgPool")}avgPoolBackprop(dy,x,convInfo){return notYetImplemented("avgPoolBackprop")}avgPool3d(x,convInfo){return notYetImplemented("avgPool3d")}avgPool3dBackprop(dy,x,convInfo){return notYetImplemented("avgPool3dBackprop")}maxPool3d(x,convInfo){return notYetImplemented("maxPool3d")}maxPool3dBackprop(dy,x,y,convInfo){return notYetImplemented("maxPool3dBackprop")}reshape(x,shape){return notYetImplemented("reshape")}cast(x,dtype){return notYetImplemented("cast")}tile(x,reps){return notYetImplemented("tile")}pad(x,paddings,constantValue){return notYetImplemented("pad")}transpose(x,perm){return notYetImplemented("transpose")}gather(x,indices,axis){return notYetImplemented("gather")}gatherND(x,indices){return notYetImplemented("gatherND")}scatterND(indices,updates,shape){return notYetImplemented("scatterND")}batchToSpaceND(x,blockShape,crops){return notYetImplemented("batchToSpaceND")}spaceToBatchND(x,blockShape,paddings){return notYetImplemented("spaceToBatchND")}resizeBilinear(x,newHeight,newWidth,alignCorners){return notYetImplemented("resizeBilinear")}resizeBilinearBackprop(dy,x,alignCorners){return notYetImplemented("resizeBilinearBackprop")}resizeNearestNeighbor(x,newHEight,newWidth,alignCorners){return notYetImplemented("resizeNearestNeighbor")}resizeNearestNeighborBackprop(dy,x,alignCorners){return notYetImplemented("resizeNearestNeighborBackprop")}batchNorm(x,mean2,variance2,offset,scale2,varianceEpsilon){return notYetImplemented("batchNorm")}localResponseNormalization4D(x,radius,bias,alpha,beta){return notYetImplemented("localResponseNormalization4D")}LRNGrad(dy,inputImage,outputImage,radius,bias,alpha,beta){return notYetImplemented("LRNGrad")}multinomial(logits,normalized,numSamples,seed){return notYetImplemented("multinomial")}oneHot(indices,depth,onValue,offValue){return notYetImplemented("oneHot")}cumsum(x,axis,exclusive,reverse3){return notYetImplemented("cumsum")}nonMaxSuppression(boxes,scores,maxOutputSize,iouThreshold,scoreThreshold){return notYetImplemented("nonMaxSuppression")}fft(x){return notYetImplemented("fft")}ifft(x){return notYetImplemented("ifft")}complex(real2,imag2){return notYetImplemented("complex")}real(input2){return notYetImplemented("real")}imag(input2){return notYetImplemented("imag")}cropAndResize(image3,boxes,boxIndex,cropSize,method,extrapolationValue){return notYetImplemented("cropAndResize")}depthToSpace(x,blockSize,dataFormat){return notYetImplemented("depthToSpace")}split(value,sizeSplits,axis){return notYetImplemented("split")}sparseToDense(sparseIndices,sparseValues,outputShape,defaultValue){return notYetImplemented("sparseToDense")}diag(x){return notYetImplemented("diag")}fill(shape,value,dtype){return notYetImplemented("fill")}onesLike(x){return notYetImplemented("onesLike")}zerosLike(x){return notYetImplemented("zerosLike")}linspace(start,stop,num){return notYetImplemented("linspace")}dispose(){return notYetImplemented("dispose")}}function notYetImplemented(kernelName){throw new Error(`'${kernelName}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function shuffle(array2){let counter=array2.length;let temp=0;let index2=0;while(counter>0){index2=Math.random()*counter|0;counter--;temp=array2[counter];array2[counter]=array2[index2];array2[index2]=temp}}function clamp(min3,x,max3){return Math.max(min3,Math.min(x,max3))}function nearestLargerEven(val){return val%2===0?val:val+1}function sum2(arr){let sum3=0;for(let i=0;i<arr.length;i++){sum3+=arr[i]}return sum3}function randUniform(a,b){const r=Math.random();return b*r+(1-r)*a}function distSquared(a,b){let result=0;for(let i=0;i<a.length;i++){const diff=Number(a[i])-Number(b[i]);result+=diff*diff}return result}function assert(expr,msg){if(!expr){throw new Error(typeof msg==="string"?msg:msg())}}function assertShapesMatch(shapeA,shapeB,errorMessagePrefix=""){assert(arraysEqual(shapeA,shapeB),()=>errorMessagePrefix+` Shapes ${shapeA} and ${shapeB} must match`)}function assertNonNull(a){assert(a!=null,()=>`The input to the tensor constructor must be a non-null value.`)}function flatten(arr,result=[],skipTypedArray=false){if(result==null){result=[]}if(Array.isArray(arr)||isTypedArray(arr)&&!skipTypedArray){for(let i=0;i<arr.length;++i){flatten(arr[i],result,skipTypedArray)}}else{result.push(arr)}return result}function sizeFromShape(shape){if(shape.length===0){return 1}let size=shape[0];for(let i=1;i<shape.length;i++){size*=shape[i]}return size}function isScalarShape(shape){return shape.length===0}function arraysEqual(n1,n2){if(n1===n2){return true}if(n1==null||n2==null){return false}if(n1.length!==n2.length){return false}for(let i=0;i<n1.length;i++){if(n1[i]!==n2[i]){return false}}return true}function isInt(a){return a%1===0}function tanh(x){if(Math.tanh!=null){return Math.tanh(x)}if(x===Infinity){return 1}else if(x===-Infinity){return-1}else{const e2x=Math.exp(2*x);return(e2x-1)/(e2x+1)}}function sizeToSquarishShape(size){const width=Math.ceil(Math.sqrt(size));return[width,Math.ceil(size/width)]}function createShuffledIndices(n){const shuffledIndices=new Uint32Array(n);for(let i=0;i<n;++i){shuffledIndices[i]=i}shuffle(shuffledIndices);return shuffledIndices}function rightPad(a,size){if(size<=a.length){return a}return a+" ".repeat(size-a.length)}function repeatedTry(checkFn,delayFn=counter=>0,maxCounter){return new Promise((resolve,reject)=>{let tryCount=0;const tryFn=()=>{if(checkFn()){resolve();return}tryCount++;const nextBackoff=delayFn(tryCount);if(maxCounter!=null&&tryCount>=maxCounter){reject();return}setTimeout(tryFn,nextBackoff)};tryFn()})}function inferFromImplicitShape(shape,size){let shapeProd=1;let implicitIdx=-1;for(let i=0;i<shape.length;++i){if(shape[i]>=0){shapeProd*=shape[i]}else if(shape[i]===-1){if(implicitIdx!==-1){throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${implicitIdx} and dim ${i}`)}implicitIdx=i}else if(shape[i]<0){throw Error(`Shapes can not be < 0. Found ${shape[i]} at dim ${i}`)}}if(implicitIdx===-1){if(size>0&&size!==shapeProd){throw Error(`Size(${size}) must match the product of shape ${shape}`)}return shape}if(shapeProd===0){throw Error(`Cannot infer the missing size in [${shape}] when there are 0 elements`)}if(size%shapeProd!==0){throw Error(`The implicit shape can't be a fractional number. Got ${size} / ${shapeProd}`)}const newShape=shape.slice();newShape[implicitIdx]=size/shapeProd;return newShape}function parseAxisParam(axis,shape){const rank=shape.length;axis=axis==null?shape.map((s,i)=>i):[].concat(axis);assert(axis.every(ax=>ax>=-rank&&ax<rank),()=>`All values in axis param must be in range [-${rank}, ${rank}) but got axis ${axis}`);assert(axis.every(ax=>isInt(ax)),()=>`All values in axis param must be integers but got axis ${axis}`);return axis.map(a=>a<0?rank+a:a)}function squeezeShape(shape,axis){const newShape=[];const keptDims=[];const isEmptyArray=axis!=null&&Array.isArray(axis)&&axis.length===0;const axes=axis==null||isEmptyArray?null:parseAxisParam(axis,shape).sort();let j=0;for(let i=0;i<shape.length;++i){if(axes!=null){if(axes[j]===i&&shape[i]!==1){throw new Error(`Can't squeeze axis ${i} since its dim '${shape[i]}' is not 1`)}if((axes[j]==null||axes[j]>i)&&shape[i]===1){newShape.push(shape[i]);keptDims.push(i)}if(axes[j]<=i){j++}}if(shape[i]!==1){newShape.push(shape[i]);keptDims.push(i)}}return{newShape,keptDims}}function getTypedArrayFromDType(dtype,size){let values=null;if(dtype==null||dtype==="float32"){values=new Float32Array(size)}else if(dtype==="int32"){values=new Int32Array(size)}else if(dtype==="bool"){values=new Uint8Array(size)}else{throw new Error(`Unknown data type ${dtype}`)}return values}function getArrayFromDType(dtype,size){let values=null;if(dtype==null||dtype==="float32"){values=new Float32Array(size)}else if(dtype==="int32"){values=new Int32Array(size)}else if(dtype==="bool"){values=new Uint8Array(size)}else if(dtype==="string"){values=new Array(size)}else{throw new Error(`Unknown data type ${dtype}`)}return values}function checkConversionForErrors(vals,dtype){for(let i=0;i<vals.length;i++){const num=vals[i];if(isNaN(num)||!isFinite(num)){throw Error(`A tensor of type ${dtype} being uploaded contains ${num}.`)}}}function isValidDtype(dtype){return dtype==="bool"||dtype==="complex64"||dtype==="float32"||dtype==="int32"||dtype==="string"}function hasEncodingLoss(oldType,newType){if(newType==="complex64"){return false}if(newType==="float32"&&oldType!=="complex64"){return false}if(newType==="int32"&&oldType!=="float32"&&oldType!=="complex64"){return false}if(newType==="bool"&&oldType==="bool"){return false}return true}function isTypedArray(a){return a instanceof Float32Array||a instanceof Int32Array||a instanceof Uint8Array}function bytesPerElement(dtype){if(dtype==="float32"||dtype==="int32"){return 4}else if(dtype==="complex64"){return 8}else if(dtype==="bool"){return 1}else{throw new Error(`Unknown dtype ${dtype}`)}}function bytesFromStringArray(arr){if(arr==null){return 0}let bytes=0;arr.forEach(x=>bytes+=x.length);return bytes}function isString(value){return typeof value==="string"||value instanceof String}function isBoolean(value){return typeof value==="boolean"}function isNumber(value){return typeof value==="number"}function inferDtype(values){if(Array.isArray(values)){return inferDtype(values[0])}if(values instanceof Float32Array){return"float32"}else if(values instanceof Int32Array||values instanceof Uint8Array){return"int32"}else if(isNumber(values)){return"float32"}else if(isString(values)){return"string"}else if(isBoolean(values)){return"bool"}return"float32"}function isFunction(f){return!!(f&&f.constructor&&f.call&&f.apply)}function nearestDivisor(size,start){for(let i=start;i<size;++i){if(size%i===0){return i}}return size}function computeStrides(shape){const rank=shape.length;if(rank<2){return[]}const strides=new Array(rank-1);strides[rank-2]=shape[rank-1];for(let i=rank-3;i>=0;--i){strides[i]=strides[i+1]*shape[i+1]}return strides}function createNestedArray(offset,shape,a){const ret=new Array;if(shape.length===1){const d=shape[0];for(let i=0;i<d;i++){ret[i]=a[offset+i]}}else{const d=shape[0];const rest=shape.slice(1);const len=rest.reduce((acc,c)=>acc*c);for(let i=0;i<d;i++){ret[i]=createNestedArray(offset+i*len,rest,a)}}return ret}function toNestedArray(shape,a){if(shape.length===0){return a[0]}const size=shape.reduce((acc,c)=>acc*c);if(size===0){return[]}if(size!==a.length){throw new Error(`[${shape}] does not match the input size ${a.length}.`)}return createNestedArray(0,shape,a)}function makeOnesTypedArray(size,dtype){const array2=makeZerosTypedArray(size,dtype);for(let i=0;i<array2.length;i++){array2[i]=1}return array2}function makeZerosTypedArray(size,dtype){if(dtype==null||dtype==="float32"||dtype==="complex64"){return new Float32Array(size)}else if(dtype==="int32"){return new Int32Array(size)}else if(dtype==="bool"){return new Uint8Array(size)}else{throw new Error(`Unknown data type ${dtype}`)}}function makeZerosNestedTypedArray(shape,dtype){const size=shape.reduce((prev,curr)=>prev*curr,1);if(dtype==null||dtype==="float32"){return toNestedArray(shape,new Float32Array(size))}else if(dtype==="int32"){return toNestedArray(shape,new Int32Array(size))}else if(dtype==="bool"){return toNestedArray(shape,new Uint8Array(size))}else{throw new Error(`Unknown data type ${dtype}`)}}function assertNonNegativeIntegerDimensions(shape){shape.forEach(dimSize=>{assert(Number.isInteger(dimSize)&&dimSize>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${shape}].`)})}function locToIndex(locs,rank,strides){if(rank===0){return 0}else if(rank===1){return locs[0]}let index2=locs[locs.length-1];for(let i=0;i<locs.length-1;++i){index2+=strides[i]*locs[i]}return index2}function indexToLoc(index2,rank,strides){if(rank===0){return[]}else if(rank===1){return[index2]}const locs=new Array(rank);for(let i=0;i<locs.length-1;++i){locs[i]=Math.floor(index2/strides[i]);index2-=locs[i]*strides[i]}locs[locs.length-1]=index2;return locs}function isPromise(object){return object&&object.then&&typeof object.then==="function"}const TENSORFLOWJS_FLAGS_PREFIX="tfjsflags";class Environment{constructor(global2){this.global=global2;this.flags={};this.flagRegistry={};this.urlFlags={};this.populateURLFlags()}setPlatform(platformName,platform){if(this.platform!=null){console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${platform}.`)}this.platformName=platformName;this.platform=platform}registerFlag(flagName,evaluationFn,setHook){this.flagRegistry[flagName]={evaluationFn,setHook};if(this.urlFlags[flagName]!=null){const flagValue=this.urlFlags[flagName];console.warn(`Setting feature override from URL ${flagName}: ${flagValue}.`);this.set(flagName,flagValue)}}async getAsync(flagName){if(flagName in this.flags){return this.flags[flagName]}this.flags[flagName]=await this.evaluateFlag(flagName);return this.flags[flagName]}get(flagName){if(flagName in this.flags){return this.flags[flagName]}const flagValue=this.evaluateFlag(flagName);if(isPromise(flagValue)){throw new Error(`Flag ${flagName} cannot be synchronously evaluated. Please use getAsync() instead.`)}this.flags[flagName]=flagValue;return this.flags[flagName]}getNumber(flagName){return this.get(flagName)}getBool(flagName){return this.get(flagName)}getFlags(){return this.flags}get features(){return this.flags}set(flagName,value){if(this.flagRegistry[flagName]==null){throw new Error(`Cannot set flag ${flagName} as it has not been registered.`)}this.flags[flagName]=value;if(this.flagRegistry[flagName].setHook!=null){this.flagRegistry[flagName].setHook(value)}}evaluateFlag(flagName){if(this.flagRegistry[flagName]==null){throw new Error(`Cannot evaluate flag '${flagName}': no evaluation function found.`)}return this.flagRegistry[flagName].evaluationFn()}setFlags(flags){this.flags=Object.assign({},flags)}reset(){this.flags={};this.urlFlags={};this.populateURLFlags()}populateURLFlags(){if(typeof this.global==="undefined"||typeof this.global.location==="undefined"||typeof this.global.location.search==="undefined"){return}const urlParams=getQueryParams(this.global.location.search);if(TENSORFLOWJS_FLAGS_PREFIX in urlParams){const keyValues=urlParams[TENSORFLOWJS_FLAGS_PREFIX].split(",");keyValues.forEach(keyValue=>{const[key,value]=keyValue.split(":");this.urlFlags[key]=parseValue(key,value)})}}}function getQueryParams(queryString){const params={};queryString.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(s,...t)=>{decodeParam(params,t[0],t[1]);return t.join("=")});return params}function decodeParam(params,name,value){params[decodeURIComponent(name)]=decodeURIComponent(value||"")}function parseValue(flagName,value){value=value.toLowerCase();if(value==="true"||value==="false"){return value==="true"}else if(`${+value}`===value){return+value}throw new Error(`Could not parse value flag value ${value} for flag ${flagName}.`)}function env3(){return exports3.ENV}exports3.ENV=null;function setEnvironmentGlobal(environment){exports3.ENV=environment}let globalNameSpace;function getGlobalNamespace(){if(globalNameSpace==null){let ns;if(typeof window!=="undefined"){ns=window}else if(typeof global!=="undefined"){ns=global}else if(typeof process!=="undefined"){ns=process}else if(typeof self!=="undefined"){ns=self}else{throw new Error("Could not find a global object")}globalNameSpace=ns}return globalNameSpace}function getGlobalMap(){const ns=getGlobalNamespace();if(ns._tfGlobals==null){ns._tfGlobals=new Map}return ns._tfGlobals}function getGlobal(key,init2){const globalMap=getGlobalMap();if(globalMap.has(key)){return globalMap.get(key)}else{const singleton=init2();globalMap.set(key,singleton);return globalMap.get(key)}}const Abs3="Abs";const Acos="Acos";const Acosh="Acosh";const Add3="Add";const AddN3="AddN";const All="All";const Any="Any";const ArgMax3="ArgMax";const ArgMin="ArgMin";const Asin="Asin";const Asinh="Asinh";const Atan="Atan";const Atanh="Atanh";const Atan2="Atan2";const AvgPool3="AvgPool";const AvgPoolBackprop="AvgPoolBackprop";const AvgPool3D="AvgPool3D";const AvgPool3DBackprop="AvgPool3DBackprop";const BatchMatMul3="BatchMatMul";const BatchToSpaceND="BatchToSpaceND";const BroadcastTo="BroadcastTo";const Cast5="Cast";const Ceil="Ceil";const ClipByValue3="ClipByValue";const Complex="Complex";const Concat3="Concat";const Conv2D3="Conv2D";const Conv2DBackpropFilter="Conv2DBackpropFilter";const Conv2DBackpropInput3="Conv2DBackpropInput";const Conv3D="Conv3D";const Conv3DBackpropFilterV2="Conv3DBackpropFilterV2";const Conv3DBackpropInputV2="Conv3DBackpropInputV2";const Cos3="Cos";const Cosh="Cosh";const Cumsum3="Cumsum";const CropAndResize3="CropAndResize";const DepthToSpace3="DepthToSpace";const DepthwiseConv2dNative3="DepthwiseConv2dNative";const DepthwiseConv2dNativeBackpropFilter="DepthwiseConv2dNativeBackpropFilter";const DepthwiseConv2dNativeBackpropInput="DepthwiseConv2dNativeBackpropInput";const Diag="Diag";const Dilation2D="Dilation2D";const Dilation2DBackpropInput="Dilation2DBackpropInput";const Dilation2DBackpropFilter="Dilation2DBackpropFilter";const Div3="Div";const Elu="Elu";const EluGrad="EluGrad";const Erf="Erf";const Equal3="Equal";const Exp3="Exp";const Expm1="Expm1";const FFT="FFT";const Fill3="Fill";const FlipLeftRight3="FlipLeftRight";const Floor="Floor";const FloorDiv3="FloorDiv";const FusedBatchNorm3="FusedBatchNorm";const GatherV23="GatherV2";const GatherNd3="GatherNd";const Greater3="Greater";const GreaterEqual3="GreaterEqual";const Identity5="Identity";const IFFT="IFFT";const Imag="Imag";const IsFinite="IsFinite";const IsInf="IsInf";const IsNan="IsNan";const Less3="Less";const LessEqual3="LessEqual";const LinSpace="LinSpace";const Log3="Log";const Log1p="Log1p";const LogicalAnd3="LogicalAnd";const LogicalNot="LogicalNot";const LogicalOr="LogicalOr";const LogSoftmax="LogSoftmax";const LRN="LRN";const LRNBackprop="LRNBackprop";const Max3="Max";const Maximum3="Maximum";const MaxPool3="MaxPool";const MaxPoolBackprop="MaxPoolBackprop";const MaxPool3D="MaxPool3D";const MaxPool3DBackprop="MaxPool3DBackprop";const MaxPoolWithArgmax="MaxPoolWithArgmax";const Mean="Mean";const Min3="Min";const Minimum3="Minimum";const MirrorPad="MirrorPad";const Mod="Mod";const Multiply3="Multiply";const Negate3="Negate";const NotEqual3="NotEqual";const NonMaxSuppressionV33="NonMaxSuppressionV3";const NonMaxSuppressionV43="NonMaxSuppressionV4";const NonMaxSuppressionV53="NonMaxSuppressionV5";const OnesLike3="OnesLike";const OneHot3="OneHot";const PadV23="PadV2";const Pool="Pool";const Pow3="Pow";const Prelu3="Prelu";const Prod="Prod";const Range="Range";const Real="Real";const Reciprocal="Reciprocal";const Relu3="Relu";const Reshape6="Reshape";const ResizeNearestNeighbor="ResizeNearestNeighbor";const ResizeNearestNeighborGrad="ResizeNearestNeighborGrad";const ResizeBilinear3="ResizeBilinear";const ResizeBilinearGrad="ResizeBilinearGrad";const Relu63="Relu6";const Reverse3="Reverse";const Round="Round";const Rsqrt3="Rsqrt";const ScatterNd3="ScatterNd";const SelectV23="SelectV2";const Selu="Selu";const Slice6="Slice";const Sin3="Sin";const Sinh="Sinh";const Sign="Sign";const Sigmoid3="Sigmoid";const Softplus="Softplus";const Sqrt3="Sqrt";const Sum3="Sum";const SpaceToBatchND="SpaceToBatchND";const SplitV2="SplitV";const Softmax3="Softmax";const SquaredDifference3="SquaredDifference";const Square3="Square";const Sub3="Sub";const SparseToDense="SparseToDense";const StridedSlice3="StridedSlice";const Tan="Tan";const Tanh3="Tanh";const Tile3="Tile";const TopK="TopK";const Transpose5="Transpose";const Unique="Unique";const Unpack3="Unpack";const UnsortedSegmentSum="UnsortedSegmentSum";const ZerosLike3="ZerosLike";const Step="Step";const FromPixels="FromPixels";const RotateWithOffset3="RotateWithOffset";const _FusedMatMul2="_FusedMatMul";const FusedConv2D3="FusedConv2D";const FusedDepthwiseConv2D3="FusedDepthwiseConv2D";const kernelRegistry=getGlobal("kernelRegistry",()=>new Map);const gradRegistry=getGlobal("gradRegistry",()=>new Map);function getKernel(kernelName,backendName){const key=makeKey(kernelName,backendName);return kernelRegistry.get(key)}function getGradient(kernelName){return gradRegistry.get(kernelName)}function getKernelsForBackend(backendName){const it=kernelRegistry.entries();const result=[];while(true){const{done,value}=it.next();if(done){break}const[key,config2]=value;const[backend2]=key.split("_");if(backend2===backendName){result.push(config2)}}return result}function registerKernel2(config2){const{kernelName,backendName}=config2;const key=makeKey(kernelName,backendName);if(kernelRegistry.has(key)){console.warn(`The kernel '${kernelName}' for backend '${backendName}' is already registered`)}kernelRegistry.set(key,config2)}function registerGradient(config2){const{kernelName}=config2;if(gradRegistry.has(kernelName)){if(env3().getBool("DEBUG")){console.warn(`Overriding the gradient for '${kernelName}'`)}}gradRegistry.set(kernelName,config2)}function unregisterKernel(kernelName,backendName){const key=makeKey(kernelName,backendName);if(!kernelRegistry.has(key)){throw new Error(`The kernel '${kernelName}' for backend '${backendName}' is not registered`)}kernelRegistry.delete(key)}function unregisterGradient(kernelName){if(!gradRegistry.has(kernelName)){throw new Error(`The gradient '${kernelName}' for backend is not registered`)}gradRegistry.delete(kernelName)}function copyRegisteredKernels(registeredBackendName,newBackendName){const kernels=getKernelsForBackend(registeredBackendName);kernels.forEach(kernelConfig=>{const newKernelConfig=Object.assign({},kernelConfig,{backendName:newBackendName});registerKernel2(newKernelConfig)})}function makeKey(kernelName,backendName){return`${backendName}_${kernelName}`}function createScalarValue(value,dtype){if(dtype==="string"){return encodeString(value)}return toTypedArray([value],dtype)}function noConversionNeeded(a,dtype){return a instanceof Float32Array&&dtype==="float32"||a instanceof Int32Array&&dtype==="int32"||a instanceof Uint8Array&&dtype==="bool"}function toTypedArray(a,dtype){if(dtype==="string"){throw new Error("Cannot convert a string[] to a TypedArray")}if(Array.isArray(a)){a=flatten(a)}if(env3().getBool("DEBUG")){checkConversionForErrors(a,dtype)}if(noConversionNeeded(a,dtype)){return a}if(dtype==null||dtype==="float32"||dtype==="complex64"){return new Float32Array(a)}else if(dtype==="int32"){return new Int32Array(a)}else if(dtype==="bool"){const bool=new Uint8Array(a.length);for(let i=0;i<bool.length;++i){if(Math.round(a[i])!==0){bool[i]=1}}return bool}else{throw new Error(`Unknown data type ${dtype}`)}}function now2(){return env3().platform.now()}function fetch$1(path,requestInits){return env3().platform.fetch(path,requestInits)}function encodeString(s,encoding="utf-8"){encoding=encoding||"utf-8";return env3().platform.encode(s,encoding)}function decodeString(bytes,encoding="utf-8"){encoding=encoding||"utf-8";return env3().platform.decode(bytes,encoding)}var util27=Object.freeze({__proto__:null,createScalarValue,toTypedArray,now:now2,fetch:fetch$1,encodeString,decodeString,shuffle,clamp,nearestLargerEven,sum:sum2,randUniform,distSquared,assert,assertShapesMatch,assertNonNull,flatten,sizeFromShape,isScalarShape,arraysEqual,isInt,tanh,sizeToSquarishShape,createShuffledIndices,rightPad,repeatedTry,inferFromImplicitShape,parseAxisParam,squeezeShape,getTypedArrayFromDType,getArrayFromDType,checkConversionForErrors,isValidDtype,hasEncodingLoss,isTypedArray,bytesPerElement,bytesFromStringArray,isString,isBoolean,isNumber,inferDtype,isFunction,nearestDivisor,computeStrides,toNestedArray,makeOnesTypedArray,makeZerosTypedArray,makeZerosNestedTypedArray,assertNonNegativeIntegerDimensions,locToIndex,indexToLoc,isPromise});class Profiler{constructor(backendTimer,logger){this.backendTimer=backendTimer;this.logger=logger;if(logger==null){this.logger=new Logger}}profileKernel(kernelName,inputs,f){let outputs;const holdResultWrapperFn=()=>{outputs=f()};const timer=this.backendTimer.time(holdResultWrapperFn);for(let i=0;i<outputs.length;i++){const output=outputs[i];output.data().then(tensorVals=>{checkComputationForErrors(tensorVals,output.dtype,kernelName)})}const kernelProfile={kernelName,outputs,inputs,timeMs:timer.then(timing=>timing.kernelMs),extraInfo:timer.then(timing=>timing.getExtraProfileInfo!=null?timing.getExtraProfileInfo():"")};return kernelProfile}logKernelProfile(kernelProfile){const{kernelName,outputs,timeMs,inputs,extraInfo}=kernelProfile;outputs.forEach(result=>{Promise.all([result.data(),timeMs,extraInfo]).then(valueContainer=>{this.logger.logKernelProfile(kernelName,result,valueContainer[0],valueContainer[1],inputs,valueContainer[2])})})}}function checkComputationForErrors(vals,dtype,kernelName){if(dtype!=="float32"){return false}for(let i=0;i<vals.length;i++){const num=vals[i];if(isNaN(num)||!isFinite(num)){console.warn(`Found ${num} in the result of '${kernelName}'`);return true}}return false}class Logger{logKernelProfile(name,result,vals,timeMs,inputs,extraInfo){const time2=typeof timeMs==="number"?rightPad(`${timeMs}ms`,9):timeMs["error"];const paddedName=rightPad(name,25);const rank=result.rank;const size=result.size;const shape=rightPad(result.shape.toString(),14);let inputShapesDescription="";for(const name2 in inputs){const input2=inputs[name2];if(input2!=null){const inputShape=input2.shape||result.shape;const inputRank=inputShape.length;inputShapesDescription+=`${name2}: ${inputRank}D ${inputRank>0?inputShape:""} `}}console.log(`%c${paddedName} %c${time2} %c${rank}D ${shape} %c${size} %c${inputShapesDescription} %c${extraInfo}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}}function getFilteredNodesXToY(tape,xs,y){const tensorsFromX={};const nodesFromX={};for(let i=0;i<xs.length;i++){tensorsFromX[xs[i].id]=true}for(let i=0;i<tape.length;i++){const node=tape[i];const nodeInputs=node.inputs;for(const inputName in nodeInputs){const input2=nodeInputs[inputName];let anyInputFromX=false;for(let j=0;j<xs.length;j++){if(tensorsFromX[input2.id]){node.outputs.forEach(output=>tensorsFromX[output.id]=true);anyInputFromX=true;nodesFromX[node.id]=true;break}}if(anyInputFromX){break}}}const tensorsLeadToY={};tensorsLeadToY[y.id]=true;const nodesToY={};for(let i=tape.length-1;i>=0;i--){const node=tape[i];const nodeInputs=node.inputs;for(let j=0;j<node.outputs.length;j++){if(tensorsLeadToY[node.outputs[j].id]){for(const inputName in nodeInputs){tensorsLeadToY[nodeInputs[inputName].id]=true;nodesToY[node.id]=true}break}}}const filteredTape=[];for(let i=0;i<tape.length;i++){const node=tape[i];if(nodesFromX[node.id]&&nodesToY[node.id]){const prunedInputs={};for(const inputName in node.inputs){const nodeInput=node.inputs[inputName];if(tensorsFromX[nodeInput.id]){prunedInputs[inputName]=nodeInput}}const prunedNode=Object.assign({},node);prunedNode.inputs=prunedInputs;prunedNode.outputs=node.outputs;filteredTape.push(prunedNode)}}return filteredTape}function backpropagateGradients(tensorAccumulatedGradientMap,filteredTape,tidy2,add2){for(let i=filteredTape.length-1;i>=0;i--){const node=filteredTape[i];const dys=[];node.outputs.forEach(o=>{const gradTensor=tensorAccumulatedGradientMap[o.id];if(gradTensor!=null){dys.push(gradTensor)}else{dys.push(null)}});if(node.gradient==null){throw new Error(`Cannot compute gradient: gradient function not found for ${node.kernelName}.`)}const inputGradients=node.gradient(dys);for(const inputName in node.inputs){if(!(inputName in inputGradients)){throw new Error(`Cannot backprop through input ${inputName}. Available gradients found: ${Object.keys(inputGradients)}.`)}const dx=tidy2(()=>inputGradients[inputName]());if(dx.dtype!=="float32"){throw new Error(`Error in gradient for op ${node.kernelName}. The gradient of input ${inputName} must have 'float32' dtype, but has '${dx.dtype}'`)}const x=node.inputs[inputName];if(!arraysEqual(dx.shape,x.shape)){throw new Error(`Error in gradient for op ${node.kernelName}. The gradient of input '${inputName}' has shape '${dx.shape}', which does not match the shape of the input '${x.shape}'`)}if(tensorAccumulatedGradientMap[x.id]==null){tensorAccumulatedGradientMap[x.id]=dx}else{const curGradient=tensorAccumulatedGradientMap[x.id];tensorAccumulatedGradientMap[x.id]=add2(curGradient,dx);curGradient.dispose()}}}}const FORMAT_LIMIT_NUM_VALS=20;const FORMAT_NUM_FIRST_LAST_VALS=3;const FORMAT_NUM_SIG_DIGITS=7;function tensorToString(vals,shape,dtype,verbose){const strides=computeStrides(shape);const padPerCol=computeMaxSizePerColumn(vals,shape,dtype,strides);const rank=shape.length;const valsLines=subTensorToString(vals,shape,dtype,strides,padPerCol);const lines=["Tensor"];if(verbose){lines.push(` dtype: ${dtype}`);lines.push(` rank: ${rank}`);lines.push(` shape: [${shape}]`);lines.push(` values:`)}lines.push(valsLines.map(l=>" "+l).join("\n"));return lines.join("\n")}function computeMaxSizePerColumn(vals,shape,dtype,strides){const n=sizeFromShape(shape);const numCols=strides[strides.length-1];const padPerCol=new Array(numCols).fill(0);const rank=shape.length;const valuesOrTuples=dtype==="complex64"?createComplexTuples(vals):vals;if(rank>1){for(let row=0;row<n/numCols;row++){const offset=row*numCols;for(let j=0;j<numCols;j++){padPerCol[j]=Math.max(padPerCol[j],valToString(valuesOrTuples[offset+j],0,dtype).length)}}}return padPerCol}function valToString(val,pad3,dtype){let valStr;if(Array.isArray(val)){valStr=`${parseFloat(val[0].toFixed(FORMAT_NUM_SIG_DIGITS))} + ${parseFloat(val[1].toFixed(FORMAT_NUM_SIG_DIGITS))}j`}else if(isString(val)){valStr=`'${val}'`}else if(dtype==="bool"){valStr=boolNumToString(val)}else{valStr=parseFloat(val.toFixed(FORMAT_NUM_SIG_DIGITS)).toString()}return rightPad(valStr,pad3)}function boolNumToString(v){return v===0?"false":"true"}function subTensorToString(vals,shape,dtype,strides,padPerCol,isLast=true){const storagePerElement=dtype==="complex64"?2:1;const size=shape[0];const rank=shape.length;if(rank===0){if(dtype==="complex64"){const complexTuple=createComplexTuples(vals);return[valToString(complexTuple[0],0,dtype)]}if(dtype==="bool"){return[boolNumToString(vals[0])]}return[vals[0].toString()]}if(rank===1){if(size>FORMAT_LIMIT_NUM_VALS){const firstValsSize=FORMAT_NUM_FIRST_LAST_VALS*storagePerElement;let firstVals=Array.from(vals.slice(0,firstValsSize));let lastVals=Array.from(vals.slice((size-FORMAT_NUM_FIRST_LAST_VALS)*storagePerElement,size*storagePerElement));if(dtype==="complex64"){firstVals=createComplexTuples(firstVals);lastVals=createComplexTuples(lastVals)}return["["+firstVals.map((x,i)=>valToString(x,padPerCol[i],dtype)).join(", ")+", ..., "+lastVals.map((x,i)=>valToString(x,padPerCol[size-FORMAT_NUM_FIRST_LAST_VALS+i],dtype)).join(", ")+"]"]}const displayVals=dtype==="complex64"?createComplexTuples(vals):Array.from(vals);return["["+displayVals.map((x,i)=>valToString(x,padPerCol[i],dtype)).join(", ")+"]"]}const subshape=shape.slice(1);const substrides=strides.slice(1);const stride=strides[0]*storagePerElement;const lines=[];if(size>FORMAT_LIMIT_NUM_VALS){for(let i=0;i<FORMAT_NUM_FIRST_LAST_VALS;i++){const start=i*stride;const end=start+stride;lines.push(...subTensorToString(vals.slice(start,end),subshape,dtype,substrides,padPerCol,false))}lines.push("...");for(let i=size-FORMAT_NUM_FIRST_LAST_VALS;i<size;i++){const start=i*stride;const end=start+stride;lines.push(...subTensorToString(vals.slice(start,end),subshape,dtype,substrides,padPerCol,i===size-1))}}else{for(let i=0;i<size;i++){const start=i*stride;const end=start+stride;lines.push(...subTensorToString(vals.slice(start,end),subshape,dtype,substrides,padPerCol,i===size-1))}}const sep=rank===2?",":"";lines[0]="["+lines[0]+sep;for(let i=1;i<lines.length-1;i++){lines[i]=" "+lines[i]+sep}let newLineSep=",\n";for(let i=2;i<rank;i++){newLineSep+="\n"}lines[lines.length-1]=" "+lines[lines.length-1]+"]"+(isLast?"":newLineSep);return lines}function createComplexTuples(vals){const complexTuples=[];for(let i=0;i<vals.length;i+=2){complexTuples.push([vals[i],vals[i+1]])}return complexTuples}class TensorBuffer{constructor(shape,dtype,values){this.dtype=dtype;this.shape=shape.slice();this.size=sizeFromShape(shape);if(values!=null){const n=values.length;assert(n===this.size,()=>`Length of values '${n}' does not match the size inferred by the shape '${this.size}'.`)}if(dtype==="complex64"){throw new Error(`complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).`)}this.values=values||getArrayFromDType(dtype,this.size);this.strides=computeStrides(shape)}set(value,...locs){if(locs.length===0){locs=[0]}assert(locs.length===this.rank,()=>`The number of provided coordinates (${locs.length}) must match the rank (${this.rank})`);const index2=this.locToIndex(locs);this.values[index2]=value}get(...locs){if(locs.length===0){locs=[0]}let i=0;for(const loc of locs){if(loc<0||loc>=this.shape[i]){const msg=`Requested out of range element at ${locs}. Buffer shape=${this.shape}`;throw new Error(msg)}i++}let index2=locs[locs.length-1];for(let i2=0;i2<locs.length-1;++i2){index2+=this.strides[i2]*locs[i2]}return this.values[index2]}locToIndex(locs){if(this.rank===0){return 0}else if(this.rank===1){return locs[0]}let index2=locs[locs.length-1];for(let i=0;i<locs.length-1;++i){index2+=this.strides[i]*locs[i]}return index2}indexToLoc(index2){if(this.rank===0){return[]}else if(this.rank===1){return[index2]}const locs=new Array(this.shape.length);for(let i=0;i<locs.length-1;++i){locs[i]=Math.floor(index2/this.strides[i]);index2-=locs[i]*this.strides[i]}locs[locs.length-1]=index2;return locs}get rank(){return this.shape.length}toTensor(){return trackerFn().makeTensor(this.values,this.shape,this.dtype)}}let trackerFn=null;let opHandler=null;let deprecationWarningFn=null;[deprecationWarningFn];function setTensorTracker(fn){trackerFn=fn}function setOpHandler(handler){opHandler=handler}function setDeprecationWarningFn(fn){deprecationWarningFn=fn}class Tensor{constructor(shape,dtype,dataId,id){this.kept=false;this.isDisposedInternal=false;this.shape=shape.slice();this.dtype=dtype||"float32";this.size=sizeFromShape(shape);this.strides=computeStrides(shape);this.dataId=dataId;this.id=id;this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){const vals=await this.data();return opHandler.buffer(this.shape,this.dtype,vals)}bufferSync(){return opHandler.buffer(this.shape,this.dtype,this.dataSync())}async array(){const vals=await this.data();return toNestedArray(this.shape,vals)}arraySync(){return toNestedArray(this.shape,this.dataSync())}async data(){this.throwIfDisposed();const data2=trackerFn().read(this.dataId);if(this.dtype==="string"){const bytes=await data2;try{return bytes.map(b=>decodeString(b))}catch(_a){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return data2}dataSync(){this.throwIfDisposed();const data2=trackerFn().readSync(this.dataId);if(this.dtype==="string"){try{return data2.map(b=>decodeString(b))}catch(_a){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return data2}async bytes(){this.throwIfDisposed();const data2=await trackerFn().read(this.dataId);if(this.dtype==="string"){return data2}else{return new Uint8Array(data2.buffer)}}dispose(){if(this.isDisposed){return}trackerFn().disposeTensor(this);this.isDisposedInternal=true}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed){throw new Error(`Tensor is disposed.`)}}print(verbose=false){return opHandler.print(this,verbose)}clone(){this.throwIfDisposed();return opHandler.clone(this)}toString(verbose=false){const vals=this.dataSync();return tensorToString(vals,this.shape,this.dtype,verbose)}cast(dtype){this.throwIfDisposed();return opHandler.cast(this,dtype)}variable(trainable=true,name,dtype){this.throwIfDisposed();return trackerFn().makeVariable(this,trainable,name,dtype)}}Object.defineProperty(Tensor,Symbol.hasInstance,{value:instance=>{return!!instance&&instance.data!=null&&instance.dataSync!=null&&instance.throwIfDisposed!=null}});class Variable extends Tensor{constructor(initialValue,trainable,name,tensorId){super(initialValue.shape,initialValue.dtype,initialValue.dataId,tensorId);this.trainable=trainable;this.name=name}assign(newValue){if(newValue.dtype!==this.dtype){throw new Error(`dtype of the new value (${newValue.dtype}) and previous value (${this.dtype}) must match`)}if(!arraysEqual(newValue.shape,this.shape)){throw new Error(`shape of the new value (${newValue.shape}) and previous value (${this.shape}) must match`)}trackerFn().disposeTensor(this);this.dataId=newValue.dataId;trackerFn().incRef(this,null)}dispose(){trackerFn().disposeVariable(this);this.isDisposedInternal=true}}Object.defineProperty(Variable,Symbol.hasInstance,{value:instance=>{return instance instanceof Tensor&&instance.assign!=null&&instance.assign instanceof Function}});(function(Rank){Rank["R0"]="R0";Rank["R1"]="R1";Rank["R2"]="R2";Rank["R3"]="R3";Rank["R4"]="R4";Rank["R5"]="R5";Rank["R6"]="R6"})(exports3.Rank||(exports3.Rank={}));var UpcastInt32AndMap;(function(UpcastInt32AndMap2){UpcastInt32AndMap2["float32"]="float32";UpcastInt32AndMap2["int32"]="int32";UpcastInt32AndMap2["bool"]="int32";UpcastInt32AndMap2["complex64"]="complex64"})(UpcastInt32AndMap||(UpcastInt32AndMap={}));var UpcastBoolAndMap;(function(UpcastBoolAndMap2){UpcastBoolAndMap2["float32"]="float32";UpcastBoolAndMap2["int32"]="int32";UpcastBoolAndMap2["bool"]="bool";UpcastBoolAndMap2["complex64"]="complex64"})(UpcastBoolAndMap||(UpcastBoolAndMap={}));var UpcastFloat32AndMap;(function(UpcastFloat32AndMap2){UpcastFloat32AndMap2["float32"]="float32";UpcastFloat32AndMap2["int32"]="float32";UpcastFloat32AndMap2["bool"]="float32";UpcastFloat32AndMap2["complex64"]="complex64"})(UpcastFloat32AndMap||(UpcastFloat32AndMap={}));var UpcastComplex64AndMap;(function(UpcastComplex64AndMap2){UpcastComplex64AndMap2["float32"]="complex64";UpcastComplex64AndMap2["int32"]="complex64";UpcastComplex64AndMap2["bool"]="complex64";UpcastComplex64AndMap2["complex64"]="complex64"})(UpcastComplex64AndMap||(UpcastComplex64AndMap={}));const upcastTypeMap={float32:UpcastFloat32AndMap,int32:UpcastInt32AndMap,bool:UpcastBoolAndMap,complex64:UpcastComplex64AndMap};function upcastType(typeA,typeB){if(typeA==="string"||typeB==="string"){if(typeA==="string"&&typeB==="string"){return"string"}throw new Error(`Can not upcast ${typeA} with ${typeB}`)}return upcastTypeMap[typeA][typeB]}function sumOutType(type){return upcastType(type,"int32")}function makeTypesMatch(a,b){if(a.dtype===b.dtype){return[a,b]}const dtype=upcastType(a.dtype,b.dtype);return[a.cast(dtype),b.cast(dtype)]}function assertTypesMatch(a,b){assert(a.dtype===b.dtype,()=>`The dtypes of the first(${a.dtype}) and second(${b.dtype}) input must match`)}function isTensorInList(tensor2,tensorList){return tensorList.some(x=>x.id===tensor2.id)}function getTensorsInContainer(result){const list=[];const seen=new Set;walkTensorContainer(result,list,seen);return list}function walkTensorContainer(container,list,seen){if(container==null){return}if(container instanceof Tensor){list.push(container);return}if(!isIterable(container)){return}const iterable=container;for(const k in iterable){const val=iterable[k];if(!seen.has(val)){seen.add(val);walkTensorContainer(val,list,seen)}}}function isIterable(obj){return Array.isArray(obj)||typeof obj==="object"}var tensor_util=Object.freeze({__proto__:null,makeTypesMatch,assertTypesMatch,isTensorInList,getTensorsInContainer});class EngineState{constructor(){this.registeredVariables={};this.nextTapeNodeId=0;this.numBytes=0;this.numTensors=0;this.numStringTensors=0;this.numDataBuffers=0;this.gradientDepth=0;this.kernelDepth=0;this.scopeStack=[];this.numDataMovesStack=[];this.nextScopeId=0;this.tensorInfo=new WeakMap;this.profiling=false;this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null}}dispose(){for(const variableName in this.registeredVariables){this.registeredVariables[variableName].dispose()}}}class Engine{constructor(ENV3){this.ENV=ENV3;this.registry={};this.registryFactory={};this.pendingBackendInitId=0;this.state=new EngineState}async ready(){if(this.pendingBackendInit!=null){return this.pendingBackendInit.then(()=>{})}if(this.backendInstance!=null){return}const sortedBackends=this.getSortedBackends();for(let i=0;i<sortedBackends.length;i++){const backendName=sortedBackends[i];const success=await this.initializeBackend(backendName).success;if(success){await this.setBackend(backendName);return}}throw new Error(`Could not initialize any backends, all backend initializations failed.`)}get backend(){if(this.pendingBackendInit!=null){throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`)}if(this.backendInstance==null){const{name,asyncInit}=this.initializeBackendsAndReturnBest();if(asyncInit){throw new Error(`The highest priority backend '${name}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`)}this.setBackend(name)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(backendName){if(!(backendName in this.registry)){if(backendName in this.registryFactory){const{asyncInit}=this.initializeBackend(backendName);if(asyncInit){return null}}else{return null}}return this.registry[backendName]}findBackendFactory(backendName){if(!(backendName in this.registryFactory)){return null}return this.registryFactory[backendName].factory}registerBackend(backendName,factory,priority=1){if(backendName in this.registryFactory){console.warn(`${backendName} backend was already registered. Reusing existing backend factory.`);return false}this.registryFactory[backendName]={factory,priority};return true}async setBackend(backendName){if(this.registryFactory[backendName]==null){throw new Error(`Backend name '${backendName}' not found in registry`)}this.backendName=backendName;if(this.registry[backendName]==null){this.backendInstance=null;const{success,asyncInit}=this.initializeBackend(backendName);const result=asyncInit?await success:success;if(!result){return false}}this.backendInstance=this.registry[backendName];this.setupRegisteredKernels();this.profiler=new Profiler(this.backendInstance);return true}setupRegisteredKernels(){const kernels=getKernelsForBackend(this.backendName);kernels.forEach(kernel=>{if(kernel.setupFunc!=null){kernel.setupFunc(this.backendInstance)}})}disposeRegisteredKernels(backendName){const kernels=getKernelsForBackend(backendName);kernels.forEach(kernel=>{if(kernel.disposeFunc!=null){kernel.disposeFunc(this.registry[backendName])}})}initializeBackend(backendName){const registryFactoryEntry=this.registryFactory[backendName];if(registryFactoryEntry==null){throw new Error(`Cannot initialize backend ${backendName}, no registration found.`)}try{const backend2=registryFactoryEntry.factory();if(backend2&&!(backend2 instanceof KernelBackend2)&&typeof backend2.then==="function"){const promiseId=++this.pendingBackendInitId;const success=backend2.then(backendInstance=>{if(promiseId<this.pendingBackendInitId){return false}this.registry[backendName]=backendInstance;this.pendingBackendInit=null;return true}).catch(err=>{if(promiseId<this.pendingBackendInitId){return false}this.pendingBackendInit=null;console.warn(`Initialization of backend ${backendName} failed`);console.warn(err.stack||err.message);return false});this.pendingBackendInit=success;return{success,asyncInit:true}}else{this.registry[backendName]=backend2;return{success:true,asyncInit:false}}}catch(err){console.warn(`Initialization of backend ${backendName} failed`);console.warn(err.stack||err.message);return{success:false,asyncInit:false}}}removeBackend(backendName){if(!(backendName in this.registryFactory)){throw new Error(`${backendName} backend not found in registry`)}if(this.backendName===backendName&&this.pendingBackendInit!=null){this.pendingBackendInitId++}if(backendName in this.registry){this.disposeRegisteredKernels(backendName);this.registry[backendName].dispose();delete this.registry[backendName]}delete this.registryFactory[backendName];if(this.backendName===backendName){this.pendingBackendInit=null;this.backendName=null;this.backendInstance=null}}getSortedBackends(){if(Object.keys(this.registryFactory).length===0){throw new Error("No backend found in registry.")}return Object.keys(this.registryFactory).sort((a,b)=>{return this.registryFactory[b].priority-this.registryFactory[a].priority})}initializeBackendsAndReturnBest(){const sortedBackends=this.getSortedBackends();for(let i=0;i<sortedBackends.length;i++){const backendName=sortedBackends[i];const{success,asyncInit}=this.initializeBackend(backendName);if(asyncInit||success){return{name:backendName,asyncInit}}}throw new Error(`Could not initialize any backends, all backend initializations failed.`)}moveData(backend2,dataId){const info=this.state.tensorInfo.get(dataId);const srcBackend=info.backend;const values=this.readSync(dataId);srcBackend.disposeData(dataId);info.backend=backend2;backend2.move(dataId,values,info.shape,info.dtype);if(this.shouldCheckForMemLeaks()){this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}}tidy(nameOrFn,fn){let name=null;if(fn==null){if(typeof nameOrFn!=="function"){throw new Error("Please provide a function to tidy()")}fn=nameOrFn}else{if(typeof nameOrFn!=="string"&&!(nameOrFn instanceof String)){throw new Error("When calling with two arguments, the first argument to tidy() must be a string")}if(typeof fn!=="function"){throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function")}name=nameOrFn}let result;return this.scopedRun(()=>this.startScope(name),()=>this.endScope(result),()=>{result=fn();if(result instanceof Promise){console.error("Cannot return a Promise inside of tidy.")}return result})}scopedRun(start,end,f){start();try{const res=f();end();return res}catch(ex){end();throw ex}}nextTensorId(){return Engine.nextTensorId++}nextVariableId(){return Engine.nextVariableId++}clone(x){const y=this.makeTensorFromDataId(x.dataId,x.shape,x.dtype);const inputs={x};const grad2=dy=>({x:()=>{const dtype="float32";const gradInputs={x:dy};const attrs={dtype};return ENGINE.runKernelFunc(backend2=>backend2.cast(dy,dtype),gradInputs,null,Cast5,attrs)}});const saved=[];this.addTapeNode(this.state.activeScope.name,inputs,[y],grad2,saved,{});return y}runKernel(kernelName,inputs,attrs,inputsToSave,outputsToSave){const forwardFunc=null;const backwardsFunc=null;return this.runKernelFunc(forwardFunc,inputs,backwardsFunc,kernelName,attrs,inputsToSave,outputsToSave)}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(kernelName,numDataIdsBefore,outInfos){const numDataIdsAfter=this.backend.numDataIds();let numOutputDataIds=0;outInfos.forEach(info=>{numOutputDataIds+=info.dtype==="complex64"?3:1});const numMoves=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1];const dataIdsLeaked=numDataIdsAfter-numDataIdsBefore-numOutputDataIds-numMoves;if(dataIdsLeaked>0){throw new Error(`Backend '${this.backendName}' has an internal memory leak (${dataIdsLeaked} data ids) after running '${kernelName}'`)}}runKernelFunc(forwardFunc,inputs,backwardsFunc,kernelName,attrs,inputsToSave,outputsToSave){let outputs;let saved=[];const isTapeOn=this.isTapeOn();if(kernelName==null){kernelName=this.state.activeScope!=null?this.state.activeScope.name:""}const startingBytecount=this.state.numBytes;const startingNumTensors=this.state.numTensors;if(this.shouldCheckForMemLeaks()){this.state.numDataMovesStack.push(0)}let kernelFunc3;const kernel=getKernel(kernelName,this.backendName);let out;if(kernel!=null){kernelFunc3=()=>{const numDataIdsBefore=this.backend.numDataIds();out=kernel.kernelFunc({inputs,attrs,backend:this.backend});const outInfos=Array.isArray(out)?out:[out];if(this.shouldCheckForMemLeaks()){this.checkKernelForMemLeak(kernelName,numDataIdsBefore,outInfos)}const outTensors=outInfos.map(({dataId,shape,dtype})=>this.makeTensorFromDataId(dataId,shape,dtype));if(isTapeOn){let tensorsToSave=this.getTensorsForGradient(kernelName,inputs,outTensors);if(tensorsToSave==null){if(outputsToSave==null){outputsToSave=[]}const outsToSave=outTensors.filter((_,i)=>outputsToSave[i]);tensorsToSave=(inputsToSave||[]).slice().concat(outsToSave)}saved=this.saveTensorsForBackwardMode(tensorsToSave)}return outTensors}}else{const saveFunc=tensors=>{if(!isTapeOn){return}saved=tensors.map(tensor2=>this.keep(this.clone(tensor2)))};kernelFunc3=()=>{const numDataIdsBefore=this.backend.numDataIds();out=this.tidy(()=>forwardFunc(this.backend,saveFunc));const outs=Array.isArray(out)?out:[out];if(this.shouldCheckForMemLeaks()){this.checkKernelForMemLeak(kernelName,numDataIdsBefore,outs)}return outs}}let kernelProfile;this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{if(!this.ENV.getBool("DEBUG")&&!this.state.profiling){outputs=kernelFunc3()}else{kernelProfile=this.profiler.profileKernel(kernelName,inputs,()=>kernelFunc3());if(this.ENV.getBool("DEBUG")){this.profiler.logKernelProfile(kernelProfile)}outputs=kernelProfile.outputs}});if(isTapeOn){this.addTapeNode(kernelName,inputs,outputs,backwardsFunc,saved,attrs)}if(this.state.profiling){this.state.activeProfile.kernels.push({name:kernelName,bytesAdded:this.state.numBytes-startingBytecount,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-startingNumTensors,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(inputs).map(key=>inputs[key]!=null?inputs[key].shape:null),outputShapes:outputs.map(item=>item.shape),kernelTimeMs:kernelProfile.timeMs,extraInfo:kernelProfile.extraInfo})}return Array.isArray(out)?outputs:outputs[0]}saveTensorsForBackwardMode(tensors){const saved=tensors.map(tensor2=>this.keep(this.clone(tensor2)));return saved}getTensorsForGradient(kernelName,inputs,outputs){const gradConfig=getGradient(kernelName);if(gradConfig!=null){const inputsToSave=gradConfig.inputsToSave||[];const outputsToSave=gradConfig.outputsToSave||[];let inputTensorsToSave;if(gradConfig.saveAllInputs){assert(Array.isArray(inputs),()=>"saveAllInputs is true, expected inputs to be an array.");inputTensorsToSave=Object.keys(inputs).map(key=>inputs[key])}else{inputTensorsToSave=inputsToSave.map(inputName=>inputs[inputName])}const outputTensorsToSave=outputs.filter((_,i)=>outputsToSave[i]);return inputTensorsToSave.concat(outputTensorsToSave)}return null}makeTensor(values,shape,dtype,backend2){if(values==null){throw new Error("Values passed to engine.makeTensor() are null")}dtype=dtype||"float32";backend2=backend2||this.backend;let backendVals=values;if(dtype==="string"&&isString(values[0])){backendVals=values.map(d=>encodeString(d))}const dataId=backend2.write(backendVals,shape,dtype);const t=new Tensor(shape,dtype,dataId,this.nextTensorId());this.incRef(t,backend2);if(dtype==="string"){const info=this.state.tensorInfo.get(dataId);const newBytes=bytesFromStringArray(backendVals);this.state.numBytes+=newBytes-info.bytes;info.bytes=newBytes}return t}makeTensorFromDataId(dataId,shape,dtype,backend2){dtype=dtype||"float32";const t=new Tensor(shape,dtype,dataId,this.nextTensorId());this.incRef(t,backend2);return t}makeVariable(initialValue,trainable=true,name,dtype){name=name||this.nextVariableId().toString();if(dtype!=null&&dtype!==initialValue.dtype){initialValue=initialValue.cast(dtype)}const v=new Variable(initialValue,trainable,name,this.nextTensorId());if(this.state.registeredVariables[v.name]!=null){throw new Error(`Variable with name ${v.name} was already registered`)}this.state.registeredVariables[v.name]=v;this.incRef(v,this.backend);return v}incRef(a,backend2){const refCount=this.state.tensorInfo.has(a.dataId)?this.state.tensorInfo.get(a.dataId).refCount:0;this.state.numTensors++;if(a.dtype==="string"){this.state.numStringTensors++}if(refCount===0){this.state.numDataBuffers++;let bytes=0;if(a.dtype!=="complex64"&&a.dtype!=="string"){bytes=a.size*bytesPerElement(a.dtype)}this.state.tensorInfo.set(a.dataId,{backend:backend2||this.backend,dtype:a.dtype,shape:a.shape,bytes,refCount:0});this.state.numBytes+=bytes}this.state.tensorInfo.get(a.dataId).refCount++;if(!(a instanceof Variable)){this.track(a)}}disposeTensor(a){if(!this.state.tensorInfo.has(a.dataId)){return}this.state.numTensors--;if(a.dtype==="string"){this.state.numStringTensors--}const info=this.state.tensorInfo.get(a.dataId);const refCount=info.refCount;if(refCount<=1){if(a.dtype!=="complex64"){this.state.numBytes-=info.bytes}this.state.numDataBuffers--;info.backend.disposeData(a.dataId);this.state.tensorInfo.delete(a.dataId)}else{this.state.tensorInfo.get(a.dataId).refCount--}}disposeVariables(){for(const varName in this.state.registeredVariables){const v=this.state.registeredVariables[varName];this.disposeVariable(v)}}disposeVariable(v){this.disposeTensor(v);if(this.state.registeredVariables[v.name]!=null){delete this.state.registeredVariables[v.name]}}memory(){const info=this.backend.memory();info.numTensors=this.state.numTensors;info.numDataBuffers=this.state.numDataBuffers;info.numBytes=this.state.numBytes;if(this.state.numStringTensors>0){info.unreliable=true;if(info.reasons==null){info.reasons=[]}info.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")}return info}async profile(query){this.state.profiling=true;const startBytes=this.state.numBytes;const startNumTensors=this.state.numTensors;this.state.activeProfile.kernels=[];this.state.activeProfile.result=await query();this.state.profiling=false;this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(d=>d.totalBytesSnapshot));this.state.activeProfile.newBytes=this.state.numBytes-startBytes;this.state.activeProfile.newTensors=this.state.numTensors-startNumTensors;for(const kernel of this.state.activeProfile.kernels){kernel.kernelTimeMs=await kernel.kernelTimeMs;kernel.extraInfo=await kernel.extraInfo}return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(kernelName,inputs,outputs,gradientsFunc,saved,attrs){const tapeNode={id:this.state.nextTapeNodeId++,kernelName,inputs,outputs,saved};const gradConfig=getGradient(kernelName);if(gradConfig!=null){gradientsFunc=gradConfig.gradFunc}if(gradientsFunc!=null){tapeNode.gradient=dys=>{dys=dys.map((dy,i)=>{if(dy==null){const output=outputs[i];const vals=makeZerosTypedArray(output.size,output.dtype);return this.makeTensor(vals,output.shape,output.dtype)}return dy});return gradientsFunc(dys.length>1?dys:dys[0],saved,attrs)}}this.state.activeTape.push(tapeNode)}keep(result){result.kept=true;return result}startTape(){if(this.state.gradientDepth===0){this.state.activeTape=[]}this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(name){const scopeInfo={track:[],name:"unnamed scope",id:this.state.nextScopeId++};if(name){scopeInfo.name=name}this.state.scopeStack.push(scopeInfo);this.state.activeScope=scopeInfo}endScope(result){const tensorsToTrackInParent=getTensorsInContainer(result);const tensorsToTrackInParentSet=new Set(tensorsToTrackInParent.map(t=>t.id));for(let i=0;i<this.state.activeScope.track.length;i++){const tensor2=this.state.activeScope.track[i];if(!tensor2.kept&&!tensorsToTrackInParentSet.has(tensor2.id)){tensor2.dispose()}}const oldScope=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1];tensorsToTrackInParent.forEach(tensor2=>{if(!tensor2.kept&&tensor2.scopeId===oldScope.id){this.track(tensor2)}})}gradients(f,xs,dy,allowNoGradients=false){assert(xs.length>0,()=>"gradients() received an empty list of xs.");if(dy!=null&&dy.dtype!=="float32"){throw new Error(`dy must have 'float32' dtype, but has '${dy.dtype}'`)}const y=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",f));assert(y instanceof Tensor,()=>"The result y returned by f() must be a tensor.");const filteredTape=getFilteredNodesXToY(this.state.activeTape,xs,y);if(!allowNoGradients&&filteredTape.length===0&&xs.length>0){throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.")}return this.tidy("backward",()=>{const accumulatedGradientMap={};accumulatedGradientMap[y.id]=dy==null?ones(y.shape):dy;backpropagateGradients(accumulatedGradientMap,filteredTape,f2=>this.tidy(f2),add);const grads2=xs.map(x=>accumulatedGradientMap[x.id]);if(this.state.gradientDepth===0){this.state.activeTape.forEach(node=>{for(const tensor2 of node.saved){tensor2.dispose()}});this.state.activeTape=null}return{value:y,grads:grads2}})}customGrad(f){assert(isFunction(f),()=>"The f passed in customGrad(f) must be a function.");return(...inputs)=>{assert(inputs.every(t=>t instanceof Tensor),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let res;const inputMap={};inputs.forEach((input2,i)=>{inputMap[i]=input2});return this.runKernelFunc((_,save)=>{res=f(...[...inputs,save]);assert(res.value instanceof Tensor,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor");assert(isFunction(res.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function.");return res.value},inputMap,(dy,saved)=>{const gradRes=res.gradFunc(dy,saved);const grads2=Array.isArray(gradRes)?gradRes:[gradRes];assert(grads2.length===inputs.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...).");assert(grads2.every(t=>t instanceof Tensor),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");const gradMap={};grads2.forEach((grad2,i)=>{gradMap[i]=()=>grad2});return gradMap})}}readSync(dataId){const info=this.state.tensorInfo.get(dataId);return info.backend.readSync(dataId)}read(dataId){const info=this.state.tensorInfo.get(dataId);return info.backend.read(dataId)}async time(query){const start=now2();const timingInfo=await this.backend.time(query);timingInfo.wallMs=now2()-start;return timingInfo}track(result){if(this.state.activeScope!=null){result.scopeId=this.state.activeScope.id;this.state.activeScope.track.push(result)}return result}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++;this.state.dispose();this.ENV.reset();this.state=new EngineState;for(const backendName in this.registry){this.disposeRegisteredKernels(backendName);this.registry[backendName].dispose();delete this.registry[backendName]}this.backendName=null;this.backendInstance=null;this.pendingBackendInit=null}}Engine.nextTensorId=0;Engine.nextVariableId=0;function ones(shape){const values=makeOnesTypedArray(sizeFromShape(shape),"float32");return ENGINE.makeTensor(values,shape,"float32")}function getOrMakeEngine(){const ns=getGlobalNamespace();if(ns._tfengine==null){const environment=new Environment(ns);ns._tfengine=new Engine(environment)}setEnvironmentGlobal(ns._tfengine.ENV);setTensorTracker(()=>ns._tfengine);return ns._tfengine}const ENGINE=getOrMakeEngine();function add(a,b){const inputs={a,b};return ENGINE.runKernelFunc((backend2,save)=>{const res=backend2.add(a,b);save([a,b]);return res},inputs,null,Add3)}function _isNavigatorDefined(){return typeof navigator!=="undefined"&&navigator!=null}function isMobile(){if(_isNavigatorDefined()){const a=navigator.userAgent||navigator.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(a)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(a.substr(0,4))}return false}function isBrowser(){return typeof window!=="undefined"&&window.document!=null||typeof WorkerGlobalScope!=="undefined"}var device_util=Object.freeze({__proto__:null,isMobile,isBrowser});const ENV2=env3();ENV2.registerFlag("DEBUG",()=>false,debugValue=>{if(debugValue){console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")}});ENV2.registerFlag("IS_BROWSER",()=>isBrowser());ENV2.registerFlag("IS_NODE",()=>typeof process!=="undefined"&&typeof process.versions!=="undefined"&&typeof process.versions.node!=="undefined");ENV2.registerFlag("IS_CHROME",()=>typeof navigator!=="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));ENV2.registerFlag("PROD",()=>false);ENV2.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>ENV2.getBool("DEBUG"));ENV2.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>true);ENV2.registerFlag("IS_TEST",()=>false);function inferShape(val,dtype){let firstElem=val;if(isTypedArray(val)){return dtype==="string"?[]:[val.length]}if(!Array.isArray(val)){return[]}const shape=[];while(Array.isArray(firstElem)||isTypedArray(firstElem)&&dtype!=="string"){shape.push(firstElem.length);firstElem=firstElem[0]}if(Array.isArray(val)&&env3().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")){deepAssertShapeConsistency(val,shape,[])}return shape}function deepAssertShapeConsistency(val,shape,indices){indices=indices||[];if(!Array.isArray(val)&&!isTypedArray(val)){assert(shape.length===0,()=>`Element arr[${indices.join("][")}] is a primitive, but should be an array/TypedArray of ${shape[0]} elements`);return}assert(shape.length>0,()=>`Element arr[${indices.join("][")}] should be a primitive, but is an array of ${val.length} elements`);assert(val.length===shape[0],()=>`Element arr[${indices.join("][")}] should have ${shape[0]} elements, but has ${val.length} elements`);const subShape=shape.slice(1);for(let i=0;i<val.length;++i){deepAssertShapeConsistency(val[i],subShape,indices.concat(i))}}function assertDtype(expectedDtype,actualDType,argName,functionName){if(expectedDtype==null){return}if(expectedDtype!=="numeric"&&expectedDtype!==actualDType||expectedDtype==="numeric"&&actualDType==="string"){throw new Error(`Argument '${argName}' passed to '${functionName}' must be ${expectedDtype} tensor, but got ${actualDType} tensor`)}}function convertToTensor(x,argName,functionName,parseAsDtype="numeric"){if(x instanceof Tensor){assertDtype(parseAsDtype,x.dtype,argName,functionName);return x}let inferredDtype=inferDtype(x);if(inferredDtype!=="string"&&["bool","int32","float32"].indexOf(parseAsDtype)>=0){inferredDtype=parseAsDtype}assertDtype(parseAsDtype,inferredDtype,argName,functionName);if(x==null||!isTypedArray(x)&&!Array.isArray(x)&&typeof x!=="number"&&typeof x!=="boolean"&&typeof x!=="string"){const type=x==null?"null":x.constructor.name;throw new Error(`Argument '${argName}' passed to '${functionName}' must be a Tensor or TensorLike, but got '${type}'`)}const inferredShape=inferShape(x,inferredDtype);if(!isTypedArray(x)&&!Array.isArray(x)){x=[x]}const skipTypedArray=true;const values=inferredDtype!=="string"?toTypedArray(x,inferredDtype):flatten(x,[],skipTypedArray);return ENGINE.makeTensor(values,inferredShape,inferredDtype)}function convertToTensorArray(arg,argName,functionName,parseAsDtype="numeric"){if(!Array.isArray(arg)){throw new Error(`Argument ${argName} passed to ${functionName} must be a \`Tensor[]\` or \`TensorLike[]\``)}const tensors=arg;return tensors.map((t,i)=>convertToTensor(t,`${argName}[${i}]`,functionName),parseAsDtype)}const OP_SCOPE_SUFFIX="__op";function op(f){const keys=Object.keys(f);if(keys.length!==1){throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${keys.length} keys.`)}let opName=keys[0];const fn=f[opName];if(opName.endsWith("_")){opName=opName.substring(0,opName.length-1)}opName=opName+OP_SCOPE_SUFFIX;const f2=(...args)=>{ENGINE.startScope(opName);try{const result=fn(...args);if(isPromise(result)){console.error("Cannot return a Promise inside of tidy.")}ENGINE.endScope(result);return result}catch(ex){ENGINE.endScope(null);throw ex}};Object.defineProperty(f2,"name",{value:opName,configurable:true});return f2}function complex_(real2,imag2){const $real=convertToTensor(real2,"real","complex");const $imag=convertToTensor(imag2,"imag","complex");assertShapesMatch($real.shape,$imag.shape,`real and imag shapes, ${$real.shape} and ${$imag.shape}, must match in call to tf.complex().`);const forward=backend2=>{return backend2.complex($real,$imag)};const inputs={real:$real,imag:$imag};return ENGINE.runKernelFunc(forward,inputs,null,Complex)}const complex=op({complex_});function makeTensor(values,shape,inferredShape,dtype){if(dtype==null){dtype=inferDtype(values)}if(dtype==="complex64"){throw new Error(`Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).`)}if(!isTypedArray(values)&&!Array.isArray(values)&&typeof values!=="number"&&typeof values!=="boolean"&&typeof values!=="string"){throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray")}if(shape!=null){assertNonNegativeIntegerDimensions(shape);const providedSize=sizeFromShape(shape);const inferredSize=sizeFromShape(inferredShape);assert(providedSize===inferredSize,()=>`Based on the provided shape, [${shape}], the tensor should have ${providedSize} values but has ${inferredSize}`);for(let i=0;i<inferredShape.length;++i){const inferred=inferredShape[i];const flatDimsDontMatch=i===inferredShape.length-1?inferred!==sizeFromShape(shape.slice(i)):true;assert(inferredShape[i]===shape[i]||!flatDimsDontMatch,()=>`Error creating a new Tensor. Inferred shape (${inferredShape}) does not match the provided shape (${shape}). `)}}if(!isTypedArray(values)&&!Array.isArray(values)){values=[values]}shape=shape||inferredShape;values=dtype!=="string"?toTypedArray(values,dtype):flatten(values,[],true);return ENGINE.makeTensor(values,shape,dtype)}function tensor(values,shape,dtype){const inferredShape=inferShape(values,dtype);return makeTensor(values,shape,inferredShape,dtype)}const DTYPE_VALUE_SIZE_MAP={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8};const NUM_BYTES_STRING_LENGTH=4;async function encodeWeights(tensors,group){const specs=[];const dataPromises=[];const names=Array.isArray(tensors)?tensors.map(tensor2=>tensor2.name):Object.keys(tensors);for(let i=0;i<names.length;++i){const name=names[i];const t=Array.isArray(tensors)?tensors[i].tensor:tensors[name];if(t.dtype!=="float32"&&t.dtype!=="int32"&&t.dtype!=="bool"&&t.dtype!=="string"&&t.dtype!=="complex64"){throw new Error(`Unsupported dtype in weight '${name}': ${t.dtype}`)}const spec={name,shape:t.shape,dtype:t.dtype};if(t.dtype==="string"){const utf8bytes=new Promise(async resolve=>{const vals=await t.bytes();const totalNumBytes=vals.reduce((p2,c)=>p2+c.length,0)+NUM_BYTES_STRING_LENGTH*vals.length;const bytes=new Uint8Array(totalNumBytes);let offset=0;for(let i2=0;i2<vals.length;i2++){const val=vals[i2];const bytesOfLength=new Uint8Array(new Uint32Array([val.length]).buffer);bytes.set(bytesOfLength,offset);offset+=NUM_BYTES_STRING_LENGTH;bytes.set(val,offset);offset+=val.length}resolve(bytes)});dataPromises.push(utf8bytes)}else{dataPromises.push(t.data())}if(group!=null){spec.group=group}specs.push(spec)}const tensorValues=await Promise.all(dataPromises);return{data:concatenateTypedArrays(tensorValues),specs}}function decodeWeights(buffer3,specs){const out={};let float16Decode;let offset=0;for(const spec of specs){const name=spec.name;const dtype=spec.dtype;const shape=spec.shape;const size=sizeFromShape(shape);let values;if("quantization"in spec){const quantization=spec.quantization;if(quantization.dtype==="uint8"||quantization.dtype==="uint16"){if(!("min"in quantization&&"scale"in quantization)){throw new Error(`Weight ${spec.name} with quantization ${quantization.dtype} doesn't have corresponding metadata min and scale.`)}}else if(quantization.dtype==="float16"){if(dtype!=="float32"){throw new Error(`Weight ${spec.name} is quantized with ${quantization.dtype} which only supports weights of type float32 not ${dtype}.`)}}else{throw new Error(`Weight ${spec.name} has unknown quantization dtype ${quantization.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`)}const quantizationSizeFactor=DTYPE_VALUE_SIZE_MAP[quantization.dtype];const byteBuffer=buffer3.slice(offset,offset+size*quantizationSizeFactor);const quantizedArray=quantization.dtype==="uint8"?new Uint8Array(byteBuffer):new Uint16Array(byteBuffer);if(dtype==="float32"){if(quantization.dtype==="uint8"||quantization.dtype==="uint16"){values=new Float32Array(quantizedArray.length);for(let i=0;i<quantizedArray.length;i++){const v=quantizedArray[i];values[i]=v*quantization.scale+quantization.min}}else if(quantization.dtype==="float16"){if(float16Decode===void 0){float16Decode=getFloat16Decoder()}values=float16Decode(quantizedArray)}else{throw new Error(`Unsupported quantization type ${quantization.dtype} for weight type float32.`)}}else if(dtype==="int32"){if(quantization.dtype!=="uint8"&&quantization.dtype!=="uint16"){throw new Error(`Unsupported quantization type ${quantization.dtype} for weight type int32.`)}values=new Int32Array(quantizedArray.length);for(let i=0;i<quantizedArray.length;i++){const v=quantizedArray[i];values[i]=Math.round(v*quantization.scale+quantization.min)}}else{throw new Error(`Unsupported dtype in weight '${name}': ${dtype}`)}offset+=size*quantizationSizeFactor}else if(dtype==="string"){const size2=sizeFromShape(spec.shape);values=[];for(let i=0;i<size2;i++){const byteLength=new Uint32Array(buffer3.slice(offset,offset+NUM_BYTES_STRING_LENGTH))[0];offset+=NUM_BYTES_STRING_LENGTH;const bytes=new Uint8Array(buffer3.slice(offset,offset+byteLength));values.push(bytes);offset+=byteLength}}else{const dtypeFactor=DTYPE_VALUE_SIZE_MAP[dtype];const byteBuffer=buffer3.slice(offset,offset+size*dtypeFactor);if(dtype==="float32"){values=new Float32Array(byteBuffer)}else if(dtype==="int32"){values=new Int32Array(byteBuffer)}else if(dtype==="bool"){values=new Uint8Array(byteBuffer)}else if(dtype==="complex64"){values=new Float32Array(byteBuffer);const real2=new Float32Array(values.length/2);const image3=new Float32Array(values.length/2);for(let i=0;i<real2.length;i++){real2[i]=values[i*2];image3[i]=values[i*2+1]}const realTensor=tensor(real2,shape,"float32");const imageTensor=tensor(image3,shape,"float32");out[name]=complex(realTensor,imageTensor);realTensor.dispose();imageTensor.dispose()}else{throw new Error(`Unsupported dtype in weight '${name}': ${dtype}`)}offset+=size*dtypeFactor}if(dtype!=="complex64"){out[name]=tensor(values,shape,dtype)}}return out}function concatenateTypedArrays(xs){if(xs===null){throw new Error(`Invalid input value: ${JSON.stringify(xs)}`)}let totalByteLength=0;const normalizedXs=[];xs.forEach(x=>{totalByteLength+=x.byteLength;normalizedXs.push(x.byteLength===x.buffer.byteLength?x:new x.constructor(x));if(!(x instanceof Float32Array||x instanceof Int32Array||x instanceof Uint8Array)){throw new Error(`Unsupported TypedArray subtype: ${x.constructor.name}`)}});const y=new Uint8Array(totalByteLength);let offset=0;normalizedXs.forEach(x=>{y.set(new Uint8Array(x.buffer),offset);offset+=x.byteLength});return y.buffer}const useNodeBuffer=typeof Buffer!=="undefined"&&(typeof Blob==="undefined"||typeof atob==="undefined"||typeof btoa==="undefined");function stringByteLength(str){if(useNodeBuffer){return Buffer.byteLength(str)}return new Blob([str]).size}function arrayBufferToBase64String(buffer3){if(useNodeBuffer){return Buffer.from(buffer3).toString("base64")}const buf=new Uint8Array(buffer3);let s="";for(let i=0,l=buf.length;i<l;i++){s+=String.fromCharCode(buf[i])}return btoa(s)}function base64StringToArrayBuffer(str){if(useNodeBuffer){const buf=Buffer.from(str,"base64");return buf.buffer.slice(buf.byteOffset,buf.byteOffset+buf.byteLength)}const s=atob(str);const buffer3=new Uint8Array(s.length);for(let i=0;i<s.length;++i){buffer3.set([s.charCodeAt(i)],i)}return buffer3.buffer}function concatenateArrayBuffers(buffers){if(buffers.length===1){return buffers[0]}let totalByteLength=0;buffers.forEach(buffer3=>{totalByteLength+=buffer3.byteLength});const temp=new Uint8Array(totalByteLength);let offset=0;buffers.forEach(buffer3=>{temp.set(new Uint8Array(buffer3),offset);offset+=buffer3.byteLength});return temp.buffer}function basename(path){const SEPARATOR="/";path=path.trim();while(path.endsWith(SEPARATOR)){path=path.slice(0,path.length-1)}const items=path.split(SEPARATOR);return items[items.length-1]}function getModelArtifactsInfoForJSON(modelArtifacts){if(modelArtifacts.modelTopology instanceof ArrayBuffer){throw new Error("Expected JSON model topology, received ArrayBuffer.")}return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:modelArtifacts.modelTopology==null?0:stringByteLength(JSON.stringify(modelArtifacts.modelTopology)),weightSpecsBytes:modelArtifacts.weightSpecs==null?0:stringByteLength(JSON.stringify(modelArtifacts.weightSpecs)),weightDataBytes:modelArtifacts.weightData==null?0:modelArtifacts.weightData.byteLength}}function computeFloat16MantisaTable(){const convertMantissa=i=>{let m=i<<13;let e=0;while((m&8388608)===0){e-=8388608;m<<=1}m&=~8388608;e+=947912704;return m|e};const mantisaTable=new Uint32Array(2048);mantisaTable[0]=0;for(let i=1;i<1024;i++){mantisaTable[i]=convertMantissa(i)}for(let i=1024;i<2048;i++){mantisaTable[i]=939524096+(i-1024<<13)}return mantisaTable}function computeFloat16ExponentTable(){const exponentTable=new Uint32Array(64);exponentTable[0]=0;exponentTable[31]=1199570944;exponentTable[32]=2147483648;exponentTable[63]=3347054592;for(let i=1;i<31;i++){exponentTable[i]=i<<23}for(let i=33;i<63;i++){exponentTable[i]=2147483648+(i-32<<23)}return exponentTable}function computeFloat16OffsetTable(){const offsetTable=new Uint32Array(64);for(let i=0;i<64;i++){offsetTable[i]=1024}offsetTable[0]=offsetTable[32]=0;return offsetTable}function getFloat16Decoder(){const mantisaTable=computeFloat16MantisaTable();const exponentTable=computeFloat16ExponentTable();const offsetTable=computeFloat16OffsetTable();return quantizedArray=>{const buffer3=new ArrayBuffer(4*quantizedArray.length);const bufferUint32View=new Uint32Array(buffer3);for(let index2=0;index2<quantizedArray.length;index2++){const float16Bits=quantizedArray[index2];const float32Bits=mantisaTable[offsetTable[float16Bits>>10]+(float16Bits&1023)]+exponentTable[float16Bits>>10];bufferUint32View[index2]=float32Bits}return new Float32Array(buffer3)}}class IORouterRegistry{constructor(){this.saveRouters=[];this.loadRouters=[]}static getInstance(){if(IORouterRegistry.instance==null){IORouterRegistry.instance=new IORouterRegistry}return IORouterRegistry.instance}static registerSaveRouter(saveRouter){IORouterRegistry.getInstance().saveRouters.push(saveRouter)}static registerLoadRouter(loadRouter){IORouterRegistry.getInstance().loadRouters.push(loadRouter)}static getSaveHandlers(url){return IORouterRegistry.getHandlers(url,"save")}static getLoadHandlers(url,loadOptions){return IORouterRegistry.getHandlers(url,"load",loadOptions)}static getHandlers(url,handlerType,loadOptions){const validHandlers=[];const routers=handlerType==="load"?IORouterRegistry.getInstance().loadRouters:IORouterRegistry.getInstance().saveRouters;routers.forEach(router=>{const handler=router(url,loadOptions);if(handler!==null){validHandlers.push(handler)}});return validHandlers}}const registerSaveRouter=loudRouter=>IORouterRegistry.registerSaveRouter(loudRouter);const registerLoadRouter=loudRouter=>IORouterRegistry.registerLoadRouter(loudRouter);const getSaveHandlers=url=>IORouterRegistry.getSaveHandlers(url);const getLoadHandlers=(url,loadOptions)=>IORouterRegistry.getLoadHandlers(url,loadOptions);const DATABASE_NAME="tensorflowjs";const DATABASE_VERSION=1;const MODEL_STORE_NAME="models_store";const INFO_STORE_NAME="model_info_store";async function deleteDatabase(){const idbFactory=getIndexedDBFactory();return new Promise((resolve,reject)=>{const deleteRequest=idbFactory.deleteDatabase(DATABASE_NAME);deleteRequest.onsuccess=()=>resolve();deleteRequest.onerror=error=>reject(error)})}function getIndexedDBFactory(){if(!env3().getBool("IS_BROWSER")){throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.")}const theWindow=typeof window==="undefined"?self:window;const factory=theWindow.indexedDB||theWindow.mozIndexedDB||theWindow.webkitIndexedDB||theWindow.msIndexedDB||theWindow.shimIndexedDB;if(factory==null){throw new Error("The current browser does not appear to support IndexedDB.")}return factory}function setUpDatabase(openRequest){const db=openRequest.result;db.createObjectStore(MODEL_STORE_NAME,{keyPath:"modelPath"});db.createObjectStore(INFO_STORE_NAME,{keyPath:"modelPath"})}class BrowserIndexedDB{constructor(modelPath){this.indexedDB=getIndexedDBFactory();if(modelPath==null||!modelPath){throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.")}this.modelPath=modelPath}async save(modelArtifacts){if(modelArtifacts.modelTopology instanceof ArrayBuffer){throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.")}return this.databaseAction(this.modelPath,modelArtifacts)}async load(){return this.databaseAction(this.modelPath)}databaseAction(modelPath,modelArtifacts){return new Promise((resolve,reject)=>{const openRequest=this.indexedDB.open(DATABASE_NAME,DATABASE_VERSION);openRequest.onupgradeneeded=()=>setUpDatabase(openRequest);openRequest.onsuccess=()=>{const db=openRequest.result;if(modelArtifacts==null){const modelTx=db.transaction(MODEL_STORE_NAME,"readonly");const modelStore=modelTx.objectStore(MODEL_STORE_NAME);const getRequest=modelStore.get(this.modelPath);getRequest.onsuccess=()=>{if(getRequest.result==null){db.close();return reject(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`))}else{resolve(getRequest.result.modelArtifacts)}};getRequest.onerror=error=>{db.close();return reject(getRequest.error)};modelTx.oncomplete=()=>db.close()}else{const modelArtifactsInfo=getModelArtifactsInfoForJSON(modelArtifacts);const infoTx=db.transaction(INFO_STORE_NAME,"readwrite");let infoStore=infoTx.objectStore(INFO_STORE_NAME);const putInfoRequest=infoStore.put({modelPath:this.modelPath,modelArtifactsInfo});let modelTx;putInfoRequest.onsuccess=()=>{modelTx=db.transaction(MODEL_STORE_NAME,"readwrite");const modelStore=modelTx.objectStore(MODEL_STORE_NAME);const putModelRequest=modelStore.put({modelPath:this.modelPath,modelArtifacts,modelArtifactsInfo});putModelRequest.onsuccess=()=>resolve({modelArtifactsInfo});putModelRequest.onerror=error=>{infoStore=infoTx.objectStore(INFO_STORE_NAME);const deleteInfoRequest=infoStore.delete(this.modelPath);deleteInfoRequest.onsuccess=()=>{db.close();return reject(putModelRequest.error)};deleteInfoRequest.onerror=error2=>{db.close();return reject(putModelRequest.error)}}};putInfoRequest.onerror=error=>{db.close();return reject(putInfoRequest.error)};infoTx.oncomplete=()=>{if(modelTx==null){db.close()}else{modelTx.oncomplete=()=>db.close()}}}};openRequest.onerror=error=>reject(openRequest.error)})}}BrowserIndexedDB.URL_SCHEME="indexeddb://";const indexedDBRouter=url=>{if(!env3().getBool("IS_BROWSER")){return null}else{if(!Array.isArray(url)&&url.startsWith(BrowserIndexedDB.URL_SCHEME)){return browserIndexedDB(url.slice(BrowserIndexedDB.URL_SCHEME.length))}else{return null}}};IORouterRegistry.registerSaveRouter(indexedDBRouter);IORouterRegistry.registerLoadRouter(indexedDBRouter);function browserIndexedDB(modelPath){return new BrowserIndexedDB(modelPath)}function maybeStripScheme(key){return key.startsWith(BrowserIndexedDB.URL_SCHEME)?key.slice(BrowserIndexedDB.URL_SCHEME.length):key}class BrowserIndexedDBManager{constructor(){this.indexedDB=getIndexedDBFactory()}async listModels(){return new Promise((resolve,reject)=>{const openRequest=this.indexedDB.open(DATABASE_NAME,DATABASE_VERSION);openRequest.onupgradeneeded=()=>setUpDatabase(openRequest);openRequest.onsuccess=()=>{const db=openRequest.result;const tx=db.transaction(INFO_STORE_NAME,"readonly");const store=tx.objectStore(INFO_STORE_NAME);const getAllInfoRequest=store.getAll();getAllInfoRequest.onsuccess=()=>{const out={};for(const item of getAllInfoRequest.result){out[item.modelPath]=item.modelArtifactsInfo}resolve(out)};getAllInfoRequest.onerror=error=>{db.close();return reject(getAllInfoRequest.error)};tx.oncomplete=()=>db.close()};openRequest.onerror=error=>reject(openRequest.error)})}async removeModel(path){path=maybeStripScheme(path);return new Promise((resolve,reject)=>{const openRequest=this.indexedDB.open(DATABASE_NAME,DATABASE_VERSION);openRequest.onupgradeneeded=()=>setUpDatabase(openRequest);openRequest.onsuccess=()=>{const db=openRequest.result;const infoTx=db.transaction(INFO_STORE_NAME,"readwrite");const infoStore=infoTx.objectStore(INFO_STORE_NAME);const getInfoRequest=infoStore.get(path);let modelTx;getInfoRequest.onsuccess=()=>{if(getInfoRequest.result==null){db.close();return reject(new Error(`Cannot find model with path '${path}' in IndexedDB.`))}else{const deleteInfoRequest=infoStore.delete(path);const deleteModelData=()=>{modelTx=db.transaction(MODEL_STORE_NAME,"readwrite");const modelStore=modelTx.objectStore(MODEL_STORE_NAME);const deleteModelRequest=modelStore.delete(path);deleteModelRequest.onsuccess=()=>resolve(getInfoRequest.result.modelArtifactsInfo);deleteModelRequest.onerror=error=>reject(getInfoRequest.error)};deleteInfoRequest.onsuccess=deleteModelData;deleteInfoRequest.onerror=error=>{deleteModelData();db.close();return reject(getInfoRequest.error)}}};getInfoRequest.onerror=error=>{db.close();return reject(getInfoRequest.error)};infoTx.oncomplete=()=>{if(modelTx==null){db.close()}else{modelTx.oncomplete=()=>db.close()}}};openRequest.onerror=error=>reject(openRequest.error)})}}const PATH_SEPARATOR="/";const PATH_PREFIX="tensorflowjs_models";const INFO_SUFFIX="info";const MODEL_TOPOLOGY_SUFFIX="model_topology";const WEIGHT_SPECS_SUFFIX="weight_specs";const WEIGHT_DATA_SUFFIX="weight_data";const MODEL_METADATA_SUFFIX="model_metadata";function purgeLocalStorageArtifacts(){if(!env3().getBool("IS_BROWSER")||typeof window==="undefined"||typeof window.localStorage==="undefined"){throw new Error("purgeLocalStorageModels() cannot proceed because local storage is unavailable in the current environment.")}const LS=window.localStorage;const purgedModelPaths=[];for(let i=0;i<LS.length;++i){const key=LS.key(i);const prefix=PATH_PREFIX+PATH_SEPARATOR;if(key.startsWith(prefix)&&key.length>prefix.length){LS.removeItem(key);const modelName=getModelPathFromKey(key);if(purgedModelPaths.indexOf(modelName)===-1){purgedModelPaths.push(modelName)}}}return purgedModelPaths}function getModelKeys(path){return{info:[PATH_PREFIX,path,INFO_SUFFIX].join(PATH_SEPARATOR),topology:[PATH_PREFIX,path,MODEL_TOPOLOGY_SUFFIX].join(PATH_SEPARATOR),weightSpecs:[PATH_PREFIX,path,WEIGHT_SPECS_SUFFIX].join(PATH_SEPARATOR),weightData:[PATH_PREFIX,path,WEIGHT_DATA_SUFFIX].join(PATH_SEPARATOR),modelMetadata:[PATH_PREFIX,path,MODEL_METADATA_SUFFIX].join(PATH_SEPARATOR)}}function getModelPathFromKey(key){const items=key.split(PATH_SEPARATOR);if(items.length<3){throw new Error(`Invalid key format: ${key}`)}return items.slice(1,items.length-1).join(PATH_SEPARATOR)}function maybeStripScheme$1(key){return key.startsWith(BrowserLocalStorage.URL_SCHEME)?key.slice(BrowserLocalStorage.URL_SCHEME.length):key}class BrowserLocalStorage{constructor(modelPath){if(!env3().getBool("IS_BROWSER")||typeof window==="undefined"||typeof window.localStorage==="undefined"){throw new Error("The current environment does not support local storage.")}this.LS=window.localStorage;if(modelPath==null||!modelPath){throw new Error("For local storage, modelPath must not be null, undefined or empty.")}this.modelPath=modelPath;this.keys=getModelKeys(this.modelPath)}async save(modelArtifacts){if(modelArtifacts.modelTopology instanceof ArrayBuffer){throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.")}else{const topology=JSON.stringify(modelArtifacts.modelTopology);const weightSpecs=JSON.stringify(modelArtifacts.weightSpecs);const modelArtifactsInfo=getModelArtifactsInfoForJSON(modelArtifacts);try{this.LS.setItem(this.keys.info,JSON.stringify(modelArtifactsInfo));this.LS.setItem(this.keys.topology,topology);this.LS.setItem(this.keys.weightSpecs,weightSpecs);this.LS.setItem(this.keys.weightData,arrayBufferToBase64String(modelArtifacts.weightData));this.LS.setItem(this.keys.modelMetadata,JSON.stringify({format:modelArtifacts.format,generatedBy:modelArtifacts.generatedBy,convertedBy:modelArtifacts.convertedBy,userDefinedMetadata:modelArtifacts.userDefinedMetadata}));return{modelArtifactsInfo}}catch(err){this.LS.removeItem(this.keys.info);this.LS.removeItem(this.keys.topology);this.LS.removeItem(this.keys.weightSpecs);this.LS.removeItem(this.keys.weightData);this.LS.removeItem(this.keys.modelMetadata);throw new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${modelArtifactsInfo.modelTopologyBytes}, weightSpecsBytes=${modelArtifactsInfo.weightSpecsBytes}, weightDataBytes=${modelArtifactsInfo.weightDataBytes}.`)}}}async load(){const info=JSON.parse(this.LS.getItem(this.keys.info));if(info==null){throw new Error(`In local storage, there is no model with name '${this.modelPath}'`)}if(info.modelTopologyType!=="JSON"){throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.")}const out={};const topology=JSON.parse(this.LS.getItem(this.keys.topology));if(topology==null){throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`)}out.modelTopology=topology;const weightSpecs=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(weightSpecs==null){throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`)}out.weightSpecs=weightSpecs;const metadataString=this.LS.getItem(this.keys.modelMetadata);if(metadataString!=null){const metadata=JSON.parse(metadataString);out.format=metadata["format"];out.generatedBy=metadata["generatedBy"];out.convertedBy=metadata["convertedBy"];out.userDefinedMetadata=metadata["userDefinedMetadata"]}const weightDataBase64=this.LS.getItem(this.keys.weightData);if(weightDataBase64==null){throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`)}out.weightData=base64StringToArrayBuffer(weightDataBase64);return out}}BrowserLocalStorage.URL_SCHEME="localstorage://";const localStorageRouter=url=>{if(!env3().getBool("IS_BROWSER")){return null}else{if(!Array.isArray(url)&&url.startsWith(BrowserLocalStorage.URL_SCHEME)){return browserLocalStorage(url.slice(BrowserLocalStorage.URL_SCHEME.length))}else{return null}}};IORouterRegistry.registerSaveRouter(localStorageRouter);IORouterRegistry.registerLoadRouter(localStorageRouter);function browserLocalStorage(modelPath){return new BrowserLocalStorage(modelPath)}class BrowserLocalStorageManager{constructor(){assert(env3().getBool("IS_BROWSER"),()=>"Current environment is not a web browser");assert(typeof window==="undefined"||typeof window.localStorage!=="undefined",()=>"Current browser does not appear to support localStorage");this.LS=window.localStorage}async listModels(){const out={};const prefix=PATH_PREFIX+PATH_SEPARATOR;const suffix=PATH_SEPARATOR+INFO_SUFFIX;for(let i=0;i<this.LS.length;++i){const key=this.LS.key(i);if(key.startsWith(prefix)&&key.endsWith(suffix)){const modelPath=getModelPathFromKey(key);out[modelPath]=JSON.parse(this.LS.getItem(key))}}return out}async removeModel(path){path=maybeStripScheme$1(path);const keys=getModelKeys(path);if(this.LS.getItem(keys.info)==null){throw new Error(`Cannot find model at path '${path}'`)}const info=JSON.parse(this.LS.getItem(keys.info));this.LS.removeItem(keys.info);this.LS.removeItem(keys.topology);this.LS.removeItem(keys.weightSpecs);this.LS.removeItem(keys.weightData);return info}}const URL_SCHEME_SUFFIX="://";class ModelStoreManagerRegistry{constructor(){this.managers={}}static getInstance(){if(ModelStoreManagerRegistry.instance==null){ModelStoreManagerRegistry.instance=new ModelStoreManagerRegistry}return ModelStoreManagerRegistry.instance}static registerManager(scheme,manager){assert(scheme!=null,()=>"scheme must not be undefined or null.");if(scheme.endsWith(URL_SCHEME_SUFFIX)){scheme=scheme.slice(0,scheme.indexOf(URL_SCHEME_SUFFIX))}assert(scheme.length>0,()=>"scheme must not be an empty string.");const registry=ModelStoreManagerRegistry.getInstance();assert(registry.managers[scheme]==null,()=>`A model store manager is already registered for scheme '${scheme}'.`);registry.managers[scheme]=manager}static getManager(scheme){const manager=this.getInstance().managers[scheme];if(manager==null){throw new Error(`Cannot find model manager for scheme '${scheme}'`)}return manager}static getSchemes(){return Object.keys(this.getInstance().managers)}}function parseURL(url){if(url.indexOf(URL_SCHEME_SUFFIX)===-1){throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${ModelStoreManagerRegistry.getSchemes().join(",")}`)}return{scheme:url.split(URL_SCHEME_SUFFIX)[0],path:url.split(URL_SCHEME_SUFFIX)[1]}}async function cloneModelInternal(sourceURL,destURL,deleteSource=false){assert(sourceURL!==destURL,()=>`Old path and new path are the same: '${sourceURL}'`);const loadHandlers=IORouterRegistry.getLoadHandlers(sourceURL);assert(loadHandlers.length>0,()=>`Copying failed because no load handler is found for source URL ${sourceURL}.`);assert(loadHandlers.length<2,()=>`Copying failed because more than one (${loadHandlers.length}) load handlers for source URL ${sourceURL}.`);const loadHandler=loadHandlers[0];const saveHandlers=IORouterRegistry.getSaveHandlers(destURL);assert(saveHandlers.length>0,()=>`Copying failed because no save handler is found for destination URL ${destURL}.`);assert(saveHandlers.length<2,()=>`Copying failed because more than one (${loadHandlers.length}) save handlers for destination URL ${destURL}.`);const saveHandler=saveHandlers[0];const sourceScheme=parseURL(sourceURL).scheme;const sourcePath=parseURL(sourceURL).path;const sameMedium=sourceScheme===parseURL(sourceURL).scheme;const modelArtifacts=await loadHandler.load();if(deleteSource&&sameMedium){await ModelStoreManagerRegistry.getManager(sourceScheme).removeModel(sourcePath)}const saveResult=await saveHandler.save(modelArtifacts);if(deleteSource&&!sameMedium){await ModelStoreManagerRegistry.getManager(sourceScheme).removeModel(sourcePath)}return saveResult.modelArtifactsInfo}async function listModels(){const schemes=ModelStoreManagerRegistry.getSchemes();const out={};for(const scheme of schemes){const schemeOut=await ModelStoreManagerRegistry.getManager(scheme).listModels();for(const path in schemeOut){const url=scheme+URL_SCHEME_SUFFIX+path;out[url]=schemeOut[path]}}return out}async function removeModel(url){const schemeAndPath=parseURL(url);const manager=ModelStoreManagerRegistry.getManager(schemeAndPath.scheme);return manager.removeModel(schemeAndPath.path)}async function copyModel(sourceURL,destURL){const deleteSource=false;return cloneModelInternal(sourceURL,destURL,deleteSource)}async function moveModel(sourceURL,destURL){const deleteSource=true;return cloneModelInternal(sourceURL,destURL,deleteSource)}class PlatformBrowser{fetch(path,init2){return fetch(path,init2)}now(){return performance.now()}encode(text,encoding){if(encoding!=="utf-8"&&encoding!=="utf8"){throw new Error(`Browser's encoder only supports utf-8, but got ${encoding}`)}if(this.textEncoder==null){this.textEncoder=new TextEncoder}return this.textEncoder.encode(text)}decode(bytes,encoding){return new TextDecoder(encoding).decode(bytes)}}if(env3().get("IS_BROWSER")){env3().setPlatform("browser",new PlatformBrowser);try{ModelStoreManagerRegistry.registerManager(BrowserLocalStorage.URL_SCHEME,new BrowserLocalStorageManager)}catch(err){}try{ModelStoreManagerRegistry.registerManager(BrowserIndexedDB.URL_SCHEME,new BrowserIndexedDBManager)}catch(err){}}const getNodeFetch={importFetch:()=>require_lib()};let systemFetch;function resetSystemFetch(){systemFetch=null}function setSystemFetch(fetchFn){systemFetch=fetchFn}function getSystemFetch(){return systemFetch}class PlatformNode{constructor(){this.util=require("util");this.textEncoder=new this.util.TextEncoder}fetch(path,requestInits){if(env3().global.fetch!=null){return env3().global.fetch(path,requestInits)}if(systemFetch==null){systemFetch=getNodeFetch.importFetch()}return systemFetch(path,requestInits)}now(){const time2=process.hrtime();return time2[0]*1e3+time2[1]/1e6}encode(text,encoding){if(encoding!=="utf-8"&&encoding!=="utf8"){throw new Error(`Node built-in encoder only supports utf-8, but got ${encoding}`)}return this.textEncoder.encode(text)}decode(bytes,encoding){if(bytes.length===0){return""}return new this.util.TextDecoder(encoding).decode(bytes)}}if(env3().get("IS_NODE")){env3().setPlatform("node",new PlatformNode)}function buffer2(shape,dtype="float32",values){dtype=dtype||"float32";assertNonNegativeIntegerDimensions(shape);return new TensorBuffer(shape,dtype,values)}function cast_(x,dtype){const $x=convertToTensor(x,"x","cast");if(!isValidDtype(dtype)){throw new Error(`Failed to cast to unknown dtype ${dtype}`)}if(dtype==="string"&&$x.dtype!=="string"||dtype!=="string"&&$x.dtype==="string"){throw new Error("Only strings can be casted to strings")}const inputs={x:$x};const attrs={dtype};return ENGINE.runKernelFunc(backend2=>backend2.cast($x,dtype),inputs,null,Cast5,attrs)}const cast2=op({cast_});function clone_(x){const $x=convertToTensor(x,"x","clone",null);const forward=()=>ENGINE.makeTensorFromDataId($x.dataId,$x.shape,$x.dtype);const inputs={x:$x};return ENGINE.runKernelFunc(forward,inputs,null,Identity5)}const clone=op({clone_});function print2(x,verbose=false){console.log(x.toString(verbose))}getOrMakeEngine();const opHandler$1={buffer:buffer2,cast:cast2,clone,print:print2};setOpHandler(opHandler$1);const DEFAULT_FILE_NAME_PREFIX="model";const DEFAULT_JSON_EXTENSION_NAME=".json";const DEFAULT_WEIGHT_DATA_EXTENSION_NAME=".weights.bin";function defer(f){return new Promise(resolve=>setTimeout(resolve)).then(f)}class BrowserDownloads{constructor(fileNamePrefix){if(!env3().getBool("IS_BROWSER")){throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.")}if(fileNamePrefix.startsWith(BrowserDownloads.URL_SCHEME)){fileNamePrefix=fileNamePrefix.slice(BrowserDownloads.URL_SCHEME.length)}if(fileNamePrefix==null||fileNamePrefix.length===0){fileNamePrefix=DEFAULT_FILE_NAME_PREFIX}this.modelTopologyFileName=fileNamePrefix+DEFAULT_JSON_EXTENSION_NAME;this.weightDataFileName=fileNamePrefix+DEFAULT_WEIGHT_DATA_EXTENSION_NAME}async save(modelArtifacts){if(typeof document==="undefined"){throw new Error("Browser downloads are not supported in this environment since `document` is not present")}const weightsURL=window.URL.createObjectURL(new Blob([modelArtifacts.weightData],{type:"application/octet-stream"}));if(modelArtifacts.modelTopology instanceof ArrayBuffer){throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.")}else{const weightsManifest=[{paths:["./"+this.weightDataFileName],weights:modelArtifacts.weightSpecs}];const modelTopologyAndWeightManifest={modelTopology:modelArtifacts.modelTopology,format:modelArtifacts.format,generatedBy:modelArtifacts.generatedBy,convertedBy:modelArtifacts.convertedBy,weightsManifest};const modelTopologyAndWeightManifestURL=window.URL.createObjectURL(new Blob([JSON.stringify(modelTopologyAndWeightManifest)],{type:"application/json"}));const jsonAnchor=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;jsonAnchor.download=this.modelTopologyFileName;jsonAnchor.href=modelTopologyAndWeightManifestURL;await defer(()=>jsonAnchor.dispatchEvent(new MouseEvent("click")));if(modelArtifacts.weightData!=null){const weightDataAnchor=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;weightDataAnchor.download=this.weightDataFileName;weightDataAnchor.href=weightsURL;await defer(()=>weightDataAnchor.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:getModelArtifactsInfoForJSON(modelArtifacts)}}}}BrowserDownloads.URL_SCHEME="downloads://";class BrowserFiles{constructor(files){if(files==null||files.length<1){throw new Error(`When calling browserFiles, at least 1 file is required, but received ${files}`)}this.files=files}async load(){const jsonFile=this.files[0];const weightFiles=this.files.slice(1);return new Promise((resolve,reject)=>{const jsonReader=new FileReader;jsonReader.onload=event=>{const modelJSON=JSON.parse(event.target.result);const modelTopology=modelJSON.modelTopology;if(modelTopology==null){reject(new Error(`modelTopology field is missing from file ${jsonFile.name}`));return}if(weightFiles.length===0){resolve({modelTopology})}const weightsManifest=modelJSON.weightsManifest;if(weightsManifest==null){reject(new Error(`weightManifest field is missing from file ${jsonFile.name}`));return}let pathToFile;try{pathToFile=this.checkManifestAndWeightFiles(weightsManifest,weightFiles)}catch(err){reject(err);return}const weightSpecs=[];const paths=[];const perFileBuffers=[];weightsManifest.forEach(weightsGroup=>{weightsGroup.paths.forEach(path=>{paths.push(path);perFileBuffers.push(null)});weightSpecs.push(...weightsGroup.weights)});weightsManifest.forEach(weightsGroup=>{weightsGroup.paths.forEach(path=>{const weightFileReader=new FileReader;weightFileReader.onload=event2=>{const weightData=event2.target.result;const index2=paths.indexOf(path);perFileBuffers[index2]=weightData;if(perFileBuffers.indexOf(null)===-1){resolve({modelTopology,weightSpecs,weightData:concatenateArrayBuffers(perFileBuffers),format:modelJSON.format,generatedBy:modelJSON.generatedBy,convertedBy:modelJSON.convertedBy,userDefinedMetadata:modelJSON.userDefinedMetadata})}};weightFileReader.onerror=error=>reject(`Failed to weights data from file of path '${path}'.`);weightFileReader.readAsArrayBuffer(pathToFile[path])})})};jsonReader.onerror=error=>reject(`Failed to read model topology and weights manifest JSON from file '${jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`);jsonReader.readAsText(jsonFile)})}checkManifestAndWeightFiles(manifest,files){const basenames=[];const fileNames=files.map(file=>basename(file.name));const pathToFile={};for(const group of manifest){group.paths.forEach(path=>{const pathBasename=basename(path);if(basenames.indexOf(pathBasename)!==-1){throw new Error(`Duplicate file basename found in weights manifest: '${pathBasename}'`)}basenames.push(pathBasename);if(fileNames.indexOf(pathBasename)===-1){throw new Error(`Weight file with basename '${pathBasename}' is not provided.`)}else{pathToFile[path]=files[fileNames.indexOf(pathBasename)]}})}if(basenames.length!==files.length){throw new Error(`Mismatch in the number of files in weights manifest (${basenames.length}) and the number of weight files provided (${files.length}).`)}return pathToFile}}const browserDownloadsRouter=url=>{if(!env3().getBool("IS_BROWSER")){return null}else{if(!Array.isArray(url)&&url.startsWith(BrowserDownloads.URL_SCHEME)){return browserDownloads(url.slice(BrowserDownloads.URL_SCHEME.length))}else{return null}}};IORouterRegistry.registerSaveRouter(browserDownloadsRouter);function browserDownloads(fileNamePrefix="model"){return new BrowserDownloads(fileNamePrefix)}function browserFiles(files){return new BrowserFiles(files)}function monitorPromisesProgress(promises,onProgress,startFraction,endFraction){checkPromises(promises);startFraction=startFraction==null?0:startFraction;endFraction=endFraction==null?1:endFraction;checkFraction(startFraction,endFraction);let resolvedPromise=0;const registerMonitor=promise=>{promise.then(value=>{const fraction=startFraction+ ++resolvedPromise/promises.length*(endFraction-startFraction);onProgress(fraction);return value});return promise};function checkPromises(promises2){assert(promises2!=null&&Array.isArray(promises2)&&promises2.length>0,()=>"promises must be a none empty array")}function checkFraction(startFraction2,endFraction2){assert(startFraction2>=0&&startFraction2<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${startFraction2}`);assert(endFraction2>=0&&endFraction2<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${endFraction2}`);assert(endFraction2>=startFraction2,()=>`startFraction must be no more than endFraction, but got startFraction ${startFraction2} and endFraction ${endFraction2}`)}return Promise.all(promises.map(registerMonitor))}async function loadWeightsAsArrayBuffer(fetchURLs,loadOptions){if(loadOptions==null){loadOptions={}}const fetchFunc=loadOptions.fetchFunc==null?env3().platform.fetch:loadOptions.fetchFunc;const requests=fetchURLs.map(fetchURL=>fetchFunc(fetchURL,loadOptions.requestInit,{isBinary:true}));const fetchStartFraction=0;const fetchEndFraction=.5;const responses=loadOptions.onProgress==null?await Promise.all(requests):await monitorPromisesProgress(requests,loadOptions.onProgress,fetchStartFraction,fetchEndFraction);const bufferPromises=responses.map(response=>response.arrayBuffer());const bufferStartFraction=.5;const bufferEndFraction=1;const buffers=loadOptions.onProgress==null?await Promise.all(bufferPromises):await monitorPromisesProgress(bufferPromises,loadOptions.onProgress,bufferStartFraction,bufferEndFraction);return buffers}async function loadWeights(manifest,filePathPrefix="",weightNames,requestInit){const fetchWeights=fetchUrls=>loadWeightsAsArrayBuffer(fetchUrls,{requestInit});const loadWeights2=weightsLoaderFactory(fetchWeights);return loadWeights2(manifest,filePathPrefix,weightNames)}function weightsLoaderFactory(fetchWeightsFunction){return async(manifest,filePathPrefix="",weightNames)=>{const groupIndicesToFetchMap=manifest.map(()=>false);const groupWeightsToFetch={};const weightsFound=weightNames!=null?weightNames.map(()=>false):[];const allManifestWeightNames=[];manifest.forEach((manifestGroupConfig,groupIndex)=>{let groupOffset=0;manifestGroupConfig.weights.forEach(weightsEntry=>{const rawDtype="quantization"in weightsEntry?weightsEntry.quantization.dtype:weightsEntry.dtype;const weightsBytes=DTYPE_VALUE_SIZE_MAP[rawDtype]*sizeFromShape(weightsEntry.shape);const enqueueWeightsForFetchingFn=()=>{groupIndicesToFetchMap[groupIndex]=true;if(groupWeightsToFetch[groupIndex]==null){groupWeightsToFetch[groupIndex]=[]}groupWeightsToFetch[groupIndex].push({manifestEntry:weightsEntry,groupOffset,sizeBytes:weightsBytes})};if(weightNames!=null){weightNames.forEach((weightName,weightIndex)=>{if(weightName===weightsEntry.name){enqueueWeightsForFetchingFn();weightsFound[weightIndex]=true}})}else{enqueueWeightsForFetchingFn()}allManifestWeightNames.push(weightsEntry.name);groupOffset+=weightsBytes})});if(!weightsFound.every(found=>found)){const weightsNotFound=weightNames.filter((_,i)=>!weightsFound[i]);throw new Error(`Could not find weights in manifest with names: ${weightsNotFound.join(", ")}.
Manifest JSON has weights with names: ${allManifestWeightNames.join(", ")}.`)}const groupIndicesToFetch=groupIndicesToFetchMap.reduce((accumulator,shouldFetch,i)=>{if(shouldFetch){accumulator.push(i)}return accumulator},[]);const fetchUrls=[];groupIndicesToFetch.forEach(i=>{manifest[i].paths.forEach(filepath=>{const fetchUrl=filePathPrefix+(!filePathPrefix.endsWith("/")?"/":"")+filepath;fetchUrls.push(fetchUrl)})});const buffers=await fetchWeightsFunction(fetchUrls);const weightsTensorMap={};let bufferIndexOffset=0;groupIndicesToFetch.forEach(i=>{const numBuffers=manifest[i].paths.length;let groupBytes=0;for(let i2=0;i2<numBuffers;i2++){groupBytes+=buffers[bufferIndexOffset+i2].byteLength}const groupBuffer=new ArrayBuffer(groupBytes);const groupByteBuffer=new Uint8Array(groupBuffer);let groupBufferOffset=0;for(let i2=0;i2<numBuffers;i2++){const buffer3=new Uint8Array(buffers[bufferIndexOffset+i2]);groupByteBuffer.set(buffer3,groupBufferOffset);groupBufferOffset+=buffer3.byteLength}const weightsEntries=groupWeightsToFetch[i];weightsEntries.forEach(weightsEntry=>{const byteBuffer=groupBuffer.slice(weightsEntry.groupOffset,weightsEntry.groupOffset+weightsEntry.sizeBytes);const nameToTensorMap=decodeWeights(byteBuffer,[weightsEntry.manifestEntry]);for(const name in nameToTensorMap){weightsTensorMap[name]=nameToTensorMap[name]}});bufferIndexOffset+=numBuffers});return weightsTensorMap}}const OCTET_STREAM_MIME_TYPE="application/octet-stream";const JSON_TYPE="application/json";class HTTPRequest{constructor(path,loadOptions){this.DEFAULT_METHOD="POST";if(loadOptions==null){loadOptions={}}this.weightPathPrefix=loadOptions.weightPathPrefix;this.onProgress=loadOptions.onProgress;this.weightUrlConverter=loadOptions.weightUrlConverter;if(loadOptions.fetchFunc!=null){assert(typeof loadOptions.fetchFunc==="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)");this.fetch=loadOptions.fetchFunc}else{this.fetch=env3().platform.fetch}assert(path!=null&&path.length>0,()=>"URL path for http must not be null, undefined or empty.");if(Array.isArray(path)){assert(path.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${path.length}).`)}this.path=path;if(loadOptions.requestInit!=null&&loadOptions.requestInit.body!=null){throw new Error("requestInit is expected to have no pre-existing body, but has one.")}this.requestInit=loadOptions.requestInit||{}}async save(modelArtifacts){if(modelArtifacts.modelTopology instanceof ArrayBuffer){throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.")}const init2=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);init2.body=new FormData;const weightsManifest=[{paths:["./model.weights.bin"],weights:modelArtifacts.weightSpecs}];const modelTopologyAndWeightManifest={modelTopology:modelArtifacts.modelTopology,format:modelArtifacts.format,generatedBy:modelArtifacts.generatedBy,convertedBy:modelArtifacts.convertedBy,userDefinedMetadata:modelArtifacts.userDefinedMetadata,weightsManifest};init2.body.append("model.json",new Blob([JSON.stringify(modelTopologyAndWeightManifest)],{type:JSON_TYPE}),"model.json");if(modelArtifacts.weightData!=null){init2.body.append("model.weights.bin",new Blob([modelArtifacts.weightData],{type:OCTET_STREAM_MIME_TYPE}),"model.weights.bin")}const response=await this.fetch(this.path,init2);if(response.ok){return{modelArtifactsInfo:getModelArtifactsInfoForJSON(modelArtifacts),responses:[response]}}else{throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${response.status}.`)}}async load(){const modelConfigRequest=await this.fetch(this.path,this.requestInit);if(!modelConfigRequest.ok){throw new Error(`Request to ${this.path} failed with status code ${modelConfigRequest.status}. Please verify this URL points to the model JSON of the model to load.`)}let modelConfig;try{modelConfig=await modelConfigRequest.json()}catch(e){let message=`Failed to parse model JSON of response from ${this.path}.`;if(this.path.endsWith(".pb")){message+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository."}else{message+=" Please make sure the server is serving valid JSON for this request."}throw new Error(message)}const modelTopology=modelConfig.modelTopology;const weightsManifest=modelConfig.weightsManifest;const generatedBy=modelConfig.generatedBy;const convertedBy=modelConfig.convertedBy;const format=modelConfig.format;const userDefinedMetadata=modelConfig.userDefinedMetadata;if(modelTopology==null&&weightsManifest==null){throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`)}let weightSpecs;let weightData;if(weightsManifest!=null){const results=await this.loadWeights(weightsManifest);[weightSpecs,weightData]=results}const artifacts={modelTopology,weightSpecs,weightData,userDefinedMetadata,generatedBy,convertedBy,format};const initializer=modelConfig.modelInitializer;if(initializer){artifacts.modelInitializer=initializer}return artifacts}async loadWeights(weightsManifest){const weightPath=Array.isArray(this.path)?this.path[1]:this.path;const[prefix,suffix]=parseUrl(weightPath);const pathPrefix=this.weightPathPrefix||prefix;const weightSpecs=[];for(const entry of weightsManifest){weightSpecs.push(...entry.weights)}const fetchURLs=[];const urlPromises=[];for(const weightsGroup of weightsManifest){for(const path of weightsGroup.paths){if(this.weightUrlConverter!=null){urlPromises.push(this.weightUrlConverter(path))}else{fetchURLs.push(pathPrefix+path+suffix)}}}if(this.weightUrlConverter){fetchURLs.push(...await Promise.all(urlPromises))}const buffers=await loadWeightsAsArrayBuffer(fetchURLs,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[weightSpecs,concatenateArrayBuffers(buffers)]}}HTTPRequest.URL_SCHEME_REGEX=/^https?:\/\//;function parseUrl(url){const lastSlash=url.lastIndexOf("/");const lastSearchParam=url.lastIndexOf("?");const prefix=url.substring(0,lastSlash);const suffix=lastSearchParam>lastSlash?url.substring(lastSearchParam):"";return[prefix+"/",suffix]}function isHTTPScheme(url){return url.match(HTTPRequest.URL_SCHEME_REGEX)!=null}const httpRouter=(url,loadOptions)=>{if(typeof fetch==="undefined"&&(loadOptions==null||loadOptions.fetchFunc==null)){return null}else{let isHTTP=true;if(Array.isArray(url)){isHTTP=url.every(urlItem=>isHTTPScheme(urlItem))}else{isHTTP=isHTTPScheme(url)}if(isHTTP){return http(url,loadOptions)}}return null};IORouterRegistry.registerSaveRouter(httpRouter);IORouterRegistry.registerLoadRouter(httpRouter);function http(path,loadOptions){return new HTTPRequest(path,loadOptions)}function browserHTTPRequest(path,loadOptions){return http(path,loadOptions)}class PassthroughLoader{constructor(modelArtifacts){this.modelArtifacts=modelArtifacts}async load(){return this.modelArtifacts}}class PassthroughSaver{constructor(saveHandler){this.saveHandler=saveHandler}async save(modelArtifacts){return this.saveHandler(modelArtifacts)}}function fromMemory(modelArtifacts,weightSpecs,weightData,trainingConfig){if(arguments.length===1){const isModelArtifacts=modelArtifacts.modelTopology!=null||modelArtifacts.weightSpecs!=null;if(isModelArtifacts){return new PassthroughLoader(modelArtifacts)}else{console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release.");return new PassthroughLoader({modelTopology:modelArtifacts})}}else{console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release.");return new PassthroughLoader({modelTopology:modelArtifacts,weightSpecs,weightData,trainingConfig})}}function withSaveHandler(saveHandler){return new PassthroughSaver(saveHandler)}var io=Object.freeze({__proto__:null,browserFiles,browserHTTPRequest,concatenateArrayBuffers,decodeWeights,encodeWeights,fromMemory,getLoadHandlers,getModelArtifactsInfoForJSON,getSaveHandlers,http,isHTTPScheme,loadWeights,registerLoadRouter,registerSaveRouter,weightsLoaderFactory,withSaveHandler,copyModel,listModels,moveModel,removeModel});function reshape_(x,shape){const $x=convertToTensor(x,"x","reshape",null);const inputs={x:$x};const attrs={shape};const forward=(backend2,save)=>{shape=inferFromImplicitShape(shape,$x.size);assert($x.size===sizeFromShape(shape),()=>"new shape and old shape must have the same number of elements.");save([$x]);return backend2.reshape($x,shape)};return ENGINE.runKernelFunc(forward,inputs,null,Reshape6,attrs)}const reshape2=op({reshape_});function matMul_(a,b,transposeA=false,transposeB=false){let $a=convertToTensor(a,"a","matMul");let $b=convertToTensor(b,"b","matMul");[$a,$b]=makeTypesMatch($a,$b);const forward=(backend2,save)=>{save([$a,$b]);const innerShapeA=transposeA?$a.shape[$a.rank-2]:$a.shape[$a.rank-1];const innerShapeB=transposeB?$b.shape[$b.rank-1]:$b.shape[$b.rank-2];const outerShapeA=transposeA?$a.shape[$a.rank-1]:$a.shape[$a.rank-2];const outerShapeB=transposeB?$b.shape[$b.rank-2]:$b.shape[$b.rank-1];const outerDimsA=$a.shape.slice(0,-2);const outerDimsB=$b.shape.slice(0,-2);const batchDimA=sizeFromShape(outerDimsA);const batchDimB=sizeFromShape(outerDimsB);const batchDimsCompatible=batchDimA===batchDimB||batchDimA===1||batchDimB===1;assert($a.rank>=2&&$b.rank>=2&&batchDimsCompatible,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${outerDimsA}) and (${outerDimsB}).`);assert(innerShapeA===innerShapeB,()=>`Error in matMul: inner shapes (${innerShapeA}) and (${innerShapeB}) of Tensors with shapes ${$a.shape} and ${$b.shape} and transposeA=${transposeA} and transposeB=${transposeB} must match.`);const outShapeOuterDims=batchDimA>batchDimB?outerDimsA:outerDimsB;const outShape=outShapeOuterDims.concat([outerShapeA,outerShapeB]);const a3D=transposeA?reshape2($a,[batchDimA,innerShapeA,outerShapeA]):reshape2($a,[batchDimA,outerShapeA,innerShapeA]);const b3D=transposeB?reshape2($b,[batchDimB,outerShapeB,innerShapeB]):reshape2($b,[batchDimB,innerShapeB,outerShapeB]);const res3d=backend2.batchMatMul(a3D,b3D,transposeA,transposeB);return reshape2(res3d,outShape)};const inputs={a:$a,b:$b};const attrs={transposeA,transposeB};return ENGINE.runKernelFunc(forward,inputs,null,BatchMatMul3,attrs)}const matMul=op({matMul_});function oneHot_(indices,depth,onValue=1,offValue=0){if(depth<2){throw new Error(`Error in oneHot: depth must be >=2, but it is ${depth}`)}const $indices=convertToTensor(indices,"indices","oneHot","int32");const outShape=[...$indices.shape,depth];const forward=(backend2,save)=>{save([$indices]);return reshape2(backend2.oneHot(reshape2($indices,[$indices.size]),depth,onValue,offValue),outShape)};const inputs={indices:$indices};const attrs={depth,onValue,offValue};return ENGINE.runKernelFunc(forward,inputs,null,OneHot3,attrs)}const oneHot2=op({oneHot_});function transpose_(x,perm){const $x=convertToTensor(x,"x","transpose");if(perm==null){perm=$x.shape.map((s,i)=>i).reverse()}assert($x.rank===perm.length,()=>`Error in transpose: rank of input ${$x.rank} must match length of perm ${perm}.`);perm.forEach(axis=>{assert(axis>=0&&axis<$x.rank,()=>`All entries in 'perm' must be between 0 and ${$x.rank-1} but got ${perm}`)});if($x.rank<=1){return $x.clone()}const inputs={x:$x};const attrs={perm};return ENGINE.runKernelFunc(backend2=>backend2.transpose($x,perm),inputs,null,Transpose5,attrs)}const transpose2=op({transpose_});function confusionMatrix_(labels,predictions,numClasses){const $labels=convertToTensor(labels,"labels","confusionMatrix");const $predictions=convertToTensor(predictions,"predictions","confusionMatrix");assert(numClasses==null||numClasses>0&&Number.isInteger(numClasses),()=>`If provided, numClasses must be a positive integer, but got ${numClasses}`);assert($labels.rank===1,()=>`Expected the rank of labels to be 1, but got ${$labels.rank}`);assert($predictions.rank===1,()=>`Expected the rank of predictions to be 1, but got ${$predictions.rank}`);assert($labels.shape[0]===$predictions.shape[0],()=>`Mismatch in the number of examples: ${$labels.shape[0]} vs. ${$predictions.shape[0]}. Labels and predictions should have the same number of elements.`);assert(numClasses>0&&Number.isInteger(numClasses),()=>`numClasses is required to be a positive integer, but got ${numClasses}`);const oneHotLabels=oneHot2(cast2($labels,"int32"),numClasses);const oneHotPredictions=oneHot2(cast2($predictions,"int32"),numClasses);const oneHotLabelsT=transpose2(oneHotLabels);const product=matMul(oneHotLabelsT,oneHotPredictions);return cast2(product,"int32")}const confusionMatrix=op({confusionMatrix_});var math=Object.freeze({__proto__:null,confusionMatrix});function tensor3d(values,shape,dtype){assertNonNull(values);if(shape!=null&&shape.length!==3){throw new Error("tensor3d() requires shape to have three numbers")}const inferredShape=inferShape(values,dtype);if(inferredShape.length!==3&&inferredShape.length!==1){throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray")}if(inferredShape.length===1&&shape==null){throw new Error("tensor3d() requires shape to be provided when `values` are a flat array")}return makeTensor(values,shape,inferredShape,dtype)}let fromPixels2DContext;function fromPixels_(pixels,numChannels=3){if(numChannels>4){throw new Error("Cannot construct Tensor with more than 4 channels from pixels.")}if(pixels==null){throw new Error("pixels passed to tf.browser.fromPixels() can not be null")}let isPixelData=false;let isImageData=false;let isVideo=false;let isImage=false;let isCanvasLike=false;if(pixels.data instanceof Uint8Array){isPixelData=true}else if(typeof ImageData!=="undefined"&&pixels instanceof ImageData){isImageData=true}else if(typeof HTMLVideoElement!=="undefined"&&pixels instanceof HTMLVideoElement){isVideo=true}else if(typeof HTMLImageElement!=="undefined"&&pixels instanceof HTMLImageElement){isImage=true}else if(pixels.getContext!=null){isCanvasLike=true}else{throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${pixels.constructor.name}`)}if(isVideo){const HAVE_CURRENT_DATA_READY_STATE=2;if(isVideo&&pixels.readyState<HAVE_CURRENT_DATA_READY_STATE){throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}}const kernel=getKernel(FromPixels,ENGINE.backendName);if(kernel!=null){const inputs={pixels};const attrs={numChannels};return ENGINE.runKernel(FromPixels,inputs,attrs)}const[width,height]=isVideo?[pixels.videoWidth,pixels.videoHeight]:[pixels.width,pixels.height];let vals;if(isCanvasLike){vals=pixels.getContext("2d").getImageData(0,0,width,height).data}else if(isImageData||isPixelData){vals=pixels.data}else if(isImage||isVideo){if(fromPixels2DContext==null){fromPixels2DContext=document.createElement("canvas").getContext("2d")}fromPixels2DContext.canvas.width=width;fromPixels2DContext.canvas.height=height;fromPixels2DContext.drawImage(pixels,0,0,width,height);vals=fromPixels2DContext.getImageData(0,0,width,height).data}let values;if(numChannels===4){values=new Int32Array(vals)}else{const numPixels=width*height;values=new Int32Array(numPixels*numChannels);for(let i=0;i<numPixels;i++){for(let channel=0;channel<numChannels;++channel){values[i*numChannels+channel]=vals[i*4+channel]}}}const outShape=[height,width,numChannels];return tensor3d(values,outShape,"int32")}async function toPixels(img,canvas){let $img=convertToTensor(img,"img","toPixels");if(!(img instanceof Tensor)){const originalImgTensor=$img;$img=cast2(originalImgTensor,"int32");originalImgTensor.dispose()}if($img.rank!==2&&$img.rank!==3){throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${$img.rank}.`)}const[height,width]=$img.shape.slice(0,2);const depth=$img.rank===2?1:$img.shape[2];if(depth>4||depth===2){throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${depth}`)}if($img.dtype!=="float32"&&$img.dtype!=="int32"){throw new Error(`Unsupported type for toPixels: ${$img.dtype}. Please use float32 or int32 tensors.`)}const data2=await $img.data();const multiplier=$img.dtype==="float32"?255:1;const bytes=new Uint8ClampedArray(width*height*4);for(let i=0;i<height*width;++i){const rgba=[0,0,0,255];for(let d=0;d<depth;d++){const value=data2[i*depth+d];if($img.dtype==="float32"){if(value<0||value>1){throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${value}.`)}}else if($img.dtype==="int32"){if(value<0||value>255){throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${value}.`)}}if(depth===1){rgba[0]=value*multiplier;rgba[1]=value*multiplier;rgba[2]=value*multiplier}else{rgba[d]=value*multiplier}}const j=i*4;bytes[j+0]=Math.round(rgba[0]);bytes[j+1]=Math.round(rgba[1]);bytes[j+2]=Math.round(rgba[2]);bytes[j+3]=Math.round(rgba[3])}if(canvas!=null){canvas.width=width;canvas.height=height;const ctx=canvas.getContext("2d");const imageData=new ImageData(bytes,width,height);ctx.putImageData(imageData,0,0)}if($img!==img){$img.dispose()}return bytes}const fromPixels=op({fromPixels_});var browser=Object.freeze({__proto__:null,toPixels,fromPixels});function prepareAndValidate(tensor2,indices){if(tensor2.rank<1){throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${tensor2.rank}.`)}if(indices.rank<1){throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${indices.rank}.`)}if(indices.dtype!=="int32"){throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${indices.dtype}.`)}if(indices.shape[indices.rank-1]>tensor2.rank){throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${indices.shape[indices.rank-1]} vs. ${tensor2.rank}`)}if(tensor2.size===0){throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${tensor2.shape}.`)}const indicesShape=indices.shape;const sliceRank=indicesShape[indicesShape.length-1];let nResult=1;for(let i=0;i<indicesShape.length-1;++i){nResult*=indicesShape[i]}const inputShape=tensor2.shape;const resultShape=indicesShape.slice();resultShape.pop();let sliceSize=1;for(let i=sliceRank;i<tensor2.rank;++i){sliceSize*=inputShape[i];resultShape.push(inputShape[i])}const strides=[...computeStrides(tensor2.shape).map(stride=>stride/sliceSize),1].slice(0,sliceRank);return[resultShape,nResult,sliceSize,strides]}var gather_nd_util=Object.freeze({__proto__:null,prepareAndValidate});function validateUpdateShape(shape,indices,updates){const sliceDim=indices.rank>1?indices.shape[indices.rank-1]:1;const batchDim=indices.rank>1?indices.rank-1:1;const shapeError=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${updates.shape}, indices.shape: ${indices.shape}, shape: ${shape}, sliceDim: ${sliceDim}, and batchDim: ${batchDim}.`;if(updates.rank<batchDim){throw new Error(shapeError+` update.rank < ${batchDim}. `)}if(shape.length<sliceDim+(updates.rank-batchDim)){throw new Error(shapeError+` Output shape length < ${sliceDim+(updates.rank-batchDim)}`)}if(updates.rank!==batchDim+shape.length-sliceDim){throw new Error(shapeError+` update.rank != ${batchDim+shape.length-sliceDim}`)}for(let d=0;d<batchDim;++d){if(updates.shape[d]!==indices.shape[d]){throw new Error(shapeError+` updates.shape[${d}] (${updates.shape[d]}) != indices.shape[${d}] (${indices.shape[d]}).`)}}for(let d=0;d<updates.rank-batchDim;++d){if(updates.shape[d+batchDim]!==shape[d+sliceDim]){throw new Error(shapeError+` updates.shape[${d+batchDim}] (${updates.shape[d+batchDim]}) != shape[${d+batchDim}] (${shape[d+batchDim]})`)}}}function validateInput(updates,indices,shape){if(indices.rank<1){throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${indices.rank}.`)}if(updates.rank<1){throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${updates.rank}.`)}if(indices.dtype!=="int32"){throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${indices.dtype}`)}if(shape.length<1){throw new Error(`Output rank must be greater or equal to 1, but got shape: ${shape}`)}if(shape.length===0){if(indices.size===0){throw new Error(`Indices specified for empty output. indices shape: ${indices.shape}`)}if(updates.size===0){throw new Error(`Updates specified for empty output. updates shape: ${updates.shape}`)}}validateUpdateShape(shape,indices,updates)}function calculateShapes(updates,indices,shape){const indicesRank=indices.shape.length;const sliceRank=indicesRank>1?indices.shape[indicesRank-1]:1;const totalNd=shape.length;let sliceSize=1;for(let i=sliceRank;i<totalNd;++i){sliceSize*=shape[i]}const safeSliceDim=sliceRank<1?1:sliceRank;const numUpdates=sizeFromShape(indices.shape)/safeSliceDim;const strides=[...computeStrides(shape.slice(0,sliceRank)),1];const outputSize=sizeFromShape(shape);return{sliceRank,numUpdates,sliceSize,strides,outputSize}}var scatter_nd_util=Object.freeze({__proto__:null,validateUpdateShape,validateInput,calculateShapes});function assertParamsValid(input2,begin,size){const inputRank=input2.shape.length;assert(inputRank===begin.length,()=>`Error in slice${inputRank}D: Length of begin ${begin} must match the rank of the array (${inputRank}).`);assert(inputRank===size.length,()=>`Error in slice${inputRank}D: Length of size ${size} must match the rank of the array (${inputRank}).`);for(let i=0;i<inputRank;++i){assert(begin[i]+size[i]<=input2.shape[i],()=>`Error in slice${inputRank}D: begin[${i}] + size[${i}] (${begin[i]+size[i]}) would overflow input.shape[${i}] (${input2.shape[i]})`)}}function maskToAxes(mask){const axes=[];let axis=0;while(mask>0){if(mask&1){axes.push(axis)}mask/=2;axis++}return axes}function computeOutShape2(begin,end,strides){const size=[];for(let axis=0;axis<begin.length;axis++){size[axis]=Math.ceil((end[axis]-begin[axis])/strides[axis])}return size}function stridesWithElidedDims(strides,ellipsisInsertionIndex,numElidedAxes,inputShape){const newStrides=[...strides];for(let i=newStrides.length;i<inputShape.length;i++){newStrides.push(1)}for(let i=0;i<numElidedAxes;i++){if(i===0){newStrides[ellipsisInsertionIndex]=1}else{newStrides.splice(ellipsisInsertionIndex,0,1);newStrides.pop()}}return newStrides}function unnormalizeAxis(ellipsisInsertionIndex,numElidedAxes,normalizedAxis){if(normalizedAxis<=ellipsisInsertionIndex){return normalizedAxis}return normalizedAxis-(numElidedAxes-1)}function getElidedAxes(numElidedAxes,ellipsisInsertionIndex){const elidedAxes=[];for(let i=0;i<numElidedAxes;i++){elidedAxes.push(ellipsisInsertionIndex+i)}return elidedAxes}function getNormalizedAxes(inputShape,ellipsisAxes,numInterpolatedAxes,begin,end,strides,beginMask,endMask,ellipsisMask){const inputRank=inputShape.length;let normalizedBegin=new Array(inputRank),normalizedEnd=new Array(inputRank),normalizedStrides=new Array(inputRank);if(ellipsisAxes.length&&numInterpolatedAxes>0){const fullIndex=ellipsisAxes[0];const numElidedAxes=numInterpolatedAxes+1;normalizedBegin=startIndicesWithElidedDims(beginMask,fullIndex,numElidedAxes,begin,inputShape);normalizedEnd=stopIndicesWithElidedDims(endMask,fullIndex,numElidedAxes,end,inputShape);normalizedStrides=stridesWithElidedDims(strides,fullIndex,numElidedAxes,inputShape)}else{for(let axis=0;axis<inputRank;axis++){normalizedBegin[axis]=startForAxis(beginMask,begin,strides,inputShape,axis,ellipsisMask);normalizedEnd[axis]=stopForAxis(endMask,end,strides,inputShape,axis,ellipsisMask);normalizedStrides[axis]=stridesForAxis(strides,axis,ellipsisMask)}}return{begin:normalizedBegin,end:normalizedEnd,strides:normalizedStrides}}function startIndicesWithElidedDims(beginMask,ellipsisInsertionIndex,numElidedAxes,originalBegin,inputShape){const newIndices=[...inputShape];const elidedAxes=getElidedAxes(numElidedAxes,ellipsisInsertionIndex);for(let axis=0;axis<newIndices.length;axis++){if(elidedAxes.indexOf(axis)>-1){newIndices[axis]=0}else{const originalAxis=unnormalizeAxis(ellipsisInsertionIndex,numElidedAxes,axis);let originalValue=originalBegin[originalAxis];if(beginMask&1<<originalAxis){originalValue=0}newIndices[axis]=originalValue}}return newIndices}function stopIndicesWithElidedDims(endMask,ellipsisInsertionIndex,numElidedAxes,originalEnd,inputShape){const newIndices=[...inputShape];const elidedAxes=getElidedAxes(numElidedAxes,ellipsisInsertionIndex);for(let axis=0;axis<newIndices.length;axis++){if(elidedAxes.indexOf(axis)>-1){newIndices[axis]=Number.MAX_SAFE_INTEGER}else{const originalAxis=unnormalizeAxis(ellipsisInsertionIndex,numElidedAxes,axis);let originalValue=originalEnd[originalAxis];if(endMask&1<<originalAxis){originalValue=Number.MAX_SAFE_INTEGER}newIndices[axis]=originalValue}}for(let i=0;i<newIndices.length;i++){const axisSize=inputShape[i];if(newIndices[i]<0){newIndices[i]+=axisSize}newIndices[i]=clamp(0,newIndices[i],inputShape[i])}return newIndices}function stridesForAxis(strides,axis,ellipsisMask){let stride=strides[axis];if(ellipsisMask&1<<axis||stride==null){stride=1}return stride}function startForAxis(beginMask,startIndices,strides,inputShape,axis,ellipsisMask){let start=startIndices[axis];const stride=strides[axis]||1;if(beginMask&1<<axis||ellipsisMask&1<<axis||start==null){if(stride>0){start=Number.MIN_SAFE_INTEGER}else{start=Number.MAX_SAFE_INTEGER}}const axisSize=inputShape[axis];if(start<0){start+=axisSize}start=clamp(0,start,axisSize-1);return start}function stopForAxis(endMask,stopIndices,strides,inputShape,axis,ellipsisMask){let stop=stopIndices[axis];const stride=strides[axis]||1;if(endMask&1<<axis||ellipsisMask&1<<axis||stop==null){if(stride>0){stop=Number.MAX_SAFE_INTEGER}else{stop=Number.MIN_SAFE_INTEGER}}const axisSize=inputShape[axis];if(stop<0){stop+=axisSize}if(stride>0){stop=clamp(0,stop,axisSize)}else{stop=clamp(-1,stop,axisSize-1)}return stop}function isSliceContinous(shape,begin,size){let firstNonOneAxis=size.length;for(let i=0;i<size.length;i++){if(size[i]>1){firstNonOneAxis=i;break}}for(let i=firstNonOneAxis+1;i<size.length;i++){if(begin[i]>0||size[i]!==shape[i]){return false}}return true}function computeFlatOffset(begin,strides){let flatOffset=begin.length>0?begin[begin.length-1]:1;for(let i=0;i<begin.length-1;i++){flatOffset+=begin[i]*strides[i]}return flatOffset}function parseSliceParams(x,begin,size){let begin_;const xRank=x.shape.length;if(typeof begin==="number"){begin_=[begin,...new Array(xRank-1).fill(0)]}else if(begin.length<xRank){begin_=begin.concat(new Array(xRank-begin.length).fill(0))}else{begin_=begin.slice()}begin_.forEach(d=>{assert(d!==-1,()=>"slice() does not support negative begin indexing.")});let size_;if(size==null){size_=new Array(xRank).fill(-1)}else if(typeof size==="number"){size_=[size,...new Array(xRank-1).fill(-1)]}else if(size.length<xRank){size_=size.concat(new Array(xRank-size.length).fill(-1))}else{size_=size}size_=size_.map((d,i)=>{if(d>=0){return d}else{assert(d===-1,()=>`Negative size values should be exactly -1 but got ${d} for the slice() size at index ${i}.`);return x.shape[i]-begin_[i]}});return[begin_,size_]}var slice_util2=Object.freeze({__proto__:null,assertParamsValid,maskToAxes,computeOutShape:computeOutShape2,stridesWithElidedDims,getNormalizedAxes,startIndicesWithElidedDims,stopIndicesWithElidedDims,stridesForAxis,startForAxis,stopForAxis,isSliceContinous,computeFlatOffset,parseSliceParams});class Serializable{getClassName(){return this.constructor.className}static fromConfig(cls,config2){return new cls(config2)}}class SerializationMap{constructor(){this.classNameMap={}}static getMap(){if(SerializationMap.instance==null){SerializationMap.instance=new SerializationMap}return SerializationMap.instance}static register(cls){SerializationMap.getMap().classNameMap[cls.className]=[cls,cls.fromConfig]}}function registerClass(cls){assert(cls.className!=null,()=>`Class being registered does not have the static className property defined.`);assert(typeof cls.className==="string",()=>`className is required to be a string, but got type `+typeof cls.className);assert(cls.className.length>0,()=>`Class being registered has an empty-string as its className, which is disallowed.`);SerializationMap.register(cls)}var serialization=Object.freeze({__proto__:null,Serializable,SerializationMap,registerClass});const TEST_EPSILON_FLOAT32=.001;const TEST_EPSILON_FLOAT16=.1;function expectArraysClose(actual,expected,epsilon2){if(epsilon2==null){epsilon2=testEpsilon()}return expectArraysPredicate(actual,expected,(a,b)=>areClose(a,b,epsilon2))}function testEpsilon(){return ENGINE.backend.floatPrecision()===32?TEST_EPSILON_FLOAT32:TEST_EPSILON_FLOAT16}function expectArraysPredicate(actual,expected,predicate){let checkClassType=true;if(isTypedArray(actual)||isTypedArray(expected)){checkClassType=false}if(isTypedArray(actual)&&isTypedArray(expected)){checkClassType=true}if(checkClassType){const aType=actual.constructor.name;const bType=expected.constructor.name;if(aType!==bType){throw new Error(`Arrays are of different type. Actual: ${aType}. Expected: ${bType}`)}}if(Array.isArray(actual)&&Array.isArray(expected)){const actualShape=inferShape(actual);const expectedShape=inferShape(expected);if(!arraysEqual(actualShape,expectedShape)){throw new Error(`Arrays have different shapes. Actual: [${actualShape}]. Expected: [${expectedShape}]`)}}const actualFlat=isTypedArray(actual)?actual:flatten(actual);const expectedFlat=isTypedArray(expected)?expected:flatten(expected);if(actualFlat.length!==expectedFlat.length){throw new Error(`Arrays have different lengths actual: ${actualFlat.length} vs expected: ${expectedFlat.length}.
Actual: ${actualFlat}.
Expected: ${expectedFlat}.`)}for(let i=0;i<expectedFlat.length;++i){const a=actualFlat[i];const e=expectedFlat[i];if(!predicate(a,e)){throw new Error(`Arrays differ: actual[${i}] = ${a}, expected[${i}] = ${e}.
Actual: ${actualFlat}.
Expected: ${expectedFlat}.`)}}}function expectPromiseToFail(fn,done){fn().then(()=>done.fail(),()=>done())}function expectArraysEqual(actual,expected){const exp2=typeof expected==="string"||typeof expected==="number"||typeof expected==="boolean"?[expected]:expected;if(isString(actual)||isString(actual[0])||isString(expected)||isString(expected[0])){return expectArraysPredicate(actual,exp2,(a,b)=>a==b)}return expectArraysPredicate(actual,expected,(a,b)=>areClose(a,b,0))}function expectNumbersClose(a,e,epsilon2){if(epsilon2==null){epsilon2=testEpsilon()}if(!areClose(a,e,epsilon2)){throw new Error(`Numbers differ: actual === ${a}, expected === ${e}`)}}function areClose(a,e,epsilon2){if(!isFinite(a)&&!isFinite(e)){return true}if(isNaN(a)||isNaN(e)||Math.abs(a-e)>epsilon2){return false}return true}function expectValuesInRange(actual,low,high){for(let i=0;i<actual.length;i++){if(actual[i]<low||actual[i]>high){throw new Error(`Value out of range:${actual[i]} low: ${low}, high: ${high}`)}}}function expectArrayBuffersEqual(actual,expected){expect(new Float32Array(actual)).toEqual(new Float32Array(expected))}var test_util=Object.freeze({__proto__:null,TEST_EPSILON_FLOAT16,expectArraysClose,testEpsilon,expectPromiseToFail,expectArraysEqual,expectNumbersClose,expectValuesInRange,expectArrayBuffersEqual});const version4="2.7.0";function enableProdMode(){env3().set("PROD",true)}function enableDebugMode(){env3().set("DEBUG",true)}function disableDeprecationWarnings(){env3().set("DEPRECATION_WARNINGS_ENABLED",false);console.warn(`TensorFlow.js deprecation warnings have been disabled.`)}function deprecationWarn2(msg){if(env3().getBool("DEPRECATION_WARNINGS_ENABLED")){console.warn(msg+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}}setDeprecationWarningFn(deprecationWarn2);function disposeVariables(){ENGINE.disposeVariables()}function engine2(){return ENGINE}function memory(){return ENGINE.memory()}function profile2(f){return ENGINE.profile(f)}function tidy(nameOrFn,fn){return ENGINE.tidy(nameOrFn,fn)}function dispose(container){const tensors=getTensorsInContainer(container);tensors.forEach(tensor2=>tensor2.dispose())}function keep(result){return ENGINE.keep(result)}function time(f){return ENGINE.time(f)}function setBackend(backendName){return ENGINE.setBackend(backendName)}function ready(){return ENGINE.ready()}function getBackend(){return ENGINE.backendName}function removeBackend(name){ENGINE.removeBackend(name)}function findBackend(name){return ENGINE.findBackend(name)}function findBackendFactory(name){return ENGINE.findBackendFactory(name)}function registerBackend2(name,factory,priority=1){return ENGINE.registerBackend(name,factory,priority)}function backend(){return ENGINE.backend}function setPlatform(platformName,platform){env3().setPlatform(platformName,platform)}function add_(a,b){let $a=convertToTensor(a,"a","add");let $b=convertToTensor(b,"b","add");[$a,$b]=makeTypesMatch($a,$b);const forward=(backend2,save)=>{const res=backend2.add($a,$b);save([$a,$b]);return res};const inputs={a:$a,b:$b};return ENGINE.runKernelFunc(forward,inputs,null,Add3)}const add$1=op({add_});function floorDiv_(a,b){let $a=convertToTensor(a,"a","floorDiv");let $b=convertToTensor(b,"b","floorDiv");[$a,$b]=makeTypesMatch($a,$b);const forward=(backend2,save)=>{const res=backend2.floorDiv($a,$b);save([$a,$b]);return res};const inputs={a:$a,b:$b};return ENGINE.runKernelFunc(forward,inputs,null,FloorDiv3)}const floorDiv=op({floorDiv_});function div_(a,b){let $a=convertToTensor(a,"a","div");let $b=convertToTensor(b,"b","div");[$a,$b]=makeTypesMatch($a,$b);if($a.dtype==="int32"&&$b.dtype==="int32"){return floorDiv($a,$b)}const forward=(backend2,save)=>{const res=backend2.realDivide($a,$b);save([$a,$b]);return res};const inputs={a:$a,b:$b};const attrs={};return ENGINE.runKernelFunc(forward,inputs,null,Div3,attrs)}const div=op({div_});function mul_(a,b){let $a=convertToTensor(a,"a","mul");let $b=convertToTensor(b,"b","mul");[$a,$b]=makeTypesMatch($a,$b);const forward=(backend2,save)=>{const res=backend2.multiply($a,$b);save([$a,$b]);return res};const inputs={a:$a,b:$b};return ENGINE.runKernelFunc(forward,inputs,null,Multiply3)}const mul=op({mul_});function abs_(x){const $x=convertToTensor(x,"x","abs");const inputs={x:$x};return ENGINE.runKernelFunc((backend2,save)=>{save([$x]);if($x.dtype==="complex64"){return backend2.complexAbs($x)}return backend2.abs($x)},inputs,null,Abs3)}const abs=op({abs_});function acos_(x){const $x=convertToTensor(x,"x","acos");const inputs={x:$x};return ENGINE.runKernelFunc((backend2,save)=>{const res=backend2.acos($x);save([$x]);return res},inputs,null,Acos)}const acos=op({acos_});function acosh_(x){const $x=convertToTensor(x,"x","acosh");const inputs={x:$x};return ENGINE.runKernelFunc((backend2,save)=>{const res=backend2.acosh($x);save([$x]);return res},inputs,null,Acosh)}const acosh=op({acosh_});function addN_(tensors){assert(Array.isArray(tensors),()=>"The argument passed to tf.addN() must be a list of tensors");assert(tensors.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${tensors.length}`);const $tensors=tensors.map((t,i)=>convertToTensor(t,`tensors${i}`,"addN"));const firstTensor=$tensors[0];$tensors.forEach(t=>{if(t.dtype!==firstTensor.dtype){throw new Error("All tensors passed to tf.addN() must have the same dtype")}});$tensors.forEach(t=>{if(!arraysEqual(t.shape,firstTensor.shape)){throw new Error("All tensors passed to tf.addN() must have the same shape")}});const forward=(backend2,save)=>{const res=backend2.addN($tensors);save($tensors);return res};const inputs=$tensors;return ENGINE.runKernelFunc(forward,inputs,null,AddN3)}const addN=op({addN_});function axesAreInnerMostDims(axes,rank){for(let i=0;i<axes.length;++i){if(axes[axes.length-i-1]!==rank-1-i){return false}}return true}function combineLocations(outputLoc,reduceLoc,axes){const rank=outputLoc.length+reduceLoc.length;const loc=[];let outIdx=0;let reduceIdx=0;for(let dim=0;dim<rank;dim++){if(axes.indexOf(dim)===-1){loc.push(outputLoc[outIdx++])}else{loc.push(reduceLoc[reduceIdx++])}}return loc}function computeOutAndReduceShapes(aShape,axes){const outShape=[];const rank=aShape.length;for(let dim=0;dim<rank;dim++){if(axes.indexOf(dim)===-1){outShape.push(aShape[dim])}}const reduceShape=axes.map(dim=>aShape[dim]);return[outShape,reduceShape]}function expandShapeToKeepDim(shape,axes){const reduceSubShape=axes.map(x=>1);return combineLocations(shape,reduceSubShape,axes)}function assertAxesAreInnerMostDims(msg,axes,rank){assert(axesAreInnerMostDims(axes,rank),()=>`${msg} supports only inner-most axes for now. Got axes ${axes} and rank-${rank} input.`)}function getAxesPermutation(axes,rank){if(axesAreInnerMostDims(axes,rank)){return null}const result=[];for(let i=0;i<rank;++i){if(axes.indexOf(i)===-1){result.push(i)}}axes.forEach(axis=>result.push(axis));return result}function getUndoAxesPermutation(axes){return axes.map((axis,i)=>[i,axis]).sort((a,b)=>a[1]-b[1]).map(x=>x[0])}function getInnerMostAxes(numAxes,rank){const res=[];for(let i=rank-numAxes;i<rank;++i){res.push(i)}return res}function all_(x,axis=null,keepDims=false){let $x=convertToTensor(x,"x","all","bool");const forward=backend2=>{const origAxes=parseAxisParam(axis,$x.shape);let axes=origAxes;const permutedAxes=getAxesPermutation(axes,$x.rank);if(permutedAxes!=null){$x=transpose2($x,permutedAxes);axes=getInnerMostAxes(axes.length,$x.rank)}const res=backend2.all($x,axes);if(keepDims){const newShape=expandShapeToKeepDim(res.shape,origAxes);return reshape2(res,newShape)}return res};const inputs={x:$x};const attrs={axis,keepDims};return ENGINE.runKernelFunc(forward,inputs,null,All,attrs)}const all=op({all_});function any_(x,axis=null,keepDims=false){let $x=convertToTensor(x,"x","any","bool");const forward=backend2=>{const origAxes=parseAxisParam(axis,$x.shape);let axes=origAxes;const permutedAxes=getAxesPermutation(axes,$x.rank);if(permutedAxes!=null){$x=transpose2($x,permutedAxes);axes=getInnerMostAxes(axes.length,$x.rank)}const res=backend2.any($x,axes);if(keepDims){const newShape=expandShapeToKeepDim(res.shape,origAxes);return reshape2(res,newShape)}return res};const inputs={x:$x};const attrs={axis,keepDims};return ENGINE.runKernelFunc(forward,inputs,null,Any,attrs)}const any=op({any_});function argMax_(x,axis=0){let $x=convertToTensor(x,"x","argMax");const forward=(backend2,save)=>{save([$x]);let axes=parseAxisParam(axis,$x.shape);const permutedAxes=getAxesPermutation(axes,$x.rank);if(permutedAxes!=null){$x=transpose2($x,permutedAxes);axes=getInnerMostAxes(axes.length,$x.rank)}return backend2.argMax($x,axes[0])};const inputs={x:$x};const attrs={axis};return ENGINE.runKernelFunc(forward,inputs,null,ArgMax3,attrs)}const argMax=op({argMax_});function argMin_(x,axis=0){let $x=convertToTensor(x,"x","argMin");const forward=(backend2,save)=>{save([$x]);if(axis==null){axis=0}let axes=parseAxisParam(axis,$x.shape);const permutedAxes=getAxesPermutation(axes,$x.rank);if(permutedAxes!=null){$x=transpose2($x,permutedAxes);axes=getInnerMostAxes(axes.length,$x.rank)}return backend2.argMin($x,axes[0])};const inputs={x:$x};const attrs={axis};return ENGINE.runKernelFunc(forward,inputs,null,ArgMin,attrs)}const argMin=op({argMin_});function asin_(x){const $x=convertToTensor(x,"x","asin");const inputs={x:$x};return ENGINE.runKernelFunc((backend2,save)=>{const res=backend2.asin($x);save([$x]);return res},inputs,null,Asin)}const asin=op({asin_});function asinh_(x){const $x=convertToTensor(x,"x","asinh");const inputs={x:$x};return ENGINE.runKernelFunc((backend2,save)=>{const res=backend2.asinh($x);save([$x]);return res},inputs,null,Asinh)}const asinh=op({asinh_});function atan_(x){const $x=convertToTensor(x,"x","atan");const inputs={x:$x};return ENGINE.runKernelFunc((backend2,save)=>{const res=backend2.atan($x);save([$x]);return res},inputs,null,Atan)}const atan=op({atan_});function atan2_(a,b){let $a=convertToTensor(a,"a","atan2");let $b=convertToTensor(b,"b","atan2");[$a,$b]=makeTypesMatch($a,$b);const forward=(backend2,save)=>{const res=backend2.atan2($a,$b);save([$a,$b]);return res};const inputs={a:$a,b:$b};return ENGINE.runKernelFunc(forward,inputs,null,Atan2)}const atan2=op({atan2_});function atanh_(x){const $x=convertToTensor(x,"x","atanh");const inputs={x:$x};return ENGINE.runKernelFunc((backend2,save)=>{const res=backend2.atanh($x);save([$x]);return res},inputs,null,Atanh)}const atanh=op({atanh_});function computeDilation2DInfo(inputShape,filterShape,strides,pad3,dataFormat="NHWC",dilations){const inputChannels=inputShape[3];const $filterShape=[...filterShape,inputChannels];const $dataFormat=convertConv2DDataFormat(dataFormat);return computeConv2DInfo(inputShape,$filterShape,strides,dilations,pad3,null,null,$dataFormat)}function computePool2DInfo(inShape,filterSize,strides,dilations,pad3,roundingMode,dataFormat="channelsLast"){const[filterHeight,filterWidth]=parseTupleParam(filterSize);let filterShape;if(dataFormat==="channelsLast"){filterShape=[filterHeight,filterWidth,inShape[3],inShape[3]]}else if(dataFormat==="channelsFirst"){filterShape=[filterHeight,filterWidth,inShape[1],inShape[1]]}else{throw new Error(`Unknown dataFormat ${dataFormat}`)}return computeConv2DInfo(inShape,filterShape,strides,dilations,pad3,roundingMode,false,dataFormat)}function computePool3DInfo(inShape,filterSize,strides,dilations,pad3,roundingMode,dataFormat="NDHWC"){const[filterDepth,filterHeight,filterWidth]=parse3TupleParam(filterSize);let filterShape;let $dataFormat;if(dataFormat==="NDHWC"){$dataFormat="channelsLast";filterShape=[filterDepth,filterHeight,filterWidth,inShape[4],inShape[4]]}else if(dataFormat==="NCDHW"){$dataFormat="channelsFirst";filterShape=[filterDepth,filterHeight,filterWidth,inShape[1],inShape[1]]}else{throw new Error(`Unknown dataFormat ${dataFormat}`)}return computeConv3DInfo(inShape,filterShape,strides,dilations,pad3,false,$dataFormat,roundingMode)}function computeConv2DInfo(inShape,filterShape,strides,dilations,pad3,roundingMode,depthwise=false,dataFormat="channelsLast"){let[batchSize,inHeight,inWidth,inChannels]=[-1,-1,-1,-1];if(dataFormat==="channelsLast"){[batchSize,inHeight,inWidth,inChannels]=inShape}else if(dataFormat==="channelsFirst"){[batchSize,inChannels,inHeight,inWidth]=inShape}else{throw new Error(`Unknown dataFormat ${dataFormat}`)}const[filterHeight,filterWidth,,filterChannels]=filterShape;const[strideHeight,strideWidth]=parseTupleParam(strides);const[dilationHeight,dilationWidth]=parseTupleParam(dilations);const effectiveFilterHeight=getEffectiveFilterSize(filterHeight,dilationHeight);const effectiveFilterWidth=getEffectiveFilterSize(filterWidth,dilationWidth);const{padInfo,outHeight,outWidth}=getPadAndOutInfo(pad3,inHeight,inWidth,strideHeight,strideWidth,effectiveFilterHeight,effectiveFilterWidth,roundingMode,dataFormat);const outChannels=depthwise?filterChannels*inChannels:filterChannels;let outShape;if(dataFormat==="channelsFirst"){outShape=[batchSize,outChannels,outHeight,outWidth]}else if(dataFormat==="channelsLast"){outShape=[batchSize,outHeight,outWidth,outChannels]}return{batchSize,dataFormat,inHeight,inWidth,inChannels,outHeight,outWidth,outChannels,padInfo,strideHeight,strideWidth,filterHeight,filterWidth,effectiveFilterHeight,effectiveFilterWidth,dilationHeight,dilationWidth,inShape,outShape,filterShape}}function computeConv3DInfo(inShape,filterShape,strides,dilations,pad3,depthwise=false,dataFormat="channelsLast",roundingMode){let[batchSize,inDepth,inHeight,inWidth,inChannels]=[-1,-1,-1,-1,-1];if(dataFormat==="channelsLast"){[batchSize,inDepth,inHeight,inWidth,inChannels]=inShape}else if(dataFormat==="channelsFirst"){[batchSize,inChannels,inDepth,inHeight,inWidth]=inShape}else{throw new Error(`Unknown dataFormat ${dataFormat}`)}const[filterDepth,filterHeight,filterWidth,,filterChannels]=filterShape;const[strideDepth,strideHeight,strideWidth]=parse3TupleParam(strides);const[dilationDepth,dilationHeight,dilationWidth]=parse3TupleParam(dilations);const effectiveFilterDepth=getEffectiveFilterSize(filterDepth,dilationDepth);const effectiveFilterHeight=getEffectiveFilterSize(filterHeight,dilationHeight);const effectiveFilterWidth=getEffectiveFilterSize(filterWidth,dilationWidth);const{padInfo,outDepth,outHeight,outWidth}=get3DPadAndOutInfo(pad3,inDepth,inHeight,inWidth,strideDepth,strideHeight,strideWidth,effectiveFilterDepth,effectiveFilterHeight,effectiveFilterWidth,roundingMode);const outChannels=depthwise?filterChannels*inChannels:filterChannels;let outShape;if(dataFormat==="channelsFirst"){outShape=[batchSize,outChannels,outDepth,outHeight,outWidth]}else if(dataFormat==="channelsLast"){outShape=[batchSize,outDepth,outHeight,outWidth,outChannels]}return{batchSize,dataFormat,inDepth,inHeight,inWidth,inChannels,outDepth,outHeight,outWidth,outChannels,padInfo,strideDepth,strideHeight,strideWidth,filterDepth,filterHeight,filterWidth,effectiveFilterDepth,effectiveFilterHeight,effectiveFilterWidth,dilationDepth,dilationHeight,dilationWidth,inShape,outShape,filterShape}}function computeOutputShape2D(inShape,fieldSize,stride,zeroPad,roundingMode){if(zeroPad==null){zeroPad=computeDefaultPad(inShape,fieldSize,stride)}const inputRows=inShape[0];const inputCols=inShape[1];const outputRows=conditionalRound((inputRows-fieldSize+2*zeroPad)/stride+1,roundingMode);assert(isInt(outputRows),()=>`The output # of rows (${outputRows}) must be an integer. Change the stride and/or zero pad parameters`);const outputCols=conditionalRound((inputCols-fieldSize+2*zeroPad)/stride+1,roundingMode);assert(isInt(outputCols),()=>`The output # of columns (${outputCols}) must be an integer. Change the stride and/or zero pad parameters`);return[outputRows,outputCols]}function computeOutputShape4D(inShape,fieldSize,outChannels,stride,zeroPad,roundingMode){if(zeroPad==null){zeroPad=computeDefaultPad(inShape,fieldSize,stride)}const inputDepth=inShape[0];const inputRows=inShape[1];const inputCols=inShape[2];const outputDepths=conditionalRound((inputDepth-fieldSize+2*zeroPad)/stride+1,roundingMode);assert(isInt(outputDepths),()=>`The output # of depths (${outputDepths}) must be an integer. Change the stride and/or zero pad parameters`);const outputRows=conditionalRound((inputRows-fieldSize+2*zeroPad)/stride+1,roundingMode);assert(isInt(outputRows),()=>`The output # of rows (${outputRows}) must be an integer. Change the stride and/or zero pad parameters`);const outputCols=conditionalRound((inputCols-fieldSize+2*zeroPad)/stride+1,roundingMode);assert(isInt(outputCols),()=>`The output # of columns (${outputCols}) must be an integer. Change the stride and/or zero pad parameters`);return[outputDepths,outputRows,outputCols,outChannels]}function computeDefaultPad(inputShape,fieldSize,stride,dilation=1){const effectiveFieldSize=getEffectiveFilterSize(fieldSize,dilation);return Math.floor((inputShape[0]*(stride-1)-stride+effectiveFieldSize)/2)}function parseTupleParam(param){if(typeof param==="number"){return[param,param,param]}if(param.length===2){return[param[0],param[1],1]}return param}function parse3TupleParam(param){return typeof param==="number"?[param,param,param]:param}function getEffectiveFilterSize(filterSize,dilation){if(dilation<=1){return filterSize}return filterSize+(filterSize-1)*(dilation-1)}function getPadAndOutInfo(pad3,inHeight,inWidth,strideHeight,strideWidth,filterHeight,filterWidth,roundingMode,dataFormat){let padInfo;let outHeight;let outWidth;if(typeof pad3==="number"){const padType=pad3===0?"VALID":"NUMBER";padInfo={top:pad3,bottom:pad3,left:pad3,right:pad3,type:padType};const outShape=computeOutputShape2D([inHeight,inWidth],filterHeight,strideHeight,pad3,roundingMode);outHeight=outShape[0];outWidth=outShape[1]}else if(pad3==="same"){outHeight=Math.ceil(inHeight/strideHeight);outWidth=Math.ceil(inWidth/strideWidth);const padAlongHeight=Math.max(0,(outHeight-1)*strideHeight+filterHeight-inHeight);const padAlongWidth=Math.max(0,(outWidth-1)*strideWidth+filterWidth-inWidth);const top=Math.floor(padAlongHeight/2);const bottom=padAlongHeight-top;const left=Math.floor(padAlongWidth/2);const right=padAlongWidth-left;padInfo={top,bottom,left,right,type:"SAME"}}else if(pad3==="valid"){padInfo={top:0,bottom:0,left:0,right:0,type:"VALID"};outHeight=Math.ceil((inHeight-filterHeight+1)/strideHeight);outWidth=Math.ceil((inWidth-filterWidth+1)/strideWidth)}else if(typeof pad3==="object"){const top=dataFormat==="channelsLast"?pad3[1][0]:pad3[2][0];const bottom=dataFormat==="channelsLast"?pad3[1][1]:pad3[2][1];const left=dataFormat==="channelsLast"?pad3[2][0]:pad3[3][0];const right=dataFormat==="channelsLast"?pad3[2][1]:pad3[3][1];const padType=top===0&&bottom===0&&left===0&&right===0?"VALID":"EXPLICIT";padInfo={top,bottom,left,right,type:padType};outHeight=conditionalRound((inHeight-filterHeight+top+bottom)/strideHeight+1,roundingMode);outWidth=conditionalRound((inWidth-filterWidth+left+right)/strideWidth+1,roundingMode)}else{throw Error(`Unknown padding parameter: ${pad3}`)}return{padInfo,outHeight,outWidth}}function get3DPadAndOutInfo(pad3,inDepth,inHeight,inWidth,strideDepth,strideHeight,strideWidth,filterDepth,filterHeight,filterWidth,roundingMode){let padInfo;let outDepth;let outHeight;let outWidth;if(typeof pad3==="number"){const padType=pad3===0?"VALID":"NUMBER";padInfo={top:pad3,bottom:pad3,left:pad3,right:pad3,front:pad3,back:pad3,type:padType};const outShape=computeOutputShape4D([inDepth,inHeight,inWidth,1],filterDepth,1,strideDepth,pad3,roundingMode);outDepth=outShape[0];outHeight=outShape[1];outWidth=outShape[2]}else if(pad3==="same"){outDepth=Math.ceil(inDepth/strideDepth);outHeight=Math.ceil(inHeight/strideHeight);outWidth=Math.ceil(inWidth/strideWidth);const padAlongDepth=(outDepth-1)*strideDepth+filterDepth-inDepth;const padAlongHeight=(outHeight-1)*strideHeight+filterHeight-inHeight;const padAlongWidth=(outWidth-1)*strideWidth+filterWidth-inWidth;const front=Math.floor(padAlongDepth/2);const back=padAlongDepth-front;const top=Math.floor(padAlongHeight/2);const bottom=padAlongHeight-top;const left=Math.floor(padAlongWidth/2);const right=padAlongWidth-left;padInfo={top,bottom,left,right,front,back,type:"SAME"}}else if(pad3==="valid"){padInfo={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"};outDepth=Math.ceil((inDepth-filterDepth+1)/strideDepth);outHeight=Math.ceil((inHeight-filterHeight+1)/strideHeight);outWidth=Math.ceil((inWidth-filterWidth+1)/strideWidth)}else{throw Error(`Unknown padding parameter: ${pad3}`)}return{padInfo,outDepth,outHeight,outWidth}}function conditionalRound(value,roundingMode){if(!roundingMode){return value}switch(roundingMode){case"round":return Math.round(value);case"ceil":return Math.ceil(value);case"floor":return Math.floor(value);default:throw new Error(`Unknown roundingMode ${roundingMode}`)}}function tupleValuesAreOne(param){const[dimA,dimB,dimC]=parseTupleParam(param);return dimA===1&&dimB===1&&dimC===1}function eitherStridesOrDilationsAreOne(strides,dilations){return tupleValuesAreOne(strides)||tupleValuesAreOne(dilations)}function convertConv2DDataFormat(dataFormat){if(dataFormat==="NHWC"){return"channelsLast"}else if(dataFormat==="NCHW"){return"channelsFirst"}else{throw new Error(`Unknown dataFormat ${dataFormat}`)}}function avgPool_(x,filterSize,strides,pad3,dimRoundingMode){const $x=convertToTensor(x,"x","avgPool","float32");const dilations=1;assert(eitherStridesOrDilationsAreOne(strides,dilations),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`);let x4D=$x;let reshapedTo4D=false;if($x.rank===3){reshapedTo4D=true;x4D=reshape2($x,[1,$x.shape[0],$x.shape[1],$x.shape[2]])}assert(x4D.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${x4D.rank}.`);if(dimRoundingMode!=null){assert(isInt(pad3),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${dimRoundingMode} but got pad ${pad3}.`)}const forward=(backend2,save)=>{const convInfo=computePool2DInfo(x4D.shape,filterSize,strides,1,pad3,dimRoundingMode);save([x4D]);if(convInfo.filterWidth===1&&convInfo.filterHeight===1&&arraysEqual(convInfo.inShape,convInfo.outShape)){return x4D.clone()}return backend2.avgPool(x4D,convInfo)};const inputs={x:x4D};const attrs={filterSize,strides,pad:pad3,dimRoundingMode};let res=ENGINE.runKernelFunc(forward,inputs,null,AvgPool3,attrs);res=cast2(res,$x.dtype);if(reshapedTo4D){return reshape2(res,[res.shape[1],res.shape[2],res.shape[3]])}return res}const avgPool2=op({avgPool_});function avgPool3d_(x,filterSize,strides,pad3,dimRoundingMode,dataFormat="NDHWC",dilations){if(dilations==null){dilations=[1,1,1]}else{deprecationWarn2("dilations is deprecated, this field will be gone in v3.0.0.")}const $x=convertToTensor(x,"x","avgPool3d","float32");let x5D=$x;let reshapedTo5D=false;if($x.rank===4){reshapedTo5D=true;x5D=reshape2($x,[1,$x.shape[0],$x.shape[1],$x.shape[2],$x.shape[3]])}assert(x5D.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${x5D.rank}.`);assert(dataFormat==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${dataFormat}`);assert(eitherStridesOrDilationsAreOne(strides,dilations),()=>`Error in avgPool3d: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`);if(dimRoundingMode!=null){assert(isInt(pad3),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${dimRoundingMode} but got pad ${pad3}.`)}const forward=(backend2,save)=>{if(dilations==null){dilations=[1,1,1]}const convInfo=computePool3DInfo(x5D.shape,filterSize,strides,dilations,pad3,dimRoundingMode,dataFormat);save([x5D]);return backend2.avgPool3d(x5D,convInfo)};const inputs={x:x5D};const attrs={filterSize,strides,pad:pad3,dimRoundingMode,dataFormat,dilations};let res=ENGINE.runKernelFunc(forward,inputs,null,AvgPool3D,attrs);res=cast2(res,x5D.dtype);if(reshapedTo5D){return reshape2(res,[res.shape[1],res.shape[2],res.shape[3],res.shape[4]])}return res}const avgPool3d=op({avgPool3d_});function assertParamsConsistent(shapes,axis){const rank=shapes[0].length;shapes.forEach((shape,i)=>{assert(shape.length===rank,()=>`Error in concat${rank}D: rank of tensors[${i}] must be the same as the rank of the rest (${rank})`)});assert(axis>=0&&axis<rank,()=>`Error in concat${rank}D: axis must be between 0 and ${rank-1}.`);const firstShape=shapes[0];shapes.forEach((shape,i)=>{for(let r=0;r<rank;r++){assert(r===axis||shape[r]===firstShape[r],()=>`Error in concat${rank}D: Shape of tensors[${i}] (${shape}) does not match the shape of the rest (${firstShape}) along the non-concatenated axis ${i}.`)}})}function computeOutShape$1(shapes,axis){const outputShape=shapes[0].slice();for(let i=1;i<shapes.length;i++){outputShape[axis]+=shapes[i][axis]}return outputShape}function concat_(tensors,axis=0){assert(tensors.length>=1,()=>"Pass at least one tensor to concat");let $tensors=convertToTensorArray(tensors,"tensors","concat");if($tensors[0].dtype==="complex64"){$tensors.forEach(tensor2=>{if(tensor2.dtype!=="complex64"){throw new Error(`Cannot concatenate complex64 tensors with a tensor
with dtype ${tensor2.dtype}. `)}})}const forward=(backend2,save)=>{const $axis=parseAxisParam(axis,$tensors[0].shape)[0];const outShape=computeOutShape$1($tensors.map(t=>t.shape),$axis);if(sizeFromShape(outShape)===0){return tensor([],outShape)}$tensors=$tensors.filter(t=>t.size>0);if($tensors.length===1){return $tensors[0]}const shapes=$tensors.map(t=>t.shape);assertParamsConsistent(shapes,$axis);const res=backend2.concat($tensors,$axis);save($tensors);return res};const inputs=$tensors;const attr={axis};return ENGINE.runKernelFunc(forward,inputs,null,Concat3,attr)}const concat2=op({concat_});function sigmoid_(x){const $x=convertToTensor(x,"x","sigmoid");const inputs={x:$x};return ENGINE.runKernelFunc((backend2,save)=>{const res=backend2.sigmoid($x);save([res]);return res},inputs,null,Sigmoid3)}const sigmoid2=op({sigmoid_});function slice_(x,begin,size){const $x=convertToTensor(x,"x","slice");if($x.rank===0){throw new Error("Slicing scalar is not possible")}const forward=(backend2,save)=>{const[begin_,size_]=parseSliceParams($x,begin,size);assertParamsValid($x,begin_,size_);save([$x]);return backend2.slice($x,begin_,size_)};const inputs={x:$x};const attrs={begin,size};return ENGINE.runKernelFunc(forward,inputs,null,Slice6,attrs)}const slice2=op({slice_});function tanh_(x){const $x=convertToTensor(x,"x","tanh");const inputs={x:$x};return ENGINE.runKernelFunc((backend2,save)=>{const y=backend2.tanh($x);save([y]);return y},inputs,null,Tanh3)}const tanh$1=op({tanh_});function basicLSTMCell_(forgetBias,lstmKernel,lstmBias,data2,c,h){const $forgetBias=convertToTensor(forgetBias,"forgetBias","basicLSTMCell");const $lstmKernel=convertToTensor(lstmKernel,"lstmKernel","basicLSTMCell");const $lstmBias=convertToTensor(lstmBias,"lstmBias","basicLSTMCell");const $data=convertToTensor(data2,"data","basicLSTMCell");const $c=convertToTensor(c,"c","basicLSTMCell");const $h=convertToTensor(h,"h","basicLSTMCell");const combined=concat2([$data,$h],1);const weighted=matMul(combined,$lstmKernel);const res=add$1(weighted,$lstmBias);const batchSize=res.shape[0];const sliceCols=res.shape[1]/4;const sliceSize=[batchSize,sliceCols];const i=slice2(res,[0,0],sliceSize);const j=slice2(res,[0,sliceCols],sliceSize);const f=slice2(res,[0,sliceCols*2],sliceSize);const o=slice2(res,[0,sliceCols*3],sliceSize);const newC=add$1(mul(sigmoid2(i),tanh$1(j)),mul($c,sigmoid2(add$1($forgetBias,f))));const newH=mul(tanh$1(newC),sigmoid2(o));return[newC,newH]}const basicLSTMCell=op({basicLSTMCell_});function batchToSpaceND_(x,blockShape,crops){const $x=convertToTensor(x,"x","batchToSpaceND");const prod2=blockShape.reduce((a,b)=>a*b);assert($x.rank>=1+blockShape.length,()=>`input rank is ${$x.rank} but should be > than blockShape.length ${blockShape.length}`);assert(crops.length===blockShape.length,()=>`crops.length is ${crops.length} but should be equal to blockShape.length ${blockShape.length}`);assert($x.shape[0]%prod2===0,()=>`input tensor batch is ${$x.shape[0]} but is not divisible by the product of the elements of blockShape ${blockShape.join(" * ")} === ${prod2}`);const forward=backend2=>{return backend2.batchToSpaceND($x,blockShape,crops)};const inputs={x:$x};const attrs={blockShape,crops};return ENGINE.runKernelFunc(forward,inputs,null,BatchToSpaceND,attrs)}const batchToSpaceND=op({batchToSpaceND_});function xAs4D(x){let x4D;if(x.rank===0||x.rank===1){x4D=reshape2(x,[1,1,1,x.size])}else if(x.rank===2){x4D=reshape2(x,[1,1,x.shape[0],x.shape[1]])}else if(x.rank===3){x4D=reshape2(x,[1,x.shape[0],x.shape[1],x.shape[2]])}else{x4D=x}return x4D}function batchNorm_(x,mean2,variance2,offset,scale2,varianceEpsilon){if(varianceEpsilon==null){varianceEpsilon=.001}const $x=convertToTensor(x,"x","batchNorm");const $mean=convertToTensor(mean2,"mean","batchNorm");const $variance=convertToTensor(variance2,"variance","batchNorm");let $scale;if(scale2!=null){$scale=convertToTensor(scale2,"scale","batchNorm")}let $offset;if(offset!=null){$offset=convertToTensor(offset,"offset","batchNorm")}assert($mean.rank===$variance.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks.");assert($offset==null||$mean.rank===$offset.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks.");assert($scale==null||$mean.rank===$scale.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");const x4D=xAs4D($x);const forward=(backend2,save)=>{save([x4D,$mean,$variance,$scale]);return backend2.batchNorm(x4D,as1DOr4D($mean),as1DOr4D($variance),as1DOr4D($offset),as1DOr4D($scale),varianceEpsilon)};const inputs={x:x4D,scale:$scale,offset:$offset,mean:$mean,variance:$variance};const attrs={varianceEpsilon};const res=ENGINE.runKernelFunc(forward,inputs,null,FusedBatchNorm3,attrs);return reshape2(res,$x.shape)}function as1DOr4D(x){if(x==null){return null}if(x.rank===0){return reshape2(x,[x.size])}else if(x.rank===1){return x}else if(x.rank===2){return reshape2(x,[1,1,x.shape[0],x.shape[1]])}else if(x.rank===3){return reshape2(x,[1,x.shape[0],x.shape[1],x.shape[2]])}return x}const batchNorm=op({batchNorm_});function batchNorm2d_(x,mean2,variance2,offset,scale2,varianceEpsilon){const $x=convertToTensor(x,"x","batchNorm");const $mean=convertToTensor(mean2,"mean","batchNorm");const $variance=convertToTensor(variance2,"variance","batchNorm");let $scale;if(scale2!=null){$scale=convertToTensor(scale2,"scale","batchNorm")}let $offset;if(offset!=null){$offset=convertToTensor(offset,"offset","batchNorm")}assert($x.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${$x.rank}.`);assert($mean.rank===2||$mean.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${$mean.rank}.`);assert($variance.rank===2||$variance.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${$variance.rank}.`);if($scale!=null){assert($scale.rank===2||$scale.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${$scale.rank}.`)}if($offset!=null){assert($offset.rank===2||$offset.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${$offset.rank}.`)}return batchNorm($x,$mean,$variance,$offset,$scale,varianceEpsilon)}const batchNorm2d=op({batchNorm2d_});function batchNorm3d_(x,mean2,variance2,offset,scale2,varianceEpsilon){const $x=convertToTensor(x,"x","batchNorm");const $mean=convertToTensor(mean2,"mean","batchNorm");const $variance=convertToTensor(variance2,"variance","batchNorm");let $scale;if(scale2!=null){$scale=convertToTensor(scale2,"scale","batchNorm")}let $offset;if(offset!=null){$offset=convertToTensor(offset,"offset","batchNorm")}assert($x.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${$x.rank}.`);assert($mean.rank===3||$mean.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${$mean.rank}.`);assert($variance.rank===3||$variance.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${$variance.rank}.`);if($scale!=null){assert($scale.rank===3||$scale.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${$scale.rank}.`)}if($offset!=null){assert($offset.rank===3||$offset.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${$offset.rank}.`)}return batchNorm($x,$mean,$variance,$offset,$scale,varianceEpsilon)}const batchNorm3d=op({batchNorm3d_});function batchNorm4d_(x,mean2,variance2,offset,scale2,varianceEpsilon){const $x=convertToTensor(x,"x","batchNorm");const $mean=convertToTensor(mean2,"mean","batchNorm");const $variance=convertToTensor(variance2,"variance","batchNorm");let $scale;if(scale2!=null){$scale=convertToTensor(scale2,"scale","batchNorm")}let $offset;if(offset!=null){$offset=convertToTensor(offset,"offset","batchNorm")}assert($x.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${$x.rank}.`);assert($mean.rank===4||$mean.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${$mean.rank}.`);assert($variance.rank===4||$variance.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${$variance.rank}.`);if($scale!=null){assert($scale.rank===4||$scale.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${$scale.rank}.`)}if($offset!=null){assert($offset.rank===4||$offset.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${$offset.rank}.`)}return batchNorm($x,$mean,$variance,$offset,$scale,varianceEpsilon)}const batchNorm4d=op({batchNorm4d_});function broadcastTo_(x,shape){let input2=convertToTensor(x,"broadcastTo","x");const xShape=input2.shape;if(shape.some(d=>!(d>0)||d%1!==0)){throw new Error(`broadcastTo(): Invalid broadcast shape [${shape}].`)}if(shape.length<input2.rank){throw new Error(`broadcastTo(): shape.length=${shape.length} < input.rank=${input2.rank}.`)}if(shape.length>input2.rank){const newShape=input2.shape.slice();while(newShape.length<shape.length){newShape.unshift(1)}input2=reshape2(input2,newShape)}const inputShape=input2.shape;const reps=Array.from(shape);for(let i=shape.length-1;i>=0;i--){if(inputShape[i]===shape[i]){reps[i]=1}else if(input2.shape[i]!==1){throw new Error(`broadcastTo(): [${xShape}] cannot be broadcast to [${shape}].`)}}const axes=reps.map((n,i)=>n>1?i:-1).filter(i=>i>=0);if(axes.length===0){return clone(input2)}const forward=backend2=>backend2.tile(input2,reps);const inputs={x:input2};const attrs={shape,inputShape};return ENGINE.runKernelFunc(forward,inputs,null,BroadcastTo,attrs)}const broadcastTo=op({broadcastTo_});function ceil_(x){const $x=convertToTensor(x,"x","ceil");const inputs={x:$x};return ENGINE.runKernelFunc(backend2=>backend2.ceil($x),inputs,null,Ceil)}const ceil=op({ceil_});function clipByValue_(x,clipValueMin,clipValueMax){const $x=convertToTensor(x,"x","clipByValue");assert(clipValueMin<=clipValueMax,()=>`Error in clip: min (${clipValueMin}) must be less than or equal to max (${clipValueMax}).`);const inputs={x:$x};const attrs={clipValueMin,clipValueMax};return ENGINE.runKernelFunc((backend2,save)=>{const res=backend2.clip($x,clipValueMin,clipValueMax);save([$x]);return res},inputs,null,ClipByValue3,attrs)}const clipByValue=op({clipByValue_});function concat1d_(tensors){return concat2(tensors,0)}const concat1d=op({concat1d_});function concat2d_(tensors,axis){return concat2(tensors,axis)}const concat2d=op({concat2d_});function concat3d_(tensors,axis){return concat2(tensors,axis)}const concat3d=op({concat3d_});function concat4d_(tensors,axis){return concat2(tensors,axis)}const concat4d=op({concat4d_});function conv2d_(x,filter,strides,pad3,dataFormat="NHWC",dilations=[1,1],dimRoundingMode){const $x=convertToTensor(x,"x","conv2d");const $filter=convertToTensor(filter,"filter","conv2d");let x4D=$x;let reshapedTo4D=false;if($x.rank===3){reshapedTo4D=true;x4D=reshape2($x,[1,$x.shape[0],$x.shape[1],$x.shape[2]])}assert(x4D.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${x4D.rank}.`);assert($filter.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${$filter.rank}.`);if(dimRoundingMode!=null){assert(isInt(pad3),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${dimRoundingMode} but got pad ${pad3}.`)}const inDepth=dataFormat==="NHWC"?x4D.shape[3]:x4D.shape[1];assert(inDepth===$filter.shape[2],()=>`Error in conv2d: depth of input (${inDepth}) must match input depth for filter ${$filter.shape[2]}.`);assert(eitherStridesOrDilationsAreOne(strides,dilations),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`);const forward=(backend2,save)=>{const $dataFormat=convertConv2DDataFormat(dataFormat);const convInfo=computeConv2DInfo(x4D.shape,$filter.shape,strides,dilations,pad3,dimRoundingMode,false,$dataFormat);const res2=backend2.conv2d(x4D,$filter,convInfo);save([x4D,$filter]);return res2};const inputs={x:x4D,filter:$filter};const attrs={strides,pad:pad3,dataFormat,dilations,dimRoundingMode};const res=ENGINE.runKernelFunc(forward,inputs,null,Conv2D3,attrs);if(reshapedTo4D){return reshape2(res,[res.shape[1],res.shape[2],res.shape[3]])}return res}const conv2d2=op({conv2d_});function conv1d_(x,filter,stride,pad3,dataFormat="NWC",dilation=1,dimRoundingMode){const $x=convertToTensor(x,"x","conv1d");const $filter=convertToTensor(filter,"filter","conv1d");let x3D=$x;let reshapedTo3D=false;if($x.rank===2){reshapedTo3D=true;x3D=reshape2($x,[1,$x.shape[0],$x.shape[1]])}assert(x3D.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${x3D.rank}.`);assert($filter.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${$filter.rank}.`);if(dimRoundingMode!=null){assert(isInt(pad3),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${dimRoundingMode} but got pad ${pad3}.`)}assert(x3D.shape[2]===$filter.shape[1],()=>`Error in conv1d: depth of input (${x3D.shape[2]}) must match input depth for filter ${$filter.shape[1]}.`);assert(eitherStridesOrDilationsAreOne(stride,dilation),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${stride} and dilation '${dilation}'`);assert(dataFormat==="NWC",()=>`Error in conv1d: got dataFormat of ${dataFormat} but only NWC is currently supported.`);const filter4D=reshape2($filter,[1,$filter.shape[0],$filter.shape[1],$filter.shape[2]]);const input4D=reshape2(x3D,[x3D.shape[0],1,x3D.shape[1],x3D.shape[2]]);const strides=[1,stride];const dilations=[1,dilation];const conv2dDataFormat="NHWC";const res=conv2d2(input4D,filter4D,strides,pad3,conv2dDataFormat,dilations,dimRoundingMode);if(reshapedTo3D){return reshape2(res,[res.shape[2],res.shape[3]])}return reshape2(res,[res.shape[0],res.shape[2],res.shape[3]])}const conv1d=op({conv1d_});function conv2DBackpropInput_(xShape,dy,filter,strides,pad3,dataFormat="NHWC",dimRoundingMode){assert(xShape.length===dy.rank,()=>`Length of inShape (${xShape.length}) and rank of dy (${dy.rank}) must match`);let xShape4D=xShape;let dy4D=dy;let reshapedTo4D=false;if(dy.rank===3){reshapedTo4D=true;dy4D=reshape2(dy,[1,dy.shape[0],dy.shape[1],dy.shape[2]]);xShape4D=[1,xShape[0],xShape[1],xShape[2]]}assert(xShape4D.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${xShape4D.length}.`);assert(dy4D.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${dy4D.rank}`);assert(filter.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${filter.rank}`);const inDepth=dataFormat==="NHWC"?xShape4D[3]:xShape4D[1];const outDepth=dataFormat==="NHWC"?dy4D.shape[3]:dy4D.shape[1];assert(inDepth===filter.shape[2],()=>`Error in conv2dDerInput: depth of input (${inDepth}) must match input depth for filter ${filter.shape[2]}.`);assert(outDepth===filter.shape[3],()=>`Error in conv2dDerInput: depth of output (${outDepth}) must match output depth for filter ${filter.shape[3]}.`);if(dimRoundingMode!=null){assert(isInt(pad3),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${dimRoundingMode} but got pad ${pad3}.`)}const forward=(backend2,save)=>{const dilations=1;const $dataFormat=convertConv2DDataFormat(dataFormat);const convInfo=computeConv2DInfo(xShape4D,filter.shape,strides,dilations,pad3,dimRoundingMode,false,$dataFormat);const res2=backend2.conv2dDerInput(dy4D,filter,convInfo);save([dy4D,filter]);return res2};const inputs={dy:dy4D,filter};const attrs={strides,pad:pad3,dataFormat,dimRoundingMode,inputShape:xShape4D};const res=ENGINE.runKernelFunc(forward,inputs,null,Conv2DBackpropInput3,attrs);if(reshapedTo4D){return reshape2(res,[res.shape[1],res.shape[2],res.shape[3]])}return res}const conv2DBackpropInput2=op({conv2DBackpropInput_});function conv2dTranspose_(x,filter,outputShape,strides,pad3,dimRoundingMode){const $x=convertToTensor(x,"x","conv2dTranspose");const $filter=convertToTensor(filter,"filter","conv2dTranspose");return conv2DBackpropInput2(outputShape,$x,$filter,strides,pad3,"NHWC",dimRoundingMode)}const conv2dTranspose=op({conv2dTranspose_});function conv3d_(x,filter,strides,pad3,dataFormat="NDHWC",dilations=[1,1,1]){const $x=convertToTensor(x,"x","conv3d");const $filter=convertToTensor(filter,"filter","conv3d");let x5D=$x;let reshapedTo5D=false;if($x.rank===4){reshapedTo5D=true;x5D=reshape2($x,[1,$x.shape[0],$x.shape[1],$x.shape[2],$x.shape[3]])}assert(x5D.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${x5D.rank}.`);assert($filter.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${$filter.rank}.`);assert(x5D.shape[4]===$filter.shape[3],()=>`Error in conv3d: depth of input (${x5D.shape[4]}) must match input depth for filter ${$filter.shape[3]}.`);assert(eitherStridesOrDilationsAreOne(strides,dilations),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`);assert(dataFormat==="NDHWC",()=>`Error in conv3d: got dataFormat of ${dataFormat} but only NDHWC is currently supported.`);const forward=(backend2,save)=>{const convInfo=computeConv3DInfo(x5D.shape,$filter.shape,strides,dilations,pad3);const res2=backend2.conv3d(x5D,$filter,convInfo);save([x5D,$filter]);return res2};const inputs={x:x5D,filter:$filter};const attrs={strides,pad:pad3,dataFormat,dilations};const res=ENGINE.runKernelFunc(forward,inputs,null,Conv3D,attrs);if(reshapedTo5D){return reshape2(res,[res.shape[1],res.shape[2],res.shape[3],res.shape[4]])}return res}const conv3d=op({conv3d_});function conv3DBackpropInput_(xShape,dy,filter,strides,pad3){assert(xShape.length===dy.rank,()=>`Length of inShape (${xShape.length}) and rank of dy (${dy.rank}) must match`);let xShape5D=xShape;let dy5D=dy;let reshapedTo5D=false;if(dy.rank===4){reshapedTo5D=true;dy5D=reshape2(dy,[1,dy.shape[0],dy.shape[1],dy.shape[2],dy.shape[3]]);xShape5D=[1,xShape[0],xShape[1],xShape[2],xShape[3]]}const inDepth=xShape5D[4];const outDepth=dy5D.shape[4];assert(xShape5D.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${xShape5D.length}.`);assert(dy5D.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${dy5D.rank}`);assert(filter.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${filter.rank}`);assert(inDepth===filter.shape[3],()=>`Error in conv3dDerInput: depth of input (${inDepth}) must match input depth for filter ${filter.shape[3]}.`);assert(outDepth===filter.shape[4],()=>`Error in conv3dDerInput: depth of output (${outDepth}) must match output depth for filter ${filter.shape[4]}.`);const forward=backend2=>{const dilations=1;const convInfo=computeConv3DInfo(xShape5D,filter.shape,strides,dilations,pad3);return backend2.conv3dDerInput(dy5D,filter,convInfo)};const inputs={dy:dy5D,filter};const attrs={pad:pad3,strides,inputShape:xShape5D};const res=ENGINE.runKernelFunc(forward,inputs,null,Conv3DBackpropInputV2,attrs);if(reshapedTo5D){return reshape2(res,[res.shape[1],res.shape[2],res.shape[3],res.shape[4]])}return res}const conv3DBackpropInput=op({conv3DBackpropInput_});function conv3dTranspose_(x,filter,outputShape,strides,pad3){const $x=convertToTensor(x,"x","conv3dTranspose");const $filter=convertToTensor(filter,"filter","conv3dTranspose");return conv3DBackpropInput(outputShape,$x,$filter,strides,pad3)}const conv3dTranspose=op({conv3dTranspose_});function cos_(x){const $x=convertToTensor(x,"x","cos");const inputs={x:$x};return ENGINE.runKernelFunc((backend2,save)=>{const res=backend2.cos($x);save([$x]);return res},inputs,null,Cos3)}const cos=op({cos_});function cosh_(x){const $x=convertToTensor(x,"x","cosh");const inputs={x:$x};return ENGINE.runKernelFunc((backend2,save)=>{const res=backend2.cosh($x);save([$x]);return res},inputs,null,Cosh)}const cosh=op({cosh_});function cumsum_(x,axis=0,exclusive=false,reverse3=false){const $x=convertToTensor(x,"x","cumsum");const forward=(backend2,save)=>{const permutation=getAxesPermutation([axis],$x.rank);let permutedX=$x;if(permutation!=null){permutedX=transpose2($x,permutation)}const permutedAxis=getInnerMostAxes(1,$x.rank)[0];let value=backend2.cumsum(permutedX,permutedAxis,exclusive,reverse3);save([$x]);if(permutation!=null){const reversePermutation=getUndoAxesPermutation(permutation);value=transpose2(value,reversePermutation)}return value};const inputs={x:$x};const attrs={axis,exclusive,reverse:reverse3};return ENGINE.runKernelFunc(forward,inputs,null,Cumsum3,attrs)}const cumsum2=op({cumsum_});function depthToSpace_(x,blockSize,dataFormat="NHWC"){const $x=convertToTensor(x,"x","depthToSpace");const inputHeight=dataFormat==="NHWC"?$x.shape[1]:$x.shape[2];const inputWidth=dataFormat==="NHWC"?$x.shape[2]:$x.shape[3];const inputDepth=dataFormat==="NHWC"?$x.shape[3]:$x.shape[1];assert(inputHeight*blockSize>=0,()=>`Negative dimension size caused by overflow when multiplying
${inputHeight} and ${blockSize} for depthToSpace with input shape
${$x.shape}`);assert(inputWidth*blockSize>=0,()=>`Negative dimension size caused by overflow when multiplying
${inputWidth} and ${blockSize} for depthToSpace with input shape
${$x.shape}`);assert(inputDepth%(blockSize*blockSize)===0,()=>`Dimension size must be evenly divisible by ${blockSize*blockSize} but is ${inputDepth} for depthToSpace with input shape ${$x.shape}`);const forward=backend2=>backend2.depthToSpace($x,blockSize,dataFormat);const inputs={x:$x};const attrs={blockSize,dataFormat};return ENGINE.runKernelFunc(forward,inputs,null,DepthToSpace3,attrs)}const depthToSpace2=op({depthToSpace_});function depthwiseConv2d_(x,filter,strides,pad3,dataFormat="NHWC",dilations=[1,1],dimRoundingMode){const $x=convertToTensor(x,"x","depthwiseConv2d");const $filter=convertToTensor(filter,"filter","depthwiseConv2d");let x4D=$x;let reshapedTo4D=false;if($x.rank===3){reshapedTo4D=true;x4D=reshape2($x,[1,$x.shape[0],$x.shape[1],$x.shape[2]])}assert(x4D.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${x4D.rank}.`);assert($filter.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${$filter.rank}.`);assert(x4D.shape[3]===$filter.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${x4D.shape[3]}) must match the inChannels dimension in filter ${$filter.shape[2]}.`);if(dimRoundingMode!=null){assert(isInt(pad3),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${dimRoundingMode} but got pad ${pad3}.`)}const forward=(backend2,save)=>{if(dilations==null){dilations=[1,1]}assert(eitherStridesOrDilationsAreOne(strides,dilations),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`);const convInfo=computeConv2DInfo(x4D.shape,$filter.shape,strides,dilations,pad3,dimRoundingMode,true);const res2=backend2.depthwiseConv2D(x4D,$filter,convInfo);save([x4D,$filter]);return res2};const inputs={x:x4D,filter:$filter};const attrs={strides,pad:pad3,dataFormat,dilations,dimRoundingMode};const res=ENGINE.runKernelFunc(forward,inputs,null,DepthwiseConv2dNative3,attrs);if(reshapedTo4D){return reshape2(res,[res.shape[1],res.shape[2],res.shape[3]])}return res}const depthwiseConv2d2=op({depthwiseConv2d_});function diag_(x){const $x=convertToTensor(x,"x","diag");const forward=backend2=>{const flat=reshape2($x,[$x.size]);const result=backend2.diag(flat);const outShape=[...x.shape,...x.shape];return reshape2(result,outShape)};const inputs={x:$x};return ENGINE.runKernelFunc(forward,inputs,null,Diag)}const diag=op({diag_});function dilation2d_(x,filter,strides,pad3,dilations=[1,1],dataFormat="NHWC"){const $x=convertToTensor(x,"x","dilation2d");const $filter=convertToTensor(filter,"filter","dilation2d");assert($x.rank===3||$x.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${$x.rank}.`);assert($filter.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${$filter.rank}.`);assert(dataFormat==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${dataFormat}`);let x4D=$x;let reshapedTo4D=false;if($x.rank===3){x4D=reshape2($x,[1,$x.shape[0],$x.shape[1],$x.shape[2]]);reshapedTo4D=true}const inputs={x:x4D,filter:$filter};const attrs={strides,pad:pad3,dilations};const res=ENGINE.runKernel(Dilation2D,inputs,attrs);if(reshapedTo4D){return reshape2(res,[res.shape[1],res.shape[2],res.shape[3]])}return res}const dilation2d=op({dilation2d_});function getBroadcastDims(inShape,outShape){const inRank=inShape.length;const dims=[];for(let i=0;i<inRank;i++){const dim=inRank-1-i;const a=inShape[dim]||1;const b=outShape[outShape.length-1-i]||1;if(b>1&&a===1){dims.unshift(dim)}}return dims}function getReductionAxes(inShape,outShape){const result=[];for(let i=0;i<outShape.length;i++){const inDim=inShape[inShape.length-i-1];const outAxis=outShape.length-i-1;const outDim=outShape[outAxis];if(inDim==null||inDim===1&&outDim>1){result.unshift(outAxis)}}return result}function assertAndGetBroadcastShape(shapeA,shapeB){const result=[];const l=Math.max(shapeA.length,shapeB.length);for(let i=0;i<l;i++){let a=shapeA[shapeA.length-i-1];if(a==null){a=1}let b=shapeB[shapeB.length-i-1];if(b==null){b=1}if(a===1){result.unshift(b)}else if(b===1){result.unshift(a)}else if(a!==b){const errMsg=`Operands could not be broadcast together with shapes ${shapeA} and ${shapeB}.`;throw Error(errMsg)}else{result.unshift(a)}}return result}function equal_(a,b){let $a=convertToTensor(a,"a","equal");let $b=convertToTensor(b,"b","equal");[$a,$b]=makeTypesMatch($a,$b);assertAndGetBroadcastShape($a.shape,$b.shape);const forward=backend2=>backend2.equal($a,$b);const inputs={a:$a,b:$b};return ENGINE.runKernelFunc(forward,inputs,null,Equal3)}const equal=op({equal_});function where_(condition,a,b){const $a=convertToTensor(a,"a","where");const $b=convertToTensor(b,"b","where");const $condition=convertToTensor(condition,"condition","where","bool");const broadcastShape=assertAndGetBroadcastShape($a.shape,$b.shape);const $broadcastedA=broadcastTo($a,broadcastShape);const $broadcastedB=broadcastTo($b,broadcastShape);if($condition.rank===1){assert($condition.shape[0]===$a.shape[0],()=>"The first dimension of `a` must match the size of `condition`.")}if($condition.rank!==1){assertShapesMatch($condition.shape,$broadcastedB.shape,"Error in where: ")}const forward=(backend2,save)=>{const res=backend2.select($condition,$broadcastedA,$broadcastedB);save([$condition]);return res};const inputs={condition:$condition,t:$broadcastedA,e:$broadcastedB};return ENGINE.runKernelFunc(forward,inputs,null,SelectV23)}const where=op({where_});function zerosLike_(x){const $x=convertToTensor(x,"x","zerosLike");const inputs={x:$x};return ENGINE.runKernelFunc(backend2=>backend2.zerosLike($x),inputs,null,ZerosLike3)}const zerosLike2=op({zerosLike_});function divNoNan_(a,b){let $a=convertToTensor(a,"a","div");let $b=convertToTensor(b,"b","div");[$a,$b]=makeTypesMatch($a,$b);const divResult=div($a,$b);const zeros2=zerosLike2(divResult);const bEqualsZero=equal($b,zeros2);return where(bEqualsZero,zeros2,divResult)}const divNoNan=op({divNoNan_});function dot_(t1,t2){const $t1=convertToTensor(t1,"t1","dot");const $t2=convertToTensor(t2,"t2","dot");assert(($t1.rank===1||$t1.rank===2)&&($t2.rank===1||$t2.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${$t1.rank} and ${$t2.rank}.`);const t1Inner=$t1.rank===1?$t1.size:$t1.shape[1];const t2Inner=$t2.rank===1?$t2.size:$t2.shape[0];assert(t1Inner===t2Inner,()=>`Error in dot: inner dimensions of inputs must match, but got ${t1Inner} and ${t2Inner}.`);if($t1.rank===1&&$t2.rank===1){const t12D=reshape2($t1,[1,-1]);const t22D=reshape2($t2,[-1,1]);const t1t2=matMul(t12D,t22D);return reshape2(t1t2,[])}else if($t1.rank===1&&$t2.rank===2){const t12D=reshape2($t1,[1,-1]);const t22D=reshape2($t2,[$t2.shape[0],$t2.shape[1]]);const t1t2=matMul(t12D,t22D);return reshape2(t1t2,[t1t2.size])}else if($t1.rank===2&&$t2.rank===1){const t22D=reshape2($t2,[-1,1]);const t1t2=matMul($t1,t22D);return reshape2(t1t2,[t1t2.size])}else{const t22D=reshape2($t2,[$t2.shape[0],$t2.shape[1]]);const t1t2=matMul($t1,t22D);return t1t2}}const dot2=op({dot_});function elu_(x){const $x=convertToTensor(x,"x","elu");const forward=(backend2,save)=>{const y=backend2.elu($x);save([y]);return y};const inputs={x:$x};return ENGINE.runKernelFunc(forward,inputs,null,Elu)}const elu=op({elu_});function erf_(x){let $x=convertToTensor(x,"x","erf");assert($x.dtype==="int32"||$x.dtype==="float32",()=>"Input dtype must be `int32` or `float32`.");if($x.dtype==="int32"){$x=cast2($x,"float32")}const inputs={x:$x};return ENGINE.runKernelFunc((backend2,save)=>{const res=backend2.erf($x);save([$x]);return res},inputs,null,Erf)}const erf=op({erf_});function exp_(x){const $x=convertToTensor(x,"x","exp");const inputs={x:$x};return ENGINE.runKernelFunc((backend2,save)=>{const res=backend2.exp($x);save([res]);return res},inputs,null,Exp3)}const exp=op({exp_});function expandDims_(x,axis=0){const parseAs=null;const $x=convertToTensor(x,"x","expandDims",parseAs);assert(axis<=$x.rank,()=>"Axis must be <= rank of the tensor");const newShape=$x.shape.slice();if(axis<0){assert(-($x.rank+1)<=axis,()=>`Axis must be in the interval [${-($x.rank+1)}, ${$x.rank}]`);axis=$x.rank+axis+1}newShape.splice(axis,0,1);return reshape2($x,newShape)}const expandDims=op({expandDims_});function expm1_(x){const $x=convertToTensor(x,"x","expm1");const inputs={x:$x};return ENGINE.runKernelFunc((backend2,save)=>{const res=backend2.expm1($x);save([$x]);return res},inputs,null,Expm1)}const expm1=op({expm1_});function tile_(x,reps){const parseAs=null;const $x=convertToTensor(x,"x","tile",parseAs);assert($x.rank===reps.length,()=>`Error in transpose: rank of input ${$x.rank} must match length of reps ${reps}.`);const forward=(backend2,save)=>{const res=backend2.tile($x,reps);save([$x]);return res};const inputsToSave=[$x];const inputs={x:$x};const attrs={reps};return ENGINE.runKernelFunc(forward,inputs,null,Tile3,attrs,inputsToSave)}const tile2=op({tile_});function eye_(numRows,numColumns,batchShape,dtype="float32"){if(numColumns==null){numColumns=numRows}const buff=buffer2([numRows,numColumns],dtype);const n=numRows<=numColumns?numRows:numColumns;for(let i=0;i<n;++i){buff.set(1,i,i)}const out=reshape2(buff.toTensor(),[numRows,numColumns]);if(batchShape==null){return out}else{if(batchShape.length===1){return tile2(expandDims(out,0),[batchShape[0],1,1])}else if(batchShape.length===2){return tile2(expandDims(expandDims(out,0),0),[batchShape[0],batchShape[1],1,1])}else if(batchShape.length===3){return tile2(expandDims(expandDims(expandDims(out,0),0),0),[batchShape[0],batchShape[1],batchShape[2],1,1])}else{throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${batchShape.length}D.`)}}}const eye=op({eye_});function fill2(shape,value,dtype){const attrs={shape,value,dtype};return ENGINE.runKernelFunc(backend2=>backend2.fill(shape,value,dtype),{},null,Fill3,attrs)}function floor_(x){const $x=convertToTensor(x,"x","floor");const inputs={x:$x};return ENGINE.runKernelFunc(backend2=>backend2.floor($x),inputs,null,Floor)}const floor=op({floor_});const PARALLELIZE_THRESHOLD=30;function computeOptimalWindowSize(inSize){if(inSize<=PARALLELIZE_THRESHOLD){return inSize}return nearestDivisor(inSize,Math.floor(Math.sqrt(inSize)))}function segOpComputeOptimalWindowSize(inSize,numSegments){let done=false;let res;if(inSize<=PARALLELIZE_THRESHOLD){res=inSize;done=true}else{res=nearestDivisor(inSize,Math.floor(Math.sqrt(inSize)))}while(!done){if(res>numSegments||res===inSize){done=true}else{res=nearestDivisor(inSize,res+1)}}return res}function computeOutShape$2(aShape,axis,numSegments){const outShape=[];const rank=aShape.length;for(let dim=0;dim<rank;dim++){if(dim!==axis){outShape.push(aShape[dim])}else{outShape.push(numSegments)}}return outShape}function collectGatherOpShapeInfo(x,indices,axis){const dimSize=x.shape[axis];const outputShape=[];let batchSize=1;let sliceSize=1;for(let i=0;i<axis;i++){outputShape.push(x.shape[i]);batchSize*=x.shape[i]}for(let i=0;i<indices.rank;i++){outputShape.push(indices.shape[i])}for(let i=axis+1;i<x.rank;i++){outputShape.push(x.shape[i]);sliceSize*=x.shape[i]}return{batchSize,sliceSize,dimSize,outputShape}}var segment_util=Object.freeze({__proto__:null,segOpComputeOptimalWindowSize,computeOutShape:computeOutShape$2,collectGatherOpShapeInfo});function gather_(x,indices,axis=0){const $x=convertToTensor(x,"x","gather");const $indices=convertToTensor(indices,"indices","gather","int32");const inputs={x:$x,indices:$indices};const attrs={axis};const forward=(backend2,save)=>{const parsedAxis=parseAxisParam(axis,$x.shape)[0];const shapeInfo=collectGatherOpShapeInfo($x,$indices,parsedAxis);const res=backend2.gather($x,reshape2($indices,[$indices.size]),parsedAxis);save([$x,$indices]);return reshape2(res,shapeInfo.outputShape)};return ENGINE.runKernelFunc(forward,inputs,null,GatherV23,attrs)}const gather=op({gather_});function greater_(a,b){let $a=convertToTensor(a,"a","greater");let $b=convertToTensor(b,"b","greater");[$a,$b]=makeTypesMatch($a,$b);assertAndGetBroadcastShape($a.shape,$b.shape);const forward=backend2=>backend2.greater($a,$b);const inputs={a:$a,b:$b};return ENGINE.runKernelFunc(forward,inputs,null,Greater3)}const greater=op({greater_});function greaterEqual_(a,b){let $a=convertToTensor(a,"a","greaterEqual");let $b=convertToTensor(b,"b","greaterEqual");[$a,$b]=makeTypesMatch($a,$b);assertAndGetBroadcastShape($a.shape,$b.shape);const forward=(backend2,save)=>{const res=backend2.greaterEqual($a,$b);save([$a,$b]);return res};const inputs={a:$a,b:$b};return ENGINE.runKernelFunc(forward,inputs,null,GreaterEqual3)}const greaterEqual=op({greaterEqual_});function imag_(input2){const $input=convertToTensor(input2,"input","imag");const forward=backend2=>{return backend2.imag($input)};const inputs={input:$input};return ENGINE.runKernelFunc(forward,inputs,null,Imag)}const imag=op({imag_});function isFinite_(x){const $x=convertToTensor(x,"x","isFinite");const inputs={x:$x};return ENGINE.runKernelFunc(backend2=>backend2.isFinite($x),inputs,null,IsFinite)}const isFinite$1=op({isFinite_});function isInf_(x){const $x=convertToTensor(x,"x","isInf");const inputs={x:$x};return ENGINE.runKernelFunc(backend2=>backend2.isInf($x),inputs,null,IsInf)}const isInf=op({isInf_});function isNaN_(x){const $x=convertToTensor(x,"x","isNaN");const inputs={x:$x};return ENGINE.runKernelFunc(backend2=>backend2.isNaN($x),inputs,null,IsNan)}const isNaN$1=op({isNaN_});function maximum_(a,b){let $a=convertToTensor(a,"a","maximum");let $b=convertToTensor(b,"b","maximum");[$a,$b]=makeTypesMatch($a,$b);if($a.dtype==="bool"){$a=cast2($a,"int32");$b=cast2($b,"int32")}assertAndGetBroadcastShape($a.shape,$b.shape);const forward=(backend2,save)=>{const res=backend2.maximum($a,$b);save([$a,$b]);return res};const inputs={a:$a,b:$b};return ENGINE.runKernelFunc(forward,inputs,null,Maximum3)}const maximum=op({maximum_});function scalar(value,dtype){if((isTypedArray(value)&&dtype!=="string"||Array.isArray(value))&&dtype!=="complex64"){throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)")}if(dtype==="string"&&isTypedArray(value)&&!(value instanceof Uint8Array)){throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.")}const shape=[];const inferredShape=[];return makeTensor(value,shape,inferredShape,dtype)}function leakyRelu_(x,alpha=.2){const $x=convertToTensor(x,"x","leakyRelu");return maximum(mul(scalar(alpha),$x),$x)}const leakyRelu=op({leakyRelu_});function less_(a,b){let $a=convertToTensor(a,"a","less");let $b=convertToTensor(b,"b","less");[$a,$b]=makeTypesMatch($a,$b);assertAndGetBroadcastShape($a.shape,$b.shape);const forward=backend2=>backend2.less($a,$b);const inputs={a:$a,b:$b};return ENGINE.runKernelFunc(forward,inputs,null,Less3)}const less=op({less_});function lessEqual_(a,b){let $a=convertToTensor(a,"a","lessEqual");let $b=convertToTensor(b,"b","lessEqual");[$a,$b]=makeTypesMatch($a,$b);assertAndGetBroadcastShape($a.shape,$b.shape);const forward=(backend2,save)=>{const res=backend2.lessEqual($a,$b);save([$a,$b]);return res};const inputs={a:$a,b:$b};return ENGINE.runKernelFunc(forward,inputs,null,LessEqual3)}const lessEqual=op({lessEqual_});function linspace(start,stop,num){if(num<=0){throw new Error("The number of values should be positive.")}const attrs={start,stop,num};return ENGINE.runKernelFunc(backend2=>backend2.linspace(start,stop,num),{},null,LinSpace,attrs)}function localResponseNormalization_(x,depthRadius=5,bias=1,alpha=1,beta=.5){const $x=convertToTensor(x,"x","localResponseNormalization");assert($x.rank===4||$x.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
rank ${$x.rank}.`);assert(isInt(depthRadius),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${depthRadius}.`);let x4D=$x;let reshapedTo4D=false;if($x.rank===3){reshapedTo4D=true;x4D=reshape2($x,[1,$x.shape[0],$x.shape[1],$x.shape[2]])}const forward=(backend2,save)=>{const y=backend2.localResponseNormalization4D(x4D,depthRadius,bias,alpha,beta);save([x4D,y]);return y};const inputs={x:x4D};const attrs={depthRadius,bias,alpha,beta};const res=ENGINE.runKernelFunc(forward,inputs,null,LRN,attrs);if(reshapedTo4D){return reshape2(res,[res.shape[1],res.shape[2],res.shape[3]])}else{return res}}const localResponseNormalization=op({localResponseNormalization_});function log_(x){const $x=convertToTensor(x,"x","log");const inputs={x:$x};return ENGINE.runKernelFunc((backend2,save)=>{const res=backend2.log($x);save([$x]);return res},inputs,null,Log3)}const log=op({log_});function log1p_(x){const $x=convertToTensor(x,"x","log1p");const inputs={x:$x};return ENGINE.runKernelFunc((backend2,save)=>{const res=backend2.log1p($x);save([$x]);return res},inputs,null,Log1p)}const log1p=op({log1p_});function grad(f){assert(isFunction(f),()=>"The f passed in grad(f) must be a function");return(x,dy)=>{const $x=convertToTensor(x,"x","tf.grad",null);const $dy=dy!=null?convertToTensor(dy,"dy","tf.grad"):null;return ENGINE.tidy(()=>{const{value,grads:grads2}=ENGINE.gradients(()=>f($x),[$x],$dy);if($dy!=null){assertShapesMatch(value.shape,$dy.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)")}checkGrads(grads2);return grads2[0]})}}function grads(f){assert(isFunction(f),()=>"The f passed in grads(f) must be a function");return(args,dy)=>{assert(Array.isArray(args),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");const $args=convertToTensorArray(args,"args","tf.grads",null);const $dy=dy!=null?convertToTensor(dy,"dy","tf.grads"):null;return ENGINE.tidy(()=>{const{value,grads:grads2}=ENGINE.gradients(()=>f(...$args),$args,$dy);if($dy!=null){assertShapesMatch(value.shape,$dy.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])")}checkGrads(grads2);return grads2})}}function valueAndGrad(f){assert(isFunction(f),()=>"The f passed in valueAndGrad(f) must be a function");return(x,dy)=>{assert(x instanceof Tensor,()=>"The x passed in valueAndGrad(f)(x) must be a tensor");assert(dy==null||dy instanceof Tensor,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");const{grads:grads2,value}=ENGINE.gradients(()=>f(x),[x],dy);checkGrads(grads2);return{grad:grads2[0],value}}}function valueAndGrads(f){assert(isFunction(f),()=>"The f passed in valueAndGrads(f) must be a function");return(args,dy)=>{assert(Array.isArray(args)&&args.every(arg=>arg instanceof Tensor),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors");assert(dy==null||dy instanceof Tensor,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");const res=ENGINE.gradients(()=>f(...args),args,dy);if(dy!=null){assertShapesMatch(res.value.shape,dy.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])")}checkGrads(res.grads);return res}}function variableGrads(f,varList){assert(isFunction(f),()=>"The f passed in variableGrads(f) must be a function");assert(varList==null||Array.isArray(varList)&&varList.every(v=>v instanceof Variable),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");const specifiedVarList=varList!=null;if(!specifiedVarList){varList=[];for(const varName in ENGINE.registeredVariables){varList.push(ENGINE.registeredVariables[varName])}}const specifiedNonTrainable=specifiedVarList?varList.filter(variable2=>!variable2.trainable):null;const originalVarCount=varList.length;varList=varList.filter(variable2=>variable2.trainable);assert(varList.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${originalVarCount} variables is trainable.`);const allowNoGradients=true;const{value,grads:grads2}=ENGINE.gradients(f,varList,null,allowNoGradients);assert(grads2.some(g=>g!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize().");assert(value.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${value.rank} tensor`);const namedGrads={};varList.forEach((v,i)=>{if(grads2[i]!=null){namedGrads[v.name]=grads2[i]}});if(specifiedNonTrainable!=null){specifiedNonTrainable.forEach(v=>namedGrads[v.name]=null)}return{value,grads:namedGrads}}function customGrad(f){return ENGINE.customGrad(f)}function checkGrads(grads2){const numNullGradients=grads2.filter(g=>g==null).length;if(numNullGradients>0){throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
the f you passed encloses all operations that lead from x to y.`)}}function neg_(x){const $x=convertToTensor(x,"x","neg");const inputs={x:$x};return ENGINE.runKernelFunc(backend2=>backend2.neg($x),inputs,null,Negate3)}const neg=op({neg_});function softplus_(x){const $x=convertToTensor(x,"x","softplus");const inputs={x:$x};return ENGINE.runKernelFunc((backend2,save)=>{const res=backend2.softplus($x);save([$x]);return res},inputs,null,Softplus)}const softplus=op({softplus_});function logSigmoid_(x){const $x=convertToTensor(x,"x","logSigmoid");const customOp=customGrad(x2=>{const value=neg(softplus(neg(x2)));const gradFunc=dy=>{const derX=mul(dy,sigmoid2(neg(x2)));return derX};return{value,gradFunc}});return customOp($x)}const logSigmoid=op({logSigmoid_});function max_(x,axis=null,keepDims=false){const $x=convertToTensor(x,"x","max");const forward=(backend2,save)=>{const origAxes=parseAxisParam(axis,$x.shape);let axes=origAxes;const permutedAxes=getAxesPermutation(axes,$x.rank);let maxInput=$x;if(permutedAxes!=null){maxInput=transpose2($x,permutedAxes);axes=getInnerMostAxes(axes.length,maxInput.rank)}const y=backend2.max(maxInput,axes);if(permutedAxes!=null){maxInput.dispose()}let res=y;if(keepDims){const expandedShape=expandShapeToKeepDim(res.shape,parseAxisParam(axis,$x.shape));res=reshape2(res,expandedShape);y.dispose()}save([$x,res]);return res};const inputs={x:$x};const attrs={reductionIndices:axis,keepDims};return ENGINE.runKernelFunc(forward,inputs,null,Max3,attrs)}const max2=op({max_});function sub_(a,b){let $a=convertToTensor(a,"a","sub");let $b=convertToTensor(b,"b","sub");[$a,$b]=makeTypesMatch($a,$b);const forward=(backend2,save)=>{const res=backend2.subtract($a,$b);save([$a,$b]);return res};const inputs={a:$a,b:$b};return ENGINE.runKernelFunc(forward,inputs,null,Sub3)}const sub=op({sub_});function sum_(x,axis=null,keepDims=false){let $x=convertToTensor(x,"x","sum");if($x.dtype==="bool"){$x=cast2($x,"int32")}const forward=(backend2,save)=>{save([$x]);const axes=parseAxisParam(axis,$x.shape);const permutation=getAxesPermutation(axes,$x.rank);let reductionAxes=axes;let permutedX=$x;if(permutation!=null){permutedX=transpose2($x,permutation);reductionAxes=getInnerMostAxes(reductionAxes.length,$x.rank)}let value=backend2.sum(permutedX,reductionAxes);if(keepDims){const newShape=expandShapeToKeepDim(value.shape,axes);value=reshape2(value,newShape)}return value};const inputs={x:$x};const attrs={axis,keepDims};return ENGINE.runKernelFunc(forward,inputs,null,Sum3,attrs)}const sum$1=op({sum_});function logSoftmax_(logits,axis=-1){const $logits=convertToTensor(logits,"logits","logSoftmax");if(axis===-1){axis=$logits.rank-1}if(axis!==$logits.rank-1){throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${$logits.rank} and axis was ${axis}`)}const forward=(backend2,save)=>{const keepDims=true;const xMax=max2(logits,axis,true);const shifted=sub(logits,xMax);const value=sub(cast2(shifted,"float32"),log(sum$1(exp(shifted),axis,keepDims)));save([value]);return value};const inputs={logits:$logits};const attrs={axis};return ENGINE.runKernelFunc(forward,inputs,null,LogSoftmax,attrs)}const logSoftmax=op({logSoftmax_});function logSumExp_(x,axis=null,keepDims=false){const $x=convertToTensor(x,"x","logSumExp");const axes=parseAxisParam(axis,$x.shape);const xMax=max2($x,axes,true);const a=sub($x,xMax);const b=exp(a);const c=sum$1(b,axes);const d=log(c);const res=add$1(reshape2(xMax,d.shape),d);if(keepDims){const newShape=expandShapeToKeepDim(res.shape,axes);return reshape2(res,newShape)}return res}const logSumExp=op({logSumExp_});function logicalAnd_(a,b){const $a=convertToTensor(a,"a","logicalAnd","bool");const $b=convertToTensor(b,"b","logicalAnd","bool");assertAndGetBroadcastShape($a.shape,$b.shape);const inputs={a:$a,b:$b};return ENGINE.runKernelFunc(backend2=>backend2.logicalAnd($a,$b),inputs,null,LogicalAnd3)}const logicalAnd=op({logicalAnd_});function logicalNot_(x){const $x=convertToTensor(x,"x","logicalNot","bool");const inputs={x:$x};return ENGINE.runKernelFunc(backend2=>backend2.logicalNot($x),inputs,null,LogicalNot)}const logicalNot=op({logicalNot_});function logicalOr_(a,b){const $a=convertToTensor(a,"a","logicalOr","bool");const $b=convertToTensor(b,"b","logicalOr","bool");assertAndGetBroadcastShape($a.shape,$b.shape);const inputs={a:$a,b:$b};return ENGINE.runKernelFunc(backend2=>backend2.logicalOr($a,$b),inputs,null,LogicalOr)}const logicalOr=op({logicalOr_});function logicalXor_(a,b){const $a=convertToTensor(a,"a","logicalXor","bool");const $b=convertToTensor(b,"b","logicalXor","bool");assertAndGetBroadcastShape($a.shape,$b.shape);return logicalAnd(logicalOr(a,b),logicalNot(logicalAnd(a,b)))}const logicalXor=op({logicalXor_});function maxPool_(x,filterSize,strides,pad3,dimRoundingMode){const $x=convertToTensor(x,"x","maxPool");const dilations=1;let x4D=$x;let reshapedTo4D=false;if($x.rank===3){reshapedTo4D=true;x4D=reshape2($x,[1,$x.shape[0],$x.shape[1],$x.shape[2]])}assert(x4D.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${x4D.rank}.`);assert(eitherStridesOrDilationsAreOne(strides,dilations),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`);if(dimRoundingMode!=null){assert(isInt(pad3),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${dimRoundingMode} but got pad ${pad3}.`)}const forward=(backend2,save)=>{const convInfo=computePool2DInfo(x4D.shape,filterSize,strides,1,pad3,dimRoundingMode);let y;if(convInfo.filterWidth===1&&convInfo.filterHeight===1&&arraysEqual(convInfo.inShape,convInfo.outShape)){y=x4D.clone()}else{y=backend2.maxPool(x4D,convInfo)}save([x4D,y]);return y};const inputs={x:x4D};const attrs={filterSize,strides,pad:pad3,dimRoundingMode};const res=ENGINE.runKernelFunc(forward,inputs,null,MaxPool3,attrs);if(reshapedTo4D){return reshape2(res,[res.shape[1],res.shape[2],res.shape[3]])}return res}const maxPool2=op({maxPool_});function maxPool3d_(x,filterSize=[1,1,1],strides,pad3,dimRoundingMode,dataFormat="NDHWC",dilations){if(dilations==null){dilations=[1,1,1]}else{deprecationWarn2("dilations is deprecated, this field will be gone in v3.0.0.")}const $x=convertToTensor(x,"x","maxPool3d");let x5D=$x;let reshapedTo5D=false;if($x.rank===4){reshapedTo5D=true;x5D=reshape2($x,[1,$x.shape[0],$x.shape[1],$x.shape[2],$x.shape[3]])}assert(x5D.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${x5D.rank}.`);assert(dataFormat==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${dataFormat}`);assert(eitherStridesOrDilationsAreOne(strides,dilations),()=>`Error in maxPool3d: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`);if(dimRoundingMode!=null){assert(isInt(pad3),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${dimRoundingMode} but got pad ${pad3}.`)}const forward=(backend2,save)=>{if(dilations==null){dilations=[1,1,1]}const convInfo=computePool3DInfo(x5D.shape,filterSize,strides,dilations,pad3,dimRoundingMode,dataFormat);const y=backend2.maxPool3d(x5D,convInfo);save([x5D,y]);return y};const inputs={x:x5D};const attrs={filterSize,strides,pad:pad3,dimRoundingMode,dataFormat,dilations};const res=ENGINE.runKernelFunc(forward,inputs,null,MaxPool3D,attrs);if(reshapedTo5D){return reshape2(res,[res.shape[1],res.shape[2],res.shape[3],res.shape[4]])}return res}const maxPool3d=op({maxPool3d_});function maxPoolWithArgmax_(x,filterSize,strides,pad3,includeBatchInIndex=false){const $x=convertToTensor(x,"x","maxPoolWithArgmax");const inputs={x:$x};const attrs={filterSize,strides,pad:pad3,includeBatchInIndex};const result=ENGINE.runKernel(MaxPoolWithArgmax,inputs,attrs);return{result:result[0],indexes:result[1]}}const maxPoolWithArgmax=op({maxPoolWithArgmax_});function zeros(shape,dtype="float32"){if(dtype==="complex64"){const real2=zeros(shape,"float32");const imag2=zeros(shape,"float32");return complex(real2,imag2)}const values=makeZerosTypedArray(sizeFromShape(shape),dtype);return ENGINE.makeTensor(values,shape,dtype)}function ones$1(shape,dtype="float32"){if(dtype==="complex64"){const real2=ones$1(shape,"float32");const imag2=zeros(shape,"float32");return complex(real2,imag2)}const values=makeOnesTypedArray(sizeFromShape(shape),dtype);return ENGINE.makeTensor(values,shape,dtype)}function mean_(x,axis=null,keepDims=false){const $x=convertToTensor(x,"x","mean");const axes=parseAxisParam(axis,$x.shape);const shapes=computeOutAndReduceShapes($x.shape,axes);const reduceShape=shapes[1];const reduceSize=sizeFromShape(reduceShape);const inputs={x:$x};const attrs={axis,keepDims};const forward=()=>{const reduceSizeScalar=scalar(reduceSize);const xReduce=reduceSizeScalar.dtype===$x.dtype?$x:cast2($x,reduceSizeScalar.dtype);const res=div(xReduce,reduceSizeScalar);return sum$1(res,axis,keepDims)};const customOp=customGrad(x2=>{const value=ENGINE.runKernelFunc(forward,inputs,null,Mean,attrs);const gradFunc=dy=>{const expandedDyShape=x2.shape.slice();axes.forEach(axis2=>{expandedDyShape[axis2]=1});const expandedDy=reshape2(dy,expandedDyShape);const derX=div(mul(expandedDy,ones$1(x2.shape,"float32")),reduceSize);return derX};return{value,gradFunc}});return customOp($x)}const mean=op({mean_});function min_(x,axis=null,keepDims=false){const $x=convertToTensor(x,"x","min");const forward=(backend2,save)=>{const origAxes=parseAxisParam(axis,$x.shape);let axes=origAxes;const permutedAxes=getAxesPermutation(axes,$x.rank);let minInput=$x;if(permutedAxes!=null){minInput=transpose2($x,permutedAxes);axes=getInnerMostAxes(axes.length,$x.rank)}const y=backend2.min(minInput,axes);if(permutedAxes!=null){minInput.dispose()}let res=y;if(keepDims){const expandedShape=expandShapeToKeepDim(res.shape,origAxes);res=reshape2(y,expandedShape);y.dispose()}save([$x,res]);return res};const inputs={x:$x};const attrs={axis,keepDims};return ENGINE.runKernelFunc(forward,inputs,null,Min3,attrs)}const min2=op({min_});function minimum_(a,b){let $a=convertToTensor(a,"a","minimum");let $b=convertToTensor(b,"b","minimum");[$a,$b]=makeTypesMatch($a,$b);if($a.dtype==="bool"){$a=cast2($a,"int32");$b=cast2($b,"int32")}assertAndGetBroadcastShape($a.shape,$b.shape);const forward=(backend2,save)=>{const res=backend2.minimum($a,$b);save([$a,$b]);return res};const inputs={a:$a,b:$b};return ENGINE.runKernelFunc(forward,inputs,null,Minimum3)}const minimum=op({minimum_});function mirrorPad_(x,paddings,mode){assert(mode==="reflect"||mode==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${mode}.`);const $x=convertToTensor(x,"x","mirrorPad");if($x.rank===0){throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad")}assert(paddings.length===$x.rank,()=>`Padding doesn't match input. Must be ${$x.rank}. Got ${paddings.length}.`);const shapeOffset=mode==="reflect"?1:0;for(let i=0;i<$x.rank;i++){assert(paddings[i].length===2,()=>`Invalid number of paddings. Must be length of 2 each.`);assert(paddings[i][0]>=0&&paddings[i][0]<=$x.shape[i]-shapeOffset&&paddings[i][1]>=0&&paddings[i][1]<=$x.shape[i]-shapeOffset,()=>`Padding in dimension ${i} cannot be greater than or equal to ${$x.shape[i]-shapeOffset} or less than 0 for input of shape ${$x.shape}`)}const attrs={paddings,mode};const inputs={x:$x};return ENGINE.runKernel(MirrorPad,inputs,attrs)}const mirrorPad=op({mirrorPad_});function mod_(a,b){let $a=convertToTensor(a,"a","mod");let $b=convertToTensor(b,"b","mod");[$a,$b]=makeTypesMatch($a,$b);const forward=(backend2,save)=>{const res=backend2.mod($a,$b);save([$a,$b]);return res};const inputs={a:$a,b:$b};return ENGINE.runKernelFunc(forward,inputs,null,Mod)}const mod=op({mod_});function square_(x){const $x=convertToTensor(x,"x","square");const attrs={};const inputsToSave=[$x];const outputsToSave=[];return ENGINE.runKernelFunc((backend2,save)=>{save([$x]);return backend2.square($x)},{x:$x},null,"Square",attrs,inputsToSave,outputsToSave)}const square=op({square_});function moments_(x,axis=null,keepDims=false){x=convertToTensor(x,"x","moments");const axes=parseAxisParam(axis,x.shape);const xMean=mean(x,axes,keepDims);let keepDimsShape=xMean.shape;if(!keepDims){keepDimsShape=expandShapeToKeepDim(xMean.shape,axes)}const devSquared=square(sub(cast2(x,"float32"),reshape2(xMean,keepDimsShape)));const variance2=mean(devSquared,axes,keepDims);return{mean:xMean,variance:variance2}}const moments=op({moments_});function multiRNNCell_(lstmCells,data2,c,h){const $data=convertToTensor(data2,"data","multiRNNCell");const $c=convertToTensorArray(c,"c","multiRNNCell");const $h=convertToTensorArray(h,"h","multiRNNCell");let input2=$data;const newStates=[];for(let i=0;i<lstmCells.length;i++){const output=lstmCells[i](input2,$c[i],$h[i]);newStates.push(output[0]);newStates.push(output[1]);input2=output[1]}const newC=[];const newH=[];for(let i=0;i<newStates.length;i+=2){newC.push(newStates[i]);newH.push(newStates[i+1])}return[newC,newH]}const multiRNNCell=op({multiRNNCell_});function multinomial_(logits,numSamples,seed,normalized=false){const $logits=convertToTensor(logits,"logits","multinomial");const numOutcomes=$logits.size;const origRank=$logits.rank;if(numOutcomes<2){throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${numOutcomes}.`)}if(origRank>2){throw new Error(`Rank of probabilities must be 1 or 2, but is ${origRank}`)}seed=seed||Math.random();const logits2D=origRank===1?reshape2($logits,[1,-1]):$logits;const res=ENGINE.runKernelFunc(backend2=>backend2.multinomial(logits2D,normalized,numSamples,seed),{logits2D});return origRank===1?reshape2(res,[res.size]):res}const multinomial=op({multinomial_});function notEqual_(a,b){let $a=convertToTensor(a,"a","notEqual");let $b=convertToTensor(b,"b","notEqual");[$a,$b]=makeTypesMatch($a,$b);assertAndGetBroadcastShape($a.shape,$b.shape);const forward=backend2=>backend2.notEqual($a,$b);const inputs={a:$a,b:$b};return ENGINE.runKernelFunc(forward,inputs,null,NotEqual3)}const notEqual=op({notEqual_});function real_(input2){const $input=convertToTensor(input2,"input","real");const forward=backend2=>{return backend2.real($input)};const inputs={input:$input};return ENGINE.runKernelFunc(forward,inputs,null,Real)}const real=op({real_});function onesLike_(x){const $x=convertToTensor(x,"x","onesLike");const forward=(backend2,save)=>{if($x.dtype==="complex64"){const r=onesLike2(real($x));const i=zerosLike2(imag($x));return complex(r,i)}return backend2.onesLike($x)};const inputs={x:$x};return ENGINE.runKernelFunc(forward,inputs,null,OnesLike3)}const onesLike2=op({onesLike_});function outerProduct_(v1,v2){const $v1=convertToTensor(v1,"v1","outerProduct");const $v2=convertToTensor(v2,"v2","outerProduct");assert($v1.rank===1&&$v2.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${$v1.rank} and ${$v2.rank}.`);const v12D=reshape2($v1,[-1,1]);const v22D=reshape2($v2,[1,-1]);return matMul(v12D,v22D)}const outerProduct=op({outerProduct_});function pad_(x,paddings,constantValue=0){const $x=convertToTensor(x,"x","pad");if($x.rank===0){throw new Error("pad(scalar) is not defined. Pass non-scalar to pad")}const forward=(backend2,save)=>{save([$x]);return backend2.pad($x,paddings,constantValue)};const attrs={paddings,constantValue};const inputs={x:$x};return ENGINE.runKernelFunc(forward,inputs,null,PadV23,attrs)}const pad2=op({pad_});function pad1d_(x,paddings,constantValue=0){assert(paddings.length===2,()=>"Invalid number of paddings. Must be length of 2.");return pad2(x,[paddings],constantValue)}const pad1d=op({pad1d_});function pad2d_(x,paddings,constantValue=0){assert(paddings.length===2&&paddings[0].length===2&&paddings[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each.");return pad2(x,paddings,constantValue)}const pad2d=op({pad2d_});function pad3d_(x,paddings,constantValue=0){assert(paddings.length===3&&paddings[0].length===2&&paddings[1].length===2&&paddings[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each.");return pad2(x,paddings,constantValue)}const pad3d=op({pad3d_});function pad4d_(x,paddings,constantValue=0){assert(paddings.length===4&&paddings[0].length===2&&paddings[1].length===2&&paddings[2].length===2&&paddings[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each.");return pad2(x,paddings,constantValue)}const pad4d=op({pad4d_});function spaceToBatchND_(x,blockShape,paddings){const $x=convertToTensor(x,"x","spaceToBatchND");assert($x.rank>=1+blockShape.length,()=>`input rank ${$x.rank} should be > than [blockShape] ${blockShape.length}`);assert(paddings.length===blockShape.length,()=>`paddings.shape[0] ${paddings.length} must be equal to [blockShape] ${blockShape.length}`);assert($x.shape.reduce((a,b,i)=>{if(i>0&&i<=blockShape.length){return a&&(b+paddings[i-1][0]+paddings[i-1][1])%blockShape[i-1]===0}return a},true),()=>`input spatial dimensions ${$x.shape.slice(1)} with paddings ${paddings.toString()} must be divisible by blockShapes ${blockShape.toString()}`);const forward=backend2=>backend2.spaceToBatchND($x,blockShape,paddings);const inputs={x:$x};const attrs={blockShape,paddings};return ENGINE.runKernelFunc(forward,inputs,null,SpaceToBatchND,attrs)}const spaceToBatchND=op({spaceToBatchND_});function pool_(input2,windowShape,poolingType,pad3,dilations,strides){if(dilations==null){dilations=[1,1]}if(strides==null){strides=1}if(pad3===0){pad3="valid"}const $x=convertToTensor(input2,"x","maxPool");let x4D=$x;let reshapedTo4D=false;if($x.rank===3){reshapedTo4D=true;x4D=reshape2($x,[1,$x.shape[0],$x.shape[1],$x.shape[2]])}assert(eitherStridesOrDilationsAreOne(strides,dilations),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`);const convInfo=computePool2DInfo(x4D.shape,windowShape,strides,dilations,pad3);const dilation=[convInfo.dilationHeight,convInfo.dilationWidth];let basePadding;if(pad3==="same"){basePadding=withSpaceToBatchBasePaddings([convInfo.filterHeight,convInfo.filterWidth],dilation)}else{basePadding=[[0,0],[0,0]]}const isDilationOne=dilation[0]===1&&dilation[1]===1;const[adjustedPadding,adjustedCrops]=requiredSpaceToBatchPaddings([convInfo.inHeight,convInfo.inWidth],dilation,basePadding);const convertedPad=isDilationOne?pad3:"valid";const convertedX=isDilationOne?x4D:spaceToBatchND(x4D,dilation,adjustedPadding);const forwardOp=poolingType==="avg"?()=>avgPool2(convertedX,windowShape,strides,convertedPad):()=>maxPool2(convertedX,windowShape,strides,convertedPad);const y=forwardOp();const res=isDilationOne?y:batchToSpaceND(y,dilation,adjustedCrops);if(reshapedTo4D){return reshape2(res,[res.shape[1],res.shape[2],res.shape[3]])}return res}function requiredSpaceToBatchPaddings(inputShape,blockShape,basePadding){const padStart=basePadding.map(b=>b[0]);const origPadEnd=basePadding.map(b=>b[1]);const fullInputShape=inputShape.concat(padStart,origPadEnd);const padEndExtra=blockShape.map((b,i)=>(b-fullInputShape[i]%b)%b);const padEnd=origPadEnd.map((s,i)=>s+padEndExtra[i]);const paddings=blockShape.map((_,i)=>[padStart[i],padEnd[i]]);const crops=blockShape.map((_,i)=>[0,padEndExtra[i]]);return[paddings,crops]}function withSpaceToBatchBasePaddings(filterShape,dilation){const dilatedFilterShape=filterShape.map((s,i)=>{return s+(s-1)*(dilation[i]-1)});const padExtraShape=dilatedFilterShape.map(s=>s-1);const padExtraStart=padExtraShape.map(s=>Math.floor(s/2));const padExtraEnd=padExtraShape.map((s,i)=>s-padExtraStart[i]);return padExtraShape.map((_,i)=>{return[padExtraStart[i],padExtraEnd[i]]})}const pool=op({pool_});function pow_(base,exp2){let $base=convertToTensor(base,"base","pow");let $exp=convertToTensor(exp2,"exp","pow");[$base,$exp]=makeTypesMatch($base,$exp);const inputs={a:$base,b:$exp};const forward=(backend2,save)=>{const y=backend2.pow($base,$exp);save([$base,$exp,y]);return y};return ENGINE.runKernelFunc(forward,inputs,null,Pow3)}const pow=op({pow_});function prelu_(x,alpha){const $x=convertToTensor(x,"x","prelu");const $alpha=convertToTensor(alpha,"alpha","prelu");const forward=(backend2,save)=>{const res=backend2.prelu($x,$alpha);save([$x,$alpha]);return res};const inputs={x:$x,alpha:$alpha};return ENGINE.runKernelFunc(forward,inputs,null,Prelu3)}const prelu2=op({prelu_});function prod_(x,axis=null,keepDims=false){let $x=convertToTensor(x,"x","prod");if($x.dtype==="bool"){$x=cast2($x,"int32")}const forward=backend2=>{const axes=parseAxisParam(axis,$x.shape);const permutation=getAxesPermutation(axes,$x.rank);let reductionAxes=axes;let permutedX=$x;if(permutation!=null){permutedX=transpose2($x,permutation);reductionAxes=getInnerMostAxes(reductionAxes.length,$x.rank)}let value=backend2.prod(permutedX,reductionAxes);if(keepDims){const newShape=expandShapeToKeepDim(value.shape,axes);value=reshape2(value,newShape)}return value};const inputs={x:$x};const attrs={axis,keepDims};return ENGINE.runKernelFunc(forward,inputs,null,Prod,attrs)}const prod=op({prod_});function rand_(shape,randFunction,dtype){const size=sizeFromShape(shape);let values=null;if(dtype==null||dtype==="float32"){values=new Float32Array(size)}else if(dtype==="int32"){values=new Int32Array(size)}else if(dtype==="bool"){values=new Uint8Array(size)}else{throw new Error(`Unknown data type ${dtype}`)}for(let i=0;i<size;i++){values[i]=randFunction()}return ENGINE.makeTensor(values,shape,dtype)}const rand=op({rand_});var commonjsGlobal=typeof globalThis!=="undefined"?globalThis:typeof window!=="undefined"?window:typeof global!=="undefined"?global:typeof self!=="undefined"?self:{};function unwrapExports(x){return x&&x.__esModule&&Object.prototype.hasOwnProperty.call(x,"default")?x["default"]:x}function createCommonjsModule(fn,module3){return module3={exports:{}},fn(module3,module3.exports),module3.exports}function getCjsExportFromNamespace(n){return n&&n["default"]||n}function commonjsRequire(){throw new Error("Dynamic requires are not currently supported by @rollup/plugin-commonjs")}var alea=createCommonjsModule(function(module3){(function(global2,module4,define2){function Alea(seed){var me=this,mash=Mash();me.next=function(){var t=2091639*me.s0+me.c*23283064365386963e-26;me.s0=me.s1;me.s1=me.s2;return me.s2=t-(me.c=t|0)};me.c=1;me.s0=mash(" ");me.s1=mash(" ");me.s2=mash(" ");me.s0-=mash(seed);if(me.s0<0){me.s0+=1}me.s1-=mash(seed);if(me.s1<0){me.s1+=1}me.s2-=mash(seed);if(me.s2<0){me.s2+=1}mash=null}function copy(f,t){t.c=f.c;t.s0=f.s0;t.s1=f.s1;t.s2=f.s2;return t}function impl(seed,opts){var xg=new Alea(seed),state=opts&&opts.state,prng=xg.next;prng.int32=function(){return xg.next()*4294967296|0};prng.double=function(){return prng()+(prng()*2097152|0)*11102230246251565e-32};prng.quick=prng;if(state){if(typeof state=="object")copy(state,xg);prng.state=function(){return copy(xg,{})}}return prng}function Mash(){var n=4022871197;var mash=function(data2){data2=data2.toString();for(var i=0;i<data2.length;i++){n+=data2.charCodeAt(i);var h=.02519603282416938*n;n=h>>>0;h-=n;h*=n;n=h>>>0;h-=n;n+=h*4294967296}return(n>>>0)*23283064365386963e-26};return mash}if(module4&&module4.exports){module4.exports=impl}else if(define2&&define2.amd){define2(function(){return impl})}else{this.alea=impl}})(commonjsGlobal,module3,false)});var xor128=createCommonjsModule(function(module3){(function(global2,module4,define2){function XorGen(seed){var me=this,strseed="";me.x=0;me.y=0;me.z=0;me.w=0;me.next=function(){var t=me.x^me.x<<11;me.x=me.y;me.y=me.z;me.z=me.w;return me.w^=me.w>>>19^t^t>>>8};if(seed===(seed|0)){me.x=seed}else{strseed+=seed}for(var k=0;k<strseed.length+64;k++){me.x^=strseed.charCodeAt(k)|0;me.next()}}function copy(f,t){t.x=f.x;t.y=f.y;t.z=f.z;t.w=f.w;return t}function impl(seed,opts){var xg=new XorGen(seed),state=opts&&opts.state,prng=function(){return(xg.next()>>>0)/4294967296};prng.double=function(){do{var top=xg.next()>>>11,bot=(xg.next()>>>0)/4294967296,result=(top+bot)/(1<<21)}while(result===0);return result};prng.int32=xg.next;prng.quick=prng;if(state){if(typeof state=="object")copy(state,xg);prng.state=function(){return copy(xg,{})}}return prng}if(module4&&module4.exports){module4.exports=impl}else if(define2&&define2.amd){define2(function(){return impl})}else{this.xor128=impl}})(commonjsGlobal,module3,false)});var xorwow=createCommonjsModule(function(module3){(function(global2,module4,define2){function XorGen(seed){var me=this,strseed="";me.next=function(){var t=me.x^me.x>>>2;me.x=me.y;me.y=me.z;me.z=me.w;me.w=me.v;return(me.d=me.d+362437|0)+(me.v=me.v^me.v<<4^(t^t<<1))|0};me.x=0;me.y=0;me.z=0;me.w=0;me.v=0;if(seed===(seed|0)){me.x=seed}else{strseed+=seed}for(var k=0;k<strseed.length+64;k++){me.x^=strseed.charCodeAt(k)|0;if(k==strseed.length){me.d=me.x<<10^me.x>>>4}me.next()}}function copy(f,t){t.x=f.x;t.y=f.y;t.z=f.z;t.w=f.w;t.v=f.v;t.d=f.d;return t}function impl(seed,opts){var xg=new XorGen(seed),state=opts&&opts.state,prng=function(){return(xg.next()>>>0)/4294967296};prng.double=function(){do{var top=xg.next()>>>11,bot=(xg.next()>>>0)/4294967296,result=(top+bot)/(1<<21)}while(result===0);return result};prng.int32=xg.next;prng.quick=prng;if(state){if(typeof state=="object")copy(state,xg);prng.state=function(){return copy(xg,{})}}return prng}if(module4&&module4.exports){module4.exports=impl}else if(define2&&define2.amd){define2(function(){return impl})}else{this.xorwow=impl}})(commonjsGlobal,module3,false)});var xorshift7=createCommonjsModule(function(module3){(function(global2,module4,define2){function XorGen(seed){var me=this;me.next=function(){var X=me.x,i=me.i,t,v,w;t=X[i];t^=t>>>7;v=t^t<<24;t=X[i+1&7];v^=t^t>>>10;t=X[i+3&7];v^=t^t>>>3;t=X[i+4&7];v^=t^t<<7;t=X[i+7&7];t=t^t<<13;v^=t^t<<9;X[i]=v;me.i=i+1&7;return v};function init2(me2,seed2){var j,w,X=[];if(seed2===(seed2|0)){w=X[0]=seed2}else{seed2=""+seed2;for(j=0;j<seed2.length;++j){X[j&7]=X[j&7]<<15^seed2.charCodeAt(j)+X[j+1&7]<<13}}while(X.length<8)X.push(0);for(j=0;j<8&&X[j]===0;++j);if(j==8)w=X[7]=-1;else w=X[j];me2.x=X;me2.i=0;for(j=256;j>0;--j){me2.next()}}init2(me,seed)}function copy(f,t){t.x=f.x.slice();t.i=f.i;return t}function impl(seed,opts){if(seed==null)seed=+new Date;var xg=new XorGen(seed),state=opts&&opts.state,prng=function(){return(xg.next()>>>0)/4294967296};prng.double=function(){do{var top=xg.next()>>>11,bot=(xg.next()>>>0)/4294967296,result=(top+bot)/(1<<21)}while(result===0);return result};prng.int32=xg.next;prng.quick=prng;if(state){if(state.x)copy(state,xg);prng.state=function(){return copy(xg,{})}}return prng}if(module4&&module4.exports){module4.exports=impl}else if(define2&&define2.amd){define2(function(){return impl})}else{this.xorshift7=impl}})(commonjsGlobal,module3,false)});var xor4096=createCommonjsModule(function(module3){(function(global2,module4,define2){function XorGen(seed){var me=this;me.next=function(){var w=me.w,X=me.X,i=me.i,t,v;me.w=w=w+1640531527|0;v=X[i+34&127];t=X[i=i+1&127];v^=v<<13;t^=t<<17;v^=v>>>15;t^=t>>>12;v=X[i]=v^t;me.i=i;return v+(w^w>>>16)|0};function init2(me2,seed2){var t,v,i,j,w,X=[],limit=128;if(seed2===(seed2|0)){v=seed2;seed2=null}else{seed2=seed2+"\0";v=0;limit=Math.max(limit,seed2.length)}for(i=0,j=-32;j<limit;++j){if(seed2)v^=seed2.charCodeAt((j+32)%seed2.length);if(j===0)w=v;v^=v<<10;v^=v>>>15;v^=v<<4;v^=v>>>13;if(j>=0){w=w+1640531527|0;t=X[j&127]^=v+w;i=t==0?i+1:0}}if(i>=128){X[(seed2&&seed2.length||0)&127]=-1}i=127;for(j=4*128;j>0;--j){v=X[i+34&127];t=X[i=i+1&127];v^=v<<13;t^=t<<17;v^=v>>>15;t^=t>>>12;X[i]=v^t}me2.w=w;me2.X=X;me2.i=i}init2(me,seed)}function copy(f,t){t.i=f.i;t.w=f.w;t.X=f.X.slice();return t};function impl(seed,opts){if(seed==null)seed=+new Date;var xg=new XorGen(seed),state=opts&&opts.state,prng=function(){return(xg.next()>>>0)/4294967296};prng.double=function(){do{var top=xg.next()>>>11,bot=(xg.next()>>>0)/4294967296,result=(top+bot)/(1<<21)}while(result===0);return result};prng.int32=xg.next;prng.quick=prng;if(state){if(state.X)copy(state,xg);prng.state=function(){return copy(xg,{})}}return prng}if(module4&&module4.exports){module4.exports=impl}else if(define2&&define2.amd){define2(function(){return impl})}else{this.xor4096=impl}})(commonjsGlobal,module3,false)});var tychei=createCommonjsModule(function(module3){(function(global2,module4,define2){function XorGen(seed){var me=this,strseed="";me.next=function(){var b=me.b,c=me.c,d=me.d,a=me.a;b=b<<25^b>>>7^c;c=c-d|0;d=d<<24^d>>>8^a;a=a-b|0;me.b=b=b<<20^b>>>12^c;me.c=c=c-d|0;me.d=d<<16^c>>>16^a;return me.a=a-b|0};me.a=0;me.b=0;me.c=2654435769|0;me.d=1367130551;if(seed===Math.floor(seed)){me.a=seed/4294967296|0;me.b=seed|0}else{strseed+=seed}for(var k=0;k<strseed.length+20;k++){me.b^=strseed.charCodeAt(k)|0;me.next()}}function copy(f,t){t.a=f.a;t.b=f.b;t.c=f.c;t.d=f.d;return t};function impl(seed,opts){var xg=new XorGen(seed),state=opts&&opts.state,prng=function(){return(xg.next()>>>0)/4294967296};prng.double=function(){do{var top=xg.next()>>>11,bot=(xg.next()>>>0)/4294967296,result=(top+bot)/(1<<21)}while(result===0);return result};prng.int32=xg.next;prng.quick=prng;if(state){if(typeof state=="object")copy(state,xg);prng.state=function(){return copy(xg,{})}}return prng}if(module4&&module4.exports){module4.exports=impl}else if(define2&&define2.amd){define2(function(){return impl})}else{this.tychei=impl}})(commonjsGlobal,module3,false)});var seedrandom=createCommonjsModule(function(module3){(function(pool2,math2){var global2=this,width=256,chunks=6,digits=52,rngname="random",startdenom=math2.pow(width,chunks),significance=math2.pow(2,digits),overflow=significance*2,mask=width-1,nodecrypto;function seedrandom2(seed,options,callback){var key=[];options=options==true?{entropy:true}:options||{};var shortseed=mixkey(flatten2(options.entropy?[seed,tostring(pool2)]:seed==null?autoseed():seed,3),key);var arc4=new ARC4(key);var prng=function(){var n=arc4.g(chunks),d=startdenom,x=0;while(n<significance){n=(n+x)*width;d*=width;x=arc4.g(1)}while(n>=overflow){n/=2;d/=2;x>>>=1}return(n+x)/d};prng.int32=function(){return arc4.g(4)|0};prng.quick=function(){return arc4.g(4)/4294967296};prng.double=prng;mixkey(tostring(arc4.S),pool2);return(options.pass||callback||function(prng2,seed2,is_math_call,state){if(state){if(state.S){copy(state,arc4)}prng2.state=function(){return copy(arc4,{})}}if(is_math_call){math2[rngname]=prng2;return seed2}else return prng2})(prng,shortseed,"global"in options?options.global:this==math2,options.state)}math2["seed"+rngname]=seedrandom2;function ARC4(key){var t,keylen=key.length,me=this,i=0,j=me.i=me.j=0,s=me.S=[];if(!keylen){key=[keylen++]}while(i<width){s[i]=i++}for(i=0;i<width;i++){s[i]=s[j=mask&j+key[i%keylen]+(t=s[i])];s[j]=t}(me.g=function(count2){var t2,r=0,i2=me.i,j2=me.j,s2=me.S;while(count2--){t2=s2[i2=mask&i2+1];r=r*width+s2[mask&(s2[i2]=s2[j2=mask&j2+t2])+(s2[j2]=t2)]}me.i=i2;me.j=j2;return r})(width)}function copy(f,t){t.i=f.i;t.j=f.j;t.S=f.S.slice();return t};function flatten2(obj,depth){var result=[],typ=typeof obj,prop;if(depth&&typ=="object"){for(prop in obj){try{result.push(flatten2(obj[prop],depth-1))}catch(e){}}}return result.length?result:typ=="string"?obj:obj+"\0"}function mixkey(seed,key){var stringseed=seed+"",smear,j=0;while(j<stringseed.length){key[mask&j]=mask&(smear^=key[mask&j]*19)+stringseed.charCodeAt(j++)}return tostring(key)}function autoseed(){try{var out;if(nodecrypto&&(out=nodecrypto.randomBytes)){out=out(width)}else{out=new Uint8Array(width);(global2.crypto||global2.msCrypto).getRandomValues(out)}return tostring(out)}catch(e){var browser2=global2.navigator,plugins=browser2&&browser2.plugins;return[+new Date,global2,plugins,global2.screen,tostring(pool2)]}}function tostring(a){return String.fromCharCode.apply(0,a)}mixkey(math2.random(),pool2);if(module3.exports){module3.exports=seedrandom2;try{nodecrypto=require("crypto")}catch(ex){}}else if(false){(void 0)(function(){return seedrandom2})}})([],Math)});seedrandom.alea=alea;seedrandom.xor128=xor128;seedrandom.xorwow=xorwow;seedrandom.xorshift7=xorshift7;seedrandom.xor4096=xor4096;seedrandom.tychei=tychei;var seedrandom$1=seedrandom;var seedrandom_1=seedrandom$1.alea;class MPRandGauss{constructor(mean2,stdDeviation,dtype,truncated,seed){this.mean=mean2;this.stdDev=stdDeviation;this.dtype=dtype;this.nextVal=NaN;this.truncated=truncated;if(this.truncated){this.upper=this.mean+this.stdDev*2;this.lower=this.mean-this.stdDev*2}const seedValue=seed?seed:Math.random();this.random=seedrandom_1(seedValue.toString())}nextValue(){if(!isNaN(this.nextVal)){const value=this.nextVal;this.nextVal=NaN;return value}let resultX,resultY;let isValid=false;while(!isValid){let v1,v2,s;do{v1=2*this.random()-1;v2=2*this.random()-1;s=v1*v1+v2*v2}while(s>=1||s===0);const mul2=Math.sqrt(-2*Math.log(s)/s);resultX=this.mean+this.stdDev*v1*mul2;resultY=this.mean+this.stdDev*v2*mul2;if(!this.truncated||this.isValidTruncated(resultX)){isValid=true}}if(!this.truncated||this.isValidTruncated(resultY)){this.nextVal=this.convertValue(resultY)}return this.convertValue(resultX)}convertValue(value){if(this.dtype==null||this.dtype==="float32"){return value}return Math.round(value)}isValidTruncated(value){return value<=this.upper&&value>=this.lower}}class RandGamma{constructor(alpha,beta,dtype,seed){this.alpha=alpha;this.beta=1/beta;this.dtype=dtype;const seedValue=seed?seed:Math.random();this.randu=seedrandom_1(seedValue.toString());this.randn=new MPRandGauss(0,1,dtype,false,this.randu());if(alpha<1){this.d=alpha+2/3}else{this.d=alpha-1/3}this.c=1/Math.sqrt(9*this.d)}nextValue(){let x2,v0,v1,x,u,v;while(true){do{x=this.randn.nextValue();v=1+this.c*x}while(v<=0);v*=v*v;x2=x*x;v0=1-.331*x2*x2;v1=.5*x2+this.d*(1-v+Math.log(v));u=this.randu();if(u<v0||Math.log(u)<v1){break}}v=1/this.beta*this.d*v;if(this.alpha<1){v*=Math.pow(this.randu(),1/this.alpha)}return this.convertValue(v)}convertValue(value){if(this.dtype==="float32"){return value}return Math.round(value)}}class UniformRandom{constructor(min3=0,max3=1,dtype,seed){this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32";this.min=min3;this.range=max3-min3;this.dtype=dtype;if(seed==null){seed=Math.random()}if(typeof seed==="number"){seed=seed.toString()}if(!this.canReturnFloat()&&this.range<=1){throw new Error(`The difference between ${min3} - ${max3} <= 1 and dtype is not float`)}this.random=seedrandom_1(seed)}convertValue(value){if(this.canReturnFloat()){return value}return Math.round(value)}nextValue(){return this.convertValue(this.min+this.range*this.random())}}function jarqueBeraNormalityTest(values){const n=values.length;const s=skewness(values);const k=kurtosis(values);const jb=n/6*(Math.pow(s,2)+.25*Math.pow(k-3,2));const CHI_SQUARE_2DEG=5.991;if(jb>CHI_SQUARE_2DEG){throw new Error(`Invalid p-value for JB: ${jb}`)}}function expectArrayInMeanStdRange(actual,expectedMean,expectedStdDev,epsilon2){if(epsilon2==null){epsilon2=testEpsilon()}const actualMean=mean$1(actual);expectNumbersClose(actualMean,expectedMean,epsilon2);expectNumbersClose(standardDeviation(actual,actualMean),expectedStdDev,epsilon2)}function mean$1(values){let sum3=0;for(let i=0;i<values.length;i++){sum3+=values[i]}return sum3/values.length}function standardDeviation(values,mean2){let squareDiffSum=0;for(let i=0;i<values.length;i++){const diff=values[i]-mean2;squareDiffSum+=diff*diff}return Math.sqrt(squareDiffSum/values.length)}function kurtosis(values){const valuesMean=mean$1(values);const n=values.length;let sum22=0;let sum4=0;for(let i=0;i<n;i++){const v=values[i]-valuesMean;sum22+=Math.pow(v,2);sum4+=Math.pow(v,4)}return 1/n*sum4/Math.pow(1/n*sum22,2)}function skewness(values){const valuesMean=mean$1(values);const n=values.length;let sum22=0;let sum3=0;for(let i=0;i<n;i++){const v=values[i]-valuesMean;sum22+=Math.pow(v,2);sum3+=Math.pow(v,3)}return 1/n*sum3/Math.pow(1/(n-1)*sum22,3/2)}function randomGamma_(shape,alpha,beta=1,dtype="float32",seed){if(beta==null){beta=1}if(dtype==null){dtype="float32"}if(dtype!=="float32"&&dtype!=="int32"){throw new Error(`Unsupported data type ${dtype}`)}const rgamma=new RandGamma(alpha,beta,dtype,seed);const res=buffer2(shape,dtype);for(let i=0;i<res.values.length;i++){res.values[i]=rgamma.nextValue()}return res.toTensor()}const randomGamma=op({randomGamma_});function randomNormal_(shape,mean2=0,stdDev=1,dtype,seed){if(dtype!=null&&dtype==="bool"){throw new Error(`Unsupported data type ${dtype}`)}const randGauss=new MPRandGauss(mean2,stdDev,dtype,false,seed);const res=buffer2(shape,dtype);for(let i=0;i<res.values.length;i++){res.values[i]=randGauss.nextValue()}return res.toTensor()}const randomNormal=op({randomNormal_});function randomUniform_(shape,minval=0,maxval=1,dtype="float32",seed){const res=buffer2(shape,dtype);const random=new UniformRandom(minval,maxval,null,seed);for(let i=0;i<res.values.length;i++){res.values[i]=random.nextValue()}return res.toTensor()}const randomUniform=op({randomUniform_});function tensor1d(values,dtype){assertNonNull(values);const inferredShape=inferShape(values,dtype);if(inferredShape.length!==1){throw new Error("tensor1d() requires values to be a flat/TypedArray")}const shape=null;return makeTensor(values,shape,inferredShape,dtype)}function range(start,stop,step2=1,dtype="float32"){if(step2===0){throw new Error("Cannot have a step of zero")}const forward=()=>{const sameStartStop=start===stop;const increasingRangeNegativeStep=start<stop&&step2<0;const decreasingRangePositiveStep=stop<start&&step2>1;if(sameStartStop||increasingRangeNegativeStep||decreasingRangePositiveStep){return zeros([0],dtype)}const numElements=Math.abs(Math.ceil((stop-start)/step2));const values=makeZerosTypedArray(numElements,dtype);if(stop<start&&step2===1){step2=-1}values[0]=start;for(let i=1;i<values.length;i++){values[i]=values[i-1]+step2}return tensor1d(values,dtype)};const attrs={start,stop,step:step2,dtype};return ENGINE.runKernelFunc(forward,{},null,Range,attrs)}function reciprocal_(x){const $x=convertToTensor(x,"x","reciprocal");const inputs={x:$x};return ENGINE.runKernelFunc((backend2,save)=>{const res=backend2.reciprocal($x);save([$x]);return res},inputs,null,Reciprocal)}const reciprocal=op({reciprocal_});function relu_(x){const $x=convertToTensor(x,"x","relu");const forward=(backend2,save)=>{save([$x]);if($x.dtype==="bool"){return cast2($x,"int32")}return backend2.relu($x)};const inputs={x:$x};return ENGINE.runKernelFunc(forward,inputs,null,Relu3)}const relu=op({relu_});function relu6_(x){const $x=convertToTensor(x,"x","relu6");const forward=(backend2,save)=>{save([$x]);if($x.dtype==="bool"){return cast2($x,"int32")}return backend2.relu6($x)};const inputs={x:$x};return ENGINE.runKernelFunc(forward,inputs,null,Relu63)}const relu6=op({relu6_});function reverse_(x,axis){const $x=convertToTensor(x,"x","reverse");const forward=backend2=>{const axes=parseAxisParam(axis,$x.shape);if($x.rank===0){return clone($x)}const res=backend2.reverse($x,axes);return reshape2(res,$x.shape)};const inputs={x:$x};const attrs={dims:axis};return ENGINE.runKernelFunc(forward,inputs,null,Reverse3,attrs)}const reverse2=op({reverse_});function reverse1d_(x){const $x=convertToTensor(x,"x","reverse");assert($x.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${$x.rank}.`);return reverse2($x,0)}const reverse1d=op({reverse1d_});function reverse2d_(x,axis){const $x=convertToTensor(x,"x","reverse");assert($x.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${$x.rank}.`);return reverse2($x,axis)}const reverse2d=op({reverse2d_});function reverse3d_(x,axis){const $x=convertToTensor(x,"x","reverse");assert($x.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${$x.rank}.`);return reverse2($x,axis)}const reverse3d=op({reverse3d_});function reverse4d_(x,axis){const $x=convertToTensor(x,"x","reverse");assert($x.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${$x.rank}.`);return reverse2($x,axis)}const reverse4d=op({reverse4d_});function round_(x){const $x=convertToTensor(x,"x","round");const inputs={x:$x};return ENGINE.runKernelFunc(backend2=>backend2.round($x),inputs,null,Round)}const round=op({round_});function rsqrt_(x){const $x=convertToTensor(x,"x","rsqrt");const inputs={x:$x};return ENGINE.runKernelFunc((backend2,save)=>{const res=backend2.rsqrt($x);save([$x]);return res},inputs,null,Rsqrt3)}const rsqrt=op({rsqrt_});function selu_(x){const $x=convertToTensor(x,"x","selu");const forward=(backend2,save)=>{const res=backend2.selu($x);save([$x]);return res};const inputs={x:$x};return ENGINE.runKernelFunc(forward,inputs,null,Selu)}const selu=op({selu_});function separableConv2d_(x,depthwiseFilter,pointwiseFilter,strides,pad3,dilation=[1,1],dataFormat="NHWC"){const $x=convertToTensor(x,"x","separableConv2d");const $depthwiseFilter=convertToTensor(depthwiseFilter,"depthwiseFilter","separableConv2d");const $pointwiseFilter=convertToTensor(pointwiseFilter,"pointwiseFilter","separableConv2d");let x4D=$x;let reshapedTo4D=false;if($x.rank===3){reshapedTo4D=true;x4D=reshape2($x,[1,$x.shape[0],$x.shape[1],$x.shape[2]])}if(dataFormat==="NCHW"){throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported")}assert(x4D.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${x4D.rank}.`);assert($depthwiseFilter.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${$depthwiseFilter.rank}.`);assert($pointwiseFilter.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${$depthwiseFilter.rank}.`);assert($pointwiseFilter.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${$pointwiseFilter.shape[0]}.`);assert($pointwiseFilter.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${$pointwiseFilter.shape[1]}.`);const inChannels=$depthwiseFilter.shape[2];const channelMultiplier=$depthwiseFilter.shape[3];assert($pointwiseFilter.shape[2]===inChannels*channelMultiplier,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${inChannels*channelMultiplier}, but got ${$pointwiseFilter.shape[2]}.`);const depthwise=depthwiseConv2d2(x4D,$depthwiseFilter,strides,pad3,dataFormat,dilation);const pointwiseStride=1;const res=conv2d2(depthwise,$pointwiseFilter,pointwiseStride,"valid",dataFormat);if(reshapedTo4D){return reshape2(res,[res.shape[1],res.shape[2],res.shape[3]])}return res}const separableConv2d=op({separableConv2d_});async function setdiff1dAsync_(x,y){const $x=convertToTensor(x,"x","setdiff1d");const $y=convertToTensor(y,"y","setdiff1d");assert($x.dtype===$y.dtype,()=>`x and y should have the same dtype, but got x (${$x.dtype}) and y (${$y.dtype}).`);assert($x.rank===1,()=>`x should be 1D tensor, but got x (${$x.shape}).`);assert($y.rank===1,()=>`y should be 1D tensor, but got y (${$y.shape}).`);const xVals=await $x.data();const yVals=await $y.data();const ySet=new Set(yVals);let outputSize=0;for(let i=0;i<xVals.length;i++){if(!ySet.has(xVals[i])){outputSize++}}const buffer3=new TensorBuffer([outputSize],$x.dtype);const indices=new TensorBuffer([outputSize],"int32");for(let i=0,p2=0;i<xVals.length;i++){if(!ySet.has(xVals[i])){buffer3.values[p2]=xVals[i];indices.values[p2]=i;p2++}}return[buffer3.toTensor(),indices.toTensor()]}const setdiff1dAsync=setdiff1dAsync_;function sign_(x){const $x=convertToTensor(x,"x","sign");const inputs={x:$x};return ENGINE.runKernelFunc(backend2=>backend2.sign($x),inputs,null,Sign)}const sign=op({sign_});function sin_(x){const $x=convertToTensor(x,"x","sin");const inputs={x:$x};return ENGINE.runKernelFunc((backend2,save)=>{const res=backend2.sin($x);save([$x]);return res},inputs,null,Sin3)}const sin=op({sin_});function sinh_(x){const $x=convertToTensor(x,"x","sinh");const inputs={x:$x};return ENGINE.runKernelFunc((backend2,save)=>{const res=backend2.sinh($x);save([$x]);return res},inputs,null,Sinh)}const sinh=op({sinh_});function slice1d_(x,begin,size){const $x=convertToTensor(x,"x","slice1d");assert($x.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${$x.rank} tensor`);return slice2($x,[begin],[size])}const slice1d=op({slice1d_});function slice2d_(x,begin,size){const $x=convertToTensor(x,"x","slice2d");assert($x.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${$x.rank} tensor`);return slice2($x,begin,size)}const slice2d2=op({slice2d_});function slice3d_(x,begin,size){const $x=convertToTensor(x,"x","slice3d");assert($x.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${$x.rank} tensor`);return slice2($x,begin,size)}const slice3d2=op({slice3d_});function slice4d_(x,begin,size){const $x=convertToTensor(x,"x","slice4d");assert($x.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${$x.rank} tensor`);return slice2($x,begin,size)}const slice4d2=op({slice4d_});function softmax_(logits,dim=-1){const $logits=convertToTensor(logits,"logits","softmax","float32");if(dim===-1){dim=$logits.rank-1}if(dim!==$logits.rank-1){throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${$logits.rank} and dim was ${dim}`)}const inputs={logits:$logits};const attrs={dim};return ENGINE.runKernelFunc((backend2,save)=>{const y=backend2.softmax($logits,dim);save([y]);return y},inputs,null,Softmax3,attrs)}const softmax2=op({softmax_});function fft_(input2){assert(input2.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${input2.dtype}.`);const inputs={input:input2};return ENGINE.runKernelFunc(backend2=>{const innerDimensionSize=input2.shape[input2.shape.length-1];const batch=input2.size/innerDimensionSize;const input2D=input2.as2D(batch,innerDimensionSize);const result=backend2.fft(input2D);return result.reshape(input2.shape)},inputs,null,FFT)}const fft=op({fft_});function ifft_(input2){assert(input2.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${input2.dtype}.`);const inputs={input:input2};return ENGINE.runKernelFunc(backend2=>{const innerDimensionSize=input2.shape[input2.shape.length-1];const batch=input2.size/innerDimensionSize;const input2D=reshape2(input2,[batch,innerDimensionSize]);const result=backend2.ifft(input2D);return reshape2(result,input2.shape)},inputs,null,IFFT)}const ifft=op({ifft_});function irfft_(input2){const innerDimensionSize=input2.shape[input2.shape.length-1];const batch=input2.size/innerDimensionSize;let ret;if(innerDimensionSize<=2){const complexInput=reshape2(input2,[batch,innerDimensionSize]);ret=ifft(complexInput)}else{const outputShape=[batch,2*(innerDimensionSize-1)];const realInput=reshape2(real(input2),[batch,innerDimensionSize]);const imagInput=reshape2(imag(input2),[batch,innerDimensionSize]);const realConjugate=reverse2(slice2(realInput,[0,1],[batch,innerDimensionSize-2]),1);const imagConjugate=mul(reverse2(slice2(imagInput,[0,1],[batch,innerDimensionSize-2]),1),scalar(-1));const r=concat2([realInput,realConjugate],1);const i=concat2([imagInput,imagConjugate],1);const complexInput=reshape2(complex(r,i),[outputShape[0],outputShape[1]]);ret=ifft(complexInput)}ret=real(ret);if(input2.rank===3&&input2.shape[0]!==0){const temp=ret;const batch2=input2.shape[0];ret=reshape2(ret,[batch2,ret.shape[0]/batch2,ret.shape[1]]);temp.dispose()}return ret}const irfft=op({irfft_});function prepareSplitSize(x,numOrSizeSplits,axis=0){let splitSizes=[];if(typeof numOrSizeSplits==="number"){assert(x.shape[axis]%numOrSizeSplits===0,()=>"Number of splits must evenly divide the axis.");splitSizes=new Array(numOrSizeSplits).fill(x.shape[axis]/numOrSizeSplits)}else{const numOfNegs=numOrSizeSplits.reduce((count2,value)=>{if(value===-1){count2+=1}return count2},0);assert(numOfNegs<=1,()=>"There should be only one negative value in split array.");const negIndex=numOrSizeSplits.indexOf(-1);if(negIndex!==-1){const total=numOrSizeSplits.reduce((a,b)=>b>0?a+b:a);numOrSizeSplits[negIndex]=x.shape[axis]-total}assert(x.shape[axis]===numOrSizeSplits.reduce((a,b)=>a+b),()=>"The sum of sizes must match the size of the axis dimension.");splitSizes=numOrSizeSplits}return splitSizes}function split_(x,numOrSizeSplits,axis=0){const $x=convertToTensor(x,"x","split");const forward=(backend2,_)=>{const $axis=parseAxisParam(axis,$x.shape)[0];const splitSizes=prepareSplitSize($x,numOrSizeSplits,$axis);return backend2.split($x,splitSizes,$axis)};const inputs={x:$x};const attr={numOrSizeSplits,axis};return ENGINE.runKernelFunc(forward,inputs,null,SplitV2,attr)}const split2=op({split_});function rfft_(input2,fftLength){assert(input2.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${input2.dtype}`);let innerDimensionSize=input2.shape[input2.shape.length-1];const batch=input2.size/innerDimensionSize;let adjustedInput;if(fftLength!=null&&fftLength<innerDimensionSize){const begin=input2.shape.map(v=>0);const size=input2.shape.map(v=>v);size[input2.shape.length-1]=fftLength;adjustedInput=slice2(input2,begin,size);innerDimensionSize=fftLength}else if(fftLength!=null&&fftLength>innerDimensionSize){const zerosShape=input2.shape.map(v=>v);zerosShape[input2.shape.length-1]=fftLength-innerDimensionSize;adjustedInput=concat2([input2,zeros(zerosShape)],input2.shape.length-1);innerDimensionSize=fftLength}else{adjustedInput=input2}const zerosInput=zerosLike2(adjustedInput);const complexInput=reshape2(complex(adjustedInput,zerosInput),[batch,innerDimensionSize]);const ret=fft(complexInput);const half=Math.floor(innerDimensionSize/2)+1;const realValues=real(ret);const imagValues=imag(ret);const realComplexConjugate=split2(realValues,[half,innerDimensionSize-half],realValues.shape.length-1);const imagComplexConjugate=split2(imagValues,[half,innerDimensionSize-half],imagValues.shape.length-1);const outputShape=adjustedInput.shape.slice();outputShape[adjustedInput.shape.length-1]=half;return reshape2(complex(realComplexConjugate[0],imagComplexConjugate[0]),outputShape)}const rfft=op({rfft_});function sqrt_(x){const $x=convertToTensor(x,"x","sqrt");const inputs={x:$x};return ENGINE.runKernelFunc((backend2,save)=>{const res=backend2.sqrt($x);save([$x]);return res},inputs,null,Sqrt3)}const sqrt=op({sqrt_});function squaredDifference_(a,b){let $a=convertToTensor(a,"a","squaredDifference");let $b=convertToTensor(b,"b","squaredDifference");[$a,$b]=makeTypesMatch($a,$b);assertAndGetBroadcastShape($a.shape,$b.shape);const forward=(backend2,save)=>{const res=backend2.squaredDifference($a,$b);save([$a,$b]);return res};const inputs={a:$a,b:$b};const attrs={};return ENGINE.runKernelFunc(forward,inputs,null,SquaredDifference3,attrs)}const squaredDifference=op({squaredDifference_});function squeeze_(x,axis){const $x=convertToTensor(x,"x","squeeze");return reshape2($x,squeezeShape($x.shape,axis).newShape)}const squeeze=op({squeeze_});function stack_(tensors,axis=0){const $tensors=convertToTensorArray(tensors,"tensors","stack");assert($tensors.length>=1,()=>"Pass at least one tensor to tf.stack");if($tensors.length===1){return expandDims($tensors[0],axis)}const rank=$tensors[0].rank;const shape=$tensors[0].shape;const dtype=$tensors[0].dtype;assert(axis<=rank,()=>"Axis must be <= rank of the tensor");$tensors.forEach(t=>{assertShapesMatch(shape,t.shape,"All tensors passed to stack must have matching shapes");assert(dtype===t.dtype,()=>"All tensors passed to stack must have matching dtypes")});const expandedTensors=$tensors.map(t=>expandDims(t,axis));return concat2(expandedTensors,axis)}const stack=op({stack_});function step_(x,alpha=0){const $x=convertToTensor(x,"x","step");const inputs={x:$x};const attrs={alpha};return ENGINE.runKernelFunc(backend2=>backend2.step($x,alpha),inputs,null,Step,attrs)}const step=op({step_});function stridedSlice_(x,begin,end,strides,beginMask=0,endMask=0,ellipsisMask=0,newAxisMask=0,shrinkAxisMask=0){let $x=convertToTensor(x,"x","stridedSlice");const forward=backend2=>{if(strides==null){strides=new Array(begin.length)}const ellipsisAxes=maskToAxes(ellipsisMask);if(ellipsisAxes.length>1){throw new Error("Multiple ellipses in slice is not allowed.")}if(ellipsisMask!==0&&newAxisMask!==0){throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.")}if(ellipsisMask!==0&&shrinkAxisMask!==0){throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.")}const numInterpolatedAxes=$x.rank-begin.length;const expandAxes=maskToAxes(newAxisMask);const newShape=$x.shape.slice();expandAxes.forEach(axis=>{begin[axis]=0;end[axis]=1;newShape.splice(axis,0,1)});$x=reshape2($x,newShape);const{begin:normalizedBegin,end:normalizedEnd,strides:normalizedStrides}=getNormalizedAxes($x.shape,ellipsisAxes,numInterpolatedAxes,begin,end,strides,beginMask,endMask,ellipsisMask);begin=normalizedBegin;end=normalizedEnd;strides=normalizedStrides;const shrinkAxes=maskToAxes(shrinkAxisMask);shrinkAxes.forEach(axis=>{end[axis]=begin[axis]+1;strides[axis]=1});const size=computeOutShape2(begin,end,strides);const outShape=size.filter((_,axis)=>shrinkAxes.indexOf(axis)===-1);const nonStrided=strides.every(v=>v===1);if(nonStrided){return reshape2(slice2($x,begin,size),outShape)}const res=backend2.stridedSlice($x,begin,end,strides);return reshape2(res,outShape)};const inputs={x:$x};const attrs={begin,end,strides,beginMask,endMask,ellipsisMask,newAxisMask,shrinkAxisMask};return ENGINE.runKernelFunc(forward,inputs,null,StridedSlice3,attrs)}const stridedSlice2=op({stridedSlice_});function tan_(x){const $x=convertToTensor(x,"x","tan");const inputs={x:$x};return ENGINE.runKernelFunc((backend2,save)=>{const res=backend2.tan($x);save([$x]);return res},inputs,null,Tan)}const tan=op({tan_});function tensor2d(values,shape,dtype){assertNonNull(values);if(shape!=null&&shape.length!==2){throw new Error("tensor2d() requires shape to have two numbers")}const inferredShape=inferShape(values,dtype);if(inferredShape.length!==2&&inferredShape.length!==1){throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray")}if(inferredShape.length===1&&shape==null){throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray")}return makeTensor(values,shape,inferredShape,dtype)}function tensor4d(values,shape,dtype){assertNonNull(values);if(shape!=null&&shape.length!==4){throw new Error("tensor4d() requires shape to have four numbers")}const inferredShape=inferShape(values,dtype);if(inferredShape.length!==4&&inferredShape.length!==1){throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray")}if(inferredShape.length===1&&shape==null){throw new Error("tensor4d() requires shape to be provided when `values` are a flat array")}return makeTensor(values,shape,inferredShape,dtype)}function tensor5d(values,shape,dtype){assertNonNull(values);if(shape!=null&&shape.length!==5){throw new Error("tensor5d() requires shape to have five numbers")}const inferredShape=inferShape(values,dtype);if(inferredShape.length!==5&&inferredShape.length!==1){throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray")}if(inferredShape.length===1&&shape==null){throw new Error("tensor5d() requires shape to be provided when `values` are a flat array")}return makeTensor(values,shape,inferredShape,dtype)}function tensor6d(values,shape,dtype){assertNonNull(values);if(shape!=null&&shape.length!==6){throw new Error("tensor6d() requires shape to have six numbers")}const inferredShape=inferShape(values,dtype);if(inferredShape.length!==6&&inferredShape.length!==1){throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray")}if(inferredShape.length===1&&shape==null){throw new Error("tensor6d() requires shape to be provided when `values` are a flat array")}shape=shape||inferredShape;return makeTensor(values,shape,inferredShape,dtype)}function topk_(x,k=1,sorted=true){const $x=convertToTensor(x,"x","topk");if($x.rank===0){throw new Error("topk() expects the input to be of rank 1 or higher")}const lastDim=$x.shape[$x.shape.length-1];if(k>lastDim){throw new Error(`'k' passed to topk() must be <= the last dimension (${lastDim}) but got ${k}`)}const inputs={x:$x};const attrs={k,sorted};const[values,indices]=ENGINE.runKernelFunc(b=>b.topk($x,k,sorted),inputs,null,TopK,attrs);return{values,indices}}const topk=op({topk_});function truncatedNormal_(shape,mean2=0,stdDev=1,dtype,seed){if(dtype!=null&&dtype==="bool"){throw new Error(`Unsupported data type $ { dtype }`)}const randGauss=new MPRandGauss(mean2,stdDev,dtype,true,seed);const res=buffer2(shape,dtype);for(let i=0;i<res.values.length;i++){res.values[i]=randGauss.nextValue()}return res.toTensor()}const truncatedNormal=op({truncatedNormal_});function unique_(x,axis=0){const $x=convertToTensor(x,"x","unique",null);assert($x.rank>0,()=>"The input tensor must be at least 1D");const inputs={x:$x};const attrs={axis};const[values,indices]=ENGINE.runKernel(Unique,inputs,attrs);return{values,indices}}const unique=op({unique_});function unsortedSegmentSum_(x,segmentIds,numSegments){const $x=convertToTensor(x,"x","unsortedSegmentSum");const $segmentIds=convertToTensor(segmentIds,"segmentIds","unsortedSegmentSum","int32");assert(isInt(numSegments),()=>"numSegments must be of dtype int");const inputs={x:$x,segmentIds:$segmentIds};const attrs={numSegments};const forward=(backend2,save)=>{const res=backend2.unsortedSegmentSum($x,$segmentIds,numSegments);save([$segmentIds]);return res};return ENGINE.runKernelFunc(forward,inputs,null,UnsortedSegmentSum,attrs)}const unsortedSegmentSum=op({unsortedSegmentSum_});function unstack_(x,axis=0){const $x=convertToTensor(x,"x","unstack");assert(axis>=-$x.shape.length&&axis<$x.shape.length,()=>`Axis = ${axis} is not in [-${$x.shape.length}, ${$x.shape.length})`);if(axis<0){axis+=$x.shape.length}const inputs={value:$x};const attrs={axis};const forward=backend2=>backend2.unstack($x,axis);return ENGINE.runKernelFunc(forward,inputs,null,Unpack3,attrs)}const unstack=op({unstack_});function variable(initialValue,trainable=true,name,dtype){return ENGINE.makeVariable(initialValue,trainable,name,dtype)}function whereImpl(condShape,condVals){const indices=[];for(let i=0;i<condVals.length;i++){if(condVals[i]){indices.push(i)}}const inBuffer=buffer2(condShape,"int32");const out=buffer2([indices.length,condShape.length],"int32");for(let i=0;i<indices.length;i++){const loc=inBuffer.indexToLoc(indices[i]);const offset=i*condShape.length;out.values.set(loc,offset)}return out.toTensor()}async function whereAsync_(condition){const $condition=convertToTensor(condition,"condition","whereAsync","bool");const vals=await $condition.data();const res=whereImpl($condition.shape,vals);if(condition!==$condition){$condition.dispose()}return res}const whereAsync=whereAsync_;async function booleanMaskAsync_(tensor2,mask,axis){const $tensor=convertToTensor(tensor2,"tensor","boolMask");const $mask=convertToTensor(mask,"mask","boolMask","bool");const axisFrom=axis==null?0:axis;const maskDim=$mask.rank;const tensorShape=$tensor.shape;assert(maskDim>0,()=>"mask cannot be scalar");assertShapesMatch(tensorShape.slice(axisFrom,axisFrom+maskDim),$mask.shape,`mask's shape must match the first K dimensions of tensor's shape,`);let leadingSize=1;for(let i=axisFrom;i<axisFrom+maskDim;i++){leadingSize*=tensorShape[i]}const targetTensorShape=tensorShape.slice(0,axisFrom).concat([leadingSize],tensorShape.slice(axisFrom+maskDim));const reshapedTensor=reshape2($tensor,targetTensorShape);const reshapedMask=reshape2($mask,[-1]);const positivePositions=await whereAsync(reshapedMask);const indices=squeeze(positivePositions,[1]);const res=gather(reshapedTensor,indices,axisFrom);if(tensor2!==$tensor){$tensor.dispose()}if(mask!==$mask){$mask.dispose()}indices.dispose();reshapedTensor.dispose();reshapedMask.dispose();positivePositions.dispose();return res}const booleanMaskAsync=booleanMaskAsync_;function notEqualStrict_(a,b){deprecationWarn2("strict variants of ops have been deprecated and will be removed in future");const $a=convertToTensor(a,"a","notEqualStrict");const $b=convertToTensor(b,"b","notEqualStrict");assertShapesMatch($a.shape,$b.shape,"Error in notEqualStrict: ");return notEqual($a,$b)}function lessStrict_(a,b){deprecationWarn2("strict variants of ops have been deprecated and will be removed in future");const $a=convertToTensor(a,"a","lessStrict");const $b=convertToTensor(b,"b","lessStrict");assertShapesMatch($a.shape,$b.shape,"Error in lessStrict: ");return less($a,$b)}function equalStrict_(a,b){deprecationWarn2("strict variants of ops have been deprecated and will be removed in future");const $a=convertToTensor(a,"a","equalStrict");const $b=convertToTensor(b,"b","equalStrict");assertShapesMatch($a.shape,$b.shape,"Error in equalStrict: ");return equal($a,$b)}function lessEqualStrict_(a,b){deprecationWarn2("strict variants of ops have been deprecated and will be removed in future");const $a=convertToTensor(a,"a","lessEqualStrict");const $b=convertToTensor(b,"b","lessEqualStrict");assertShapesMatch($a.shape,$b.shape,"Error in lessEqualStrict: ");return lessEqual($a,$b)}function greaterStrict_(a,b){deprecationWarn2("strict variants of ops have been deprecated and will be removed in future");const $a=convertToTensor(a,"a","greaterStrict");const $b=convertToTensor(b,"b","greaterStrict");assertShapesMatch($a.shape,$b.shape,"Error in greaterStrict: ");return greater($a,$b)}function greaterEqualStrict_(a,b){deprecationWarn2("strict variants of ops have been deprecated and will be removed in future");const $a=convertToTensor(a,"a","greaterEqualStrict");const $b=convertToTensor(b,"b","greaterEqualStrict");assertShapesMatch($a.shape,$b.shape,"Error in greaterEqualStrict: ");return greaterEqual($a,$b)}const equalStrict=op({equalStrict_});const greaterEqualStrict=op({greaterEqualStrict_});const greaterStrict=op({greaterStrict_});const lessEqualStrict=op({lessEqualStrict_});const lessStrict=op({lessStrict_});const notEqualStrict=op({notEqualStrict_});function addStrict_(a,b){deprecationWarn2("strict variants of ops have been deprecated and will be removed in future");const $a=convertToTensor(a,"a","addStrict");const $b=convertToTensor(b,"b","addStrict");assertShapesMatch($a.shape,$b.shape,"Error in addStrict: ");return add$1($a,$b)}function subStrict_(a,b){deprecationWarn2("strict variants of ops have been deprecated and will be removed in future");const $a=convertToTensor(a,"a","subStrict");const $b=convertToTensor(b,"b","subStrict");assertShapesMatch($a.shape,$b.shape,"Error in subStrict: ");return sub($a,$b)}function powStrict_(base,exp2){deprecationWarn2("strict variants of ops have been deprecated and will be removed in future");assertShapesMatch(base.shape,exp2.shape,"Error in powStrict: ");return pow(base,exp2)}function mulStrict_(a,b){deprecationWarn2("strict variants of ops have been deprecated and will be removed in future");const $a=convertToTensor(a,"a","mul");const $b=convertToTensor(b,"b","mul");assertShapesMatch($a.shape,$b.shape,"Error in multiplyStrict: ");return mul($a,$b)}function divStrict_(a,b){deprecationWarn2("strict variants of ops have been deprecated and will be removed in future");const $a=convertToTensor(a,"a","div");const $b=convertToTensor(b,"b","div");assertShapesMatch($a.shape,$b.shape,"Error in divideStrict: ");return div($a,$b)}function modStrict_(a,b){deprecationWarn2("strict variants of ops have been deprecated and will be removed in future");const $a=convertToTensor(a,"a","modStrict");const $b=convertToTensor(b,"b","modStrict");assertShapesMatch($a.shape,$b.shape,"Error in modStrict: ");return mod($a,$b)}function minimumStrict_(a,b){deprecationWarn2("strict variants of ops have been deprecated and will be removed in future");const $a=convertToTensor(a,"a","minimumStrict");const $b=convertToTensor(b,"b","minimumStrict");assertShapesMatch($a.shape,$b.shape,"Error in minimumStrict: ");return minimum($a,$b)}function maximumStrict_(a,b){deprecationWarn2("strict variants of ops have been deprecated and will be removed in future");const $a=convertToTensor(a,"a","maximumStrict");const $b=convertToTensor(b,"b","maximumStrict");assertShapesMatch($a.shape,$b.shape,"Error in maximumStrict: ");return maximum($a,$b)}function squaredDifferenceStrict_(a,b){deprecationWarn2("strict variants of ops have been deprecated and will be removed in future");const $a=convertToTensor(a,"a","squaredDifferenceStrict");const $b=convertToTensor(b,"b","squaredDifferenceStrict");assertShapesMatch($a.shape,$b.shape,"Error in squaredDifferenceStrict: ");return squaredDifference($a,$b)}const addStrict=op({addStrict_});const divStrict=op({divStrict_});const maximumStrict=op({maximumStrict_});const minimumStrict=op({minimumStrict_});const modStrict=op({modStrict_});const mulStrict=op({mulStrict_});const powStrict=op({powStrict_});const squaredDifferenceStrict=op({squaredDifferenceStrict_});const subStrict=op({subStrict_});function norm_(x,ord="euclidean",axis=null,keepDims=false){x=convertToTensor(x,"x","norm");const norm2=normImpl(x,ord,axis);let keepDimsShape=norm2.shape;if(keepDims){const axes=parseAxisParam(axis,x.shape);keepDimsShape=expandShapeToKeepDim(norm2.shape,axes)}return reshape2(norm2,keepDimsShape)}function normImpl(x,p2,axis=null){if(x.rank===0){return abs(x)}if(x.rank!==1&&axis===null){return normImpl(reshape2(x,[-1]),p2,axis)}if(x.rank===1||typeof axis==="number"||Array.isArray(axis)&&axis.length===1){if(p2===1){return sum$1(abs(x),axis)}if(p2===Infinity){return max2(abs(x),axis)}if(p2===-Infinity){return min2(abs(x),axis)}if(p2==="euclidean"||p2===2){return sqrt(sum$1(pow(abs(x),scalar(2,"int32")),axis))}throw new Error(`Error in norm: invalid ord value: ${p2}`)}if(Array.isArray(axis)&&axis.length===2){if(p2===1){return max2(sum$1(abs(x),axis[0]),axis[1]-1)}if(p2===Infinity){return max2(sum$1(abs(x),axis[1]),axis[0])}if(p2===-Infinity){return min2(sum$1(abs(x),axis[1]),axis[0])}if(p2==="fro"||p2==="euclidean"){return sqrt(sum$1(square(x),axis))}throw new Error(`Error in norm: invalid ord value: ${p2}`)}throw new Error(`Error in norm: invalid axis: ${axis}`)}const norm=op({norm_});function movingAverage_(v,x,decay,step2,zeroDebias=true){const $v=convertToTensor(v,"v","movingAverage");const $x=convertToTensor(x,"x","movingAverage");const $decay=convertToTensor(decay,"decay","movingAverage");assertTypesMatch($v,$x);assert(arraysEqual($v.shape,$x.shape),()=>"Shape mismatch in v and x");const one=scalar(1);const oneMinusDecay=sub(one,$decay);let update2=mul(sub($x,$v),oneMinusDecay);if(zeroDebias){assert(step2!=null,()=>"When using zeroDebias: true, step is required.");const $step=convertToTensor(step2,"step","movingAverage");update2=div(update2,sub(one,pow($decay,$step)))}return add$1($v,update2)}const movingAverage=op({movingAverage_});function scatterND_(indices,updates,shape){const $indices=convertToTensor(indices,"indices","scatterND","int32");const $updates=convertToTensor(updates,"updates","scatterND");validateInput($updates,$indices,shape);const forward=backend2=>{return backend2.scatterND($indices,$updates,shape)};const inputs={indices:$indices,updates:$updates};const attrs={shape};return ENGINE.runKernelFunc(forward,inputs,null,ScatterNd3,attrs)}const scatterND=op({scatterND_});function validateInput$1(sparseIndices,sparseValues,outputShape,defaultValues){if(sparseIndices.dtype!=="int32"){throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${sparseIndices.dtype}.`)}if(sparseIndices.rank>2){throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${sparseIndices.shape}.`)}const numElems=sparseIndices.rank>0?sparseIndices.shape[0]:1;const numDims=sparseIndices.rank>1?sparseIndices.shape[1]:1;if(outputShape.length!==numDims){throw new Error(`outputShape has incorrect number of elements:, ${outputShape.length}, should be: ${numDims}.`)}const numValues=sparseValues.size;if(!(sparseValues.rank===0||sparseValues.rank===1&&numValues===numElems)){throw new Error(`sparseValues has incorrect shape ${sparseValues.shape}, should be [] or [${numElems}]`)}if(sparseValues.dtype!==defaultValues.dtype){throw new Error("sparseValues.dtype must match defaultValues.dtype")}}function sparseToDense_(sparseIndices,sparseValues,outputShape,defaultValue=0){const $sparseIndices=convertToTensor(sparseIndices,"sparseIndices","sparseToDense","int32");const $sparseValues=convertToTensor(sparseValues,"sparseValues","sparseToDense");const $defaultValue=convertToTensor(defaultValue,"defaultValue","sparseToDense",$sparseValues.dtype);validateInput$1($sparseIndices,$sparseValues,outputShape,$defaultValue);const inputs={sparseIndices:$sparseIndices,sparseValues:$sparseValues,defaultValue:$defaultValue};const attrs={outputShape};return ENGINE.runKernelFunc(backend2=>backend2.sparseToDense($sparseIndices,$sparseValues,outputShape,$defaultValue),inputs,null,SparseToDense,attrs)}const sparseToDense=op({sparseToDense_});function gatherND_(x,indices){const $indices=convertToTensor(indices,"indices","gatherND","int32");const $x=convertToTensor(x,"x","gatherND");const forward=backend2=>{return backend2.gatherND($x,$indices)};const inputs={params:$x,indices:$indices};return ENGINE.runKernelFunc(forward,inputs,null,GatherNd3)}const gatherND=op({gatherND_});function getNoiseShape(x,noiseShape){if(noiseShape==null){return x.shape.slice()}if(arraysEqual(x.shape,noiseShape)){return noiseShape}if(x.shape.length===noiseShape.length){const newDimension=[];for(let i=0;i<x.shape.length;i++){if(noiseShape[i]==null&&x.shape[i]!=null){newDimension.push(x.shape[i])}else{newDimension.push(noiseShape[i])}}return newDimension}return noiseShape}function dropout_(x,rate,noiseShape,seed){const $x=convertToTensor(x,"x","dropout");assert($x.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${$x.dtype} tensor instead.`);assert(rate>=0&&rate<1,()=>`rate must be a float in the range [0, 1), but got ${rate}.`);if(rate===0){return x instanceof Tensor?$x.clone():$x}const $noiseShape=getNoiseShape($x,noiseShape);const keepProb=1-rate;const multiplier=div(floor(add$1(randomUniform($noiseShape,0,1,"float32",seed),keepProb)),keepProb);return mul($x,multiplier)}const dropout=op({dropout_});function enclosingPowerOfTwo(value){return Math.floor(Math.pow(2,Math.ceil(Math.log(value)/Math.log(2))))}function cosineWindow(windowLength,a,b){const even=1-windowLength%2;const newValues=new Float32Array(windowLength);for(let i=0;i<windowLength;++i){const cosArg=2*Math.PI*i/(windowLength+even-1);newValues[i]=a-b*Math.cos(cosArg)}return tensor1d(newValues,"float32")}async function inTopKAsync_(predictions,targets,k=1){const $predictions=convertToTensor(predictions,"predictions","inTopK");const $targets=convertToTensor(targets,"targets","inTopK");assert($predictions.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${$predictions.rank}`);assert($predictions.rank-1===$targets.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${$predictions.rank} and targets rank ${$targets.rank}`);assertShapesMatch($predictions.shape.slice(0,$predictions.shape.length-1),$targets.shape,`predictions's shape should be align with the targets' shape, except the last dimension.`);const lastDim=$predictions.shape[$predictions.shape.length-1];assert(k>0&&k<=lastDim,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${lastDim}), but got ${k}`);const predictionsVals=await $predictions.data();const targetsVals=await $targets.data();const[batch,size]=[predictionsVals.length/lastDim,lastDim];const precision2=getTypedArrayFromDType("bool",batch);for(let b=0;b<batch;b++){const offset=b*size;const vals=predictionsVals.subarray(offset,offset+size);const valAndInd=[];for(let i=0;i<vals.length;i++){valAndInd.push({value:vals[i],index:i})}valAndInd.sort((a,b2)=>b2.value-a.value);precision2[b]=0;for(let i=0;i<k;i++){if(valAndInd[i].index===targetsVals[b]){precision2[b]=1;break}}}if(predictions!==$predictions){$predictions.dispose()}if(targets!==$targets){$targets.dispose()}return tensor(precision2,$targets.shape,"bool")}const inTopKAsync=inTopKAsync_;function conv2DBackpropFilter_(x,dy,filterShape,strides,pad3,dataFormat="NHWC",dimRoundingMode){let x4D=x;if(x.rank===3){x4D=reshape2(x,[1,x.shape[0],x.shape[1],x.shape[2]])}let dy4D=dy;if(dy4D.rank===3){dy4D=reshape2(dy,[1,dy.shape[0],dy.shape[1],dy.shape[2]])}assert(x4D.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${x4D.shape}.`);assert(dy4D.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${dy4D.shape}.`);assert(filterShape.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${filterShape}.`);const inDepth=dataFormat==="NHWC"?x4D.shape[3]:x4D.shape[1];const outDepth=dataFormat==="NHWC"?dy4D.shape[3]:dy4D.shape[1];assert(inDepth===filterShape[2],()=>`Error in conv2dDerFilter: depth of input ${inDepth}) must match input depth in filter (${filterShape[2]}.`);assert(outDepth===filterShape[3],()=>`Error in conv2dDerFilter: depth of dy (${outDepth}) must match output depth for filter (${filterShape[3]}).`);if(dimRoundingMode!=null){assert(isInt(pad3),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${dimRoundingMode} but got pad ${pad3}.`)}const forward=backend2=>{const dilations=1;const $dataFormat=convertConv2DDataFormat(dataFormat);const convInfo=computeConv2DInfo(x4D.shape,filterShape,strides,dilations,pad3,dimRoundingMode,false,$dataFormat);return backend2.conv2dDerFilter(x4D,dy4D,convInfo)};const inputs={x:x4D,dy:dy4D};const attrs={strides,pad:pad3,dataFormat,dimRoundingMode,filterShape};return ENGINE.runKernelFunc(forward,inputs,null,Conv2DBackpropFilter,attrs)}const conv2DBackpropFilter=op({conv2DBackpropFilter_});function getFusedDyActivation(dy,y,activation2){if(activation2==null||activation2==="linear"){return dy}if(activation2==="relu"){return mul(dy,step(y))}throw new Error(`Cannot compute gradient for fused activation ${activation2}.`)}function getFusedBiasGradient(bias,dyActivation){let res=dyActivation;const reduceAxes=getReductionAxes(bias.shape,dyActivation.shape);if(reduceAxes.length>0){res=sum$1(res,reduceAxes)}return reshape2(res,bias.shape)}function applyActivation(x,activation2,preluActivationWeights){if(activation2==="linear"){return x}else if(activation2==="relu"){return relu(x)}else if(activation2==="elu"){return elu(x)}else if(activation2==="relu6"){return relu6(x)}else if(activation2==="prelu"){return prelu2(x,preluActivationWeights)}throw new Error(`Unknown fused activation ${activation2}.`)}const shouldFuse=(gradientDepth,activation2)=>{const gradientMode=gradientDepth>0;return!gradientMode||activation2==="linear"};function fusedConv2d_({x,filter,strides,pad:pad3,dataFormat="NHWC",dilations=[1,1],dimRoundingMode,bias,activation:activation2="linear",preluActivationWeights}){activation2=activation2||"linear";if(shouldFuse(ENGINE.state.gradientDepth,activation2)===false){let result=conv2d2(x,filter,strides,pad3,dataFormat,dilations,dimRoundingMode);if(bias!=null){result=add$1(result,bias)}return applyActivation(result,activation2,preluActivationWeights)}const $x=convertToTensor(x,"x","conv2d");const $filter=convertToTensor(filter,"filter","conv2d");let x4D=$x;let reshapedTo4D=false;if($x.rank===3){reshapedTo4D=true;x4D=reshape2($x,[1,$x.shape[0],$x.shape[1],$x.shape[2]])}assert(x4D.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${x4D.rank}.`);assert($filter.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${$filter.rank}.`);if(dimRoundingMode!=null){assert(isInt(pad3),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${dimRoundingMode} but got pad ${pad3}.`)}assert(x4D.shape[3]===$filter.shape[2],()=>`Error in conv2d: depth of input (${x4D.shape[3]}) must match input depth for filter ${$filter.shape[2]}.`);assert(eitherStridesOrDilationsAreOne(strides,dilations),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`);assert(dataFormat==="NHWC",()=>`Error in conv2d: got dataFormat of ${dataFormat} but only NHWC is currently supported.`);const convInfo=computeConv2DInfo(x4D.shape,$filter.shape,strides,dilations,pad3,dimRoundingMode);let $bias;if(bias!=null){$bias=convertToTensor(bias,"bias","fused conv2d");[$bias]=makeTypesMatch($bias,$x);assertAndGetBroadcastShape(convInfo.outShape,$bias.shape)}let $preluActivationWeights;if(preluActivationWeights!=null){$preluActivationWeights=convertToTensor(preluActivationWeights,"prelu weights","fused conv2d")}const grad2=(dy,saved)=>{const[$filter2,x4D2,y,$bias2]=saved;const dyActivation=getFusedDyActivation(dy,y,activation2);assert(tupleValuesAreOne(dilations),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${dilations}'`);const xDer=conv2DBackpropInput2(x4D2.shape,dyActivation,$filter2,strides,pad3);const filterDer=conv2DBackpropFilter(x4D2,dyActivation,$filter2.shape,strides,pad3);const der=[xDer,filterDer];if($bias2!=null){const biasDer=getFusedBiasGradient($bias2,dyActivation);der.push(biasDer)}return der};const forward=backend2=>{const res=backend2.fusedConv2d({input:x4D,filter:$filter,convInfo,bias:$bias,activation:activation2,preluActivationWeights:$preluActivationWeights});return res};const inputs={x:x4D,filter:$filter,bias:$bias,preluActivationWeights:$preluActivationWeights};const attrs={strides,pad:pad3,dataFormat,dilations,dimRoundingMode,activation:activation2};if(bias==null){const customOp=customGrad((x4D2,filter2,save)=>{let res=ENGINE.runKernelFunc(forward,inputs,null,FusedConv2D3,attrs);save([filter2,x4D2,res]);if(reshapedTo4D){res=reshape2(res,[res.shape[1],res.shape[2],res.shape[3]])}return{value:res,gradFunc:grad2}});return customOp(x4D,$filter)}else{const customOpWithBias=customGrad((x4D2,filter2,bias2,save)=>{let res=ENGINE.runKernelFunc(forward,inputs,null,FusedConv2D3,attrs);save([filter2,x4D2,res,bias2]);if(reshapedTo4D){res=reshape2(res,[res.shape[1],res.shape[2],res.shape[3]])}return{value:res,gradFunc:grad2}});return customOpWithBias(x4D,$filter,$bias)}}const conv2d$1=op({fusedConv2d_});function depthwiseConv2dNativeBackpropFilter_(x,dy,filterShape,strides,pad3,dilations=[1,1],dimRoundingMode){let x4D=x;if(x.rank===3){x4D=reshape2(x,[1,x.shape[0],x.shape[1],x.shape[2]])}let dy4D=dy;if(dy4D.rank===3){dy4D=reshape2(dy,[1,dy.shape[0],dy.shape[1],dy.shape[2]])}const forward=backend2=>{const convInfo=computeConv2DInfo(x.shape,filterShape,strides,dilations,pad3,dimRoundingMode,true);return backend2.depthwiseConv2DDerFilter(x4D,dy4D,convInfo)};const inputs={x:x4D,dy:dy4D};const attrs={strides,pad:pad3,dimRoundingMode,dilations,filterShape};return ENGINE.runKernelFunc(forward,inputs,null,DepthwiseConv2dNativeBackpropFilter,attrs)}const depthwiseConv2dNativeBackpropFilter=op({depthwiseConv2dNativeBackpropFilter_});function depthwiseConv2dNativeBackpropInput_(xShape,dy,filter,strides,pad3,dilations=[1,1],dimRoundingMode){let dy4D=dy;let reshapedTo4D=false;if(dy.rank===3){reshapedTo4D=true;dy4D=reshape2(dy,[1,dy.shape[0],dy.shape[1],dy.shape[2]])}const forward=backend2=>{const convInfo=computeConv2DInfo(xShape,filter.shape,strides,dilations,pad3,dimRoundingMode,true);return backend2.depthwiseConv2DDerInput(dy4D,filter,convInfo)};const inputs={dy:dy4D,filter};const attrs={strides,pad:pad3,dimRoundingMode,dilations,inputShape:xShape};const res=ENGINE.runKernelFunc(forward,inputs,null,DepthwiseConv2dNativeBackpropInput,attrs);if(reshapedTo4D){return reshape2(res,[res.shape[1],res.shape[2],res.shape[3]])}return res}const depthwiseConv2dNativeBackpropInput=op({depthwiseConv2dNativeBackpropInput_});function fusedDepthwiseConv2d_({x,filter,strides,pad:pad3,dataFormat="NHWC",dilations=[1,1],dimRoundingMode,bias,activation:activation2="linear",preluActivationWeights}){if(shouldFuse(ENGINE.state.gradientDepth,activation2)===false){let result=depthwiseConv2d2(x,filter,strides,pad3,dataFormat,dilations,dimRoundingMode);if(bias!=null){result=add$1(result,bias)}return applyActivation(result,activation2,preluActivationWeights)}const $x=convertToTensor(x,"x","depthwiseConv2d");const $filter=convertToTensor(filter,"filter","depthwiseConv2d");let x4D=$x;let reshapedTo4D=false;if($x.rank===3){reshapedTo4D=true;x4D=reshape2($x,[1,$x.shape[0],$x.shape[1],$x.shape[2]])}assert(x4D.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${x4D.rank}.`);assert($filter.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${$filter.rank}.`);assert(x4D.shape[3]===$filter.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${x4D.shape[3]}) must match the inChannels dimension in filter ${$filter.shape[2]}.`);if(dilations==null){dilations=[1,1]}assert(eitherStridesOrDilationsAreOne(strides,dilations),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`);if(dimRoundingMode!=null){assert(isInt(pad3),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${dimRoundingMode} but got pad ${pad3}.`)}const convInfo=computeConv2DInfo(x4D.shape,$filter.shape,strides,dilations,pad3,dimRoundingMode,true);let $bias;if(bias!=null){$bias=convertToTensor(bias,"bias","fused conv2d");[$bias]=makeTypesMatch($bias,$x);assertAndGetBroadcastShape(convInfo.outShape,$bias.shape)}let $preluActivationWeights;if(preluActivationWeights!=null){$preluActivationWeights=convertToTensor(preluActivationWeights,"prelu weights","fused depthwiseConv2d")}const grad2=(dy,saved)=>{assert(tupleValuesAreOne(dilations),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${dilations}'`);const[$filter2,x4D2,y,bias2]=saved;const dyActivation=getFusedDyActivation(dy,y,activation2);const xDer=depthwiseConv2dNativeBackpropInput(x4D2.shape,dyActivation,$filter2,strides,pad3,dilations,dimRoundingMode);const filterDer=depthwiseConv2dNativeBackpropFilter(x4D2,dyActivation,$filter2.shape,strides,pad3,dilations,dimRoundingMode);if(bias2!=null){const biasDer=getFusedBiasGradient($bias,dyActivation);return[xDer,filterDer,biasDer]}return[xDer,filterDer]};const forward=backend2=>{const res=backend2.fusedDepthwiseConv2D({input:x4D,filter:$filter,convInfo,bias:$bias,activation:activation2,preluActivationWeights:$preluActivationWeights});return res};const inputs={x:x4D,filter:$filter,bias:$bias,preluActivationWeights:$preluActivationWeights};const attrs={strides,pad:pad3,dataFormat,dilations,dimRoundingMode,activation:activation2};if(bias==null){const customOp=customGrad((x4D2,filter2,save)=>{let res=ENGINE.runKernelFunc(forward,inputs,null,FusedDepthwiseConv2D3,attrs);save([filter2,x4D2,res]);if(reshapedTo4D){res=reshape2(res,[res.shape[1],res.shape[2],res.shape[3]])}return{value:res,gradFunc:grad2}});return customOp(x4D,$filter)}else{const customOpWithBias=customGrad((x4D2,filter2,bias2,save)=>{let res=ENGINE.runKernelFunc(forward,inputs,null,FusedDepthwiseConv2D3,attrs);save([filter2,x4D2,res,bias2]);if(reshapedTo4D){res=reshape2(res,[res.shape[1],res.shape[2],res.shape[3]])}return{value:res,gradFunc:grad2}});return customOpWithBias(x4D,$filter,$bias)}}const depthwiseConv2d$1=op({fusedDepthwiseConv2d_});function fusedMatMul_({a,b,transposeA=false,transposeB=false,bias,activation:activation2="linear",preluActivationWeights}){if(shouldFuse(ENGINE.state.gradientDepth,activation2)===false){let result=matMul(a,b,transposeA,transposeB);if(bias!=null){result=add$1(result,bias)}return applyActivation(result,activation2,preluActivationWeights)}let $a=convertToTensor(a,"a","fused matMul");let $b=convertToTensor(b,"b","fused matMul");[$a,$b]=makeTypesMatch($a,$b);const innerShapeA=transposeA?$a.shape[$a.rank-2]:$a.shape[$a.rank-1];const innerShapeB=transposeB?$b.shape[$b.rank-1]:$b.shape[$b.rank-2];const outerShapeA=transposeA?$a.shape[$a.rank-1]:$a.shape[$a.rank-2];const outerShapeB=transposeB?$b.shape[$b.rank-2]:$b.shape[$b.rank-1];const outerDimsA=$a.shape.slice(0,-2);const outerDimsB=$b.shape.slice(0,-2);const batchDimA=sizeFromShape(outerDimsA);const batchDimB=sizeFromShape(outerDimsB);assert($a.rank>=2&&$b.rank>=2&&$a.rank===$b.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${$a.rank} and ${$b.rank}.`);assert(arraysEqual(outerDimsA,outerDimsB),()=>`Error in fused matMul: outer dimensions (${outerDimsA}) and (${outerDimsB}) of Tensors with shapes ${$a.shape} and ${$b.shape} must match.`);assert(innerShapeA===innerShapeB,()=>`Error in fused matMul: inner shapes (${innerShapeA}) and (${innerShapeB}) of Tensors with shapes ${$a.shape} and ${$b.shape} and transposeA=${transposeA} and transposeB=${transposeB} must match.`);const outShape=$a.shape.slice(0,-2).concat([outerShapeA,outerShapeB]);const a3D=transposeA?reshape2($a,[batchDimA,innerShapeA,outerShapeA]):reshape2($a,[batchDimA,outerShapeA,innerShapeA]);const b3D=transposeB?reshape2($b,[batchDimB,outerShapeB,innerShapeB]):reshape2($b,[batchDimB,innerShapeB,outerShapeB]);let $bias;if(bias!=null){$bias=convertToTensor(bias,"bias","fused matMul");[$bias]=makeTypesMatch($bias,$a);assertAndGetBroadcastShape(outShape,$bias.shape)}let $preluActivationWeights;if(preluActivationWeights!=null){$preluActivationWeights=convertToTensor(preluActivationWeights,"prelu weights","fused matMul")}const grad2=(dy,saved)=>{const[a3D2,b3D2,y,$bias2]=saved;const dyActivation=getFusedDyActivation(reshape2(dy,y.shape),y,activation2);let aDer;let bDer;if(!transposeA&&!transposeB){aDer=matMul(dyActivation,b3D2,false,true);bDer=matMul(a3D2,dyActivation,true,false)}else if(!transposeA&&transposeB){aDer=matMul(dyActivation,b3D2,false,false);bDer=matMul(dyActivation,a3D2,true,false)}else if(transposeA&&!transposeB){aDer=matMul(b3D2,dyActivation,false,true);bDer=matMul(a3D2,dyActivation,false,false)}else{aDer=matMul(b3D2,dyActivation,true,true);bDer=matMul(dyActivation,a3D2,true,true)}if(bias!=null){const biasDer=getFusedBiasGradient($bias2,dyActivation);return[aDer,bDer,biasDer]}else{return[aDer,bDer]}};const forward=backend2=>{const y=backend2.fusedBatchMatMul({a:a3D,b:b3D,transposeA,transposeB,bias:$bias,activation:activation2,preluActivationWeights:$preluActivationWeights});return y};const inputs={a:a3D,b:b3D,bias:$bias,preluActivationWeights:$preluActivationWeights};const attrs={transposeA,transposeB,activation:activation2};if(bias==null){const customOp=customGrad((a3D2,b3D2,save)=>{const res=ENGINE.runKernelFunc(forward,inputs,null,_FusedMatMul2,attrs);save([a3D2,b3D2,res]);return{value:reshape2(res,outShape),gradFunc:grad2}});return customOp(a3D,b3D)}else{const customOpWithBias=customGrad((a3D2,b3D2,$bias2,save)=>{const res=ENGINE.runKernelFunc(forward,inputs,null,_FusedMatMul2,attrs);save([a3D2,b3D2,res,$bias2]);return{value:reshape2(res,outShape),gradFunc:grad2}});return customOpWithBias(a3D,b3D,$bias)}}const matMul$1=op({fusedMatMul_});var fused_ops=Object.freeze({__proto__:null,conv2d:conv2d$1,depthwiseConv2d:depthwiseConv2d$1,matMul:matMul$1});function hammingWindow_(windowLength){return cosineWindow(windowLength,.54,.46)}const hammingWindow=op({hammingWindow_});function hannWindow_(windowLength){return cosineWindow(windowLength,.5,.5)}const hannWindow=op({hannWindow_});function frame_(signal2,frameLength,frameStep,padEnd=false,padValue=0){let start=0;const output=[];while(start+frameLength<=signal2.size){output.push(slice2(signal2,start,frameLength));start+=frameStep}if(padEnd){while(start<signal2.size){const padLen=start+frameLength-signal2.size;const pad3=concat2([slice2(signal2,start,frameLength-padLen),fill2([padLen],padValue)]);output.push(pad3);start+=frameStep}}if(output.length===0){return tensor2d([],[0,frameLength])}return reshape2(concat2(output),[output.length,frameLength])}const frame=op({frame_});function stft_(signal2,frameLength,frameStep,fftLength,windowFn=hannWindow){if(fftLength==null){fftLength=enclosingPowerOfTwo(frameLength)}const framedSignal=frame(signal2,frameLength,frameStep);const windowedSignal=mul(framedSignal,windowFn(frameLength));const output=[];for(let i=0;i<framedSignal.shape[0];i++){output.push(rfft(slice2(windowedSignal,[i,0],[1,frameLength]),fftLength))}return concat2(output)}const stft=op({stft_});function cropAndResize_(image3,boxes,boxInd,cropSize,method,extrapolationValue){const $image=convertToTensor(image3,"image","cropAndResize");const $boxes=convertToTensor(boxes,"boxes","cropAndResize","float32");const $boxInd=convertToTensor(boxInd,"boxInd","cropAndResize","int32");method=method||"bilinear";extrapolationValue=extrapolationValue||0;const numBoxes=$boxes.shape[0];assert($image.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${$image.rank}.`);assert($boxes.rank===2&&$boxes.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${numBoxes},4] but had shape ${$boxes.shape}.`);assert($boxInd.rank===1&&$boxInd.shape[0]===numBoxes,()=>`Error in cropAndResize: boxInd must be have size [${numBoxes}] but had shape ${$boxes.shape}.`);assert(cropSize.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${cropSize.length}.`);assert(cropSize[0]>=1&&cropSize[1]>=1,()=>`cropSize must be atleast [1,1], but was ${cropSize}`);assert(method==="bilinear"||method==="nearest",()=>`method must be bilinear or nearest, but was ${method}`);const forward=backend2=>backend2.cropAndResize($image,$boxes,$boxInd,cropSize,method,extrapolationValue);const inputs={image:$image,boxes:$boxes,boxInd:$boxInd};const attrs={method,extrapolationValue,cropSize};const res=ENGINE.runKernelFunc(forward,inputs,null,CropAndResize3,attrs);return res}const cropAndResize2=op({cropAndResize_});function flipLeftRight_(image3){const $image=convertToTensor(image3,"image","flipLeftRight","float32");assert($image.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${$image.rank}.`);const inputs={image:$image};const res=ENGINE.runKernel(FlipLeftRight3,inputs,{});return res}const flipLeftRight2=op({flipLeftRight_});function rotateWithOffset_(image3,radians,fillValue=0,center=.5){const $image=convertToTensor(image3,"image","rotateWithOffset","float32");assert($image.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${$image.rank}.`);const inputs={image:$image};const attrs={radians,fillValue,center};const res=ENGINE.runKernel(RotateWithOffset3,inputs,attrs);return res}const rotateWithOffset2=op({rotateWithOffset_});function nonMaxSuppSanityCheck(boxes,scores,maxOutputSize,iouThreshold,scoreThreshold,softNmsSigma){if(iouThreshold==null){iouThreshold=.5}if(scoreThreshold==null){scoreThreshold=Number.NEGATIVE_INFINITY}if(softNmsSigma==null){softNmsSigma=0}const numBoxes=boxes.shape[0];maxOutputSize=Math.min(maxOutputSize,numBoxes);assert(0<=iouThreshold&&iouThreshold<=1,()=>`iouThreshold must be in [0, 1], but was '${iouThreshold}'`);assert(boxes.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${boxes.rank}'`);assert(boxes.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${boxes.shape[1]}`);assert(scores.rank===1,()=>"scores must be a 1D tensor");assert(scores.shape[0]===numBoxes,()=>`scores has incompatible shape with boxes. Expected ${numBoxes}, but was ${scores.shape[0]}`);assert(0<=softNmsSigma&&softNmsSigma<=1,()=>`softNmsSigma must be in [0, 1], but was '${softNmsSigma}'`);return{maxOutputSize,iouThreshold,scoreThreshold,softNmsSigma}}function nonMaxSuppression_(boxes,scores,maxOutputSize,iouThreshold=.5,scoreThreshold=Number.NEGATIVE_INFINITY){const $boxes=convertToTensor(boxes,"boxes","nonMaxSuppression");const $scores=convertToTensor(scores,"scores","nonMaxSuppression");const inputs=nonMaxSuppSanityCheck($boxes,$scores,maxOutputSize,iouThreshold,scoreThreshold);maxOutputSize=inputs.maxOutputSize;iouThreshold=inputs.iouThreshold;scoreThreshold=inputs.scoreThreshold;const attrs={maxOutputSize,iouThreshold,scoreThreshold};return ENGINE.runKernelFunc(b=>b.nonMaxSuppression($boxes,$scores,maxOutputSize,iouThreshold,scoreThreshold),{boxes:$boxes,scores:$scores},null,NonMaxSuppressionV33,attrs)}const nonMaxSuppression=op({nonMaxSuppression_});function binaryInsert(arr,element,comparator){const index2=binarySearch(arr,element,comparator);const insertionPoint=index2<0?-(index2+1):index2;arr.splice(insertionPoint,0,element)}function binarySearch(arr,target,comparator){return binarySearch_(arr,target,comparator||defaultComparator)}function defaultComparator(a,b){return a>b?1:a<b?-1:0}function binarySearch_(arr,target,comparator){let left=0;let right=arr.length;let middle=0;let found=false;while(left<right){middle=left+(right-left>>>1);const compareResult=comparator(target,arr[middle]);if(compareResult>0){left=middle+1}else{right=middle;found=!compareResult}}return found?left:-left-1}function nonMaxSuppressionV3Impl(boxes,scores,maxOutputSize,iouThreshold,scoreThreshold){return nonMaxSuppressionImpl_(boxes,scores,maxOutputSize,iouThreshold,scoreThreshold,0).selectedIndices}function nonMaxSuppressionV4Impl(boxes,scores,maxOutputSize,iouThreshold,scoreThreshold,padToMaxOutputSize){return nonMaxSuppressionImpl_(boxes,scores,maxOutputSize,iouThreshold,scoreThreshold,0,false,padToMaxOutputSize,true)}function nonMaxSuppressionV5Impl(boxes,scores,maxOutputSize,iouThreshold,scoreThreshold,softNmsSigma){return nonMaxSuppressionImpl_(boxes,scores,maxOutputSize,iouThreshold,scoreThreshold,softNmsSigma,true)}function nonMaxSuppressionImpl_(boxes,scores,maxOutputSize,iouThreshold,scoreThreshold,softNmsSigma,returnScoresTensor=false,padToMaxOutputSize=false,returnValidOutputs=false){const candidates=[];for(let i=0;i<scores.length;i++){if(scores[i]>scoreThreshold){candidates.push({score:scores[i],boxIndex:i,suppressBeginIndex:0})}}candidates.sort(ascendingComparator);const scale2=softNmsSigma>0?-.5/softNmsSigma:0;const selectedIndices=[];const selectedScores=[];while(selectedIndices.length<maxOutputSize&&candidates.length>0){const candidate=candidates.pop();const{score:originalScore,boxIndex,suppressBeginIndex}=candidate;if(originalScore<scoreThreshold){break}let ignoreCandidate=false;for(let j=selectedIndices.length-1;j>=suppressBeginIndex;--j){const iou=intersectionOverUnion(boxes,boxIndex,selectedIndices[j]);if(iou>=iouThreshold){ignoreCandidate=true;break}candidate.score=candidate.score*suppressWeight(iouThreshold,scale2,iou);if(candidate.score<=scoreThreshold){break}}candidate.suppressBeginIndex=selectedIndices.length;if(!ignoreCandidate){if(candidate.score===originalScore){selectedIndices.push(boxIndex);selectedScores.push(candidate.score)}else if(candidate.score>scoreThreshold){binaryInsert(candidates,candidate,ascendingComparator)}}}const validOutputs=selectedIndices.length;const elemsToPad=maxOutputSize-validOutputs;if(padToMaxOutputSize&&elemsToPad>0){selectedIndices.push(...new Array(elemsToPad).fill(0));selectedScores.push(...new Array(elemsToPad).fill(0))}const result={selectedIndices:tensor1d(selectedIndices,"int32")};if(returnScoresTensor){result["selectedScores"]=tensor1d(selectedScores,"float32")}if(returnValidOutputs){result["validOutputs"]=scalar(validOutputs,"int32")}return result}function intersectionOverUnion(boxes,i,j){const iCoord=boxes.subarray(i*4,i*4+4);const jCoord=boxes.subarray(j*4,j*4+4);const yminI=Math.min(iCoord[0],iCoord[2]);const xminI=Math.min(iCoord[1],iCoord[3]);const ymaxI=Math.max(iCoord[0],iCoord[2]);const xmaxI=Math.max(iCoord[1],iCoord[3]);const yminJ=Math.min(jCoord[0],jCoord[2]);const xminJ=Math.min(jCoord[1],jCoord[3]);const ymaxJ=Math.max(jCoord[0],jCoord[2]);const xmaxJ=Math.max(jCoord[1],jCoord[3]);const areaI=(ymaxI-yminI)*(xmaxI-xminI);const areaJ=(ymaxJ-yminJ)*(xmaxJ-xminJ);if(areaI<=0||areaJ<=0){return 0}const intersectionYmin=Math.max(yminI,yminJ);const intersectionXmin=Math.max(xminI,xminJ);const intersectionYmax=Math.min(ymaxI,ymaxJ);const intersectionXmax=Math.min(xmaxI,xmaxJ);const intersectionArea=Math.max(intersectionYmax-intersectionYmin,0)*Math.max(intersectionXmax-intersectionXmin,0);return intersectionArea/(areaI+areaJ-intersectionArea)}function suppressWeight(iouThreshold,scale2,iou){const weight=Math.exp(scale2*iou*iou);return iou<=iouThreshold?weight:0}function ascendingComparator(c1,c2){return c1.score-c2.score||c1.score===c2.score&&c2.boxIndex-c1.boxIndex}async function nonMaxSuppressionAsync_(boxes,scores,maxOutputSize,iouThreshold=.5,scoreThreshold=Number.NEGATIVE_INFINITY){const $boxes=convertToTensor(boxes,"boxes","nonMaxSuppressionAsync");const $scores=convertToTensor(scores,"scores","nonMaxSuppressionAsync");const inputs=nonMaxSuppSanityCheck($boxes,$scores,maxOutputSize,iouThreshold,scoreThreshold);maxOutputSize=inputs.maxOutputSize;iouThreshold=inputs.iouThreshold;scoreThreshold=inputs.scoreThreshold;const boxesAndScores=await Promise.all([$boxes.data(),$scores.data()]);const boxesVals=boxesAndScores[0];const scoresVals=boxesAndScores[1];const res=nonMaxSuppressionV3Impl(boxesVals,scoresVals,maxOutputSize,iouThreshold,scoreThreshold);if($boxes!==boxes){$boxes.dispose()}if($scores!==scores){$scores.dispose()}return res}const nonMaxSuppressionAsync=nonMaxSuppressionAsync_;function nonMaxSuppressionWithScore_(boxes,scores,maxOutputSize,iouThreshold=.5,scoreThreshold=Number.NEGATIVE_INFINITY,softNmsSigma=0){const $boxes=convertToTensor(boxes,"boxes","nonMaxSuppression");const $scores=convertToTensor(scores,"scores","nonMaxSuppression");const params=nonMaxSuppSanityCheck($boxes,$scores,maxOutputSize,iouThreshold,scoreThreshold,softNmsSigma);maxOutputSize=params.maxOutputSize;iouThreshold=params.iouThreshold;scoreThreshold=params.scoreThreshold;softNmsSigma=params.softNmsSigma;const inputs={boxes:$boxes,scores:$scores};const attrs={maxOutputSize,iouThreshold,scoreThreshold,softNmsSigma};const result=ENGINE.runKernel(NonMaxSuppressionV53,inputs,attrs);return{selectedIndices:result[0],selectedScores:result[1]}}const nonMaxSuppressionWithScore=op({nonMaxSuppressionWithScore_});async function nonMaxSuppressionWithScoreAsync_(boxes,scores,maxOutputSize,iouThreshold=.5,scoreThreshold=Number.NEGATIVE_INFINITY,softNmsSigma=0){const $boxes=convertToTensor(boxes,"boxes","nonMaxSuppressionAsync");const $scores=convertToTensor(scores,"scores","nonMaxSuppressionAsync");const params=nonMaxSuppSanityCheck($boxes,$scores,maxOutputSize,iouThreshold,scoreThreshold,softNmsSigma);maxOutputSize=params.maxOutputSize;iouThreshold=params.iouThreshold;scoreThreshold=params.scoreThreshold;softNmsSigma=params.softNmsSigma;const boxesAndScores=await Promise.all([$boxes.data(),$scores.data()]);const boxesVals=boxesAndScores[0];const scoresVals=boxesAndScores[1];const res=nonMaxSuppressionV5Impl(boxesVals,scoresVals,maxOutputSize,iouThreshold,scoreThreshold,softNmsSigma);if($boxes!==boxes){$boxes.dispose()}if($scores!==scores){$scores.dispose()}return res}const nonMaxSuppressionWithScoreAsync=nonMaxSuppressionWithScoreAsync_;function nonMaxSuppressionPadded_(boxes,scores,maxOutputSize,iouThreshold=.5,scoreThreshold=Number.NEGATIVE_INFINITY,padToMaxOutputSize=false){const $boxes=convertToTensor(boxes,"boxes","nonMaxSuppression");const $scores=convertToTensor(scores,"scores","nonMaxSuppression");const params=nonMaxSuppSanityCheck($boxes,$scores,maxOutputSize,iouThreshold,scoreThreshold,null);const $maxOutputSize=params.maxOutputSize;const $iouThreshold=params.iouThreshold;const $scoreThreshold=params.scoreThreshold;const inputs={boxes:$boxes,scores:$scores};const attrs={maxOutputSize:$maxOutputSize,iouThreshold:$iouThreshold,scoreThreshold:$scoreThreshold,padToMaxOutputSize};const result=ENGINE.runKernel(NonMaxSuppressionV43,inputs,attrs);return{selectedIndices:result[0],validOutputs:result[1]}}const nonMaxSuppressionPadded=op({nonMaxSuppressionPadded_});async function nonMaxSuppressionPaddedAsync_(boxes,scores,maxOutputSize,iouThreshold=.5,scoreThreshold=Number.NEGATIVE_INFINITY,padToMaxOutputSize=false){const $boxes=convertToTensor(boxes,"boxes","nonMaxSuppressionAsync");const $scores=convertToTensor(scores,"scores","nonMaxSuppressionAsync");const params=nonMaxSuppSanityCheck($boxes,$scores,maxOutputSize,iouThreshold,scoreThreshold,null);const $maxOutputSize=params.maxOutputSize;const $iouThreshold=params.iouThreshold;const $scoreThreshold=params.scoreThreshold;const[boxesVals,scoresVals]=await Promise.all([$boxes.data(),$scores.data()]);const res=nonMaxSuppressionV4Impl(boxesVals,scoresVals,$maxOutputSize,$iouThreshold,$scoreThreshold,padToMaxOutputSize);if($boxes!==boxes){$boxes.dispose()}if($scores!==scores){$scores.dispose()}return res}const nonMaxSuppressionPaddedAsync=nonMaxSuppressionPaddedAsync_;function resizeBilinear_(images,size,alignCorners=false){const $images=convertToTensor(images,"images","resizeBilinear");assert($images.rank===3||$images.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${$images.rank}.`);assert(size.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${size}.`);let batchImages=$images;let reshapedTo4D=false;if($images.rank===3){reshapedTo4D=true;batchImages=reshape2($images,[1,$images.shape[0],$images.shape[1],$images.shape[2]])}const[newHeight,newWidth]=size;const forward=(backend2,save)=>{save([batchImages]);return backend2.resizeBilinear(batchImages,newHeight,newWidth,alignCorners)};const inputs={images:batchImages};const attrs={alignCorners,size};const res=ENGINE.runKernelFunc(forward,inputs,null,ResizeBilinear3,attrs);if(reshapedTo4D){return reshape2(res,[res.shape[1],res.shape[2],res.shape[3]])}return res}const resizeBilinear2=op({resizeBilinear_});function resizeNearestNeighbor_(images,size,alignCorners=false){const $images=convertToTensor(images,"images","resizeNearestNeighbor");assert($images.rank===3||$images.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${$images.rank}.`);assert(size.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${size}.`);assert($images.dtype==="float32"||$images.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype");let batchImages=$images;let reshapedTo4D=false;if($images.rank===3){reshapedTo4D=true;batchImages=reshape2($images,[1,$images.shape[0],$images.shape[1],$images.shape[2]])}const[newHeight,newWidth]=size;const inputs={images:batchImages};const attrs={alignCorners,size};const forward=(backend2,save)=>{save([batchImages]);return backend2.resizeNearestNeighbor(batchImages,newHeight,newWidth,alignCorners)};const res=ENGINE.runKernelFunc(forward,inputs,null,ResizeNearestNeighbor,attrs);if(reshapedTo4D){return reshape2(res,[res.shape[1],res.shape[2],res.shape[3]])}return res}const resizeNearestNeighbor=op({resizeNearestNeighbor_});function bandPart_(a,numLower,numUpper){assert(numLower%1===0,()=>`bandPart(): numLower must be an integer, got ${numLower}.`);assert(numUpper%1===0,()=>`bandPart(): numUpper must be an integer, got ${numUpper}.`);const $a=convertToTensor(a,"a","bandPart");assert($a.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${$a.rank}.`);const shape=$a.shape;const[M,N]=$a.shape.slice(-2);if(!(numLower<=M)){throw new Error(`bandPart(): numLower (${numLower}) must not be greater than the number of rows (${M}).`)}if(!(numUpper<=N)){throw new Error(`bandPart(): numUpper (${numUpper}) must not be greater than the number of columns (${N}).`)}if(numLower<0){numLower=M}if(numUpper<0){numUpper=N}const i=reshape2(range(0,M,1,"int32"),[-1,1]);const j=range(0,N,1,"int32");const ij=sub(i,j);const inBand=logicalAnd(lessEqual(ij,scalar(+numLower,"int32")),greaterEqual(ij,scalar(-numUpper,"int32")));const zero=zeros([M,N],$a.dtype);return reshape2(stack(unstack(reshape2($a,[-1,M,N])).map(mat=>where(inBand,mat,zero))),shape)}const bandPart=op({bandPart_});function gramSchmidt_(xs){let inputIsTensor2D;if(Array.isArray(xs)){inputIsTensor2D=false;assert(xs!=null&&xs.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");const dim=xs[0].shape[0];for(let i=1;i<xs.length;++i){assert(xs[i].shape[0]===dim,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${xs[i].shape[0]} vs. ${dim})`)}}else{inputIsTensor2D=true;xs=split2(xs,xs.shape[0],0).map(x=>squeeze(x,[0]))}assert(xs.length<=xs[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${xs.length}) exceeds number of dimensions (${xs[0].shape[0]}).`);const ys=[];const xs1d=xs;for(let i=0;i<xs.length;++i){ys.push(ENGINE.tidy(()=>{let x=xs1d[i];if(i>0){for(let j=0;j<i;++j){const proj=mul(sum$1(mul(ys[j],x)),ys[j]);x=sub(x,proj)}}return div(x,norm(x,"euclidean"))}))}if(inputIsTensor2D){return stack(ys,0)}else{return ys}}const gramSchmidt=op({gramSchmidt_});function qr_(x,fullMatrices=false){assert(x.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${x.rank}`);if(x.rank===2){return qr2d(x,fullMatrices)}else{const outerDimsProd=x.shape.slice(0,x.shape.length-2).reduce((value,prev)=>value*prev);const x2ds=unstack(reshape2(x,[outerDimsProd,x.shape[x.shape.length-2],x.shape[x.shape.length-1]]),0);const q2ds=[];const r2ds=[];x2ds.forEach(x2d=>{const[q2d,r2d]=qr2d(x2d,fullMatrices);q2ds.push(q2d);r2ds.push(r2d)});const q=reshape2(stack(q2ds,0),x.shape);const r=reshape2(stack(r2ds,0),x.shape);return[q,r]}}function qr2d(x,fullMatrices=false){return ENGINE.tidy(()=>{assert(x.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${x.shape.length}D Tensor.`);const m=x.shape[0];const n=x.shape[1];let q=eye(m);let r=clone(x);const one2D=tensor2d([[1]],[1,1]);let w=clone(one2D);const iters=m>=n?n:m;for(let j=0;j<iters;++j){const rTemp=r;const wTemp=w;const qTemp=q;[w,r,q]=ENGINE.tidy(()=>{const rjEnd1=slice2(r,[j,j],[m-j,1]);const normX=norm(rjEnd1);const rjj=slice2(r,[j,j],[1,1]);const s=where(greater(rjj,0),tensor2d([[-1]]),tensor2d([[1]]));const u1=sub(rjj,mul(s,normX));const wPre=div(rjEnd1,u1);if(wPre.shape[0]===1){w=clone(one2D)}else{w=concat2([one2D,slice2(wPre,[1,0],[wPre.shape[0]-1,wPre.shape[1]])],0)}const tau=neg(div(matMul(s,u1),normX));const rjEndAll=slice2(r,[j,0],[m-j,n]);const tauTimesW=mul(tau,w);const wT=transpose2(w);if(j===0){r=sub(rjEndAll,matMul(tauTimesW,matMul(wT,rjEndAll)))}else{const rTimesTau=sub(rjEndAll,matMul(tauTimesW,matMul(wT,rjEndAll)));r=concat2([slice2(r,[0,0],[j,n]),rTimesTau],0)}const tawTimesWT=transpose2(tauTimesW);const qAllJEnd=slice2(q,[0,j],[m,q.shape[1]-j]);if(j===0){q=sub(qAllJEnd,matMul(matMul(qAllJEnd,w),tawTimesWT))}else{const qTimesTau=sub(qAllJEnd,matMul(matMul(qAllJEnd,w),tawTimesWT));q=concat2([slice2(q,[0,0],[m,j]),qTimesTau],1)}return[w,r,q]});dispose([rTemp,wTemp,qTemp])}if(!fullMatrices&&m>n){q=slice2(q,[0,0],[m,n]);r=slice2(r,[0,0],[n,n])}return[q,r]})}const qr=op({qr_});(function(Reduction){Reduction[Reduction["NONE"]=0]="NONE";Reduction[Reduction["MEAN"]=1]="MEAN";Reduction[Reduction["SUM"]=2]="SUM";Reduction[Reduction["SUM_BY_NONZERO_WEIGHTS"]=3]="SUM_BY_NONZERO_WEIGHTS"})(exports3.Reduction||(exports3.Reduction={}));function computeWeightedLoss_(losses2,weights,reduction2=exports3.Reduction.SUM_BY_NONZERO_WEIGHTS){const $losses=convertToTensor(losses2,"losses","computeWeightedLoss");let $weights=null;if(weights!=null){$weights=convertToTensor(weights,"weights","computeWeightedLoss")}const weightedLoss=$weights==null?$losses:mul($losses,$weights);if(reduction2===exports3.Reduction.NONE){return weightedLoss}if(reduction2===exports3.Reduction.SUM){return sum$1(weightedLoss)}if(reduction2===exports3.Reduction.MEAN){if($weights==null){return mean(weightedLoss)}else{const broadcastFactor=$losses.size/$weights.size;const result=div(sum$1(weightedLoss),sum$1($weights));return broadcastFactor>1?div(result,scalar(broadcastFactor)):result}}if(reduction2===exports3.Reduction.SUM_BY_NONZERO_WEIGHTS){if($weights==null){return div(sum$1(weightedLoss),scalar($losses.size))}else{const broadcastedWeights=mul($weights,ones$1($losses.shape));const numNonZeros=cast2(sum$1(notEqual(broadcastedWeights,scalar(0))),"float32");return div(sum$1(weightedLoss),numNonZeros)}}throw Error(`Unknown reduction: ${reduction2}`)}const computeWeightedLoss=op({computeWeightedLoss_});function absoluteDifference_(labels,predictions,weights,reduction2=exports3.Reduction.SUM_BY_NONZERO_WEIGHTS){const $labels=convertToTensor(labels,"labels","absoluteDifference");const $predictions=convertToTensor(predictions,"predictions","absoluteDifference");let $weights=null;if(weights!=null){$weights=convertToTensor(weights,"weights","absoluteDifference")}assertShapesMatch($labels.shape,$predictions.shape,"Error in absoluteDifference: ");const losses2=abs(sub($labels,$predictions));return computeWeightedLoss(losses2,$weights,reduction2)}const absoluteDifference=op({absoluteDifference_});function cosineDistance_(labels,predictions,axis,weights,reduction2=exports3.Reduction.SUM_BY_NONZERO_WEIGHTS){const $labels=convertToTensor(labels,"labels","cosineDistance");const $predictions=convertToTensor(predictions,"predictions","cosineDistance");let $weights=null;if(weights!=null){$weights=convertToTensor(weights,"weights","cosineDistance")}assertShapesMatch($labels.shape,$predictions.shape,"Error in cosineDistance: ");const one=scalar(1);const losses2=sub(one,sum$1(mul($labels,$predictions),axis,true));return computeWeightedLoss(losses2,$weights,reduction2)}const cosineDistance=op({cosineDistance_});function hingeLoss_(labels,predictions,weights,reduction2=exports3.Reduction.SUM_BY_NONZERO_WEIGHTS){let $labels=convertToTensor(labels,"labels","hingeLoss");const $predictions=convertToTensor(predictions,"predictions","hingeLoss");let $weights=null;if(weights!=null){$weights=convertToTensor(weights,"weights","hingeLoss")}assertShapesMatch($labels.shape,$predictions.shape,"Error in hingeLoss: ");const one=scalar(1);$labels=sub(mul(scalar(2),$labels),one);const losses2=relu(sub(one,mul($labels,$predictions)));return computeWeightedLoss(losses2,$weights,reduction2)}const hingeLoss=op({hingeLoss_});function huberLoss_(labels,predictions,weights,delta=1,reduction2=exports3.Reduction.SUM_BY_NONZERO_WEIGHTS){const $labels=convertToTensor(labels,"labels","huberLoss");const $predictions=convertToTensor(predictions,"predictions","huberLoss");let $weights=null;if(weights!=null){$weights=convertToTensor(weights,"weights","huberLoss")}assertShapesMatch($labels.shape,$predictions.shape,"Error in huberLoss: ");const deltaScalar=scalar(delta);const error=abs(sub($predictions,$labels));const quadratic=minimum(error,deltaScalar);const linear=sub(error,quadratic);const losses2=add$1(mul(scalar(.5),square(quadratic)),mul(deltaScalar,linear));return computeWeightedLoss(losses2,$weights,reduction2)}const huberLoss=op({huberLoss_});function logLoss_(labels,predictions,weights,epsilon2=1e-7,reduction2=exports3.Reduction.SUM_BY_NONZERO_WEIGHTS){const $labels=convertToTensor(labels,"labels","logLoss");const $predictions=convertToTensor(predictions,"predictions","logLoss");let $weights=null;if(weights!=null){$weights=convertToTensor(weights,"weights","logLoss")}assertShapesMatch($labels.shape,$predictions.shape,"Error in logLoss: ");const one=scalar(1);const epsilonScalar=scalar(epsilon2);const l12=neg(mul($labels,log(add$1($predictions,epsilonScalar))));const l22=mul(sub(one,$labels),log(add$1(sub(one,$predictions),epsilonScalar)));const losses2=sub(l12,l22);return computeWeightedLoss(losses2,$weights,reduction2)}const logLoss=op({logLoss_});function meanSquaredError_(labels,predictions,weights,reduction2=exports3.Reduction.SUM_BY_NONZERO_WEIGHTS){const $labels=convertToTensor(labels,"labels","meanSquaredError");const $predictions=convertToTensor(predictions,"predictions","meanSquaredError");let $weights=null;if(weights!=null){$weights=convertToTensor(weights,"weights","meanSquaredError")}assertShapesMatch($labels.shape,$predictions.shape,"Error in meanSquaredError: ");const losses2=squaredDifference($labels,$predictions);return computeWeightedLoss(losses2,$weights,reduction2)}const meanSquaredError=op({meanSquaredError_});function sigmoidCrossEntropyWithLogits_(labels,logits){const $labels=convertToTensor(labels,"labels","sigmoidCrossEntropyWithLogits");const $logits=convertToTensor(logits,"logits","sigmoidCrossEntropyWithLogits");assertShapesMatch($labels.shape,$logits.shape,"Error in sigmoidCrossEntropyWithLogits: ");const maxOutput=relu($logits);const outputXTarget=mul($logits,$labels);const sigmoidOutput=log1p(exp(neg(abs($logits))));return add$1(sub(maxOutput,outputXTarget),sigmoidOutput)}function sigmoidCrossEntropy_(multiClassLabels,logits,weights,labelSmoothing=0,reduction2=exports3.Reduction.SUM_BY_NONZERO_WEIGHTS){let $multiClassLabels=convertToTensor(multiClassLabels,"multiClassLabels","sigmoidCrossEntropy");const $logits=convertToTensor(logits,"logits","sigmoidCrossEntropy");let $weights=null;if(weights!=null){$weights=convertToTensor(weights,"weights","sigmoidCrossEntropy")}assertShapesMatch($multiClassLabels.shape,$logits.shape,"Error in sigmoidCrossEntropy: ");if(labelSmoothing>0){const labelSmoothingScalar=scalar(labelSmoothing);const one=scalar(1);const half=scalar(.5);$multiClassLabels=add$1(mul($multiClassLabels,sub(one,labelSmoothingScalar)),mul(half,labelSmoothingScalar))}const losses2=sigmoidCrossEntropyWithLogits_($multiClassLabels,$logits);return computeWeightedLoss(losses2,$weights,reduction2)}const sigmoidCrossEntropy=op({sigmoidCrossEntropy_});function softmaxCrossEntropyWithLogits_(labels,logits,dim=-1){if(dim===-1){dim=logits.rank-1}if(dim!==logits.rank-1){throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${logits.rank} and dim was ${dim}`)}const customOp=customGrad((labels2,logits2,save)=>{const keepDims=true;const lse=logSumExp(logits2,[dim],keepDims);const logResult=sub(cast2(logits2,"float32"),lse);save([labels2,logResult]);const costVector=neg(mul(logResult,labels2));const value=sum$1(costVector,[dim]);const gradFunc=(dy,saved)=>{const[labels3,logResult2]=saved;const dyShape=expandShapeToKeepDim(dy.shape,[dim]);return[mul(reshape2(dy,dyShape),sub(cast2(labels3,"float32"),exp(logResult2))),mul(reshape2(dy,dyShape),sub(exp(logResult2),cast2(labels3,"float32")))]};return{value,gradFunc}});return customOp(labels,logits)}function softmaxCrossEntropy_(onehotLabels,logits,weights,labelSmoothing=0,reduction2=exports3.Reduction.SUM_BY_NONZERO_WEIGHTS){let $onehotLabels=convertToTensor(onehotLabels,"onehotLabels","softmaxCrossEntropy");const $logits=convertToTensor(logits,"logits","softmaxCrossEntropy");let $weights=null;if(weights!=null){$weights=convertToTensor(weights,"weights","softmaxCrossEntropy")}assertShapesMatch($onehotLabels.shape,$logits.shape,"Error in softmaxCrossEntropy: ");if(labelSmoothing>0){const labelSmoothingScalar=scalar(labelSmoothing);const one=scalar(1);const numClasses=scalar($onehotLabels.shape[1]);$onehotLabels=add$1(mul($onehotLabels,sub(one,labelSmoothingScalar)),div(labelSmoothingScalar,numClasses))}const losses2=softmaxCrossEntropyWithLogits_($onehotLabels,$logits);return computeWeightedLoss(losses2,$weights,reduction2)}const softmaxCrossEntropy=op({softmaxCrossEntropy_});const spectral={fft,ifft,rfft,irfft};const signal={hammingWindow,hannWindow,frame,stft};const image2={flipLeftRight:flipLeftRight2,resizeNearestNeighbor,resizeBilinear:resizeBilinear2,rotateWithOffset:rotateWithOffset2,cropAndResize:cropAndResize2,nonMaxSuppression,nonMaxSuppressionAsync,nonMaxSuppressionWithScore,nonMaxSuppressionWithScoreAsync,nonMaxSuppressionPadded,nonMaxSuppressionPaddedAsync};const linalg={bandPart,gramSchmidt,qr};const losses={absoluteDifference,computeWeightedLoss,cosineDistance,hingeLoss,huberLoss,logLoss,meanSquaredError,sigmoidCrossEntropy,softmaxCrossEntropy};class Optimizer extends Serializable{minimize(f,returnCost=false,varList){const{value,grads:grads2}=this.computeGradients(f,varList);if(varList!=null){const gradArray=varList.map(v=>({name:v.name,tensor:grads2[v.name]}));this.applyGradients(gradArray)}else{this.applyGradients(grads2)}dispose(grads2);if(returnCost){return value}else{value.dispose();return null}}get iterations(){if(this.iterations_==null){this.iterations_=0}return this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(f,varList){return variableGrads(f,varList)}dispose(){if(this.iterations_!=null){dispose(this.iterations_)}}async saveIterations(){if(this.iterations_==null){this.iterations_=0}return{name:"iter",tensor:scalar(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(weightValues){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(weightValues){this.iterations_=(await weightValues[0].tensor.data())[0];return weightValues.slice(1)}}Object.defineProperty(Optimizer,Symbol.hasInstance,{value:instance=>{return instance.minimize!=null&&instance.computeGradients!=null&&instance.applyGradients!=null}});class AdadeltaOptimizer extends Optimizer{constructor(learningRate,rho,epsilon2=null){super();this.learningRate=learningRate;this.rho=rho;this.epsilon=epsilon2;this.accumulatedGrads=[];this.accumulatedUpdates=[];if(epsilon2==null){this.epsilon=ENGINE.backend.epsilon()}}applyGradients(variableGradients){const variableNames=Array.isArray(variableGradients)?variableGradients.map(item=>item.name):Object.keys(variableGradients);variableNames.forEach((name,i)=>{const value=ENGINE.registeredVariables[name];const trainable=false;if(this.accumulatedGrads[i]==null){this.accumulatedGrads[i]={originalName:`${name}/accum_grad`,variable:tidy(()=>zerosLike2(value).variable(trainable))}}if(this.accumulatedUpdates[i]==null){this.accumulatedUpdates[i]={originalName:`${name}/accum_var`,variable:tidy(()=>zerosLike2(value).variable(trainable))}}const gradient=Array.isArray(variableGradients)?variableGradients[i].tensor:variableGradients[name];if(gradient==null){return}const accumulatedGrad=this.accumulatedGrads[i].variable;const accumulatedUpdate=this.accumulatedUpdates[i].variable;tidy(()=>{const newAccumulatedGrad=add$1(mul(accumulatedGrad,this.rho),mul(square(gradient),1-this.rho));const updates=mul(div(sqrt(add$1(accumulatedUpdate,this.epsilon)),sqrt(add$1(accumulatedGrad,this.epsilon))),gradient);const newAccumulatedUpdate=add$1(mul(accumulatedUpdate,this.rho),mul(square(updates),1-this.rho));accumulatedGrad.assign(newAccumulatedGrad);accumulatedUpdate.assign(newAccumulatedUpdate);const newValue=add$1(mul(updates,-this.learningRate),value);value.assign(newValue)})});this.incrementIterations()}dispose(){if(this.accumulatedUpdates!=null){dispose(this.accumulatedGrads.map(v=>v.variable));dispose(this.accumulatedUpdates.map(v=>v.variable))}}async getWeights(){const variables=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(variables.map(v=>({name:v.originalName,tensor:v.variable})))}async setWeights(weightValues){weightValues=await this.extractIterations(weightValues);const variableCount=weightValues.length/2;const trainable=false;this.accumulatedGrads=weightValues.slice(0,variableCount).map(v=>({originalName:v.name,variable:v.tensor.variable(trainable)}));this.accumulatedUpdates=weightValues.slice(variableCount,variableCount*2).map(v=>({originalName:v.name,variable:v.tensor.variable(trainable)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(cls,config2){return new cls(config2["learningRate"],config2["rho"],config2["epsilon"])}}AdadeltaOptimizer.className="Adadelta";registerClass(AdadeltaOptimizer);class AdagradOptimizer extends Optimizer{constructor(learningRate,initialAccumulatorValue=.1){super();this.learningRate=learningRate;this.initialAccumulatorValue=initialAccumulatorValue;this.accumulatedGrads=[]}applyGradients(variableGradients){const variableNames=Array.isArray(variableGradients)?variableGradients.map(item=>item.name):Object.keys(variableGradients);variableNames.forEach((name,i)=>{const value=ENGINE.registeredVariables[name];if(this.accumulatedGrads[i]==null){const trainable=false;this.accumulatedGrads[i]={originalName:`${name}/accumulator`,variable:tidy(()=>fill2(value.shape,this.initialAccumulatorValue).variable(trainable))}}const gradient=Array.isArray(variableGradients)?variableGradients[i].tensor:variableGradients[name];if(gradient==null){return}const accumulatedGrad=this.accumulatedGrads[i].variable;tidy(()=>{const newAccumulatedGrad=add$1(accumulatedGrad,square(gradient));accumulatedGrad.assign(newAccumulatedGrad);const newValue=add$1(mul(div(gradient,sqrt(add$1(newAccumulatedGrad,ENGINE.backend.epsilon()))),-this.learningRate),value);value.assign(newValue)})});this.incrementIterations()}dispose(){if(this.accumulatedGrads!=null){dispose(this.accumulatedGrads.map(v=>v.variable))}}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(v=>({name:v.originalName,tensor:v.variable})))}async setWeights(weightValues){weightValues=await this.extractIterations(weightValues);const trainable=false;this.accumulatedGrads=weightValues.map(v=>({originalName:v.name,variable:v.tensor.variable(trainable)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(cls,config2){return new cls(config2["learningRate"],config2["initialAccumulatorValue"])}}AdagradOptimizer.className="Adagrad";registerClass(AdagradOptimizer);class AdamOptimizer extends Optimizer{constructor(learningRate,beta1,beta2,epsilon2=null){super();this.learningRate=learningRate;this.beta1=beta1;this.beta2=beta2;this.epsilon=epsilon2;this.accumulatedFirstMoment=[];this.accumulatedSecondMoment=[];tidy(()=>{this.accBeta1=scalar(beta1).variable();this.accBeta2=scalar(beta2).variable()});if(epsilon2==null){this.epsilon=ENGINE.backend.epsilon()}}applyGradients(variableGradients){const varNames=Array.isArray(variableGradients)?variableGradients.map(v=>v.name):Object.keys(variableGradients);tidy(()=>{const oneMinusAccBeta1=sub(1,this.accBeta1);const oneMinusAccBeta2=sub(1,this.accBeta2);varNames.forEach((name,i)=>{const value=ENGINE.registeredVariables[name];const trainable=false;if(this.accumulatedFirstMoment[i]==null){this.accumulatedFirstMoment[i]={originalName:`${name}/m`,variable:tidy(()=>zerosLike2(value).variable(trainable))}}if(this.accumulatedSecondMoment[i]==null){this.accumulatedSecondMoment[i]={originalName:`${name}/v`,variable:tidy(()=>zerosLike2(value).variable(trainable))}}const gradient=Array.isArray(variableGradients)?variableGradients[i].tensor:variableGradients[name];if(gradient==null){return}const firstMoment=this.accumulatedFirstMoment[i].variable;const secondMoment=this.accumulatedSecondMoment[i].variable;const newFirstMoment=add$1(mul(firstMoment,this.beta1),mul(gradient,1-this.beta1));const newSecondMoment=add$1(mul(secondMoment,this.beta2),mul(square(gradient),1-this.beta2));const biasCorrectedFirstMoment=div(newFirstMoment,oneMinusAccBeta1);const biasCorrectedSecondMoment=div(newSecondMoment,oneMinusAccBeta2);firstMoment.assign(newFirstMoment);secondMoment.assign(newSecondMoment);const newValue=add$1(mul(div(biasCorrectedFirstMoment,add$1(sqrt(biasCorrectedSecondMoment),this.epsilon)),-this.learningRate),value);value.assign(newValue)});this.accBeta1.assign(mul(this.accBeta1,this.beta1));this.accBeta2.assign(mul(this.accBeta2,this.beta2))});this.incrementIterations()}dispose(){this.accBeta1.dispose();this.accBeta2.dispose();if(this.accumulatedFirstMoment!=null){dispose(this.accumulatedFirstMoment.map(v=>v.variable))}if(this.accumulatedSecondMoment!=null){dispose(this.accumulatedSecondMoment.map(v=>v.variable))}}async getWeights(){const variables=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(variables.map(v=>({name:v.originalName,tensor:v.variable})))}async setWeights(weightValues){weightValues=await this.extractIterations(weightValues);tidy(()=>{this.accBeta1.assign(pow(this.beta1,this.iterations_+1));this.accBeta2.assign(pow(this.beta2,this.iterations_+1))});const variableCount=weightValues.length/2;const trainable=false;this.accumulatedFirstMoment=weightValues.slice(0,variableCount).map(v=>({originalName:v.name,variable:v.tensor.variable(trainable)}));this.accumulatedSecondMoment=weightValues.slice(variableCount,variableCount*2).map(v=>({originalName:v.name,variable:v.tensor.variable(trainable)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(cls,config2){return new cls(config2["learningRate"],config2["beta1"],config2["beta2"],config2["epsilon"])}}AdamOptimizer.className="Adam";registerClass(AdamOptimizer);class AdamaxOptimizer extends Optimizer{constructor(learningRate,beta1,beta2,epsilon2=null,decay=0){super();this.learningRate=learningRate;this.beta1=beta1;this.beta2=beta2;this.epsilon=epsilon2;this.decay=decay;this.accumulatedFirstMoment=[];this.accumulatedWeightedInfNorm=[];tidy(()=>{this.iteration=scalar(0).variable();this.accBeta1=scalar(beta1).variable()});if(epsilon2==null){this.epsilon=ENGINE.backend.epsilon()}}applyGradients(variableGradients){const variableNames=Array.isArray(variableGradients)?variableGradients.map(item=>item.name):Object.keys(variableGradients);tidy(()=>{const oneMinusAccBeta1=sub(1,this.accBeta1);const lr=div(-this.learningRate,add$1(mul(this.iteration,this.decay),1));variableNames.forEach((name,i)=>{const value=ENGINE.registeredVariables[name];const trainable=false;if(this.accumulatedFirstMoment[i]==null){this.accumulatedFirstMoment[i]={originalName:`${name}/m`,variable:zerosLike2(value).variable(trainable)}}if(this.accumulatedWeightedInfNorm[i]==null){this.accumulatedWeightedInfNorm[i]={originalName:`${name}/v`,variable:zerosLike2(value).variable(trainable)}}const gradient=Array.isArray(variableGradients)?variableGradients[i].tensor:variableGradients[name];if(gradient==null){return}const firstMoment=this.accumulatedFirstMoment[i].variable;const weightedInfNorm=this.accumulatedWeightedInfNorm[i].variable;const newFirstMoment=add$1(mul(firstMoment,this.beta1),mul(gradient,1-this.beta1));const ut0=mul(weightedInfNorm,this.beta2);const ut1=abs(gradient);const newWeightedInfNorm=maximum(ut0,ut1);firstMoment.assign(newFirstMoment);weightedInfNorm.assign(newWeightedInfNorm);const newValue=add$1(mul(div(lr,oneMinusAccBeta1),div(newFirstMoment,add$1(newWeightedInfNorm,this.epsilon))),value);value.assign(newValue)});this.iteration.assign(add$1(this.iteration,1));this.accBeta1.assign(mul(this.accBeta1,this.beta1))});this.incrementIterations()}dispose(){this.accBeta1.dispose();this.iteration.dispose();if(this.accumulatedFirstMoment!=null){dispose(this.accumulatedFirstMoment.map(v=>v.variable))}if(this.accumulatedWeightedInfNorm!=null){dispose(this.accumulatedWeightedInfNorm.map(v=>v.variable))}}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(weightValues){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(cls,config2){return new cls(config2["learningRate"],config2["beta1"],config2["beta2"],config2["epsilon"],config2["decay"])}}AdamaxOptimizer.className="Adamax";registerClass(AdamaxOptimizer);class SGDOptimizer extends Optimizer{constructor(learningRate){super();this.learningRate=learningRate;this.setLearningRate(learningRate)}applyGradients(variableGradients){const varNames=Array.isArray(variableGradients)?variableGradients.map(v=>v.name):Object.keys(variableGradients);varNames.forEach((name,i)=>{const gradient=Array.isArray(variableGradients)?variableGradients[i].tensor:variableGradients[name];if(gradient==null){return}const value=ENGINE.registeredVariables[name];tidy(()=>{const newValue=add$1(mul(this.c,gradient),value);value.assign(newValue)})});this.incrementIterations()}setLearningRate(learningRate){this.learningRate=learningRate;if(this.c!=null){this.c.dispose()}this.c=keep(scalar(-learningRate))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(weightValues){weightValues=await this.extractIterations(weightValues);if(weightValues.length!==0){throw new Error("SGD optimizer does not have settable weights.")}}getConfig(){return{learningRate:this.learningRate}}static fromConfig(cls,config2){return new cls(config2["learningRate"])}}SGDOptimizer.className="SGD";registerClass(SGDOptimizer);class MomentumOptimizer extends SGDOptimizer{constructor(learningRate,momentum,useNesterov=false){super(learningRate);this.learningRate=learningRate;this.momentum=momentum;this.useNesterov=useNesterov;this.accumulations=[];this.m=scalar(this.momentum)}applyGradients(variableGradients){const variableNames=Array.isArray(variableGradients)?variableGradients.map(item=>item.name):Object.keys(variableGradients);variableNames.forEach((name,i)=>{const value=ENGINE.registeredVariables[name];if(this.accumulations[i]==null){const trainable=false;this.accumulations[i]={originalName:`${name}/momentum`,variable:tidy(()=>zerosLike2(value).variable(trainable))}}const accumulation=this.accumulations[i].variable;const gradient=Array.isArray(variableGradients)?variableGradients[i].tensor:variableGradients[name];if(gradient==null){return}tidy(()=>{let newValue;const newAccumulation=add$1(mul(this.m,accumulation),gradient);if(this.useNesterov){newValue=add$1(mul(this.c,add$1(gradient,mul(newAccumulation,this.m))),value)}else{newValue=add$1(mul(this.c,newAccumulation),value)}accumulation.assign(newAccumulation);value.assign(newValue)})});this.incrementIterations()}dispose(){this.m.dispose();if(this.accumulations!=null){dispose(this.accumulations.map(v=>v.variable))}}setMomentum(momentum){this.momentum=momentum}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(v=>({name:v.originalName,tensor:v.variable})))}async setWeights(weightValues){weightValues=await this.extractIterations(weightValues);const trainable=false;this.accumulations=weightValues.map(v=>({originalName:v.name,variable:v.tensor.variable(trainable)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(cls,config2){return new cls(config2["learningRate"],config2["momentum"],config2["useNesterov"])}}MomentumOptimizer.className="Momentum";registerClass(MomentumOptimizer);class RMSPropOptimizer extends Optimizer{constructor(learningRate,decay=.9,momentum=0,epsilon2=null,centered=false){super();this.learningRate=learningRate;this.decay=decay;this.momentum=momentum;this.epsilon=epsilon2;this.accumulatedMeanSquares=[];this.accumulatedMoments=[];this.accumulatedMeanGrads=[];this.centered=centered;if(epsilon2==null){this.epsilon=ENGINE.backend.epsilon()}if(learningRate==null){throw new Error(`learningRate for RMSPropOptimizer must be defined.`)}}applyGradients(variableGradients){const variableNames=Array.isArray(variableGradients)?variableGradients.map(item=>item.name):Object.keys(variableGradients);variableNames.forEach((name,i)=>{const value=ENGINE.registeredVariables[name];const trainable=false;if(this.accumulatedMeanSquares[i]==null){this.accumulatedMeanSquares[i]={originalName:`${name}/rms`,variable:tidy(()=>zerosLike2(value).variable(trainable))}}if(this.accumulatedMoments[i]==null){this.accumulatedMoments[i]={originalName:`${name}/momentum`,variable:tidy(()=>zerosLike2(value).variable(trainable))}}if(this.accumulatedMeanGrads[i]==null&&this.centered){this.accumulatedMeanGrads[i]={originalName:`${name}/mg`,variable:tidy(()=>zerosLike2(value).variable(trainable))}}const gradient=Array.isArray(variableGradients)?variableGradients[i].tensor:variableGradients[name];if(gradient==null){return}const accumulatedMeanSquare=this.accumulatedMeanSquares[i].variable;const accumulatedMoments=this.accumulatedMoments[i].variable;tidy(()=>{const newAccumulatedMeanSquare=add$1(mul(accumulatedMeanSquare,this.decay),mul(square(gradient),1-this.decay));if(this.centered){const accumulatedMeanGrad=this.accumulatedMeanGrads[i].variable;const newAccumulatedMeanGrad=add$1(mul(accumulatedMeanGrad,this.decay),mul(gradient,1-this.decay));const gradContribution=div(mul(gradient,this.learningRate),sqrt(sub(newAccumulatedMeanSquare,add$1(square(newAccumulatedMeanGrad),this.epsilon))));const newAccumulatedMoments=add$1(mul(accumulatedMoments,this.momentum),gradContribution);accumulatedMeanSquare.assign(newAccumulatedMeanSquare);accumulatedMeanGrad.assign(newAccumulatedMeanGrad);accumulatedMoments.assign(newAccumulatedMoments);const newValue=sub(value,newAccumulatedMoments);value.assign(newValue)}else{const newAccumulatedMeanSquare2=add$1(mul(accumulatedMeanSquare,this.decay),mul(square(gradient),1-this.decay));const newAccumulatedMoments=add$1(mul(accumulatedMoments,this.momentum),div(mul(gradient,this.learningRate),sqrt(add$1(newAccumulatedMeanSquare2,this.epsilon))));accumulatedMeanSquare.assign(newAccumulatedMeanSquare2);accumulatedMoments.assign(newAccumulatedMoments);const newValue=sub(value,newAccumulatedMoments);value.assign(newValue)}})});this.incrementIterations()}dispose(){if(this.accumulatedMeanSquares!=null){dispose(this.accumulatedMeanSquares.map(v=>v.variable))}if(this.accumulatedMeanGrads!=null&&this.centered){dispose(this.accumulatedMeanGrads.map(v=>v.variable))}if(this.accumulatedMoments!=null){dispose(this.accumulatedMoments.map(v=>v.variable))}}async getWeights(){const variables=[...this.accumulatedMeanSquares,...this.accumulatedMoments];if(this.centered){variables.push(...this.accumulatedMeanGrads)}return[await this.saveIterations()].concat(variables.map(v=>({name:v.originalName,tensor:v.variable})))}async setWeights(weightValues){weightValues=await this.extractIterations(weightValues);const variableCount=this.centered?weightValues.length/3:weightValues.length/2;const trainable=false;this.accumulatedMeanSquares=weightValues.slice(0,variableCount).map(v=>({originalName:v.name,variable:v.tensor.variable(trainable)}));this.accumulatedMoments=weightValues.slice(variableCount,variableCount*2).map(v=>({originalName:v.name,variable:v.tensor.variable(trainable)}));if(this.centered){this.accumulatedMeanGrads=weightValues.slice(variableCount*2,variableCount*3).map(v=>({originalName:v.name,variable:v.tensor.variable(trainable)}))}}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(cls,config2){return new cls(config2["learningRate"],config2["decay"],config2["momentum"],config2["epsilon"],config2["centered"])}}RMSPropOptimizer.className="RMSProp";registerClass(RMSPropOptimizer);class OptimizerConstructors{static sgd(learningRate){return new SGDOptimizer(learningRate)}static momentum(learningRate,momentum,useNesterov=false){return new MomentumOptimizer(learningRate,momentum,useNesterov)}static rmsprop(learningRate,decay=.9,momentum=0,epsilon2=null,centered=false){return new RMSPropOptimizer(learningRate,decay,momentum,epsilon2,centered)}static adam(learningRate=.001,beta1=.9,beta2=.999,epsilon2=null){return new AdamOptimizer(learningRate,beta1,beta2,epsilon2)}static adadelta(learningRate=.001,rho=.95,epsilon2=null){return new AdadeltaOptimizer(learningRate,rho,epsilon2)}static adamax(learningRate=.002,beta1=.9,beta2=.999,epsilon2=null,decay=0){return new AdamaxOptimizer(learningRate,beta1,beta2,epsilon2,decay)}static adagrad(learningRate,initialAccumulatorValue=.1){return new AdagradOptimizer(learningRate,initialAccumulatorValue)}}[MomentumOptimizer,SGDOptimizer,AdadeltaOptimizer,AdagradOptimizer,RMSPropOptimizer,AdamaxOptimizer,AdamOptimizer];const train={sgd:OptimizerConstructors.sgd,momentum:OptimizerConstructors.momentum,adadelta:OptimizerConstructors.adadelta,adagrad:OptimizerConstructors.adagrad,rmsprop:OptimizerConstructors.rmsprop,adamax:OptimizerConstructors.adamax,adam:OptimizerConstructors.adam};const delayCallback=(()=>{if(typeof requestAnimationFrame!=="undefined"){return requestAnimationFrame}else if(typeof setImmediate!=="undefined"){return setImmediate}return f=>f()})();function nextFrame(){return new Promise(resolve=>delayCallback(()=>resolve()))}function getImageCenter(center,imageHeight,imageWidth){const centerX=imageWidth*(typeof center==="number"?center:center[0]);const centerY=imageHeight*(typeof center==="number"?center:center[1]);return[centerX,centerY]}function getReshaped(inputShape,blockShape,prod2,batchToSpace=true){let reshaped=[];if(batchToSpace){reshaped=reshaped.concat(blockShape.slice(0));reshaped.push(inputShape[0]/prod2);reshaped=reshaped.concat(inputShape.slice(1))}else{reshaped=reshaped.concat(inputShape[0]);const spatialLength=blockShape.length;for(let i=0;i<spatialLength;++i){reshaped=reshaped.concat([inputShape[i+1]/blockShape[i],blockShape[i]])}reshaped=reshaped.concat(inputShape.slice(spatialLength+1))}return reshaped}function getPermuted(reshapedRank,blockShapeRank,batchToSpace=true){const permuted=[];if(batchToSpace){permuted.push(blockShapeRank);for(let i=blockShapeRank+1;i<reshapedRank;++i){if(i<=2*blockShapeRank){permuted.push(i);permuted.push(i-(blockShapeRank+1))}else{permuted.push(i)}}}else{const permutedBeforeBatch=[];const permutedAfterBatch=[];for(let i=1;i<reshapedRank;++i){if(i>=blockShapeRank*2+1||i%2===1){permutedAfterBatch.push(i)}else{permutedBeforeBatch.push(i)}}permuted.push(...permutedBeforeBatch);permuted.push(0);permuted.push(...permutedAfterBatch)}return permuted}function getReshapedPermuted(inputShape,blockShape,prod2,batchToSpace=true){const reshapedPermuted=[];if(batchToSpace){reshapedPermuted.push(inputShape[0]/prod2)}else{reshapedPermuted.push(inputShape[0]*prod2)}for(let i=1;i<inputShape.length;++i){if(i<=blockShape.length){if(batchToSpace){reshapedPermuted.push(blockShape[i-1]*inputShape[i])}else{reshapedPermuted.push(inputShape[i]/blockShape[i-1])}}else{reshapedPermuted.push(inputShape[i])}}return reshapedPermuted}function getSliceBeginCoords(crops,blockShape){const sliceBeginCoords=[0];for(let i=0;i<blockShape;++i){sliceBeginCoords.push(crops[i][0])}return sliceBeginCoords}function getSliceSize(uncroppedShape,crops,blockShape){const sliceSize=uncroppedShape.slice(0,1);for(let i=0;i<blockShape;++i){sliceSize.push(uncroppedShape[i+1]-crops[i][0]-crops[i][1])}return sliceSize}const SELU_SCALEALPHA=1.7580993408473768;const SELU_SCALE=1.0507009873554805;const ERF_P=.3275911;const ERF_A1=.254829592;const ERF_A2=-.284496736;const ERF_A3=1.421413741;const ERF_A4=-1.453152027;const ERF_A5=1.061405429;function warn(...msg){if(!env3().getBool("IS_TEST")){console.warn(...msg)}}function log$1(...msg){if(!env3().getBool("IS_TEST")){console.log(...msg)}}function mergeRealAndImagArrays(real2,imag2){if(real2.length!==imag2.length){throw new Error(`Cannot merge real and imag arrays of different lengths. real:${real2.length}, imag: ${imag2.length}.`)}const result=new Float32Array(real2.length*2);for(let i=0;i<result.length;i+=2){result[i]=real2[i/2];result[i+1]=imag2[i/2]}return result}function splitRealAndImagArrays(complex2){const real2=new Float32Array(complex2.length/2);const imag2=new Float32Array(complex2.length/2);for(let i=0;i<complex2.length;i+=2){real2[i/2]=complex2[i];imag2[i/2]=complex2[i+1]}return{real:real2,imag:imag2}}function complexWithEvenIndex(complex2){const len=Math.ceil(complex2.length/4);const real2=new Float32Array(len);const imag2=new Float32Array(len);for(let i=0;i<complex2.length;i+=4){real2[Math.floor(i/4)]=complex2[i];imag2[Math.floor(i/4)]=complex2[i+1]}return{real:real2,imag:imag2}}function complexWithOddIndex(complex2){const len=Math.floor(complex2.length/4);const real2=new Float32Array(len);const imag2=new Float32Array(len);for(let i=2;i<complex2.length;i+=4){real2[Math.floor(i/4)]=complex2[i];imag2[Math.floor(i/4)]=complex2[i+1]}return{real:real2,imag:imag2}}function getComplexWithIndex(complex2,index2){const real2=complex2[index2*2];const imag2=complex2[index2*2+1];return{real:real2,imag:imag2}}function assignToTypedArray(data2,real2,imag2,index2){data2[index2*2]=real2;data2[index2*2+1]=imag2}function exponents(n,inverse){const real2=new Float32Array(n/2);const imag2=new Float32Array(n/2);for(let i=0;i<Math.ceil(n/2);i++){const x=(inverse?2:-2)*Math.PI*(i/n);real2[i]=Math.cos(x);imag2[i]=Math.sin(x)}return{real:real2,imag:imag2}}function exponent(k,n,inverse){const x=(inverse?2:-2)*Math.PI*(k/n);const real2=Math.cos(x);const imag2=Math.sin(x);return{real:real2,imag:imag2}}function castTensor(x,dtype,backend2){if(dtype==="complex64"){if(x.dtype==="complex64"){return x.clone()}const zerosTensor=zeros(x.shape);const floatX=cast2(x,"float32");const result=backend2.complex(floatX,zerosTensor);zerosTensor.dispose();floatX.dispose();return result}if(!hasEncodingLoss(x.dtype,dtype)){return ENGINE.makeTensorFromDataId(x.dataId,x.shape,dtype)}if(x.dtype==="complex64"){const real2=backend2.real(x);const result=cast2(real2,dtype);real2.dispose();return result}if(dtype==="int32"){return backend2.int(x)}else if(dtype==="bool"){const zero=scalar(0,x.dtype);const result=backend2.notEqual(x,zero);zero.dispose();return result}else{throw new Error(`Error in Cast: failed to cast ${x.dtype} to ${dtype}`)}}function reshapeTensor(x,shape){return ENGINE.makeTensorFromDataId(x.dataId,shape,x.dtype)}function linspaceImpl(start,stop,num){const step2=(stop-start)/(num-1);const values=makeZerosTypedArray(num,"float32");values[0]=start;for(let i=1;i<values.length;i++){values[i]=values[i-1]+step2}return tensor1d(values,"float32")}var backend_util19=Object.freeze({__proto__:null,slice_util:slice_util2,segment_util,castTensor,reshapeTensor,linspaceImpl,upcastType,axesAreInnerMostDims,combineLocations,computeOutAndReduceShapes,expandShapeToKeepDim,assertAxesAreInnerMostDims,getAxesPermutation,getUndoAxesPermutation,getInnerMostAxes,getBroadcastDims,getReductionAxes,assertAndGetBroadcastShape,assertParamsConsistent,computeOutShape:computeOutShape$1,computeDilation2DInfo,computePool2DInfo,computePool3DInfo,computeConv2DInfo,computeConv3DInfo,computeDefaultPad,tupleValuesAreOne,eitherStridesOrDilationsAreOne,convertConv2DDataFormat,getFusedDyActivation,getFusedBiasGradient,applyActivation,shouldFuse,PARALLELIZE_THRESHOLD,computeOptimalWindowSize,getImageCenter,getReshaped,getPermuted,getReshapedPermuted,getSliceBeginCoords,getSliceSize,prepareAndValidate,validateUpdateShape,validateInput,calculateShapes,SELU_SCALEALPHA,SELU_SCALE,ERF_P,ERF_A1,ERF_A2,ERF_A3,ERF_A4,ERF_A5,warn,log:log$1,mergeRealAndImagArrays,splitRealAndImagArrays,complexWithEvenIndex,complexWithOddIndex,getComplexWithIndex,assignToTypedArray,exponents,exponent,prepareSplitSize});function split$1(x,sizeSplits,axis){const begin=new Array(x.rank).fill(0);const size=x.shape.slice();return sizeSplits.map(s=>{const sliceSize=[...size];sliceSize[axis]=s;const sliceT=slice2(x,begin,sliceSize);begin[axis]+=s;return sliceT})}function tile$1(xBuf,reps){const newShape=new Array(xBuf.rank);for(let i=0;i<newShape.length;i++){newShape[i]=xBuf.shape[i]*reps[i]}const result=buffer2(newShape,xBuf.dtype);for(let i=0;i<result.values.length;++i){const newLoc=result.indexToLoc(i);const originalLoc=new Array(xBuf.rank);for(let j=0;j<originalLoc.length;j++){originalLoc[j]=newLoc[j]%xBuf.shape[j]}const originalIndex=xBuf.locToIndex(originalLoc);result.values[i]=xBuf.values[originalIndex]}return result.toTensor()}function topkImpl(x,xShape,xDtype,k,sorted){const lastDim=xShape[xShape.length-1];const[batch,size]=[x.length/lastDim,lastDim];const allTopKVals=getTypedArrayFromDType(xDtype,batch*k);const allTopKIndices=getTypedArrayFromDType("int32",batch*k);for(let b=0;b<batch;b++){const offset=b*size;const vals=x.subarray(offset,offset+size);const valAndInd=[];for(let i=0;i<vals.length;i++){valAndInd.push({value:vals[i],index:i})}valAndInd.sort((a,b2)=>b2.value-a.value);const outOffset=b*k;const topKVals=allTopKVals.subarray(outOffset,outOffset+k);const topKIndices=allTopKIndices.subarray(outOffset,outOffset+k);for(let i=0;i<k;i++){topKVals[i]=valAndInd[i].value;topKIndices[i]=valAndInd[i].index}}const outputShape=xShape.slice();outputShape[outputShape.length-1]=k;return[tensor(allTopKVals,outputShape,xDtype),tensor(allTopKIndices,outputShape,"int32")]}var kernel_impls=Object.freeze({__proto__:null,nonMaxSuppressionV3Impl,nonMaxSuppressionV4Impl,nonMaxSuppressionV5Impl,split:split$1,tile:tile$1,topkImpl,whereImpl});const absGradConfig={kernelName:Abs3,inputsToSave:["x"],gradFunc:(dy,saved)=>{const[x]=saved;return{x:()=>mul(dy,step(cast2(x,"float32"),-1))}}};const acosGradConfig={kernelName:Acos,inputsToSave:["x"],gradFunc:(dy,saved)=>{const[x]=saved;return{x:()=>{const a=square(cast2(x,"float32"));const b=sqrt(sub(scalar(1),a));return neg(div(dy,b))}}}};const acoshGradConfig={kernelName:Acosh,inputsToSave:["x"],gradFunc:(dy,saved)=>{const[x]=saved;return{x:()=>{const a=sqrt(sub(square(cast2(x,"float32")),1));return div(dy,a)}}}};const addGradConfig={kernelName:Add3,inputsToSave:["a","b"],gradFunc:(dy,saved)=>{const[a,b]=saved;const outShape=assertAndGetBroadcastShape(a.shape,b.shape);const derA=()=>{let res=dy;const reduceAxes=getReductionAxes(a.shape,outShape);if(reduceAxes.length>0){res=sum$1(res,reduceAxes)}return reshape2(res,a.shape)};const derB=()=>{let res=dy;const reduceAxes=getReductionAxes(b.shape,outShape);if(reduceAxes.length>0){res=sum$1(res,reduceAxes)}return reshape2(res,b.shape)};return{a:derA,b:derB}}};const addNGradConfig={kernelName:AddN3,saveAllInputs:true,gradFunc:(dy,saved)=>{const ders={};saved.forEach((_,i)=>{ders[i]=()=>dy.clone()});return ders}};const argMaxGradConfig={kernelName:ArgMax3,inputsToSave:["x"],gradFunc:(dy,saved)=>{const[x]=saved;return{x:()=>zerosLike2(x)}}};const argMinGradConfig={kernelName:ArgMin,inputsToSave:["x"],gradFunc:(dy,saved)=>{const[x]=saved;return{x:()=>zerosLike2(x)}}};const asinGradConfig={kernelName:Asin,inputsToSave:["x"],gradFunc:(dy,saved)=>{const[x]=saved;return{x:()=>div(dy,sqrt(sub(scalar(1),square(cast2(x,"float32")))))}}};const asinhGradConfig={kernelName:Asinh,inputsToSave:["x"],gradFunc:(dy,saved)=>{const[x]=saved;return{x:()=>{const a=sqrt(add$1(scalar(1),square(cast2(x,"float32"))));return div(dy,a)}}}};const atan2GradConfig={kernelName:Atan2,inputsToSave:["a","b"],gradFunc:(dy,saved)=>{const[a,b]=saved;const outShape=assertAndGetBroadcastShape(a.shape,b.shape);const derA=()=>{const d=add$1(square(a),square(b));let res=mul(dy,div(b,d));const reduceAxes=getReductionAxes(a.shape,outShape);if(reduceAxes.length>0){res=sum$1(res,reduceAxes)}return reshape2(res,a.shape)};const derB=()=>{const d=add$1(square(a),square(b));let res=neg(mul(dy,div(a,d)));const reduceAxes=getReductionAxes(b.shape,outShape);if(reduceAxes.length>0){res=sum$1(res,reduceAxes)}return reshape2(res,b.shape)};return{a:derA,b:derB}}};const atanGradConfig={kernelName:Atan,inputsToSave:["x"],gradFunc:(dy,saved)=>{const[x]=saved;return{x:()=>div(dy,add$1(square(cast2(x,"float32")),1))}}};const atanhGradConfig={kernelName:Atanh,inputsToSave:["x"],gradFunc:(dy,saved)=>{const[x]=saved;return{x:()=>div(dy,sub(scalar(1),square(cast2(x,"float32"))))}}};function avgPool3dBackprop_(dy,input2,filterSize,strides,dilations=[1,1,1],pad3,dimRoundingMode){const $dy=convertToTensor(dy,"dy","avgPool3dBackprop");const $input=convertToTensor(input2,"input","avgPool3dBackprop");let dy5D=$dy;let input5D=$input;let reshapedTo5D=false;if($input.rank===4){reshapedTo5D=true;dy5D=reshape2($dy,[1,$dy.shape[0],$dy.shape[1],$dy.shape[2],$dy.shape[3]]);input5D=reshape2($input,[1,$input.shape[0],$input.shape[1],$input.shape[2],$input.shape[3]])}assert(dy5D.rank===5,()=>`Error in avgPool3dBackprop: dy must be rank 5 but got rank ${dy5D.rank}.`);assert(input5D.rank===5,()=>`Error in avgPool3dBackprop: input must be rank 5 but got rank ${input5D.rank}.`);assert(eitherStridesOrDilationsAreOne(strides,dilations),()=>`Error in avgPool3dBackprop: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`);if(dimRoundingMode!=null){assert(isInt(pad3),()=>`Error in maxPool3dBackprop: pad must be an integer when using, dimRoundingMode ${dimRoundingMode} but got pad ${pad3}.`)}const forward=backend2=>{const convInfo=computePool3DInfo(input5D.shape,filterSize,strides,dilations,pad3,dimRoundingMode);return backend2.avgPool3dBackprop(dy5D,input5D,convInfo)};const inputs={dy:dy5D,input:input5D};const attrs={filterSize,strides,dilations,pad:pad3,dimRoundingMode};const res=ENGINE.runKernelFunc(forward,inputs,null,AvgPool3DBackprop,attrs);if(reshapedTo5D){return reshape2(res,[res.shape[1],res.shape[2],res.shape[3],res.shape[4]])}return res}const avgPool3dBackprop=op({avgPool3dBackprop_});const avgPool3DGradConfig={kernelName:AvgPool3D,inputsToSave:["x"],gradFunc:(dy,saved,attrs)=>{const[x]=saved;const{filterSize,strides,dilations,pad:pad3,dimRoundingMode}=attrs;const $dilations=dilations==null?[1,1,1]:dilations;return{x:()=>avgPool3dBackprop(dy,x,filterSize,strides,$dilations,pad3,dimRoundingMode)}}};function avgPoolBackprop_(dy,input2,filterSize,strides,pad3){const $dy=convertToTensor(dy,"dy","avgPoolBackprop");const $input=convertToTensor(input2,"input","avgPoolBackprop");assert($input.rank===$dy.rank,()=>`Rank of input (${$input.rank}) does not match rank of dy (${$dy.rank})`);let input4D=$input;let dy4D=$dy;let reshapedTo4D=false;if($input.rank===3){reshapedTo4D=true;input4D=reshape2($input,[1,$input.shape[0],$input.shape[1],$input.shape[2]]);dy4D=reshape2($dy,[1,$dy.shape[0],$dy.shape[1],$dy.shape[2]])}assert(dy4D.rank===4,()=>`Error in avgPoolBackprop: dy must be rank 4 but got rank ${dy4D.rank}.`);assert(input4D.rank===4,()=>`Error in avgPoolBackprop: input must be rank 4 but got rank ${input4D.rank}.`);const forward=backend2=>{const convInfo=computePool2DInfo(input4D.shape,filterSize,strides,1,pad3);return backend2.avgPoolBackprop(dy4D,input4D,convInfo)};const inputs={dy:dy4D,input:input4D};const attrs={filterSize,strides,pad:pad3};const res=ENGINE.runKernelFunc(forward,inputs,null,AvgPoolBackprop,attrs);if(reshapedTo4D){return reshape2(res,[res.shape[1],res.shape[2],res.shape[3]])}return res}const avgPoolBackprop=op({avgPoolBackprop_});const avgPoolGradConfig={kernelName:AvgPool3,inputsToSave:["x"],gradFunc:(dy,saved,attrs)=>{const[x]=saved;const{filterSize,strides,pad:pad3}=attrs;return{x:()=>avgPoolBackprop(dy,x,filterSize,strides,pad3)}}};const batchMatMulGradConfig={kernelName:BatchMatMul3,inputsToSave:["a","b"],gradFunc:(dy,saved,attrs)=>{const[a,b]=saved;const{transposeA,transposeB}=attrs;if(!transposeA&&!transposeB){return{a:()=>matMul(dy,b,false,true),b:()=>matMul(a,dy,true,false)}}else if(!transposeA&&transposeB){return{a:()=>matMul(dy,b,false,false),b:()=>matMul(dy,a,true,false)}}else if(transposeA&&!transposeB){return{a:()=>matMul(b,dy,false,true),b:()=>matMul(a,dy,false,false)}}else{return{a:()=>matMul(b,dy,true,true),b:()=>matMul(dy,a,true,true)}}}};const batchToSpaceNDGradConfig={kernelName:BatchToSpaceND,gradFunc:(dy,saved,attrs)=>{const{blockShape,crops}=attrs;return{x:()=>spaceToBatchND(dy,blockShape,crops)}}};const broadcastToGradConfig={kernelName:BroadcastTo,gradFunc:(dy,saved,attrs)=>{const broadCastToAttrs=attrs;const inputShape=broadCastToAttrs.inputShape;const outputShape=broadCastToAttrs.shape;const reps=Array.from(outputShape);for(let i=inputShape.length-1;i>=0;i--){if(inputShape[i]===outputShape[i]){reps[i]=1}else if(inputShape[i]!==1){throw new Error(`broadcastTo(): [${inputShape}] cannot be broadcast to [${outputShape}].`)}}const axes=[];for(let i=0;i<reps.length;i++){if(reps[i]>1){axes.push(i)}}return{x:()=>sum$1(dy,axes,true)}}};const castGradConfig={kernelName:Cast5,gradFunc:dy=>{return{x:()=>dy.clone()}}};const ceilGradConfig={kernelName:Ceil,gradFunc:dy=>{return{x:()=>zerosLike2(dy)}}};const clipByValueGradConfig={kernelName:ClipByValue3,inputsToSave:["x"],gradFunc:(dy,saved,attrs)=>{const[x]=saved;const{clipValueMin,clipValueMax}=attrs;return{x:()=>where(logicalAnd(greaterEqual(x,clipValueMin),lessEqual(x,clipValueMax)),dy,zerosLike2(dy))}}};const concatGradConfig={kernelName:Concat3,saveAllInputs:true,gradFunc:(dy,saved,attrs)=>{const shapes=saved.map(t=>t.shape);const{axis}=attrs;const $axis=parseAxisParam(axis,saved[0].shape)[0];const sizeSplits=shapes.map(s=>s[$axis]);const derTensors=split2(dy,sizeSplits,$axis);return derTensors.map(t=>()=>t)}};const conv2DGradConfig={kernelName:Conv2D3,inputsToSave:["x","filter"],gradFunc:(dy,saved,attrs)=>{const[x4D,$filter]=saved;const{dilations,strides,pad:pad3,dataFormat}=attrs;assert(tupleValuesAreOne(dilations),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${dilations}'`);return{x:()=>conv2DBackpropInput2(x4D.shape,dy,$filter,strides,pad3,dataFormat),filter:()=>conv2DBackpropFilter(x4D,dy,$filter.shape,strides,pad3,dataFormat)}}};const conv2DBackpropInputGradConfig={kernelName:Conv2DBackpropInput3,inputsToSave:["dy","filter"],gradFunc:(ddx,saved,attrs)=>{const[dy,filter]=saved;const{strides,pad:pad3,dataFormat,dimRoundingMode}=attrs;return{dy:()=>conv2d2(ddx,filter,strides,pad3,dataFormat,1,dimRoundingMode),filter:()=>conv2DBackpropFilter(ddx,dy,filter.shape,strides,pad3,dataFormat,dimRoundingMode)}}};function conv3DBackpropFilter_(x,dy,filterShape,strides,pad3){let x5D=x;if(x.rank===4){x5D=reshape2(x,[1,x.shape[0],x.shape[1],x.shape[2],x.shape[3]])}let dy5D=dy;if(dy5D.rank===4){dy5D=reshape2(dy,[1,dy.shape[0],dy.shape[1],dy.shape[2],dy.shape[3]])}assert(x5D.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${x5D.shape}.`);assert(dy5D.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${dy5D.shape}.`);assert(filterShape.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${filterShape}.`);assert(x5D.shape[4]===filterShape[3],()=>`Error in conv3dDerFilter: depth of input ${x5D.shape[4]}) must match input depth in filter (${filterShape[3]}.`);assert(dy5D.shape[4]===filterShape[4],()=>`Error in conv3dDerFilter: depth of dy (${dy5D.shape[4]}) must match output depth for filter (${filterShape[4]}).`);const forward=backend2=>{const dilations=1;const convInfo=computeConv3DInfo(x5D.shape,filterShape,strides,dilations,pad3);return backend2.conv3dDerFilter(x5D,dy5D,convInfo)};const inputs={x:x5D,dy:dy5D};const attrs={strides,pad:pad3,filterShape};return ENGINE.runKernelFunc(forward,inputs,null,Conv3DBackpropFilterV2,attrs)}const conv3DBackpropFilter=op({conv3DBackpropFilter_});const conv3DGradConfig={kernelName:Conv3D,inputsToSave:["x","filter"],gradFunc:(dy,saved,attrs)=>{const{dilations,strides,pad:pad3}=attrs;assert(tupleValuesAreOne(dilations),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${dilations}'`);const[x5D,$filter]=saved;return{x:()=>conv3DBackpropInput(x5D.shape,dy,$filter,strides,pad3),filter:()=>conv3DBackpropFilter(x5D,dy,$filter.shape,strides,pad3)}}};const cosGradConfig={kernelName:Cos3,inputsToSave:["x"],gradFunc:(dy,saved)=>{const[x]=saved;return{x:()=>mul(neg(sin(cast2(x,"float32"))),dy)}}};const coshGradConfig={kernelName:Cosh,inputsToSave:["x"],gradFunc:(dy,saved)=>{const[x]=saved;return{x:()=>mul(sinh(cast2(x,"float32")),dy)}}};const cumsumGradConfig={kernelName:Cumsum3,inputsToSave:["x"],gradFunc:(dy,saved,attrs)=>{const[x]=saved;const{axis,exclusive,reverse:reverse3}=attrs;return{x:()=>{const permutation=getAxesPermutation([axis],x.rank);let out=cumsum2(dy,axis,exclusive,!reverse3);if(permutation!=null){out=transpose2(out,permutation)}return out}}}};const depthwiseConv2dNativeGradConfig={kernelName:DepthwiseConv2dNative3,inputsToSave:["x","filter"],gradFunc:(dy,saved,attrs)=>{const{dilations,strides,pad:pad3,dimRoundingMode}=attrs;const $dilations=dilations==null?[1,1]:dilations;assert(tupleValuesAreOne($dilations),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${$dilations}'`);const[x,filter]=saved;assert(x.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${x.rank}.`);assert(filter.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${filter.rank}.`);assert(x.shape[3]===filter.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${x.shape[3]}) must match the inChannels dimension in filter ${filter.shape[2]}.`);assert(eitherStridesOrDilationsAreOne(strides,$dilations),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${strides} and dilations '${$dilations}'.`);if(dimRoundingMode!=null){assert(isInt(pad3),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${dimRoundingMode} but got pad ${pad3}.`)}return{x:()=>depthwiseConv2dNativeBackpropInput(x.shape,dy,filter,strides,pad3,dilations,dimRoundingMode),filter:()=>depthwiseConv2dNativeBackpropFilter(x,dy,filter.shape,strides,pad3,dilations,dimRoundingMode)}}};const dilation2dGradConfig={kernelName:Dilation2D,inputsToSave:["x","filter"],gradFunc:(dy,saved,attrs)=>{const[x,filter]=saved;const inputInputs={x,filter,dy};const filterInputs={x,filter,dy};return{x:()=>ENGINE.runKernel(Dilation2DBackpropInput,inputInputs,attrs),filter:()=>ENGINE.runKernel(Dilation2DBackpropFilter,filterInputs,attrs)}}};const divGradConfig={kernelName:Div3,inputsToSave:["a","b"],gradFunc:(dy,saved)=>{const[a,b]=saved;const outShape=assertAndGetBroadcastShape(a.shape,b.shape);const derA=()=>{const res=div(dy,cast2(b,"float32"));const reduceAxes=getReductionAxes(a.shape,outShape);if(reduceAxes.length>0){return reshape2(sum$1(res,reduceAxes),a.shape)}return res};const derB=()=>{let res=mul(dy,cast2(a,"float32"));const reduceAxes=getReductionAxes(b.shape,outShape);if(reduceAxes.length>0){res=reshape2(sum$1(res,reduceAxes),b.shape)}const tmp=square(b);return neg(div(res,cast2(tmp,"float32")))};return{a:derA,b:derB}}};const eluGradConfig={kernelName:Elu,outputsToSave:[true],gradFunc:(dy,saved)=>{const[y]=saved;const backPropKernelFunc=backend2=>{return backend2.eluDer(dy,y)};const inputs={dy,y};return{x:()=>ENGINE.runKernelFunc(backPropKernelFunc,inputs,null,EluGrad)}}};const erfGradConfig={kernelName:Erf,inputsToSave:["x"],gradFunc:(dy,saved)=>{const[x]=saved;const a=mul(exp(neg(square(x))),2/Math.sqrt(Math.PI));return{x:()=>mul(dy,a)}}};const expGradConfig={kernelName:Exp3,outputsToSave:[true],gradFunc:(dy,saved)=>{const[y]=saved;return{x:()=>mul(dy,y)}}};const expm1GradConfig={kernelName:Expm1,inputsToSave:["x"],gradFunc:(dy,saved)=>{const[x]=saved;return{x:()=>mul(dy,exp(x))}}};const floorGradConfig={kernelName:Floor,gradFunc:dy=>{return{x:()=>zerosLike2(dy)}}};const floorDivGradConfig={kernelName:FloorDiv3,inputsToSave:["a","b"],gradFunc:(dy,saved)=>{const[a,b]=saved;const outShape=assertAndGetBroadcastShape(a.shape,b.shape);const derA=()=>{const res=div(dy,cast2(b,"float32"));const reduceAxes=getReductionAxes(a.shape,outShape);if(reduceAxes.length>0){return reshape2(sum$1(res,reduceAxes),a.shape)}return res};const derB=()=>{let res=mul(dy,cast2(a,"float32"));const reduceAxes=getReductionAxes(b.shape,outShape);if(reduceAxes.length>0){res=reshape2(sum$1(res,reduceAxes),b.shape)}const tmp=square(b);return neg(div(res,cast2(tmp,"float32")))};return{a:derA,b:derB}}};const fusedBatchNormGradConfig={kernelName:FusedBatchNorm3,inputsToSave:["x","mean","variance","scale"],gradFunc:(dy,saved,attrs)=>{const{varianceEpsilon}=attrs;const[x,mean2,variance2,scale2]=saved;const scaleValue=scale2==null?scalar(1):scale2;const reductionAxes=getReductionAxes(mean2.shape,x.shape);const tileShape=[];if(mean2.rank===1){for(let i=0;i<x.shape.length-1;++i){tileShape.push(x.shape[i])}tileShape.push(1)}const xMinusMean=sub(x,mean2);const dyTimesScaleValue=mul(dy,scaleValue);const oneOverSqrtVariance=rsqrt(add$1(variance2,scalar(varianceEpsilon)));const minusHalfRCube=mul(mul(mul(oneOverSqrtVariance,oneOverSqrtVariance),oneOverSqrtVariance),scalar(-.5));const derX=()=>{if(mean2.rank===1){return reshape2(mul(mul(dy,tile2(reshape2(oneOverSqrtVariance,[1,1,1,mean2.shape[0]]),tileShape)),scaleValue),x.shape)}else{return reshape2(mul(mul(dy,oneOverSqrtVariance),scaleValue),x.shape)}};const derMean=()=>{let meanDer=mul(mul(oneOverSqrtVariance,scalar(-1)),dyTimesScaleValue);if(mean2.rank===1){meanDer=sum$1(meanDer,reductionAxes)}return reshape2(meanDer,mean2.shape)};const derVariance=()=>{let varianceDer=mul(mul(minusHalfRCube,xMinusMean),dyTimesScaleValue);if(mean2.rank===1){varianceDer=sum$1(varianceDer,reductionAxes)}return reshape2(varianceDer,mean2.shape)};const derScale=()=>{const xMinusMean2TimesRsqrt=mul(xMinusMean,oneOverSqrtVariance);let scaleDer=mul(dy,xMinusMean2TimesRsqrt);if(mean2.rank===1){scaleDer=sum$1(scaleDer,reductionAxes)}return reshape2(scaleDer,mean2.shape)};const derOffset=()=>{let offsetDer=dy;if(mean2.rank===1){offsetDer=sum$1(offsetDer,reductionAxes)}return reshape2(offsetDer,mean2.shape)};return{x:derX,mean:derMean,variance:derVariance,scale:derScale,offset:derOffset}}};const gatherGradConfig={kernelName:GatherV23,inputsToSave:["x","indices"],gradFunc:(dy,saved,attrs)=>{const[x,indices]=saved;const{axis}=attrs;const parsedAxis=parseAxisParam(axis,x.shape)[0];const derX=()=>{const paramsShape=x.shape;const indicesSize=indices.size;const outerShape=paramsShape.slice(0,parsedAxis);const outerDims=outerShape.length;const innerShape=paramsShape.slice(axis,paramsShape.length).slice(1);const innerDims=innerShape.length;const outerAxesIndices=arrayRange(0,outerDims);const innerAxesIndices=arrayRange(outerDims+1,outerDims+1+innerDims);const valuesShape=arrayConcat([outerShape,[indicesSize],innerShape]);const values=reshape2(dy,valuesShape);const reshapedIndices=reshape2(indices,[indicesSize]);const transposeDims=arrayConcat([[outerDims],outerAxesIndices,innerAxesIndices]);const valuesTranspose=transpose2(values,transposeDims);let paramsGrad=unsortedSegmentSum(valuesTranspose,reshapedIndices,x.shape[parsedAxis]);const invertTransposeDims=getUndoAxesPermutation(transposeDims);paramsGrad=transpose2(paramsGrad,invertTransposeDims);return paramsGrad};return{x:derX,indices:()=>indices}}};function arrayRange(start,stop){const result=[];for(let i=start;i<stop;++i){result.push(i)}return result}function arrayConcat(arrays){const result=[];for(let i=0;i<arrays.length;++i){for(let j=0;j<arrays[i].length;++j){result.push(arrays[i][j])}}return result}const greaterEqualGradConfig={kernelName:GreaterEqual3,inputsToSave:["a","b"],gradFunc:(dy,saved)=>{const[a,b]=saved;return{a:()=>zerosLike2(a),b:()=>zerosLike2(b)}}};const identityGradConfig={kernelName:Identity5,gradFunc:dy=>{return{x:()=>cast2(dy,"float32")}}};const isFiniteGradConfig={kernelName:IsFinite,gradFunc:dy=>{return{x:()=>zerosLike2(dy)}}};const isInfGradConfig={kernelName:IsInf,gradFunc:dy=>{return{x:()=>zerosLike2(dy)}}};const isNanGradConfig={kernelName:IsNan,gradFunc:dy=>{return{x:()=>zerosLike2(dy)}}};const log1pGradConfig={kernelName:Log1p,inputsToSave:["x"],gradFunc:(dy,saved)=>{const[x]=saved;return{x:()=>div(dy,add$1(x,1))}}};const logGradConfig={kernelName:Log3,inputsToSave:["x"],gradFunc:(dy,saved)=>{const[x]=saved;return{x:()=>div(dy,cast2(x,"float32"))}}};const logSoftmaxGradConfig={kernelName:LogSoftmax,inputsToSave:[],outputsToSave:[true],gradFunc:(dy,saved,attrs)=>{const[value]=saved;const{axis}=attrs;return{logits:()=>{const keepDims=true;const softmax3=exp(value);return sub(dy,mul(sum$1(dy,axis,keepDims),softmax3))}}}};function localResponseNormalizationBackprop_(x,y,dy,depthRadius=5,bias=1,alpha=1,beta=.5){const forward=backend2=>backend2.LRNGrad(dy,x,y,depthRadius,bias,alpha,beta);const inputs={x,y,dy};const attrs={depthRadius,bias,alpha,beta};return ENGINE.runKernelFunc(forward,inputs,null,LRNBackprop,attrs)}const localResponseNormalizationBackprop=op({localResponseNormalizationBackprop_});const lrnGradConfig={kernelName:LRN,inputsToSave:["x"],outputsToSave:[true],gradFunc:(dy,saved,attrs)=>{const[x,y]=saved;const{depthRadius,bias,alpha,beta}=attrs;return{x:()=>localResponseNormalizationBackprop(x,y,dy,depthRadius,bias,alpha,beta)}}};function gradForMinAndMax(dy,y,xOrig,origAxes){if(y.rank<xOrig.rank){y=reshape2(y,expandShapeToKeepDim(y.shape,origAxes))}if(dy.rank<xOrig.rank){dy=reshape2(dy,expandShapeToKeepDim(dy.shape,origAxes))}return{x:()=>{const dx=mul(dy,cast2(equal(xOrig,y),dy.dtype));return dx}}}const maxGradConfig={kernelName:Max3,inputsToSave:["x"],outputsToSave:[true],gradFunc:(dy,saved,attrs)=>{const maxAttrs=attrs;const{reductionIndices}=maxAttrs;const x=saved[0];const y=saved[1];const origAxes=parseAxisParam(reductionIndices,x.shape);const maxGrad=gradForMinAndMax(dy,y,x,origAxes);return{x:()=>{return maxGrad["x"]()}}}};const maximumGradConfig={kernelName:Maximum3,inputsToSave:["a","b"],gradFunc:(dy,saved)=>{const[a,b]=saved;const derA=()=>mul(dy,cast2(greaterEqual(a,b),"float32"));const derB=()=>mul(dy,cast2(less(a,b),"float32"));return{a:derA,b:derB}}};function maxPool3dBackprop_(dy,input2,output,filterSize,strides,dilations=[1,1,1],pad3,dimRoundingMode){const $dy=convertToTensor(dy,"dy","maxPool3dBackprop");const $input=convertToTensor(input2,"input","maxPool3dBackprop");const $output=convertToTensor(output,"output","maxPool3dBackprop");let dy5D=$dy;let input5D=$input;let output5D=$output;let reshapedTo5D=false;if($input.rank===4){reshapedTo5D=true;dy5D=reshape2($dy,[1,$dy.shape[0],$dy.shape[1],$dy.shape[2],$dy.shape[3]]);input5D=reshape2($input,[1,$input.shape[0],$input.shape[1],$input.shape[2],$input.shape[3]]);output5D=reshape2($output,[1,$output.shape[0],$output.shape[1],$output.shape[2],$output.shape[3]])}assert(dy5D.rank===5,()=>`Error in maxPool3dBackprop: dy must be rank 5 but got rank ${dy5D.rank}.`);assert(input5D.rank===5,()=>`Error in maxPool3dBackprop: input must be rank 5 but got rank ${input5D.rank}.`);assert(output5D.rank===5,()=>`Error in maxPool3dBackprop: output must be rank 5 but got rank ${output5D.rank}.`);assert(eitherStridesOrDilationsAreOne(strides,dilations),()=>`Error in maxPool3dBackprop: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`);if(dimRoundingMode!=null){assert(isInt(pad3),()=>`Error in maxPool3dBackprop: pad must be an integer when using, dimRoundingMode ${dimRoundingMode} but got pad ${pad3}.`)}const forward=backend2=>{const convInfo=computePool3DInfo(input5D.shape,filterSize,strides,dilations,pad3,dimRoundingMode);return backend2.maxPool3dBackprop(dy5D,input5D,output5D,convInfo)};const inputs={dy:dy5D,input:input5D,output:output5D};const attrs={filterSize,strides,dilations,pad:pad3,dimRoundingMode};const res=ENGINE.runKernelFunc(forward,inputs,null,MaxPool3DBackprop,attrs);if(reshapedTo5D){return reshape2(res,[res.shape[1],res.shape[2],res.shape[3],res.shape[4]])}return res}const maxPool3dBackprop=op({maxPool3dBackprop_});const maxPool3DGradConfig={kernelName:MaxPool3D,inputsToSave:["x"],outputsToSave:[true],gradFunc:(dy,saved,attrs)=>{const[x,y]=saved;const{filterSize,strides,dilations,pad:pad3,dimRoundingMode}=attrs;const $dilations=dilations==null?[1,1,1]:dilations;return{x:()=>maxPool3dBackprop(dy,x,y,filterSize,strides,$dilations,pad3,dimRoundingMode)}}};function maxPoolBackprop_(dy,input2,output,filterSize,strides,pad3,dimRoundingMode){const $dy=convertToTensor(dy,"dy","maxPoolBackprop");const $input=convertToTensor(input2,"input","maxPoolBackprop");const $output=convertToTensor(output,"output","maxPoolBackprop");assert($input.rank===$dy.rank,()=>`Rank of input (${$input.rank}) does not match rank of dy (${$dy.rank})`);assert($dy.rank===4,()=>`Error in maxPoolBackprop: dy must be rank 4 but got rank ${$dy.rank}.`);assert($input.rank===4,()=>`Error in maxPoolBackprop: input must be rank 4 but got rank ${$input.rank}.`);if(dimRoundingMode!=null){assert(isInt(pad3),()=>`Error in maxPoolBackprop: pad must be an integer when using, dimRoundingMode ${dimRoundingMode} but got pad ${pad3}.`)}const forward=backend2=>{const convInfo=computePool2DInfo($input.shape,filterSize,strides,1,pad3,dimRoundingMode);return backend2.maxPoolBackprop($dy,$input,$output,convInfo)};const inputs={dy:$dy,input:$input,output:$output};const attrs={filterSize,strides,pad:pad3,dimRoundingMode};return ENGINE.runKernelFunc(forward,inputs,null,MaxPoolBackprop,attrs)}const maxPoolBackprop=op({maxPoolBackprop_});const maxPoolGradConfig={kernelName:MaxPool3,inputsToSave:["x"],outputsToSave:[true],gradFunc:(dy,saved,attrs)=>{const[x,y]=saved;const{filterSize,strides,pad:pad3}=attrs;return{x:()=>maxPoolBackprop(dy,x,y,filterSize,strides,pad3)}}};const minGradConfig={kernelName:Min3,inputsToSave:["x"],outputsToSave:[true],gradFunc:(dy,saved,attrs)=>{const minAttrs=attrs;const{axis}=minAttrs;const[x,y]=saved;const origAxes=parseAxisParam(axis,x.shape);const minGrad=gradForMinAndMax(dy,y,x,origAxes);return{x:()=>{return minGrad["x"]()}}}};const minimumGradConfig={kernelName:Minimum3,inputsToSave:["a","b"],gradFunc:(dy,saved)=>{const[a,b]=saved;const derA=()=>mul(dy,cast2(lessEqual(a,b),"float32"));const derB=()=>mul(dy,cast2(greater(a,b),"float32"));return{a:derA,b:derB}}};const mirrorPadGradConfig={kernelName:MirrorPad,inputsToSave:["x"],gradFunc:(dy,saved,attrs)=>{const x=saved[0];const{paddings}=attrs;const begin=paddings.map(p2=>p2[0]);return{x:()=>slice2(dy,begin,x.shape)}}};const modGradConfig={kernelName:Mod,inputsToSave:["a","b"],gradFunc:(dy,saved)=>{const[a,b]=saved;const outShape=assertAndGetBroadcastShape(a.shape,b.shape);const derA=()=>{const reduceAxes=getReductionAxes(a.shape,outShape);if(reduceAxes.length>0){return reshape2(sum$1(dy,reduceAxes),a.shape)}return dy};const derB=()=>{const res=mul(dy,neg(floor(div(a,b))));const reduceAxes=getReductionAxes(b.shape,outShape);if(reduceAxes.length>0){return reshape2(sum$1(res,reduceAxes),b.shape)}return res};return{a:derA,b:derB}}};const multiplyGradConfig={kernelName:Multiply3,inputsToSave:["a","b"],gradFunc:(dy,saved)=>{const[a,b]=saved;const outShape=assertAndGetBroadcastShape(a.shape,b.shape);const derA=()=>{const res=mul(dy,cast2(b,"float32"));const reduceAxes=getReductionAxes(a.shape,outShape);if(reduceAxes.length>0){return reshape2(sum$1(res,reduceAxes),a.shape)}return res};const derB=()=>{const res=mul(dy,cast2(a,"float32"));const reduceAxes=getReductionAxes(b.shape,outShape);if(reduceAxes.length>0){return reshape2(sum$1(res,reduceAxes),b.shape)}return res};return{a:derA,b:derB}}};const negateGradConfig={kernelName:Negate3,gradFunc:dy=>{return{x:()=>neg(dy)}}};const oneHotGradConfig={kernelName:OneHot3,inputsToSave:["indices"],gradFunc:(dy,saved)=>{const indices=saved[0];return{indices:()=>zeros(indices.shape,"float32")}}};const onesLikeGradConfig={kernelName:OnesLike3,gradFunc:dy=>{return{x:()=>zerosLike2(dy)}}};const padV2GradConfig={kernelName:PadV23,inputsToSave:["x"],gradFunc:(dy,saved,attrs)=>{const x=saved[0];const{paddings}=attrs;const begin=paddings.map(p2=>p2[0]);return{x:()=>slice2(dy,begin,x.shape)}}};const powGradConfig={kernelName:Pow3,inputsToSave:["a","b"],outputsToSave:[true],gradFunc:(dy,saved)=>{const[a,b,y]=saved;const base=a;const exp2=b;const outShape=assertAndGetBroadcastShape(base.shape,exp2.shape);const derBase=()=>{const expFloat=cast2(exp2,"float32");let res=mul(dy,mul(expFloat,pow(base,sub(expFloat,scalar(1)))));const reduceAxes=getReductionAxes(base.shape,outShape);if(reduceAxes.length>0){res=sum$1(res,reduceAxes)}return reshape2(res,base.shape)};const derExp=()=>{const condition=greater(base,0);const logBase=where(condition,log(base),zerosLike2(base));let res=mul(dy,mul(y,logBase));const reduceAxes=getReductionAxes(exp2.shape,outShape);if(reduceAxes.length>0){res=sum$1(res,reduceAxes)}return reshape2(res,exp2.shape)};return{a:derBase,b:derExp}}};const preluGradConfig={kernelName:Prelu3,inputsToSave:["x","alpha"],gradFunc:(dy,saved)=>{const[x,alpha]=saved;const mask=greater(x,0);return{x:()=>where(mask,dy,mul(dy,alpha)),alpha:()=>{let res=where(mask,zerosLike2(dy),mul(dy,x));const reduceAxes=getReductionAxes(alpha.shape,dy.shape);if(reduceAxes.length>0){res=sum$1(res,reduceAxes)}return reshape2(res,alpha.shape)}}}};const reciprocalGradConfig={kernelName:Reciprocal,inputsToSave:["x"],gradFunc:(dy,saved)=>{const[x]=saved;return{x:()=>div(dy,neg(square(x)))}}};const relu6GradConfig={kernelName:Relu63,inputsToSave:["x"],gradFunc:(dy,saved)=>{const[x]=saved;const mask=mul(lessEqual(x,6),step(x));return{x:()=>mul(dy,cast2(mask,"float32"))}}};const reluGradConfig={kernelName:Relu3,inputsToSave:["x"],gradFunc:(dy,saved)=>{const[x]=saved;return{x:()=>mul(dy,cast2(step(x),"float32"))}}};const reshapeGradConfig={kernelName:Reshape6,inputsToSave:["x"],gradFunc:(dy,saved)=>{const[x]=saved;return{x:()=>reshape2(dy,x.shape)}}};const resizeBilinearGradConfig={kernelName:ResizeBilinear3,inputsToSave:["images"],gradFunc:(dy,saved,attrs)=>{const[images]=saved;const backPropKernelFunc=backend2=>{const{alignCorners}=attrs;return backend2.resizeBilinearBackprop(dy,images,alignCorners)};const inputs={images};const imagesDer=()=>ENGINE.runKernelFunc(backPropKernelFunc,inputs,null,ResizeBilinearGrad,attrs);return{images:imagesDer}}};const resizeNearestNeighborGradConfig={kernelName:ResizeNearestNeighbor,inputsToSave:["images"],gradFunc:(dy,saved,attrs)=>{const[images]=saved;const backPropKernelFunc=backend2=>{const{alignCorners}=attrs;return backend2.resizeNearestNeighborBackprop(dy,images,alignCorners)};const inputs={images};const imagesDer=()=>ENGINE.runKernelFunc(backPropKernelFunc,inputs,null,ResizeNearestNeighborGrad,attrs);return{images:imagesDer}}};const reverseGradConfig={kernelName:Reverse3,gradFunc:(dy,saved,attrs)=>{const{dims}=attrs;const axes=parseAxisParam(dims,dy.shape);return{x:()=>reverse2(dy,axes)}}};const roundGradConfig={kernelName:Round,gradFunc:dy=>{return{x:()=>zerosLike2(dy)}}};const rsqrtGradConfig={kernelName:Rsqrt3,inputsToSave:["x"],gradFunc:(dy,saved)=>{const[x]=saved;return{x:()=>neg(div(dy,mul(pow(x,1.5),2)))}}};const selectV2PoolGradConfig={kernelName:SelectV23,inputsToSave:["condition"],gradFunc:(dy,saved)=>{const[condition]=saved;return{condition:()=>cast2(zerosLike2(condition),"float32"),t:()=>mul(dy,cast2(condition,dy.dtype)),e:()=>mul(dy,cast2(logicalNot(condition),dy.dtype))}}};const seluGradConfig={kernelName:Selu,inputsToSave:["x"],gradFunc:(dy,saved)=>{const[x]=saved;return{x:()=>{const mask=greater(x,scalar(0));const scaleAlpha2=scalar(SELU_SCALEALPHA);const scale2=scalar(SELU_SCALE);const greaterThanZeroDer=mul(dy,scale2);const lessEqualZeroDer=mul(mul(dy,scaleAlpha2),exp(cast2(x,"float32")));return where(mask,greaterThanZeroDer,lessEqualZeroDer)}}}};const sigmoidGradConfig={kernelName:Sigmoid3,outputsToSave:[true],gradFunc:(dy,saved)=>{const[y]=saved;return{x:()=>mul(dy,mul(y,sub(scalar(1),y)))}}};const signGradConfig={kernelName:Sign,gradFunc:dy=>{return{x:()=>zerosLike2(dy)}}};const sinGradConfig={kernelName:Sin3,inputsToSave:["x"],gradFunc:(dy,saved)=>{const[x]=saved;return{x:()=>mul(cos(cast2(x,"float32")),dy)}}};const sinhGradConfig={kernelName:Sinh,inputsToSave:["x"],gradFunc:(dy,saved)=>{const[x]=saved;return{x:()=>mul(cosh(cast2(x,"float32")),dy)}}};const sliceGradConfig={kernelName:Slice6,inputsToSave:["x"],gradFunc:(dy,saved,attrs)=>{const[x]=saved;const{begin,size}=attrs;const inputShape=x.shape;const[begin_,size_]=parseSliceParams(x,begin,size);const paddings=[];for(let i=0;i<dy.rank;i++){paddings.push([begin_[i],inputShape[i]-begin_[i]-size_[i]])}return{x:()=>pad2(dy,paddings)}}};const softmaxGradConfig={kernelName:Softmax3,outputsToSave:[true],gradFunc:(dy,saved,attrs)=>{const[y]=saved;const{dim}=attrs;const keepDims=true;const dyTimesY=mul(dy,y);return{logits:()=>sub(dyTimesY,mul(sum$1(dyTimesY,[dim],keepDims),y))}}};const softplusGradConfig={kernelName:Softplus,inputsToSave:["x"],gradFunc:(dy,saved)=>{const[x]=saved;return{x:()=>mul(dy,sigmoid2(x))}}};const spaceToBatchNDGradConfig={kernelName:SpaceToBatchND,gradFunc:(dy,saved,attrs)=>{const{blockShape,paddings}=attrs;return{x:()=>batchToSpaceND(dy,blockShape,paddings)}}};const splitVGradConfig={kernelName:SplitV2,gradFunc:(dy,saved,attrs)=>{const{axis}=attrs;return{x:()=>concat2(dy,axis)}}};const sqrtGradConfig={kernelName:Sqrt3,inputsToSave:["x"],gradFunc:(dy,saved)=>{const[x]=saved;return{x:()=>div(dy,mul(sqrt(cast2(x,"float32")),2))}}};const squareGradConfig={kernelName:Square3,inputsToSave:["x"],gradFunc:(dy,saved)=>{const[x]=saved;return{x:()=>mul(dy,mul(cast2(x,"float32"),2))}}};const squaredDifferenceGradConfig={kernelName:SquaredDifference3,inputsToSave:["a","b"],gradFunc:(dy,saved)=>{const[a,b]=saved;const two=scalar(2);const derA=()=>mul(dy,mul(two,sub(a,b)));const derB=()=>mul(dy,mul(two,sub(b,a)));return{a:derA,b:derB}}};const stepGradConfig={kernelName:Step,gradFunc:dy=>{return{x:()=>zerosLike2(dy)}}};const subGradConfig={kernelName:Sub3,inputsToSave:["a","b"],gradFunc:(dy,saved)=>{const[a,b]=saved;const outShape=assertAndGetBroadcastShape(a.shape,b.shape);const derA=()=>{let res=dy;const reduceAxes=getReductionAxes(a.shape,outShape);if(reduceAxes.length>0){res=sum$1(res,reduceAxes)}return reshape2(res,a.shape)};const derB=()=>{let res=dy;const reduceAxes=getReductionAxes(b.shape,outShape);if(reduceAxes.length>0){res=sum$1(res,reduceAxes)}return reshape2(neg(res),b.shape)};return{a:derA,b:derB}}};const sumGradConfig={kernelName:Sum3,inputsToSave:["x"],gradFunc:(dy,saved,attrs)=>{const[x]=saved;const expandedDyShape=x.shape.slice();const{axis}=attrs;const axes=parseAxisParam(axis,x.shape);axes.forEach(axis2=>{expandedDyShape[axis2]=1});const expandedDy=reshape2(dy,expandedDyShape);const derX=mul(expandedDy,ones$1(x.shape,"float32"));return{x:()=>derX}}};const tanGradConfig={kernelName:Tan,inputsToSave:["x"],gradFunc:(dy,saved)=>{const[x]=saved;return{x:()=>div(dy,square(cos(x)))}}};const tanhGradConfig={kernelName:Tanh3,outputsToSave:[true],gradFunc:(dy,saved)=>{const[y]=saved;return{x:()=>mul(sub(scalar(1),square(y)),dy)}}};const tileGradConfig={kernelName:Tile3,inputsToSave:["x"],gradFunc:(dy,saved,attrs)=>{const[x]=saved;const{reps}=attrs;const derX=()=>{let xGrad=zerosLike2(x);if(x.rank===1){for(let i=0;i<reps[0];++i){xGrad=add$1(xGrad,slice2(dy,[i*x.shape[0]],[x.shape[0]]))}}else if(x.rank===2){for(let i=0;i<reps[0];++i){for(let j=0;j<reps[1];++j){xGrad=add$1(xGrad,slice2(dy,[i*x.shape[0],j*x.shape[1]],[x.shape[0],x.shape[1]]))}}}else if(x.rank===3){for(let i=0;i<reps[0];++i){for(let j=0;j<reps[1];++j){for(let k=0;k<reps[2];++k){xGrad=add$1(xGrad,slice2(dy,[i*x.shape[0],j*x.shape[1],k*x.shape[2]],[x.shape[0],x.shape[1],x.shape[2]]))}}}}else if(x.rank===4){for(let i=0;i<reps[0];++i){for(let j=0;j<reps[1];++j){for(let k=0;k<reps[2];++k){for(let l=0;l<reps[3];++l){xGrad=add$1(xGrad,slice2(dy,[i*x.shape[0],j*x.shape[1],k*x.shape[2],l*x.shape[3]],[x.shape[0],x.shape[1],x.shape[2],x.shape[3]]))}}}}}else{throw new Error(`Gradient for tile operation is not implemented for rank-${x.rank} tensors yet.`)}return xGrad};return{x:derX}}};const transposeGradConfig={kernelName:Transpose5,gradFunc:(dy,saved,attrs)=>{const transposeAttrs=attrs;const{perm}=transposeAttrs;const undoPerm=getUndoAxesPermutation(perm);return{x:()=>transpose2(dy,undoPerm)}}};const unpackGradConfig={kernelName:Unpack3,gradFunc:(dy,saved,attrs)=>{const unpackAttrs=attrs;const{axis}=unpackAttrs;return{value:()=>stack(dy,axis)}}};const unsortedSegmentSumGradConfig={kernelName:UnsortedSegmentSum,inputsToSave:["segmentIds"],gradFunc:(dy,saved)=>{const[segmentIds]=saved;const derX=()=>{return gatherDropNegatives(dy,segmentIds)};return{x:derX}}};function gatherDropNegatives(x,indices){const zeroClippedIndices=maximum(indices,zerosLike2(indices));const gathered=gather(x,zeroClippedIndices);let isPositive=greaterEqual(indices,scalar(0,"int32"));const numIters=gathered.rank-isPositive.rank;for(let i=0;i<numIters;++i){isPositive=expandDims(isPositive,i+1)}isPositive=logicalAnd(isPositive,ones$1(gathered.shape,"bool"));const zeroSlice=zerosLike2(gathered);return where(isPositive,gathered,zeroSlice)}const zerosLikeGradConfig={kernelName:ZerosLike3,gradFunc:dy=>{return{x:()=>zerosLike2(dy)}}};const gradConfigs=[absGradConfig,acosGradConfig,acoshGradConfig,addGradConfig,addNGradConfig,argMaxGradConfig,argMinGradConfig,asinGradConfig,asinhGradConfig,atan2GradConfig,atanGradConfig,atanhGradConfig,avgPool3DGradConfig,avgPoolGradConfig,batchMatMulGradConfig,batchToSpaceNDGradConfig,broadcastToGradConfig,castGradConfig,ceilGradConfig,clipByValueGradConfig,concatGradConfig,conv2DBackpropInputGradConfig,conv2DGradConfig,conv3DGradConfig,cosGradConfig,coshGradConfig,cumsumGradConfig,depthwiseConv2dNativeGradConfig,dilation2dGradConfig,divGradConfig,eluGradConfig,erfGradConfig,expGradConfig,expm1GradConfig,floorDivGradConfig,floorGradConfig,fusedBatchNormGradConfig,gatherGradConfig,greaterEqualGradConfig,identityGradConfig,isFiniteGradConfig,isInfGradConfig,isNanGradConfig,log1pGradConfig,logGradConfig,logSoftmaxGradConfig,lrnGradConfig,maxGradConfig,maxGradConfig,maximumGradConfig,maxPool3DGradConfig,maxPoolGradConfig,minGradConfig,minimumGradConfig,mirrorPadGradConfig,modGradConfig,multiplyGradConfig,negateGradConfig,oneHotGradConfig,onesLikeGradConfig,padV2GradConfig,padV2GradConfig,powGradConfig,preluGradConfig,reciprocalGradConfig,relu6GradConfig,reluGradConfig,reshapeGradConfig,resizeBilinearGradConfig,resizeNearestNeighborGradConfig,reverseGradConfig,roundGradConfig,rsqrtGradConfig,selectV2PoolGradConfig,seluGradConfig,sigmoidGradConfig,signGradConfig,sinGradConfig,sinhGradConfig,sliceGradConfig,softmaxGradConfig,softplusGradConfig,spaceToBatchNDGradConfig,spaceToBatchNDGradConfig,splitVGradConfig,splitVGradConfig,sqrtGradConfig,squaredDifferenceGradConfig,squareGradConfig,stepGradConfig,subGradConfig,sumGradConfig,tanGradConfig,tanhGradConfig,tileGradConfig,transposeGradConfig,unpackGradConfig,unsortedSegmentSumGradConfig,zerosLikeGradConfig];for(const gradientConfig of gradConfigs){registerGradient(gradientConfig)}Tensor.prototype.abs=function(){this.throwIfDisposed();return abs(this)};Tensor.prototype.acos=function(){this.throwIfDisposed();return acos(this)};Tensor.prototype.acosh=function(){this.throwIfDisposed();return acosh(this)};Tensor.prototype.addStrict=function(x){this.throwIfDisposed();return addStrict(this,x)};Tensor.prototype.add=function(b){this.throwIfDisposed();return add$1(this,b)};Tensor.prototype.all=function(axis,keepDims){this.throwIfDisposed();return all(this,axis,keepDims)};Tensor.prototype.any=function(axis,keepDims){this.throwIfDisposed();return any(this,axis,keepDims)};Tensor.prototype.argMax=function(axis){this.throwIfDisposed();return argMax(this,axis)};Tensor.prototype.argMin=function(axis){this.throwIfDisposed();return argMin(this,axis)};Tensor.prototype.asScalar=function(){this.throwIfDisposed();assert(this.size===1,()=>"The array must have only 1 element.");return reshape2(this,[])};Tensor.prototype.asType=function(dtype){this.throwIfDisposed();return cast2(this,dtype)};Tensor.prototype.as1D=function(){this.throwIfDisposed();return reshape2(this,[this.size])};Tensor.prototype.as2D=function(rows,columns){this.throwIfDisposed();return reshape2(this,[rows,columns])};Tensor.prototype.as3D=function(rows,columns,depth){this.throwIfDisposed();return reshape2(this,[rows,columns,depth])};Tensor.prototype.as4D=function(rows,columns,depth,depth2){this.throwIfDisposed();return reshape2(this,[rows,columns,depth,depth2])};Tensor.prototype.as5D=function(rows,columns,depth,depth2,depth3){this.throwIfDisposed();return reshape2(this,[rows,columns,depth,depth2,depth3])};Tensor.prototype.asin=function(){this.throwIfDisposed();return asin(this)};Tensor.prototype.asinh=function(){this.throwIfDisposed();return asinh(this)};Tensor.prototype.atan=function(){this.throwIfDisposed();return atan(this)};Tensor.prototype.atan2=function(b){this.throwIfDisposed();return atan2(this,b)};Tensor.prototype.atanh=function(){this.throwIfDisposed();return atanh(this)};Tensor.prototype.avgPool=function(filterSize,strides,pad3,dimRoundingMode){this.throwIfDisposed();return avgPool2(this,filterSize,strides,pad3,dimRoundingMode)};Tensor.prototype.batchToSpaceND=function(blockShape,crops){this.throwIfDisposed();return batchToSpaceND(this,blockShape,crops)};Tensor.prototype.batchNorm=function(mean2,variance2,offset,scale2,varianceEpsilon){this.throwIfDisposed();return batchNorm(this,mean2,variance2,offset,scale2,varianceEpsilon)};Tensor.prototype.broadcastTo=function(shape){this.throwIfDisposed();return broadcastTo(this,shape)};Tensor.prototype.cast=function(dtype){this.throwIfDisposed();return cast2(this,dtype)};Tensor.prototype.ceil=function(){this.throwIfDisposed();return ceil(this)};Tensor.prototype.clipByValue=function(min3,max3){this.throwIfDisposed();return clipByValue(this,min3,max3)};Tensor.prototype.concat=function(x,axis){this.throwIfDisposed();if(x instanceof Tensor){x=[x]}return concat2([this,...x],axis)};Tensor.prototype.conv1d=function(filter,stride,pad3,dataFormat,dilation,dimRoundingMode){this.throwIfDisposed();return conv1d(this,filter,stride,pad3,dataFormat,dilation,dimRoundingMode)};Tensor.prototype.conv2dTranspose=function(filter,outputShape,strides,pad3,dimRoundingMode){this.throwIfDisposed();return conv2dTranspose(this,filter,outputShape,strides,pad3,dimRoundingMode)};Tensor.prototype.conv2d=function(filter,strides,pad3,dataFormat,dilations,dimRoundingMode){this.throwIfDisposed();return conv2d2(this,filter,strides,pad3,dataFormat,dilations,dimRoundingMode)};Tensor.prototype.cos=function(){this.throwIfDisposed();return cos(this)};Tensor.prototype.cosh=function(){this.throwIfDisposed();return cosh(this)};Tensor.prototype.cumsum=function(axis,exclusive,reverse3){this.throwIfDisposed();return cumsum2(this,axis,exclusive,reverse3)};Tensor.prototype.depthToSpace=function(blockSize,dataFormat){this.throwIfDisposed();return depthToSpace2(this,blockSize,dataFormat)};Tensor.prototype.depthwiseConv2D=function(filter,strides,pad3,dataFormat,dilations,dimRoundingMode){deprecationWarn2("depthwiseConv2D is deprecated, use depthwiseConv2d instead");this.throwIfDisposed();return depthwiseConv2d2(this,filter,strides,pad3,dataFormat,dilations,dimRoundingMode)};Tensor.prototype.depthwiseConv2d=function(filter,strides,pad3,dataFormat,dilations,dimRoundingMode){this.throwIfDisposed();return depthwiseConv2d2(this,filter,strides,pad3,dataFormat,dilations,dimRoundingMode)};Tensor.prototype.dilation2d=function(filter,strides,pad3,dilations,dataFormat){this.throwIfDisposed();return dilation2d(this,filter,strides,pad3,dilations,dataFormat)};Tensor.prototype.divNoNan=function(b){this.throwIfDisposed();return divNoNan(this,b)};Tensor.prototype.divStrict=function(x){this.throwIfDisposed();return divStrict(this,x)};Tensor.prototype.div=function(b){this.throwIfDisposed();return div(this,b)};Tensor.prototype.dot=function(b){this.throwIfDisposed();return dot2(this,b)};Tensor.prototype.elu=function(){this.throwIfDisposed();return elu(this)};Tensor.prototype.equalStrict=function(x){this.throwIfDisposed();return equalStrict(this,x)};Tensor.prototype.equal=function(b){this.throwIfDisposed();return equal(this,b)};Tensor.prototype.erf=function(){this.throwIfDisposed();return erf(this)};Tensor.prototype.exp=function(){this.throwIfDisposed();return exp(this)};Tensor.prototype.expandDims=function(axis){this.throwIfDisposed();return expandDims(this,axis)};Tensor.prototype.expm1=function(){this.throwIfDisposed();return expm1(this)};Tensor.prototype.fft=function(){this.throwIfDisposed();return fft(this)};Tensor.prototype.flatten=function(){this.throwIfDisposed();return reshape2(this,[this.size])};Tensor.prototype.floor=function(){this.throwIfDisposed();return floor(this)};Tensor.prototype.floorDiv=function(b){this.throwIfDisposed();return floorDiv(this,b)};Tensor.prototype.gather=function(indices,axis){this.throwIfDisposed();return gather(this,indices,axis)};Tensor.prototype.greaterEqualStrict=function(x){this.throwIfDisposed();return greaterEqualStrict(this,x)};Tensor.prototype.greaterEqual=function(b){this.throwIfDisposed();return greaterEqual(this,b)};Tensor.prototype.greaterStrict=function(x){this.throwIfDisposed();return greaterStrict(this,x)};Tensor.prototype.greater=function(b){this.throwIfDisposed();return greater(this,b)};Tensor.prototype.ifft=function(){this.throwIfDisposed();return ifft(this)};Tensor.prototype.irfft=function(){this.throwIfDisposed();return irfft(this)};Tensor.prototype.isFinite=function(){this.throwIfDisposed();return isFinite$1(this)};Tensor.prototype.isInf=function(){this.throwIfDisposed();return isInf(this)};Tensor.prototype.isNaN=function(){this.throwIfDisposed();return isNaN$1(this)};Tensor.prototype.leakyRelu=function(alpha){this.throwIfDisposed();return leakyRelu(this,alpha)};Tensor.prototype.lessEqualStrict=function(x){this.throwIfDisposed();return lessEqualStrict(this,x)};Tensor.prototype.lessEqual=function(b){this.throwIfDisposed();return lessEqual(this,b)};Tensor.prototype.lessStrict=function(x){this.throwIfDisposed();return lessStrict(this,x)};Tensor.prototype.less=function(b){this.throwIfDisposed();return less(this,b)};Tensor.prototype.localResponseNormalization=function(depthRadius,bias,alpha,beta){this.throwIfDisposed();return localResponseNormalization(this,depthRadius,bias,alpha,beta)};Tensor.prototype.logSigmoid=function(){this.throwIfDisposed();return logSigmoid(this)};Tensor.prototype.logSoftmax=function(axis){this.throwIfDisposed();return logSoftmax(this,axis)};Tensor.prototype.logSumExp=function(axis,keepDims){this.throwIfDisposed();return logSumExp(this,axis,keepDims)};Tensor.prototype.log=function(){this.throwIfDisposed();return log(this)};Tensor.prototype.log1p=function(){this.throwIfDisposed();return log1p(this)};Tensor.prototype.logicalAnd=function(b){this.throwIfDisposed();return logicalAnd(this,b)};Tensor.prototype.logicalNot=function(){this.throwIfDisposed();return logicalNot(this)};Tensor.prototype.logicalOr=function(b){this.throwIfDisposed();return logicalOr(this,b)};Tensor.prototype.logicalXor=function(b){this.throwIfDisposed();return logicalXor(this,b)};Tensor.prototype.matMul=function(b,transposeA,transposeB){this.throwIfDisposed();return matMul(this,b,transposeA,transposeB)};Tensor.prototype.maxPool=function(filterSize,strides,pad3,dimRoundingMode){this.throwIfDisposed();return maxPool2(this,filterSize,strides,pad3,dimRoundingMode)};Tensor.prototype.max=function(axis,keepDims){this.throwIfDisposed();return max2(this,axis,keepDims)};Tensor.prototype.maximumStrict=function(x){this.throwIfDisposed();return maximumStrict(this,x)};Tensor.prototype.maximum=function(b){this.throwIfDisposed();return maximum(this,b)};Tensor.prototype.mean=function(axis,keepDims){this.throwIfDisposed();return mean(this,axis,keepDims)};Tensor.prototype.min=function(axis,keepDims){this.throwIfDisposed();return min2(this,axis,keepDims)};Tensor.prototype.minimumStrict=function(x){this.throwIfDisposed();return minimumStrict(this,x)};Tensor.prototype.minimum=function(b){this.throwIfDisposed();return minimum(this,b)};Tensor.prototype.mirrorPad=function(paddings,mode){this.throwIfDisposed();return mirrorPad(this,paddings,mode)};Tensor.prototype.modStrict=function(x){this.throwIfDisposed();return modStrict(this,x)};Tensor.prototype.mod=function(b){this.throwIfDisposed();return mod(this,b)};Tensor.prototype.mulStrict=function(x){this.throwIfDisposed();return mulStrict(this,x)};Tensor.prototype.mul=function(b){this.throwIfDisposed();return mul(this,b)};Tensor.prototype.neg=function(){this.throwIfDisposed();return neg(this)};Tensor.prototype.norm=function(ord,axis,keepDims){this.throwIfDisposed();return norm(this,ord,axis,keepDims)};Tensor.prototype.notEqualStrict=function(x){this.throwIfDisposed();return notEqualStrict(this,x)};Tensor.prototype.notEqual=function(b){this.throwIfDisposed();return notEqual(this,b)};Tensor.prototype.oneHot=function(depth,onValue=1,offValue=0){this.throwIfDisposed();return oneHot2(this,depth,onValue,offValue)};Tensor.prototype.onesLike=function(){this.throwIfDisposed();return onesLike2(this)};Tensor.prototype.pad=function(paddings,constantValue){this.throwIfDisposed();return pad2(this,paddings,constantValue)};Tensor.prototype.pool=function(windowShape,poolingType,padding,dilationRate,strides){this.throwIfDisposed();return pool(this,windowShape,poolingType,padding,dilationRate,strides)};Tensor.prototype.powStrict=function(exp2){this.throwIfDisposed();return powStrict(this,exp2)};Tensor.prototype.pow=function(exp2){this.throwIfDisposed();return pow(this,exp2)};Tensor.prototype.prelu=function(alpha){this.throwIfDisposed();return prelu2(this,alpha)};Tensor.prototype.prod=function(axis,keepDims){this.throwIfDisposed();return prod(this,axis,keepDims)};Tensor.prototype.reciprocal=function(){this.throwIfDisposed();return reciprocal(this)};Tensor.prototype.relu=function(){this.throwIfDisposed();return relu(this)};Tensor.prototype.relu6=function(){this.throwIfDisposed();return relu6(this)};Tensor.prototype.reshapeAs=function(x){this.throwIfDisposed();return reshape2(this,x.shape)};Tensor.prototype.reshape=function(shape){this.throwIfDisposed();return reshape2(this,shape)};Tensor.prototype.resizeBilinear=function(newShape2D,alignCorners){this.throwIfDisposed();return resizeBilinear2(this,newShape2D,alignCorners)};Tensor.prototype.resizeNearestNeighbor=function(newShape2D,alignCorners){this.throwIfDisposed();return resizeNearestNeighbor(this,newShape2D,alignCorners)};Tensor.prototype.reverse=function(axis){this.throwIfDisposed();return reverse2(this,axis)};Tensor.prototype.rfft=function(){this.throwIfDisposed();return rfft(this)};Tensor.prototype.round=function(){this.throwIfDisposed();return round(this)};Tensor.prototype.rsqrt=function(){this.throwIfDisposed();return rsqrt(this)};Tensor.prototype.selu=function(){this.throwIfDisposed();return selu(this)};Tensor.prototype.separableConv2d=function(depthwiseFilter,pointwiseFilter,strides,pad3,dilation,dataFormat){this.throwIfDisposed();return separableConv2d(this,depthwiseFilter,pointwiseFilter,strides,pad3,dilation,dataFormat)};Tensor.prototype.sigmoid=function(){this.throwIfDisposed();return sigmoid2(this)};Tensor.prototype.sign=function(){this.throwIfDisposed();return sign(this)};Tensor.prototype.sin=function(){this.throwIfDisposed();return sin(this)};Tensor.prototype.sinh=function(){this.throwIfDisposed();return sinh(this)};Tensor.prototype.slice=function(begin,size){this.throwIfDisposed();return slice2(this,begin,size)};Tensor.prototype.softmax=function(dim){this.throwIfDisposed();return softmax2(this,dim)};Tensor.prototype.softplus=function(){this.throwIfDisposed();return softplus(this)};Tensor.prototype.spaceToBatchND=function(blockShape,paddings){this.throwIfDisposed();return spaceToBatchND(this,blockShape,paddings)};Tensor.prototype.split=function(numOrSizeSplits,axis){this.throwIfDisposed();return split2(this,numOrSizeSplits,axis)};Tensor.prototype.sqrt=function(){this.throwIfDisposed();return sqrt(this)};Tensor.prototype.square=function(){this.throwIfDisposed();return square(this)};Tensor.prototype.squaredDifference=function(b){this.throwIfDisposed();return squaredDifference(this,b)};Tensor.prototype.squaredDifferenceStrict=function(x){this.throwIfDisposed();return squaredDifferenceStrict(this,x)};Tensor.prototype.squeeze=function(axis){this.throwIfDisposed();return squeeze(this,axis)};Tensor.prototype.stack=function(x,axis){this.throwIfDisposed();const tensorsToBeStacked=x instanceof Tensor?[this,x]:[this,...x];return stack(tensorsToBeStacked,axis)};Tensor.prototype.step=function(alpha){this.throwIfDisposed();return step(this,alpha)};Tensor.prototype.stridedSlice=function(begin,end,strides,beginMask,endMask,ellipsisMask,newAxisMask,shrinkAxisMask){this.throwIfDisposed();return stridedSlice2(this,begin,end,strides,beginMask,endMask,ellipsisMask,newAxisMask,shrinkAxisMask)};Tensor.prototype.subStrict=function(x){this.throwIfDisposed();return subStrict(this,x)};Tensor.prototype.sub=function(b){this.throwIfDisposed();return sub(this,b)};Tensor.prototype.sum=function(axis,keepDims){this.throwIfDisposed();return sum$1(this,axis,keepDims)};Tensor.prototype.tan=function(){this.throwIfDisposed();return tan(this)};Tensor.prototype.tanh=function(){this.throwIfDisposed();return tanh$1(this)};Tensor.prototype.tile=function(reps){this.throwIfDisposed();return tile2(this,reps)};Tensor.prototype.toBool=function(){this.throwIfDisposed();return cast2(this,"bool")};Tensor.prototype.toFloat=function(){this.throwIfDisposed();return cast2(this,"float32")};Tensor.prototype.toInt=function(){this.throwIfDisposed();return cast2(this,"int32")};Tensor.prototype.topk=function(k,sorted){this.throwIfDisposed();return topk(this,k,sorted)};Tensor.prototype.transpose=function(perm){this.throwIfDisposed();return transpose2(this,perm)};Tensor.prototype.unique=function(axis){this.throwIfDisposed();return unique(this,axis)};Tensor.prototype.unsortedSegmentSum=function(segmentIds,numSegments){this.throwIfDisposed();return unsortedSegmentSum(this,segmentIds,numSegments)};Tensor.prototype.unstack=function(axis){this.throwIfDisposed();return unstack(this,axis)};Tensor.prototype.where=function(condition,x){this.throwIfDisposed();return where(condition,this,x)};Tensor.prototype.zerosLike=function(){this.throwIfDisposed();return zerosLike2(this)};let _epsilon;function epsilon(){if(_epsilon==null){_epsilon=backend().epsilon()}return _epsilon}function setEpsilon(e){_epsilon=e}function imageDataFormat(){return"channelsLast"}class AttributeError extends Error{constructor(message){super(message);Object.setPrototypeOf(this,AttributeError.prototype)}}class RuntimeError extends Error{constructor(message){super(message);Object.setPrototypeOf(this,RuntimeError.prototype)}}class ValueError extends Error{constructor(message){super(message);Object.setPrototypeOf(this,ValueError.prototype)}}class NotImplementedError extends Error{constructor(message){super(message);Object.setPrototypeOf(this,NotImplementedError.prototype)}}class AssertionError extends Error{constructor(message){super(message);Object.setPrototypeOf(this,AssertionError.prototype)}}class IndexError extends Error{constructor(message){super(message);Object.setPrototypeOf(this,IndexError.prototype)}}function pyListRepeat(value,numValues){if(Array.isArray(value)){let newArray=[];for(let i=0;i<numValues;i++){newArray=newArray.concat(value)}return newArray}else{const newArray=new Array(numValues);newArray.fill(value);return newArray}}function assert$1(val,message){if(!val){throw new AssertionError(message)}}function count(array2,refernce){let counter=0;for(const item of array2){if(item===refernce){counter++}}return counter}function singletonOrArray(xs){if(xs.length===1){return xs[0]}return xs}function toList(x){if(Array.isArray(x)){return x}return[x]}function objectListUid(objs){const objectList=toList(objs);let retVal="";for(const obj of objectList){if(obj.id==null){throw new ValueError(`Object ${obj} passed to objectListUid without an id`)}if(retVal!==""){retVal=retVal+", "}retVal=`${retVal}${Math.abs(obj.id)}`}return retVal}function toSnakeCase(name){const intermediate=name.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2");const insecure=intermediate.replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();if(insecure[0]!=="_"){return insecure}return"private"+insecure}function toCamelCase(identifier){if(identifier.length<=1){return identifier}if(identifier.indexOf("_")===-1){return identifier}return identifier.replace(/[_]+(\w|$)/g,(m,p1)=>p1.toUpperCase())}let _GLOBAL_CUSTOM_OBJECTS={};function serializeKerasObject(instance){if(instance===null||instance===void 0){return null}const dict={};dict["className"]=instance.getClassName();dict["config"]=instance.getConfig();return dict}function convertNDArrayScalarsInConfig(config2){if(config2==null||typeof config2!=="object"){return}else if(Array.isArray(config2)){config2.forEach(configItem=>convertNDArrayScalarsInConfig(configItem))}else{const fields=Object.keys(config2);for(const field of fields){const value=config2[field];if(value!=null&&typeof value==="object"){if(!Array.isArray(value)&&value["type"]==="ndarray"&&typeof value["value"]==="number"){config2[field]=value["value"]}else{convertNDArrayScalarsInConfig(value)}}}}}function deserializeKerasObject(identifier,moduleObjects={},customObjects={},printableModuleName="object",fastWeightInit=false){if(typeof identifier==="string"){const functionName=identifier;let fn;if(functionName in customObjects){fn=customObjects[functionName]}else if(functionName in _GLOBAL_CUSTOM_OBJECTS){fn=_GLOBAL_CUSTOM_OBJECTS[functionName]}else{fn=moduleObjects[functionName];if(fn==null){throw new ValueError(`Unknown ${printableModuleName}: ${identifier}. This may be due to one of the following reasons:
1. The ${printableModuleName} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${printableModuleName} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`)}}return fn}else{const config2=identifier;if(config2["className"]==null||config2["config"]==null){throw new ValueError(`${printableModuleName}: Improper config format: ${JSON.stringify(config2)}.
'className' and 'config' must set.`)}const className=config2["className"];let cls,fromConfig;if(className in customObjects){[cls,fromConfig]=customObjects[className]}else if(className in _GLOBAL_CUSTOM_OBJECTS){[cls,fromConfig]=_GLOBAL_CUSTOM_OBJECTS["className"]}else if(className in moduleObjects){[cls,fromConfig]=moduleObjects[className]}if(cls==null){throw new ValueError(`Unknown ${printableModuleName}: ${className}. This may be due to one of the following reasons:
1. The ${printableModuleName} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${printableModuleName} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`)}if(fromConfig!=null){const customObjectsCombined={};for(const key of Object.keys(_GLOBAL_CUSTOM_OBJECTS)){customObjectsCombined[key]=_GLOBAL_CUSTOM_OBJECTS[key]}for(const key of Object.keys(customObjects)){customObjectsCombined[key]=customObjects[key]}const nestedConfig=config2["config"];nestedConfig["customObjects"]=customObjectsCombined;const backupCustomObjects=Object.assign({},_GLOBAL_CUSTOM_OBJECTS);for(const key of Object.keys(customObjects)){_GLOBAL_CUSTOM_OBJECTS[key]=customObjects[key]}convertNDArrayScalarsInConfig(config2["config"]);const returnObj=fromConfig(cls,config2["config"],customObjects,fastWeightInit);_GLOBAL_CUSTOM_OBJECTS=Object.assign({},backupCustomObjects);return returnObj}else{const backupCustomObjects=Object.assign({},_GLOBAL_CUSTOM_OBJECTS);for(const key of Object.keys(customObjects)){_GLOBAL_CUSTOM_OBJECTS[key]=customObjects[key]}const returnObj=new cls(config2["config"]);_GLOBAL_CUSTOM_OBJECTS=Object.assign({},backupCustomObjects);return returnObj}}}function numberCompare(a,b){return a<b?-1:a>b?1:0}function reverseNumberCompare(a,b){return-1*numberCompare(a,b)}function stringToDType(dtype){switch(dtype){case"float32":return"float32";default:throw new ValueError(`Invalid dtype: ${dtype}`)}}function stringsEqual(xs,ys){if(xs==null||ys==null){return xs===ys}if(xs.length!==ys.length){return false}for(let i=0;i<xs.length;++i){if(xs[i]!==ys[i]){return false}}return true}function unique$1(xs){if(xs==null){return xs}const out=[];for(const x of xs){if(out.indexOf(x)===-1){out.push(x)}}return out}function isObjectEmpty(obj){if(obj==null){throw new ValueError(`Invalid value in obj: ${JSON.stringify(obj)}`)}for(const key in obj){if(obj.hasOwnProperty(key)){return false}}return true}function checkStringTypeUnionValue(values,label,value){if(value==null){return}if(values.indexOf(value)<0){throw new ValueError(`${value} is not a valid ${label}. Valid values are ${values} or null/undefined.`)}}function checkArrayTypeAndLength(x,expectedType,minLength=0,maxLength=Infinity){assert$1(minLength>=0);assert$1(maxLength>=minLength);return Array.isArray(x)&&x.length>=minLength&&x.length<=maxLength&&x.every(e=>typeof e===expectedType)}function assertPositiveInteger(value,name){if(Array.isArray(value)){assert(value.length>0,()=>`${name} is unexpectedly an empty array.`);value.forEach((v,i)=>assertPositiveInteger(v,`element ${i+1} of ${name}`))}else{assert(Number.isInteger(value)&&value>0,()=>`Expected ${name} to be a positive integer, but got ${formatAsFriendlyString(value)}.`)}}function formatAsFriendlyString(value){if(value===null){return"null"}else if(Array.isArray(value)){return"["+value.map(v=>formatAsFriendlyString(v)).join(",")+"]"}else if(typeof value==="string"){return`"${value}"`}else{return`${value}`}}function debounce(f,waitMs){let lastTime=now2();let lastResult;const f2=(...args)=>{const now$1=now2();if(now$1-lastTime<waitMs){return lastResult}lastTime=now$1;lastResult=f(...args);return lastResult};return f2}function mapActivationToFusedKernel(activationName){if(activationName==="relu"){return"relu"}if(activationName==="linear"){return"linear"}if(activationName==="elu"){return"elu"}return null}function getCartesianProductOfValues(...arrayOfValues){assert$1(arrayOfValues.length>0,"arrayOfValues is empty");for(const values of arrayOfValues){assert$1(Array.isArray(values),"one of the values is not an array");assert$1(values.length>0,"one of the values is empty")}return arrayOfValues.reduce((products,values)=>{if(products.length===0){return values.map(value=>[value])}return values.map(value=>{return products.map(prevValue=>[...prevValue,value])}).reduce((flattenedProduct,unflattenedProduct)=>{return flattenedProduct.concat(unflattenedProduct)},[])},[])}function calcL2Norms(w,axis){return tidy(()=>sqrt(sum$1(mul(w,w),axis,true)))}class Constraint extends Serializable{getConfig(){return{}}}class MaxNorm extends Constraint{constructor(args){super();this.defaultMaxValue=2;this.defaultAxis=0;this.maxValue=args.maxValue!=null?args.maxValue:this.defaultMaxValue;this.axis=args.axis!=null?args.axis:this.defaultAxis}apply(w){return tidy(()=>{const norms=calcL2Norms(w,this.axis);const desired=clipByValue(norms,0,this.maxValue);return mul(w,div(desired,add$1(epsilon(),norms)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}}MaxNorm.className="MaxNorm";registerClass(MaxNorm);class UnitNorm extends Constraint{constructor(args){super();this.defaultAxis=0;this.axis=args.axis!=null?args.axis:this.defaultAxis}apply(w){return tidy(()=>div(w,add$1(epsilon(),calcL2Norms(w,this.axis))))}getConfig(){return{axis:this.axis}}}UnitNorm.className="UnitNorm";registerClass(UnitNorm);class NonNeg extends Constraint{apply(w){return relu(w)}}NonNeg.className="NonNeg";registerClass(NonNeg);class MinMaxNorm extends Constraint{constructor(args){super();this.defaultMinValue=0;this.defaultMaxValue=1;this.defaultRate=1;this.defaultAxis=0;this.minValue=args.minValue!=null?args.minValue:this.defaultMinValue;this.maxValue=args.maxValue!=null?args.maxValue:this.defaultMaxValue;this.rate=args.rate!=null?args.rate:this.defaultRate;this.axis=args.axis!=null?args.axis:this.defaultAxis}apply(w){return tidy(()=>{const norms=calcL2Norms(w,this.axis);const desired=add$1(mul(this.rate,clipByValue(norms,this.minValue,this.maxValue)),mul(1-this.rate,norms));return mul(w,div(desired,add$1(epsilon(),norms)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}}MinMaxNorm.className="MinMaxNorm";registerClass(MinMaxNorm);const CONSTRAINT_IDENTIFIER_REGISTRY_SYMBOL_MAP={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function serializeConstraint(constraint){return serializeKerasObject(constraint)}function deserializeConstraint(config2,customObjects={}){return deserializeKerasObject(config2,SerializationMap.getMap().classNameMap,customObjects,"constraint")}function getConstraint(identifier){if(identifier==null){return null}if(typeof identifier==="string"){const className=identifier in CONSTRAINT_IDENTIFIER_REGISTRY_SYMBOL_MAP?CONSTRAINT_IDENTIFIER_REGISTRY_SYMBOL_MAP[identifier]:identifier;const config2={className,config:{}};return deserializeConstraint(config2)}else if(identifier instanceof Constraint){return identifier}else{return deserializeConstraint(identifier)}}function maxNorm(args){return new MaxNorm(args)}function unitNorm(args){return new UnitNorm(args)}function nonNeg(){return new NonNeg}function minMaxNorm(config2){return new MinMaxNorm(config2)}var exports_constraints=Object.freeze({__proto__:null,maxNorm,unitNorm,nonNeg,minMaxNorm});const VALID_DATA_FORMAT_VALUES=["channelsFirst","channelsLast"];const VALID_PADDING_MODE_VALUES=["valid","same","causal"];const VALID_POOL_MODE_VALUES=["max","avg"];const VALID_BIDIRECTIONAL_MERGE_MODES=["sum","mul","concat","ave"];const VALID_SAMPLE_WEIGHT_MODES=["temporal"];const nameMap=new Map;function checkDataFormat(value){checkStringTypeUnionValue(VALID_DATA_FORMAT_VALUES,"DataFormat",value)}function checkPaddingMode(value){checkStringTypeUnionValue(VALID_PADDING_MODE_VALUES,"PaddingMode",value)}function checkPoolMode(value){checkStringTypeUnionValue(VALID_POOL_MODE_VALUES,"PoolMode",value)}const _nameScopeStack=[];const _nameScopeDivider="/";function nameScope(name,fn){_nameScopeStack.push(name);try{const val=fn();_nameScopeStack.pop();return val}catch(e){_nameScopeStack.pop();throw e}}function currentNameScopePrefix(){if(_nameScopeStack.length===0){return""}else{return _nameScopeStack.join(_nameScopeDivider)+_nameScopeDivider}}function getScopedTensorName(tensorName){if(!isValidTensorName(tensorName)){throw new Error("Not a valid tensor name: '"+tensorName+"'")}return currentNameScopePrefix()+tensorName}function getUniqueTensorName(scopedName){if(!isValidTensorName(scopedName)){throw new Error("Not a valid tensor name: '"+scopedName+"'")}if(!nameMap.has(scopedName)){nameMap.set(scopedName,0)}const index2=nameMap.get(scopedName);nameMap.set(scopedName,nameMap.get(scopedName)+1);if(index2>0){const result=`${scopedName}_${index2}`;nameMap.set(result,1);return result}else{return scopedName}}const tensorNameRegex=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function isValidTensorName(name){return!!name.match(tensorNameRegex)}function isInteger(x){return x===parseInt(x.toString(),10)}function arrayProd(array2,begin,end){if(begin==null){begin=0}if(end==null){end=array2.length}let prod2=1;for(let i=begin;i<end;++i){prod2*=array2[i]}return prod2}function toArray1D(array2){array2=Array.isArray(array2)?new Float32Array(array2):array2;return tensor1d(array2)}function min$1(array2){return min2(toArray1D(array2)).dataSync()[0]}function max$1(array2){return max2(toArray1D(array2)).dataSync()[0]}function sum$2(array2){return sum$1(toArray1D(array2)).dataSync()[0]}function mean$2(array2){return sum$2(array2)/array2.length}function variance(array2){const demeaned=sub(toArray1D(array2),scalar(mean$2(array2)));const sumSquare=sum$1(mul(demeaned,demeaned)).dataSync()[0];return sumSquare/array2.length}function median(array2){const arraySorted=array2.slice().sort((a,b)=>a-b);const lowIdx=Math.floor((arraySorted.length-1)/2);const highIdx=Math.ceil((arraySorted.length-1)/2);if(lowIdx===highIdx){return arraySorted[lowIdx]}return(arraySorted[lowIdx]+arraySorted[highIdx])/2}function range$1(begin,end){if(end<begin){throw new ValueError(`end (${end}) < begin (${begin}) is forbidden.`)}const out=[];for(let i=begin;i<end;++i){out.push(i)}return out}let backend$1="webgl";function setBackend$1(requestedBackend){setBackend(requestedBackend);backend$1=requestedBackend}function getBackend$1(){return backend$1}function isBackendSymbolic(){return false}function countParams(x){const shape=x.shape;if(shape.length>0){return shape.reduce((a,b)=>a*b)}else{return 1}}function cast$1(x,dtype){return x.asType(dtype)}function expandDims$1(x,axis=-1){const outShape=x.shape.slice();if(axis<0){axis=outShape.length+axis+1}outShape.splice(axis,0,1);return x.reshape(outShape)}function repeat(x,n){return tidy(()=>{if(x.shape.length!==2){throw new ValueError(`repeat() expects a rank-2 tensor, but received a rank-${x.shape.length} tensor.`)}const y=expandDims$1(x,1);return tile$2(y,[1,n,1])})}function flatten$1(x){const newShape=[arrayProd(x.shape)];return x.reshape(newShape)}function batchFlatten(x){if(x.rank<=1){throw new ValueError(`batchFlatten requires a minimum rank of 2. Got rank: ${x.rank}.`)}const newShape=[x.shape[0],arrayProd(x.shape,1)];return x.reshape(newShape)}function sliceAlongFirstAxis(array2,start,size){return tidy(()=>{switch(array2.rank){case 1:return slice1d(array2,start,size);case 2:return slice2d2(array2,[start,0],[size,array2.shape[1]]);case 3:return slice3d2(array2,[start,0,0],[size,array2.shape[1],array2.shape[2]]);case 4:return slice4d2(array2,[start,0,0,0],[size,array2.shape[1],array2.shape[2],array2.shape[3]]);case 5:return slice2(array2,[start,0,0,0,0],[size,array2.shape[1],array2.shape[2],array2.shape[3],array2.shape[4]]);case 6:return slice2(array2,[start,0,0,0,0,0],[size,array2.shape[1],array2.shape[2],array2.shape[3],array2.shape[4],array2.shape[5]]);default:throw new ValueError(`sliceAlongFirstAxis() received an unsupported tensor rank: ${array2.rank}`)}})}function sliceAlongLastAxis(array2,start,size){return tidy(()=>{switch(array2.rank){case 1:return slice1d(array2,start,size);case 2:return slice2d2(array2,[0,start],[array2.shape[0],size]);case 3:return slice3d2(array2,[0,0,start],[array2.shape[0],array2.shape[1],size]);case 4:return slice4d2(array2,[0,0,0,start],[array2.shape[0],array2.shape[1],array2.shape[2],size]);default:throw new ValueError(`sliceAlongLastAxis() received an unsupported tensor rank: ${array2.rank}`)}})}function sliceAlongAxis(array2,start,size,axis){return tidy(()=>{switch(array2.rank){case 1:return slice1d(array2,start,size);case 2:switch(axis){case 1:return sliceAlongFirstAxis(array2,start,size);case 2:return sliceAlongLastAxis(array2,start,size);default:throw new ValueError(`The axis is not within the rank of the tensor ${axis}`)}case 3:switch(axis){case 1:return sliceAlongFirstAxis(array2,start,size);case 2:return slice3d2(array2,[0,start,0],[array2.shape[0],size,array2.shape[2]]);case 3:return sliceAlongLastAxis(array2,start,size);default:throw new ValueError(`The axis is not within the rank of the tensor ${axis}`)}case 4:switch(axis){case 1:return sliceAlongFirstAxis(array2,start,size);case 2:return slice4d2(array2,[0,start,0,0],[array2.shape[0],size,array2.shape[2],array2.shape[3]]);case 3:return slice4d2(array2,[0,0,start,0],[array2.shape[0],array2.shape[1],size,array2.shape[3]]);case 4:return sliceAlongLastAxis(array2,start,size);default:throw new ValueError(`The axis is not within the rank of the tensor ${axis}`)}default:throw new ValueError(`sliceAlongLastAxis() received an unsupported tensor rank: ${array2.rank}`)}})}function concatenate(tensors,axis=-1){let rank;if(axis<0){rank=tensors[0].rank;if(rank!==0){axis=rank}else{axis=0}}if(axis===tensors[0].rank){axis=-1}return concat2(tensors,axis)}function concatAlongFirstAxis(a,b){switch(a.rank){case 1:return concat1d([a,b]);case 2:return concat2d([a,b],0);case 3:return concat3d([a,b],0);case 4:return concat4d([a,b],0);default:throw new ValueError(`concatAlongFirstAxis() received an unsupported tensor rank: ${a.rank}`)}}function tile$2(x,n){if(!Array.isArray(n)){n=[n]}if(x.rank!==n.length){throw new ValueError(`The length of input n (${n.length}) does not match the number of dimensions in input x (${x.rank})`)}return tile2(x,n)}function randomNormal$1(shape,mean2=0,stddev=1,dtype,seed){return randomNormal(shape,mean2,stddev,dtype,seed)}function dot$1(a,b,activation2,bias){if(a.rank<2||b.rank<2){throw new NotImplementedError(`dot requires both inputs to be rank >= 2 but got x shape = ${a.shape} and y shape = ${b.shape}`)}if(b.rank>=3){const xLastDim=a.shape.slice(-1)[0];const ySecondLastDim=b.shape.slice(-2)[0];if(xLastDim!==ySecondLastDim){throw new NotImplementedError(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${a.shape} and y shape = ${b.shape}`)}}if(a.rank===2&&b.rank===2){const transposeA=false;const transposeB=false;return matMul$1({a,b,transposeA,transposeB,bias:bias?reshapeBias(a.rank,bias,imageDataFormat()):null,activation:activation2})}else{const aFirstDims=a.shape.slice();const aLastDim=aFirstDims.pop();a=a.reshape([-1,aLastDim]);const bShape=b.shape.slice();const bLastDim=bShape.pop();const ySecondLastDim=bShape.pop();const yOtherDims=[...bShape,bLastDim];const perm=Array.from({length:b.rank},(_,i)=>{if(i===0){return b.rank-2}else if(i<=b.rank-2){return i-1}return i});b=b.transpose(perm).reshape([ySecondLastDim,-1]);const outputShape=[...aFirstDims,...yOtherDims];const transposeA=false;const transposeB=false;return matMul$1({a,b,transposeA,transposeB,bias:bias?reshapeBias(a.rank,bias,imageDataFormat()):null,activation:activation2}).reshape(outputShape)}}function sign$1(x){return tidy(()=>{const zerosLikeX=zerosLike2(x);const onesLikeX=onesLike2(x);return where(equal(x,zerosLikeX),zerosLikeX,where(greater(x,zerosLike2(x)),onesLikeX,mul(-1,onesLikeX)))})}function oneHot$1(indices,numClasses){return tidy(()=>{if(indices.rank!==1){throw new Error("Only 1D one-hot tensors are supported in the deeplearn backend, at present.")}indices=indices.toInt();return oneHot2(indices,numClasses).toFloat()})}function gather$1(reference,indices,axis){return tidy(()=>{if(Array.isArray(indices)){indices=tensor1d(indices,"int32")}else{indices=indices.toInt()}return gather(reference,indices,axis)})}function square$1(x){return mul(x,x)}function pow$1(x,a){return tidy(()=>{if(typeof a==="number"){a=scalar(Math.round(a),"int32")}if(a.dtype!=="int32"){throw new NotImplementedError(`Non-int32 dtype (${a.dtype}) is not supported by pow() yet`)}return pow(x,a)})}function reshapeBias(xRank,bias,dataFormat){const biasShape=bias.shape;if(bias.rank!==1&&bias.rank!==xRank){throw new ValueError(`Unexpected bias dimensions: ${bias.rank}; expected it to be 1 or ${xRank}`)}if(xRank===5){if(dataFormat==="channelsFirst"){if(biasShape.length===1){return bias.reshape([1,biasShape[0],1,1,1])}else{return bias.reshape([1,biasShape[3],biasShape[0],biasShape[1],biasShape[2]])}}else if(dataFormat==="channelsLast"){if(biasShape.length===1){return bias.reshape([1,1,1,1,biasShape[0]])}else{return bias.reshape([1].concat(biasShape))}}}else if(xRank===4){if(dataFormat==="channelsFirst"){if(biasShape.length===1){return bias.reshape([1,biasShape[0],1,1])}else{return bias.reshape([1,biasShape[2],biasShape[0],biasShape[1]])}}else if(dataFormat==="channelsLast"){if(biasShape.length===1){return bias.reshape([1,1,1,biasShape[0]])}else{return bias.reshape([1].concat(biasShape))}}}else if(xRank===3){if(dataFormat==="channelsFirst"){if(biasShape.length===1){return bias.reshape([1,biasShape[0],1])}else{return bias.reshape([1,biasShape[1],biasShape[0]])}}else if(dataFormat==="channelsLast"){if(biasShape.length===1){return bias.reshape([1,1,biasShape[0]])}else{return bias.reshape([1].concat(biasShape))}}}else if(xRank<3){return bias}throw new ValueError(`Unsupported input rank by biasAdd: ${bias.rank}`)}function biasAdd(x,bias,dataFormat){return tidy(()=>{if(dataFormat==null){dataFormat=imageDataFormat()}checkDataFormat(dataFormat);return x.add(reshapeBias(x.rank,bias,dataFormat))})}function elu$1(x,alpha=1){if(alpha!==1){throw new NotImplementedError(`Support for alpha values other than 1 (${alpha}) is not implemented yet.`)}return elu(x)}function softsign(x){return tidy(()=>div(x,abs(x).add(1)))}function dropout$1(x,level,noiseShape,seed){return tidy(()=>dropout(x,level,noiseShape,seed))}function hardSigmoid(x){return tidy(()=>{const y=add$1(.5,mul(.2,x));return clipByValue(y,0,1)})}function inTrainPhase(x,alt,training=false){return training?x():alt()}const VALID_FAN_MODE_VALUES=["fanIn","fanOut","fanAvg"];const VALID_DISTRIBUTION_VALUES=["normal","uniform","truncatedNormal"];const initializerClassNames=["Zeros","Ones","Constant","RandomNormal","RandomUniform","TruncatedNormal","VarianceScaling","Orthogonal","Identity"];function checkFanMode(value){checkStringTypeUnionValue(VALID_FAN_MODE_VALUES,"FanMode",value)}function checkDistribution(value){checkStringTypeUnionValue(VALID_DISTRIBUTION_VALUES,"Distribution",value)}class Initializer extends Serializable{fromConfigUsesCustomObjects(){return false}getConfig(){return{}}}class Zeros extends Initializer{apply(shape,dtype){return zeros(shape,dtype)}}Zeros.className="Zeros";registerClass(Zeros);class Ones extends Initializer{apply(shape,dtype){return ones$1(shape,dtype)}}Ones.className="Ones";registerClass(Ones);class Constant extends Initializer{constructor(args){super();if(typeof args!=="object"){throw new ValueError(`Expected argument of type ConstantConfig but got ${args}`)}if(args.value===void 0){throw new ValueError(`config must have value set but got ${args}`)}this.value=args.value}apply(shape,dtype){return tidy(()=>mul(scalar(this.value),ones$1(shape,dtype)))}getConfig(){return{value:this.value}}}Constant.className="Constant";registerClass(Constant);class RandomUniform extends Initializer{constructor(args){super();this.DEFAULT_MINVAL=-.05;this.DEFAULT_MAXVAL=.05;this.minval=args.minval||this.DEFAULT_MINVAL;this.maxval=args.maxval||this.DEFAULT_MAXVAL;this.seed=args.seed}apply(shape,dtype){return randomUniform(shape,this.minval,this.maxval,dtype)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}}RandomUniform.className="RandomUniform";registerClass(RandomUniform);class RandomNormal extends Initializer{constructor(args){super();this.DEFAULT_MEAN=0;this.DEFAULT_STDDEV=.05;this.mean=args.mean||this.DEFAULT_MEAN;this.stddev=args.stddev||this.DEFAULT_STDDEV;this.seed=args.seed}apply(shape,dtype){dtype=dtype||"float32";if(dtype!=="float32"&&dtype!=="int32"){throw new NotImplementedError(`randomNormal does not support dType ${dtype}.`)}return randomNormal$1(shape,this.mean,this.stddev,dtype,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}}RandomNormal.className="RandomNormal";registerClass(RandomNormal);class TruncatedNormal extends Initializer{constructor(args){super();this.DEFAULT_MEAN=0;this.DEFAULT_STDDEV=.05;this.mean=args.mean||this.DEFAULT_MEAN;this.stddev=args.stddev||this.DEFAULT_STDDEV;this.seed=args.seed}apply(shape,dtype){dtype=dtype||"float32";if(dtype!=="float32"&&dtype!=="int32"){throw new NotImplementedError(`truncatedNormal does not support dType ${dtype}.`)}return truncatedNormal(shape,this.mean,this.stddev,dtype,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}}TruncatedNormal.className="TruncatedNormal";registerClass(TruncatedNormal);class Identity$1 extends Initializer{constructor(args){super();this.gain=args.gain!=null?args.gain:1}apply(shape,dtype){return tidy(()=>{if(shape.length!==2||shape[0]!==shape[1]){throw new ValueError("Identity matrix initializer can only be used for 2D square matrices.")}else{return mul(this.gain,eye(shape[0]))}})}getConfig(){return{gain:this.gain}}}Identity$1.className="Identity";registerClass(Identity$1);function computeFans(shape,dataFormat="channelsLast"){let fanIn;let fanOut;checkDataFormat(dataFormat);if(shape.length===2){fanIn=shape[0];fanOut=shape[1]}else if([3,4,5].indexOf(shape.length)!==-1){if(dataFormat==="channelsFirst"){const receptiveFieldSize=arrayProd(shape,2);fanIn=shape[1]*receptiveFieldSize;fanOut=shape[0]*receptiveFieldSize}else if(dataFormat==="channelsLast"){const receptiveFieldSize=arrayProd(shape,0,shape.length-2);fanIn=shape[shape.length-2]*receptiveFieldSize;fanOut=shape[shape.length-1]*receptiveFieldSize}}else{const shapeProd=arrayProd(shape);fanIn=Math.sqrt(shapeProd);fanOut=Math.sqrt(shapeProd)}return[fanIn,fanOut]}class VarianceScaling extends Initializer{constructor(args){super();if(args.scale<0){throw new ValueError(`scale must be a positive float. Got: ${args.scale}`)}this.scale=args.scale==null?1:args.scale;this.mode=args.mode==null?"fanIn":args.mode;checkFanMode(this.mode);this.distribution=args.distribution==null?"normal":args.distribution;checkDistribution(this.distribution);this.seed=args.seed}apply(shape,dtype){const fans=computeFans(shape);const fanIn=fans[0];const fanOut=fans[1];let scale2=this.scale;if(this.mode==="fanIn"){scale2/=Math.max(1,fanIn)}else if(this.mode==="fanOut"){scale2/=Math.max(1,fanOut)}else{scale2/=Math.max(1,(fanIn+fanOut)/2)}if(this.distribution==="normal"){const stddev=Math.sqrt(scale2);dtype=dtype||"float32";if(dtype!=="float32"&&dtype!=="int32"){throw new NotImplementedError(`${this.getClassName()} does not support dType ${dtype}.`)}return truncatedNormal(shape,0,stddev,dtype,this.seed)}else{const limit=Math.sqrt(3*scale2);return randomUniform(shape,-limit,limit,dtype)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}}VarianceScaling.className="VarianceScaling";registerClass(VarianceScaling);class GlorotUniform extends VarianceScaling{constructor(args){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:args==null?null:args.seed})}getClassName(){return VarianceScaling.className}}GlorotUniform.className="GlorotUniform";registerClass(GlorotUniform);class GlorotNormal extends VarianceScaling{constructor(args){super({scale:1,mode:"fanAvg",distribution:"normal",seed:args==null?null:args.seed})}getClassName(){return VarianceScaling.className}}GlorotNormal.className="GlorotNormal";registerClass(GlorotNormal);class HeNormal extends VarianceScaling{constructor(args){super({scale:2,mode:"fanIn",distribution:"normal",seed:args==null?null:args.seed})}getClassName(){return VarianceScaling.className}}HeNormal.className="HeNormal";registerClass(HeNormal);class HeUniform extends VarianceScaling{constructor(args){super({scale:2,mode:"fanIn",distribution:"uniform",seed:args==null?null:args.seed})}getClassName(){return VarianceScaling.className}}HeUniform.className="HeUniform";registerClass(HeUniform);class LeCunNormal extends VarianceScaling{constructor(args){super({scale:1,mode:"fanIn",distribution:"normal",seed:args==null?null:args.seed})}getClassName(){return VarianceScaling.className}}LeCunNormal.className="LeCunNormal";registerClass(LeCunNormal);class LeCunUniform extends VarianceScaling{constructor(args){super({scale:1,mode:"fanIn",distribution:"uniform",seed:args==null?null:args.seed})}getClassName(){return VarianceScaling.className}}LeCunUniform.className="LeCunNormal";registerClass(LeCunUniform);class Orthogonal extends Initializer{constructor(args){super();this.DEFAULT_GAIN=1;this.gain=args.gain==null?this.DEFAULT_GAIN:args.gain;this.seed=args.seed;if(this.seed!=null){throw new NotImplementedError("Random seed is not implemented for Orthogonal Initializer yet.")}}apply(shape,dtype){return tidy(()=>{if(shape.length<2){throw new NotImplementedError("Shape must be at least 2D.")}if(shape[0]*shape[1]>2e3){console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${shape[0]*shape[1]}) elements: Slowness may result.`)}const normalizedShape=shape[0]>shape[1]?[shape[1],shape[0]]:shape;const a=randomNormal$1(normalizedShape,0,1,"float32");let q=linalg.gramSchmidt(a);if(shape[0]>shape[1]){q=q.transpose()}return mul(this.gain,q)})}getConfig(){return{gain:this.gain,seed:this.seed}}}Orthogonal.className="Orthogonal";registerClass(Orthogonal);const INITIALIZER_IDENTIFIER_REGISTRY_SYMBOL_MAP={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function deserializeInitializer(config2,customObjects={}){return deserializeKerasObject(config2,SerializationMap.getMap().classNameMap,customObjects,"initializer")}function serializeInitializer(initializer){return serializeKerasObject(initializer)}function getInitializer(identifier){if(typeof identifier==="string"){const className=identifier in INITIALIZER_IDENTIFIER_REGISTRY_SYMBOL_MAP?INITIALIZER_IDENTIFIER_REGISTRY_SYMBOL_MAP[identifier]:identifier;if(className==="GlorotNormal"){return new GlorotNormal}else if(className==="GlorotUniform"){return new GlorotUniform}else if(className==="HeNormal"){return new HeNormal}else if(className==="HeUniform"){return new HeUniform}else if(className==="LeCunNormal"){return new LeCunNormal}else if(className==="LeCunUniform"){return new LeCunUniform}else{const config2={};config2["className"]=className;config2["config"]={};return deserializeInitializer(config2)}}else if(identifier instanceof Initializer){return identifier}else{return deserializeInitializer(identifier)}}function zeros$1(){return new Zeros}function ones$2(){return new Ones}function constant(args){return new Constant(args)}function randomUniform$1(args){return new RandomUniform(args)}function randomNormal$2(args){return new RandomNormal(args)}function truncatedNormal$1(args){return new TruncatedNormal(args)}function identity2(args){return new Identity$1(args)}function varianceScaling(config2){return new VarianceScaling(config2)}function glorotUniform(args){return new GlorotUniform(args)}function glorotNormal(args){return new GlorotNormal(args)}function heNormal(args){return new HeNormal(args)}function heUniform(args){return new HeUniform(args)}function leCunNormal(args){return new LeCunNormal(args)}function leCunUniform(args){return new LeCunUniform(args)}function orthogonal(args){return new Orthogonal(args)}var exports_initializers=Object.freeze({__proto__:null,zeros:zeros$1,ones:ones$2,constant,randomUniform:randomUniform$1,randomNormal:randomNormal$2,truncatedNormal:truncatedNormal$1,identity:identity2,varianceScaling,glorotUniform,glorotNormal,heNormal,heUniform,leCunNormal,leCunUniform,orthogonal});let _nextUniqueTensorId=0;function getNextUniqueTensorId(){return _nextUniqueTensorId++}const _uidPrefixes={};function getUid(prefix=""){if(!(prefix in _uidPrefixes)){_uidPrefixes[prefix]=0}_uidPrefixes[prefix]+=1;return prefix+_uidPrefixes[prefix].toString()}function isArrayOfShapes(x){return Array.isArray(x)&&Array.isArray(x[0])}function normalizeShapeList(x){if(x.length===0){return[]}if(!Array.isArray(x[0])){return[x]}return x}function getExactlyOneTensor(xs){let x;if(Array.isArray(xs)){if(xs.length!==1){throw new ValueError(`Expected Tensor length to be 1; got ${xs.length}`)}x=xs[0]}else{x=xs}return x}function getExactlyOneShape(shapes){if(Array.isArray(shapes)&&Array.isArray(shapes[0])){if(shapes.length===1){shapes=shapes;return shapes[0]}else{throw new ValueError(`Expected exactly 1 Shape; got ${shapes.length}`)}}else{return shapes}}function countParamsInWeights(weights){let count2=0;for(const weight of weights){if(weight.shape.length===0){count2+=1}else{count2+=weight.shape.reduce((a,b)=>a*b)}}return count2}const DEFAULT_VARIABLE_NAME_PREFIX="Variable";class LayerVariable{constructor(val,dtype="float32",name=DEFAULT_VARIABLE_NAME_PREFIX,trainable=true,constraint=null){this.dtype=dtype==null?"float32":dtype;this.shape=val.shape;this.id=getNextUniqueTensorId();name=name==null?DEFAULT_VARIABLE_NAME_PREFIX:name;this.originalName=getScopedTensorName(name);this.name=getUniqueTensorName(this.originalName);this.trainable_=trainable;this.constraint=constraint;this.val=variable(val,this.trainable_,this.name,this.dtype)}read(){this.assertNotDisposed();return this.val}write(newVal){this.assertNotDisposed();checkShapesMatch(this.val,newVal);if(this.val.id!==newVal.id){this.val.assign(newVal);if(this.constraint!=null){this.val.assign(this.constraint.apply(this.val))}}return this}dispose(){this.assertNotDisposed();this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed){throw new Error(`LayersVariable ${this.name} is already disposed.`)}}get trainable(){return this.trainable_}set trainable(trainable){this.trainable_=trainable;this.val.trainable=trainable}}function checkShapesMatch(x,y){if(x.shape.toString()!==y.shape.toString()){throw new Error("Shape mismatch: "+JSON.stringify(x.shape)+" vs. "+JSON.stringify(y.shape))}}function variable$1(x,dtype,name,constraint){return new LayerVariable(x,dtype,name,true,constraint)}function zerosVariable(shape,dtype,name){return new LayerVariable(zeros(shape),dtype,name)}function zerosLike$1(x,dtype,name){return new LayerVariable(zerosLike2(x),dtype,name)}function onesVariable(shape,dtype,name){const allocated=ones$1(shape);return new LayerVariable(allocated,dtype,name)}function onesLike$1(x,dtype,name){const allocated=onesLike2(x);return new LayerVariable(allocated,dtype,name)}function eyeVariable(size,dtype,name){return new LayerVariable(eye(size),dtype,name)}function randomUniformVariable(shape,minval,maxval,dtype,seed,name="randomUniform"){return new LayerVariable(randomUniform(shape,minval,maxval,dtype),dtype,name)}function truncatedNormalVariable(shape,mean2=0,stddev=1,dtype,seed,name="truncatedNormal"){dtype=dtype||"float32";if(dtype!=="float32"&&dtype!=="int32"){throw new NotImplementedError(`randomNormal does not support dType ${dtype}.`)}return new LayerVariable(truncatedNormal(shape,mean2,stddev,dtype,seed),dtype,name)}function randomNormalVariable(shape,mean2=0,stddev=1,dtype,seed,name="randomNormal"){dtype=dtype||"float32";if(dtype!=="float32"&&dtype!=="int32"){throw new NotImplementedError(`randomNormalVariable does not support dType ${dtype}.`)}return new LayerVariable(randomNormal(shape,mean2,stddev,dtype,seed),dtype,name)}function update(x,xNew){return x.write(xNew)}function updateAdd(x,increment){return x.write(add$1(x.read(),increment))}function updateSub(x,decrement){return x.write(sub(x.read(),decrement))}function batchGetValue(xs){return xs.map(x=>x.read())}function batchSetValue(variablesAndValues){variablesAndValues.forEach(variableAndValue=>{const variable2=variableAndValue[0];variable2.write(variableAndValue[1])})}function gradients(lossFn,variables){const variableList=variables.map(variable2=>variable2.read());const valudAndGrads=variableGrads(lossFn,variableList);return variables.map(variable2=>valudAndGrads.grads[variable2.name])}class InputSpec{constructor(args){this.dtype=args.dtype;this.shape=args.shape;if(args.shape!=null){this.ndim=args.shape.length}else{this.ndim=args.ndim}this.maxNDim=args.maxNDim;this.minNDim=args.minNDim;this.axes=args.axes||{}}}class SymbolicTensor{constructor(dtype,shape,sourceLayer,inputs,callArgs,name,outputTensorIndex){this.dtype=dtype;this.shape=shape;this.sourceLayer=sourceLayer;this.inputs=inputs;this.callArgs=callArgs;this.outputTensorIndex=outputTensorIndex;this.id=getNextUniqueTensorId();if(name!=null){this.originalName=getScopedTensorName(name);this.name=getUniqueTensorName(this.originalName)}this.rank=shape.length}}let _nextNodeID=0;class Node{constructor(args,callArgs){this.callArgs=callArgs;this.id=_nextNodeID++;this.outboundLayer=args.outboundLayer;this.inboundLayers=args.inboundLayers;this.nodeIndices=args.nodeIndices;this.tensorIndices=args.tensorIndices;this.inputTensors=args.inputTensors;this.outputTensors=args.outputTensors;this.inputMasks=args.inputMasks;this.outputMasks=args.outputMasks;this.inputShapes=args.inputShapes;this.outputShapes=args.outputShapes;for(const layer of args.inboundLayers){if(layer!=null){layer.outboundNodes.push(this)}}args.outboundLayer.inboundNodes.push(this)}getConfig(){const inboundNames=[];for(const layer of this.inboundLayers){if(layer!=null){inboundNames.push(layer.name)}else{inboundNames.push(null)}}return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:inboundNames,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}}let _nextLayerID=0;class Layer extends Serializable{constructor(args={}){super();this._callHook=null;this._addedWeightNames=[];this._stateful=false;this.id=_nextLayerID++;this.activityRegularizer=null;this.inputSpec=null;this.supportsMasking=false;this._trainableWeights=[];this._nonTrainableWeights=[];this._losses=[];this._updates=[];this._built=false;this.inboundNodes=[];this.outboundNodes=[];let name=args.name;if(!name){const prefix=this.getClassName();name=toSnakeCase(prefix)+"_"+getUid(prefix)}this.name=name;this.trainable_=args.trainable==null?true:args.trainable;if(args.inputShape!=null||args.batchInputShape!=null){let batchInputShape;if(args.batchInputShape!=null){batchInputShape=args.batchInputShape}else if(args.inputShape!=null){let batchSize=null;if(args.batchSize!=null){batchSize=args.batchSize}batchInputShape=[batchSize].concat(args.inputShape)}this.batchInputShape=batchInputShape;let dtype=args.dtype;if(dtype==null){dtype=args.inputDType}if(dtype==null){dtype="float32"}this.dtype=dtype}if(args.weights!=null){this.initialWeights=args.weights}else{this.initialWeights=null}this._refCount=null;this.fastWeightInitDuringBuild=false}static nodeKey(layer,nodeIndex){return layer.name+"_ib-"+nodeIndex.toString()}getNodeAtIndex(nodeIndex,attrName){if(this.inboundNodes.length===0){throw new RuntimeError(`The layer has never been called and thus has no defined ${attrName}.`)}if(this.inboundNodes.length<=nodeIndex){throw new ValueError(`Asked to get ${attrName} at node ${nodeIndex}, but the layer has only ${this.inboundNodes.length} inbound nodes.`)}return this.inboundNodes[nodeIndex]}getInputAt(nodeIndex){return singletonOrArray(this.getNodeAtIndex(nodeIndex,"input").inputTensors)}getOutputAt(nodeIndex){return singletonOrArray(this.getNodeAtIndex(nodeIndex,"output").outputTensors)}get input(){if(this.inboundNodes.length>1){throw new AttributeError(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`)}else if(this.inboundNodes.length===0){throw new AttributeError(`Layer ${this.name} is not connected, no input to return.`)}return singletonOrArray(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0){throw new AttributeError(`Layer ${this.name} has no inbound nodes.`)}if(this.inboundNodes.length>1){throw new AttributeError(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`)}return singletonOrArray(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(lossFn=>lossFn())}get updates(){return this._updates}get built(){return this._built}set built(built){this._built=built}get trainable(){return this.trainable_}set trainable(trainable){this._trainableWeights.forEach(w=>w.trainable=trainable);this.trainable_=trainable}get trainableWeights(){if(this.trainable_){return this._trainableWeights.filter(w=>w.trainable)}else{return[]}}set trainableWeights(weights){this._trainableWeights=weights}get nonTrainableWeights(){if(this.trainable){return this._trainableWeights.filter(w=>!w.trainable).concat(this._nonTrainableWeights)}else{return this._trainableWeights.concat(this._nonTrainableWeights)}}set nonTrainableWeights(weights){this._nonTrainableWeights=weights}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful){throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}}assertInputCompatibility(inputs){inputs=toList(inputs);if(this.inputSpec==null||this.inputSpec.length===0){return}const inputSpec=toList(this.inputSpec);if(inputs.length!==inputSpec.length){throw new ValueError(`Layer ${this.name} expects ${inputSpec.length} inputs, but it received ${inputs.length} input tensors. Input received: ${inputs}`)}for(let inputIndex=0;inputIndex<inputs.length;inputIndex++){const x=inputs[inputIndex];const spec=inputSpec[inputIndex];if(spec==null){continue}const ndim=x.rank;if(spec.ndim!=null){if(ndim!==spec.ndim){throw new ValueError(`Input ${inputIndex} is incompatible with layer ${this.name}: expected ndim=${spec.ndim}, found ndim=${ndim}`)}}if(spec.maxNDim!=null){if(ndim>spec.maxNDim){throw new ValueError(`Input ${inputIndex} is incompatible with layer ${this.name}: expected max_ndim=${spec.maxNDim}, found ndim=${ndim}`)}}if(spec.minNDim!=null){if(ndim<spec.minNDim){throw new ValueError(`Input ${inputIndex} is incompatible with layer ${this.name}: expected min_ndim=${spec.minNDim}, found ndim=${ndim}.`)}}if(spec.dtype!=null){if(x.dtype!==spec.dtype){throw new ValueError(`Input ${inputIndex} is incompatible with layer ${this.name} : expected dtype=${spec.dtype}, found dtype=${x.dtype}.`)}}if(spec.axes){const xShape=x.shape;for(const key in spec.axes){const axis=Number(key);const value=spec.axes[key];const xShapeAtAxis=axis>=0?xShape[axis]:xShape[xShape.length+axis];if(value!=null&&[value,null].indexOf(xShapeAtAxis)===-1){throw new ValueError(`Input ${inputIndex} is incompatible with layer ${this.name}: expected axis ${axis} of input shape to have value ${value} but got shape ${xShape}.`)}}}if(spec.shape!=null){for(let i=0;i<spec.shape.length;++i){const specDim=spec.shape[i];const dim=x.shape[i];if(specDim!=null&&dim!=null){if(specDim!==dim){throw new ValueError(`Input ${inputIndex} is incompatible with layer ${this.name}: expected shape=${spec.shape}, found shape=${x.shape}.`)}}}}}}call(inputs,kwargs){return inputs}invokeCallHook(inputs,kwargs){if(this._callHook!=null){this._callHook(inputs,kwargs)}}setCallHook(callHook){this._callHook=callHook}clearCallHook(){this._callHook=null}apply(inputs,kwargs){kwargs=kwargs||{};this.assertNotDisposed();const inputsList=toList(inputs);let allAreSymbolic=true;for(const input2 of inputsList){if(!(input2 instanceof SymbolicTensor)){allAreSymbolic=false;break}}let noneAreSymbolic=true;for(const input2 of inputsList){if(input2 instanceof SymbolicTensor){noneAreSymbolic=false;break}}if(allAreSymbolic===noneAreSymbolic){throw new ValueError("Arguments to apply() must be all SymbolicTensors or all Tensors")}return nameScope(this.name,()=>{if(!this.built){this.assertInputCompatibility(inputs);const inputShapes=[];for(const xElem of toList(inputs)){inputShapes.push(xElem.shape)}this.build(singletonOrArray(inputShapes));this.built=true;if(this.initialWeights){this.setWeights(this.initialWeights)}if(this._refCount===null&&noneAreSymbolic){this._refCount=1}}this.assertInputCompatibility(inputs);if(noneAreSymbolic){let output=this.call(inputs,kwargs);const outputList=toList(output);const outputListCopy=[];for(let x of outputList){if(inputsList.indexOf(x)!==-1){x=x.clone()}outputListCopy.push(x)}output=singletonOrArray(outputListCopy);if(this.activityRegularizer!=null){throw new NotImplementedError("Layer invocation in the presence of activity regularizer(s) is not supported yet.")}return output}else{const inputShape=collectInputShape(inputs);const outputShape=this.computeOutputShape(inputShape);let output;const outputDType=guessOutputDType(inputs);this.warnOnIncompatibleInputShape(Array.isArray(inputs)?inputShape[0]:inputShape);if(outputShape!=null&&outputShape.length>0&&Array.isArray(outputShape[0])){output=outputShape.map((shape,index2)=>new SymbolicTensor(outputDType,shape,this,toList(inputs),kwargs,this.name,index2))}else{output=new SymbolicTensor(outputDType,outputShape,this,toList(inputs),kwargs,this.name)}this.addInboundNode(inputs,output,null,null,inputShape,outputShape,kwargs);this._refCount++;if(this.activityRegularizer!=null){throw new NotImplementedError("Layer invocation in the presence of activity regularizer(s) is not supported yet.")}return output}})}warnOnIncompatibleInputShape(inputShape){if(this.batchInputShape==null){return}else if(inputShape.length!==this.batchInputShape.length){console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(inputShape)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`)}else{let dimMismatch=false;this.batchInputShape.forEach((dimension,i)=>{if(dimension!=null&&inputShape[i]!=null&&inputShape[i]!==dimension){dimMismatch=true}});if(dimMismatch){console.warn(`The shape of the input tensor (${JSON.stringify(inputShape)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0){throw new AttributeError(`The layer ${this.name} has never been called and thus has no defined output shape.`)}const allOutputShapes=[];for(const node of this.inboundNodes){const shapeString=JSON.stringify(node.outputShapes);if(allOutputShapes.indexOf(shapeString)===-1){allOutputShapes.push(shapeString)}}if(allOutputShapes.length===1){const outputShapes=this.inboundNodes[0].outputShapes;if(Array.isArray(outputShapes)&&Array.isArray(outputShapes[0])&&outputShapes.length===1){return outputShapes[0]}else{return outputShapes}}else{throw new AttributeError(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}}countParams(){if(!this.built){throw new RuntimeError(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`)}return countParamsInWeights(this.weights)}build(inputShape){this.built=true}getWeights(trainableOnly=false){return batchGetValue(trainableOnly?this.trainableWeights:this.weights)}setWeights(weights){tidy(()=>{const params=this.weights;if(params.length!==weights.length){throw new ValueError(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${weights.length}, but the layer was expecting ${params.length} weights. Provided weights: ${weights}...`)}if(params.length===0){return}const weightValueTuples=[];const paramValues=batchGetValue(params);for(let i=0;i<paramValues.length;++i){const pv=paramValues[i];const p2=params[i];const w=weights[i];if(!arraysEqual(pv.shape,w.shape)){throw new ValueError(`Layer weight shape ${pv.shape} not compatible with provided weight shape ${w.shape}`)}weightValueTuples.push([p2,w])}batchSetValue(weightValueTuples)})}addWeight(name,shape,dtype,initializer,regularizer,trainable,constraint){if(this._addedWeightNames.indexOf(name)!==-1){throw new ValueError(`Duplicate weight name ${name} for layer ${this.name}`)}this._addedWeightNames.push(name);if(dtype==null){dtype="float32"}if(this.fastWeightInitDuringBuild){initializer=getInitializer("zeros")}const initValue=initializer.apply(shape,dtype);const weight=new LayerVariable(initValue,dtype,name,trainable,constraint);initValue.dispose();if(regularizer!=null){this.addLoss(()=>regularizer.apply(weight.read()))}if(trainable==null){trainable=true}if(trainable){this._trainableWeights.push(weight)}else{this._nonTrainableWeights.push(weight)}return weight}setFastWeightInitDuringBuild(value){this.fastWeightInitDuringBuild=value}addLoss(losses2){if(losses2==null||Array.isArray(losses2)&&losses2.length===0){return}losses2=toList(losses2);if(this._losses!==void 0&&this._losses!==null){this.losses.push(...losses2)}}computeOutputShape(inputShape){return inputShape}computeMask(inputs,mask){if(!this.supportsMasking){if(mask!=null){if(Array.isArray(mask)){mask.forEach(maskElement=>{if(maskElement!=null){throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)}})}else{throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)}}return null}return mask}addInboundNode(inputTensors,outputTensors,inputMasks,outputMasks,inputShapes,outputShapes,kwargs=null){const inputTensorList=toList(inputTensors);outputTensors=toList(outputTensors);inputMasks=toList(inputMasks);outputMasks=toList(outputMasks);inputShapes=normalizeShapeList(inputShapes);outputShapes=normalizeShapeList(outputShapes);const inboundLayers=[];const nodeIndices=[];const tensorIndices=[];for(const x of inputTensorList){inboundLayers.push(x.sourceLayer);nodeIndices.push(x.nodeIndex);tensorIndices.push(x.tensorIndex)}new Node({outboundLayer:this,inboundLayers,nodeIndices,tensorIndices,inputTensors:inputTensorList,outputTensors,inputMasks,outputMasks,inputShapes,outputShapes},kwargs);for(let i=0;i<outputTensors.length;i++){outputTensors[i].sourceLayer=this;outputTensors[i].nodeIndex=this.inboundNodes.length-1;outputTensors[i].tensorIndex=i}}getConfig(){const config2={name:this.name,trainable:this.trainable};if(this.batchInputShape!=null){config2["batchInputShape"]=this.batchInputShape}if(this.dtype!=null){config2["dtype"]=this.dtype}return config2}disposeWeights(){this.weights.forEach(weight=>weight.dispose());return this.weights.length}assertNotDisposed(){if(this._refCount===0){throw new Error(`Layer '${this.name}' is already disposed.`)}}dispose(){if(!this.built){throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`)}if(this._refCount===null){throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`)}this.assertNotDisposed();let numDisposedVariables=0;if(--this._refCount===0){numDisposedVariables=this.disposeWeights()}return{refCountAfterDispose:this._refCount,numDisposedVariables}}}function collectInputShape(inputTensors){inputTensors=toList(inputTensors);const shapes=[];for(const x of inputTensors){shapes.push(x.shape)}return singletonOrArray(shapes)}function guessOutputDType(inputTensors){return"float32"}function getSourceInputs(tensor2,layer,nodeIndex){if(layer==null||nodeIndex!=null&&nodeIndex>0){layer=tensor2.sourceLayer;nodeIndex=tensor2.nodeIndex}if(layer.inboundNodes.length===0){return[tensor2]}else{const node=layer.inboundNodes[nodeIndex];if(node.inboundLayers.length===0){return node.inputTensors}else{const sourceTensors=[];for(let i=0;i<node.inboundLayers.length;i++){const x=node.inputTensors[i];const layer2=node.inboundLayers[i];const nodeIndex2=node.nodeIndices[i];const previousSources=getSourceInputs(x,layer2,nodeIndex2);for(const x2 of previousSources){if(sourceTensors.indexOf(x2)===-1){sourceTensors.push(x2)}}}return sourceTensors}}}class InputLayer extends Layer{constructor(args){super({dtype:args.dtype,name:args.name!=null?args.name:getUid("input").toString()});if(args.batchSize==null){args.batchSize=null}if(args.sparse==null){args.sparse=false}this.trainable=false;this.built=true;this.sparse=args.sparse;if(args.inputShape!=null&&args.batchInputShape!=null){throw new ValueError("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.")}let batchInputShape=args.batchInputShape;if(batchInputShape==null){if(args.inputShape==null){throw new ValueError("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.")}else{batchInputShape=[args.batchSize].concat(args.inputShape)}}else{if(args.batchSize!=null){throw new ValueError("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.")}}const dtype=args.dtype||"float32";this.batchInputShape=batchInputShape;this.dtype=dtype;this.inputSpec=[{shape:batchInputShape}];const inputTensor=new SymbolicTensor(this.dtype,this.batchInputShape,this,[],{},this.name);inputTensor.nodeIndex=0;inputTensor.tensorIndex=0;new Node({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[inputTensor],outputTensors:[inputTensor],inputMasks:[null],outputMasks:[null],inputShapes:[batchInputShape],outputShapes:[batchInputShape]})}apply(inputs,kwargs){throw new ValueError(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}}InputLayer.className="InputLayer";registerClass(InputLayer);function Input(config2){if(config2.batchShape==null&&config2.shape==null){throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.")}if(config2.batchShape!=null&&config2.shape!=null){throw new ValueError("Please provide either a `shape` or `batchShape` argument to Input, but not both.")}let batchShape=config2.batchShape;if(config2.shape!=null&&batchShape==null){batchShape=[null].concat(config2.shape)}let dtype=config2.dtype;if(dtype==null){dtype="float32"}const inputLayer2=new InputLayer({batchInputShape:batchShape,name:config2.name,dtype,sparse:config2.sparse});const outputs=inputLayer2.inboundNodes[0].outputTensors;return outputs[0]}async function resolveScalarsInLogs(logs){if(logs==null){return}const promises=[];const keys=[];const scalarsToDispose=[];for(const key in logs){const value=logs[key];if(typeof value!=="number"){const valueScalar=value;promises.push(valueScalar.data());keys.push(key);scalarsToDispose.push(valueScalar)}}if(promises.length>0){const values=await Promise.all(promises);for(let i=0;i<values.length;++i){logs[keys[i]]=values[i][0]}dispose(scalarsToDispose)}}function disposeTensorsInLogs(logs){if(logs==null){return}for(const key in logs){const value=logs[key];if(typeof value!=="number"){value.dispose()}}}var ModelLoggingVerbosity;(function(ModelLoggingVerbosity2){ModelLoggingVerbosity2[ModelLoggingVerbosity2["SILENT"]=0]="SILENT";ModelLoggingVerbosity2[ModelLoggingVerbosity2["VERBOSE"]=1]="VERBOSE"})(ModelLoggingVerbosity||(ModelLoggingVerbosity={}));const DEFAULT_YIELD_EVERY_MS=125;class BaseCallback{constructor(){this.validationData=null}setParams(params){this.params=params}async onEpochBegin(epoch,logs){}async onEpochEnd(epoch,logs){}async onBatchBegin(batch,logs){}async onBatchEnd(batch,logs){}async onTrainBegin(logs){}async onTrainEnd(logs){}setModel(model2){}}class CallbackList{constructor(callbacks2,queueLength=10){if(callbacks2==null){callbacks2=[]}this.callbacks=callbacks2;this.queueLength=queueLength}append(callback){this.callbacks.push(callback)}setParams(params){for(const callback of this.callbacks){callback.setParams(params)}}setModel(model2){for(const callback of this.callbacks){callback.setModel(model2)}}async onEpochBegin(epoch,logs){if(logs==null){logs={}}for(const callback of this.callbacks){await callback.onEpochBegin(epoch,logs)}}async onEpochEnd(epoch,logs){if(logs==null){logs={}}for(const callback of this.callbacks){await callback.onEpochEnd(epoch,logs)}}async onBatchBegin(batch,logs){if(logs==null){logs={}}for(const callback of this.callbacks){await callback.onBatchBegin(batch,logs)}}async onBatchEnd(batch,logs){if(logs==null){logs={}}for(const callback of this.callbacks){await callback.onBatchEnd(batch,logs)}}async onTrainBegin(logs){if(logs==null){logs={}}for(const callback of this.callbacks){await callback.onTrainBegin(logs)}}async onTrainEnd(logs){if(logs==null){logs={}}for(const callback of this.callbacks){await callback.onTrainEnd(logs)}}}class BaseLogger extends BaseCallback{constructor(){super()}async onEpochBegin(epoch){this.seen=0;this.totals={}}async onBatchEnd(batch,logs){if(logs==null){logs={}}const batchSize=logs["size"]==null?0:logs["size"];this.seen+=batchSize;for(const key in logs){const value=logs[key];if(typeof value==="number"){if(!this.totals.hasOwnProperty(key)){this.totals[key]=0}this.totals[key]=this.totals[key]+value*batchSize}else{let oldTotalsToDispose;if(key in this.totals){oldTotalsToDispose=this.totals[key]}else{this.totals[key]=0}const total=tidy(()=>add$1(this.totals[key],mul(value,batchSize)));this.totals[key]=total;if(oldTotalsToDispose!=null){oldTotalsToDispose.dispose()}}}}async onEpochEnd(epoch,logs){if(logs!=null){for(const key of this.params["metrics"]){if(this.totals[key]==null){continue}if(typeof this.totals[key]==="number"){logs[key]=this.totals[key]/this.seen}else{tidy(()=>{const log2=mul(div(1,this.seen),this.totals[key]);logs[key]=log2;this.totals[key].dispose();keep(logs[key])})}}}}}class History extends BaseCallback{async onTrainBegin(logs){this.epoch=[];this.history={}}async onEpochEnd(epoch,logs){if(logs==null){logs={}}this.epoch.push(epoch);for(const key in logs){if(this.history[key]==null){this.history[key]=[]}this.history[key].push(logs[key])}}async syncData(){const promises=[];const keys=[];const indices=[];for(const key in this.history){const valueArray=this.history[key];for(let i=0;i<valueArray.length;++i){if(typeof valueArray[i]!=="number"){const valueScalar=valueArray[i];promises.push(valueScalar.data());keys.push(key);indices.push(i)}}}const values=await Promise.all(promises);for(let n=0;n<values.length;++n){const tensorToDispose=this.history[keys[n]][indices[n]];tensorToDispose.dispose();this.history[keys[n]][indices[n]]=values[n][0]}}}class CustomCallback extends BaseCallback{constructor(args,yieldEvery){super();this.currentEpoch=0;this.yieldEvery=yieldEvery||"auto";if(this.yieldEvery==="auto"){this.yieldEvery=DEFAULT_YIELD_EVERY_MS}if(this.yieldEvery==="never"&&args.onYield!=null){throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback")}if(isNumber(this.yieldEvery)){this.maybeWait=debounce(this.maybeWait.bind(this),this.yieldEvery)}this.trainBegin=args.onTrainBegin;this.trainEnd=args.onTrainEnd;this.epochBegin=args.onEpochBegin;this.epochEnd=args.onEpochEnd;this.batchBegin=args.onBatchBegin;this.batchEnd=args.onBatchEnd;this.yield=args.onYield}async maybeWait(epoch,batch,logs){const ps=[];if(this.yield!=null){await resolveScalarsInLogs(logs);ps.push(this.yield(epoch,batch,logs))}ps.push(nextFrame());await Promise.all(ps)}async onEpochBegin(epoch,logs){this.currentEpoch=epoch;if(this.epochBegin!=null){await resolveScalarsInLogs(logs);await this.epochBegin(epoch,logs)}}async onEpochEnd(epoch,logs){const ps=[];if(this.epochEnd!=null){await resolveScalarsInLogs(logs);ps.push(this.epochEnd(epoch,logs))}if(this.yieldEvery==="epoch"){ps.push(nextFrame())}await Promise.all(ps)}async onBatchBegin(batch,logs){if(this.batchBegin!=null){await resolveScalarsInLogs(logs);await this.batchBegin(batch,logs)}}async onBatchEnd(batch,logs){const ps=[];if(this.batchEnd!=null){await resolveScalarsInLogs(logs);ps.push(this.batchEnd(batch,logs))}if(this.yieldEvery==="batch"){ps.push(nextFrame())}else if(isNumber(this.yieldEvery)){ps.push(this.maybeWait(this.currentEpoch,batch,logs))}await Promise.all(ps)}async onTrainBegin(logs){if(this.trainBegin!=null){await resolveScalarsInLogs(logs);await this.trainBegin(logs)}}async onTrainEnd(logs){if(this.trainEnd!=null){await resolveScalarsInLogs(logs);await this.trainEnd(logs)}}}function standardizeCallbacks(callbacks2,yieldEvery){if(callbacks2==null){callbacks2={}}if(callbacks2 instanceof BaseCallback){return[callbacks2]}if(Array.isArray(callbacks2)&&callbacks2[0]instanceof BaseCallback){return callbacks2}const callbackConfigs=toList(callbacks2);return callbackConfigs.map(callbackConfig=>new CustomCallback(callbackConfig,yieldEvery))}class CallbackConstructorRegistry{constructor(){}static registerCallbackConstructor(verbosityLevel,callbackConstructor){assert(verbosityLevel>=0&&Number.isInteger(verbosityLevel),()=>`Verbosity level is expected to be an integer >= 0, but got ${verbosityLevel}`);CallbackConstructorRegistry.checkForDuplicate(callbackConstructor);if(CallbackConstructorRegistry.constructors[verbosityLevel]==null){CallbackConstructorRegistry.constructors[verbosityLevel]=[]}CallbackConstructorRegistry.constructors[verbosityLevel].push(callbackConstructor)}static checkForDuplicate(callbackConstructor){for(const levelName in CallbackConstructorRegistry.constructors){const constructors=CallbackConstructorRegistry.constructors[+levelName];constructors.forEach(ctor=>{if(ctor===callbackConstructor){throw new ValueError("Duplicate callback constructor.")}})}}static clear(){CallbackConstructorRegistry.constructors={}}static createCallbacks(verbosityLevel){const constructors=[];for(const levelName in CallbackConstructorRegistry.constructors){const level=+levelName;if(verbosityLevel>=level){constructors.push(...CallbackConstructorRegistry.constructors[level])}}return constructors.map(ctor=>new ctor)}}CallbackConstructorRegistry.constructors={};function configureCallbacks(callbacks2,verbose,epochs,initialEpoch,numTrainSamples,stepsPerEpoch,batchSize,doValidation,callbackMetrics){const history=new History;const actualCallbacks=[new BaseLogger,...CallbackConstructorRegistry.createCallbacks(verbose)];if(callbacks2!=null){actualCallbacks.push(...callbacks2)}actualCallbacks.push(history);const callbackList=new CallbackList(actualCallbacks);callbackList.setParams({epochs,initialEpoch,samples:numTrainSamples,steps:stepsPerEpoch,batchSize,verbose,doValidation,metrics:callbackMetrics});return{callbackList,history}}function deserialize(config2,customObjects={},fastWeightInit=false){return deserializeKerasObject(config2,SerializationMap.getMap().classNameMap,customObjects,"layer",fastWeightInit)}function l2Normalize(x,axis){return tidy(()=>{if(x.dtype!=="float32"){x=x.asType("float32")}const squareSum=sum$1(square$1(x),axis,true);const epsilonTensor=fill2(squareSum.shape,epsilon());const norm2=sqrt(maximum(squareSum,epsilonTensor));return div(x,norm2)})}function meanSquaredError$1(yTrue,yPred){return tidy(()=>mean(square$1(sub(yPred,yTrue)),-1))}function meanAbsoluteError(yTrue,yPred){return tidy(()=>mean(abs(sub(yPred,yTrue)),-1))}function meanAbsolutePercentageError(yTrue,yPred){return tidy(()=>{const diff=sub(yTrue,yPred);const clippedTrue=clipByValue(abs(yTrue),epsilon(),Number.MAX_VALUE);const absResult=abs(div(diff,clippedTrue));return mul(100,mean(absResult,-1))})}function meanSquaredLogarithmicError(yTrue,yPred){return tidy(()=>{const clippedPred=clipByValue(yPred,epsilon(),Number.MAX_VALUE);const firstLog=log(add$1(1,clippedPred));const clippedTrue=clipByValue(yTrue,epsilon(),Number.MAX_VALUE);const secondLog=log(add$1(1,clippedTrue));return mean(square$1(sub(firstLog,secondLog)),-1)})}function squaredHinge(yTrue,yPred){return tidy(()=>{const maxResult=maximum(0,sub(1,mul(yTrue,yPred)));return mean(square$1(maxResult),-1)})}function hinge(yTrue,yPred){return tidy(()=>{const maxResult=maximum(0,sub(1,mul(yTrue,yPred)));return mean(maxResult,-1)})}function categoricalHinge(yTrue,yPred){return tidy(()=>{const pos=sum$1(mul(yTrue,yPred),-1);const neg2=max2(mul(sub(1,yTrue),yPred),-1);return maximum(0,add$1(1,sub(neg2,pos)))})}function logcosh(yTrue,yPred){return tidy(()=>{const log2=Math.log(2);const predictionDiff=sub(yPred,yTrue);const logcoshResult=sub(add$1(predictionDiff,softplus(mul(-2,predictionDiff))),log2);return mean(logcoshResult,-1)})}function categoricalCrossentropy(target,output,fromLogits=false){return tidy(()=>{if(fromLogits){output=softmax2(output)}else{const outputSum=sum$1(output,output.shape.length-1,true);output=div(output,outputSum)}output=clipByValue(output,epsilon(),1-epsilon());return neg(sum$1(mul(target.toFloat(),log(output)),output.shape.length-1))})}function sparseCategoricalCrossentropy(target,output,fromLogits=false){return tidy(()=>{const flatTarget=floor(flatten$1(target)).toInt();output=clipByValue(output,epsilon(),1-epsilon());const outputShape=output.shape;const oneHotTarget=oneHot2(flatTarget,outputShape[outputShape.length-1]).reshape(outputShape);return categoricalCrossentropy(oneHotTarget,output,fromLogits)})}function sigmoidCrossEntropyWithLogits(labels,logits){if(!arraysEqual(labels.shape,logits.shape)){throw new ValueError(`logits and labels must have the same shape, but got shapes ${JSON.stringify(labels.shape)} and ${JSON.stringify(logits.shape)}`)}return tidy(()=>{const reluLogits=logits.relu();const negAbsLogits=logits.abs().neg();return reluLogits.sub(logits.mul(labels)).add(negAbsLogits.exp().log1p())})}function binaryCrossentropy(yTrue,yPred){return tidy(()=>{let y;y=clipByValue(yPred,epsilon(),1-epsilon());y=log(div(y,sub(1,y)));return mean(sigmoidCrossEntropyWithLogits(yTrue,y),-1)})}function kullbackLeiblerDivergence(yTrue,yPred){return tidy(()=>{const clippedTrue=clipByValue(yTrue,epsilon(),1);const clippedPred=clipByValue(yPred,epsilon(),1);return sum$1(mul(yTrue,log(div(clippedTrue,clippedPred))),-1)})}function poisson(yTrue,yPred){return tidy(()=>{const logPred=log(add$1(epsilon(),yPred));return mean(sub(yPred,mul(yTrue,logPred)),-1)})}function cosineProximity(yTrue,yPred){return tidy(()=>{const trueNormalized=l2Normalize(yTrue,-1);const predNormalized=l2Normalize(yPred,-1);const trueXPred=mul(trueNormalized,predNormalized);return neg(sum$1(trueXPred,-1))})}const mse=meanSquaredError$1;const MSE=meanSquaredError$1;const mae=meanAbsoluteError;const MAE=meanAbsoluteError;const mape=meanAbsolutePercentageError;const MAPE=meanAbsolutePercentageError;const msle=meanSquaredLogarithmicError;const MSLE=meanSquaredLogarithmicError;const kld=kullbackLeiblerDivergence;const KLD=kullbackLeiblerDivergence;const cosine=cosineProximity;const lossesMap={meanSquaredError:meanSquaredError$1,meanAbsoluteError,meanAbsolutePercentageError,meanSquaredLogarithmicError,squaredHinge,hinge,categoricalHinge,logcosh,categoricalCrossentropy,sparseCategoricalCrossentropy,binaryCrossentropy,kullbackLeiblerDivergence,poisson,cosineProximity};function get(identifierOrFn){if(typeof identifierOrFn==="string"){if(identifierOrFn in lossesMap){return lossesMap[identifierOrFn]}let errMsg=`Unknown loss ${identifierOrFn}`;if(identifierOrFn.toLowerCase().includes("softmaxcrossentropy")){errMsg=`Unknown loss ${identifierOrFn}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`}throw new ValueError(errMsg)}else{return identifierOrFn}}function binaryAccuracy(yTrue,yPred){return tidy(()=>{const threshold2=mul(.5,onesLike2(yPred));const yPredThresholded=cast$1(greater(yPred,threshold2),yTrue.dtype);return mean(equal(yTrue,yPredThresholded),-1)})}function categoricalAccuracy(yTrue,yPred){return tidy(()=>cast$1(equal(argMax(yTrue,-1),argMax(yPred,-1)),"float32"))}function truePositives(yTrue,yPred){return tidy(()=>{return logicalAnd(yTrue.equal(1),yPred.equal(1)).sum().cast("float32")})}function falseNegatives(yTrue,yPred){return tidy(()=>{return logicalAnd(yTrue.equal(1),yPred.equal(0)).sum().cast("float32")})}function falsePositives(yTrue,yPred){return tidy(()=>{return logicalAnd(yTrue.equal(0),yPred.equal(1)).sum().cast("float32")})}function precision(yTrue,yPred){return tidy(()=>{const tp=truePositives(yTrue,yPred);const fp=falsePositives(yTrue,yPred);const denominator=tp.add(fp);return where(greater(denominator,0),tp.div(denominator),0).cast("float32")})}function recall(yTrue,yPred){return tidy(()=>{const tp=truePositives(yTrue,yPred);const fn=falseNegatives(yTrue,yPred);const denominator=tp.add(fn);return where(greater(denominator,0),tp.div(denominator),0).cast("float32")})}function binaryCrossentropy$1(yTrue,yPred){return binaryCrossentropy(yTrue,yPred)}function sparseCategoricalAccuracy(yTrue,yPred){if(yTrue.rank===yPred.rank){yTrue=yTrue.squeeze([yTrue.rank-1])}yPred=yPred.argMax(-1);if(yPred.dtype!==yTrue.dtype){yPred=yPred.asType(yTrue.dtype)}return equal(yTrue,yPred).asType("float32")}function topKCategoricalAccuracy(yTrue,yPred){throw new NotImplementedError}function sparseTopKCategoricalAccuracy(yTrue,yPred){throw new NotImplementedError}const mse$1=meanSquaredError$1;const MSE$1=meanSquaredError$1;const mae$1=meanAbsoluteError;const MAE$1=meanAbsoluteError;const mape$1=meanAbsolutePercentageError;const MAPE$1=meanAbsolutePercentageError;const categoricalCrossentropy$1=categoricalCrossentropy;const cosine$1=cosineProximity;const sparseCategoricalCrossentropy$1=sparseCategoricalCrossentropy;const metricsMap={binaryAccuracy,categoricalAccuracy,precision,categoricalCrossentropy:categoricalCrossentropy$1,sparseCategoricalCrossentropy:sparseCategoricalCrossentropy$1,mse:mse$1,MSE:MSE$1,mae:mae$1,MAE:MAE$1,mape:mape$1,MAPE:MAPE$1,cosine:cosine$1};function get$1(identifier){if(typeof identifier==="string"&&identifier in metricsMap){return metricsMap[identifier]}else if(typeof identifier!=="string"&&identifier!=null){return identifier}else{throw new ValueError(`Unknown metric ${identifier}`)}}function getLossOrMetricName(fn){assert$1(fn!==null,`Unknown LossOrMetricFn ${fn}`);if(typeof fn==="string"){return fn}else{let fnName;for(const key of Object.keys(lossesMap)){if(lossesMap[key]===fn){fnName=key;break}}if(fnName!==void 0){return fnName}for(const key of Object.keys(metricsMap)){if(metricsMap[key]===fn){fnName=key;break}}if(fnName!==void 0){return fnName}return fn.name}}function getOptimizer(identifier){const optimizerMap={Adagrad:()=>train.adagrad(.01),Adadelta:()=>train.adadelta(1,.95,epsilon()),Adam:()=>train.adam(.001,.9,.999,epsilon()),Adamax:()=>train.adamax(.002,.9,.999,epsilon(),0),RMSProp:()=>train.rmsprop(.001,.9,0,epsilon()),SGD:()=>train.sgd(.01)};optimizerMap["adagrad"]=optimizerMap["Adagrad"];optimizerMap["adadelta"]=optimizerMap["Adadelta"];optimizerMap["adam"]=optimizerMap["Adam"];optimizerMap["adamax"]=optimizerMap["Adamax"];optimizerMap["rmsprop"]=optimizerMap["RMSProp"];optimizerMap["sgd"]=optimizerMap["SGD"];if(identifier in optimizerMap){return optimizerMap[identifier]()}throw new ValueError(`Unknown Optimizer ${identifier}`)}const MAX_USER_DEFINED_METADATA_SERIALIZED_LENGTH=1*1024*1024;function checkUserDefinedMetadata(userDefinedMetadata,modelName,checkSize=false){if(userDefinedMetadata==null||typeof userDefinedMetadata!=="object"||Object.getPrototypeOf(userDefinedMetadata)!==Object.prototype||!plainObjectCheck(userDefinedMetadata)){throw new Error("User-defined metadata is expected to be a JSON object, but is not.")}if(checkSize){const out=JSON.stringify(userDefinedMetadata);if(out.length>MAX_USER_DEFINED_METADATA_SERIALIZED_LENGTH){console.warn(`User-defined metadata of model "${modelName}" is too large in size (length=${out.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${MAX_USER_DEFINED_METADATA_SERIALIZED_LENGTH}.`)}}}function plainObjectCheck(x){if(x===null){return true}else if(typeof x==="object"){if(Object.getPrototypeOf(x)===Object.prototype){const keys=Object.keys(x);for(const key of keys){if(typeof key!=="string"){return false}if(!plainObjectCheck(x[key])){return false}}return true}else{if(Array.isArray(x)){for(const item of x){if(!plainObjectCheck(item)){return false}}return true}else{return false}}}else{const xType=typeof x;return xType==="string"||xType==="number"||xType==="boolean"}}function printSummary(model2,lineLength,positions,printFn=console.log){const sequentialLike=isModelSequentialLike(model2);const toDisplay=["Layer (type)","Output shape","Param #"];if(sequentialLike){lineLength=lineLength||65;positions=positions||[.45,.85,1]}else{lineLength=lineLength||98;positions=positions||[.33,.55,.67,1]}if(positions[positions.length-1]<=1){positions=positions.map(p2=>Math.floor(lineLength*p2))}let relevantNodes;if(!sequentialLike){toDisplay.push("Receives inputs");relevantNodes=[];for(const depth in model2.nodesByDepth){relevantNodes.push(...model2.nodesByDepth[depth])}}printFn("_".repeat(lineLength));printRow(toDisplay,positions,printFn);printFn("=".repeat(lineLength));const layers=model2.layers;for(let i=0;i<layers.length;++i){if(sequentialLike){printLayerSummary(layers[i],positions,printFn)}else{printLayerSummaryWithConnections(layers[i],positions,relevantNodes,printFn)}printFn((i===layers.length-1?"=":"_").repeat(lineLength))}model2.checkTrainableWeightsConsistency();const trainableCount=countTrainableParams(model2);const nonTrainableCount=countParamsInWeights(model2.nonTrainableWeights);printFn(`Total params: ${trainableCount+nonTrainableCount}`);printFn(`Trainable params: ${trainableCount}`);printFn(`Non-trainable params: ${nonTrainableCount}`);printFn("_".repeat(lineLength))}function countTrainableParams(model2){let trainableCount;if(model2.collectedTrainableWeights!=null){trainableCount=countParamsInWeights(model2.collectedTrainableWeights)}else{trainableCount=countParamsInWeights(model2.trainableWeights)}return trainableCount}function isModelSequentialLike(model2){let sequentialLike=true;const nodesByDepth=[];const nodes=[];for(const depth in model2.nodesByDepth){nodesByDepth.push(model2.nodesByDepth[depth])}for(const depthNodes of nodesByDepth){if(depthNodes.length>1||depthNodes.length===1&&depthNodes[0].inboundLayers.length>1){sequentialLike=false;break}nodes.push(...depthNodes)}if(sequentialLike){for(const layer of model2.layers){let flag=false;for(const node of layer.inboundNodes){if(nodes.indexOf(node)!==-1){if(flag){sequentialLike=false;break}else{flag=true}}}if(!sequentialLike){break}}}return sequentialLike}function printRow(fields,positions,printFn=console.log){let line="";for(let i=0;i<fields.length;++i){if(i>0){line=line.slice(0,line.length-1)+" "}line+=fields[i];line=line.slice(0,positions[i]);line+=" ".repeat(positions[i]-line.length)}printFn(line)}function printLayerSummary(layer,positions,printFn){let outputShape;try{outputShape=JSON.stringify(layer.outputShape)}catch(err){outputShape="multiple"}const name=layer.name;const className=layer.getClassName();const fields=[`${name} (${className})`,outputShape,layer.countParams().toString()];printRow(fields,positions,printFn)}function printLayerSummaryWithConnections(layer,positions,relevantNodes,printFn){let outputShape;try{outputShape=JSON.stringify(layer.outputShape)}catch(err){outputShape="multiple"}const connections=[];for(const node of layer.inboundNodes){if(relevantNodes!=null&&relevantNodes.length>0&&relevantNodes.indexOf(node)===-1){continue}for(let i=0;i<node.inboundLayers.length;++i){const inboundLayer=node.inboundLayers[i].name;const inboundLayerIndex=node.nodeIndices[i];const inboundTensorIndex=node.tensorIndices[i];connections.push(`${inboundLayer}[${inboundLayerIndex}][${inboundTensorIndex}]`)}}const name=layer.name;const className=layer.getClassName();const firstConnection=connections.length===0?"":connections[0];const fields=[`${name} (${className})`,outputShape,layer.countParams().toString(),firstConnection];printRow(fields,positions,printFn);for(let i=1;i<connections.length;++i){printRow(["","","",connections[i]],positions,printFn)}}function isArrayItemInputOrOutputName(key,index2,value){return(key==="inboundNodes"||key==="outputLayers"||key==="inputLayers")&&index2===0&&typeof value==="string"}function convertPythonicToTs(pythonicConfig,key){if(pythonicConfig===null){return null}else if(typeof pythonicConfig==="string"){return toCamelCase(pythonicConfig)}else if(typeof pythonicConfig==="number"||typeof pythonicConfig==="boolean"){return pythonicConfig}else if(pythonicConfig instanceof Array){const tsArray=[];const arrayLength=pythonicConfig.length;for(let i=0;i<arrayLength;++i){const item=pythonicConfig[i];if(isArrayItemInputOrOutputName(key,i,item)){tsArray.push(item)}else{tsArray.push(convertPythonicToTs(item,key))}}return tsArray}else{const tsDict={};for(const pythonicKey of Object.keys(pythonicConfig)){const pythonicValue=pythonicConfig[pythonicKey];if(pythonicKey==="name"&&typeof pythonicValue==="string"){tsDict[pythonicKey]=pythonicValue}else{const tsKey=toCamelCase(pythonicKey);tsDict[tsKey]=convertPythonicToTs(pythonicValue,tsKey)}}return tsDict}}function convertTsToPythonic(tsConfig,key){if(tsConfig===null||tsConfig===void 0){return null}else if(typeof tsConfig==="string"){return toSnakeCase(tsConfig)}else if(typeof tsConfig==="number"||typeof tsConfig==="boolean"){return tsConfig}else if(tsConfig instanceof Array){const pyArray=[];const arrayLength=tsConfig.length;for(let i=0;i<arrayLength;++i){const item=tsConfig[i];if(isArrayItemInputOrOutputName(key,i,item)){pyArray.push(item)}else{pyArray.push(convertTsToPythonic(item,key))}}return pyArray}else{const pyDict={};for(const tsKey of Object.keys(tsConfig)){const tsValue=tsConfig[tsKey];const pyKey=toSnakeCase(tsKey);if((tsKey==="name"||tsKey==="className")&&typeof tsValue==="string"){pyDict[pyKey]=tsValue}else{pyDict[pyKey]=convertTsToPythonic(tsValue,tsKey)}}return pyDict}}const version$1="2.7.0";function assertFeedCompatibility(key,val){if(key.dtype==null||key.dtype===val.dtype){return val}try{return cast2(val,key.dtype)}catch(err){throw new ValueError(`The dtype of the feed (${val.dtype}) can not be cast to the dtype of the key '${key.name}' (${key.dtype}).`)}}class FeedDict{constructor(feeds){this.id2Value={};this.id2Mask={};this.name2Id={};if(feeds instanceof FeedDict){for(const id in feeds.id2Value){this.id2Value[id]=feeds.id2Value[id];if(id in feeds.id2Mask){this.id2Mask[id]=feeds.id2Mask[id]}}}else{if(feeds==null){return}for(const feed of feeds){this.add(feed.key,feed.value)}}}add(key,value,mask){if(this.id2Value[key.id]==null){this.id2Value[key.id]=assertFeedCompatibility(key,value);this.name2Id[key.name]=key.id;if(mask!=null){this.id2Mask[key.id]=mask}}else{throw new ValueError(`Duplicate key: name=${key.name}, id=${key.id}`)}return this}addFeed(feed){this.add(feed.key,feed.value)}hasKey(key){return this.id2Value[key.id]!=null}names(){return Object.keys(this.name2Id)}getValue(key){if(key instanceof SymbolicTensor){if(this.id2Value[key.id]==null){throw new ValueError(`Nonexistent key: ${key.name}`)}else{return this.id2Value[key.id]}}else{const id=this.name2Id[key];if(id==null){throw new ValueError(`Feed dict has no SymbolicTensor name: ${key}`)}return this.id2Value[id]}}getMask(key){if(key instanceof SymbolicTensor){if(this.id2Value[key.id]==null){throw new ValueError(`Nonexistent key: ${key.name}`)}else{return this.id2Mask[key.id]}}else{const id=this.name2Id[key];if(id==null){throw new ValueError(`Feed dict has no SymbolicTensor name: ${key}`)}return this.id2Mask[id]}}disposeMasks(){if(this.id2Mask!=null){dispose(this.id2Mask)}}}const cachedSorted={};const cachedRecipientCounts={};function execute(fetches,feedDict,kwargs,probe){const training=kwargs==null?false:kwargs["training"];const arrayFetches=Array.isArray(fetches);const fetchArray=arrayFetches?fetches:[fetches];const outputNames=fetchArray.map(t=>t.name);const finalOutputs=[];const feedNames=feedDict.names();for(const outputName of outputNames){if(feedNames.indexOf(outputName)!==-1){finalOutputs.push(feedDict.getValue(outputName))}else{finalOutputs.push(null)}}if(probe!=null){probe.maxNumTensors=-Infinity;probe.minNumTensors=Infinity}const fetchAndFeedKey=outputNames.join(",")+"|"+feedDict.names().join(",");let sorted;let recipientCounts;if(cachedSorted[fetchAndFeedKey]==null){const out=getTopologicalSortAndRecipientCounts(fetchArray,feedDict);sorted=out.sorted;recipientCounts=out.recipientCounts;cachedSorted[fetchAndFeedKey]=sorted;cachedRecipientCounts[fetchAndFeedKey]=recipientCounts}sorted=cachedSorted[fetchAndFeedKey];recipientCounts={};if(!training){Object.assign(recipientCounts,cachedRecipientCounts[fetchAndFeedKey])}const internalFeedDict=new FeedDict(feedDict);for(let i=0;i<sorted.length;++i){if(probe!=null){const numTensors=memory().numTensors;if(numTensors>probe.maxNumTensors){probe.maxNumTensors=numTensors}if(numTensors<probe.minNumTensors){probe.minNumTensors=numTensors}}const symbolic=sorted[i];const srcLayer=symbolic.sourceLayer;if(srcLayer instanceof InputLayer){continue}const inputValues=[];const inputMasks=[];const tensorsToDispose=[];let maskExists=false;for(const input2 of symbolic.inputs){const value=internalFeedDict.getValue(input2);const mask=internalFeedDict.getMask(input2);inputValues.push(value);inputMasks.push(mask);if(mask!=null){maskExists=true}if(!training){recipientCounts[input2.name]--;if(recipientCounts[input2.name]===0&&!feedDict.hasKey(input2)&&outputNames.indexOf(input2.name)===-1&&!value.isDisposed&&input2.sourceLayer.stateful!==true){tensorsToDispose.push(value)}}}if(maskExists){kwargs=kwargs||{};kwargs["mask"]=inputMasks[0]}const outputTensors=toList(srcLayer.apply(inputValues,kwargs));let outputMask=null;if(srcLayer.supportsMasking){outputMask=srcLayer.computeMask(inputValues,inputMasks)}const layerOutputs=getNodeOutputs(symbolic);const outputSymbolicTensors=Array.isArray(layerOutputs)?layerOutputs:[layerOutputs];for(let i2=0;i2<outputSymbolicTensors.length;++i2){if(!internalFeedDict.hasKey(outputSymbolicTensors[i2])){internalFeedDict.add(outputSymbolicTensors[i2],outputTensors[i2],Array.isArray(outputMask)?outputMask[0]:outputMask)}const index2=outputNames.indexOf(outputSymbolicTensors[i2].name);if(index2!==-1){finalOutputs[index2]=outputTensors[i2]}}if(!training){dispose(tensorsToDispose)}}internalFeedDict.disposeMasks();return arrayFetches?finalOutputs:finalOutputs[0]}function getTopologicalSortAndRecipientCounts(fetches,feedDict){assert(fetches!=null&&fetches.length>0,()=>`Expected at least one fetch, got none`);let finalSorted=[];let finalRecipientMap={};if(fetches.length===1){const out=getTopologicalSortAndRecipientCountsForOneFetch(fetches[0],feedDict);finalSorted=out.sorted;finalRecipientMap=out.recipientMap}else{const visited=new Set;for(const fetch2 of fetches){const{sorted,recipientMap}=getTopologicalSortAndRecipientCountsForOneFetch(fetch2,feedDict);for(const symbolicTensor of sorted){if(!visited.has(symbolicTensor.name)){finalSorted.push(symbolicTensor);visited.add(symbolicTensor.name)}}for(const name in recipientMap){if(finalRecipientMap[name]==null){finalRecipientMap[name]=new Set}recipientMap[name].forEach(recipient=>finalRecipientMap[name].add(recipient))}}}return{sorted:finalSorted,recipientCounts:recipientMap2Counts(finalRecipientMap)}}function recipientMap2Counts(recipientMap){const recipientCounts={};for(const name in recipientMap){recipientCounts[name]=recipientMap[name].size}return recipientCounts}function getTopologicalSortAndRecipientCountsForOneFetch(fetch2,feedDict){const visited=new Set;const sorted=[];const recipientMap={};for(const key of feedDict.names()){visited.add(key)}const stack2=[];const marks=[];stack2.push(fetch2);while(stack2.length>0){const top=stack2[stack2.length-1];if(visited.has(top.name)){stack2.pop();continue}const topIsMarked=marks[marks.length-1]===stack2.length-1;if(top.inputs.length===0||topIsMarked){stack2.pop();sorted.push(top);visited.add(top.name);if(topIsMarked){marks.pop()}}else{marks.push(stack2.length-1);for(const input2 of top.inputs){if(recipientMap[input2.name]==null){recipientMap[input2.name]=new Set}recipientMap[input2.name].add(top.name);if(visited.has(input2.name)){continue}stack2.push(input2)}}}return{sorted,recipientMap}}function getNodeOutputs(fetch2){let layerOutputs;if(fetch2.sourceLayer.inboundNodes.length===1){layerOutputs=fetch2.sourceLayer.output}else{let nodeIndex=null;for(let i=0;i<fetch2.sourceLayer.inboundNodes.length;++i){for(const outputTensor of fetch2.sourceLayer.inboundNodes[i].outputTensors){if(outputTensor.id===fetch2.id){nodeIndex=i;break}}}layerOutputs=fetch2.sourceLayer.getOutputAt(nodeIndex)}return layerOutputs}class Container extends Layer{constructor(args){super({});this.containerNodes=new Set;this.name=args.name;if(this.name==null){const prefix=this.getClassName().toLowerCase();this.name=getUid(prefix)}this.supportsMasking=false;this.trainable_=true;if(Array.isArray(args.inputs)){this.inputs=args.inputs.slice()}else{this.inputs=[args.inputs]}if(Array.isArray(args.outputs)){this.outputs=args.outputs.slice()}else{this.outputs=[args.outputs]}if(unique$1(this.inputs).length!==this.inputs.length){throw new ValueError(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(x=>x.name)}`)}if(unique$1(this.outputs).length!==this.outputs.length){console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(x=>x.name)}`)}this.inputLayers=[];this.inputLayersNodeIndices=[];this.inputLayersTensorIndices=[];this.outputLayers=[];this.outputLayersNodeIndices=[];this.outputLayersTensorIndices=[];this.layers=[];this.internalContainerRefs=[];for(const x of this.outputs){const layer=x.sourceLayer;const nodeIndex=x.nodeIndex;const tensorIndex=x.tensorIndex;this.outputLayers.push(layer);this.outputLayersNodeIndices.push(nodeIndex);this.outputLayersTensorIndices.push(tensorIndex)}for(const x of this.inputs){const layer=x.sourceLayer;const nodeIndex=x.nodeIndex;const tensorIndex=x.tensorIndex;assert$1(nodeIndex===0,"input layer has >1 nodes");assert$1(tensorIndex===0,"input layer has >1 tensors");this.inputLayers.push(layer);this.inputLayersNodeIndices.push(nodeIndex);this.inputLayersTensorIndices.push(tensorIndex)}this.inputNames=[];this.outputNames=[];this.feedInputShapes=[];this.feedInputNames=[];this.feedOutputNames=[];for(let i=0;i<this.inputLayers.length;i++){const layer=this.inputLayers[i];if(!(layer instanceof InputLayer)){throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${args.inputs}. Input ${i} (0-based) originates from layer type ${layer.getClassName()}.`)}this.inputNames.push(layer.name);this.feedInputShapes.push(layer.batchInputShape);this.feedInputNames.push(layer.name)}for(const layer of this.outputLayers){this.outputNames.push(layer.name)}this.internalInputShapes=this.inputs.map(x=>x.shape);this.internalOutputShapes=this.outputs.map(x=>x.shape);const nodesDepths={};const nodeIDToNode={};const layersDepths={};const layerIDToLayer={};const layerIndices={};const nodesInDecreasingDepth=[];const buildMapOfGraph=(tensor2,finishedNodes2,nodesInProgress2,layer,nodeIndex,tensorIndex)=>{if(layer==null||nodeIndex==null||tensorIndex==null){layer=tensor2.sourceLayer;nodeIndex=tensor2.nodeIndex;tensorIndex=tensor2.tensorIndex}const node=layer.inboundNodes[nodeIndex];if(nodesInProgress2.indexOf(node)!==-1){throw new RuntimeError(`The tensor ${tensor2.name} at layer "${layer.name}" is part of a cycle.`)}if(finishedNodes2.indexOf(node)!==-1){return}this.containerNodes.add(Container.nodeKey(layer,nodeIndex));if(!(layer.id in layerIndices)){layerIndices[layer.id]=Object.keys(layerIndices).length}if(nodesInProgress2.indexOf(node)===-1){nodesInProgress2.push(node)}const numInboundLayers=node.inboundLayers.length;for(let i=0;i<numInboundLayers;i++){const x=node.inputTensors[i];const layer2=node.inboundLayers[i];const nodeIndex2=node.nodeIndices[i];const tensorIndex2=node.tensorIndices[i];buildMapOfGraph(x,finishedNodes2,nodesInProgress2,layer2,nodeIndex2,tensorIndex2)}finishedNodes2.push(node);while(nodesInProgress2.indexOf(node)>=0){nodesInProgress2.splice(nodesInProgress2.indexOf(node),1)}nodesInDecreasingDepth.push(node)};const finishedNodes=[];const nodesInProgress=[];for(const x of this.outputs){buildMapOfGraph(x,finishedNodes,nodesInProgress)}const reversedNodesInDecreasingDepth=nodesInDecreasingDepth.slice().reverse();for(const node of reversedNodesInDecreasingDepth){nodeIDToNode[node.id]=node;if(!(node.id in nodesDepths)){nodesDepths[node.id]=0}let depth=nodesDepths[node.id];const previousDepth=layersDepths[node.outboundLayer.id]==null?0:layersDepths[node.outboundLayer.id];depth=Math.max(depth,previousDepth);layersDepths[node.outboundLayer.id]=depth;layerIDToLayer[node.outboundLayer.id]=node.outboundLayer;nodesDepths[node.id]=depth;for(let i=0;i<node.inboundLayers.length;i++){const inboundLayer=node.inboundLayers[i];const nodeIndex=node.nodeIndices[i];const inboundNode=inboundLayer.inboundNodes[nodeIndex];const previousDepth2=nodesDepths[inboundNode.id]==null?0:nodesDepths[inboundNode.id];nodesDepths[inboundNode.id]=Math.max(depth+1,previousDepth2);nodeIDToNode[inboundNode.id]=inboundNode}}const nodesByDepth={};for(const nodeID in nodesDepths){const depth=nodesDepths[nodeID];if(!(depth in nodesByDepth)){nodesByDepth[depth]=[]}nodesByDepth[depth].push(nodeIDToNode[nodeID])}const layersByDepth={};for(const layerID in layersDepths){const depth=layersDepths[layerID];if(!(depth in layersByDepth)){layersByDepth[depth]=[]}layersByDepth[depth].push(layerIDToLayer[layerID])}let depthKeys=Object.keys(layersByDepth).map(x=>parseInt(x,10)).sort(reverseNumberCompare);this.layers=[];for(const depth of depthKeys){const layersForDepth=layersByDepth[depth];layersForDepth.sort((a,b)=>{const aIndex=layerIndices[a.id];const bIndex=layerIndices[b.id];if(aIndex<bIndex){return-1}if(aIndex>bIndex){return 1}return 0});for(const layer of layersForDepth){if(layer instanceof Container){this.internalContainerRefs.push(layer)}this.layers.push(layer)}}this.layersByDepth=layersByDepth;depthKeys=Object.keys(nodesByDepth).map(x=>parseInt(x,10)).sort(reverseNumberCompare);const computableTensors=this.inputs.slice();const layersWithCompleteInput=[];for(const depth of depthKeys){for(const node of nodesByDepth[depth]){const layer=node.outboundLayer;if(layer!=null){for(const x of node.inputTensors){if(computableTensors.indexOf(x)===-1){throw new RuntimeError(`Graph disconnected: cannot obtain value for tensor ${x} at layer "${layer.name}". The following previous layers were accessed without issue: ${layersWithCompleteInput}`)}}for(const x of node.outputTensors){computableTensors.push(x)}layersWithCompleteInput.push(layer.name)}}}this.nodesByDepth=nodesByDepth;const allNames=this.layers.map(x=>x.name);for(const name of allNames){const numOccurrences=allNames.filter(x=>x===name).length;if(numOccurrences!==1){throw new RuntimeError(`The name "${name}" is used ${numOccurrences} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(allNames))}}this.outboundNodes=[];this.inboundNodes=[];new Node({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(x=>null),outputMasks:this.outputs.map(x=>null),inputShapes:this.inputs.map(x=>x.shape),outputShapes:this.outputs.map(x=>x.shape)});this.built=true;this._refCount=1}assertNotDisposed(){if(this._refCount===0){throw new Error(`Container '${this.name}' is already disposed.`)}}dispose(){this.assertNotDisposed();const result={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount===0){for(const layer of this.layers){result.numDisposedVariables+=layer.dispose().numDisposedVariables}for(const container of this.internalContainerRefs){result.numDisposedVariables+=container.dispose().numDisposedVariables}}result.refCountAfterDispose=this._refCount;return result}get trainable(){return this.trainable_}set trainable(trainable){this.layers.forEach(layer=>{layer._trainableWeights.forEach(w=>w.trainable=trainable)});this.trainable_=trainable}get trainableWeights(){if(this._trainableWeights.length>0){throw new ValueError("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.")}if(!this.trainable){return[]}let weights=[];for(const layer of this.layers){weights=weights.concat(layer.trainableWeights)}return weights}get nonTrainableWeights(){const weights=[];for(const layer of this.layers){weights.push(...layer.nonTrainableWeights)}if(!this.trainable){const trainableWeights=[];for(const layer of this.layers){trainableWeights.push(...layer.trainableWeights)}return trainableWeights.concat(weights)}return weights}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(weights,strict=true){const nameToWeight={};let totalWeightsCount=0;for(const layer of this.layers){for(const weight of layer.weights){if(nameToWeight[weight.originalName]!=null){throw new ValueError(`Duplicate weight name: ${weight.originalName}`)}nameToWeight[weight.originalName]=weight;totalWeightsCount++}}const weightValueTuples=[];for(const name in weights){let validatedName=name;if(nameToWeight[name]==null){const tokens=name.split("/");const shortenNameArray=tokens.slice(0,-2).concat([tokens[tokens.length-1]]);validatedName=shortenNameArray.join("/")}if(nameToWeight[validatedName]!=null){weightValueTuples.push([nameToWeight[validatedName],weights[name]])}else if(strict){throw new ValueError(`Provided weight data has no target variable: ${name}`)}delete nameToWeight[validatedName]}if(strict){const unsetNames=[];for(const name in nameToWeight){unsetNames.push(name)}if(unsetNames.length>0){throw new ValueError(`${unsetNames.length} of ${totalWeightsCount} weights are not set: ${unsetNames}`)}}batchSetValue(weightValueTuples)}updatedConfig(){const theConfig=this.getConfig();const modelConfig={};modelConfig["className"]=this.getClassName();modelConfig["config"]=theConfig;modelConfig["kerasVersion"]=`tfjs-layers ${version$1}`;modelConfig["backend"]="TensorFlow.js";return modelConfig}toJSON(unused,returnString=true){const modelConfig=convertTsToPythonic(this.updatedConfig());return returnString?JSON.stringify(modelConfig):modelConfig}call(inputs,kwargs){return tidy(()=>{inputs=toList(inputs);const feedDict=new FeedDict;for(let i=0;i<this.inputs.length;++i){feedDict.add(this.inputs[i],inputs[i])}return execute(this.outputs,feedDict,kwargs)})}computeMask(inputs,mask){return tidy(()=>{inputs=toList(inputs);let masks;if(mask==null){masks=pyListRepeat(null,inputs.length)}else{masks=toList(mask)}return this.runInternalGraph(inputs,masks)[1]})}computeOutputShape(inputShape){const inputShapes=normalizeShapeList(inputShape);if(inputShapes.length!==this.inputLayers.length){throw new ValueError(`Invalid inputShape argument ${inputShape}: model has ${this.inputLayers.length} tensor inputs.`)}const layersToOutputShapes={};for(let i=0;i<inputShapes.length;i++){const layer=this.inputLayers[i];const inputShape2=inputShapes[i];const shapeKey=layer.name+"_0_0";layersToOutputShapes[shapeKey]=inputShape2}const depthKeys=Object.keys(this.nodesByDepth).map(x=>parseInt(x,10)).sort(reverseNumberCompare);if(depthKeys.length>1){for(const depth of depthKeys){const nodes=this.nodesByDepth[depth];for(const node of nodes){const layer=node.outboundLayer;if(this.inputLayers.map(x=>x.id).indexOf(layer.id)!==-1){continue}const inputShapes2=[];for(let j=0;j<node.inboundLayers.length;j++){const inboundLayer=node.inboundLayers[j];const nodeIndex2=node.nodeIndices[j];const tensorIndex=node.tensorIndices[j];const shapeKey=`${inboundLayer.name}_${nodeIndex2}_${tensorIndex}`;const inputShape2=layersToOutputShapes[shapeKey];inputShapes2.push(inputShape2)}const outputShape=layer.computeOutputShape(singletonOrArray(inputShapes2));const outputShapes2=normalizeShapeList(outputShape);const nodeIndex=layer.inboundNodes.indexOf(node);for(let j=0;j<outputShapes2.length;j++){const shapeKey=`${layer.name}_${nodeIndex}_${j}`;layersToOutputShapes[shapeKey]=outputShapes2[j]}}}}const outputShapes=[];const outputShapeKeys=[];for(let i=0;i<this.outputLayers.length;i++){const layer=this.outputLayers[i];const nodeIndex=this.outputLayersNodeIndices[i];const tensorIndex=this.outputLayersTensorIndices[i];const shapeKey=`${layer.name}_${nodeIndex}_${tensorIndex}`;outputShapeKeys.push(shapeKey)}for(let i=0;i<outputShapeKeys.length;i++){const key=outputShapeKeys[i];assert$1(key in layersToOutputShapes);outputShapes.push(layersToOutputShapes[key])}return singletonOrArray(outputShapes)}runInternalGraph(inputs,masks){if(masks==null){masks=pyListRepeat(null,inputs.length)}const tensorMap={};for(let i=0;i<this.inputs.length;++i){const x=this.inputs[i];const y=inputs[i];const mask=masks[i];tensorMap[x.id]=[y,mask]}const depthKeys=Object.keys(this.nodesByDepth).map(x=>parseInt(x,10)).sort(reverseNumberCompare);for(const depth of depthKeys){const nodes=this.nodesByDepth[depth];for(const node of nodes){const layer=node.outboundLayer;const referenceInputTensors=node.inputTensors;const referenceOutputTensors=node.outputTensors;const computedData=new Array;for(const x of referenceInputTensors){if(x.id in tensorMap){computedData.push(tensorMap[x.id])}}if(computedData.length===referenceInputTensors.length){let kwargs={};let computedTensors;let computedMasks;let outputTensors2;let outputMasks2;if(node.callArgs!=null){kwargs=node.callArgs}if(computedData.length===1){const[computedTensor,computedMask]=computedData[0];if(kwargs["mask"]==null){kwargs["mask"]=computedMask}outputTensors2=toList(layer.call(computedTensor,kwargs));outputMasks2=toList(layer.computeMask(computedTensor,computedMask));computedTensors=[computedTensor];computedMasks=[computedMask]}else{computedTensors=computedData.map(x=>x[0]);computedMasks=computedData.map(x=>x[1]);if(kwargs["mask"]==null){kwargs["mask"]=computedMasks}outputTensors2=toList(layer.call(computedTensors,kwargs));outputMasks2=toList(layer.computeMask(computedTensors,computedMasks))}if(layer.activityRegularizer){throw new NotImplementedError("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.")}for(let i=0;i<referenceOutputTensors.length;++i){const x=referenceOutputTensors[i];const y=outputTensors2[i];const mask=outputMasks2[i];tensorMap[x.id]=[y,mask]}}}}const outputTensors=[];const outputMasks=[];const outputShapes=[];for(const x of this.outputs){assert$1(x.id in tensorMap,`Could not compute output ${x.name} : ${x.id}`);const[tensor2,mask]=tensorMap[x.id];outputShapes.push(tensor2.shape);outputTensors.push(tensor2);outputMasks.push(mask)}return[outputTensors,outputMasks,outputShapes]}buildNodeConversionMap(layers){const nodeConversionMap={};let keptNodes;for(const layer of this.layers){keptNodes=layer instanceof Container?1:0;for(let originalNodeIndex=0;originalNodeIndex<layer.inboundNodes.length;originalNodeIndex++){const nodeKey=Container.nodeKey(layer,originalNodeIndex);if(this.containerNodes.has(nodeKey)){nodeConversionMap[nodeKey]=keptNodes;keptNodes+=1}}}return nodeConversionMap}getLayer(name,index2){if(index2!=null){if(this.layers.length<=index2){throw new ValueError(`Was asked to retrieve layer at index ${index2}, but model only has ${this.layers.length} layer(s).`)}else{return this.layers[index2]}}else{if(name==null){throw new ValueError("Provide either a layer name or layer index")}}for(const layer of this.layers){if(layer.name===name){return layer}}throw new ValueError(`No such layer: ${name}`)}calculateLosses(){return tidy(()=>{const losses2=[];for(const layer of this.layers){for(let nodeIndex=0;nodeIndex<layer.inboundNodes.length;++nodeIndex){const nodeKey=Container.nodeKey(layer,nodeIndex);if(this.containerNodes.has(nodeKey)){losses2.push(...layer.calculateLosses())}}}return losses2})}getConfig(){const config2={name:this.name};const nodeConversionMap=this.buildNodeConversionMap(this.layers);const layerConfigs=[];for(const layer of this.layers){const layerClassName=layer.getClassName();const layerConfig=layer.getConfig();const filteredInboundNodes=[];for(let originalNodeIndex=0;originalNodeIndex<layer.inboundNodes.length;originalNodeIndex++){const node=layer.inboundNodes[originalNodeIndex];const nodeKey=Container.nodeKey(layer,originalNodeIndex);let kwargs={};if(this.containerNodes.has(nodeKey)){if(node.callArgs){try{JSON.stringify(node.callArgs);kwargs=node.callArgs}catch(err){console.warn(`Layer ${layer.name} was passed non-serializable keyword arguments: ${node.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`);kwargs={}}}if(node.inboundLayers.length>0){const nodeData=[];for(let i=0;i<node.inboundLayers.length;i++){const inboundLayer=node.inboundLayers[i];const nodeIndex=node.nodeIndices[i];const tensorIndex=node.tensorIndices[i];const nodeKey2=Container.nodeKey(inboundLayer,nodeIndex);let newNodeIndex=nodeConversionMap[nodeKey2];if(newNodeIndex==null){newNodeIndex=0}nodeData.push([inboundLayer.name,newNodeIndex,tensorIndex,kwargs])}filteredInboundNodes.push(nodeData)}}}const dict={};dict["name"]=layer.name;dict["className"]=layerClassName;dict["config"]=layerConfig;dict["inboundNodes"]=filteredInboundNodes;layerConfigs.push(dict)}config2["layers"]=layerConfigs;const modelInputs=[];for(let i=0;i<this.inputLayers.length;i++){const layer=this.inputLayers[i];const nodeIndex=this.inputLayersNodeIndices[i];const nodeKey=Container.nodeKey(layer,nodeIndex);if(!this.containerNodes.has(nodeKey)){continue}let newNodeIndex=nodeConversionMap[nodeKey];if(newNodeIndex===null||newNodeIndex===void 0){newNodeIndex=0}const tensorIndex=this.inputLayersTensorIndices[i];modelInputs.push([layer.name,newNodeIndex,tensorIndex])}config2["inputLayers"]=modelInputs;const modelOutputs=[];for(let i=0;i<this.outputLayers.length;i++){const layer=this.outputLayers[i];const nodeIndex=this.outputLayersNodeIndices[i];const nodeKey=Container.nodeKey(layer,nodeIndex);if(!this.containerNodes.has(nodeKey)){continue}let newNodeIndex=nodeConversionMap[nodeKey];if(newNodeIndex===null||newNodeIndex===void 0){newNodeIndex=0}const tensorIndex=this.outputLayersTensorIndices[i];modelOutputs.push([layer.name,newNodeIndex,tensorIndex])}config2["outputLayers"]=modelOutputs;return config2}static fromConfig(cls,config2,customObjects={},fastWeightInit=false){const createdLayers={};const unprocessedNodes={};function addUnprocessedNode(layer,nodeData){if(!(layer.name in unprocessedNodes)){unprocessedNodes[layer.name]=[nodeData]}else{unprocessedNodes[layer.name].push(nodeData)}}function processNode(layer,nodeData){const inputTensors2=[];let kwargs;for(const inputData of nodeData){const inboundLayerName=inputData[0];const inboundNodeIndex=inputData[1];const inboundTensorIndex=inputData[2];kwargs=inputData[3]==null?{}:inputData[3];if(!(inboundLayerName in createdLayers)){addUnprocessedNode(layer,nodeData);return}const inboundLayer=createdLayers[inboundLayerName];if(inboundLayer.inboundNodes.length<=inboundNodeIndex){addUnprocessedNode(layer,nodeData);return}const inboundNode=inboundLayer.inboundNodes[inboundNodeIndex];inputTensors2.push(inboundNode.outputTensors[inboundTensorIndex])}if(inputTensors2.length>0){layer.apply(singletonOrArray(inputTensors2),kwargs)}}function processLayer(layerData){const layerName=layerData["name"];const layer=deserialize(layerData,config2["customObjects"]!=null?config2["customObjects"]:{});layer.setFastWeightInitDuringBuild(fastWeightInit);createdLayers[layerName]=layer;const inboundNodesData=layerData["inboundNodes"];inboundNodesData.forEach(nodeData=>{if(!(nodeData instanceof Array)){throw new ValueError(`Corrupted configuration, expected array for nodeData: ${nodeData}`)}addUnprocessedNode(layer,nodeData)})}const name=config2["name"];const layersFromConfig=config2["layers"];for(const layerData of layersFromConfig){processLayer(layerData)}while(!isObjectEmpty(unprocessedNodes)){for(const layerData of layersFromConfig){const layer=createdLayers[layerData["name"]];if(layer.name in unprocessedNodes){const currentUnprocessedNodesForLayer=unprocessedNodes[layer.name];delete unprocessedNodes[layer.name];for(const nodeData of currentUnprocessedNodesForLayer){processNode(layer,nodeData)}}}}const inputTensors=[];const outputTensors=[];const inputLayersFromConfig=config2["inputLayers"];for(const layerData of inputLayersFromConfig){const layerName=layerData[0];const nodeIndex=layerData[1];const tensorIndex=layerData[2];assert$1(layerName in createdLayers);const layer=createdLayers[layerName];const layerOutputTensors=layer.inboundNodes[nodeIndex].outputTensors;inputTensors.push(layerOutputTensors[tensorIndex])}const outputLayersFromConfig=config2["outputLayers"];for(const layerData of outputLayersFromConfig){const layerName=layerData[0];const nodeIndex=layerData[1];const tensorIndex=layerData[2];assert$1(layerName in createdLayers);const layer=createdLayers[layerName];const layerOutputTensors=layer.inboundNodes[nodeIndex].outputTensors;outputTensors.push(layerOutputTensors[tensorIndex])}return new cls({inputs:inputTensors,outputs:outputTensors,name})}get stateful(){if(this._stateful){throw new ValueError("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.")}for(const layer of this.layers){if(layer.stateful){return true}}return false}resetStates(){tidy(()=>{this.layers.forEach(layer=>{if(layer.stateful){layer.resetStates()}})})}}function standardizeSampleOrClassWeights(xWeight,outputNames,weightType){const numOutputs=outputNames.length;if(xWeight==null||Array.isArray(xWeight)&&xWeight.length===0){return outputNames.map(name=>null)}if(numOutputs===1){if(Array.isArray(xWeight)&&xWeight.length===1){return xWeight}else if(typeof xWeight==="object"&&outputNames[0]in xWeight){return[xWeight[outputNames[0]]]}else{return[xWeight]}}if(Array.isArray(xWeight)){if(xWeight.length!==numOutputs){throw new Error(`Provided ${weightType} is an array of ${xWeight.length} element(s), but the model has ${numOutputs} outputs. Make sure a set of weights is provided for each model output.`)}return xWeight}else if(typeof xWeight==="object"&&Object.keys(xWeight).length>0&&typeof xWeight[Object.keys(xWeight)[0]]==="object"){const output=[];outputNames.forEach(outputName=>{if(outputName in xWeight){output.push(xWeight[outputName])}else{output.push(null)}});return output}else{throw new Error(`The model has multiple (${numOutputs}) outputs, so ${weightType} must be either an array with ${numOutputs} elements or an object with ${outputNames} keys. Provided ${weightType} not understood: ${JSON.stringify(xWeight)}`)}}function standardizeClassWeights(classWeight,outputNames){return standardizeSampleOrClassWeights(classWeight,outputNames,"classWeight")}function standardizeSampleWeights(classWeight,outputNames){return standardizeSampleOrClassWeights(classWeight,outputNames,"sampleWeight")}async function standardizeWeights(y,sampleWeight,classWeight,sampleWeightMode){if(sampleWeight!=null||sampleWeightMode!=null){throw new Error("Support sampleWeight is not implemented yet")}if(classWeight!=null){const yClasses=tidy(()=>{if(y.shape.length===1){return y.clone()}else if(y.shape.length===2){if(y.shape[1]>1){const axis=1;return y.argMax(axis)}else if(y.shape[1]===1){return y.reshape([y.shape[0]])}else{throw new Error(`Encountered unexpected last-dimension size (${y.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}}else{throw new Error(`Unexpected rank of target (y) tensor (${y.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}});const yClassIndices=Array.from(await yClasses.data());dispose(yClasses);const classSampleWeight=[];yClassIndices.forEach(classIndex=>{if(classWeight[classIndex]==null){throw new Error(`classWeight must contain all classes in the training data. The class ${classIndex} exists in the data but not in classWeight`)}else{classSampleWeight.push(classWeight[classIndex])}});return tensor1d(classSampleWeight,"float32")}else{return null}}function computeWeightedLoss$1(losses2,sampleWeights){return mul(losses2,sampleWeights)}const DEFAULT_VALIDATION_BATCH_SIZE=32;function standardizeDataIteratorOutput(model2,iteratorOut){let xs;let ys;const iteratorOutObj=iteratorOut;xs=iteratorOutObj["xs"];ys=iteratorOutObj["ys"];assert(xs!=null&&ys!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${iteratorOut}`);const flattenedXs=flattenTensorOrArrayOrMap("input",model2.inputNames,xs);const flattenedYs=flattenTensorOrArrayOrMap("output",model2.outputNames,ys);const batchSize=flattenedXs[0].shape[0];assert(flattenedXs.length===model2.inputs.length,()=>`LayersModel has ${model2.inputs.length} inputs, but the dataset provides ${flattenedXs.length} inputs. (Expected input keys: ${JSON.stringify(model2.inputNames)})`);assert(flattenedYs.length===model2.outputs.length,()=>`LayersModel has ${model2.outputs.length} outputs, but the dataset provides ${flattenedYs.length} outputs. (Expected output keys: ${JSON.stringify(model2.outputNames)})`);for(let xIndex=0;xIndex<flattenedXs.length;xIndex++){assert(flattenedXs[xIndex].shape[0]===batchSize,()=>`Batch size mismatch: input ${model2.inputNames[xIndex]} has ${flattenedXs[xIndex].shape[0]}; expected ${batchSize} based on input ${model2.inputNames[0]}.`)}for(let yIndex=0;yIndex<flattenedYs.length;yIndex++){assert(flattenedYs[yIndex].shape[0]===batchSize,()=>`Batch size mismatch: output ${model2.outputNames[yIndex]} has ${flattenedYs[yIndex].shape[0]}; expected ${batchSize} based on input ${model2.inputNames[0]}.`)}return{xs:flattenedXs,ys:flattenedYs}}function flattenTensorOrArrayOrMap(inputOrOutput,names,values){if(values instanceof Tensor){return[values]}else if(Array.isArray(values)){assert(values.length===names.length,()=>`Received an array of ${values.length} Tensors, but expected ${names.length} to match the ${inputOrOutput} keys ${names}.`);return values}else{const result=[];for(const name of names){if(values[name]==null){throw new ValueError(`The feature data generated by the dataset lacks the required ${inputOrOutput} key '${name}'.`)}result.push(values[name])}return result}}function standardizeTensorValidationData(data2){if(data2.length===3){throw new NotImplementedError("Validation with sample weights is not implemented yet.")}return{xs:data2[0],ys:data2[1]}}async function fitDataset(model2,dataset,args){const hasBatchesPerEpoch=args.batchesPerEpoch!=null;assert(model2.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig).");assert(args!=null,()=>`For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call.`);assert(args.epochs!=null&&args.epochs>0&&Number.isInteger(args.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${args.epochs}`);assert(!hasBatchesPerEpoch||args.batchesPerEpoch>0&&Number.isInteger(args.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${args.batchesPerEpoch}`);assert(args["validationSplit"]==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead.");if(model2.isTraining){throw new Error("Cannot start training because another fit() call is ongoing.")}model2.isTraining=true;try{const doValidation=args.validationData!=null;let valXs;let valYs;if(doValidation){if(isDatasetObject(args.validationData)){assert(args.validationBatches==null||args.validationBatches>0&&Number.isInteger(args.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${args.validationBatches}`)}else{const validationData=standardizeTensorValidationData(args.validationData);valXs=validationData.xs;valYs=validationData.ys}}const trainFunction=model2.makeTrainFunction();const outLabels=model2.getDedupedMetricsNames();let callbackMetrics;if(doValidation){callbackMetrics=outLabels.slice().concat(outLabels.map(n=>"val_"+n))}else{callbackMetrics=outLabels.slice()}const callbacks2=standardizeCallbacks(args.callbacks,args.yieldEvery);const verbose=args.verbose==null?1:args.verbose;const{callbackList,history}=configureCallbacks(callbacks2,verbose,args.epochs,null,null,getStepsPerEpoch(dataset,args),null,doValidation,callbackMetrics);callbackList.setModel(model2);model2.history=history;await callbackList.onTrainBegin();model2.stopTraining_=false;let epoch=args.initialEpoch==null?0:args.initialEpoch;let dataIterator=await dataset.iterator();while(epoch<args.epochs){const epochLogs={};await callbackList.onEpochBegin(epoch);let stepsDone=0;let batchIndex=0;if(!hasBatchesPerEpoch){dataIterator=await dataset.iterator()}while(hasBatchesPerEpoch?stepsDone<args.batchesPerEpoch:true){const iteratorOut=await dataIterator.next();if(hasBatchesPerEpoch&&iteratorOut.done){console.warn(`You provided \`batchesPerEpoch\` as ${args.batchesPerEpoch}, but your dataset iterator ran out of data after ${stepsDone} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${args.batchesPerEpoch*args.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(iteratorOut.value!=null){const{xs,ys}=standardizeDataIteratorOutput(model2,iteratorOut.value);const batchLogs={};batchLogs["batch"]=batchIndex;batchLogs["size"]=xs[0].shape[0];await callbackList.onBatchBegin(batchIndex,batchLogs);const sampleWeights=[];if(args.classWeight!=null){const standardClassWeights=standardizeClassWeights(args.classWeight,model2.outputNames);for(let i=0;i<standardClassWeights.length;++i){sampleWeights.push(await standardizeWeights(ys[i],null,standardClassWeights[i]))}}const ins=xs.concat(ys).concat(sampleWeights);const outs=trainFunction(ins);dispose(ins);for(let i=0;i<outLabels.length;++i){const label=outLabels[i];const out=outs[i];batchLogs[label]=out;keep(out)}await callbackList.onBatchEnd(batchIndex,batchLogs);disposeTensorsInLogs(batchLogs);batchIndex++;stepsDone++}if(hasBatchesPerEpoch?stepsDone>=args.batchesPerEpoch:iteratorOut.done){if(doValidation){let valOuts;if(isDatasetObject(args.validationData)){valOuts=toList(await model2.evaluateDataset(args.validationData,{batches:args.validationBatches}))}else{valOuts=toList(model2.evaluate(valXs,valYs,{batchSize:args.validationBatchSize==null?DEFAULT_VALIDATION_BATCH_SIZE:args.validationBatchSize,verbose:0}))}for(let i=0;i<model2.metricsNames.length;++i){epochLogs[`val_${model2.metricsNames[i]}`]=valOuts[i]}}break}if(model2.stopTraining_){break}}await callbackList.onEpochEnd(epoch,epochLogs);epoch++;if(model2.stopTraining_){break}}await callbackList.onTrainEnd();await model2.history.syncData();return model2.history}finally{model2.isTraining=false}}function getStepsPerEpoch(dataset,args){let stepsPerEpoch=null;if(args.batchesPerEpoch!=null){stepsPerEpoch=args.batchesPerEpoch}else if(Number.isFinite(dataset.size)){stepsPerEpoch=dataset.size}return stepsPerEpoch}function isDatasetObject(dataset){return typeof dataset.iterator==="function"}function isLazyIteratorObject(iterator){return typeof iterator.next==="function"}async function evaluateDataset(model2,dataset,args){args=args||{};const hasBatches=args.batches!=null;const f=model2.testFunction;let outs=[];if(args.verbose>0){throw new NotImplementedError("Verbose mode is not implemented yet.")}assert(!hasBatches||args.batches>0&&Number.isInteger(args.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(args.batches)}`);const dataIterator=isLazyIteratorObject(dataset)?dataset:await dataset.iterator();let numExamples=0;let batch=0;while(hasBatches?batch<args.batches:true){const iteratorOut=await dataIterator.next();outs=tidy(()=>{if(iteratorOut.value){const{xs,ys}=standardizeDataIteratorOutput(model2,iteratorOut.value);const xsAndYs=xs.concat(ys);const batchOuts=tidy(()=>f(xsAndYs));dispose(xsAndYs);if(batch===0){for(let i=0;i<batchOuts.length;++i){outs.push(scalar(0))}}const batchSize=xsAndYs[0].shape[0];for(let i=0;i<batchOuts.length;++i){const batchOut=batchOuts[i];const oldScalar=outs[i];outs[i]=tidy(()=>add$1(outs[i],mul(batchSize,batchOut)));if(batch>0){dispose(oldScalar)}}dispose(batchOuts);numExamples+=batchSize;++batch}return outs});if(iteratorOut.done){if(hasBatches){console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${args.batches} batches). You may need to use the repeat() function when building your dataset.`)}break}}for(let i=0;i<outs.length;++i){const oldScalar=outs[i];outs[i]=div(outs[i],numExamples);dispose(oldScalar)}return singletonOrArray(outs)}function checkBatchSize(batchSize){assert(batchSize>0&&Number.isInteger(batchSize),()=>`batchSize is required to be a positive integer, but got ${batchSize}`)}function sliceArrays(arrays,start,stop){if(arrays==null){return[null]}else if(Array.isArray(arrays)){return arrays.map(array2=>sliceAlongFirstAxis(array2,start,stop-start))}else{return sliceAlongFirstAxis(arrays,start,stop-start)}}function sliceArraysByIndices(arrays,indices){return tidy(()=>{if(arrays==null){return null}else if(Array.isArray(arrays)){return arrays.map(array2=>sliceArraysByIndices(array2,indices))}else{return gather$1(arrays,indices.dtype==="int32"?indices:indices.toInt())}})}function makeBatches(size,batchSize){const output=[];let batchStart=0;let batchEnd=null;while(batchStart<size){batchEnd=batchStart+batchSize;if(batchEnd>=size){batchEnd=size}output.push([batchStart,batchEnd]);batchStart=batchEnd}return output}async function fitLoop(model2,f,ins,outLabels,batchSize,epochs,verbose,callbacks2,valF,valIns,shuffle$1,callbackMetrics,initialEpoch,stepsPerEpoch,validationSteps){if(batchSize==null){batchSize=32}if(epochs==null){epochs=1}if(shuffle$1==null){shuffle$1=true}if(initialEpoch==null){initialEpoch=0}let doValidation=false;if(valF!=null&&valIns!=null){doValidation=true}if(validationSteps!=null){doValidation=true;if(stepsPerEpoch==null){throw new ValueError("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.")}}const numTrainSamples=model2.checkNumSamples(ins,batchSize,stepsPerEpoch,"steps_per_epoch");let indexArray;if(numTrainSamples!=null){indexArray=range$1(0,numTrainSamples)}if(verbose==null){verbose=1}const{callbackList,history}=configureCallbacks(callbacks2,verbose,epochs,initialEpoch,numTrainSamples,stepsPerEpoch,batchSize,doValidation,callbackMetrics);callbackList.setModel(model2);model2.history=history;await callbackList.onTrainBegin();model2.stopTraining_=false;for(let epoch=initialEpoch;epoch<epochs;++epoch){await callbackList.onEpochBegin(epoch);const epochLogs={};if(stepsPerEpoch!=null){throw new NotImplementedError("stepsPerEpoch mode is not implemented yet.")}else{if(shuffle$1==="batch"){throw new NotImplementedError("batch shuffling is not implemneted yet")}else if(shuffle$1){shuffle(indexArray)}const epochIndexArray1D=tensor1d(indexArray);const batches=makeBatches(numTrainSamples,batchSize);for(let batchIndex=0;batchIndex<batches.length;++batchIndex){const batchLogs={};await callbackList.onBatchBegin(batchIndex,batchLogs);tidy(()=>{const batchStart=batches[batchIndex][0];const batchEnd=batches[batchIndex][1];const batchIds=sliceAlongFirstAxis(epochIndexArray1D,batchStart,batchEnd-batchStart);batchLogs["batch"]=batchIndex;batchLogs["size"]=batchEnd-batchStart;const insBatch=sliceArraysByIndices(ins,batchIds);const outs=f(insBatch);for(let i=0;i<outLabels.length;++i){const label=outLabels[i];const out=outs[i];batchLogs[label]=out;keep(out)}if(batchIndex===batches.length-1){if(doValidation){const valOuts=model2.testLoop(valF,valIns,batchSize);for(let i=0;i<outLabels.length;++i){const label=outLabels[i];const out=valOuts[i];keep(out);epochLogs["val_"+label]=out}}}});await callbackList.onBatchEnd(batchIndex,batchLogs);disposeTensorsInLogs(batchLogs);if(model2.stopTraining_){break}}epochIndexArray1D.dispose()}await callbackList.onEpochEnd(epoch,epochLogs);if(model2.stopTraining_){break}}await callbackList.onTrainEnd();await model2.history.syncData();return model2.history}async function fitTensors(model2,x,y,args={}){if(model2.isTraining){throw new Error("Cannot start training because another fit() call is ongoing.")}model2.isTraining=true;let inputs;let targets;let inputValX;let inputValY;let valX;let valY;let sampleWeights;try{const batchSize=args.batchSize==null?32:args.batchSize;checkBatchSize(batchSize);const checkBatchAxis=false;const standardizedOuts=await model2.standardizeUserData(x,y,args.sampleWeight,args.classWeight,checkBatchAxis,batchSize);inputs=standardizedOuts[0];targets=standardizedOuts[1];sampleWeights=standardizedOuts[2];let doValidation=false;let valIns;if(args.validationData!=null&&args.validationData.length>0){doValidation=true;if(args.validationData.length===2){inputValX=args.validationData[0];inputValY=args.validationData[1]}else if(args.validationData.length===3){throw new NotImplementedError("validationData including sample weights is not supported yet.")}else{throw new ValueError(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${args.validationData} is invalid.`)}const checkBatchAxis2=true;const valStandardized=await model2.standardizeUserData(inputValX,inputValY,null,null,checkBatchAxis2,batchSize);valX=valStandardized[0];valY=valStandardized[1];valIns=valX.concat(valY)}else if(args.validationSplit!=null&&args.validationSplit>0&&args.validationSplit<1){doValidation=true;const splitAt=Math.floor(inputs[0].shape[0]*(1-args.validationSplit));const originalBatchSize=inputs[0].shape[0];valX=sliceArrays(inputs,splitAt,originalBatchSize);inputs=sliceArrays(inputs,0,splitAt);valY=sliceArrays(targets,splitAt,originalBatchSize);targets=sliceArrays(targets,0,splitAt);valIns=valX.concat(valY)}else if(args.validationSteps!=null){doValidation=true}const ins=inputs.concat(targets).concat(sampleWeights);model2.checkTrainableWeightsConsistency();const trainFunction=model2.makeTrainFunction();const outLabels=model2.getDedupedMetricsNames();let valFunction;let callbackMetrics;if(doValidation){model2.makeTestFunction();valFunction=model2.testFunction;callbackMetrics=outLabels.slice().concat(outLabels.map(n=>"val_"+n))}else{valFunction=null;valIns=[];callbackMetrics=outLabels.slice()}const callbacks2=standardizeCallbacks(args.callbacks,args.yieldEvery);const out=await fitLoop(model2,trainFunction,ins,outLabels,batchSize,args.epochs,args.verbose,callbacks2,valFunction,valIns,args.shuffle,callbackMetrics,args.initialEpoch,null,null);return out}finally{model2.isTraining=false;disposeNewTensors(inputs,x);disposeNewTensors(targets,y);disposeNewTensors(valX,inputValX);disposeNewTensors(valY,inputValY);if(sampleWeights!=null){dispose(sampleWeights)}}}function ensureTensorsRank2OrHigher(tensors){const outs=[];if(tensors instanceof Tensor){tensors=[tensors]}for(let i=0;i<tensors.length;++i){const tensor2=tensors[i];if(tensor2.rank===1){outs.push(expandDims$1(tensor2,1))}else if(tensor2.rank===0){throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).")}else{outs.push(tensor2)}}return outs}function disposeNewTensors(tensors,refTensors){if(tensors==null){return}const oldTensorIds=[];if(refTensors instanceof Tensor){oldTensorIds.push(refTensors.id)}else if(Array.isArray(refTensors)){refTensors.forEach(t=>oldTensorIds.push(t.id))}else if(refTensors!=null){for(const name in refTensors){const oldTensor=refTensors[name];oldTensorIds.push(oldTensor.id)}}const tensorsToDispose=[];if(tensors instanceof Tensor){if(oldTensorIds.indexOf(tensors.id)===-1){tensorsToDispose.push(tensors)}}else if(Array.isArray(tensors)){tensors.forEach(t=>{if(oldTensorIds.indexOf(t.id)===-1){tensorsToDispose.push(t)}})}else if(tensors!=null){for(const name in tensors){const tensor2=tensors[name];if(oldTensorIds.indexOf(tensor2.id)===-1){tensorsToDispose.push(tensor2)}}}tensorsToDispose.forEach(t=>{if(!t.isDisposed){t.dispose()}})}function isDataTensor(x){return x instanceof Tensor}function isDataArray(x){return Array.isArray(x)}function isDataDict(x){return!isDataTensor(x)&&!isDataArray(x)}function standardizeInputData(data2,names,shapes,checkBatchAxis=true,exceptionPrefix=""){if(names==null||names.length===0){if(data2!=null){let gotUnexpectedData=false;if(isDataArray(data2)&&data2.length>0){gotUnexpectedData=true}else if(isDataDict(data2)){for(const key in data2){if(data2.hasOwnProperty(key)){gotUnexpectedData=true;break}}}else{gotUnexpectedData=true}if(gotUnexpectedData){throw new ValueError(`Error when checking model ${exceptionPrefix} expected no data, but got ${data2}`)}}return[]}if(data2==null){return names.map(name=>null)}let arrays;if(isDataDict(data2)){data2=data2;arrays=[];for(const name of names){if(data2[name]==null){throw new ValueError(`No data provided for "${name}". Need data for each key in: ${names}`)}arrays.push(data2[name])}}else if(isDataArray(data2)){data2=data2;if(data2.length!==names.length){throw new ValueError(`Error when checking model ${exceptionPrefix}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${names.length} Tensor(s), but instead got the following list of Tensor(s): ${data2}`)}arrays=data2}else{data2=data2;if(names.length>1){throw new ValueError(`The model ${exceptionPrefix} expects ${names.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${data2.shape}`)}arrays=[data2]}arrays=ensureTensorsRank2OrHigher(arrays);if(shapes!=null){for(let i=0;i<names.length;++i){if(shapes[i]==null){continue}const array2=arrays[i];if(array2.shape.length!==shapes[i].length){throw new ValueError(`Error when checking ${exceptionPrefix}: expected ${names[i]} to have ${shapes[i].length} dimension(s). but got array with shape ${array2.shape}`)}for(let j=0;j<shapes[i].length;++j){if(j===0&&!checkBatchAxis){continue}const dim=array2.shape[j];const refDim=shapes[i][j];if(refDim!=null&&refDim>=0&&dim!==refDim){throw new ValueError(`Error when checking ${exceptionPrefix}: expected ${names[i]} to have shape [${shapes[i]}], but got array with shape [${array2.shape}].`)}}}}return arrays}function checkArrayLengths(inputs,targets,weights){const setX=unique$1(inputs.map(input2=>input2.shape[0]));setX.sort();const setY=unique$1(targets.map(target=>target.shape[0]));setY.sort();if(setX.length>1){throw new ValueError(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(inputs.map(input2=>input2.shape))}`)}if(setY.length>1){throw new ValueError(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(targets.map(target=>target.shape))}`)}if(setX.length>0&&setY.length>0&&!arraysEqual(setX,setY)){throw new ValueError(`Input Tensors should have the same number of samples as target Tensors. Found ${setX[0]} input sample(s) and ${setY[0]} target sample(s).`)}}function checkLossAndTargetCompatibility(targets,lossFns,outputShapes){const keyLosses=[meanSquaredError$1,binaryCrossentropy,categoricalCrossentropy];for(let i=0;i<targets.length;++i){const y=targets[i];const loss=lossFns[i];const shape=outputShapes[i];if(loss==null){continue}if(loss===categoricalCrossentropy){if(y.shape[y.shape.length-1]===1){throw new ValueError(`You are passing a target array of shape ${y.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`)}}if(keyLosses.indexOf(loss)!==-1){const slicedYShape=y.shape.slice(1);const slicedShape=shape.slice(1);for(let j=0;j<slicedYShape.length;++j){const targetDim=slicedYShape[j];const outDim=slicedShape[j];if(outDim!=null&&targetDim!==outDim){throw new ValueError(`A target Tensor with shape ${y.shape} was passed for an output of shape ${shape}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function checkInputData(data2,names,shapes,checkBatchAxis=true,exceptionPrefix=""){let arrays;if(Array.isArray(data2)){if(data2.length!==names.length){throw new ValueError(`Error when checking model ${exceptionPrefix}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${names.length} Tensor(s), but instead got ${data2.length} Tensors(s).`)}arrays=data2}else{if(names.length>1){throw new ValueError(`The model expects ${names.length} ${exceptionPrefix} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(data2.shape)}.`)}arrays=[data2]}if(shapes!=null){for(let i=0;i<names.length;++i){if(shapes[i]==null){continue}const array2=arrays[i];if(array2.shape.length!==shapes[i].length){throw new ValueError(`Error when checking ${exceptionPrefix}: expected ${names[i]} to have ${shapes[i].length} dimension(s), but got array with shape ${JSON.stringify(array2.shape)}`)}for(let j=0;j<shapes[i].length;++j){if(j===0&&!checkBatchAxis){continue}const dim=array2.shape[j];const refDim=shapes[i][j];if(refDim!=null){if(refDim!==dim){throw new ValueError(`Error when checking ${exceptionPrefix}: expected ${names[i]} to have shape ${JSON.stringify(shapes[i])} but got array with shape ${JSON.stringify(array2.shape)}.`)}}}}}}function collectMetrics(metrics,outputNames){if(metrics==null||Array.isArray(metrics)&&metrics.length===0){return outputNames.map(name=>[])}let wrappedMetrics;if(typeof metrics==="string"||typeof metrics==="function"){wrappedMetrics=[metrics]}else if(Array.isArray(metrics)||typeof metrics==="object"){wrappedMetrics=metrics}else{throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${metrics}`)}if(Array.isArray(wrappedMetrics)){return outputNames.map(name=>wrappedMetrics)}else{const nestedMetrics=[];for(const name of outputNames){let outputMetrics=wrappedMetrics.hasOwnProperty(name)?wrappedMetrics[name]:[];if(!Array.isArray(outputMetrics)){outputMetrics=[outputMetrics]}nestedMetrics.push(outputMetrics)}return nestedMetrics}}const LAYERS_MODEL_FORMAT_NAME="layers-model";class LayersModel extends Container{constructor(args){super(args);this.isTraining=false}summary(lineLength,positions,printFn=console.log){if(!this.built){throw new ValueError(`This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).`)}printSummary(this,lineLength,positions,printFn)}compile(args){if(args.loss==null){args.loss=[]}this.loss=args.loss;if(typeof args.optimizer==="string"){this.optimizer_=getOptimizer(args.optimizer);this.isOptimizerOwned=true}else{if(!(args.optimizer instanceof Optimizer)){throw new ValueError(`User-defined optimizer must be an instance of tf.Optimizer.`)}this.optimizer_=args.optimizer;this.isOptimizerOwned=false}let lossFunctions=[];if(!Array.isArray(args.loss)&&typeof args.loss!=="string"&&typeof args.loss!=="function"){args.loss=args.loss;for(const name in args.loss){if(this.outputNames.indexOf(name)===-1){throw new ValueError(`Unknown entry in loss dictionary: "${name}". Only expected the following keys: ${this.outputNames}`)}}for(const name of this.outputNames){if(args.loss[name]==null){console.warn(`Output "${name}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${name} during training`)}lossFunctions.push(get(args.loss[name]))}}else if(Array.isArray(args.loss)){if(args.loss.length!==this.outputs.length){throw new ValueError(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${args.loss}.`)}const theLosses=args.loss;lossFunctions=theLosses.map(l=>get(l))}else{const lossFunction=get(args.loss);this.outputs.forEach(_=>{lossFunctions.push(lossFunction)})}this.lossFunctions=lossFunctions;this.feedOutputNames=[];this.feedOutputShapes=[];this.feedLossFns=[];for(let i=0;i<this.outputs.length;++i){const shape=this.internalOutputShapes[i];const name=this.outputNames[i];this.feedOutputNames.push(name);this.feedOutputShapes.push(shape);this.feedLossFns.push(this.lossFunctions[i])}const skipTargetIndices=[];this.metrics=args.metrics;this.metricsNames=["loss"];this.metricsTensors=[];nameScope("loss",()=>{for(let i=0;i<this.outputs.length;++i){if(skipTargetIndices.indexOf(i)!==-1){continue}const weightedLoss=this.lossFunctions[i];if(this.outputs.length>1){this.metricsTensors.push([weightedLoss,i]);this.metricsNames.push(this.outputNames[i]+"_loss")}}});const nestedMetrics=collectMetrics(args.metrics,this.outputNames);const appendMetric=(outputIndex,metricName,metricTensor)=>{if(this.outputNames.length>1){metricName=this.outputNames[outputIndex]+"_"+metricName}this.metricsNames.push(metricName);this.metricsTensors.push([metricTensor,outputIndex])};nameScope("metric",()=>{for(let i=0;i<this.outputs.length;++i){if(skipTargetIndices.indexOf(i)!==-1){continue}const outputMetrics=nestedMetrics[i];const handleMetrics=metrics=>{const metricNamePrefix="";let metricName;let accFn;let weightedMetricFn;for(const metric of metrics){if(typeof metric==="string"&&["accuracy","acc","crossentropy","ce"].indexOf(metric)!==-1){const outputShape=this.internalOutputShapes[i];if(outputShape[outputShape.length-1]===1||this.lossFunctions[i]===binaryCrossentropy){if(["accuracy","acc"].indexOf(metric)!==-1){accFn=binaryAccuracy}else if(["crossentropy","ce"].indexOf(metric)!==-1){accFn=binaryCrossentropy$1}}else if(this.lossFunctions[i]===sparseCategoricalCrossentropy){if(["accuracy","acc"].indexOf(metric)!==-1){accFn=sparseCategoricalAccuracy}else if(["crossentropy","ce"].indexOf(metric)!==-1){accFn=sparseCategoricalCrossentropy$1}}else{if(["accuracy","acc"].indexOf(metric)!==-1){accFn=categoricalAccuracy}else if(["crossentropy","ce"].indexOf(metric)!==-1){accFn=categoricalCrossentropy$1}}let suffix;if(["accuracy","acc"].indexOf(metric)!==-1){suffix="acc"}else if(["crossentropy","ce"].indexOf(metric)!==-1){suffix="ce"}weightedMetricFn=accFn;metricName=metricNamePrefix+suffix}else{const metricFn=get$1(metric);weightedMetricFn=metricFn;metricName=metricNamePrefix+getLossOrMetricName(metric)}let metricResult;nameScope(metricName,()=>{metricResult=weightedMetricFn});appendMetric(i,metricName,metricResult)}};handleMetrics(outputMetrics)}});this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){if(this.collectedTrainableWeights==null){return}if(this.trainableWeights.length!==this.collectedTrainableWeights.length){console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}}evaluate(x,y,args={}){const batchSize=args.batchSize==null?32:args.batchSize;checkBatchSize(batchSize);const checkBatchAxis=true;const standardizedOuts=this.standardizeUserDataXY(x,y,checkBatchAxis,batchSize);try{const ins=standardizedOuts[0].concat(standardizedOuts[1]);this.makeTestFunction();const f=this.testFunction;const testOuts=this.testLoop(f,ins,batchSize,args.verbose,args.steps);return singletonOrArray(testOuts)}finally{disposeNewTensors(standardizedOuts[0],x);disposeNewTensors(standardizedOuts[1],y)}}async evaluateDataset(dataset,args){this.makeTestFunction();return evaluateDataset(this,dataset,args)}checkNumSamples(ins,batchSize,steps,stepsName="steps"){let numSamples;if(steps!=null){numSamples=null;if(batchSize!=null){throw new ValueError(`If ${stepsName} is set, batchSize must be null or undefined.Got batchSize = ${batchSize}`)}}else if(ins!=null){if(Array.isArray(ins)){numSamples=ins[0].shape[0]}else{numSamples=ins.shape[0]}}else{throw new ValueError(`Either the input data should have a defined shape, or ${stepsName} shoud be specified.`)}return numSamples}execute(inputs,outputs){if(Array.isArray(outputs)&&outputs.length===0){throw new ValueError("`outputs` is an empty Array, which is not allowed.")}const outputsIsArray=Array.isArray(outputs);const outputNames=outputsIsArray?outputs:[outputs];const outputSymbolicTensors=this.retrieveSymbolicTensors(outputNames);const feedDict=new FeedDict;if(inputs instanceof Tensor){inputs=[inputs]}if(Array.isArray(inputs)){if(inputs.length!==this.inputs.length){throw new ValueError(`The number of inputs provided (${inputs.length}) does not match the number of inputs of this model (${this.inputs.length}).`)}for(let i=0;i<this.inputs.length;++i){feedDict.add(this.inputs[i],inputs[i])}}else{for(const input2 of this.inputs){const tensorValue=inputs[input2.name];if(tensorValue==null){throw new ValueError(`No value is provided for the model's input ${input2.name}`)}feedDict.add(input2,tensorValue)}}const executeOutputs=execute(outputSymbolicTensors,feedDict);return outputsIsArray?executeOutputs:executeOutputs[0]}retrieveSymbolicTensors(symbolicTensorNames){const outputSymbolicTensors=pyListRepeat(null,symbolicTensorNames.length);let outputsRemaining=symbolicTensorNames.length;for(const layer of this.layers){const layerOutputs=Array.isArray(layer.output)?layer.output:[layer.output];const layerOutputNames=layerOutputs.map(output=>output.name);for(let i=0;i<symbolicTensorNames.length;++i){const index2=layerOutputNames.indexOf(symbolicTensorNames[i]);if(index2!==-1){outputSymbolicTensors[i]=layerOutputs[index2];outputsRemaining--}if(outputsRemaining===0){break}}if(outputsRemaining===0){break}}if(outputsRemaining>0){const remainingNames=[];outputSymbolicTensors.forEach((tensor2,i)=>{if(tensor2==null){remainingNames.push(symbolicTensorNames[i])}});throw new ValueError(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(remainingNames)}`)}return outputSymbolicTensors}predictLoop(ins,batchSize=32,verbose=false){return tidy(()=>{const numSamples=this.checkNumSamples(ins);if(verbose){throw new NotImplementedError("Verbose predictLoop() is not implemented yet.")}const batches=makeBatches(numSamples,batchSize);const outsBatches=this.outputs.map(output=>[]);for(let batchIndex=0;batchIndex<batches.length;++batchIndex){const batchOuts=tidy(()=>{const batchStart=batches[batchIndex][0];const batchEnd=batches[batchIndex][1];const insBatch=sliceArrays(ins,batchStart,batchEnd);const feeds=[];if(Array.isArray(insBatch)){for(let i=0;i<insBatch.length;++i){feeds.push({key:this.inputs[i],value:insBatch[i]})}}else{feeds.push({key:this.inputs[0],value:insBatch})}const feedDict=new FeedDict(feeds);return execute(this.outputs,feedDict)});batchOuts.forEach((batchOut,i)=>outsBatches[i].push(batchOut))}return singletonOrArray(outsBatches.map(batches2=>concat2(batches2,0)))})}predict(x,args={}){const xsRank2OrHigher=ensureTensorsRank2OrHigher(x);checkInputData(xsRank2OrHigher,this.inputNames,this.feedInputShapes,false);try{const batchSize=args.batchSize==null?32:args.batchSize;checkBatchSize(batchSize);return this.predictLoop(xsRank2OrHigher,batchSize)}finally{disposeNewTensors(xsRank2OrHigher,x)}}predictOnBatch(x){checkInputData(x,this.inputNames,this.feedInputShapes,true);const batchSize=(Array.isArray(x)?x[0]:x).shape[0];return this.predictLoop(x,batchSize)}standardizeUserDataXY(x,y,checkBatchAxis=true,batchSize){if(this.optimizer_==null){throw new RuntimeError("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).")}const outputShapes=[];for(let i=0;i<this.feedOutputShapes.length;++i){const outputShape=this.feedOutputShapes[i];const lossFn=this.feedLossFns[i];if(lossFn===sparseCategoricalCrossentropy){outputShapes.push(outputShape.slice(0,outputShape.length-1).concat([1]))}else{outputShapes.push(outputShape)}}x=standardizeInputData(x,this.feedInputNames,this.feedInputShapes,false,"input");y=standardizeInputData(y,this.feedOutputNames,outputShapes,false,"target");checkArrayLengths(x,y,null);checkLossAndTargetCompatibility(y,this.feedLossFns,this.feedOutputShapes);if(this.stateful&&batchSize!=null&&batchSize>0){if(x[0].shape[0]%batchSize!==0){throw new ValueError(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${batchSize}. Found: ${x[0].shape[0]} sample(s).`)}}return[x,y]}async standardizeUserData(x,y,sampleWeight,classWeight,checkBatchAxis=true,batchSize){const[standardXs,standardYs]=this.standardizeUserDataXY(x,y,checkBatchAxis,batchSize);if(sampleWeight!=null){throw new Error("sample weight is not supported yet.")}let standardSampleWeights=null;if(classWeight!=null){const classWeights=standardizeClassWeights(classWeight,this.outputNames);standardSampleWeights=[];for(let i=0;i<classWeights.length;++i){standardSampleWeights.push(await standardizeWeights(standardYs[i],null,classWeights[i]))}}return[standardXs,standardYs,standardSampleWeights]}testLoop(f,ins,batchSize,verbose=0,steps){return tidy(()=>{const numSamples=this.checkNumSamples(ins,batchSize,steps,"steps");const outs=[];if(verbose>0){throw new NotImplementedError("Verbose mode is not implemented yet.")}if(steps!=null){throw new NotImplementedError("steps mode in testLoop() is not implemented yet")}else{const batches=makeBatches(numSamples,batchSize);const indexArray=tensor1d(range$1(0,numSamples));for(let batchIndex=0;batchIndex<batches.length;++batchIndex){const batchStart=batches[batchIndex][0];const batchEnd=batches[batchIndex][1];const batchIds=sliceAlongFirstAxis(indexArray,batchStart,batchEnd-batchStart);const insBatch=sliceArraysByIndices(ins,batchIds);const batchOuts=f(insBatch);if(batchIndex===0){for(let i=0;i<batchOuts.length;++i){outs.push(scalar(0))}}for(let i=0;i<batchOuts.length;++i){const batchOut=batchOuts[i];outs[i]=add$1(outs[i],mul(batchEnd-batchStart,batchOut))}}for(let i=0;i<outs.length;++i){outs[i]=div(outs[i],numSamples)}}return outs})}getDedupedMetricsNames(){const outLabels=this.metricsNames;const dedupedOutLabels=[];for(let i=0;i<outLabels.length;++i){const label=outLabels[i];let newLabel=label;if(count(outLabels,label)>1){const dupIndex=count(outLabels.slice(0,i),label);newLabel+=`_${dupIndex}`}dedupedOutLabels.push(newLabel)}return dedupedOutLabels}makeTrainFunction(){return data2=>{const lossValues=[];const inputs=data2.slice(0,this.inputs.length);const targets=data2.slice(this.inputs.length,this.inputs.length+this.outputs.length);const sampleWeights=data2.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2);const metricsValues=[];const totalLossFunction=()=>{const feeds=[];for(let i=0;i<this.inputs.length;++i){feeds.push({key:this.inputs[i],value:inputs[i]})}const feedDict=new FeedDict(feeds);const outputs=execute(this.outputs,feedDict,{training:true});let totalLoss;for(let i=0;i<this.lossFunctions.length;++i){const lossFunction=this.lossFunctions[i];let loss=lossFunction(targets[i],outputs[i]);if(sampleWeights[i]!=null){loss=computeWeightedLoss$1(loss,sampleWeights[i])}const meanLoss=mean(loss);lossValues.push(meanLoss);if(i===0){totalLoss=loss}else{totalLoss=add$1(totalLoss,loss)}}for(let i=0;i<this.metricsTensors.length;++i){let weightedMetric;if(this.outputs.length>1&&i<this.outputs.length){weightedMetric=lossValues[i]}else{const metric=this.metricsTensors[i][0];const outputIndex=this.metricsTensors[i][1];weightedMetric=mean(metric(targets[outputIndex],outputs[outputIndex]))}keep(weightedMetric);metricsValues.push(weightedMetric)}totalLoss=mean(totalLoss);this.calculateLosses().forEach(regularizerLoss=>{totalLoss=add$1(totalLoss,regularizerLoss)});return totalLoss};const variables=this.collectedTrainableWeights.map(param=>param.read());const returnCost=true;const totalLossValue=this.optimizer_.minimize(totalLossFunction,returnCost,variables);return[totalLossValue].concat(metricsValues)}}makeTestFunction(){this.testFunction=data2=>{return tidy(()=>{const valOutputs=[];let totalLoss;const inputs=data2.slice(0,this.inputs.length);const targets=data2.slice(this.inputs.length,this.inputs.length+this.outputs.length);const feeds=[];for(let i=0;i<this.inputs.length;++i){feeds.push({key:this.inputs[i],value:inputs[i]})}const feedDict=new FeedDict(feeds);const outputs=execute(this.outputs,feedDict);for(let i=0;i<this.lossFunctions.length;++i){const lossFunction=this.lossFunctions[i];const loss=mean(lossFunction(targets[i],outputs[i]));if(i===0){totalLoss=loss}else{totalLoss=add$1(totalLoss,loss)}valOutputs.push(totalLoss)}for(let i=0;i<this.metricsTensors.length;++i){const metric=this.metricsTensors[i][0];const outputIndex=this.metricsTensors[i][1];const meanMetric=mean(metric(targets[outputIndex],outputs[outputIndex]));valOutputs.push(meanMetric)}return valOutputs})}}async fit(x,y,args={}){return fitTensors(this,x,y,args)}async fitDataset(dataset,args){return fitDataset(this,dataset,args)}async trainOnBatch(x,y){const standardizeOut=await this.standardizeUserData(x,y);const inputs=standardizeOut[0];const targets=standardizeOut[1];const trainFunction=this.makeTrainFunction();const losses2=trainFunction(inputs.concat(targets));const lossValues=[];for(const loss of losses2){const v=await loss.data();lossValues.push(v[0])}dispose(losses2);return singletonOrArray(lossValues)}getNamedWeights(config2){const namedWeights=[];const trainableOnly=config2!=null&&config2.trainableOnly;const weights=trainableOnly?this.trainableWeights:this.weights;const weightValues=this.getWeights(trainableOnly);for(let i=0;i<weights.length;++i){if(trainableOnly&&!weights[i].trainable){continue}namedWeights.push({name:weights[i].originalName,tensor:weightValues[i]})}return namedWeights}set stopTraining(stop){this.stopTraining_=stop}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(optimizer){if(this.optimizer_!==optimizer){this.optimizer_=optimizer;this.isOptimizerOwned=false}}dispose(){const result=super.dispose();if(result.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){const numTensorsBeforeOptmizerDisposal=memory().numTensors;this.optimizer_.dispose();result.numDisposedVariables+=numTensorsBeforeOptmizerDisposal-memory().numTensors}return result}getLossIdentifiers(){let lossNames;if(typeof this.loss==="string"){lossNames=toSnakeCase(this.loss)}else if(Array.isArray(this.loss)){for(const loss of this.loss){if(typeof loss!=="string"){throw new Error("Serialization of non-string loss is not supported.")}}lossNames=this.loss.map(name=>toSnakeCase(name))}else{const outputNames=Object.keys(this.loss);lossNames={};const losses2=this.loss;for(const outputName of outputNames){if(typeof losses2[outputName]==="string"){lossNames[outputName]=toSnakeCase(losses2[outputName])}else{throw new Error("Serialization of non-string loss is not supported.")}}}return lossNames}getMetricIdentifiers(){if(typeof this.metrics==="string"||typeof this.metrics==="function"){return[toSnakeCase(getLossOrMetricName(this.metrics))]}else if(Array.isArray(this.metrics)){return this.metrics.map(metric=>toSnakeCase(getLossOrMetricName(metric)))}else{const metricsIdentifiers={};for(const key in this.metrics){metricsIdentifiers[key]=toSnakeCase(getLossOrMetricName(this.metrics[key]))}return metricsIdentifiers}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(trainingConfig){if(trainingConfig.weighted_metrics!=null){throw new Error("Loading weight_metrics is not supported yet.")}if(trainingConfig.loss_weights!=null){throw new Error("Loading loss_weights is not supported yet.")}if(trainingConfig.sample_weight_mode!=null){throw new Error("Loading sample_weight_mode is not supported yet.")}const tsConfig=convertPythonicToTs(trainingConfig.optimizer_config);const optimizer=deserialize(tsConfig);let loss;if(typeof trainingConfig.loss==="string"){loss=toCamelCase(trainingConfig.loss)}else if(Array.isArray(trainingConfig.loss)){loss=trainingConfig.loss.map(lossEntry=>toCamelCase(lossEntry))}else if(trainingConfig.loss!=null){loss={};for(const key in trainingConfig.loss){loss[key]=toCamelCase(trainingConfig.loss[key])}}let metrics;if(Array.isArray(trainingConfig.metrics)){metrics=trainingConfig.metrics.map(metric=>toCamelCase(metric))}else if(trainingConfig.metrics!=null){metrics={};for(const key in trainingConfig.metrics){metrics[key]=toCamelCase(trainingConfig.metrics[key])}}this.compile({loss,metrics,optimizer})}async save(handlerOrURL,config2){if(typeof handlerOrURL==="string"){const handlers=getSaveHandlers(handlerOrURL);if(handlers.length===0){throw new ValueError(`Cannot find any save handlers for URL '${handlerOrURL}'`)}else if(handlers.length>1){throw new ValueError(`Found more than one (${handlers.length}) save handlers for URL '${handlerOrURL}'`)}handlerOrURL=handlers[0]}if(handlerOrURL.save==null){throw new ValueError("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.")}const weightDataAndSpecs=await encodeWeights(this.getNamedWeights(config2));const returnString=false;const unusedArg=null;const modelConfig=this.toJSON(unusedArg,returnString);const modelArtifacts={modelTopology:modelConfig,format:LAYERS_MODEL_FORMAT_NAME,generatedBy:`TensorFlow.js tfjs-layers v${version$1}`,convertedBy:null};const includeOptimizer=config2==null?false:config2.includeOptimizer;if(includeOptimizer&&this.optimizer!=null){modelArtifacts.trainingConfig=this.getTrainingConfig();const weightType="optimizer";const{data:optimizerWeightData,specs:optimizerWeightSpecs}=await encodeWeights(await this.optimizer.getWeights(),weightType);weightDataAndSpecs.specs.push(...optimizerWeightSpecs);weightDataAndSpecs.data=concatenateArrayBuffers([weightDataAndSpecs.data,optimizerWeightData])}if(this.userDefinedMetadata!=null){const checkSize=true;checkUserDefinedMetadata(this.userDefinedMetadata,this.name,checkSize);modelArtifacts.userDefinedMetadata=this.userDefinedMetadata}modelArtifacts.weightData=weightDataAndSpecs.data;modelArtifacts.weightSpecs=weightDataAndSpecs.specs;return handlerOrURL.save(modelArtifacts)}setUserDefinedMetadata(userDefinedMetadata){checkUserDefinedMetadata(userDefinedMetadata,this.name);this.userDefinedMetadata=userDefinedMetadata}getUserDefinedMetadata(){return this.userDefinedMetadata}}LayersModel.className="Model";registerClass(LayersModel);class Functional extends LayersModel{}Functional.className="Functional";registerClass(Functional);async function modelFromJSON(modelAndWeightsConfig,customObjects){if(!("modelTopology"in modelAndWeightsConfig)){modelAndWeightsConfig={modelTopology:modelAndWeightsConfig}}modelAndWeightsConfig=modelAndWeightsConfig;let modelTopology=modelAndWeightsConfig.modelTopology;if(modelTopology["model_config"]!=null){modelTopology=modelTopology["model_config"]}const tsConfig=convertPythonicToTs(modelTopology);const model2=deserialize(tsConfig,customObjects);if(modelAndWeightsConfig.weightsManifest!=null){const weightValues=await loadWeights(modelAndWeightsConfig.weightsManifest,modelAndWeightsConfig.pathPrefix,model2.weights.map(weight=>weight.originalName));const uniqueWeightValues={};for(const weight of model2.weights){uniqueWeightValues[weight.originalName]=weightValues[weight.originalName]}model2.loadWeights(uniqueWeightValues);dispose(weightValues)}return model2}async function loadLayersModelInternal(pathOrIOHandler,options){if(options==null){options={}}if(typeof pathOrIOHandler==="string"){const handlers=getLoadHandlers(pathOrIOHandler,options);if(handlers.length===0){handlers.push(browserHTTPRequest(pathOrIOHandler,options))}else if(handlers.length>1){throw new ValueError(`Found more than one (${handlers.length}) load handlers for URL '${pathOrIOHandler}'`)}pathOrIOHandler=handlers[0]}return loadLayersModelFromIOHandler(pathOrIOHandler,void 0,options)}async function loadLayersModelFromIOHandler(handler,customObjects,options){if(options==null){options={}}if(handler.load==null){throw new ValueError("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.")}const artifacts=await handler.load();let modelTopology=artifacts.modelTopology;if(modelTopology["model_config"]!=null){modelTopology=modelTopology["model_config"]}const strict=options.strict==null?true:options.strict;const fastWeightInit=artifacts.weightData!=null&&artifacts.weightSpecs!=null&&strict;const model2=deserialize(convertPythonicToTs(modelTopology),customObjects,fastWeightInit);const trainingConfig=artifacts.trainingConfig;if(trainingConfig!=null){model2.loadTrainingConfig(trainingConfig)}if(artifacts.userDefinedMetadata!=null){model2.setUserDefinedMetadata(artifacts.userDefinedMetadata)}if(artifacts.weightData!=null){if(artifacts.weightSpecs==null){throw new ValueError("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.")}const{modelWeights,optimizerWeights}=decodeModelAndOptimizerWeights(artifacts.weightData,artifacts.weightSpecs);model2.loadWeights(modelWeights,strict);if(model2.optimizer!=null&&optimizerWeights.length>0){await model2.optimizer.setWeights(optimizerWeights)}dispose(modelWeights);dispose(optimizerWeights.map(w=>w.tensor))}return model2}function decodeModelAndOptimizerWeights(buffer3,specs){const name2Tensor=decodeWeights(buffer3,specs);const modelWeights={};const optimizerWeights=[];specs.forEach(spec=>{if(spec.group==="optimizer"){optimizerWeights.push({name:spec.name,tensor:name2Tensor[spec.name]})}else{modelWeights[spec.name]=name2Tensor[spec.name]}});return{modelWeights,optimizerWeights}}class Sequential extends LayersModel{constructor(args){super({inputs:[],outputs:[]});args=args||{};this.trainable=true;this.built=false;this.name=args.name!=null?args.name:getUid("sequential_");if(args.layers!=null){for(const layer of args.layers){this.add(layer)}}}checkShape(layer){const shape=layer.inboundNodes[0].outputTensors[0].shape;if(shape.some(x=>x<0)){throw new ValueError(`Negative dimension size caused by adding layer ${layer.name} with input shape [${layer.inboundNodes[0].inputTensors[0].shape}]`)}}add(layer){const isLayerModelInstance=layer instanceof Sequential||layer instanceof LayersModel;let modelLayer;if(isLayerModelInstance){modelLayer=layer;if(modelLayer.outputs.length!==1){throw new ValueError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.")}if(modelLayer.inputs.length!==1){throw new ValueError("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}}if(this.outputs.length===0){if(layer.inboundNodes.length===0){if(layer.batchInputShape==null){throw new ValueError("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.")}const x=Input({batchShape:layer.batchInputShape,dtype:layer.dtype,name:layer.name+"_input"});layer.apply(x)}if(isLayerModelInstance){this.outputs=modelLayer.outputs;this.inputs=modelLayer.inputs}else{if(layer.inboundNodes.length!==1){throw new ValueError(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${layer.name} which has ${layer.inboundNodes.length} pre-existing inbound connections.`)}if(layer.inboundNodes[0].outputTensors.length!==1){throw new ValueError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.")}this.checkShape(layer);this.outputs=[layer.inboundNodes[0].outputTensors[0]];this.inputs=getSourceInputs(this.outputs[0])}this.inboundNodes=[];new Node({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:pyListRepeat(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(x=>x.shape),outputShapes:this.outputs[0].shape})}else{const outputTensor=layer.apply(this.outputs[0]);if(Array.isArray(outputTensor)){throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.")}this.checkShape(layer);this.outputs=[outputTensor];this.inboundNodes[0].outputTensors=this.outputs;this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(layer);this.built=false}pop(){if(this.layers.length===0){throw new TypeError("There are no layers in the model.")}this.layers.pop();if(this.layers.length===0){this.outputs=[];this.inboundNodes=[];this.outboundNodes=[]}else{const lastLayerIndex=this.layers.length-1;this.layers[lastLayerIndex].outboundNodes=[];this.outputs=[this.layers[lastLayerIndex].output];this.inboundNodes[0].outputTensors=this.outputs;this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(inputs,kwargs){if(this.model==null){this.build()}return this.model.call(inputs,kwargs)}build(inputShape){getExactlyOneShape(inputShape);if(this.inputs.length===0||this.outputs.length===0){throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.")}this.model=new LayersModel({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"});this.model.trainable=this.trainable;this.supportsMasking=this.model.supportsMasking;this.inputLayers=this.model.inputLayers;this.inputLayersNodeIndices=this.model.inputLayersNodeIndices;this.inputLayersTensorIndices=this.model.inputLayersTensorIndices;this.outputLayers=this.model.outputLayers;this.outputLayersNodeIndices=this.model.outputLayersNodeIndices;this.outputLayersTensorIndices=this.model.outputLayersTensorIndices;this.nodesByDepth=this.model.nodesByDepth;this.containerNodes=this.model.containerNodes;this.outputNames=this.model.outputNames;this.inputNames=this.model.inputNames;this.built=true}countParams(){if(!this.built){this.build()}return super.countParams()}summary(lineLength,positions,printFn=console.log){if(!this.built){this.build()}super.summary(lineLength,positions,printFn)}setWeights(weights){if(this.model==null){this.build()}this.model.setWeights(weights)}evaluate(x,y,args={}){if(!this.built){throw new RuntimeError("The model needs to be compiled before being used.")}return this.model.evaluate(x,y,args)}async evaluateDataset(dataset,args){if(!this.built){throw new RuntimeError("The model needs to be compiled before being used.")}return this.model.evaluateDataset(dataset,args)}predict(x,args={}){if(this.model==null){this.build()}return this.model.predict(x,args)}predictOnBatch(x){if(this.model==null){this.build()}return this.model.predictOnBatch(x)}compile(args){this.build();this.model.compile(args);this.optimizer_=this.model.optimizer;this.isOptimizerOwned=this.model.isOptimizerOwned;this.loss=this.model.loss;this.metrics=this.model.metrics;this.metricsTensors=this.model.metricsTensors;this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(optimizer){this.model.optimizer=optimizer}async fit(x,y,args={}){if(!this.built){throw new RuntimeError("The model needs to be compiled before being used.")}return this.model.fit(x,y,args)}async fitDataset(dataset,args){if(!this.built){throw new RuntimeError("The model needs to be compiled before being used.")}return this.model.fitDataset(dataset,args)}async trainOnBatch(x,y){return this.model.trainOnBatch(x,y)}static fromConfig(cls,config2,customObjects={},fastWeightInit=false){let configArray;let extraModelConfig={};if(config2 instanceof Array){if(!(config2[0].className!=null)||config2[0]["className"]==="Merge"){throw new ValueError("Legacy serialization format not supported yet.")}configArray=config2}else{assert(config2["layers"]!=null,()=>`When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field.`);configArray=config2["layers"];delete config2["layers"];extraModelConfig=config2}const model2=new cls(extraModelConfig);if(!(model2 instanceof Sequential)){throw new NotImplementedError(`Sequential.fromConfig called on non-Sequential input: ${model2}`)}for(const conf of configArray){const customObjects2=void 0;const layer=deserialize(conf,customObjects2,fastWeightInit);if(fastWeightInit){layer.setFastWeightInitDuringBuild(true)}model2.add(layer)}return model2}set stopTraining(stop){if(this.model==null){throw new ValueError("Cannot set the stopTraining property of a sequential model before it is compiled.")}this.model.stopTraining=stop}get stopTraining(){if(this.model==null){throw new ValueError("Cannot get the stopTraining property of a sequential model before it is compiled.")}return this.model.stopTraining}getConfig(){const layers=[];for(const layer of this.layers){const dict={};dict["className"]=layer.getClassName();dict["config"]=layer.getConfig();layers.push(dict)}return{name:this.name,layers}}}Sequential.className="Sequential";registerClass(Sequential);function model(args){return new LayersModel(args)}function sequential(config2){return new Sequential(config2)}function loadLayersModel(pathOrIOHandler,options){if(options==null){options={}}return loadLayersModelInternal(pathOrIOHandler,options)}function input(config2){return Input(config2)}function registerCallbackConstructor(verbosityLevel,callbackConstructor){CallbackConstructorRegistry.registerCallbackConstructor(verbosityLevel,callbackConstructor)}class Activation extends Serializable{getConfig(){return{}}}class Elu$1 extends Activation{apply(x,alpha=1){return elu$1(x,alpha)}}Elu$1.className="elu";registerClass(Elu$1);class Selu$1 extends Activation{apply(x){return selu(x)}}Selu$1.className="selu";registerClass(Selu$1);class Relu$1 extends Activation{apply(x){return relu(x)}}Relu$1.className="relu";registerClass(Relu$1);class Relu6$1 extends Activation{apply(x){return tidy(()=>minimum(6,relu(x)))}}Relu6$1.className="relu6";registerClass(Relu6$1);class Linear extends Activation{apply(x){return x}}Linear.className="linear";registerClass(Linear);class Sigmoid$1 extends Activation{apply(x){return sigmoid2(x)}}Sigmoid$1.className="sigmoid";registerClass(Sigmoid$1);class HardSigmoid extends Activation{apply(x){return hardSigmoid(x)}}HardSigmoid.className="hardSigmoid";registerClass(HardSigmoid);class Softplus$1 extends Activation{apply(x){return softplus(x)}}Softplus$1.className="softplus";registerClass(Softplus$1);class Softsign extends Activation{apply(x){return softsign(x)}}Softsign.className="softsign";registerClass(Softsign);class Tanh$1 extends Activation{apply(x){return tanh$1(x)}}Tanh$1.className="tanh";registerClass(Tanh$1);class Softmax$1 extends Activation{apply(x,axis=-1){return softmax2(x,axis)}}Softmax$1.className="softmax";registerClass(Softmax$1);class LogSoftmax$1 extends Activation{apply(x,axis=-1){return logSoftmax(x,axis)}}LogSoftmax$1.className="logSoftmax";registerClass(LogSoftmax$1);class Swish extends Activation{apply(x,alpha=1){return tidy(()=>sigmoid2(x.mul(alpha)).mul(x))}}Swish.className="swish";registerClass(Swish);function serializeActivation(activation2){return activation2.getClassName()}function deserializeActivation(config2,customObjects={}){return deserializeKerasObject(config2,SerializationMap.getMap().classNameMap,customObjects,"activation")}function getActivation(identifier){if(identifier==null){const config2={};config2["className"]="linear";config2["config"]={};return deserializeActivation(config2)}if(typeof identifier==="string"){const config2={};config2["className"]=identifier;config2["config"]={};return deserializeActivation(config2)}else if(identifier instanceof Activation){return identifier}else{return deserializeActivation(identifier)}}function assertObjectArgs(args){if(args!=null&&typeof args!=="object"){throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${args}`)}}class Regularizer extends Serializable{}class L1L2 extends Regularizer{constructor(args){super();assertObjectArgs(args);this.l1=args==null||args.l1==null?.01:args.l1;this.l2=args==null||args.l2==null?.01:args.l2;this.hasL1=this.l1!==0;this.hasL2=this.l2!==0}apply(x){return tidy(()=>{let regularization=zeros([1]);if(this.hasL1){regularization=add$1(regularization,sum$1(mul(this.l1,abs(x))))}if(this.hasL2){regularization=add$1(regularization,sum$1(mul(this.l2,square$1(x))))}return regularization.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(cls,config2){return new cls({l1:config2["l1"],l2:config2["l2"]})}}L1L2.className="L1L2";registerClass(L1L2);function l1(args){assertObjectArgs(args);return new L1L2({l1:args!=null?args.l1:null,l2:0})}function l2(args){assertObjectArgs(args);return new L1L2({l2:args!=null?args.l2:null,l1:0})}const REGULARIZER_IDENTIFIER_REGISTRY_SYMBOL_MAP={l1l2:"L1L2"};function serializeRegularizer(constraint){return serializeKerasObject(constraint)}function deserializeRegularizer(config2,customObjects={}){return deserializeKerasObject(config2,SerializationMap.getMap().classNameMap,customObjects,"regularizer")}function getRegularizer(identifier){if(identifier==null){return null}if(typeof identifier==="string"){const className=identifier in REGULARIZER_IDENTIFIER_REGISTRY_SYMBOL_MAP?REGULARIZER_IDENTIFIER_REGISTRY_SYMBOL_MAP[identifier]:identifier;const config2={className,config:{}};return deserializeRegularizer(config2)}else if(identifier instanceof Regularizer){return identifier}else{return deserializeRegularizer(identifier)}}class ReLU extends Layer{constructor(args){super(args==null?{}:args);this.supportsMasking=true;if(args!=null){this.maxValue=args.maxValue}}call(inputs,kwargs){inputs=getExactlyOneTensor(inputs);let output=relu(inputs);if(this.maxValue!=null){output=clipByValue(output,0,this.maxValue)}return output}computeOutputShape(inputShape){return inputShape}getConfig(){const config2={maxValue:this.maxValue};const baseConfig=super.getConfig();Object.assign(config2,baseConfig);return config2}}ReLU.className="ReLU";registerClass(ReLU);class LeakyReLU extends Layer{constructor(args){super(args==null?{}:args);this.DEFAULT_ALPHA=.3;if(args==null){args={}}this.alpha=args.alpha==null?this.DEFAULT_ALPHA:args.alpha}call(inputs,kwargs){const x=getExactlyOneTensor(inputs);return leakyRelu(x,this.alpha)}computeOutputShape(inputShape){return inputShape}getConfig(){const config2={alpha:this.alpha};const baseConfig=super.getConfig();Object.assign(config2,baseConfig);return config2}}LeakyReLU.className="LeakyReLU";registerClass(LeakyReLU);class PReLU extends Layer{constructor(args){super(args==null?{}:args);this.DEFAULT_ALPHA_INITIALIZER="zeros";if(args==null){args={}}this.supportsMasking=true;this.alphaInitializer=getInitializer(args.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER);this.alphaRegularizer=getRegularizer(args.alphaRegularizer);this.alphaConstraint=getConstraint(args.alphaConstraint);if(args.sharedAxes==null){this.sharedAxes=null}else if(Array.isArray(args.sharedAxes)){this.sharedAxes=args.sharedAxes}else if(typeof args.sharedAxes==="number"){this.sharedAxes=[args.sharedAxes]}else{throw new ValueError(`Expected sharedAxes to be a number or an array of numbers, but got ${args.sharedAxes}`)}}build(inputShape){inputShape=getExactlyOneShape(inputShape);const paramShape=inputShape.slice(1);if(this.sharedAxes!=null){for(const i of this.sharedAxes){paramShape[i-1]=1}}this.alpha=this.addWeight("alpha",paramShape,"float32",this.alphaInitializer,this.alphaRegularizer,true,this.alphaConstraint);const axes={};if(this.sharedAxes!=null){for(let i=1;i<inputShape.length;++i){axes[i]=inputShape[i]}}this.inputSpec=[new InputSpec({ndim:inputShape.length,axes})];this.built=true}call(inputs,kwargs){inputs=getExactlyOneTensor(inputs);return prelu2(inputs,this.alpha.read())}getConfig(){const config2={alphaInitializer:serializeInitializer(this.alphaInitializer),alphaRegularizer:serializeRegularizer(this.alphaRegularizer),alphaConstraint:serializeConstraint(this.alphaConstraint),sharedAxes:this.sharedAxes};const baseConfig=super.getConfig();Object.assign(config2,baseConfig);return config2}}PReLU.className="PReLU";registerClass(PReLU);class ELU extends Layer{constructor(args){super(args==null?{}:args);this.DEFAULT_ALPHA=1;if(args==null){args={}}if(args.alpha!=null&&args.alpha!==this.DEFAULT_ALPHA){throw new NotImplementedError(`Non-default alpha value (${args.alpha}) is not supported by the ELU layer yet.`)}this.alpha=args.alpha==null?this.DEFAULT_ALPHA:args.alpha}call(inputs,kwargs){const x=getExactlyOneTensor(inputs);return elu(x)}computeOutputShape(inputShape){return inputShape}getConfig(){const config2={alpha:this.alpha};const baseConfig=super.getConfig();Object.assign(config2,baseConfig);return config2}}ELU.className="ELU";registerClass(ELU);class ThresholdedReLU extends Layer{constructor(args){super(args==null?{}:args);this.DEFAULT_THETA=1;if(args==null){args={}}this.theta=args.theta==null?this.DEFAULT_THETA:args.theta}call(inputs,kwargs){const x=getExactlyOneTensor(inputs);return x.mul(cast$1(x.greater(this.theta),"float32"))}computeOutputShape(inputShape){return inputShape}getConfig(){const config2={theta:this.theta};const baseConfig=super.getConfig();Object.assign(config2,baseConfig);return config2}}ThresholdedReLU.className="ThresholdedReLU";registerClass(ThresholdedReLU);class Softmax$2 extends Layer{constructor(args){super(args==null?{}:args);this.DEFAULT_AXIS=1;if(args==null){args={}}this.softmax=new Softmax$1().apply;this.axis=args.axis==null?this.DEFAULT_AXIS:args.axis}call(inputs,kwargs){const x=getExactlyOneTensor(inputs);return this.softmax(x,this.axis)}computeOutputShape(inputShape){return inputShape}getConfig(){const config2={axis:this.axis};const baseConfig=super.getConfig();Object.assign(config2,baseConfig);return config2}}Softmax$2.className="Softmax";registerClass(Softmax$2);function normalizeArray(value,n,name){if(typeof value==="number"){return pyListRepeat(value,n)}else{if(value.length!==n){throw new ValueError(`The ${name} argument must be an integer or tuple of ${n} integers. Received: ${value.length} elements.`)}for(let i=0;i<n;++i){const singleValue=value[i];if(!isInteger(singleValue)){throw new ValueError(`The ${name} argument must be an integer or tuple of ${n} integers. Received: ${JSON.stringify(value)} including a non-integer number ${singleValue}`)}}return value}}function convOutputLength(inputLength,filterSize,padding,stride,dilation=1){if(inputLength==null){return inputLength}const dilatedFilterSize=filterSize+(filterSize-1)*(dilation-1);let outputLength;if(padding==="same"){outputLength=inputLength}else{outputLength=inputLength-dilatedFilterSize+1}return Math.floor((outputLength+stride-1)/stride)}function deconvLength(dimSize,strideSize,kernelSize,padding){if(dimSize==null){return null}if(padding==="valid"){dimSize=dimSize*strideSize+max$1([kernelSize-strideSize,0])}else if(padding==="same"){dimSize=dimSize*strideSize}else{throw new ValueError(`Unsupport padding mode: ${padding}.`)}return dimSize}function preprocessConv2DInput(x,dataFormat){return tidy(()=>{checkDataFormat(dataFormat);if(dataFormat==="channelsFirst"){return transpose2(x,[0,2,3,1])}else{return x}})}function preprocessConv3DInput(x,dataFormat){return tidy(()=>{checkDataFormat(dataFormat);if(dataFormat==="channelsFirst"){return transpose2(x,[0,2,3,4,1])}else{return x}})}function conv1dWithBias(x,kernel,bias,strides=1,padding="valid",dataFormat,dilationRate=1){return tidy(()=>{if(dataFormat==null){dataFormat=imageDataFormat()}checkDataFormat(dataFormat);if(x.shape.length!==3){throw new ValueError(`The input of a conv1dWithBias operation should be 3, but is ${x.shape.length} instead.`)}if(kernel.shape.length!==3){throw new ValueError(`The kernel for a conv1dWithBias operation should be 3, but is ${kernel.shape.length} instead`)}if(bias!=null&&bias.shape.length!==1){throw new ValueError(`The bias for a conv1dWithBias operation should be 1, but is ${kernel.shape.length} instead`)}if(dataFormat==="channelsFirst"){x=transpose2(x,[0,2,1])}if(padding==="causal"){throw new NotImplementedError("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.")}let y=conv1d(x,kernel,strides,padding==="same"?"same":"valid","NWC",dilationRate);if(bias!=null){y=biasAdd(y,bias)}return y})}function conv1d$1(x,kernel,strides=1,padding="valid",dataFormat,dilationRate=1){return tidy(()=>{checkDataFormat(dataFormat);return conv1dWithBias(x,kernel,null,strides,padding,dataFormat,dilationRate)})}function conv2d$2(x,kernel,strides=[1,1],padding="valid",dataFormat,dilationRate){return tidy(()=>{checkDataFormat(dataFormat);return conv2dWithBiasActivation(x,kernel,null,strides,padding,dataFormat,dilationRate)})}function conv2dWithBiasActivation(x,kernel,bias,strides=[1,1],padding="valid",dataFormat,dilationRate,activation2=null){return tidy(()=>{if(dataFormat==null){dataFormat=imageDataFormat()}checkDataFormat(dataFormat);if(x.rank!==3&&x.rank!==4){throw new ValueError(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${x.rank}.`)}if(kernel.rank!==3&&kernel.rank!==4){throw new ValueError(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${x.rank}.`)}let y=preprocessConv2DInput(x,dataFormat);if(padding==="causal"){throw new NotImplementedError("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.")}y=conv2d$1({x:y,filter:kernel,strides,pad:padding==="same"?"same":"valid",dilations:dilationRate,dataFormat:"NHWC",bias,activation:activation2});if(dataFormat==="channelsFirst"){y=transpose2(y,[0,3,1,2])}return y})}function conv3d$1(x,kernel,strides=[1,1,1],padding="valid",dataFormat,dilationRate){return tidy(()=>{checkDataFormat(dataFormat);return conv3dWithBias(x,kernel,null,strides,padding,dataFormat,dilationRate)})}function conv3dWithBias(x,kernel,bias,strides=[1,1,1],padding="valid",dataFormat,dilationRate){return tidy(()=>{if(dataFormat==null){dataFormat=imageDataFormat()}checkDataFormat(dataFormat);if(x.rank!==4&&x.rank!==5){throw new ValueError(`conv3dWithBias expects input to be of rank 4 or 5, but received ${x.rank}.`)}if(kernel.rank!==4&&kernel.rank!==5){throw new ValueError(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${x.rank}.`)}let y=preprocessConv3DInput(x,dataFormat);if(padding==="causal"){throw new NotImplementedError("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.")}y=conv3d(y,kernel,strides,padding==="same"?"same":"valid","NDHWC",dilationRate);if(bias!=null){y=biasAdd(y,bias)}if(dataFormat==="channelsFirst"){y=transpose2(y,[0,4,1,2,3])}return y})}class BaseConv extends Layer{constructor(rank,args){super(args);this.bias=null;this.DEFAULT_KERNEL_INITIALIZER="glorotNormal";this.DEFAULT_BIAS_INITIALIZER="zeros";BaseConv.verifyArgs(args);this.rank=rank;assertPositiveInteger(this.rank,"rank");if(this.rank!==1&&this.rank!==2&&this.rank!==3){throw new NotImplementedError(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`)}this.kernelSize=normalizeArray(args.kernelSize,rank,"kernelSize");this.strides=normalizeArray(args.strides==null?1:args.strides,rank,"strides");this.padding=args.padding==null?"valid":args.padding;checkPaddingMode(this.padding);this.dataFormat=args.dataFormat==null?"channelsLast":args.dataFormat;checkDataFormat(this.dataFormat);this.activation=getActivation(args.activation);this.useBias=args.useBias==null?true:args.useBias;this.biasInitializer=getInitializer(args.biasInitializer||this.DEFAULT_BIAS_INITIALIZER);this.biasConstraint=getConstraint(args.biasConstraint);this.biasRegularizer=getRegularizer(args.biasRegularizer);this.activityRegularizer=getRegularizer(args.activityRegularizer);this.dilationRate=normalizeArray(args.dilationRate==null?1:args.dilationRate,rank,"dilationRate");if(this.rank===1&&(Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)){throw new ValueError(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===2){if(typeof this.dilationRate==="number"){this.dilationRate=[this.dilationRate,this.dilationRate]}else if(this.dilationRate.length!==2){throw new ValueError(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}else if(this.rank===3){if(typeof this.dilationRate==="number"){this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate]}else if(this.dilationRate.length!==3){throw new ValueError(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}}static verifyArgs(args){assert$1("kernelSize"in args,`required key 'kernelSize' not in config`);if(typeof args.kernelSize!=="number"&&!checkArrayTypeAndLength(args.kernelSize,"number",1,3)){throw new ValueError(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(args.kernelSize)}.`)}}getConfig(){const config2={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:serializeActivation(this.activation),useBias:this.useBias,biasInitializer:serializeInitializer(this.biasInitializer),biasRegularizer:serializeRegularizer(this.biasRegularizer),activityRegularizer:serializeRegularizer(this.activityRegularizer),biasConstraint:serializeConstraint(this.biasConstraint)};const baseConfig=super.getConfig();Object.assign(config2,baseConfig);return config2}}class Conv extends BaseConv{constructor(rank,args){super(rank,args);this.kernel=null;Conv.verifyArgs(args);this.filters=args.filters;assertPositiveInteger(this.filters,"filters");this.kernelInitializer=getInitializer(args.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER);this.kernelConstraint=getConstraint(args.kernelConstraint);this.kernelRegularizer=getRegularizer(args.kernelRegularizer)}build(inputShape){inputShape=getExactlyOneShape(inputShape);const channelAxis=this.dataFormat==="channelsFirst"?1:inputShape.length-1;if(inputShape[channelAxis]==null){throw new ValueError(`The channel dimension of the input should be defined. Found ${inputShape[channelAxis]}`)}const inputDim=inputShape[channelAxis];const kernelShape=this.kernelSize.concat([inputDim,this.filters]);this.kernel=this.addWeight("kernel",kernelShape,null,this.kernelInitializer,this.kernelRegularizer,true,this.kernelConstraint);if(this.useBias){this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,true,this.biasConstraint)}this.inputSpec=[{ndim:this.rank+2,axes:{[channelAxis]:inputDim}}];this.built=true}call(inputs,kwargs){return tidy(()=>{inputs=getExactlyOneTensor(inputs);let outputs;const biasValue=this.bias==null?null:this.bias.read();const fusedActivationName=mapActivationToFusedKernel(this.activation.getClassName());if(fusedActivationName!=null&&this.rank===2){outputs=conv2dWithBiasActivation(inputs,this.kernel.read(),biasValue,this.strides,this.padding,this.dataFormat,this.dilationRate,fusedActivationName)}else{if(this.rank===1){outputs=conv1dWithBias(inputs,this.kernel.read(),biasValue,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0])}else if(this.rank===2){outputs=conv2dWithBiasActivation(inputs,this.kernel.read(),biasValue,this.strides,this.padding,this.dataFormat,this.dilationRate)}else if(this.rank===3){outputs=conv3dWithBias(inputs,this.kernel.read(),biasValue,this.strides,this.padding,this.dataFormat,this.dilationRate)}else{throw new NotImplementedError("convolutions greater than 3D are not implemented yet.")}if(this.activation!=null){outputs=this.activation.apply(outputs)}}return outputs})}computeOutputShape(inputShape){inputShape=getExactlyOneShape(inputShape);const newSpace=[];const space=this.dataFormat==="channelsLast"?inputShape.slice(1,inputShape.length-1):inputShape.slice(2);for(let i=0;i<space.length;++i){const newDim=convOutputLength(space[i],this.kernelSize[i],this.padding,this.strides[i],typeof this.dilationRate==="number"?this.dilationRate:this.dilationRate[i]);newSpace.push(newDim)}let outputShape=[inputShape[0]];if(this.dataFormat==="channelsLast"){outputShape=outputShape.concat(newSpace);outputShape.push(this.filters)}else{outputShape.push(this.filters);outputShape=outputShape.concat(newSpace)}return outputShape}getConfig(){const config2={filters:this.filters,kernelInitializer:serializeInitializer(this.kernelInitializer),kernelRegularizer:serializeRegularizer(this.kernelRegularizer),kernelConstraint:serializeConstraint(this.kernelConstraint)};const baseConfig=super.getConfig();Object.assign(config2,baseConfig);return config2}static verifyArgs(args){if(!("filters"in args)||typeof args.filters!=="number"||args.filters<1){throw new ValueError(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(args.filters)}`)}}}class Conv2D$1 extends Conv{constructor(args){super(2,args);Conv2D$1.verifyArgs(args)}getConfig(){const config2=super.getConfig();delete config2["rank"];return config2}static verifyArgs(args){if(typeof args.kernelSize!=="number"&&!checkArrayTypeAndLength(args.kernelSize,"number",1,2)){throw new ValueError(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(args.kernelSize)}.`)}}}Conv2D$1.className="Conv2D";registerClass(Conv2D$1);class Conv3D$1 extends Conv{constructor(args){super(3,args);Conv3D$1.verifyArgs(args)}getConfig(){const config2=super.getConfig();delete config2["rank"];return config2}static verifyArgs(args){if(typeof args.kernelSize!=="number"){if(!(Array.isArray(args.kernelSize)&&(args.kernelSize.length===1||args.kernelSize.length===3))){throw new ValueError(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(args.kernelSize)}.`)}}}}Conv3D$1.className="Conv3D";registerClass(Conv3D$1);class Conv2DTranspose extends Conv2D$1{constructor(args){super(args);this.inputSpec=[new InputSpec({ndim:4})];if(this.padding!=="same"&&this.padding!=="valid"){throw new ValueError(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}}build(inputShape){inputShape=getExactlyOneShape(inputShape);if(inputShape.length!==4){throw new ValueError("Input should have rank 4; Received input shape: "+JSON.stringify(inputShape))}const channelAxis=this.dataFormat==="channelsFirst"?1:inputShape.length-1;if(inputShape[channelAxis]==null){throw new ValueError("The channel dimension of the inputs should be defined. Found `None`.")}const inputDim=inputShape[channelAxis];const kernelShape=this.kernelSize.concat([this.filters,inputDim]);this.kernel=this.addWeight("kernel",kernelShape,"float32",this.kernelInitializer,this.kernelRegularizer,true,this.kernelConstraint);if(this.useBias){this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,true,this.biasConstraint)}this.inputSpec=[new InputSpec({ndim:4,axes:{[channelAxis]:inputDim}})];this.built=true}call(inputs,kwargs){return tidy(()=>{let input2=getExactlyOneTensor(inputs);if(input2.shape.length!==4){throw new ValueError(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${input2.shape.length}`)}const inputShape=input2.shape;const batchSize=inputShape[0];let hAxis;let wAxis;if(this.dataFormat==="channelsFirst"){hAxis=2;wAxis=3}else{hAxis=1;wAxis=2}const height=inputShape[hAxis];const width=inputShape[wAxis];const kernelH=this.kernelSize[0];const kernelW=this.kernelSize[1];const strideH=this.strides[0];const strideW=this.strides[1];const outHeight=deconvLength(height,strideH,kernelH,this.padding);const outWidth=deconvLength(width,strideW,kernelW,this.padding);const outputShape=[batchSize,outHeight,outWidth,this.filters];if(this.dataFormat!=="channelsLast"){input2=transpose2(input2,[0,2,3,1])}let outputs=conv2dTranspose(input2,this.kernel.read(),outputShape,this.strides,this.padding);if(this.dataFormat!=="channelsLast"){outputs=transpose2(outputs,[0,3,1,2])}if(this.bias!=null){outputs=biasAdd(outputs,this.bias.read(),this.dataFormat)}if(this.activation!=null){outputs=this.activation.apply(outputs)}return outputs})}computeOutputShape(inputShape){inputShape=getExactlyOneShape(inputShape);const outputShape=inputShape.slice();let channelAxis;let heightAxis;let widthAxis;if(this.dataFormat==="channelsFirst"){channelAxis=1;heightAxis=2;widthAxis=3}else{channelAxis=3;heightAxis=1;widthAxis=2}const kernelH=this.kernelSize[0];const kernelW=this.kernelSize[1];const strideH=this.strides[0];const strideW=this.strides[1];outputShape[channelAxis]=this.filters;outputShape[heightAxis]=deconvLength(outputShape[heightAxis],strideH,kernelH,this.padding);outputShape[widthAxis]=deconvLength(outputShape[widthAxis],strideW,kernelW,this.padding);return outputShape}getConfig(){const config2=super.getConfig();delete config2["dilationRate"];return config2}}Conv2DTranspose.className="Conv2DTranspose";registerClass(Conv2DTranspose);class SeparableConv extends Conv{constructor(rank,config2){super(rank,config2);this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform";this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform";this.depthwiseKernel=null;this.pointwiseKernel=null;if(config2.filters==null){throw new ValueError("The `filters` configuration field is required by SeparableConv, but is unspecified.")}if(config2.kernelInitializer!=null||config2.kernelRegularizer!=null||config2.kernelConstraint!=null){throw new ValueError("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.")}if(config2.padding!=null&&config2.padding!=="same"&&config2.padding!=="valid"){throw new ValueError(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(config2.padding)}`)}this.depthMultiplier=config2.depthMultiplier==null?1:config2.depthMultiplier;this.depthwiseInitializer=getInitializer(config2.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER);this.depthwiseRegularizer=getRegularizer(config2.depthwiseRegularizer);this.depthwiseConstraint=getConstraint(config2.depthwiseConstraint);this.pointwiseInitializer=getInitializer(config2.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER);this.pointwiseRegularizer=getRegularizer(config2.pointwiseRegularizer);this.pointwiseConstraint=getConstraint(config2.pointwiseConstraint)}build(inputShape){inputShape=getExactlyOneShape(inputShape);if(inputShape.length<this.rank+2){throw new ValueError(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(inputShape)}`)}const channelAxis=this.dataFormat==="channelsFirst"?1:inputShape.length-1;if(inputShape[channelAxis]==null||inputShape[channelAxis]<0){throw new ValueError(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(inputShape[channelAxis])}`)}const inputDim=inputShape[channelAxis];const depthwiseKernelShape=this.kernelSize.concat([inputDim,this.depthMultiplier]);const pointwiseKernelShape=[];for(let i=0;i<this.rank;++i){pointwiseKernelShape.push(1)}pointwiseKernelShape.push(inputDim*this.depthMultiplier,this.filters);const trainable=true;this.depthwiseKernel=this.addWeight("depthwise_kernel",depthwiseKernelShape,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,trainable,this.depthwiseConstraint);this.pointwiseKernel=this.addWeight("pointwise_kernel",pointwiseKernelShape,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,trainable,this.pointwiseConstraint);if(this.useBias){this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,trainable,this.biasConstraint)}else{this.bias=null}this.inputSpec=[new InputSpec({ndim:this.rank+2,axes:{[channelAxis]:inputDim}})];this.built=true}call(inputs,kwargs){return tidy(()=>{inputs=getExactlyOneTensor(inputs);let output;if(this.rank===1){throw new NotImplementedError("1D separable convolution is not implemented yet.")}else if(this.rank===2){if(this.dataFormat==="channelsFirst"){inputs=transpose2(inputs,[0,2,3,1])}output=separableConv2d(inputs,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")}if(this.useBias){output=biasAdd(output,this.bias.read(),this.dataFormat)}if(this.activation!=null){output=this.activation.apply(output)}if(this.dataFormat==="channelsFirst"){output=transpose2(output,[0,3,1,2])}return output})}getConfig(){const config2=super.getConfig();delete config2["rank"];delete config2["kernelInitializer"];delete config2["kernelRegularizer"];delete config2["kernelConstraint"];config2["depthwiseInitializer"]=serializeInitializer(this.depthwiseInitializer);config2["pointwiseInitializer"]=serializeInitializer(this.pointwiseInitializer);config2["depthwiseRegularizer"]=serializeRegularizer(this.depthwiseRegularizer);config2["pointwiseRegularizer"]=serializeRegularizer(this.pointwiseRegularizer);config2["depthwiseConstraint"]=serializeConstraint(this.depthwiseConstraint);config2["pointwiseConstraint"]=serializeConstraint(this.pointwiseConstraint);return config2}}SeparableConv.className="SeparableConv";class SeparableConv2D extends SeparableConv{constructor(args){super(2,args)}}SeparableConv2D.className="SeparableConv2D";registerClass(SeparableConv2D);class Conv1D extends Conv{constructor(args){super(1,args);Conv1D.verifyArgs(args);this.inputSpec=[{ndim:3}]}getConfig(){const config2=super.getConfig();delete config2["rank"];delete config2["dataFormat"];return config2}static verifyArgs(args){if(typeof args.kernelSize!=="number"&&!checkArrayTypeAndLength(args.kernelSize,"number",1,1)){throw new ValueError(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(args.kernelSize)}.`)}}}Conv1D.className="Conv1D";registerClass(Conv1D);class Cropping2D extends Layer{constructor(args){super(args);if(typeof args.cropping==="number"){this.cropping=[[args.cropping,args.cropping],[args.cropping,args.cropping]]}else if(typeof args.cropping[0]==="number"){this.cropping=[[args.cropping[0],args.cropping[0]],[args.cropping[1],args.cropping[1]]]}else{this.cropping=args.cropping}this.dataFormat=args.dataFormat===void 0?"channelsLast":args.dataFormat;this.inputSpec=[{ndim:4}]}computeOutputShape(inputShape){if(this.dataFormat==="channelsFirst"){return[inputShape[0],inputShape[1],inputShape[2]-this.cropping[0][0]-this.cropping[0][1],inputShape[3]-this.cropping[1][0]-this.cropping[1][1]]}else{return[inputShape[0],inputShape[1]-this.cropping[0][0]-this.cropping[0][1],inputShape[2]-this.cropping[1][0]-this.cropping[1][1],inputShape[3]]}}call(inputs,kwargs){return tidy(()=>{inputs=getExactlyOneTensor(inputs);if(this.dataFormat==="channelsLast"){const hSliced=sliceAlongAxis(inputs,this.cropping[0][0],inputs.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return sliceAlongAxis(hSliced,this.cropping[1][0],inputs.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{const hSliced=sliceAlongAxis(inputs,this.cropping[0][0],inputs.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return sliceAlongAxis(hSliced,this.cropping[1][0],inputs.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){const config2={cropping:this.cropping,dataFormat:this.dataFormat};const baseConfig=super.getConfig();Object.assign(config2,baseConfig);return config2}}Cropping2D.className="Cropping2D";registerClass(Cropping2D);class UpSampling2D extends Layer{constructor(args){super(args);this.DEFAULT_SIZE=[2,2];this.inputSpec=[{ndim:4}];this.size=args.size==null?this.DEFAULT_SIZE:args.size;this.dataFormat=args.dataFormat==null?"channelsLast":args.dataFormat}computeOutputShape(inputShape){if(this.dataFormat==="channelsFirst"){const height=inputShape[2]==null?null:this.size[0]*inputShape[2];const width=inputShape[3]==null?null:this.size[1]*inputShape[3];return[inputShape[0],inputShape[1],height,width]}else{const height=inputShape[1]==null?null:this.size[0]*inputShape[1];const width=inputShape[2]==null?null:this.size[1]*inputShape[2];return[inputShape[0],height,width,inputShape[3]]}}call(inputs,kwargs){return tidy(()=>{let input2=getExactlyOneTensor(inputs);const inputShape=input2.shape;if(this.dataFormat==="channelsFirst"){input2=transpose2(input2,[0,2,3,1]);const height=this.size[0]*inputShape[2];const width=this.size[1]*inputShape[3];const resized=input2.resizeNearestNeighbor([height,width]);return transpose2(resized,[0,3,1,2])}else{const height=this.size[0]*inputShape[1];const width=this.size[1]*inputShape[2];return input2.resizeNearestNeighbor([height,width])}})}getConfig(){const config2={size:this.size,dataFormat:this.dataFormat};const baseConfig=super.getConfig();Object.assign(config2,baseConfig);return config2}}UpSampling2D.className="UpSampling2D";registerClass(UpSampling2D);function depthwiseConv2d$2(x,depthwiseKernel,strides=[1,1],padding="valid",dataFormat,dilationRate){return tidy(()=>{if(dataFormat==null){dataFormat=imageDataFormat()}checkDataFormat(dataFormat);let y=preprocessConv2DInput(x,dataFormat);if(x.rank!==4){throw new ValueError(`Input for depthwiseConv2d is required to be 4-D, but is instead ${x.rank}-D`)}if(depthwiseKernel.rank!==4){throw new ValueError(`depthwiseKernel is required to be 4-D, but is instead ${depthwiseKernel.rank}-D`)}y=depthwiseConv2d2(y,depthwiseKernel,strides,padding==="same"?"same":"valid","NHWC",dilationRate);if(dataFormat==="channelsFirst"){y=transpose2(y,[0,3,1,2])}return y})}class DepthwiseConv2D extends BaseConv{constructor(args){super(2,args);this.depthwiseKernel=null;this.depthMultiplier=args.depthMultiplier==null?1:args.depthMultiplier;this.depthwiseInitializer=getInitializer(args.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER);this.depthwiseConstraint=getConstraint(args.depthwiseConstraint);this.depthwiseRegularizer=getRegularizer(args.depthwiseRegularizer)}build(inputShape){inputShape=getExactlyOneShape(inputShape);if(inputShape.length<4){throw new ValueError(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(inputShape)}.`)}const channelAxis=this.dataFormat==="channelsFirst"?1:3;if(inputShape[channelAxis]==null||inputShape[channelAxis]<0){throw new ValueError(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${inputShape[channelAxis]}).`)}const inputDim=inputShape[channelAxis];const depthwiseKernelShape=[this.kernelSize[0],this.kernelSize[1],inputDim,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",depthwiseKernelShape,null,this.depthwiseInitializer,this.depthwiseRegularizer,true,this.depthwiseConstraint);if(this.useBias){this.bias=this.addWeight("bias",[inputDim*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,true,this.biasConstraint)}else{this.bias=null}this.built=true}call(inputs,kwargs){return tidy(()=>{inputs=getExactlyOneTensor(inputs);let outputs=depthwiseConv2d$2(inputs,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);if(this.useBias){outputs=biasAdd(outputs,this.bias.read(),this.dataFormat)}if(this.activation!=null){outputs=this.activation.apply(outputs)}return outputs})}computeOutputShape(inputShape){inputShape=getExactlyOneShape(inputShape);const rows=this.dataFormat==="channelsFirst"?inputShape[2]:inputShape[1];const cols=this.dataFormat==="channelsFirst"?inputShape[3]:inputShape[2];const outFilters=this.dataFormat==="channelsFirst"?inputShape[1]*this.depthMultiplier:inputShape[3]*this.depthMultiplier;const outRows=convOutputLength(rows,this.kernelSize[0],this.padding,this.strides[0]);const outCols=convOutputLength(cols,this.kernelSize[1],this.padding,this.strides[1]);if(this.dataFormat==="channelsFirst"){return[inputShape[0],outFilters,outRows,outCols]}else{return[inputShape[0],outRows,outCols,outFilters]}}getConfig(){const config2=super.getConfig();config2["depthMultiplier"]=this.depthMultiplier;config2["depthwiseInitializer"]=serializeInitializer(this.depthwiseInitializer);config2["depthwiseRegularizer"]=serializeRegularizer(this.depthwiseRegularizer);config2["depthwiseConstraint"]=serializeConstraint(this.depthwiseRegularizer);return config2}}DepthwiseConv2D.className="DepthwiseConv2D";registerClass(DepthwiseConv2D);function standardizeArgs(inputs,initialState,constants,numConstants){if(Array.isArray(inputs)){if(initialState!=null||constants!=null){throw new ValueError("When inputs is an array, neither initialState or constants should be provided")}if(numConstants!=null){constants=inputs.slice(inputs.length-numConstants,inputs.length);inputs=inputs.slice(0,inputs.length-numConstants)}if(inputs.length>1){initialState=inputs.slice(1,inputs.length)}inputs=inputs[0]}function toListOrNull(x){if(x==null||Array.isArray(x)){return x}else{return[x]}}initialState=toListOrNull(initialState);constants=toListOrNull(constants);return{inputs,initialState,constants}}function rnn(stepFunction,inputs,initialStates,goBackwards=false,mask,constants,unroll=false,needPerStepOutputs=false){return tidy(()=>{const ndim=inputs.shape.length;if(ndim<3){throw new ValueError(`Input should be at least 3D, but is ${ndim}D.`)}const axes=[1,0].concat(range$1(2,ndim));inputs=transpose2(inputs,axes);if(constants!=null){throw new NotImplementedError("The rnn() functoin of the deeplearn.js backend does not support constants yet.")}if(unroll){console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend.")}if(mask!=null){mask=mask.asType("bool").asType("float32");if(mask.rank===ndim-1){mask=expandDims(mask,-1)}mask=transpose2(mask,axes)}if(goBackwards){inputs=reverse2(inputs,0);if(mask!=null){mask=reverse2(mask,0)}}const perStepOutputs=[];let lastOutput;let states=initialStates;const timeSteps=inputs.shape[0];const perStepInputs=unstack(inputs);let perStepMasks;if(mask!=null){perStepMasks=unstack(mask)}for(let t=0;t<timeSteps;++t){const currentInput=perStepInputs[t];const stepOutputs=tidy(()=>stepFunction(currentInput,states));if(mask==null){lastOutput=stepOutputs[0];states=stepOutputs[1]}else{const maskedOutputs=tidy(()=>{const stepMask=perStepMasks[t];const negStepMask=onesLike2(stepMask).sub(stepMask);const output=stepOutputs[0].mul(stepMask).add(states[0].mul(negStepMask));const newStates=states.map((state,i)=>{return stepOutputs[1][i].mul(stepMask).add(state.mul(negStepMask))});return{output,newStates}});lastOutput=maskedOutputs.output;states=maskedOutputs.newStates}if(needPerStepOutputs){perStepOutputs.push(lastOutput)}}let outputs;if(needPerStepOutputs){const axis=1;outputs=stack(perStepOutputs,axis)}return[lastOutput,outputs,states]})}class RNN extends Layer{constructor(args){super(args);let cell;if(args.cell==null){throw new ValueError("cell property is missing for the constructor of RNN.")}else if(Array.isArray(args.cell)){cell=new StackedRNNCells({cells:args.cell})}else{cell=args.cell}if(cell.stateSize==null){throw new ValueError("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).")}this.cell=cell;this.returnSequences=args.returnSequences==null?false:args.returnSequences;this.returnState=args.returnState==null?false:args.returnState;this.goBackwards=args.goBackwards==null?false:args.goBackwards;this._stateful=args.stateful==null?false:args.stateful;this.unroll=args.unroll==null?false:args.unroll;this.supportsMasking=true;this.inputSpec=[new InputSpec({ndim:3})];this.stateSpec=null;this.states_=null;this.numConstants=null;this.keptStates=[]}getStates(){if(this.states_==null){const numStates=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return range$1(0,numStates).map(x=>null)}else{return this.states_}}setStates(states){this.states_=states}computeOutputShape(inputShape){if(isArrayOfShapes(inputShape)){inputShape=inputShape[0]}inputShape=inputShape;let stateSize=this.cell.stateSize;if(!Array.isArray(stateSize)){stateSize=[stateSize]}const outputDim=stateSize[0];let outputShape;if(this.returnSequences){outputShape=[inputShape[0],inputShape[1],outputDim]}else{outputShape=[inputShape[0],outputDim]}if(this.returnState){const stateShape=[];for(const dim of stateSize){stateShape.push([inputShape[0],dim])}return[outputShape].concat(stateShape)}else{return outputShape}}computeMask(inputs,mask){return tidy(()=>{if(Array.isArray(mask)){mask=mask[0]}const outputMask=this.returnSequences?mask:null;if(this.returnState){const stateMask=this.states.map(s=>null);return[outputMask].concat(stateMask)}else{return outputMask}})}get states(){if(this.states_==null){const numStates=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;const output=[];for(let i=0;i<numStates;++i){output.push(null)}return output}else{return this.states_}}set states(s){this.states_=s}build(inputShape){const constantShape=null;if(this.numConstants!=null){throw new NotImplementedError("Constants support is not implemented in RNN yet.")}if(isArrayOfShapes(inputShape)){inputShape=inputShape[0]}inputShape=inputShape;const batchSize=this.stateful?inputShape[0]:null;const inputDim=inputShape.slice(2);this.inputSpec[0]=new InputSpec({shape:[batchSize,null,...inputDim]});const stepInputShape=[inputShape[0]].concat(inputShape.slice(2));if(constantShape!=null){throw new NotImplementedError("Constants support is not implemented in RNN yet.")}else{this.cell.build(stepInputShape)}let stateSize;if(Array.isArray(this.cell.stateSize)){stateSize=this.cell.stateSize}else{stateSize=[this.cell.stateSize]}if(this.stateSpec!=null){if(!arraysEqual(this.stateSpec.map(spec=>spec.shape[spec.shape.length-1]),stateSize)){throw new ValueError(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}}else{this.stateSpec=stateSize.map(dim=>new InputSpec({shape:[null,dim]}))}if(this.stateful){this.resetStates()}}resetStates(states,training=false){tidy(()=>{if(!this.stateful){throw new AttributeError("Cannot call resetStates() on an RNN Layer that is not stateful.")}const batchSize=this.inputSpec[0].shape[0];if(batchSize==null){throw new ValueError("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.")}if(this.states_==null){if(Array.isArray(this.cell.stateSize)){this.states_=this.cell.stateSize.map(dim=>zeros([batchSize,dim]))}else{this.states_=[zeros([batchSize,this.cell.stateSize])]}}else if(states==null){dispose(this.states_);if(this.keptStates!=null){dispose(this.keptStates);this.keptStates=[]}if(Array.isArray(this.cell.stateSize)){this.states_=this.cell.stateSize.map(dim=>zeros([batchSize,dim]))}else{this.states_[0]=zeros([batchSize,this.cell.stateSize])}}else{if(!Array.isArray(states)){states=[states]}if(states.length!==this.states_.length){throw new ValueError(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${states.length} state value(s). Input received: ${states}`)}if(training===true){this.keptStates.push(this.states_.slice())}else{dispose(this.states_)}for(let index2=0;index2<this.states_.length;++index2){const value=states[index2];const dim=Array.isArray(this.cell.stateSize)?this.cell.stateSize[index2]:this.cell.stateSize;const expectedShape=[batchSize,dim];if(!arraysEqual(value.shape,expectedShape)){throw new ValueError(`State ${index2} is incompatible with layer ${this.name}: expected shape=${expectedShape}, received shape=${value.shape}`)}this.states_[index2]=value}}this.states_=this.states_.map(state=>keep(state.clone()))})}apply(inputs,kwargs){let initialState=kwargs==null?null:kwargs["initialState"];let constants=kwargs==null?null:kwargs["constants"];if(kwargs==null){kwargs={}}const standardized=standardizeArgs(inputs,initialState,constants,this.numConstants);inputs=standardized.inputs;initialState=standardized.initialState;constants=standardized.constants;let additionalInputs=[];let additionalSpecs=[];if(initialState!=null){kwargs["initialState"]=initialState;additionalInputs=additionalInputs.concat(initialState);this.stateSpec=[];for(const state of initialState){this.stateSpec.push(new InputSpec({shape:state.shape}))}additionalSpecs=additionalSpecs.concat(this.stateSpec)}if(constants!=null){kwargs["constants"]=constants;additionalInputs=additionalInputs.concat(constants);this.numConstants=constants.length}const isTensor=additionalInputs[0]instanceof SymbolicTensor;if(isTensor){const fullInput=[inputs].concat(additionalInputs);const fullInputSpec=this.inputSpec.concat(additionalSpecs);const originalInputSpec=this.inputSpec;this.inputSpec=fullInputSpec;const output=super.apply(fullInput,kwargs);this.inputSpec=originalInputSpec;return output}else{return super.apply(inputs,kwargs)}}call(inputs,kwargs){return tidy(()=>{const mask=kwargs==null?null:kwargs["mask"];const training=kwargs==null?null:kwargs["training"];let initialState=kwargs==null?null:kwargs["initialState"];inputs=getExactlyOneTensor(inputs);if(initialState==null){if(this.stateful){initialState=this.states_}else{initialState=this.getInitialState(inputs)}}const numStates=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(initialState.length!==numStates){throw new ValueError(`RNN Layer has ${numStates} state(s) but was passed ${initialState.length} initial state(s).`)}if(this.unroll){console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.")}const cellCallKwargs={training};const step2=(inputs2,states2)=>{const outputs2=this.cell.call([inputs2].concat(states2),cellCallKwargs);return[outputs2[0],outputs2.slice(1)]};const rnnOutputs=rnn(step2,inputs,initialState,this.goBackwards,mask,null,this.unroll,this.returnSequences);const lastOutput=rnnOutputs[0];const outputs=rnnOutputs[1];const states=rnnOutputs[2];if(this.stateful){this.resetStates(states,training)}const output=this.returnSequences?outputs:lastOutput;if(this.returnState){return[output].concat(states)}else{return output}})}getInitialState(inputs){return tidy(()=>{let initialState=zeros(inputs.shape);initialState=sum$1(initialState,[1,2]);initialState=expandDims$1(initialState);if(Array.isArray(this.cell.stateSize)){return this.cell.stateSize.map(dim=>dim>1?tile$2(initialState,[1,dim]):initialState)}else{return this.cell.stateSize>1?[tile$2(initialState,[1,this.cell.stateSize])]:[initialState]}})}get trainableWeights(){if(!this.trainable){return[]}return this.cell.trainableWeights}get nonTrainableWeights(){if(!this.trainable){return this.cell.weights}return this.cell.nonTrainableWeights}setFastWeightInitDuringBuild(value){super.setFastWeightInitDuringBuild(value);if(this.cell!=null){this.cell.setFastWeightInitDuringBuild(value)}}getConfig(){const baseConfig=super.getConfig();const config2={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};if(this.numConstants!=null){config2["numConstants"]=this.numConstants}const cellConfig=this.cell.getConfig();if(this.getClassName()===RNN.className){config2["cell"]={className:this.cell.getClassName(),config:cellConfig}}return Object.assign({},cellConfig,baseConfig,config2)}static fromConfig(cls,config2,customObjects={}){const cellConfig=config2["cell"];const cell=deserialize(cellConfig,customObjects);return new cls(Object.assign(config2,{cell}))}}RNN.className="RNN";registerClass(RNN);class RNNCell extends Layer{}class SimpleRNNCell extends RNNCell{constructor(args){super(args);this.DEFAULT_ACTIVATION="tanh";this.DEFAULT_KERNEL_INITIALIZER="glorotNormal";this.DEFAULT_RECURRENT_INITIALIZER="orthogonal";this.DEFAULT_BIAS_INITIALIZER="zeros";this.units=args.units;assertPositiveInteger(this.units,`units`);this.activation=getActivation(args.activation==null?this.DEFAULT_ACTIVATION:args.activation);this.useBias=args.useBias==null?true:args.useBias;this.kernelInitializer=getInitializer(args.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER);this.recurrentInitializer=getInitializer(args.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER);this.biasInitializer=getInitializer(args.biasInitializer||this.DEFAULT_BIAS_INITIALIZER);this.kernelRegularizer=getRegularizer(args.kernelRegularizer);this.recurrentRegularizer=getRegularizer(args.recurrentRegularizer);this.biasRegularizer=getRegularizer(args.biasRegularizer);this.kernelConstraint=getConstraint(args.kernelConstraint);this.recurrentConstraint=getConstraint(args.recurrentConstraint);this.biasConstraint=getConstraint(args.biasConstraint);this.dropout=min$1([1,max$1([0,args.dropout==null?0:args.dropout])]);this.recurrentDropout=min$1([1,max$1([0,args.recurrentDropout==null?0:args.recurrentDropout])]);this.stateSize=this.units;this.dropoutMask=null;this.recurrentDropoutMask=null}build(inputShape){inputShape=getExactlyOneShape(inputShape);this.kernel=this.addWeight("kernel",[inputShape[inputShape.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,true,this.kernelConstraint);this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,true,this.recurrentConstraint);if(this.useBias){this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,true,this.biasConstraint)}else{this.bias=null}this.built=true}call(inputs,kwargs){return tidy(()=>{inputs=inputs;if(inputs.length!==2){throw new ValueError(`SimpleRNNCell expects 2 input Tensors, got ${inputs.length}.`)}let prevOutput=inputs[1];inputs=inputs[0];const training=kwargs["training"]==null?false:kwargs["training"];if(0<this.dropout&&this.dropout<1&&this.dropoutMask==null){this.dropoutMask=generateDropoutMask({ones:()=>onesLike2(inputs),rate:this.dropout,training})}if(0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null){this.recurrentDropoutMask=generateDropoutMask({ones:()=>onesLike2(prevOutput),rate:this.recurrentDropout,training})}let h;const dpMask=this.dropoutMask;const recDpMask=this.recurrentDropoutMask;if(dpMask!=null){h=dot$1(mul(inputs,dpMask),this.kernel.read())}else{h=dot$1(inputs,this.kernel.read())}if(this.bias!=null){h=biasAdd(h,this.bias.read())}if(recDpMask!=null){prevOutput=mul(prevOutput,recDpMask)}let output=add$1(h,dot$1(prevOutput,this.recurrentKernel.read()));if(this.activation!=null){output=this.activation.apply(output)}return[output,output]})}getConfig(){const baseConfig=super.getConfig();const config2={units:this.units,activation:serializeActivation(this.activation),useBias:this.useBias,kernelInitializer:serializeInitializer(this.kernelInitializer),recurrentInitializer:serializeInitializer(this.recurrentInitializer),biasInitializer:serializeInitializer(this.biasInitializer),kernelRegularizer:serializeRegularizer(this.kernelRegularizer),recurrentRegularizer:serializeRegularizer(this.recurrentRegularizer),biasRegularizer:serializeRegularizer(this.biasRegularizer),activityRegularizer:serializeRegularizer(this.activityRegularizer),kernelConstraint:serializeConstraint(this.kernelConstraint),recurrentConstraint:serializeConstraint(this.recurrentConstraint),biasConstraint:serializeConstraint(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},baseConfig,config2)}}SimpleRNNCell.className="SimpleRNNCell";registerClass(SimpleRNNCell);class SimpleRNN extends RNN{constructor(args){args.cell=new SimpleRNNCell(args);super(args)}call(inputs,kwargs){return tidy(()=>{if(this.cell.dropoutMask!=null){dispose(this.cell.dropoutMask);this.cell.dropoutMask=null}if(this.cell.recurrentDropoutMask!=null){dispose(this.cell.recurrentDropoutMask);this.cell.recurrentDropoutMask=null}const mask=kwargs==null?null:kwargs["mask"];const training=kwargs==null?null:kwargs["training"];const initialState=kwargs==null?null:kwargs["initialState"];return super.call(inputs,{mask,training,initialState})})}static fromConfig(cls,config2){return new cls(config2)}}SimpleRNN.className="SimpleRNN";registerClass(SimpleRNN);class GRUCell extends RNNCell{constructor(args){super(args);this.DEFAULT_ACTIVATION="tanh";this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid";this.DEFAULT_KERNEL_INITIALIZER="glorotNormal";this.DEFAULT_RECURRENT_INITIALIZER="orthogonal";this.DEFAULT_BIAS_INITIALIZER="zeros";if(args.resetAfter){throw new ValueError(`GRUCell does not support reset_after parameter set to true.`)}this.units=args.units;assertPositiveInteger(this.units,"units");this.activation=getActivation(args.activation===void 0?this.DEFAULT_ACTIVATION:args.activation);this.recurrentActivation=getActivation(args.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:args.recurrentActivation);this.useBias=args.useBias==null?true:args.useBias;this.kernelInitializer=getInitializer(args.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER);this.recurrentInitializer=getInitializer(args.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER);this.biasInitializer=getInitializer(args.biasInitializer||this.DEFAULT_BIAS_INITIALIZER);this.kernelRegularizer=getRegularizer(args.kernelRegularizer);this.recurrentRegularizer=getRegularizer(args.recurrentRegularizer);this.biasRegularizer=getRegularizer(args.biasRegularizer);this.kernelConstraint=getConstraint(args.kernelConstraint);this.recurrentConstraint=getConstraint(args.recurrentConstraint);this.biasConstraint=getConstraint(args.biasConstraint);this.dropout=min$1([1,max$1([0,args.dropout==null?0:args.dropout])]);this.recurrentDropout=min$1([1,max$1([0,args.recurrentDropout==null?0:args.recurrentDropout])]);this.implementation=args.implementation;this.stateSize=this.units;this.dropoutMask=null;this.recurrentDropoutMask=null}build(inputShape){inputShape=getExactlyOneShape(inputShape);const inputDim=inputShape[inputShape.length-1];this.kernel=this.addWeight("kernel",[inputDim,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,true,this.kernelConstraint);this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,true,this.recurrentConstraint);if(this.useBias){this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,true,this.biasConstraint)}else{this.bias=null}this.built=true}call(inputs,kwargs){return tidy(()=>{inputs=inputs;if(inputs.length!==2){throw new ValueError(`GRUCell expects 2 input Tensors (inputs, h, c), got ${inputs.length}.`)}const training=kwargs["training"]==null?false:kwargs["training"];let hTMinus1=inputs[1];inputs=inputs[0];if(0<this.dropout&&this.dropout<1&&this.dropoutMask==null){this.dropoutMask=generateDropoutMask({ones:()=>onesLike2(inputs),rate:this.dropout,training,count:3})}if(0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null){this.recurrentDropoutMask=generateDropoutMask({ones:()=>onesLike2(hTMinus1),rate:this.recurrentDropout,training,count:3})}const dpMask=this.dropoutMask;const recDpMask=this.recurrentDropoutMask;let z;let r;let hh;if(0<this.dropout&&this.dropout<1){inputs=mul(inputs,dpMask[0])}let matrixX=dot$1(inputs,this.kernel.read());if(this.useBias){matrixX=biasAdd(matrixX,this.bias.read())}if(0<this.recurrentDropout&&this.recurrentDropout<1){hTMinus1=mul(hTMinus1,recDpMask[0])}const recurrentKernelValue=this.recurrentKernel.read();const[rk1,rk2]=split2(recurrentKernelValue,[2*this.units,this.units],recurrentKernelValue.rank-1);const matrixInner=dot$1(hTMinus1,rk1);const[xZ,xR,xH]=split2(matrixX,3,matrixX.rank-1);const[recurrentZ,recurrentR]=split2(matrixInner,2,matrixInner.rank-1);z=this.recurrentActivation.apply(add$1(xZ,recurrentZ));r=this.recurrentActivation.apply(add$1(xR,recurrentR));const recurrentH=dot$1(mul(r,hTMinus1),rk2);hh=this.activation.apply(add$1(xH,recurrentH));const h=add$1(mul(z,hTMinus1),mul(add$1(1,neg(z)),hh));return[h,h]})}getConfig(){const baseConfig=super.getConfig();const config2={units:this.units,activation:serializeActivation(this.activation),recurrentActivation:serializeActivation(this.recurrentActivation),useBias:this.useBias,kernelInitializer:serializeInitializer(this.kernelInitializer),recurrentInitializer:serializeInitializer(this.recurrentInitializer),biasInitializer:serializeInitializer(this.biasInitializer),kernelRegularizer:serializeRegularizer(this.kernelRegularizer),recurrentRegularizer:serializeRegularizer(this.recurrentRegularizer),biasRegularizer:serializeRegularizer(this.biasRegularizer),activityRegularizer:serializeRegularizer(this.activityRegularizer),kernelConstraint:serializeConstraint(this.kernelConstraint),recurrentConstraint:serializeConstraint(this.recurrentConstraint),biasConstraint:serializeConstraint(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:false};return Object.assign({},baseConfig,config2)}}GRUCell.className="GRUCell";registerClass(GRUCell);class GRU extends RNN{constructor(args){if(args.implementation===0){console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call.")}args.cell=new GRUCell(args);super(args)}call(inputs,kwargs){return tidy(()=>{if(this.cell.dropoutMask!=null){dispose(this.cell.dropoutMask);this.cell.dropoutMask=null}if(this.cell.recurrentDropoutMask!=null){dispose(this.cell.recurrentDropoutMask);this.cell.recurrentDropoutMask=null}const mask=kwargs==null?null:kwargs["mask"];const training=kwargs==null?null:kwargs["training"];const initialState=kwargs==null?null:kwargs["initialState"];return super.call(inputs,{mask,training,initialState})})}static fromConfig(cls,config2){if(config2["implmentation"]===0){config2["implementation"]=1}return new cls(config2)}}GRU.className="GRU";registerClass(GRU);class LSTMCell extends RNNCell{constructor(args){super(args);this.DEFAULT_ACTIVATION="tanh";this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid";this.DEFAULT_KERNEL_INITIALIZER="glorotNormal";this.DEFAULT_RECURRENT_INITIALIZER="orthogonal";this.DEFAULT_BIAS_INITIALIZER="zeros";this.units=args.units;assertPositiveInteger(this.units,"units");this.activation=getActivation(args.activation===void 0?this.DEFAULT_ACTIVATION:args.activation);this.recurrentActivation=getActivation(args.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:args.recurrentActivation);this.useBias=args.useBias==null?true:args.useBias;this.kernelInitializer=getInitializer(args.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER);this.recurrentInitializer=getInitializer(args.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER);this.biasInitializer=getInitializer(args.biasInitializer||this.DEFAULT_BIAS_INITIALIZER);this.unitForgetBias=args.unitForgetBias;this.kernelRegularizer=getRegularizer(args.kernelRegularizer);this.recurrentRegularizer=getRegularizer(args.recurrentRegularizer);this.biasRegularizer=getRegularizer(args.biasRegularizer);this.kernelConstraint=getConstraint(args.kernelConstraint);this.recurrentConstraint=getConstraint(args.recurrentConstraint);this.biasConstraint=getConstraint(args.biasConstraint);this.dropout=min$1([1,max$1([0,args.dropout==null?0:args.dropout])]);this.recurrentDropout=min$1([1,max$1([0,args.recurrentDropout==null?0:args.recurrentDropout])]);this.implementation=args.implementation;this.stateSize=[this.units,this.units];this.dropoutMask=null;this.recurrentDropoutMask=null}build(inputShape){var _a;inputShape=getExactlyOneShape(inputShape);const inputDim=inputShape[inputShape.length-1];this.kernel=this.addWeight("kernel",[inputDim,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,true,this.kernelConstraint);this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,true,this.recurrentConstraint);let biasInitializer;if(this.useBias){if(this.unitForgetBias){const capturedBiasInit=this.biasInitializer;const capturedUnits=this.units;biasInitializer=new(_a=class CustomInit extends Initializer{apply(shape,dtype){const bI=capturedBiasInit.apply([capturedUnits]);const bF=new Ones().apply([capturedUnits]);const bCAndH=capturedBiasInit.apply([capturedUnits*2]);return concatAlongFirstAxis(concatAlongFirstAxis(bI,bF),bCAndH)}},_a.className="CustomInit",_a)}else{biasInitializer=this.biasInitializer}this.bias=this.addWeight("bias",[this.units*4],null,biasInitializer,this.biasRegularizer,true,this.biasConstraint)}else{this.bias=null}this.built=true}call(inputs,kwargs){return tidy(()=>{const training=kwargs["training"]==null?false:kwargs["training"];inputs=inputs;if(inputs.length!==3){throw new ValueError(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${inputs.length}.`)}let hTMinus1=inputs[1];const cTMinus1=inputs[2];inputs=inputs[0];if(0<this.dropout&&this.dropout<1&&this.dropoutMask==null){this.dropoutMask=generateDropoutMask({ones:()=>onesLike2(inputs),rate:this.dropout,training,count:4})}if(0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null){this.recurrentDropoutMask=generateDropoutMask({ones:()=>onesLike2(hTMinus1),rate:this.recurrentDropout,training,count:4})}const dpMask=this.dropoutMask;const recDpMask=this.recurrentDropoutMask;let i;let f;let c;let o;if(0<this.dropout&&this.dropout<1){inputs=mul(inputs,dpMask[0])}let z=dot$1(inputs,this.kernel.read());if(0<this.recurrentDropout&&this.recurrentDropout<1){hTMinus1=mul(hTMinus1,recDpMask[0])}z=add$1(z,dot$1(hTMinus1,this.recurrentKernel.read()));if(this.useBias){z=biasAdd(z,this.bias.read())}const[z0,z1,z2,z3]=split2(z,4,z.rank-1);i=this.recurrentActivation.apply(z0);f=this.recurrentActivation.apply(z1);c=add$1(mul(f,cTMinus1),mul(i,this.activation.apply(z2)));o=this.recurrentActivation.apply(z3);const h=mul(o,this.activation.apply(c));return[h,h,c]})}getConfig(){const baseConfig=super.getConfig();const config2={units:this.units,activation:serializeActivation(this.activation),recurrentActivation:serializeActivation(this.recurrentActivation),useBias:this.useBias,kernelInitializer:serializeInitializer(this.kernelInitializer),recurrentInitializer:serializeInitializer(this.recurrentInitializer),biasInitializer:serializeInitializer(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:serializeRegularizer(this.kernelRegularizer),recurrentRegularizer:serializeRegularizer(this.recurrentRegularizer),biasRegularizer:serializeRegularizer(this.biasRegularizer),activityRegularizer:serializeRegularizer(this.activityRegularizer),kernelConstraint:serializeConstraint(this.kernelConstraint),recurrentConstraint:serializeConstraint(this.recurrentConstraint),biasConstraint:serializeConstraint(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},baseConfig,config2)}}LSTMCell.className="LSTMCell";registerClass(LSTMCell);class LSTM extends RNN{constructor(args){if(args.implementation===0){console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call.")}args.cell=new LSTMCell(args);super(args)}call(inputs,kwargs){return tidy(()=>{if(this.cell.dropoutMask!=null){dispose(this.cell.dropoutMask);this.cell.dropoutMask=null}if(this.cell.recurrentDropoutMask!=null){dispose(this.cell.recurrentDropoutMask);this.cell.recurrentDropoutMask=null}const mask=kwargs==null?null:kwargs["mask"];const training=kwargs==null?null:kwargs["training"];const initialState=kwargs==null?null:kwargs["initialState"];return super.call(inputs,{mask,training,initialState})})}static fromConfig(cls,config2){if(config2["implmentation"]===0){config2["implementation"]=1}return new cls(config2)}}LSTM.className="LSTM";registerClass(LSTM);class StackedRNNCells extends RNNCell{constructor(args){super(args);this.cells=args.cells}get stateSize(){const stateSize=[];for(const cell of this.cells.slice().reverse()){if(Array.isArray(cell.stateSize)){stateSize.push(...cell.stateSize)}else{stateSize.push(cell.stateSize)}}return stateSize}call(inputs,kwargs){return tidy(()=>{inputs=inputs;let states=inputs.slice(1);const nestedStates=[];for(const cell of this.cells.slice().reverse()){if(Array.isArray(cell.stateSize)){nestedStates.push(states.splice(0,cell.stateSize.length))}else{nestedStates.push(states.splice(0,1))}}nestedStates.reverse();const newNestedStates=[];let callInputs;for(let i=0;i<this.cells.length;++i){const cell=this.cells[i];states=nestedStates[i];if(i===0){callInputs=[inputs[0]].concat(states)}else{callInputs=[callInputs[0]].concat(states)}callInputs=cell.call(callInputs,kwargs);newNestedStates.push(callInputs.slice(1))}states=[];for(const cellStates of newNestedStates.slice().reverse()){states.push(...cellStates)}return[callInputs[0]].concat(states)})}build(inputShape){if(isArrayOfShapes(inputShape)){inputShape=inputShape[0]}inputShape=inputShape;let outputDim;this.cells.forEach((cell,i)=>{nameScope(`RNNCell_${i}`,()=>{cell.build(inputShape);if(Array.isArray(cell.stateSize)){outputDim=cell.stateSize[0]}else{outputDim=cell.stateSize}inputShape=[inputShape[0],outputDim]})});this.built=true}getConfig(){const baseConfig=super.getConfig();const getCellConfig=cell=>{return{className:cell.getClassName(),config:cell.getConfig()}};const cellConfigs=this.cells.map(getCellConfig);const config2={cells:cellConfigs};return Object.assign({},baseConfig,config2)}static fromConfig(cls,config2,customObjects={}){const cells=[];for(const cellConfig of config2["cells"]){cells.push(deserialize(cellConfig,customObjects))}return new cls({cells})}get trainableWeights(){if(!this.trainable){return[]}const weights=[];for(const cell of this.cells){weights.push(...cell.trainableWeights)}return weights}get nonTrainableWeights(){const weights=[];for(const cell of this.cells){weights.push(...cell.nonTrainableWeights)}if(!this.trainable){const trainableWeights=[];for(const cell of this.cells){trainableWeights.push(...cell.trainableWeights)}return trainableWeights.concat(weights)}return weights}getWeights(){const weights=[];for(const cell of this.cells){weights.push(...cell.weights)}return batchGetValue(weights)}setWeights(weights){const tuples=[];for(const cell of this.cells){const numParams=cell.weights.length;const inputWeights=weights.splice(numParams);for(let i=0;i<cell.weights.length;++i){tuples.push([cell.weights[i],inputWeights[i]])}}batchSetValue(tuples)}}StackedRNNCells.className="StackedRNNCells";registerClass(StackedRNNCells);function generateDropoutMask(args){const{ones:ones2,rate,training=false,count:count2=1}=args;const droppedInputs=()=>dropout$1(ones2(),rate);const createMask=()=>inTrainPhase(droppedInputs,ones2,training);if(!count2||count2<=1){return keep(createMask().clone())}const masks=Array(count2).fill(void 0).map(createMask);return masks.map(m=>keep(m.clone()))}var __rest=function(s,e){var t={};for(var p2 in s)if(Object.prototype.hasOwnProperty.call(s,p2)&&e.indexOf(p2)<0)t[p2]=s[p2];if(s!=null&&typeof Object.getOwnPropertySymbols==="function")for(var i=0,p2=Object.getOwnPropertySymbols(s);i<p2.length;i++){if(e.indexOf(p2[i])<0&&Object.prototype.propertyIsEnumerable.call(s,p2[i]))t[p2[i]]=s[p2[i]]}return t};class ConvRNN2DCell extends RNNCell{}class ConvRNN2D extends RNN{constructor(args){if(args.unroll){throw new NotImplementedError("Unrolling is not possible with convolutional RNNs.")}if(Array.isArray(args.cell)){throw new NotImplementedError("It is not possible at the moment to stack convolutional cells.")}super(args);this.inputSpec=[new InputSpec({ndim:5})]}call(inputs,kwargs){return tidy(()=>{if(this.cell.dropoutMask!=null){dispose(this.cell.dropoutMask);this.cell.dropoutMask=null}if(this.cell.recurrentDropoutMask!=null){dispose(this.cell.recurrentDropoutMask);this.cell.recurrentDropoutMask=null}if(kwargs&&kwargs["constants"]){throw new ValueError("ConvRNN2D cell does not support constants")}const mask=kwargs==null?null:kwargs["mask"];const training=kwargs==null?null:kwargs["training"];const initialState=kwargs==null?null:kwargs["initialState"];return super.call(inputs,{mask,training,initialState})})}computeOutputShape(inputShape){let outShape=this.computeSingleOutputShape(inputShape);if(!this.returnSequences){outShape=[outShape[0],...outShape.slice(2)]}if(this.returnState){outShape=[outShape,...Array(2).fill([inputShape[0],...outShape.slice(-3)])]}return outShape}getInitialState(inputs){return tidy(()=>{const{stateSize}=this.cell;const inputShape=inputs.shape;const outputShape=this.computeSingleOutputShape(inputShape);const stateShape=[outputShape[0],...outputShape.slice(2)];const initialState=zeros(stateShape);if(Array.isArray(stateSize)){return Array(stateSize.length).fill(initialState)}return[initialState]})}resetStates(states,training=false){tidy(()=>{if(!this.stateful){throw new AttributeError("Cannot call resetStates() on an RNN Layer that is not stateful.")}const inputShape=this.inputSpec[0].shape;const outputShape=this.computeSingleOutputShape(inputShape);const stateShape=[outputShape[0],...outputShape.slice(2)];const batchSize=inputShape[0];if(batchSize==null){throw new ValueError("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.")}if(this.getStates()==null){if(Array.isArray(this.cell.stateSize)){this.states_=this.cell.stateSize.map(()=>zeros(stateShape))}else{this.states_=[zeros(stateShape)]}}else if(states==null){dispose(this.states_);if(this.keptStates!=null){dispose(this.keptStates);this.keptStates=[]}if(Array.isArray(this.cell.stateSize)){this.states_=this.cell.stateSize.map(()=>zeros(stateShape))}else{this.states_[0]=zeros(stateShape)}}else{if(!Array.isArray(states)){states=[states]}if(states.length!==this.states_.length){throw new ValueError(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${states.length} state value(s). Input received: ${states}`)}if(training){this.keptStates.push(this.states_.slice())}else{dispose(this.states_)}for(let index2=0;index2<this.states_.length;++index2){const value=states[index2];const expectedShape=stateShape;if(!arraysEqual(value.shape,expectedShape)){throw new ValueError(`State ${index2} is incompatible with layer ${this.name}: expected shape=${expectedShape}, received shape=${value.shape}`)}this.states_[index2]=value}}this.states_=this.states_.map(state=>keep(state.clone()))})}computeSingleOutputShape(inputShape){const{dataFormat,filters,kernelSize,padding,strides,dilationRate}=this.cell;const isChannelsFirst=dataFormat==="channelsFirst";const h=inputShape[isChannelsFirst?3:2];const w=inputShape[isChannelsFirst?4:3];const hOut=convOutputLength(h,kernelSize[0],padding,strides[0],dilationRate[0]);const wOut=convOutputLength(w,kernelSize[1],padding,strides[1],dilationRate[1]);const outShape=[...inputShape.slice(0,2),...isChannelsFirst?[filters,hOut,wOut]:[hOut,wOut,filters]];return outShape}}ConvRNN2D.className="ConvRNN2D";class ConvLSTM2DCell extends LSTMCell{constructor(args){const{filters,kernelSize,strides,padding,dataFormat,dilationRate}=args;super(Object.assign({},args,{units:filters}));this.filters=filters;assertPositiveInteger(this.filters,"filters");this.kernelSize=normalizeArray(kernelSize,2,"kernelSize");this.kernelSize.forEach(size=>assertPositiveInteger(size,"kernelSize"));this.strides=normalizeArray(strides||1,2,"strides");this.strides.forEach(stride=>assertPositiveInteger(stride,"strides"));this.padding=padding||"valid";checkPaddingMode(this.padding);this.dataFormat=dataFormat||"channelsLast";checkDataFormat(this.dataFormat);this.dilationRate=normalizeArray(dilationRate||1,2,"dilationRate");this.dilationRate.forEach(rate=>assertPositiveInteger(rate,"dilationRate"))}build(inputShape){var _a;inputShape=getExactlyOneShape(inputShape);const channelAxis=this.dataFormat==="channelsFirst"?1:inputShape.length-1;if(inputShape[channelAxis]==null){throw new ValueError(`The channel dimension of the input should be defined. Found ${inputShape[channelAxis]}`)}const inputDim=inputShape[channelAxis];const numOfKernels=4;const kernelShape=this.kernelSize.concat([inputDim,this.filters*numOfKernels]);this.kernel=this.addWeight("kernel",kernelShape,null,this.kernelInitializer,this.kernelRegularizer,true,this.kernelConstraint);const recurrentKernelShape=this.kernelSize.concat([this.filters,this.filters*numOfKernels]);this.recurrentKernel=this.addWeight("recurrent_kernel",recurrentKernelShape,null,this.recurrentInitializer,this.recurrentRegularizer,true,this.recurrentConstraint);if(this.useBias){let biasInitializer;if(this.unitForgetBias){const init2=this.biasInitializer;const filters=this.filters;biasInitializer=new(_a=class CustomInit extends Initializer{apply(shape,dtype){const biasI=init2.apply([filters]);const biasF=ones$1([filters]);const biasCAndO=init2.apply([filters*2]);return concatenate([biasI,biasF,biasCAndO])}},_a.className="CustomInit",_a)}else{biasInitializer=this.biasInitializer}this.bias=this.addWeight("bias",[this.filters*numOfKernels],null,biasInitializer,this.biasRegularizer,true,this.biasConstraint)}this.built=true}call(inputs,kwargs){return tidy(()=>{if(inputs.length!==3){throw new ValueError(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${inputs.length}.`)}const training=kwargs["training"]||false;const x=inputs[0];const hTMinus1=inputs[1];const cTMinus1=inputs[2];const numOfKernels=4;if(0<this.dropout&&this.dropout<1&&this.dropoutMask==null){this.dropoutMask=generateDropoutMask({ones:()=>onesLike2(x),rate:this.dropout,training,count:numOfKernels})}const dropoutMask=this.dropoutMask;const applyDropout=(x2,mask,index2)=>{if(!mask||!mask[index2]){return x2}return mul(mask[index2],x2)};let xI=applyDropout(x,dropoutMask,0);let xF=applyDropout(x,dropoutMask,1);let xC=applyDropout(x,dropoutMask,2);let xO=applyDropout(x,dropoutMask,3);if(0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null){this.recurrentDropoutMask=generateDropoutMask({ones:()=>onesLike2(hTMinus1),rate:this.recurrentDropout,training,count:numOfKernels})}const recDropoutMask=this.recurrentDropoutMask;let hI=applyDropout(hTMinus1,recDropoutMask,0);let hF=applyDropout(hTMinus1,recDropoutMask,1);let hC=applyDropout(hTMinus1,recDropoutMask,2);let hO=applyDropout(hTMinus1,recDropoutMask,3);const kernelChannelAxis=3;const[kernelI,kernelF,kernelC,kernelO]=split2(this.kernel.read(),numOfKernels,kernelChannelAxis);const[biasI,biasF,biasC,biasO]=this.useBias?split2(this.bias.read(),numOfKernels):[null,null,null,null];xI=this.inputConv(xI,kernelI,biasI,this.padding);xF=this.inputConv(xF,kernelF,biasF,this.padding);xC=this.inputConv(xC,kernelC,biasC,this.padding);xO=this.inputConv(xO,kernelO,biasO,this.padding);const[recKernelI,recKernelF,recKernelC,recKernelO]=split2(this.recurrentKernel.read(),numOfKernels,kernelChannelAxis);hI=this.recurrentConv(hI,recKernelI);hF=this.recurrentConv(hF,recKernelF);hC=this.recurrentConv(hC,recKernelC);hO=this.recurrentConv(hO,recKernelO);const i=this.recurrentActivation.apply(add$1(xI,hI));const f=this.recurrentActivation.apply(add$1(xF,hF));const c=add$1(mul(f,cTMinus1),mul(i,this.activation.apply(add$1(xC,hC))));const h=mul(this.recurrentActivation.apply(add$1(xO,hO)),this.activation.apply(c));return[h,h,c]})}getConfig(){const _a=super.getConfig(),{units:_}=_a,baseConfig=__rest(_a,["units"]);const config2={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},baseConfig,config2)}inputConv(x,w,b,padding){const out=conv2d2(x,w,this.strides,padding||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);if(b){return biasAdd(out,b,this.dataFormat)}return out}recurrentConv(x,w){const strides=1;return conv2d2(x,w,strides,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}}ConvLSTM2DCell.className="ConvLSTM2DCell";registerClass(ConvLSTM2DCell);class ConvLSTM2D extends ConvRNN2D{constructor(args){const cell=new ConvLSTM2DCell(args);super(Object.assign({},args,{cell}))}static fromConfig(cls,config2){return new cls(config2)}}ConvLSTM2D.className="ConvLSTM2D";registerClass(ConvLSTM2D);class Dropout extends Layer{constructor(args){super(args);this.rate=Math.max(Math.min(args.rate,1),0);this.noiseShape=args.noiseShape;this.seed=args.seed;this.supportsMasking=true}getNoiseShape(input2){if(this.noiseShape==null){return this.noiseShape}const inputShape=input2.shape;const noiseShape=[];for(let i=0;i<this.noiseShape.length;++i){noiseShape.push(this.noiseShape[i]==null?inputShape[i]:this.noiseShape[i])}return noiseShape}call(inputs,kwargs){return tidy(()=>{this.invokeCallHook(inputs,kwargs);const input2=getExactlyOneTensor(inputs);if(0<this.rate&&this.rate<1){const training=kwargs["training"]==null?false:kwargs["training"];const noiseShape=this.getNoiseShape(input2);const output=inTrainPhase(()=>dropout$1(input2,this.rate,noiseShape,this.seed),()=>input2,training);return output}return inputs})}getConfig(){const config2={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed};const baseConfig=super.getConfig();Object.assign(config2,baseConfig);return config2}dispose(){return super.dispose()}}Dropout.className="Dropout";registerClass(Dropout);class SpatialDropout1D extends Dropout{constructor(args){super(args);this.inputSpec=[{ndim:3}]}getNoiseShape(input2){const inputShape=input2.shape;return[inputShape[0],1,inputShape[2]]}}SpatialDropout1D.className="SpatialDropout1D";registerClass(SpatialDropout1D);class Dense extends Layer{constructor(args){super(args);this.activation=null;this.useBias=true;this.kernel=null;this.bias=null;this.DEFAULT_KERNEL_INITIALIZER="glorotNormal";this.DEFAULT_BIAS_INITIALIZER="zeros";if(args.batchInputShape==null&&args.inputShape==null&&args.inputDim!=null){let batchSize=null;if(args.batchSize!=null){batchSize=args.batchSize}this.batchInputShape=[batchSize,args.inputDim]}this.units=args.units;assertPositiveInteger(this.units,"units");this.activation=getActivation(args.activation);if(args.useBias!=null){this.useBias=args.useBias}this.kernelInitializer=getInitializer(args.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER);this.biasInitializer=getInitializer(args.biasInitializer||this.DEFAULT_BIAS_INITIALIZER);this.kernelConstraint=getConstraint(args.kernelConstraint);this.biasConstraint=getConstraint(args.biasConstraint);this.kernelRegularizer=getRegularizer(args.kernelRegularizer);this.biasRegularizer=getRegularizer(args.biasRegularizer);this.activityRegularizer=getRegularizer(args.activityRegularizer);this.supportsMasking=true;this.inputSpec=[{minNDim:2}]}build(inputShape){inputShape=getExactlyOneShape(inputShape);const inputLastDim=inputShape[inputShape.length-1];if(this.kernel==null){this.kernel=this.addWeight("kernel",[inputLastDim,this.units],null,this.kernelInitializer,this.kernelRegularizer,true,this.kernelConstraint);if(this.useBias){this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,true,this.biasConstraint)}}this.inputSpec=[{minNDim:2,axes:{[-1]:inputLastDim}}];this.built=true}computeOutputShape(inputShape){inputShape=getExactlyOneShape(inputShape);const outputShape=inputShape.slice();outputShape[outputShape.length-1]=this.units;return outputShape}call(inputs,kwargs){return tidy(()=>{this.invokeCallHook(inputs,kwargs);const input2=getExactlyOneTensor(inputs);const fusedActivationName=mapActivationToFusedKernel(this.activation.getClassName());let output;if(fusedActivationName!=null){output=dot$1(input2,this.kernel.read(),fusedActivationName,this.bias?this.bias.read():null)}else{output=dot$1(input2,this.kernel.read());if(this.bias!=null){output=biasAdd(output,this.bias.read())}if(this.activation!=null){output=this.activation.apply(output)}}return output})}getConfig(){const config2={units:this.units,activation:serializeActivation(this.activation),useBias:this.useBias,kernelInitializer:serializeInitializer(this.kernelInitializer),biasInitializer:serializeInitializer(this.biasInitializer),kernelRegularizer:serializeRegularizer(this.kernelRegularizer),biasRegularizer:serializeRegularizer(this.biasRegularizer),activityRegularizer:serializeRegularizer(this.activityRegularizer),kernelConstraint:serializeConstraint(this.kernelConstraint),biasConstraint:serializeConstraint(this.biasConstraint)};const baseConfig=super.getConfig();Object.assign(config2,baseConfig);return config2}}Dense.className="Dense";registerClass(Dense);class Flatten extends Layer{constructor(args){args=args||{};super(args);this.inputSpec=[{minNDim:3}];this.dataFormat=args.dataFormat}computeOutputShape(inputShape){inputShape=getExactlyOneShape(inputShape);for(const dim of inputShape.slice(1)){if(dim==null){throw new ValueError(`The shape of the input to "Flatten" is not fully defined (got ${inputShape.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`)}}return[inputShape[0],arrayProd(inputShape,1)]}call(inputs,kwargs){return tidy(()=>{this.invokeCallHook(inputs,kwargs);let input2=getExactlyOneTensor(inputs);if(this.dataFormat==="channelsFirst"&&input2.rank>1){const permutation=[0];for(let i=2;i<input2.rank;++i){permutation.push(i)}permutation.push(1);input2=input2.transpose(permutation)}return batchFlatten(input2)})}getConfig(){const config2={};if(this.dataFormat!=null){config2["dataFormat"]=this.dataFormat}const baseConfig=super.getConfig();Object.assign(config2,baseConfig);return config2}}Flatten.className="Flatten";registerClass(Flatten);class Activation$1 extends Layer{constructor(args){super(args);this.supportsMasking=true;this.activation=getActivation(args.activation)}call(inputs,kwargs){return tidy(()=>{this.invokeCallHook(inputs,kwargs);const input2=getExactlyOneTensor(inputs);return this.activation.apply(input2)})}getConfig(){const config2={activation:serializeActivation(this.activation)};const baseConfig=super.getConfig();Object.assign(config2,baseConfig);return config2}}Activation$1.className="Activation";registerClass(Activation$1);class RepeatVector extends Layer{constructor(args){super(args);this.n=args.n;this.inputSpec=[{ndim:2}]}computeOutputShape(inputShape){return[inputShape[0],this.n,inputShape[1]]}call(inputs,kwargs){return tidy(()=>{inputs=getExactlyOneTensor(inputs);return repeat(inputs,this.n)})}getConfig(){const config2={n:this.n};const baseConfig=super.getConfig();Object.assign(config2,baseConfig);return config2}}RepeatVector.className="RepeatVector";registerClass(RepeatVector);class Reshape$1 extends Layer{constructor(args){super(args);this.targetShape=args.targetShape;for(let i=0;i<this.targetShape.length;++i){if(this.isUnknown(this.targetShape[i])){this.targetShape[i]=null}}}isUnknown(dim){return dim<0||dim==null}fixUnknownDimension(inputShape,outputShape){const errorMsg="Total size of new array must be unchanged.";const finalShape=outputShape.slice();let known=1;let unknown=null;for(let i=0;i<finalShape.length;++i){const dim=finalShape[i];if(this.isUnknown(dim)){if(unknown===null){unknown=i}else{throw new ValueError("Can only specifiy one unknown dimension.")}}else{known*=dim}}const originalSize=arrayProd(inputShape);if(unknown!==null){if(known===0||originalSize%known!==0){throw new ValueError(errorMsg)}finalShape[unknown]=originalSize/known}else if(originalSize!==known){throw new ValueError(errorMsg)}return finalShape}computeOutputShape(inputShape){let anyUnknownDims=false;for(let i=0;i<inputShape.length;++i){if(this.isUnknown(inputShape[i])){anyUnknownDims=true;break}}if(anyUnknownDims){return inputShape.slice(0,1).concat(this.targetShape)}else{return inputShape.slice(0,1).concat(this.fixUnknownDimension(inputShape.slice(1),this.targetShape))}}call(inputs,kwargs){return tidy(()=>{this.invokeCallHook(inputs,kwargs);const input2=getExactlyOneTensor(inputs);const inputShape=input2.shape;const outputShape=inputShape.slice(0,1).concat(this.fixUnknownDimension(inputShape.slice(1),this.targetShape));return input2.reshape(outputShape)})}getConfig(){const config2={targetShape:this.targetShape};const baseConfig=super.getConfig();Object.assign(config2,baseConfig);return config2}}Reshape$1.className="Reshape";registerClass(Reshape$1);class Permute extends Layer{constructor(args){super(args);if(args.dims==null){throw new Error("Required configuration field `dims` is missing during Permute constructor call.")}if(!Array.isArray(args.dims)){throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${args.dims} instead.`)}const expectedSortedIndices=range$1(1,args.dims.length+1);if(!arraysEqual(args.dims.slice().sort(),expectedSortedIndices)){throw new Error("Invalid permutation `dims`: "+JSON.stringify(args.dims)+" `dims` must contain consecutive integers starting from 1.")}this.dims=args.dims;this.dimsIncludingBatch=[0].concat(this.dims);this.inputSpec=[new InputSpec({ndim:this.dims.length+1})]}computeOutputShape(inputShape){inputShape=getExactlyOneShape(inputShape);const outputShape=inputShape.slice();this.dims.forEach((dim,i)=>{outputShape[i+1]=inputShape[dim]});return outputShape}call(inputs,kwargs){return transpose2(getExactlyOneTensor(inputs),this.dimsIncludingBatch)}getConfig(){const config2={dims:this.dims};const baseConfig=super.getConfig();Object.assign(config2,baseConfig);return config2}}Permute.className="Permute";registerClass(Permute);class Masking extends Layer{constructor(args){super(args==null?{}:args);this.supportsMasking=true;if(args!=null){this.maskValue=args.maskValue==null?0:args.maskValue}else{this.maskValue=0}}computeOutputShape(inputShape){return inputShape}getConfig(){const baseConfig=super.getConfig();const config2={maskValue:this.maskValue};Object.assign(config2,baseConfig);return config2}computeMask(inputs,mask){const input2=getExactlyOneTensor(inputs);const axis=-1;return any(notEqual(input2,this.maskValue),axis)}call(inputs,kwargs){return tidy(()=>{this.invokeCallHook(inputs,kwargs);const input2=getExactlyOneTensor(inputs);const axis=-1;const keepDims=true;const booleanMask=any(notEqual(input2,this.maskValue),axis,keepDims);const output=input2.mul(booleanMask.asType(input2.dtype));return output})}}Masking.className="Masking";registerClass(Masking);class Embedding extends Layer{constructor(args){super(args);this.embeddings=null;this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform";if(args.batchInputShape==null&&args.inputShape==null){let batchSize=null;if(args.batchSize!=null){batchSize=args.batchSize}if(args.inputLength==null){this.batchInputShape=[batchSize,null]}else{this.batchInputShape=[batchSize].concat(toList(args.inputLength))}}this.inputDim=args.inputDim;assertPositiveInteger(this.inputDim,"inputDim");this.outputDim=args.outputDim;assertPositiveInteger(this.outputDim,"outputDim");this.embeddingsInitializer=getInitializer(args.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER);this.embeddingsRegularizer=getRegularizer(args.embeddingsRegularizer);this.activityRegularizer=getRegularizer(args.activityRegularizer);this.embeddingsConstraint=getConstraint(args.embeddingsConstraint);this.maskZero=args.maskZero;this.supportsMasking=args.maskZero;this.inputLength=args.inputLength}build(inputShape){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,true,this.embeddingsConstraint);this.built=true}warnOnIncompatibleInputShape(inputShape){}computeMask(inputs,mask){return tidy(()=>{if(!this.maskZero){return null}else{inputs=getExactlyOneTensor(inputs);return notEqual(inputs,zerosLike2(inputs))}})}computeOutputShape(inputShape){inputShape=getExactlyOneShape(inputShape);if(this.inputLength==null){return[...inputShape,this.outputDim]}const inLens=toList(this.inputLength);if(inLens.length!==inputShape.length-1){throw new ValueError(`"inputLength" is ${this.inputLength}, but received input shape has shape ${inputShape}`)}else{let i=0;for(let k=0;k<inLens.length;++k){const s1=inLens[k];const s2=inputShape[k+1];if(s1!=null&&s2!=null&&s1!==s2){throw new ValueError(`"inputLength" is ${this.inputLength}, but received input shape has shape ${inputShape}`)}else if(s1==null){inLens[i]=s2}i++}}return[inputShape[0],...inLens,this.outputDim]}call(inputs,kwargs){return tidy(()=>{this.invokeCallHook(inputs,kwargs);let input2=getExactlyOneTensor(inputs);if(input2.dtype!=="int32"){input2=cast$1(input2,"int32")}const output=gather$1(this.embeddings.read(),input2.as1D());return output.reshape(getExactlyOneShape(this.computeOutputShape(input2.shape)))})}getConfig(){const config2={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:serializeInitializer(this.embeddingsInitializer),embeddingsRegularizer:serializeRegularizer(this.embeddingsRegularizer),activityRegularizer:serializeRegularizer(this.activityRegularizer),embeddingsConstraint:serializeConstraint(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength};const baseConfig=super.getConfig();Object.assign(config2,baseConfig);return config2}}Embedding.className="Embedding";registerClass(Embedding);class Merge extends Layer{constructor(args){super(args||{});this.supportsMasking=true}mergeFunction(inputs){throw new NotImplementedError}computeElementwiseOpOutputShape(shape1,shape2){if(shape1==null||shape2==null){return null}else if(shape1.length<shape2.length){return this.computeElementwiseOpOutputShape(shape2,shape1)}else if(shape2.length===0){return shape1}const outputShape=shape1.slice(0,shape1.length-shape2.length);for(let k=0;k<shape2.length;++k){const i=shape1[shape1.length-shape2.length+k];const j=shape2[k];if(i==null||j==null||i<0||j<0){outputShape.push(null)}else if(i===1){outputShape.push(j)}else if(j===1){outputShape.push(i)}else{if(i!==j){throw new ValueError("Operands could not be broadcast together with shapes "+JSON.stringify(shape1)+" "+JSON.stringify(shape2))}outputShape.push(i)}}return outputShape}build(inputShape){if(Array.isArray(inputShape)&&!Array.isArray(inputShape[0])){inputShape=[getExactlyOneShape(inputShape)]}inputShape=inputShape;if(inputShape.length<2){throw new ValueError(`A merge layer should be called on an Array of at least 2 inputs. Got ${inputShape.length} input(s).`)}let batchSizes=[];for(const shape of inputShape){if(shape!=null&&shape[0]!==null){batchSizes.push(shape[0])}}batchSizes=unique$1(batchSizes);if(batchSizes.length>1){throw new ValueError(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(inputShape)}.`)}let outputShape=inputShape[0]==null?null:inputShape[0].slice(1);for(let i=1;i<inputShape.length;++i){const shape=inputShape[i]==null?null:inputShape[i].slice(1);outputShape=this.computeElementwiseOpOutputShape(outputShape,shape)}const allRanks=inputShape.map(shape=>shape.length);if(inputShape.indexOf(null)===-1&&unique$1(allRanks).length===1){this.reshapeRequired=false}else{this.reshapeRequired=true}}call(inputs,kwargs){return tidy(()=>{inputs=inputs;if(this.reshapeRequired){const reshapedInputs=[];const inputDims=inputs.map(input2=>input2.rank);if(inputDims.indexOf(null)===-1){const maxNDim=max$1(inputDims);for(let x of inputs){const xNDim=x.rank;for(let k=0;k<maxNDim-xNDim;++k){x=expandDims$1(x,1)}reshapedInputs.push(x)}return this.mergeFunction(reshapedInputs)}else{let transposed=false;for(const x of inputs){const xNDim=x.rank;if(xNDim==null){const xShape=x.shape;const batchSize=xShape[0];const newShape=xShape.slice(1).concat([batchSize]);let xTransposed=x.reshape([batchSize].concat(arrayProd(xShape.slice(1))));xTransposed=transpose2(xTransposed,[1,0]);xTransposed=xTransposed.reshape(newShape);reshapedInputs.push(xTransposed);transposed=true}else if(xNDim>1){const dims=range$1(1,xNDim).concat([0]);reshapedInputs.push(transpose2(x,dims));transposed=true}else{reshapedInputs.push(x)}}let y=this.mergeFunction(reshapedInputs);const yNDim=y.rank;if(transposed){if(yNDim==null){const yShape=y.shape;const yNDim2=yShape.length;const batchSize=yShape[yNDim2-1];const newShape=[batchSize].concat(yShape.slice(0,yShape.length-1));y=transpose2(y.reshape([-1,batchSize]),[1,0]).reshape(newShape)}else if(yNDim>1){const dims=[yNDim-1].concat(range$1(0,yNDim-1));y=transpose2(y,dims)}}return y}}else{return this.mergeFunction(inputs)}})}computeOutputShape(inputShape){inputShape=inputShape;let outputShape;if(inputShape[0]==null){outputShape=null}else{outputShape=inputShape[0].slice(1)}for(let i=1;i<inputShape.length;++i){const shape=inputShape[i]==null?null:inputShape[i].slice(1);outputShape=this.computeElementwiseOpOutputShape(outputShape,shape)}let batchSizes=[];for(const shape of inputShape){if(shape!=null&&shape[0]!==null){batchSizes.push(shape[0])}}batchSizes=unique$1(batchSizes);if(batchSizes.length===1){outputShape=batchSizes.concat(outputShape)}else{outputShape=[null].concat(outputShape)}return outputShape}computeMask(inputs,mask){return tidy(()=>{if(mask==null){return null}if(!Array.isArray(mask)){throw new ValueError("`mask` should be an Array")}if(!Array.isArray(inputs)){throw new ValueError("`inputs` should be an Array")}if(mask.length!==inputs.length){throw new ValueError(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${inputs.length} vs ${mask.length})`)}if(mask.every(m=>m==null)){return null}mask=mask.map(m=>m==null?m:expandDims(m,0));let output=mask[0];for(let i=1;i<mask.length-1;++i){output=logicalAnd(output,mask[i])}return output})}}class Add$1 extends Merge{constructor(args){super(args)}mergeFunction(inputs){return tidy(()=>{let output=inputs[0].clone();for(let i=1;i<inputs.length;++i){output=add$1(output,inputs[i])}return output})}}Add$1.className="Add";registerClass(Add$1);function add$2(config2){if(Array.isArray(config2)){const layer=new Add$1({});return layer.apply(config2)}else{return new Add$1(config2)}}class Multiply$1 extends Merge{constructor(args){super(args)}mergeFunction(inputs){return tidy(()=>{let output=inputs[0].clone();for(let i=1;i<inputs.length;++i){output=mul(output,inputs[i])}return output})}}Multiply$1.className="Multiply";registerClass(Multiply$1);function multiply(config2){if(Array.isArray(config2)){const layer=new Multiply$1({});return layer.apply(config2)}else{return new Multiply$1(config2)}}class Average extends Merge{constructor(args){super(args)}mergeFunction(inputs){return tidy(()=>{let output=inputs[0].clone();for(let i=1;i<inputs.length;++i){output=add$1(output,inputs[i])}return mul(1/inputs.length,output)})}}Average.className="Average";registerClass(Average);function average(config2){if(Array.isArray(config2)){const layer=new Average({});return layer.apply(config2)}else{return new Average(config2)}}class Maximum$1 extends Merge{constructor(args){super(args)}mergeFunction(inputs){return tidy(()=>{let output=inputs[0];for(let i=1;i<inputs.length;++i){output=maximum(output,inputs[i])}return output})}}Maximum$1.className="Maximum";registerClass(Maximum$1);function maximum$1(config2){if(Array.isArray(config2)){const layer=new Maximum$1({});return layer.apply(config2)}else{return new Maximum$1(config2)}}class Minimum$1 extends Merge{constructor(args){super(args)}mergeFunction(inputs){return tidy(()=>{let output=inputs[0];for(let i=1;i<inputs.length;++i){output=minimum(output,inputs[i])}return output})}}Minimum$1.className="Minimum";registerClass(Minimum$1);function minimum$1(config2){if(Array.isArray(config2)){const layer=new Minimum$1({});return layer.apply(config2)}else{return new Minimum$1(config2)}}class Concatenate extends Merge{constructor(args){super(args);this.DEFAULT_AXIS=-1;if(args==null){args={}}this.axis=args.axis==null?this.DEFAULT_AXIS:args.axis;this.supportsMasking=true;this.reshapeRequired=false}build(inputShape){if(!(Array.isArray(inputShape)&&Array.isArray(inputShape[0]))||inputShape.length===1){throw new ValueError("A `Concatenate` layer should be called on a list of at least 2 inputs")}inputShape=inputShape;let allNoneShape=true;for(const shape of inputShape){if(shape!=null){allNoneShape=false;break}}if(allNoneShape){return}const shapeSet=[];for(let i=0;i<inputShape.length;++i){const shapeWithoutConcatAxis=inputShape[i].slice();shapeWithoutConcatAxis.splice(this.axis,1);let exists=false;for(const shape of shapeSet){if(arraysEqual(shape,shapeWithoutConcatAxis)){exists=true;break}}if(!exists){shapeSet.push(shapeWithoutConcatAxis)}}if(shapeSet.length>1){throw new ValueError("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(inputShape))}}mergeFunction(inputs){return tidy(()=>{return concatenate(inputs,this.axis)})}computeOutputShape(inputShape){if(!(Array.isArray(inputShape)&&Array.isArray(inputShape[0]))){throw new ValueError("A `Concatenate` layer should be called on a list of inputs.")}const inputShapes=inputShape;const outputShape=inputShapes[0].slice();const axis=this.axis<0?outputShape.length+this.axis:this.axis;for(const shape of inputShapes.slice(1)){if(outputShape[axis]==null||shape[axis]==null){outputShape[axis]=null;break}outputShape[axis]+=shape[axis]}return outputShape}computeMask(inputs,mask){if(mask==null){return null}if(!Array.isArray(mask)){throw new ValueError("`mask` should be an array for Concatenate")}if(!Array.isArray(inputs)){throw new ValueError("`inputs` should be an array for Concatenate")}if(mask.length!==inputs.length){throw new ValueError(`Mismatch in the length of mask (${mask.length}) and the legnth of inputs (${inputs.length})`)}return tidy(()=>{let allNullMasks=true;mask.forEach(m=>{if(m!=null){allNullMasks=false;return}});if(allNullMasks){return null}const outputMasks=[];for(let i=0;i<inputs.length;++i){if(mask[i]==null){outputMasks.push(onesLike2(inputs[i]).asType("bool"))}else if(mask[i].rank<inputs[i].rank){outputMasks.push(expandDims(mask[i],-1))}else{outputMasks.push(mask[i])}}const concatenatedMasks=concat2(outputMasks,this.axis);return all(concatenatedMasks,-1,false)})}getConfig(){const config2={axis:this.axis};const baseConfig=super.getConfig();Object.assign(config2,baseConfig);return config2}}Concatenate.className="Concatenate";registerClass(Concatenate);function concatenate$1(config2){if(Array.isArray(config2)){const layer=new Concatenate({});return layer.apply(config2)}else{return new Concatenate(config2)}}function interpretAxis(axis,dim){while(axis<0){axis+=dim}return axis}function batchDot(x,y,axes){if(x.shape.length>3||y.shape.length>3){throw new NotImplementedError("batchDot is not implemented for tensors of 4D or higher rank yet")}assert(x.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${x.shape.length}`);assert(x.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${y.shape.length}`);if(typeof axes==="number"){axes=[axes,axes]}if(x.dtype==="complex64"||y.dtype==="complex64"){throw new NotImplementedError("batchDot is not implemented for complex64-type Tensors yet.")}const xNDim=x.shape.length;const yNDim=y.shape.length;if(axes==null){axes=[xNDim-1,yNDim-2]}const axesArray=axes;return tidy(()=>{let diff;if(xNDim>yNDim){diff=xNDim-yNDim;const diffShape=[];for(let i=0;i<diff;++i){diffShape.push(1)}y=y.reshape(y.shape.concat(diffShape))}else if(yNDim>xNDim){diff=yNDim-xNDim;const diffShape=[];for(let i=0;i<diff;++i){diffShape.push(1)}x=x.reshape(x.shape.concat(diffShape))}else{diff=0}let out;if(x.shape.length===2&&y.shape.length===2){if(axesArray[0]===axesArray[1]){out=x.mul(y).sum(axesArray[0])}else{out=x.transpose([1,0]).mul(y).sum(axesArray[1])}}else{const adjX=axesArray[0]!==x.shape.length-1;const adjY=axesArray[1]===y.shape.length-1;out=x.matMul(y,adjX,adjY)}if(diff>0){let idx;if(xNDim>yNDim){idx=xNDim+yNDim-3}else{idx=xNDim-1}const squeezeAxes=[];for(let i=idx;i<idx+diff;++i){squeezeAxes.push(i)}out=out.squeeze(squeezeAxes)}if(out.shape.length===1){out=out.expandDims(1)}return out})}class Dot extends Merge{constructor(args){super(args);this.axes=args.axes;this.normalize=args.normalize==null?false:args.normalize;this.supportsMasking=true;this.reshapeRequired=false}build(inputShape){assert(Array.isArray(inputShape)&&inputShape.length===2&&Array.isArray(inputShape[0])&&Array.isArray(inputShape[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");const shape1=inputShape[0];const shape2=inputShape[1];if(shape1.length>3||shape2.length>3){throw new NotImplementedError("Dot layer does not support tensors of 4D or higher rank yet.")}const axes=this.interpretAxes(shape1,shape2);if(shape1[axes[0]]!==shape2[axes[1]]){throw new ValueError(`Dimension incompatibility: ${shape1[axes[0]]} !== ${shape2[axes[1]]}`)}}mergeFunction(inputs){if(inputs.length!==2){throw new ValueError(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${inputs.length} input(s).`)}let x1=inputs[0];let x2=inputs[1];let axes;if(!Array.isArray(this.axes)){axes=[interpretAxis(this.axes,x1.shape.length),interpretAxis(this.axes,x2.shape.length)]}else{axes=this.axes.map((axis,i)=>interpretAxis(axis,inputs[i].shape.length))}if(this.normalize){x1=l2Normalize(x1,axes[0]);x2=l2Normalize(x2,axes[1])}return batchDot(x1,x2,axes)}interpretAxes(shape1,shape2){let axes;if(!Array.isArray(this.axes)){axes=[interpretAxis(this.axes,shape1.length),interpretAxis(this.axes,shape2.length)]}else{axes=this.axes}return axes}computeOutputShape(inputShape){assert(Array.isArray(inputShape)&&inputShape.length===2&&Array.isArray(inputShape[0])&&Array.isArray(inputShape[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");const shape1=inputShape[0].slice();const shape2=inputShape[1].slice();if(shape1.length>3||shape2.length>3){throw new NotImplementedError("Dot layer does not support tensors of 4D or higher rank yet.")}const axes=this.interpretAxes(shape1,shape2);shape1.splice(axes[0],1);shape2.splice(axes[1],1);shape2.splice(0,1);const outputShape=shape1.concat(shape2);if(outputShape.length===1){outputShape.push(1)}return outputShape}computeMask(inputs,mask){return null}getConfig(){const config2={axes:this.axes,normalize:this.normalize};const baseConfig=super.getConfig();Object.assign(config2,baseConfig);return config2}}Dot.className="Dot";registerClass(Dot);class GaussianNoise extends Layer{constructor(args){super(args);this.supportsMasking=true;this.stddev=args.stddev}computeOutputShape(inputShape){return inputShape}getConfig(){const baseConfig=super.getConfig();const config2={stddev:this.stddev};Object.assign(config2,baseConfig);return config2}call(inputs,kwargs){return tidy(()=>{this.invokeCallHook(inputs,kwargs);const input2=getExactlyOneTensor(inputs);const noised=()=>randomNormal$1(input2.shape,0,this.stddev).add(input2);const output=inTrainPhase(noised,()=>input2,kwargs["training"]||false);return output})}}GaussianNoise.className="GaussianNoise";registerClass(GaussianNoise);class GaussianDropout extends Layer{constructor(args){super(args);this.supportsMasking=true;this.rate=args.rate}computeOutputShape(inputShape){return inputShape}getConfig(){const baseConfig=super.getConfig();const config2={rate:this.rate};Object.assign(config2,baseConfig);return config2}call(inputs,kwargs){return tidy(()=>{this.invokeCallHook(inputs,kwargs);const input2=getExactlyOneTensor(inputs);if(this.rate>0&&this.rate<1){const noised=()=>{const stddev=Math.sqrt(this.rate/(1-this.rate));return input2.mul(randomNormal$1(input2.shape,1,stddev))};return inTrainPhase(noised,()=>input2,kwargs["training"]||false)}return input2})}}GaussianDropout.className="GaussianDropout";registerClass(GaussianDropout);class AlphaDropout extends Layer{constructor(args){super(args);this.supportsMasking=true;this.rate=args.rate;this.noiseShape=args.noiseShape}_getNoiseShape(inputs){return this.noiseShape||getExactlyOneTensor(inputs).shape}computeOutputShape(inputShape){return inputShape}getConfig(){const baseConfig=super.getConfig();const config2={rate:this.rate};Object.assign(config2,baseConfig);return config2}call(inputs,kwargs){return tidy(()=>{if(this.rate<1&&this.rate>0){const noiseShape=this._getNoiseShape(inputs);const droppedInputs=()=>{const input2=getExactlyOneTensor(inputs);const alpha=1.6732632423543772;const scale2=1.0507009873554805;const alphaP=-alpha*scale2;let keptIdx=greaterEqual(randomUniform(noiseShape),this.rate);keptIdx=cast$1(keptIdx,"float32");const a=((1-this.rate)*(1+this.rate*alphaP**2))**-.5;const b=-a*alphaP*this.rate;const x=input2.mul(keptIdx).add(keptIdx.add(-1).mul(alphaP));return x.mul(a).add(b)};return inTrainPhase(droppedInputs,()=>getExactlyOneTensor(inputs),kwargs["training"]||false)}return inputs})}}AlphaDropout.className="AlphaDropout";registerClass(AlphaDropout);function batchNormalization(x,mean2,variance2,beta,gamma,epsilon2=.001){let out;if(x.rank===2){out=batchNorm2d(x,mean2,variance2,beta,gamma,epsilon2)}else if(x.rank===3){out=batchNorm3d(x,mean2,variance2,beta,gamma,epsilon2)}else if(x.rank===4){out=batchNorm4d(x,mean2,variance2,beta,gamma,epsilon2)}else{throw new NotImplementedError(`batchNormalization is not implemented for array of rank ${x.rank} yet`)}return out}function regularNormalizeBatchInTraining(x,gamma,beta,reductionAxes,epsilon2=.001){return tidy(()=>{const meanAndVariance=moments(x,reductionAxes);const mean2=meanAndVariance.mean;const variance2=meanAndVariance.variance;const normed=batchNormalization(x,mean2,variance2,beta,gamma,epsilon2);return[normed,mean2,variance2]})}function broadcastNormalizeBatchInTraining(x,gamma,beta,reductionAxes,epsilon2=.001){return tidy(()=>{const meanAndVariance=moments(x,reductionAxes);const mean2=meanAndVariance.mean;const variance2=meanAndVariance.variance;const targetShape=[];for(const axis of range$1(0,x.rank)){if(reductionAxes.indexOf(axis)!==-1){targetShape.push(1)}else{targetShape.push(x.shape[axis])}}const broadcastMean=mean2.reshape(targetShape);const broadcastVariance=variance2.reshape(targetShape);const broadcastGamma=gamma==null?null:gamma.reshape(targetShape);const broadcastBeta=beta==null?null:beta.reshape(targetShape);const normed=batchNormalization(x,broadcastMean,broadcastVariance,broadcastBeta,broadcastGamma,epsilon2);return[normed,mean2,variance2]})}function normalizeBatchInTraining(x,gamma,beta,reductionAxes,epsilon2=.001){if(arraysEqual(reductionAxes.slice().sort(),range$1(0,x.rank-1))){return regularNormalizeBatchInTraining(x,gamma,beta,reductionAxes,epsilon2)}else{return broadcastNormalizeBatchInTraining(x,gamma,beta,reductionAxes,epsilon2)}}class BatchNormalization extends Layer{constructor(args){if(args==null){args={}}super(args);this.supportsMasking=true;this.axis=args.axis==null?-1:args.axis;this.momentum=args.momentum==null?.99:args.momentum;this.epsilon=args.epsilon==null?.001:args.epsilon;this.center=args.center==null?true:args.center;this.scale=args.scale==null?true:args.scale;this.betaInitializer=getInitializer(args.betaInitializer||"zeros");this.gammaInitializer=getInitializer(args.gammaInitializer||"ones");this.movingMeanInitializer=getInitializer(args.movingMeanInitializer||"zeros");this.movingVarianceInitializer=getInitializer(args.movingVarianceInitializer||"ones");this.betaConstraint=getConstraint(args.betaConstraint);this.gammaConstraint=getConstraint(args.gammaConstraint);this.betaRegularizer=getRegularizer(args.betaRegularizer);this.gammaRegularizer=getRegularizer(args.gammaRegularizer)}build(inputShape){inputShape=getExactlyOneShape(inputShape);const axis=this.axis>=0?this.axis:this.axis+inputShape.length;const dim=inputShape[axis];if(dim==null){throw new ValueError(`Axis ${axis} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(inputShape)}.`)}this.inputSpec=[new InputSpec({ndim:inputShape.length,axes:{[axis]:dim}})];const shape=[dim];if(this.scale){this.gamma=this.addWeight("gamma",shape,null,this.gammaInitializer,this.gammaRegularizer,true,this.gammaConstraint)}if(this.center){this.beta=this.addWeight("beta",shape,null,this.betaInitializer,this.betaRegularizer,true,this.betaConstraint)}this.movingMean=this.addWeight("moving_mean",shape,null,this.movingMeanInitializer,null,false);this.movingVariance=this.addWeight("moving_variance",shape,null,this.movingVarianceInitializer,null,false);this.built=true}call(inputs,kwargs){return tidy(()=>{const training=kwargs["training"]==null?false:kwargs["training"];const input2=getExactlyOneTensor(inputs);const inputShape=input2.shape;const ndim=inputShape.length;const reductionAxes=range$1(0,ndim);const axis=this.axis>=0?this.axis:this.axis+ndim;reductionAxes.splice(axis,1);const broadcastShape=pyListRepeat(1,ndim);broadcastShape[axis]=inputShape[axis];const sortedReductionAxes=reductionAxes.slice();sortedReductionAxes.sort();const needsBroadcasting=!arraysEqual(sortedReductionAxes,range$1(0,ndim).slice(0,ndim-1));const normalizeInference=()=>{if(needsBroadcasting){const broadcastMovingMean=this.movingMean.read().reshape(broadcastShape);const broadcastMovingVariance=this.movingVariance.read().reshape(broadcastShape);const broadcastBeta=this.center?this.beta.read().reshape(broadcastShape):null;const broadcastGamma=this.scale?this.gamma.read().reshape(broadcastShape):null;return batchNormalization(input2,broadcastMovingMean,broadcastMovingVariance,broadcastBeta,broadcastGamma,this.epsilon)}else{return batchNormalization(input2,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)}};if(!training){return normalizeInference()}const[normedTraining,mean2,variance2]=normalizeBatchInTraining(input2,this.gamma.read(),this.beta.read(),reductionAxes,this.epsilon);const doMovingAverage=(variable2,value,momentum)=>{tidy(()=>{const decay=1-momentum;const origValue=variable2.read();const updateDelta=origValue.sub(value).mul(decay);variable2.write(origValue.sub(updateDelta))})};const updateMovingMeanAndVariance=()=>{doMovingAverage(this.movingMean,mean2,this.momentum);doMovingAverage(this.movingVariance,variance2,this.momentum)};updateMovingMeanAndVariance();return normedTraining})}getConfig(){const config2={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:serializeInitializer(this.betaInitializer),gammaInitializer:serializeInitializer(this.gammaInitializer),movingMeanInitializer:serializeInitializer(this.movingMeanInitializer),movingVarianceInitializer:serializeInitializer(this.movingVarianceInitializer),betaRegularizer:serializeRegularizer(this.betaRegularizer),gammaRegularizer:serializeRegularizer(this.gammaRegularizer),betaConstraint:serializeConstraint(this.betaConstraint),gammaConstraint:serializeConstraint(this.gammaConstraint)};const baseConfig=super.getConfig();Object.assign(config2,baseConfig);return config2}}BatchNormalization.className="BatchNormalization";registerClass(BatchNormalization);class LayerNormalization extends Layer{constructor(args){if(args==null){args={}}super(args);this.axis=args.axis==null?-1:args.axis;if(typeof this.axis==="number"){if(!Number.isInteger(this.axis)){throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}}else if(Array.isArray(this.axis)){for(const axis of this.axis){if(!Number.isInteger(axis)){throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}}}else{throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`)}this.epsilon=args.epsilon==null?.001:args.epsilon;this.center=args.center==null?true:args.center;this.scale=args.scale==null?true:args.scale;this.betaInitializer=getInitializer(args.betaInitializer||"zeros");this.gammaInitializer=getInitializer(args.gammaInitializer||"ones");this.betaRegularizer=getRegularizer(args.betaRegularizer);this.gammaRegularizer=getRegularizer(args.gammaRegularizer);this.supportsMasking=true}build(inputShape){inputShape=getExactlyOneShape(inputShape);const nDims=inputShape.length;if(typeof this.axis==="number"){this.axis=[this.axis]}for(let i=0;i<this.axis.length;++i){if(this.axis[i]<0){this.axis[i]+=nDims}}for(const axis of this.axis){if(axis<0||axis>=nDims){throw new Error(`Invalid axis: ${axis}`)}}if(this.axis.length!==unique$1(this.axis).length){throw new Error(`Found duplicate axes in: ${this.axis}`)}const paramShape=this.axis.map(axis=>inputShape[axis]);const trainable=true;if(this.scale){this.gamma=this.addWeight("gamma",paramShape,"float32",this.gammaInitializer,this.gammaRegularizer,trainable)}else{this.gamma=null}if(this.center){this.beta=this.addWeight("beta",paramShape,"float32",this.betaInitializer,this.betaRegularizer,trainable)}else{this.beta=null}this.built=true}call(inputs,kwargs){const input2=getExactlyOneTensor(inputs);const inputShape=input2.shape;const nDims=inputShape.length;return tidy(()=>{const keepDims=true;let{mean:mean2,variance:variance2}=moments(input2,this.axis,keepDims);const broadcastShape=pyListRepeat(1,nDims);for(const dim of this.axis){broadcastShape[dim]=inputShape[dim]}const broadcast=v=>{if(v!=null&&v.shape.length!==nDims&&this.axis!==[nDims-1]){return v.reshape(broadcastShape)}else{return v}};let scale2=broadcast(this.gamma.read());let offset=broadcast(this.beta.read());const momentsTiling=[];const scaleOffsetTiling=[];for(let i=0;i<nDims;++i){if(this.axis.indexOf(i)!==-1){momentsTiling.push(inputShape[i]);scaleOffsetTiling.push(1)}else{momentsTiling.push(1);scaleOffsetTiling.push(inputShape[i])}}mean2=mean2.tile(momentsTiling);variance2=variance2.tile(momentsTiling);scale2=scale2.tile(scaleOffsetTiling);offset=offset.tile(scaleOffsetTiling);return batchNormalization(input2,mean2,variance2,offset,scale2,this.epsilon)})}getConfig(){const config2={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:serializeInitializer(this.betaInitializer),gammaInitializer:serializeInitializer(this.gammaInitializer),betaRegularizer:serializeRegularizer(this.betaRegularizer),gammaRegularizer:serializeRegularizer(this.gammaRegularizer)};const baseConfig=super.getConfig();Object.assign(config2,baseConfig);return config2}}LayerNormalization.className="LayerNormalization";registerClass(LayerNormalization);function temporalPadding(x,padding){return tidy(()=>{if(x.rank!==3){throw new ValueError(`temporalPadding expects input tensor to be 3-D, but received a ${x.rank}-D tensor.`)}if(padding==null){padding=[1,1]}if(padding.length!==2){throw new ValueError(`temporalPadding expects input padding pattern to be a length-2 array, but received a length-${padding.length} array.`)}const pattern=[[0,0],padding,[0,0]];return pad2(x,pattern)})}function spatial2dPadding(x,padding,dataFormat){return tidy(()=>{if(x.rank!==4){throw new ValueError(`temporalPadding expects input tensor to be 4-D, but received a ${x.rank}-D tensor.`)}if(padding==null){padding=[[1,1],[1,1]]}if(padding.length!==2||padding[0].length!==2||padding[1].length!==2){throw new ValueError("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.")}if(dataFormat==null){dataFormat=imageDataFormat()}if(dataFormat!=="channelsLast"&&dataFormat!=="channelsFirst"){throw new ValueError(`Unknown data format: ${dataFormat}. Supported data formats are 'channelsLast' and 'channelsFirst.`)}let pattern;if(dataFormat==="channelsFirst"){pattern=[[0,0],[0,0],padding[0],padding[1]]}else{pattern=[[0,0],padding[0],padding[1],[0,0]]}return pad2(x,pattern)})}class ZeroPadding2D extends Layer{constructor(args){if(args==null){args={}}super(args);this.dataFormat=args.dataFormat==null?imageDataFormat():args.dataFormat;if(args.padding==null){this.padding=[[1,1],[1,1]]}else if(typeof args.padding==="number"){this.padding=[[args.padding,args.padding],[args.padding,args.padding]]}else{args.padding=args.padding;if(args.padding.length!==2){throw new ValueError(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${args.padding.length} array.`)}let heightPadding;let widthPadding;if(typeof args.padding[0]==="number"){heightPadding=[args.padding[0],args.padding[0]];widthPadding=[args.padding[1],args.padding[1]]}else{args.padding=args.padding;if(args.padding[0].length!==2){throw new ValueError(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${args.padding[0].length} array.`)}heightPadding=args.padding[0];if(args.padding[1].length!==2){throw new ValueError(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${args.padding[1].length} array.`)}widthPadding=args.padding[1]}this.padding=[heightPadding,widthPadding]}this.inputSpec=[new InputSpec({ndim:4})]}computeOutputShape(inputShape){inputShape=getExactlyOneShape(inputShape);let rows;let cols;if(this.dataFormat==="channelsFirst"){if(inputShape[2]!=null&&inputShape[2]>=0){rows=inputShape[2]+this.padding[0][0]+this.padding[0][1]}else{rows=null}if(inputShape[3]!=null&&inputShape[3]>=0){cols=inputShape[3]+this.padding[1][0]+this.padding[1][1]}else{cols=null}return[inputShape[0],inputShape[1],rows,cols]}else{if(inputShape[1]!=null&&inputShape[1]>=0){rows=inputShape[1]+this.padding[0][0]+this.padding[0][1]}else{rows=null}if(inputShape[2]!=null&&inputShape[2]>=0){cols=inputShape[2]+this.padding[1][0]+this.padding[1][1]}else{cols=null}return[inputShape[0],rows,cols,inputShape[3]]}}call(inputs,kwargs){return tidy(()=>spatial2dPadding(getExactlyOneTensor(inputs),this.padding,this.dataFormat))}getConfig(){const config2={padding:this.padding,dataFormat:this.dataFormat};const baseConfig=super.getConfig();Object.assign(config2,baseConfig);return config2}}ZeroPadding2D.className="ZeroPadding2D";registerClass(ZeroPadding2D);function pool2d(x,poolSize,strides,padding,dataFormat,poolMode){return tidy(()=>{checkDataFormat(dataFormat);checkPoolMode(poolMode);checkPaddingMode(padding);if(strides==null){strides=[1,1]}if(padding==null){padding="valid"}if(dataFormat==null){dataFormat=imageDataFormat()}if(poolMode==null){poolMode="max"}x=preprocessConv2DInput(x,dataFormat);let y;const paddingString=padding==="same"?"same":"valid";if(poolMode==="max"){y=maxPool2(x,poolSize,strides,paddingString)}else{y=avgPool2(x,poolSize,strides,paddingString)}if(dataFormat==="channelsFirst"){y=transpose2(y,[0,3,1,2])}return y})}function pool3d(x,poolSize,strides,padding,dataFormat,poolMode){return tidy(()=>{checkDataFormat(dataFormat);checkPoolMode(poolMode);checkPaddingMode(padding);if(strides==null){strides=[1,1,1]}if(padding==null){padding="valid"}if(dataFormat==null){dataFormat=imageDataFormat()}if(poolMode==null){poolMode="max"}x=preprocessConv3DInput(x,dataFormat);let y;const paddingString=padding==="same"?"same":"valid";if(poolMode==="max"){y=maxPool3d(x,poolSize,strides,paddingString)}else{y=avgPool3d(x,poolSize,strides,paddingString)}if(dataFormat==="channelsFirst"){y=transpose2(y,[0,4,1,2,3])}return y})}class Pooling1D extends Layer{constructor(args){if(args.poolSize==null){args.poolSize=2}super(args);if(typeof args.poolSize==="number"){this.poolSize=[args.poolSize]}else if(Array.isArray(args.poolSize)&&args.poolSize.length===1&&typeof args.poolSize[0]==="number"){this.poolSize=args.poolSize}else{throw new ValueError(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(args.poolSize)}`)}assertPositiveInteger(this.poolSize,"poolSize");if(args.strides==null){this.strides=this.poolSize}else{if(typeof args.strides==="number"){this.strides=[args.strides]}else if(Array.isArray(args.strides)&&args.strides.length===1&&typeof args.strides[0]==="number"){this.strides=args.strides}else{throw new ValueError(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(args.strides)}`)}}assertPositiveInteger(this.strides,"strides");this.padding=args.padding==null?"valid":args.padding;checkPaddingMode(this.padding);this.inputSpec=[new InputSpec({ndim:3})]}computeOutputShape(inputShape){inputShape=getExactlyOneShape(inputShape);const length=convOutputLength(inputShape[1],this.poolSize[0],this.padding,this.strides[0]);return[inputShape[0],length,inputShape[2]]}call(inputs,kwargs){return tidy(()=>{this.invokeCallHook(inputs,kwargs);inputs=expandDims$1(getExactlyOneTensor(inputs),2);const output=this.poolingFunction(getExactlyOneTensor(inputs),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return squeeze(output,[2])})}getConfig(){const config2={poolSize:this.poolSize,padding:this.padding,strides:this.strides};const baseConfig=super.getConfig();Object.assign(config2,baseConfig);return config2}}class MaxPooling1D extends Pooling1D{constructor(args){super(args)}poolingFunction(inputs,poolSize,strides,padding,dataFormat){checkDataFormat(dataFormat);checkPaddingMode(padding);return pool2d(inputs,poolSize,strides,padding,dataFormat,"max")}}MaxPooling1D.className="MaxPooling1D";registerClass(MaxPooling1D);class AveragePooling1D extends Pooling1D{constructor(args){super(args)}poolingFunction(inputs,poolSize,strides,padding,dataFormat){checkDataFormat(dataFormat);checkPaddingMode(padding);return pool2d(inputs,poolSize,strides,padding,dataFormat,"avg")}}AveragePooling1D.className="AveragePooling1D";registerClass(AveragePooling1D);class Pooling2D extends Layer{constructor(args){if(args.poolSize==null){args.poolSize=[2,2]}super(args);this.poolSize=Array.isArray(args.poolSize)?args.poolSize:[args.poolSize,args.poolSize];if(args.strides==null){this.strides=this.poolSize}else if(Array.isArray(args.strides)){if(args.strides.length!==2){throw new ValueError(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${args.strides.length}.`)}this.strides=args.strides}else{this.strides=[args.strides,args.strides]}assertPositiveInteger(this.poolSize,"poolSize");assertPositiveInteger(this.strides,"strides");this.padding=args.padding==null?"valid":args.padding;this.dataFormat=args.dataFormat==null?"channelsLast":args.dataFormat;checkDataFormat(this.dataFormat);checkPaddingMode(this.padding);this.inputSpec=[new InputSpec({ndim:4})]}computeOutputShape(inputShape){inputShape=getExactlyOneShape(inputShape);let rows=this.dataFormat==="channelsFirst"?inputShape[2]:inputShape[1];let cols=this.dataFormat==="channelsFirst"?inputShape[3]:inputShape[2];rows=convOutputLength(rows,this.poolSize[0],this.padding,this.strides[0]);cols=convOutputLength(cols,this.poolSize[1],this.padding,this.strides[1]);if(this.dataFormat==="channelsFirst"){return[inputShape[0],inputShape[1],rows,cols]}else{return[inputShape[0],rows,cols,inputShape[3]]}}call(inputs,kwargs){return tidy(()=>{this.invokeCallHook(inputs,kwargs);return this.poolingFunction(getExactlyOneTensor(inputs),this.poolSize,this.strides,this.padding,this.dataFormat)})}getConfig(){const config2={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat};const baseConfig=super.getConfig();Object.assign(config2,baseConfig);return config2}}class MaxPooling2D extends Pooling2D{constructor(args){super(args)}poolingFunction(inputs,poolSize,strides,padding,dataFormat){checkDataFormat(dataFormat);checkPaddingMode(padding);return pool2d(inputs,poolSize,strides,padding,dataFormat,"max")}}MaxPooling2D.className="MaxPooling2D";registerClass(MaxPooling2D);class AveragePooling2D extends Pooling2D{constructor(args){super(args)}poolingFunction(inputs,poolSize,strides,padding,dataFormat){checkDataFormat(dataFormat);checkPaddingMode(padding);return pool2d(inputs,poolSize,strides,padding,dataFormat,"avg")}}AveragePooling2D.className="AveragePooling2D";registerClass(AveragePooling2D);class Pooling3D extends Layer{constructor(args){if(args.poolSize==null){args.poolSize=[2,2,2]}super(args);this.poolSize=Array.isArray(args.poolSize)?args.poolSize:[args.poolSize,args.poolSize,args.poolSize];if(args.strides==null){this.strides=this.poolSize}else if(Array.isArray(args.strides)){if(args.strides.length!==3){throw new ValueError(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${args.strides.length}.`)}this.strides=args.strides}else{this.strides=[args.strides,args.strides,args.strides]}assertPositiveInteger(this.poolSize,"poolSize");assertPositiveInteger(this.strides,"strides");this.padding=args.padding==null?"valid":args.padding;this.dataFormat=args.dataFormat==null?"channelsLast":args.dataFormat;checkDataFormat(this.dataFormat);checkPaddingMode(this.padding);this.inputSpec=[new InputSpec({ndim:5})]}computeOutputShape(inputShape){inputShape=getExactlyOneShape(inputShape);let depths=this.dataFormat==="channelsFirst"?inputShape[2]:inputShape[1];let rows=this.dataFormat==="channelsFirst"?inputShape[3]:inputShape[2];let cols=this.dataFormat==="channelsFirst"?inputShape[4]:inputShape[3];depths=convOutputLength(depths,this.poolSize[0],this.padding,this.strides[0]);rows=convOutputLength(rows,this.poolSize[1],this.padding,this.strides[1]);cols=convOutputLength(cols,this.poolSize[2],this.padding,this.strides[2]);if(this.dataFormat==="channelsFirst"){return[inputShape[0],inputShape[1],depths,rows,cols]}else{return[inputShape[0],depths,rows,cols,inputShape[4]]}}call(inputs,kwargs){return tidy(()=>{this.invokeCallHook(inputs,kwargs);return this.poolingFunction(getExactlyOneTensor(inputs),this.poolSize,this.strides,this.padding,this.dataFormat)})}getConfig(){const config2={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat};const baseConfig=super.getConfig();Object.assign(config2,baseConfig);return config2}}class MaxPooling3D extends Pooling3D{constructor(args){super(args)}poolingFunction(inputs,poolSize,strides,padding,dataFormat){checkDataFormat(dataFormat);checkPaddingMode(padding);return pool3d(inputs,poolSize,strides,padding,dataFormat,"max")}}MaxPooling3D.className="MaxPooling3D";registerClass(MaxPooling3D);class AveragePooling3D extends Pooling3D{constructor(args){super(args)}poolingFunction(inputs,poolSize,strides,padding,dataFormat){checkDataFormat(dataFormat);checkPaddingMode(padding);return pool3d(inputs,poolSize,strides,padding,dataFormat,"avg")}}AveragePooling3D.className="AveragePooling3D";registerClass(AveragePooling3D);class GlobalPooling1D extends Layer{constructor(args){super(args);this.inputSpec=[new InputSpec({ndim:3})]}computeOutputShape(inputShape){return[inputShape[0],inputShape[2]]}call(inputs,kwargs){throw new NotImplementedError}}class GlobalAveragePooling1D extends GlobalPooling1D{constructor(args){super(args||{})}call(inputs,kwargs){return tidy(()=>{const input2=getExactlyOneTensor(inputs);return mean(input2,1)})}}GlobalAveragePooling1D.className="GlobalAveragePooling1D";registerClass(GlobalAveragePooling1D);class GlobalMaxPooling1D extends GlobalPooling1D{constructor(args){super(args||{})}call(inputs,kwargs){return tidy(()=>{const input2=getExactlyOneTensor(inputs);return max2(input2,1)})}}GlobalMaxPooling1D.className="GlobalMaxPooling1D";registerClass(GlobalMaxPooling1D);class GlobalPooling2D extends Layer{constructor(args){super(args);this.dataFormat=args.dataFormat==null?"channelsLast":args.dataFormat;checkDataFormat(this.dataFormat);this.inputSpec=[new InputSpec({ndim:4})]}computeOutputShape(inputShape){inputShape=inputShape;if(this.dataFormat==="channelsLast"){return[inputShape[0],inputShape[3]]}else{return[inputShape[0],inputShape[1]]}}call(inputs,kwargs){throw new NotImplementedError}getConfig(){const config2={dataFormat:this.dataFormat};const baseConfig=super.getConfig();Object.assign(config2,baseConfig);return config2}}class GlobalAveragePooling2D extends GlobalPooling2D{call(inputs,kwargs){return tidy(()=>{const input2=getExactlyOneTensor(inputs);if(this.dataFormat==="channelsLast"){return mean(input2,[1,2])}else{return mean(input2,[2,3])}})}}GlobalAveragePooling2D.className="GlobalAveragePooling2D";registerClass(GlobalAveragePooling2D);class GlobalMaxPooling2D extends GlobalPooling2D{call(inputs,kwargs){return tidy(()=>{const input2=getExactlyOneTensor(inputs);if(this.dataFormat==="channelsLast"){return max2(input2,[1,2])}else{return max2(input2,[2,3])}})}}GlobalMaxPooling2D.className="GlobalMaxPooling2D";registerClass(GlobalMaxPooling2D);class Wrapper extends Layer{constructor(args){super(args);this.layer=args.layer}build(inputShape){this.built=true}get trainable(){if(this.layer!=null){return this.layer.trainable}else{return false}}set trainable(value){if(this.layer!=null){this.layer.trainable=value}}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(weights){this.layer.setWeights(weights)}getConfig(){const config2={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}};const baseConfig=super.getConfig();Object.assign(config2,baseConfig);return config2}setFastWeightInitDuringBuild(value){super.setFastWeightInitDuringBuild(value);if(this.layer!=null){this.layer.setFastWeightInitDuringBuild(value)}}static fromConfig(cls,config2,customObjects={}){const layerConfig=config2["layer"];const layer=deserialize(layerConfig,customObjects);delete config2["layer"];const newConfig={layer};Object.assign(newConfig,config2);return new cls(newConfig)}}class TimeDistributed extends Wrapper{constructor(args){super(args);this.supportsMasking=true}build(inputShape){inputShape=getExactlyOneShape(inputShape);if(inputShape.length<3){throw new ValueError(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(inputShape)}`)}this.inputSpec=[{shape:inputShape}];const childInputShape=[inputShape[0]].concat(inputShape.slice(2));if(!this.layer.built){this.layer.build(childInputShape);this.layer.built=true}super.build(inputShape)}computeOutputShape(inputShape){inputShape=getExactlyOneShape(inputShape);const childInputShape=[inputShape[0]].concat(inputShape.slice(2));const childOutputShape=this.layer.computeOutputShape(childInputShape);const timesteps=inputShape[1];return[childOutputShape[0],timesteps].concat(childOutputShape.slice(1))}call(inputs,kwargs){return tidy(()=>{inputs=getExactlyOneTensor(inputs);const step2=(inputs2,states)=>{const output=getExactlyOneTensor(this.layer.call(inputs2,kwargs));return[output,[]]};const rnnOutputs=rnn(step2,inputs,[],false,null,null,false,true);const y=rnnOutputs[1];return y})}}TimeDistributed.className="TimeDistributed";registerClass(TimeDistributed);function checkBidirectionalMergeMode(value){checkStringTypeUnionValue(VALID_BIDIRECTIONAL_MERGE_MODES,"BidirectionalMergeMode",value)}const DEFAULT_BIDIRECTIONAL_MERGE_MODE="concat";class Bidirectional extends Wrapper{constructor(args){super(args);const layerConfig=args.layer.getConfig();const forwDict={};forwDict["className"]=args.layer.getClassName();forwDict["config"]=layerConfig;this.forwardLayer=deserialize(forwDict);layerConfig["goBackwards"]=layerConfig["goBackwards"]===true?false:true;const backDict={};backDict["className"]=args.layer.getClassName();backDict["config"]=layerConfig;this.backwardLayer=deserialize(backDict);this.forwardLayer.name="forward_"+this.forwardLayer.name;this.backwardLayer.name="backward_"+this.backwardLayer.name;this.mergeMode=args.mergeMode===void 0?DEFAULT_BIDIRECTIONAL_MERGE_MODE:args.mergeMode;checkBidirectionalMergeMode(this.mergeMode);if(args.weights){throw new NotImplementedError("weights support is not implemented for Bidirectional layer yet.")}this._stateful=args.layer.stateful;this.returnSequences=args.layer.returnSequences;this.returnState=args.layer.returnState;this.supportsMasking=true;this._trainable=true;this.inputSpec=args.layer.inputSpec;this.numConstants=null}get trainable(){return this._trainable}set trainable(value){this._trainable=value;if(this.forwardLayer!=null){this.forwardLayer.trainable=value}if(this.backwardLayer!=null){this.backwardLayer.trainable=value}}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(weights){const numWeights=weights.length;const numeightsOver2=Math.floor(numWeights/2);this.forwardLayer.setWeights(weights.slice(0,numeightsOver2));this.backwardLayer.setWeights(weights.slice(numeightsOver2))}computeOutputShape(inputShape){let layerShapes=this.forwardLayer.computeOutputShape(inputShape);if(!(Array.isArray(layerShapes)&&Array.isArray(layerShapes[0]))){layerShapes=[layerShapes]}layerShapes=layerShapes;let outputShape;let outputShapes;let stateShape;if(this.returnState){stateShape=layerShapes.slice(1);outputShape=layerShapes[0]}else{outputShape=layerShapes[0]}outputShape=outputShape;if(this.mergeMode==="concat"){outputShape[outputShape.length-1]*=2;outputShapes=[outputShape]}else if(this.mergeMode==null){outputShapes=[outputShape,outputShape.slice()]}else{outputShapes=[outputShape]}if(this.returnState){if(this.mergeMode==null){return outputShapes.concat(stateShape).concat(stateShape.slice())}return[outputShape].concat(stateShape).concat(stateShape.slice())}return singletonOrArray(outputShapes)}apply(inputs,kwargs){let initialState=kwargs==null?null:kwargs["initialState"];let constants=kwargs==null?null:kwargs["constants"];if(kwargs==null){kwargs={}}const standardized=standardizeArgs(inputs,initialState,constants,this.numConstants);inputs=standardized.inputs;initialState=standardized.initialState;constants=standardized.constants;if(Array.isArray(inputs)){initialState=inputs.slice(1);inputs=inputs[0]}if((initialState==null||initialState.length===0)&&constants==null){return super.apply(inputs,kwargs)}const additionalInputs=[];const additionalSpecs=[];if(initialState!=null){const numStates=initialState.length;if(numStates%2>0){throw new ValueError("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.")}kwargs["initialState"]=initialState;additionalInputs.push(...initialState);const stateSpecs=initialState.map(state=>new InputSpec({shape:state.shape}));this.forwardLayer.stateSpec=stateSpecs.slice(0,numStates/2);this.backwardLayer.stateSpec=stateSpecs.slice(numStates/2);additionalSpecs.push(...stateSpecs)}if(constants!=null){throw new NotImplementedError("Support for constants in Bidirectional layers is not implemented yet.")}const isSymbolicTensor=additionalInputs[0]instanceof SymbolicTensor;for(const tensor2 of additionalInputs){if(tensor2 instanceof SymbolicTensor!==isSymbolicTensor){throw new ValueError("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors")}}if(isSymbolicTensor){const fullInput=[inputs].concat(additionalInputs);const fullInputSpec=this.inputSpec.concat(additionalSpecs);const originalInputSpec=this.inputSpec;this.inputSpec=fullInputSpec;const output=super.apply(fullInput,kwargs);this.inputSpec=originalInputSpec;return output}else{return super.apply(inputs,kwargs)}}call(inputs,kwargs){return tidy(()=>{const initialState=kwargs["initialState"];let y;let yRev;if(initialState==null){y=this.forwardLayer.call(inputs,kwargs);yRev=this.backwardLayer.call(inputs,kwargs)}else{const forwardState=initialState.slice(0,initialState.length/2);const backwardState=initialState.slice(initialState.length/2);y=this.forwardLayer.call(inputs,Object.assign(kwargs,{initialState:forwardState}));yRev=this.backwardLayer.call(inputs,Object.assign(kwargs,{initialState:backwardState}))}let states;if(this.returnState){if(Array.isArray(y)){states=y.slice(1).concat(yRev.slice(1))}else{}y=y[0];yRev=yRev[0]}if(this.returnSequences){yRev=reverse2(yRev,1)}let output;if(this.mergeMode==="concat"){output=concatenate([y,yRev])}else if(this.mergeMode==="sum"){output=add$1(y,yRev)}else if(this.mergeMode==="ave"){output=mul(.5,add$1(y,yRev))}else if(this.mergeMode==="mul"){output=mul(y,yRev)}else if(this.mergeMode==null){output=[y,yRev]}if(this.returnState){if(this.mergeMode==null){return output.concat(states)}return[output].concat(states)}return output})}resetStates(states){this.forwardLayer.resetStates();this.backwardLayer.resetStates()}build(inputShape){nameScope(this.forwardLayer.name,()=>{this.forwardLayer.build(inputShape)});nameScope(this.backwardLayer.name,()=>{this.backwardLayer.build(inputShape)});this.built=true}computeMask(inputs,mask){if(Array.isArray(mask)){mask=mask[0]}let outputMask;if(this.returnSequences){if(this.mergeMode==null){outputMask=[mask,mask]}else{outputMask=mask}}else{if(this.mergeMode==null){outputMask=[null,null]}else{outputMask=null}}if(this.returnState){const states=this.forwardLayer.states;const stateMask=states.map(state=>null);if(Array.isArray(outputMask)){return outputMask.concat(stateMask).concat(stateMask)}else{return[outputMask].concat(stateMask).concat(stateMask)}}else{return outputMask}}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(value){super.setFastWeightInitDuringBuild(value);if(this.forwardLayer!=null){this.forwardLayer.setFastWeightInitDuringBuild(value)}if(this.backwardLayer!=null){this.backwardLayer.setFastWeightInitDuringBuild(value)}}getConfig(){const config2={mergeMode:this.mergeMode};const baseConfig=super.getConfig();Object.assign(config2,baseConfig);return config2}static fromConfig(cls,config2){const rnnLayer=deserialize(config2["layer"]);delete config2["layer"];if(config2["numConstants"]!=null){throw new NotImplementedError(`Deserialization of a Bidirectional layer with numConstants present is not supported yet.`)}const newConfig=config2;newConfig["layer"]=rnnLayer;return new cls(newConfig)}}Bidirectional.className="Bidirectional";registerClass(Bidirectional);function inputLayer(args){return new InputLayer(args)}function elu$2(args){return new ELU(args)}function reLU(args){return new ReLU(args)}function leakyReLU(args){return new LeakyReLU(args)}function prelu$1(args){return new PReLU(args)}function softmax$1(args){return new Softmax$2(args)}function thresholdedReLU(args){return new ThresholdedReLU(args)}function conv1d$2(args){return new Conv1D(args)}function conv2d$3(args){return new Conv2D$1(args)}function conv2dTranspose$1(args){return new Conv2DTranspose(args)}function conv3d$2(args){return new Conv3D$1(args)}function separableConv2d$1(args){return new SeparableConv2D(args)}function cropping2D(args){return new Cropping2D(args)}function upSampling2d(args){return new UpSampling2D(args)}function depthwiseConv2d$3(args){return new DepthwiseConv2D(args)}function activation(args){return new Activation$1(args)}function dense(args){return new Dense(args)}function dropout$2(args){return new Dropout(args)}function spatialDropout1d(args){return new SpatialDropout1D(args)}function flatten$2(args){return new Flatten(args)}function repeatVector(args){return new RepeatVector(args)}function reshape$1(args){return new Reshape$1(args)}function permute(args){return new Permute(args)}function embedding2(args){return new Embedding(args)}function add$3(args){return new Add$1(args)}function average$1(args){return new Average(args)}function concatenate$2(args){return new Concatenate(args)}function maximum$2(args){return new Maximum$1(args)}function minimum$2(args){return new Minimum$1(args)}function multiply$1(args){return new Multiply$1(args)}function dot$2(args){return new Dot(args)}function batchNormalization$1(args){return new BatchNormalization(args)}function layerNormalization(args){return new LayerNormalization(args)}function zeroPadding2d(args){return new ZeroPadding2D(args)}function averagePooling1d(args){return new AveragePooling1D(args)}function avgPool1d(args){return averagePooling1d(args)}function avgPooling1d(args){return averagePooling1d(args)}function averagePooling2d(args){return new AveragePooling2D(args)}function avgPool2d(args){return averagePooling2d(args)}function avgPooling2d(args){return averagePooling2d(args)}function averagePooling3d(args){return new AveragePooling3D(args)}function avgPool3d$1(args){return averagePooling3d(args)}function avgPooling3d(args){return averagePooling3d(args)}function globalAveragePooling1d(args){return new GlobalAveragePooling1D(args)}function globalAveragePooling2d(args){return new GlobalAveragePooling2D(args)}function globalMaxPooling1d(args){return new GlobalMaxPooling1D(args)}function globalMaxPooling2d(args){return new GlobalMaxPooling2D(args)}function maxPooling1d(args){return new MaxPooling1D(args)}function maxPooling2d(args){return new MaxPooling2D(args)}function maxPooling3d(args){return new MaxPooling3D(args)}function gru(args){return new GRU(args)}function gruCell(args){return new GRUCell(args)}function lstm(args){return new LSTM(args)}function lstmCell(args){return new LSTMCell(args)}function simpleRNN(args){return new SimpleRNN(args)}function simpleRNNCell(args){return new SimpleRNNCell(args)}function convLstm2d(args){return new ConvLSTM2D(args)}function convLstm2dCell(args){return new ConvLSTM2DCell(args)}function rnn$1(args){return new RNN(args)}function stackedRNNCells(args){return new StackedRNNCells(args)}function bidirectional(args){return new Bidirectional(args)}function timeDistributed(args){return new TimeDistributed(args)}const globalMaxPool1d=globalMaxPooling1d;const globalMaxPool2d=globalMaxPooling2d;const maxPool1d=maxPooling1d;const maxPool2d=maxPooling2d;function gaussianNoise(args){return new GaussianNoise(args)}function gaussianDropout(args){return new GaussianDropout(args)}function alphaDropout(args){return new AlphaDropout(args)}function masking(args){return new Masking(args)}var exports_layers=Object.freeze({__proto__:null,inputLayer,elu:elu$2,reLU,leakyReLU,prelu:prelu$1,softmax:softmax$1,thresholdedReLU,conv1d:conv1d$2,conv2d:conv2d$3,conv2dTranspose:conv2dTranspose$1,conv3d:conv3d$2,separableConv2d:separableConv2d$1,cropping2D,upSampling2d,depthwiseConv2d:depthwiseConv2d$3,activation,dense,dropout:dropout$2,spatialDropout1d,flatten:flatten$2,repeatVector,reshape:reshape$1,permute,embedding:embedding2,add:add$3,average:average$1,concatenate:concatenate$2,maximum:maximum$2,minimum:minimum$2,multiply:multiply$1,dot:dot$2,batchNormalization:batchNormalization$1,layerNormalization,zeroPadding2d,averagePooling1d,avgPool1d,avgPooling1d,averagePooling2d,avgPool2d,avgPooling2d,averagePooling3d,avgPool3d:avgPool3d$1,avgPooling3d,globalAveragePooling1d,globalAveragePooling2d,globalMaxPooling1d,globalMaxPooling2d,maxPooling1d,maxPooling2d,maxPooling3d,gru,gruCell,lstm,lstmCell,simpleRNN,simpleRNNCell,convLstm2d,convLstm2dCell,rnn:rnn$1,stackedRNNCells,bidirectional,timeDistributed,globalMaxPool1d,globalMaxPool2d,maxPool1d,maxPool2d,Layer,RNN,RNNCell,input,gaussianNoise,gaussianDropout,alphaDropout,masking});function binaryAccuracy$1(yTrue,yPred){return binaryAccuracy(yTrue,yPred)}function binaryCrossentropy$2(yTrue,yPred){return binaryCrossentropy$1(yTrue,yPred)}function sparseCategoricalAccuracy$1(yTrue,yPred){return sparseCategoricalAccuracy(yTrue,yPred)}function categoricalAccuracy$1(yTrue,yPred){return categoricalAccuracy(yTrue,yPred)}function categoricalCrossentropy$2(yTrue,yPred){return categoricalCrossentropy$1(yTrue,yPred)}function precision$1(yTrue,yPred){return precision(yTrue,yPred)}function recall$1(yTrue,yPred){return recall(yTrue,yPred)}function cosineProximity$1(yTrue,yPred){return cosineProximity(yTrue,yPred)}function meanAbsoluteError$1(yTrue,yPred){return meanAbsoluteError(yTrue,yPred)}function meanAbsolutePercentageError$1(yTrue,yPred){return meanAbsolutePercentageError(yTrue,yPred)}function MAPE$2(yTrue,yPred){return meanAbsolutePercentageError(yTrue,yPred)}function mape$2(yTrue,yPred){return meanAbsolutePercentageError(yTrue,yPred)}function meanSquaredError$2(yTrue,yPred){return meanSquaredError$1(yTrue,yPred)}function MSE$2(yTrue,yPred){return meanSquaredError$1(yTrue,yPred)}function mse$2(yTrue,yPred){return meanSquaredError$1(yTrue,yPred)}var exports_metrics=Object.freeze({__proto__:null,binaryAccuracy:binaryAccuracy$1,binaryCrossentropy:binaryCrossentropy$2,sparseCategoricalAccuracy:sparseCategoricalAccuracy$1,categoricalAccuracy:categoricalAccuracy$1,categoricalCrossentropy:categoricalCrossentropy$2,precision:precision$1,recall:recall$1,cosineProximity:cosineProximity$1,meanAbsoluteError:meanAbsoluteError$1,meanAbsolutePercentageError:meanAbsolutePercentageError$1,MAPE:MAPE$2,mape:mape$2,meanSquaredError:meanSquaredError$2,MSE:MSE$2,mse:mse$2});var exports_models=Object.freeze({__proto__:null,modelFromJSON});function l1l2(config2){return new L1L2(config2)}function l1$1(config2){return l1(config2)}function l2$1(config2){return l2(config2)}var exports_regularizers=Object.freeze({__proto__:null,l1l2,l1:l1$1,l2:l2$1});class Callback extends BaseCallback{constructor(){super(...arguments);this.model=null}setModel(model2){if(!(model2 instanceof LayersModel)){throw new Error("model must be a LayersModel, not some other Container")}this.model=model2}}function less$1(currVal,prevVal){return currVal<prevVal}function greater$1(currVal,prevVal){return currVal>prevVal}class EarlyStopping extends Callback{constructor(args){super();if(args==null){args={}}if(args.restoreBestWeights){throw new NotImplementedError("restoreBestWeights = True is not implemented in EarlyStopping yet.")}this.monitor=args.monitor||"val_loss";this.minDelta=Math.abs(args.minDelta||0);this.patience=args.patience||0;this.verbose=args.verbose||0;this.mode=args.mode||"auto";this.baseline=args.baseline;if(["auto","min","max"].indexOf(this.mode)===-1){console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`);this.mode="auto"}if(this.mode==="min"){this.monitorFunc=less$1}else if(this.mode==="max"){this.monitorFunc=greater$1}else{if(this.monitor.indexOf("acc")!==-1){this.monitorFunc=greater$1}else{this.monitorFunc=less$1}}if(this.monitorFunc===less$1){this.minDelta*=-1}}async onTrainBegin(logs){this.wait=0;this.stoppedEpoch=0;if(this.baseline!=null){this.best=this.baseline}else{this.best=this.monitorFunc===less$1?Infinity:-Infinity}}async onEpochEnd(epoch,logs){await resolveScalarsInLogs(logs);const current=this.getMonitorValue(logs);if(current==null){return}if(this.monitorFunc(current-this.minDelta,this.best)){this.best=current;this.wait=0}else{this.wait++;if(this.wait>=this.patience){this.stoppedEpoch=epoch;this.model.stopTraining=true}}}async onTrainEnd(logs){if(this.stoppedEpoch>0&&this.verbose){console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}}getMonitorValue(logs){if(logs==null){logs={}}const monitorValue=logs[this.monitor];if(monitorValue==null){console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(logs)}`)}return monitorValue}}function earlyStopping(args){return new EarlyStopping(args)}const callbacks={earlyStopping};var DataType;(function(DataType2){DataType2[DataType2["DT_INVALID"]=0]="DT_INVALID";DataType2[DataType2["DT_FLOAT"]=1]="DT_FLOAT";DataType2[DataType2["DT_DOUBLE"]=2]="DT_DOUBLE";DataType2[DataType2["DT_INT32"]=3]="DT_INT32";DataType2[DataType2["DT_UINT8"]=4]="DT_UINT8";DataType2[DataType2["DT_INT16"]=5]="DT_INT16";DataType2[DataType2["DT_INT8"]=6]="DT_INT8";DataType2[DataType2["DT_STRING"]=7]="DT_STRING";DataType2[DataType2["DT_COMPLEX64"]=8]="DT_COMPLEX64";DataType2[DataType2["DT_INT64"]=9]="DT_INT64";DataType2[DataType2["DT_BOOL"]=10]="DT_BOOL";DataType2[DataType2["DT_QINT8"]=11]="DT_QINT8";DataType2[DataType2["DT_QUINT8"]=12]="DT_QUINT8";DataType2[DataType2["DT_QINT32"]=13]="DT_QINT32";DataType2[DataType2["DT_BFLOAT16"]=14]="DT_BFLOAT16";DataType2[DataType2["DT_FLOAT_REF"]=101]="DT_FLOAT_REF";DataType2[DataType2["DT_DOUBLE_REF"]=102]="DT_DOUBLE_REF";DataType2[DataType2["DT_INT32_REF"]=103]="DT_INT32_REF";DataType2[DataType2["DT_UINT8_REF"]=104]="DT_UINT8_REF";DataType2[DataType2["DT_INT16_REF"]=105]="DT_INT16_REF";DataType2[DataType2["DT_INT8_REF"]=106]="DT_INT8_REF";DataType2[DataType2["DT_STRING_REF"]=107]="DT_STRING_REF";DataType2[DataType2["DT_COMPLEX64_REF"]=108]="DT_COMPLEX64_REF";DataType2[DataType2["DT_INT64_REF"]=109]="DT_INT64_REF";DataType2[DataType2["DT_BOOL_REF"]=110]="DT_BOOL_REF";DataType2[DataType2["DT_QINT8_REF"]=111]="DT_QINT8_REF";DataType2[DataType2["DT_QUINT8_REF"]=112]="DT_QUINT8_REF";DataType2[DataType2["DT_QINT32_REF"]=113]="DT_QINT32_REF";DataType2[DataType2["DT_BFLOAT16_REF"]=114]="DT_BFLOAT16_REF"})(DataType||(DataType={}));var SaverDef;(function(SaverDef2){let CheckpointFormatVersion;(function(CheckpointFormatVersion2){CheckpointFormatVersion2[CheckpointFormatVersion2["LEGACY"]=0]="LEGACY";CheckpointFormatVersion2[CheckpointFormatVersion2["V1"]=1]="V1";CheckpointFormatVersion2[CheckpointFormatVersion2["V2"]=2]="V2"})(CheckpointFormatVersion=SaverDef2.CheckpointFormatVersion||(SaverDef2.CheckpointFormatVersion={}))})(SaverDef||(SaverDef={}));const CUSTOM_OPS={};function registerOp(name,opFunc){const opMapper={tfOpName:name,category:"custom",inputs:[],attrs:[],customExecutor:opFunc};CUSTOM_OPS[name]=opMapper}function getRegisteredOp(name){return CUSTOM_OPS[name]}function deregisterOp(name){delete CUSTOM_OPS[name]}function getParamValue(paramName,node,tensorMap,context,resourceManager){const inputParam=node.inputParams[paramName];if(inputParam&&inputParam.inputIndexStart!==void 0){const start=inputParam.inputIndexStart;const end=inputParam.inputIndexEnd===0?void 0:inputParam.inputIndexEnd===void 0?start+1:inputParam.inputIndexEnd;if(inputParam.type==="tensor"){return getTensor(node.inputNames[inputParam.inputIndexStart],tensorMap,context,resourceManager)}if(inputParam.type==="tensors"){const inputs=node.inputNames.slice(start,end);return inputs.map(name=>getTensor(name,tensorMap,context,resourceManager))}const tensor2=getTensor(node.inputNames.slice(start)[0],tensorMap,context,resourceManager);const data2=tensor2.dataSync();return inputParam.type==="number"?data2[0]:toNestedArray(tensor2.shape,data2)}const attrParam=node.attrParams[paramName];return attrParam&&attrParam.value}function getTensor(name,tensorsMap,context,resourceManager){const[nodeName,index2]=parseNodeName(name);if(resourceManager!=null){const tensor2=resourceManager.getHashTableHandleByName(nodeName);if(tensor2!=null){return tensor2}}const contextId=context.currentContextIds.find(contextId2=>{return!!tensorsMap[getNodeNameWithContextId(nodeName,contextId2)]});return contextId!==void 0?tensorsMap[getNodeNameWithContextId(nodeName,contextId)][index2]:void 0}function getTensorsForCurrentContenxt(name,tensorsMap,context){return tensorsMap[getNodeNameWithContextId(name,context.currentContextId)]}function getNodeNameAndIndex(inputName,context){const[nodeName,index2]=parseNodeName(inputName);return[getNodeNameWithContextId(nodeName,context&&context.currentContextId),index2]}function getNodeNameWithContextId(name,contextId){return!!contextId?`${name}-${contextId}`:name}function parseNodeName(name){const parts=name.split(":");if(parts.length===1){return[name,0]}const nodeName=parts[0];return[nodeName,Number(parts[parts.length-1])]}function split$2(arr,size){const res=[];for(let i=0;i<arr.length;i+=size){res.push(arr.slice(i,i+size))}return res}function getPadding(node,tensorMap,context){let pad3=getParamValue("pad",node,tensorMap,context);if(pad3==="explicit"){pad3=getParamValue("explicitPaddings",node,tensorMap,context);const explicitPadding=[[0,0],[0,0],[0,0],[0,0]];for(let i=0;i<4;i++){explicitPadding[i][0]=pad3[i*2];explicitPadding[i][1]=pad3[i*2+1]}return explicitPadding}return pad3}function cloneTensor(tensor2){return tensor2.kept?tensor2:clone(tensor2)}const json=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]}];var arithmetic=Object.freeze({__proto__:null,json});const json$1=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"clip_value_min",name:"clipValueMin",type:"number"},{tfName:"clip_value_max",name:"clipValueMax",type:"number"}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:true}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:true}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true},{tfName:"clipValueMin",name:"clipValueMin",type:"number",defaultValue:0},{tfName:"clipValueMax",name:"clipValueMax",type:"number",defaultValue:6}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:true},{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]}];var basicMath=Object.freeze({__proto__:null,json:json$1});const json$2=[{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:true}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}];var control=Object.freeze({__proto__:null,json:json$2});const json$3=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:true},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:true},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:true},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:true},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:true},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:true},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:true},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:true},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:true},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}];var convolution=Object.freeze({__proto__:null,json:json$3});const json$4=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:true},{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:true},{tfName:"T",name:"T",type:"number",notSupported:true}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:true},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:true}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}];var creation=Object.freeze({__proto__:null,json:json$4});const json$5=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:true},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]}];var dynamic=Object.freeze({__proto__:null,json:json$5});const json$6=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}];var evaluation=Object.freeze({__proto__:null,json:json$6});const json$7=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:true},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}];var graph=Object.freeze({__proto__:null,json:json$7});const json$8=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:true},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:true}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:true},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:true}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:true},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:true}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:true},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:true}]}];var hashTable=Object.freeze({__proto__:null,json:json$8});const json$9=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}];var image$1=Object.freeze({__proto__:null,json:json$9});const json$a=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]}];var logical=Object.freeze({__proto__:null,json:json$a});const json$b=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:false},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:false},{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:false},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:false},{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:false},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:false},{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:false},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:false},{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:true}]}];var matrices=Object.freeze({__proto__:null,json:json$b});const json$c=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:true}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:true}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:true}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:true,notSupported:true}]}];var normalization=Object.freeze({__proto__:null,json:json$c});const json$d=[{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}];var reduction=Object.freeze({__proto__:null,json:json$d});const json$e=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:true}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool",notSupported:true}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:true}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:false,notSupported:true}]}];var sliceJoin=Object.freeze({__proto__:null,json:json$e});const json$f=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:true}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:true}]}];var spectral$1=Object.freeze({__proto__:null,json:json$f});const json$g=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:true},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}];var transformation=Object.freeze({__proto__:null,json:json$g});class OperationMapper{static get Instance(){return this._instance||(this._instance=new this)}constructor(){const ops=[arithmetic,basicMath,control,convolution,creation,dynamic,evaluation,logical,image$1,graph,matrices,normalization,reduction,sliceJoin,spectral$1,transformation,hashTable];const mappersJson=[].concat(...ops.map(op2=>op2.json));this.opMappers=mappersJson.reduce((map,mapper)=>{map[mapper.tfOpName]=mapper;return map},{})}transformGraph(graph2,signature={}){const tfNodes=graph2.node;const placeholders=[];const weights=[];const initNodes=[];const nodes=tfNodes.reduce((map,node)=>{map[node.name]=this.mapNode(node);if(node.op.startsWith("Placeholder")){placeholders.push(map[node.name])}else if(node.op==="Const"){weights.push(map[node.name])}else if(node.input==null||node.input.length===0){initNodes.push(map[node.name])}return map},{});let inputs=[];const outputs=[];let inputNodeNameToKey={};let outputNodeNameToKey={};if(signature!=null){inputNodeNameToKey=this.mapSignatureEntries(signature.inputs);outputNodeNameToKey=this.mapSignatureEntries(signature.outputs)}const allNodes=Object.keys(nodes);allNodes.forEach(key=>{const node=nodes[key];node.inputNames.forEach(name=>{const[nodeName]=getNodeNameAndIndex(name);node.inputs.push(nodes[nodeName]);nodes[nodeName].children.push(node)})});if(Object.keys(outputNodeNameToKey).length===0){allNodes.forEach(key=>{const node=nodes[key];if(node.children.length===0){outputs.push(node)}})}else{Object.keys(outputNodeNameToKey).forEach(name=>{const[nodeName]=getNodeNameAndIndex(name);const node=nodes[nodeName];if(node!=null){node.signatureKey=outputNodeNameToKey[name];outputs.push(node)}})}if(Object.keys(inputNodeNameToKey).length>0){Object.keys(inputNodeNameToKey).forEach(name=>{const[nodeName]=getNodeNameAndIndex(name);const node=nodes[nodeName];if(node){node.signatureKey=inputNodeNameToKey[name];inputs.push(node)}})}else{inputs=placeholders}let functions={};if(graph2.library!=null&&graph2.library.function!=null){functions=graph2.library.function.reduce((functions2,func2)=>{functions2[func2.signature.name]=this.mapFunction(func2);return functions2},{})}const result={nodes,inputs,outputs,weights,placeholders,signature,functions};if(initNodes.length>0){result.initNodes=initNodes}return result}mapSignatureEntries(entries){return Object.keys(entries||{}).reduce((prev,curr)=>{prev[entries[curr].name]=curr;return prev},{})}mapNode(node){const mapper=getRegisteredOp(node.op)||this.opMappers[node.op]||{};if(node.attr==null){node.attr={}}const newNode={name:node.name,op:node.op,category:mapper.category,inputNames:(node.input||[]).map(input2=>input2.startsWith("^")?input2.substr(1):input2),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:node.attr};if(mapper.inputs!=null){newNode.inputParams=mapper.inputs.reduce((map,param)=>{map[param.name]={type:param.type,inputIndexStart:param.start,inputIndexEnd:param.end};return map},{})}if(mapper.attrs!=null){newNode.attrParams=mapper.attrs.reduce((map,param)=>{const type=param.type;let value=void 0;switch(param.type){case"string":value=getStringParam(node.attr,param.tfName,param.defaultValue);if(value===void 0&&!!param.tfDeprecatedName){value=getStringParam(node.attr,param.tfDeprecatedName,param.defaultValue)}break;case"string[]":value=getStringArrayParam(node.attr,param.tfName,param.defaultValue);if(value===void 0&&!!param.tfDeprecatedName){value=getStringArrayParam(node.attr,param.tfDeprecatedName,param.defaultValue)}break;case"number":value=getNumberParam(node.attr,param.tfName,param.defaultValue||0);if(value===void 0&&!!param.tfDeprecatedName){value=getNumberParam(node.attr,param.tfDeprecatedName,param.defaultValue)}break;case"number[]":value=getNumericArrayParam(node.attr,param.tfName,param.defaultValue);if(value===void 0&&!!param.tfDeprecatedName){value=getNumericArrayParam(node.attr,param.tfDeprecatedName,param.defaultValue)}break;case"bool":value=getBoolParam(node.attr,param.tfName,param.defaultValue);if(value===void 0&&!!param.tfDeprecatedName){value=getBoolParam(node.attr,param.tfDeprecatedName,param.defaultValue)}break;case"bool[]":value=getBoolArrayParam(node.attr,param.tfName,param.defaultValue);if(value===void 0&&!!param.tfDeprecatedName){value=getBoolArrayParam(node.attr,param.tfDeprecatedName,param.defaultValue)}break;case"shape":value=getTensorShapeParam(node.attr,param.tfName,param.defaultValue);if(value===void 0&&!!param.tfDeprecatedName){value=getTensorShapeParam(node.attr,param.tfDeprecatedName,param.defaultValue)}break;case"shape[]":value=getTensorShapeArrayParam(node.attr,param.tfName,param.defaultValue);if(value===void 0&&!!param.tfDeprecatedName){value=getTensorShapeArrayParam(node.attr,param.tfDeprecatedName,param.defaultValue)}break;case"dtype":value=getDtypeParam(node.attr,param.tfName,param.defaultValue);if(value===void 0&&!!param.tfDeprecatedName){value=getDtypeParam(node.attr,param.tfDeprecatedName,param.defaultValue)}break;case"dtype[]":value=getDtypeArrayParam(node.attr,param.tfName,param.defaultValue);if(value===void 0&&!!param.tfDeprecatedName){value=getDtypeArrayParam(node.attr,param.tfDeprecatedName,param.defaultValue)}break;case"func":value=getFuncParam(node.attr,param.tfName,param.defaultValue);if(value===void 0&&!!param.tfDeprecatedName){value=getFuncParam(node.attr,param.tfDeprecatedName,param.defaultValue)}break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${param.type} for op: ${node.op}`)}map[param.name]={value,type};return map},{})}return newNode}mapFunction(functionDef){const tfNodes=functionDef.nodeDef;const placeholders=[];const weights=[];let nodes={};if(tfNodes!=null){nodes=tfNodes.reduce((map,node)=>{map[node.name]=this.mapNode(node);if(node.op==="Const"){weights.push(map[node.name])}return map},{})}const inputs=[];const outputs=[];functionDef.signature.inputArg.forEach(arg=>{const[nodeName]=getNodeNameAndIndex(arg.name);const node={name:nodeName,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:parseDtypeParam(arg.type),type:"dtype"}},children:[]};node.signatureKey=arg.name;inputs.push(node);nodes[nodeName]=node});const allNodes=Object.keys(nodes);allNodes.forEach(key=>{const node=nodes[key];node.inputNames.forEach(name=>{const[nodeName]=getNodeNameAndIndex(name);node.inputs.push(nodes[nodeName]);nodes[nodeName].children.push(node)})});const returnNodeMap=functionDef.ret;functionDef.signature.outputArg.forEach(output=>{const[nodeName,index2]=getNodeNameAndIndex(returnNodeMap[output.name]);const node=nodes[nodeName];if(node!=null){node.defaultOutput=index2;outputs.push(node)}});const signature=this.mapArgsToSignature(functionDef);return{nodes,inputs,outputs,weights,placeholders,signature}}mapArgsToSignature(functionDef){return{methodName:functionDef.signature.name,inputs:functionDef.signature.inputArg.reduce((map,arg)=>{map[arg.name]=this.mapArgToTensorInfo(arg);return map},{}),outputs:functionDef.signature.outputArg.reduce((map,arg)=>{map[arg.name]=this.mapArgToTensorInfo(arg,functionDef.ret);return map},{})}}mapArgToTensorInfo(arg,nameMap2){let name=arg.name;if(nameMap2!=null){name=nameMap2[name]}return{name,dtype:arg.type}}}function decodeBase64(text){const global2=env3().global;if(typeof global2.atob!=="undefined"){return global2.atob(text)}else if(typeof Buffer!=="undefined"){return new Buffer(text,"base64").toString()}else{throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}}function parseStringParam(s,keepCase){const value=Array.isArray(s)?String.fromCharCode.apply(null,s):decodeBase64(s);return keepCase?value:value.toLowerCase()}function getStringParam(attrs,name,def,keepCase=false){const param=attrs[name];if(param!=null){return parseStringParam(param.s,keepCase)}return def}function getBoolParam(attrs,name,def){const param=attrs[name];return param?param.b:def}function getNumberParam(attrs,name,def){const param=attrs[name]||{};const value=param["i"]!=null?param["i"]:param["f"]!=null?param["f"]:def;return typeof value==="number"?value:parseInt(value,10)}function parseDtypeParam(value){if(typeof value==="string"){value=DataType[value]}switch(value){case DataType.DT_FLOAT:return"float32";case DataType.DT_INT32:case DataType.DT_INT64:case DataType.DT_INT8:case DataType.DT_UINT8:return"int32";case DataType.DT_BOOL:return"bool";case DataType.DT_DOUBLE:return"float32";case DataType.DT_STRING:return"string";default:return null}}function getFuncParam(attrs,name,def){const param=attrs[name];if(param&&param.func){return param.func.name}return def}function getDtypeParam(attrs,name,def){const param=attrs[name];if(param&&param.type){return parseDtypeParam(param.type)}return def}function getDtypeArrayParam(attrs,name,def){const param=attrs[name];if(param&&param.list&&param.list.type){return param.list.type.map(v=>parseDtypeParam(v))}return def}function parseTensorShapeParam(shape){if(shape.unknownRank){return void 0}if(shape.dim!=null){return shape.dim.map(dim=>typeof dim.size==="number"?dim.size:parseInt(dim.size,10))}return[]}function getTensorShapeParam(attrs,name,def){const param=attrs[name];if(param&&param.shape){return parseTensorShapeParam(param.shape)}return def}function getNumericArrayParam(attrs,name,def){const param=attrs[name];if(param){return((param.list.f&&param.list.f.length?param.list.f:param.list.i)||[]).map(v=>typeof v==="number"?v:parseInt(v,10))}return def}function getStringArrayParam(attrs,name,def,keepCase=false){const param=attrs[name];if(param&&param.list&&param.list.s){return param.list.s.map(v=>{return parseStringParam(v,keepCase)})}return def}function getTensorShapeArrayParam(attrs,name,def){const param=attrs[name];if(param&&param.list&&param.list.shape){return param.list.shape.map(v=>{return parseTensorShapeParam(v)})}return def}function getBoolArrayParam(attrs,name,def){const param=attrs[name];if(param&&param.list&&param.list.b){return param.list.b}return def}class NodeValueImpl{constructor(node,tensorMap,context){this.node=node;this.tensorMap=tensorMap;this.context=context;this.inputs=[];this.attrs={};this.inputs=node.inputNames.map(name=>this.getInput(name));if(node.rawAttrs!=null){this.attrs=Object.keys(node.rawAttrs).reduce((attrs,key)=>{attrs[key]=this.getAttr(key);return attrs},{})}}getInput(name){return getTensor(name,this.tensorMap,this.context)}getAttr(name,defaultValue){const value=this.node.rawAttrs[name];if(value.tensor!=null){return getTensor(name,this.tensorMap,this.context)}if(value.i!=null||value.f!=null){return getNumberParam(this.node.rawAttrs,name,defaultValue)}if(value.s!=null){return getStringParam(this.node.rawAttrs,name,defaultValue)}if(value.b!=null){return getBoolParam(this.node.rawAttrs,name,defaultValue)}if(value.shape!=null){return getTensorShapeParam(this.node.rawAttrs,name,defaultValue)}if(value.type!=null){return getDtypeParam(this.node.rawAttrs,name,defaultValue)}if(value.list!=null){if(value.list.i!=null||value.list.f!=null){return getNumericArrayParam(this.node.rawAttrs,name,defaultValue)}if(value.list.s!=null){return getStringArrayParam(this.node.rawAttrs,name,defaultValue)}if(value.list.shape!=null){return getTensorShapeArrayParam(this.node.rawAttrs,name,defaultValue)}if(value.list.b!=null){return getBoolArrayParam(this.node.rawAttrs,name,defaultValue)}if(value.list.type!=null){return getDtypeArrayParam(this.node.rawAttrs,name,defaultValue)}}return defaultValue}}const executeOp=(node,tensorMap,context)=>{switch(node.op){case"BiasAdd":case"AddV2":case"Add":{return[add$1(getParamValue("a",node,tensorMap,context),getParamValue("b",node,tensorMap,context))]}case"AddN":{return[addN(getParamValue("tensors",node,tensorMap,context))]}case"FloorMod":case"Mod":return[mod(getParamValue("a",node,tensorMap,context),getParamValue("b",node,tensorMap,context))];case"Mul":return[mul(getParamValue("a",node,tensorMap,context),getParamValue("b",node,tensorMap,context))];case"RealDiv":case"Div":{return[div(getParamValue("a",node,tensorMap,context),getParamValue("b",node,tensorMap,context))]}case"DivNoNan":{return[divNoNan(getParamValue("a",node,tensorMap,context),getParamValue("b",node,tensorMap,context))]}case"FloorDiv":{return[floorDiv(getParamValue("a",node,tensorMap,context),getParamValue("b",node,tensorMap,context))]}case"Sub":{return[sub(getParamValue("a",node,tensorMap,context),getParamValue("b",node,tensorMap,context))]}case"Minimum":{return[minimum(getParamValue("a",node,tensorMap,context),getParamValue("b",node,tensorMap,context))]}case"Maximum":{return[maximum(getParamValue("a",node,tensorMap,context),getParamValue("b",node,tensorMap,context))]}case"Pow":{return[pow(getParamValue("a",node,tensorMap,context),getParamValue("b",node,tensorMap,context))]}case"SquaredDifference":{return[squaredDifference(getParamValue("a",node,tensorMap,context),getParamValue("b",node,tensorMap,context))]}default:throw TypeError(`Node type ${node.op} is not implemented`)}};const CATEGORY="arithmetic";const executeOp$1=(node,tensorMap,context)=>{switch(node.op){case"Abs":case"ComplexAbs":return[abs(getParamValue("x",node,tensorMap,context))];case"Acos":return[acos(getParamValue("x",node,tensorMap,context))];case"Acosh":return[acosh(getParamValue("x",node,tensorMap,context))];case"Asin":return[asin(getParamValue("x",node,tensorMap,context))];case"Asinh":return[asinh(getParamValue("x",node,tensorMap,context))];case"Atan":return[atan(getParamValue("x",node,tensorMap,context))];case"Atan2":return[atan2(getParamValue("x",node,tensorMap,context),getParamValue("y",node,tensorMap,context))];case"Atanh":return[atanh(getParamValue("x",node,tensorMap,context))];case"Ceil":return[ceil(getParamValue("x",node,tensorMap,context))];case"Complex":return[complex(getParamValue("real",node,tensorMap,context),getParamValue("imag",node,tensorMap,context))];case"Cos":return[cos(getParamValue("x",node,tensorMap,context))];case"Cosh":return[cosh(getParamValue("x",node,tensorMap,context))];case"Elu":return[elu(getParamValue("x",node,tensorMap,context))];case"Erf":return[erf(getParamValue("x",node,tensorMap,context))];case"Exp":return[exp(getParamValue("x",node,tensorMap,context))];case"Expm1":{return[expm1(getParamValue("x",node,tensorMap,context))]}case"Floor":return[floor(getParamValue("x",node,tensorMap,context))];case"Log":return[log(getParamValue("x",node,tensorMap,context))];case"Log1p":{return[log1p(getParamValue("x",node,tensorMap,context))]}case"Imag":return[imag(getParamValue("x",node,tensorMap,context))];case"Neg":return[neg(getParamValue("x",node,tensorMap,context))];case"Reciprocal":{return[reciprocal(getParamValue("x",node,tensorMap,context))]}case"Real":return[real(getParamValue("x",node,tensorMap,context))];case"Relu":return[relu(getParamValue("x",node,tensorMap,context))];case"Round":{return[round(getParamValue("x",node,tensorMap,context))]}case"Selu":return[selu(getParamValue("x",node,tensorMap,context))];case"Sigmoid":return[sigmoid2(getParamValue("x",node,tensorMap,context))];case"Sin":return[sin(getParamValue("x",node,tensorMap,context))];case"Sign":{return[sign(getParamValue("x",node,tensorMap,context))]}case"Sinh":{return[sinh(getParamValue("x",node,tensorMap,context))]}case"Softplus":{return[softplus(getParamValue("x",node,tensorMap,context))]}case"Sqrt":{return[sqrt(getParamValue("x",node,tensorMap,context))]}case"Square":{return[square(getParamValue("x",node,tensorMap,context))]}case"Tanh":{return[tanh$1(getParamValue("x",node,tensorMap,context))]}case"Tan":return[tan(getParamValue("x",node,tensorMap,context))];case"Relu6":case"ClipByValue":return[clipByValue(getParamValue("x",node,tensorMap,context),getParamValue("clipValueMin",node,tensorMap,context),getParamValue("clipValueMax",node,tensorMap,context))];case"Rsqrt":return[rsqrt(getTensor(node.inputNames[0],tensorMap,context))];case"Prod":return[prod(getParamValue("x",node,tensorMap,context),getParamValue("axes",node,tensorMap,context))];case"LeakyRelu":return[leakyRelu(getParamValue("x",node,tensorMap,context),getParamValue("alpha",node,tensorMap,context))];case"Prelu":return[prelu2(getParamValue("x",node,tensorMap,context),getParamValue("alpha",node,tensorMap,context))];default:throw TypeError(`Node type ${node.op} is not implemented`)}};const CATEGORY$1="basic_math";function assertShapesMatchAllowUndefinedSize(shapeA,shapeB,errorMessagePrefix=""){assert(shapesEqualAllowUndefinedSize(shapeA,shapeB),()=>errorMessagePrefix+` Shapes ${shapeA} and ${shapeB} must match`)}function shapesEqualAllowUndefinedSize(n1,n2){if(n1.length!==n2.length){return false}for(let i=0;i<n1.length;i++){if(n1[i]!==-1&&n2[i]!==-1&&n1[i]!==n2[i]){return false}}return true}class TensorArray{constructor(name,dtype,maxSize,elementShape,identicalElementShapes,dynamicSize,clearAfterRead){this.name=name;this.dtype=dtype;this.maxSize=maxSize;this.elementShape=elementShape;this.identicalElementShapes=identicalElementShapes;this.dynamicSize=dynamicSize;this.clearAfterRead=clearAfterRead;this.tensors=[];this.closed_=false;this.idTensor=scalar(0);keep(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(keepIds){this.tensors.forEach(tensor2=>{if(keepIds==null||!keepIds.has(tensor2.tensor.id)){tensor2.tensor.dispose()}});this.tensors=[];this.closed_=true;this.idTensor.dispose()}size(){return this.tensors.length}read(index2){if(this.closed_){throw new Error(`TensorArray ${this.name} has already been closed.`)}if(index2<0||index2>=this.size()){throw new Error(`Tried to read from index ${index2}, but array size is: ${this.size()}`)}const tensorWithState=this.tensors[index2];if(tensorWithState.cleared){throw new Error(`TensorArray ${this.name}: Could not read index ${index2} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`)}if(this.clearAfterRead){tensorWithState.cleared=true}tensorWithState.read=true;return tensorWithState.tensor}readMany(indices){return indices.map(index2=>this.read(index2))}write(index2,tensor2){if(this.closed_){throw new Error(`TensorArray ${this.name} has already been closed.`)}if(index2<0||!this.dynamicSize&&index2>=this.maxSize){throw new Error(`Tried to write to index ${index2}, but array is not resizeable and size is: ${this.maxSize}`)}const t=this.tensors[index2]||{};if(tensor2.dtype!==this.dtype){throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${index2},
because the value dtype is ${tensor2.dtype}, but TensorArray dtype is ${this.dtype}.`)}if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)){this.elementShape=tensor2.shape}assertShapesMatchAllowUndefinedSize(this.elementShape,tensor2.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${index2}.`);if(t.read){throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${index2}, because it has already been read.`)}if(t.written){throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${index2}, because it has already been written.`)}t.tensor=tensor2;keep(tensor2);t.written=true;this.tensors[index2]=t}writeMany(indices,tensors){if(indices.length!==tensors.length){throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${indices.length} is not the same as tensors size: ${tensors.length}.`)}indices.forEach((i,index2)=>this.write(i,tensors[index2]))}gather(indices,dtype){if(!!dtype&&dtype!==this.dtype){throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${dtype}`)}if(!indices){indices=[];for(let i=0;i<this.size();i++){indices.push(i)}}else{indices=indices.slice(0,this.size())}if(indices.length===0){return tensor([],[0].concat(this.elementShape))}const tensors=this.readMany(indices);assertShapesMatchAllowUndefinedSize(this.elementShape,tensors[0].shape,"TensorArray shape mismatch: ");return stack(tensors,0)}concat(dtype){if(!!dtype&&dtype!==this.dtype){throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${dtype}`)}if(this.size()===0){return tensor([],[0].concat(this.elementShape))}const indices=[];for(let i=0;i<this.size();i++){indices.push(i)}const tensors=this.readMany(indices);assertShapesMatchAllowUndefinedSize(this.elementShape,tensors[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${tensors[0].shape})`);return concat2(tensors,0)}scatter(indices,tensor2){if(tensor2.dtype!==this.dtype){throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${tensor2.dtype}`)}if(indices.length!==tensor2.shape[0]){throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${indices.length} vs. ${tensor2.shape[0]}`)}const maxIndex=Math.max(...indices);if(!this.dynamicSize&&maxIndex>=this.maxSize){throw new Error(`Max index must be < array size (${maxIndex} vs. ${this.maxSize})`)}this.writeMany(indices,unstack(tensor2,0))}split(length,tensor2){if(tensor2.dtype!==this.dtype){throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${tensor2.dtype}`)}let totalLength=0;const cumulativeLengths=length.map(len=>{totalLength+=len;return totalLength});if(totalLength!==tensor2.shape[0]){throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${totalLength}, and tensor's shape is: ${tensor2.shape}`)}if(!this.dynamicSize&&length.length!==this.maxSize){throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${length.length}), and the TensorArray is not marked as dynamically resizeable`)}const elementPerRow=totalLength===0?0:tensor2.size/totalLength;const tensors=[];tidy(()=>{tensor2=reshape2(tensor2,[1,totalLength,elementPerRow]);for(let i=0;i<length.length;++i){const previousLength=i===0?0:cumulativeLengths[i-1];const indices2=[0,previousLength,0];const sizes=[1,length[i],elementPerRow];tensors[i]=reshape2(slice2(tensor2,indices2,sizes),this.elementShape)}return tensors});const indices=[];for(let i=0;i<length.length;i++){indices[i]=i}this.writeMany(indices,tensors)}}class TensorList{constructor(tensors,elementShape,elementDtype,maxNumElements=-1){this.tensors=tensors;this.elementShape=elementShape;this.elementDtype=elementDtype;if(tensors!=null){tensors.forEach(tensor2=>{if(elementDtype!==tensor2.dtype){throw new Error(`Invalid data types; op elements ${elementDtype}, but list elements ${tensor2.dtype}`)}assertShapesMatchAllowUndefinedSize(elementShape,tensor2.shape,"TensorList shape mismatch: ");keep(tensor2)})}this.idTensor=scalar(0);this.maxNumElements=maxNumElements;keep(this.idTensor)}get id(){return this.idTensor.id}copy(){return new TensorList([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(keepIds){this.tensors.forEach(tensor2=>{if(keepIds==null||!keepIds.has(tensor2.id)){tensor2.dispose()}});this.tensors.length=0;this.idTensor.dispose()}size(){return this.tensors.length}stack(elementShape,elementDtype,numElements=-1){if(elementDtype!==this.elementDtype){throw new Error(`Invalid data types; op elements ${elementDtype}, but list elements ${this.elementDtype}`)}if(numElements!==-1&&this.tensors.length!==numElements){throw new Error(`Operation expected a list with ${numElements} elements but got a list with ${this.tensors.length} elements.`)}assertShapesMatchAllowUndefinedSize(elementShape,this.elementShape,"TensorList shape mismatch: ");return tidy(()=>{const reshapedTensors=this.tensors.map(tensor2=>reshape2(tensor2,elementShape));return stack(reshapedTensors,0)})}popBack(elementShape,elementDtype){if(elementDtype!==this.elementDtype){throw new Error(`Invalid data types; op elements ${elementDtype}, but list elements ${this.elementDtype}`)}if(this.size()===0){throw new Error("Trying to pop from an empty list.")}const tensor2=this.tensors.pop();assertShapesMatchAllowUndefinedSize(tensor2.shape,elementShape,"TensorList shape mismatch: ");return reshape2(tensor2,elementShape)}pushBack(tensor2){if(tensor2.dtype!==this.elementDtype){throw new Error(`Invalid data types; op elements ${tensor2.dtype}, but list elements ${this.elementDtype}`)}assertShapesMatchAllowUndefinedSize(tensor2.shape,this.elementShape,"TensorList shape mismatch: ");if(this.maxNumElements===this.size()){throw new Error(`Trying to push element into a full list.`)}keep(tensor2);this.tensors.push(tensor2)}resize(size){if(size<0){throw new Error(`TensorListResize expects size to be non-negative. Got: ${size}`)}if(this.maxNumElements!==-1&&size>this.maxNumElements){throw new Error(`TensorListResize input size ${size} is greater maxNumElement ${this.maxNumElements}.`)}this.tensors.length=size}getItem(elementIndex,elementShape,elementDtype){if(elementDtype!==this.elementDtype){throw new Error(`Invalid data types; op elements ${elementDtype}, but list elements ${this.elementDtype}`)}if(elementIndex<0||elementIndex>this.tensors.length){throw new Error(`Trying to access element ${elementIndex} in a list with ${this.tensors.length} elements.`)}if(this.tensors[elementIndex]==null){throw new Error(`element at index ${elementIndex} is null.`)}assertShapesMatchAllowUndefinedSize(this.tensors[elementIndex].shape,elementShape,"TensorList shape mismatch: ");return this.tensors[elementIndex]}setItem(elementIndex,tensor2){if(tensor2.dtype!==this.elementDtype){throw new Error(`Invalid data types; op elements ${tensor2.dtype}, but list elements ${this.elementDtype}`)}if(elementIndex<0||this.maxNumElements!==-1&&elementIndex>=this.maxNumElements){throw new Error(`Trying to set element ${elementIndex} in a list with max ${this.maxNumElements} elements.`)}assertShapesMatchAllowUndefinedSize(this.elementShape,tensor2.shape,"TensorList shape mismatch: ");keep(tensor2);this.tensors[elementIndex]=tensor2}gather(indices,elementDtype,elementShape){if(elementDtype!==this.elementDtype){throw new Error(`Invalid data types; op elements ${elementDtype}, but list elements ${this.elementDtype}`)}assertShapesMatchAllowUndefinedSize(this.elementShape,elementShape,"TensorList shape mismatch: ");indices=indices.slice(0,this.size());if(indices.length===0){return tensor([],[0].concat(this.elementShape))}return tidy(()=>{const tensors=indices.map(i=>reshape2(this.tensors[i],elementShape));return stack(tensors,0)})}concat(elementDtype,elementShape){if(!!elementDtype&&elementDtype!==this.elementDtype){throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${elementDtype}`)}assertShapesMatchAllowUndefinedSize(this.elementShape,elementShape,"TensorList shape mismatch: ");if(this.size()===0){return tensor([],[0].concat(this.elementShape))}return tidy(()=>{const tensors=this.tensors.map(t=>reshape2(t,elementShape));return concat2(tensors,0)})}}function fromTensor(tensor2,elementShape,elementDtype){const dtype=tensor2.dtype;if(tensor2.shape.length<1){throw new Error(`Tensor must be at least a vector, but saw shape: ${tensor2.shape}`)}if(tensor2.dtype!==elementDtype){throw new Error(`Invalid data types; op elements ${tensor2.dtype}, but list elements ${elementDtype}`)}const outputShape=tensor2.shape.slice(1);assertShapesMatchAllowUndefinedSize(outputShape,elementShape,"TensorList shape mismatch: ");const tensorList=unstack(tensor2);return new TensorList(tensorList,elementShape,dtype)}function reserve(elementShape,elementDtype,numElements){return new TensorList([],elementShape,elementDtype,numElements)}function scatter(tensor2,indices,elementShape,numElements){if(indices.length!==tensor2.shape[0]){throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${indices.length} vs. ${tensor2.shape[0]}`)}const maxIndex=Math.max(...indices);if(numElements!=null&&numElements!==-1&&maxIndex>=numElements){throw new Error(`Max index must be < array size (${maxIndex} vs. ${numElements})`)}const list=new TensorList([],elementShape,tensor2.dtype,numElements);const tensors=unstack(tensor2,0);indices.forEach((value,index2)=>{list.setItem(value,tensors[index2])});return list}function split$3(tensor2,length,elementShape){let totalLength=0;const cumulativeLengths=length.map(len=>{totalLength+=len;return totalLength});if(totalLength!==tensor2.shape[0]){throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${totalLength}, and tensor's shape is: ${tensor2.shape}`)}const elementPerRow=totalLength===0?0:tensor2.size/totalLength;const tensors=tidy(()=>{const tensors2=[];tensor2=reshape2(tensor2,[1,totalLength,elementPerRow]);for(let i=0;i<length.length;++i){const previousLength=i===0?0:cumulativeLengths[i-1];const indices=[0,previousLength,0];const sizes=[1,length[i],elementPerRow];tensors2[i]=reshape2(slice2(tensor2,indices,sizes),elementShape)}tensor2.dispose();return tensors2});const list=new TensorList([],elementShape,tensor2.dtype,length.length);for(let i=0;i<tensors.length;i++){list.setItem(i,tensors[i])}return list}const executeOp$2=async(node,tensorMap,context)=>{switch(node.op){case"If":case"StatelessIf":{const thenFunc=getParamValue("thenBranch",node,tensorMap,context);const elseFunc=getParamValue("elseBranch",node,tensorMap,context);const cond=getParamValue("cond",node,tensorMap,context);const args=getParamValue("args",node,tensorMap,context);const condValue=await cond.data();if(condValue[0]){return context.functionMap[thenFunc].executeFunctionAsync(args,context.tensorArrayMap,context.tensorListMap)}else{return context.functionMap[elseFunc].executeFunctionAsync(args,context.tensorArrayMap,context.tensorListMap)}}case"While":case"StatelessWhile":{const bodyFunc=getParamValue("body",node,tensorMap,context);const condFunc=getParamValue("cond",node,tensorMap,context);const args=getParamValue("args",node,tensorMap,context);const condResult=await context.functionMap[condFunc].executeFunctionAsync(args,context.tensorArrayMap,context.tensorListMap);const argIds=args.map(tensor2=>tensor2.id);let condValue=await condResult[0].data();condResult.forEach(tensor2=>{if(!tensor2.kept&&argIds.indexOf(tensor2.id)===-1){tensor2.dispose()}});let result=args;while(condValue[0]){const origResult=result;result=await context.functionMap[bodyFunc].executeFunctionAsync(result,context.tensorArrayMap,context.tensorListMap);const resultIds=result.map(tensor2=>tensor2.id);origResult.forEach(tensor2=>{if(!tensor2.kept&&argIds.indexOf(tensor2.id)===-1&&resultIds.indexOf(tensor2.id)===-1){tensor2.dispose()}});const condResult2=await context.functionMap[condFunc].executeFunctionAsync(result,context.tensorArrayMap,context.tensorListMap);condValue=await condResult2[0].data();condResult2.forEach(tensor2=>{if(!tensor2.kept&&argIds.indexOf(tensor2.id)===-1&&resultIds.indexOf(tensor2.id)===-1){tensor2.dispose()}})}return result}case"LoopCond":{const pred=getParamValue("pred",node,tensorMap,context);return[cloneTensor(pred)]}case"Switch":{const pred=getParamValue("pred",node,tensorMap,context);let data2=getParamValue("data",node,tensorMap,context);if(!data2.kept){data2=cloneTensor(data2)}return(await pred.data())[0]?[void 0,data2]:[data2,void 0]}case"Merge":{const inputName=node.inputNames.find(name=>getTensor(name,tensorMap,context)!==void 0);if(inputName){const data2=getTensor(inputName,tensorMap,context);return[cloneTensor(data2)]}return void 0}case"Enter":{const frameId=getParamValue("frameName",node,tensorMap,context);const data2=getParamValue("tensor",node,tensorMap,context);context.enterFrame(frameId);return[cloneTensor(data2)]}case"Exit":{const data2=getParamValue("tensor",node,tensorMap,context);context.exitFrame();return[cloneTensor(data2)]}case"NextIteration":{const data2=getParamValue("tensor",node,tensorMap,context);context.nextIteration();return[cloneTensor(data2)]}case"TensorArrayV3":{const size=getParamValue("size",node,tensorMap,context);const dtype=getParamValue("dtype",node,tensorMap,context);const elementShape=getParamValue("elementShape",node,tensorMap,context);const dynamicSize=getParamValue("dynamicSize",node,tensorMap,context);const clearAfterRead=getParamValue("clearAfterRead",node,tensorMap,context);const identicalElementShapes=getParamValue("identicalElementShapes",node,tensorMap,context);const name=getParamValue("name",node,tensorMap,context);const tensorArray=new TensorArray(name,dtype,size,elementShape,identicalElementShapes,dynamicSize,clearAfterRead);context.addTensorArray(tensorArray);return[tensorArray.idTensor,scalar(1)]}case"TensorArrayWriteV3":{const id=getParamValue("tensorArrayId",node,tensorMap,context);const index2=getParamValue("index",node,tensorMap,context);const writeTensor=getParamValue("tensor",node,tensorMap,context);const writeTensorArray=context.getTensorArray(id.id);writeTensorArray.write(index2,writeTensor);return[writeTensorArray.idTensor]}case"TensorArrayReadV3":{const readId=getParamValue("tensorArrayId",node,tensorMap,context);const readIndex=getParamValue("index",node,tensorMap,context);const readTensorArray=context.getTensorArray(readId.id);return[readTensorArray.read(readIndex)]}case"TensorArrayGatherV3":{const gatherId=getParamValue("tensorArrayId",node,tensorMap,context);const gatherIndices=getParamValue("indices",node,tensorMap,context);const gatherDtype=getParamValue("dtype",node,tensorMap,context);const gatherTensorArray=context.getTensorArray(gatherId.id);return[gatherTensorArray.gather(gatherIndices,gatherDtype)]}case"TensorArrayScatterV3":{const scatterId=getParamValue("tensorArrayId",node,tensorMap,context);const scatterIndices=getParamValue("indices",node,tensorMap,context);const scatterTensor=getParamValue("tensor",node,tensorMap,context);const scatterTensorArray=context.getTensorArray(scatterId.id);scatterTensorArray.scatter(scatterIndices,scatterTensor);return[scatterTensorArray.idTensor]}case"TensorArrayConcatV3":{const concatId=getParamValue("tensorArrayId",node,tensorMap,context);const concatTensorArray=context.getTensorArray(concatId.id);const concatDtype=getParamValue("dtype",node,tensorMap,context);return[concatTensorArray.concat(concatDtype)]}case"TensorArraySplitV3":{const splitId=getParamValue("tensorArrayId",node,tensorMap,context);const splitTensor=getParamValue("tensor",node,tensorMap,context);const lengths=getParamValue("lengths",node,tensorMap,context);const splitTensorArray=context.getTensorArray(splitId.id);splitTensorArray.split(lengths,splitTensor);return[splitTensorArray.idTensor]}case"TensorArraySizeV3":{const sizeId=getParamValue("tensorArrayId",node,tensorMap,context);const sizeTensorArray=context.getTensorArray(sizeId.id);return[scalar(sizeTensorArray.size(),"int32")]}case"TensorArrayCloseV3":{const closeId=getParamValue("tensorArrayId",node,tensorMap,context);const closeTensorArray=context.getTensorArray(closeId.id);closeTensorArray.clearAndClose();return[closeTensorArray.idTensor]}case"TensorListSetItem":{const idTensor=getParamValue("tensorListId",node,tensorMap,context);const index2=getParamValue("index",node,tensorMap,context);const writeTensor=getParamValue("tensor",node,tensorMap,context);const tensorList=context.getTensorList(idTensor.id);tensorList.setItem(index2,writeTensor);return[tensorList.idTensor]}case"TensorListGetItem":{const idTensor=getParamValue("tensorListId",node,tensorMap,context);const readIndex=getParamValue("index",node,tensorMap,context);const elementShape=getParamValue("elementShape",node,tensorMap,context);const elementDType=getParamValue("elementDType",node,tensorMap,context);const tensorList=context.getTensorList(idTensor.id);return[tensorList.getItem(readIndex,elementShape,elementDType)]}case"TensorListScatterV2":case"TensorListScatter":{const scatterIndices=getParamValue("indices",node,tensorMap,context);const scatterTensor=getParamValue("tensor",node,tensorMap,context);const elementShape=getParamValue("elementShape",node,tensorMap,context);const numElements=getParamValue("numElements",node,tensorMap,context);const tensorList=scatter(scatterTensor,scatterIndices,elementShape,numElements);context.addTensorList(tensorList);return[tensorList.idTensor]}case"TensorListReserve":{const elementShape=getParamValue("elementShape",node,tensorMap,context);const elementDtype=getParamValue("elementDType",node,tensorMap,context);const numElements=getParamValue("numElements",node,tensorMap,context);const tensorList=reserve(elementShape,elementDtype,numElements);context.addTensorList(tensorList);return[tensorList.idTensor]}case"TensorListGather":{const gatherId=getParamValue("tensorListId",node,tensorMap,context);const gatherIndices=getParamValue("indices",node,tensorMap,context);const elementShape=getParamValue("elementShape",node,tensorMap,context);const elementDtype=getParamValue("elementDType",node,tensorMap,context);const tensorList=context.getTensorList(gatherId.id);return[tensorList.gather(gatherIndices,elementDtype,elementShape)]}case"TensorListStack":{const idTensor=getParamValue("tensorListId",node,tensorMap,context);const elementShape=getParamValue("elementShape",node,tensorMap,context);const elementDtype=getParamValue("elementDType",node,tensorMap,context);const numElements=getParamValue("numElements",node,tensorMap,context);const tensorList=context.getTensorList(idTensor.id);return[tensorList.stack(elementShape,elementDtype,numElements)]}case"TensorListFromTensor":{const tensor2=getParamValue("tensor",node,tensorMap,context);const elementShape=getParamValue("elementShape",node,tensorMap,context);const elementDtype=getParamValue("elementDType",node,tensorMap,context);const tensorList=fromTensor(tensor2,elementShape,elementDtype);context.addTensorList(tensorList);return[tensorList.idTensor]}case"TensorListConcat":{const concatId=getParamValue("tensorListId",node,tensorMap,context);const tensorList=context.getTensorList(concatId.id);const concatDtype=getParamValue("dtype",node,tensorMap,context);const elementShape=getParamValue("elementShape",node,tensorMap,context);return[tensorList.concat(concatDtype,elementShape)]}case"TensorListPushBack":{const idTensor=getParamValue("tensorListId",node,tensorMap,context);const writeTensor=getParamValue("tensor",node,tensorMap,context);const tensorList=context.getTensorList(idTensor.id);tensorList.pushBack(writeTensor);return[tensorList.idTensor]}case"TensorListPopBack":{const idTensor=getParamValue("tensorListId",node,tensorMap,context);const elementShape=getParamValue("elementShape",node,tensorMap,context);const elementDType=getParamValue("elementDType",node,tensorMap,context);const tensorList=context.getTensorList(idTensor.id);return[tensorList.popBack(elementShape,elementDType)]}case"TensorListSplit":{const splitTensor=getParamValue("tensor",node,tensorMap,context);const elementShape=getParamValue("elementShape",node,tensorMap,context);const lengths=getParamValue("lengths",node,tensorMap,context);const tensorList=split$3(splitTensor,lengths,elementShape);context.addTensorList(tensorList);return[tensorList.idTensor]}default:throw TypeError(`Node type ${node.op} is not implemented`)}};const CATEGORY$2="control";function fusedConvAndDepthWiseParams(node,tensorMap,context){const[extraOp,activationFunc]=getParamValue("fusedOps",node,tensorMap,context);const isBiasAdd=extraOp==="biasadd";const isPrelu=activationFunc==="prelu";const isBatchNorm=extraOp==="fusedbatchnorm";const numArgs=getParamValue("numArgs",node,tensorMap,context);if(isBiasAdd){if(isPrelu&&numArgs!==2){throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.")}if(!isPrelu&&numArgs!==1){throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}}if(isBatchNorm){throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported.")}const stride=getParamValue("strides",node,tensorMap,context);const pad3=getPadding(node,tensorMap,context);const dataFormat=getParamValue("dataFormat",node,tensorMap,context).toUpperCase();const dilations=getParamValue("dilations",node,tensorMap,context);const[biasArg,preluArg]=getParamValue("args",node,tensorMap,context);return{stride,pad:pad3,dataFormat,dilations,biasArg,preluArg,activationFunc}}const executeOp$3=(node,tensorMap,context)=>{switch(node.op){case"Conv1D":{const stride=getParamValue("stride",node,tensorMap,context);const pad3=getParamValue("pad",node,tensorMap,context);const dataFormat=getParamValue("dataFormat",node,tensorMap,context).toUpperCase();const dilation=getParamValue("dilation",node,tensorMap,context);return[conv1d(getParamValue("x",node,tensorMap,context),getParamValue("filter",node,tensorMap,context),stride,pad3,dataFormat,dilation)]}case"Conv2D":{const stride=getParamValue("strides",node,tensorMap,context);const pad3=getPadding(node,tensorMap,context);const dataFormat=getParamValue("dataFormat",node,tensorMap,context).toUpperCase();const dilations=getParamValue("dilations",node,tensorMap,context);return[conv2d2(getParamValue("x",node,tensorMap,context),getParamValue("filter",node,tensorMap,context),[stride[1],stride[2]],pad3,dataFormat,[dilations[1],dilations[2]])]}case"_FusedConv2D":{const{stride,pad:pad3,dataFormat,dilations,biasArg,preluArg,activationFunc}=fusedConvAndDepthWiseParams(node,tensorMap,context);return[conv2d$1({x:getParamValue("x",node,tensorMap,context),filter:getParamValue("filter",node,tensorMap,context),strides:[stride[1],stride[2]],pad:pad3,dataFormat,dilations:[dilations[1],dilations[2]],bias:biasArg,activation:activationFunc,preluActivationWeights:preluArg})]}case"FusedDepthwiseConv2dNative":{const{stride,pad:pad3,dataFormat,dilations,biasArg,preluArg,activationFunc}=fusedConvAndDepthWiseParams(node,tensorMap,context);return[depthwiseConv2d$1({x:getParamValue("x",node,tensorMap,context),filter:getParamValue("filter",node,tensorMap,context),strides:[stride[1],stride[2]],pad:pad3,dataFormat,dilations:[dilations[1],dilations[2]],bias:biasArg,activation:activationFunc,preluActivationWeights:preluArg})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{const shape=getParamValue("outputShape",node,tensorMap,context);const stride=getParamValue("strides",node,tensorMap,context);const pad3=getPadding(node,tensorMap,context);return[conv2dTranspose(getParamValue("x",node,tensorMap,context),getParamValue("filter",node,tensorMap,context),shape,[stride[1],stride[2]],pad3)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{const stride=getParamValue("strides",node,tensorMap,context);const pad3=getPadding(node,tensorMap,context);const dilations=getParamValue("dilations",node,tensorMap,context);const dataFormat=getParamValue("dataFormat",node,tensorMap,context).toUpperCase();return[depthwiseConv2d2(getParamValue("input",node,tensorMap,context),getParamValue("filter",node,tensorMap,context),[stride[1],stride[2]],pad3,dataFormat,[dilations[1],dilations[2]])]}case"Conv3D":{const stride=getParamValue("strides",node,tensorMap,context);const pad3=getParamValue("pad",node,tensorMap,context);const dataFormat=getParamValue("dataFormat",node,tensorMap,context).toUpperCase();const dilations=getParamValue("dilations",node,tensorMap,context);return[conv3d(getParamValue("x",node,tensorMap,context),getParamValue("filter",node,tensorMap,context),[stride[1],stride[2],stride[3]],pad3,dataFormat,[dilations[1],dilations[2],dilations[3]])]}case"AvgPool":{const stride=getParamValue("strides",node,tensorMap,context);const pad3=getParamValue("pad",node,tensorMap,context);const kernelSize=getParamValue("kernelSize",node,tensorMap,context);return[avgPool2(getParamValue("x",node,tensorMap,context),[kernelSize[1],kernelSize[2]],[stride[1],stride[2]],pad3)]}case"MaxPool":{const stride=getParamValue("strides",node,tensorMap,context);const pad3=getParamValue("pad",node,tensorMap,context);const kernelSize=getParamValue("kernelSize",node,tensorMap,context);return[maxPool2(getParamValue("x",node,tensorMap,context),[kernelSize[1],kernelSize[2]],[stride[1],stride[2]],pad3)]}case"MaxPoolWithArgmax":{const stride=getParamValue("strides",node,tensorMap,context);const pad3=getParamValue("pad",node,tensorMap,context);const kernelSize=getParamValue("kernelSize",node,tensorMap,context);const includeBatchInIndex=getParamValue("includeBatchInIndex",node,tensorMap,context);const{result,indexes}=maxPoolWithArgmax(getParamValue("x",node,tensorMap,context),[kernelSize[1],kernelSize[2]],[stride[1],stride[2]],pad3,includeBatchInIndex);return[result,indexes]}case"AvgPool3D":{const stride=getParamValue("strides",node,tensorMap,context);const pad3=getParamValue("pad",node,tensorMap,context);const kernelSize=getParamValue("kernelSize",node,tensorMap,context);return[avgPool3d(getParamValue("x",node,tensorMap,context),[kernelSize[1],kernelSize[2],kernelSize[3]],[stride[1],stride[2],stride[3]],pad3)]}case"MaxPool3D":{const stride=getParamValue("strides",node,tensorMap,context);const pad3=getParamValue("pad",node,tensorMap,context);const kernelSize=getParamValue("kernelSize",node,tensorMap,context);return[maxPool3d(getParamValue("x",node,tensorMap,context),[kernelSize[1],kernelSize[2],kernelSize[3]],[stride[1],stride[2],stride[3]],pad3)]}case"Dilation2D":{const strides=getParamValue("strides",node,tensorMap,context);const pad3=getParamValue("pad",node,tensorMap,context);const dilations=getParamValue("dilations",node,tensorMap,context);const strideHeight=strides[1];const strideWidth=strides[2];const dilationHeight=dilations[1];const dilationWidth=dilations[2];return[dilation2d(getParamValue("x",node,tensorMap,context),getParamValue("filter",node,tensorMap,context),[strideHeight,strideWidth],pad3,[dilationHeight,dilationWidth],"NHWC")]}default:throw TypeError(`Node type ${node.op} is not implemented`)}};const CATEGORY$3="convolution";const executeOp$4=(node,tensorMap,context)=>{switch(node.op){case"Fill":{const shape=getParamValue("shape",node,tensorMap,context);const dtype=getParamValue("dtype",node,tensorMap,context);const value=getParamValue("value",node,tensorMap,context);return[fill2(shape,value,dtype)]}case"LinSpace":{const start=getParamValue("start",node,tensorMap,context);const stop=getParamValue("stop",node,tensorMap,context);const num=getParamValue("num",node,tensorMap,context);return[linspace(start,stop,num)]}case"Multinomial":{const logits=getParamValue("logits",node,tensorMap,context);const numSamples=getParamValue("numSamples",node,tensorMap,context);const seed=getParamValue("seed",node,tensorMap,context);return[multinomial(logits,numSamples,seed)]}case"OneHot":{const indices=getParamValue("indices",node,tensorMap,context);const depth=getParamValue("depth",node,tensorMap,context);const onValue=getParamValue("onValue",node,tensorMap,context);const offValue=getParamValue("offValue",node,tensorMap,context);return[oneHot2(indices,depth,onValue,offValue)]}case"Ones":{return[ones$1(getParamValue("shape",node,tensorMap,context),getParamValue("dtype",node,tensorMap,context))]}case"OnesLike":{return[onesLike2(getParamValue("x",node,tensorMap,context))]}case"RandomUniform":{return[randomUniform(getParamValue("shape",node,tensorMap,context),getParamValue("minval",node,tensorMap,context),getParamValue("maxval",node,tensorMap,context),getParamValue("dtype",node,tensorMap,context))]}case"Range":{const start=getParamValue("start",node,tensorMap,context);const stop=getParamValue("stop",node,tensorMap,context);const step2=getParamValue("step",node,tensorMap,context);return[range(start,stop,step2,getParamValue("dtype",node,tensorMap,context))]}case"TruncatedNormal":{const shape=getParamValue("shape",node,tensorMap,context);const mean2=getParamValue("mean",node,tensorMap,context);const stdDev=getParamValue("stdDev",node,tensorMap,context);const seed=getParamValue("seed",node,tensorMap,context);return[truncatedNormal(shape,mean2,stdDev,getParamValue("dtype",node,tensorMap,context),seed)]}case"Zeros":{return[zeros(getParamValue("shape",node,tensorMap,context),getParamValue("dtype",node,tensorMap,context))]}case"ZerosLike":{return[zerosLike2(getParamValue("x",node,tensorMap,context))]}default:throw TypeError(`Node type ${node.op} is not implemented`)}};const CATEGORY$4="creation";function nmsParams(node,tensorMap,context){const boxes=getParamValue("boxes",node,tensorMap,context);const scores=getParamValue("scores",node,tensorMap,context);const maxOutputSize=getParamValue("maxOutputSize",node,tensorMap,context);const iouThreshold=getParamValue("iouThreshold",node,tensorMap,context);const scoreThreshold=getParamValue("scoreThreshold",node,tensorMap,context);const softNmsSigma=getParamValue("softNmsSigma",node,tensorMap,context);return{boxes,scores,maxOutputSize,iouThreshold,scoreThreshold,softNmsSigma}}const executeOp$5=async(node,tensorMap,context)=>{switch(node.op){case"NonMaxSuppressionV5":{const{boxes,scores,maxOutputSize,iouThreshold,scoreThreshold,softNmsSigma}=nmsParams(node,tensorMap,context);const result=await image2.nonMaxSuppressionWithScoreAsync(boxes,scores,maxOutputSize,iouThreshold,scoreThreshold,softNmsSigma);return[result.selectedIndices,result.selectedScores]}case"NonMaxSuppressionV4":{const{boxes,scores,maxOutputSize,iouThreshold,scoreThreshold}=nmsParams(node,tensorMap,context);const padToMaxOutputSize=getParamValue("padToMaxOutputSize",node,tensorMap,context);const result=await image2.nonMaxSuppressionPaddedAsync(boxes,scores,maxOutputSize,iouThreshold,scoreThreshold,padToMaxOutputSize);return[result.selectedIndices,result.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{const{boxes,scores,maxOutputSize,iouThreshold,scoreThreshold}=nmsParams(node,tensorMap,context);return[await image2.nonMaxSuppressionAsync(boxes,scores,maxOutputSize,iouThreshold,scoreThreshold)]}case"Where":{const condition=cast2(getParamValue("condition",node,tensorMap,context),"bool");const result=[await whereAsync(condition)];condition.dispose();return result}case"ListDiff":{return setdiff1dAsync(getParamValue("x",node,tensorMap,context),getParamValue("y",node,tensorMap,context))}default:throw TypeError(`Node type ${node.op} is not implemented`)}};const CATEGORY$5="dynamic";const executeOp$6=(node,tensorMap,context)=>{switch(node.op){case"TopKV2":{const x=getParamValue("x",node,tensorMap,context);const k=getParamValue("k",node,tensorMap,context);const sorted=getParamValue("sorted",node,tensorMap,context);const result=topk(x,k,sorted);return[result.values,result.indices]}case"Unique":{const x=getParamValue("x",node,tensorMap,context);const result=unique(x);return[result.values,result.indices]}case"UniqueV2":{const x=getParamValue("x",node,tensorMap,context);const axis=getParamValue("axis",node,tensorMap,context);const result=unique(x,axis);return[result.values,result.indices]}default:throw TypeError(`Node type ${node.op} is not implemented`)}};const CATEGORY$6="evaluation";const executeOp$7=(node,tensorMap,context)=>{switch(node.op){case"Const":{return tensorMap[node.name]}case"PlaceholderWithDefault":const def=getParamValue("default",node,tensorMap,context);return[getTensor(node.name,tensorMap,context)||def];case"Placeholder":return[getTensor(node.name,tensorMap,context)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{const data3=getParamValue("x",node,tensorMap,context);return[cloneTensor(data3)]}case"IdentityN":return getParamValue("x",node,tensorMap,context).map(t=>cloneTensor(t));case"Snapshot":const snapshot=getParamValue("x",node,tensorMap,context);return[cloneTensor(snapshot)];case"Shape":return[tensor1d(getParamValue("x",node,tensorMap,context).shape,"int32")];case"ShapeN":return getParamValue("x",node,tensorMap,context).map(t=>tensor1d(t.shape));case"Size":return[scalar(getParamValue("x",node,tensorMap,context).size,"int32")];case"Rank":return[scalar(getParamValue("x",node,tensorMap,context).rank,"int32")];case"NoOp":return[scalar(1)];case"Print":const input2=getParamValue("x",node,tensorMap,context);const data2=getParamValue("data",node,tensorMap,context);const message=getParamValue("message",node,tensorMap,context);const summarize=getParamValue("summarize",node,tensorMap,context);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance.");console.log(message);for(let i=0;i<data2.length;i++){console.log(Array.prototype.slice.call(data2[i].dataSync()).slice(0,summarize))}return[input2];default:throw TypeError(`Node type ${node.op} is not implemented`)}};const CATEGORY$7="graph";class HashTable{constructor(keyDType,valueDType){this.keyDType=keyDType;this.valueDType=valueDType;this.handle=scalar(0);this.tensorMap=new Map;keep(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(value=>value.dispose());this.tensorMap.clear();this.handle.dispose()}size(){return this.tensorMap.size}async import(keys,values){this.checkKeyAndValueTensor(keys,values);const $keys=await keys.data();this.tensorMap.forEach(value=>value.dispose());this.tensorMap.clear();return tidy(()=>{const $values=unstack(values);const keysLength=$keys.length;const valuesLength=$values.length;assert(keysLength===valuesLength,()=>`The number of elements doesn't match, keys has ${keysLength} elements, the values has ${valuesLength} elements.`);for(let i=0;i<keysLength;i++){const key=$keys[i];const value=$values[i];keep(value);this.tensorMap.set(key,value)}return this.handle})}async find(keys,defaultValue){this.checkKeyAndValueTensor(keys,defaultValue);const $keys=await keys.data();return tidy(()=>{const result=[];for(let i=0;i<$keys.length;i++){const key=$keys[i];const value=this.findWithDefault(key,defaultValue);result.push(value)}return stack(result)})}findWithDefault(key,defaultValue){const result=this.tensorMap.get(key);return result!=null?result:defaultValue}checkKeyAndValueTensor(key,value){if(key.dtype!==this.keyDType){throw new Error(`Expect key dtype ${this.keyDType}, but got ${key.dtype}`)}if(value.dtype!==this.valueDType){throw new Error(`Expect value dtype ${this.valueDType}, but got ${value.dtype}`)}}}const executeOp$8=async(node,tensorMap,context,resourceManager)=>{switch(node.op){case"HashTable":case"HashTableV2":{const keyDType=getParamValue("keyDType",node,tensorMap,context);const valueDType=getParamValue("valueDType",node,tensorMap,context);const hashTable2=new HashTable(keyDType,valueDType);resourceManager.addHashTable(node.name,hashTable2);return[hashTable2.handle]}case"LookupTableImport":case"LookupTableImportV2":{const handle=getParamValue("tableHandle",node,tensorMap,context,resourceManager);const keys=getParamValue("keys",node,tensorMap,context);const values=getParamValue("values",node,tensorMap,context);const hashTable2=resourceManager.getHashTableById(handle.id);return[await hashTable2.import(keys,values)]}case"LookupTableFind":case"LookupTableFindV2":{const handle=getParamValue("tableHandle",node,tensorMap,context,resourceManager);const keys=getParamValue("keys",node,tensorMap,context);const defaultValue=getParamValue("defaultValue",node,tensorMap,context);const hashTable2=resourceManager.getHashTableById(handle.id);return[await hashTable2.find(keys,defaultValue)]}default:throw TypeError(`Node type ${node.op} is not implemented`)}};const CATEGORY$8="hash_table";const executeOp$9=(node,tensorMap,context)=>{switch(node.op){case"ResizeBilinear":{const images=getParamValue("images",node,tensorMap,context);const size=getParamValue("size",node,tensorMap,context);const alignCorners=getParamValue("alignCorners",node,tensorMap,context);return[image2.resizeBilinear(images,[size[0],size[1]],alignCorners)]}case"ResizeNearestNeighbor":{const images=getParamValue("images",node,tensorMap,context);const size=getParamValue("size",node,tensorMap,context);const alignCorners=getParamValue("alignCorners",node,tensorMap,context);return[image2.resizeNearestNeighbor(images,[size[0],size[1]],alignCorners)]}case"CropAndResize":{const image$12=getParamValue("image",node,tensorMap,context);const boxes=getParamValue("boxes",node,tensorMap,context);const boxInd=getParamValue("boxInd",node,tensorMap,context);const cropSize=getParamValue("cropSize",node,tensorMap,context);const method=getParamValue("method",node,tensorMap,context);const extrapolationValue=getParamValue("extrapolationValue",node,tensorMap,context);return[image2.cropAndResize(image$12,boxes,boxInd,cropSize,method,extrapolationValue)]}default:throw TypeError(`Node type ${node.op} is not implemented`)}};const CATEGORY$9="image";const executeOp$a=(node,tensorMap,context)=>{switch(node.op){case"Equal":{return[equal(getParamValue("a",node,tensorMap,context),getParamValue("b",node,tensorMap,context))]}case"NotEqual":{return[notEqual(getParamValue("a",node,tensorMap,context),getParamValue("b",node,tensorMap,context))]}case"Greater":{return[greater(getParamValue("a",node,tensorMap,context),getParamValue("b",node,tensorMap,context))]}case"GreaterEqual":{return[greaterEqual(getParamValue("a",node,tensorMap,context),getParamValue("b",node,tensorMap,context))]}case"Less":{return[less(getParamValue("a",node,tensorMap,context),getParamValue("b",node,tensorMap,context))]}case"LessEqual":{return[lessEqual(getParamValue("a",node,tensorMap,context),getParamValue("b",node,tensorMap,context))]}case"LogicalAnd":{return[logicalAnd(getParamValue("a",node,tensorMap,context),getParamValue("b",node,tensorMap,context))]}case"LogicalNot":{return[logicalNot(getParamValue("a",node,tensorMap,context))]}case"LogicalOr":{return[logicalOr(getParamValue("a",node,tensorMap,context),getParamValue("b",node,tensorMap,context))]}case"Select":case"SelectV2":{return[where(getParamValue("condition",node,tensorMap,context),getParamValue("a",node,tensorMap,context),getParamValue("b",node,tensorMap,context))]}default:throw TypeError(`Node type ${node.op} is not implemented`)}};const CATEGORY$a="logical";const executeOp$b=(node,tensorMap,context)=>{switch(node.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[matMul(getParamValue("a",node,tensorMap,context),getParamValue("b",node,tensorMap,context),getParamValue("transposeA",node,tensorMap,context),getParamValue("transposeB",node,tensorMap,context))];case"Transpose":return[transpose2(getParamValue("x",node,tensorMap,context),getParamValue("perm",node,tensorMap,context))];case"_FusedMatMul":const[extraOp,activationFunc]=getParamValue("fusedOps",node,tensorMap,context);const isBiasAdd=extraOp==="biasadd";const isPrelu=activationFunc==="prelu";const numArgs=getParamValue("numArgs",node,tensorMap,context);if(isBiasAdd){if(isPrelu&&numArgs!==2){throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.")}if(!isPrelu&&numArgs!==1){throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}}const[biasArg,preluArg]=getParamValue("args",node,tensorMap,context);return[matMul$1({a:getParamValue("a",node,tensorMap,context),b:getParamValue("b",node,tensorMap,context),transposeA:getParamValue("transposeA",node,tensorMap,context),transposeB:getParamValue("transposeB",node,tensorMap,context),bias:biasArg,activation:activationFunc,preluActivationWeights:preluArg})];default:throw TypeError(`Node type ${node.op} is not implemented`)}};const CATEGORY$b="matrices";const executeOp$c=(node,tensorMap,context)=>{switch(node.op){case"FusedBatchNorm":case"FusedBatchNormV2":{return[batchNorm(getParamValue("x",node,tensorMap,context),getParamValue("mean",node,tensorMap,context),getParamValue("variance",node,tensorMap,context),getParamValue("offset",node,tensorMap,context),getParamValue("scale",node,tensorMap,context),getParamValue("epsilon",node,tensorMap,context))]}case"FusedBatchNormV3":{return[batchNorm(getParamValue("x",node,tensorMap,context),getParamValue("mean",node,tensorMap,context),getParamValue("variance",node,tensorMap,context),getParamValue("offset",node,tensorMap,context),getParamValue("scale",node,tensorMap,context),getParamValue("epsilon",node,tensorMap,context))]}case"LRN":{return[localResponseNormalization(getParamValue("x",node,tensorMap,context),getParamValue("radius",node,tensorMap,context),getParamValue("bias",node,tensorMap,context),getParamValue("alpha",node,tensorMap,context),getParamValue("beta",node,tensorMap,context))]}case"Softmax":{return[softmax2(getParamValue("x",node,tensorMap,context))]}case"LogSoftmax":{return[logSoftmax(getParamValue("x",node,tensorMap,context))]}case"SparseToDense":{return[sparseToDense(getParamValue("sparseIndices",node,tensorMap,context),getParamValue("outputShape",node,tensorMap,context),getParamValue("sparseValues",node,tensorMap,context),getParamValue("defaultValue",node,tensorMap,context))]}default:throw TypeError(`Node type ${node.op} is not implemented`)}};const CATEGORY$c="normalization";const executeOp$d=(node,tensorMap,context)=>{switch(node.op){case"Max":{const axis=getParamValue("axis",node,tensorMap,context);const keepDims=getParamValue("keepDims",node,tensorMap,context);return[max2(getParamValue("x",node,tensorMap,context),axis,keepDims)]}case"Mean":{const axis=getParamValue("axis",node,tensorMap,context);const keepDims=getParamValue("keepDims",node,tensorMap,context);return[mean(getParamValue("x",node,tensorMap,context),axis,keepDims)]}case"Min":{const axis=getParamValue("axis",node,tensorMap,context);const keepDims=getParamValue("keepDims",node,tensorMap,context);return[min2(getParamValue("x",node,tensorMap,context),axis,keepDims)]}case"Sum":{const axis=getParamValue("axis",node,tensorMap,context);const keepDims=getParamValue("keepDims",node,tensorMap,context);return[sum$1(getParamValue("x",node,tensorMap,context),axis,keepDims)]}case"All":{const axis=getParamValue("axis",node,tensorMap,context);const keepDims=getParamValue("keepDims",node,tensorMap,context);return[all(getParamValue("x",node,tensorMap,context),axis,keepDims)]}case"Any":{const axis=getParamValue("axis",node,tensorMap,context);const keepDims=getParamValue("keepDims",node,tensorMap,context);return[any(getParamValue("x",node,tensorMap,context),axis,keepDims)]}case"ArgMax":{const axis=getParamValue("axis",node,tensorMap,context);return[argMax(getParamValue("x",node,tensorMap,context),axis)]}case"ArgMin":{const axis=getParamValue("axis",node,tensorMap,context);return[argMin(getParamValue("x",node,tensorMap,context),axis)]}case"Prod":{const axis=getParamValue("axis",node,tensorMap,context);const keepDims=getParamValue("keepDims",node,tensorMap,context);return[prod(getParamValue("x",node,tensorMap,context),axis,keepDims)]}case"Cumsum":{const axis=getParamValue("axis",node,tensorMap,context);const exclusive=getParamValue("exclusive",node,tensorMap,context);const reverse3=getParamValue("reverse",node,tensorMap,context);return[cumsum2(getParamValue("x",node,tensorMap,context),axis,exclusive,reverse3)]}default:throw TypeError(`Node type ${node.op} is not implemented`)}};const CATEGORY$d="reduction";const executeOp$e=(node,tensorMap,context)=>{switch(node.op){case"ConcatV2":case"Concat":{const n=getParamValue("n",node,tensorMap,context);const axis=getParamValue("axis",node,tensorMap,context);let inputs=getParamValue("tensors",node,tensorMap,context);inputs=inputs.slice(0,n);return[concat2(inputs,axis)]}case"GatherV2":case"Gather":{const axis=getParamValue("axis",node,tensorMap,context);const input2=getParamValue("x",node,tensorMap,context);const indices=getParamValue("indices",node,tensorMap,context);return[gather(input2,cast2(indices,"int32"),axis)]}case"ReverseV2":case"Reverse":{const axis=getParamValue("axis",node,tensorMap,context);const input2=getParamValue("x",node,tensorMap,context);return[reverse2(input2,axis)]}case"Slice":{const begin=getParamValue("begin",node,tensorMap,context);const size=getParamValue("size",node,tensorMap,context);return[slice2(getParamValue("x",node,tensorMap,context),begin,size)]}case"StridedSlice":{const begin=getParamValue("begin",node,tensorMap,context);const end=getParamValue("end",node,tensorMap,context);const strides=getParamValue("strides",node,tensorMap,context);const beginMask=getParamValue("beginMask",node,tensorMap,context);const endMask=getParamValue("endMask",node,tensorMap,context);const ellipsisMask=getParamValue("ellipsisMask",node,tensorMap,context);const newAxisMask=getParamValue("newAxisMask",node,tensorMap,context);const shrinkAxisMask=getParamValue("shrinkAxisMask",node,tensorMap,context);const tensor2=getParamValue("x",node,tensorMap,context);return[stridedSlice2(tensor2,begin,end,strides,beginMask,endMask,ellipsisMask,newAxisMask,shrinkAxisMask)]}case"Pack":{return tidy(()=>{const axis=getParamValue("axis",node,tensorMap,context);const tensors=getParamValue("tensors",node,tensorMap,context);const shape=tensors[0].shape;const squeezedShape=squeeze(tensors[0]).shape;const mapped=tensors.map(tensor2=>{const sameShape=arraysEqual(tensor2.shape,shape);if(!sameShape&&!arraysEqual(squeeze(tensor2).shape,squeezedShape)){throw new Error("the input tensors shape does not match")}return sameShape?tensor2:reshape2(tensor2,shape)});return[stack(mapped,axis)]})}case"Unpack":{const axis=getParamValue("axis",node,tensorMap,context);const tensor2=getParamValue("tensor",node,tensorMap,context);return unstack(tensor2,axis)}case"Tile":{const reps=getParamValue("reps",node,tensorMap,context);return[tile2(getParamValue("x",node,tensorMap,context),reps)]}case"Split":case"SplitV":{const axis=getParamValue("axis",node,tensorMap,context);const numOrSizeSplits=getParamValue("numOrSizeSplits",node,tensorMap,context);const tensor2=getParamValue("x",node,tensorMap,context);return split2(tensor2,numOrSizeSplits,axis)}case"ScatterNd":{const indices=getParamValue("indices",node,tensorMap,context);const values=getParamValue("values",node,tensorMap,context);const shape=getParamValue("shape",node,tensorMap,context);return[scatterND(indices,values,shape)]}case"GatherNd":{const x=getParamValue("x",node,tensorMap,context);const indices=getParamValue("indices",node,tensorMap,context);return[gatherND(x,indices)]}case"SparseToDense":{const indices=getParamValue("sparseIndices",node,tensorMap,context);const shape=getParamValue("outputShape",node,tensorMap,context);const sparseValues=getParamValue("sparseValues",node,tensorMap,context);const defaultValue=getParamValue("defaultValue",node,tensorMap,context);return[sparseToDense(indices,sparseValues,shape,sparseValues.dtype===defaultValue.dtype?defaultValue:cast2(defaultValue,sparseValues.dtype))]}default:throw TypeError(`Node type ${node.op} is not implemented`)}};const CATEGORY$e="slice_join";const executeOp$f=(node,tensorMap,context)=>{switch(node.op){case"FFT":{return[fft(getParamValue("x",node,tensorMap,context))]}case"IFFT":{return[ifft(getParamValue("x",node,tensorMap,context))]}case"RFFT":{return[rfft(getParamValue("x",node,tensorMap,context))]}case"IRFFT":{return[irfft(getParamValue("x",node,tensorMap,context))]}default:throw TypeError(`Node type ${node.op} is not implemented`)}};const CATEGORY$f="spectral";const executeOp$g=(node,tensorMap,context)=>{switch(node.op){case"Cast":{return[cast2(getParamValue("x",node,tensorMap,context),getParamValue("dtype",node,tensorMap,context))]}case"ExpandDims":{const axis=getParamValue("axis",node,tensorMap,context);return[expandDims(getParamValue("x",node,tensorMap,context),axis)]}case"Squeeze":{const axis=getParamValue("axis",node,tensorMap,context);return[squeeze(getParamValue("x",node,tensorMap,context),axis)]}case"Reshape":{return[reshape2(getParamValue("x",node,tensorMap,context),getParamValue("shape",node,tensorMap,context))]}case"MirrorPad":{return[mirrorPad(getParamValue("x",node,tensorMap,context),getParamValue("padding",node,tensorMap,context),getParamValue("mode",node,tensorMap,context))]}case"PadV2":case"Pad":{return[pad2(getParamValue("x",node,tensorMap,context),getParamValue("padding",node,tensorMap,context),getParamValue("constantValue",node,tensorMap,context))]}case"SpaceToBatchND":{const blockShape=getParamValue("blockShape",node,tensorMap,context);const paddings=getParamValue("paddings",node,tensorMap,context);return[spaceToBatchND(getParamValue("x",node,tensorMap,context),blockShape,paddings)]}case"BatchToSpaceND":{const blockShape=getParamValue("blockShape",node,tensorMap,context);const crops=getParamValue("crops",node,tensorMap,context);return[batchToSpaceND(getParamValue("x",node,tensorMap,context),blockShape,crops)]}case"DepthToSpace":{const blockSize=getParamValue("blockSize",node,tensorMap,context);const dataFormat=getParamValue("dataFormat",node,tensorMap,context).toUpperCase();return[depthToSpace2(getParamValue("x",node,tensorMap,context),blockSize,dataFormat)]}case"BroadcastTo":{return[broadcastTo(getParamValue("x",node,tensorMap,context),getParamValue("shape",node,tensorMap,context))]}default:throw TypeError(`Node type ${node.op} is not implemented`)}};const CATEGORY$g="transformation";function executeOp$h(node,tensorMap,context,resourceManager){const value=((node2,tensorMap2,context2)=>{switch(node2.category){case"arithmetic":return tidy(()=>executeOp(node2,tensorMap2,context2));case"basic_math":return tidy(()=>executeOp$1(node2,tensorMap2,context2));case"control":return executeOp$2(node2,tensorMap2,context2);case"convolution":return tidy(()=>executeOp$3(node2,tensorMap2,context2));case"creation":return tidy(()=>executeOp$4(node2,tensorMap2,context2));case"dynamic":return executeOp$5(node2,tensorMap2,context2);case"evaluation":return tidy(()=>executeOp$6(node2,tensorMap2,context2));case"image":return tidy(()=>executeOp$9(node2,tensorMap2,context2));case"graph":return tidy(()=>executeOp$7(node2,tensorMap2,context2));case"logical":return tidy(()=>executeOp$a(node2,tensorMap2,context2));case"matrices":return tidy(()=>executeOp$b(node2,tensorMap2,context2));case"normalization":return tidy(()=>executeOp$c(node2,tensorMap2,context2));case"reduction":return tidy(()=>executeOp$d(node2,tensorMap2,context2));case"slice_join":return tidy(()=>executeOp$e(node2,tensorMap2,context2));case"spectral":return tidy(()=>executeOp$f(node2,tensorMap2,context2));case"transformation":return tidy(()=>executeOp$g(node2,tensorMap2,context2));case"hash_table":return executeOp$8(node2,tensorMap2,context2,resourceManager);case"custom":const opMapper=getRegisteredOp(node2.op);if(opMapper&&opMapper.customExecutor){return opMapper.customExecutor(new NodeValueImpl(node2,tensorMap2,context2))}else{throw TypeError(`Custom op ${node2.op} is not registered.`)}default:throw TypeError(`Unknown op '${node2.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(node,tensorMap,context);if(isPromise(value)){return value.then(data2=>[].concat(data2))}return[].concat(value)}class ExecutionContext{constructor(weightMap={},tensorArrayMap={},tensorListMap={},functionMap={}){this.weightMap=weightMap;this.tensorArrayMap=tensorArrayMap;this.tensorListMap=tensorListMap;this.functionMap=functionMap;this.rootContext={id:0,frameName:"",iterationId:0};this.contexts=[this.rootContext];this.lastId=0;this.generateCurrentContextIds()}newFrame(id,frameName){return{id,frameName,iterationId:0}}set currentContext(contexts2){if(this.contexts!==contexts2){this.contexts=contexts2;this.generateCurrentContextIds()}}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){const names=[];for(let i=0;i<this.contexts.length-1;i++){const contexts2=this.contexts.slice(0,this.contexts.length-i);names.push(this.contextIdforContexts(contexts2))}names.push("");this._currentContextIds=names}contextIdforContexts(contexts2){return contexts2?contexts2.map(context=>context.id===0&&context.iterationId===0?"":`${context.frameName}-${context.iterationId}`).join("/"):""}enterFrame(frameId){if(this.contexts){this.lastId++;this.contexts=this.contexts.slice();this.contexts.push(this.newFrame(this.lastId,frameId));this._currentContextIds.unshift(this.contextIdforContexts(this.contexts))}}exitFrame(){if(this.contexts&&this.contexts.length>1){this.contexts=this.contexts.slice();this.contexts.splice(-1);this.currentContextIds.shift()}else{throw new Error("Cannot exit frame, the context is empty")}}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice();this.lastId++;const context=Object.assign({},this.contexts[this.contexts.length-1]);context.iterationId+=1;context.id=this.lastId;this.contexts.splice(-1,1,context);this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else{throw new Error("Cannot increase frame iteration, the context is empty")}}getWeight(name){return this.weightMap[name]}addTensorArray(tensorArray){this.tensorArrayMap[tensorArray.id]=tensorArray}getTensorArray(id){return this.tensorArrayMap[id]}addTensorList(tensorList){this.tensorListMap[tensorList.id]=tensorList}getTensorList(id){return this.tensorListMap[id]}dispose(keepIds){for(const key in this.tensorArrayMap){this.tensorArrayMap[key].clearAndClose(keepIds)}for(const key in this.tensorListMap){this.tensorListMap[key].clearAndClose(keepIds)}}}function getExecutionSubgraph(inputs,outputs,weightMap,initNodes){const usedNodes=new Set;const missingInputs=[];let dynamicNode=null;let syncInputs=null;const seen=new Set;const inputNodeNames=Object.keys(inputs).map(name=>parseNodeName(name)[0]);let initNodeNames=[];if(initNodes!=null){initNodeNames=initNodes.map(node=>parseNodeName(node.name)[0])}const frontier=[...outputs];while(frontier.length>0){const node=frontier.pop();if(isControlFlow(node)||isDynamicShape(node)||isHashTable(node)){if(dynamicNode==null){dynamicNode=node;syncInputs=dynamicNode.children.map(child=>child.name).filter(name=>usedNodes.has(name))}}usedNodes.add(node.name);if(weightMap[node.name]!=null){continue}if(inputNodeNames.indexOf(node.name)!==-1){continue}if(initNodeNames.indexOf(node.name)!==-1){continue}if(node.inputs.length===0){missingInputs.push(node.name);continue}node.inputs.forEach(input2=>{if(seen.has(input2.name)){return}seen.add(input2.name);frontier.push(input2)})}return{inputs,outputs,usedNodes,missingInputs,dynamicNode,syncInputs}}function getNodesInTopologicalOrder(graph2,weightMap,executionInfo){const{usedNodes,inputs}=executionInfo;const frontier=[];const inputNodes=Object.keys(inputs).map(name=>parseNodeName(name)[0]).map(name=>graph2.nodes[name]);const initNodes=graph2.initNodes;inputNodes.forEach(input2=>{if(usedNodes.has(input2.name)){frontier.push(input2)}});graph2.weights.forEach(weight=>{if(usedNodes.has(weight.name)){frontier.push(weight)}});if(initNodes!=null){initNodes.forEach(node=>{if(usedNodes.has(node.name)){frontier.push(node)}})}const seen=new Set;const orderedNodes=[];while(frontier.length>0){const node=frontier.pop();seen.add(node.name);if(!weightMap[node.name]){orderedNodes.push(node)}node.children.forEach(child=>{if(!seen.has(child.name)&&usedNodes.has(child.name)&&child.inputs.every(input2=>seen.has(input2.name))){frontier.push(child)}})}return orderedNodes}const CONTROL_FLOW_OPS=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"];const DYNAMIC_SHAPE_OPS=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"];const HASH_TABLE_OPS=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2"];function isControlFlow(node){return CONTROL_FLOW_OPS.indexOf(node.op)>=0}function isDynamicShape(node){return DYNAMIC_SHAPE_OPS.indexOf(node.op)>=0}function isHashTable(node){return HASH_TABLE_OPS.indexOf(node.op)>=0}class GraphExecutor{constructor(graph2,parent){this.graph=graph2;this.parent=parent;this.compiledMap=new Map;this._weightMap={};this.SEPERATOR=",";this._functions={};this._functionExecutorMap={};this._outputs=graph2.outputs;this._inputs=graph2.inputs;this._initNodes=graph2.initNodes;this._signature=graph2.signature;this._functions=graph2.functions;if(graph2.functions!=null){Object.keys(graph2.functions).forEach(name=>{this._functionExecutorMap[name]=new GraphExecutor(graph2.functions[name],this)})}}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(weightMap){const weightIds=Object.keys(weightMap).map(key=>weightMap[key].map(tensor2=>tensor2.id));this._weightIds=[].concat(...weightIds);this._weightMap=weightMap}set resourceManager(resourceManager){this._resourceManager=resourceManager}get inputs(){return this._inputs.map(node=>{return{name:node.name,shape:node.attrParams["shape"]?node.attrParams["shape"].value:void 0,dtype:node.attrParams["dtype"]?node.attrParams["dtype"].value:void 0}})}get outputs(){return this._outputs.map(node=>{return{name:node.name,shape:node.attrParams["shape"]?node.attrParams["shape"].value:void 0,dtype:node.attrParams["dtype"]?node.attrParams["dtype"].value:void 0}})}get inputNodes(){return this._inputs.map(node=>node.signatureKey||node.name)}get outputNodes(){return this._outputs.map(node=>{const name=node.signatureKey||node.name;return node.defaultOutput?`${name}:${node.defaultOutput}`:name})}get functions(){return Object.keys(this._functions).reduce((map,key)=>{map[key]=this._functions[key].signature;return map},{})}getCompilationKey(inputs,outputs){const sortedInputs=inputs.map(node=>node.name).sort();const sortedOutputs=outputs.map(node=>node.name).sort();return sortedInputs.join(this.SEPERATOR)+"--"+sortedOutputs.join(this.SEPERATOR)}compile(inputs,outputs){const executionInfo=getExecutionSubgraph(inputs,outputs,this.weightMap,this._initNodes);const{missingInputs,dynamicNode,syncInputs}=executionInfo;if(dynamicNode!=null){throw new Error(`This execution contains the node '${dynamicNode.name}', which has the dynamic op '${dynamicNode.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${syncInputs}]`)}if(missingInputs.length>0){const outNames=outputs.map(n=>n.name);const inNames=Object.keys(inputs);throw new Error(`Cannot compute the outputs [${outNames}] from the provided inputs [${inNames}]. Missing the following inputs: [${missingInputs}]`)}return getNodesInTopologicalOrder(this.graph,this.weightMap,executionInfo)}execute(inputs,outputs){inputs=this.mapInputs(inputs);const names=Object.keys(inputs).sort();this.checkInputs(inputs);this.checkInputShapeAndType(inputs);outputs=this.mapOutputs(outputs);this.checkOutputs(outputs);const inputNodes=names.map(name=>this.graph.nodes[parseNodeName(name)[0]]);const outputNodeNames=outputs.map(name=>parseNodeName(name)[0]);let outputNodes=outputNodeNames.map(name=>this.graph.nodes[name]);if(outputNodes.length===0){outputNodes=this._outputs}const compilationKey=this.getCompilationKey(inputNodes,outputNodes);let orderedNodes=this.compiledMap.get(compilationKey);if(orderedNodes==null){orderedNodes=this.compile(inputs,outputNodes);this.compiledMap.set(compilationKey,orderedNodes)}const tensorArrayMap={};const tensorListMap={};return tidy(()=>{const context=new ExecutionContext(this.weightMap,tensorArrayMap,tensorListMap,this.functionExecutorMap);const tensorsMap=Object.assign({},this.weightMap);Object.keys(inputs).forEach(name=>{const[nodeName,index2]=parseNodeName(name);const tensors=[];tensors[index2]=inputs[name];tensorsMap[nodeName]=tensors});const tensorsToKeep=this.getFrozenTensorIds(tensorsMap);const intermediateTensorConsumerCount={};for(let i=0;i<orderedNodes.length;i++){const node=orderedNodes[i];if(!tensorsMap[node.name]){const tensors=executeOp$h(node,tensorsMap,context,this._resourceManager);if(isPromise(tensors)){throw new Error(`The execution of the op '${node.op}' returned a promise. Please use model.executeAsync() instead.`)}tensorsMap[node.name]=tensors;this.checkTensorForDisposal(node.name,node,tensorsMap,context,tensorsToKeep,outputNodeNames,intermediateTensorConsumerCount)}}if(this.parent==null){context.dispose(tensorsToKeep)}return outputs.map(name=>getTensor(name,tensorsMap,context))})}getFrozenTensorIds(tensorMap){const ids=[].concat.apply([],Object.keys(tensorMap).map(key=>tensorMap[key]).map(tensors=>tensors.map(tensor2=>tensor2.id)));return new Set(ids)}checkTensorForDisposal(nodeName,node,tensorMap,context,tensorsToKeep,outputNames,intermediateTensorConsumerCount){if(node.category==="control"||outputNames.indexOf(nodeName)!==-1){return}tensorMap[nodeName].forEach(tensor2=>{if(tensor2!=null){intermediateTensorConsumerCount[tensor2.id]=(intermediateTensorConsumerCount[tensor2.id]||0)+node.children.length}});node.inputs.forEach(input2=>{if(input2.category!=="control"){const tensors=getTensorsForCurrentContenxt(input2.name,tensorMap,context);if(tensors!=null){tensors.forEach(tensor2=>{if(tensor2&&!tensorsToKeep.has(tensor2.id)){const count2=intermediateTensorConsumerCount[tensor2.id];if(count2===1){tensor2.dispose();delete intermediateTensorConsumerCount[tensor2.id]}else if(count2!=null){intermediateTensorConsumerCount[tensor2.id]--}}})}}})}async executeAsync(inputs,outputs){return this._executeAsync(inputs,outputs)}async _executeAsync(inputs,outputs,isFunctionExecution=false,tensorArrayMap={},tensorListMap={}){if(!isFunctionExecution){inputs=this.mapInputs(inputs);this.checkInputs(inputs);this.checkInputShapeAndType(inputs);outputs=this.mapOutputs(outputs);this.checkOutputs(outputs)}const context=new ExecutionContext(this.weightMap,tensorArrayMap,tensorListMap,this.functionExecutorMap);const tensorMap=await this.executeWithControlFlow(inputs,context,outputs,isFunctionExecution);const results=outputs.map(name=>getTensor(name,tensorMap,context));const outputIds=results.map(t=>t.id);const inputIds=Object.keys(inputs).map(name=>inputs[name].id);const keepIds=new Set([...outputIds,...inputIds,...this.weightIds]);Object.keys(tensorMap).forEach(key=>{const tensorArray=tensorMap[key];tensorArray.forEach(tensor2=>{if(tensor2&&!tensor2.isDisposed&&!keepIds.has(tensor2.id)){tensor2.dispose()}})});if(this.parent==null){context.dispose(keepIds)}return results}async executeFunctionAsync(inputs,tensorArrayMap,tensorListMap){const mappedInputs=inputs.reduce((map,tensor2,index2)=>{map[this.inputs[index2].name]=tensor2;return map},{});return this._executeAsync(mappedInputs,this.outputNodes,true,tensorArrayMap,tensorListMap)}async executeWithControlFlow(inputs,context,outputNames,isFunctionExecution){const names=Object.keys(inputs);const inputNodes=names.map(name=>this.graph.nodes[parseNodeName(name)[0]]);const outputNodeNames=outputNames.map(name=>parseNodeName(name)[0]);let outputNodes=outputNodeNames.map(name=>this.graph.nodes[name]);if(outputNodes.length===0){outputNodes=this._outputs}const{usedNodes,missingInputs,dynamicNode,syncInputs}=getExecutionSubgraph(inputs,outputNodes,this.weightMap,this._initNodes);const stack2=[...inputNodes,...this.graph.weights,...this._initNodes||[]].map(node=>{return{node,contexts:context.currentContext}});const tensorsMap=Object.assign({},this.weightMap);Object.keys(inputs).forEach(name=>{const[nodeName,index2]=parseNodeName(name);const tensors=[];tensors[index2]=inputs[name];tensorsMap[nodeName]=tensors});const intermediateTensorConsumerCount={};const tensorsToKeep=this.getFrozenTensorIds(tensorsMap);const added={};while(stack2.length>0){const promises=this.processStack(inputNodes,stack2,context,tensorsMap,added,tensorsToKeep,outputNodeNames,intermediateTensorConsumerCount,usedNodes);await Promise.all(promises)}if(dynamicNode==null&&!isFunctionExecution){console.warn(`This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.`)}const missingOutputs=outputNodes.filter(node=>!isControlFlow(node)&&!getTensor(node.name,tensorsMap,context)).map(node=>node.name);if(missingOutputs.length>0){let alternativeMsg="";if(dynamicNode!=null){alternativeMsg=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${syncInputs}]`}throw new Error(`Cannot compute the outputs [${missingOutputs}] from the provided inputs [${names}]. Consider providing the following inputs: [${missingInputs}]. ${alternativeMsg}`)}return tensorsMap}processStack(inputNodes,stack2,context,tensorMap,added,tensorsToKeep,outputNames,intermediateTensorConsumerCount,usedNodes){const promises=[];while(stack2.length>0){const item=stack2.pop();context.currentContext=item.contexts;let nodeName="";if(item.node.op==="Enter"&&getParamValue("isConstant",item.node,tensorMap,context)){[nodeName]=getNodeNameAndIndex(item.node.name,context)}if(tensorMap[item.node.name]==null){const tensors=executeOp$h(item.node,tensorMap,context,this._resourceManager);if(!nodeName){[nodeName]=getNodeNameAndIndex(item.node.name,context)}const currentContext=context.currentContext;if(isPromise(tensors)){promises.push(tensors.then(t=>{tensorMap[nodeName]=t;context.currentContext=currentContext;this.checkTensorForDisposal(nodeName,item.node,tensorMap,context,tensorsToKeep,outputNames,intermediateTensorConsumerCount);this.processChildNodes(item.node,stack2,context,tensorMap,added,usedNodes);return t}))}else{tensorMap[nodeName]=tensors;this.checkTensorForDisposal(nodeName,item.node,tensorMap,context,tensorsToKeep,outputNames,intermediateTensorConsumerCount);this.processChildNodes(item.node,stack2,context,tensorMap,added,usedNodes)}}else{this.processChildNodes(item.node,stack2,context,tensorMap,added,usedNodes)}}return promises}processChildNodes(node,stack2,context,tensorMap,added,usedNodes){node.children.forEach(childNode=>{const[nodeName]=getNodeNameAndIndex(childNode.name,context);if(added[nodeName]||!usedNodes.has(childNode.name)){return}if(childNode.op==="Merge"){if(childNode.inputNames.some(name=>{return!!getTensor(name,tensorMap,context)})){added[nodeName]=true;stack2.push({contexts:context.currentContext,node:childNode})}}else if(childNode.inputNames.every(name=>{return!!getTensor(name,tensorMap,context)})){added[nodeName]=true;stack2.push({contexts:context.currentContext,node:childNode})}})}dispose(){Object.keys(this.weightMap).forEach(key=>this.weightMap[key].forEach(tensor2=>tensor2.dispose()))}checkInputShapeAndType(inputs){Object.keys(inputs).forEach(name=>{const input2=inputs[name];const[nodeName]=parseNodeName(name);const node=this.graph.nodes[nodeName];if(node.attrParams["shape"]&&node.attrParams["shape"].value){const shape=node.attrParams["shape"].value;const match=shape.length===input2.shape.length&&input2.shape.every((dim,index2)=>shape[index2]===-1||shape[index2]===dim);assert(match,()=>`The shape of dict['${node.name}'] provided in model.execute(dict) must be [${shape}], but was [${input2.shape}]`)}if(node.attrParams["dtype"]&&node.attrParams["dtype"].value){assert(input2.dtype===node.attrParams["dtype"].value,()=>`The dtype of dict['${node.name}'] provided in model.execute(dict) must be ${node.attrParams["dtype"].value}, but was ${input2.dtype}`)}})}mapInputs(inputs){const result={};for(const inputName in inputs){if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[inputName]!=null){const tensor2=this._signature.inputs[inputName];result[tensor2.name]=inputs[inputName]}else{result[inputName]=inputs[inputName]}}return result}checkInputs(inputs){const notInGraph=Object.keys(inputs).filter(name=>{const[nodeName]=parseNodeName(name);return this.graph.nodes[nodeName]==null});if(notInGraph.length>0){throw new Error(`The dict provided in model.execute(dict) has keys: [${notInGraph}] that are not part of graph`)}}mapOutputs(outputs){return outputs.map(name=>{if(this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[name]!=null){const tensor2=this._signature.outputs[name];return tensor2.name}return name},{})}checkOutputs(outputs){outputs.forEach(name=>{const[normalizedName]=parseNodeName(name);if(!this.graph.nodes[normalizedName]){throw new Error(`The output '${name}' is not found in the graph`)}})}}class ResourceManager{constructor(hashTableNameToHandle={},hashTableMap={}){this.hashTableNameToHandle=hashTableNameToHandle;this.hashTableMap=hashTableMap}addHashTable(name,hashTable2){this.hashTableNameToHandle[name]=hashTable2.handle;this.hashTableMap[hashTable2.id]=hashTable2}getHashTableHandleByName(name){return this.hashTableNameToHandle[name]}getHashTableById(id){return this.hashTableMap[id]}dispose(){for(const key in this.hashTableMap){this.hashTableMap[key].clearAndClose();delete this.hashTableMap[key]}for(const name in this.hashTableNameToHandle){this.hashTableNameToHandle[name].dispose();delete this.hashTableNameToHandle[name]}}}const TFHUB_SEARCH_PARAM="?tfjs-format=file";const DEFAULT_MODEL_NAME="model.json";class GraphModel{constructor(modelUrl,loadOptions={}){this.modelUrl=modelUrl;this.loadOptions=loadOptions;this.version="n/a";if(loadOptions==null){this.loadOptions={}}this.resourceManager=new ResourceManager}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}findIOHandler(){const path=this.modelUrl;if(path.load!=null){this.handler=path}else if(this.loadOptions.requestInit!=null){this.handler=browserHTTPRequest(path,this.loadOptions)}else{const handlers=getLoadHandlers(path,this.loadOptions);if(handlers.length===0){handlers.push(browserHTTPRequest(path,this.loadOptions))}else if(handlers.length>1){throw new Error(`Found more than one (${handlers.length}) load handlers for URL '${[path]}'`)}this.handler=handlers[0]}}async load(){this.findIOHandler();if(this.handler.load==null){throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.")}const artifacts=await this.handler.load();return this.loadSync(artifacts)}loadSync(artifacts){this.artifacts=artifacts;const graph2=this.artifacts.modelTopology;let signature={};if(this.artifacts.userDefinedMetadata!=null){signature=this.artifacts.userDefinedMetadata.signature}this.version=`${graph2.versions.producer}.${graph2.versions.minConsumer}`;const weightMap=decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);this.executor=new GraphExecutor(OperationMapper.Instance.transformGraph(graph2,signature));this.executor.weightMap=this.convertTensorMapToTensorsMap(weightMap);this.executor.resourceManager=this.resourceManager;if(artifacts.modelInitializer!=null){const initializer=OperationMapper.Instance.transformGraph(artifacts.modelInitializer);this.initializer=new GraphExecutor(initializer);this.initializer.weightMap=this.executor.weightMap;this.initializer.resourceManager=this.resourceManager;this.initializer.executeAsync({},[])}return true}async save(handlerOrURL,config2){if(typeof handlerOrURL==="string"){const handlers=getSaveHandlers(handlerOrURL);if(handlers.length===0){throw new Error(`Cannot find any save handlers for URL '${handlerOrURL}'`)}else if(handlers.length>1){throw new Error(`Found more than one (${handlers.length}) save handlers for URL '${handlerOrURL}'`)}handlerOrURL=handlers[0]}if(handlerOrURL.save==null){throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.")}return handlerOrURL.save(this.artifacts)}predict(inputs,config2){return this.execute(inputs,this.outputNodes)}normalizeInputs(inputs){if(!(inputs instanceof Tensor)&&!Array.isArray(inputs)){return inputs}inputs=Array.isArray(inputs)?inputs:[inputs];if(inputs.length!==this.inputNodes.length){throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${inputs.length} input tensors.`)}return this.inputNodes.reduce((map,inputName,i)=>{map[inputName]=inputs[i];return map},{})}normalizeOutputs(outputs){outputs=outputs||this.outputNodes;return!Array.isArray(outputs)?[outputs]:outputs}execute(inputs,outputs){inputs=this.normalizeInputs(inputs);outputs=this.normalizeOutputs(outputs);const result=this.executor.execute(inputs,outputs);return result.length>1?result:result[0]}async executeAsync(inputs,outputs){inputs=this.normalizeInputs(inputs);outputs=this.normalizeOutputs(outputs);const result=await this.executor.executeAsync(inputs,outputs);return result.length>1?result:result[0]}convertTensorMapToTensorsMap(map){return Object.keys(map).reduce((newMap,key)=>{newMap[key]=[map[key]];return newMap},{})}dispose(){this.executor.dispose();if(this.initializer){this.initializer.dispose()}this.resourceManager.dispose()}}async function loadGraphModel2(modelUrl,options={}){if(modelUrl==null){throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model")}if(options==null){options={}}if(options.fromTFHub){if(modelUrl.load==null){if(!modelUrl.endsWith("/")){modelUrl=modelUrl+"/"}modelUrl=`${modelUrl}${DEFAULT_MODEL_NAME}${TFHUB_SEARCH_PARAM}`}}const model2=new GraphModel(modelUrl,options);await model2.load();return model2}const version$2="2.7.0";function deepMap(input2,mapFn){return deepMapInternal(input2,mapFn)}function deepMapInternal(input2,mapFn,seen=new Map,containedIn=new Set){if(input2==null){return null}if(containedIn.has(input2)){throw new Error("Circular references are not supported.")}if(seen.has(input2)){return seen.get(input2)}const result=mapFn(input2);if(result.recurse&&result.value!==null){throw new Error("A deep map function may not return both a value and recurse=true.")}if(!result.recurse){seen.set(input2,result.value);return result.value}else if(isIterable$1(input2)){const mappedIterable=Array.isArray(input2)?[]:{};containedIn.add(input2);for(const k in input2){const child=input2[k];const childResult=deepMapInternal(child,mapFn,seen,containedIn);mappedIterable[k]=childResult}containedIn.delete(input2);return mappedIterable}else{throw new Error(`Can't recurse into non-iterable type: ${input2}`)}}function deepZip(inputs,zipFn=zipToList){return deepZipInternal(inputs,zipFn)}function deepZipInternal(inputs,zipFn,containedIn=new Set){const input2=inputs[0];if(containedIn.has(input2)){throw new Error("Circular references are not supported.")}const result=zipFn(inputs);if(result.recurse&&result.value!==null){throw new Error("A deep zip function may not return both a value and recurse=true.")}if(!result.recurse){return result.value}else if(isIterable$1(input2)){const mappedIterable=Array.isArray(input2)?[]:{};containedIn.add(input2);for(const k in input2){const children=inputs.map(x=>x[k]);const childResult=deepZipInternal(children,zipFn,containedIn);mappedIterable[k]=childResult}containedIn.delete(input2);return mappedIterable}else{throw new Error(`Can't recurse into non-iterable type: ${input2}`)}}function zipToList(x){if(x===null){return null}if(isIterable$1(x[0])){return{value:null,recurse:true}}else{return{value:x,recurse:false}}}async function deepMapAndAwaitAll(input2,mapFn){const seen=new Map;deepMapInternal(input2,mapFn,seen);for(const key of Array.from(seen.keys())){const value=seen.get(key);if(isPromise(value)){const mappedValue=await value;seen.set(key,mappedValue)}}const result=deepMapInternal(input2,mapFn,seen);return result}function isIterable$1(obj){return obj!=null&&!ArrayBuffer.isView(obj)&&(Array.isArray(obj)||typeof obj==="object"&&!(obj instanceof Tensor))}function canTensorify(obj){return obj==null||isPrimitive(obj)||Array.isArray(obj)||typeof obj==="object"&&obj instanceof Tensor||isTypedArray(obj)}function isPrimitive(value){return value===null||typeof value!=="object"&&typeof value!=="function"}function deepClone(container){return deepMap(container,cloneIfTensor)}function cloneIfTensor(item){if(item instanceof Tensor){return{value:item.clone(),recurse:false}}else if(isIterable$1(item)){return{value:null,recurse:true}}else{return{value:item,recurse:false}}}class RingBuffer{constructor(capacity){this.capacity=capacity;this.begin=0;this.end=0;if(capacity==null){throw new RangeError("Can't create a ring buffer of unknown capacity.")}if(capacity<1){throw new RangeError("Can't create ring buffer of capacity < 1.")}this.data=new Array(capacity);this.doubledCapacity=2*capacity}wrap(index2){while(index2<0){index2+=this.doubledCapacity}return index2%this.doubledCapacity}get(index2){if(index2<0){throw new RangeError("Can't get item at a negative index.")}return this.data[index2%this.capacity]}set(index2,value){if(index2<0){throw new RangeError("Can't set item at a negative index.")}this.data[index2%this.capacity]=value}length(){let length=this.end-this.begin;if(length<0){length=this.doubledCapacity+length}return length}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(value){if(this.isFull()){throw new RangeError("Ring buffer is full.")}this.set(this.end,value);this.end=this.wrap(this.end+1)}pushAll(values){for(const value of values){this.push(value)}}pop(){if(this.isEmpty()){throw new RangeError("Ring buffer is empty.")}this.end=this.wrap(this.end-1);const result=this.get(this.end);this.set(this.end,void 0);return result}unshift(value){if(this.isFull()){throw new RangeError("Ring buffer is full.")}this.begin=this.wrap(this.begin-1);this.set(this.begin,value)}shift(){if(this.isEmpty()){throw new RangeError("Ring buffer is empty.")}const result=this.get(this.begin);this.set(this.begin,void 0);this.begin=this.wrap(this.begin+1);return result}shuffleExcise(relativeIndex){if(this.isEmpty()){throw new RangeError("Ring buffer is empty.")}const index2=this.wrap(this.begin+relativeIndex);const result=this.get(index2);this.set(index2,this.pop());return result}}class GrowingRingBuffer extends RingBuffer{constructor(){super(GrowingRingBuffer.INITIAL_CAPACITY)}isFull(){return false}push(value){if(super.isFull()){this.expand()}super.push(value)}unshift(value){if(super.isFull()){this.expand()}super.unshift(value)}expand(){const newCapacity=this.capacity*2;const newData=new Array(newCapacity);const len=this.length();for(let i=0;i<len;i++){newData[i]=this.get(this.wrap(this.begin+i))}this.data=newData;this.capacity=newCapacity;this.doubledCapacity=2*this.capacity;this.begin=0;this.end=len}}GrowingRingBuffer.INITIAL_CAPACITY=32;function iteratorFromItems(items){return new ArrayIterator(items)}function iteratorFromIncrementing(start){let i=start;return iteratorFromFunction(()=>({value:i++,done:false}))}function iteratorFromFunction(func2){return new FunctionCallIterator(func2)}function iteratorFromConcatenated(baseIterators,baseErrorHandler){return new ChainedIterator(baseIterators,baseErrorHandler)}function iteratorFromConcatenatedFunction(iteratorFunc,count2,baseErrorHandler){return iteratorFromConcatenated(iteratorFromFunction(iteratorFunc).take(count2),baseErrorHandler)}function iteratorFromZipped(iterators,mismatchMode=ZipMismatchMode.FAIL){return new ZipIterator(iterators,mismatchMode)}class LazyIterator{async toArray(){const result=[];let x=await this.next();while(!x.done){result.push(x.value);x=await this.next()}return result}async toArrayForTest(){const stream=this.prefetch(100);const result=[];let x=await stream.next();while(!x.done){result.push(x.value);x=await stream.next()}return result}async resolveFully(){let x=await this.next();while(!x.done){x=await this.next()}}async resolveWhile(predicate){let x=await this.next();let shouldContinue=predicate(x.value);while(!x.done&&shouldContinue){x=await this.next();shouldContinue=predicate(x.value)}}handleErrors(handler){return new ErrorHandlingLazyIterator(this,handler)}filter(predicate){return new FilterIterator(this,predicate)}map(transform){return new MapIterator(this,transform)}mapAsync(transform){return new AsyncMapIterator(this,transform)}serialMapAsync(transform){return new AsyncMapIterator(this,transform).serial()}flatmap(transform){return new FlatmapIterator(this,transform)}async forEachAsync(f){return this.map(f).resolveFully()}async serialForEach(f){return this.serialMapAsync(f).resolveWhile(x=>x===true)}rowMajorBatch(batchSize,smallLastBatch=true){return new RowMajorBatchIterator(this,batchSize,smallLastBatch)}columnMajorBatch(batchSize,smallLastBatch=true,zipFn=zipToList){const rowBatches=this.rowMajorBatch(batchSize,smallLastBatch);return rowBatches.map(x=>deepZip(x,zipFn))}concatenate(iterator,baseErrorHandler){return new ChainedIterator(iteratorFromItems([this,iterator]),baseErrorHandler)}take(count2){if(count2<0||count2==null){return this}return new TakeIterator(this,count2)}skip(count2){if(count2<0||count2==null){return this}return new SkipIterator(this,count2)}prefetch(bufferSize){return new PrefetchIterator(this,bufferSize)}shuffle(windowSize,seed){return new ShuffleIterator(this,windowSize,seed)}serial(){return new SerialIterator(this)}}class ArrayIterator extends LazyIterator{constructor(items){super();this.items=items;this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length){return{value:null,done:true}}const item=this.items[this.trav];this.trav++;return{value:deepClone(item),done:false}}}class FunctionCallIterator extends LazyIterator{constructor(nextFn){super();this.nextFn=nextFn}summary(){return`Function call`}async next(){try{return this.nextFn()}catch(e){e.message=`Error thrown while iterating through a dataset: ${e.message}`;throw e}}}class SerialIterator extends LazyIterator{constructor(upstream){super();this.upstream=upstream;this.lastRead=Promise.resolve({value:null,done:false})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){this.lastRead=this.lastRead.then(()=>this.serialNext());return this.lastRead}async serialNext(){return this.upstream.next()}}class SkipIterator extends LazyIterator{constructor(upstream,maxCount){super();this.upstream=upstream;this.maxCount=maxCount;this.count=0;this.lastRead=Promise.resolve({value:null,done:false})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){this.lastRead=this.lastRead.then(()=>this.serialNext());return this.lastRead}async serialNext(){while(this.count++<this.maxCount){const skipped=await this.upstream.next();if(skipped.done){return skipped}dispose(skipped.value)}return this.upstream.next()}}class TakeIterator extends LazyIterator{constructor(upstream,maxCount){super();this.upstream=upstream;this.maxCount=maxCount;this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){if(this.count++>=this.maxCount){return{value:null,done:true}}return this.upstream.next()}}class RowMajorBatchIterator extends LazyIterator{constructor(upstream,batchSize,enableSmallLastBatch=true){super();this.upstream=upstream;this.batchSize=batchSize;this.enableSmallLastBatch=enableSmallLastBatch;this.lastRead=Promise.resolve({value:null,done:false})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){this.lastRead=this.lastRead.then(()=>this.serialNext());return this.lastRead}async serialNext(){const batch=[];while(batch.length<this.batchSize){const item=await this.upstream.next();if(item.done){if(this.enableSmallLastBatch&&batch.length>0){return{value:batch,done:false}}return{value:null,done:true}}batch.push(item.value)}return{value:batch,done:false}}}class FilterIterator extends LazyIterator{constructor(upstream,predicate){super();this.upstream=upstream;this.predicate=predicate;this.lastRead=Promise.resolve({value:null,done:false})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){this.lastRead=this.lastRead.then(()=>this.serialNext());return this.lastRead}async serialNext(){while(true){const item=await this.upstream.next();if(item.done||this.predicate(item.value)){return item}dispose(item.value)}}}class MapIterator extends LazyIterator{constructor(upstream,transform){super();this.upstream=upstream;this.transform=transform}summary(){return`${this.upstream.summary()} -> Map`}async next(){const item=await this.upstream.next();if(item.done){return{value:null,done:true}}const inputTensors=getTensorsInContainer(item.value);const mapped=this.transform(item.value);const outputTensors=getTensorsInContainer(mapped);for(const t of inputTensors){if(!isTensorInList(t,outputTensors)){t.dispose()}}return{value:mapped,done:false}}}class ErrorHandlingLazyIterator extends LazyIterator{constructor(upstream,handler){super();this.upstream=upstream;this.handler=handler;this.count=0;this.lastRead=Promise.resolve({value:null,done:false})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){this.lastRead=this.lastRead.then(()=>this.serialNext());return this.lastRead}async serialNext(){while(true){try{return await this.upstream.next()}catch(e){if(!this.handler(e)){return{value:null,done:true}}}}}}class AsyncMapIterator extends LazyIterator{constructor(upstream,transform){super();this.upstream=upstream;this.transform=transform}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){const item=await this.upstream.next();if(item.done){return{value:null,done:true}}const inputTensors=getTensorsInContainer(item.value);const mapped=await this.transform(item.value);const outputTensors=getTensorsInContainer(mapped);for(const t of inputTensors){if(!isTensorInList(t,outputTensors)){t.dispose()}}return{value:mapped,done:false}}}class OneToManyIterator extends LazyIterator{constructor(){super();this.outputQueue=new GrowingRingBuffer;this.lastRead=Promise.resolve({value:null,done:false})}async next(){this.lastRead=this.lastRead.then(()=>this.serialNext());return this.lastRead}async serialNext(){while(this.outputQueue.length()===0){if(!await this.pump()){return{value:null,done:true}}}return{value:this.outputQueue.shift(),done:false}}}class FlatmapIterator extends OneToManyIterator{constructor(upstream,transform){super();this.upstream=upstream;this.transform=transform}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){const item=await this.upstream.next();if(item.done){return false}const inputTensors=getTensorsInContainer(item.value);const mappedArray=this.transform(item.value);const outputTensors=getTensorsInContainer(mappedArray);this.outputQueue.pushAll(mappedArray);for(const t of inputTensors){if(!isTensorInList(t,outputTensors)){t.dispose()}}return true}}class ChainedIterator extends LazyIterator{constructor(iterators,baseErrorHandler){super();this.baseErrorHandler=baseErrorHandler;this.lastRead=null;this.iterator=null;this.moreIterators=iterators}summary(){const upstreamSummaries="TODO: fill in upstream of chained summaries";return`${upstreamSummaries} -> Chained`}async next(){this.lastRead=this.readFromChain(this.lastRead);return this.lastRead}async readFromChain(lastRead){await lastRead;if(this.iterator==null){const iteratorResult=await this.moreIterators.next();if(iteratorResult.done){return{value:null,done:true}}this.iterator=iteratorResult.value;if(this.baseErrorHandler!=null){this.iterator=this.iterator.handleErrors(this.baseErrorHandler)}}const itemResult=await this.iterator.next();if(itemResult.done){this.iterator=null;return this.readFromChain(lastRead)}return itemResult}}var ZipMismatchMode;(function(ZipMismatchMode2){ZipMismatchMode2[ZipMismatchMode2["FAIL"]=0]="FAIL";ZipMismatchMode2[ZipMismatchMode2["SHORTEST"]=1]="SHORTEST";ZipMismatchMode2[ZipMismatchMode2["LONGEST"]=2]="LONGEST"})(ZipMismatchMode||(ZipMismatchMode={}));class ZipIterator extends LazyIterator{constructor(iterators,mismatchMode=ZipMismatchMode.FAIL){super();this.iterators=iterators;this.mismatchMode=mismatchMode;this.count=0;this.currentPromise=null}summary(){const upstreamSummaries="TODO: fill in upstream of zip summaries";return`{${upstreamSummaries}} -> Zip`}async nextState(afterState){await afterState;let numIterators=0;let iteratorsDone=0;function getNext(container){if(container instanceof LazyIterator){const result=container.next();return{value:result.then(x=>{numIterators++;if(x.done){iteratorsDone++}return x.value}),recurse:false}}else{return{value:null,recurse:true}}}const mapped=await deepMapAndAwaitAll(this.iterators,getNext);if(numIterators===iteratorsDone){return{value:null,done:true}}if(iteratorsDone>0){switch(this.mismatchMode){case ZipMismatchMode.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case ZipMismatchMode.SHORTEST:return{value:null,done:true};case ZipMismatchMode.LONGEST:default:}}this.count++;return{value:mapped,done:false}}async next(){this.currentPromise=this.nextState(this.currentPromise);return this.currentPromise}}class PrefetchIterator extends LazyIterator{constructor(upstream,bufferSize){super();this.upstream=upstream;this.bufferSize=bufferSize;this.buffer=new RingBuffer(bufferSize)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){while(!this.buffer.isFull()){const v=this.upstream.next();this.buffer.push(v)}}next(){this.refill();return this.buffer.shift()}}class ShuffleIterator extends PrefetchIterator{constructor(upstream,windowSize,seed){super(upstream,windowSize);this.upstream=upstream;this.windowSize=windowSize;this.upstreamExhausted=false;this.random=seedrandom_1(seed||now2().toString());this.lastRead=Promise.resolve({value:null,done:false})}async next(){this.lastRead=this.lastRead.then(()=>this.serialNext());return this.lastRead}randomInt(max3){return Math.floor(this.random()*max3)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){if(!this.upstreamExhausted){this.refill()}while(!this.buffer.isEmpty()){const chosenIndex=this.chooseIndex();const result=await this.buffer.shuffleExcise(chosenIndex);if(result.done){this.upstreamExhausted=true}else{this.refill();return result}}return{value:null,done:true}}}class Dataset{constructor(){this.size=null}batch(batchSize,smallLastBatch=true){const base=this;assert(batchSize>0,()=>`batchSize needs to be positive, but it is
${batchSize}`);let size;if(this.size===Infinity||this.size==null){size=this.size}else if(smallLastBatch){size=Math.ceil(this.size/batchSize)}else{size=Math.floor(this.size/batchSize)}return datasetFromIteratorFn(async()=>{return(await base.iterator()).columnMajorBatch(batchSize,smallLastBatch,deepBatchConcat)},size)}concatenate(dataset){const base=this;let size;if(this.size===Infinity||dataset.size===Infinity){size=Infinity}else if(this.size!=null&&dataset.size!=null){size=this.size+dataset.size}else{size=null}return datasetFromIteratorFn(async()=>(await base.iterator()).concatenate(await dataset.iterator()),size)}filter(predicate){const base=this;let size;if(this.size===Infinity){size=Infinity}else{size=null}return datasetFromIteratorFn(async()=>{return(await base.iterator()).filter(x=>tidy(()=>predicate(x)))},size)}async forEachAsync(f){return(await this.iterator()).forEachAsync(f)}map(transform){const base=this;return datasetFromIteratorFn(async()=>{return(await base.iterator()).map(x=>tidy(()=>transform(x)))},this.size)}mapAsync(transform){const base=this;return datasetFromIteratorFn(async()=>{return(await base.iterator()).mapAsync(transform)},this.size)}prefetch(bufferSize){if(bufferSize==null){throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.")}const base=this;return datasetFromIteratorFn(async()=>(await base.iterator()).prefetch(bufferSize),this.size)}repeat(count2){const base=this;let size;if(this.size!=null&&count2>0){size=this.size*count2}else if(count2===0){size=0}else if(this.size!=null&&(count2===void 0||count2<0)){size=Infinity}else{size=null}return datasetFromIteratorFn(async()=>{const iteratorIterator=iteratorFromFunction(async()=>({value:await base.iterator(),done:false}));return iteratorFromConcatenated(iteratorIterator.take(count2))},size)}skip(count2){const base=this;let size;if(this.size!=null&&count2>=0&&this.size>=count2){size=this.size-count2}else if(this.size!=null&&(this.size<count2||count2===void 0||count2<0)){size=0}else{size=null}return datasetFromIteratorFn(async()=>(await base.iterator()).skip(count2),size)}shuffle(bufferSize,seed,reshuffleEachIteration=true){if(bufferSize==null||bufferSize<0){if(this.size==null){throw new RangeError("`Dataset.shuffle()` requires bufferSize to be specified.")}else{throw new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`)}}const base=this;const random=seedrandom_1(seed||now2().toString());return datasetFromIteratorFn(async()=>{let seed2=random.int32();if(reshuffleEachIteration){seed2+=random.int32()}return(await base.iterator()).shuffle(bufferSize,seed2.toString())},this.size)}take(count2){const base=this;let size;if(this.size!=null&&this.size>count2){size=count2}else if(this.size!=null&&this.size<=count2){size=this.size}else{size=null}return datasetFromIteratorFn(async()=>(await base.iterator()).take(count2),size)}async toArray(){if(this.size===Infinity){throw new Error("Can not convert infinite data stream to array.")}return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity){throw new Error("Can not convert infinite data stream to array.")}return(await this.iterator()).toArrayForTest()}}Dataset.MAX_BUFFER_SIZE=1e4;function datasetFromIteratorFn(iteratorFn,size=null){return new class extends Dataset{constructor(){super(...arguments);this.size=size}async iterator(){return iteratorFn()}}}function array(items){return datasetFromIteratorFn(async()=>iteratorFromItems(items),items.length)}function zip(datasets){if(!isIterable$1(datasets)){throw new Error("The argument to zip() must be an object or array.")}let size;if(Array.isArray(datasets)){for(let i=0;i<datasets.length;i++){size=size==null?datasets[i].size:Math.min(size,datasets[i].size)}}else if(datasets instanceof Object){for(const ds in datasets){size=size==null?datasets[ds].size:Math.min(size,datasets[ds].size)}}return datasetFromIteratorFn(async()=>{const streams=await deepMapAndAwaitAll(datasets,d=>{if(d instanceof Dataset){return{value:d.iterator(),recurse:false}}else if(isIterable$1(d)){return{value:null,recurse:true}}else{throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")}});return iteratorFromZipped(streams,ZipMismatchMode.SHORTEST)},size)}function deepBatchConcat(rows){if(rows===null){return null}const exampleRow=rows[0];if(canTensorify(exampleRow)){const value=batchConcat(rows);return{value,recurse:false}}return{value:null,recurse:true}}function batchConcat(arrays){if(arrays.length===0){throw new Error("Can't make a batch of zero elements.")}if(arrays[0]instanceof Tensor){return stack(arrays)}else{return tensor(arrays)}}class TextLineDataset extends Dataset{constructor(input2){super();this.input=input2}async iterator(){const inputIterator=await this.input.iterator();const utf8Iterator=inputIterator.decodeUTF8();const lineIterator=utf8Iterator.split("\n").map(line=>{if(line.endsWith("\r")){line=line.slice(0,-1)}return line});return lineIterator}}const CODE_QUOTE='"';const STATE_OUT=Symbol("out");const STATE_FIELD=Symbol("field");const STATE_QUOTE=Symbol("quote");const STATE_QUOTE_AFTER_QUOTE=Symbol("quoteafterquote");const STATE_WITHIN_QUOTE_IN_QUOTE=Symbol("quoteinquote");class CSVDataset extends Dataset{constructor(input2,csvConfig){super();this.input=input2;this.hasHeader=true;this.fullColumnNames=null;this.columnNamesValidated=false;this.columnConfigs=null;this.configuredColumnsOnly=false;this.delimiter=",";this.delimWhitespace=false;this.base=new TextLineDataset(input2);if(!csvConfig){csvConfig={}}this.hasHeader=csvConfig.hasHeader===false?false:true;this.fullColumnNames=csvConfig.columnNames;this.columnConfigs=csvConfig.columnConfigs;this.configuredColumnsOnly=csvConfig.configuredColumnsOnly;if(csvConfig.delimWhitespace){assert(csvConfig.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true.");this.delimWhitespace=true;this.delimiter=" "}else{this.delimiter=csvConfig.delimiter?csvConfig.delimiter:","}}async columnNames(){if(!this.columnNamesValidated){await this.setColumnNames()}return this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){const columnNamesFromFile=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!columnNamesFromFile){throw new Error("Column names must be provided if there is no header line.")}else if(this.fullColumnNames&&columnNamesFromFile){assert(columnNamesFromFile.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+columnNamesFromFile.length.toString()+").")}if(!this.fullColumnNames){this.fullColumnNames=columnNamesFromFile}const counts=this.fullColumnNames.reduce((countAcc,name)=>{countAcc[name]=countAcc[name]+1||1;return countAcc},{});const duplicateNames=Object.keys(counts).filter(name=>counts[name]>1);assert(duplicateNames.length===0,()=>"Duplicate column names found: "+duplicateNames.toString());if(this.columnConfigs){for(const key of Object.keys(this.columnConfigs)){const index2=this.fullColumnNames.indexOf(key);if(index2===-1){throw new Error('The key "'+key+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}}}this.columnNamesValidated=true}async maybeReadHeaderLine(){if(this.hasHeader){const iter=await this.base.iterator();const firstElement=await iter.next();if(firstElement.done){throw new Error("No data was found for CSV parsing.")}const firstLine=firstElement.value;const headers=this.parseRow(firstLine,false);return headers}else{return null}}async iterator(){if(!this.columnNamesValidated){await this.setColumnNames()}let lines=await this.base.iterator();if(this.hasHeader){lines=lines.skip(1)}return lines.map(x=>this.makeDataElement(x))}makeDataElement(line){const values=this.parseRow(line);const features={};const labels={};for(let i=0;i<this.fullColumnNames.length;i++){const key=this.fullColumnNames[i];const config2=this.columnConfigs?this.columnConfigs[key]:null;if(this.configuredColumnsOnly&&!config2){continue}else{const value=values[i];let parsedValue=null;if(value===""){if(config2&&config2.default!==void 0){parsedValue=config2.default}else if(config2&&(config2.required||config2.isLabel)){throw new Error(`Required column ${key} is empty in this line: ${line}`)}else{parsedValue=void 0}}else{const valueAsNum=Number(value);if(isNaN(valueAsNum)){if(config2&&config2.dtype==="bool"){parsedValue=this.getBoolean(value)}else{parsedValue=value}}else if(!config2||!config2.dtype){parsedValue=valueAsNum}else{switch(config2.dtype){case"float32":parsedValue=valueAsNum;break;case"int32":parsedValue=Math.floor(valueAsNum);break;case"bool":parsedValue=this.getBoolean(value);break;default:parsedValue=valueAsNum}}}config2&&config2.isLabel?labels[key]=parsedValue:features[key]=parsedValue}}if(Object.keys(labels).length===0){return features}else{return{xs:features,ys:labels}}}getBoolean(value){if(value==="1"||value.toLowerCase()==="true"){return 1}else{return 0}}parseRow(line,validateElementCount=true){const result=[];let readOffset=0;const readLength=line.length;let currentState=STATE_OUT;for(let i=0;i<readLength;i++){switch(currentState){case STATE_OUT:switch(line.charAt(i)){case CODE_QUOTE:readOffset=i+1;currentState=STATE_QUOTE;break;case this.delimiter:readOffset=i+1;if(this.delimiter===" "&&this.delimWhitespace){break}result.push("");currentState=STATE_OUT;break;default:currentState=STATE_FIELD;readOffset=i;break}break;case STATE_FIELD:switch(line.charAt(i)){case this.delimiter:result.push(line.substring(readOffset,i));currentState=STATE_OUT;readOffset=i+1;break;default:}break;case STATE_QUOTE:switch(line.charAt(i)){case CODE_QUOTE:currentState=STATE_QUOTE_AFTER_QUOTE;break;default:}break;case STATE_QUOTE_AFTER_QUOTE:switch(line.charAt(i)){case this.delimiter:result.push(line.substring(readOffset,i-1));currentState=STATE_OUT;readOffset=i+1;break;case CODE_QUOTE:currentState=STATE_QUOTE;break;default:currentState=STATE_WITHIN_QUOTE_IN_QUOTE;break}break;case STATE_WITHIN_QUOTE_IN_QUOTE:switch(line.charAt(i)){case CODE_QUOTE:currentState=STATE_QUOTE;break;default:}break;default:}}if(currentState===STATE_QUOTE_AFTER_QUOTE){result.push(line.substring(readOffset,readLength-1))}else{result.push(line.substring(readOffset))}if(validateElementCount&&result.length!==this.fullColumnNames.length){throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${result}`)}return result}}class MicrophoneIterator extends LazyIterator{constructor(microphoneConfig){super();this.microphoneConfig=microphoneConfig;this.isClosed=false;this.fftSize=microphoneConfig.fftSize||1024;const fftSizeLog2=Math.log2(this.fftSize);if(this.fftSize<0||fftSizeLog2<4||fftSizeLog2>14||!Number.isInteger(fftSizeLog2)){throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`)}this.numFrames=microphoneConfig.numFramesPerSpectrogram||43;this.sampleRateHz=microphoneConfig.sampleRateHz;this.columnTruncateLength=microphoneConfig.columnTruncateLength||this.fftSize;this.audioTrackConstraints=microphoneConfig.audioTrackConstraints;this.smoothingTimeConstant=microphoneConfig.smoothingTimeConstant||0;this.includeSpectrogram=microphoneConfig.includeSpectrogram===false?false:true;this.includeWaveform=microphoneConfig.includeWaveform===true?true:false;if(!this.includeSpectrogram&&!this.includeWaveform){throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}}summary(){return`microphone`}static async create(microphoneConfig={}){if(env3().get("IS_NODE")){throw new Error("microphone API is only supported in browser environment.")}const microphoneIterator=new MicrophoneIterator(microphoneConfig);await microphoneIterator.start();return microphoneIterator}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?true:this.audioTrackConstraints,video:false})}catch(e){throw new Error(`Error thrown while initializing video stream: ${e.message}`)}if(!this.stream){throw new Error("Could not obtain audio from microphone.")}const ctxConstructor=window.AudioContext||window.webkitAudioContext;this.audioContext=new ctxConstructor;if(!this.sampleRateHz){this.sampleRateHz=this.audioContext.sampleRate}else if(this.audioContext.sampleRate!==this.sampleRateHz){throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`)}const streamSource=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser();this.analyser.fftSize=this.fftSize*2;this.analyser.smoothingTimeConstant=this.smoothingTimeConstant;streamSource.connect(this.analyser);this.freqData=new Float32Array(this.fftSize);this.timeData=new Float32Array(this.fftSize);return}async next(){if(this.isClosed){return{value:null,done:true}}let spectrogramTensor;let waveformTensor;const audioDataQueue=await this.getAudioData();if(this.includeSpectrogram){const freqData=this.flattenQueue(audioDataQueue.freqDataQueue);spectrogramTensor=this.getTensorFromAudioDataArray(freqData,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){const timeData=this.flattenQueue(audioDataQueue.timeDataQueue);waveformTensor=this.getTensorFromAudioDataArray(timeData,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:spectrogramTensor,waveform:waveformTensor},done:false}}async capture(){return(await this.next()).value}async getAudioData(){const freqDataQueue=[];const timeDataQueue=[];let currentFrames=0;return new Promise(resolve=>{const intervalID=setInterval(()=>{if(this.includeSpectrogram){this.analyser.getFloatFrequencyData(this.freqData);if(this.freqData[0]===-Infinity){resolve({freqDataQueue,timeDataQueue})}freqDataQueue.push(this.freqData.slice(0,this.columnTruncateLength))}if(this.includeWaveform){this.analyser.getFloatTimeDomainData(this.timeData);timeDataQueue.push(this.timeData.slice())}if(++currentFrames===this.numFrames){clearInterval(intervalID);resolve({freqDataQueue,timeDataQueue})}},this.fftSize/this.sampleRateHz*1e3)})}stop(){if(!this.isClosed){this.isClosed=true;this.analyser.disconnect();this.audioContext.close();if(this.stream!=null&&this.stream.getTracks().length>0){this.stream.getTracks()[0].stop()}}}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(queue){const frameSize=queue[0].length;const freqData=new Float32Array(queue.length*frameSize);queue.forEach((data2,i)=>freqData.set(data2,i*frameSize));return freqData}getTensorFromAudioDataArray(freqData,shape){const vals=new Float32Array(sizeFromShape(shape));vals.set(freqData,vals.length-freqData.length);return tensor(vals,shape)}}class WebcamIterator extends LazyIterator{constructor(webcamVideoElement,webcamConfig){super();this.webcamVideoElement=webcamVideoElement;this.webcamConfig=webcamConfig;this.isClosed=true;this.resize=false;if(this.needToResize()){this.resize=true;this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth];this.cropBoxInd=tensor1d([0],"int32");if(this.webcamConfig.centerCrop){const widthCroppingRatio=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width;const heightCroppingRatio=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height;const widthCropStart=(1-widthCroppingRatio)/2;const heightCropStart=(1-heightCroppingRatio)/2;const widthCropEnd=widthCropStart+widthCroppingRatio;const heightCropEnd=heightCroppingRatio+heightCropStart;this.cropBox=tensor2d([heightCropStart,widthCropStart,heightCropEnd,widthCropEnd],[1,4])}else{this.cropBox=tensor2d([0,0,1,1],[1,4])}}}summary(){return`webcam`}static async create(webcamVideoElement,webcamConfig={}){if(env3().get("IS_NODE")){throw new Error("tf.data.webcam is only supported in browser environment.")}if(!webcamVideoElement){webcamVideoElement=document.createElement("video");if(!webcamConfig.resizeWidth||!webcamConfig.resizeHeight){throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.")}webcamVideoElement.width=webcamConfig.resizeWidth;webcamVideoElement.height=webcamConfig.resizeHeight}const webcamIterator=new WebcamIterator(webcamVideoElement,webcamConfig);await webcamIterator.start();return webcamIterator}async start(){if(this.webcamConfig.facingMode){assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`)}try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){e.message=`Error thrown while initializing video stream: ${e.message}`;throw e}if(!this.stream){throw new Error("Could not obtain video from webcam.")}try{this.webcamVideoElement.srcObject=this.stream}catch(error){console.log(error);this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}this.webcamVideoElement.play();this.isClosed=false;return new Promise(resolve=>{this.webcamVideoElement.onloadedmetadata=()=>{resolve()}})}async next(){if(this.isClosed){return{value:null,done:true}}let img;try{img=fromPixels(this.webcamVideoElement)}catch(e){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(e)}`)}if(this.resize){try{return{value:this.cropAndResizeFrame(img),done:false}}catch(e){throw new Error(`Error thrown cropping the video: ${e.message}`)}finally{img.dispose()}}else{return{value:img,done:false}}}needToResize(){if(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight)){return true}return false}cropAndResizeFrame(img){return tidy(()=>{const expandedImage=img.toFloat().expandDims(0);let resizedImage;resizedImage=image2.cropAndResize(expandedImage,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");const shape=resizedImage.shape;return resizedImage.reshape(shape.slice(1))})}async capture(){return(await this.next()).value}stop(){const tracks=this.stream.getTracks();tracks.forEach(track=>track.stop());try{this.webcamVideoElement.srcObject=null}catch(error){console.log(error);this.webcamVideoElement.src=null}this.isClosed=true}toArray(){throw new Error("Can not convert infinite video stream to array.")}}class DataSource{}class StringIterator extends LazyIterator{split(separator){return new SplitIterator(this,separator)}}class SplitIterator extends StringIterator{constructor(upstream,separator){super();this.upstream=upstream;this.impl=new SplitIteratorImpl(upstream,separator)}summary(){return this.impl.summary()}async next(){return this.impl.next()}}class SplitIteratorImpl extends OneToManyIterator{constructor(upstream,separator){super();this.upstream=upstream;this.separator=separator;this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){const chunkResult=await this.upstream.next();if(chunkResult.done){if(this.carryover===""){return false}this.outputQueue.push(this.carryover);this.carryover="";return true}const lines=chunkResult.value.split(this.separator);lines[0]=this.carryover+lines[0];for(const line of lines.slice(0,-1)){this.outputQueue.push(line)}this.carryover=lines[lines.length-1];return true}}class ByteChunkIterator extends LazyIterator{decodeUTF8(){return new Utf8Iterator(this)}}class Utf8Iterator extends StringIterator{constructor(upstream){super();this.upstream=upstream;this.impl=new Utf8IteratorImpl(upstream)}summary(){return this.impl.summary()}async next(){return this.impl.next()}}class Utf8IteratorImpl extends OneToManyIterator{constructor(upstream){super();this.upstream=upstream;if(env3().get("IS_BROWSER")){this.decoder=new TextDecoder("utf-8")}else{const{StringDecoder}=require("string_decoder");this.decoder=new StringDecoder("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){const chunkResult=await this.upstream.next();let chunk;if(chunkResult.done){return false}else{chunk=chunkResult.value}let text;if(env3().get("IS_BROWSER")){text=this.decoder.decode(chunk,{stream:true})}else{text=this.decoder.write(Buffer.from(chunk.buffer))}this.outputQueue.push(text);return true}}class FileChunkIterator extends ByteChunkIterator{constructor(file,options={}){super();this.file=file;this.options=options;assert(file instanceof Uint8Array||(env3().get("IS_BROWSER")?file instanceof File||file instanceof Blob:false),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now.");this.offset=options.offset||0;this.chunkSize=options.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){if(this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)){return{value:null,done:true}}const chunk=new Promise((resolve,reject)=>{const end=this.offset+this.chunkSize;if(this.file instanceof Uint8Array){resolve(new Uint8Array(this.file.slice(this.offset,end)))}else{const fileReader=new FileReader;fileReader.onload=event=>{let data2=fileReader.result;if(data2 instanceof ArrayBuffer){data2=new Uint8Array(data2)}if(!(data2 instanceof Uint8Array)){return reject(new TypeError("FileReader returned unknown type."))}resolve(data2)};fileReader.onabort=event=>{return reject(new Error("Aborted"))};fileReader.onerror=event=>{return reject(new Error(event.type))};const slice3=this.file.slice(this.offset,end);fileReader.readAsArrayBuffer(slice3)}this.offset=end});return{value:await chunk,done:false}}}async function urlChunkIterator(url,options={}){let urlString;let requestInit;if(typeof url==="string"){urlString=url}else{urlString=url.url;requestInit=getRequestInitFromRequest(url)}const response=await fetch$1(urlString,requestInit);if(response.ok){const uint8Array=new Uint8Array(await response.arrayBuffer());return new FileChunkIterator(uint8Array,options)}else{throw new Error(response.statusText)}}const getRequestInitFromRequest=request=>{const init2={method:request.method,headers:request.headers,body:request.body,mode:request.mode,credentials:request.credentials,cache:request.cache,redirect:request.redirect,referrer:request.referrer,integrity:request.integrity};return init2};function isLocalPath(source){return typeof source==="string"&&source.substr(0,7)==="file://"}class FileDataSource extends DataSource{constructor(input2,options={}){super();this.input=input2;this.options=options}async iterator(){if(isLocalPath(this.input)&&env3().get("IS_NODE")){const fs=require("fs");this.input=fs.readFileSync(this.input.substr(7))}return new FileChunkIterator(this.input,this.options)}}class URLDataSource extends DataSource{constructor(url,fileOptions={}){super();this.url=url;this.fileOptions=fileOptions}async iterator(){if(isLocalPath(this.url)){return new FileDataSource(this.url,this.fileOptions).iterator()}else{return urlChunkIterator(this.url,this.fileOptions)}}}function csv(source,csvConfig={}){return new CSVDataset(new URLDataSource(source),csvConfig)}function func(f){const iter=iteratorFromFunction(f);return datasetFromIteratorFn(async()=>iter)}function generator(generator2){return datasetFromIteratorFn(async()=>{const gen=await generator2();return iteratorFromFunction(()=>gen.next())})}async function webcam(webcamVideoElement,webcamConfig){return WebcamIterator.create(webcamVideoElement,webcamConfig)}async function microphone(microphoneConfig){return MicrophoneIterator.create(microphoneConfig)}const version$3="2.7.0";var index=Object.freeze({__proto__:null,array,Dataset,zip,CSVDataset,TextLineDataset,csv,func,generator,microphone,webcam,FileDataSource,URLDataSource,version_data:version$3});function assertNotComplex(tensor2,opName){if(!Array.isArray(tensor2)){tensor2=[tensor2]}tensor2.forEach(t=>{if(t!=null){assert(t.dtype!=="complex64",()=>`${opName} does not support complex64 tensors in the CPU backend.`)}})}const nonMaxSuppressionV3Impl$1=nonMaxSuppressionV3Impl;const split$4=split$1;const tile$3=tile$1;const topkImpl$1=topkImpl;const whereImpl$1=whereImpl;class MathBackendCPU extends KernelBackend2{constructor(){super();this.blockSize=48;this.firstUse=true;this.data=new DataStorage2(this,engine2())}write(values,shape,dtype){if(this.firstUse){this.firstUse=false;if(env3().get("IS_NODE")){warn("\n============================\nHi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.\n============================")}}const dataId={};this.data.set(dataId,{values,dtype,refCount:1});return dataId}makeTensorInfo(shape,dtype,values){let outId;if(dtype==="string"&&values!=null&&values.length>0&&isString(values[0])){const encodedValues=values.map(d=>encodeString(d));outId=this.write(encodedValues,shape,dtype)}else{outId=this.write(values,shape,dtype)}return{dataId:outId,shape,dtype}}incRef(dataId){const tensorData=this.data.get(dataId);tensorData.refCount++}decRef(dataId){if(this.data.has(dataId)){const tensorData=this.data.get(dataId);tensorData.refCount--}}move(dataId,values,shape,dtype){this.data.set(dataId,{values,dtype,refCount:1})}numDataIds(){return this.data.numDataIds()}async read(dataId){return this.readSync(dataId)}readSync(dataId){const{dtype,complexTensorInfos}=this.data.get(dataId);if(dtype==="complex64"){const realValues=this.readSync(complexTensorInfos.real.dataId);const imagValues=this.readSync(complexTensorInfos.imag.dataId);return mergeRealAndImagArrays(realValues,imagValues)}return this.data.get(dataId).values}bufferSync(t){const data2=this.readSync(t.dataId);let decodedData=data2;if(t.dtype==="string"){try{decodedData=data2.map(d=>decodeString(d))}catch(_a){throw new Error("Failed to decode encoded string bytes into utf-8")}}return buffer2(t.shape,t.dtype,decodedData)}makeOutput(values,shape,dtype){const dataId=this.write(values,shape,dtype);return engine2().makeTensorFromDataId(dataId,shape,dtype,this)}disposeData(dataId){if(this.data.has(dataId)){const{complexTensorInfos}=this.data.get(dataId);if(complexTensorInfos!=null){this.disposeData(complexTensorInfos.real.dataId);this.disposeData(complexTensorInfos.imag.dataId)}this.data.delete(dataId)}}disposeIntermediateTensorInfo(tensorInfo){const dataId=tensorInfo.dataId;if(this.data.has(dataId)){const tensorData=this.data.get(dataId);tensorData.refCount--;if(tensorData.refCount<1){this.disposeData(dataId)}}}async time(f){const start=now2();f();const kernelMs=now2()-start;return{kernelMs}}memory(){return{unreliable:true,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}stridedSlice(x,begin,end,strides){assertNotComplex(x,"stridedSlice");const outShape=computeOutShape2(begin,end,strides);if(outShape.some(axis=>axis===0)){return tensor([],outShape)}const buffer$1=buffer2(outShape,x.dtype);const xBuf=this.bufferSync(x);for(let i=0;i<buffer$1.size;i++){const loc=buffer$1.indexToLoc(i);const newLoc=new Array(loc.length);for(let j=0;j<newLoc.length;j++){newLoc[j]=loc[j]*strides[j]+begin[j]}buffer$1.set(xBuf.get(...newLoc),...loc)}return buffer$1.toTensor()}diag(x){const xVals=this.readSync(x.dataId);const buffer$1=buffer2([x.size,x.size],x.dtype);const vals=buffer$1.values;for(let i=0;i<xVals.length;i++){vals[i*x.size+i]=xVals[i]}return buffer$1.toTensor()}unstack(x,axis){const num=x.shape[axis];const outShape=new Array(x.rank-1);let outIndex=0;for(let i=0;i<x.rank;i++){if(i!==axis){outShape[outIndex++]=x.shape[i]}}const begin=new Array(x.rank).fill(0);const size=x.shape.slice();size[axis]=1;const res=new Array(num);for(let i=0;i<res.length;i++){begin[axis]=i;res[i]=slice2(x,begin,size).reshape(outShape)}return res}reverse(x,axis){assertNotComplex(x,"reverse");const buffer$1=buffer2(x.shape,x.dtype);const xBuf=this.bufferSync(x);for(let i=0;i<buffer$1.size;i++){const outLoc=buffer$1.indexToLoc(i);const inLoc=outLoc.slice();axis.forEach(ax=>inLoc[ax]=x.shape[ax]-1-inLoc[ax]);buffer$1.set(xBuf.get(...inLoc),...outLoc)}return buffer$1.toTensor()}neg(x){assertNotComplex(x,"neg");return mul(scalar(-1),x)}addN(tensors){assertNotComplex(tensors,"addN");const vals=tensors.map(t=>this.readSync(t.dataId));const result=buffer2(tensors[0].shape,tensors[0].dtype);const resultVals=result.values;for(let i=0;i<tensors.length;i++){const currVals=vals[i];for(let j=0;j<resultVals.length;j++){resultVals[j]+=currVals[j]}}return result.toTensor()}softmax(logits,dim){const axes=parseAxisParam([dim],logits.shape);const maxLogit=max2(logits,axes);const expandedShape=expandShapeToKeepDim(maxLogit.shape,axes);const a=sub(logits,maxLogit.reshape(expandedShape));const b=exp(a);const sumExp=this.sum(b,axes).reshape(expandedShape);return div(b,sumExp)}pow(a,b){assertNotComplex([a,b],"pow");return this.broadcastedBinaryOp(a,b,a.dtype,(aValue,bValue)=>Math.pow(aValue,bValue))}floorDiv(a,b){assertNotComplex([a,b],"floorDiv");const op2=(a6,b2)=>Math.floor(a6/b2);const outputDtype="int32";return this.broadcastedBinaryOp(a,b,outputDtype,op2)}sum(x,axes){assertNotComplex(x,"sum");assertAxesAreInnerMostDims("sum",axes,x.rank);const[outShape,reduceShape]=computeOutAndReduceShapes(x.shape,axes);const resultDtype=upcastType(x.dtype,"int32");const result=zeros(outShape,resultDtype);const reduceSize=sizeFromShape(reduceShape);const vals=this.readSync(result.dataId);const aVals=this.readSync(x.dataId);for(let i=0;i<vals.length;++i){const offset=i*reduceSize;let sum3=0;for(let j=0;j<reduceSize;++j){sum3+=aVals[offset+j]}vals[i]=sum3}return result}prod(x,axes){assertNotComplex(x,"sum");const[outShape,reduceShape]=computeOutAndReduceShapes(x.shape,axes);const resultDtype=upcastType(x.dtype,"int32");const result=zeros(outShape,resultDtype);const reduceSize=sizeFromShape(reduceShape);const vals=this.readSync(result.dataId);const aVals=this.readSync(x.dataId);for(let i=0;i<vals.length;++i){const offset=i*reduceSize;let prod2=1;for(let j=0;j<reduceSize;++j){prod2*=aVals[offset+j]}vals[i]=prod2}return result}unsortedSegmentSum(x,segmentIds,numSegments){assertNotComplex(x,"unsortedSegmentSum");const res=[];const numIters=x.rank-segmentIds.rank;for(let i=0;i<numIters;++i){segmentIds=segmentIds.expandDims(i+1)}for(let i=0;i<numSegments;++i){const segmentId=scalar(i,"int32");const mask=equal(segmentId,segmentIds).asType("float32");const sum3=mask.mul(x).sum(0);res.push(sum3)}return stack(res)}argMin(x,axis){assertNotComplex(x,"argMin");const axes=[axis];assertAxesAreInnerMostDims("argMin",axes,x.rank);const[outShape,reduceShape]=computeOutAndReduceShapes(x.shape,axes);const result=zeros(outShape,"int32");const reduceSize=sizeFromShape(reduceShape);const vals=this.readSync(result.dataId);const aVals=this.readSync(x.dataId);for(let i=0;i<vals.length;++i){const offset=i*reduceSize;let min3=aVals[offset];let minIndex=0;for(let j=0;j<reduceSize;++j){const value=aVals[offset+j];if(value<min3){min3=value;minIndex=j}}vals[i]=minIndex}return result}argMax(x,axis){assertNotComplex(x,"argMax");const axes=[axis];assertAxesAreInnerMostDims("argMax",axes,x.rank);const[outShape,reduceShape]=computeOutAndReduceShapes(x.shape,axes);const result=zeros(outShape,"int32");const reduceSize=sizeFromShape(reduceShape);const vals=this.readSync(result.dataId);const aVals=this.readSync(x.dataId);for(let i=0;i<vals.length;++i){const offset=i*reduceSize;let max3=aVals[offset];let maxIndex=0;for(let j=0;j<reduceSize;++j){const value=aVals[offset+j];if(value>max3){max3=value;maxIndex=j}}vals[i]=maxIndex}return result}cumsum(x,axis,exclusive,reverse3){assertNotComplex(x,"cumsum");if(axis!==x.rank-1){throw new Error(`backend.cumsum in CPU expects an inner-most axis=${x.rank-1} but got axis=${axis}`)}const resultDtype=upcastType(x.dtype,"int32");const result=zeros(x.shape,resultDtype);const vals=this.readSync(result.dataId);const aVals=this.readSync(x.dataId);const finalDim=x.shape[x.rank-1];const indexAdjuster=reverse3?(i,j)=>i+finalDim-j-1:(i,j)=>i+j;for(let i=0;i<aVals.length;i+=finalDim){for(let j=0;j<finalDim;j++){const idx=indexAdjuster(i,j);if(j===0){vals[idx]=exclusive?0:aVals[idx]}else{const prevIdx=indexAdjuster(i,j-1);vals[idx]=exclusive?aVals[prevIdx]+vals[prevIdx]:aVals[idx]+vals[prevIdx]}}}return result}equal(a,b){assertNotComplex([a,b],"equal");return this.broadcastedBinaryOp(a,b,"bool",(aVal,bVal)=>{return aVal===bVal?1:0})}notEqual(a,b){assertNotComplex([a,b],"notEqual");return this.broadcastedBinaryOp(a,b,"bool",(aVal,bVal)=>{return aVal!==bVal?1:0})}less(a,b){assertNotComplex([a,b],"less");return this.broadcastedBinaryOp(a,b,"bool",(aVal,bVal)=>{return aVal<bVal?1:0})}lessEqual(a,b){assertNotComplex([a,b],"lessEqual");return this.broadcastedBinaryOp(a,b,"bool",(aVal,bVal)=>{return aVal<=bVal?1:0})}greater(a,b){assertNotComplex([a,b],"greater");return this.broadcastedBinaryOp(a,b,"bool",(aVal,bVal)=>{return aVal>bVal?1:0})}greaterEqual(a,b){assertNotComplex([a,b],"greaterEqual");return this.broadcastedBinaryOp(a,b,"bool",(aVal,bVal)=>{return aVal>=bVal?1:0})}logicalAnd(a,b){assertNotComplex([a,b],"logicalAnd");return this.broadcastedBinaryOp(a,b,"bool",(aVal,bVal)=>{return aVal&&bVal})}logicalOr(a,b){assertNotComplex([a,b],"logicalOr");return this.broadcastedBinaryOp(a,b,"bool",(aVal,bVal)=>{return aVal||bVal})}select(condition,a,b){assertNotComplex([condition,a,b],"select");const values=this.readSync(condition.dataId);const aValues=this.readSync(a.dataId);const bValues=this.readSync(b.dataId);const result=zeros(a.shape,upcastType(a.dtype,b.dtype));const newValues=this.readSync(result.dataId);let index2=0;const offset=condition.rank===0||condition.rank>1||a.rank===1?1:sizeFromShape(a.shape.slice(1));for(let i=0;i<values.length;i++){for(let j=0;j<offset;j++){if(values[i]===1){newValues[index2++]=aValues[i]}else{newValues[index2++]=bValues[i]}}}return result}where(condition){assertNotComplex([condition],"where");const condVals=this.readSync(condition.dataId);return whereImpl$1(condition.shape,condVals)}topk(x,k,sorted){assertNotComplex(x,"topk");const xVals=this.readSync(x.dataId);return topkImpl$1(xVals,x.shape,x.dtype,k,sorted)}min(x,axes){assertNotComplex(x,"min");assertAxesAreInnerMostDims("min",axes,x.rank);const[outShape,reduceShape]=computeOutAndReduceShapes(x.shape,axes);const result=zeros(outShape,x.dtype);const reduceSize=sizeFromShape(reduceShape);const vals=this.readSync(result.dataId);const aVals=this.readSync(x.dataId);for(let i=0;i<vals.length;++i){const offset=i*reduceSize;let min3=aVals[offset];for(let j=0;j<reduceSize;++j){const value=aVals[offset+j];if(value<min3){min3=value}}vals[i]=min3}return result}minimum(a,b){assertNotComplex([a,b],"minimum");return this.broadcastedBinaryOp(a,b,a.dtype,(aVal,bVal)=>Math.min(aVal,bVal))}mod(a,b){assertNotComplex([a,b],"mod");return this.broadcastedBinaryOp(a,b,a.dtype,(aVal,bVal)=>{const rem=aVal%bVal;if(aVal<0&&bVal<0||aVal>=0&&bVal>=0){return rem}else{return(rem+bVal)%bVal}})}maximum(a,b){assertNotComplex([a,b],"maximum");return this.broadcastedBinaryOp(a,b,a.dtype,(aVal,bVal)=>Math.max(aVal,bVal))}all(x,axes){assertNotComplex(x,"all");assertAxesAreInnerMostDims("all",axes,x.rank);const[outShape,reduceShape]=computeOutAndReduceShapes(x.shape,axes);const result=zeros(outShape,x.dtype);const reduceSize=sizeFromShape(reduceShape);const vals=this.readSync(result.dataId);const aVals=this.readSync(x.dataId);for(let i=0;i<vals.length;++i){const offset=i*reduceSize;let all2=aVals[offset];for(let j=0;j<reduceSize;++j){const value=aVals[offset+j];all2=all2&&value}vals[i]=all2}return result}any(x,axes){assertNotComplex(x,"any");assertAxesAreInnerMostDims("any",axes,x.rank);const[outShape,reduceShape]=computeOutAndReduceShapes(x.shape,axes);const result=zeros(outShape,x.dtype);const reduceSize=sizeFromShape(reduceShape);const vals=this.readSync(result.dataId);const aVals=this.readSync(x.dataId);for(let i=0;i<vals.length;++i){const offset=i*reduceSize;let anyVal=aVals[offset];for(let j=0;j<reduceSize;++j){const value=aVals[offset+j];anyVal=anyVal||value}vals[i]=anyVal}return result}squaredDifference(a,b){assertNotComplex([a,b],"squaredDifference");return this.broadcastedBinaryOp(a,b,a.dtype,(aVal,bVal)=>{const diff=aVal-bVal;return diff*diff})}eluDer(dy,y){assertNotComplex([dy,y],"eluDer");const resultValues=new Float32Array(y.size);const values=this.readSync(y.dataId);const dyValues=this.readSync(dy.dataId);for(let i=0;i<values.length;++i){const v=values[i];if(v>=1){resultValues[i]=dyValues[i]}else{resultValues[i]=dyValues[i]*(v+1)}}return this.makeOutput(resultValues,y.shape,"float32")}atan2(a,b){assertNotComplex([a,b],"atan2");return this.broadcastedBinaryOp(a,b,a.dtype,(aValue,bValue)=>Math.atan2(aValue,bValue))}tile(x,reps){assertNotComplex(x,"tile");return tile$3(this.bufferSync(x),reps)}gather(x,indices,axis){assertNotComplex([x,indices],"gather");const newShape=x.shape.slice();const indicesValues=this.readSync(indices.dataId);newShape[axis]=indicesValues.length;const result=buffer2(newShape,x.dtype);const xBuf=this.bufferSync(x);for(let i=0;i<result.size;++i){const newLoc=result.indexToLoc(i);const originalLoc=newLoc.slice();originalLoc[axis]=indicesValues[newLoc[axis]];const originalIndex=xBuf.locToIndex(originalLoc);result.values[i]=xBuf.values[originalIndex]}return result.toTensor()}batchToSpaceND(x,blockShape,crops){assertNotComplex([x],"batchToSpaceND");const prod2=blockShape.reduce((a,b)=>a*b);const reshaped=getReshaped(x.shape,blockShape,prod2);const permuted=getPermuted(reshaped.length,blockShape.length);const reshapedPermuted=getReshapedPermuted(x.shape,blockShape,prod2);const sliceBeginCoords=getSliceBeginCoords(crops,blockShape.length);const sliceSize=getSliceSize(reshapedPermuted,crops,blockShape.length);return transpose2(x.reshape(reshaped),permuted).reshape(reshapedPermuted).slice(sliceBeginCoords,sliceSize)}pool3d(x,convInfo,poolType){assertNotComplex(x,"pool3d");const strideDepth=convInfo.strideDepth;const strideHeight=convInfo.strideHeight;const strideWidth=convInfo.strideWidth;const dilationDepth=convInfo.dilationDepth;const dilationHeight=convInfo.dilationHeight;const dilationWidth=convInfo.dilationWidth;const effectiveFilterDepth=convInfo.effectiveFilterDepth;const effectiveFilterHeight=convInfo.effectiveFilterHeight;const effectiveFilterWidth=convInfo.effectiveFilterWidth;const padFront=convInfo.padInfo.front;const padTop=convInfo.padInfo.top;const padLeft=convInfo.padInfo.left;const initialValue=poolType==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY;const xValues=this.readSync(x.dataId);const output=buffer2(convInfo.outShape,x.dtype);const outputVals=output.values;const outputBatchStrides=convInfo.outShape[1]*convInfo.outShape[2]*convInfo.outShape[3]*convInfo.outShape[4];const outputDepthStrides=convInfo.outShape[2]*convInfo.outShape[3]*convInfo.outShape[4];const outputRowStrides=convInfo.outShape[3]*convInfo.outShape[4];const outputColStrides=convInfo.outShape[4];for(let batch=0;batch<convInfo.batchSize;++batch){const outputBatchOffset=batch*outputBatchStrides;const inputBatchOffset=batch*x.strides[0];for(let channel=0;channel<convInfo.inChannels;++channel){for(let yDepth=0;yDepth<convInfo.outDepth;++yDepth){const xDepthCorner=yDepth*strideDepth-padFront;let xDepthMin=xDepthCorner;while(xDepthMin<0){xDepthMin+=dilationDepth}const xDepthMax=Math.min(convInfo.inDepth,effectiveFilterDepth+xDepthCorner);const outputDepthOffset=outputBatchOffset+yDepth*outputDepthStrides;for(let yRow=0;yRow<convInfo.outHeight;++yRow){const xRowCorner=yRow*strideHeight-padTop;let xRowMin=xRowCorner;while(xRowMin<0){xRowMin+=dilationHeight}const xRowMax=Math.min(convInfo.inHeight,effectiveFilterHeight+xRowCorner);const outputRowOffset=outputDepthOffset+yRow*outputRowStrides;for(let yCol=0;yCol<convInfo.outWidth;++yCol){const xColCorner=yCol*strideWidth-padLeft;let xColMin=xColCorner;while(xColMin<0){xColMin+=dilationWidth}const xColMax=Math.min(convInfo.inWidth,effectiveFilterWidth+xColCorner);const outputColOffset=outputRowOffset+yCol*outputColStrides;let minMaxValue=initialValue;let avgValue=0;let count2=0;for(let xDepth=xDepthMin;xDepth<xDepthMax;xDepth+=dilationDepth){const xDepthOffset=inputBatchOffset+xDepth*x.strides[1];for(let xRow=xRowMin;xRow<xRowMax;xRow+=dilationHeight){const xRowOffset=xDepthOffset+xRow*x.strides[2];for(let xCol=xColMin;xCol<xColMax;xCol+=dilationWidth){const xColOffset=xRowOffset+xCol*x.strides[3];const pixel=xValues[xColOffset+channel];if(poolType==="max"&&pixel>minMaxValue){minMaxValue=pixel}else if(poolType==="avg"){avgValue+=pixel;count2++}if(isNaN(minMaxValue)){break}}if(isNaN(minMaxValue)){break}}if(isNaN(minMaxValue)){break}}const outputOffset=outputColOffset+channel;outputVals[outputOffset]=poolType==="avg"?avgValue/count2:minMaxValue}}}}}return output.toTensor()}avgPool3d(x,convInfo){assertNotComplex(x,"avgPool3d");return this.pool3d(x,convInfo,"avg").toFloat()}avgPool3dBackprop(dy,x,convInfo){assertNotComplex([dy,x],"avgPool3dBackprop");const strideDepth=convInfo.strideDepth;const strideHeight=convInfo.strideHeight;const strideWidth=convInfo.strideWidth;const filterDepth=convInfo.filterDepth;const filterHeight=convInfo.filterHeight;const filterWidth=convInfo.filterWidth;const dilationDepth=convInfo.dilationDepth;const dilationHeight=convInfo.dilationHeight;const dilationWidth=convInfo.dilationWidth;const effectiveFilterDepth=convInfo.effectiveFilterDepth;const effectiveFilterHeight=convInfo.effectiveFilterHeight;const effectiveFilterWidth=convInfo.effectiveFilterWidth;const padFront=effectiveFilterDepth-1-convInfo.padInfo.front;const padLeft=effectiveFilterWidth-1-convInfo.padInfo.left;const padTop=effectiveFilterHeight-1-convInfo.padInfo.top;const dx=buffer2(x.shape,"float32");const avgMultiplier=1/(filterDepth*filterHeight*filterWidth);const dyBuf=this.bufferSync(dy);for(let batch=0;batch<convInfo.batchSize;++batch){for(let channel=0;channel<convInfo.inChannels;++channel){for(let dxDepth=0;dxDepth<convInfo.inDepth;++dxDepth){for(let dxRow=0;dxRow<convInfo.inHeight;++dxRow){for(let dxCol=0;dxCol<convInfo.inWidth;++dxCol){const dyDepthCorner=dxDepth-padFront;const dyRowCorner=dxRow-padTop;const dyColCorner=dxCol-padLeft;let dotProd=0;for(let wDepth=0;wDepth<effectiveFilterDepth;wDepth+=dilationDepth){const dyDepth=(dyDepthCorner+wDepth)/strideDepth;if(dyDepth<0||dyDepth>=convInfo.outDepth||Math.floor(dyDepth)!==dyDepth){continue}for(let wRow=0;wRow<effectiveFilterHeight;wRow+=dilationHeight){const dyRow=(dyRowCorner+wRow)/strideHeight;if(dyRow<0||dyRow>=convInfo.outHeight||Math.floor(dyRow)!==dyRow){continue}for(let wCol=0;wCol<effectiveFilterWidth;wCol+=dilationWidth){const dyCol=(dyColCorner+wCol)/strideWidth;if(dyCol<0||dyCol>=convInfo.outWidth||Math.floor(dyCol)!==dyCol){continue}const pixel=dyBuf.get(batch,dyDepth,dyRow,dyCol,channel);dotProd+=pixel}}}dx.set(dotProd*avgMultiplier,batch,dxDepth,dxRow,dxCol,channel)}}}}}return dx.toTensor()}maxPool3d(x,convInfo){assertNotComplex(x,"maxPool3d");return this.pool3d(x,convInfo,"max").toFloat()}maxPool3dPositions(x,convInfo){const maxPositions=buffer2(convInfo.outShape,"int32");const strideDepth=convInfo.strideDepth;const strideHeight=convInfo.strideHeight;const strideWidth=convInfo.strideWidth;const dilationDepth=convInfo.dilationDepth;const dilationHeight=convInfo.dilationHeight;const dilationWidth=convInfo.dilationWidth;const effectiveFilterDepth=convInfo.effectiveFilterDepth;const effectiveFilterHeight=convInfo.effectiveFilterHeight;const effectiveFilterWidth=convInfo.effectiveFilterWidth;const padFront=convInfo.padInfo.front;const padTop=convInfo.padInfo.top;const padLeft=convInfo.padInfo.left;const xBuf=this.bufferSync(x);for(let batch=0;batch<convInfo.batchSize;++batch){for(let channel=0;channel<convInfo.inChannels;++channel){for(let yDepth=0;yDepth<convInfo.outDepth;++yDepth){const xDepthCorner=yDepth*strideDepth-padFront;let xDepthMin=xDepthCorner;while(xDepthMin<0){xDepthMin+=dilationDepth}const xDepthMax=Math.min(convInfo.inDepth,effectiveFilterDepth+xDepthCorner);for(let yRow=0;yRow<convInfo.outHeight;++yRow){const xRowCorner=yRow*strideHeight-padTop;let xRowMin=xRowCorner;while(xRowMin<0){xRowMin+=dilationHeight}const xRowMax=Math.min(convInfo.inHeight,effectiveFilterHeight+xRowCorner);for(let yCol=0;yCol<convInfo.outWidth;++yCol){const xColCorner=yCol*strideWidth-padLeft;let xColMin=xColCorner;while(xColMin<0){xColMin+=dilationWidth}const xColMax=Math.min(convInfo.inWidth,effectiveFilterWidth+xColCorner);let maxValue=Number.NEGATIVE_INFINITY;let maxPosition=-1;for(let xDepth=xDepthMin;xDepth<xDepthMax;xDepth+=dilationDepth){const wDepth=xDepth-xDepthCorner;for(let xRow=xRowMin;xRow<xRowMax;xRow+=dilationHeight){const wRow=xRow-xRowCorner;for(let xCol=xColMin;xCol<xColMax;xCol+=dilationWidth){const wCol=xCol-xColCorner;const pixel=xBuf.get(batch,xDepth,xRow,xCol,channel);if(pixel>=maxValue){maxValue=pixel;maxPosition=wDepth*effectiveFilterHeight*effectiveFilterWidth+wRow*effectiveFilterHeight+wCol}}}}maxPositions.set(maxPosition,batch,yDepth,yRow,yCol,channel)}}}}}return maxPositions.toTensor()}maxPool3dBackprop(dy,x,y,convInfo){assertNotComplex([x,y],"maxPool3dBackprop");const maxPositions=this.maxPool3dPositions(x,convInfo);const strideDepth=convInfo.strideDepth;const strideHeight=convInfo.strideHeight;const strideWidth=convInfo.strideWidth;const dilationDepth=convInfo.dilationDepth;const dilationHeight=convInfo.dilationHeight;const dilationWidth=convInfo.dilationWidth;const effectiveFilterDepth=convInfo.effectiveFilterDepth;const effectiveFilterHeight=convInfo.effectiveFilterHeight;const effectiveFilterWidth=convInfo.effectiveFilterWidth;const padFront=effectiveFilterDepth-1-convInfo.padInfo.front;const padLeft=effectiveFilterWidth-1-convInfo.padInfo.left;const padTop=effectiveFilterHeight-1-convInfo.padInfo.top;const dx=buffer2(x.shape,"float32");const maxPosBuf=this.bufferSync(maxPositions);const dyBuf=this.bufferSync(dy);for(let batch=0;batch<convInfo.batchSize;++batch){for(let channel=0;channel<convInfo.inChannels;++channel){for(let dxDepth=0;dxDepth<convInfo.inDepth;++dxDepth){for(let dxRow=0;dxRow<convInfo.inHeight;++dxRow){for(let dxCol=0;dxCol<convInfo.inWidth;++dxCol){const dyDepthCorner=dxDepth-padFront;const dyRowCorner=dxRow-padTop;const dyColCorner=dxCol-padLeft;let dotProd=0;for(let wDepth=0;wDepth<effectiveFilterDepth;wDepth+=dilationDepth){const dyDepth=(dyDepthCorner+wDepth)/strideDepth;if(dyDepth<0||dyDepth>=convInfo.outDepth||Math.floor(dyDepth)!==dyDepth){continue}for(let wRow=0;wRow<effectiveFilterHeight;wRow+=dilationHeight){const dyRow=(dyRowCorner+wRow)/strideHeight;if(dyRow<0||dyRow>=convInfo.outHeight||Math.floor(dyRow)!==dyRow){continue}for(let wCol=0;wCol<effectiveFilterWidth;wCol+=dilationWidth){const dyCol=(dyColCorner+wCol)/strideWidth;if(dyCol<0||dyCol>=convInfo.outWidth||Math.floor(dyCol)!==dyCol){continue}const maxPos=effectiveFilterDepth*effectiveFilterHeight*effectiveFilterWidth-1-maxPosBuf.get(batch,dyDepth,dyRow,dyCol,channel);const curPos=wDepth*effectiveFilterHeight*effectiveFilterWidth+wRow*effectiveFilterWidth+wCol;const mask=maxPos===curPos?1:0;if(mask===0){continue}const pixel=dyBuf.get(batch,dyDepth,dyRow,dyCol,channel);dotProd+=pixel*mask}}}dx.set(dotProd,batch,dxDepth,dxRow,dxCol,channel)}}}}}return dx.toTensor()}resizeBilinear(x,newHeight,newWidth,alignCorners){assertNotComplex(x,"resizeBilinear");const[batch,oldHeight,oldWidth,numChannels]=x.shape;const xValues=this.readSync(x.dataId);const result=new Float32Array(sizeFromShape([batch,newHeight,newWidth,numChannels]));const effectiveInputSize=[alignCorners&&newHeight>1?oldHeight-1:oldHeight,alignCorners&&newWidth>1?oldWidth-1:oldWidth];const effectiveOutputSize=[alignCorners&&newHeight>1?newHeight-1:newHeight,alignCorners&&newWidth>1?newWidth-1:newWidth];let outputIdx=0;const effectiveRowSizeRatio=effectiveInputSize[0]/effectiveOutputSize[0];const effectiveColSizeRatio=effectiveInputSize[1]/effectiveOutputSize[1];for(let b=0;b<batch;b++){for(let r=0;r<newHeight;r++){const sourceFracRow=effectiveRowSizeRatio*r;const sourceRowFloor=Math.floor(sourceFracRow);const rowFrac=sourceFracRow-sourceRowFloor;const sourceRowCeil=Math.min(oldHeight-1,Math.ceil(sourceFracRow));const topRowOffset=b*x.strides[0]+sourceRowFloor*x.strides[1];const botRowOffset=b*x.strides[0]+sourceRowCeil*x.strides[1];for(let c=0;c<newWidth;c++){const sourceFracCol=effectiveColSizeRatio*c;const sourceColFloor=Math.floor(sourceFracCol);const colFrac=sourceFracCol-sourceColFloor;const sourceColCeil=Math.min(oldWidth-1,Math.ceil(sourceFracCol));const topLeftOffest=topRowOffset+sourceColFloor*x.strides[2];const botLeftOffset=botRowOffset+sourceColFloor*x.strides[2];const topRightOffset=topRowOffset+sourceColCeil*x.strides[2];const botRightOffest=botRowOffset+sourceColCeil*x.strides[2];for(let d=0;d<numChannels;d++){const topLeft=xValues[topLeftOffest+d];const bottomLeft=xValues[botLeftOffset+d];const topRight=xValues[topRightOffset+d];const bottomRight=xValues[botRightOffest+d];const top=topLeft+(topRight-topLeft)*colFrac;const bottom=bottomLeft+(bottomRight-bottomLeft)*colFrac;const newValue=top+(bottom-top)*rowFrac;result[outputIdx++]=newValue}}}}return tensor(result,[batch,newHeight,newWidth,numChannels])}resizeBilinearBackprop(dy,x,alignCorners){assertNotComplex([dy,x],"resizeBilinearBackprop");const[batch,xHeight,xWidth,depth]=x.shape;const[,yHeight,yWidth]=dy.shape;const output=new Float32Array(batch*xHeight*xWidth*depth);const effectiveXSize=[alignCorners&&yHeight>1?xHeight-1:xHeight,alignCorners&&yWidth>1?xWidth-1:xWidth];const effectiveYSize=[alignCorners&&yHeight>1?yHeight-1:yHeight,alignCorners&&yWidth>1?yWidth-1:yWidth];const heightScale=effectiveXSize[0]/effectiveYSize[0];const widthScale=effectiveXSize[1]/effectiveYSize[1];const dyValues=this.readSync(dy.dataId);let offset=0;for(let b=0;b<batch;b++){const bOffset=b*x.strides[0];for(let r=0;r<yHeight;r++){const dxR=r*heightScale;const topDxRIndex=Math.floor(dxR);const bottomDxRIndex=Math.min(Math.ceil(dxR),xHeight-1);const topDxROffset=bOffset+topDxRIndex*x.strides[1];const bottomDxROffset=bOffset+bottomDxRIndex*x.strides[1];const dxRLerp=dxR-topDxRIndex;const inverseDxRLerp=1-dxRLerp;for(let c=0;c<yWidth;c++){const dxC=c*widthScale;const leftDxCIndex=Math.floor(dxC);const rightDxCIndex=Math.min(Math.ceil(dxC),xWidth-1);const dxCLerp=dxC-leftDxCIndex;const inverseDxCLerp=1-dxCLerp;const topLeftRCOffset=topDxROffset+leftDxCIndex*x.strides[2];const topRightRCOffset=topDxROffset+rightDxCIndex*x.strides[2];const bottomLeftRCOffset=bottomDxROffset+leftDxCIndex*x.strides[2];const bottomRightRCOffset=bottomDxROffset+rightDxCIndex*x.strides[2];const inverseDxRLerpTimesInverseDxCLerp=inverseDxRLerp*inverseDxCLerp;const inverseDxRLerpTimesDxCLerp=inverseDxRLerp*dxCLerp;const dxRLerpTimesInverseDxCLerp=dxRLerp*inverseDxCLerp;const dxRLerpTimesDxCLerp=dxRLerp*dxCLerp;for(let d=0;d<depth;d++){const dyVal=dyValues[offset++];output[topLeftRCOffset+d]+=dyVal*inverseDxRLerpTimesInverseDxCLerp;output[topRightRCOffset+d]+=dyVal*inverseDxRLerpTimesDxCLerp;output[bottomLeftRCOffset+d]+=dyVal*dxRLerpTimesInverseDxCLerp;output[bottomRightRCOffset+d]+=dyVal*dxRLerpTimesDxCLerp}}}}return tensor4d(output,[batch,xWidth,xHeight,depth],x.dtype)}resizeNearestNeighbor(x,newHeight,newWidth,alignCorners){assertNotComplex(x,"resizeNearestNeighbor");const[batch,oldHeight,oldWidth,numChannels]=x.shape;const xValues=this.readSync(x.dataId);const output=new Float32Array(batch*newHeight*newWidth*numChannels);const effectiveInputSize=[alignCorners&&newHeight>1?oldHeight-1:oldHeight,alignCorners&&newWidth>1?oldWidth-1:oldWidth];const effectiveOutputSize=[alignCorners&&newHeight>1?newHeight-1:newHeight,alignCorners&&newWidth>1?newWidth-1:newWidth];const effectiveRowSizeRatio=effectiveInputSize[0]/effectiveOutputSize[0];const effectiveColSizeRatio=effectiveInputSize[1]/effectiveOutputSize[1];let outputOffset=0;for(let b=0;b<batch;b++){const batchOffset=b*x.strides[0];for(let r=0;r<newHeight;r++){const sourceFracRow=effectiveRowSizeRatio*r;const sourceNearestRow=Math.min(oldHeight-1,alignCorners?Math.round(sourceFracRow):Math.floor(sourceFracRow));const rowOffset=batchOffset+sourceNearestRow*x.strides[1];for(let c=0;c<newWidth;c++){const sourceFracCol=effectiveColSizeRatio*c;const sourceNearestCol=Math.min(oldWidth-1,alignCorners?Math.round(sourceFracCol):Math.floor(sourceFracCol));const colOffset=rowOffset+sourceNearestCol*x.strides[2];for(let d=0;d<numChannels;d++){const newVal=xValues[colOffset+d];output[outputOffset++]=newVal}}}}return tensor(output,[batch,newHeight,newWidth,numChannels],x.dtype)}resizeNearestNeighborBackprop(dy,x,alignCorners){assertNotComplex([dy,x],"resizeNearestNeighborBackprop");const[batch,xHeight,xWidth,depth]=x.shape;const[,yHeight,yWidth]=dy.shape;const output=new Float32Array(batch*xHeight*xWidth*depth);const dyValues=this.readSync(dy.dataId);const effectiveXSize=[alignCorners&&yHeight>1?xHeight-1:xHeight,alignCorners&&yWidth>1?xWidth-1:xWidth];const effectiveYSize=[alignCorners&&yHeight>1?yHeight-1:yHeight,alignCorners&&yWidth>1?yWidth-1:yWidth];const heightScale=effectiveXSize[0]/effectiveYSize[0];const widthScale=effectiveXSize[1]/effectiveYSize[1];const invHeightScale=1/heightScale;const invWidthScale=1/widthScale;const winHeight=Math.ceil(invHeightScale)*2+2;const winWidth=Math.ceil(invWidthScale)*2+2;for(let b=0;b<batch;b++){const batchOffset=b*x.strides[0];for(let r=0;r<xHeight;r++){const rowOffset=batchOffset+r*x.strides[1];const startRLerp=Math.floor(r*invHeightScale);const startDyR=Math.floor(startRLerp-winHeight/2);for(let c=0;c<xWidth;c++){const colOffset=rowOffset+c*x.strides[2];const startCLerp=Math.floor(c*invWidthScale);const startDyC=Math.floor(startCLerp-winWidth/2);for(let d=0;d<depth;d++){let accum=0;for(let dyRIndex=0;dyRIndex<winHeight;dyRIndex++){const dyR=dyRIndex+startDyR;if(dyR<0||dyR>=yHeight){continue}const dyROffset=batchOffset+dyR*dy.strides[1];const sourceFracRow=dyR*heightScale;const sourceNearestRow=Math.min(xHeight-1,alignCorners?Math.round(sourceFracRow):Math.floor(sourceFracRow));if(r!==sourceNearestRow){continue}for(let dyCIndex=0;dyCIndex<winWidth;dyCIndex++){const dyC=dyCIndex+startDyC;if(dyC<0||dyC>=yWidth){continue}const dyCOffset=dyROffset+dyC*dy.strides[2];const sourceFracCol=dyC*widthScale;const sourceNearestCol=Math.min(xWidth-1,alignCorners?Math.round(sourceFracCol):Math.floor(sourceFracCol));if(c===sourceNearestCol){accum+=dyValues[dyCOffset+d]}}}output[colOffset+d]=accum}}}}return tensor4d(output,x.shape,x.dtype)}localResponseNormalization4D(x,depthRadius,bias,alpha,beta){assertNotComplex(x,"localResponseNormalization4D");const channels=x.shape[3];const maxD=channels-1;const xValues=this.readSync(x.dataId);const size=x.size;const result=new Float32Array(size);function sumAcrossChannels(offset){const currentChannel=offset%channels;let beginSumOffset=offset-currentChannel+Math.max(0,currentChannel-depthRadius);const endSumOffset=offset-currentChannel+Math.min(currentChannel+depthRadius,maxD);let sum3=0;for(;beginSumOffset<=endSumOffset;beginSumOffset++){const z=xValues[beginSumOffset];sum3+=z*z}return sum3}for(let offset=0;offset<size;offset++){const sum3=sumAcrossChannels(offset);const val=xValues[offset]*Math.pow(bias+alpha*sum3,-beta);result[offset]=val}return tensor4d(result,x.shape)}LRNGrad(dy,inputImage,outputImage,depthRadius,bias,alpha,beta){assertNotComplex(dy,"LRNGrad");const channels=dy.shape[3];const dyValues=this.readSync(dy.dataId);const inputImageValues=this.readSync(inputImage.dataId);const outputImageValues=this.readSync(outputImage.dataId);const result=new Float32Array(dy.size);const size=dy.size;for(let offset=0;offset<size;offset++){const currentChannel=offset%channels;const depthBegin=offset-currentChannel+Math.max(0,currentChannel-depthRadius);const depthEnd=offset-currentChannel+Math.min(channels,currentChannel+depthRadius+1);let norm2=0;for(let k=depthBegin;k<depthEnd;k++){norm2+=Math.pow(inputImageValues[k],2)}norm2=alpha*norm2+bias;for(let k=depthBegin;k<depthEnd;k++){let dyi=-2*alpha*beta*inputImageValues[k]*outputImageValues[offset]/norm2;if(offset===k){dyi+=Math.pow(norm2,-beta)}dyi*=dyValues[offset];result[k]+=dyi}}return tensor4d(result,dy.shape)}multinomial(logits,normalized,numSamples,seed){assertNotComplex(logits,"multinomial");const probabilities=normalized?logits:softmax2(logits);const batchSize=probabilities.shape[0];const numEvents=probabilities.shape[1];const res=zeros([batchSize,numSamples],"int32");const resVals=this.readSync(res.dataId);const probVals=this.readSync(probabilities.dataId);for(let b=0;b<batchSize;++b){const offset=b*numEvents;const cdf=new Float32Array(numEvents-1);cdf[0]=probVals[offset];for(let event=1;event<cdf.length;++event){cdf[event]=cdf[event-1]+probVals[offset+event]}const random=seedrandom_1(seed.toString());const outOffset=b*numSamples;for(let sampleId=0;sampleId<numSamples;++sampleId){const r=random();resVals[outOffset+sampleId]=cdf.length;for(let event=0;event<cdf.length;event++){if(r<cdf[event]){resVals[outOffset+sampleId]=event;break}}}}return res}oneHot(indices,depth,onValue,offValue){assertNotComplex(indices,"oneHot");const res=new Float32Array(indices.size*depth);res.fill(offValue);const indicesVal=this.readSync(indices.dataId);for(let event=0;event<indices.size;++event){if(indicesVal[event]>=0&&indicesVal[event]<depth){res[event*depth+indicesVal[event]]=onValue}}return tensor2d(res,[indices.size,depth],"int32")}nonMaxSuppression(boxes,scores,maxOutputSize,iouThreshold,scoreThreshold){assertNotComplex(boxes,"nonMaxSuppression");const boxesVals=this.readSync(boxes.dataId);const scoresVals=this.readSync(scores.dataId);return nonMaxSuppressionV3Impl$1(boxesVals,scoresVals,maxOutputSize,iouThreshold,scoreThreshold)}depthToSpace(x,blockSize,dataFormat){assert(dataFormat==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${dataFormat}`);assert(blockSize>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${blockSize}`);const batchSize=x.shape[0];const inputHeight=x.shape[1];const inputWidth=x.shape[2];const inputDepth=x.shape[3];const outputHeight=inputHeight*blockSize;const outputWidth=inputWidth*blockSize;const outputDepth=inputDepth/(blockSize*blockSize);const xValues=this.readSync(x.dataId);const result=new Float32Array(batchSize*outputHeight*outputWidth*outputDepth);let outputIdx=0;for(let b=0;b<batchSize;++b){for(let h=0;h<outputHeight;++h){const inH=Math.floor(h/blockSize);const offsetH=h%blockSize;for(let w=0;w<outputWidth;++w){const inW=Math.floor(w/blockSize);const offsetW=w%blockSize;const offsetD=(offsetH*blockSize+offsetW)*outputDepth;for(let d=0;d<outputDepth;++d){const inD=d+offsetD;const inputIdx=inD+inputDepth*(inW+inputWidth*(inH+inputHeight*b));result[outputIdx++]=xValues[inputIdx]}}}}return tensor4d(result,[batchSize,outputHeight,outputWidth,outputDepth])}broadcastedBinaryOp(a,b,dtype,op2){const newShape=assertAndGetBroadcastShape(a.shape,b.shape);const result=buffer2(newShape,dtype);const aVals=this.readSync(a.dataId);const bVals=this.readSync(b.dataId);const aBroadcastDims=getBroadcastDims(a.shape,newShape);const bBroadcastDims=getBroadcastDims(b.shape,newShape);const resVals=result.values;if(aBroadcastDims.length+bBroadcastDims.length===0){for(let i=0;i<resVals.length;++i){resVals[i]=op2(aVals[i%aVals.length],bVals[i%bVals.length])}}else{const aBuf=this.bufferSync(a);const bBuf=this.bufferSync(b);for(let i=0;i<resVals.length;++i){const loc=result.indexToLoc(i);const aLoc=loc.slice(-a.rank);aBroadcastDims.forEach(d=>aLoc[d]=0);const aIndex=aBuf.locToIndex(aLoc);const bLoc=loc.slice(-b.rank);bBroadcastDims.forEach(d=>bLoc[d]=0);const bIndex=bBuf.locToIndex(bLoc);resVals[i]=op2(aVals[aIndex],bVals[bIndex])}}return result.toTensor()}split(x,sizeSplits,axis){return split$4(x,sizeSplits,axis)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}cropAndResize(images,boxes,boxIndex,cropSize,method,extrapolationValue){const[batch,imageHeight,imageWidth,numChannels]=images.shape;const numBoxes=boxes.shape[0];const[cropHeight,cropWidth]=cropSize;const output=buffer2([numBoxes,cropHeight,cropWidth,numChannels],"float32");const boxVals=this.readSync(boxes.dataId);const boxIndVals=this.readSync(boxIndex.dataId);const imageVals=this.readSync(images.dataId);const inStride=images.strides;const outStride=output.strides;for(let b=0;b<numBoxes;b++){const startInd=b*4;const y1=boxVals[startInd];const x1=boxVals[startInd+1];const y2=boxVals[startInd+2];const x2=boxVals[startInd+3];const bInd=boxIndVals[b];if(bInd>=batch){continue}const heightScale=cropHeight>1?(y2-y1)*(imageHeight-1)/(cropHeight-1):0;const widthScale=cropWidth>1?(x2-x1)*(imageWidth-1)/(cropWidth-1):0;for(let y=0;y<cropHeight;y++){const yInd=cropHeight>1?y1*(imageHeight-1)+y*heightScale:.5*(y1+y2)*(imageHeight-1);if(yInd<0||yInd>imageHeight-1){for(let x=0;x<cropWidth;x++){for(let c=0;c<numChannels;c++){const ind=c+x*outStride[2]+y*outStride[1]+b*outStride[0];output.values[ind]=extrapolationValue}}continue}if(method==="bilinear"){const topInd=Math.floor(yInd);const bottomInd=Math.ceil(yInd);const yLerp=yInd-topInd;for(let x=0;x<cropWidth;x++){const xInd=cropWidth>1?x1*(imageWidth-1)+x*widthScale:.5*(x1+x2)*(imageWidth-1);if(xInd<0||xInd>imageWidth-1){for(let c=0;c<numChannels;c++){const ind=c+x*outStride[2]+y*outStride[1]+b*outStride[0];output.values[ind]=extrapolationValue}continue}const leftInd=Math.floor(xInd);const rightInd=Math.ceil(xInd);const xLerp=xInd-leftInd;for(let c=0;c<numChannels;c++){let ind=c+leftInd*inStride[2]+topInd*inStride[1]+bInd*inStride[0];const topLeft=imageVals[ind];ind=c+rightInd*inStride[2]+topInd*inStride[1]+bInd*inStride[0];const topRight=imageVals[ind];ind=c+leftInd*inStride[2]+bottomInd*inStride[1]+bInd*inStride[0];const bottomLeft=imageVals[ind];ind=c+rightInd*inStride[2]+bottomInd*inStride[1]+bInd*inStride[0];const bottomRight=imageVals[ind];const top=topLeft+(topRight-topLeft)*xLerp;const bottom=bottomLeft+(bottomRight-bottomLeft)*xLerp;ind=c+x*outStride[2]+y*outStride[1]+b*outStride[0];output.values[ind]=top+(bottom-top)*yLerp}}}else{for(let x=0;x<cropWidth;++x){const xInd=cropWidth>1?x1*(imageWidth-1)+x*widthScale:.5*(x1+x2)*(imageWidth-1);if(xInd<0||xInd>imageWidth-1){for(let c=0;c<numChannels;c++){const ind=c+x*outStride[2]+y*outStride[1]+b*outStride[0];output.values[ind]=extrapolationValue}continue}const closestX=Math.round(xInd);const closestY=Math.round(yInd);for(let c=0;c<numChannels;c++){const inInd=c+closestX*inStride[2]+closestY*inStride[1]+bInd*inStride[0];const outInd=c+x*outStride[2]+y*outStride[1]+b*outStride[0];output.values[outInd]=imageVals[inInd]}}}}}return output.toTensor()}sparseToDense(sparseIndices,sparseValues,outputShape,defaultValue){const{sliceRank,numUpdates,sliceSize,strides,outputSize}=calculateShapes(sparseValues,sparseIndices,outputShape);const sumDupeIndices=false;return this.scatter(sparseIndices,sparseValues,outputShape,outputSize,sliceSize,numUpdates,sliceRank,strides,defaultValue,sumDupeIndices)}gatherND(x,indices){const indicesShape=indices.shape;const sliceRank=indicesShape[indicesShape.length-1];const[resultShape,numSlices,sliceSize,strides]=prepareAndValidate(x,indices);if(numSlices===0){return tensor([],resultShape,x.dtype)}const buffer3=new TensorBuffer([numSlices,sliceSize],x.dtype);const indicesData=this.readSync(indices.dataId);const xData=this.readSync(x.dataId);for(let i=0;i<numSlices;i++){const index2=[];let flattenIndex=0;for(let j=0;j<sliceRank;j++){const dim=indicesData[i*sliceRank+j];flattenIndex+=dim*strides[j];index2.push(dim)}if(flattenIndex<0||flattenIndex>=x.size/sliceSize){throw new Error(`Invalid indices: ${index2} does not index into ${x.shape}`)}for(let k=0;k<sliceSize;k++){buffer3.values[i*sliceSize+k]=xData[flattenIndex*sliceSize+k]}}return buffer3.toTensor().reshape(resultShape)}scatterND(indices,updates,shape){const{sliceRank,numUpdates,sliceSize,strides,outputSize}=calculateShapes(updates,indices,shape);const defaultValue=scalar(0);const sumDupeIndices=true;return this.scatter(indices,updates,shape,outputSize,sliceSize,numUpdates,sliceRank,strides,defaultValue,sumDupeIndices)}onesLike(x){if(x.dtype==="string"){throw new Error("onesLike is not supported for string tensors")}else{return fill2(x.shape,1,x.dtype)}}zerosLike(x){const values=getArrayFromDType(x.dtype,sizeFromShape(x.shape));return this.makeOutput(values,x.shape,x.dtype)}linspace(start,stop,num){return linspaceImpl(start,stop,num)}scatter(indices,updates,shape,outputSize,sliceSize,numUpdates,sliceRank,strides,defaultValue,sumDupeIndices){const flattenShape=[outputSize/sliceSize,sliceSize];const indicesData=this.readSync(indices.dataId);const updatesData=this.readSync(updates.dataId);if(outputSize===0){return tensor([],shape,updates.dtype)}const buffer3=new TensorBuffer(flattenShape,updates.dtype);buffer3.values.fill(this.readSync(defaultValue.dataId)[0]);for(let i=0;i<numUpdates;i++){const index2=[];let flattenIndex=0;for(let j=0;j<sliceRank;j++){const dim=indicesData[i*sliceRank+j];index2.push(dim);flattenIndex+=dim*strides[j]}if(flattenIndex<0||flattenIndex>=outputSize/sliceSize){throw new Error(`Invalid indices: ${index2} does not index into ${shape}`)}for(let k=0;k<sliceSize;k++){if(sumDupeIndices){buffer3.values[flattenIndex*sliceSize+k]+=updatesData[i*sliceSize+k]}else{buffer3.values[flattenIndex*sliceSize+k]=updates.rank===0?updatesData[0]:updatesData[i*sliceSize+k]}}}return buffer3.toTensor().reshape(shape)}}function simpleAbsImpl(vals){const resultValues=new Float32Array(vals.length);for(let i=0;i<vals.length;++i){resultValues[i]=Math.abs(vals[i])}return resultValues}const abs$1=args=>{const{x}=args.inputs;const cpuBackend=args.backend;let resultValues=new Float32Array(sizeFromShape(x.shape));if(x.dtype!=="complex64"){const values=cpuBackend.data.get(x.dataId).values;resultValues=simpleAbsImpl(values)}else{const complexVals=cpuBackend.data.get(x.dataId);const real2=complexVals.complexTensorInfos.real;const imag2=complexVals.complexTensorInfos.imag;const realVals=cpuBackend.data.get(real2.dataId).values;const imagVals=cpuBackend.data.get(imag2.dataId).values;for(let i=0;i<realVals.length;i++){const real3=realVals[i];const imag3=imagVals[i];resultValues[i]=Math.hypot(real3,imag3)}}return cpuBackend.makeOutput(resultValues,x.shape,"float32")};const absConfig2={kernelName:Abs3,backendName:"cpu",kernelFunc:abs$1};function createSimpleBinaryKernelImpl(op2){return(aShape,bShape,aVals,bVals,dtype)=>{const newShape=assertAndGetBroadcastShape(aShape,bShape);const resultRank=newShape.length;const resultStrides=computeStrides(newShape);const resultSize=sizeFromShape(newShape);const result=getTypedArrayFromDType(dtype,resultSize);const aRank=aShape.length;const bRank=bShape.length;const aStrides=computeStrides(aShape);const bStrides=computeStrides(bShape);const aBroadcastDims=getBroadcastDims(aShape,newShape);const bBroadcastDims=getBroadcastDims(bShape,newShape);if(aBroadcastDims.length+bBroadcastDims.length===0){for(let i=0;i<result.length;++i){result[i]=op2(aVals[i%aVals.length],bVals[i%bVals.length])}}else{for(let i=0;i<result.length;++i){const loc=indexToLoc(i,resultRank,resultStrides);const aLoc=loc.slice(-aRank);aBroadcastDims.forEach(d=>aLoc[d]=0);const aIndex=locToIndex(aLoc,aRank,aStrides);const bLoc=loc.slice(-bRank);bBroadcastDims.forEach(d=>bLoc[d]=0);const bIndex=locToIndex(bLoc,bRank,bStrides);result[i]=op2(aVals[aIndex],bVals[bIndex])}}return[result,newShape]}}function complex$1(args){const{inputs,backend:backend2}=args;const{real:real2,imag:imag2}=inputs;const realVals=backend2.data.get(real2.dataId).values;const imagVals=backend2.data.get(imag2.dataId).values;const complexInfo=backend2.makeTensorInfo(real2.shape,"complex64");const complex2=backend2.data.get(complexInfo.dataId);complex2.complexTensorInfos={real:backend2.makeTensorInfo(real2.shape,"float32",realVals),imag:backend2.makeTensorInfo(imag2.shape,"float32",imagVals)};return complexInfo}const complexConfig={kernelName:Complex,backendName:"cpu",kernelFunc:complex$1};function identity$1(args){const{inputs,backend:backend2}=args;const{x}=inputs;backend2.incRef(x.dataId);return{dataId:x.dataId,shape:x.shape,dtype:x.dtype}}const identityConfig2={kernelName:Identity5,backendName:"cpu",kernelFunc:identity$1};function real$1(args){const{inputs,backend:backend2}=args;const{input:input2}=inputs;const real2=backend2.data.get(input2.dataId).complexTensorInfos.real;const realVal=backend2.data.get(real2.dataId).values;return backend2.makeTensorInfo(real2.shape,real2.dtype,realVal)}const realConfig={kernelName:Real,backendName:"cpu",kernelFunc:real$1};function cast$2(args){const{inputs,backend:backend2,attrs}=args;const{x}=inputs;const{dtype}=attrs;if(dtype==="complex64"){if(x.dtype==="complex64"){return identity$1({inputs:{x},backend:backend2})}const zerosTensor=zeros(x.shape);const floatX=cast$2({inputs:{x},backend:backend2,attrs:{dtype:"float32"}});const result=complex$1({inputs:{real:floatX,imag:zerosTensor},backend:backend2});zerosTensor.dispose();backend2.disposeIntermediateTensorInfo(floatX);return result}if(x.dtype==="complex64"){const realPart=real$1({inputs:{input:x},backend:backend2});const result=cast$2({inputs:{x:realPart},backend:backend2,attrs:{dtype}});backend2.disposeIntermediateTensorInfo(realPart);return result}if(!hasEncodingLoss(x.dtype,dtype)){const result=identity$1({inputs:{x},backend:backend2});return{dataId:result.dataId,shape:result.shape,dtype}}if(dtype==="int32"){const values=backend2.data.get(x.dataId).values;const resultValues=Int32Array.from(values);return backend2.makeTensorInfo(x.shape,"int32",resultValues)}if(dtype==="bool"){const xVals=backend2.data.get(x.dataId).values;const zero=toTypedArray([0],x.dtype);const[resultData,resultShape]=createSimpleBinaryKernelImpl((a,b)=>a!==b?1:0)(x.shape,[],xVals,zero,"bool");return backend2.makeTensorInfo(resultShape,"bool",resultData)}throw new Error(`Error in Cast: failed to cast ${x.dtype} to ${dtype}`)}const castConfig2={kernelName:Cast5,backendName:"cpu",kernelFunc:cast$2};function binaryKernelFunc(name,simpleImpl,complexImpl,dtype){if(complexImpl==null){return({inputs,backend:backend2})=>{const{a,b}=inputs;const cpuBackend=backend2;assertNotComplex([a,b],name);const aVals=cpuBackend.data.get(a.dataId).values;const bVals=cpuBackend.data.get(b.dataId).values;const $dtype=dtype||a.dtype;const[resultData,resultShape]=simpleImpl(a.shape,b.shape,aVals,bVals,$dtype);return cpuBackend.makeTensorInfo(resultShape,$dtype,resultData)}}return({inputs,backend:backend2})=>{const{a,b}=inputs;const cpuBackend=backend2;if(a.dtype==="complex64"||b.dtype==="complex64"){const $aComplex=cast$2({inputs:{x:a},backend:cpuBackend,attrs:{dtype:"complex64"}});const $aComplexVals=cpuBackend.data.get($aComplex.dataId);const aReal=$aComplexVals.complexTensorInfos.real;const aImag=$aComplexVals.complexTensorInfos.imag;const aRealVals=cpuBackend.data.get(aReal.dataId).values;const aImagVals=cpuBackend.data.get(aImag.dataId).values;const $bComplex=cast$2({inputs:{x:b},backend:cpuBackend,attrs:{dtype:"complex64"}});const $bComplexVals=cpuBackend.data.get($bComplex.dataId);const bReal=$bComplexVals.complexTensorInfos.real;const bImag=$bComplexVals.complexTensorInfos.imag;const bRealVals=cpuBackend.data.get(bReal.dataId).values;const bImagVals=cpuBackend.data.get(bImag.dataId).values;const[resultRealData,resultImagData,resultShape]=complexImpl(a.shape,b.shape,aRealVals,aImagVals,bRealVals,bImagVals);const resultReal=cpuBackend.makeTensorInfo(resultShape,"float32",resultRealData);const resultImag=cpuBackend.makeTensorInfo(resultShape,"float32",resultImagData);const result=complex$1({inputs:{real:resultReal,imag:resultImag},backend:cpuBackend});cpuBackend.disposeIntermediateTensorInfo($aComplex);cpuBackend.disposeIntermediateTensorInfo($bComplex);cpuBackend.disposeIntermediateTensorInfo(resultReal);cpuBackend.disposeIntermediateTensorInfo(resultImag);return result}else{const aVals=cpuBackend.data.get(a.dataId).values;const bVals=cpuBackend.data.get(b.dataId).values;const $dtype=dtype||a.dtype;const[resultData,resultShape]=simpleImpl(a.shape,b.shape,aVals,bVals,$dtype);return cpuBackend.makeTensorInfo(resultShape,$dtype,resultData)}}}function createComplexBinaryKernelImpl(op2){return(aShape,bShape,aRealVals,aImagVals,bRealVals,bImagVals)=>{const resultShape=assertAndGetBroadcastShape(aShape,bShape);const resultSize=sizeFromShape(resultShape);const resultRank=resultShape.length;const resultStrides=computeStrides(resultShape);const resultRealVals=getTypedArrayFromDType("float32",resultSize);const resultImagVals=getTypedArrayFromDType("float32",resultSize);const aBroadcastDims=getBroadcastDims(aShape,resultShape);const bBroadcastDims=getBroadcastDims(bShape,resultShape);const aVals=mergeRealAndImagArrays(aRealVals,aImagVals);const bVals=mergeRealAndImagArrays(bRealVals,bImagVals);const aRank=aShape.length;const aStrides=computeStrides(aShape);const bRank=bShape.length;const bStrides=computeStrides(bShape);if(aBroadcastDims.length+bBroadcastDims.length===0){for(let i=0;i<resultRealVals.length;i++){const aIdx=i%aVals.length;const bIdx=i%bVals.length;const result=op2(aVals[aIdx*2],aVals[aIdx*2+1],bVals[bIdx*2],bVals[bIdx*2+1]);resultRealVals[i]=result.real;resultImagVals[i]=result.imag}}else{for(let i=0;i<resultRealVals.length;i++){const loc=indexToLoc(i,resultRank,resultStrides);const aLoc=loc.slice(-aRank);aBroadcastDims.forEach(d=>aLoc[d]=0);const aIndex=locToIndex(aLoc,aRank,aStrides);const bLoc=loc.slice(-bRank);bBroadcastDims.forEach(d=>bLoc[d]=0);const bIndex=locToIndex(bLoc,bRank,bStrides);const opResult=op2(aVals[aIndex*2],aVals[aIndex*2+1],bVals[bIndex*2],bVals[bIndex*2+1]);resultRealVals[i]=opResult.real;resultImagVals[i]=opResult.imag}}return[resultRealVals,resultImagVals,resultShape]}}const addImpl=createSimpleBinaryKernelImpl((a,b)=>a+b);const addComplexImpl=createComplexBinaryKernelImpl((aReal,aImag,bReal,bImag)=>{return{real:aReal+bReal,imag:aImag+bImag}});const add$4=binaryKernelFunc(Add3,addImpl,addComplexImpl);const addConfig2={kernelName:Add3,backendName:"cpu",kernelFunc:add$4};function createSimpleUnaryImpl(op2){return(values,dtype,attrs)=>{const newValues=getTypedArrayFromDType(dtype,values.length);for(let i=0;i<values.length;++i){newValues[i]=op2(values[i],attrs)}return newValues}}function unaryKernelFunc(name,op2,dtype){return({inputs,attrs,backend:backend2})=>{const{x}=inputs;assertNotComplex(x,name);if(x.dtype==="string"||dtype==="string"){throw new Error("unaryKernelFunc does not support string input/output")}const cpuBackend=backend2;const values=cpuBackend.data.get(x.dataId).values;const xSize=sizeFromShape(x.shape);const $dtype=dtype||x.dtype;const newValues=getArrayFromDType($dtype,xSize);for(let i=0;i<xSize;++i){newValues[i]=op2(values[i],attrs)}return cpuBackend.makeTensorInfo(x.shape,$dtype,newValues)}}function unaryKernelFuncFromImpl(name,unaryImpl,dtype){return({inputs,attrs,backend:backend2})=>{const{x}=inputs;assertNotComplex(x,name);if(x.dtype==="string"||dtype==="string"){throw new Error("unaryKernelFunc does not support string input/output")}const cpuBackend=backend2;const values=cpuBackend.data.get(x.dataId).values;const $dtype=dtype||x.dtype;const newValues=unaryImpl(values,$dtype,attrs);return cpuBackend.makeTensorInfo(x.shape,$dtype,newValues)}}const ceilImpl=createSimpleUnaryImpl(xi=>Math.ceil(xi));const ceil$1=unaryKernelFuncFromImpl(Ceil,ceilImpl);const ceilConfig={kernelName:Ceil,backendName:"cpu",kernelFunc:ceil$1};const expImpl=createSimpleUnaryImpl(xi=>Math.exp(xi));const exp$1=unaryKernelFuncFromImpl(Exp3,expImpl);const expConfig2={kernelName:Exp3,backendName:"cpu",kernelFunc:exp$1};const expm1Impl=createSimpleUnaryImpl(xi=>Math.expm1(xi));const expm1$1=unaryKernelFuncFromImpl(Expm1,expm1Impl);const expm1Config={kernelName:Expm1,backendName:"cpu",kernelFunc:expm1$1};const floorImpl=createSimpleUnaryImpl(xi=>Math.floor(xi));const floor$1=unaryKernelFuncFromImpl(Floor,floorImpl);const floorConfig={kernelName:Floor,backendName:"cpu",kernelFunc:floor$1};const logImpl=createSimpleUnaryImpl(xi=>Math.log(xi));const log$2=unaryKernelFuncFromImpl(Log3,logImpl);const logConfig2={kernelName:Log3,backendName:"cpu",kernelFunc:log$2};function maxImpl(aVals,reduceSize,outShape,dtype){const vals=getTypedArrayFromDType(dtype,sizeFromShape(outShape));for(let i=0;i<vals.length;++i){const offset=i*reduceSize;let max3=aVals[offset];for(let j=0;j<reduceSize;++j){const value=aVals[offset+j];if(value>max3){max3=value}}vals[i]=max3}return vals}const multiplyImpl=createSimpleBinaryKernelImpl((aValue,bValue)=>aValue*bValue);const multiplyComplexImpl=createComplexBinaryKernelImpl((aReal,aImag,bReal,bImag)=>{return{real:aReal*bReal-aImag*bImag,imag:aReal*bImag+aImag*bReal}});const multiply$2=binaryKernelFunc(Multiply3,multiplyImpl,multiplyComplexImpl);const multiplyConfig2={kernelName:Multiply3,backendName:"cpu",kernelFunc:multiply$2};const notEqualImpl=createSimpleBinaryKernelImpl((a,b)=>a!==b?1:0);const notEqual$1=binaryKernelFunc(NotEqual3,notEqualImpl,null,"bool");const notEqualConfig2={kernelName:NotEqual3,backendName:"cpu",kernelFunc:notEqual$1};const rsqrtImpl=createSimpleUnaryImpl(xi=>1/Math.sqrt(xi));const rsqrt$1=unaryKernelFuncFromImpl(Rsqrt3,rsqrtImpl);const rsqrtConfig2={kernelName:Rsqrt3,backendName:"cpu",kernelFunc:rsqrt$1};function sliceImpl(vals,begin,size,shape,dtype){const isContinous=isSliceContinous(shape,begin,size);const length=sizeFromShape(size);const xStrides=computeStrides(shape);if(isContinous){const flatOffset=computeFlatOffset(begin,xStrides);return vals.subarray(flatOffset,flatOffset+length)}const outVals=getTypedArrayFromDType(dtype,length);for(let i=0;i<length;++i){const rank=size.length;const strides=computeStrides(size);const loc=indexToLoc(i,rank,strides);const xLoc=loc.map((idx,j)=>idx+begin[j]);const xIndex=locToIndex(xLoc,shape.length,xStrides);outVals[i]=vals[xIndex]}return outVals}function slice$1(args){const{inputs,backend:backend2,attrs}=args;const{x}=inputs;const{begin,size}=attrs;assertNotComplex(x,"slice");const[$begin,$size]=parseSliceParams(x,begin,size);assertParamsValid(x,$begin,$size);const vals=backend2.data.get(x.dataId).values;const outVals=sliceImpl(vals,$begin,$size,x.shape,x.dtype);return backend2.makeTensorInfo($size,x.dtype,outVals)}const sliceConfig2={kernelName:Slice6,backendName:"cpu",kernelFunc:slice$1};const squaredDifferenceImpl=createSimpleBinaryKernelImpl((a,b)=>{const diff=a-b;return diff*diff});const squaredDifference$1=binaryKernelFunc(SquaredDifference3,squaredDifferenceImpl);const squaredDifferenceConfig2={kernelName:SquaredDifference3,backendName:"cpu",kernelFunc:squaredDifference$1};const subImpl=createSimpleBinaryKernelImpl((aValue,bValue)=>aValue-bValue);const subComplexImpl=createComplexBinaryKernelImpl((aReal,aImag,bReal,bImag)=>{return{real:aReal-bReal,imag:aImag-bImag}});const sub$1=binaryKernelFunc(Sub3,subImpl,subComplexImpl);const subConfig2={kernelName:Sub3,backendName:"cpu",kernelFunc:sub$1};function transposeImpl(xVals,xShape,dtype,perm,newShape){const xRank=xShape.length;const xSize=sizeFromShape(xShape);const xStrides=computeStrides(xShape);const newStrides=computeStrides(newShape);const result=getTypedArrayFromDType(dtype,sizeFromShape(newShape));for(let i=0;i<xSize;++i){const loc=indexToLoc(i,xRank,xStrides);const newLoc=new Array(loc.length);for(let i2=0;i2<newLoc.length;i2++){newLoc[i2]=loc[perm[i2]]}const newIndex=locToIndex(newLoc,xRank,newStrides);result[newIndex]=xVals[i]}return result}function uniqueImpl(values,axis,shape,dtype){const $axis=parseAxisParam(axis,shape)[0];const newShape=[1,shape[0],1];for(let i=0;i<$axis;i++){newShape[0]*=shape[i]}newShape[1]=shape[$axis];for(let i=$axis+1;i<shape.length;i++){newShape[2]*=shape[i]}const uniqueElements={};const indices=new Int32Array(shape[$axis]);const inputBuffer=new TensorBuffer(newShape,dtype,values);const uniqueIndices=[];const is1DTensor=newShape[0]===1&&newShape[2]===1;for(let i=0;i<shape[$axis];i++){let element;if(is1DTensor){element=values[i].toString()}else{const axisValues=[];for(let m=0;m<newShape[0];m++){for(let n=0;n<newShape[2];n++){axisValues.push(inputBuffer.get(m,i,n))}}element=axisValues.join(",")}if(uniqueElements[element]!==void 0){indices[i]=uniqueElements[element]}else{const uniqueIndex=Object.keys(uniqueElements).length;uniqueElements[element]=uniqueIndex;indices[i]=uniqueIndex;uniqueIndices.push(i)}}const outputTmpShape=newShape.slice();outputTmpShape[1]=Object.keys(uniqueElements).length;const outputBuffer=new TensorBuffer(outputTmpShape,dtype);uniqueIndices.forEach((uniqueElementIndex,i)=>{for(let m=0;m<newShape[0];m++){for(let n=0;n<newShape[2];n++){outputBuffer.set(inputBuffer.get(m,uniqueElementIndex,n),m,i,n)}}});const outputShape=shape.slice();outputShape[$axis]=outputTmpShape[1];return{outputValues:outputBuffer.values,outputShape,indices}}var shared=Object.freeze({__proto__:null,simpleAbsImpl,addImpl,ceilImpl,expImpl,expm1Impl,floorImpl,logImpl,maxImpl,multiplyImpl,notEqualImpl,rsqrtImpl,sliceImpl,squaredDifferenceImpl,subImpl,transposeImpl,uniqueImpl});const version$4="2.7.0";registerBackend2("cpu",()=>new MathBackendCPU,1);const elu$3=unaryKernelFunc(Elu,xi=>xi>=0?xi:Math.exp(xi)-1);const eluConfig={kernelName:Elu,backendName:"cpu",kernelFunc:elu$3};const preluImpl=createSimpleBinaryKernelImpl((xValue,aValue)=>xValue<0?aValue*xValue:xValue);function prelu$2(args){const{inputs,backend:backend2}=args;const{x,alpha}=inputs;assertNotComplex([x,alpha],"prelu");const aVals=backend2.data.get(x.dataId).values;const bVals=backend2.data.get(alpha.dataId).values;const[resultData,resultShape]=preluImpl(x.shape,alpha.shape,aVals,bVals,x.dtype);return backend2.makeTensorInfo(resultShape,x.dtype,resultData)}const preluConfig2={kernelName:Prelu3,backendName:"cpu",kernelFunc:prelu$2};const relu$1=unaryKernelFunc(Relu3,xi=>Math.max(0,xi));const reluConfig2={kernelName:Relu3,backendName:"cpu",kernelFunc:relu$1};const relu6$1=unaryKernelFunc(Relu63,xi=>Math.min(Math.max(0,xi),6));const relu6Config2={kernelName:Relu63,backendName:"cpu",kernelFunc:relu6$1};function applyActivation$1(backend2,x,activation2,preluActivationWeights){if(activation2==="linear"){return identity$1({inputs:{x},backend:backend2})}else if(activation2==="relu"){return relu$1({inputs:{x},backend:backend2})}else if(activation2==="elu"){return elu$3({inputs:{x},backend:backend2})}else if(activation2==="relu6"){return relu6$1({inputs:{x},backend:backend2})}else if(activation2==="prelu"){return prelu$2({inputs:{x,alpha:preluActivationWeights},backend:backend2})}throw new Error(`Activation ${activation2} has not been implemented for the CPU backend.`)}function reshape$2(args){const{inputs,backend:backend2,attrs}=args;const{x}=inputs;const{shape}=attrs;const xSize=sizeFromShape(x.shape);const $shape=inferFromImplicitShape(shape,xSize);const $xSize=sizeFromShape($shape);assert(xSize===$xSize,()=>`The new shape (${$shape}) has ${$xSize} elements and the old shape (${x.shape}) has ${xSize} elements. The new shape and old shape must have the same number of elements.`);backend2.incRef(x.dataId);const xData=backend2.data.get(x.dataId);if(xData.complexTensorInfos!=null){const real2=xData.complexTensorInfos.real;const imag2=xData.complexTensorInfos.imag;real2.shape=$shape;imag2.shape=$shape}return{dataId:x.dataId,shape:$shape,dtype:x.dtype}}const reshapeConfig2={kernelName:Reshape6,backendName:"cpu",kernelFunc:reshape$2};function batchMatMul2(args){const{inputs,backend:backend2,attrs}=args;const{a,b}=inputs;const{transposeA,transposeB}=attrs;assertNotComplex([a,b],"matMul");const aRank=a.shape.length;const bRank=b.shape.length;const innerShapeA=transposeA?a.shape[aRank-2]:a.shape[aRank-1];const innerShapeB=transposeB?b.shape[bRank-1]:b.shape[bRank-2];const outerShapeA=transposeA?a.shape[aRank-1]:a.shape[aRank-2];const outerShapeB=transposeB?b.shape[bRank-2]:b.shape[bRank-1];const outerDimsA=a.shape.slice(0,-2);const outerDimsB=b.shape.slice(0,-2);const batchDimA=sizeFromShape(outerDimsA);const batchDimB=sizeFromShape(outerDimsB);const batchDimsCompatible=batchDimA===batchDimB||batchDimA===1||batchDimB===1;assert(aRank>=2&&bRank>=2&&batchDimsCompatible,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${outerDimsA}) and (${outerDimsB}).`);const outShapeOuterDims=batchDimA>batchDimB?a.shape.slice(0,-2):b.shape.slice(0,-2);const outShape=outShapeOuterDims.concat([outerShapeA,outerShapeB]);assert(innerShapeA===innerShapeB,()=>`Error in matMul: inner shapes (${innerShapeA}) and (${innerShapeB}) of Tensors with shapes ${a.shape} and ${b.shape} and transposeA=${transposeA} and transposeB=${transposeB} must match.`);const a3dShape=transposeA?[batchDimA,innerShapeA,outerShapeA]:[batchDimA,outerShapeA,innerShapeA];const b3dShape=transposeB?[batchDimB,outerShapeB,innerShapeB]:[batchDimB,innerShapeB,outerShapeB];const a3d=reshape$2({inputs:{x:a},backend:backend2,attrs:{shape:a3dShape}});const b3d=reshape$2({inputs:{x:b},backend:backend2,attrs:{shape:b3dShape}});const sharedDim=transposeA?a3d.shape[1]:a3d.shape[2];const leftDim=transposeA?a3d.shape[2]:a3d.shape[1];const rightDim=transposeB?b3d.shape[1]:b3d.shape[2];const batchDim=Math.max(batchDimA,batchDimB);const a3dValues=backend2.data.get(a3d.dataId).values;const b3dValues=backend2.data.get(b3d.dataId).values;const a3dStrides=computeStrides(a3d.shape);const b3dStrides=computeStrides(b3d.shape);const[aBatch,aOuterStep,aInnerStep]=transposeA?[a3dStrides[0],1,a3dStrides[1]]:[a3dStrides[0],a3dStrides[1],1];const[bInnerStep,bOuterStep,bBatch]=transposeB?[1,b3dStrides[1],b3dStrides[0]]:[b3dStrides[1],1,b3dStrides[0]];const size=leftDim*rightDim;const result=buffer2([batchDim,leftDim,rightDim],a3d.dtype);const resVals=result.values;const blockSize=backend2.blockSize;for(let bi=0;bi<batchDim;bi++){for(let i0=0;i0<leftDim;i0+=blockSize){for(let j0=0;j0<rightDim;j0+=blockSize){for(let k0=0;k0<sharedDim;k0+=blockSize){const iBlock=Math.min(i0+blockSize,leftDim);const jBlock=Math.min(j0+blockSize,rightDim);const kBlock=Math.min(k0+blockSize,sharedDim);for(let i=i0;i<iBlock;i++){for(let j=j0;j<jBlock;j++){let sum3=0;for(let k=k0;k<kBlock;k++){const batchOffsetA=Math.min(bi,batchDimA-1)*aBatch;const batchOffsetB=Math.min(bi,batchDimB-1)*bBatch;const aVal=a3dValues[batchOffsetA+i*aOuterStep+k*aInnerStep];const bVal=b3dValues[k*bInnerStep+j*bOuterStep+batchOffsetB];sum3+=aVal*bVal}resVals[bi*size+(i*rightDim+j)]+=sum3}}}}}}backend2.disposeIntermediateTensorInfo(a3d);backend2.disposeIntermediateTensorInfo(b3d);return backend2.makeTensorInfo(outShape,result.dtype,result.values)}const batchMatMulConfig2={kernelName:BatchMatMul3,backendName:"cpu",kernelFunc:batchMatMul2};function _fusedMatMul(args){const{inputs,backend:backend2,attrs}=args;const{a,b,bias,preluActivationWeights}=inputs;const{transposeA,transposeB,activation:activation2}=attrs;let current;let addRes;let activationRes;const intermediates=[];const matMulRes=batchMatMul2({inputs:{a,b},attrs:{transposeA,transposeB},backend:backend2});current=matMulRes;if(bias){addRes=add$4({inputs:{a:current,b:bias},backend:backend2});intermediates.push(current);current=addRes}if(activation2){activationRes=applyActivation$1(backend2,current,activation2,preluActivationWeights);intermediates.push(current);current=activationRes}for(const i of intermediates){backend2.disposeIntermediateTensorInfo(i)}return current}const _fusedMatMulConfig={kernelName:_FusedMatMul2,backendName:"cpu",kernelFunc:_fusedMatMul};const acos$1=unaryKernelFunc(Acos,xi=>Math.acos(xi));const acosConfig={kernelName:Acos,backendName:"cpu",kernelFunc:acos$1};const acosh$1=unaryKernelFunc(Acosh,xi=>Math.acosh(xi));const acoshConfig={kernelName:Acosh,backendName:"cpu",kernelFunc:acosh$1};const asin$1=unaryKernelFunc(Asin,xi=>Math.asin(xi));const asinConfig={kernelName:Asin,backendName:"cpu",kernelFunc:asin$1};const asinh$1=unaryKernelFunc(Asinh,xi=>Math.asinh(xi));const asinhConfig={kernelName:Asinh,backendName:"cpu",kernelFunc:asinh$1};const atan$1=unaryKernelFunc(Atan,xi=>Math.atan(xi));const atanConfig={kernelName:Atan,backendName:"cpu",kernelFunc:atan$1};const atanh$1=unaryKernelFunc(Atanh,xi=>Math.atanh(xi));const atanhConfig={kernelName:Atanh,backendName:"cpu",kernelFunc:atanh$1};function pool$1(xValues,xShape,dtype,strides,convInfo,poolType){const strideHeight=convInfo.strideHeight;const strideWidth=convInfo.strideWidth;const dilationHeight=convInfo.dilationHeight;const dilationWidth=convInfo.dilationWidth;const effectiveFilterHeight=convInfo.effectiveFilterHeight;const effectiveFilterWidth=convInfo.effectiveFilterWidth;const padTop=convInfo.padInfo.top;const padLeft=convInfo.padInfo.left;const initialValue=poolType==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY;const output=buffer2(convInfo.outShape,dtype);const outputVals=output.values;const outputBatchStrides=convInfo.outShape[1]*convInfo.outShape[2]*convInfo.outShape[3];const outputRowStrides=convInfo.outShape[2]*convInfo.outShape[3];const outputColStrides=convInfo.outShape[3];for(let b=0;b<convInfo.batchSize;++b){const outputBatchOffset=b*outputBatchStrides;const inputBatchOffset=b*strides[0];for(let d=0;d<convInfo.inChannels;++d){for(let yR=0;yR<convInfo.outHeight;++yR){const xRCorner=yR*strideHeight-padTop;const xRMin=Math.max(0,xRCorner);const xRMax=Math.min(convInfo.inHeight,effectiveFilterHeight+xRCorner);const outputRowOffset=outputBatchOffset+yR*outputRowStrides;for(let yC=0;yC<convInfo.outWidth;++yC){const xCCorner=yC*strideWidth-padLeft;const xCMin=Math.max(0,xCCorner);const xCMax=Math.min(convInfo.inWidth,effectiveFilterWidth+xCCorner);let minMaxValue=initialValue;let avgValue=0;let count2=0;for(let xR=xRMin;xR<xRMax;xR+=dilationHeight){const xROffset=inputBatchOffset+xR*strides[1];for(let xC=xCMin;xC<xCMax;xC+=dilationWidth){const xCOffset=xROffset+xC*strides[2];const pixel=xValues[xCOffset+d];if(poolType==="max"&&pixel>minMaxValue){minMaxValue=pixel}else if(poolType==="avg"){avgValue+=pixel;count2++}}if(isNaN(minMaxValue)){break}}const outputOffset=outputRowOffset+yC*outputColStrides+d;outputVals[outputOffset]=poolType==="avg"?avgValue/count2:minMaxValue}}}}return output}function maxPoolPositions(xValues,xShape,dtype,convInfo,flattenPositions=false,includeBatchInIndex=false){const maxPositions=buffer2(convInfo.outShape,"int32");const strideHeight=convInfo.strideHeight;const strideWidth=convInfo.strideWidth;const dilationHeight=convInfo.dilationHeight;const dilationWidth=convInfo.dilationWidth;const effectiveFilterHeight=convInfo.effectiveFilterHeight;const effectiveFilterWidth=convInfo.effectiveFilterWidth;const padTop=convInfo.padInfo.top;const padLeft=convInfo.padInfo.left;const xBuf=buffer2(xShape,dtype,xValues);for(let b=0;b<convInfo.batchSize;++b){for(let d=0;d<convInfo.inChannels;++d){for(let yR=0;yR<convInfo.outHeight;++yR){const xRCorner=yR*strideHeight-padTop;let xRMin=xRCorner;while(xRMin<0){xRMin+=dilationHeight}const xRMax=Math.min(convInfo.inHeight,effectiveFilterHeight+xRCorner);for(let yC=0;yC<convInfo.outWidth;++yC){const xCCorner=yC*strideWidth-padLeft;let xCMin=xCCorner;while(xCMin<0){xCMin+=dilationWidth}const xCMax=Math.min(convInfo.inWidth,effectiveFilterWidth+xCCorner);let maxValue=Number.NEGATIVE_INFINITY;let maxPosition=-1;for(let xR=xRMin;xR<xRMax;xR+=dilationHeight){const wR=xR-xRCorner;for(let xC=xCMin;xC<xCMax;xC+=dilationWidth){const wC=xC-xCCorner;const pixel=xBuf.get(b,xR,xC,d);if(pixel>maxValue){maxValue=pixel;if(flattenPositions){maxPosition=includeBatchInIndex?((b*convInfo.inHeight+xR)*convInfo.inWidth+xC)*convInfo.inChannels+d:(xR*convInfo.inWidth+xC)*convInfo.inChannels+d}else{maxPosition=wR*effectiveFilterWidth+wC}}}}maxPositions.set(maxPosition,b,yR,yC,d)}}}}return maxPositions}function avgPool$1(args){const{inputs,backend:backend2,attrs}=args;const{x}=inputs;assertNotComplex(x,"avgPool");const{filterSize,strides,pad:pad3,dimRoundingMode}=attrs;const dilations=1;assert(eitherStridesOrDilationsAreOne(strides,dilations),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`);const convInfo=computePool2DInfo(x.shape,filterSize,strides,dilations,pad3,dimRoundingMode);let res;if(convInfo.filterWidth===1&&convInfo.filterHeight===1&&arraysEqual(convInfo.inShape,convInfo.outShape)){res=identity$1({inputs:{x},backend:backend2})}else{const xValues=backend2.data.get(x.dataId).values;const strides2=computeStrides(x.shape);const buffer3=pool$1(xValues,x.shape,x.dtype,strides2,convInfo,"avg");res=backend2.makeTensorInfo(convInfo.outShape,x.dtype,buffer3.values)}return res}const avgPoolConfig2={kernelName:AvgPool3,backendName:"cpu",kernelFunc:avgPool$1};function avgPoolBackprop$1(args){const{inputs,backend:backend2,attrs}=args;const{dy,input:input2}=inputs;const x=input2;assertNotComplex([dy,input2],"avgPoolBackprop");const{filterSize,strides,pad:pad3}=attrs;const convInfo=computePool2DInfo(x.shape,filterSize,strides,1,pad3);const strideHeight=convInfo.strideHeight;const strideWidth=convInfo.strideWidth;const filterHeight=convInfo.filterHeight;const filterWidth=convInfo.filterWidth;const dilationHeight=convInfo.dilationHeight;const dilationWidth=convInfo.dilationWidth;const effectiveFilterHeight=convInfo.effectiveFilterHeight;const effectiveFilterWidth=convInfo.effectiveFilterWidth;const padLeft=effectiveFilterWidth-1-convInfo.padInfo.left;const padTop=effectiveFilterHeight-1-convInfo.padInfo.top;const dx=buffer2(x.shape,"float32");const avgMultiplier=1/(filterHeight*filterWidth);const dyData=backend2.data.get(dy.dataId).values;const dyBuf=buffer2(dy.shape,"float32",dyData);for(let b=0;b<convInfo.batchSize;++b){for(let d=0;d<convInfo.inChannels;++d){for(let dxR=0;dxR<convInfo.inHeight;++dxR){for(let dxC=0;dxC<convInfo.inWidth;++dxC){const dyRCorner=dxR-padTop;const dyCCorner=dxC-padLeft;let dotProd=0;for(let wR=0;wR<effectiveFilterHeight;wR+=dilationHeight){const dyR=(dyRCorner+wR)/strideHeight;if(dyR<0||dyR>=convInfo.outHeight||Math.floor(dyR)!==dyR){continue}for(let wC=0;wC<effectiveFilterWidth;wC+=dilationWidth){const dyC=(dyCCorner+wC)/strideWidth;if(dyC<0||dyC>=convInfo.outWidth||Math.floor(dyC)!==dyC){continue}const pixel=dyBuf.get(b,dyR,dyC,d);dotProd+=pixel}}dx.set(dotProd*avgMultiplier,b,dxR,dxC,d)}}}}return backend2.makeTensorInfo(dx.shape,dx.dtype,dx.values)}const avgPoolBackpropConfig={kernelName:AvgPoolBackprop,backendName:"cpu",kernelFunc:avgPoolBackprop$1};function batchNorm$1(args){const{inputs,backend:backend2,attrs}=args;const{x,scale:scale2,offset,mean:mean2,variance:variance2}=inputs;assert(mean2.shape.length===variance2.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks.");assert(offset==null||mean2.shape.length===offset.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks.");assert(scale2==null||mean2.shape.length===scale2.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");assertNotComplex([x,mean2,variance2,scale2,offset],"batchNorm");let{varianceEpsilon}=attrs;if(varianceEpsilon==null){varianceEpsilon=.001}const xVals=backend2.data.get(x.dataId).values;const mVals=backend2.data.get(mean2.dataId).values;const varVals=backend2.data.get(variance2.dataId).values;const sVals=scale2?backend2.data.get(scale2.dataId).values:new Float32Array([1]);const offVals=offset?backend2.data.get(offset.dataId).values:new Float32Array([0]);const outVals=new Float32Array(xVals.length);const offValsLength=offVals.length;const sValsLength=sVals.length;const varValsLength=varVals.length;const mValsLength=mVals.length;let offi=0;let mi=0;let si=0;let vi=0;for(let i=0;i<xVals.length;++i){outVals[i]=offVals[offi++]+(xVals[i]-mVals[mi++])*sVals[si++]/Math.sqrt(varVals[vi++]+varianceEpsilon);if(offi>=offValsLength){offi=0}if(mi>=mValsLength){mi=0}if(si>=sValsLength){si=0}if(vi>=varValsLength){vi=0}}return backend2.makeTensorInfo(x.shape,x.dtype,outVals)}const batchNormConfig={kernelName:FusedBatchNorm3,backendName:"cpu",kernelFunc:batchNorm$1};const clip2=unaryKernelFunc(ClipByValue3,(xi,attrs)=>{const clipAttrs=attrs;if(xi>clipAttrs.clipValueMax){return clipAttrs.clipValueMax}return xi<clipAttrs.clipValueMin?clipAttrs.clipValueMin:xi});const clipConfig={kernelName:ClipByValue3,backendName:"cpu",kernelFunc:clip2};function imag$1(args){const{inputs,backend:backend2}=args;const{input:input2}=inputs;const imag2=backend2.data.get(input2.dataId).complexTensorInfos.imag;const imagVal=backend2.data.get(imag2.dataId).values;return backend2.makeTensorInfo(imag2.shape,imag2.dtype,imagVal)}const imagConfig={kernelName:Imag,backendName:"cpu",kernelFunc:imag$1};function concat$1(args){const{inputs,backend:backend2,attrs}=args;const{axis}=attrs;const $axis=parseAxisParam(axis,inputs[0].shape)[0];let outShape=computeOutShape$1(inputs.map(t=>t.shape),$axis);if(sizeFromShape(outShape)===0){return backend2.makeTensorInfo(outShape,inputs[0].dtype,[])}const $inputs=inputs.filter(t=>sizeFromShape(t.shape)>0);if($inputs.length===1){return $inputs[0]}const shapes=$inputs.map(t=>t.shape);assertParamsConsistent(shapes,$axis);if($inputs[0].dtype==="complex64"){const reals=$inputs.map(t=>real$1({inputs:{input:t},backend:backend2}));const imags=$inputs.map(t=>imag$1({inputs:{input:t},backend:backend2}));const realConcated=concat$1({inputs:reals,backend:backend2,attrs:{axis:$axis}});const imagConcated=concat$1({inputs:imags,backend:backend2,attrs:{axis:$axis}});const result=complex$1({inputs:{real:realConcated,imag:imagConcated},backend:backend2});reals.forEach(r=>backend2.disposeIntermediateTensorInfo(r));imags.forEach(i=>backend2.disposeIntermediateTensorInfo(i));backend2.disposeIntermediateTensorInfo(realConcated);backend2.disposeIntermediateTensorInfo(imagConcated);return result}const inputs2D=$inputs.map(t=>{const innerSize=sizeFromShape(t.shape.slice($axis));const shape=[-1,innerSize];return reshape$2({inputs:{x:t},backend:backend2,attrs:{shape}})});outShape=computeOutShape$1(inputs2D.map(t=>t.shape),1);const outVals=getTypedArrayFromDType($inputs[0].dtype,sizeFromShape(outShape));if(inputs2D[0].shape[0]===1){let offset=0;inputs2D.forEach(t=>{const val=backend2.data.get(t.dataId).values;const size=sizeFromShape(t.shape);outVals.set(val,offset);offset+=size})}else{let colOffset=0;inputs2D.forEach(t=>{const tVals=backend2.data.get(t.dataId).values;let tIdx=0;for(let row=0;row<t.shape[0];++row){const resIdx=row*outShape[1]+colOffset;for(let col=0;col<t.shape[1];++col){outVals[resIdx+col]=tVals[tIdx++]}}colOffset+=t.shape[1]})}const finalOutShape=computeOutShape$1($inputs.map(t=>t.shape),$axis);const outInfo=backend2.makeTensorInfo(finalOutShape,inputs[0].dtype,outVals);inputs2D.forEach(t=>backend2.disposeIntermediateTensorInfo(t));return outInfo}const concatConfig2={kernelName:Concat3,backendName:"cpu",kernelFunc:concat$1};function conv2D(args){const{inputs,backend:backend2,attrs}=args;const{x,filter}=inputs;const{strides,pad:pad3,dataFormat,dilations,dimRoundingMode}=attrs;assertNotComplex([x,filter],"conv2d");const $dataFormat=convertConv2DDataFormat(dataFormat);const convInfo=computeConv2DInfo(x.shape,filter.shape,strides,dilations,pad3,dimRoundingMode,false,$dataFormat);const filterHeight=convInfo.filterHeight;const filterWidth=convInfo.filterWidth;const dilationHeight=convInfo.dilationHeight;const dilationWidth=convInfo.dilationWidth;const padLeft=convInfo.padInfo.left;const padTop=convInfo.padInfo.top;const isChannelsLast=convInfo.dataFormat==="channelsLast";const y=new TensorBuffer(convInfo.outShape,x.dtype);const xStrides=computeStrides(x.shape);const filterStrides=computeStrides(filter.shape);const xBatchStride=xStrides[0];const xRowStride=isChannelsLast?xStrides[1]:xStrides[2];const xColStride=isChannelsLast?xStrides[2]:1;const xChannelStride=isChannelsLast?1:xStrides[1];const yBatchStride=y.strides[0];const yRowStride=isChannelsLast?y.strides[1]:y.strides[2];const yColStride=isChannelsLast?y.strides[2]:1;const yChannelStride=isChannelsLast?1:y.strides[1];const xVals=backend2.data.get(x.dataId).values;const wVals=backend2.data.get(filter.dataId).values;const yVals=y.values;for(let b=0;b<convInfo.batchSize;++b){const xOffset1=b*xBatchStride;const yOffset1=b*yBatchStride;for(let yR=0;yR<convInfo.outHeight;++yR){const yOffset2=yOffset1+yR*yRowStride;const xRCorner=yR*convInfo.strideHeight-padTop;for(let wR=0;wR<filterHeight;++wR){const xR=xRCorner+wR*dilationHeight;if(xR<0||xR>=convInfo.inHeight){continue}const wOffset1=wR*filterStrides[0];const xOffset2=xOffset1+xR*xRowStride;for(let yC=0;yC<convInfo.outWidth;++yC){const yOffset3=yOffset2+yC*yColStride;const xCCorner=yC*convInfo.strideWidth-padLeft;for(let wC=0;wC<filterWidth;++wC){const xC=xCCorner+wC*dilationWidth;if(xC<0||xC>=convInfo.inWidth){continue}const wOffset2=wOffset1+wC*filterStrides[1];const xOffset3=xOffset2+xC*xColStride;let wOffset3=wOffset2;for(let d1=0;d1<convInfo.inChannels;++d1){const xVal=xVals[xOffset3+d1*xChannelStride];for(let d2=0;d2<convInfo.outChannels;++d2){yVals[yOffset3+d2*yChannelStride]+=xVal*wVals[wOffset3+d2]}wOffset3+=convInfo.outChannels}}}}}}return backend2.makeTensorInfo(y.shape,y.dtype,yVals)}const conv2DConfig2={kernelName:Conv2D3,backendName:"cpu",kernelFunc:conv2D};function conv2DBackpropFilter$1(args){const{inputs,backend:backend2,attrs}=args;const{x,dy}=inputs;const{strides,pad:pad3,dataFormat,dimRoundingMode,filterShape}=attrs;assertNotComplex([x,dy],"conv2dBackpropFilter");const $dataFormat=convertConv2DDataFormat(dataFormat);const convInfo=computeConv2DInfo(x.shape,filterShape,strides,1,pad3,dimRoundingMode,false,$dataFormat);const{strideHeight,strideWidth,filterHeight,filterWidth}=convInfo;const isChannelsLast=convInfo.dataFormat==="channelsLast";const dW=new TensorBuffer(convInfo.filterShape,"float32");const leftPad=convInfo.padInfo.left;const topPad=convInfo.padInfo.top;const xVals=backend2.data.get(x.dataId).values;const dyVals=backend2.data.get(dy.dataId).values;const xBuf=new TensorBuffer(x.shape,x.dtype,xVals);const dyBuf=new TensorBuffer(dy.shape,dy.dtype,dyVals);for(let wR=0;wR<filterHeight;++wR){const yRMin=Math.max(0,Math.ceil((topPad-wR)/strideHeight));const yRMax=Math.min(convInfo.outHeight,(convInfo.inHeight+topPad-wR)/strideHeight);for(let wC=0;wC<filterWidth;++wC){const yCMin=Math.max(0,Math.ceil((leftPad-wC)/strideWidth));const yCMax=Math.min(convInfo.outWidth,(convInfo.inWidth+leftPad-wC)/strideWidth);for(let d1=0;d1<convInfo.inChannels;++d1){for(let d2=0;d2<convInfo.outChannels;++d2){let dotProd=0;for(let b=0;b<convInfo.batchSize;++b){for(let yR=yRMin;yR<yRMax;++yR){const xR=wR+yR*strideHeight-topPad;for(let yC=yCMin;yC<yCMax;++yC){const xC=wC+yC*strideWidth-leftPad;if(isChannelsLast){dotProd+=xBuf.get(b,xR,xC,d1)*dyBuf.get(b,yR,yC,d2)}else{dotProd+=xBuf.get(b,d1,xR,xC)*dyBuf.get(b,d2,yR,yC)}}}}dW.set(dotProd,wR,wC,d1,d2)}}}}return backend2.makeTensorInfo(dW.shape,dW.dtype,dW.values)}const conv2DBackpropFilterConfig={kernelName:Conv2DBackpropFilter,backendName:"cpu",kernelFunc:conv2DBackpropFilter$1};function conv2DBackpropInput$1(args){const{inputs,backend:backend2,attrs}=args;const{dy,filter}=inputs;const{inputShape,strides,pad:pad3,dataFormat,dimRoundingMode}=attrs;assertNotComplex([dy,filter],"conv2dBackpropInput");const filterStrides=computeStrides(filter.shape);const dyStrides=computeStrides(dy.shape);let $dataFormat=convertConv2DDataFormat(dataFormat);const convInfo=computeConv2DInfo(inputShape,filter.shape,strides,1,pad3,dimRoundingMode,false,$dataFormat);const dx=new TensorBuffer(convInfo.inShape,"float32");const dxValues=dx.values;const dyValues=backend2.data.get(dy.dataId).values;const fltValues=backend2.data.get(filter.dataId).values;const[fltS0,fltS1,fltS2]=filterStrides;const{batchSize,filterHeight,filterWidth,inChannels,inHeight,inWidth,outChannels,outHeight,outWidth,strideHeight,strideWidth}=convInfo;$dataFormat=convInfo.dataFormat;const topPad=filterHeight-1-convInfo.padInfo.top;const leftPad=filterWidth-1-convInfo.padInfo.left;const isChannelsLast=$dataFormat==="channelsLast";const xBatchStride=dx.strides[0];const xRowStride=isChannelsLast?dx.strides[1]:dx.strides[2];const xColStride=isChannelsLast?dx.strides[2]:1;const xChannelStride=isChannelsLast?1:dx.strides[1];const yBatchStride=dyStrides[0];const yRowStride=isChannelsLast?dyStrides[1]:dyStrides[2];const yColStride=isChannelsLast?dyStrides[2]:1;const yChannelStride=isChannelsLast?1:dyStrides[1];for(let b=0;b<batchSize;++b){for(let d1=0;d1<inChannels;++d1){for(let xR=0;xR<inHeight;++xR){const xRCorner=xR-topPad;const xRMin=Math.max(0,Math.ceil(xRCorner/strideHeight));const yRMax=Math.min(outHeight,(filterHeight+xRCorner)/strideHeight);for(let xC=0;xC<inWidth;++xC){const xCCorner=xC-leftPad;const xCMin=Math.max(0,Math.ceil(xCCorner/strideWidth));const yCMax=Math.min(outWidth,(filterWidth+xCCorner)/strideWidth);let dotProd=0;for(let yR=xRMin;yR<yRMax;++yR){const wR=yR*strideHeight-xRCorner;for(let yC=xCMin;yC<yCMax;++yC){const wC=yC*strideWidth-xCCorner;const dyOffset=yBatchStride*b+yRowStride*yR+yColStride*yC;const fltOffset=fltS0*(filterHeight-1-wR)+fltS1*(filterWidth-1-wC)+fltS2*d1;for(let d2=0;d2<outChannels;++d2){const pixel=dyValues[dyOffset+yChannelStride*d2];const weight=fltValues[fltOffset+d2];dotProd+=pixel*weight}}}const dxOffset=xBatchStride*b+xRowStride*xR+xColStride*xC+xChannelStride*d1;dxValues[dxOffset]=dotProd}}}}return backend2.makeTensorInfo(dx.shape,dx.dtype,dx.values)}const conv2DBackpropInputConfig2={kernelName:Conv2DBackpropInput3,backendName:"cpu",kernelFunc:conv2DBackpropInput$1};function conv3D(args){const{inputs,backend:backend2,attrs}=args;const{x,filter}=inputs;const{strides,pad:pad3,dilations}=attrs;assertNotComplex([x,filter],"conv3d");const convInfo=computeConv3DInfo(x.shape,filter.shape,strides,dilations,pad3);const{filterDepth,filterHeight,filterWidth,dilationDepth,dilationHeight,dilationWidth,padInfo}=convInfo;const padFront=padInfo.front;const padLeft=padInfo.left;const padTop=padInfo.top;const y=new TensorBuffer(convInfo.outShape,x.dtype);const xVals=backend2.data.get(x.dataId).values;const wVals=backend2.data.get(filter.dataId).values;const yVals=y.values;const xStrides=computeStrides(x.shape);const filterStrides=computeStrides(filter.shape);for(let b=0;b<convInfo.batchSize;++b){const xOffset1=b*xStrides[0];const yOffset1=b*y.strides[0];for(let yF=0;yF<convInfo.outDepth;++yF){const yOffset2=yOffset1+yF*y.strides[1];const xFCorner=yF*convInfo.strideDepth-padFront;for(let wF=0;wF<filterDepth;++wF){const xF=xFCorner+wF*dilationDepth;if(xF<0||xF>=convInfo.inDepth){continue}const wOffset1=wF*filterStrides[0];const xOffset2=xOffset1+xF*xStrides[1];for(let yR=0;yR<convInfo.outHeight;++yR){const yOffset3=yOffset2+yR*y.strides[2];const xRCorner=yR*convInfo.strideHeight-padTop;for(let wR=0;wR<filterHeight;++wR){const xR=xRCorner+wR*dilationHeight;if(xR<0||xR>=convInfo.inHeight){continue}const wOffset2=wOffset1+wR*filterStrides[1];const xOffset3=xOffset2+xR*xStrides[2];for(let yC=0;yC<convInfo.outWidth;++yC){const yOffset4=yOffset3+yC*convInfo.outChannels;const xCCorner=yC*convInfo.strideWidth-padLeft;for(let wC=0;wC<filterWidth;++wC){const xC=xCCorner+wC*dilationWidth;if(xC<0||xC>=convInfo.inWidth){continue}const wOffset3=wOffset2+wC*filterStrides[2];const xOffset4=xOffset3+xC*convInfo.inChannels;let wOffset4=wOffset3;for(let d1=0;d1<convInfo.inChannels;++d1){const xVal=xVals[xOffset4+d1];for(let d2=0;d2<convInfo.outChannels;++d2){yVals[yOffset4+d2]+=xVal*wVals[wOffset4+d2]}wOffset4+=convInfo.outChannels}}}}}}}}return backend2.makeTensorInfo(y.shape,y.dtype,y.values)}const conv3DConfig={kernelName:Conv3D,backendName:"cpu",kernelFunc:conv3D};function conv3DBackpropFilterV2(args){const{inputs,backend:backend2,attrs}=args;const{x,dy}=inputs;const{strides,pad:pad3,filterShape}=attrs;assertNotComplex([x,dy],"conv3dBackpropFilterV2");const xStrides=computeStrides(x.shape);const dyStrides=computeStrides(dy.shape);const convInfo=computeConv3DInfo(x.shape,filterShape,strides,1,pad3);const strideDepth=convInfo.strideDepth;const strideHeight=convInfo.strideHeight;const strideWidth=convInfo.strideWidth;const filterDepth=convInfo.filterDepth;const filterHeight=convInfo.filterHeight;const filterWidth=convInfo.filterWidth;const dw=new TensorBuffer(convInfo.filterShape,"float32");const dwValues=dw.values;const[dwS0,dwS1,dwS2,dwS3]=dw.strides;const dyValues=backend2.data.get(dy.dataId).values;const[dyS0,dyS1,dyS2,dyS3]=dyStrides;const xValues=backend2.data.get(x.dataId).values;const[xS0,xS1,xS2,xS3]=xStrides;const frontPad=convInfo.padInfo.front;const leftPad=convInfo.padInfo.left;const topPad=convInfo.padInfo.top;for(let wF=0;wF<filterDepth;++wF){const yFMin=Math.max(0,Math.ceil((frontPad-wF)/strideDepth));const yFMax=Math.min(convInfo.outDepth,(convInfo.inDepth+frontPad-wF)/strideDepth);const wOffset1=wF*dwS0;for(let wR=0;wR<filterHeight;++wR){const yRMin=Math.max(0,Math.ceil((topPad-wR)/strideHeight));const yRMax=Math.min(convInfo.outHeight,(convInfo.inHeight+topPad-wR)/strideHeight);const wOffset2=wR*dwS1+wOffset1;for(let wC=0;wC<filterWidth;++wC){const yCMin=Math.max(0,Math.ceil((leftPad-wC)/strideWidth));const yCMax=Math.min(convInfo.outWidth,(convInfo.inWidth+leftPad-wC)/strideWidth);const wOffset3=wC*dwS2+wOffset2;for(let d1=0;d1<convInfo.inChannels;++d1){const wOffset4=d1*dwS3+wOffset3;for(let d2=0;d2<convInfo.outChannels;++d2){let dotProd=0;for(let b=0;b<convInfo.batchSize;++b){const xOffset1=b*xS0;const yOffset1=b*dyS0;for(let yF=yFMin;yF<yFMax;++yF){const xF=wF+yF*strideDepth-frontPad;const xOffset2=xF*xS1+xOffset1;const yOffset2=yF*dyS1+yOffset1;for(let yR=yRMin;yR<yRMax;++yR){const xR=wR+yR*strideHeight-topPad;const xOffset3=xR*xS2+xOffset2;const yOffset3=yR*dyS2+yOffset2;for(let yC=yCMin;yC<yCMax;++yC){const xC=wC+yC*strideWidth-leftPad;const xOffset4=xC*xS3+xOffset3;const yOffset4=yC*dyS3+yOffset3;dotProd+=xValues[xOffset4+d1]*dyValues[yOffset4+d2]}}}}dwValues[wOffset4+d2]=dotProd}}}}}return backend2.makeTensorInfo(dw.shape,dw.dtype,dw.values)}const conv3DBackpropFilterV2Config={kernelName:Conv3DBackpropFilterV2,backendName:"cpu",kernelFunc:conv3DBackpropFilterV2};function conv3DBackpropInputV2(args){const{inputs,backend:backend2,attrs}=args;const{dy,filter}=inputs;const{pad:pad3,strides,inputShape}=attrs;assertNotComplex([dy],"conv3dBackpropInputV2");const dyStrides=computeStrides(dy.shape);const filterStrides=computeStrides(filter.shape);const convInfo=computeConv3DInfo(inputShape,filter.shape,strides,1,pad3);const dx=new TensorBuffer(convInfo.inShape,"float32");const dxValues=dx.values;const[dxS0,dxS1,dxS2,dxS3]=dx.strides;const dyValues=backend2.data.get(dy.dataId).values;const[dyS0,dyS1,dyS2,dyS3]=dyStrides;const fltValues=backend2.data.get(filter.dataId).values;const[fltS0,fltS1,fltS2,fltS3]=filterStrides;const{batchSize,filterDepth,filterHeight,filterWidth,inChannels,inDepth,inHeight,inWidth,outChannels,outDepth,outHeight,outWidth,strideDepth,strideHeight,strideWidth}=convInfo;const frontPad=filterDepth-1-convInfo.padInfo.front;const topPad=filterHeight-1-convInfo.padInfo.top;const leftPad=filterWidth-1-convInfo.padInfo.left;for(let b=0;b<batchSize;++b){for(let d1=0;d1<inChannels;++d1){for(let xF=0;xF<inDepth;++xF){const xFCorner=xF-frontPad;const xFMin=Math.max(0,Math.ceil(xFCorner/strideDepth));const yFMax=Math.min(outDepth,(filterDepth+xFCorner)/strideDepth);for(let xR=0;xR<inHeight;++xR){const xRCorner=xR-topPad;const xRMin=Math.max(0,Math.ceil(xRCorner/strideHeight));const yRMax=Math.min(outHeight,(filterHeight+xRCorner)/strideHeight);for(let xC=0;xC<inWidth;++xC){const xCCorner=xC-leftPad;const xCMin=Math.max(0,Math.ceil(xCCorner/strideWidth));const yCMax=Math.min(outWidth,(filterWidth+xCCorner)/strideWidth);let dotProd=0;for(let yF=xFMin;yF<yFMax;++yF){const wF=yF*strideDepth-xFCorner;for(let yR=xRMin;yR<yRMax;++yR){const wR=yR*strideHeight-xRCorner;for(let yC=xCMin;yC<yCMax;++yC){const wC=yC*strideWidth-xCCorner;const dyOffset=dyS0*b+dyS1*yF+dyS2*yR+dyS3*yC;const fltOffset=fltS0*(filterDepth-1-wF)+fltS1*(filterHeight-1-wR)+fltS2*(filterWidth-1-wC)+fltS3*d1;for(let d2=0;d2<outChannels;++d2){const pixel=dyValues[dyOffset+d2];const weight=fltValues[fltOffset+d2];dotProd+=pixel*weight}}}}dxValues[dxS0*b+dxS1*xF+dxS2*xR+dxS3*xC+d1]=dotProd}}}}}return backend2.makeTensorInfo(dx.shape,dx.dtype,dx.values)}const conv3DBackpropInputV2Config={kernelName:Conv3DBackpropInputV2,backendName:"cpu",kernelFunc:conv3DBackpropInputV2};const cos$1=unaryKernelFunc(Cos3,xi=>Math.cos(xi));const cosConfig2={kernelName:Cos3,backendName:"cpu",kernelFunc:cos$1};const cosh$1=unaryKernelFunc(Cosh,xi=>Math.cosh(xi));const coshConfig={kernelName:Cosh,backendName:"cpu",kernelFunc:cosh$1};function depthwiseConv2dNative(args){const{inputs,backend:backend2,attrs}=args;const{x,filter}=inputs;const{strides,pad:pad3,dilations,dimRoundingMode}=attrs;assertNotComplex([x,filter],"depthwiseConv2DNative");const xStrides=computeStrides(x.shape);const filterStrides=computeStrides(filter.shape);let $dilations=dilations;if($dilations==null){$dilations=[1,1]}assert(eitherStridesOrDilationsAreOne(strides,$dilations),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${strides} and dilations '${$dilations}'`);const convInfo=computeConv2DInfo(x.shape,filter.shape,strides,$dilations,pad3,dimRoundingMode,true);const{filterHeight,filterWidth,dilationHeight,dilationWidth,padInfo}=convInfo;const padLeft=padInfo.left;const padTop=padInfo.top;const chMul=convInfo.outChannels/convInfo.inChannels;const y=new TensorBuffer(convInfo.outShape,x.dtype);const xVals=backend2.data.get(x.dataId).values;const wVals=backend2.data.get(filter.dataId).values;const yVals=y.values;for(let b=0;b<convInfo.batchSize;++b){const xOffset1=b*xStrides[0];const yOffset1=b*y.strides[0];for(let yR=0;yR<convInfo.outHeight;++yR){const yOffset2=yOffset1+yR*y.strides[1];const xRCorner=yR*convInfo.strideHeight-padLeft;for(let wR=0;wR<filterHeight;++wR){const xR=xRCorner+wR*dilationHeight;if(xR<0||xR>=convInfo.inHeight){continue}const wOffset1=wR*filterStrides[0];const xOffset2=xOffset1+xR*xStrides[1];for(let yC=0;yC<convInfo.outWidth;++yC){const yOffset3=yOffset2+yC*y.strides[2];const xCCorner=yC*convInfo.strideWidth-padTop;for(let wC=0;wC<filterWidth;++wC){const xC=xCCorner+wC*dilationWidth;if(xC<0||xC>=convInfo.inWidth){continue}const wOffset2=wOffset1+wC*filterStrides[1];const xOffset3=xOffset2+xC*convInfo.inChannels;let yOffset4=yOffset3;let wOffset3=wOffset2;for(let d1=0;d1<convInfo.inChannels;++d1){const xVal=xVals[xOffset3+d1];for(let q=0;q<chMul;++q){yVals[yOffset4+q]+=xVal*wVals[wOffset3+q]}yOffset4+=chMul;wOffset3+=chMul}}}}}}return backend2.makeTensorInfo(y.shape,y.dtype,y.values)}const depthwiseConv2dNativeConfig2={kernelName:DepthwiseConv2dNative3,backendName:"cpu",kernelFunc:depthwiseConv2dNative};function depthwiseConv2dNativeBackpropFilter$1(args){const{inputs,backend:backend2,attrs}=args;const{x,dy}=inputs;const{strides,dilations,pad:pad3,dimRoundingMode,filterShape}=attrs;assertNotComplex([x,dy],"depthwiseConv2dNativeBackpropFilter");const convInfo=computeConv2DInfo(x.shape,filterShape,strides,dilations,pad3,dimRoundingMode,true);const{strideHeight,strideWidth,filterHeight,filterWidth}=convInfo;const dW=new TensorBuffer(convInfo.filterShape,"float32");const leftPad=convInfo.padInfo.left;const topPad=convInfo.padInfo.top;const chMul=convInfo.outChannels/convInfo.inChannels;const xVals=backend2.data.get(x.dataId).values;const xBuf=new TensorBuffer(x.shape,x.dtype,xVals);const dyVals=backend2.data.get(dy.dataId).values;const dyBuf=new TensorBuffer(dy.shape,dy.dtype,dyVals);for(let wR=0;wR<filterHeight;++wR){const yRMin=Math.max(0,Math.ceil((topPad-wR)/strideHeight));const yRMax=Math.min(convInfo.outHeight,(convInfo.inHeight+topPad-wR)/strideHeight);for(let wC=0;wC<filterWidth;++wC){const yCMin=Math.max(0,Math.ceil((leftPad-wC)/strideWidth));const yCMax=Math.min(convInfo.outWidth,(convInfo.inWidth+leftPad-wC)/strideWidth);for(let d2=0;d2<convInfo.outChannels;++d2){const d1=Math.trunc(d2/chMul);const dm=d2%chMul;let dotProd=0;for(let b=0;b<convInfo.batchSize;++b){for(let yR=yRMin;yR<yRMax;++yR){const xR=wR+yR*strideHeight-topPad;for(let yC=yCMin;yC<yCMax;++yC){const xC=wC+yC*strideWidth-leftPad;dotProd+=xBuf.get(b,xR,xC,d1)*dyBuf.get(b,yR,yC,d2)}}}dW.set(dotProd,wR,wC,d1,dm)}}}return backend2.makeTensorInfo(dW.shape,dW.dtype,dW.values)}const depthwiseConv2dNativeBackpropFilterConfig={kernelName:DepthwiseConv2dNativeBackpropFilter,backendName:"cpu",kernelFunc:depthwiseConv2dNativeBackpropFilter$1};function depthwiseConv2dNativeBackpropInput$1(args){const{inputs,backend:backend2,attrs}=args;const{dy,filter}=inputs;const{strides,dilations,pad:pad3,dimRoundingMode,inputShape}=attrs;assertNotComplex([dy,filter],"depthwiseConv2DNativeBackpropInput");const dyStrides=computeStrides(dy.shape);const filterStrides=computeStrides(filter.shape);const convInfo=computeConv2DInfo(inputShape,filter.shape,strides,dilations,pad3,dimRoundingMode,true);const dx=new TensorBuffer(convInfo.inShape,"float32");const dxValues=dx.values;const[dxS0,dxS1,dxS2]=dx.strides;const dyValues=backend2.data.get(dy.dataId).values;const[dyS0,dyS1,dyS2]=dyStrides;const fltValues=backend2.data.get(filter.dataId).values;const[fltS0,fltS1,fltS2]=filterStrides;const{batchSize,filterHeight,filterWidth,inChannels,inHeight,inWidth,outChannels,outHeight,outWidth,strideHeight,strideWidth}=convInfo;const topPad=filterHeight-1-convInfo.padInfo.top;const leftPad=filterWidth-1-convInfo.padInfo.left;const chMul=outChannels/inChannels;for(let b=0;b<batchSize;++b){for(let d1=0;d1<inChannels;++d1){for(let xR=0;xR<inHeight;++xR){const xRCorner=xR-topPad;const xRMin=Math.max(0,Math.ceil(xRCorner/strideHeight));const yRMax=Math.min(outHeight,(filterHeight+xRCorner)/strideHeight);for(let xC=0;xC<inWidth;++xC){const xCCorner=xC-leftPad;const xCMin=Math.max(0,Math.ceil(xCCorner/strideWidth));const yCMax=Math.min(outWidth,(filterWidth+xCCorner)/strideWidth);let dotProd=0;for(let yR=xRMin;yR<yRMax;++yR){const wR=yR*strideHeight-xRCorner;for(let yC=xCMin;yC<yCMax;++yC){const wC=yC*strideWidth-xCCorner;const dyOffset=dyS0*b+dyS1*yR+dyS2*yC;const fltOffset=fltS0*(filterHeight-1-wR)+fltS1*(filterWidth-1-wC)+fltS2*d1;for(let dm=0;dm<chMul;++dm){const d2=d1*chMul+dm;const pixel=dyValues[dyOffset+d2];const weight=fltValues[fltOffset+dm];dotProd+=pixel*weight}}}dxValues[dxS0*b+dxS1*xR+dxS2*xC+d1]=dotProd}}}}return backend2.makeTensorInfo(dx.shape,dx.dtype,dx.values)}const depthwiseConv2dNativeBackpropInputConfig={kernelName:DepthwiseConv2dNativeBackpropInput,backendName:"cpu",kernelFunc:depthwiseConv2dNativeBackpropInput$1};const dilation2dConfig={kernelName:Dilation2D,backendName:"cpu",kernelFunc:({inputs,backend:backend2,attrs})=>{const{x,filter}=inputs;const{strides,pad:pad3,dilations}=attrs;const cpuBackend=backend2;const xVals=cpuBackend.data.get(x.dataId).values;const xRank=x.shape.length;const filterVals=cpuBackend.data.get(filter.dataId).values;const filterRank=filter.shape.length;const{batchSize,inHeight,inWidth,inChannels,outHeight,outWidth,padInfo,strideHeight,strideWidth,filterHeight,filterWidth,dilationHeight,dilationWidth,outShape}=computeDilation2DInfo(x.shape,filter.shape,strides,pad3,"NHWC",dilations);const outSize=sizeFromShape(outShape);const outRank=outShape.length;const outputVals=getArrayFromDType(x.dtype,outSize);for(let b=0;b<batchSize;++b){for(let hOut=0;hOut<outHeight;++hOut){const hBeg=hOut*strideHeight-padInfo.top;for(let wOut=0;wOut<outWidth;++wOut){const wBeg=wOut*strideWidth-padInfo.left;for(let d=0;d<inChannels;++d){let curVal=Number.MIN_SAFE_INTEGER;for(let h=0;h<filterHeight;++h){const hIn=hBeg+h*dilationHeight;if(hIn>=0&&hIn<inHeight){for(let w=0;w<filterWidth;++w){const wIn=wBeg+w*dilationWidth;if(wIn>=0&&wIn<inWidth){const xIndex=locToIndex([b,hIn,wIn,d],xRank,computeStrides(x.shape));const filterIndex=locToIndex([h,w,d],filterRank,computeStrides(filter.shape));const val=xVals[xIndex]+filterVals[filterIndex];if(val>curVal){curVal=val}}}}}const outputIndex=locToIndex([b,hOut,wOut,d],outRank,computeStrides(outShape));outputVals[outputIndex]=curVal}}}}const dataId=cpuBackend.write(toTypedArray(outputVals,x.dtype),outShape,x.dtype);return{dataId,shape:outShape,dtype:x.dtype}}};const dilation2dBackpropFilterConfig={kernelName:Dilation2DBackpropFilter,backendName:"cpu",kernelFunc:({inputs,backend:backend2,attrs})=>{const{x,filter,dy}=inputs;const{strides,pad:pad3,dilations}=attrs;const cpuBackend=backend2;const $x=toNestedArray(x.shape,cpuBackend.data.get(x.dataId).values);const $filter=toNestedArray(filter.shape,cpuBackend.data.get(filter.dataId).values);const{batchSize,inHeight,inWidth,inChannels,outHeight,outWidth,padInfo,strideHeight,strideWidth,filterHeight,filterWidth,dilationHeight,dilationWidth,outShape}=computeDilation2DInfo(x.shape,filter.shape,strides,pad3,"NHWC",dilations);assert(dy.rank===outShape.length,()=>`Error in ${Dilation2DBackpropFilter}, dy must have the same rank as output ${outShape.length}, but got ${dy.rank}`);const $dy=toNestedArray(outShape,cpuBackend.data.get(dy.dataId).values);const gradients2=makeZerosNestedTypedArray(filter.shape,filter.dtype);for(let b=0;b<batchSize;++b){for(let hOut=0;hOut<outHeight;++hOut){const hBeg=hOut*strideHeight-padInfo.top;for(let wOut=0;wOut<outWidth;++wOut){const wBeg=wOut*strideWidth-padInfo.left;for(let d=0;d<inChannels;++d){let curVal=Number.MIN_SAFE_INTEGER;let hMax=0;let wMax=0;for(let h=0;h<filterHeight;++h){const hIn=hBeg+h*dilationHeight;if(hIn>=0&&hIn<inHeight){for(let w=0;w<filterWidth;++w){const wIn=wBeg+w*dilationWidth;if(wIn>=0&&wIn<inWidth){const val=$x[b][hIn][wIn][d]+$filter[h][w][d];if(val>curVal){curVal=val;hMax=h;wMax=w}}}}}gradients2[hMax][wMax][d]+=$dy[b][hOut][wOut][d]}}}}const dataId=cpuBackend.write(toTypedArray(gradients2,x.dtype),filter.shape,filter.dtype);return{dataId,shape:filter.shape,dtype:filter.dtype}}};const dilation2dBackpropInputConfig={kernelName:Dilation2DBackpropInput,backendName:"cpu",kernelFunc:({inputs,backend:backend2,attrs})=>{const{x,filter,dy}=inputs;const{strides,pad:pad3,dilations}=attrs;const cpuBackend=backend2;const $x=toNestedArray(x.shape,cpuBackend.data.get(x.dataId).values);const $filter=toNestedArray(filter.shape,cpuBackend.data.get(filter.dataId).values);const{batchSize,inHeight,inWidth,inChannels,outHeight,outWidth,padInfo,strideHeight,strideWidth,filterHeight,filterWidth,dilationHeight,dilationWidth,outShape}=computeDilation2DInfo(x.shape,filter.shape,strides,pad3,"NHWC",dilations);assert(dy.rank===outShape.length,()=>`Error in ${Dilation2DBackpropInput}, dy must have the same rank as output ${outShape.length}, but got ${dy.rank}`);const $dy=toNestedArray(outShape,cpuBackend.data.get(dy.dataId).values);const gradients2=makeZerosNestedTypedArray(x.shape,x.dtype);for(let b=0;b<batchSize;++b){for(let hOut=0;hOut<outHeight;++hOut){const hBeg=hOut*strideHeight-padInfo.top;for(let wOut=0;wOut<outWidth;++wOut){const wBeg=wOut*strideWidth-padInfo.left;for(let d=0;d<inChannels;++d){let curVal=Number.MIN_SAFE_INTEGER;let hInMax=hBeg<0?0:hBeg;let wInMax=wBeg<0?0:wBeg;for(let h=0;h<filterHeight;++h){const hIn=hBeg+h*dilationHeight;if(hIn>=0&&hIn<inHeight){for(let w=0;w<filterWidth;++w){const wIn=wBeg+w*dilationWidth;if(wIn>=0&&wIn<inWidth){const val=$x[b][hIn][wIn][d]+$filter[h][w][d];if(val>curVal){curVal=val;hInMax=hIn;wInMax=wIn}}}}}gradients2[b][hInMax][wInMax][d]+=$dy[b][hOut][wOut][d]}}}}const dataId=cpuBackend.write(toTypedArray(gradients2,x.dtype),x.shape,x.dtype);return{dataId,shape:x.shape,dtype:x.dtype}}};const divImpl=createSimpleBinaryKernelImpl((a,b)=>a/b);const div$1=binaryKernelFunc(Div3,divImpl);const divConfig2={kernelName:Div3,backendName:"cpu",kernelFunc:div$1};const p=ERF_P;const a1=ERF_A1;const a2=ERF_A2;const a3=ERF_A3;const a4=ERF_A4;const a5=ERF_A5;const erf$1=unaryKernelFunc(Erf,xi=>{const sign2=Math.sign(xi);const v=Math.abs(xi);const t=1/(1+p*v);return sign2*(1-((((a5*t+a4)*t+a3)*t+a2)*t+a1)*t*Math.exp(-v*v))});const erfConfig={kernelName:Erf,backendName:"cpu",kernelFunc:erf$1};function fftBatch(input2,inverse,cpuBackend){const inputShape=input2.shape;const batch=inputShape[0];const innerDim=inputShape[1];const inputVals=cpuBackend.data.get(input2.dataId);const real2D=inputVals.complexTensorInfos.real;const imag2D=inputVals.complexTensorInfos.imag;const resultShape=[batch,innerDim];const resultSize=sizeFromShape(resultShape);const resultReal=getTypedArrayFromDType("float32",resultSize);const resultImag=getTypedArrayFromDType("float32",resultSize);for(let b=0;b<batch;b++){const r=slice$1({inputs:{x:real2D},backend:cpuBackend,attrs:{begin:[b,0],size:[1,innerDim]}});const i=slice$1({inputs:{x:imag2D},backend:cpuBackend,attrs:{begin:[b,0],size:[1,innerDim]}});const input3=complex$1({inputs:{real:r,imag:i},backend:cpuBackend});const{real:real2,imag:imag2}=fftImpl(input3,inverse,cpuBackend);const res=mergeRealAndImagArrays(real2,imag2);for(let d=0;d<innerDim;d++){const c=getComplexWithIndex(res,d);resultReal[b*innerDim+d]=c.real;resultImag[b*innerDim+d]=c.imag}cpuBackend.disposeIntermediateTensorInfo(r);cpuBackend.disposeIntermediateTensorInfo(i);cpuBackend.disposeIntermediateTensorInfo(input3)}const $realInfo=cpuBackend.makeTensorInfo(resultShape,"float32",resultReal);const $imagInfo=cpuBackend.makeTensorInfo(resultShape,"float32",resultImag);const result=complex$1({inputs:{real:$realInfo,imag:$imagInfo},backend:cpuBackend});cpuBackend.disposeIntermediateTensorInfo($realInfo);cpuBackend.disposeIntermediateTensorInfo($imagInfo);return result}function fftImpl(input2,inverse,cpuBackend){const inputSize=sizeFromShape(input2.shape);const inputVals=cpuBackend.data.get(input2.dataId);const realVals=cpuBackend.data.get(inputVals.complexTensorInfos.real.dataId).values;const imagVals=cpuBackend.data.get(inputVals.complexTensorInfos.imag.dataId).values;if(isExponentOf2(inputSize)){const result=fftRadix2(realVals,imagVals,inputSize,inverse,cpuBackend);const resultShape=[input2.shape[0],input2.shape[1]];if(inverse){const realInfo=cpuBackend.makeTensorInfo(resultShape,"float32",result.real);const imagInfo=cpuBackend.makeTensorInfo(resultShape,"float32",result.imag);const sizeInfo=cpuBackend.makeTensorInfo([],"float32",createScalarValue(inputSize,"float32"));const sizeInfoCopy=identity$1({inputs:{x:sizeInfo},backend:cpuBackend});const divRealInfo=divConfig2.kernelFunc({inputs:{a:realInfo,b:sizeInfo},backend:cpuBackend});const divImagInfo=divConfig2.kernelFunc({inputs:{a:imagInfo,b:sizeInfoCopy},backend:cpuBackend});const divRealVals=cpuBackend.data.get(divRealInfo.dataId).values;const divImagVals=cpuBackend.data.get(divImagInfo.dataId).values;cpuBackend.disposeIntermediateTensorInfo(realInfo);cpuBackend.disposeIntermediateTensorInfo(imagInfo);cpuBackend.disposeIntermediateTensorInfo(sizeInfo);cpuBackend.disposeIntermediateTensorInfo(sizeInfoCopy);cpuBackend.disposeIntermediateTensorInfo(divRealInfo);cpuBackend.disposeIntermediateTensorInfo(divImagInfo);return{real:divRealVals,imag:divImagVals}}return result}else{const data2=mergeRealAndImagArrays(realVals,imagVals);const rawOutput=fourierTransformByMatmul(data2,inputSize,inverse);return splitRealAndImagArrays(rawOutput)}}function isExponentOf2(size){return(size&size-1)===0}function fftRadix2(realVals,imagVals,size,inverse,cpuBackend){if(size===1){return{real:realVals,imag:imagVals}}const data2=mergeRealAndImagArrays(realVals,imagVals);const half=size/2;const evenComplex=complexWithEvenIndex(data2);const evenRealVals=evenComplex.real;const evenImagVals=evenComplex.imag;const evenShape=[evenRealVals.length];const evenRealInfo=cpuBackend.makeTensorInfo(evenShape,"float32",evenRealVals);const evenImagInfo=cpuBackend.makeTensorInfo(evenShape,"float32",evenImagVals);const evenTensorInfo=complex$1({inputs:{real:evenRealInfo,imag:evenImagInfo},backend:cpuBackend});const oddComplex=complexWithOddIndex(data2);const oddRealVals=oddComplex.real;const oddImagVals=oddComplex.imag;const oddShape=[oddRealVals.length];const oddRealInfo=cpuBackend.makeTensorInfo(oddShape,"float32",oddRealVals);const oddImagInfo=cpuBackend.makeTensorInfo(oddShape,"float32",oddImagVals);const oddTensorInfo=complex$1({inputs:{real:oddRealInfo,imag:oddImagInfo},backend:cpuBackend});const $evenComplex=fftRadix2(evenRealVals,evenImagVals,half,inverse,cpuBackend);const $evenRealVals=$evenComplex.real;const $evenImagVals=$evenComplex.imag;const $evenShape=[$evenRealVals.length];const $evenRealInfo=cpuBackend.makeTensorInfo($evenShape,"float32",$evenRealVals);const $evenImagInfo=cpuBackend.makeTensorInfo($evenShape,"float32",$evenImagVals);const $evenTensorInfo=complex$1({inputs:{real:$evenRealInfo,imag:$evenImagInfo},backend:cpuBackend});const $oddComplex=fftRadix2(oddRealVals,oddImagVals,half,inverse,cpuBackend);const $oddRealVals=$oddComplex.real;const $oddImagVals=$oddComplex.imag;const $oddShape=[$oddRealVals.length];const $oddRealInfo=cpuBackend.makeTensorInfo($oddShape,"float32",$oddRealVals);const $oddImagInfo=cpuBackend.makeTensorInfo($oddShape,"float32",$oddImagVals);const $oddTensorInfo=complex$1({inputs:{real:$oddRealInfo,imag:$oddImagInfo},backend:cpuBackend});const e=exponents(size,inverse);const eShape=[e.real.length];const eRealInfo=cpuBackend.makeTensorInfo(eShape,"float32",e.real);const eImagInfo=cpuBackend.makeTensorInfo(eShape,"float32",e.imag);const complexInfo=complex$1({inputs:{real:eRealInfo,imag:eImagInfo},backend:cpuBackend});const exponentInfo=multiply$2({inputs:{a:complexInfo,b:$oddTensorInfo},backend:cpuBackend});const addPart=add$4({inputs:{a:$evenTensorInfo,b:exponentInfo},backend:cpuBackend});const subPart=sub$1({inputs:{a:$evenTensorInfo,b:exponentInfo},backend:cpuBackend});const addPartReal=real$1({inputs:{input:addPart},backend:cpuBackend});const subPartReal=real$1({inputs:{input:subPart},backend:cpuBackend});const addPartImag=imag$1({inputs:{input:addPart},backend:cpuBackend});const subPartImag=imag$1({inputs:{input:subPart},backend:cpuBackend});const $real=concat$1({inputs:[addPartReal,subPartReal],backend:cpuBackend,attrs:{axis:0}});const $imag=concat$1({inputs:[addPartImag,subPartImag],backend:cpuBackend,attrs:{axis:0}});const $realVals=cpuBackend.data.get($real.dataId).values;const $imagVals=cpuBackend.data.get($imag.dataId).values;cpuBackend.disposeIntermediateTensorInfo(evenRealInfo);cpuBackend.disposeIntermediateTensorInfo(evenImagInfo);cpuBackend.disposeIntermediateTensorInfo(evenTensorInfo);cpuBackend.disposeIntermediateTensorInfo(oddRealInfo);cpuBackend.disposeIntermediateTensorInfo(oddImagInfo);cpuBackend.disposeIntermediateTensorInfo(oddTensorInfo);cpuBackend.disposeIntermediateTensorInfo($evenRealInfo);cpuBackend.disposeIntermediateTensorInfo($evenImagInfo);cpuBackend.disposeIntermediateTensorInfo($evenTensorInfo);cpuBackend.disposeIntermediateTensorInfo($oddRealInfo);cpuBackend.disposeIntermediateTensorInfo($oddImagInfo);cpuBackend.disposeIntermediateTensorInfo($oddTensorInfo);cpuBackend.disposeIntermediateTensorInfo(eRealInfo);cpuBackend.disposeIntermediateTensorInfo(eImagInfo);cpuBackend.disposeIntermediateTensorInfo(complexInfo);cpuBackend.disposeIntermediateTensorInfo(exponentInfo);cpuBackend.disposeIntermediateTensorInfo(addPart);cpuBackend.disposeIntermediateTensorInfo(subPart);cpuBackend.disposeIntermediateTensorInfo(addPartReal);cpuBackend.disposeIntermediateTensorInfo(addPartImag);cpuBackend.disposeIntermediateTensorInfo(subPartReal);cpuBackend.disposeIntermediateTensorInfo(subPartImag);cpuBackend.disposeIntermediateTensorInfo($real);cpuBackend.disposeIntermediateTensorInfo($imag);return{real:$realVals,imag:$imagVals}}function fourierTransformByMatmul(data2,size,inverse){const ret=new Float32Array(size*2);for(let r=0;r<size;r++){let real2=0;let imag2=0;for(let c=0;c<size;c++){const e=exponent(r*c,size,inverse);const term=getComplexWithIndex(data2,c);real2+=term.real*e.real-term.imag*e.imag;imag2+=term.real*e.imag+term.imag*e.real}if(inverse){real2/=size;imag2/=size}assignToTypedArray(ret,real2,imag2,r)}return ret}function fft$1(args){const{inputs,backend:backend2}=args;const{input:input2}=inputs;const inputSize=sizeFromShape(input2.shape);const innerDimensionSize=input2.shape[input2.shape.length-1];const batch=inputSize/innerDimensionSize;const input2D=reshape$2({inputs:{x:input2},backend:backend2,attrs:{shape:[batch,innerDimensionSize]}});const result=fftBatch(input2D,false,backend2);const resultReshaped=reshape$2({inputs:{x:result},backend:backend2,attrs:{shape:input2.shape}});backend2.disposeIntermediateTensorInfo(input2D);backend2.disposeIntermediateTensorInfo(result);return resultReshaped}const fftConfig={kernelName:FFT,backendName:"cpu",kernelFunc:fft$1};function fill$1(args){const{backend:backend2,attrs}=args;const{shape,value,dtype}=attrs;const $dtype=dtype||inferDtype(value);const values=getArrayFromDType($dtype,sizeFromShape(shape));fillValues(values,value,$dtype);return backend2.makeTensorInfo(shape,$dtype,values)}const fillConfig2={kernelName:Fill3,backendName:"cpu",kernelFunc:fill$1};function fillValues(values,value,dtype){if(dtype==="string"){values.fill(value)}else{values.fill(value)}}const flipLeftRightConfig2={kernelName:FlipLeftRight3,backendName:"cpu",kernelFunc:({inputs,attrs,backend:backend2})=>{const{image:image3}=inputs;const cpuBackend=backend2;const output=getTypedArrayFromDType(image3.dtype,sizeFromShape(image3.shape));const[batch,imageHeight,imageWidth,numChannels]=image3.shape;const imageVals=cpuBackend.data.get(image3.dataId).values;for(let batchIdx=0;batchIdx<batch;batchIdx++){const batchOffset=batchIdx*imageWidth*imageHeight*numChannels;for(let row=0;row<imageHeight;row++){const rowOffset=row*(imageWidth*numChannels);for(let col=0;col<imageWidth;col++){const colOffset=col*numChannels;for(let channel=0;channel<numChannels;channel++){const coords2=[batch,row,col,channel];const x=coords2[2];const coordX=Math.round(imageWidth-x);const outIdx=batchOffset+rowOffset+colOffset+channel;let outputValue=imageVals[outIdx];if(coordX>=0&&coordX<imageWidth){const rotatedColOffset=coordX*numChannels;const imageIdx=batchOffset+rowOffset+rotatedColOffset+channel;outputValue=imageVals[imageIdx]}output[outIdx]=outputValue}}}}const dataId=cpuBackend.write(output,image3.shape,image3.dtype);return{dataId,shape:image3.shape,dtype:image3.dtype}}};function fusedConv2D(args){const{inputs,backend:backend2,attrs}=args;const{x,filter,bias,preluActivationWeights}=inputs;const{strides,pad:pad3,dataFormat,dilations,dimRoundingMode,activation:activation2}=attrs;let result=conv2D({inputs:{x,filter},backend:backend2,attrs:{strides,pad:pad3,dataFormat,dilations,dimRoundingMode}});if(bias){const resultOld=result;result=add$4({inputs:{a:result,b:bias},backend:backend2});backend2.disposeIntermediateTensorInfo(resultOld)}if(activation2){const resultOld=result;result=applyActivation$1(backend2,result,activation2,preluActivationWeights);backend2.disposeIntermediateTensorInfo(resultOld)}return result}const fusedConv2DConfig2={kernelName:FusedConv2D3,backendName:"cpu",kernelFunc:fusedConv2D};function fusedDepthwiseConv2D(args){const{inputs,backend:backend2,attrs}=args;const{x,filter,bias,preluActivationWeights}=inputs;const{strides,pad:pad3,dataFormat,dilations,dimRoundingMode,activation:activation2}=attrs;let result=depthwiseConv2dNative({inputs:{x,filter},backend:backend2,attrs:{strides,pad:pad3,dataFormat,dilations,dimRoundingMode}});if(bias){const oldResult=result;result=add$4({inputs:{a:result,b:bias},backend:backend2});backend2.disposeIntermediateTensorInfo(oldResult)}if(activation2){const oldResult=result;result=applyActivation$1(backend2,result,activation2,preluActivationWeights);backend2.disposeIntermediateTensorInfo(oldResult)}return result}const fusedDepthwiseConv2DConfig2={kernelName:FusedDepthwiseConv2D3,backendName:"cpu",kernelFunc:fusedDepthwiseConv2D};function ifft$1(args){const{inputs,backend:backend2}=args;const{input:input2}=inputs;const inputSize=sizeFromShape(input2.shape);const innerDimensionSize=input2.shape[input2.shape.length-1];const batch=inputSize/innerDimensionSize;const input2D=reshape$2({inputs:{x:input2},backend:backend2,attrs:{shape:[batch,innerDimensionSize]}});const result=fftBatch(input2D,true,backend2);const resultReshaped=reshape$2({inputs:{x:result},backend:backend2,attrs:{shape:input2.shape}});backend2.disposeIntermediateTensorInfo(input2D);backend2.disposeIntermediateTensorInfo(result);return resultReshaped}const ifftConfig={kernelName:IFFT,backendName:"cpu",kernelFunc:ifft$1};const isFinite$2=unaryKernelFunc(IsFinite,xi=>Number.isFinite(xi)?1:0,"bool");const isFiniteConfig={kernelName:IsFinite,backendName:"cpu",kernelFunc:isFinite$2};const isInf$1=unaryKernelFunc(IsInf,xi=>Math.abs(xi)===Infinity?1:0,"bool");const isInfConfig={kernelName:IsInf,backendName:"cpu",kernelFunc:isInf$1};const isNaN$2=unaryKernelFunc(IsNan,xi=>Number.isNaN(xi)?1:0,"bool");const isNaNConfig={kernelName:IsNan,backendName:"cpu",kernelFunc:isNaN$2};const log1p$1=unaryKernelFunc(Log1p,xi=>Math.log1p(xi));const log1pConfig={kernelName:Log1p,backendName:"cpu",kernelFunc:log1p$1};const logicalNot$1=unaryKernelFunc(LogicalNot,xi=>xi?0:1,"bool");const logicalNotConfig={kernelName:LogicalNot,backendName:"cpu",kernelFunc:logicalNot$1};const maxConfig2={kernelName:Max3,backendName:"cpu",kernelFunc:({inputs,attrs,backend:backend2})=>{const{x}=inputs;const{reductionIndices,keepDims}=attrs;const cpuBackend=backend2;let xShape=x.shape;const xRank=xShape.length;const origAxes=parseAxisParam(reductionIndices,xShape);let axes=origAxes;const permutedAxes=getAxesPermutation(axes,xRank);let xVals=cpuBackend.data.get(x.dataId).values;if(permutedAxes!=null){const newShape=new Array(xRank);for(let i=0;i<newShape.length;i++){newShape[i]=xShape[permutedAxes[i]]}xVals=transposeImpl(xVals,xShape,x.dtype,permutedAxes,newShape);axes=getInnerMostAxes(axes.length,xRank);xShape=newShape}assertNotComplex(x,"max");assertAxesAreInnerMostDims("max",axes,xRank);const[maxOutShape,reduceShape]=computeOutAndReduceShapes(xShape,axes);const reduceSize=sizeFromShape(reduceShape);const result=maxImpl(xVals,reduceSize,maxOutShape,x.dtype);const dataId=cpuBackend.write(result,maxOutShape,x.dtype);let outShape=maxOutShape;if(keepDims){const newShape=expandShapeToKeepDim(maxOutShape,origAxes);outShape=newShape}return{dataId,shape:outShape,dtype:x.dtype}}};function maxPool$1(args){const{inputs,backend:backend2,attrs}=args;const{x}=inputs;assertNotComplex(x,"maxPool");const{filterSize,strides,pad:pad3,dimRoundingMode}=attrs;const dilations=1;assert(eitherStridesOrDilationsAreOne(strides,dilations),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`);const convInfo=computePool2DInfo(x.shape,filterSize,strides,dilations,pad3,dimRoundingMode);let res;if(convInfo.filterWidth===1&&convInfo.filterHeight===1&&arraysEqual(convInfo.inShape,convInfo.outShape)){res=identity$1({inputs:{x},backend:backend2})}else{const xValues=backend2.data.get(x.dataId).values;const strides2=computeStrides(x.shape);const buffer3=pool$1(xValues,x.shape,x.dtype,strides2,convInfo,"max");res=backend2.makeTensorInfo(convInfo.outShape,x.dtype,buffer3.values)}return res}const maxPoolConfig2={kernelName:MaxPool3,backendName:"cpu",kernelFunc:maxPool$1};function maxPoolBackprop$1(args){const{inputs,backend:backend2,attrs}=args;const{dy,input:input2,output}=inputs;const x=input2;assertNotComplex([input2,output],"maxPoolBackprop");const{filterSize,strides,pad:pad3,dimRoundingMode}=attrs;const convInfo=computePool2DInfo(x.shape,filterSize,strides,1,pad3,dimRoundingMode);const xValues=backend2.data.get(x.dataId).values;const maxPosBuf=buffer2(convInfo.outShape,x.dtype,maxPoolPositions(xValues,x.shape,x.dtype,convInfo).values);const strideHeight=convInfo.strideHeight;const strideWidth=convInfo.strideWidth;const dilationHeight=convInfo.dilationHeight;const dilationWidth=convInfo.dilationWidth;const effectiveFilterHeight=convInfo.effectiveFilterHeight;const effectiveFilterWidth=convInfo.effectiveFilterWidth;const padLeft=effectiveFilterWidth-1-convInfo.padInfo.left;const padTop=effectiveFilterHeight-1-convInfo.padInfo.top;const dx=buffer2(x.shape,"float32");const dyData=backend2.data.get(dy.dataId).values;const dyBuf=buffer2(dy.shape,"float32",dyData);for(let b=0;b<convInfo.batchSize;++b){for(let d=0;d<convInfo.inChannels;++d){for(let dxR=0;dxR<convInfo.inHeight;++dxR){for(let dxC=0;dxC<convInfo.inWidth;++dxC){const dyRCorner=dxR-padTop;const dyCCorner=dxC-padLeft;let dotProd=0;for(let wR=0;wR<effectiveFilterHeight;wR+=dilationHeight){const dyR=(dyRCorner+wR)/strideHeight;if(dyR<0||dyR>=convInfo.outHeight||Math.floor(dyR)!==dyR){continue}for(let wC=0;wC<effectiveFilterWidth;wC+=dilationWidth){const dyC=(dyCCorner+wC)/strideWidth;if(dyC<0||dyC>=convInfo.outWidth||Math.floor(dyC)!==dyC){continue}const maxPos=effectiveFilterHeight*effectiveFilterWidth-1-maxPosBuf.get(b,dyR,dyC,d);const curPos=wR*effectiveFilterWidth+wC;const mask=maxPos===curPos?1:0;if(mask===0){continue}const pixel=dyBuf.get(b,dyR,dyC,d);dotProd+=pixel*mask}}dx.set(dotProd,b,dxR,dxC,d)}}}}return backend2.makeTensorInfo(dx.shape,dx.dtype,dx.values)}const maxPoolBackpropConfig={kernelName:MaxPoolBackprop,backendName:"cpu",kernelFunc:maxPoolBackprop$1};function maxPoolWithArgmaxImpl(xValues,xShape,dtype,includeBatchInIndex,convInfo){const strides=computeStrides(xShape);const maxPools=pool$1(xValues,xShape,dtype,strides,convInfo,"max");const maxPositions=maxPoolPositions(xValues,xShape,dtype,convInfo,true,includeBatchInIndex);return[maxPools.values,maxPositions.values]}const maxPoolWithArgmaxConfig={kernelName:MaxPoolWithArgmax,backendName:"cpu",kernelFunc:({inputs,attrs,backend:backend2})=>{const{x}=inputs;const{filterSize,strides,pad:pad3,includeBatchInIndex}=attrs;const cpuBackend=backend2;assertNotComplex(x,"MaxPoolWithArgmax");const values=cpuBackend.data.get(x.dataId).values;const convInfo=computePool2DInfo(x.shape,filterSize,strides,[1,1],pad3);const[pooled,indexes]=maxPoolWithArgmaxImpl(values,x.shape,x.dtype,includeBatchInIndex,convInfo);const pooledDataId=cpuBackend.write(pooled,convInfo.outShape,x.dtype);const indexesDataId=cpuBackend.write(indexes,convInfo.outShape,x.dtype);return[{dataId:pooledDataId,shape:convInfo.outShape,dtype:x.dtype},{dataId:indexesDataId,shape:convInfo.outShape,dtype:"int32"}]}};function mirrorPad$1(args){const{inputs,backend:backend2,attrs}=args;const{x}=inputs;const{paddings,mode}=attrs;assertNotComplex(x,"mirrorPad");const outShape=paddings.map((p2,i)=>p2[0]+x.shape[i]+p2[1]);const start=paddings.map(p2=>p2[0]);const end=paddings.map((p2,i)=>p2[0]+x.shape[i]);const offset=mode==="reflect"?0:1;const xVals=backend2.data.get(x.dataId).values;const xRank=x.shape.length;const xStrides=computeStrides(x.shape);const resultSize=sizeFromShape(outShape);const resultRank=outShape.length;const resultStrides=computeStrides(outShape);const resVals=getTypedArrayFromDType(x.dtype,resultSize);for(let i=0;i<resultSize;i++){let coords2=indexToLoc(i,resultRank,resultStrides);for(let i2=0;i2<resultRank;i2++){if(coords2[i2]<start[i2]){coords2[i2]=start[i2]*2-coords2[i2]-offset}else if(coords2[i2]>=end[i2]){coords2[i2]=(end[i2]-1)*2-coords2[i2]+offset}}coords2=coords2.map((c,i2)=>c-start[i2]);const inIndex=locToIndex(coords2,xRank,xStrides);resVals[i]=xVals[inIndex]}const outId=backend2.write(resVals,outShape,x.dtype);return{dataId:outId,shape:outShape,dtype:x.dtype}}const mirrorPadConfig={kernelName:MirrorPad,backendName:"cpu",kernelFunc:mirrorPad$1};const nonMaxSuppressionV4Impl$1=nonMaxSuppressionV4Impl;const nonMaxSuppressionV4Config2={kernelName:NonMaxSuppressionV43,backendName:"cpu",kernelFunc:({inputs,backend:backend2,attrs})=>{const{boxes,scores}=inputs;const{maxOutputSize,iouThreshold,scoreThreshold,padToMaxOutputSize}=attrs;const cpuBackend=backend2;assertNotComplex(boxes,"NonMaxSuppressionPadded");const boxesVals=cpuBackend.data.get(boxes.dataId).values;const scoresVals=cpuBackend.data.get(scores.dataId).values;const{selectedIndices,validOutputs}=nonMaxSuppressionV4Impl$1(boxesVals,scoresVals,maxOutputSize,iouThreshold,scoreThreshold,padToMaxOutputSize);return[selectedIndices,validOutputs]}};const nonMaxSuppressionV5Impl$1=nonMaxSuppressionV5Impl;const nonMaxSuppressionV5Config2={kernelName:NonMaxSuppressionV53,backendName:"cpu",kernelFunc:({inputs,backend:backend2,attrs})=>{const{boxes,scores}=inputs;const{maxOutputSize,iouThreshold,scoreThreshold,softNmsSigma}=attrs;const cpuBackend=backend2;assertNotComplex(boxes,"NonMaxSuppressionWithScore");const boxesVals=cpuBackend.data.get(boxes.dataId).values;const scoresVals=cpuBackend.data.get(scores.dataId).values;const maxOutputSizeVal=maxOutputSize;const iouThresholdVal=iouThreshold;const scoreThresholdVal=scoreThreshold;const softNmsSigmaVal=softNmsSigma;const{selectedIndices,selectedScores}=nonMaxSuppressionV5Impl$1(boxesVals,scoresVals,maxOutputSizeVal,iouThresholdVal,scoreThresholdVal,softNmsSigmaVal);return[selectedIndices,selectedScores]}};function padV2(args){const{inputs,backend:backend2,attrs}=args;const{x}=inputs;const{paddings,constantValue}=attrs;assertNotComplex(x,"pad");const outShape=paddings.map((p2,i)=>p2[0]+x.shape[i]+p2[1]);const start=paddings.map(p2=>p2[0]);const xVals=backend2.data.get(x.dataId).values;const xSize=sizeFromShape(x.shape);const xRank=x.shape.length;const xStrides=computeStrides(x.shape);const resultSize=sizeFromShape(outShape);const resultRank=outShape.length;const resultStrides=computeStrides(outShape);const resVals=getTypedArrayFromDType(x.dtype,resultSize);if(constantValue!==0){resVals.fill(constantValue)}for(let i=0;i<xSize;i++){const coords2=indexToLoc(i,xRank,xStrides);const outCoords=coords2.map((c,i2)=>c+start[i2]);const outIndex=locToIndex(outCoords,resultRank,resultStrides);resVals[outIndex]=xVals[i]}const outId=backend2.write(resVals,outShape,x.dtype);return{dataId:outId,shape:outShape,dtype:x.dtype}}const padV2Config2={kernelName:PadV23,backendName:"cpu",kernelFunc:padV2};const reciprocal$1=unaryKernelFunc(Reciprocal,xi=>1/xi);const reciprocalConfig={kernelName:Reciprocal,backendName:"cpu",kernelFunc:reciprocal$1};const rotateWithOffsetConfig2={kernelName:RotateWithOffset3,backendName:"cpu",kernelFunc:({inputs,attrs,backend:backend2})=>{const{image:image3}=inputs;const{radians,fillValue,center}=attrs;const cpuBackend=backend2;const output=getTypedArrayFromDType(image3.dtype,sizeFromShape(image3.shape));const[batch,imageHeight,imageWidth,numChannels]=image3.shape;const[centerX,centerY]=getImageCenter(center,imageHeight,imageWidth);const fullOpacityValue=255;const sinFactor=Math.sin(radians);const cosFactor=Math.cos(radians);const imageVals=cpuBackend.data.get(image3.dataId).values;for(let batchIdx=0;batchIdx<batch;batchIdx++){const batchOffset=batchIdx*imageWidth*imageHeight*numChannels;for(let row=0;row<imageHeight;row++){const rowOffset=row*(imageWidth*numChannels);for(let col=0;col<imageWidth;col++){const colOffset=col*numChannels;for(let channel=0;channel<numChannels;channel++){const coords2=[batch,row,col,channel];const x=coords2[2];const y=coords2[1];let coordX=(x-centerX)*cosFactor-(y-centerY)*sinFactor;let coordY=(x-centerX)*sinFactor+(y-centerY)*cosFactor;coordX=Math.round(coordX+centerX);coordY=Math.round(coordY+centerY);let outputValue=fillValue;if(typeof fillValue!=="number"){if(channel===3){outputValue=fullOpacityValue}else{outputValue=fillValue[channel]}}if(coordX>=0&&coordX<imageWidth&&coordY>=0&&coordY<imageHeight){const rotatedRowOffset=coordY*(imageWidth*numChannels);const rotatedColOffset=coordX*numChannels;const imageIdx=batchOffset+rotatedRowOffset+rotatedColOffset+channel;outputValue=imageVals[imageIdx]}const outIdx=batchOffset+rowOffset+colOffset+channel;output[outIdx]=outputValue}}}}const dataId=cpuBackend.write(output,image3.shape,image3.dtype);return{dataId,shape:image3.shape,dtype:image3.dtype}}};const round$1=unaryKernelFunc(Round,xi=>{const base=Math.floor(xi);if(xi-base<.5){return Math.floor(xi)}else if(xi-base>.5){return Math.ceil(xi)}else{if(base%2===0){return base}else{return base+1}}});const roundConfig={kernelName:Round,backendName:"cpu",kernelFunc:round$1};const scaleAlpha=SELU_SCALEALPHA;const scale=SELU_SCALE;const selu$1=unaryKernelFunc(Selu,xi=>{if(xi>=0){return scale*xi}else{return scaleAlpha*(Math.exp(xi)-1)}});const seluConfig={kernelName:Selu,backendName:"cpu",kernelFunc:selu$1};const sigmoid$1=unaryKernelFunc(Sigmoid3,xi=>1/(1+Math.exp(-xi)));const sigmoidConfig2={kernelName:Sigmoid3,backendName:"cpu",kernelFunc:sigmoid$1};const sign$2=unaryKernelFunc(Sign,xi=>{if(xi<0){return-1}else if(xi>0){return 1}else{return 0}});const signConfig={kernelName:Sign,backendName:"cpu",kernelFunc:sign$2};const sin$1=unaryKernelFunc(Sin3,xi=>Math.sin(xi));const sinConfig2={kernelName:Sin3,backendName:"cpu",kernelFunc:sin$1};const sinh$1=unaryKernelFunc(Sinh,xi=>Math.sinh(xi));const sinhConfig={kernelName:Sinh,backendName:"cpu",kernelFunc:sinh$1};const epsilon$1=11920928955078125e-23;const threshold=Math.log(epsilon$1)+2;const softplus$1=unaryKernelFunc(Softplus,xi=>{const tooLarge=xi>-threshold;const tooSmall=xi<threshold;const expX=Math.exp(xi);let result;if(tooSmall){result=expX}else if(tooLarge){result=xi}else{result=Math.log(1+expX)}return result});const softplusConfig={kernelName:Softplus,backendName:"cpu",kernelFunc:softplus$1};function transpose$1(args){const{inputs,attrs,backend:backend2}=args;const{x}=inputs;const{perm}=attrs;assertNotComplex(x,"transpose");const xRank=x.shape.length;const newShape=new Array(xRank);for(let i=0;i<newShape.length;i++){newShape[i]=x.shape[perm[i]]}const values=backend2.data.get(x.dataId).values;const result=transposeImpl(values,x.shape,x.dtype,perm,newShape);const dataId=backend2.write(result,newShape,x.dtype);return{dataId,shape:newShape,dtype:x.dtype}}const transposeConfig2={kernelName:Transpose5,backendName:"cpu",kernelFunc:transpose$1};function spaceToBatchND$1(args){const{inputs,backend:backend2,attrs}=args;const{x}=inputs;const{blockShape,paddings}=attrs;assertNotComplex([x],"spaceToBatchND");const prod2=sizeFromShape(blockShape);const completePaddings=[[0,0]];completePaddings.push(...paddings);for(let i=1+blockShape.length;i<x.shape.length;++i){completePaddings.push([0,0])}const paddedX=padV2Config2.kernelFunc({inputs:{x},backend:backend2,attrs:{paddings:completePaddings,constantValue:0}});const reshapedPaddedShape=getReshaped(paddedX.shape,blockShape,prod2,false);const permutedReshapedPaddedPermutation=getPermuted(reshapedPaddedShape.length,blockShape.length,false);const flattenShape=getReshapedPermuted(paddedX.shape,blockShape,prod2,false);const reshapeInputs={x:paddedX};const reshapeAttrs={shape:reshapedPaddedShape};const paddedXReshaped=reshape$2({inputs:reshapeInputs,backend:backend2,attrs:reshapeAttrs});const transposeInputs={x:paddedXReshaped};const transposeAttrs={perm:permutedReshapedPaddedPermutation};const paddedXT=transpose$1({inputs:transposeInputs,backend:backend2,attrs:transposeAttrs});const resultReshapeInputs={x:paddedXT};const resultReshapeAttrs={shape:flattenShape};const result=reshape$2({inputs:resultReshapeInputs,backend:backend2,attrs:resultReshapeAttrs});backend2.disposeIntermediateTensorInfo(paddedX);backend2.disposeIntermediateTensorInfo(paddedXReshaped);backend2.disposeIntermediateTensorInfo(paddedXT);return result}const spaceToBatchNDConfig={kernelName:SpaceToBatchND,backendName:"cpu",kernelFunc:spaceToBatchND$1};const sqrt$1=unaryKernelFunc(Sqrt3,xi=>Math.sqrt(xi));const sqrtConfig2={kernelName:Sqrt3,backendName:"cpu",kernelFunc:sqrt$1};const squareConfig2={kernelName:Square3,backendName:"cpu",kernelFunc:({inputs,backend:backend2})=>{const{x}=inputs;const cpuBackend=backend2;assertNotComplex(x,"square");const values=cpuBackend.data.get(x.dataId).values;const newValues=new Float32Array(values.length);for(let i=0;i<values.length;++i){const value=values[i];newValues[i]=value*value}const dataId=cpuBackend.write(newValues,x.shape,x.dtype);return{dataId,shape:x.shape,dtype:x.dtype}}};const step$1=unaryKernelFunc(Step,(xi,attrs)=>{const stepAttrs=attrs;if(isNaN(xi)){return NaN}else{return xi>0?1:stepAttrs.alpha}});const stepConfig={kernelName:Step,backendName:"cpu",kernelFunc:step$1};const tan$1=unaryKernelFunc(Tan,xi=>Math.tan(xi));const tanConfig={kernelName:Tan,backendName:"cpu",kernelFunc:tan$1};const tanh$2=unaryKernelFunc(Tanh3,xi=>Math.tanh(xi));const tanhConfig2={kernelName:Tanh3,backendName:"cpu",kernelFunc:tanh$2};function unique$2(args){const{inputs,attrs,backend:backend2}=args;const{axis}=attrs;const{x}=inputs;assertNotComplex(x,"unique");const values=backend2.data.get(x.dataId).values;const{outputValues,outputShape,indices}=uniqueImpl(values,axis,x.shape,x.dtype);return[backend2.makeTensorInfo(outputShape,x.dtype,outputValues),backend2.makeTensorInfo([indices.length],"int32",indices)]}const uniqueConfig={kernelName:Unique,backendName:"cpu",kernelFunc:unique$2};const kernelConfigs2=[_fusedMatMulConfig,absConfig2,acosConfig,acoshConfig,addConfig2,asinConfig,asinhConfig,atanConfig,atanhConfig,avgPoolConfig2,avgPoolBackpropConfig,batchMatMulConfig2,batchNormConfig,castConfig2,ceilConfig,clipConfig,complexConfig,concatConfig2,conv2DBackpropFilterConfig,conv2DBackpropInputConfig2,conv2DConfig2,conv3DBackpropFilterV2Config,conv3DBackpropInputV2Config,conv3DConfig,cosConfig2,coshConfig,depthwiseConv2dNativeConfig2,depthwiseConv2dNativeBackpropFilterConfig,depthwiseConv2dNativeBackpropInputConfig,dilation2dConfig,dilation2dBackpropInputConfig,dilation2dBackpropFilterConfig,divConfig2,eluConfig,erfConfig,expConfig2,expm1Config,fftConfig,fillConfig2,flipLeftRightConfig2,floorConfig,fusedConv2DConfig2,fusedDepthwiseConv2DConfig2,identityConfig2,ifftConfig,imagConfig,isFiniteConfig,isInfConfig,isNaNConfig,logConfig2,log1pConfig,logicalNotConfig,maxPoolConfig2,maxPoolBackpropConfig,maxPoolWithArgmaxConfig,maxConfig2,mirrorPadConfig,multiplyConfig2,nonMaxSuppressionV4Config2,nonMaxSuppressionV5Config2,notEqualConfig2,padV2Config2,preluConfig2,realConfig,reciprocalConfig,reluConfig2,relu6Config2,reshapeConfig2,rotateWithOffsetConfig2,roundConfig,rsqrtConfig2,seluConfig,sigmoidConfig2,signConfig,sinConfig2,sinhConfig,sliceConfig2,softplusConfig,spaceToBatchNDConfig,sqrtConfig2,squareConfig2,squaredDifferenceConfig2,stepConfig,subConfig2,tanConfig,tanhConfig2,transposeConfig2,uniqueConfig];for(const kernelConfig of kernelConfigs2){registerKernel2(kernelConfig)}const contexts={};const WEBGL_ATTRIBUTES={alpha:false,antialias:false,premultipliedAlpha:false,preserveDrawingBuffer:false,depth:false,stencil:false,failIfMajorPerformanceCaveat:true};function clearWebGLContext(webGLVersion){delete contexts[webGLVersion]}function setWebGLContext(webGLVersion,gl){contexts[webGLVersion]=gl}function getWebGLContext(webGLVersion){if(!(webGLVersion in contexts)){const newCtx=getWebGLRenderingContext(webGLVersion);if(newCtx!==null){contexts[webGLVersion]=newCtx}else{console.log("Could not get context for WebGL version",webGLVersion);return null}}const gl=contexts[webGLVersion];if(gl.isContextLost()){delete contexts[webGLVersion];return getWebGLContext(webGLVersion)}gl.disable(gl.DEPTH_TEST);gl.disable(gl.STENCIL_TEST);gl.disable(gl.BLEND);gl.disable(gl.DITHER);gl.disable(gl.POLYGON_OFFSET_FILL);gl.disable(gl.SAMPLE_COVERAGE);gl.enable(gl.SCISSOR_TEST);gl.enable(gl.CULL_FACE);gl.cullFace(gl.BACK);return contexts[webGLVersion]}function createCanvas(webGLVersion){if(typeof OffscreenCanvas!=="undefined"&&webGLVersion===2){return new OffscreenCanvas(300,150)}else if(typeof document!=="undefined"){return document.createElement("canvas")}else{throw new Error("Cannot create a canvas in this context")}}function getWebGLRenderingContext(webGLVersion){if(webGLVersion!==1&&webGLVersion!==2){throw new Error("Cannot get WebGL rendering context, WebGL is disabled.")}const canvas=createCanvas(webGLVersion);canvas.addEventListener("webglcontextlost",ev=>{ev.preventDefault();delete contexts[webGLVersion]},false);if(webGLVersion===1){return canvas.getContext("webgl",WEBGL_ATTRIBUTES)||canvas.getContext("experimental-webgl",WEBGL_ATTRIBUTES)}return canvas.getContext("webgl2",WEBGL_ATTRIBUTES)}var PackingScheme;(function(PackingScheme2){PackingScheme2[PackingScheme2["DENSE"]=0]="DENSE";PackingScheme2[PackingScheme2["SHARED_BATCH"]=1]="SHARED_BATCH"})(PackingScheme||(PackingScheme={}));var TextureUsage;(function(TextureUsage2){TextureUsage2[TextureUsage2["RENDER"]=0]="RENDER";TextureUsage2[TextureUsage2["UPLOAD"]=1]="UPLOAD";TextureUsage2[TextureUsage2["PIXELS"]=2]="PIXELS";TextureUsage2[TextureUsage2["DOWNLOAD"]=3]="DOWNLOAD"})(TextureUsage||(TextureUsage={}));var PhysicalTextureType;(function(PhysicalTextureType2){PhysicalTextureType2[PhysicalTextureType2["UNPACKED_FLOAT16"]=0]="UNPACKED_FLOAT16";PhysicalTextureType2[PhysicalTextureType2["UNPACKED_FLOAT32"]=1]="UNPACKED_FLOAT32";PhysicalTextureType2[PhysicalTextureType2["PACKED_4X1_UNSIGNED_BYTE"]=2]="PACKED_4X1_UNSIGNED_BYTE";PhysicalTextureType2[PhysicalTextureType2["PACKED_2X2_FLOAT32"]=3]="PACKED_2X2_FLOAT32";PhysicalTextureType2[PhysicalTextureType2["PACKED_2X2_FLOAT16"]=4]="PACKED_2X2_FLOAT16"})(PhysicalTextureType||(PhysicalTextureType={}));function getUnpackedMatrixTextureShapeWidthHeight(rows,columns){return[columns,rows]}function getUnpackedArraySizeFromMatrixSize(matrixSize,channelsPerTexture){return matrixSize*channelsPerTexture}function getColorMatrixTextureShapeWidthHeight(rows,columns){return[columns*4,rows]}function getDenseTexShape(shape){const size=sizeFromShape(shape);const texelsNeeded=Math.ceil(size/4);return sizeToSquarishShape(texelsNeeded)}function getMatrixSizeFromUnpackedArraySize(unpackedSize,channelsPerTexture){if(unpackedSize%channelsPerTexture!==0){throw new Error(`unpackedSize (${unpackedSize}) must be a multiple of ${channelsPerTexture}`)}return unpackedSize/channelsPerTexture}function decodeMatrixFromUnpackedColorRGBAArray(unpackedArray,matrix,channels){const requiredSize=unpackedArray.length*channels/4;if(matrix.length<requiredSize){throw new Error(`matrix length (${matrix.length}) must be >= ${requiredSize}`)}let dst=0;for(let src=0;src<unpackedArray.length;src+=4){for(let c=0;c<channels;c++){matrix[dst++]=unpackedArray[src+c]}}}function getPackedMatrixTextureShapeWidthHeight(rows,columns){return[Math.max(1,Math.ceil(columns/2)),Math.max(1,Math.ceil(rows/2))]}function getPackedRGBAArraySizeFromMatrixShape(rows,columns){const[w,h]=getPackedMatrixTextureShapeWidthHeight(rows,columns);return w*h*4}function getTextureConfig(gl,textureHalfFloatExtension){const glany=gl;let internalFormatFloat;let internalFormatHalfFloat;let internalFormatPackedHalfFloat;let internalFormatPackedFloat;let textureFormatFloat;let downloadTextureFormat;let downloadUnpackNumChannels;let defaultNumChannels;let textureTypeHalfFloat;let textureTypeFloat;if(env3().getNumber("WEBGL_VERSION")===2){internalFormatFloat=glany.R32F;internalFormatHalfFloat=glany.R16F;internalFormatPackedHalfFloat=glany.RGBA16F;internalFormatPackedFloat=glany.RGBA32F;textureFormatFloat=glany.RED;downloadUnpackNumChannels=4;defaultNumChannels=1;textureTypeHalfFloat=glany.HALF_FLOAT;textureTypeFloat=glany.FLOAT}else{internalFormatFloat=gl.RGBA;internalFormatHalfFloat=gl.RGBA;internalFormatPackedHalfFloat=gl.RGBA;internalFormatPackedFloat=glany.RGBA;textureFormatFloat=gl.RGBA;downloadUnpackNumChannels=4;defaultNumChannels=4;textureTypeHalfFloat=textureHalfFloatExtension!=null?textureHalfFloatExtension.HALF_FLOAT_OES:null;textureTypeFloat=gl.FLOAT}downloadTextureFormat=gl.RGBA;return{internalFormatFloat,internalFormatHalfFloat,internalFormatPackedHalfFloat,internalFormatPackedFloat,textureFormatFloat,downloadTextureFormat,downloadUnpackNumChannels,defaultNumChannels,textureTypeHalfFloat,textureTypeFloat}}function callAndCheck(gl,func2){const returnValue=func2();if(env3().getBool("DEBUG")){checkWebGLError(gl)}return returnValue}function checkWebGLError(gl){const error=gl.getError();if(error!==gl.NO_ERROR){throw new Error("WebGL Error: "+getWebGLErrorMessage(gl,error))}}const MIN_FLOAT16=596e-10;const MAX_FLOAT16=65504;function canBeRepresented(num){if(env3().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||num===0||MIN_FLOAT16<Math.abs(num)&&Math.abs(num)<MAX_FLOAT16){return true}return false}function getWebGLErrorMessage(gl,status){switch(status){case gl.NO_ERROR:return"NO_ERROR";case gl.INVALID_ENUM:return"INVALID_ENUM";case gl.INVALID_VALUE:return"INVALID_VALUE";case gl.INVALID_OPERATION:return"INVALID_OPERATION";case gl.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case gl.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case gl.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${status}`}}function getExtensionOrThrow(gl,extensionName){return throwIfNull(gl,()=>gl.getExtension(extensionName),'Extension "'+extensionName+'" not supported on this browser.')}function createVertexShader(gl,vertexShaderSource){const vertexShader=throwIfNull(gl,()=>gl.createShader(gl.VERTEX_SHADER),"Unable to create vertex WebGLShader.");callAndCheck(gl,()=>gl.shaderSource(vertexShader,vertexShaderSource));callAndCheck(gl,()=>gl.compileShader(vertexShader));if(gl.getShaderParameter(vertexShader,gl.COMPILE_STATUS)===false){console.log(gl.getShaderInfoLog(vertexShader));throw new Error("Failed to compile vertex shader.")}return vertexShader}function createFragmentShader(gl,fragmentShaderSource){const fragmentShader=throwIfNull(gl,()=>gl.createShader(gl.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");callAndCheck(gl,()=>gl.shaderSource(fragmentShader,fragmentShaderSource));callAndCheck(gl,()=>gl.compileShader(fragmentShader));if(gl.getShaderParameter(fragmentShader,gl.COMPILE_STATUS)===false){logShaderSourceAndInfoLog(fragmentShaderSource,gl.getShaderInfoLog(fragmentShader));throw new Error("Failed to compile fragment shader.")}return fragmentShader}const lineNumberRegex=/ERROR: [0-9]+:([0-9]+):/g;function logShaderSourceAndInfoLog(shaderSource,shaderInfoLog){const lineNumberRegexResult=lineNumberRegex.exec(shaderInfoLog);if(lineNumberRegexResult==null){console.log(`Couldn't parse line number in error: ${shaderInfoLog}`);console.log(shaderSource);return}const lineNumber=+lineNumberRegexResult[1];const shaderLines=shaderSource.split("\n");const pad3=shaderLines.length.toString().length+2;const linesWithLineNumbers=shaderLines.map((line,lineNumber2)=>rightPad((lineNumber2+1).toString(),pad3)+line);let maxLineLength=0;for(let i=0;i<linesWithLineNumbers.length;i++){maxLineLength=Math.max(linesWithLineNumbers[i].length,maxLineLength)}const beforeErrorLines=linesWithLineNumbers.slice(0,lineNumber-1);const errorLine=linesWithLineNumbers.slice(lineNumber-1,lineNumber);const afterErrorLines=linesWithLineNumbers.slice(lineNumber);console.log(beforeErrorLines.join("\n"));console.log(shaderInfoLog.split("\n")[0]);console.log(`%c ${rightPad(errorLine[0],maxLineLength)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717");console.log(afterErrorLines.join("\n"))}function createProgram(gl){return throwIfNull(gl,()=>gl.createProgram(),"Unable to create WebGLProgram.")}function linkProgram(gl,program){callAndCheck(gl,()=>gl.linkProgram(program));if(gl.getProgramParameter(program,gl.LINK_STATUS)===false){console.log(gl.getProgramInfoLog(program));throw new Error("Failed to link vertex and fragment shaders.")}}function validateProgram(gl,program){callAndCheck(gl,()=>gl.validateProgram(program));if(gl.getProgramParameter(program,gl.VALIDATE_STATUS)===false){console.log(gl.getProgramInfoLog(program));throw new Error("Shader program validation failed.")}}function createStaticVertexBuffer(gl,data2){const buffer3=throwIfNull(gl,()=>gl.createBuffer(),"Unable to create WebGLBuffer");callAndCheck(gl,()=>gl.bindBuffer(gl.ARRAY_BUFFER,buffer3));callAndCheck(gl,()=>gl.bufferData(gl.ARRAY_BUFFER,data2,gl.STATIC_DRAW));return buffer3}function createStaticIndexBuffer(gl,data2){const buffer3=throwIfNull(gl,()=>gl.createBuffer(),"Unable to create WebGLBuffer");callAndCheck(gl,()=>gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER,buffer3));callAndCheck(gl,()=>gl.bufferData(gl.ELEMENT_ARRAY_BUFFER,data2,gl.STATIC_DRAW));return buffer3}function getNumChannels(){if(env3().getNumber("WEBGL_VERSION")===2){return 1}return 4}function createTexture(gl){return throwIfNull(gl,()=>gl.createTexture(),"Unable to create WebGLTexture.")}function validateTextureSize(width,height){const maxTextureSize=env3().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(width<=0||height<=0){const requested=`[${width}x${height}]`;throw new Error("Requested texture size "+requested+" is invalid.")}if(width>maxTextureSize||height>maxTextureSize){const requested=`[${width}x${height}]`;const max3=`[${maxTextureSize}x${maxTextureSize}]`;throw new Error("Requested texture size "+requested+" greater than WebGL maximum on this browser / GPU "+max3+".")}}function createFramebuffer(gl){return throwIfNull(gl,()=>gl.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function bindVertexBufferToProgramAttribute(gl,program,attribute,buffer3,arrayEntriesPerItem,itemStrideInBytes,itemOffsetInBytes){const loc=gl.getAttribLocation(program,attribute);if(loc===-1){return false}callAndCheck(gl,()=>gl.bindBuffer(gl.ARRAY_BUFFER,buffer3));callAndCheck(gl,()=>gl.vertexAttribPointer(loc,arrayEntriesPerItem,gl.FLOAT,false,itemStrideInBytes,itemOffsetInBytes));callAndCheck(gl,()=>gl.enableVertexAttribArray(loc));return true}function bindTextureUnit(gl,texture,textureUnit){validateTextureUnit(gl,textureUnit);callAndCheck(gl,()=>gl.activeTexture(gl.TEXTURE0+textureUnit));callAndCheck(gl,()=>gl.bindTexture(gl.TEXTURE_2D,texture))}function unbindTextureUnit(gl,textureUnit){validateTextureUnit(gl,textureUnit);callAndCheck(gl,()=>gl.activeTexture(gl.TEXTURE0+textureUnit));callAndCheck(gl,()=>gl.bindTexture(gl.TEXTURE_2D,null))}function getProgramUniformLocationOrThrow(gl,program,uniformName){return throwIfNull(gl,()=>gl.getUniformLocation(program,uniformName),'uniform "'+uniformName+'" not present in program.')}function getProgramUniformLocation(gl,program,uniformName){return gl.getUniformLocation(program,uniformName)}function bindTextureToProgramUniformSampler(gl,texture,uniformSamplerLocation,textureUnit){callAndCheck(gl,()=>bindTextureUnit(gl,texture,textureUnit));callAndCheck(gl,()=>gl.uniform1i(uniformSamplerLocation,textureUnit))}function bindCanvasToFramebuffer(gl){callAndCheck(gl,()=>gl.bindFramebuffer(gl.FRAMEBUFFER,null));callAndCheck(gl,()=>gl.viewport(0,0,gl.canvas.width,gl.canvas.height));callAndCheck(gl,()=>gl.scissor(0,0,gl.canvas.width,gl.canvas.height))}function bindColorTextureToFramebuffer(gl,texture,framebuffer){callAndCheck(gl,()=>gl.bindFramebuffer(gl.FRAMEBUFFER,framebuffer));callAndCheck(gl,()=>gl.framebufferTexture2D(gl.FRAMEBUFFER,gl.COLOR_ATTACHMENT0,gl.TEXTURE_2D,texture,0))}function unbindColorTextureFromFramebuffer(gl,framebuffer){callAndCheck(gl,()=>gl.bindFramebuffer(gl.FRAMEBUFFER,framebuffer));callAndCheck(gl,()=>gl.framebufferTexture2D(gl.FRAMEBUFFER,gl.COLOR_ATTACHMENT0,gl.TEXTURE_2D,null,0))}function validateFramebuffer(gl){const status=gl.checkFramebufferStatus(gl.FRAMEBUFFER);if(status!==gl.FRAMEBUFFER_COMPLETE){throw new Error("Error binding framebuffer: "+getFramebufferErrorMessage(gl,status))}}function getFramebufferErrorMessage(gl,status){switch(status){case gl.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case gl.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case gl.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case gl.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${status}`}}function throwIfNull(gl,returnTOrNull,failureMessage){const tOrNull=callAndCheck(gl,()=>returnTOrNull());if(tOrNull==null){throw new Error(failureMessage)}return tOrNull}function validateTextureUnit(gl,textureUnit){const maxTextureUnit=gl.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1;const glTextureUnit=textureUnit+gl.TEXTURE0;if(glTextureUnit<gl.TEXTURE0||glTextureUnit>maxTextureUnit){const textureUnitRange=`[gl.TEXTURE0, gl.TEXTURE${maxTextureUnit}]`;throw new Error(`textureUnit must be in ${textureUnitRange}.`)}}function getBatchDim(shape,dimsToSkip=2){return sizeFromShape(shape.slice(0,shape.length-dimsToSkip))}function getRowsCols(shape){if(shape.length===0){throw Error("Cannot get rows and columns of an empty shape array.")}return[shape.length>1?shape[shape.length-2]:1,shape[shape.length-1]]}function getShapeAs3D(shape){let shapeAs3D=[1,1,1];const isScalar=shape.length===0||shape.length===1&&shape[0]===1;if(!isScalar){shapeAs3D=[getBatchDim(shape),...getRowsCols(shape)]}return shapeAs3D}function getTextureShapeFromLogicalShape(logShape,isPacked=false){let maxTexSize=env3().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(isPacked){maxTexSize=maxTexSize*2;logShape=logShape.map((d,i)=>i>=logShape.length-2?nearestLargerEven(logShape[i]):logShape[i]);if(logShape.length===1){logShape=[2,logShape[0]]}}if(logShape.length!==2){const squeezeResult=squeezeShape(logShape);logShape=squeezeResult.newShape}let size=sizeFromShape(logShape);if(logShape.length<=1&&size<=maxTexSize){return[1,size]}else if(logShape.length===2&&logShape[0]<=maxTexSize&&logShape[1]<=maxTexSize){return logShape}else if(logShape.length===3&&logShape[0]*logShape[1]<=maxTexSize&&logShape[2]<=maxTexSize){return[logShape[0]*logShape[1],logShape[2]]}else if(logShape.length===3&&logShape[0]<=maxTexSize&&logShape[1]*logShape[2]<=maxTexSize){return[logShape[0],logShape[1]*logShape[2]]}else if(logShape.length===4&&logShape[0]*logShape[1]*logShape[2]<=maxTexSize&&logShape[3]<=maxTexSize){return[logShape[0]*logShape[1]*logShape[2],logShape[3]]}else if(logShape.length===4&&logShape[0]<=maxTexSize&&logShape[1]*logShape[2]*logShape[3]<=maxTexSize){return[logShape[0],logShape[1]*logShape[2]*logShape[3]]}else{if(isPacked){const batchDim=getBatchDim(logShape);let rows=2,cols=2;if(logShape.length){[rows,cols]=getRowsCols(logShape)}size=batchDim*(rows/2)*(cols/2);return sizeToSquarishShape(size).map(d=>d*2)}return sizeToSquarishShape(size)}}function isEven(n){return n%2===0}function isReshapeFree(shape1,shape2){shape1=shape1.slice(-2);shape2=shape2.slice(-2);if(arraysEqual(shape1,shape2)){return true}if(!shape1.length||!shape2.length){return true}if(shape1[0]===0||shape1[1]===0||shape2[0]===0||shape2[1]===0){return true}if(shape1.length!==shape2.length){const shape1Cols=shape1.slice(-1)[0];const shape2Cols=shape2.slice(-1)[0];if(shape1Cols===shape2Cols){return true}if(isEven(shape1Cols)&&isEven(shape2Cols)&&(shape1[0]===1||shape2[0]===1)){return true}}return shape1[1]===shape2[1]&&isEven(shape1[0])&&isEven(shape2[0])}let MAX_TEXTURE_SIZE;let MAX_TEXTURES_IN_SHADER;function getWebGLMaxTextureSize(webGLVersion){if(MAX_TEXTURE_SIZE==null){const gl=getWebGLContext(webGLVersion);MAX_TEXTURE_SIZE=gl.getParameter(gl.MAX_TEXTURE_SIZE)}return MAX_TEXTURE_SIZE}function resetMaxTextureSize(){MAX_TEXTURE_SIZE=null}function resetMaxTexturesInShader(){MAX_TEXTURES_IN_SHADER=null}function getMaxTexturesInShader(webGLVersion){if(MAX_TEXTURES_IN_SHADER==null){const gl=getWebGLContext(webGLVersion);MAX_TEXTURES_IN_SHADER=gl.getParameter(gl.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,MAX_TEXTURES_IN_SHADER)}function getWebGLDisjointQueryTimerVersion(webGLVersion){if(webGLVersion===0){return 0}let queryTimerVersion;const gl=getWebGLContext(webGLVersion);if(hasExtension(gl,"EXT_disjoint_timer_query_webgl2")&&webGLVersion===2){queryTimerVersion=2}else if(hasExtension(gl,"EXT_disjoint_timer_query")){queryTimerVersion=1}else{queryTimerVersion=0}return queryTimerVersion}function hasExtension(gl,extensionName){const ext=gl.getExtension(extensionName);return ext!=null}function isWebGLVersionEnabled(webGLVersion){try{const gl=getWebGLContext(webGLVersion);if(gl!=null){return true}}catch(e){console.log("Error when getting WebGL context: ",e);return false}return false}function isCapableOfRenderingToFloatTexture(webGLVersion){if(webGLVersion===0){return false}const gl=getWebGLContext(webGLVersion);if(webGLVersion===1){if(!hasExtension(gl,"OES_texture_float")){return false}}else{if(!hasExtension(gl,"EXT_color_buffer_float")){return false}}const isFrameBufferComplete=createFloatTextureAndBindToFramebuffer(gl);return isFrameBufferComplete}function isDownloadFloatTextureEnabled(webGLVersion){if(webGLVersion===0){return false}const gl=getWebGLContext(webGLVersion);if(webGLVersion===1){if(!hasExtension(gl,"OES_texture_float")){return false}if(!hasExtension(gl,"WEBGL_color_buffer_float")){return false}}else{if(hasExtension(gl,"EXT_color_buffer_float")){return createFloatTextureAndBindToFramebuffer(gl)}const COLOR_BUFFER_HALF_FLOAT="EXT_color_buffer_half_float";if(hasExtension(gl,COLOR_BUFFER_HALF_FLOAT)){const textureHalfFloatExtension=gl.getExtension(COLOR_BUFFER_HALF_FLOAT);return createHalfFloatTextureAndBindToFramebuffer(gl,textureHalfFloatExtension)}return false}const isFrameBufferComplete=createFloatTextureAndBindToFramebuffer(gl);return isFrameBufferComplete}function createFloatTextureAndBindToFramebuffer(gl){const texConfig=getTextureConfig(gl);const texture=gl.createTexture();gl.bindTexture(gl.TEXTURE_2D,texture);const width=1;const height=1;gl.texImage2D(gl.TEXTURE_2D,0,texConfig.internalFormatFloat,width,height,0,texConfig.textureFormatFloat,texConfig.textureTypeFloat,null);const frameBuffer=gl.createFramebuffer();gl.bindFramebuffer(gl.FRAMEBUFFER,frameBuffer);gl.framebufferTexture2D(gl.FRAMEBUFFER,gl.COLOR_ATTACHMENT0,gl.TEXTURE_2D,texture,0);const isFrameBufferComplete=gl.checkFramebufferStatus(gl.FRAMEBUFFER)===gl.FRAMEBUFFER_COMPLETE;gl.bindTexture(gl.TEXTURE_2D,null);gl.bindFramebuffer(gl.FRAMEBUFFER,null);gl.deleteTexture(texture);gl.deleteFramebuffer(frameBuffer);return isFrameBufferComplete}function createHalfFloatTextureAndBindToFramebuffer(gl,textureHalfFloatExtension){const texConfig=getTextureConfig(gl,textureHalfFloatExtension);const texture=gl.createTexture();gl.bindTexture(gl.TEXTURE_2D,texture);const width=1;const height=1;gl.texImage2D(gl.TEXTURE_2D,0,texConfig.internalFormatHalfFloat,width,height,0,texConfig.textureFormatFloat,texConfig.textureTypeHalfFloat,null);const frameBuffer=gl.createFramebuffer();gl.bindFramebuffer(gl.FRAMEBUFFER,frameBuffer);gl.framebufferTexture2D(gl.FRAMEBUFFER,gl.COLOR_ATTACHMENT0,gl.TEXTURE_2D,texture,0);const isFrameBufferComplete=gl.checkFramebufferStatus(gl.FRAMEBUFFER)===gl.FRAMEBUFFER_COMPLETE;gl.bindTexture(gl.TEXTURE_2D,null);gl.bindFramebuffer(gl.FRAMEBUFFER,null);gl.deleteTexture(texture);gl.deleteFramebuffer(frameBuffer);return isFrameBufferComplete}function isWebGLFenceEnabled(webGLVersion){if(webGLVersion!==2){return false}const gl=getWebGLContext(webGLVersion);const isEnabled=gl.fenceSync!=null;return isEnabled}function assertNotComplex$1(tensor2,opName){if(!Array.isArray(tensor2)){tensor2=[tensor2]}tensor2.forEach(t=>{if(t!=null){assert(t.dtype!=="complex64",()=>`${opName} does not support complex64 tensors in the WebGL backend.`)}})}const ENV$1=env3();ENV$1.registerFlag("HAS_WEBGL",()=>ENV$1.getNumber("WEBGL_VERSION")>0);ENV$1.registerFlag("WEBGL_VERSION",()=>{if(isWebGLVersionEnabled(2)){return 2}else if(isWebGLVersionEnabled(1)){return 1}return 0});ENV$1.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>false);ENV$1.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>ENV$1.get("WEBGL_VERSION")===2);ENV$1.registerFlag("WEBGL_CPU_FORWARD",()=>true);ENV$1.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>false);ENV$1.registerFlag("WEBGL_PACK",()=>ENV$1.getBool("HAS_WEBGL"));ENV$1.registerFlag("WEBGL_PACK_NORMALIZATION",()=>ENV$1.getBool("WEBGL_PACK"));ENV$1.registerFlag("WEBGL_PACK_CLIP",()=>ENV$1.getBool("WEBGL_PACK"));ENV$1.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>false);ENV$1.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>ENV$1.getBool("WEBGL_PACK"));ENV$1.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>ENV$1.getBool("WEBGL_PACK"));ENV$1.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>ENV$1.getBool("WEBGL_PACK"));ENV$1.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>ENV$1.getBool("WEBGL_PACK"));ENV$1.registerFlag("WEBGL_PACK_REDUCE",()=>ENV$1.getBool("WEBGL_PACK"));ENV$1.registerFlag("WEBGL_LAZILY_UNPACK",()=>ENV$1.getBool("WEBGL_PACK"));ENV$1.registerFlag("WEBGL_CONV_IM2COL",()=>ENV$1.getBool("WEBGL_PACK"));ENV$1.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>getWebGLMaxTextureSize(ENV$1.getNumber("WEBGL_VERSION")));ENV$1.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>getMaxTexturesInShader(ENV$1.getNumber("WEBGL_VERSION")));ENV$1.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{const webGLVersion=ENV$1.getNumber("WEBGL_VERSION");if(webGLVersion===0){return 0}return getWebGLDisjointQueryTimerVersion(webGLVersion)});ENV$1.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>ENV$1.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!isMobile());ENV$1.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>isCapableOfRenderingToFloatTexture(ENV$1.getNumber("WEBGL_VERSION")));ENV$1.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>{return ENV$1.getBool("WEBGL_FORCE_F16_TEXTURES")?false:ENV$1.getBool("WEBGL_RENDER_FLOAT32_CAPABLE")});ENV$1.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>isDownloadFloatTextureEnabled(ENV$1.getNumber("WEBGL_VERSION")));ENV$1.registerFlag("WEBGL_FENCE_API_ENABLED",()=>isWebGLFenceEnabled(ENV$1.getNumber("WEBGL_VERSION")));ENV$1.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>{const useUniforms=ENV$1.getBool("WEBGL_RENDER_FLOAT32_ENABLED");return useUniforms?4:0});ENV$1.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>{return-1},threshold2=>{if(threshold2<0&&threshold2!==-1){throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${threshold2}.`)}});const{simpleAbsImpl:simpleAbsImplCPU,addImpl:addImplCPU,ceilImpl:ceilImplCPU,expImpl:expImplCPU,expm1Impl:expm1ImplCPU,floorImpl:floorImplCPU,logImpl:logImplCPU,maxImpl:maxImplCPU,multiplyImpl:multiplyImplCPU,rsqrtImpl:rsqrtImplCPU,sliceImpl:sliceImplCPU,subImpl:subImplCPU,transposeImpl:transposeImplCPU,uniqueImpl:uniqueImplCPU}=shared;class AddNProgram{constructor(outputShape,shapes){this.outputShape=[];this.outputShape=outputShape;this.variableNames=shapes.map((_,i)=>`T${i}`);const snippets=[];this.variableNames.forEach(variable2=>{snippets.push(`float v${variable2} = get${variable2}AtOutCoords();`)});const operation=this.variableNames.map(variable2=>{return`v${variable2}`}).join(" + ");this.userCode=`
void main() {
${snippets.join("\n ")}
float result = ${operation};
setOutput(result);
}
`}}class AddNPackedProgram{constructor(outputShape,shapes){this.outputShape=[];this.packedInputs=true;this.packedOutput=true;this.outputShape=outputShape;this.variableNames=shapes.map((_,i)=>`T${i}`);const snippets=[];this.variableNames.forEach(variable2=>{snippets.push(`vec4 v${variable2} = get${variable2}AtOutCoords();`)});const operation=this.variableNames.map(variable2=>{return`v${variable2}`}).join(" + ");this.userCode=`
void main() {
${snippets.join("\n ")}
vec4 result = ${operation};
setOutput(result);
}
`}}class ArgMinMaxProgram{constructor(reduceInfo,op2,firstPass){this.variableNames=["A"];const{windowSize,batchSize,outSize}=reduceInfo;if(!firstPass){this.variableNames.push("bestIndicesA")}this.outputShape=[batchSize,outSize];const compOp=op2==="max"?">":"<";const indexSnippet=firstPass?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${windowSize};
int bestIndex = inOffset;
float bestValue = getA(batch, bestIndex);
for (int i = 0; i < ${windowSize}; i++) {
int inIdx = ${indexSnippet};
float candidate = getA(batch, inIdx);
if (candidate ${compOp} bestValue) {
bestValue = candidate;
bestIndex = inIdx;
}
}
setOutput(float(bestIndex));
}
`}}function getVecChannels(name,rank){return["x","y","z","w","u","v"].slice(0,rank).map(d=>`${name}.${d}`)}function getChannels(name,rank){if(rank===1){return[name]}return getVecChannels(name,rank)}function getSourceCoords(rank,dims){if(rank===1){return"rc"}let coords2="";for(let i=0;i<rank;i++){coords2+=dims[i];if(i<rank-1){coords2+=","}}return coords2}function getGlslDifferences(){let version5;let attribute;let varyingVs;let varyingFs;let texture2D;let output;let defineOutput;let defineSpecialNaN;let defineSpecialInf;let defineRound;if(env3().getNumber("WEBGL_VERSION")===2){version5="#version 300 es";attribute="in";varyingVs="out";varyingFs="in";texture2D="texture";output="outputColor";defineOutput="out vec4 outputColor;";defineSpecialNaN=`
bool isnan_custom(float val) {
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan_custom(val.x),
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
}
#define isnan(value) isnan_custom(value)
`;defineSpecialInf=``;defineRound=`
#define round(value) newRound(value)
int newRound(float value) {
return int(floor(value + 0.5));
}
ivec4 newRound(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`}else{version5="";attribute="attribute";varyingVs="varying";varyingFs="varying";texture2D="texture2D";output="gl_FragColor";defineOutput="";defineSpecialNaN=`
#define isnan(value) isnan_custom(value)
bool isnan_custom(float val) {
return (val > 0. || val < 1. || val == 0.) ? false : true;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
}
`;defineSpecialInf=`
uniform float INFINITY;
bool isinf(float val) {
return abs(val) == INFINITY;
}
bvec4 isinf(vec4 val) {
return equal(abs(val), vec4(INFINITY));
}
`;defineRound=`
int round(float value) {
return int(floor(value + 0.5));
}
ivec4 round(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`}return{version:version5,attribute,varyingVs,varyingFs,texture2D,output,defineOutput,defineSpecialNaN,defineSpecialInf,defineRound}}function getLogicalCoordinatesFromFlatIndex(coords2,shape,index2="index"){const strides=computeStrides(shape);return strides.map((stride,i)=>{const line1=`int ${coords2[i]} = ${index2} / ${stride}`;const line2=i===strides.length-1?`int ${coords2[i+1]} = ${index2} - ${coords2[i]} * ${stride}`:`index -= ${coords2[i]} * ${stride}`;return`${line1}; ${line2};`}).join("")}function buildVec(x){if(x.length===1){return`${x[0]}`}return`vec${x.length}(${x.join(",")})`}function dotify(x,y){if(x.length!==y.length){throw new Error(`Vectors to be dotted must be of the same length -got ${x.length} and ${y.length}`)}const slices=[];const nearestVec4=Math.floor(x.length/4);const nearestVec4Remainder=x.length%4;for(let i=0;i<nearestVec4;i++){const xSlice=x.slice(i*4,i*4+4);const ySlice=y.slice(i*4,i*4+4);slices.push(`${buildVec(xSlice)}, ${buildVec(ySlice)}`)}if(nearestVec4Remainder!==0){let xSlice=x.slice(nearestVec4*4);let ySlice=y.slice(nearestVec4*4);if(xSlice.length===1){xSlice=xSlice.map(d=>`float(${d})`);ySlice=ySlice.map(d=>`float(${d})`)}slices.push(`${buildVec(xSlice)}, ${buildVec(ySlice)}`)}return slices.map((d,i)=>`dot(${d})`).join("+")}function getFlatIndexFrom3D(shape){const strides=computeStrides(shape).map(d=>d.toString());return`
int getFlatIndex(ivec3 coords) {
return coords.x * ${strides[0]} + coords.y * ${strides[1]} + coords.z;
}
`}const ENCODE_FLOAT_SNIPPET=`
const float FLOAT_MAX = 1.70141184e38;
const float FLOAT_MIN = 1.17549435e-38;
lowp vec4 encode_float(highp float v) {
if (isnan(v)) {
return vec4(255, 255, 255, 255);
}
highp float av = abs(v);
if(av < FLOAT_MIN) {
return vec4(0.0, 0.0, 0.0, 0.0);
} else if(v > FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
} else if(v < -FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
}
highp vec4 c = vec4(0,0,0,0);
highp float e = floor(log2(av));
highp float m = exp2(fract(log2(av))) - 1.0;
c[2] = floor(128.0 * m);
m -= c[2] / 128.0;
c[1] = floor(32768.0 * m);
m -= c[1] / 32768.0;
c[0] = floor(8388608.0 * m);
highp float ebias = e + 127.0;
c[3] = floor(ebias / 2.0);
ebias -= c[3] * 2.0;
c[2] += floor(ebias) * 128.0;
c[3] += 128.0 * step(0.0, -v);
return c / 255.0;
}
`;const{getBroadcastDims:getBroadcastDims$1}=backend_util19;function makeShader(inputsInfo,outputShape,userCode,usesPackedTextures){const prefixSnippets=[];inputsInfo.forEach(x=>{const size=sizeFromShape(x.shapeInfo.logicalShape);if(x.shapeInfo.isUniform){prefixSnippets.push(`uniform float ${x.name}${size>1?`[${size}]`:""};`)}else{prefixSnippets.push(`uniform sampler2D ${x.name};`);prefixSnippets.push(`uniform int offset${x.name};`)}});const inputPrefixSnippet=prefixSnippets.join("\n");const inputSamplingSnippet=inputsInfo.map(x=>getInputSamplingSnippet(x,outputShape,usesPackedTextures)).join("\n");const outTexShape=outputShape.texShape;const glsl=getGlslDifferences();const floatTextureSampleSnippet=getFloatTextureSampleSnippet(glsl);let outputSamplingSnippet;let floatTextureSetOutputSnippet;let shaderPrefix=getShaderPrefix(glsl);if(outputShape.isPacked){outputSamplingSnippet=getPackedOutputSamplingSnippet(outputShape.logicalShape,outTexShape);floatTextureSetOutputSnippet=getFloatTextureSetRGBASnippet(glsl)}else{outputSamplingSnippet=getOutputSamplingSnippet(outputShape.logicalShape,outTexShape);floatTextureSetOutputSnippet=getFloatTextureSetRSnippet(glsl)}if(usesPackedTextures){shaderPrefix+=SHADER_PACKED_PREFIX}const source=[shaderPrefix,floatTextureSampleSnippet,floatTextureSetOutputSnippet,inputPrefixSnippet,outputSamplingSnippet,inputSamplingSnippet,userCode].join("\n");return source}function getSamplerFromInInfo(inInfo){const shape=inInfo.shapeInfo.logicalShape;switch(shape.length){case 0:return getSamplerScalar(inInfo);case 1:return getSampler1D(inInfo);case 2:return getSampler2D(inInfo);case 3:return getSampler3D(inInfo);case 4:return getSampler4D(inInfo);case 5:return getSampler5D(inInfo);case 6:return getSampler6D(inInfo);default:throw new Error(`${shape.length}-D input sampling is not yet supported`)}}function getPackedSamplerFromInInfo(inInfo){const shape=inInfo.shapeInfo.logicalShape;switch(shape.length){case 0:return getPackedSamplerScalar(inInfo);case 1:return getPackedSampler1D(inInfo);case 2:return getPackedSampler2D(inInfo);case 3:return getPackedSampler3D(inInfo);default:return getPackedSamplerND(inInfo)}}function getInputSamplingSnippet(inInfo,outShapeInfo,usesPackedTextures=false){let res="";if(usesPackedTextures){res+=getPackedSamplerFromInInfo(inInfo)}else{res+=getSamplerFromInInfo(inInfo)}const inShape=inInfo.shapeInfo.logicalShape;const outShape=outShapeInfo.logicalShape;if(inShape.length<=outShape.length){if(usesPackedTextures){res+=getPackedSamplerAtOutputCoords(inInfo,outShapeInfo)}else{res+=getSamplerAtOutputCoords(inInfo,outShapeInfo)}}return res}function getPackedOutputSamplingSnippet(outShape,outTexShape){switch(outShape.length){case 0:return getOutputScalarCoords();case 1:return getOutputPacked1DCoords(outShape,outTexShape);case 2:return getOutputPacked2DCoords(outShape,outTexShape);case 3:return getOutputPacked3DCoords(outShape,outTexShape);default:return getOutputPackedNDCoords(outShape,outTexShape)}}function getOutputSamplingSnippet(outShape,outTexShape){switch(outShape.length){case 0:return getOutputScalarCoords();case 1:return getOutput1DCoords(outShape,outTexShape);case 2:return getOutput2DCoords(outShape,outTexShape);case 3:return getOutput3DCoords(outShape,outTexShape);case 4:return getOutput4DCoords(outShape,outTexShape);case 5:return getOutput5DCoords(outShape,outTexShape);case 6:return getOutput6DCoords(outShape,outTexShape);default:throw new Error(`${outShape.length}-D output sampling is not yet supported`)}}function getFloatTextureSampleSnippet(glsl){return`
float sampleTexture(sampler2D textureSampler, vec2 uv) {
return ${glsl.texture2D}(textureSampler, uv).r;
}
`}function getFloatTextureSetRSnippet(glsl){return`
void setOutput(float val) {
${glsl.output} = vec4(val, 0, 0, 0);
}
`}function getFloatTextureSetRGBASnippet(glsl){return`
void setOutput(vec4 val) {
${glsl.output} = val;
}
`}function getShaderPrefix(glsl){const SHADER_PREFIX=`${glsl.version}
precision highp float;
precision highp int;
precision highp sampler2D;
${glsl.varyingFs} vec2 resultUV;
${glsl.defineOutput}
const vec2 halfCR = vec2(0.5, 0.5);
struct ivec5
{
int x;
int y;
int z;
int w;
int u;
};
struct ivec6
{
int x;
int y;
int z;
int w;
int u;
int v;
};
uniform float NAN;
${glsl.defineSpecialNaN}
${glsl.defineSpecialInf}
${glsl.defineRound}
int imod(int x, int y) {
return x - y * (x / y);
}
int idiv(int a, int b, float sign) {
int res = a / b;
int mod = imod(a, b);
if (sign < 0. && mod != 0) {
res -= 1;
}
return res;
}
//Based on the work of Dave Hoskins
//https://www.shadertoy.com/view/4djSRW
#define HASHSCALE1 443.8975
float random(float seed){
vec2 p = resultUV * seed;
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
p3 += dot(p3, p3.yzx + 19.19);
return fract((p3.x + p3.y) * p3.z);
}
${SAMPLE_1D_SNIPPET}
${SAMPLE_2D_SNIPPET}
${SAMPLE_3D_SNIPPET}
`;return SHADER_PREFIX}const SAMPLE_1D_SNIPPET=`
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
int texelIndex = index / 2;
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`;const SAMPLE_2D_SNIPPET=`
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
int texNumC, int row, int col) {
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`;const SAMPLE_3D_SNIPPET=`
vec2 packedUVfrom3D(int texNumR, int texNumC,
int texelsInBatch, int texelsInLogicalRow, int b,
int row, int col) {
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`;const SHADER_PACKED_PREFIX=`
float getChannel(vec4 frag, vec2 innerDims) {
vec2 modCoord = mod(innerDims, 2.);
return modCoord.x == 0. ?
(modCoord.y == 0. ? frag.r : frag.g) :
(modCoord.y == 0. ? frag.b : frag.a);
}
float getChannel(vec4 frag, int dim) {
float modCoord = mod(float(dim), 2.);
return modCoord == 0. ? frag.r : frag.g;
}
`;function getOutputScalarCoords(){return`
int getOutputCoords() {
return 0;
}
`}function getOutputPacked1DCoords(shape,texShape){const packedTexShape=[Math.ceil(texShape[0]/2),Math.ceil(texShape[1]/2)];if(packedTexShape[0]===1){return`
int getOutputCoords() {
return 2 * int(resultUV.x * ${packedTexShape[1]}.0);
}
`}if(packedTexShape[1]===1){return`
int getOutputCoords() {
return 2 * int(resultUV.y * ${packedTexShape[0]}.0);
}
`}return`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${packedTexShape[0]}, ${packedTexShape[1]}));
return 2 * (resTexRC.x * ${packedTexShape[1]} + resTexRC.y);
}
`}function getOutput1DCoords(shape,texShape){if(texShape[0]===1){return`
int getOutputCoords() {
return int(resultUV.x * ${texShape[1]}.0);
}
`}if(texShape[1]===1){return`
int getOutputCoords() {
return int(resultUV.y * ${texShape[0]}.0);
}
`}return`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${texShape[0]}, ${texShape[1]}));
return resTexRC.x * ${texShape[1]} + resTexRC.y;
}
`}function getOutputPacked3DCoords(shape,texShape){const packedTexShape=[Math.ceil(texShape[0]/2),Math.ceil(texShape[1]/2)];const texelsInLogicalRow=Math.ceil(shape[2]/2);const texelsInBatch=texelsInLogicalRow*Math.ceil(shape[1]/2);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${packedTexShape[0]}, ${packedTexShape[1]}));
int index = resTexRC.x * ${packedTexShape[1]} + resTexRC.y;
int b = index / ${texelsInBatch};
index -= b * ${texelsInBatch};
int r = 2 * (index / ${texelsInLogicalRow});
int c = imod(index, ${texelsInLogicalRow}) * 2;
return ivec3(b, r, c);
}
`}function getOutput3DCoords(shape,texShape){const coordsFromIndexSnippet=getLogicalCoordinatesFromFlatIndex(["r","c","d"],shape);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${texShape[0]}, ${texShape[1]}));
int index = resTexRC.x * ${texShape[1]} + resTexRC.y;
${coordsFromIndexSnippet}
return ivec3(r, c, d);
}
`}function getOutputPackedNDCoords(shape,texShape){const packedTexShape=[Math.ceil(texShape[0]/2),Math.ceil(texShape[1]/2)];const texelsInLogicalRow=Math.ceil(shape[shape.length-1]/2);const texelsInBatch=texelsInLogicalRow*Math.ceil(shape[shape.length-2]/2);let texelsInBatchN=texelsInBatch;let batches=``;let coords2="b, r, c";for(let b=2;b<shape.length-1;b++){texelsInBatchN*=shape[shape.length-b-1];batches=`
int b${b} = index / ${texelsInBatchN};
index -= b${b} * ${texelsInBatchN};
`+batches;coords2=`b${b}, `+coords2}return`
ivec${shape.length} getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${packedTexShape[0]}, ${packedTexShape[1]}));
int index = resTexRC.x * ${packedTexShape[1]} + resTexRC.y;
${batches}
int b = index / ${texelsInBatch};
index -= b * ${texelsInBatch};
int r = 2 * (index / ${texelsInLogicalRow});
int c = imod(index, ${texelsInLogicalRow}) * 2;
return ivec${shape.length}(${coords2});
}
`}function getOutput4DCoords(shape,texShape){const coordsFromIndexSnippet=getLogicalCoordinatesFromFlatIndex(["r","c","d","d2"],shape);return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${texShape[0]}, ${texShape[1]}));
int index = resTexRC.x * ${texShape[1]} + resTexRC.y;
${coordsFromIndexSnippet}
return ivec4(r, c, d, d2);
}
`}function getOutput5DCoords(shape,texShape){const coordsFromIndexSnippet=getLogicalCoordinatesFromFlatIndex(["r","c","d","d2","d3"],shape);return`
ivec5 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${texShape[0]},
${texShape[1]}));
int index = resTexRC.x * ${texShape[1]} + resTexRC.y;
${coordsFromIndexSnippet}
ivec5 outShape = ivec5(r, c, d, d2, d3);
return outShape;
}
`}function getOutput6DCoords(shape,texShape){const coordsFromIndexSnippet=getLogicalCoordinatesFromFlatIndex(["r","c","d","d2","d3","d4"],shape);return`
ivec6 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${texShape[0]}, ${texShape[1]}));
int index = resTexRC.x * ${texShape[1]} + resTexRC.y;
${coordsFromIndexSnippet}
ivec6 result = ivec6(r, c, d, d2, d3, d4);
return result;
}
`}function getOutputPacked2DCoords(shape,texShape){const packedTexShape=[Math.ceil(texShape[0]/2),Math.ceil(texShape[1]/2)];if(arraysEqual(shape,texShape)){return`
ivec2 getOutputCoords() {
return 2 * ivec2(resultUV.yx * vec2(${packedTexShape[0]}, ${packedTexShape[1]}));
}
`}const texelsInLogicalRow=Math.ceil(shape[1]/2);return`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${packedTexShape[0]}, ${packedTexShape[1]}));
int index = resTexRC.x * ${packedTexShape[1]} + resTexRC.y;
int r = 2 * (index / ${texelsInLogicalRow});
int c = imod(index, ${texelsInLogicalRow}) * 2;
return ivec2(r, c);
}
`}function getOutput2DCoords(shape,texShape){if(arraysEqual(shape,texShape)){return`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(${texShape[0]}, ${texShape[1]}));
}
`}if(shape[1]===1){return`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${texShape[0]}, ${texShape[1]}));
int index = resTexRC.x * ${texShape[1]} + resTexRC.y;
return ivec2(index, 0);
}
`}if(shape[0]===1){return`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${texShape[0]}, ${texShape[1]}));
int index = resTexRC.x * ${texShape[1]} + resTexRC.y;
return ivec2(0, index);
}
`}return`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${texShape[0]}, ${texShape[1]}));
int index = resTexRC.x * ${texShape[1]} + resTexRC.y;
int r = index / ${shape[1]};
int c = index - r * ${shape[1]};
return ivec2(r, c);
}
`}function getFlatOffsetUniformName(texName){return`offset${texName}`}function getPackedSamplerScalar(inputInfo){const texName=inputInfo.name;const funcName="get"+texName.charAt(0).toUpperCase()+texName.slice(1);const glsl=getGlslDifferences();return`
vec4 ${funcName}() {
return ${glsl.texture2D}(${texName}, halfCR);
}
`}function getSamplerScalar(inputInfo){const texName=inputInfo.name;const funcName="get"+texName.charAt(0).toUpperCase()+texName.slice(1);if(inputInfo.shapeInfo.isUniform){return`float ${funcName}() {return ${texName};}`}const[texNumR,texNumC]=inputInfo.shapeInfo.texShape;if(texNumR===1&&texNumC===1){return`
float ${funcName}() {
return sampleTexture(${texName}, halfCR);
}
`}const[tNumR,tNumC]=inputInfo.shapeInfo.texShape;const offset=getFlatOffsetUniformName(texName);return`
float ${funcName}() {
vec2 uv = uvFromFlat(${tNumR}, ${tNumC}, ${offset});
return sampleTexture(${texName}, uv);
}
`}function getPackedSampler1D(inputInfo){const texName=inputInfo.name;const funcName="get"+texName.charAt(0).toUpperCase()+texName.slice(1);const texShape=inputInfo.shapeInfo.texShape;const packedTexShape=[Math.ceil(texShape[0]/2),Math.ceil(texShape[1]/2)];const glsl=getGlslDifferences();return`
vec4 ${funcName}(int index) {
vec2 uv = packedUVfrom1D(
${packedTexShape[0]}, ${packedTexShape[1]}, index);
return ${glsl.texture2D}(${texName}, uv);
}
`}function getSampler1D(inputInfo){const texName=inputInfo.name;const funcName="get"+texName.charAt(0).toUpperCase()+texName.slice(1);if(inputInfo.shapeInfo.isUniform){return`
float ${funcName}(int index) {
${getUniformSampler(inputInfo)}
}
`}const texShape=inputInfo.shapeInfo.texShape;const tNumR=texShape[0];const tNumC=texShape[1];if(tNumC===1&&tNumR===1){return`
float ${funcName}(int index) {
return sampleTexture(${texName}, halfCR);
}
`}const offset=getFlatOffsetUniformName(texName);if(tNumC===1){return`
float ${funcName}(int index) {
vec2 uv = vec2(0.5, (float(index + ${offset}) + 0.5) / ${tNumR}.0);
return sampleTexture(${texName}, uv);
}
`}if(tNumR===1){return`
float ${funcName}(int index) {
vec2 uv = vec2((float(index + ${offset}) + 0.5) / ${tNumC}.0, 0.5);
return sampleTexture(${texName}, uv);
}
`}return`
float ${funcName}(int index) {
vec2 uv = uvFromFlat(${tNumR}, ${tNumC}, index + ${offset});
return sampleTexture(${texName}, uv);
}
`}function getPackedSampler2D(inputInfo){const shape=inputInfo.shapeInfo.logicalShape;const texName=inputInfo.name;const funcName="get"+texName.charAt(0).toUpperCase()+texName.slice(1);const texShape=inputInfo.shapeInfo.texShape;const texNumR=texShape[0];const texNumC=texShape[1];const glsl=getGlslDifferences();if(texShape!=null&&arraysEqual(shape,texShape)){return`
vec4 ${funcName}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${texNumC}.0, ${texNumR}.0);
return ${glsl.texture2D}(${texName}, uv);
}
`}const packedTexShape=[Math.ceil(texShape[0]/2),Math.ceil(texShape[1]/2)];const valuesPerRow=Math.ceil(shape[1]/2);return`
vec4 ${funcName}(int row, int col) {
vec2 uv = packedUVfrom2D(${valuesPerRow}, ${packedTexShape[0]}, ${packedTexShape[1]}, row, col);
return ${glsl.texture2D}(${texName}, uv);
}
`}function getSampler2D(inputInfo){const shape=inputInfo.shapeInfo.logicalShape;const texName=inputInfo.name;const funcName="get"+texName.charAt(0).toUpperCase()+texName.slice(1);const texShape=inputInfo.shapeInfo.texShape;if(texShape!=null&&arraysEqual(shape,texShape)){const texNumR2=texShape[0];const texNumC2=texShape[1];return`
float ${funcName}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${texNumC2}.0, ${texNumR2}.0);
return sampleTexture(${texName}, uv);
}
`}const{newShape,keptDims}=squeezeShape(shape);const squeezedShape=newShape;if(squeezedShape.length<shape.length){const newInputInfo=squeezeInputInfo(inputInfo,squeezedShape);const params=["row","col"];return`
${getSamplerFromInInfo(newInputInfo)}
float ${funcName}(int row, int col) {
return ${funcName}(${getSqueezedParams(params,keptDims)});
}
`}if(inputInfo.shapeInfo.isUniform){return`
float ${funcName}(int row, int col) {
int index = round(dot(vec2(row, col), vec2(${shape[1]}, 1)));
${getUniformSampler(inputInfo)}
}
`}const texNumR=texShape[0];const texNumC=texShape[1];const offset=getFlatOffsetUniformName(texName);if(texNumC===1){return`
float ${funcName}(int row, int col) {
float index = dot(vec3(row, col, ${offset}), vec3(${shape[1]}, 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / ${texNumR}.0);
return sampleTexture(${texName}, uv);
}
`}if(texNumR===1){return`
float ${funcName}(int row, int col) {
float index = dot(vec3(row, col, ${offset}), vec3(${shape[1]}, 1, 1));
vec2 uv = vec2((index + 0.5) / ${texNumC}.0, 0.5);
return sampleTexture(${texName}, uv);
}
`}return`
float ${funcName}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${shape[1]} + col + ${offset};
vec2 uv = uvFromFlat(${texNumR}, ${texNumC}, index);
return sampleTexture(${texName}, uv);
}
`}function getPackedSampler3D(inputInfo){const shape=inputInfo.shapeInfo.logicalShape;const texName=inputInfo.name;const funcName="get"+texName.charAt(0).toUpperCase()+texName.slice(1);const texShape=inputInfo.shapeInfo.texShape;const packedTexShape=[Math.ceil(texShape[0]/2),Math.ceil(texShape[1]/2)];if(shape[0]===1){const squeezedShape=shape.slice(1);const keptDims=[1,2];const newInputInfo=squeezeInputInfo(inputInfo,squeezedShape);const params=["b","row","col"];return`
${getPackedSamplerFromInInfo(newInputInfo)}
vec4 ${funcName}(int b, int row, int col) {
return ${funcName}(${getSqueezedParams(params,keptDims)});
}
`}const texNumR=packedTexShape[0];const texNumC=packedTexShape[1];const valuesPerRow=Math.ceil(shape[2]/2);const texelsInBatch=valuesPerRow*Math.ceil(shape[1]/2);const glsl=getGlslDifferences();return`
vec4 ${funcName}(int b, int row, int col) {
vec2 uv = packedUVfrom3D(
${texNumR}, ${texNumC}, ${texelsInBatch}, ${valuesPerRow}, b, row, col);
return ${glsl.texture2D}(${texName}, uv);
}
`}function getSampler3D(inputInfo){const shape=inputInfo.shapeInfo.logicalShape;const texName=inputInfo.name;const funcName="get"+texName.charAt(0).toUpperCase()+texName.slice(1);const stride0=shape[1]*shape[2];const stride1=shape[2];const{newShape,keptDims}=squeezeShape(shape);const squeezedShape=newShape;if(squeezedShape.length<shape.length){const newInputInfo=squeezeInputInfo(inputInfo,squeezedShape);const params=["row","col","depth"];return`
${getSamplerFromInInfo(newInputInfo)}
float ${funcName}(int row, int col, int depth) {
return ${funcName}(${getSqueezedParams(params,keptDims)});
}
`}if(inputInfo.shapeInfo.isUniform){return`
float ${funcName}(int row, int col, int depth) {
int index = round(dot(vec3(row, col, depth),
vec3(${stride0}, ${stride1}, 1)));
${getUniformSampler(inputInfo)}
}
`}const texShape=inputInfo.shapeInfo.texShape;const texNumR=texShape[0];const texNumC=texShape[1];const flatOffset=inputInfo.shapeInfo.flatOffset;if(texNumC===stride0&&flatOffset==null){return`
float ${funcName}(int row, int col, int depth) {
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(${stride1}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${texNumC}.0, ${texNumR}.0);
return sampleTexture(${texName}, uv);
}
`}if(texNumC===stride1&&flatOffset==null){return`
float ${funcName}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${shape[1]}, 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${texNumC}.0, ${texNumR}.0);
return sampleTexture(${texName}, uv);
}
`}const offset=getFlatOffsetUniformName(texName);return`
float ${funcName}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${stride0} + col * ${stride1} + depth + ${offset};
vec2 uv = uvFromFlat(${texNumR}, ${texNumC}, index);
return sampleTexture(${texName}, uv);
}
`}function getPackedSamplerND(inputInfo){const shape=inputInfo.shapeInfo.logicalShape;const rank=shape.length;const texName=inputInfo.name;const funcName="get"+texName.charAt(0).toUpperCase()+texName.slice(1);const texShape=inputInfo.shapeInfo.texShape;const packedTexShape=[Math.ceil(texShape[0]/2),Math.ceil(texShape[1]/2)];const texNumR=packedTexShape[0];const texNumC=packedTexShape[1];const valuesPerRow=Math.ceil(shape[rank-1]/2);let texelsInBatch=valuesPerRow*Math.ceil(shape[rank-2]/2);let params=`int b, int row, int col`;let index2=`b * ${texelsInBatch} + (row / 2) * ${valuesPerRow} + (col / 2)`;for(let b=2;b<rank-1;b++){params=`int b${b}, `+params;texelsInBatch*=shape[rank-b-1];index2=`b${b} * ${texelsInBatch} + `+index2}const glsl=getGlslDifferences();return`
vec4 ${funcName}(${params}) {
int index = ${index2};
int texR = index / ${texNumC};
int texC = index - texR * ${texNumC};
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${texNumC}, ${texNumR});
return ${glsl.texture2D}(${texName}, uv);
}
`}function getSampler4D(inputInfo){const shape=inputInfo.shapeInfo.logicalShape;const texName=inputInfo.name;const funcName="get"+texName.charAt(0).toUpperCase()+texName.slice(1);const stride2=shape[3];const stride1=shape[2]*stride2;const stride0=shape[1]*stride1;const{newShape,keptDims}=squeezeShape(shape);if(newShape.length<shape.length){const newInputInfo=squeezeInputInfo(inputInfo,newShape);const params=["row","col","depth","depth2"];return`
${getSamplerFromInInfo(newInputInfo)}
float ${funcName}(int row, int col, int depth, int depth2) {
return ${funcName}(${getSqueezedParams(params,keptDims)});
}
`}if(inputInfo.shapeInfo.isUniform){return`
float ${funcName}(int row, int col, int depth, int depth2) {
int index = round(dot(vec4(row, col, depth, depth2),
vec4(${stride0}, ${stride1}, ${stride2}, 1)));
${getUniformSampler(inputInfo)}
}
`}const flatOffset=inputInfo.shapeInfo.flatOffset;const texShape=inputInfo.shapeInfo.texShape;const texNumR=texShape[0];const texNumC=texShape[1];if(texNumC===stride0&&flatOffset==null){return`
float ${funcName}(int row, int col, int depth, int depth2) {
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(${stride1}, ${stride2}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${texNumC}.0, ${texNumR}.0);
return sampleTexture(${texName}, uv);
}
`}if(texNumC===stride2&&flatOffset==null){return`
float ${funcName}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${shape[1]*shape[2]}, ${shape[2]}, 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${texNumC}.0, ${texNumR}.0);
return sampleTexture(${texName}, uv);
}
`}const offset=getFlatOffsetUniformName(texName);return`
float ${funcName}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${stride0} + col * ${stride1} +
depth * ${stride2} + depth2;
vec2 uv = uvFromFlat(${texNumR}, ${texNumC}, index + ${offset});
return sampleTexture(${texName}, uv);
}
`}function getSampler5D(inputInfo){const shape=inputInfo.shapeInfo.logicalShape;const texName=inputInfo.name;const funcName="get"+texName.charAt(0).toUpperCase()+texName.slice(1);const stride3=shape[4];const stride2=shape[3]*stride3;const stride1=shape[2]*stride2;const stride0=shape[1]*stride1;const{newShape,keptDims}=squeezeShape(shape);if(newShape.length<shape.length){const newInputInfo=squeezeInputInfo(inputInfo,newShape);const params=["row","col","depth","depth2","depth3"];return`
${getSamplerFromInInfo(newInputInfo)}
float ${funcName}(int row, int col, int depth, int depth2, int depth3) {
return ${funcName}(${getSqueezedParams(params,keptDims)});
}
`}if(inputInfo.shapeInfo.isUniform){return`
float ${funcName}(int row, int col, int depth, int depth2, int depth3) {
float index = dot(
vec4(row, col, depth, depth2),
vec4(${stride0}, ${stride1}, ${stride2}, ${stride3})) +
depth3;
${getUniformSampler(inputInfo)}
}
`}const flatOffset=inputInfo.shapeInfo.flatOffset;const texShape=inputInfo.shapeInfo.texShape;const texNumR=texShape[0];const texNumC=texShape[1];if(texNumC===stride0&&flatOffset==null){return`
float ${funcName}(int row, int col, int depth, int depth2, int depth3) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${stride1}, ${stride2}, ${stride3}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${texNumC}.0, ${texNumR}.0);
return sampleTexture(${texName}, uv);
}
`}if(texNumC===stride3&&flatOffset==null){return`
float ${funcName}(int row, int col, int depth, int depth2, int depth3) {
float texR = dot(
vec4(row, col, depth, depth2),
vec4(${shape[1]*shape[2]*shape[3]},
${shape[2]*shape[3]}, ${shape[3]}, 1));
int texC = depth3;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${texNumC}.0, ${texNumR}.0);
return sampleTexture(${texName}, uv);
}
`}const offset=getFlatOffsetUniformName(texName);return`
float ${funcName}(int row, int col, int depth, int depth2, int depth3) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${stride0} + col * ${stride1} + depth * ${stride2} +
depth2 * ${stride3} + depth3 + ${offset};
vec2 uv = uvFromFlat(${texNumR}, ${texNumC}, index);
return sampleTexture(${texName}, uv);
}
`}function getSampler6D(inputInfo){const shape=inputInfo.shapeInfo.logicalShape;const texName=inputInfo.name;const funcName="get"+texName.charAt(0).toUpperCase()+texName.slice(1);const{newShape,keptDims}=squeezeShape(shape);if(newShape.length<shape.length){const newInputInfo=squeezeInputInfo(inputInfo,newShape);const params=["row","col","depth","depth2","depth3","depth4"];return`
${getSamplerFromInInfo(newInputInfo)}
float ${funcName}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
return ${funcName}(${getSqueezedParams(params,keptDims)});
}
`}const stride4=shape[5];const stride3=shape[4]*stride4;const stride2=shape[3]*stride3;const stride1=shape[2]*stride2;const stride0=shape[1]*stride1;if(inputInfo.shapeInfo.isUniform){return`
float ${funcName}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int index = round(dot(
vec4(row, col, depth, depth2),
vec4(${stride0}, ${stride1}, ${stride2}, ${stride3})) +
dot(
vec2(depth3, depth4),
vec2(${stride4}, 1)));
${getUniformSampler(inputInfo)}
}
`}const flatOffset=inputInfo.shapeInfo.flatOffset;const texShape=inputInfo.shapeInfo.texShape;const texNumR=texShape[0];const texNumC=texShape[1];if(texNumC===stride0&&flatOffset==null){return`
float ${funcName}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${stride1}, ${stride2}, ${stride3}, ${stride4})) +
float(depth4);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${texNumC}.0, ${texNumR}.0);
return sampleTexture(${texName}, uv);
}
`}if(texNumC===stride4&&flatOffset==null){return`
float ${funcName}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
float texR = dot(vec4(row, col, depth, depth2),
vec4(${shape[1]*shape[2]*shape[3]*shape[4]},
${shape[2]*shape[3]*shape[4]},
${shape[3]*shape[4]},
${shape[4]})) + float(depth3);
int texC = depth4;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${texNumC}.0, ${texNumR}.0);
return sampleTexture(${texName}, uv);
}
`}const offset=getFlatOffsetUniformName(texName);return`
float ${funcName}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${stride0} + col * ${stride1} + depth * ${stride2} +
depth2 * ${stride3} + depth3 * ${stride4} + depth4 + ${offset};
vec2 uv = uvFromFlat(${texNumR}, ${texNumC}, index);
return sampleTexture(${texName}, uv);
}
`}function getUniformSampler(inputInfo){const texName=inputInfo.name;const inSize=sizeFromShape(inputInfo.shapeInfo.logicalShape);if(inSize<2){return`return ${texName};`}return`
for (int i = 0; i < ${inSize}; i++) {
if (i == index) {
return ${texName}[i];
}
}
`}function getPackedSamplerAtOutputCoords(inputInfo,outShapeInfo){const texName=inputInfo.name;const texFuncSnippet=texName.charAt(0).toUpperCase()+texName.slice(1);const funcName="get"+texFuncSnippet+"AtOutCoords";const inRank=inputInfo.shapeInfo.logicalShape.length;const outRank=outShapeInfo.logicalShape.length;const broadcastDims=getBroadcastDims$1(inputInfo.shapeInfo.logicalShape,outShapeInfo.logicalShape);const type=getCoordsDataType(outRank);const rankDiff=outRank-inRank;let coordsSnippet;const fields=["x","y","z","w","u","v"];if(inRank===0){coordsSnippet=""}else if(outRank<2&&broadcastDims.length>=1){coordsSnippet="coords = 0;"}else{coordsSnippet=broadcastDims.map(d=>`coords.${fields[d+rankDiff]} = 0;`).join("\n")}let unpackedCoordsSnippet="";if(outRank<2&&inRank>0){unpackedCoordsSnippet="coords"}else{unpackedCoordsSnippet=inputInfo.shapeInfo.logicalShape.map((s,i)=>`coords.${fields[i+rankDiff]}`).join(", ")}let output=`return outputValue;`;const inSize=sizeFromShape(inputInfo.shapeInfo.logicalShape);const isInputScalar=inSize===1;const outSize=sizeFromShape(outShapeInfo.logicalShape);const isOutputScalar=outSize===1;if(inRank===1&&!isInputScalar&&!isOutputScalar){output=`
return vec4(outputValue.xy, outputValue.xy);
`}else if(isInputScalar&&!isOutputScalar){if(outRank===1){output=`
return vec4(outputValue.x, outputValue.x, 0., 0.);
`}else{output=`
return vec4(outputValue.x);
`}}else if(broadcastDims.length){const rows=inRank-2;const cols=inRank-1;if(broadcastDims.indexOf(rows)>-1&&broadcastDims.indexOf(cols)>-1){output=`return vec4(outputValue.x);`}else if(broadcastDims.indexOf(rows)>-1){output=`return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);`}else if(broadcastDims.indexOf(cols)>-1){output=`return vec4(outputValue.xx, outputValue.zz);`}}return`
vec4 ${funcName}() {
${type} coords = getOutputCoords();
${coordsSnippet}
vec4 outputValue = get${texFuncSnippet}(${unpackedCoordsSnippet});
${output}
}
`}function getSamplerAtOutputCoords(inputInfo,outShapeInfo){const texName=inputInfo.name;const texFuncSnippet=texName.charAt(0).toUpperCase()+texName.slice(1);const funcName="get"+texFuncSnippet+"AtOutCoords";const outTexShape=outShapeInfo.texShape;const inTexShape=inputInfo.shapeInfo.texShape;const inRank=inputInfo.shapeInfo.logicalShape.length;const outRank=outShapeInfo.logicalShape.length;if(!inputInfo.shapeInfo.isUniform&&inRank===outRank&&inputInfo.shapeInfo.flatOffset==null&&arraysEqual(inTexShape,outTexShape)){return`
float ${funcName}() {
return sampleTexture(${texName}, resultUV);
}
`}const type=getCoordsDataType(outRank);const broadcastDims=getBroadcastDims$1(inputInfo.shapeInfo.logicalShape,outShapeInfo.logicalShape);const rankDiff=outRank-inRank;let coordsSnippet;const fields=["x","y","z","w","u","v"];if(inRank===0){coordsSnippet=""}else if(outRank<2&&broadcastDims.length>=1){coordsSnippet="coords = 0;"}else{coordsSnippet=broadcastDims.map(d=>`coords.${fields[d+rankDiff]} = 0;`).join("\n")}let unpackedCoordsSnippet="";if(outRank<2&&inRank>0){unpackedCoordsSnippet="coords"}else{unpackedCoordsSnippet=inputInfo.shapeInfo.logicalShape.map((s,i)=>`coords.${fields[i+rankDiff]}`).join(", ")}return`
float ${funcName}() {
${type} coords = getOutputCoords();
${coordsSnippet}
return get${texFuncSnippet}(${unpackedCoordsSnippet});
}
`}function getCoordsDataType(rank){if(rank<=1){return"int"}else if(rank===2){return"ivec2"}else if(rank===3){return"ivec3"}else if(rank===4){return"ivec4"}else if(rank===5){return"ivec5"}else if(rank===6){return"ivec6"}else{throw Error(`GPU for rank ${rank} is not yet supported`)}}function squeezeInputInfo(inInfo,squeezedShape){const newInputInfo=JSON.parse(JSON.stringify(inInfo));newInputInfo.shapeInfo.logicalShape=squeezedShape;return newInputInfo}function getSqueezedParams(params,keptDims){return keptDims.map(d=>params[d]).join(", ")}class ArgMinMaxPackedProgram{constructor(shape,windowSize,op2,firstPass){this.variableNames=["A"];this.packedInputs=true;this.packedOutput=true;assert(shape.length>2,()=>`Packed arg${op2.charAt(0).toUpperCase()+op2.slice(1)} supports only inputs with rank above 2.`);const inSize=shape[shape.length-1];const outSize=Math.ceil(inSize/windowSize);this.outputShape=shape.slice(0,-1);if(outSize>1){this.outputShape.push(outSize)}if(!firstPass){this.variableNames.push("bestIndicesA")}const outShape=this.outputShape;const rank=outShape.length;const dtype=getCoordsDataType(rank);const coords2=getChannels("coords",rank);let sourceLocSetup;let sourceRank;if(outSize===1){sourceRank=rank+1;const sourceLocDType=getCoordsDataType(sourceRank);sourceLocSetup=`
${sourceLocDType} sourceLocR = ${sourceLocDType}(${coords2.join()}, 0);
++${coords2[rank-1]};
${sourceLocDType} sourceLocG = ${sourceLocDType}(${coords2.join()}, 0);
++${coords2[rank-2]};
${sourceLocDType} sourceLocA = ${sourceLocDType}(${coords2.join()}, 0);
--${coords2[rank-1]};
${sourceLocDType} sourceLocB = ${sourceLocDType}(${coords2.join()}, 0);
--${coords2[rank-2]};`}else{sourceRank=rank;sourceLocSetup=`
${dtype} sourceLocR = coords;
++${coords2[rank-1]};
${dtype} sourceLocG = coords;
++${coords2[rank-2]};
${dtype} sourceLocA = coords;
--${coords2[rank-1]};
${dtype} sourceLocB = coords;
--${coords2[rank-2]};`}const channels=["x","y","z","w","u","v"].slice(0,sourceRank);const inChannel="."+channels[sourceRank-1];const intChannels=channels.map(x=>"int "+x);const srcRCoords=getChannels("sourceLocR",sourceRank-1).concat("inIdx.r");const srcGCoords=getChannels("sourceLocG",sourceRank-1).concat("inIdx.g");const srcBCoords=getChannels("sourceLocB",sourceRank-1).concat("inIdx.b");const srcACoords=getChannels("sourceLocA",sourceRank-1).concat("inIdx.a");const compOp=op2==="max"?"greaterThan":"lessThan";const fetchCandidateIdx=firstPass?"":`
inIdx = round(vec4(getBestIndicesAChannel(${srcRCoords.join()}),
getBestIndicesAChannel(${srcGCoords.join()}),
getBestIndicesAChannel(${srcBCoords.join()}),
getBestIndicesAChannel(${srcACoords.join()})));`;const fetchValue=`vec4(
getAChannel(${srcRCoords.join()}),
hasNextCol ? getAChannel(${srcGCoords.join()}) : 0.,
hasNextRow ? getAChannel(${srcBCoords.join()}) : 0.,
hasNextRow && hasNextCol ? getAChannel(${srcACoords.join()}) : 0.)`;const getBestIndicesAChannelSnippet=firstPass?"":`
float getBestIndicesAChannel(${intChannels.join()}) {
return getChannel(getBestIndicesA(${channels.join()}),
vec2(${channels.slice(-2).join()}));
}`;this.userCode=`
float getAChannel(${intChannels.join()}) {
return getChannel(getA(${channels.join()}),
vec2(${channels.slice(-2).join()}));
}
${getBestIndicesAChannelSnippet}
void main() {
${dtype} coords = getOutputCoords();
bool hasNextCol = ${coords2[rank-1]} < ${outShape[rank-1]-1};
bool hasNextRow = ${coords2[rank-2]} < ${outShape[rank-2]-1};
${sourceLocSetup}
ivec4 srcIdx = ivec4(sourceLocR${inChannel}, sourceLocG${inChannel},
sourceLocB${inChannel}, sourceLocA${inChannel}) * ${windowSize};
ivec4 inIdx = srcIdx;
vec4 bestIndex = vec4(inIdx);
vec4 bestValue = ${fetchValue};
for (int i = 0; i < ${windowSize}; i++) {
inIdx = srcIdx;
${fetchCandidateIdx}
vec4 candidate = ${fetchValue};
bvec4 nan = isnan(candidate);
bvec4 replace = bvec4(
vec4(${compOp}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
replace.y ? candidate.y : bestValue.y,
replace.z ? candidate.z : bestValue.z,
replace.w ? candidate.w : bestValue.w);
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
srcIdx++;
}
setOutput(bestIndex);
}
`}}class AvgPool2DBackpropProgram{constructor(convInfo){this.variableNames=["dy"];this.outputShape=convInfo.inShape;const filterHeight=convInfo.filterHeight;const filterWidth=convInfo.filterWidth;const strideHeight=convInfo.strideHeight;const strideWidth=convInfo.strideWidth;const dilationHeight=convInfo.dilationHeight;const dilationWidth=convInfo.dilationWidth;const effectiveFilterHeight=convInfo.effectiveFilterHeight;const effectiveFilterWidth=convInfo.effectiveFilterWidth;const padTop=effectiveFilterHeight-1-convInfo.padInfo.top;const padLeft=effectiveFilterWidth-1-convInfo.padInfo.left;const avgMultiplier=1/(filterHeight*filterWidth);this.userCode=`
const ivec2 pads = ivec2(${padTop}, ${padLeft});
const float avgMultiplier = float(${avgMultiplier});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${effectiveFilterHeight};
wR += ${dilationHeight}) {
float dyR = float(dyRCorner + wR) / ${strideHeight}.0;
if (dyR < 0.0 || dyR >= ${convInfo.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${effectiveFilterWidth};
wC+= ${dilationWidth}) {
float dyC = float(dyCCorner + wC) / ${strideWidth}.0;
if (dyC < 0.0 || dyC >= ${convInfo.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
dotProd += dyValue * avgMultiplier;
}
}
setOutput(dotProd);
}
`}}class AvgPool3DBackpropProgram{constructor(convInfo){this.variableNames=["dy"];this.outputShape=convInfo.inShape;const filterDepth=convInfo.filterDepth;const filterHeight=convInfo.filterHeight;const filterWidth=convInfo.filterWidth;const strideDepth=convInfo.strideDepth;const strideHeight=convInfo.strideHeight;const strideWidth=convInfo.strideWidth;const dilationDepth=convInfo.dilationDepth;const dilationHeight=convInfo.dilationHeight;const dilationWidth=convInfo.dilationWidth;const effectiveFilterDepth=convInfo.effectiveFilterDepth;const effectiveFilterHeight=convInfo.effectiveFilterHeight;const effectiveFilterWidth=convInfo.effectiveFilterWidth;const padFront=effectiveFilterDepth-1-convInfo.padInfo.front;const padTop=effectiveFilterHeight-1-convInfo.padInfo.top;const padLeft=effectiveFilterWidth-1-convInfo.padInfo.left;const avgMultiplier=1/(filterDepth*filterHeight*filterWidth);this.userCode=`
const ivec3 pads = ivec3(${padFront}, ${padTop}, ${padLeft});
const float avgMultiplier = float(${avgMultiplier});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${effectiveFilterDepth};
wD += ${dilationDepth}) {
float dyD = float(dyDCorner + wD) / ${strideDepth}.0;
if (dyD < 0.0 || dyD >= ${convInfo.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${effectiveFilterHeight};
wR += ${dilationHeight}) {
float dyR = float(dyRCorner + wR) / ${strideHeight}.0;
if (dyR < 0.0 || dyR >= ${convInfo.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${effectiveFilterWidth};
wC += ${dilationWidth}) {
float dyC = float(dyCCorner + wC) / ${strideWidth}.0;
if (dyC < 0.0 || dyC >= ${convInfo.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
dotProd += dyValue * avgMultiplier;
}
}
}
setOutput(dotProd);
}
`}}const CHECK_NAN_SNIPPET=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`;const INT_DIV=`
float s = sign(a) * sign(b);
int ia = round(a);
int ib = round(b);
if (ib != 0) {
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
return float(idiv(ia, ib, s));
} else {
return NAN;
}
`;const POW=`
if(a < 0.0 && floor(b) < b){
return NAN;
}
if (b == 0.0) {
return 1.0;
}
return (round(mod(b, 2.0)) != 1) ?
pow(abs(a), b) : sign(a) * pow(abs(a), b);
`;const SQUARED_DIFFERENCE="return (a - b) * (a - b);";const EQUAL=`return float(a == b);`;const LESS=`return float(a < b);`;const LESS_EQUAL=`return float(a <= b);`;const GREATER=`return float(a > b);`;const GREATER_EQUAL=`return float(a >= b);`;const LOGICAL_AND=`return float(a >= 1.0 && b >= 1.0);`;const LOGICAL_OR=`return float(a >= 1.0 || b >= 1.0);`;const MAX=CHECK_NAN_SNIPPET+`
return max(a, b);
`;const MIN=CHECK_NAN_SNIPPET+`
return min(a, b);
`;const MOD=`if (b == 0.0) return NAN;
return mod(a, b);`;const ELU_DER=`return (b >= 1.0) ? a : a * (b + 1.0);`;const PRELU=`return (a < 0.) ? b * a : a;`;class BinaryOpProgram{constructor(op2,aShape,bShape){this.variableNames=["A","B"];this.outputShape=assertAndGetBroadcastShape(aShape,bShape);this.userCode=`
float binaryOperation(float a, float b) {
${op2}
}
void main() {
float a = getAAtOutCoords();
float b = getBAtOutCoords();
setOutput(binaryOperation(a, b));
}
`}}const CHECK_NAN_SNIPPET$1=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`;const INT_DIV$1=`
ivec4 ia = round(a);
ivec4 ib = round(b);
bvec4 cond = notEqual(ib, ivec4(0));
ivec4 result = ivec4(0);
vec4 s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
result[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
result[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
result[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
result[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4(result);
`;const POW$1=`
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
vec4 result = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
bvec4 isExpZero = equal(b, vec4(0.0));
result.r = isExpZero.r ? 1.0 : result.r;
result.g = isExpZero.g ? 1.0 : result.g;
result.b = isExpZero.b ? 1.0 : result.b;
result.a = isExpZero.a ? 1.0 : result.a;
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
`+CHECK_NAN_SNIPPET$1+`
return result;
`;const PRELU$1=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;const ELU_DER$1=`
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
`;const EQUAL$1=`
return vec4(equal(a, b));
`;const NOT_EQUAL=`
return vec4(notEqual(a, b));
`;const LESS$1=`
return vec4(lessThan(a, b));
`;const LESS_EQUAL$1=`
return vec4(lessThanEqual(a, b));
`;const GREATER$1=`
return vec4(greaterThan(a, b));
`;const GREATER_EQUAL$1=`
return vec4(greaterThanEqual(a, b));
`;const LOGICAL_AND$1=`
return vec4(
vec4(greaterThanEqual(a, vec4(1.0))) *
vec4(greaterThanEqual(b, vec4(1.0))));
`;const LOGICAL_OR$1=`
return min(
vec4(greaterThanEqual(a, vec4(1.0))) +
vec4(greaterThanEqual(b, vec4(1.0))),
vec4(1.0));
`;const MAX$1=`
vec4 result = vec4(max(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+CHECK_NAN_SNIPPET$1+`
return result;
`;const MIN$1=`
vec4 result = vec4(min(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+CHECK_NAN_SNIPPET$1+`
return result;
`;const MOD$1=`
vec4 result = mod(a, b);
vec4 isNaN = vec4(equal(b, vec4(0.0)));
`+CHECK_NAN_SNIPPET$1+`
return result;
`;class BinaryOpPackedProgram{constructor(op2,aShape,bShape,checkOutOfBounds=false){this.variableNames=["A","B"];this.supportsBroadcasting=true;this.packedInputs=true;this.packedOutput=true;this.outputShape=assertAndGetBroadcastShape(aShape,bShape);const rank=this.outputShape.length;let checkOutOfBoundsString="";if(checkOutOfBounds){if(rank===0||sizeFromShape(this.outputShape)===1){checkOutOfBoundsString=`
result.y = 0.;
result.z = 0.;
result.w = 0.;
`}else{const dtype=getCoordsDataType(rank);checkOutOfBoundsString=`
${dtype} coords = getOutputCoords();
`;if(rank===1){checkOutOfBoundsString+=`
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`}else{const channels=getChannels("coords",rank);checkOutOfBoundsString+=`
bool nextRowOutOfBounds =
(${channels[rank-2]} + 1) >= ${this.outputShape[rank-2]};
bool nextColOutOfBounds =
(${channels[rank-1]} + 1) >= ${this.outputShape[rank-1]};
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`}}}this.userCode=`
vec4 binaryOperation(vec4 a, vec4 b) {
${op2}
}
void main() {
vec4 a = getAAtOutCoords();
vec4 b = getBAtOutCoords();
vec4 result = binaryOperation(a, b);
${checkOutOfBoundsString}
setOutput(result);
}
`}}class ClipProgram{constructor(aShape){this.variableNames=["A"];this.outputShape=aShape;this.userCode=`
uniform float minVal;
uniform float maxVal;
void main() {
float value = getAAtOutCoords();
if (isnan(value)) {
setOutput(value);
return;
}
setOutput(clamp(value, minVal, maxVal));
}
`}getCustomSetupFunc(min3,max3){return(gpgpu,webGLProgram)=>{if(this.minLoc==null){this.minLoc=gpgpu.getUniformLocationNoThrow(webGLProgram,"minVal");this.maxLoc=gpgpu.getUniformLocationNoThrow(webGLProgram,"maxVal")}gpgpu.gl.uniform1f(this.minLoc,min3);gpgpu.gl.uniform1f(this.maxLoc,max3)}}}class ClipPackedProgram{constructor(aShape){this.variableNames=["A"];this.packedInputs=true;this.packedOutput=true;this.outputShape=aShape;this.userCode=`
uniform float minVal;
uniform float maxVal;
void main() {
vec4 value = getAAtOutCoords();
if (any(isnan(value))) {
setOutput(value);
return;
}
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
}
`}getCustomSetupFunc(min3,max3){return(gpgpu,webGLProgram)=>{if(this.minLoc==null){this.minLoc=gpgpu.getUniformLocationNoThrow(webGLProgram,"minVal");this.maxLoc=gpgpu.getUniformLocationNoThrow(webGLProgram,"maxVal")}gpgpu.gl.uniform1f(this.minLoc,min3);gpgpu.gl.uniform1f(this.maxLoc,max3)}}}class ComplexAbsProgram{constructor(shape){this.variableNames=["real","imag"];this.outputShape=shape;this.userCode=`
void main() {
float re = abs(getRealAtOutCoords());
float im = abs(getImagAtOutCoords());
float mx = max(re, im);
// sadly the length function in glsl is not underflow-safe
// (at least not on Intel GPUs). So the safe solution is
// to ensure underflow-safety in all cases.
setOutput(
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
);
}
`}}class Conv2DDerFilterProgram{constructor(convInfo){this.variableNames=["x","dy"];this.outputShape=convInfo.filterShape;const strideHeight=convInfo.strideHeight;const strideWidth=convInfo.strideWidth;const padTop=convInfo.padInfo.top;const padLeft=convInfo.padInfo.left;const isChannelsLast=convInfo.dataFormat==="channelsLast";this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int d2 = coords.w;
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int b = 0; b < ${convInfo.batchSize}; b++) {
for (int yR = 0; yR < ${convInfo.outHeight}; yR++) {
int xR = wR + yR * ${strideHeight} - ${padTop};
if (xR < 0 || xR >= ${convInfo.inHeight}) {
continue;
}
for (int yC = 0; yC < ${convInfo.outWidth}; yC++) {
int xC = wC + yC * ${strideWidth} - ${padLeft};
if (xC < 0 || xC >= ${convInfo.inWidth}) {
continue;
}
if (${isChannelsLast}) {
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
} else {
float dyValue = getDy(b, d2, yR, yC);
float xValue = getX(b, d1, xR, xC);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}}class Conv2DDerInputProgram{constructor(convInfo){this.variableNames=["dy","W"];this.outputShape=convInfo.inShape;const filterHeight=convInfo.filterHeight;const filterWidth=convInfo.filterWidth;const strideHeight=convInfo.strideHeight;const strideWidth=convInfo.strideWidth;const isChannelsLast=convInfo.dataFormat==="channelsLast";const padTop=filterHeight-1-convInfo.padInfo.top;const padLeft=filterWidth-1-convInfo.padInfo.left;const rowDim=isChannelsLast?1:2;const colDim=isChannelsLast?2:3;const channelDim=isChannelsLast?3:1;this.userCode=`
const ivec2 pads = ivec2(${padTop}, ${padLeft});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[${channelDim}];
ivec2 dyCorner = ivec2(coords[${rowDim}], coords[${colDim}]) - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${filterHeight}; wR++) {
float dyR = float(dyRCorner + wR) / ${strideHeight}.0;
if (dyR < 0.0 || dyR >= ${convInfo.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${filterHeight} - 1 - wR;
for (int wC = 0; wC < ${filterWidth}; wC++) {
float dyC = float(dyCCorner + wC) / ${strideWidth}.0;
if (dyC < 0.0 || dyC >= ${convInfo.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${filterWidth} - 1 - wC;
for (int d2 = 0; d2 < ${convInfo.outChannels}; d2++) {
if (${isChannelsLast}) {
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
} else {
float xValue = getDy(batch, d2, idyR, idyC);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}}class Conv3DDerFilterProgram{constructor(convInfo){this.variableNames=["x","dy"];this.outputShape=convInfo.filterShape;const strideDepth=convInfo.strideDepth;const strideHeight=convInfo.strideHeight;const strideWidth=convInfo.strideWidth;const padFront=convInfo.padInfo.front;const padTop=convInfo.padInfo.top;const padLeft=convInfo.padInfo.left;this.userCode=`
void main() {
ivec5 coords = getOutputCoords();
int wF = coords.x;
int wR = coords.y;
int wC = coords.z;
int d1 = coords.w;
int d2 = coords.u;
float dotProd = 0.0;
for (int b = 0; b < ${convInfo.batchSize}; b++) {
for (int yF = 0; yF < ${convInfo.outDepth}; yF++) {
int xF = wF + yF * ${strideDepth} - ${padFront};
if (xF < 0 || xF >= ${convInfo.inDepth}) {
continue;
}
for (int yR = 0; yR < ${convInfo.outHeight}; yR++) {
int xR = wR + yR * ${strideHeight} - ${padTop};
if (xR < 0 || xR >= ${convInfo.inHeight}) {
continue;
}
for (int yC = 0; yC < ${convInfo.outWidth}; yC++) {
int xC = wC + yC * ${strideWidth} - ${padLeft};
if (xC < 0 || xC >= ${convInfo.inWidth}) {
continue;
}
float dyValue = getDy(b, yF, yR, yC, d2);
float xValue = getX(b, xF, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}}class Conv3DDerInputProgram{constructor(convInfo){this.variableNames=["dy","W"];this.outputShape=convInfo.inShape;const filterDepth=convInfo.filterDepth;const filterHeight=convInfo.filterHeight;const filterWidth=convInfo.filterWidth;const strideDepth=convInfo.strideDepth;const strideHeight=convInfo.strideHeight;const strideWidth=convInfo.strideWidth;const padFront=filterDepth-1-convInfo.padInfo.front;const padTop=filterHeight-1-convInfo.padInfo.top;const padLeft=filterWidth-1-convInfo.padInfo.left;this.userCode=`
const ivec3 pads = ivec3(${padFront}, ${padTop}, ${padLeft});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyFCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
float dotProd = 0.0;
for (int wF = 0; wF < ${filterDepth}; wF++) {
float dyF = float(dyFCorner + wF) / ${strideDepth}.0;
if (dyF < 0.0 || dyF >= ${convInfo.outDepth}.0 || fract(dyF) > 0.0) {
continue;
}
int idyF = int(dyF);
int wFPerm = ${filterDepth} - 1 - wF;
for (int wR = 0; wR < ${filterHeight}; wR++) {
float dyR = float(dyRCorner + wR) / ${strideHeight}.0;
if (dyR < 0.0 || dyR >= ${convInfo.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${filterHeight} - 1 - wR;
for (int wC = 0; wC < ${filterWidth}; wC++) {
float dyC = float(dyCCorner + wC) / ${strideWidth}.0;
if (dyC < 0.0 || dyC >= ${convInfo.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${filterWidth} - 1 - wC;
for (int d2 = 0; d2 < ${convInfo.outChannels}; d2++) {
float xValue = getDy(batch, idyF, idyR, idyC, d2);
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}}class DepthwiseConv2DDerFilterProgram{constructor(convInfo){this.variableNames=["x","dy"];this.outputShape=convInfo.filterShape;const strideHeight=convInfo.strideHeight;const strideWidth=convInfo.strideWidth;const padTop=convInfo.padInfo.top;const padLeft=convInfo.padInfo.left;const channelMul=convInfo.outChannels/convInfo.inChannels;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int dm = coords.w;
int d2 = d1 * ${channelMul} + dm;
float dotProd = 0.0;
// TO DO: Vec4 over the batch size
for (int b = 0; b < ${convInfo.batchSize}; b++) {
for (int yR = 0; yR < ${convInfo.outHeight}; yR++) {
int xR = wR + yR * ${strideHeight} - ${padTop};
if (xR < 0 || xR >= ${convInfo.inHeight}) {
continue;
}
for (int yC = 0; yC < ${convInfo.outWidth}; yC++) {
int xC = wC + yC * ${strideWidth} - ${padLeft};
if (xC < 0 || xC >= ${convInfo.inWidth}) {
continue;
}
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
setOutput(dotProd);
}
`}}class DepthwiseConv2DDerInputProgram{constructor(convInfo){this.variableNames=["dy","W"];this.outputShape=convInfo.inShape;const filterHeight=convInfo.filterHeight;const filterWidth=convInfo.filterWidth;const strideHeight=convInfo.strideHeight;const strideWidth=convInfo.strideWidth;const padTop=filterHeight-1-convInfo.padInfo.top;const padLeft=filterWidth-1-convInfo.padInfo.left;const channelMul=convInfo.outChannels/convInfo.inChannels;this.userCode=`
const ivec2 pads = ivec2(${padTop}, ${padLeft});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[3];
ivec2 dyCorner = coords.yz - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
float dotProd = 0.0;
for (int wR = 0; wR < ${filterHeight}; wR++) {
float dyR = float(dyRCorner + wR) / ${strideHeight}.0;
if (dyR < 0.0 || dyR >= ${convInfo.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${filterHeight} - 1 - wR;
for (int wC = 0; wC < ${filterWidth}; wC++) {
float dyC = float(dyCCorner + wC) / ${strideWidth}.0;
if (dyC < 0.0 || dyC >= ${convInfo.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${filterWidth} - 1 - wC;
// TO DO: Vec4 over the channelMul
for (int dm = 0; dm < ${channelMul}; dm++) {
int d2 = d1 * ${channelMul} + dm;
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, dm);
dotProd += xValue * wValue;
}
}
}
setOutput(dotProd);
}
`}}class Conv2DProgram{constructor(convInfo,addBias=false,activation2=null,hasPreluActivationWeights=false){this.variableNames=["x","W"];this.outputShape=convInfo.outShape;const padTop=convInfo.padInfo.top;const padLeft=convInfo.padInfo.left;const strideHeight=convInfo.strideHeight;const strideWidth=convInfo.strideWidth;const dilationHeight=convInfo.dilationHeight;const dilationWidth=convInfo.dilationWidth;const filterHeight=convInfo.filterHeight;const filterWidth=convInfo.filterWidth;const inputDepthNearestVec4=Math.floor(convInfo.inChannels/4)*4;const inputDepthVec4Remainder=convInfo.inChannels%4;const isChannelsLast=convInfo.dataFormat==="channelsLast";const rowDim=isChannelsLast?1:2;const colDim=isChannelsLast?2:3;const channelDim=isChannelsLast?3:1;let activationSnippet="",applyActivationSnippet="";if(activation2){if(hasPreluActivationWeights){activationSnippet=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${activation2}
}`}else{activationSnippet=`
float activation(float x) {
${activation2}
}
`}applyActivationSnippet=`result = activation(result);`}const addBiasSnippet=addBias?"result += getBiasAtOutCoords();":"";if(addBias){this.variableNames.push("bias")}if(hasPreluActivationWeights){this.variableNames.push("preluActivationWeights")}this.userCode=`
${activationSnippet}
const ivec2 strides = ivec2(${strideHeight}, ${strideWidth});
const ivec2 pads = ivec2(${padTop}, ${padLeft});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d2 = coords[${channelDim}];
ivec2 xRCCorner =
ivec2(coords[${rowDim}], coords[${colDim}]) * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${filterHeight}; wR++) {
int xR = xRCorner + wR * ${dilationHeight};
if (xR < 0 || xR >= ${convInfo.inHeight}) {
continue;
}
for (int wC = 0; wC < ${filterWidth}; wC++) {
int xC = xCCorner + wC * ${dilationWidth};
if (xC < 0 || xC >= ${convInfo.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${inputDepthNearestVec4}; d1 += 4) {
vec4 wValues = vec4(
getW(wR, wC, d1, d2),
getW(wR, wC, d1 + 1, d2),
getW(wR, wC, d1 + 2, d2),
getW(wR, wC, d1 + 3, d2)
);
if (${isChannelsLast}) {
vec4 xValues = vec4(
getX(batch, xR, xC, d1),
getX(batch, xR, xC, d1 + 1),
getX(batch, xR, xC, d1 + 2),
getX(batch, xR, xC, d1 + 3)
);
dotProd += dot(xValues, wValues);
} else {
vec4 xValues = vec4(
getX(batch, d1, xR, xC),
getX(batch, d1 + 1, xR, xC),
getX(batch, d1 + 2, xR, xC),
getX(batch, d1 + 3, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
if (${inputDepthVec4Remainder===1}) {
if (${isChannelsLast}) {
dotProd +=
getX(batch, xR, xC, ${inputDepthNearestVec4}) *
getW(wR, wC, ${inputDepthNearestVec4}, d2);
} else {
dotProd +=
getX(batch, ${inputDepthNearestVec4}, xR, xC) *
getW(wR, wC, ${inputDepthNearestVec4}, d2);
}
} else if (${inputDepthVec4Remainder===2}) {
vec2 wValues = vec2(
getW(wR, wC, ${inputDepthNearestVec4}, d2),
getW(wR, wC, ${inputDepthNearestVec4} + 1, d2)
);
if (${isChannelsLast}) {
vec2 xValues = vec2(
getX(batch, xR, xC, ${inputDepthNearestVec4}),
getX(batch, xR, xC, ${inputDepthNearestVec4} + 1)
);
dotProd += dot(xValues, wValues);
} else {
vec2 xValues = vec2(
getX(batch, ${inputDepthNearestVec4}, xR, xC),
getX(batch, ${inputDepthNearestVec4} + 1, xR, xC)
);
dotProd += dot(xValues, wValues);
}
} else if (${inputDepthVec4Remainder===3}) {
vec3 wValues = vec3(
getW(wR, wC, ${inputDepthNearestVec4}, d2),
getW(wR, wC, ${inputDepthNearestVec4} + 1, d2),
getW(wR, wC, ${inputDepthNearestVec4} + 2, d2)
);
if (${isChannelsLast}) {
vec3 xValues = vec3(
getX(batch, xR, xC, ${inputDepthNearestVec4}),
getX(batch, xR, xC, ${inputDepthNearestVec4} + 1),
getX(batch, xR, xC, ${inputDepthNearestVec4} + 2)
);
dotProd += dot(xValues, wValues);
} else {
vec3 xValues = vec3(
getX(batch, ${inputDepthNearestVec4}, xR, xC),
getX(batch, ${inputDepthNearestVec4} + 1, xR, xC),
getX(batch, ${inputDepthNearestVec4} + 2, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
}
}
float result = dotProd;
${addBiasSnippet}
${applyActivationSnippet}
setOutput(result);
}
`}}class Conv3DProgram{constructor(convInfo){this.variableNames=["x","W"];this.outputShape=convInfo.outShape;const padFront=convInfo.padInfo.front;const padTop=convInfo.padInfo.top;const padLeft=convInfo.padInfo.left;const strideDepth=convInfo.strideDepth;const strideHeight=convInfo.strideHeight;const strideWidth=convInfo.strideWidth;const dilationDepth=convInfo.dilationDepth;const dilationHeight=convInfo.dilationHeight;const dilationWidth=convInfo.dilationWidth;const filterDepth=convInfo.filterDepth;const filterHeight=convInfo.filterHeight;const filterWidth=convInfo.filterWidth;const inputDepthNearestVec4=Math.floor(convInfo.inChannels/4)*4;const inputDepthVec4Remainder=convInfo.inChannels%4;this.userCode=`
const ivec3 strides = ivec3(${strideDepth}, ${strideHeight}, ${strideWidth});
const ivec3 pads = ivec3(${padFront}, ${padTop}, ${padLeft});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d2 = coords.u;
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xFCorner = xFRCCorner.x;
int xRCorner = xFRCCorner.y;
int xCCorner = xFRCCorner.z;
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
// y(yF, yR, yC, d2). ? = to be determined. : = across all
// values in that axis.
float dotProd = 0.0;
for (int wF = 0; wF < ${filterDepth}; wF++) {
int xF = xFCorner + wF * ${dilationDepth};
if (xF < 0 || xF >= ${convInfo.inDepth}) {
continue;
}
for (int wR = 0; wR < ${filterHeight}; wR++) {
int xR = xRCorner + wR * ${dilationHeight};
if (xR < 0 || xR >= ${convInfo.inHeight}) {
continue;
}
for (int wC = 0; wC < ${filterWidth}; wC++) {
int xC = xCCorner + wC * ${dilationWidth};
if (xC < 0 || xC >= ${convInfo.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${inputDepthNearestVec4}; d1 += 4) {
vec4 xValues = vec4(
getX(batch, xF, xR, xC, d1),
getX(batch, xF, xR, xC, d1 + 1),
getX(batch, xF, xR, xC, d1 + 2),
getX(batch, xF, xR, xC, d1 + 3)
);
vec4 wValues = vec4(
getW(wF, wR, wC, d1, d2),
getW(wF, wR, wC, d1 + 1, d2),
getW(wF, wR, wC, d1 + 2, d2),
getW(wF, wR, wC, d1 + 3, d2)
);
dotProd += dot(xValues, wValues);
}
if (${inputDepthVec4Remainder===1}) {
dotProd +=
getX(batch, xF, xR, xC, ${inputDepthNearestVec4}) *
getW(wF, wR, wC, ${inputDepthNearestVec4}, d2);
} else if (${inputDepthVec4Remainder===2}) {
vec2 xValues = vec2(
getX(batch, xF, xR, xC, ${inputDepthNearestVec4}),
getX(batch, xF, xR, xC, ${inputDepthNearestVec4} + 1)
);
vec2 wValues = vec2(
getW(wF, wR, wC, ${inputDepthNearestVec4}, d2),
getW(wF, wR, wC, ${inputDepthNearestVec4} + 1, d2)
);
dotProd += dot(xValues, wValues);
} else if (${inputDepthVec4Remainder===3}) {
vec3 xValues = vec3(
getX(batch, xF, xR, xC, ${inputDepthNearestVec4}),
getX(batch, xF, xR, xC, ${inputDepthNearestVec4} + 1),
getX(batch, xF, xR, xC, ${inputDepthNearestVec4} + 2)
);
vec3 wValues = vec3(
getW(wF, wR, wC, ${inputDepthNearestVec4}, d2),
getW(wF, wR, wC, ${inputDepthNearestVec4} + 1, d2),
getW(wF, wR, wC, ${inputDepthNearestVec4} + 2, d2)
);
dotProd += dot(xValues, wValues);
}
}
}
}
setOutput(dotProd);
}
`}}class DepthwiseConv2DProgram{constructor(convInfo,addBias=false,activation2=null,hasPreluActivation=false){this.variableNames=["x","W"];this.outputShape=convInfo.outShape;const xNumRows=convInfo.inHeight;const xNumCols=convInfo.inWidth;const padTop=convInfo.padInfo.top;const padLeft=convInfo.padInfo.left;const strideHeight=convInfo.strideHeight;const strideWidth=convInfo.strideWidth;const dilationHeight=convInfo.dilationHeight;const dilationWidth=convInfo.dilationWidth;const filterHeight=convInfo.filterHeight;const filterWidth=convInfo.filterWidth;const channelMul=convInfo.outChannels/convInfo.inChannels;let activationSnippet="",applyActivationSnippet="";if(activation2){if(hasPreluActivation){activationSnippet=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${activation2}
}`}else{activationSnippet=`
float activation(float x) {
${activation2}
}
`}applyActivationSnippet=`result = activation(result);`}const addBiasSnippet=addBias?"result += getBiasAtOutCoords();":"";if(addBias){this.variableNames.push("bias")}if(hasPreluActivation){this.variableNames.push("preluActivationWeights")}this.userCode=`
${activationSnippet}
const ivec2 strides = ivec2(${strideHeight}, ${strideWidth});
const ivec2 pads = ivec2(${padTop}, ${padLeft});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${channelMul};
int q = d2 - d1 * ${channelMul};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
for (int wR = 0; wR < ${filterHeight}; wR++) {
int xR = xRCorner + wR * ${dilationHeight};
if (xR < 0 || xR >= ${xNumRows}) {
continue;
}
for (int wC = 0; wC < ${filterWidth}; wC++) {
int xC = xCCorner + wC * ${dilationWidth};
if (xC < 0 || xC >= ${xNumCols}) {
continue;
}
float xVal = getX(batch, xR, xC, d1);
float wVal = getW(wR, wC, d1, q);
dotProd += xVal * wVal;
}
}
float result = dotProd;
${addBiasSnippet}
${applyActivationSnippet}
setOutput(result);
}
`}}class DepthwiseConvPacked2DProgram{constructor(convInfo,addBias=false,activation2=null,hasPreluActivation=false){this.variableNames=["x","W"];this.packedInputs=true;this.packedOutput=true;this.outputShape=convInfo.outShape;const xNumRows=convInfo.inHeight;const xNumCols=convInfo.inWidth;const padTop=convInfo.padInfo.top;const padLeft=convInfo.padInfo.left;const strideHeight=convInfo.strideHeight;const strideWidth=convInfo.strideWidth;const dilationHeight=convInfo.dilationHeight;const dilationWidth=convInfo.dilationWidth;const filterHeight=convInfo.filterHeight;const filterWidth=convInfo.filterWidth;const texelsAcross=filterWidth;let mainLoop=`int xR; int xC; int xCOffset;`;for(let r=0;r<filterHeight;r++){for(let c=0;c<filterWidth;c++){mainLoop+=`
vec4 xTexelR${r}C${c*2} = vec4(0.);
vec4 wR${r}C${c} = vec4(0.);
vec4 xR${r}C${c} = vec4(0.);`}}for(let r=0;r<filterHeight;r++){for(let texelC=0;texelC<texelsAcross;texelC++){const c=texelC*2;mainLoop+=`
xR = xRCorner + ${r*dilationHeight};
xC = xCCorner + ${c*dilationWidth};
`;if(strideWidth===1){if(c<filterWidth){if(padLeft%2===1){mainLoop+=`
xCOffset = xC + 1;
if(xR >= 0 && xR < ${xNumRows} && xCOffset >= 0 && xCOffset < ${xNumCols}) {
xTexelR${r}C${c} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if(xCOffset + 1 >= ${xNumCols}) {
xTexelR${r}C${c}.zw = vec2(0.);
}
} else {
xTexelR${r}C${c} = vec4(0.);
}
xCOffset = xC + 1 - 2;
if(xR >= 0 && xR < ${xNumRows} && xCOffset >= 0 && xCOffset < ${xNumCols}) {
vec4 previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if(xCOffset + 1 >= ${xNumCols}) {
previous.zw = vec2(0.);
}
xR${r}C${c} = vec4(previous.zw, xTexelR${r}C${c}.xy);
} else {
xR${r}C${c} = vec4(0, 0, xTexelR${r}C${c}.xy);
}
`}else{mainLoop+=`
if(xR >= 0 && xR < ${xNumRows} && xC >= 0 && xC < ${xNumCols}) {
xTexelR${r}C${c} = getX(batch, xR, xC, d1);
} else {
xTexelR${r}C${c} = vec4(0.);
}
xR${r}C${c} = xTexelR${r}C${c};
`}if(c+1<filterWidth){const nextTexelOffset=padLeft%2===0?nearestLargerEven(dilationWidth):dilationWidth;if(dilationWidth%2===0&&padLeft%2===1||dilationWidth%2!==0&&padLeft%2!==1){mainLoop+=`
xCOffset = xC + ${padLeft%2} + ${nextTexelOffset};
if(xR >= 0 && xR < ${xNumRows} &&
xCOffset >= 0 && xCOffset < ${xNumCols}) {
xTexelR${r}C${c+2} = getX(batch, xR, xCOffset, d1);
}
`;if(dilationWidth>1){mainLoop+=`
xCOffset -= 2;
if(xR >= 0 && xR < ${xNumRows} &&
xCOffset >= 0 && xCOffset < ${xNumCols}) {
xTexelR${r}C${c} = getX(batch, xR, xCOffset, d1);
} else {
xTexelR${r}C${c} = vec4(0.);
}
`}mainLoop+=`
xR${r}C${c+1} = vec4(
xTexelR${r}C${c}.zw, xTexelR${r}C${c+2}.xy);
`}else{mainLoop+=`
xCOffset = xC + ${nextTexelOffset};
if(xR >= 0 && xR < ${xNumRows} &&
xCOffset >= 0 && xCOffset < ${xNumCols}) {
xTexelR${r}C${c+2} = getX(batch, xR, xCOffset, d1);
}
xR${r}C${c+1} = xTexelR${r}C${c+2};
`}}}}else{if(c<filterWidth){mainLoop+=`
if(xR >= 0 && xR < ${xNumRows}) {
`;if(padLeft%2===1){mainLoop+=`
xCOffset = xC + 1 - ${strideWidth};
if(xCOffset >= 0 && xCOffset < ${xNumCols}) {
xTexelR${r}C${c} = getX(batch, xR, xCOffset, d1);
} else {
xTexelR${r}C${c} = vec4(0.);
}
if(xC + 1 >= 0 && xC + 1 < ${xNumCols}) {
xTexelR${r}C${c+2} = getX(batch, xR, xC + 1, d1);
} else {
xTexelR${r}C${c+2} = vec4(0.);
}
xR${r}C${c} = vec4(
xTexelR${r}C${c}.zw, xTexelR${r}C${c+2}.zw);
`;if(c+1<filterWidth){mainLoop+=`
vec4 final = vec4(0.);
xCOffset = xC + 1 + ${strideWidth};
if(xCOffset >= 0 && xCOffset < ${xNumCols}) {
final = getX(batch, xR, xCOffset, d1);
}
xR${r}C${c+1} = vec4(xTexelR${r}C${c+2}.xy, final.xy);
`}}else{mainLoop+=`
if(xC >= 0 && xC < ${xNumCols}) {
xTexelR${r}C${c} = getX(batch, xR, xC, d1);
} else {
xTexelR${r}C${c} = vec4(0.);
}
xCOffset = xC + ${strideWidth};
if(xCOffset >= 0 && xCOffset < ${xNumCols}) {
xTexelR${r}C${c+2} = getX(batch, xR, xCOffset, d1);
} else {
xTexelR${r}C${c+2} = vec4(0.);
}
xR${r}C${c} = vec4(
xTexelR${r}C${c}.xy, xTexelR${r}C${c+2}.xy);
`;if(c+1<filterWidth){mainLoop+=`
xR${r}C${c+1} = vec4(
xTexelR${r}C${c}.zw, xTexelR${r}C${c+2}.zw);
`}}mainLoop+=`}`}}if(c<filterWidth){mainLoop+=`
vec4 wTexelR${r}C${c} = getW(${r}, ${c}, d1, q);
wR${r}C${c} = vec4(wTexelR${r}C${c}.xz, wTexelR${r}C${c}.xz);
`;if(c+1<filterWidth){mainLoop+=`
vec4 wTexelR${r}C${c+1} = getW(${r}, ${c+1}, d1, q);
wR${r}C${c+1} =
vec4(wTexelR${r}C${c+1}.xz, wTexelR${r}C${c+1}.xz);`}}}}for(let r=0;r<filterHeight;r++){for(let c=0;c<filterWidth;c++){mainLoop+=`dotProd += xR${r}C${c} * wR${r}C${c};`}}let activationSnippet="",applyActivationSnippet="";if(activation2){if(hasPreluActivation){activationSnippet=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${activation2}
}`}else{activationSnippet=`vec4 activation(vec4 x) {
${activation2}
}`}applyActivationSnippet=`result = activation(result);`}const addBiasSnippet=addBias?"result += getBiasAtOutCoords();":"";if(addBias){this.variableNames.push("bias")}if(hasPreluActivation){this.variableNames.push("preluActivationWeights")}this.userCode=`
${activationSnippet}
const ivec2 strides = ivec2(${strideHeight}, ${strideWidth});
const ivec2 pads = ivec2(${padTop}, ${padLeft});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2;
int q = 0;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
vec4 dotProd = vec4(0.);
${mainLoop}
vec4 result = dotProd;
${addBiasSnippet}
${applyActivationSnippet}
setOutput(result);
}
`}}class CropAndResizeProgram{constructor(imageShape,boxShape,cropSize,method,extrapolationValue){this.variableNames=["Image","Boxes","BoxInd"];this.outputShape=[];const[batch,imageHeight,imageWidth,depth]=imageShape;const[numBoxes]=boxShape;const[cropHeight,cropWidth]=cropSize;this.outputShape=[numBoxes,cropHeight,cropWidth,depth];const methodId=method==="bilinear"?1:0;const[inputHeightFloat,inputWidthFloat]=[`${imageHeight-1}.0`,`${imageWidth-1}.0`];const[heightRatio,heightScale,inY]=cropHeight>1?[`${(imageHeight-1)/(cropHeight-1)}`,"(y2-y1) * height_ratio",`y1*${inputHeightFloat} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${inputHeightFloat}`];const[widthRatio,widthScale,inX]=cropWidth>1?[`${(imageWidth-1)/(cropWidth-1)}`,"(x2-x1) * width_ratio",`x1*${inputWidthFloat} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${inputWidthFloat}`];this.userCode=`
const float height_ratio = float(${heightRatio});
const float width_ratio = float(${widthRatio});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int y = coords[1];
int x = coords[2];
int d = coords[3];
// get box vals
float y1 = getBoxes(b,0);
float x1 = getBoxes(b,1);
float y2 = getBoxes(b,2);
float x2 = getBoxes(b,3);
// get image in batch index
int bInd = round(getBoxInd(b));
if(bInd < 0 || bInd >= ${batch}) {
return;
}
float height_scale = ${heightScale};
float width_scale = ${widthScale};
float in_y = ${inY};
if( in_y < 0.0 || in_y > ${inputHeightFloat} ) {
setOutput(float(${extrapolationValue}));
return;
}
float in_x = ${inX};
if( in_x < 0.0 || in_x > ${inputWidthFloat} ) {
setOutput(float(${extrapolationValue}));
return;
}
vec2 sourceFracIndexCR = vec2(in_x,in_y);
if(${methodId} == 1) {
// Compute the four integer indices.
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
float top = topLeft + (topRight - topLeft) * fracCR.x;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
float newValue = top + (bottom - top) * fracCR.y;
setOutput(newValue);
} else {
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestCR = ivec2(floor(
sourceFracIndexCR + vec2(0.5,0.5)));
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
setOutput(newValue);
}
}
`}}class CumSumProgram{constructor(shape,exclusive,reverse3){this.variableNames=["x"];this.outputShape=shape;const rank=shape.length;const val=exclusive?"0.0":`getX(${getCoords(rank,"coords")})`;const length=shape[shape.length-1];let condition="";let idxString="";if(exclusive){condition=reverse3?`end != ${length-1}`:"end != 0";idxString=reverse3?"end + 1":"end - 1"}else{condition=reverse3?`end + pow2 < ${length}`:"end >= pow2";idxString=reverse3?"end + pow2":"end - pow2"}this.userCode=`
uniform float index;
void main() {
${getCoordsDataType(rank)} coords = getOutputCoords();
int end = ${getFinalCoord(rank,"coords")};
float val = ${val};
int pow2 = int(pow(2.0, index));
if (${condition}) {
int idx = ${idxString};
${getFinalCoord(rank,"coords")} = idx;
val += getX(${getCoords(rank,"coords")});
}
setOutput(val);
}
`}getCustomSetupFunc(index2){return(gpgpu,webGLProgram)=>{if(this.index==null){this.index=gpgpu.getUniformLocation(webGLProgram,"index")}gpgpu.gl.uniform1f(this.index,index2)}}}function getCoords(rank,name){if(rank===1){return`${name}`}else if(rank===2){return`${name}.x, ${name}.y`}else if(rank===3){return`${name}.x, ${name}.y, ${name}.z`}else if(rank===4){return`${name}.x, ${name}.y, ${name}.z, ${name}.w`}else{throw Error(`Cumulative sum for rank ${rank} is not yet supported`)}}function getFinalCoord(rank,name){if(rank===1){return`${name}`}else if(rank===2){return`${name}.y`}else if(rank===3){return`${name}.z`}else if(rank===4){return`${name}.w`}else{throw Error(`Cumulative sum for rank ${rank} is not yet supported`)}}class DecodeMatrixProgram{constructor(outputShape){this.variableNames=["A"];this.packedInputs=false;this.packedOutput=true;this.outPackingScheme=PackingScheme.DENSE;const texShape=getDenseTexShape(outputShape);const glsl=getGlslDifferences();this.outputShape=outputShape;this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${getLogicalCoordinatesFromFlatIndex(["r","c","d"],outputShape)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${texShape[0]}, ${texShape[1]}));
int index = 4 * (resTexRC.x * ${texShape[1]} + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getA(rc.x, rc.y, rc.z);
}
${glsl.output} = result;
}
`}}class DecodeMatrixPackedProgram{constructor(outputShape){this.variableNames=["A"];this.packedInputs=true;this.packedOutput=true;this.outPackingScheme=PackingScheme.DENSE;const texShape=getDenseTexShape(outputShape);const glsl=getGlslDifferences();this.outputShape=outputShape;this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${getLogicalCoordinatesFromFlatIndex(["r","c","d"],outputShape)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${texShape[0]}, ${texShape[1]}));
int index = 4 * (resTexRC.x * ${texShape[1]} + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
}
${glsl.output} = result;
}
`}}class DepthToSpaceProgram{constructor(outputShape,blockSize,dataFormat){this.variableNames=["x"];this.outputShape=[];this.outputShape=outputShape;this.blockSize=blockSize;this.dataFormat=dataFormat;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int h = ${this.getHeightCoordString()};
int w = ${this.getWidthCoordString()};
int d = ${this.getDepthCoordString()};
int in_h = h / ${blockSize};
int offset_h = imod(h, ${blockSize});
int in_w = w / ${blockSize};
int offset_w = imod(w, ${blockSize});
int offset_d = (offset_h * ${blockSize} + offset_w) *
${this.getOutputDepthSize()};
int in_d = d + offset_d;
float result = ${this.getInputSamplingString()};
setOutput(result);
}
`}getHeightCoordString(){if(this.dataFormat==="NHWC"){return`coords[1]`}else{return`coords[2]`}}getWidthCoordString(){if(this.dataFormat==="NHWC"){return`coords[2]`}else{return`coords[3]`}}getDepthCoordString(){if(this.dataFormat==="NHWC"){return`coords[3]`}else{return`coords[1]`}}getOutputDepthSize(){if(this.dataFormat==="NHWC"){return this.outputShape[3]}else{return this.outputShape[1]}}getInputSamplingString(){if(this.dataFormat==="NHWC"){return`getX(b, in_h, in_w, in_d)`}else{return`getX(b, in_d, in_h, in_w)`}}}class DiagProgram{constructor(size){this.variableNames=["X"];this.outputShape=[size,size];this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
setOutput(val);
}
`}}class EncodeFloatProgram{constructor(outputShape){this.variableNames=["A"];this.outTexUsage=TextureUsage.DOWNLOAD;const glsl=getGlslDifferences();this.outputShape=outputShape;this.userCode=`
${ENCODE_FLOAT_SNIPPET}
void main() {
float x = getAAtOutCoords();
${glsl.output} = encode_float(x);
}
`}}class EncodeFloatPackedProgram{constructor(outputShape){this.variableNames=["A"];this.packedInputs=true;this.packedOutput=false;this.outTexUsage=TextureUsage.DOWNLOAD;const glsl=getGlslDifferences();this.outputShape=outputShape;this.userCode=`
${ENCODE_FLOAT_SNIPPET}
void main() {
ivec3 coords = getOutputCoords();
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
${glsl.output} = encode_float(x);
}
`}}class EncodeMatrixProgram{constructor(outputShape,texShape,inputIsUnsignedByte=false){this.variableNames=["A"];const glsl=getGlslDifferences();const[height,width]=texShape;this.outputShape=outputShape;let output=`result`;if(inputIsUnsignedByte){output=`floor(result * 255. + 0.5)`}this.userCode=`
${getFlatIndexFrom3D(outputShape)}
void main() {
ivec3 coords = getOutputCoords();
int flatIndex = getFlatIndex(coords);
int offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / ${width};
int c = imod(flatIndex, ${width});
vec2 uv = (vec2(c, r) + halfCR) / vec2(${width}.0, ${height}.0);
vec4 values = ${glsl.texture2D}(A, uv);
float result;
if(offset == 0) {
result = values[0];
} else if(offset == 1) {
result = values[1];
} else if(offset == 2) {
result = values[2];
} else {
result = values[3];
}
${glsl.output} = vec4(${output}, 0., 0., 0.);
}
`}}class EncodeMatrixPackedProgram{constructor(outputShape,texShape,inputIsUnsignedByte=false){this.variableNames=["A"];this.packedInputs=false;this.packedOutput=true;const glsl=getGlslDifferences();const[height,width]=texShape;this.outputShape=outputShape;let mainLoop="";let output="result";if(inputIsUnsignedByte){output="floor(result * 255. + 0.5)"}for(let row=0;row<=1;row++){for(let col=0;col<=1;col++){const channel=row*2+col;mainLoop+=`
localCoords = coords;
if(localCoords[2] + ${col} < ${outputShape[2]}) {
localCoords[2] += ${col};
if(localCoords[1] + ${row} < ${outputShape[1]}) {
localCoords[1] += ${row};
flatIndex = getFlatIndex(localCoords);
offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
r = flatIndex / ${width};
c = imod(flatIndex, ${width});
uv = (vec2(c, r) + halfCR) / vec2(${width}.0, ${height}.0);
values = ${glsl.texture2D}(A, uv);
if(offset == 0) {
result[${channel}] = values[0];
} else if(offset == 1) {
result[${channel}] = values[1];
} else if(offset == 2) {
result[${channel}] = values[2];
} else {
result[${channel}] = values[3];
}
}
}
`}}this.userCode=`
${getFlatIndexFrom3D(outputShape)}
void main() {
ivec3 coords = getOutputCoords();
vec4 result = vec4(0.);
int flatIndex, r, c, offset;
ivec3 localCoords;
vec2 uv;
vec4 values;
${mainLoop}
${glsl.output} = ${output};
}
`}}class FillProgram{constructor(shape,value){this.outputShape=[];this.variableNames=["x"];this.outputShape=shape;this.userCode=`
uniform float value;
void main() {
// Input can be obtained from uniform value.
setOutput(value);
}
`}getCustomSetupFunc(value){return(gpgpu,webGLProgram)=>{if(this.valueLoc==null){this.valueLoc=gpgpu.getUniformLocationNoThrow(webGLProgram,"value")}gpgpu.gl.uniform1f(this.valueLoc,value)}}}class GatherProgram{constructor(aShape,indicesLength,axis){this.variableNames=["A","indices"];const outputShape=aShape.slice();outputShape[axis]=indicesLength;this.outputShape=outputShape;this.rank=outputShape.length;const dtype=getCoordsDataType(this.rank);const sourceCoords=getSourceCoords$1(aShape,axis);this.userCode=`
void main() {
${dtype} resRC = getOutputCoords();
setOutput(getA(${sourceCoords}));
}
`}}function getSourceCoords$1(aShape,axis){const rank=aShape.length;if(rank>4){throw Error(`Gather for rank ${rank} is not yet supported`)}if(rank===1){return`int(getIndices(resRC))`}const currentCoords=["resRC.x","resRC.y","resRC.z","resRC.w"];const sourceCoords=[];for(let i=0;i<aShape.length;i++){if(i===axis){sourceCoords.push(`int(getIndices(${currentCoords[i]}))`)}else{sourceCoords.push(`${currentCoords[i]}`)}}return sourceCoords.join()}class GatherNDProgram{constructor(sliceDim,strides,shape){this.sliceDim=sliceDim;this.strides=strides;this.variableNames=["x","indices"];this.outputShape=shape;const stridesType=getCoordsDataType(strides.length);const dtype=getCoordsDataType(shape.length);const strideString=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
${stridesType} strides = ${stridesType}(${this.strides});
void main() {
${dtype} coords = getOutputCoords();
int flattenIndex = 0;
for (int j = 0; j < ${this.sliceDim}; j++) {
int index = round(getIndices(coords[0], j));
flattenIndex += index * ${strideString};
}
setOutput(getX(flattenIndex, coords[1]));
}
`}}function createVertexShader$1(gl){const glsl=getGlslDifferences();const vertexShaderSource=`${glsl.version}
precision highp float;
${glsl.attribute} vec3 clipSpacePos;
${glsl.attribute} vec2 uv;
${glsl.varyingVs} vec2 resultUV;
void main() {
gl_Position = vec4(clipSpacePos, 1);
resultUV = uv;
}`;return createVertexShader(gl,vertexShaderSource)}function createVertexBuffer(gl){const vertexArray=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return createStaticVertexBuffer(gl,vertexArray)}function createIndexBuffer(gl){const triangleVertexIndices=new Uint16Array([0,1,2,2,1,3]);return createStaticIndexBuffer(gl,triangleVertexIndices)}function createAndConfigureTexture(gl,width,height,internalFormat,textureFormat,textureType){validateTextureSize(width,height);const texture=createTexture(gl);const tex2d=gl.TEXTURE_2D;callAndCheck(gl,()=>gl.bindTexture(tex2d,texture));callAndCheck(gl,()=>gl.texParameteri(tex2d,gl.TEXTURE_WRAP_S,gl.CLAMP_TO_EDGE));callAndCheck(gl,()=>gl.texParameteri(tex2d,gl.TEXTURE_WRAP_T,gl.CLAMP_TO_EDGE));callAndCheck(gl,()=>gl.texParameteri(tex2d,gl.TEXTURE_MIN_FILTER,gl.NEAREST));callAndCheck(gl,()=>gl.texParameteri(tex2d,gl.TEXTURE_MAG_FILTER,gl.NEAREST));callAndCheck(gl,()=>gl.texImage2D(tex2d,0,internalFormat,width,height,0,textureFormat,textureType,null));callAndCheck(gl,()=>gl.bindTexture(gl.TEXTURE_2D,null));return texture}function getInternalFormatForFloat32MatrixTexture(textureConfig){return textureConfig.internalFormatFloat}function createFloat32MatrixTexture(gl,rows,columns,textureConfig){const[width,height]=getUnpackedMatrixTextureShapeWidthHeight(rows,columns);return createAndConfigureTexture(gl,width,height,getInternalFormatForFloat32MatrixTexture(textureConfig),textureConfig.textureFormatFloat,gl.FLOAT)}function getInternalFormatForFloat16MatrixTexture(textureConfig){return textureConfig.internalFormatHalfFloat}function createFloat16MatrixTexture(gl,rows,columns,textureConfig){const[width,height]=getUnpackedMatrixTextureShapeWidthHeight(rows,columns);return createAndConfigureTexture(gl,width,height,getInternalFormatForFloat16MatrixTexture(textureConfig),textureConfig.textureFormatFloat,textureConfig.textureTypeHalfFloat)}function getInternalFormatForUnsignedBytesMatrixTexture(textureConfig){return textureConfig.downloadTextureFormat}function createUnsignedBytesMatrixTexture(gl,rows,columns,textureConfig){const[width,height]=getUnpackedMatrixTextureShapeWidthHeight(rows,columns);return createAndConfigureTexture(gl,width,height,getInternalFormatForUnsignedBytesMatrixTexture(textureConfig),gl.RGBA,gl.UNSIGNED_BYTE)}function getInternalFormatForPackedMatrixTexture(textureConfig){return textureConfig.internalFormatPackedFloat}function createPackedMatrixTexture(gl,rows,columns,textureConfig){const[width,height]=getPackedMatrixTextureShapeWidthHeight(rows,columns);return createAndConfigureTexture(gl,width,height,getInternalFormatForPackedMatrixTexture(textureConfig),gl.RGBA,gl.FLOAT)}function getInternalFormatForFloat16PackedMatrixTexture(textureConfig){return textureConfig.internalFormatPackedHalfFloat}function createFloat16PackedMatrixTexture(gl,rows,columns,textureConfig){const[width,height]=getPackedMatrixTextureShapeWidthHeight(rows,columns);return createAndConfigureTexture(gl,width,height,getInternalFormatForFloat16PackedMatrixTexture(textureConfig),gl.RGBA,textureConfig.textureTypeHalfFloat)}function bindVertexProgramAttributeStreams(gl,program,vertexBuffer){const posOffset=0;const uvOffset=3*4;const stride=3*4+2*4;callAndCheck(gl,()=>gl.bindBuffer(gl.ARRAY_BUFFER,vertexBuffer));const success=bindVertexBufferToProgramAttribute(gl,program,"clipSpacePos",vertexBuffer,3,stride,posOffset);return success&&bindVertexBufferToProgramAttribute(gl,program,"uv",vertexBuffer,2,stride,uvOffset)}function uploadDenseMatrixToTexture(gl,texture,width,height,data2,textureConfig){callAndCheck(gl,()=>gl.bindTexture(gl.TEXTURE_2D,texture));let dataForUpload,texelDataType,internalFormat;if(data2 instanceof Uint8Array){dataForUpload=new Uint8Array(width*height*4);texelDataType=gl.UNSIGNED_BYTE;internalFormat=gl.RGBA}else{dataForUpload=new Float32Array(width*height*4);texelDataType=gl.FLOAT;internalFormat=textureConfig.internalFormatPackedFloat}dataForUpload.set(data2);callAndCheck(gl,()=>gl.texImage2D(gl.TEXTURE_2D,0,internalFormat,width,height,0,gl.RGBA,texelDataType,dataForUpload));callAndCheck(gl,()=>gl.bindTexture(gl.TEXTURE_2D,null))}function uploadPixelDataToTexture(gl,texture,pixels){callAndCheck(gl,()=>gl.bindTexture(gl.TEXTURE_2D,texture));if(pixels.data instanceof Uint8Array){callAndCheck(gl,()=>gl.texImage2D(gl.TEXTURE_2D,0,gl.RGBA,pixels.width,pixels.height,0,gl.RGBA,gl.UNSIGNED_BYTE,pixels.data))}else{callAndCheck(gl,()=>gl.texImage2D(gl.TEXTURE_2D,0,gl.RGBA,gl.RGBA,gl.UNSIGNED_BYTE,pixels))}callAndCheck(gl,()=>gl.bindTexture(gl.TEXTURE_2D,null))}function createBufferFromOutputTexture(gl2,rows,columns,textureConfig){const buffer3=gl2.createBuffer();callAndCheck(gl2,()=>gl2.bindBuffer(gl2.PIXEL_PACK_BUFFER,buffer3));const bytesPerFloat=4;const valuesPerTexel=4;const bufferSizeBytes=bytesPerFloat*valuesPerTexel*rows*columns;callAndCheck(gl2,()=>gl2.bufferData(gl2.PIXEL_PACK_BUFFER,bufferSizeBytes,gl2.STREAM_READ));callAndCheck(gl2,()=>gl2.readPixels(0,0,columns,rows,gl2.RGBA,gl2.FLOAT,0));callAndCheck(gl2,()=>gl2.bindBuffer(gl2.PIXEL_PACK_BUFFER,null));return buffer3}function downloadFloat32MatrixFromBuffer(gl,buffer3,size){const gl2=gl;const downloadTarget=new Float32Array(size);gl2.bindBuffer(gl2.PIXEL_PACK_BUFFER,buffer3);gl2.getBufferSubData(gl2.PIXEL_PACK_BUFFER,0,downloadTarget);gl2.bindBuffer(gl2.PIXEL_PACK_BUFFER,null);return downloadTarget}function downloadByteEncodedFloatMatrixFromOutputTexture(gl,rows,columns,textureConfig){const[w,h]=getUnpackedMatrixTextureShapeWidthHeight(rows,columns);const numChannels=4;const downloadTarget=new Uint8Array(getUnpackedArraySizeFromMatrixSize(rows*columns,numChannels));callAndCheck(gl,()=>gl.readPixels(0,0,w,h,textureConfig.downloadTextureFormat,gl.UNSIGNED_BYTE,downloadTarget));return new Float32Array(downloadTarget.buffer)}function downloadPackedMatrixFromBuffer(gl,buffer3,batch,rows,cols,physicalRows,physicalCols,textureConfig){const gl2=gl;const downloadTarget=new Float32Array(getPackedRGBAArraySizeFromMatrixShape(physicalRows,physicalCols));gl2.bindBuffer(gl2.PIXEL_PACK_BUFFER,buffer3);gl2.getBufferSubData(gl2.PIXEL_PACK_BUFFER,0,downloadTarget);gl2.bindBuffer(gl2.PIXEL_PACK_BUFFER,null);return downloadTarget}function downloadMatrixFromPackedOutputTexture(gl,physicalRows,physicalCols){const packedRGBA=new Float32Array(physicalRows*physicalCols*4);callAndCheck(gl,()=>gl.readPixels(0,0,physicalCols,physicalRows,gl.RGBA,gl.FLOAT,packedRGBA));return packedRGBA}class GPGPUContext{constructor(gl){this.outputTexture=null;this.program=null;this.disposed=false;this.vertexAttrsAreBound=false;this.itemsToPoll=[];const glVersion=env3().getNumber("WEBGL_VERSION");if(gl!=null){this.gl=gl;setWebGLContext(glVersion,gl)}else{this.gl=getWebGLContext(glVersion)}let COLOR_BUFFER_FLOAT="WEBGL_color_buffer_float";const COLOR_BUFFER_HALF_FLOAT="EXT_color_buffer_half_float";if(env3().getNumber("WEBGL_VERSION")===1){const TEXTURE_FLOAT="OES_texture_float";const TEXTURE_HALF_FLOAT="OES_texture_half_float";this.textureFloatExtension=getExtensionOrThrow(this.gl,TEXTURE_FLOAT);if(hasExtension(this.gl,TEXTURE_HALF_FLOAT)){this.textureHalfFloatExtension=getExtensionOrThrow(this.gl,TEXTURE_HALF_FLOAT)}else if(env3().get("WEBGL_FORCE_F16_TEXTURES")){throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}this.colorBufferFloatExtension=this.gl.getExtension(COLOR_BUFFER_FLOAT);if(hasExtension(this.gl,COLOR_BUFFER_HALF_FLOAT)){this.colorBufferHalfFloatExtension=getExtensionOrThrow(this.gl,COLOR_BUFFER_HALF_FLOAT)}else if(env3().get("WEBGL_FORCE_F16_TEXTURES")){throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}}else{COLOR_BUFFER_FLOAT="EXT_color_buffer_float";if(hasExtension(this.gl,COLOR_BUFFER_FLOAT)){this.colorBufferFloatExtension=this.gl.getExtension(COLOR_BUFFER_FLOAT)}else if(hasExtension(this.gl,COLOR_BUFFER_HALF_FLOAT)){this.colorBufferHalfFloatExtension=this.gl.getExtension(COLOR_BUFFER_HALF_FLOAT)}else{throw new Error("GL context does not support color renderable floats")}}this.vertexBuffer=createVertexBuffer(this.gl);this.indexBuffer=createIndexBuffer(this.gl);this.framebuffer=createFramebuffer(this.gl);this.textureConfig=getTextureConfig(this.gl,this.textureHalfFloatExtension)}get debug(){return env3().getBool("DEBUG")}dispose(){if(this.disposed){return}if(this.program!=null){console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing.")}if(this.outputTexture!=null){console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.")}const gl=this.gl;callAndCheck(gl,()=>gl.finish());callAndCheck(gl,()=>gl.bindFramebuffer(gl.FRAMEBUFFER,null));callAndCheck(gl,()=>gl.deleteFramebuffer(this.framebuffer));callAndCheck(gl,()=>gl.bindBuffer(gl.ARRAY_BUFFER,null));callAndCheck(gl,()=>gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER,null));callAndCheck(gl,()=>gl.deleteBuffer(this.indexBuffer));this.disposed=true}createFloat32MatrixTexture(rows,columns){this.throwIfDisposed();return createFloat32MatrixTexture(this.gl,rows,columns,this.textureConfig)}createFloat16MatrixTexture(rows,columns){this.throwIfDisposed();return createFloat16MatrixTexture(this.gl,rows,columns,this.textureConfig)}createUnsignedBytesMatrixTexture(rows,columns){this.throwIfDisposed();return createUnsignedBytesMatrixTexture(this.gl,rows,columns,this.textureConfig)}uploadPixelDataToTexture(texture,pixels){this.throwIfDisposed();uploadPixelDataToTexture(this.gl,texture,pixels)}uploadDenseMatrixToTexture(texture,width,height,data2){this.throwIfDisposed();uploadDenseMatrixToTexture(this.gl,texture,width,height,data2,this.textureConfig)}createFloat16PackedMatrixTexture(rows,columns){this.throwIfDisposed();return createFloat16PackedMatrixTexture(this.gl,rows,columns,this.textureConfig)}createPackedMatrixTexture(rows,columns){this.throwIfDisposed();return createPackedMatrixTexture(this.gl,rows,columns,this.textureConfig)}deleteMatrixTexture(texture){this.throwIfDisposed();if(this.outputTexture===texture){unbindColorTextureFromFramebuffer(this.gl,this.framebuffer);this.outputTexture=null}callAndCheck(this.gl,()=>this.gl.deleteTexture(texture))}downloadByteEncodedFloatMatrixFromOutputTexture(texture,rows,columns){return this.downloadMatrixDriver(texture,()=>downloadByteEncodedFloatMatrixFromOutputTexture(this.gl,rows,columns,this.textureConfig))}downloadPackedMatrixFromBuffer(buffer3,batch,rows,columns,physicalRows,physicalCols){return downloadPackedMatrixFromBuffer(this.gl,buffer3,batch,rows,columns,physicalRows,physicalCols,this.textureConfig)}downloadFloat32MatrixFromBuffer(buffer3,size){return downloadFloat32MatrixFromBuffer(this.gl,buffer3,size)}createBufferFromTexture(texture,rows,columns){this.bindTextureToFrameBuffer(texture);const result=createBufferFromOutputTexture(this.gl,rows,columns,this.textureConfig);this.unbindTextureToFrameBuffer();return result}createAndWaitForFence(){const fenceContext=this.createFence(this.gl);return this.pollFence(fenceContext)}createFence(gl){let query;let isFencePassed;if(env3().getBool("WEBGL_FENCE_API_ENABLED")){const gl2=gl;const sync=gl2.fenceSync(gl2.SYNC_GPU_COMMANDS_COMPLETE,0);gl.flush();isFencePassed=()=>{const status=gl2.clientWaitSync(sync,0,0);return status===gl2.ALREADY_SIGNALED||status===gl2.CONDITION_SATISFIED};query=sync}else if(env3().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0){query=this.beginQuery();this.endQuery();isFencePassed=()=>this.isQueryAvailable(query,env3().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}else{isFencePassed=()=>true}return{query,isFencePassed}}downloadMatrixFromPackedTexture(texture,physicalRows,physicalCols){return this.downloadMatrixDriver(texture,()=>downloadMatrixFromPackedOutputTexture(this.gl,physicalRows,physicalCols))}createProgram(fragmentShaderSource){this.throwIfDisposed();const gl=this.gl;const fragmentShader=createFragmentShader(gl,fragmentShaderSource);const vertexShader=createVertexShader$1(gl);const program=createProgram(gl);callAndCheck(gl,()=>gl.attachShader(program,vertexShader));callAndCheck(gl,()=>gl.attachShader(program,fragmentShader));linkProgram(gl,program);if(this.debug){validateProgram(gl,program)}if(!this.vertexAttrsAreBound){this.setProgram(program);this.vertexAttrsAreBound=bindVertexProgramAttributeStreams(gl,this.program,this.vertexBuffer)}return program}deleteProgram(program){this.throwIfDisposed();if(program===this.program){this.program=null}if(program!=null){callAndCheck(this.gl,()=>this.gl.deleteProgram(program))}}setProgram(program){this.throwIfDisposed();this.program=program;if(this.program!=null&&this.debug){validateProgram(this.gl,this.program)}callAndCheck(this.gl,()=>this.gl.useProgram(program))}getUniformLocation(program,uniformName,shouldThrow=true){this.throwIfDisposed();if(shouldThrow){return getProgramUniformLocationOrThrow(this.gl,program,uniformName)}else{return getProgramUniformLocation(this.gl,program,uniformName)}}getAttributeLocation(program,attribute){this.throwIfDisposed();return callAndCheck(this.gl,()=>this.gl.getAttribLocation(program,attribute))}getUniformLocationNoThrow(program,uniformName){this.throwIfDisposed();return this.gl.getUniformLocation(program,uniformName)}setInputMatrixTexture(inputMatrixTexture,uniformLocation,textureUnit){this.throwIfDisposed();this.throwIfNoProgram();bindTextureToProgramUniformSampler(this.gl,inputMatrixTexture,uniformLocation,textureUnit)}setOutputMatrixTexture(outputMatrixTexture,rows,columns){this.setOutputMatrixTextureDriver(outputMatrixTexture,columns,rows)}setOutputPackedMatrixTexture(outputPackedMatrixTexture,rows,columns){this.throwIfDisposed();const[width,height]=getPackedMatrixTextureShapeWidthHeight(rows,columns);this.setOutputMatrixTextureDriver(outputPackedMatrixTexture,width,height)}setOutputMatrixWriteRegion(startRow,numRows,startColumn,numColumns){this.setOutputMatrixWriteRegionDriver(startColumn,startRow,numColumns,numRows)}setOutputPackedMatrixWriteRegion(startRow,numRows,startColumn,numColumns){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){if(this.program!=null){validateProgram(this.gl,this.program)}validateFramebuffer(this.gl)}executeProgram(){this.throwIfDisposed();this.throwIfNoProgram();const gl=this.gl;if(this.debug){this.debugValidate()}callAndCheck(gl,()=>gl.drawElements(gl.TRIANGLES,6,gl.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed();callAndCheck(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){if(this.disjointQueryTimerExtension==null){this.disjointQueryTimerExtension=getExtensionOrThrow(this.gl,env3().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")}return this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(env3().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){const gl2=this.gl;const ext2=this.getQueryTimerExtensionWebGL2();const query2=gl2.createQuery();gl2.beginQuery(ext2.TIME_ELAPSED_EXT,query2);return query2}const ext=this.getQueryTimerExtensionWebGL1();const query=ext.createQueryEXT();ext.beginQueryEXT(ext.TIME_ELAPSED_EXT,query);return query}endQuery(){if(env3().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){const gl2=this.gl;const ext2=this.getQueryTimerExtensionWebGL2();gl2.endQuery(ext2.TIME_ELAPSED_EXT);return}const ext=this.getQueryTimerExtensionWebGL1();ext.endQueryEXT(ext.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(query){await repeatedTry(()=>this.disposed||this.isQueryAvailable(query,env3().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")));return this.getQueryTime(query,env3().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(query,queryTimerVersion){if(queryTimerVersion===0){return null}if(queryTimerVersion===2){const gl2=this.gl;const timeElapsedNanos=gl2.getQueryParameter(query,gl2.QUERY_RESULT);return timeElapsedNanos/1e6}else{const ext=this.getQueryTimerExtensionWebGL1();const timeElapsedNanos=ext.getQueryObjectEXT(query,ext.QUERY_RESULT_EXT);return timeElapsedNanos/1e6}}isQueryAvailable(query,queryTimerVersion){if(queryTimerVersion===0){return true}if(queryTimerVersion===2){const gl2=this.gl;const ext=this.getQueryTimerExtensionWebGL2();const available=gl2.getQueryParameter(query,gl2.QUERY_RESULT_AVAILABLE);if(this.disjoint==null){this.disjoint=this.gl.getParameter(ext.GPU_DISJOINT_EXT)}return available&&!this.disjoint}else{const ext=this.getQueryTimerExtensionWebGL1();const available=ext.getQueryObjectEXT(query,ext.QUERY_RESULT_AVAILABLE_EXT);if(this.disjoint==null){this.disjoint=this.gl.getParameter(ext.GPU_DISJOINT_EXT)}return available&&!this.disjoint}}pollFence(fenceContext){return new Promise(resolve=>{this.addItemToPoll(()=>fenceContext.isFencePassed(),()=>resolve())})}pollItems(){const index2=linearSearchLastTrue(this.itemsToPoll.map(x=>x.isDoneFn));for(let i=0;i<=index2;++i){const{resolveFn}=this.itemsToPoll[i];resolveFn()}this.itemsToPoll=this.itemsToPoll.slice(index2+1)}addItemToPoll(isDoneFn,resolveFn){this.itemsToPoll.push({isDoneFn,resolveFn});if(this.itemsToPoll.length>1){return}repeatedTry(()=>{this.pollItems();return this.itemsToPoll.length===0})}bindTextureToFrameBuffer(texture){this.throwIfDisposed();bindColorTextureToFramebuffer(this.gl,texture,this.framebuffer);if(this.debug){validateFramebuffer(this.gl)}}unbindTextureToFrameBuffer(){if(this.outputTexture!=null){bindColorTextureToFramebuffer(this.gl,this.outputTexture,this.framebuffer);if(this.debug){validateFramebuffer(this.gl)}}else{unbindColorTextureFromFramebuffer(this.gl,this.framebuffer)}}downloadMatrixDriver(texture,downloadAndDecode){this.bindTextureToFrameBuffer(texture);const result=downloadAndDecode();this.unbindTextureToFrameBuffer();return result}setOutputMatrixTextureDriver(outputMatrixTextureMaybePacked,width,height){this.throwIfDisposed();const gl=this.gl;bindColorTextureToFramebuffer(gl,outputMatrixTextureMaybePacked,this.framebuffer);if(this.debug){validateFramebuffer(gl)}this.outputTexture=outputMatrixTextureMaybePacked;callAndCheck(gl,()=>gl.viewport(0,0,width,height));callAndCheck(gl,()=>gl.scissor(0,0,width,height))}setOutputMatrixWriteRegionDriver(x,y,width,height){this.throwIfDisposed();callAndCheck(this.gl,()=>this.gl.scissor(x,y,width,height))}throwIfDisposed(){if(this.disposed){throw new Error("Attempted to use disposed GPGPUContext.")}}throwIfNoProgram(){if(this.program==null){throw new Error("No GPU program is currently set.")}}}function linearSearchLastTrue(arr){let i=0;for(;i<arr.length;++i){const isDone=arr[i]();if(!isDone){break}}return i-1}function compileProgram(gpgpu,program,inputs,output){const userCode=program.userCode;const inputInfos=inputs.map((input2,i)=>{const shapeInfo={logicalShape:input2.shape,texShape:input2.isUniform?null:input2.texData.texShape,isUniform:input2.isUniform,isPacked:input2.isUniform?false:input2.texData.isPacked,flatOffset:null};if(input2.texData!=null&&input2.texData.slice!=null&&input2.texData.slice.flatOffset>0){shapeInfo.flatOffset=input2.texData.slice.flatOffset}return{name:program.variableNames[i],shapeInfo}});const inShapeInfos=inputInfos.map(x=>x.shapeInfo);const outShapeInfo={logicalShape:output.shape,texShape:output.texData.texShape,isUniform:false,isPacked:output.texData.isPacked,flatOffset:null};const source=makeShader(inputInfos,outShapeInfo,userCode,program.packedInputs);const webGLProgram=gpgpu.createProgram(source);let infLoc=null;const nanLoc=gpgpu.getUniformLocation(webGLProgram,"NAN",false);if(env3().getNumber("WEBGL_VERSION")===1){infLoc=gpgpu.getUniformLocation(webGLProgram,"INFINITY",false)}const uniformLocations={};for(let i=0;i<program.variableNames.length;i++){const varName=program.variableNames[i];const shouldThrow=false;uniformLocations[varName]=gpgpu.getUniformLocation(webGLProgram,varName,shouldThrow);uniformLocations[`offset${varName}`]=gpgpu.getUniformLocation(webGLProgram,`offset${varName}`,shouldThrow)}return{program,source,webGLProgram,uniformLocations,inShapeInfos,outShapeInfo,infLoc,nanLoc}}function validateBinaryAndProgram(shapeInfos,inputs){if(shapeInfos.length!==inputs.length){throw Error(`Binary was compiled with ${shapeInfos.length} inputs, but was executed with ${inputs.length} inputs`)}shapeInfos.forEach((s,i)=>{const shapeA=s.logicalShape;const input2=inputs[i];const shapeB=input2.shape;if(!arraysEqual(shapeA,shapeB)){throw Error(`Binary was compiled with different shapes than the current args. Shapes ${shapeA} and ${shapeB} must match`)}if(s.isUniform&&input2.isUniform){return}const texShapeA=s.texShape;const texShapeB=input2.isUniform?null:input2.texData.texShape;if(!arraysEqual(texShapeA,texShapeB)){throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${texShapeA} and ${texShapeB} must match`)}})}function runProgram(gpgpu,binary,inputs,output,customSetup){validateBinaryAndProgram(binary.inShapeInfos,inputs);validateBinaryAndProgram([binary.outShapeInfo],[output]);const outTex=output.texData.texture;const outTexShape=output.texData.texShape;if(output.texData.isPacked){gpgpu.setOutputPackedMatrixTexture(outTex,outTexShape[0],outTexShape[1])}else{gpgpu.setOutputMatrixTexture(outTex,outTexShape[0],outTexShape[1])}gpgpu.setProgram(binary.webGLProgram);if(env3().getNumber("WEBGL_VERSION")===1){if(binary.infLoc!==null){gpgpu.gl.uniform1f(binary.infLoc,Infinity)}}if(binary.nanLoc!==null){gpgpu.gl.uniform1f(binary.nanLoc,NaN)}inputs.forEach((input2,i)=>{const varName=binary.program.variableNames[i];const varLoc=binary.uniformLocations[varName];const varOffsetLoc=binary.uniformLocations[`offset${varName}`];if(varLoc==null){return}if(input2.isUniform){if(sizeFromShape(input2.shape)<2){gpgpu.gl.uniform1f(varLoc,input2.uniformValues[0])}else{let vals=input2.uniformValues;if(!(vals instanceof Float32Array)){vals=new Float32Array(vals)}gpgpu.gl.uniform1fv(varLoc,vals)}return}if(input2.texData.slice!=null&&varOffsetLoc!=null){gpgpu.gl.uniform1i(varOffsetLoc,input2.texData.slice.flatOffset)}gpgpu.setInputMatrixTexture(input2.texData.texture,varLoc,i)});if(customSetup!=null){customSetup(gpgpu,binary.webGLProgram)}gpgpu.executeProgram()}function makeShaderKey(program,inputs,output){let keyInputs="";inputs.concat(output).forEach(x=>{const hasOffset=x.texData!=null&&x.texData.slice!=null&&x.texData.slice.flatOffset>0;const texShape=x.isUniform?"uniform":x.texData.texShape;keyInputs+=`${x.shape}_${texShape}_${hasOffset}`});const keyUserCode=program.userCode;let key=program.constructor.name;key+="_"+keyInputs+"_"+keyUserCode;return key}class Im2ColPackedProgram{constructor(outputShape,inputShape,convInfo){this.variableNames=["A"];this.packedInputs=true;this.packedOutput=true;this.outputShape=outputShape;const{filterWidth,inChannels,strideWidth,strideHeight,padInfo,outWidth,dilationWidth,dilationHeight,dataFormat}=convInfo;const{left,top}=padInfo;const itemsPerBlockRow=inChannels*filterWidth;const glsl=getGlslDifferences();const isChannelsLast=dataFormat==="channelsLast";const rowDim=isChannelsLast?0:1;const colDim=isChannelsLast?1:2;let unrolled=``;for(let row=0;row<=1;row++){for(let col=0;col<=1;col++){unrolled+=`
blockIndex = rc.y + ${col};
pos = rc.x + ${row};
if(blockIndex < ${outputShape[1]} && pos < ${outputShape[0]}) {
offsetY = int(blockIndex / (${outWidth})) * ${strideHeight} - ${top};
d0 = offsetY + ${dilationHeight} * (pos / ${itemsPerBlockRow});
if(d0 < ${inputShape[rowDim]} && d0 >= 0) {
offsetX = int(mod(float(blockIndex), ${outWidth}.) * ${strideWidth}. - ${left}.);
d1 = offsetX + ${dilationWidth} * (int(mod(float(pos), ${itemsPerBlockRow}.) / ${inChannels}.));
if(d1 < ${inputShape[colDim]} && d1 >= 0) {
ch = int(mod(float(pos), ${inChannels}.));
if (${isChannelsLast}) {
innerDims = vec2(d1, ch);
result[${row*2+col}] = getChannel(
getA(d0, int(innerDims.x),
int(innerDims.y)), innerDims);
} else {
innerDims = vec2(d0, d1);
result[${row*2+col}] = getChannel(
getA(ch, int(innerDims.x),
int(innerDims.y)), innerDims);
}
}
}
}
`}}this.userCode=`
void main() {
ivec2 rc = getOutputCoords();
vec4 result = vec4(0);
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
vec2 innerDims;
${unrolled}
${glsl.output} = result;
}
`}}class LRNProgram{constructor(xShape,radius,bias,alpha,beta){this.variableNames=["x"];this.outputShape=[];const rad=radius;const maxD=xShape[3]-1;this.outputShape=xShape;let powOperator;const basis=`float(${bias}) + float(${alpha}) * sum`;if(beta===.5){powOperator=`inversesqrt(${basis})`}else if(beta===1){powOperator=`1.0/(${basis})`}else{powOperator=`exp(log(${basis}) * float(-${beta}));`}this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
int d = coords[3];
float x = getX(b, r, c, d);
float sum = 0.0;
for (int j = -${rad}; j <= ${rad}; j++) {
int idx = d + j;
if (idx >= 0 && idx <= ${maxD}) {
float z = getX(b, r, c, idx);
sum += z * z;
}
}
float val = x * ${powOperator};
setOutput(val);
}
`}}class LRNGradProgram{constructor(inputShape,depthRadius,bias,alpha,beta){this.variableNames=["inputImage","outputImage","dy"];this.outputShape=[];this.outputShape=inputShape;this.depth=inputShape[3];this.depthRadius=depthRadius;this.bias=bias;this.alpha=alpha;this.beta=beta;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
float result = 0.0;
for (int d = 0; d < ${this.depth}; ++d) {
int depthBegin = int(max(0.0, float(d - ${depthRadius})));
int depthEnd = int(min(float(${this.depth}),
float(d + ${depthRadius} + 1)));
const int MIN_DEPTH_BEGIN = 0;
const int MAX_DEPTH_END = ${this.depth};
float norm = 0.0;
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd) {
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
}
else {
break;
}
}
norm = float(${alpha}) * norm + float(${bias});
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd){
float dyi = -2.0 * float(${alpha})
* float(${beta})
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
/ norm;
if (k == d) {
dyi += pow(norm, -1.0 * ${beta});
}
if (k == coords[3]) {
dyi *= getDy(b, r, c, d);
result += dyi;
}
}
else {
break;
}
}
}
setOutput(result);
}
`}}class LRNPackedProgram{constructor(xShape,radius,bias,alpha,beta){this.variableNames=["x"];this.outputShape=[];this.packedInputs=true;this.packedOutput=true;const rad=radius;const maxD=xShape[3]-1;this.outputShape=xShape;let powOperator;const basis=`float(${bias}) + float(${alpha}) * sum`;if(beta===.5){powOperator=`inversesqrt(${basis})`}else if(beta===1){powOperator=`1.0/(${basis})`}else{powOperator=`exp(log(${basis}) * float(-${beta}));`}this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords.x;
int r = coords.y;
int c = coords.z;
int d = coords.w;
bool hasNextCol = d < ${this.outputShape[3]};
bool hasNextRow = c < ${this.outputShape[2]};
vec4 sum = vec4(0.);
vec4 xFragAtOutputCoords = getX(b, r, c, d);
vec4 xAtOutputCoords = vec4(
getChannel(xFragAtOutputCoords, vec2(c, d)),
hasNextCol ?
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
hasNextRow ?
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
(hasNextRow && hasNextCol) ?
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
);
int firstChannel = d - ${rad};
vec2 cache = vec2(0.);
if(firstChannel >= 0){
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
if(hasNextRow){
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
}
}
ivec2 depth = ivec2(d, d + 1);
for (int j = - ${rad}; j <= ${rad}; j++) {
ivec2 idx = depth + j;
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${maxD}));
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
if(depthInRange || depthPlusOneInRange){
vec4 z = vec4(0.);
vec4 xFragAtCurrentDepth;
z.xz = cache.xy;
if(depthPlusOneInRange && hasNextCol){
xFragAtCurrentDepth = idx.y != d ?
getX(b, r, c, idx.y) : xFragAtOutputCoords;
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
if(hasNextRow){
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
}
}
cache.xy = z.yw;
sum += z * z;
}
}
vec4 result = xAtOutputCoords * ${powOperator};
setOutput(result);
}
`}}class MaxPool2DBackpropProgram{constructor(convInfo){this.variableNames=["dy","maxPos"];this.outputShape=convInfo.inShape;const strideHeight=convInfo.strideHeight;const strideWidth=convInfo.strideWidth;const dilationHeight=convInfo.dilationHeight;const effectiveFilterHeight=convInfo.effectiveFilterHeight;const effectiveFilterWidth=convInfo.effectiveFilterWidth;const padTop=effectiveFilterHeight-1-convInfo.padInfo.top;const padLeft=effectiveFilterWidth-1-convInfo.padInfo.left;const lastIndex=effectiveFilterHeight*effectiveFilterWidth-1;this.userCode=`
const ivec2 pads = ivec2(${padTop}, ${padLeft});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${effectiveFilterHeight};
wR += ${dilationHeight}) {
float dyR = float(dyRCorner + wR) / ${strideHeight}.0;
if (dyR < 0.0 || dyR >= ${convInfo.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${effectiveFilterWidth}; wC++) {
float dyC = float(dyCCorner + wC) / ${strideWidth}.0;
if (dyC < 0.0 || dyC >= ${convInfo.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
int maxPosValue = ${lastIndex} - int(getMaxPos(b, idyR, idyC, d));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue = wR * ${effectiveFilterWidth} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
setOutput(dotProd);
}
`}}class MaxPool3DBackpropProgram{constructor(convInfo){this.variableNames=["dy","maxPos"];this.outputShape=convInfo.inShape;const strideDepth=convInfo.strideDepth;const strideHeight=convInfo.strideHeight;const strideWidth=convInfo.strideWidth;const dilationDepth=convInfo.dilationDepth;const dilationHeight=convInfo.dilationHeight;const dilationWidth=convInfo.dilationWidth;const effectiveFilterDepth=convInfo.effectiveFilterDepth;const effectiveFilterHeight=convInfo.effectiveFilterHeight;const effectiveFilterWidth=convInfo.effectiveFilterWidth;const padFront=effectiveFilterDepth-1-convInfo.padInfo.front;const padTop=effectiveFilterHeight-1-convInfo.padInfo.top;const padLeft=effectiveFilterWidth-1-convInfo.padInfo.left;const lastIndex=effectiveFilterDepth*effectiveFilterHeight*effectiveFilterWidth-1;this.userCode=`
const ivec3 pads = ivec3(${padFront}, ${padTop}, ${padLeft});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${effectiveFilterDepth};
wD += ${dilationDepth}) {
float dyD = float(dyDCorner + wD) / ${strideDepth}.0;
if (dyD < 0.0 || dyD >= ${convInfo.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${effectiveFilterHeight};
wR += ${dilationHeight}) {
float dyR = float(dyRCorner + wR) / ${strideHeight}.0;
if (dyR < 0.0 || dyR >= ${convInfo.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${effectiveFilterWidth};
wC += ${dilationWidth}) {
float dyC = float(dyCCorner + wC) / ${strideWidth}.0;
if (dyC < 0.0 || dyC >= ${convInfo.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
int maxPosValue = ${lastIndex} -
int(getMaxPos(batch, idyD, idyR, idyC, ch));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue =
wD * ${effectiveFilterHeight} * ${effectiveFilterWidth} +
wR * ${effectiveFilterWidth} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
}
setOutput(dotProd);
}
`}}class MatMulPackedProgram{constructor(aShape,bShape,outputShape,transposeA=false,transposeB=false,addBias=false,activation2=null,hasPreluActivation=false){this.variableNames=["matrixA","matrixB"];this.packedInputs=true;this.packedOutput=true;this.outputShape=outputShape;const sharedDim=transposeA?aShape[1]:aShape[2];const sharedDimensionPacked=Math.ceil(sharedDim/2);const aSample=transposeA?"i * 2, rc.y":"rc.y, i * 2";const bSample=transposeB?"rc.z, i * 2":"i * 2, rc.z";const aSwizzle=transposeA?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"];const bSwizzle=transposeB?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"];let activationSnippet="",applyActivationSnippet="";if(activation2){if(hasPreluActivation){activationSnippet=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${activation2}
}`}else{activationSnippet=`vec4 activation(vec4 x) {
${activation2}
}`}applyActivationSnippet=`result = activation(result);`}const addBiasSnippet=addBias?"result += getBiasAtOutCoords();":"";if(addBias){this.variableNames.push("bias")}if(hasPreluActivation){this.variableNames.push("preluActivationWeights")}let batchASnippet="rc.x";let batchBSnippet="rc.x";if(aShape[0]<bShape[0]){batchASnippet=`int(min(float(rc.x), ${aShape[0]-1}.))`}else if(bShape[0]<aShape[0]){batchBSnippet=`int(min(float(rc.x), ${bShape[0]-1}.))`}this.userCode=`
${activationSnippet}
const float sharedDimension = ${sharedDimensionPacked}.0;
vec4 dot2x2ARowBCol(ivec3 rc) {
vec4 result = vec4(0);
for (int i = 0; i < ${sharedDimensionPacked}; i++) {
int batchA = ${batchASnippet};
int batchB = ${batchBSnippet};
vec4 a = getMatrixA(batchA, ${aSample});
vec4 b = getMatrixB(batchB, ${bSample});
// These swizzled products need to be separately added.
// See: https://github.com/tensorflow/tfjs/issues/1735
result += (${aSwizzle[0]} * ${bSwizzle[0]});
result += (${aSwizzle[1]} * ${bSwizzle[1]});
}
return result;
}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = dot2x2ARowBCol(rc);
${addBiasSnippet}
${applyActivationSnippet}
setOutput(result);
}
`}}class MultinomialProgram{constructor(batchSize,numOutcomes,numSamples){this.variableNames=["probs"];this.outputShape=[batchSize,numSamples];this.userCode=`
uniform float seed;
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
float r = random(seed);
float cdf = 0.0;
for (int i = 0; i < ${numOutcomes-1}; i++) {
cdf += getProbs(batch, i);
if (r < cdf) {
setOutput(float(i));
return;
}
}
// If no other event happened, last event happened.
setOutput(float(${numOutcomes-1}));
}
`}getCustomSetupFunc(seed){return(gpgpu,webGLProgram)=>{if(this.seedLoc==null){this.seedLoc=gpgpu.getUniformLocation(webGLProgram,"seed")}gpgpu.gl.uniform1f(this.seedLoc,seed)}}}class OneHotProgram{constructor(numIndices,depth,onValue,offValue){this.variableNames=["indices"];this.outputShape=[numIndices,depth];this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int index = round(getIndices(coords.x));
setOutput(mix(float(${offValue}), float(${onValue}),
float(index == coords.y)));
}
`}}class PackProgram{constructor(outputShape){this.variableNames=["A"];this.packedInputs=false;this.packedOutput=true;this.outputShape=outputShape;const rank=outputShape.length;if(rank===0){this.userCode=`
void main() {
setOutput(vec4(getA(), 0., 0., 0.));
}
`}else{const channels=getChannels("rc",rank);const dtype=getCoordsDataType(rank);const outOfBoundsCondition=getOutOfBoundsCondition(rank,outputShape,channels);const setup38=getSetup(rank,outputShape[outputShape.length-1],outputShape[outputShape.length-2],channels);const output=getOutput(outputShape,channels);this.userCode=`
void main() {
${dtype} rc = getOutputCoords();
if(${outOfBoundsCondition}) {
setOutput(vec4(0));
} else {
${setup38}
setOutput(vec4(${output}));
}
}
`}}}function getSourceCoordsArr(rank,dims){const coords2=[];for(let row=0;row<=1;row++){for(let col=0;col<=1;col++){let coord=`${row===0?"r":"rp1"}, ${col===0?"c":"cp1"}`;for(let d=2;d<rank;d++){coord=`${dims[dims.length-1-d]},`+coord}coords2.push(coord)}}return coords2}function getOutOfBoundsCondition(rank,shape,dims){if(rank===1){return`rc > ${shape[0]}`}let cond="";for(let i=rank-2;i<rank;i++){cond+=`${dims[i]} >= ${shape[i]}`;if(i<rank-1){cond+="||"}}return cond}function getSetup(rank,cols,rows,dims){if(rank===1){return""}const innerDims=dims.slice(-2);return`
int r = ${innerDims[0]};
int c = ${innerDims[1]};
int rp1 = r + 1;
int cp1 = c + 1;
bool cEdge = cp1 >= ${cols};
bool rEdge = rp1 >= ${rows};
`}function getOutput(shape,dims){const rank=shape.length;const sourceCoords=getSourceCoordsArr(rank,dims);if(rank===1){return`getA(rc),
rc + 1 >= ${shape[0]} ? 0. : getA(rc + 1),
0, 0`}return`getA(${sourceCoords[0]}),
cEdge ? 0. : getA(${sourceCoords[1]}),
rEdge ? 0. : getA(${sourceCoords[2]}),
rEdge || cEdge ? 0. : getA(${sourceCoords[3]})`}class PadProgram{constructor(xShape,paddings,constantValue){this.variableNames=["x"];this.outputShape=paddings.map((p2,i)=>p2[0]+xShape[i]+p2[1]);const rank=xShape.length;const type=getCoordsDataType(rank);const start=paddings.map(p2=>p2[0]).join(",");const end=paddings.map((p2,i)=>p2[0]+xShape[i]).join(",");const unpackedCoords=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,rank);if(rank===1){this.userCode=`
int start = ${start};
int end = ${end};
void main() {
int outC = getOutputCoords();
if (outC < start || outC >= end) {
setOutput(float(${constantValue}));
} else {
setOutput(getX(outC - start));
}
}
`;return}this.userCode=`
${type} start = ${type}(${start});
${type} end = ${type}(${end});
void main() {
${type} outC = getOutputCoords();
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
setOutput(float(${constantValue}));
} else {
${type} coords = outC - start;
setOutput(getX(${unpackedCoords}));
}
}
`}}class PadPackedProgram{constructor(xShape,paddings,constantValue){this.variableNames=["x"];this.packedInputs=true;this.packedOutput=true;this.outputShape=paddings.map((p2,i)=>p2[0]+xShape[i]+p2[1]);const rank=xShape.length;const dtype=getCoordsDataType(rank);const start=paddings.map(p2=>p2[0]).join(",");const end=paddings.map((p2,i)=>p2[0]+xShape[i]).join(",");const coords2=getChannels("rc",rank);const source=getChannels("source",rank);const cLimit=`${coords2[rank-1]} < ${this.outputShape[rank-1]}`;const innerDims=rank===1?"source":`vec2(${source.slice(-2).join()})`;const componentSetup=[`${dtype} rc = outputLoc;`,`${coords2[rank-1]} += 1;
if(${cLimit}) {
`,rank===1?"":`}
rc = outputLoc;
${coords2[rank-2]} += 1;
if(${coords2[rank-2]} < ${this.outputShape[rank-2]}) {`,rank===1?"":` ${coords2[rank-1]} += 1;
if(${cLimit}) {`];const paddingArea=rank===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))";let mainLoop="";for(let i=0,j=rank===1?2:4;i<j;i++){mainLoop+=`
${componentSetup[i]}
if (${paddingArea}) {
result[${i}] = float(${constantValue});
} else {
${dtype} source = rc - start;
result[${i}] = getChannel(getX(${source.join()}), ${innerDims});
}
`}mainLoop+=rank===1?`} `:`}}`;this.userCode=`
const ${dtype} start = ${dtype}(${start});
const ${dtype} end = ${dtype}(${end});
void main() {
${dtype} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${mainLoop}
setOutput(result);
}
`}}class Pool2DProgram{constructor(convInfo,poolType,computePositions,flattenPositions=false,includeBatchInIndex=false){this.variableNames=["x"];if(poolType==="avg"&&computePositions){throw new Error("Cannot compute positions for average pool.")}const filterWidth=convInfo.filterWidth;const strideHeight=convInfo.strideHeight;const strideWidth=convInfo.strideWidth;const dilationHeight=convInfo.dilationHeight;const dilationWidth=convInfo.dilationWidth;const effectiveFilterHeight=convInfo.effectiveFilterHeight;const effectiveFilterWidth=convInfo.effectiveFilterWidth;const padTop=convInfo.padInfo.top;const padLeft=convInfo.padInfo.left;this.outputShape=convInfo.outShape;const isAvgPool=poolType==="avg";const batchFlattenPositionStr=`((batch * ${convInfo.inHeight} + xR) * ${convInfo.inWidth} + xC) * ${convInfo.inChannels} + d`;const flattenPositionStr=`(xR * ${convInfo.inWidth} + xC) * ${convInfo.inChannels} + d`;let initializationValue="0.0";if(!isAvgPool){initializationValue="-1.0 / 1e-20"}if(computePositions){const compareOp2=">=";this.userCode=`
const ivec2 strides = ivec2(${strideHeight}, ${strideWidth});
const ivec2 pads = ivec2(${padTop}, ${padLeft});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
float avgValue = 0.0;
for (int wR = 0; wR < ${effectiveFilterHeight};
wR += ${dilationHeight}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${convInfo.inHeight}) {
continue;
}
for (int wC = 0; wC < ${effectiveFilterWidth};
wC += ${dilationWidth}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${convInfo.inWidth}) {
continue;
}
float value = getX(batch, xR, xC, d);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${compareOp2} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${flattenPositions?includeBatchInIndex?batchFlattenPositionStr:flattenPositionStr:`wR * ${effectiveFilterWidth} + wC`};
}
}
}
setOutput(float(minMaxPosition));
}
`;return}const compareOp="max";let returnValue=`${poolType}(${poolType}(${poolType}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;if(poolType==="avg"){returnValue=`avgValue / count`}const filterWidthNearestVec4=Math.floor(filterWidth/4)*4;const filterWidthVec4Remainder=filterWidth%4;const updateSnippet=`
if (${isAvgPool}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${compareOp}(values, minMaxValue);
}
`;this.userCode=`
const ivec2 strides = ivec2(${strideHeight}, ${strideWidth});
const ivec2 pads = ivec2(${padTop}, ${padLeft});
const float initializationValue = ${initializationValue};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xR, int xC, int d) {
if (xC < 0 || xC >= ${convInfo.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xR, xC, d);
}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
vec4 minMaxValue = vec4(${initializationValue});
float avgValue = 0.0;
count = 0.0;
for (int wR = 0; wR < ${effectiveFilterHeight};
wR += ${dilationHeight}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${convInfo.inHeight}) {
continue;
}
for (int wC = 0; wC < ${filterWidthNearestVec4}; wC += 4) {
int xC = xCCorner + wC * ${dilationWidth};
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${dilationWidth}, d),
getValue(batch, xR, xC + 2 * ${dilationWidth}, d),
getValue(batch, xR, xC + 3 * ${dilationWidth}, d)
);
${updateSnippet}
}
int xC = xCCorner + ${filterWidthNearestVec4};
if (${filterWidthVec4Remainder===1}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
initializationValue,
initializationValue,
initializationValue
);
${updateSnippet}
} else if (${filterWidthVec4Remainder===2}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${dilationWidth}, d),
initializationValue,
initializationValue
);
${updateSnippet}
} else if (${filterWidthVec4Remainder===3}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${dilationWidth}, d),
getValue(batch, xR, xC + 2 * ${dilationWidth}, d),
initializationValue
);
${updateSnippet}
}
}
setOutput(${returnValue});
}
`}}class Pool3DProgram{constructor(convInfo,poolType,computePositions,flattenPositions=false,includeBatchInIndex=false){this.variableNames=["x"];if(poolType==="avg"&&computePositions){throw new Error("Cannot compute positions for average pool.")}const filterWidth=convInfo.filterWidth;const strideDepth=convInfo.strideDepth;const strideHeight=convInfo.strideHeight;const strideWidth=convInfo.strideWidth;const dilationDepth=convInfo.dilationDepth;const dilationHeight=convInfo.dilationHeight;const dilationWidth=convInfo.dilationWidth;const effectiveFilterDepth=convInfo.effectiveFilterDepth;const effectiveFilterHeight=convInfo.effectiveFilterHeight;const effectiveFilterWidth=convInfo.effectiveFilterWidth;const padFront=convInfo.padInfo.front;const padTop=convInfo.padInfo.top;const padLeft=convInfo.padInfo.left;this.outputShape=convInfo.outShape;const isAvgPool=poolType==="avg";let initializationValue="0.0";if(!isAvgPool){initializationValue="-1.0 / 1e-20"}if(computePositions){const compareOp2=">=";this.userCode=`
const ivec3 strides =
ivec3(${strideDepth}, ${strideHeight}, ${strideWidth});
const ivec3 pads = ivec3(${padFront}, ${padTop}, ${padLeft});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
for (int wD = 0; wD < ${effectiveFilterDepth};
wD += ${dilationDepth}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${convInfo.inDepth}) {
continue;
}
for (int wR = 0; wR < ${effectiveFilterHeight};
wR += ${dilationHeight}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${convInfo.inHeight}) {
continue;
}
for (int wC = 0; wC < ${effectiveFilterWidth};
wC += ${dilationWidth}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${convInfo.inWidth}) {
continue;
}
float value = getX(batch, xD, xR, xC, ch);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${compareOp2} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${flattenPositions?includeBatchInIndex?`(((batch * ${convInfo.inDepth} + xD) * ${convInfo.inHeight} + xR) * ${convInfo.inWidth} + xC) * ${convInfo.inChannels} + ch`:`((xD * ${convInfo.inHeight} + xR) * ${convInfo.inWidth} + xC) * ${convInfo.inChannels} + ch`:`wD * ${effectiveFilterHeight} * ${effectiveFilterWidth} +
wR * ${effectiveFilterWidth} + wC`};
}
}
}
}
setOutput(float(minMaxPosition));
}
`;return}const compareOp="max";let returnValue=`${poolType}(${poolType}(${poolType}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;if(poolType==="avg"){returnValue=`avgValue / count`}const filterWidthNearestVec4=Math.floor(filterWidth/4)*4;const filterWidthVec4Remainder=filterWidth%4;const updateSnippet=`
if (${isAvgPool}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${compareOp}(values, minMaxValue);
}
`;this.userCode=`
const ivec3 strides =
ivec3(${strideDepth}, ${strideHeight}, ${strideWidth});
const ivec3 pads = ivec3(${padFront}, ${padTop}, ${padLeft});
const float initializationValue = ${initializationValue};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xD, int xR, int xC, int ch) {
if (xC < 0 || xC >= ${convInfo.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xD, xR, xC, ch);
}
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
// ? = to be determined
vec4 minMaxValue = vec4(${initializationValue});
float avgValue = 0.0;
count = 0.0;
for (int wD = 0; wD < ${effectiveFilterDepth};
wD += ${dilationDepth}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${convInfo.inDepth}) {
continue;
}
for (int wR = 0; wR < ${effectiveFilterHeight};
wR += ${dilationHeight}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${convInfo.inHeight}) {
continue;
}
for (int wC = 0; wC < ${filterWidthNearestVec4}; wC += 4) {
int xC = xCCorner + wC * ${dilationWidth};
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${dilationWidth}, ch),
getValue(batch, xD, xR, xC + 2 * ${dilationWidth}, ch),
getValue(batch, xD, xR, xC + 3 * ${dilationWidth}, ch)
);
${updateSnippet}
}
int xC = xCCorner + ${filterWidthNearestVec4};
if (${filterWidthVec4Remainder===1}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
initializationValue,
initializationValue,
initializationValue
);
${updateSnippet}
} else if (${filterWidthVec4Remainder===2}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${dilationWidth}, ch),
initializationValue,
initializationValue
);
${updateSnippet}
} else if (${filterWidthVec4Remainder===3}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${dilationWidth}, ch),
getValue(batch, xD, xR, xC + 2 * ${dilationWidth}, ch),
initializationValue
);
${updateSnippet}
}
}
setOutput(${returnValue});
}
}
`}}class ReduceProgram{constructor(reduceInfo,reduceType){this.variableNames=["x"];const{windowSize,batchSize,inSize,outSize}=reduceInfo;this.outputShape=[batchSize,outSize];let initializationValue="0.0";let compareOp=``;if(reduceType==="prod"){initializationValue="1.0"}else if(reduceType==="min"){initializationValue="1.0 / 1e-20";compareOp=`min`}else if(reduceType==="max"){initializationValue="-1.0 / 1e-20";compareOp=`max`}let returnValue=`${reduceType}(${reduceType}(${reduceType}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;if(reduceType==="sum"){returnValue=`sumValue`}else if(reduceType==="prod"){returnValue=`prodValue`}else if(reduceType==="all"){returnValue=`allValue`}else if(reduceType==="any"){returnValue=`anyValue`}const windowSizeNearestVec4=Math.floor(windowSize/4)*4;const windowSizeVec4Remainder=windowSize%4;let updateSnippet=`
if (${reduceType==="sum"}) {
sumValue += dot(values, ones);
} else if (${reduceType==="prod"}) {
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
prodValue *= tmp[0] * tmp[1];
} else {
minMaxValue = ${compareOp}(values, minMaxValue);
}
`;let vecType=`vec4`;if(reduceType==="all"){initializationValue="1.0";updateSnippet=`
bool reducedAllValue = all(values);
float floatedReducedAllValue = float(reducedAllValue);
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
`;vecType=`bvec4`}else if(reduceType==="any"){initializationValue="0.0";updateSnippet=`
bool reducedAnyValue = any(values);
float floatedReducedAnyValue = float(reducedAnyValue);
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
`;vecType=`bvec4`}let checkOutOfBounds="";if(inSize%windowSize>0){checkOutOfBounds=`
if (inIdx < 0 || inIdx >= ${inSize}) {
return initializationValue;
}
`}this.userCode=`
const float initializationValue = ${initializationValue};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${checkOutOfBounds}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${windowSize};
vec4 minMaxValue = vec4(${initializationValue});
float prodValue = 1.0;
float sumValue = 0.0;
float allValue = 1.0;
float anyValue = 0.0;
for (int i = 0; i < ${windowSizeNearestVec4}; i += 4) {
int inIdx = inOffset + i;
${vecType} values = ${vecType}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${updateSnippet}
}
int inIdx = inOffset + ${windowSizeNearestVec4};
if (${windowSizeVec4Remainder===1}) {
${vecType} values = ${vecType}(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
${updateSnippet}
} else if (${windowSizeVec4Remainder===2}) {
${vecType} values = ${vecType}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
${updateSnippet}
} else if (${windowSizeVec4Remainder===3}) {
${vecType} values = ${vecType}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
${updateSnippet}
}
setOutput(${returnValue});
}
`}}class ReshapePackedProgram{constructor(outputShape,inputShape){this.variableNames=["A"];this.packedInputs=true;this.packedOutput=true;this.outputShape=outputShape;let mainLoop=``;for(let i=0;i<4;i++){let thisRC=`thisRC = rc;`;if(i%2===1){thisRC+=`thisRC.z += 1;`}if(i>1){thisRC+=`thisRC.y += 1;`}mainLoop+=`
${thisRC}
${i>0?`if(thisRC.y < rows && thisRC.z < cols){`:""}
int flatIndex = getFlatIndex(thisRC);
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
result[${i}] =
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
${i>0?"}":""}
`}this.userCode=`
${getReshapedInputCoords(inputShape)}
${getFlatIndexFrom3D(outputShape)}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0.);
ivec3 thisRC;
int rows = ${outputShape[1]};
int cols = ${outputShape[2]};
${mainLoop}
setOutput(result);
}
`}}function getReshapedInputCoords(shape){const coordsFromIndexSnippet=getLogicalCoordinatesFromFlatIndex(["r","c","d"],shape);return`
ivec3 inputCoordsFromReshapedOutCoords(int index) {
${coordsFromIndexSnippet}
return ivec3(r, c, d);
}
`}class ResizeBilinearBackpropProgram{constructor(dy,x,alignCorners){this.variableNames=["dy"];this.outputShape=[];this.outputShape=x.shape;const[,xHeight,xWidth]=x.shape;const[,yHeight,yWidth]=dy.shape;const effectiveXSize=[alignCorners&&yHeight>1?xHeight-1:xHeight,alignCorners&&yWidth>1?xWidth-1:xWidth];const effectiveYSize=[alignCorners&&yHeight>1?yHeight-1:yHeight,alignCorners&&yWidth>1?yWidth-1:yWidth];const heightScale=effectiveXSize[0]/effectiveYSize[0];const widthScale=effectiveXSize[1]/effectiveYSize[1];const invHeightScale=1/heightScale;const invWidthScale=1/widthScale;const winHeight=Math.ceil(invHeightScale)*2+2;const winWidth=Math.ceil(invWidthScale)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${heightScale});
const float widthScale = float(${widthScale});
const float invHeightScale = float(${invHeightScale});
const float invWidthScale = float(${invWidthScale});
const int winHeight = int(${winHeight});
const int winWidth = int(${winWidth});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(startRLerp - float(winHeight / 2));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(startCLerp - float(winWidth / 2));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${yHeight}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${yWidth}) {
continue;
}
float dxR = float(dyR) * heightScale;
int topDxRIndex = int(floor(dxR));
int bottomDxRIndex = int(min(ceil(dxR), ${xHeight-1}.0));
float dxRLerp = dxR - float(topDxRIndex);
float inverseDxRLerp = 1.0 - dxRLerp;
float dxC = float(dyC) * widthScale;
int leftDxCIndex = int(floor(dxC));
int rightDxCIndex = int(min(ceil(dxC), ${xWidth-1}.0));
float dxCLerp = dxC - float(leftDxCIndex);
float inverseDxCLerp = 1.0 - dxCLerp;
if (r == topDxRIndex && c == leftDxCIndex) {
// topLeft
accumulator +=
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
}
if (r == topDxRIndex && c == rightDxCIndex) {
// topRight
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
}
if (r == bottomDxRIndex && c == leftDxCIndex) {
// bottomLeft
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
}
if (r == bottomDxRIndex && c == rightDxCIndex) {
// bottomRight
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}}class ResizeBilinearProgram{constructor(inputShape,newHeight,newWidth,alignCorners){this.variableNames=["A"];this.outputShape=[];const[batch,oldHeight,oldWidth,depth]=inputShape;this.outputShape=[batch,newHeight,newWidth,depth];const effectiveInSize=[alignCorners&&newHeight>1?oldHeight-1:oldHeight,alignCorners&&newWidth>1?oldWidth-1:oldWidth];const effectiveOutSize=[alignCorners&&newHeight>1?newHeight-1:newHeight,alignCorners&&newWidth>1?newWidth-1:newWidth];this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${effectiveInSize[0]/effectiveOutSize[0]},
${effectiveInSize[1]/effectiveOutSize[1]});
const vec2 inputShapeRC = vec2(${oldHeight}.0, ${oldWidth}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = vec2(yRC) * effectiveInputOverOutputRatioRC;
// Compute the four integer indices.
ivec2 sourceFloorRC = ivec2(sourceFracIndexRC);
ivec2 sourceCeilRC = ivec2(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
float top = topLeft + (topRight - topLeft) * fracRC.y;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
float newValue = top + (bottom - top) * fracRC.x;
setOutput(newValue);
}
`}}class ResizeBilinearPackedProgram{constructor(inputShape,newHeight,newWidth,alignCorners){this.variableNames=["A"];this.packedInputs=true;this.packedOutput=true;this.outputShape=[];const[batch,oldHeight,oldWidth,depth]=inputShape;this.outputShape=[batch,newHeight,newWidth,depth];const effectiveInSize=[alignCorners&&newHeight>1?oldHeight-1:oldHeight,alignCorners&&newWidth>1?oldWidth-1:oldWidth];const effectiveOutSize=[alignCorners&&newHeight>1?newHeight-1:newHeight,alignCorners&&newWidth>1?newWidth-1:newWidth];this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${effectiveInSize[0]/effectiveOutSize[0]},
${effectiveInSize[1]/effectiveOutSize[1]},
${effectiveInSize[1]/effectiveOutSize[1]});
const vec3 inputShapeRC = vec3(${oldHeight}.0, ${oldWidth}.0,
${oldWidth}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = vec3(yRC) * effectiveInputOverOutputRatioRC;
// Compute the four integer indices.
ivec3 sourceFloorRC = ivec3(sourceFracIndexRC);
ivec3 sourceCeilRC = ivec3(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${depth-1};
bool hasNextRow = coords.z < ${newWidth-1};
// In parallel, construct four corners for all four components in
// packed 2x2 cell.
vec4 topLeft = vec4(
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 bottomLeft = vec4(
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 topRight = vec4(
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec4 bottomRight = vec4(
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
vec4 newValue = mix(top, bottom, fracRC.x);
setOutput(newValue);
}
`}}class ResizeNearestNeigborBackpropProgram{constructor(dy,x,alignCorners){this.variableNames=["dy"];this.outputShape=[];this.outputShape=x.shape;const[,xHeight,xWidth]=x.shape;const[,yHeight,yWidth]=dy.shape;const effectiveXSize=[alignCorners&&yHeight>1?xHeight-1:xHeight,alignCorners&&yWidth>1?xWidth-1:xWidth];const effectiveYSize=[alignCorners&&yHeight>1?yHeight-1:yHeight,alignCorners&&yWidth>1?yWidth-1:yWidth];const heightScale=effectiveXSize[0]/effectiveYSize[0];const widthScale=effectiveXSize[1]/effectiveYSize[1];const invHeightScale=1/heightScale;const invWidthScale=1/widthScale;const winHeight=Math.ceil(invHeightScale)*2+2;const winWidth=Math.ceil(invWidthScale)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${heightScale});
const float widthScale = float(${widthScale});
const float invHeightScale = float(${invHeightScale});
const float invWidthScale = float(${invWidthScale});
const int winHeight = int(${winHeight});
const int winWidth = int(${winWidth});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${yHeight}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${yWidth}) {
continue;
}
float sourceFracRow =
float(${effectiveXSize[0]}) *
(float(dyR) / float(${effectiveYSize[0]}));
float sourceFracCol =
float(${effectiveXSize[1]}) *
(float(dyC) / float(${effectiveYSize[1]}));
int sourceNearestRow = int(min(
float(int(${xHeight}) - 1),
${alignCorners} ? float(round(sourceFracRow)) :
float(floor(sourceFracRow))));
int sourceNearestCol = int(min(
float(int(${xWidth}) - 1),
${alignCorners} ? float(round(sourceFracCol)) :
float(floor(sourceFracCol))));
if (r == sourceNearestRow && c == sourceNearestCol) {
accumulator += getDy(b, dyR, dyC, d);
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}}class ResizeNearestNeighborProgram{constructor(inputShape,newHeight,newWidth,alignCorners){this.variableNames=["A"];this.outputShape=[];const[batch,oldHeight,oldWidth,depth]=inputShape;this.outputShape=[batch,newHeight,newWidth,depth];const effectiveInSize=[alignCorners&&newHeight>1?oldHeight-1:oldHeight,alignCorners&&newWidth>1?oldWidth-1:oldWidth];const effectiveOutSize=[alignCorners&&newHeight>1?newHeight-1:newHeight,alignCorners&&newWidth>1?newWidth-1:newWidth];const roundBase=alignCorners?"0.5":"0.0";this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${effectiveInSize[0]/effectiveOutSize[0]},
${effectiveInSize[1]/effectiveOutSize[1]});
const vec2 inputShapeRC = vec2(${oldHeight}.0, ${oldWidth}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = vec2(yRC) * effectiveInputOverOutputRatioRC;
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestRC = ivec2(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${roundBase})));
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutput(newValue);
}
`}}class ReverseProgram{constructor(xShape,axis){this.variableNames=["x"];const rank=xShape.length;if(rank>4){throw new Error(`WebGL backend: Reverse of rank-${rank} tensor is not yet supported`)}this.outputShape=xShape;if(rank===1){this.userCode=`
void main() {
int coord = getOutputCoords();
setOutput(getX(${xShape[0]} - coord - 1));
}
`;return}const getInCoord=i=>{if(axis.indexOf(i)!==-1&&xShape[i]!==1){return`${xShape[i]} - coords[${i}] - 1`}return`coords[${i}]`};const inCoords=xShape.map((_,i)=>getInCoord(i)).join(",");const type=getCoordsDataType(rank);this.userCode=`
void main() {
${type} coords = getOutputCoords();
setOutput(getX(${inCoords}));
}
`}}class ReversePackedProgram{constructor(xShape,axis){this.variableNames=["x"];this.packedInputs=true;this.packedOutput=true;const rank=xShape.length;if(rank>4){throw new Error(`WebGL backend: Reverse of rank-${rank} tensor is not yet supported`)}this.outputShape=xShape;const channels=getChannels("rc",rank);const nextColumn=`${channels[rank-1]} + 1 < ${this.outputShape[rank-1]}`;const nextRow=`${channels[rank-2]} + 1 < ${this.outputShape[rank-2]}`;const type=getCoordsDataType(rank);if(rank===1){this.userCode=`
void main(){
int rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = getChannel(getX(${xShape[0]} - rc - 1),
${xShape[0]} - rc - 1);
if(${nextColumn}){
result.g = getChannel(getX(${xShape[0]} - (rc + 1) - 1),
${xShape[0]} - (rc + 1) - 1);
}
setOutput(result);
}
`}else{this.userCode=`
void main() {
${type} rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = ${getR(channels.slice())};
if(${nextColumn}){
result.g = ${getG(channels.slice())};
}
if(${nextRow}) {
result.b = ${getB(channels.slice())};
if(${nextColumn}) {
result.a = ${getA(channels.slice())};
}
}
setOutput(result);
}
`}function getR(channels2){return getChannel(channels2)}function getG(channels2){channels2[rank-1]="("+channels2[rank-1]+` + 1)`;return getChannel(channels2)}function getB(channels2){channels2[rank-2]="("+channels2[rank-2]+` + 1)`;return getChannel(channels2)}function getA(channels2){channels2[rank-1]="("+channels2[rank-1]+` + 1)`;channels2[rank-2]="("+channels2[rank-2]+` + 1)`;return getChannel(channels2)}function getChannel(channels2){const inCoordsArray=xShape.map((_,i)=>getInCoord(i,channels2));const inCoords=inCoordsArray.join(",");const innerDims=inCoordsArray.slice(-2).join(",");return`getChannel(getX(${inCoords}), vec2(${innerDims}))`}function getInCoord(i,channels1){if(axis.indexOf(i)!==-1&&xShape[i]!==1){return`${xShape[i]} - ${channels1[i]} - 1`}else{return`${channels1[i]}`}}}}class ScatterProgram{constructor(updateSize,sliceDim,indicesRank,updatesRank,strides,shape,summingDupeIndex=true){this.variableNames=["updates","indices","defaultValue"];this.outputShape=shape;const stridesType=getCoordsDataType(strides.length);const dtype=getCoordsDataType(shape.length);let indicesString="";if(indicesRank===1){indicesString="i"}else if(indicesRank===2){indicesString="i, j"}const indicesSnippet=`getIndices(${indicesString})`;let updatesString="";if(updatesRank===1){updatesString="i"}else if(updatesRank===2){updatesString="i, coords[1]"}const updatesSnippet=`getUpdates(${updatesString})`;const strideString=sliceDim>1?"strides[j]":"strides";this.userCode=`
${stridesType} strides = ${stridesType}(${strides});
void main() {
${dtype} coords = getOutputCoords();
float sum = 0.0;
bool found = false;
for (int i = 0; i < ${updateSize}; i++) {
int flattenedIndex = 0;
for (int j = 0; j < ${sliceDim}; j++) {
int index = round(${indicesSnippet});
flattenedIndex += index * ${strideString};
}
if (flattenedIndex == coords[0]) {
sum += ${updatesSnippet};
found = true;
}
}
setOutput(mix(getDefaultValue(), sum, float(found)));
}
`}}class SegmentOpProgram{constructor(segOpInfo,segOpType){this.variableNames=["x","segmentIds"];const windowSize=segOpInfo.windowSize;const batchSize=segOpInfo.batchSize;const inSize=segOpInfo.inSize;const numSegments=segOpInfo.numSegments;const outSize=numSegments*Math.ceil(inSize/windowSize);this.outputShape=[batchSize,outSize];const initializationValue="0.0";const returnValue=`sumValue`;const windowSizeNearestVec4=Math.floor(windowSize/4)*4;const windowSizeVec4Remainder=windowSize%4;const updateSnippet=`
sumValue += dot(values, segFilter);
`;let checkValueOutOfBounds="";if(inSize%windowSize>0){checkValueOutOfBounds=`
if (inIdx < 0 || inIdx >= ${inSize}) {
return initializationValue;
}
`}let checkSegmentIdOutOfBounds="";if(inSize%windowSize>0){checkSegmentIdOutOfBounds=`
if (inIdx < 0 || inIdx >= ${inSize}) {
return -1.0;
}
`}this.userCode=`
const float initializationValue = ${initializationValue};
float getValue(int batch, int inIdx) {
${checkValueOutOfBounds}
return getX(batch, inIdx);
}
float getSegmentIdAtIndex(int inIdx) {
${checkSegmentIdOutOfBounds}
return getSegmentIds(inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = int(floor(float(outIdx) / float(
${numSegments})) * float(${windowSize}));
int currentSeg = int(mod(float(outIdx), float(${numSegments})));
float sumValue = 0.0;
for (int i = 0; i < ${windowSizeNearestVec4}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
);
${updateSnippet}
}
int inIdx = inOffset + ${windowSizeNearestVec4};
if (${windowSizeVec4Remainder===1}) {
vec4 values = vec4(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
0,
0,
0
);
${updateSnippet}
} else if (${windowSizeVec4Remainder===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
0,
0
);
${updateSnippet}
} else if (${windowSizeVec4Remainder===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
0
);
${updateSnippet}
}
setOutput(${returnValue});
}
`}}class SelectProgram{constructor(cRank,shape,rank){this.variableNames=["c","a","b"];this.outputShape=shape;let cCoords;let abCoords;if(rank>4){throw Error(`Where for rank ${rank} is not yet supported`)}if(rank===1){abCoords=`resRC`;cCoords=`resRC`}else{const currentCoords=["resRC.x","resRC.y","resRC.z","resRC.w"];const cCoordVars=[];const abCoordVars=[];for(let i=0;i<shape.length;i++){abCoordVars.push(`${currentCoords[i]}`);if(i<cRank){cCoordVars.push(`${currentCoords[i]}`)}}cCoords=cCoordVars.join();abCoords=abCoordVars.join()}const dtype=getCoordsDataType(rank);this.userCode=`
void main() {
${dtype} resRC = getOutputCoords();
float cVal = getC(${cCoords});
if (cVal >= 1.0) {
setOutput(getA(${abCoords}));
} else {
setOutput(getB(${abCoords}));
}
}
`}}class SliceProgram{constructor(destSize){this.variableNames=["source"];this.outputShape=destSize;this.rank=destSize.length;const dtype=getCoordsDataType(this.rank);const uniformPart=`uniform int start[${this.rank}];`;const sourceCoords=getCoords$1(this.rank);let body2;const coordSum=destSize.map((_,i)=>{return`sourceLoc.${coords[i]} = start[${i}] + coords.${coords[i]};`});body2=`
${dtype} sourceLoc;
${dtype} coords = getOutputCoords();
${coordSum.join("\n")}
`;this.userCode=`
${uniformPart}
void main() {
${body2}
setOutput(getSource(${sourceCoords}));
}
`}getCustomSetupFunc(start){if(start.length!==this.rank){throw Error(`The rank (${this.rank}) of the program must match the length of start (${start.length})`)}return(gpgpu,webGLProgram)=>{if(this.startLoc==null){this.startLoc=gpgpu.getUniformLocationNoThrow(webGLProgram,"start");if(this.startLoc==null){return}}gpgpu.gl.uniform1iv(this.startLoc,start)}}}const coords=["x","y","z","w","u","v"];function getCoords$1(rank){if(rank===1){return"sourceLoc"}else if(rank<=6){return coords.slice(0,rank).map(x=>"sourceLoc."+x).join(",")}else{throw Error(`Slicing for rank ${rank} is not yet supported`)}}class SlicePackedProgram{constructor(destSize){this.variableNames=["source"];this.packedInputs=true;this.packedOutput=true;this.outputShape=destSize;this.rank=destSize.length;const dtype=getCoordsDataType(this.rank);const coords2=getChannels("coords",this.rank);const sourceLoc=getChannels("sourceLoc",this.rank);const innerDims=this.rank===1?"sourceLoc":`vec2(${sourceLoc.slice(-2).join()})`;const getChannel=`getChannel(getSource(${sourceLoc.join()}), ${innerDims})`;const upperRow=`
result.x = ${getChannel};
if (++${coords2[this.rank-1]} < ${destSize[this.rank-1]}) {
++${sourceLoc[this.rank-1]};
result.y = ${getChannel};
--${sourceLoc[this.rank-1]};
}
`;const lowerRow=this.rank===1?"":`
--${coords2[this.rank-1]};
if (++${coords2[this.rank-2]} < ${destSize[this.rank-2]}) {
++${sourceLoc[this.rank-2]};
result.z = ${getChannel};
if (++${coords2[this.rank-1]} < ${destSize[this.rank-1]}) {
++${sourceLoc[this.rank-1]};
result.w = ${getChannel};
}
}
`;const sourceLocSetup=this.rank<=4?`sourceLoc = coords +
${dtype}(${destSize.map((_,i)=>`start[${i}]`).join()});`:destSize.map((_,i)=>`${sourceLoc[i]} = ${coords2[i]} + start[${i}];`).join("\n");this.userCode=`
uniform int start[${this.rank}];
void main() {
${dtype} coords = getOutputCoords();
${dtype} sourceLoc;
${sourceLocSetup}
vec4 result = vec4(0.);
${upperRow}
${lowerRow}
setOutput(result);
}
`}getCustomSetupFunc(start){if(start.length!==this.rank){throw Error(`The rank (${this.rank}) of the program must match the length of start (${start.length})`)}return(gpgpu,webGLProgram)=>{if(this.startLoc==null){this.startLoc=gpgpu.getUniformLocationNoThrow(webGLProgram,"start");if(this.startLoc==null){return}}gpgpu.gl.uniform1iv(this.startLoc,start)}}}class StridedSliceProgram{constructor(begin,strides,size){this.variableNames=["x"];this.outputShape=size;const rank=size.length;const inputDtype=getCoordsDataType(size.length);const dtype=getCoordsDataType(size.length);let newCoords="";if(rank===1){newCoords="coords * strides + begin"}else{let outputAxis=0;newCoords=size.map((_,i)=>{outputAxis++;return size.length===1?`coords * strides[${i}] + begin[${i}]`:`coords[${outputAxis-1}] * strides[${i}] + begin[${i}]`}).join(",")}this.userCode=`
${inputDtype} begin = ${inputDtype}(${begin});
${inputDtype} strides = ${inputDtype}(${strides});
void main() {
${dtype} coords = getOutputCoords();
setOutput(getX(${newCoords}));
}
`}}class TextureManager{constructor(gpgpu){this.gpgpu=gpgpu;this.numUsedTextures=0;this.numFreeTextures=0;this._numBytesAllocated=0;this._numBytesFree=0;this.freeTextures={};this.logEnabled=false;this.usedTextures={}}acquireTexture(shapeRC,usage,isPacked){const physicalTexType=getPhysicalFromLogicalTextureType(usage,isPacked);const shapeKey=getKeyFromTextureShape(shapeRC,physicalTexType,isPacked);if(!(shapeKey in this.freeTextures)){this.freeTextures[shapeKey]=[]}if(!(shapeKey in this.usedTextures)){this.usedTextures[shapeKey]=[]}const texBytes=computeBytes(shapeRC,physicalTexType,this.gpgpu.gl,this.gpgpu.textureConfig,isPacked);if(this.freeTextures[shapeKey].length>0){this.numFreeTextures--;this.numUsedTextures++;this._numBytesFree-=texBytes;this.log();const newTexture2=this.freeTextures[shapeKey].shift();this.usedTextures[shapeKey].push(newTexture2);return newTexture2}let newTexture;if(physicalTexType===PhysicalTextureType.PACKED_2X2_FLOAT32){newTexture=this.gpgpu.createPackedMatrixTexture(shapeRC[0],shapeRC[1])}else if(physicalTexType===PhysicalTextureType.PACKED_2X2_FLOAT16){newTexture=this.gpgpu.createFloat16PackedMatrixTexture(shapeRC[0],shapeRC[1])}else if(physicalTexType===PhysicalTextureType.UNPACKED_FLOAT32){newTexture=this.gpgpu.createFloat32MatrixTexture(shapeRC[0],shapeRC[1])}else if(physicalTexType===PhysicalTextureType.UNPACKED_FLOAT16){newTexture=this.gpgpu.createFloat16MatrixTexture(shapeRC[0],shapeRC[1])}else if(physicalTexType===PhysicalTextureType.PACKED_4X1_UNSIGNED_BYTE){newTexture=this.gpgpu.createUnsignedBytesMatrixTexture(shapeRC[0],shapeRC[1])}this.usedTextures[shapeKey].push(newTexture);this.numUsedTextures++;this._numBytesAllocated+=texBytes;this.log();return newTexture}releaseTexture(texture,shape,logicalTexType,isPacked){if(this.freeTextures==null){return}const physicalTexType=getPhysicalFromLogicalTextureType(logicalTexType,isPacked);const shapeKey=getKeyFromTextureShape(shape,physicalTexType,isPacked);if(!(shapeKey in this.freeTextures)){this.freeTextures[shapeKey]=[]}const texBytes=computeBytes(shape,physicalTexType,this.gpgpu.gl,this.gpgpu.textureConfig,isPacked);const deleteTexThreshold=env3().get("WEBGL_DELETE_TEXTURE_THRESHOLD");if(deleteTexThreshold!==-1&&this._numBytesAllocated>deleteTexThreshold){this.gpgpu.deleteMatrixTexture(texture);this._numBytesAllocated-=texBytes}else{this.freeTextures[shapeKey].push(texture);this.numFreeTextures++;this._numBytesFree+=texBytes}this.numUsedTextures--;const texList=this.usedTextures[shapeKey];const texIndex=texList.indexOf(texture);if(texIndex<0){throw new Error("Cannot release a texture that was never provided by this texture manager")}texList.splice(texIndex,1);this.log()}log(){if(!this.logEnabled){return}const total=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${total})`);const freeRatio=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`);console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*freeRatio)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures==null){return}for(const texShape in this.freeTextures){this.freeTextures[texShape].forEach(tex=>{this.gpgpu.deleteMatrixTexture(tex)})}for(const texShape in this.usedTextures){this.usedTextures[texShape].forEach(tex=>{this.gpgpu.deleteMatrixTexture(tex)})}this.freeTextures=null;this.usedTextures=null;this.numUsedTextures=0;this.numFreeTextures=0;this._numBytesAllocated=0;this._numBytesFree=0}}function numBytesForInternalFormat(gl,internalFormat){const glany=gl;if(internalFormat===glany.R32F){return 4}else if(internalFormat===glany.R16F){return 2}else if(internalFormat===glany.RGBA32F){return 16}else if(internalFormat===gl.RGBA){return 16}else if(internalFormat===glany.RGBA16F){return 8}throw new Error(`Unknown internal format ${internalFormat}`)}function computeBytes(shape,physicalTexType,gl,textureConfig,isPacked){const internalFormat=internalFormatForPhysicalTexType(physicalTexType,textureConfig);let numElements;if(isPacked){const[packedWidth,packedHeight]=getPackedMatrixTextureShapeWidthHeight(shape[0],shape[1]);numElements=packedWidth*packedHeight}else{const[width,height]=getUnpackedMatrixTextureShapeWidthHeight(shape[0],shape[1]);numElements=width*height}const bytesPerElement2=numBytesForInternalFormat(gl,internalFormat);return numElements*bytesPerElement2}function internalFormatForPhysicalTexType(physicalTexType,textureConfig){switch(physicalTexType){case PhysicalTextureType.PACKED_2X2_FLOAT32:return getInternalFormatForPackedMatrixTexture(textureConfig);case PhysicalTextureType.PACKED_2X2_FLOAT16:return getInternalFormatForFloat16PackedMatrixTexture(textureConfig);case PhysicalTextureType.UNPACKED_FLOAT32:return getInternalFormatForFloat32MatrixTexture(textureConfig);case PhysicalTextureType.UNPACKED_FLOAT16:return getInternalFormatForFloat16MatrixTexture(textureConfig);case PhysicalTextureType.PACKED_4X1_UNSIGNED_BYTE:return getInternalFormatForUnsignedBytesMatrixTexture(textureConfig);default:throw new Error(`Unknown physical texture type ${physicalTexType}`)}}function getPhysicalTextureForRendering(isPacked){if(env3().getBool("WEBGL_RENDER_FLOAT32_ENABLED")){if(isPacked){return PhysicalTextureType.PACKED_2X2_FLOAT32}return PhysicalTextureType.UNPACKED_FLOAT32}if(isPacked){return PhysicalTextureType.PACKED_2X2_FLOAT16}return PhysicalTextureType.UNPACKED_FLOAT16}function getPhysicalFromLogicalTextureType(logicalTexType,isPacked){if(logicalTexType===TextureUsage.UPLOAD){return PhysicalTextureType.PACKED_2X2_FLOAT32}else if(logicalTexType===TextureUsage.RENDER||logicalTexType==null){return getPhysicalTextureForRendering(isPacked)}else if(logicalTexType===TextureUsage.DOWNLOAD||logicalTexType===TextureUsage.PIXELS){return PhysicalTextureType.PACKED_4X1_UNSIGNED_BYTE}throw new Error(`Unknown logical texture type ${logicalTexType}`)}function getKeyFromTextureShape(shapeRowsCol,physicalTexType,isPacked){return`${shapeRowsCol[0]}_${shapeRowsCol[1]}_${physicalTexType}_${isPacked}`}class TileProgram{constructor(aShape,reps){this.variableNames=["A"];const outputShape=new Array(aShape.length);for(let i=0;i<outputShape.length;i++){outputShape[i]=aShape[i]*reps[i]}this.outputShape=outputShape;this.rank=outputShape.length;const dtype=getCoordsDataType(this.rank);const sourceCoords=getSourceCoords$2(aShape);this.userCode=`
void main() {
${dtype} resRC = getOutputCoords();
setOutput(getA(${sourceCoords}));
}
`}}function getSourceCoords$2(aShape){const rank=aShape.length;if(rank>5){throw Error(`Tile for rank ${rank} is not yet supported`)}if(rank===1){return`imod(resRC, ${aShape[0]})`}const currentCoords=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"];const sourceCoords=[];for(let i=0;i<aShape.length;i++){sourceCoords.push(`imod(${currentCoords[i]}, ${aShape[i]})`)}return sourceCoords.join()}class UnaryOpProgram{constructor(aShape,opSnippet){this.variableNames=["A"];this.outputShape=aShape;this.userCode=`
float unaryOperation(float x) {
${opSnippet}
}
void main() {
float x = getAAtOutCoords();
float y = unaryOperation(x);
setOutput(y);
}
`}}const CHECK_NAN_SNIPPET$2=`if (isnan(x)) return x;`;const LINEAR=`return x;`;const ABS=`return abs(x);`;const RELU=CHECK_NAN_SNIPPET$2+`
return (x < 0.0) ? 0.0 : x;
`;const RELU6=CHECK_NAN_SNIPPET$2+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`;const ELU$1=`return (x >= 0.0) ? x : (exp(x) - 1.0);`;const SELU=`
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
// see: https://arxiv.org/abs/1706.02515
float scaleAlpha = ${SELU_SCALEALPHA};
float scale = ${SELU_SCALE};
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
`;function STEP(alpha=0){return CHECK_NAN_SNIPPET$2+`
return x > 0.0 ? 1.0 : float(${alpha});
`}const NEG=`return -x;`;const CEIL=`return ceil(x);`;const FLOOR=`return floor(x);`;const SIGN=`
if (isnan(x)) { return 0.0; }
return sign(x);
`;const IS_NAN=`return float(isnan(x));`;const IS_INF=`return float(isinf(x));`;const IS_FINITE=`return float(!isnan(x) && !isinf(x));`;const ROUND=`
// OpenGL ES does not support round function.
// The algorithm is based on banker's rounding.
float base = floor(x);
if ((x - base) < 0.5) {
return floor(x);
} else if ((x - base) > 0.5) {
return ceil(x);
} else {
if (mod(base, 2.0) == 0.0) {
return base;
} else {
return base + 1.0;
}
}
`;const EXP=`return exp(x);`;const EXPM1=`return exp(x) - 1.0;`;const LOG=`if (x < 0.0) return NAN;
return log(x);`;const LOG1P=`return log(1.0 + x);`;const SQRT=`return sqrt(x);`;const RSQRT=`return inversesqrt(x);`;const SIGMOID=`return 1.0 / (1.0 + exp(-1.0 * x));`;const SOFTPLUS=`
float epsilon = 1.1920928955078125e-7;
float threshold = log(epsilon) + 2.0;
bool too_large = x > -threshold;
bool too_small = x < threshold;
float result;
float exp_x = exp(x);
if (too_large){
result = x;
}
else if (too_small){
result = exp_x;
}
else{
result = log(exp_x + 1.0);
}
return result;
`;const ASIN=CHECK_NAN_SNIPPET$2+`
if (abs(x) > 1.) {
return NAN;
}
return asin(x);
`;const ACOS=CHECK_NAN_SNIPPET$2+`
if (abs(x) > 1.) {
return NAN;
}
return acos(x);
`;const ATAN=CHECK_NAN_SNIPPET$2+`
return atan(x);
`;const SINH=`
float e2x = exp(x);
return (e2x - 1.0 / e2x) / 2.0;
`;const COSH=`
float e2x = exp(-x);
return (e2x + 1.0 / e2x) / 2.0;
`;const TANH=`
float e2x = exp(-2.0 * abs(x));
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
`;const ASINH=CHECK_NAN_SNIPPET$2+`return log(x + sqrt(x * x + 1.0));`;const ACOSH=CHECK_NAN_SNIPPET$2+`
if (x < 1.0) return NAN;
return log(x + sqrt(x * x - 1.0));`;const ATANH=CHECK_NAN_SNIPPET$2+`
if ((x < -1.0) || (x > 1.0)) return NAN;
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`;const ERF=`
// Error function is calculated approximately with elementary function.
// See "Handbook of Mathematical Functions with Formulas,
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
float p = ${ERF_P};
float a1 = ${ERF_A1};
float a2 = ${ERF_A2};
float a3 = ${ERF_A3};
float a4 = ${ERF_A4};
float a5 = ${ERF_A5};
float sign = sign(x);
x = abs(x);
float t = 1.0 / (1.0 + p * x);
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
`;const RECIPROCAL=`return 1.0 / x;`;const LOGICAL_NOT=`return float(!(x >= 1.0));`;const CLONE="return x;";const LINEAR$1=`return x;`;const LOG$1=`
vec4 result = log(x);
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
result.r = isNaN.r == 1.0 ? NAN : result.r;
result.g = isNaN.g == 1.0 ? NAN : result.g;
result.b = isNaN.b == 1.0 ? NAN : result.b;
result.a = isNaN.a == 1.0 ? NAN : result.a;
return result;
`;const RELU$1=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`;const RELU6$1=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`;const ELU$2=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`;class UnaryOpPackedProgram{constructor(aShape,opSnippet){this.variableNames=["A"];this.packedInputs=true;this.packedOutput=true;this.outputShape=aShape;this.userCode=`
vec4 unaryOperation(vec4 x) {
${opSnippet}
}
void main() {
vec4 x = getAAtOutCoords();
vec4 y = unaryOperation(x);
setOutput(y);
}
`}}class UnpackProgram{constructor(outputShape){this.variableNames=["A"];this.packedInputs=true;this.packedOutput=false;this.outputShape=outputShape;const rank=outputShape.length;const channels=getChannels("rc",rank);const dtype=getCoordsDataType(rank);const sourceCoords=getSourceCoords(rank,channels);const innerDims=channels.slice(-2);const coords2=rank<=1?"rc":`vec2(${innerDims.join(",")})`;this.userCode=`
void main() {
${dtype} rc = getOutputCoords();
vec4 packedInput = getA(${sourceCoords});
setOutput(getChannel(packedInput, ${coords2}));
}
`}}const{segment_util:segment_util$1}=backend_util19;const split$5=split$1;const tile$4=tile$1;const topkImpl$2=topkImpl;const whereImpl$2=whereImpl;const EPSILON_FLOAT32$1=1e-7;const EPSILON_FLOAT16$1=1e-4;const binaryCaches={};function getBinaryCache(webGLVersion){if(webGLVersion in binaryCaches){return binaryCaches[webGLVersion]}binaryCaches[webGLVersion]={};return binaryCaches[webGLVersion]}function mapActivationToShaderProgram(activation2,packed=false){if(activation2==="linear"){if(packed){return LINEAR$1}return LINEAR}else if(activation2==="relu"){if(packed){return RELU$1}return RELU}else if(activation2==="elu"){if(packed){return ELU$2}return ELU$1}else if(activation2==="relu6"){if(packed){return RELU6$1}return RELU6}else if(activation2==="prelu"){if(packed){return PRELU$1}return PRELU}throw new Error(`Activation ${activation2} has not been implemented for the WebGL backend.`)}const CPU_HANDOFF_SIZE_THRESHOLD=128;const BEFORE_PAGING_CONSTANT=600;function numMBBeforeWarning(){if(env3().global.screen==null){return 1024}return env3().global.screen.height*env3().global.screen.width*window.devicePixelRatio*BEFORE_PAGING_CONSTANT/1024/1024}const MATMUL_SHARED_DIM_THRESHOLD=1e3;class MathBackendWebGL extends KernelBackend2{constructor(gpgpu){super();this.pendingRead=new WeakMap;this.pendingDisposal=new WeakSet;this.dataRefCount=new WeakMap;this.numBytesInGPU=0;this.uploadWaitMs=0;this.downloadWaitMs=0;this.warnedAboutMemory=false;this.warnedAboutCPUBackend=false;this.pendingDeletes=0;this.disposed=false;if(!env3().getBool("HAS_WEBGL")){throw new Error("WebGL is not supported on this device")}if(gpgpu==null){const gl=getWebGLContext(env3().getNumber("WEBGL_VERSION"));this.binaryCache=getBinaryCache(env3().getNumber("WEBGL_VERSION"));this.gpgpu=new GPGPUContext(gl);this.canvas=gl.canvas;this.gpgpuCreatedLocally=true}else{this.gpgpu=gpgpu;this.binaryCache={};this.gpgpuCreatedLocally=false;this.canvas=gpgpu.gl.canvas}this.textureManager=new TextureManager(this.gpgpu);this.numMBBeforeWarning=numMBBeforeWarning();this.texData=new DataStorage2(this,engine2())}numDataIds(){return this.texData.numDataIds()+(this.cpuBackend?this.cpuBackend.numDataIds():0)-this.pendingDeletes}write(values,shape,dtype){if(env3().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||env3().getBool("DEBUG")){this.checkNumericalProblems(values)}if(dtype==="complex64"&&values!=null){throw new Error(`Cannot write to a complex64 dtype. Please use tf.complex(real, imag).`)}const dataId={};this.texData.set(dataId,{shape,dtype,values,usage:TextureUsage.UPLOAD,refCount:1,complexParentRefCount:0});return dataId}incRef(dataId){const texData=this.texData.get(dataId);texData.refCount++}decRef(dataId){if(this.texData.has(dataId)){const texData=this.texData.get(dataId);texData.refCount--}}move(dataId,values,shape,dtype){if(env3().getBool("DEBUG")){this.checkNumericalProblems(values)}if(dtype==="complex64"){throw new Error(`Cannot write to a complex64 dtype. Please use tf.complex(real, imag).`)}this.texData.set(dataId,{shape,dtype,values,usage:TextureUsage.UPLOAD,refCount:1,complexParentRefCount:0})}disposeIntermediateTensorInfo(tensorInfo){const dataId=tensorInfo.dataId;if(this.texData.has(dataId)){const textureData=this.texData.get(dataId);textureData.refCount--;if(textureData.refCount<1){this.disposeData(dataId)}}}readSync(dataId){const texData=this.texData.get(dataId);const{values,dtype,complexTensorInfos,slice:slice3,shape,isPacked}=texData;if(slice3!=null){let program;if(isPacked){program=new UnaryOpPackedProgram(shape,CLONE)}else{program=new UnaryOpProgram(shape,CLONE)}const res=this.runWebGLProgram(program,[{dataId,shape,dtype}],dtype);const data2=this.readSync(res.dataId);this.disposeIntermediateTensorInfo(res);return data2}if(values!=null){return this.convertAndCacheOnCPU(dataId)}if(dtype==="string"){return values}const shouldTimeProgram=this.activeTimers!=null;let start;if(shouldTimeProgram){start=now2()}let result;if(dtype==="complex64"){const realValues=this.readSync(complexTensorInfos.real.dataId);const imagValues=this.readSync(complexTensorInfos.imag.dataId);result=mergeRealAndImagArrays(realValues,imagValues)}else{result=this.getValuesFromTexture(dataId)}if(shouldTimeProgram){this.downloadWaitMs+=now2()-start}return this.convertAndCacheOnCPU(dataId,result)}async read(dataId){if(this.pendingRead.has(dataId)){const subscribers2=this.pendingRead.get(dataId);return new Promise(resolve=>subscribers2.push(resolve))}const texData=this.texData.get(dataId);const{values,shape,slice:slice3,dtype,complexTensorInfos,isPacked}=texData;if(slice3!=null){let program;if(isPacked){program=new UnaryOpPackedProgram(shape,CLONE)}else{program=new UnaryOpProgram(shape,CLONE)}const res=this.runWebGLProgram(program,[{dataId,shape,dtype}],dtype);const data2=this.read(res.dataId);this.disposeIntermediateTensorInfo(res);return data2}if(values!=null){return this.convertAndCacheOnCPU(dataId)}if(!env3().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&env3().getNumber("WEBGL_VERSION")===2){throw new Error(`tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.`)}let buffer3=null;let tmpDownloadTarget;if(dtype!=="complex64"&&env3().get("WEBGL_BUFFER_SUPPORTED")){tmpDownloadTarget=this.decode(dataId);const tmpData=this.texData.get(tmpDownloadTarget.dataId);buffer3=this.gpgpu.createBufferFromTexture(tmpData.texture,...getDenseTexShape(shape))}this.pendingRead.set(dataId,[]);if(dtype!=="complex64"){await this.gpgpu.createAndWaitForFence()}let vals;if(dtype==="complex64"){const ps=await Promise.all([this.read(complexTensorInfos.real.dataId),this.read(complexTensorInfos.imag.dataId)]);const realValues=ps[0];const imagValues=ps[1];vals=mergeRealAndImagArrays(realValues,imagValues)}else if(buffer3==null){vals=this.getValuesFromTexture(dataId)}else{const size=sizeFromShape(shape);vals=this.gpgpu.downloadFloat32MatrixFromBuffer(buffer3,size)}if(tmpDownloadTarget!=null){this.disposeIntermediateTensorInfo(tmpDownloadTarget)}const dTypeVals=this.convertAndCacheOnCPU(dataId,vals);const subscribers=this.pendingRead.get(dataId);this.pendingRead.delete(dataId);subscribers.forEach(resolve=>resolve(dTypeVals));if(this.pendingDisposal.has(dataId)){this.pendingDisposal.delete(dataId);this.disposeData(dataId);this.pendingDeletes--}return dTypeVals}checkNumericalProblems(values){if(values==null){return}for(let i=0;i<values.length;i++){const num=values[i];if(!canBeRepresented(num)){if(env3().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")){throw Error(`The value ${num} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`)}throw Error(`The value ${num} cannot be represented on this device.`)}}}getValuesFromTexture(dataId){const{shape,dtype,isPacked}=this.texData.get(dataId);const size=sizeFromShape(shape);if(env3().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){const tmpTarget=this.decode(dataId);const tmpData2=this.texData.get(tmpTarget.dataId);const vals2=this.gpgpu.downloadMatrixFromPackedTexture(tmpData2.texture,...getDenseTexShape(shape)).subarray(0,size);this.disposeIntermediateTensorInfo(tmpTarget);return vals2}const shouldUsePackedProgram=env3().getBool("WEBGL_PACK")&&isPacked===true;const outputShape=shouldUsePackedProgram?getShapeAs3D(shape):shape;const program=shouldUsePackedProgram?new EncodeFloatPackedProgram(outputShape):new EncodeFloatProgram(outputShape);const output=this.runWebGLProgram(program,[{shape:outputShape,dtype,dataId}],"float32");const tmpData=this.texData.get(output.dataId);const vals=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(tmpData.texture,tmpData.texShape[0],tmpData.texShape[1]).subarray(0,size);this.disposeIntermediateTensorInfo(output);return vals}async time(f){const oldActiveTimers=this.activeTimers;const newActiveTimers=[];let outerMostTime=false;if(this.programTimersStack==null){this.programTimersStack=newActiveTimers;outerMostTime=true}else{this.activeTimers.push(newActiveTimers)}this.activeTimers=newActiveTimers;f();const flattenedActiveTimerQueries=flatten(this.activeTimers.map(d=>d.query)).filter(d=>d!=null);const flattenedActiveTimerNames=flatten(this.activeTimers.map(d=>d.name)).filter(d=>d!=null);this.activeTimers=oldActiveTimers;if(outerMostTime){this.programTimersStack=null}const res={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(env3().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){const kernelMs=await Promise.all(flattenedActiveTimerQueries);res["kernelMs"]=sum2(kernelMs);res["getExtraProfileInfo"]=()=>kernelMs.map((d,i)=>({name:flattenedActiveTimerNames[i],ms:d})).map(d=>`${d.name}: ${d.ms}`).join(", ")}else{res["kernelMs"]={error:"WebGL query timers are not supported in this environment."}}this.uploadWaitMs=0;this.downloadWaitMs=0;return res}memory(){return{unreliable:false,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){if(env3().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){return this.gpgpu.beginQuery()}return{startMs:now2(),endMs:null}}endTimer(query){if(env3().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){this.gpgpu.endQuery();return query}query.endMs=now2();return query}async getQueryTime(query){if(env3().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){return this.gpgpu.waitForQueryAndGetTime(query)}const timerQuery=query;return timerQuery.endMs-timerQuery.startMs}disposeData(dataId){if(this.pendingDisposal.has(dataId)){return}if(this.pendingRead.has(dataId)){this.pendingDisposal.add(dataId);this.pendingDeletes++;return}if(!this.texData.has(dataId)){return}if(this.texData.get(dataId).complexParentRefCount>0){this.texData.get(dataId).refCount--;return}this.releaseGPUData(dataId);const{complexTensorInfos}=this.texData.get(dataId);if(complexTensorInfos!=null){this.texData.get(complexTensorInfos.real.dataId).complexParentRefCount--;this.disposeIntermediateTensorInfo(complexTensorInfos.real);this.texData.get(complexTensorInfos.imag.dataId).complexParentRefCount--;this.disposeIntermediateTensorInfo(complexTensorInfos.imag)}this.texData.delete(dataId)}releaseGPUData(dataId){const{texture,dtype,texShape,usage,isPacked,slice:slice3}=this.texData.get(dataId);const key=slice3&&slice3.origDataId||dataId;const refCount=this.dataRefCount.get(key);if(refCount>1){this.dataRefCount.set(key,refCount-1)}else{this.dataRefCount.delete(key);if(texture!=null){this.numBytesInGPU-=this.computeBytes(texShape,dtype);this.textureManager.releaseTexture(texture,texShape,usage,isPacked)}}const texData=this.texData.get(dataId);texData.texture=null;texData.texShape=null;texData.isPacked=false;texData.slice=null}getTexture(dataId){this.uploadToGPU(dataId);return this.texData.get(dataId).texture}getDataInfo(dataId){return this.texData.get(dataId)}getCPUBackend(){if(!env3().getBool("WEBGL_CPU_FORWARD")){return null}if(this.cpuBackend==null){this.cpuBackend=engine2().findBackend("cpu")}return this.cpuBackend}shouldExecuteOnCPU(inputs,sizeThreshold=CPU_HANDOFF_SIZE_THRESHOLD){const cpuBackend=this.getCPUBackend();if(!this.warnedAboutCPUBackend&&cpuBackend==null){console.warn("Your application contains ops that are small enough to be executed on the CPU backend, however the CPU backend cannot be found. Consider importing the CPU backend (@tensorflow/tfjs-backend-cpu) for better performance.");this.warnedAboutCPUBackend=true}return cpuBackend!=null&&inputs.every(input2=>this.texData.get(input2.dataId).texture==null&&sizeFromShape(input2.shape)<sizeThreshold)}getGPGPUContext(){return this.gpgpu}slice(x,begin,size){if(this.shouldExecuteOnCPU([x])){const outValues=sliceImplCPU(this.texData.get(x.dataId).values,begin,size,x.shape,x.dtype);return this.makeOutput(size,x.dtype,outValues)}if(sizeFromShape(size)===0){return tensor([],size,x.dtype)}const{isPacked}=this.texData.get(x.dataId);const isContinous=isSliceContinous(x.shape,begin,size);if(isPacked||!isContinous){const program=env3().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new SlicePackedProgram(size):new SliceProgram(size);const customSetup=program.getCustomSetupFunc(begin);return this.compileAndRun(program,[x],null,customSetup)}this.uploadToGPU(x.dataId);return this.shallowSlice(x,begin,size)}shallowSlice(x,begin,size){const xTexData=this.texData.get(x.dataId);const t=this.makeOutput(size,x.dtype);const newTexData=this.texData.get(t.dataId);Object.assign(newTexData,xTexData);newTexData.shape=size;newTexData.dtype=x.dtype;let flatOffset=computeFlatOffset(begin,x.strides);if(xTexData.slice){flatOffset+=xTexData.slice.flatOffset}newTexData.slice={flatOffset,origDataId:xTexData.slice&&xTexData.slice.origDataId||x.dataId};const refCount=this.dataRefCount.get(newTexData.slice.origDataId)||1;this.dataRefCount.set(newTexData.slice.origDataId,refCount+1);return t}stridedSlice(x,begin,end,strides){const cpuRes=this.tryRunOnCpuOrThrow([x],()=>this.cpuBackend.stridedSlice(x,begin,end,strides));if(cpuRes){return cpuRes}const outShape=computeOutShape2(begin,end,strides);if(outShape.some(axis=>axis===0)){return tensor([],outShape)}const program=new StridedSliceProgram(begin,strides,outShape);return this.compileAndRun(program,[x])}reverse(x,axis){const program=env3().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new ReversePackedProgram(x.shape,axis):new ReverseProgram(x.shape,axis);return this.compileAndRun(program,[x])}neg(x){const cpuRes=this.tryRunOnCpuOrThrow([x],()=>this.cpuBackend.neg(x));if(cpuRes){return cpuRes}if(env3().getBool("WEBGL_PACK_UNARY_OPERATIONS")){return this.packedUnaryOp(x,NEG,x.dtype)}const program=new UnaryOpProgram(x.shape,NEG);return this.compileAndRun(program,[x])}batchMatMul(a,b,transposeA,transposeB){const outerShapeA=transposeA?a.shape[2]:a.shape[1];const outerShapeB=transposeB?b.shape[1]:b.shape[2];const sharedDim=transposeA?a.shape[1]:a.shape[2];const batch=Math.max(a.shape[0],b.shape[0]);if((outerShapeA===1||outerShapeB===1)&&sharedDim>MATMUL_SHARED_DIM_THRESHOLD){if(transposeA){a=transpose2(a,[0,2,1])}if(transposeB){b=transpose2(b,[0,2,1])}const a3D=outerShapeB===1?a:a.as3D(batch,sharedDim,1);const axis=outerShapeB===1?2:1;const b3D=outerShapeB===1?b.as3D(batch,1,sharedDim):b;const product=mul(a3D,b3D);return product.sum(axis,true)}const dtype=upcastType(a.dtype,b.dtype);const program=new MatMulPackedProgram(a.shape,b.shape,[batch,outerShapeA,outerShapeB],transposeA,transposeB);return this.compileAndRun(program,[a,b],dtype)}fusedBatchMatMul({a,b,transposeA,transposeB,bias,activation:activation2,preluActivationWeights}){const outerShapeA=transposeA?a.shape[2]:a.shape[1];const outerShapeB=transposeB?b.shape[1]:b.shape[2];const batch=Math.max(a.shape[0],b.shape[0]);const dtype=upcastType(a.dtype,b.dtype);const hasBias=bias!=null;const hasPreluActivationWeights=preluActivationWeights!=null;const fusedActivation=activation2?mapActivationToShaderProgram(activation2,true):null;const program=new MatMulPackedProgram(a.shape,b.shape,[batch,outerShapeA,outerShapeB],transposeA,transposeB,hasBias,fusedActivation,hasPreluActivationWeights);const inputs=[a,b];if(bias){inputs.push(bias)}if(preluActivationWeights){inputs.push(preluActivationWeights)}return this.compileAndRun(program,inputs,dtype)}localResponseNormalization4D(x,radius,bias,alpha,beta){const program=env3().getBool("WEBGL_PACK_NORMALIZATION")?new LRNPackedProgram(x.shape,radius,bias,alpha,beta):new LRNProgram(x.shape,radius,bias,alpha,beta);return this.compileAndRun(program,[x])}LRNGrad(dy,inputImage,outputImage,depthRadius,bias,alpha,beta){const program=new LRNGradProgram(inputImage.shape,depthRadius,bias,alpha,beta);return this.compileAndRun(program,[inputImage,outputImage,dy])}tile(x,reps){if(x.dtype==="string"){const data2=this.readSync(x.dataId);const decodedData=data2.map(d=>decodeString(d));const buf=buffer2(x.shape,x.dtype,decodedData);return tile$4(buf,reps)}const program=new TileProgram(x.shape,reps);return this.compileAndRun(program,[x])}pad(x,paddings,constantValue){const program=env3().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new PadPackedProgram(x.shape,paddings,constantValue):new PadProgram(x.shape,paddings,constantValue);return this.compileAndRun(program,[x])}gather(x,indices,axis){const cpuRes=this.tryRunOnCpuOrThrow([x,indices],()=>this.cpuBackend.gather(x,indices,axis));if(cpuRes){return cpuRes}const program=new GatherProgram(x.shape,indices.size,axis);return this.compileAndRun(program,[x,indices])}batchToSpaceND(x,blockShape,crops){assert(x.rank<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");const prod2=blockShape.reduce((a,b)=>a*b);const reshaped=getReshaped(x.shape,blockShape,prod2);const permuted=getPermuted(reshaped.length,blockShape.length);const reshapedPermuted=getReshapedPermuted(x.shape,blockShape,prod2);const sliceBeginCoords=getSliceBeginCoords(crops,blockShape.length);const sliceSize=getSliceSize(reshapedPermuted,crops,blockShape.length);return transpose2(x.reshape(reshaped),permuted).reshape(reshapedPermuted).slice(sliceBeginCoords,sliceSize)}spaceToBatchND(x,blockShape,paddings){assert(x.rank<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");const prod2=blockShape.reduce((a,b)=>a*b);const completePaddings=[[0,0]];completePaddings.push(...paddings);for(let i=1+blockShape.length;i<x.shape.length;++i){completePaddings.push([0,0])}const paddedX=x.pad(completePaddings);const reshapedPaddedShape=getReshaped(paddedX.shape,blockShape,prod2,false);const permutedReshapedPaddedPermutation=getPermuted(reshapedPaddedShape.length,blockShape.length,false);const flattenShape=getReshapedPermuted(paddedX.shape,blockShape,prod2,false);const paddedXT=transpose2(paddedX.reshape(reshapedPaddedShape),permutedReshapedPaddedPermutation);return reshape2(paddedXT,flattenShape)}reduce(x,reduceType,dtype){const batchSize=x.shape[0];const inSize=x.shape[1];const windowSize=computeOptimalWindowSize(inSize);const outSize=Math.ceil(inSize/windowSize);const reduceInfo={windowSize,inSize,batchSize,outSize};const program=new ReduceProgram(reduceInfo,reduceType);const output=this.compileAndRun(program,[x],dtype);if(output.shape[1]===1){return output}return this.reduce(output,reduceType,dtype)}argReduce(x,reduceType,bestIndicesA=null){let batchSize=x.shape[0];let inSize=x.shape[1];if(bestIndicesA!=null){batchSize=bestIndicesA.shape[0];inSize=bestIndicesA.shape[1]}const windowSize=computeOptimalWindowSize(inSize);const reduceInfo={windowSize,inSize,batchSize,outSize:Math.ceil(inSize/windowSize)};const program=new ArgMinMaxProgram(reduceInfo,reduceType,bestIndicesA==null);const inputs=[x];if(bestIndicesA!=null){inputs.push(bestIndicesA)}const output=this.compileAndRun(program,inputs,"int32");if(output.shape[1]===1){return output}return this.argReduce(x,reduceType,output)}argReducePacked(x,reduceType,bestIndicesA=null){const inShape=bestIndicesA!=null?bestIndicesA.shape:x.shape;const inSize=inShape[inShape.length-1];const windowSize=computeOptimalWindowSize(inSize);const program=new ArgMinMaxPackedProgram(inShape,windowSize,reduceType,bestIndicesA==null);const inputs=bestIndicesA==null?[x]:[x,bestIndicesA];const output=this.compileAndRun(program,inputs,"int32");if(output.rank===x.rank){return this.argReducePacked(x,reduceType,output)}return output}sum(x,axes){assertAxesAreInnerMostDims("sum",axes,x.rank);const[outShape,reduceShape]=computeOutAndReduceShapes(x.shape,axes);const inSize=sizeFromShape(reduceShape);const a2D=x.as2D(-1,inSize);const outputDType=sumOutType(x.dtype);return this.reduce(a2D,"sum",outputDType).reshape(outShape)}prod(x,axes){const cpuRes=this.tryRunOnCpuOrThrow([x],()=>this.cpuBackend.prod(x,axes));if(cpuRes){return cpuRes}const[outShape,reduceShape]=computeOutAndReduceShapes(x.shape,axes);const inSize=sizeFromShape(reduceShape);const a2D=x.as2D(-1,inSize);const outputDType=sumOutType(x.dtype);return this.reduce(a2D,"prod",outputDType).reshape(outShape)}unsortedSegmentSum(x,segmentIds,numSegments){let axis=0;const permutation=getAxesPermutation([axis],x.rank);let permutedX=x;if(permutation!=null){permutedX=transpose2(x,permutation);axis=getInnerMostAxes(1,x.rank)[0]}const outShape=segment_util$1.computeOutShape(permutedX.shape,axis,numSegments);const inSize=sizeFromShape([permutedX.shape[axis]]);const a2D=permutedX.as2D(-1,inSize);const outputDType=sumOutType(x.dtype);let result=this.segOpCompute(a2D,"unsortedSegmentSum",segmentIds,outputDType,numSegments).reshape(outShape);if(permutation!=null){result=transpose2(result,getUndoAxesPermutation(permutation))}return result}segOpCompute(x,segOpType,segmentIds,dtype,numSegments){const batchSize=x.shape[0];const inSize=x.shape[1];const windowSize=segment_util$1.segOpComputeOptimalWindowSize(inSize,numSegments);const segOpInfo={windowSize,inSize,batchSize,numSegments};const program=new SegmentOpProgram(segOpInfo,segOpType);const output=this.compileAndRun(program,[x,segmentIds],dtype);if(output.shape[1]===numSegments){return output}segmentIds=range(0,numSegments).tile([inSize/windowSize]);return this.segOpCompute(output,segOpType,segmentIds,dtype,numSegments)}argMinMaxReduce(x,axis,reduceType){const axes=[axis];assertAxesAreInnerMostDims("arg"+reduceType.charAt(0).toUpperCase()+reduceType.slice(1),axes,x.rank);if(!env3().getBool("WEBGL_PACK_REDUCE")||x.rank<=2){const[outShape,reduceShape]=computeOutAndReduceShapes(x.shape,axes);const inSize=sizeFromShape(reduceShape);const a2D=x.as2D(-1,inSize);return this.argReduce(a2D,reduceType).reshape(outShape)}return this.argReducePacked(x,reduceType)}argMin(x,axis){return this.argMinMaxReduce(x,axis,"min")}argMax(x,axis){return this.argMinMaxReduce(x,axis,"max")}cumsum(x,axis,exclusive,reverse3){if(axis!==x.rank-1){throw new Error(`WebGL cumsum shader expects an inner-most axis=${x.rank-1} but got axis=${axis}`)}const size=x.shape[axis];let result=x;for(let i=0;i<=Math.ceil(Math.log2(size))-1;i++){const program=new CumSumProgram(x.shape,false,reverse3);const customSetup=program.getCustomSetupFunc(i);const prevResult=result;result=this.compileAndRun(program,[result],result.dtype,customSetup);prevResult.dispose()}if(exclusive){const program=new CumSumProgram(x.shape,exclusive,reverse3);const prevResult=result;result=this.compileAndRun(program,[result]);prevResult.dispose()}return result}equal(a,b){if(env3().getBool("WEBGL_PACK_BINARY_OPERATIONS")){return this.packedBinaryOp(a,b,EQUAL$1,"bool")}const program=new BinaryOpProgram(EQUAL,a.shape,b.shape);return this.compileAndRun(program,[a,b],"bool")}less(a,b){const cpuRes=this.tryRunOnCpuOrThrow([a,b],()=>this.cpuBackend.less(a,b));if(cpuRes){return cpuRes}if(env3().getBool("WEBGL_PACK_BINARY_OPERATIONS")){return this.packedBinaryOp(a,b,LESS$1,"bool")}const program=new BinaryOpProgram(LESS,a.shape,b.shape);return this.compileAndRun(program,[a,b],"bool")}lessEqual(a,b){if(env3().getBool("WEBGL_PACK_BINARY_OPERATIONS")){return this.packedBinaryOp(a,b,LESS_EQUAL$1,"bool")}const program=new BinaryOpProgram(LESS_EQUAL,a.shape,b.shape);return this.compileAndRun(program,[a,b],"bool")}greater(a,b){const cpuRes=this.tryRunOnCpuOrThrow([a,b],()=>this.cpuBackend.greater(a,b));if(cpuRes){return cpuRes}if(env3().getBool("WEBGL_PACK_BINARY_OPERATIONS")){return this.packedBinaryOp(a,b,GREATER$1,"bool")}const program=new BinaryOpProgram(GREATER,a.shape,b.shape);return this.compileAndRun(program,[a,b],"bool")}greaterEqual(a,b){if(env3().getBool("WEBGL_PACK_BINARY_OPERATIONS")){return this.packedBinaryOp(a,b,GREATER_EQUAL$1,"bool")}const program=new BinaryOpProgram(GREATER_EQUAL,a.shape,b.shape);return this.compileAndRun(program,[a,b],"bool")}logicalNot(x){const program=new UnaryOpProgram(x.shape,LOGICAL_NOT);return this.compileAndRun(program,[x])}logicalAnd(a,b){if(env3().getBool("WEBGL_PACK_BINARY_OPERATIONS")){return this.packedBinaryOp(a,b,LOGICAL_AND$1,"bool")}const program=new BinaryOpProgram(LOGICAL_AND,a.shape,b.shape);return this.compileAndRun(program,[a,b],"bool")}logicalOr(a,b){if(env3().getBool("WEBGL_PACK_BINARY_OPERATIONS")){return this.packedBinaryOp(a,b,LOGICAL_OR$1,"bool")}const program=new BinaryOpProgram(LOGICAL_OR,a.shape,b.shape);return this.compileAndRun(program,[a,b],"bool")}select(condition,a,b){const program=new SelectProgram(condition.rank,a.shape,a.rank);return this.compileAndRun(program,[condition,a,b],upcastType(a.dtype,b.dtype))}where(condition){warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");const condVals=condition.dataSync();return whereImpl$2(condition.shape,condVals)}topk(x,k,sorted){const xVals=x.dataSync();return topkImpl$2(xVals,x.shape,x.dtype,k,sorted)}min(x,axes){assertAxesAreInnerMostDims("min",axes,x.rank);const[outShape,reduceShape]=computeOutAndReduceShapes(x.shape,axes);const inSize=sizeFromShape(reduceShape);const a2D=x.as2D(-1,inSize);return this.reduce(a2D,"min",a2D.dtype).reshape(outShape)}minimum(a,b){const cpuRes=this.tryRunOnCpuOrThrow([a,b],()=>this.cpuBackend.minimum(a,b));if(cpuRes){return cpuRes}const program=env3().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new BinaryOpPackedProgram(MIN$1,a.shape,b.shape):new BinaryOpProgram(MIN,a.shape,b.shape);return this.compileAndRun(program,[a,b])}mod(a,b){const program=env3().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new BinaryOpPackedProgram(MOD$1,a.shape,b.shape):new BinaryOpProgram(MOD,a.shape,b.shape);return this.compileAndRun(program,[a,b])}maximum(a,b){const cpuRes=this.tryRunOnCpuOrThrow([a,b],()=>this.cpuBackend.maximum(a,b));if(cpuRes){return cpuRes}const program=env3().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new BinaryOpPackedProgram(MAX$1,a.shape,b.shape):new BinaryOpProgram(MAX,a.shape,b.shape);return this.compileAndRun(program,[a,b])}all(x,axes){assertAxesAreInnerMostDims("all",axes,x.rank);const[outShape,reduceShape]=computeOutAndReduceShapes(x.shape,axes);const inSize=sizeFromShape(reduceShape);const a2D=x.as2D(-1,inSize);return this.reduce(a2D,"all",a2D.dtype).reshape(outShape)}any(x,axes){assertAxesAreInnerMostDims("any",axes,x.rank);const[outShape,reduceShape]=computeOutAndReduceShapes(x.shape,axes);const inSize=sizeFromShape(reduceShape);const a2D=x.as2D(-1,inSize);return this.reduce(a2D,"any",a2D.dtype).reshape(outShape)}floorDiv(a,b){const op2=INT_DIV;const outputDtype="int32";if(env3().getBool("WEBGL_PACK_BINARY_OPERATIONS")){return this.packedBinaryOp(a,b,INT_DIV$1,outputDtype)}const program=new BinaryOpProgram(op2,a.shape,b.shape);return this.compileAndRun(program,[a,b],outputDtype)}packedUnaryOp(x,op2,dtype){const program=new UnaryOpPackedProgram(x.shape,op2);return this.compileAndRun(program,[x],dtype)}packedBinaryOp(a,b,op2,dtype,checkOutOfBounds=false){const program=new BinaryOpPackedProgram(op2,a.shape,b.shape,checkOutOfBounds);return this.compileAndRun(program,[a,b],dtype)}makeComplexComponentTensorInfo(complexTensor,complexPart){return{dataId:complexPart.dataId,dtype:complexPart.dtype,shape:complexTensor.shape}}addN(tensors){if(tensors.length===1){return tensors[0]}if(tensors.length>env3().get("WEBGL_MAX_TEXTURES_IN_SHADER")){const midIndex=Math.floor(tensors.length/2);const leftSide=this.addN(tensors.slice(0,midIndex));const rightSide=this.addN(tensors.slice(midIndex));return this.addN([leftSide,rightSide])}const dtype=tensors.map(t=>t.dtype).reduce((d1,d2)=>upcastType(d1,d2));const shapes=tensors.map(t=>t.shape);const usePackedOp=env3().getBool("WEBGL_PACK");const program=usePackedOp?new AddNPackedProgram(tensors[0].shape,shapes):new AddNProgram(tensors[0].shape,shapes);return this.compileAndRun(program,tensors,dtype)}pow(a,b){const usePackedOp=env3().getBool("WEBGL_PACK_BINARY_OPERATIONS");const program=usePackedOp?new BinaryOpPackedProgram(POW$1,a.shape,b.shape):new BinaryOpProgram(POW,a.shape,b.shape);const dtype=upcastType(a.dtype,b.dtype);return this.compileAndRun(program,[a,b],dtype)}ceil(x){if(this.shouldExecuteOnCPU([x])){const outValues=ceilImplCPU(this.texData.get(x.dataId).values,x.dtype);return this.makeOutput(x.shape,x.dtype,outValues)}if(env3().getBool("WEBGL_PACK_UNARY_OPERATIONS")){return this.packedUnaryOp(x,CEIL,x.dtype)}const program=new UnaryOpProgram(x.shape,CEIL);return this.compileAndRun(program,[x])}floor(x){if(this.shouldExecuteOnCPU([x])){const outValues=floorImplCPU(this.texData.get(x.dataId).values,x.dtype);return this.makeOutput(x.shape,x.dtype,outValues)}if(env3().getBool("WEBGL_PACK_UNARY_OPERATIONS")){return this.packedUnaryOp(x,FLOOR,x.dtype)}const program=new UnaryOpProgram(x.shape,FLOOR);return this.compileAndRun(program,[x])}sign(x){const program=new UnaryOpProgram(x.shape,SIGN);return this.compileAndRun(program,[x])}isNaN(x){const program=new UnaryOpProgram(x.shape,IS_NAN);return this.compileAndRun(program,[x],"bool")}isInf(x){const program=new UnaryOpProgram(x.shape,IS_INF);return this.compileAndRun(program,[x],"bool")}isFinite(x){const program=new UnaryOpProgram(x.shape,IS_FINITE);return this.compileAndRun(program,[x],"bool")}round(x){const program=new UnaryOpProgram(x.shape,ROUND);return this.compileAndRun(program,[x])}exp(x){if(this.shouldExecuteOnCPU([x])){const outValues=expImplCPU(this.texData.get(x.dataId).values,x.dtype);return this.makeOutput(x.shape,x.dtype,outValues)}if(env3().getBool("WEBGL_PACK_UNARY_OPERATIONS")){return this.packedUnaryOp(x,EXP,x.dtype)}const program=new UnaryOpProgram(x.shape,EXP);return this.compileAndRun(program,[x])}expm1(x){if(this.shouldExecuteOnCPU([x])){const outValues=expm1ImplCPU(this.texData.get(x.dataId).values,x.dtype);return this.makeOutput(x.shape,x.dtype,outValues)}if(env3().getBool("WEBGL_PACK_UNARY_OPERATIONS")){return this.packedUnaryOp(x,EXPM1,x.dtype)}const program=new UnaryOpProgram(x.shape,EXPM1);return this.compileAndRun(program,[x])}softmax(logits,dim){const axes=parseAxisParam([dim],logits.shape);const maxLogit=max2(logits,axes);const expandedShape=expandShapeToKeepDim(maxLogit.shape,axes);const a=sub(logits,maxLogit.reshape(expandedShape));const b=this.exp(a);const sumExp=this.sum(b,axes).reshape(expandedShape);return div(b,sumExp)}log(x){if(this.shouldExecuteOnCPU([x])){const outValues=logImplCPU(this.texData.get(x.dataId).values,x.dtype);return this.makeOutput(x.shape,x.dtype,outValues)}if(env3().getBool("WEBGL_PACK_UNARY_OPERATIONS")){return this.packedUnaryOp(x,LOG$1,x.dtype)}const program=new UnaryOpProgram(x.shape,LOG);return this.compileAndRun(program,[x])}log1p(x){const program=new UnaryOpProgram(x.shape,LOG1P);return this.compileAndRun(program,[x])}sqrt(x){const program=new UnaryOpProgram(x.shape,SQRT);return this.compileAndRun(program,[x])}rsqrt(x){if(this.shouldExecuteOnCPU([x])){const outValues=rsqrtImplCPU(this.texData.get(x.dataId).values,x.dtype);return this.makeOutput(x.shape,x.dtype,outValues)}const program=new UnaryOpProgram(x.shape,RSQRT);return this.compileAndRun(program,[x])}reciprocal(x){const program=new UnaryOpProgram(x.shape,RECIPROCAL);return this.compileAndRun(program,[x])}relu(x){let program;if(env3().getBool("WEBGL_PACK")){program=new UnaryOpPackedProgram(x.shape,RELU$1)}else{program=new UnaryOpProgram(x.shape,RELU)}return this.compileAndRun(program,[x])}relu6(x){let program;if(env3().getBool("WEBGL_PACK")){program=new UnaryOpPackedProgram(x.shape,RELU6$1)}else{program=new UnaryOpProgram(x.shape,RELU6)}return this.compileAndRun(program,[x])}prelu(x,alpha){const program=env3().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new BinaryOpPackedProgram(PRELU$1,x.shape,alpha.shape):new BinaryOpProgram(PRELU,x.shape,alpha.shape);return this.compileAndRun(program,[x,alpha])}elu(x){if(env3().getBool("WEBGL_PACK_UNARY_OPERATIONS")){return this.packedUnaryOp(x,ELU$2,x.dtype)}const program=new UnaryOpProgram(x.shape,ELU$1);return this.compileAndRun(program,[x])}eluDer(dy,y){const program=env3().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new BinaryOpPackedProgram(ELU_DER$1,dy.shape,y.shape):new BinaryOpProgram(ELU_DER,dy.shape,y.shape);return this.compileAndRun(program,[dy,y])}selu(x){const program=new UnaryOpProgram(x.shape,SELU);return this.compileAndRun(program,[x])}clip(x,min3,max3){let program;if(env3().getBool("WEBGL_PACK_CLIP")){program=new ClipPackedProgram(x.shape)}else{program=new ClipProgram(x.shape)}const customSetup=program.getCustomSetupFunc(min3,max3);return this.compileAndRun(program,[x],null,customSetup)}abs(x){if(this.shouldExecuteOnCPU([x])&&x.dtype!=="complex64"){const outValues=simpleAbsImplCPU(this.texData.get(x.dataId).values);return this.makeOutput(x.shape,x.dtype,outValues)}if(env3().getBool("WEBGL_PACK_UNARY_OPERATIONS")){return this.packedUnaryOp(x,ABS,x.dtype)}const program=new UnaryOpProgram(x.shape,ABS);return this.compileAndRun(program,[x])}complexAbs(x){const xData=this.texData.get(x.dataId);const program=new ComplexAbsProgram(x.shape);const inputs=[this.makeComplexComponentTensorInfo(x,xData.complexTensorInfos.real),this.makeComplexComponentTensorInfo(x,xData.complexTensorInfos.imag)];return this.compileAndRun(program,inputs)}sigmoid(x){const program=new UnaryOpProgram(x.shape,SIGMOID);return this.compileAndRun(program,[x])}softplus(x){const program=new UnaryOpProgram(x.shape,SOFTPLUS);return this.compileAndRun(program,[x])}asin(x){const program=new UnaryOpProgram(x.shape,ASIN);return this.compileAndRun(program,[x])}acos(x){const program=new UnaryOpProgram(x.shape,ACOS);return this.compileAndRun(program,[x])}atan(x){const program=new UnaryOpProgram(x.shape,ATAN);return this.compileAndRun(program,[x])}sinh(x){const program=new UnaryOpProgram(x.shape,SINH);return this.compileAndRun(program,[x])}cosh(x){const program=new UnaryOpProgram(x.shape,COSH);return this.compileAndRun(program,[x])}tanh(x){const program=new UnaryOpProgram(x.shape,TANH);return this.compileAndRun(program,[x])}asinh(x){const program=new UnaryOpProgram(x.shape,ASINH);return this.compileAndRun(program,[x])}acosh(x){const program=new UnaryOpProgram(x.shape,ACOSH);return this.compileAndRun(program,[x])}atanh(x){const program=new UnaryOpProgram(x.shape,ATANH);return this.compileAndRun(program,[x])}erf(x){const program=new UnaryOpProgram(x.shape,ERF);return this.compileAndRun(program,[x])}step(x,alpha){const program=new UnaryOpProgram(x.shape,STEP(alpha));return this.compileAndRun(program,[x])}conv2dByMatMul(x,filter,convInfo,bias,activation2,preluActivationWeights){const xShape=x.shape;const xTexData=this.texData.get(x.dataId);const sharedMatMulDim=convInfo.inChannels;const outerShapeX=xShape[0]*xShape[1]*xShape[2];const outerShapeFilter=convInfo.outChannels;const isChannelsLast=convInfo.dataFormat==="channelsLast";const transposeA=false;const transposeB=false;const batchMatMulWillBeUnpacked=(outerShapeX===1||outerShapeFilter===1)&&sharedMatMulDim>MATMUL_SHARED_DIM_THRESHOLD;const reshapeWillBeExpensive=xShape[2]%2!==0&&!!xTexData.isPacked;if(batchMatMulWillBeUnpacked||!env3().getBool("WEBGL_LAZILY_UNPACK")||!env3().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!reshapeWillBeExpensive){const targetShape2=isChannelsLast?xShape[0]*xShape[1]*xShape[2]:xShape[0]*xShape[2]*xShape[3];const xReshaped2=reshape2(x,[1,targetShape2,convInfo.inChannels]);const filterReshaped2=reshape2(filter,[1,convInfo.inChannels,convInfo.outChannels]);const result=this.fusedBatchMatMul({a:xReshaped2,b:filterReshaped2,transposeA,transposeB,bias,activation:activation2,preluActivationWeights});return reshape2(result,convInfo.outShape)}const targetShape=isChannelsLast?xShape[0]*xShape[1]*(xShape[2]+1):xShape[0]*xShape[2]*(xShape[3]+1);const xReshaped={dataId:x.dataId,shape:[1,targetShape,convInfo.inChannels],dtype:x.dtype};const originalXTexDataShape=xTexData.shape;xTexData.shape=xTexData.shape.slice();xTexData.shape[xTexData.shape.length-2]++;assert(isReshapeFree(xTexData.shape,xReshaped.shape),()=>`packed reshape ${xTexData.shape} to ${xReshaped.shape} isn't free`);const filterReshaped=reshape2(filter,[1,convInfo.inChannels,convInfo.outChannels]);const pointwiseConv=this.fusedBatchMatMul({a:xReshaped,b:filterReshaped,transposeA,transposeB,bias,activation:activation2,preluActivationWeights});const pointwiseConvTexData=this.texData.get(pointwiseConv.dataId);assert(pointwiseConvTexData.isPacked,()=>"batchMatMul result is expected to be packed");xTexData.shape=originalXTexDataShape;pointwiseConvTexData.shape=convInfo.outShape;return engine2().makeTensorFromDataId(pointwiseConv.dataId,convInfo.outShape,pointwiseConv.dtype)}conv2dWithIm2Row(x,filter,convInfo,bias,activation2,preluActivationWeights){const{filterWidth,filterHeight,inChannels,outWidth,outHeight,dataFormat}=convInfo;const isChannelsLast=dataFormat==="channelsLast";const sharedDim=filterWidth*filterHeight*inChannels;const numCols=outHeight*outWidth;const x2ColShape=[sharedDim,numCols];const transposeA=true;const transposeB=false;const xSqueezed=x.squeeze([0]);const w2Row=filter.reshape([1,sharedDim,-1]);const im2ColProgram=new Im2ColPackedProgram(x2ColShape,xSqueezed.shape,convInfo);const im2Col=this.compileAndRun(im2ColProgram,[xSqueezed]).reshape([1,x2ColShape[0],x2ColShape[1]]);const hasBias=bias!=null;const hasPreluActivationWeights=preluActivationWeights!=null;const fusedActivation=activation2?mapActivationToShaderProgram(activation2,true):null;const matmulProgram=new MatMulPackedProgram(im2Col.shape,w2Row.shape,[1,numCols,convInfo.outChannels],transposeA,transposeB,hasBias,fusedActivation,hasPreluActivationWeights);const inputs=[im2Col,w2Row];if(bias){inputs.push(bias)}if(hasPreluActivationWeights){inputs.push(preluActivationWeights)}const product=this.compileAndRun(matmulProgram,inputs);if(isChannelsLast){return product.reshape([1,outHeight,outWidth,convInfo.outChannels])}else{return product.reshape([1,convInfo.outChannels,outHeight,outWidth])}}fusedConv2d({input:input2,filter,convInfo,bias,activation:activation2,preluActivationWeights}){if(convInfo.filterHeight===1&&convInfo.filterWidth===1&&convInfo.dilationHeight===1&&convInfo.dilationWidth===1&&convInfo.strideHeight===1&&convInfo.strideWidth===1&&(convInfo.padInfo.type==="SAME"||convInfo.padInfo.type==="VALID")){return this.conv2dByMatMul(input2,filter,convInfo,bias,activation2,preluActivationWeights)}if(env3().getBool("WEBGL_CONV_IM2COL")&&input2.shape[0]===1){return this.conv2dWithIm2Row(input2,filter,convInfo,bias,activation2,preluActivationWeights)}const hasBias=bias!=null;const hasPreluActivationWeights=preluActivationWeights!=null;const fusedActivation=activation2?mapActivationToShaderProgram(activation2,false):null;const program=new Conv2DProgram(convInfo,hasBias,fusedActivation,hasPreluActivationWeights);const inputs=[input2,filter];if(bias){inputs.push(bias)}if(preluActivationWeights){inputs.push(preluActivationWeights)}return this.compileAndRun(program,inputs)}conv2d(x,filter,convInfo){if(convInfo.filterHeight===1&&convInfo.filterWidth===1&&convInfo.dilationHeight===1&&convInfo.dilationWidth===1&&convInfo.strideHeight===1&&convInfo.strideWidth===1&&(convInfo.padInfo.type==="SAME"||convInfo.padInfo.type==="VALID")){return this.conv2dByMatMul(x,filter,convInfo)}if(env3().getBool("WEBGL_CONV_IM2COL")&&x.shape[0]===1){return this.conv2dWithIm2Row(x,filter,convInfo)}const program=new Conv2DProgram(convInfo);return this.compileAndRun(program,[x,filter])}conv2dDerInput(dy,filter,convInfo){const program=new Conv2DDerInputProgram(convInfo);return this.compileAndRun(program,[dy,filter])}conv2dDerFilter(x,dy,convInfo){const program=new Conv2DDerFilterProgram(convInfo);return this.compileAndRun(program,[x,dy])}fusedDepthwiseConv2D({input:input2,filter,convInfo,bias,activation:activation2,preluActivationWeights}){const shouldPackDepthwiseConv=env3().getBool("WEBGL_PACK_DEPTHWISECONV")&&convInfo.strideWidth<=2&&convInfo.outChannels/convInfo.inChannels===1;const fusedActivation=activation2?mapActivationToShaderProgram(activation2,shouldPackDepthwiseConv):null;const inputs=[input2,filter];const hasBias=bias!=null;const hasPreluActivationWeights=preluActivationWeights!=null;if(hasBias){inputs.push(bias)}if(hasPreluActivationWeights){inputs.push(preluActivationWeights)}let program;if(shouldPackDepthwiseConv){program=new DepthwiseConvPacked2DProgram(convInfo,hasBias,fusedActivation,hasPreluActivationWeights);return this.compileAndRun(program,inputs)}program=new DepthwiseConv2DProgram(convInfo,hasBias,fusedActivation,hasPreluActivationWeights);return this.compileAndRun(program,inputs)}depthwiseConv2D(x,filter,convInfo){let program;if(env3().getBool("WEBGL_PACK_DEPTHWISECONV")&&convInfo.strideWidth<=2&&convInfo.outChannels/convInfo.inChannels===1){program=new DepthwiseConvPacked2DProgram(convInfo);return this.compileAndRun(program,[x,filter])}program=new DepthwiseConv2DProgram(convInfo);return this.compileAndRun(program,[x,filter])}depthwiseConv2DDerInput(dy,filter,convInfo){const program=new DepthwiseConv2DDerInputProgram(convInfo);return this.compileAndRun(program,[dy,filter])}depthwiseConv2DDerFilter(x,dy,convInfo){const program=new DepthwiseConv2DDerFilterProgram(convInfo);return this.compileAndRun(program,[x,dy])}conv3d(x,filter,convInfo){const program=new Conv3DProgram(convInfo);return this.compileAndRun(program,[x,filter])}conv3dDerInput(dy,filter,convInfo){const program=new Conv3DDerInputProgram(convInfo);return this.compileAndRun(program,[dy,filter])}conv3dDerFilter(x,dy,convInfo){const program=new Conv3DDerFilterProgram(convInfo);return this.compileAndRun(program,[x,dy])}unstack(x,axis){const num=x.shape[axis];const outShape=new Array(x.rank-1);let outIndex=0;for(let i=0;i<x.rank;i++){if(i!==axis){outShape[outIndex++]=x.shape[i]}}const begin=new Array(x.rank).fill(0);const size=x.shape.slice();size[axis]=1;const res=new Array(num);for(let i=0;i<res.length;i++){begin[axis]=i;res[i]=this.slice(x,begin,size).reshape(outShape)}return res}avgPool3d(x,convInfo){const program=new Pool3DProgram(convInfo,"avg",false);return this.compileAndRun(program,[x],"float32")}avgPool3dBackprop(dy,x,convInfo){const avgPool3dBackpropProgram=new AvgPool3DBackpropProgram(convInfo);return this.compileAndRun(avgPool3dBackpropProgram,[dy],x.dtype)}maxPool3d(x,convInfo){const program=new Pool3DProgram(convInfo,"max",false);return this.compileAndRun(program,[x],"float32")}maxPool3dBackprop(dy,x,y,convInfo){const getPositions=true;const maxPool3dPositionsProgram=new Pool3DProgram(convInfo,"max",getPositions);const maxPool3dPositions=this.compileAndRun(maxPool3dPositionsProgram,[x]);const maxPool3dBackPropProgram=new MaxPool3DBackpropProgram(convInfo);const result=this.compileAndRun(maxPool3dBackPropProgram,[dy,maxPool3dPositions],x.dtype);maxPool3dPositions.dispose();return result}resizeBilinear(x,newHeight,newWidth,alignCorners){const program=env3().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new ResizeBilinearPackedProgram(x.shape,newHeight,newWidth,alignCorners):new ResizeBilinearProgram(x.shape,newHeight,newWidth,alignCorners);return this.compileAndRun(program,[x],"float32")}resizeBilinearBackprop(dy,x,alignCorners){const program=new ResizeBilinearBackpropProgram(dy,x,alignCorners);return this.compileAndRun(program,[dy])}resizeNearestNeighbor(x,newHeight,newWidth,alignCorners){const program=new ResizeNearestNeighborProgram(x.shape,newHeight,newWidth,alignCorners);return this.compileAndRun(program,[x])}resizeNearestNeighborBackprop(dy,x,alignCorners){const program=new ResizeNearestNeigborBackpropProgram(dy,x,alignCorners);return this.compileAndRun(program,[dy])}multinomial(logits,normalized,numSamples,seed){const probs=normalized?logits:softmax2(logits);const batchSize=probs.shape[0];const numOutcomes=probs.shape[1];const program=new MultinomialProgram(batchSize,numOutcomes,numSamples);const customSetup=program.getCustomSetupFunc(seed);return this.compileAndRun(program,[probs],"int32",customSetup)}oneHot(indices,depth,onValue,offValue){const program=new OneHotProgram(indices.size,depth,onValue,offValue);return this.compileAndRun(program,[indices])}diag(x){const program=new DiagProgram(x.size);return this.compileAndRun(program,[x])}cropAndResize(image3,boxes,boxIndex,cropSize,method,extrapolationValue){const program=new CropAndResizeProgram(image3.shape,boxes.shape,cropSize,method,extrapolationValue);return this.compileAndRun(program,[image3,boxes,boxIndex],"float32")}depthToSpace(x,blockSize,dataFormat){assert(blockSize>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${blockSize}`);const batchSize=x.shape[0];const inputHeight=dataFormat==="NHWC"?x.shape[1]:x.shape[2];const inputWidth=dataFormat==="NHWC"?x.shape[2]:x.shape[3];const inputDepth=dataFormat==="NHWC"?x.shape[3]:x.shape[1];const outputHeight=inputHeight*blockSize;const outputWidth=inputWidth*blockSize;const outputDepth=inputDepth/(blockSize*blockSize);const outputShape=dataFormat==="NHWC"?[batchSize,outputHeight,outputWidth,outputDepth]:[batchSize,outputDepth,outputHeight,outputWidth];const program=new DepthToSpaceProgram(outputShape,blockSize,dataFormat);return this.compileAndRun(program,[x])}split(x,sizeSplits,axis){return split$5(x,sizeSplits,axis)}scatterND(indices,updates,shape){const{sliceRank,numUpdates,sliceSize,strides,outputSize}=calculateShapes(updates,indices,shape);const flattenShape=[outputSize/sliceSize,sliceSize];const flattenIndices=indices.reshape([numUpdates,sliceRank]);const flattenX=updates.reshape([numUpdates,sliceSize]);if(outputSize===0){return reshapeTensor(tensor([]),shape)}const defaultValue=scalar(0);const program=new ScatterProgram(numUpdates,sliceRank,flattenIndices.rank,flattenX.rank,strides,flattenShape);const res=this.compileAndRun(program,[flattenX,flattenIndices,defaultValue]);return res.reshape(shape)}sparseToDense(sparseIndices,sparseValues,outputShape,defaultValue){const{sliceRank,numUpdates,strides,outputSize}=calculateShapes(sparseValues,sparseIndices,outputShape);const sumDupeIndices=false;const program=new ScatterProgram(numUpdates,sliceRank,sparseIndices.rank,sparseValues.rank,strides,[outputSize,1],sumDupeIndices);const res=this.compileAndRun(program,[sparseValues,sparseIndices,defaultValue]);return res.reshape(outputShape)}gatherND(x,indices){const indicesShape=indices.shape;const sliceRank=indicesShape[indicesShape.length-1];const[resultShape,numSlices,sliceSize,strides]=prepareAndValidate(x,indices);const flattenIndices=indices.reshape([numSlices,sliceRank]);const flattenX=x.reshape([x.size/sliceSize,sliceSize]);const program=new GatherNDProgram(sliceRank,strides,[numSlices,sliceSize]);const res=this.compileAndRun(program,[flattenX,flattenIndices]);return res.reshape(resultShape)}fill(shape,value,dtype){dtype=dtype||inferDtype(value);if(dtype==="string"){const values=getArrayFromDType(dtype,sizeFromShape(shape));values.fill(value);return engine2().makeTensor(values,shape,dtype,this)}else{const program=new FillProgram(shape,value);const customSetup=program.getCustomSetupFunc(value);return this.compileAndRun(program,[],dtype,customSetup)}}onesLike(x){if(x.dtype==="string"){throw new Error("onesLike is not supported under string dtype")}else{return this.fill(x.shape,1,x.dtype)}}zerosLike(x){return this.fill(x.shape,x.dtype==="string"?"":0,x.dtype)}linspace(start,stop,num){return linspaceImpl(start,stop,num)}makeTensorInfo(shape,dtype,values){const dataId=this.write(values,shape,dtype);this.texData.get(dataId).usage=null;return{dataId,shape,dtype}}makeOutput(shape,dtype,values){const{dataId}=this.makeTensorInfo(shape,dtype,values);return engine2().makeTensorFromDataId(dataId,shape,dtype,this)}unpackTensor(input2){const program=new UnpackProgram(input2.shape);return this.runWebGLProgram(program,[input2],input2.dtype)}packTensor(input2){const program=new PackProgram(input2.shape);const preventEagerUnpackingOutput=true;return this.runWebGLProgram(program,[input2],input2.dtype,null,preventEagerUnpackingOutput)}packedReshape(input2,afterShape){const input3DShape=[getBatchDim(input2.shape),...getRowsCols(input2.shape)];const input3D={dtype:input2.dtype,shape:input3DShape,dataId:input2.dataId};const afterShapeAs3D=[getBatchDim(afterShape),...getRowsCols(afterShape)];const program=new ReshapePackedProgram(afterShapeAs3D,input3DShape);const preventEagerUnpackingOfOutput=true;const output=this.runWebGLProgram(program,[input3D],input2.dtype,null,preventEagerUnpackingOfOutput);return{dataId:output.dataId,shape:afterShape,dtype:output.dtype}}decode(dataId){const texData=this.texData.get(dataId);const{isPacked,shape,dtype}=texData;const shapeAs3D=getShapeAs3D(shape);let program;if(isPacked){program=new DecodeMatrixPackedProgram(shapeAs3D)}else{program=new DecodeMatrixProgram(shapeAs3D)}const preventEagerUnpackingOfOutput=true;const out=this.runWebGLProgram(program,[{shape:shapeAs3D,dtype,dataId}],dtype,null,preventEagerUnpackingOfOutput);return{dtype,shape,dataId:out.dataId}}runWebGLProgram(program,inputs,outputDtype,customSetup,preventEagerUnpackingOfOutput=false){const output=this.makeTensorInfo(program.outputShape,outputDtype);const outData=this.texData.get(output.dataId);if(program.packedOutput){outData.isPacked=true}if(program.outPackingScheme===PackingScheme.DENSE){const texelShape=getDenseTexShape(program.outputShape);outData.texShape=texelShape.map(d=>d*2)}if(program.outTexUsage!=null){outData.usage=program.outTexUsage}if(sizeFromShape(output.shape)===0){outData.values=getTypedArrayFromDType(output.dtype,0);return output}const dataToDispose=[];const inputsData=inputs.map(input2=>{if(input2.dtype==="complex64"){throw new Error(`GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.`)}let texData=this.texData.get(input2.dataId);if(texData.texture==null){if(!program.packedInputs&&sizeFromShape(input2.shape)<=env3().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM")){return{shape:input2.shape,texData:null,isUniform:true,uniformValues:texData.values}}if(program.packedInputs){texData.isPacked=true;texData.shape=input2.shape}}else if(!!texData.isPacked!==!!program.packedInputs){input2=texData.isPacked?this.unpackTensor(input2):this.packTensor(input2);dataToDispose.push(input2);texData=this.texData.get(input2.dataId)}else if(texData.isPacked&&!isReshapeFree(texData.shape,input2.shape)){const savedInput=input2;const targetShape=input2.shape;input2.shape=texData.shape;input2=this.packedReshape(input2,targetShape);dataToDispose.push(input2);texData=this.texData.get(input2.dataId);savedInput.shape=targetShape}this.uploadToGPU(input2.dataId);return{shape:input2.shape,texData,isUniform:false}});this.uploadToGPU(output.dataId);const outputData={shape:output.shape,texData:outData,isUniform:false};const key=makeShaderKey(program,inputsData,outputData);const binary=this.getAndSaveBinary(key,()=>{return compileProgram(this.gpgpu,program,inputsData,outputData)});const shouldTimeProgram=this.activeTimers!=null;let query;if(shouldTimeProgram){query=this.startTimer()}runProgram(this.gpgpu,binary,inputsData,outputData,customSetup);dataToDispose.forEach(info=>this.disposeIntermediateTensorInfo(info));if(shouldTimeProgram){query=this.endTimer(query);this.activeTimers.push({name:program.constructor.name,query:this.getQueryTime(query)})}if(!env3().getBool("WEBGL_LAZILY_UNPACK")&&outData.isPacked&&preventEagerUnpackingOfOutput===false){const unpacked=this.unpackTensor(output);this.disposeIntermediateTensorInfo(output);return unpacked}return output}compileAndRun(program,inputs,outputDtype,customSetup,preventEagerUnpackingOfOutput=false){outputDtype=outputDtype||inputs[0].dtype;const outInfo=this.runWebGLProgram(program,inputs,outputDtype,customSetup,preventEagerUnpackingOfOutput);return engine2().makeTensorFromDataId(outInfo.dataId,outInfo.shape,outInfo.dtype)}getAndSaveBinary(key,getBinary){if(!(key in this.binaryCache)){this.binaryCache[key]=getBinary()}return this.binaryCache[key]}getTextureManager(){return this.textureManager}dispose(){if(this.disposed){return}if(!env3().getBool("IS_TEST")){const allKeys=Object.keys(this.binaryCache);allKeys.forEach(key=>{this.gpgpu.deleteProgram(this.binaryCache[key].webGLProgram);delete this.binaryCache[key]})}this.textureManager.dispose();if(this.canvas!=null&&(typeof HTMLCanvasElement!=="undefined"&&this.canvas instanceof HTMLCanvasElement)){this.canvas.remove()}else{this.canvas=null}if(this.gpgpuCreatedLocally){this.gpgpu.program=null;this.gpgpu.dispose()}this.disposed=true}floatPrecision(){if(this.floatPrecisionValue==null){this.floatPrecisionValue=tidy(()=>{if(!env3().get("WEBGL_RENDER_FLOAT32_ENABLED")){const debugFlag=env3().getBool("DEBUG");env3().set("DEBUG",false);const underflowCheckValue=this.abs(scalar(1e-8)).dataSync()[0];env3().set("DEBUG",debugFlag);if(underflowCheckValue>0){return 32}}return 16})}return this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?EPSILON_FLOAT32$1:EPSILON_FLOAT16$1}uploadToGPU(dataId){const texData=this.texData.get(dataId);const{shape,dtype,values,texture,usage,isPacked}=texData;if(texture!=null){return}const shouldTimeProgram=this.activeTimers!=null;let start;if(shouldTimeProgram){start=now2()}let texShape=texData.texShape;if(texShape==null){texShape=getTextureShapeFromLogicalShape(shape,isPacked);texData.texShape=texShape}if(values!=null){const shapeAs3D=getShapeAs3D(shape);let program;let width=texShape[1],height=texShape[0];const isByteArray=values instanceof Uint8Array;if(isPacked){[width,height]=getPackedMatrixTextureShapeWidthHeight(texShape[0],texShape[1]);program=new EncodeMatrixPackedProgram(shapeAs3D,[height,width],isByteArray)}else{program=new EncodeMatrixProgram(shapeAs3D,[height,width],isByteArray)}const tempDenseInputHandle=this.makeTensorInfo([height,width],dtype);if(isByteArray){this.texData.get(tempDenseInputHandle.dataId).usage=TextureUsage.PIXELS}else{this.texData.get(tempDenseInputHandle.dataId).usage=TextureUsage.UPLOAD}this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(tempDenseInputHandle.dataId),width,height,values);const preventEagerUnpacking=true;const encodedOutputTarget=this.runWebGLProgram(program,[tempDenseInputHandle],dtype,null,preventEagerUnpacking);const outputTexData=this.texData.get(encodedOutputTarget.dataId);texData.texture=outputTexData.texture;texData.texShape=outputTexData.texShape;texData.isPacked=outputTexData.isPacked;texData.usage=outputTexData.usage;this.disposeIntermediateTensorInfo(tempDenseInputHandle);this.texData.delete(encodedOutputTarget.dataId);texData.values=null;if(shouldTimeProgram){this.uploadWaitMs+=now2()-start}}else{const newTexture=this.acquireTexture(texShape,usage,dtype,isPacked);texData.texture=newTexture}}convertAndCacheOnCPU(dataId,float32Values){const texData=this.texData.get(dataId);const{dtype}=texData;this.releaseGPUData(dataId);if(float32Values!=null){texData.values=float32ToTypedArray(float32Values,dtype)}return texData.values}acquireTexture(texShape,texType,dtype,isPacked){this.numBytesInGPU+=this.computeBytes(texShape,dtype);if(!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){const mb=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=true;console.warn(`High memory usage in GPU: ${mb} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(texShape,texType,isPacked)}computeBytes(shape,dtype){return shape[0]*shape[1]*bytesPerElement(dtype)}tryRunOnCpuOrThrow(inputs,fn){if(this.shouldExecuteOnCPU(inputs)){try{return fn()}catch(e){if(env3().getBool("IS_TEST")){throw new Error("CPU forwarding failed")}}}return null}}function float32ToTypedArray(a,dtype){if(dtype==="float32"||dtype==="complex64"){return a}else if(dtype==="int32"||dtype==="bool"){const result=dtype==="int32"?new Int32Array(a.length):new Uint8Array(a.length);for(let i=0;i<result.length;++i){result[i]=Math.round(a[i])}return result}else{throw new Error(`Unknown dtype ${dtype}`)}}const version$5="2.7.0";function forceHalfFloat(){env3().set("WEBGL_FORCE_F16_TEXTURES",true)}if(isBrowser()){registerBackend2("webgl",()=>new MathBackendWebGL,2)}const webgl={forceHalfFloat};function identity$2(args){const{inputs,backend:backend2}=args;const{x}=inputs;backend2.incRef(x.dataId);return{dataId:x.dataId,shape:x.shape,dtype:x.dtype}}const identityConfig$1={kernelName:Identity5,backendName:"webgl",kernelFunc:identity$2};function complex$2(args){const{inputs,backend:backend2}=args;const{real:real2,imag:imag2}=inputs;const complexInfo=backend2.makeTensorInfo(real2.shape,"complex64");const complex2=backend2.texData.get(complexInfo.dataId);const realTensorInfo=identity$2({inputs:{x:real2},backend:backend2});const realData=backend2.texData.get(realTensorInfo.dataId);realData.complexParentRefCount++;const imagTensorInfo=identity$2({inputs:{x:imag2},backend:backend2});const imagData=backend2.texData.get(imagTensorInfo.dataId);imagData.complexParentRefCount++;complex2.complexTensorInfos={real:realTensorInfo,imag:imagTensorInfo};return complexInfo}const complexConfig$1={kernelName:Complex,backendName:"webgl",kernelFunc:complex$2};const CHECK_NAN_SNIPPET_UNARY=`if (isnan(x)) return x;`;const CHECK_NAN_SNIPPET_BINARY=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`;const CHECK_NAN_SNIPPET_BINARY_PACKED=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`;function unaryKernelFunc$1(opSnippet){return({inputs,backend:backend2})=>{const{x}=inputs;const webglBackend=backend2;const program=new UnaryOpProgram(x.shape,opSnippet);return webglBackend.runWebGLProgram(program,[x],x.dtype)}}function binaryKernelFunc$1({opSnippet,packedOpSnippet,checkOutOfBounds=false,supportsComplex=false,cpuKernelImpl,dtype}){return({inputs,backend:backend2})=>{const{a,b}=inputs;const webglBackend=backend2;if(supportsComplex&&a.dtype==="complex64"){const aData=webglBackend.texData.get(a.dataId);const bData=webglBackend.texData.get(b.dataId);const[real2,imag2]=[[aData.complexTensorInfos.real,bData.complexTensorInfos.real],[aData.complexTensorInfos.imag,bData.complexTensorInfos.imag]].map(complexParts=>{const[aPart,bPart]=complexParts;const aHandle={dataId:aPart.dataId,dtype:aPart.dtype,shape:a.shape};const bHandle={dataId:bPart.dataId,dtype:bPart.dtype,shape:b.shape};const program2=new BinaryOpProgram(opSnippet,a.shape,b.shape);return webglBackend.runWebGLProgram(program2,[aHandle,bHandle],upcastType(aPart.dtype,bPart.dtype))});const complexOutput=complex$2({inputs:{real:real2,imag:imag2},backend:webglBackend});webglBackend.disposeIntermediateTensorInfo(real2);webglBackend.disposeIntermediateTensorInfo(imag2);return complexOutput}const $dtype=dtype||upcastType(a.dtype,b.dtype);if(webglBackend.shouldExecuteOnCPU([a,b])&&cpuKernelImpl!=null){const aData=webglBackend.texData.get(a.dataId);const bData=webglBackend.texData.get(b.dataId);const[outValues,outShape]=cpuKernelImpl(a.shape,b.shape,aData.values,bData.values,$dtype);const out=webglBackend.makeTensorInfo(outShape,$dtype);const outData=webglBackend.texData.get(out.dataId);outData.values=outValues;return out}const shouldUsePackedProgram=env3().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&packedOpSnippet!=null;let program;if(shouldUsePackedProgram){program=new BinaryOpPackedProgram(packedOpSnippet,a.shape,b.shape,checkOutOfBounds)}else{program=new BinaryOpProgram(opSnippet,a.shape,b.shape)}return webglBackend.runWebGLProgram(program,[a,b],$dtype)}}const ADD="return a + b;";const addKernelFunc=binaryKernelFunc$1({opSnippet:ADD,packedOpSnippet:ADD,supportsComplex:true,cpuKernelImpl:addImplCPU});const addConfig$1={kernelName:Add3,backendName:"webgl",kernelFunc:addKernelFunc};const ATAN2=CHECK_NAN_SNIPPET_BINARY+`
return atan(a, b);
`;const ATAN2_PACKED=`
vec4 result = atan(a, b);
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+CHECK_NAN_SNIPPET_BINARY_PACKED+`
return result;
`;const atan2$1=binaryKernelFunc$1({opSnippet:ATAN2,packedOpSnippet:ATAN2_PACKED});const atan2Config={kernelName:Atan2,backendName:"webgl",kernelFunc:atan2$1};function avgPool$2(args){const{inputs,backend:backend2,attrs}=args;const{x}=inputs;assertNotComplex$1(x,"avgPool");const{filterSize,strides,pad:pad3,dimRoundingMode}=attrs;const dilations=1;assert(eitherStridesOrDilationsAreOne(strides,dilations),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`);const convInfo=computePool2DInfo(x.shape,filterSize,strides,dilations,pad3,dimRoundingMode);if(convInfo.filterWidth===1&&convInfo.filterHeight===1&&arraysEqual(convInfo.inShape,convInfo.outShape)){return identity$2({inputs:{x},backend:backend2})}const avgPoolProgram=new Pool2DProgram(convInfo,"avg",false);return backend2.runWebGLProgram(avgPoolProgram,[x],"float32")}const avgPoolConfig$1={kernelName:AvgPool3,backendName:"webgl",kernelFunc:avgPool$2};function avgPoolBackprop$2(args){const{inputs,backend:backend2,attrs}=args;const{dy,input:input2}=inputs;const x=input2;assertNotComplex$1([dy,input2],"avgPoolBackprop");const{filterSize,strides,pad:pad3}=attrs;const convInfo=computePool2DInfo(x.shape,filterSize,strides,1,pad3);const avgPoolBackpropProgram=new AvgPool2DBackpropProgram(convInfo);return backend2.runWebGLProgram(avgPoolBackpropProgram,[dy],x.dtype)}const avgPoolBackpropConfig$1={kernelName:AvgPoolBackprop,backendName:"webgl",kernelFunc:avgPoolBackprop$2};class BatchNormProgram{constructor(xShape,meanShape,varianceShape,offsetShape,scaleShape,varianceEpsilon){this.outputShape=[];this.variableNames=["x","mean","variance"];assertAndGetBroadcastShape(xShape,meanShape);assertAndGetBroadcastShape(xShape,varianceShape);let offsetSnippet="0.0";if(offsetShape!=null){assertAndGetBroadcastShape(xShape,offsetShape);this.variableNames.push("offset");offsetSnippet="getOffsetAtOutCoords()"}let scaleSnippet="1.0";if(scaleShape!=null){assertAndGetBroadcastShape(xShape,scaleShape);this.variableNames.push("scale");scaleSnippet="getScaleAtOutCoords()"}this.outputShape=xShape;this.userCode=`
void main() {
float x = getXAtOutCoords();
float mean = getMeanAtOutCoords();
float variance = getVarianceAtOutCoords();
float offset = ${offsetSnippet};
float scale = ${scaleSnippet};
float inv = scale * inversesqrt(variance + float(${varianceEpsilon}));
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
}
`}}class BatchNormPackedProgram{constructor(xShape,meanShape,varianceShape,offsetShape,scaleShape,varianceEpsilon){this.packedInputs=true;this.packedOutput=true;this.variableNames=["x","mean","variance"];assertAndGetBroadcastShape(xShape,meanShape);assertAndGetBroadcastShape(xShape,varianceShape);let offsetSnippet="vec4(0.0)";if(offsetShape!=null){assertAndGetBroadcastShape(xShape,offsetShape);this.variableNames.push("offset");offsetSnippet="getOffsetAtOutCoords()"}let scaleSnippet="vec4(1.0)";if(scaleShape!=null){assertAndGetBroadcastShape(xShape,scaleShape);this.variableNames.push("scale");scaleSnippet="getScaleAtOutCoords()"}this.outputShape=xShape;this.userCode=`
void main() {
vec4 offset = ${offsetSnippet};
vec4 scale = ${scaleSnippet};
vec4 x = getXAtOutCoords();
vec4 mean = getMeanAtOutCoords();
vec4 variance = getVarianceAtOutCoords();
vec4 inv = scale * inversesqrt(variance + vec4(${varianceEpsilon}));
setOutput((x - mean) * inv + offset);
}
`}}const batchNorm$2=({inputs,backend:backend2,attrs})=>{const{x,mean:mean2,variance:variance2,offset,scale:scale2}=inputs;assert(mean2.shape.length===variance2.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks.");assert(offset==null||mean2.shape.length===offset.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks.");assert(scale2==null||mean2.shape.length===scale2.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon}=attrs;if(varianceEpsilon==null){varianceEpsilon=.001}const finalInputs=[x,mean2,variance2];let offsetShape=null;if(offset!=null){offsetShape=offset.shape;finalInputs.push(offset)}let scaleShape=null;if(scale2!=null){scaleShape=scale2.shape;finalInputs.push(scale2)}const program=env3().getBool("WEBGL_PACK_NORMALIZATION")?new BatchNormPackedProgram(x.shape,mean2.shape,variance2.shape,offsetShape,scaleShape,varianceEpsilon):new BatchNormProgram(x.shape,mean2.shape,variance2.shape,offsetShape,scaleShape,varianceEpsilon);const output=backend2.runWebGLProgram(program,finalInputs,finalInputs[0].dtype);return output};const batchNormConfig$1={kernelName:FusedBatchNorm3,backendName:"webgl",kernelFunc:batchNorm$2};const NOT_EQUAL$1=`return float(a != b);`;const notEqual$2=binaryKernelFunc$1({opSnippet:NOT_EQUAL$1,dtype:"bool"});const notEqualConfig$1={kernelName:NotEqual3,backendName:"webgl",kernelFunc:notEqual$2};function real$2(args){const{inputs,backend:backend2}=args;const{input:input2}=inputs;const inputData=backend2.texData.get(input2.dataId);return identity$2({inputs:{x:inputData.complexTensorInfos.real},backend:backend2})}const realConfig$1={kernelName:Real,backendName:"webgl",kernelFunc:real$2};const TO_INT=`return float(int(x));`;function int(input2,backend2){const program=new UnaryOpProgram(input2.shape,TO_INT);const output=backend2.runWebGLProgram(program,[input2],"int32");return{dataId:output.dataId,shape:output.shape,dtype:output.dtype}}function cast$3(args){const{inputs,backend:backend2,attrs}=args;const{x}=inputs;const{dtype}=attrs;if(dtype==="complex64"){if(x.dtype==="complex64"){return identity$2({inputs:{x},backend:backend2})}const zerosTensor=zeros(x.shape);const floatX=cast$3({inputs:{x},backend:backend2,attrs:{dtype:"float32"}});const result=complex$2({inputs:{real:floatX,imag:zerosTensor},backend:backend2});zerosTensor.dispose();backend2.disposeIntermediateTensorInfo(floatX);return result}if(x.dtype==="complex64"){const realPart=real$2({inputs:{input:x},backend:backend2});const result=cast$3({inputs:{x:realPart},backend:backend2,attrs:{dtype}});backend2.disposeIntermediateTensorInfo(realPart);return result}if(!hasEncodingLoss(x.dtype,dtype)){const result=identity$2({inputs:{x},backend:backend2});return{dataId:result.dataId,shape:result.shape,dtype}}if(dtype==="int32"){return int(x,backend2)}if(dtype==="bool"){const zerosTensorInfo=backend2.makeTensorInfo([],"bool",getTypedArrayFromDType("bool",1));const binaryInputs={a:x,b:zerosTensorInfo};const result=notEqual$2({inputs:binaryInputs,backend:backend2});backend2.disposeIntermediateTensorInfo(zerosTensorInfo);return result}throw new Error(`Error in Cast: failed to cast ${x.dtype} to ${dtype}`)}const castConfig$1={kernelName:Cast5,backendName:"webgl",kernelFunc:cast$3};class ConcatProgram{constructor(shapes){this.outputShape=[];this.outputShape=computeOutShape$1(shapes,1);this.variableNames=shapes.map((_,i)=>`T${i}`);const offsets=new Array(shapes.length-1);offsets[0]=shapes[0][1];for(let i=1;i<offsets.length;i++){offsets[i]=offsets[i-1]+shapes[i][1]}const snippets=[`if (yC < ${offsets[0]}) setOutput(getT0(yR, yC));`];for(let i=1;i<offsets.length;i++){const shift=offsets[i-1];snippets.push(`else if (yC < ${offsets[i]}) setOutput(getT${i}(yR, yC-${shift}));`)}const lastIndex=offsets.length;const lastShift=offsets[offsets.length-1];snippets.push(`else setOutput(getT${lastIndex}(yR, yC-${lastShift}));`);this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int yR = coords.x;
int yC = coords.y;
${snippets.join("\n ")}
}
`}}class ConcatPackedProgram{constructor(shapes,axis){this.packedInputs=true;this.packedOutput=true;this.outputShape=[];this.outputShape=computeOutShape$1(shapes,axis);const shape=this.outputShape;const rank=shape.length;const dtype=getCoordsDataType(rank);const coords2=getChannels("coords",rank);const channels=["x","y","z","w","u","v"].slice(0,rank);this.variableNames=shapes.map((_,i)=>`T${i}`);const offsets=new Array(shapes.length-1);offsets[0]=shapes[0][axis];for(let i=1;i<offsets.length;i++){offsets[i]=offsets[i-1]+shapes[i][axis]}const channel=channels[axis];const lastChannels=channels.slice(-2);const allChannels=channels.join();let getValueSnippet=`if (${channel} < ${offsets[0]}) {
return getChannel(
getT0(${allChannels}), vec2(${lastChannels.join()}));
}`;for(let i=1;i<offsets.length;i++){const shift2=offsets[i-1];getValueSnippet+=`
if (${channel} < ${offsets[i]} && ${channel} >= ${offsets[i-1]}) {
return getChannel(
getT${i}(${shiftedChannels(channels,channel,shift2)}),
vec2(${shiftedChannels(lastChannels,channel,shift2)}));
}`}const lastIndex=offsets.length;const shift=offsets[offsets.length-1];getValueSnippet+=`
return getChannel(
getT${lastIndex}(${shiftedChannels(channels,channel,shift)}),
vec2(${shiftedChannels(lastChannels,channel,shift)}));`;this.userCode=`
float getValue(${channels.map(x=>"int "+x)}) {
${getValueSnippet}
}
void main() {
${dtype} coords = getOutputCoords();
vec4 result = vec4(getValue(${coords2}), 0., 0., 0.);
${coords2[rank-1]} = ${coords2[rank-1]} + 1;
if (${coords2[rank-1]} < ${shape[rank-1]}) {
result.g = getValue(${coords2});
}
${coords2[rank-2]} = ${coords2[rank-2]} + 1;
if (${coords2[rank-2]} < ${shape[rank-2]}) {
result.a = getValue(${coords2});
}
${coords2[rank-1]} = ${coords2[rank-1]} - 1;
if (${coords2[rank-2]} < ${shape[rank-2]} &&
${coords2[rank-1]} < ${shape[rank-1]}) {
result.b = getValue(${coords2});
}
setOutput(result);
}
`}}function shiftedChannels(channels,channel,shift){const channelIdx=channels.indexOf(channel);const res=channels.map((c,idx)=>{if(idx===channelIdx){return`${c} - ${shift}`}else{return c}});return res.join()}function imag$2(args){const{inputs,backend:backend2}=args;const{input:input2}=inputs;const inputData=backend2.texData.get(input2.dataId);return identity$2({inputs:{x:inputData.complexTensorInfos.imag},backend:backend2})}const imagConfig$1={kernelName:Imag,backendName:"webgl",kernelFunc:imag$2};function packedReshape(input2,afterShape,backend2){const input3DShape=[getBatchDim(input2.shape),...getRowsCols(input2.shape)];const input3D={dtype:input2.dtype,shape:input3DShape,dataId:input2.dataId};const afterShapeAs3D=[getBatchDim(afterShape),...getRowsCols(afterShape)];const program=new ReshapePackedProgram(afterShapeAs3D,input3DShape);const preventEagerUnpackingOfOutput=true;const output=backend2.runWebGLProgram(program,[input3D],input2.dtype,null,preventEagerUnpackingOfOutput);return{dataId:output.dataId,shape:afterShape,dtype:output.dtype}}function reshape$3(args){const{inputs,backend:backend2,attrs}=args;const{x}=inputs;const{shape}=attrs;const webglBackend=backend2;const xSize=sizeFromShape(x.shape);const $shape=inferFromImplicitShape(shape,xSize);const $xSize=sizeFromShape($shape);assert(xSize===$xSize,()=>`The new shape (${$shape}) has ${$xSize} elements and the old shape (${x.shape}) has ${xSize} elements. The new shape and old shape must have the same number of elements.`);const xTexData=webglBackend.texData.get(x.dataId);if(xTexData.isPacked&&!isReshapeFree(x.shape,$shape)&&!(xTexData.texture!==null&&isReshapeFree(xTexData.shape,$shape))){return packedReshape(x,$shape,webglBackend)}webglBackend.incRef(x.dataId);return{dataId:x.dataId,shape:$shape,dtype:x.dtype}}const reshapeConfig$1={kernelName:Reshape6,backendName:"webgl",kernelFunc:reshape$3};function concatImpl(inputs,axis,backend2){const dtype=inputs[0].dtype;if(dtype==="complex64"){const reals=inputs.map(t=>real$2({inputs:{input:t},backend:backend2}));const imags=inputs.map(t=>imag$2({inputs:{input:t},backend:backend2}));const realConcated=concatImpl(reals,axis,backend2);const imagConcated=concatImpl(imags,axis,backend2);const result2=complex$2({inputs:{real:realConcated,imag:imagConcated},backend:backend2});reals.forEach(r=>backend2.disposeIntermediateTensorInfo(r));imags.forEach(i=>backend2.disposeIntermediateTensorInfo(i));backend2.disposeIntermediateTensorInfo(realConcated);backend2.disposeIntermediateTensorInfo(imagConcated);return result2}if(inputs.length>env3().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){const midIndex=Math.floor(inputs.length/2);const leftSide=concatImpl(inputs.slice(0,midIndex),axis,backend2);const rightSide=concatImpl(inputs.slice(midIndex),axis,backend2);const result2=concatImpl([leftSide,rightSide],axis,backend2);backend2.disposeIntermediateTensorInfo(leftSide);backend2.disposeIntermediateTensorInfo(rightSide);return result2}if(env3().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&inputs[0].shape.length>1){const program2=new ConcatPackedProgram(inputs.map(t=>t.shape),axis);return backend2.runWebGLProgram(program2,inputs,dtype)}const outShape=computeOutShape$1(inputs.map(t=>t.shape),axis);const tensors2D=inputs.map(x=>reshape$3({inputs:{x},attrs:{shape:[-1,sizeFromShape(x.shape.slice(axis))]},backend:backend2}));const program=new ConcatProgram(tensors2D.map(t=>t.shape));const result=backend2.runWebGLProgram(program,tensors2D,dtype);tensors2D.forEach(r=>backend2.disposeIntermediateTensorInfo(r));const reshapedResult=reshape$3({inputs:{x:result},attrs:{shape:outShape},backend:backend2});backend2.disposeIntermediateTensorInfo(result);return reshapedResult}function concat$2(args){const{inputs,backend:backend2,attrs}=args;const{axis}=attrs;const $axis=parseAxisParam(axis,inputs[0].shape)[0];const outShape=computeOutShape$1(inputs.map(t=>t.shape),$axis);if(sizeFromShape(outShape)===0){return backend2.makeTensorInfo(outShape,inputs[0].dtype,[])}const $inputs=inputs.filter(t=>sizeFromShape(t.shape)>0);if($inputs.length===1){return $inputs[0]}const shapes=$inputs.map(t=>t.shape);assertParamsConsistent(shapes,$axis);return concatImpl($inputs,$axis,backend2)}const concatConfig$1={kernelName:Concat3,backendName:"webgl",kernelFunc:concat$2};const COS=CHECK_NAN_SNIPPET_UNARY+`
return cos(x);
`;const cos$2=unaryKernelFunc$1(COS);const cosConfig$1={kernelName:Cos3,backendName:"webgl",kernelFunc:cos$2};const DIV=`
if (a == b) {
return 1.0;
};
return a / b;`;const DIV_PACKED=`
// vec4 one = vec4(equal(a, b));
// return one + (vec4(1.0) - one) * a / b;
vec4 result = a / b;
if(a.x == b.x) {
result.x = 1.;
}
if(a.y == b.y) {
result.y = 1.;
}
if(a.z == b.z) {
result.z = 1.;
}
if(a.w == b.w) {
result.w = 1.;
}
return result;
`;const div$2=binaryKernelFunc$1({opSnippet:DIV,packedOpSnippet:DIV_PACKED,checkOutOfBounds:true});const divConfig$1={kernelName:Div3,backendName:"webgl",kernelFunc:div$2};class FFTProgram{constructor(component,inputShape,inverse){this.variableNames=["real","imag"];const innerDim=inputShape[1];this.outputShape=inputShape;const exponentMultiplierSnippet=inverse?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`;const resultDenominator=inverse?`${innerDim}.0`:"1.0";let opString;if(component==="real"){opString="return real * expR - imag * expI;"}else if(component==="imag"){opString="return real * expI + imag * expR;"}else{throw new Error(`FFT component must be either "real" or "imag", got ${component}.`)}this.userCode=`
const float exponentMultiplier = ${exponentMultiplierSnippet};
float unaryOpComplex(float real, float expR, float imag, float expI) {
${opString}
}
float mulMatDFT(int batch, int index) {
float indexRatio = float(index) / float(${innerDim});
float exponentMultiplierTimesIndexRatio =
exponentMultiplier * indexRatio;
float result = 0.0;
for (int i = 0; i < ${innerDim}; i++) {
// x = (-2|2 * PI / N) * index * i;
float x = exponentMultiplierTimesIndexRatio * float(i);
float expR = cos(x);
float expI = sin(x);
float real = getReal(batch, i);
float imag = getImag(batch, i);
result +=
unaryOpComplex(real, expR, imag, expI) / ${resultDenominator};
}
return result;
}
void main() {
ivec2 coords = getOutputCoords();
setOutput(mulMatDFT(coords[0], coords[1]));
}
`}}function fftImpl$1(x,inverse,backend2){const xData=backend2.texData.get(x.dataId);const inputSize=sizeFromShape(x.shape);const innerDimensionSize=x.shape[x.shape.length-1];const batch=inputSize/innerDimensionSize;const input2D=reshape$3({inputs:{x},backend:backend2,attrs:{shape:[batch,innerDimensionSize]}});const xShape=input2D.shape;const realProgram=new FFTProgram("real",xShape,inverse);const imagProgram=new FFTProgram("imag",xShape,inverse);const inputs=[{dataId:xData.complexTensorInfos.real.dataId,dtype:xData.complexTensorInfos.real.dtype,shape:xShape},{dataId:xData.complexTensorInfos.imag.dataId,dtype:xData.complexTensorInfos.imag.dtype,shape:xShape}];const realPart=backend2.runWebGLProgram(realProgram,inputs,"float32");const imagPart=backend2.runWebGLProgram(imagProgram,inputs,"float32");const complexOutput=complex$2({inputs:{real:realPart,imag:imagPart},backend:backend2});backend2.disposeIntermediateTensorInfo(realPart);backend2.disposeIntermediateTensorInfo(imagPart);const complexOutputReshaped=reshape$3({inputs:{x:complexOutput},backend:backend2,attrs:{shape:x.shape}});backend2.disposeIntermediateTensorInfo(complexOutputReshaped);return complexOutputReshaped}function fft$2(args){const{inputs,backend:backend2}=args;const{input:input2}=inputs;return fftImpl$1(input2,false,backend2)}const fftConfig$1={kernelName:FFT,backendName:"webgl",kernelFunc:fft$2};class FlipLeftRightProgram{constructor(imageShape){this.variableNames=["Image"];this.outputShape=[];const imageWidth=imageShape[2];this.outputShape=imageShape;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int coordX = ${imageWidth} - x;
float outputValue;
if(coordX >= 0 && coordX < ${imageWidth}) {
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
} else {
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
}
setOutput(outputValue);
}
`}}const flipLeftRightConfig$1={kernelName:FlipLeftRight3,backendName:"webgl",kernelFunc:({inputs,backend:backend2})=>{const{image:image3}=inputs;const webglBackend=backend2;const program=new FlipLeftRightProgram(image3.shape);const output=webglBackend.runWebGLProgram(program,[image3],image3.dtype);return output}};class FromPixelsProgram{constructor(outputShape){this.variableNames=["A"];const glsl=getGlslDifferences();const[height,width]=outputShape;this.outputShape=outputShape;this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${width}.0, ${height}.0);
vec4 values = ${glsl.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
setOutput(floor(value * 255.0 + 0.5));
}
`}}class FromPixelsPackedProgram{constructor(outputShape){this.variableNames=["A"];this.packedInputs=false;this.packedOutput=true;const glsl=getGlslDifferences();const[height,width]=outputShape;this.outputShape=outputShape;this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec4 result = vec4(0.);
for(int row=0; row<=1; row++) {
for(int col=0; col<=1; col++) {
texC = coords[1] + row;
depth = coords[2] + col;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${width}.0, ${height}.0);
vec4 values = ${glsl.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
result[row * 2 + col] = floor(value * 255.0 + 0.5);
}
}
${glsl.output} = result;
}
`}}const fromPixelsConfig={kernelName:FromPixels,backendName:"webgl",kernelFunc:fromPixels$1};let fromPixels2DContext$1;function fromPixels$1(args){const{inputs,backend:backend2,attrs}=args;let{pixels}=inputs;const{numChannels}=attrs;const isVideo=typeof HTMLVideoElement!=="undefined"&&pixels instanceof HTMLVideoElement;const isImage=typeof HTMLImageElement!=="undefined"&&pixels instanceof HTMLImageElement;const[width,height]=isVideo?[pixels.videoWidth,pixels.videoHeight]:[pixels.width,pixels.height];const texShape=[height,width];const outShape=[height,width,numChannels];if(isImage||isVideo){if(fromPixels2DContext$1==null){fromPixels2DContext$1=document.createElement("canvas").getContext("2d")}fromPixels2DContext$1.canvas.width=width;fromPixels2DContext$1.canvas.height=height;fromPixels2DContext$1.drawImage(pixels,0,0,width,height);pixels=fromPixels2DContext$1.canvas}const tempPixelHandle=backend2.makeTensorInfo(texShape,"int32");backend2.texData.get(tempPixelHandle.dataId).usage=TextureUsage.PIXELS;backend2.gpgpu.uploadPixelDataToTexture(backend2.getTexture(tempPixelHandle.dataId),pixels);const program=env3().getBool("WEBGL_PACK")?new FromPixelsPackedProgram(outShape):new FromPixelsProgram(outShape);const res=backend2.runWebGLProgram(program,[tempPixelHandle],"int32");backend2.disposeData(tempPixelHandle.dataId);return res}function ifft$2(args){const{inputs,backend:backend2}=args;const{input:input2}=inputs;return fftImpl$1(input2,true,backend2)}const ifftConfig$1={kernelName:IFFT,backendName:"webgl",kernelFunc:ifft$2};class MeanProgram{constructor(reduceInfo,divisor){this.variableNames=["x"];const{windowSize,batchSize,inSize,outSize}=reduceInfo;this.outputShape=[batchSize,outSize];const windowSizeNearestVec4=Math.floor(windowSize/4)*4;const windowSizeVec4Remainder=windowSize%4;let updateSnippet=`sumValue += dot(values, ones);`;if(divisor!=null){const denominator=1/divisor;updateSnippet=`sumValue += dot(values * ${isInt(denominator)?denominator.toPrecision(2):denominator}, ones);`}let checkOutOfBounds="";if(inSize%windowSize>0){checkOutOfBounds=`
if (inIdx < 0 || inIdx >= ${inSize}) {
return 0.0;
}
`}this.userCode=`
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${checkOutOfBounds}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${windowSize};
float sumValue = 0.0;
for (int i = 0; i < ${windowSizeNearestVec4}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${updateSnippet}
}
int inIdx = inOffset + ${windowSizeNearestVec4};
if (${windowSizeVec4Remainder===1}) {
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
${updateSnippet}
} else if (${windowSizeVec4Remainder===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1), 0.0, 0.0);
${updateSnippet}
} else if (${windowSizeVec4Remainder===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2), 0.0);
${updateSnippet}
}
setOutput(sumValue);
}
`}}function getReductionStages(inShape){const stages=[];while(stages.length===0||stages[stages.length-1].outSize!==1){const outSize=stages.length?stages[stages.length-1].outSize:inShape[1];const windowSize=computeOptimalWindowSize(outSize);stages.push({inSize:outSize,windowSize,outSize:Math.ceil(outSize/windowSize)})}return stages}function reduce(x,dtype,reductionType,backend2){const reductionStages=getReductionStages(x.shape);let result=x;for(let i=0;i<reductionStages.length;i++){const{inSize,windowSize,outSize}=reductionStages[i];let program;let previousResult;if(reductionType==="mean"){program=i===0?new MeanProgram({windowSize,inSize,batchSize:x.shape[0],outSize},inSize):new MeanProgram({windowSize,inSize,batchSize:x.shape[0],outSize})}else{program=new ReduceProgram({windowSize,inSize,batchSize:x.shape[0],outSize},reductionType)}previousResult=result;result=backend2.runWebGLProgram(program,[result],dtype);if(previousResult.dataId!==x.dataId){backend2.disposeIntermediateTensorInfo(previousResult)}}return result}function maxImpl$1(x,reduceShape,outShape,backend2){const inSize=sizeFromShape(reduceShape);const xSize=sizeFromShape(x.shape);const batchSize=xSize/inSize;const reshapedInput=reshape$3({inputs:{x},attrs:{shape:[batchSize,inSize]},backend:backend2});const reduced=reduce(reshapedInput,x.dtype,"max",backend2);const reshapedOutput=reshape$3({inputs:{x:reduced},attrs:{shape:outShape},backend:backend2});backend2.disposeIntermediateTensorInfo(reshapedInput);backend2.disposeIntermediateTensorInfo(reduced);return reshapedOutput}class TransposeProgram{constructor(aShape,newDim){this.variableNames=["A"];const outputShape=new Array(aShape.length);for(let i=0;i<outputShape.length;i++){outputShape[i]=aShape[newDim[i]]}this.outputShape=outputShape;this.rank=outputShape.length;const dtype=getCoordsDataType(this.rank);const switched=getSwitchedCoords(newDim);this.userCode=`
void main() {
${dtype} resRC = getOutputCoords();
setOutput(getA(${switched}));
}
`}}function getSwitchedCoords(newDim){const rank=newDim.length;if(rank>6){throw Error(`Transpose for rank ${rank} is not yet supported`)}const originalOrder=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"];const switchedCoords=new Array(rank);for(let i=0;i<newDim.length;i++){switchedCoords[newDim[i]]=originalOrder[i]}return switchedCoords.join()}class TransposePackedProgram{constructor(aShape,newDim){this.variableNames=["A"];this.packedInputs=true;this.packedOutput=true;const outputShape=new Array(aShape.length);for(let i=0;i<outputShape.length;i++){outputShape[i]=aShape[newDim[i]]}this.outputShape=outputShape;this.rank=outputShape.length;if(this.rank>6){throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`)}const dtype=getCoordsDataType(this.rank);const outputOrder=getVecChannels("rc",this.rank);const switchedOrder=new Array(this.rank);for(let i=0;i<newDim.length;i++){switchedOrder[newDim[i]]=outputOrder[i]}const innerDims=`vec2(${switchedOrder.slice(-2).join()})`;const nextColumn=`++${outputOrder[this.rank-1]} < ${outputShape[this.rank-1]}`;const getc=`getChannel(getA(${switchedOrder.join()}), ${innerDims})`;this.userCode=`
void main() {
${dtype} rc = getOutputCoords();
vec4 result = vec4(0.);
result[0] = ${getc};
if(${nextColumn}) {
result[1] = ${getc};
}
--${outputOrder[this.rank-1]};
if(++${outputOrder[this.rank-2]} < ${outputShape[this.rank-2]}) {
result[2] = ${getc};
if(${nextColumn}) {
result[3] = ${getc};
}
}
setOutput(result);
}
`}}function transposeImpl$1(x,perm,backend2){const program=env3().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new TransposePackedProgram(x.shape,perm):new TransposeProgram(x.shape,perm);return backend2.runWebGLProgram(program,[x],x.dtype)}const maxConfig$1={kernelName:Max3,backendName:"webgl",kernelFunc:({inputs,attrs,backend:backend2})=>{const{x}=inputs;const{reductionIndices,keepDims}=attrs;const webglBackend=backend2;const xRank=x.shape.length;const origAxes=parseAxisParam(reductionIndices,x.shape);let axes=origAxes;const permutedAxes=getAxesPermutation(axes,xRank);const maxInputIsTransposed=permutedAxes!=null;const shouldExecuteOnCPU=webglBackend.shouldExecuteOnCPU([x]);let maxInput=x;if(maxInputIsTransposed){if(shouldExecuteOnCPU){const xTexData=webglBackend.texData.get(maxInput.dataId);const values=xTexData.values;const newShape=new Array(xRank);for(let i=0;i<newShape.length;i++){newShape[i]=x.shape[permutedAxes[i]]}const maxInputValues=transposeImplCPU(values,x.shape,x.dtype,permutedAxes,newShape);maxInput=webglBackend.makeTensorInfo(newShape,x.dtype);const maxInputData=webglBackend.texData.get(maxInput.dataId);maxInputData.values=maxInputValues}else{maxInput=transposeImpl$1(x,permutedAxes,webglBackend)}axes=getInnerMostAxes(axes.length,xRank)}assertAxesAreInnerMostDims("max",axes,xRank);const[maxOutShape,reduceShape]=computeOutAndReduceShapes(maxInput.shape,axes);let outShape=maxOutShape;if(keepDims){outShape=expandShapeToKeepDim(maxOutShape,origAxes)}let out;if(shouldExecuteOnCPU){const xTexData=webglBackend.texData.get(maxInput.dataId);const values=xTexData.values;const outValues=maxImplCPU(values,sizeFromShape(reduceShape),outShape,x.dtype);out=webglBackend.makeTensorInfo(outShape,x.dtype);const outData=webglBackend.texData.get(out.dataId);outData.values=outValues}else{out=maxImpl$1(maxInput,reduceShape,outShape,webglBackend)}if(maxInputIsTransposed){webglBackend.disposeIntermediateTensorInfo(maxInput)}return out}};function maxPool$2(args){const{inputs,backend:backend2,attrs}=args;const{x}=inputs;assertNotComplex$1(x,"maxPool");const{filterSize,strides,pad:pad3,dimRoundingMode}=attrs;const dilations=1;assert(eitherStridesOrDilationsAreOne(strides,dilations),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`);const convInfo=computePool2DInfo(x.shape,filterSize,strides,dilations,pad3,dimRoundingMode);if(convInfo.filterWidth===1&&convInfo.filterHeight===1&&arraysEqual(convInfo.inShape,convInfo.outShape)){return identity$2({inputs:{x},backend:backend2})}const maxPoolProgram=new Pool2DProgram(convInfo,"max",false);return backend2.runWebGLProgram(maxPoolProgram,[x],x.dtype)}const maxPoolConfig$1={kernelName:MaxPool3,backendName:"webgl",kernelFunc:maxPool$2};function maxPoolBackprop$2(args){const{inputs,backend:backend2,attrs}=args;const{dy,input:input2,output}=inputs;const x=input2;assertNotComplex$1([input2,output],"maxPoolBackprop");const{filterSize,strides,pad:pad3,dimRoundingMode}=attrs;const convInfo=computePool2DInfo(x.shape,filterSize,strides,1,pad3,dimRoundingMode);const getPositions=true;const maxPoolPositionsProgram=new Pool2DProgram(convInfo,"max",getPositions);const maxPoolPositions2=backend2.runWebGLProgram(maxPoolPositionsProgram,[x],x.dtype);const maxPoolBackPropProgram=new MaxPool2DBackpropProgram(convInfo);const result=backend2.runWebGLProgram(maxPoolBackPropProgram,[dy,maxPoolPositions2],x.dtype);backend2.disposeIntermediateTensorInfo(maxPoolPositions2);return result}const maxPoolBackpropConfig$1={kernelName:MaxPoolBackprop,backendName:"webgl",kernelFunc:maxPoolBackprop$2};function maxPoolWithArgmaxImpl$1(x,includeBatchInIndex,convInfo,backend2){let program=new Pool2DProgram(convInfo,"max",false);const poolOutput=backend2.runWebGLProgram(program,[x],"float32");program=new Pool2DProgram(convInfo,"max",true,true,includeBatchInIndex);const indexOutput=backend2.runWebGLProgram(program,[x],"float32");return[poolOutput,indexOutput]}const maxPoolWithArgmaxConfig$1={kernelName:MaxPoolWithArgmax,backendName:"webgl",kernelFunc:({inputs,attrs,backend:backend2})=>{const{x}=inputs;const{filterSize,strides,pad:pad3,includeBatchInIndex}=attrs;const webglBackend=backend2;assert(x.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${x.shape.length}.`);const dilations=[1,1];assert(eitherStridesOrDilationsAreOne(strides,dilations),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`);const convInfo=computePool2DInfo(x.shape,filterSize,strides,dilations,pad3);const[result,indexes]=maxPoolWithArgmaxImpl$1(x,includeBatchInIndex,convInfo,webglBackend);return[result,indexes]}};function meanImpl(x,reduceShape,outShape,backend2){const inSize=sizeFromShape(reduceShape);const xSize=sizeFromShape(x.shape);const batchSize=xSize/inSize;const reshapedInput=reshape$3({inputs:{x},attrs:{shape:[batchSize,inSize]},backend:backend2});const reduced=reduce(reshapedInput,"float32","mean",backend2);const reshapedOutput=reshape$3({inputs:{x:reduced},attrs:{shape:outShape},backend:backend2});backend2.disposeIntermediateTensorInfo(reshapedInput);backend2.disposeIntermediateTensorInfo(reduced);return reshapedOutput}const meanConfig={kernelName:Mean,backendName:"webgl",kernelFunc:({inputs,attrs,backend:backend2})=>{const{x}=inputs;const{keepDims,axis}=attrs;const webglBackend=backend2;const xRank=x.shape.length;const origAxes=parseAxisParam(axis,x.shape);let axes=origAxes;const permutedAxes=getAxesPermutation(axes,xRank);const meanInputIsTransposed=permutedAxes!=null;const shouldExecuteOnCPU=webglBackend.shouldExecuteOnCPU([x]);const intermediates=[];let meanInput=x;if(meanInputIsTransposed){if(shouldExecuteOnCPU){const xTexData=webglBackend.texData.get(meanInput.dataId);const values=xTexData.values;const newShape=new Array(xRank);for(let i=0;i<newShape.length;i++){newShape[i]=x.shape[permutedAxes[i]]}const meanInputValues=transposeImplCPU(values,x.shape,x.dtype,permutedAxes,newShape);meanInput=webglBackend.makeTensorInfo(newShape,x.dtype);const meanInputData=webglBackend.texData.get(meanInput.dataId);meanInputData.values=meanInputValues}else{meanInput=transposeImpl$1(x,permutedAxes,webglBackend)}intermediates.push(meanInput);axes=getInnerMostAxes(axes.length,xRank)}assertAxesAreInnerMostDims("sum",axes,xRank);const[meanOutShape,reduceShape]=computeOutAndReduceShapes(meanInput.shape,axes);let outShape=meanOutShape;if(keepDims){outShape=expandShapeToKeepDim(meanOutShape,origAxes)}const out=meanImpl(meanInput,reduceShape,outShape,webglBackend);for(const i of intermediates){webglBackend.disposeIntermediateTensorInfo(i)}return out}};class MirrorPadProgram{constructor(xShape,paddings,mode){this.variableNames=["x"];this.outputShape=paddings.map((p2,i)=>p2[0]+xShape[i]+p2[1]);const rank=xShape.length;const dtype=getCoordsDataType(rank);const start=paddings.map(p2=>p2[0]).join(",");const end=paddings.map((p2,i)=>p2[0]+xShape[i]).join(",");const unpackedCoords=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,rank);const offset=mode==="reflect"?0:1;if(rank===1){this.userCode=`
int start = ${start};
int end = ${end};
void main() {
int outC = getOutputCoords();
if (outC < start) {
outC = start * 2 - outC - ${offset};
} else if(outC >= end) {
outC = (end - 1) * 2 - outC + ${offset};
}
setOutput(getX(outC - start));
}
`;return}this.userCode=`
${dtype} start = ${dtype}(${start});
${dtype} end = ${dtype}(${end});
void main() {
${dtype} outC = getOutputCoords();
for (int i = 0; i < ${rank}; i++) {
if (outC[i] < start[i]) {
outC[i] = start[i] * 2 - outC[i] - ${offset};
} else if(outC[i] >= end[i]) {
outC[i] = (end[i] - 1) * 2 - outC[i] + ${offset};
}
}
${dtype} coords = outC - start;
setOutput(getX(${unpackedCoords}));
}
`}}class MirrorPadPackedProgram{constructor(xShape,paddings,mode){this.variableNames=["x"];this.packedInputs=true;this.packedOutput=true;this.outputShape=paddings.map((p2,i)=>p2[0]+xShape[i]+p2[1]);const rank=xShape.length;const dtype=getCoordsDataType(rank);const start=paddings.map(p2=>p2[0]).join(",");const end=paddings.map((p2,i)=>p2[0]+xShape[i]).join(",");const coords2=getChannels("rc",rank);const source=getChannels("source",rank);const cLimit=`${coords2[rank-1]} < ${this.outputShape[rank-1]}`;const innerDims=rank===1?"source":`vec2(${source.slice(-2).join()})`;const offset=mode==="reflect"?0:1;let mainLoop="";if(rank===1){const padSetup=`
${dtype} source = rc;
if (source < start) {
source = start * 2 - source - ${offset};
} else if (source >= end) {
source = (end - 1) * 2 - source + ${offset};
}
source -= start;
`;mainLoop=`
${dtype} rc = outputLoc;
${padSetup}
result[0] = getChannel(getX(${source.join()}), ${innerDims});
${coords2[rank-1]} += 1;
if(${cLimit}) {
${padSetup}
result[1] = getChannel(getX(${source.join()}), ${innerDims});
}
`}else{const padSetup=`
${dtype} source = rc;
${dtype} lt = ${dtype}(lessThan(source, start));
${dtype} gte = ${dtype}(greaterThanEqual(source, end));
${dtype} orig = 1 - (lt + gte);
source = orig * source +
lt * (start * 2 - source - ${offset}) +
gte * ((end - 1) * 2 - source + ${offset});
source -= start;
`;mainLoop=`
${dtype} rc = outputLoc;
${padSetup}
result[0] = getChannel(getX(${source.join()}), ${innerDims});
${coords2[rank-1]} += 1;
if(${cLimit}) {
${padSetup}
result[1] = getChannel(getX(${source.join()}), ${innerDims});
}
rc = outputLoc;
${coords2[rank-2]} += 1;
if(${coords2[rank-2]} < ${this.outputShape[rank-2]}) {
${padSetup}
result[2] = getChannel(getX(${source.join()}), ${innerDims});
${coords2[rank-1]} += 1;
if(${cLimit}) {
${padSetup}
result[3] = getChannel(getX(${source.join()}), ${innerDims});
}
}
`}this.userCode=`
const ${dtype} start = ${dtype}(${start});
const ${dtype} end = ${dtype}(${end});
void main() {
${dtype} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${mainLoop}
setOutput(result);
}
`}}const mirrorPadKernelFunc=({inputs,backend:backend2,attrs})=>{const{x}=inputs;const{paddings,mode}=attrs;const program=env3().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new MirrorPadPackedProgram(x.shape,paddings,mode):new MirrorPadProgram(x.shape,paddings,mode);const output=backend2.runWebGLProgram(program,[x],x.dtype);return output};const mirrorPadConfig$1={kernelName:MirrorPad,backendName:"webgl",kernelFunc:mirrorPadKernelFunc};const COMPLEX_MULTIPLY={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"};class BinaryOpComplexProgram{constructor(op2,aShape,bShape){this.variableNames=["AReal","AImag","BReal","BImag"];this.outputShape=assertAndGetBroadcastShape(aShape,bShape);this.userCode=`
float binaryOpComplex(
float areal, float aimag, float breal, float bimag) {
${op2}
}
void main() {
float areal = getARealAtOutCoords();
float aimag = getAImagAtOutCoords();
float breal = getBRealAtOutCoords();
float bimag = getBImagAtOutCoords();
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
}
`}}const MUL="return a * b;";function multiply$3(args){const{inputs,backend:backend2}=args;const{a,b}=inputs;const dtype=upcastType(a.dtype,b.dtype);if(a.dtype==="complex64"){const aData=backend2.texData.get(a.dataId);const bData=backend2.texData.get(b.dataId);const realProgram=new BinaryOpComplexProgram(COMPLEX_MULTIPLY.REAL,a.shape,b.shape);const imagProgram=new BinaryOpComplexProgram(COMPLEX_MULTIPLY.IMAG,a.shape,b.shape);const inputs2=[{dataId:aData.complexTensorInfos.real.dataId,dtype:aData.complexTensorInfos.real.dtype,shape:a.shape},{dataId:aData.complexTensorInfos.imag.dataId,dtype:aData.complexTensorInfos.imag.dtype,shape:a.shape},{dataId:bData.complexTensorInfos.real.dataId,dtype:bData.complexTensorInfos.real.dtype,shape:b.shape},{dataId:bData.complexTensorInfos.imag.dataId,dtype:bData.complexTensorInfos.imag.dtype,shape:b.shape}];const realPart=backend2.runWebGLProgram(realProgram,inputs2,"float32");const imagPart=backend2.runWebGLProgram(imagProgram,inputs2,"float32");const complexOutput=complex$2({inputs:{real:realPart,imag:imagPart},backend:backend2});backend2.disposeIntermediateTensorInfo(realPart);backend2.disposeIntermediateTensorInfo(imagPart);return complexOutput}if(backend2.shouldExecuteOnCPU([a,b])){const aData=backend2.texData.get(a.dataId);const bData=backend2.texData.get(b.dataId);const[outValues,outShape]=multiplyImplCPU(a.shape,b.shape,aData.values,bData.values,dtype);const out=backend2.makeTensorInfo(outShape,dtype);const outData=backend2.texData.get(out.dataId);outData.values=outValues;return out}let program;if(env3().getBool("WEBGL_PACK_BINARY_OPERATIONS")){program=new BinaryOpPackedProgram(MUL,a.shape,b.shape)}else{program=new BinaryOpProgram(MUL,a.shape,b.shape)}return backend2.runWebGLProgram(program,[a,b],dtype)}const multiplyConfig$1={kernelName:Multiply3,backendName:"webgl",kernelFunc:multiply$3};const nonMaxSuppressionV3Config2={kernelName:NonMaxSuppressionV33,backendName:"webgl",kernelFunc:({inputs,backend:backend2,attrs})=>{warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");const{boxes,scores}=inputs;const{maxOutputSize,iouThreshold,scoreThreshold}=attrs;const gpuBackend=backend2;const boxesVals=gpuBackend.readSync(boxes.dataId);const scoresVals=gpuBackend.readSync(scores.dataId);const maxOutputSizeVal=maxOutputSize;const iouThresholdVal=iouThreshold;const scoreThresholdVal=scoreThreshold;return nonMaxSuppressionV3Impl(boxesVals,scoresVals,maxOutputSizeVal,iouThresholdVal,scoreThresholdVal)}};const nonMaxSuppressionV4Impl$2=nonMaxSuppressionV4Impl;const nonMaxSuppressionV4Config$1={kernelName:NonMaxSuppressionV43,backendName:"webgl",kernelFunc:({inputs,backend:backend2,attrs})=>{warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");const{boxes,scores}=inputs;const{maxOutputSize,iouThreshold,scoreThreshold,padToMaxOutputSize}=attrs;const gpuBackend=backend2;const boxesVals=gpuBackend.readSync(boxes.dataId);const scoresVals=gpuBackend.readSync(scores.dataId);const{selectedIndices,validOutputs}=nonMaxSuppressionV4Impl$2(boxesVals,scoresVals,maxOutputSize,iouThreshold,scoreThreshold,padToMaxOutputSize);return[selectedIndices,validOutputs]}};const nonMaxSuppressionV5Impl$2=nonMaxSuppressionV5Impl;const nonMaxSuppressionV5Config$1={kernelName:NonMaxSuppressionV53,backendName:"webgl",kernelFunc:({inputs,backend:backend2,attrs})=>{warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");const{boxes,scores}=inputs;const{maxOutputSize,iouThreshold,scoreThreshold,softNmsSigma}=attrs;const gpuBackend=backend2;const boxesVals=gpuBackend.readSync(boxes.dataId);const scoresVals=gpuBackend.readSync(scores.dataId);const maxOutputSizeVal=maxOutputSize;const iouThresholdVal=iouThreshold;const scoreThresholdVal=scoreThreshold;const softNmsSigmaVal=softNmsSigma;const{selectedIndices,selectedScores}=nonMaxSuppressionV5Impl$2(boxesVals,scoresVals,maxOutputSizeVal,iouThresholdVal,scoreThresholdVal,softNmsSigmaVal);return[selectedIndices,selectedScores]}};class RotateProgram{constructor(imageShape,radians,fillValue,center){this.variableNames=["Image"];this.outputShape=[];const imageHeight=imageShape[1];const imageWidth=imageShape[2];const sinFactor=Math.sin(radians).toFixed(3);const cosFactor=Math.cos(radians).toFixed(3);this.outputShape=imageShape;const[centerX,centerY]=getImageCenter(center,imageHeight,imageWidth);const centerXString=centerX.toFixed(3);const centerYString=centerY.toFixed(3);let fillSnippet="";if(typeof fillValue==="number"){fillSnippet=`float outputValue = ${fillValue.toFixed(2)};`}else{fillSnippet=`
vec3 fill = vec3(${fillValue.join(",")});
float outputValue = fill[coords[3]];`}this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int y = coords[1];
float coordXFloat = (float(x) - ${centerXString}) * ${cosFactor} - (float(y) - ${centerYString}) * ${sinFactor};
float coordYFloat = (float(x) - ${centerXString}) * ${sinFactor} + (float(y) - ${centerYString}) * ${cosFactor};
int coordX = int(round(coordXFloat + ${centerXString}));
int coordY = int(round(coordYFloat + ${centerYString}));
${fillSnippet}
if(coordX >= 0 && coordX < ${imageWidth} && coordY >= 0 && coordY < ${imageHeight}) {
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
}
setOutput(outputValue);
}
`}}const rotateWithOffsetConfig$1={kernelName:RotateWithOffset3,backendName:"webgl",kernelFunc:({inputs,attrs,backend:backend2})=>{const{image:image3}=inputs;const{radians,fillValue,center}=attrs;const webglBackend=backend2;const program=new RotateProgram(image3.shape,radians,fillValue,center);const output=webglBackend.runWebGLProgram(program,[image3],image3.dtype);return output}};const SIN=CHECK_NAN_SNIPPET_UNARY+`
return sin(x);
`;const sin$2=unaryKernelFunc$1(SIN);const sinConfig$1={kernelName:Sin3,backendName:"webgl",kernelFunc:sin$2};const SQUARE=`return x * x;`;const square$2=unaryKernelFunc$1(SQUARE);const squareConfig$1={kernelName:Square3,backendName:"webgl",kernelFunc:square$2};const SQUARED_DIFFERENCE$1="return (a - b) * (a - b);";const squaredDifference$2=binaryKernelFunc$1({opSnippet:SQUARED_DIFFERENCE$1,packedOpSnippet:SQUARED_DIFFERENCE$1});const squaredDifferenceConfig$1={kernelName:SquaredDifference3,backendName:"webgl",kernelFunc:squaredDifference$2};const SUB="return a - b;";const subKernelFunc=binaryKernelFunc$1({opSnippet:SUB,packedOpSnippet:SUB,supportsComplex:true,cpuKernelImpl:subImplCPU});const subConfig$1={kernelName:Sub3,backendName:"webgl",kernelFunc:subKernelFunc};const TAN=`return tan(x);`;const tan$2=unaryKernelFunc$1(TAN);const tanConfig$1={kernelName:Tan,backendName:"webgl",kernelFunc:tan$2};const transposeConfig$1={kernelName:Transpose5,backendName:"webgl",kernelFunc:({inputs,attrs,backend:backend2})=>{const{x}=inputs;const{perm}=attrs;const webglBackend=backend2;const xRank=x.shape.length;const newShape=new Array(xRank);for(let i=0;i<newShape.length;i++){newShape[i]=x.shape[perm[i]]}let out;if(webglBackend.shouldExecuteOnCPU([x])){const xTexData=webglBackend.texData.get(x.dataId);const values=xTexData.values;const outValues=transposeImplCPU(values,x.shape,x.dtype,perm,newShape);out=webglBackend.makeTensorInfo(newShape,x.dtype);const outData=webglBackend.texData.get(out.dataId);outData.values=outValues}else{out=transposeImpl$1(x,perm,webglBackend)}return out}};function unique$3(args){const{inputs,attrs,backend:backend2}=args;const{axis}=attrs;const{x}=inputs;assertNotComplex$1(x,"unique");console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");const values=backend2.readSync(x.dataId);const{outputValues,outputShape,indices}=uniqueImplCPU(values,axis,x.shape,x.dtype);return[backend2.makeTensorInfo(outputShape,x.dtype,outputValues),backend2.makeTensorInfo([indices.length],"int32",indices)]}const uniqueConfig$1={kernelName:Unique,backendName:"webgl",kernelFunc:unique$3};const kernelConfigs$1=[addConfig$1,atan2Config,avgPoolConfig$1,avgPoolBackpropConfig$1,batchNormConfig$1,castConfig$1,complexConfig$1,concatConfig$1,cosConfig$1,divConfig$1,fftConfig$1,flipLeftRightConfig$1,fromPixelsConfig,identityConfig$1,ifftConfig$1,imagConfig$1,maxConfig$1,maxPoolConfig$1,maxPoolBackpropConfig$1,maxPoolWithArgmaxConfig$1,meanConfig,mirrorPadConfig$1,multiplyConfig$1,nonMaxSuppressionV3Config2,nonMaxSuppressionV4Config$1,nonMaxSuppressionV5Config$1,notEqualConfig$1,realConfig$1,reshapeConfig$1,rotateWithOffsetConfig$1,sinConfig$1,squareConfig$1,subConfig$1,squaredDifferenceConfig$1,tanConfig$1,transposeConfig$1,uniqueConfig$1];for(const kernelConfig of kernelConfigs$1){registerKernel2(kernelConfig)}const version$6="2.7.0";const version$7={"tfjs-core":version4,"tfjs-backend-cpu":version$4,"tfjs-backend-webgl":version$5,"tfjs-data":version$3,"tfjs-layers":version$1,"tfjs-converter":version$2,tfjs:version$6};exports3.Abs=Abs3;exports3.Acos=Acos;exports3.Acosh=Acosh;exports3.AdadeltaOptimizer=AdadeltaOptimizer;exports3.AdagradOptimizer=AdagradOptimizer;exports3.AdamOptimizer=AdamOptimizer;exports3.AdamaxOptimizer=AdamaxOptimizer;exports3.Add=Add3;exports3.AddN=AddN3;exports3.All=All;exports3.Any=Any;exports3.ArgMax=ArgMax3;exports3.ArgMin=ArgMin;exports3.Asin=Asin;exports3.Asinh=Asinh;exports3.Atan=Atan;exports3.Atan2=Atan2;exports3.Atanh=Atanh;exports3.AvgPool=AvgPool3;exports3.AvgPool3D=AvgPool3D;exports3.AvgPool3DBackprop=AvgPool3DBackprop;exports3.AvgPoolBackprop=AvgPoolBackprop;exports3.BatchMatMul=BatchMatMul3;exports3.BatchToSpaceND=BatchToSpaceND;exports3.BroadcastTo=BroadcastTo;exports3.Callback=Callback;exports3.CallbackList=CallbackList;exports3.Cast=Cast5;exports3.Ceil=Ceil;exports3.ClipByValue=ClipByValue3;exports3.Complex=Complex;exports3.Concat=Concat3;exports3.Conv2D=Conv2D3;exports3.Conv2DBackpropFilter=Conv2DBackpropFilter;exports3.Conv2DBackpropInput=Conv2DBackpropInput3;exports3.Conv3D=Conv3D;exports3.Conv3DBackpropFilterV2=Conv3DBackpropFilterV2;exports3.Conv3DBackpropInputV2=Conv3DBackpropInputV2;exports3.Cos=Cos3;exports3.Cosh=Cosh;exports3.CropAndResize=CropAndResize3;exports3.Cumsum=Cumsum3;exports3.CustomCallback=CustomCallback;exports3.DataStorage=DataStorage2;exports3.DepthToSpace=DepthToSpace3;exports3.DepthwiseConv2dNative=DepthwiseConv2dNative3;exports3.DepthwiseConv2dNativeBackpropFilter=DepthwiseConv2dNativeBackpropFilter;exports3.DepthwiseConv2dNativeBackpropInput=DepthwiseConv2dNativeBackpropInput;exports3.Diag=Diag;exports3.Dilation2D=Dilation2D;exports3.Dilation2DBackpropFilter=Dilation2DBackpropFilter;exports3.Dilation2DBackpropInput=Dilation2DBackpropInput;exports3.Div=Div3;exports3.EarlyStopping=EarlyStopping;exports3.Elu=Elu;exports3.EluGrad=EluGrad;exports3.Environment=Environment;exports3.Equal=Equal3;exports3.Erf=Erf;exports3.Exp=Exp3;exports3.Expm1=Expm1;exports3.FFT=FFT;exports3.Fill=Fill3;exports3.FlipLeftRight=FlipLeftRight3;exports3.Floor=Floor;exports3.FloorDiv=FloorDiv3;exports3.FromPixels=FromPixels;exports3.FusedBatchNorm=FusedBatchNorm3;exports3.FusedConv2D=FusedConv2D3;exports3.FusedDepthwiseConv2D=FusedDepthwiseConv2D3;exports3.GatherNd=GatherNd3;exports3.GatherV2=GatherV23;exports3.GraphModel=GraphModel;exports3.Greater=Greater3;exports3.GreaterEqual=GreaterEqual3;exports3.History=History;exports3.IFFT=IFFT;exports3.Identity=Identity5;exports3.Imag=Imag;exports3.InputSpec=InputSpec;exports3.IsFinite=IsFinite;exports3.IsInf=IsInf;exports3.IsNan=IsNan;exports3.KernelBackend=KernelBackend2;exports3.LRN=LRN;exports3.LRNBackprop=LRNBackprop;exports3.LayerVariable=LayerVariable;exports3.LayersModel=LayersModel;exports3.Less=Less3;exports3.LessEqual=LessEqual3;exports3.LinSpace=LinSpace;exports3.Log=Log3;exports3.Log1p=Log1p;exports3.LogSoftmax=LogSoftmax;exports3.LogicalAnd=LogicalAnd3;exports3.LogicalNot=LogicalNot;exports3.LogicalOr=LogicalOr;exports3.Max=Max3;exports3.MaxPool=MaxPool3;exports3.MaxPool3D=MaxPool3D;exports3.MaxPool3DBackprop=MaxPool3DBackprop;exports3.MaxPoolBackprop=MaxPoolBackprop;exports3.MaxPoolWithArgmax=MaxPoolWithArgmax;exports3.Maximum=Maximum3;exports3.Mean=Mean;exports3.Min=Min3;exports3.Minimum=Minimum3;exports3.MirrorPad=MirrorPad;exports3.Mod=Mod;exports3.MomentumOptimizer=MomentumOptimizer;exports3.Multiply=Multiply3;exports3.Negate=Negate3;exports3.NonMaxSuppressionV3=NonMaxSuppressionV33;exports3.NonMaxSuppressionV4=NonMaxSuppressionV43;exports3.NonMaxSuppressionV5=NonMaxSuppressionV53;exports3.NotEqual=NotEqual3;exports3.OP_SCOPE_SUFFIX=OP_SCOPE_SUFFIX;exports3.OneHot=OneHot3;exports3.OnesLike=OnesLike3;exports3.Optimizer=Optimizer;exports3.PadV2=PadV23;exports3.Pool=Pool;exports3.Pow=Pow3;exports3.Prelu=Prelu3;exports3.Prod=Prod;exports3.RMSPropOptimizer=RMSPropOptimizer;exports3.RNN=RNN;exports3.Range=Range;exports3.Real=Real;exports3.Reciprocal=Reciprocal;exports3.Relu=Relu3;exports3.Relu6=Relu63;exports3.Reshape=Reshape6;exports3.ResizeBilinear=ResizeBilinear3;exports3.ResizeBilinearGrad=ResizeBilinearGrad;exports3.ResizeNearestNeighbor=ResizeNearestNeighbor;exports3.ResizeNearestNeighborGrad=ResizeNearestNeighborGrad;exports3.Reverse=Reverse3;exports3.RotateWithOffset=RotateWithOffset3;exports3.Round=Round;exports3.Rsqrt=Rsqrt3;exports3.SGDOptimizer=SGDOptimizer;exports3.ScatterNd=ScatterNd3;exports3.SelectV2=SelectV23;exports3.Selu=Selu;exports3.Sequential=Sequential;exports3.Sigmoid=Sigmoid3;exports3.Sign=Sign;exports3.Sin=Sin3;exports3.Sinh=Sinh;exports3.Slice=Slice6;exports3.Softmax=Softmax3;exports3.Softplus=Softplus;exports3.SpaceToBatchND=SpaceToBatchND;exports3.SparseToDense=SparseToDense;exports3.SplitV=SplitV2;exports3.Sqrt=Sqrt3;exports3.Square=Square3;exports3.SquaredDifference=SquaredDifference3;exports3.Step=Step;exports3.StridedSlice=StridedSlice3;exports3.Sub=Sub3;exports3.Sum=Sum3;exports3.SymbolicTensor=SymbolicTensor;exports3.Tan=Tan;exports3.Tanh=Tanh3;exports3.Tensor=Tensor;exports3.TensorBuffer=TensorBuffer;exports3.Tile=Tile3;exports3.TopK=TopK;exports3.Transpose=Transpose5;exports3.Unique=Unique;exports3.Unpack=Unpack3;exports3.UnsortedSegmentSum=UnsortedSegmentSum;exports3.Variable=Variable;exports3.ZerosLike=ZerosLike3;exports3._FusedMatMul=_FusedMatMul2;exports3.abs=abs;exports3.acos=acos;exports3.acosh=acosh;exports3.add=add$1;exports3.addN=addN;exports3.addStrict=addStrict;exports3.all=all;exports3.any=any;exports3.argMax=argMax;exports3.argMin=argMin;exports3.asin=asin;exports3.asinh=asinh;exports3.atan=atan;exports3.atan2=atan2;exports3.atanh=atanh;exports3.avgPool=avgPool2;exports3.avgPool3d=avgPool3d;exports3.backend=backend;exports3.backend_util=backend_util19;exports3.basicLSTMCell=basicLSTMCell;exports3.batchNorm=batchNorm;exports3.batchNorm2d=batchNorm2d;exports3.batchNorm3d=batchNorm3d;exports3.batchNorm4d=batchNorm4d;exports3.batchToSpaceND=batchToSpaceND;exports3.booleanMaskAsync=booleanMaskAsync;exports3.broadcastTo=broadcastTo;exports3.browser=browser;exports3.buffer=buffer2;exports3.callbacks=callbacks;exports3.cast=cast2;exports3.ceil=ceil;exports3.clipByValue=clipByValue;exports3.clone=clone;exports3.complex=complex;exports3.concat=concat2;exports3.concat1d=concat1d;exports3.concat2d=concat2d;exports3.concat3d=concat3d;exports3.concat4d=concat4d;exports3.constraints=exports_constraints;exports3.conv1d=conv1d;exports3.conv2d=conv2d2;exports3.conv2dTranspose=conv2dTranspose;exports3.conv3d=conv3d;exports3.conv3dTranspose=conv3dTranspose;exports3.copyRegisteredKernels=copyRegisteredKernels;exports3.cos=cos;exports3.cosh=cosh;exports3.cosineWindow=cosineWindow;exports3.cumsum=cumsum2;exports3.customGrad=customGrad;exports3.data=index;exports3.deprecationWarn=deprecationWarn2;exports3.depthToSpace=depthToSpace2;exports3.depthwiseConv2d=depthwiseConv2d2;exports3.deregisterOp=deregisterOp;exports3.device_util=device_util;exports3.diag=diag;exports3.dilation2d=dilation2d;exports3.disableDeprecationWarnings=disableDeprecationWarnings;exports3.dispose=dispose;exports3.disposeVariables=disposeVariables;exports3.div=div;exports3.divNoNan=divNoNan;exports3.divStrict=divStrict;exports3.dot=dot2;exports3.dropout=dropout;exports3.elu=elu;exports3.enableDebugMode=enableDebugMode;exports3.enableProdMode=enableProdMode;exports3.enclosingPowerOfTwo=enclosingPowerOfTwo;exports3.engine=engine2;exports3.env=env3;exports3.equal=equal;exports3.equalStrict=equalStrict;exports3.erf=erf;exports3.exp=exp;exports3.expandDims=expandDims;exports3.expm1=expm1;exports3.eye=eye;exports3.fft=fft;exports3.fill=fill2;exports3.findBackend=findBackend;exports3.findBackendFactory=findBackendFactory;exports3.floor=floor;exports3.floorDiv=floorDiv;exports3.fused=fused_ops;exports3.gather=gather;exports3.gatherND=gatherND;exports3.gather_util=gather_nd_util;exports3.getBackend=getBackend;exports3.getGradient=getGradient;exports3.getKernel=getKernel;exports3.getKernelsForBackend=getKernelsForBackend;exports3.grad=grad;exports3.grads=grads;exports3.greater=greater;exports3.greaterEqual=greaterEqual;exports3.greaterEqualStrict=greaterEqualStrict;exports3.greaterStrict=greaterStrict;exports3.ifft=ifft;exports3.imag=imag;exports3.image=image2;exports3.inTopKAsync=inTopKAsync;exports3.initializers=exports_initializers;exports3.input=input;exports3.io=io;exports3.irfft=irfft;exports3.isFinite=isFinite$1;exports3.isInf=isInf;exports3.isNaN=isNaN$1;exports3.keep=keep;exports3.kernel_impls=kernel_impls;exports3.layers=exports_layers;exports3.leakyRelu=leakyRelu;exports3.less=less;exports3.lessEqual=lessEqual;exports3.lessEqualStrict=lessEqualStrict;exports3.lessStrict=lessStrict;exports3.linalg=linalg;exports3.linspace=linspace;exports3.loadGraphModel=loadGraphModel2;exports3.loadLayersModel=loadLayersModel;exports3.localResponseNormalization=localResponseNormalization;exports3.log=log;exports3.log1p=log1p;exports3.logSigmoid=logSigmoid;exports3.logSoftmax=logSoftmax;exports3.logSumExp=logSumExp;exports3.logicalAnd=logicalAnd;exports3.logicalNot=logicalNot;exports3.logicalOr=logicalOr;exports3.logicalXor=logicalXor;exports3.losses=losses;exports3.matMul=matMul;exports3.math=math;exports3.max=max2;exports3.maxPool=maxPool2;exports3.maxPool3d=maxPool3d;exports3.maxPoolWithArgmax=maxPoolWithArgmax;exports3.maximum=maximum;exports3.maximumStrict=maximumStrict;exports3.mean=mean;exports3.memory=memory;exports3.metrics=exports_metrics;exports3.min=min2;exports3.minimum=minimum;exports3.minimumStrict=minimumStrict;exports3.mirrorPad=mirrorPad;exports3.mod=mod;exports3.modStrict=modStrict;exports3.model=model;exports3.models=exports_models;exports3.moments=moments;exports3.movingAverage=movingAverage;exports3.mul=mul;exports3.mulStrict=mulStrict;exports3.multiRNNCell=multiRNNCell;exports3.multinomial=multinomial;exports3.neg=neg;exports3.nextFrame=nextFrame;exports3.norm=norm;exports3.notEqual=notEqual;exports3.notEqualStrict=notEqualStrict;exports3.oneHot=oneHot2;exports3.ones=ones$1;exports3.onesLike=onesLike2;exports3.op=op;exports3.outerProduct=outerProduct;exports3.pad=pad2;exports3.pad1d=pad1d;exports3.pad2d=pad2d;exports3.pad3d=pad3d;exports3.pad4d=pad4d;exports3.pool=pool;exports3.pow=pow;exports3.powStrict=powStrict;exports3.prelu=prelu2;exports3.print=print2;exports3.prod=prod;exports3.profile=profile2;exports3.rand=rand;exports3.randomGamma=randomGamma;exports3.randomNormal=randomNormal;exports3.randomUniform=randomUniform;exports3.range=range;exports3.ready=ready;exports3.real=real;exports3.reciprocal=reciprocal;exports3.registerBackend=registerBackend2;exports3.registerCallbackConstructor=registerCallbackConstructor;exports3.registerGradient=registerGradient;exports3.registerKernel=registerKernel2;exports3.registerOp=registerOp;exports3.regularizers=exports_regularizers;exports3.relu=relu;exports3.relu6=relu6;exports3.removeBackend=removeBackend;exports3.reshape=reshape2;exports3.reverse=reverse2;exports3.reverse1d=reverse1d;exports3.reverse2d=reverse2d;exports3.reverse3d=reverse3d;exports3.reverse4d=reverse4d;exports3.rfft=rfft;exports3.round=round;exports3.rsqrt=rsqrt;exports3.scalar=scalar;exports3.scatterND=scatterND;exports3.scatter_util=scatter_nd_util;exports3.selu=selu;exports3.separableConv2d=separableConv2d;exports3.sequential=sequential;exports3.serialization=serialization;exports3.setBackend=setBackend;exports3.setPlatform=setPlatform;exports3.setdiff1dAsync=setdiff1dAsync;exports3.sigmoid=sigmoid2;exports3.sign=sign;exports3.signal=signal;exports3.sin=sin;exports3.sinh=sinh;exports3.slice=slice2;exports3.slice1d=slice1d;exports3.slice2d=slice2d2;exports3.slice3d=slice3d2;exports3.slice4d=slice4d2;exports3.slice_util=slice_util2;exports3.softmax=softmax2;exports3.softplus=softplus;exports3.spaceToBatchND=spaceToBatchND;exports3.sparseToDense=sparseToDense;exports3.spectral=spectral;exports3.split=split2;exports3.sqrt=sqrt;exports3.square=square;exports3.squaredDifference=squaredDifference;exports3.squaredDifferenceStrict=squaredDifferenceStrict;exports3.squeeze=squeeze;exports3.stack=stack;exports3.step=step;exports3.stridedSlice=stridedSlice2;exports3.sub=sub;exports3.subStrict=subStrict;exports3.sum=sum$1;exports3.sumOutType=sumOutType;exports3.tan=tan;exports3.tanh=tanh$1;exports3.tensor=tensor;exports3.tensor1d=tensor1d;exports3.tensor2d=tensor2d;exports3.tensor3d=tensor3d;exports3.tensor4d=tensor4d;exports3.tensor5d=tensor5d;exports3.tensor6d=tensor6d;exports3.tensor_util=tensor_util;exports3.test_util=test_util;exports3.tidy=tidy;exports3.tile=tile2;exports3.time=time;exports3.topk=topk;exports3.train=train;exports3.transpose=transpose2;exports3.truncatedNormal=truncatedNormal;exports3.unique=unique;exports3.unregisterGradient=unregisterGradient;exports3.unregisterKernel=unregisterKernel;exports3.unsortedSegmentSum=unsortedSegmentSum;exports3.unstack=unstack;exports3.upcastType=upcastType;exports3.util=util27;exports3.valueAndGrad=valueAndGrad;exports3.valueAndGrads=valueAndGrads;exports3.variable=variable;exports3.variableGrads=variableGrads;exports3.version=version$7;exports3.version_converter=version$2;exports3.version_core=version4;exports3.version_layers=version$1;exports3.where=where;exports3.whereAsync=whereAsync;exports3.zeros=zeros;exports3.zerosLike=zerosLike2;Object.defineProperty(exports3,"__esModule",{value:true})})});var require_tf_core_node=__commonJS(exports2=>{"use strict";Object.defineProperty(exports2,"__esModule",{value:true});var extendStatics=function(d,b){extendStatics=Object.setPrototypeOf||{__proto__:[]}instanceof Array&&function(d2,b2){d2.__proto__=b2}||function(d2,b2){for(var p in b2)if(b2.hasOwnProperty(p))d2[p]=b2[p]};return extendStatics(d,b)};function __extends(d,b){extendStatics(d,b);function __(){this.constructor=d}d.prototype=b===null?Object.create(b):(__.prototype=b.prototype,new __)}function __awaiter(thisArg,_arguments,P,generator){return new(P||(P=Promise))(function(resolve,reject){function fulfilled(value){try{step2(generator.next(value))}catch(e){reject(e)}}function rejected(value){try{step2(generator["throw"](value))}catch(e){reject(e)}}function step2(result){result.done?resolve(result.value):new P(function(resolve2){resolve2(result.value)}).then(fulfilled,rejected)}step2((generator=generator.apply(thisArg,_arguments||[])).next())})}function __generator(thisArg,body2){var _={label:0,sent:function(){if(t[0]&1)throw t[1];return t[1]},trys:[],ops:[]},f,y,t,g;return g={next:verb(0),throw:verb(1),return:verb(2)},typeof Symbol==="function"&&(g[Symbol.iterator]=function(){return this}),g;function verb(n){return function(v){return step2([n,v])}}function step2(op2){if(f)throw new TypeError("Generator is already executing.");while(_)try{if(f=1,y&&(t=op2[0]&2?y["return"]:op2[0]?y["throw"]||((t=y["return"])&&t.call(y),0):y.next)&&!(t=t.call(y,op2[1])).done)return t;if(y=0,t)op2=[op2[0]&2,t.value];switch(op2[0]){case 0:case 1:t=op2;break;case 4:_.label++;return{value:op2[1],done:false};case 5:_.label++;y=op2[1];op2=[0];continue;case 7:op2=_.ops.pop();_.trys.pop();continue;default:if(!(t=_.trys,t=t.length>0&&t[t.length-1])&&(op2[0]===6||op2[0]===2)){_=0;continue}if(op2[0]===3&&(!t||op2[1]>t[0]&&op2[1]<t[3])){_.label=op2[1];break}if(op2[0]===6&&_.label<t[1]){_.label=t[1];t=op2;break}if(t&&_.label<t[2]){_.label=t[2];_.ops.push(op2);break}if(t[2])_.ops.pop();_.trys.pop();continue}op2=body2.call(thisArg,_)}catch(e){op2=[6,e];y=0}finally{f=t=0}if(op2[0]&5)throw op2[1];return{value:op2[0]?op2[1]:void 0,done:true}}}var EPSILON_FLOAT32=1e-7;var EPSILON_FLOAT16=1e-4;var DataStorage2=function(){function DataStorage3(backend2,dataMover){this.backend=backend2;this.dataMover=dataMover;this.data=new WeakMap;this.dataIdsCount=0}DataStorage3.prototype.get=function(dataId){if(!this.data.has(dataId)){this.dataMover.moveData(this.backend,dataId)}return this.data.get(dataId)};DataStorage3.prototype.set=function(dataId,value){this.dataIdsCount++;this.data.set(dataId,value)};DataStorage3.prototype.has=function(dataId){return this.data.has(dataId)};DataStorage3.prototype.delete=function(dataId){this.dataIdsCount--;return this.data.delete(dataId)};DataStorage3.prototype.numDataIds=function(){return this.dataIdsCount};return DataStorage3}();var KernelBackend2=function(){function KernelBackend3(){}KernelBackend3.prototype.time=function(f){return notYetImplemented("time")};KernelBackend3.prototype.read=function(dataId){return notYetImplemented("read")};KernelBackend3.prototype.readSync=function(dataId){return notYetImplemented("readSync")};KernelBackend3.prototype.numDataIds=function(){return notYetImplemented("numDataIds")};KernelBackend3.prototype.disposeData=function(dataId){return notYetImplemented("disposeData")};KernelBackend3.prototype.write=function(values,shape,dtype){return notYetImplemented("write")};KernelBackend3.prototype.move=function(dataId,values,shape,dtype){return notYetImplemented("move")};KernelBackend3.prototype.memory=function(){return notYetImplemented("memory")};KernelBackend3.prototype.floatPrecision=function(){return notYetImplemented("floatPrecision")};KernelBackend3.prototype.epsilon=function(){return this.floatPrecision()===32?EPSILON_FLOAT32:EPSILON_FLOAT16};KernelBackend3.prototype.batchMatMul=function(a,b,transposeA,transposeB){return notYetImplemented("batchMatMul")};KernelBackend3.prototype.fusedBatchMatMul=function(_a){var a=_a.a,b=_a.b,transposeA=_a.transposeA,transposeB=_a.transposeB,bias=_a.bias,activation=_a.activation,preluActivationWeights=_a.preluActivationWeights;return notYetImplemented("fusedBatchMatMul")};KernelBackend3.prototype.slice=function(x,begin,size){return notYetImplemented("slice")};KernelBackend3.prototype.stridedSlice=function(x,begin,end,strides){return notYetImplemented("stridedSlice")};KernelBackend3.prototype.unstack=function(x,axis){return notYetImplemented("unstack")};KernelBackend3.prototype.reverse=function(a,axis){return notYetImplemented("reverse")};KernelBackend3.prototype.concat=function(tensors,axis){return notYetImplemented("concat")};KernelBackend3.prototype.neg=function(a){return notYetImplemented("neg")};KernelBackend3.prototype.add=function(a,b){return notYetImplemented("add")};KernelBackend3.prototype.addN=function(tensors){return notYetImplemented("addN")};KernelBackend3.prototype.subtract=function(a,b){return notYetImplemented("subtract")};KernelBackend3.prototype.multiply=function(a,b){return notYetImplemented("multiply")};KernelBackend3.prototype.realDivide=function(a,b){return notYetImplemented("realDivide")};KernelBackend3.prototype.floorDiv=function(a,b){return notYetImplemented("floorDiv")};KernelBackend3.prototype.sum=function(x,axes){return notYetImplemented("sum")};KernelBackend3.prototype.prod=function(x,axes){return notYetImplemented("prod")};KernelBackend3.prototype.unsortedSegmentSum=function(x,segmentIds,numSegments){return notYetImplemented("unsortedSegmentSum")};KernelBackend3.prototype.argMin=function(x,axis){return notYetImplemented("argMin")};KernelBackend3.prototype.argMax=function(x,axis){return notYetImplemented("argMax")};KernelBackend3.prototype.equal=function(a,b){return notYetImplemented("equal")};KernelBackend3.prototype.notEqual=function(a,b){return notYetImplemented("notEqual")};KernelBackend3.prototype.less=function(a,b){return notYetImplemented("less")};KernelBackend3.prototype.lessEqual=function(a,b){return notYetImplemented("lessEqual")};KernelBackend3.prototype.greater=function(a,b){return notYetImplemented("greater")};KernelBackend3.prototype.greaterEqual=function(a,b){return notYetImplemented("greaterEqual")};KernelBackend3.prototype.logicalNot=function(a){return notYetImplemented("logicalNot")};KernelBackend3.prototype.logicalAnd=function(a,b){return notYetImplemented("logicalAnd")};KernelBackend3.prototype.logicalOr=function(a,b){return notYetImplemented("logicalOr")};KernelBackend3.prototype.where=function(condition){return notYetImplemented("where")};KernelBackend3.prototype.select=function(condition,a,b){return notYetImplemented("select")};KernelBackend3.prototype.topk=function(x,k,sorted){return notYetImplemented("topk")};KernelBackend3.prototype.min=function(x,axes){return notYetImplemented("min")};KernelBackend3.prototype.minimum=function(a,b){return notYetImplemented("minimum")};KernelBackend3.prototype.mod=function(a,b){return notYetImplemented("mod")};KernelBackend3.prototype.max=function(x,axes){return notYetImplemented("max")};KernelBackend3.prototype.maximum=function(a,b){return notYetImplemented("maximum")};KernelBackend3.prototype.all=function(x,axes){return notYetImplemented("all")};KernelBackend3.prototype.any=function(x,axes){return notYetImplemented("any")};KernelBackend3.prototype.squaredDifference=function(a,b){return notYetImplemented("squaredDifference")};KernelBackend3.prototype.ceil=function(x){return notYetImplemented("ceil")};KernelBackend3.prototype.floor=function(x){return notYetImplemented("floor")};KernelBackend3.prototype.round=function(x){return notYetImplemented("round")};KernelBackend3.prototype.sign=function(x){return notYetImplemented("sign")};KernelBackend3.prototype.isNaN=function(x){return notYetImplemented("isNaN")};KernelBackend3.prototype.isInf=function(x){return notYetImplemented("isInf")};KernelBackend3.prototype.isFinite=function(x){return notYetImplemented("isFinite")};KernelBackend3.prototype.pow=function(a,b){return notYetImplemented("pow")};KernelBackend3.prototype.exp=function(x){return notYetImplemented("exp")};KernelBackend3.prototype.expm1=function(x){return notYetImplemented("expm1")};KernelBackend3.prototype.softmax=function(x,dim){return notYetImplemented("softmax")};KernelBackend3.prototype.log=function(x){return notYetImplemented("log")};KernelBackend3.prototype.log1p=function(x){return notYetImplemented("log1p")};KernelBackend3.prototype.sqrt=function(x){return notYetImplemented("sqrt")};KernelBackend3.prototype.rsqrt=function(x){return notYetImplemented("rsqrt")};KernelBackend3.prototype.square=function(x){return notYetImplemented("square")};KernelBackend3.prototype.reciprocal=function(x){return notYetImplemented("reciprocal")};KernelBackend3.prototype.relu=function(x){return notYetImplemented("relu")};KernelBackend3.prototype.relu6=function(x){return notYetImplemented("relu6")};KernelBackend3.prototype.prelu=function(x,a){return notYetImplemented("prelu")};KernelBackend3.prototype.elu=function(x){return notYetImplemented("elu")};KernelBackend3.prototype.eluDer=function(dy,y){return notYetImplemented("eluDer")};KernelBackend3.prototype.selu=function(x){return notYetImplemented("selu")};KernelBackend3.prototype.int=function(x){return notYetImplemented("int")};KernelBackend3.prototype.clip=function(x,min3,max3){return notYetImplemented("clip")};KernelBackend3.prototype.abs=function(x){return notYetImplemented("abs")};KernelBackend3.prototype.complexAbs=function(x){return notYetImplemented("complexAbs")};KernelBackend3.prototype.sigmoid=function(x){return notYetImplemented("sigmoid")};KernelBackend3.prototype.softplus=function(x){return notYetImplemented("softplus")};KernelBackend3.prototype.sin=function(x){return notYetImplemented("sin")};KernelBackend3.prototype.cos=function(x){return notYetImplemented("cos")};KernelBackend3.prototype.tan=function(x){return notYetImplemented("tan")};KernelBackend3.prototype.asin=function(x){return notYetImplemented("asin")};KernelBackend3.prototype.acos=function(x){return notYetImplemented("acos")};KernelBackend3.prototype.atan=function(x){return notYetImplemented("atan")};KernelBackend3.prototype.atan2=function(a,b){return notYetImplemented("atan2")};KernelBackend3.prototype.sinh=function(x){return notYetImplemented("sinh")};KernelBackend3.prototype.cosh=function(x){return notYetImplemented("cosh")};KernelBackend3.prototype.tanh=function(x){return notYetImplemented("tanh")};KernelBackend3.prototype.asinh=function(x){return notYetImplemented("asinh")};KernelBackend3.prototype.acosh=function(x){return notYetImplemented("acosh")};KernelBackend3.prototype.atanh=function(x){return notYetImplemented("atanh")};KernelBackend3.prototype.erf=function(x){return notYetImplemented("erf")};KernelBackend3.prototype.step=function(x,alpha){return notYetImplemented("step")};KernelBackend3.prototype.fusedConv2d=function(_a){var input=_a.input,filter=_a.filter,convInfo=_a.convInfo,bias=_a.bias,activation=_a.activation,preluActivationWeights=_a.preluActivationWeights;return notYetImplemented("fusedConv2d")};KernelBackend3.prototype.conv2d=function(x,filter,convInfo){return notYetImplemented("conv2d")};KernelBackend3.prototype.conv2dDerInput=function(dy,filter,convInfo){return notYetImplemented("conv2dDerInput")};KernelBackend3.prototype.conv2dDerFilter=function(x,dY,convInfo){return notYetImplemented("conv2dDerFilter")};KernelBackend3.prototype.fusedDepthwiseConv2D=function(_a){var input=_a.input,filter=_a.filter,convInfo=_a.convInfo,bias=_a.bias,activation=_a.activation,preluActivationWeights=_a.preluActivationWeights;return notYetImplemented("fusedDepthwiseConv2D")};KernelBackend3.prototype.depthwiseConv2D=function(input,filter,convInfo){return notYetImplemented("depthwiseConv2D")};KernelBackend3.prototype.depthwiseConv2DDerInput=function(dy,filter,convInfo){return notYetImplemented("depthwiseConv2DDerInput")};KernelBackend3.prototype.depthwiseConv2DDerFilter=function(x,dY,convInfo){return notYetImplemented("depthwiseConv2DDerFilter")};KernelBackend3.prototype.conv3d=function(x,filter,convInfo){return notYetImplemented("conv3d")};KernelBackend3.prototype.conv3dDerInput=function(dy,filter,convInfo){return notYetImplemented("conv3dDerInput")};KernelBackend3.prototype.conv3dDerFilter=function(x,dY,convInfo){return notYetImplemented("conv3dDerFilter")};KernelBackend3.prototype.maxPool=function(x,convInfo){return notYetImplemented("maxPool")};KernelBackend3.prototype.maxPoolBackprop=function(dy,x,y,convInfo){return notYetImplemented("maxPoolBackprop")};KernelBackend3.prototype.avgPool=function(x,convInfo){return notYetImplemented("avgPool")};KernelBackend3.prototype.avgPoolBackprop=function(dy,x,convInfo){return notYetImplemented("avgPoolBackprop")};KernelBackend3.prototype.avgPool3d=function(x,convInfo){return notYetImplemented("avgPool3d")};KernelBackend3.prototype.avgPool3dBackprop=function(dy,x,convInfo){return notYetImplemented("avgPool3dBackprop")};KernelBackend3.prototype.maxPool3d=function(x,convInfo){return notYetImplemented("maxPool3d")};KernelBackend3.prototype.maxPool3dBackprop=function(dy,x,y,convInfo){return notYetImplemented("maxPool3dBackprop")};KernelBackend3.prototype.reshape=function(x,shape){return notYetImplemented("reshape")};KernelBackend3.prototype.cast=function(x,dtype){return notYetImplemented("cast")};KernelBackend3.prototype.tile=function(x,reps){return notYetImplemented("tile")};KernelBackend3.prototype.pad=function(x,paddings,constantValue){return notYetImplemented("pad")};KernelBackend3.prototype.transpose=function(x,perm){return notYetImplemented("transpose")};KernelBackend3.prototype.gather=function(x,indices,axis){return notYetImplemented("gather")};KernelBackend3.prototype.gatherND=function(x,indices){return notYetImplemented("gatherND")};KernelBackend3.prototype.scatterND=function(indices,updates,shape){return notYetImplemented("scatterND")};KernelBackend3.prototype.batchToSpaceND=function(x,blockShape,crops){return notYetImplemented("batchToSpaceND")};KernelBackend3.prototype.spaceToBatchND=function(x,blockShape,paddings){return notYetImplemented("spaceToBatchND")};KernelBackend3.prototype.resizeBilinear=function(x,newHeight,newWidth,alignCorners){return notYetImplemented("resizeBilinear")};KernelBackend3.prototype.resizeBilinearBackprop=function(dy,x,alignCorners){return notYetImplemented("resizeBilinearBackprop")};KernelBackend3.prototype.resizeNearestNeighbor=function(x,newHEight,newWidth,alignCorners){return notYetImplemented("resizeNearestNeighbor")};KernelBackend3.prototype.resizeNearestNeighborBackprop=function(dy,x,alignCorners){return notYetImplemented("resizeNearestNeighborBackprop")};KernelBackend3.prototype.batchNorm=function(x,mean2,variance,offset,scale,varianceEpsilon){return notYetImplemented("batchNorm")};KernelBackend3.prototype.localResponseNormalization4D=function(x,radius,bias,alpha,beta){return notYetImplemented("localResponseNormalization4D")};KernelBackend3.prototype.LRNGrad=function(dy,inputImage,outputImage,radius,bias,alpha,beta){return notYetImplemented("LRNGrad")};KernelBackend3.prototype.multinomial=function(logits,normalized,numSamples,seed){return notYetImplemented("multinomial")};KernelBackend3.prototype.oneHot=function(indices,depth,onValue,offValue){return notYetImplemented("oneHot")};KernelBackend3.prototype.cumsum=function(x,axis,exclusive,reverse3){return notYetImplemented("cumsum")};KernelBackend3.prototype.nonMaxSuppression=function(boxes,scores,maxOutputSize,iouThreshold,scoreThreshold){return notYetImplemented("nonMaxSuppression")};KernelBackend3.prototype.fft=function(x){return notYetImplemented("fft")};KernelBackend3.prototype.ifft=function(x){return notYetImplemented("ifft")};KernelBackend3.prototype.complex=function(real2,imag2){return notYetImplemented("complex")};KernelBackend3.prototype.real=function(input){return notYetImplemented("real")};KernelBackend3.prototype.imag=function(input){return notYetImplemented("imag")};KernelBackend3.prototype.cropAndResize=function(image3,boxes,boxIndex,cropSize,method,extrapolationValue){return notYetImplemented("cropAndResize")};KernelBackend3.prototype.depthToSpace=function(x,blockSize,dataFormat){return notYetImplemented("depthToSpace")};KernelBackend3.prototype.split=function(value,sizeSplits,axis){return notYetImplemented("split")};KernelBackend3.prototype.sparseToDense=function(sparseIndices,sparseValues,outputShape,defaultValue){return notYetImplemented("sparseToDense")};KernelBackend3.prototype.diag=function(x){return notYetImplemented("diag")};KernelBackend3.prototype.fill=function(shape,value,dtype){return notYetImplemented("fill")};KernelBackend3.prototype.onesLike=function(x){return notYetImplemented("onesLike")};KernelBackend3.prototype.zerosLike=function(x){return notYetImplemented("zerosLike")};KernelBackend3.prototype.linspace=function(start,stop,num){return notYetImplemented("linspace")};KernelBackend3.prototype.dispose=function(){return notYetImplemented("dispose")};return KernelBackend3}();function notYetImplemented(kernelName){throw new Error("'"+kernelName+"' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen")}function shuffle(array){var counter=array.length;var temp=0;var index=0;while(counter>0){index=Math.random()*counter|0;counter--;temp=array[counter];array[counter]=array[index];array[index]=temp}}function clamp(min3,x,max3){return Math.max(min3,Math.min(x,max3))}function nearestLargerEven(val){return val%2===0?val:val+1}function sum2(arr){var sum3=0;for(var i=0;i<arr.length;i++){sum3+=arr[i]}return sum3}function randUniform(a,b){var r=Math.random();return b*r+(1-r)*a}function distSquared(a,b){var result=0;for(var i=0;i<a.length;i++){var diff=Number(a[i])-Number(b[i]);result+=diff*diff}return result}function assert(expr,msg){if(!expr){throw new Error(typeof msg==="string"?msg:msg())}}function assertShapesMatch(shapeA,shapeB,errorMessagePrefix){if(errorMessagePrefix===void 0){errorMessagePrefix=""}assert(arraysEqual(shapeA,shapeB),function(){return errorMessagePrefix+(" Shapes "+shapeA+" and "+shapeB+" must match")})}function assertNonNull(a){assert(a!=null,function(){return"The input to the tensor constructor must be a non-null value."})}function flatten(arr,result,skipTypedArray){if(result===void 0){result=[]}if(skipTypedArray===void 0){skipTypedArray=false}if(result==null){result=[]}if(Array.isArray(arr)||isTypedArray(arr)&&!skipTypedArray){for(var i=0;i<arr.length;++i){flatten(arr[i],result,skipTypedArray)}}else{result.push(arr)}return result}function sizeFromShape(shape){if(shape.length===0){return 1}var size=shape[0];for(var i=1;i<shape.length;i++){size*=shape[i]}return size}function isScalarShape(shape){return shape.length===0}function arraysEqual(n1,n2){if(n1===n2){return true}if(n1==null||n2==null){return false}if(n1.length!==n2.length){return false}for(var i=0;i<n1.length;i++){if(n1[i]!==n2[i]){return false}}return true}function isInt(a){return a%1===0}function tanh(x){if(Math.tanh!=null){return Math.tanh(x)}if(x===Infinity){return 1}else if(x===-Infinity){return-1}else{var e2x=Math.exp(2*x);return(e2x-1)/(e2x+1)}}function sizeToSquarishShape(size){var width=Math.ceil(Math.sqrt(size));return[width,Math.ceil(size/width)]}function createShuffledIndices(n){var shuffledIndices=new Uint32Array(n);for(var i=0;i<n;++i){shuffledIndices[i]=i}shuffle(shuffledIndices);return shuffledIndices}function rightPad(a,size){if(size<=a.length){return a}return a+" ".repeat(size-a.length)}function repeatedTry(checkFn,delayFn,maxCounter){if(delayFn===void 0){delayFn=function(counter){return 0}}return new Promise(function(resolve,reject){var tryCount=0;var tryFn=function(){if(checkFn()){resolve();return}tryCount++;var nextBackoff=delayFn(tryCount);if(maxCounter!=null&&tryCount>=maxCounter){reject();return}setTimeout(tryFn,nextBackoff)};tryFn()})}function inferFromImplicitShape(shape,size){var shapeProd=1;var implicitIdx=-1;for(var i=0;i<shape.length;++i){if(shape[i]>=0){shapeProd*=shape[i]}else if(shape[i]===-1){if(implicitIdx!==-1){throw Error("Shapes can only have 1 implicit size. "+("Found -1 at dim "+implicitIdx+" and dim "+i))}implicitIdx=i}else if(shape[i]<0){throw Error("Shapes can not be < 0. Found "+shape[i]+" at dim "+i)}}if(implicitIdx===-1){if(size>0&&size!==shapeProd){throw Error("Size("+size+") must match the product of shape "+shape)}return shape}if(shapeProd===0){throw Error("Cannot infer the missing size in ["+shape+"] when there are 0 elements")}if(size%shapeProd!==0){throw Error("The implicit shape can't be a fractional number. "+("Got "+size+" / "+shapeProd))}var newShape=shape.slice();newShape[implicitIdx]=size/shapeProd;return newShape}function parseAxisParam(axis,shape){var rank=shape.length;axis=axis==null?shape.map(function(s,i){return i}):[].concat(axis);assert(axis.every(function(ax){return ax>=-rank&&ax<rank}),function(){return"All values in axis param must be in range [-"+rank+", "+rank+") but "+("got axis "+axis)});assert(axis.every(function(ax){return isInt(ax)}),function(){return"All values in axis param must be integers but "+("got axis "+axis)});return axis.map(function(a){return a<0?rank+a:a})}function squeezeShape(shape,axis){var newShape=[];var keptDims=[];var isEmptyArray=axis!=null&&Array.isArray(axis)&&axis.length===0;var axes=axis==null||isEmptyArray?null:parseAxisParam(axis,shape).sort();var j=0;for(var i=0;i<shape.length;++i){if(axes!=null){if(axes[j]===i&&shape[i]!==1){throw new Error("Can't squeeze axis "+i+" since its dim '"+shape[i]+"' is not 1")}if((axes[j]==null||axes[j]>i)&&shape[i]===1){newShape.push(shape[i]);keptDims.push(i)}if(axes[j]<=i){j++}}if(shape[i]!==1){newShape.push(shape[i]);keptDims.push(i)}}return{newShape,keptDims}}function getTypedArrayFromDType(dtype,size){var values=null;if(dtype==null||dtype==="float32"){values=new Float32Array(size)}else if(dtype==="int32"){values=new Int32Array(size)}else if(dtype==="bool"){values=new Uint8Array(size)}else{throw new Error("Unknown data type "+dtype)}return values}function getArrayFromDType(dtype,size){var values=null;if(dtype==null||dtype==="float32"){values=new Float32Array(size)}else if(dtype==="int32"){values=new Int32Array(size)}else if(dtype==="bool"){values=new Uint8Array(size)}else if(dtype==="string"){values=new Array(size)}else{throw new Error("Unknown data type "+dtype)}return values}function checkConversionForErrors(vals,dtype){for(var i=0;i<vals.length;i++){var num=vals[i];if(isNaN(num)||!isFinite(num)){throw Error("A tensor of type "+dtype+" being uploaded contains "+num+".")}}}function isValidDtype(dtype){return dtype==="bool"||dtype==="complex64"||dtype==="float32"||dtype==="int32"||dtype==="string"}function hasEncodingLoss(oldType,newType){if(newType==="complex64"){return false}if(newType==="float32"&&oldType!=="complex64"){return false}if(newType==="int32"&&oldType!=="float32"&&oldType!=="complex64"){return false}if(newType==="bool"&&oldType==="bool"){return false}return true}function isTypedArray(a){return a instanceof Float32Array||a instanceof Int32Array||a instanceof Uint8Array}function bytesPerElement(dtype){if(dtype==="float32"||dtype==="int32"){return 4}else if(dtype==="complex64"){return 8}else if(dtype==="bool"){return 1}else{throw new Error("Unknown dtype "+dtype)}}function bytesFromStringArray(arr){if(arr==null){return 0}var bytes=0;arr.forEach(function(x){return bytes+=x.length});return bytes}function isString(value){return typeof value==="string"||value instanceof String}function isBoolean(value){return typeof value==="boolean"}function isNumber(value){return typeof value==="number"}function inferDtype(values){if(Array.isArray(values)){return inferDtype(values[0])}if(values instanceof Float32Array){return"float32"}else if(values instanceof Int32Array||values instanceof Uint8Array){return"int32"}else if(isNumber(values)){return"float32"}else if(isString(values)){return"string"}else if(isBoolean(values)){return"bool"}return"float32"}function isFunction(f){return!!(f&&f.constructor&&f.call&&f.apply)}function nearestDivisor(size,start){for(var i=start;i<size;++i){if(size%i===0){return i}}return size}function computeStrides(shape){var rank=shape.length;if(rank<2){return[]}var strides=new Array(rank-1);strides[rank-2]=shape[rank-1];for(var i=rank-3;i>=0;--i){strides[i]=strides[i+1]*shape[i+1]}return strides}function createNestedArray(offset,shape,a){var ret=new Array;if(shape.length===1){var d=shape[0];for(var i=0;i<d;i++){ret[i]=a[offset+i]}}else{var d=shape[0];var rest=shape.slice(1);var len=rest.reduce(function(acc,c){return acc*c});for(var i=0;i<d;i++){ret[i]=createNestedArray(offset+i*len,rest,a)}}return ret}function toNestedArray(shape,a){if(shape.length===0){return a[0]}var size=shape.reduce(function(acc,c){return acc*c});if(size===0){return[]}if(size!==a.length){throw new Error("["+shape+"] does not match the input size "+a.length+".")}return createNestedArray(0,shape,a)}function makeOnesTypedArray(size,dtype){var array=makeZerosTypedArray(size,dtype);for(var i=0;i<array.length;i++){array[i]=1}return array}function makeZerosTypedArray(size,dtype){if(dtype==null||dtype==="float32"||dtype==="complex64"){return new Float32Array(size)}else if(dtype==="int32"){return new Int32Array(size)}else if(dtype==="bool"){return new Uint8Array(size)}else{throw new Error("Unknown data type "+dtype)}}function makeZerosNestedTypedArray(shape,dtype){var size=shape.reduce(function(prev,curr){return prev*curr},1);if(dtype==null||dtype==="float32"){return toNestedArray(shape,new Float32Array(size))}else if(dtype==="int32"){return toNestedArray(shape,new Int32Array(size))}else if(dtype==="bool"){return toNestedArray(shape,new Uint8Array(size))}else{throw new Error("Unknown data type "+dtype)}}function assertNonNegativeIntegerDimensions(shape){shape.forEach(function(dimSize){assert(Number.isInteger(dimSize)&&dimSize>=0,function(){return"Tensor must have a shape comprised of positive integers but got "+("shape ["+shape+"].")})})}function locToIndex(locs,rank,strides){if(rank===0){return 0}else if(rank===1){return locs[0]}var index=locs[locs.length-1];for(var i=0;i<locs.length-1;++i){index+=strides[i]*locs[i]}return index}function indexToLoc(index,rank,strides){if(rank===0){return[]}else if(rank===1){return[index]}var locs=new Array(rank);for(var i=0;i<locs.length-1;++i){locs[i]=Math.floor(index/strides[i]);index-=locs[i]*strides[i]}locs[locs.length-1]=index;return locs}function isPromise(object){return object&&object.then&&typeof object.then==="function"}var TENSORFLOWJS_FLAGS_PREFIX="tfjsflags";var Environment=function(){function Environment2(global2){this.global=global2;this.flags={};this.flagRegistry={};this.urlFlags={};this.populateURLFlags()}Environment2.prototype.setPlatform=function(platformName,platform){if(this.platform!=null){console.warn("Platform "+this.platformName+" has already been set. "+("Overwriting the platform with "+platform+"."))}this.platformName=platformName;this.platform=platform};Environment2.prototype.registerFlag=function(flagName,evaluationFn,setHook){this.flagRegistry[flagName]={evaluationFn,setHook};if(this.urlFlags[flagName]!=null){var flagValue=this.urlFlags[flagName];console.warn("Setting feature override from URL "+flagName+": "+flagValue+".");this.set(flagName,flagValue)}};Environment2.prototype.getAsync=function(flagName){return __awaiter(this,void 0,void 0,function(){var _a,_b;return __generator(this,function(_c){switch(_c.label){case 0:if(flagName in this.flags){return[2,this.flags[flagName]]}_a=this.flags;_b=flagName;return[4,this.evaluateFlag(flagName)];case 1:_a[_b]=_c.sent();return[2,this.flags[flagName]]}})})};Environment2.prototype.get=function(flagName){if(flagName in this.flags){return this.flags[flagName]}var flagValue=this.evaluateFlag(flagName);if(isPromise(flagValue)){throw new Error("Flag "+flagName+" cannot be synchronously evaluated. Please use getAsync() instead.")}this.flags[flagName]=flagValue;return this.flags[flagName]};Environment2.prototype.getNumber=function(flagName){return this.get(flagName)};Environment2.prototype.getBool=function(flagName){return this.get(flagName)};Environment2.prototype.getFlags=function(){return this.flags};Object.defineProperty(Environment2.prototype,"features",{get:function(){return this.flags},enumerable:true,configurable:true});Environment2.prototype.set=function(flagName,value){if(this.flagRegistry[flagName]==null){throw new Error("Cannot set flag "+flagName+" as it has not been registered.")}this.flags[flagName]=value;if(this.flagRegistry[flagName].setHook!=null){this.flagRegistry[flagName].setHook(value)}};Environment2.prototype.evaluateFlag=function(flagName){if(this.flagRegistry[flagName]==null){throw new Error("Cannot evaluate flag '"+flagName+"': no evaluation function found.")}return this.flagRegistry[flagName].evaluationFn()};Environment2.prototype.setFlags=function(flags){this.flags=Object.assign({},flags)};Environment2.prototype.reset=function(){this.flags={};this.urlFlags={};this.populateURLFlags()};Environment2.prototype.populateURLFlags=function(){var _this=this;if(typeof this.global==="undefined"||typeof this.global.location==="undefined"||typeof this.global.location.search==="undefined"){return}var urlParams=getQueryParams(this.global.location.search);if(TENSORFLOWJS_FLAGS_PREFIX in urlParams){var keyValues=urlParams[TENSORFLOWJS_FLAGS_PREFIX].split(",");keyValues.forEach(function(keyValue){var _a=keyValue.split(":"),key=_a[0],value=_a[1];_this.urlFlags[key]=parseValue(key,value)})}};return Environment2}();function getQueryParams(queryString){var params={};queryString.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,function(s){var t=[];for(var _i2=1;_i2<arguments.length;_i2++){t[_i2-1]=arguments[_i2]}decodeParam(params,t[0],t[1]);return t.join("=")});return params}function decodeParam(params,name,value){params[decodeURIComponent(name)]=decodeURIComponent(value||"")}function parseValue(flagName,value){value=value.toLowerCase();if(value==="true"||value==="false"){return value==="true"}else if(""+ +value===value){return+value}throw new Error("Could not parse value flag value "+value+" for flag "+flagName+".")}function env3(){return exports2.ENV}exports2.ENV=null;function setEnvironmentGlobal(environment){exports2.ENV=environment}var globalNameSpace;function getGlobalNamespace(){if(globalNameSpace==null){var ns=void 0;if(typeof window!=="undefined"){ns=window}else if(typeof global!=="undefined"){ns=global}else if(typeof process!=="undefined"){ns=process}else if(typeof self!=="undefined"){ns=self}else{throw new Error("Could not find a global object")}globalNameSpace=ns}return globalNameSpace}function getGlobalMap(){var ns=getGlobalNamespace();if(ns._tfGlobals==null){ns._tfGlobals=new Map}return ns._tfGlobals}function getGlobal(key,init2){var globalMap=getGlobalMap();if(globalMap.has(key)){return globalMap.get(key)}else{var singleton=init2();globalMap.set(key,singleton);return globalMap.get(key)}}var Abs3="Abs";var Acos="Acos";var Acosh="Acosh";var Add3="Add";var AddN3="AddN";var All="All";var Any="Any";var ArgMax3="ArgMax";var ArgMin="ArgMin";var Asin="Asin";var Asinh="Asinh";var Atan="Atan";var Atanh="Atanh";var Atan2="Atan2";var AvgPool3="AvgPool";var AvgPoolBackprop="AvgPoolBackprop";var AvgPool3D="AvgPool3D";var AvgPool3DBackprop="AvgPool3DBackprop";var BatchMatMul3="BatchMatMul";var BatchToSpaceND="BatchToSpaceND";var BroadcastTo="BroadcastTo";var Cast5="Cast";var Ceil="Ceil";var ClipByValue3="ClipByValue";var Complex="Complex";var Concat3="Concat";var Conv2D3="Conv2D";var Conv2DBackpropFilter="Conv2DBackpropFilter";var Conv2DBackpropInput3="Conv2DBackpropInput";var Conv3D="Conv3D";var Conv3DBackpropFilterV2="Conv3DBackpropFilterV2";var Conv3DBackpropInputV2="Conv3DBackpropInputV2";var Cos3="Cos";var Cosh="Cosh";var Cumsum3="Cumsum";var CropAndResize3="CropAndResize";var DepthToSpace3="DepthToSpace";var DepthwiseConv2dNative3="DepthwiseConv2dNative";var DepthwiseConv2dNativeBackpropFilter="DepthwiseConv2dNativeBackpropFilter";var DepthwiseConv2dNativeBackpropInput="DepthwiseConv2dNativeBackpropInput";var Diag="Diag";var Dilation2D="Dilation2D";var Dilation2DBackpropInput="Dilation2DBackpropInput";var Dilation2DBackpropFilter="Dilation2DBackpropFilter";var Div3="Div";var Elu="Elu";var EluGrad="EluGrad";var Erf="Erf";var Equal3="Equal";var Exp3="Exp";var Expm1="Expm1";var FFT="FFT";var Fill3="Fill";var FlipLeftRight3="FlipLeftRight";var Floor="Floor";var FloorDiv3="FloorDiv";var FusedBatchNorm3="FusedBatchNorm";var GatherV23="GatherV2";var GatherNd3="GatherNd";var Greater3="Greater";var GreaterEqual3="GreaterEqual";var Identity5="Identity";var IFFT="IFFT";var Imag="Imag";var IsFinite="IsFinite";var IsInf="IsInf";var IsNan="IsNan";var Less3="Less";var LessEqual3="LessEqual";var LinSpace="LinSpace";var Log3="Log";var Log1p="Log1p";var LogicalAnd3="LogicalAnd";var LogicalNot="LogicalNot";var LogicalOr="LogicalOr";var LogSoftmax="LogSoftmax";var LRN="LRN";var LRNBackprop="LRNBackprop";var Max3="Max";var Maximum3="Maximum";var MaxPool3="MaxPool";var MaxPoolBackprop="MaxPoolBackprop";var MaxPool3D="MaxPool3D";var MaxPool3DBackprop="MaxPool3DBackprop";var MaxPoolWithArgmax="MaxPoolWithArgmax";var Mean="Mean";var Min3="Min";var Minimum3="Minimum";var MirrorPad="MirrorPad";var Mod="Mod";var Multiply3="Multiply";var Negate3="Negate";var NotEqual3="NotEqual";var NonMaxSuppressionV33="NonMaxSuppressionV3";var NonMaxSuppressionV43="NonMaxSuppressionV4";var NonMaxSuppressionV53="NonMaxSuppressionV5";var OnesLike3="OnesLike";var OneHot3="OneHot";var PadV23="PadV2";var Pool="Pool";var Pow3="Pow";var Prelu3="Prelu";var Prod="Prod";var Range="Range";var Real="Real";var Reciprocal="Reciprocal";var Relu3="Relu";var Reshape6="Reshape";var ResizeNearestNeighbor="ResizeNearestNeighbor";var ResizeNearestNeighborGrad="ResizeNearestNeighborGrad";var ResizeBilinear3="ResizeBilinear";var ResizeBilinearGrad="ResizeBilinearGrad";var Relu63="Relu6";var Reverse3="Reverse";var Round="Round";var Rsqrt3="Rsqrt";var ScatterNd3="ScatterNd";var SelectV23="SelectV2";var Selu="Selu";var Slice6="Slice";var Sin3="Sin";var Sinh="Sinh";var Sign="Sign";var Sigmoid3="Sigmoid";var Softplus="Softplus";var Sqrt3="Sqrt";var Sum3="Sum";var SpaceToBatchND="SpaceToBatchND";var SplitV2="SplitV";var Softmax3="Softmax";var SquaredDifference3="SquaredDifference";var Square3="Square";var Sub3="Sub";var SparseToDense="SparseToDense";var StridedSlice3="StridedSlice";var Tan="Tan";var Tanh3="Tanh";var Tile3="Tile";var TopK="TopK";var Transpose5="Transpose";var Unique="Unique";var Unpack3="Unpack";var UnsortedSegmentSum="UnsortedSegmentSum";var ZerosLike3="ZerosLike";var Step="Step";var FromPixels="FromPixels";var RotateWithOffset3="RotateWithOffset";var _FusedMatMul2="_FusedMatMul";var FusedConv2D3="FusedConv2D";var FusedDepthwiseConv2D3="FusedDepthwiseConv2D";var kernelRegistry=getGlobal("kernelRegistry",function(){return new Map});var gradRegistry=getGlobal("gradRegistry",function(){return new Map});function getKernel(kernelName,backendName){var key=makeKey(kernelName,backendName);return kernelRegistry.get(key)}function getGradient(kernelName){return gradRegistry.get(kernelName)}function getKernelsForBackend(backendName){var it=kernelRegistry.entries();var result=[];while(true){var _a=it.next(),done=_a.done,value=_a.value;if(done){break}var key=value[0],config2=value[1];var backend2=key.split("_")[0];if(backend2===backendName){result.push(config2)}}return result}function registerKernel2(config2){var kernelName=config2.kernelName,backendName=config2.backendName;var key=makeKey(kernelName,backendName);if(kernelRegistry.has(key)){console.warn("The kernel '"+kernelName+"' for backend "+("'"+backendName+"' is already registered"))}kernelRegistry.set(key,config2)}function registerGradient(config2){var kernelName=config2.kernelName;if(gradRegistry.has(kernelName)){if(env3().getBool("DEBUG")){console.warn("Overriding the gradient for '"+kernelName+"'")}}gradRegistry.set(kernelName,config2)}function unregisterKernel(kernelName,backendName){var key=makeKey(kernelName,backendName);if(!kernelRegistry.has(key)){throw new Error("The kernel '"+kernelName+"' for backend "+("'"+backendName+"' is not registered"))}kernelRegistry.delete(key)}function unregisterGradient(kernelName){if(!gradRegistry.has(kernelName)){throw new Error("The gradient '"+kernelName+"' for backend is not registered")}gradRegistry.delete(kernelName)}function copyRegisteredKernels(registeredBackendName,newBackendName){var kernels=getKernelsForBackend(registeredBackendName);kernels.forEach(function(kernelConfig){var newKernelConfig=Object.assign({},kernelConfig,{backendName:newBackendName});registerKernel2(newKernelConfig)})}function makeKey(kernelName,backendName){return backendName+"_"+kernelName}function createScalarValue(value,dtype){if(dtype==="string"){return encodeString(value)}return toTypedArray([value],dtype)}function noConversionNeeded(a,dtype){return a instanceof Float32Array&&dtype==="float32"||a instanceof Int32Array&&dtype==="int32"||a instanceof Uint8Array&&dtype==="bool"}function toTypedArray(a,dtype){if(dtype==="string"){throw new Error("Cannot convert a string[] to a TypedArray")}if(Array.isArray(a)){a=flatten(a)}if(env3().getBool("DEBUG")){checkConversionForErrors(a,dtype)}if(noConversionNeeded(a,dtype)){return a}if(dtype==null||dtype==="float32"||dtype==="complex64"){return new Float32Array(a)}else if(dtype==="int32"){return new Int32Array(a)}else if(dtype==="bool"){var bool=new Uint8Array(a.length);for(var i=0;i<bool.length;++i){if(Math.round(a[i])!==0){bool[i]=1}}return bool}else{throw new Error("Unknown data type "+dtype)}}function now2(){return env3().platform.now()}function fetch$1(path,requestInits){return env3().platform.fetch(path,requestInits)}function encodeString(s,encoding){if(encoding===void 0){encoding="utf-8"}encoding=encoding||"utf-8";return env3().platform.encode(s,encoding)}function decodeString(bytes,encoding){if(encoding===void 0){encoding="utf-8"}encoding=encoding||"utf-8";return env3().platform.decode(bytes,encoding)}var util27={__proto__:null,createScalarValue,toTypedArray,now:now2,fetch:fetch$1,encodeString,decodeString,shuffle,clamp,nearestLargerEven,sum:sum2,randUniform,distSquared,assert,assertShapesMatch,assertNonNull,flatten,sizeFromShape,isScalarShape,arraysEqual,isInt,tanh,sizeToSquarishShape,createShuffledIndices,rightPad,repeatedTry,inferFromImplicitShape,parseAxisParam,squeezeShape,getTypedArrayFromDType,getArrayFromDType,checkConversionForErrors,isValidDtype,hasEncodingLoss,isTypedArray,bytesPerElement,bytesFromStringArray,isString,isBoolean,isNumber,inferDtype,isFunction,nearestDivisor,computeStrides,toNestedArray,makeOnesTypedArray,makeZerosTypedArray,makeZerosNestedTypedArray,assertNonNegativeIntegerDimensions,locToIndex,indexToLoc,isPromise};var Profiler=function(){function Profiler2(backendTimer,logger){this.backendTimer=backendTimer;this.logger=logger;if(logger==null){this.logger=new Logger}}Profiler2.prototype.profileKernel=function(kernelName,inputs,f){var outputs;var holdResultWrapperFn=function(){outputs=f()};var timer=this.backendTimer.time(holdResultWrapperFn);var _loop_1=function(i2){var output=outputs[i2];output.data().then(function(tensorVals){checkComputationForErrors(tensorVals,output.dtype,kernelName)})};for(var i=0;i<outputs.length;i++){_loop_1(i)}var kernelProfile={kernelName,outputs,inputs,timeMs:timer.then(function(timing){return timing.kernelMs}),extraInfo:timer.then(function(timing){return timing.getExtraProfileInfo!=null?timing.getExtraProfileInfo():""})};return kernelProfile};Profiler2.prototype.logKernelProfile=function(kernelProfile){var _this=this;var kernelName=kernelProfile.kernelName,outputs=kernelProfile.outputs,timeMs=kernelProfile.timeMs,inputs=kernelProfile.inputs,extraInfo=kernelProfile.extraInfo;outputs.forEach(function(result){Promise.all([result.data(),timeMs,extraInfo]).then(function(valueContainer){_this.logger.logKernelProfile(kernelName,result,valueContainer[0],valueContainer[1],inputs,valueContainer[2])})})};return Profiler2}();function checkComputationForErrors(vals,dtype,kernelName){if(dtype!=="float32"){return false}for(var i=0;i<vals.length;i++){var num=vals[i];if(isNaN(num)||!isFinite(num)){console.warn("Found "+num+" in the result of '"+kernelName+"'");return true}}return false}var Logger=function(){function Logger2(){}Logger2.prototype.logKernelProfile=function(name,result,vals,timeMs,inputs,extraInfo){var time2=typeof timeMs==="number"?rightPad(timeMs+"ms",9):timeMs["error"];var paddedName=rightPad(name,25);var rank=result.rank;var size=result.size;var shape=rightPad(result.shape.toString(),14);var inputShapesDescription="";for(var name_1 in inputs){var input=inputs[name_1];if(input!=null){var inputShape=input.shape||result.shape;var inputRank=inputShape.length;inputShapesDescription+=name_1+": "+inputRank+"D "+(inputRank>0?inputShape:"")+" "}}console.log("%c"+paddedName+" %c"+time2+" %c"+rank+"D "+shape+" %c"+size+" %c"+inputShapesDescription+" %c"+extraInfo,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")};return Logger2}();function getFilteredNodesXToY(tape,xs,y){var tensorsFromX={};var nodesFromX={};for(var i=0;i<xs.length;i++){tensorsFromX[xs[i].id]=true}for(var i=0;i<tape.length;i++){var node=tape[i];var nodeInputs=node.inputs;for(var inputName in nodeInputs){var input=nodeInputs[inputName];var anyInputFromX=false;for(var j=0;j<xs.length;j++){if(tensorsFromX[input.id]){node.outputs.forEach(function(output){return tensorsFromX[output.id]=true});anyInputFromX=true;nodesFromX[node.id]=true;break}}if(anyInputFromX){break}}}var tensorsLeadToY={};tensorsLeadToY[y.id]=true;var nodesToY={};for(var i=tape.length-1;i>=0;i--){var node=tape[i];var nodeInputs=node.inputs;for(var j=0;j<node.outputs.length;j++){if(tensorsLeadToY[node.outputs[j].id]){for(var inputName in nodeInputs){tensorsLeadToY[nodeInputs[inputName].id]=true;nodesToY[node.id]=true}break}}}var filteredTape=[];for(var i=0;i<tape.length;i++){var node=tape[i];if(nodesFromX[node.id]&&nodesToY[node.id]){var prunedInputs={};for(var inputName in node.inputs){var nodeInput=node.inputs[inputName];if(tensorsFromX[nodeInput.id]){prunedInputs[inputName]=nodeInput}}var prunedNode=Object.assign({},node);prunedNode.inputs=prunedInputs;prunedNode.outputs=node.outputs;filteredTape.push(prunedNode)}}return filteredTape}function backpropagateGradients(tensorAccumulatedGradientMap,filteredTape,tidy2,add2){var _loop_1=function(i2){var node=filteredTape[i2];var dys=[];node.outputs.forEach(function(o){var gradTensor=tensorAccumulatedGradientMap[o.id];if(gradTensor!=null){dys.push(gradTensor)}else{dys.push(null)}});if(node.gradient==null){throw new Error("Cannot compute gradient: gradient function not found "+("for "+node.kernelName+"."))}var inputGradients=node.gradient(dys);var _loop_2=function(inputName2){if(!(inputName2 in inputGradients)){throw new Error("Cannot backprop through input "+inputName2+". "+("Available gradients found: "+Object.keys(inputGradients)+"."))}var dx=tidy2(function(){return inputGradients[inputName2]()});if(dx.dtype!=="float32"){throw new Error("Error in gradient for op "+node.kernelName+". The gradient of input "+(inputName2+" must have 'float32' dtype, but has '"+dx.dtype+"'"))}var x=node.inputs[inputName2];if(!arraysEqual(dx.shape,x.shape)){throw new Error("Error in gradient for op "+node.kernelName+". The gradient of input "+("'"+inputName2+"' has shape '"+dx.shape+"', which does not match ")+("the shape of the input '"+x.shape+"'"))}if(tensorAccumulatedGradientMap[x.id]==null){tensorAccumulatedGradientMap[x.id]=dx}else{var curGradient=tensorAccumulatedGradientMap[x.id];tensorAccumulatedGradientMap[x.id]=add2(curGradient,dx);curGradient.dispose()}};for(var inputName in node.inputs){_loop_2(inputName)}};for(var i=filteredTape.length-1;i>=0;i--){_loop_1(i)}}var FORMAT_LIMIT_NUM_VALS=20;var FORMAT_NUM_FIRST_LAST_VALS=3;var FORMAT_NUM_SIG_DIGITS=7;function tensorToString(vals,shape,dtype,verbose){var strides=computeStrides(shape);var padPerCol=computeMaxSizePerColumn(vals,shape,dtype,strides);var rank=shape.length;var valsLines=subTensorToString(vals,shape,dtype,strides,padPerCol);var lines=["Tensor"];if(verbose){lines.push(" dtype: "+dtype);lines.push(" rank: "+rank);lines.push(" shape: ["+shape+"]");lines.push(" values:")}lines.push(valsLines.map(function(l){return" "+l}).join("\n"));return lines.join("\n")}function computeMaxSizePerColumn(vals,shape,dtype,strides){var n=sizeFromShape(shape);var numCols=strides[strides.length-1];var padPerCol=new Array(numCols).fill(0);var rank=shape.length;var valuesOrTuples=dtype==="complex64"?createComplexTuples(vals):vals;if(rank>1){for(var row=0;row<n/numCols;row++){var offset=row*numCols;for(var j=0;j<numCols;j++){padPerCol[j]=Math.max(padPerCol[j],valToString(valuesOrTuples[offset+j],0,dtype).length)}}}return padPerCol}function valToString(val,pad3,dtype){var valStr;if(Array.isArray(val)){valStr=parseFloat(val[0].toFixed(FORMAT_NUM_SIG_DIGITS))+" + "+(parseFloat(val[1].toFixed(FORMAT_NUM_SIG_DIGITS))+"j")}else if(isString(val)){valStr="'"+val+"'"}else if(dtype==="bool"){valStr=boolNumToString(val)}else{valStr=parseFloat(val.toFixed(FORMAT_NUM_SIG_DIGITS)).toString()}return rightPad(valStr,pad3)}function boolNumToString(v){return v===0?"false":"true"}function subTensorToString(vals,shape,dtype,strides,padPerCol,isLast){if(isLast===void 0){isLast=true}var storagePerElement=dtype==="complex64"?2:1;var size=shape[0];var rank=shape.length;if(rank===0){if(dtype==="complex64"){var complexTuple=createComplexTuples(vals);return[valToString(complexTuple[0],0,dtype)]}if(dtype==="bool"){return[boolNumToString(vals[0])]}return[vals[0].toString()]}if(rank===1){if(size>FORMAT_LIMIT_NUM_VALS){var firstValsSize=FORMAT_NUM_FIRST_LAST_VALS*storagePerElement;var firstVals=Array.from(vals.slice(0,firstValsSize));var lastVals=Array.from(vals.slice((size-FORMAT_NUM_FIRST_LAST_VALS)*storagePerElement,size*storagePerElement));if(dtype==="complex64"){firstVals=createComplexTuples(firstVals);lastVals=createComplexTuples(lastVals)}return["["+firstVals.map(function(x,i2){return valToString(x,padPerCol[i2],dtype)}).join(", ")+", ..., "+lastVals.map(function(x,i2){return valToString(x,padPerCol[size-FORMAT_NUM_FIRST_LAST_VALS+i2],dtype)}).join(", ")+"]"]}var displayVals=dtype==="complex64"?createComplexTuples(vals):Array.from(vals);return["["+displayVals.map(function(x,i2){return valToString(x,padPerCol[i2],dtype)}).join(", ")+"]"]}var subshape=shape.slice(1);var substrides=strides.slice(1);var stride=strides[0]*storagePerElement;var lines=[];if(size>FORMAT_LIMIT_NUM_VALS){for(var i=0;i<FORMAT_NUM_FIRST_LAST_VALS;i++){var start=i*stride;var end=start+stride;lines.push.apply(lines,subTensorToString(vals.slice(start,end),subshape,dtype,substrides,padPerCol,false))}lines.push("...");for(var i=size-FORMAT_NUM_FIRST_LAST_VALS;i<size;i++){var start=i*stride;var end=start+stride;lines.push.apply(lines,subTensorToString(vals.slice(start,end),subshape,dtype,substrides,padPerCol,i===size-1))}}else{for(var i=0;i<size;i++){var start=i*stride;var end=start+stride;lines.push.apply(lines,subTensorToString(vals.slice(start,end),subshape,dtype,substrides,padPerCol,i===size-1))}}var sep=rank===2?",":"";lines[0]="["+lines[0]+sep;for(var i=1;i<lines.length-1;i++){lines[i]=" "+lines[i]+sep}var newLineSep=",\n";for(var i=2;i<rank;i++){newLineSep+="\n"}lines[lines.length-1]=" "+lines[lines.length-1]+"]"+(isLast?"":newLineSep);return lines}function createComplexTuples(vals){var complexTuples=[];for(var i=0;i<vals.length;i+=2){complexTuples.push([vals[i],vals[i+1]])}return complexTuples}var TensorBuffer=function(){function TensorBuffer2(shape,dtype,values){var _this=this;this.dtype=dtype;this.shape=shape.slice();this.size=sizeFromShape(shape);if(values!=null){var n_1=values.length;assert(n_1===this.size,function(){return"Length of values '"+n_1+"' does not match the size "+("inferred by the shape '"+_this.size+"'.")})}if(dtype==="complex64"){throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).")}this.values=values||getArrayFromDType(dtype,this.size);this.strides=computeStrides(shape)}TensorBuffer2.prototype.set=function(value){var _this=this;var locs=[];for(var _i2=1;_i2<arguments.length;_i2++){locs[_i2-1]=arguments[_i2]}if(locs.length===0){locs=[0]}assert(locs.length===this.rank,function(){return"The number of provided coordinates ("+locs.length+") must "+("match the rank ("+_this.rank+")")});var index=this.locToIndex(locs);this.values[index]=value};TensorBuffer2.prototype.get=function(){var locs=[];for(var _i2=0;_i2<arguments.length;_i2++){locs[_i2]=arguments[_i2]}if(locs.length===0){locs=[0]}var i=0;for(var _a=0,locs_1=locs;_a<locs_1.length;_a++){var loc=locs_1[_a];if(loc<0||loc>=this.shape[i]){var msg="Requested out of range element at "+locs+". "+(" Buffer shape="+this.shape);throw new Error(msg)}i++}var index=locs[locs.length-1];for(var i_1=0;i_1<locs.length-1;++i_1){index+=this.strides[i_1]*locs[i_1]}return this.values[index]};TensorBuffer2.prototype.locToIndex=function(locs){if(this.rank===0){return 0}else if(this.rank===1){return locs[0]}var index=locs[locs.length-1];for(var i=0;i<locs.length-1;++i){index+=this.strides[i]*locs[i]}return index};TensorBuffer2.prototype.indexToLoc=function(index){if(this.rank===0){return[]}else if(this.rank===1){return[index]}var locs=new Array(this.shape.length);for(var i=0;i<locs.length-1;++i){locs[i]=Math.floor(index/this.strides[i]);index-=locs[i]*this.strides[i]}locs[locs.length-1]=index;return locs};Object.defineProperty(TensorBuffer2.prototype,"rank",{get:function(){return this.shape.length},enumerable:true,configurable:true});TensorBuffer2.prototype.toTensor=function(){return trackerFn().makeTensor(this.values,this.shape,this.dtype)};return TensorBuffer2}();var trackerFn=null;var opHandler=null;function setTensorTracker(fn){trackerFn=fn}function setOpHandler(handler){opHandler=handler}var Tensor=function(){function Tensor2(shape,dtype,dataId,id){this.kept=false;this.isDisposedInternal=false;this.shape=shape.slice();this.dtype=dtype||"float32";this.size=sizeFromShape(shape);this.strides=computeStrides(shape);this.dataId=dataId;this.id=id;this.rankType=this.rank<5?this.rank.toString():"higher"}Object.defineProperty(Tensor2.prototype,"rank",{get:function(){return this.shape.length},enumerable:true,configurable:true});Tensor2.prototype.buffer=function(){return __awaiter(this,void 0,void 0,function(){var vals;return __generator(this,function(_a){switch(_a.label){case 0:return[4,this.data()];case 1:vals=_a.sent();return[2,opHandler.buffer(this.shape,this.dtype,vals)]}})})};Tensor2.prototype.bufferSync=function(){return opHandler.buffer(this.shape,this.dtype,this.dataSync())};Tensor2.prototype.array=function(){return __awaiter(this,void 0,void 0,function(){var vals;return __generator(this,function(_a){switch(_a.label){case 0:return[4,this.data()];case 1:vals=_a.sent();return[2,toNestedArray(this.shape,vals)]}})})};Tensor2.prototype.arraySync=function(){return toNestedArray(this.shape,this.dataSync())};Tensor2.prototype.data=function(){return __awaiter(this,void 0,void 0,function(){var data2,bytes;return __generator(this,function(_a){switch(_a.label){case 0:this.throwIfDisposed();data2=trackerFn().read(this.dataId);if(!(this.dtype==="string"))return[3,2];return[4,data2];case 1:bytes=_a.sent();try{return[2,bytes.map(function(b){return decodeString(b)})]}catch(_b){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}_a.label=2;case 2:return[2,data2]}})})};Tensor2.prototype.dataSync=function(){this.throwIfDisposed();var data2=trackerFn().readSync(this.dataId);if(this.dtype==="string"){try{return data2.map(function(b){return decodeString(b)})}catch(_a){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return data2};Tensor2.prototype.bytes=function(){return __awaiter(this,void 0,void 0,function(){var data2;return __generator(this,function(_a){switch(_a.label){case 0:this.throwIfDisposed();return[4,trackerFn().read(this.dataId)];case 1:data2=_a.sent();if(this.dtype==="string"){return[2,data2]}else{return[2,new Uint8Array(data2.buffer)]}}})})};Tensor2.prototype.dispose=function(){if(this.isDisposed){return}trackerFn().disposeTensor(this);this.isDisposedInternal=true};Object.defineProperty(Tensor2.prototype,"isDisposed",{get:function(){return this.isDisposedInternal},enumerable:true,configurable:true});Tensor2.prototype.throwIfDisposed=function(){if(this.isDisposed){throw new Error("Tensor is disposed.")}};Tensor2.prototype.print=function(verbose){if(verbose===void 0){verbose=false}return opHandler.print(this,verbose)};Tensor2.prototype.clone=function(){this.throwIfDisposed();return opHandler.clone(this)};Tensor2.prototype.toString=function(verbose){if(verbose===void 0){verbose=false}var vals=this.dataSync();return tensorToString(vals,this.shape,this.dtype,verbose)};Tensor2.prototype.cast=function(dtype){this.throwIfDisposed();return opHandler.cast(this,dtype)};Tensor2.prototype.variable=function(trainable,name,dtype){if(trainable===void 0){trainable=true}this.throwIfDisposed();return trackerFn().makeVariable(this,trainable,name,dtype)};return Tensor2}();Object.defineProperty(Tensor,Symbol.hasInstance,{value:function(instance){return!!instance&&instance.data!=null&&instance.dataSync!=null&&instance.throwIfDisposed!=null}});var Variable=function(_super){__extends(Variable2,_super);function Variable2(initialValue,trainable,name,tensorId){var _this=_super.call(this,initialValue.shape,initialValue.dtype,initialValue.dataId,tensorId)||this;_this.trainable=trainable;_this.name=name;return _this}Variable2.prototype.assign=function(newValue){if(newValue.dtype!==this.dtype){throw new Error("dtype of the new value ("+newValue.dtype+") and "+("previous value ("+this.dtype+") must match"))}if(!arraysEqual(newValue.shape,this.shape)){throw new Error("shape of the new value ("+newValue.shape+") and "+("previous value ("+this.shape+") must match"))}trackerFn().disposeTensor(this);this.dataId=newValue.dataId;trackerFn().incRef(this,null)};Variable2.prototype.dispose=function(){trackerFn().disposeVariable(this);this.isDisposedInternal=true};return Variable2}(Tensor);Object.defineProperty(Variable,Symbol.hasInstance,{value:function(instance){return instance instanceof Tensor&&instance.assign!=null&&instance.assign instanceof Function}});(function(Rank){Rank["R0"]="R0";Rank["R1"]="R1";Rank["R2"]="R2";Rank["R3"]="R3";Rank["R4"]="R4";Rank["R5"]="R5";Rank["R6"]="R6"})(exports2.Rank||(exports2.Rank={}));var UpcastInt32AndMap;(function(UpcastInt32AndMap2){UpcastInt32AndMap2["float32"]="float32";UpcastInt32AndMap2["int32"]="int32";UpcastInt32AndMap2["bool"]="int32";UpcastInt32AndMap2["complex64"]="complex64"})(UpcastInt32AndMap||(UpcastInt32AndMap={}));var UpcastBoolAndMap;(function(UpcastBoolAndMap2){UpcastBoolAndMap2["float32"]="float32";UpcastBoolAndMap2["int32"]="int32";UpcastBoolAndMap2["bool"]="bool";UpcastBoolAndMap2["complex64"]="complex64"})(UpcastBoolAndMap||(UpcastBoolAndMap={}));var UpcastFloat32AndMap;(function(UpcastFloat32AndMap2){UpcastFloat32AndMap2["float32"]="float32";UpcastFloat32AndMap2["int32"]="float32";UpcastFloat32AndMap2["bool"]="float32";UpcastFloat32AndMap2["complex64"]="complex64"})(UpcastFloat32AndMap||(UpcastFloat32AndMap={}));var UpcastComplex64AndMap;(function(UpcastComplex64AndMap2){UpcastComplex64AndMap2["float32"]="complex64";UpcastComplex64AndMap2["int32"]="complex64";UpcastComplex64AndMap2["bool"]="complex64";UpcastComplex64AndMap2["complex64"]="complex64"})(UpcastComplex64AndMap||(UpcastComplex64AndMap={}));var upcastTypeMap={float32:UpcastFloat32AndMap,int32:UpcastInt32AndMap,bool:UpcastBoolAndMap,complex64:UpcastComplex64AndMap};function upcastType(typeA,typeB){if(typeA==="string"||typeB==="string"){if(typeA==="string"&&typeB==="string"){return"string"}throw new Error("Can not upcast "+typeA+" with "+typeB)}return upcastTypeMap[typeA][typeB]}function sumOutType(type){return upcastType(type,"int32")}function makeTypesMatch(a,b){if(a.dtype===b.dtype){return[a,b]}var dtype=upcastType(a.dtype,b.dtype);return[a.cast(dtype),b.cast(dtype)]}function assertTypesMatch(a,b){assert(a.dtype===b.dtype,function(){return"The dtypes of the first("+a.dtype+") and"+(" second("+b.dtype+") input must match")})}function isTensorInList(tensor2,tensorList){return tensorList.some(function(x){return x.id===tensor2.id})}function getTensorsInContainer(result){var list=[];var seen=new Set;walkTensorContainer(result,list,seen);return list}function walkTensorContainer(container,list,seen){if(container==null){return}if(container instanceof Tensor){list.push(container);return}if(!isIterable(container)){return}var iterable=container;for(var k in iterable){var val=iterable[k];if(!seen.has(val)){seen.add(val);walkTensorContainer(val,list,seen)}}}function isIterable(obj){return Array.isArray(obj)||typeof obj==="object"}var tensor_util={__proto__:null,makeTypesMatch,assertTypesMatch,isTensorInList,getTensorsInContainer};var EngineState=function(){function EngineState2(){this.registeredVariables={};this.nextTapeNodeId=0;this.numBytes=0;this.numTensors=0;this.numStringTensors=0;this.numDataBuffers=0;this.gradientDepth=0;this.kernelDepth=0;this.scopeStack=[];this.numDataMovesStack=[];this.nextScopeId=0;this.tensorInfo=new WeakMap;this.profiling=false;this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null}}EngineState2.prototype.dispose=function(){for(var variableName in this.registeredVariables){this.registeredVariables[variableName].dispose()}};return EngineState2}();var Engine=function(){function Engine2(ENV3){this.ENV=ENV3;this.registry={};this.registryFactory={};this.pendingBackendInitId=0;this.state=new EngineState}Engine2.prototype.ready=function(){return __awaiter(this,void 0,void 0,function(){var sortedBackends,i,backendName,success;return __generator(this,function(_a){switch(_a.label){case 0:if(this.pendingBackendInit!=null){return[2,this.pendingBackendInit.then(function(){})]}if(this.backendInstance!=null){return[2]}sortedBackends=this.getSortedBackends();i=0;_a.label=1;case 1:if(!(i<sortedBackends.length))return[3,5];backendName=sortedBackends[i];return[4,this.initializeBackend(backendName).success];case 2:success=_a.sent();if(!success)return[3,4];return[4,this.setBackend(backendName)];case 3:_a.sent();return[2];case 4:i++;return[3,1];case 5:throw new Error("Could not initialize any backends, all backend initializations failed.")}})})};Object.defineProperty(Engine2.prototype,"backend",{get:function(){if(this.pendingBackendInit!=null){throw new Error("Backend '"+this.backendName+"' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods")}if(this.backendInstance==null){var _a=this.initializeBackendsAndReturnBest(),name_1=_a.name,asyncInit=_a.asyncInit;if(asyncInit){throw new Error("The highest priority backend '"+name_1+"' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods")}this.setBackend(name_1)}return this.backendInstance},enumerable:true,configurable:true});Engine2.prototype.backendNames=function(){return Object.keys(this.registryFactory)};Engine2.prototype.findBackend=function(backendName){if(!(backendName in this.registry)){if(backendName in this.registryFactory){var asyncInit=this.initializeBackend(backendName).asyncInit;if(asyncInit){return null}}else{return null}}return this.registry[backendName]};Engine2.prototype.findBackendFactory=function(backendName){if(!(backendName in this.registryFactory)){return null}return this.registryFactory[backendName].factory};Engine2.prototype.registerBackend=function(backendName,factory,priority){if(priority===void 0){priority=1}if(backendName in this.registryFactory){console.warn(backendName+" backend was already registered. Reusing existing backend factory.");return false}this.registryFactory[backendName]={factory,priority};return true};Engine2.prototype.setBackend=function(backendName){return __awaiter(this,void 0,void 0,function(){var _a,success,asyncInit,result,_b;return __generator(this,function(_c){switch(_c.label){case 0:if(this.registryFactory[backendName]==null){throw new Error("Backend name '"+backendName+"' not found in registry")}this.backendName=backendName;if(!(this.registry[backendName]==null))return[3,4];this.backendInstance=null;_a=this.initializeBackend(backendName),success=_a.success,asyncInit=_a.asyncInit;if(!asyncInit)return[3,2];return[4,success];case 1:_b=_c.sent();return[3,3];case 2:_b=success;_c.label=3;case 3:result=_b;if(!result){return[2,false]}_c.label=4;case 4:this.backendInstance=this.registry[backendName];this.setupRegisteredKernels();this.profiler=new Profiler(this.backendInstance);return[2,true]}})})};Engine2.prototype.setupRegisteredKernels=function(){var _this=this;var kernels=getKernelsForBackend(this.backendName);kernels.forEach(function(kernel){if(kernel.setupFunc!=null){kernel.setupFunc(_this.backendInstance)}})};Engine2.prototype.disposeRegisteredKernels=function(backendName){var _this=this;var kernels=getKernelsForBackend(backendName);kernels.forEach(function(kernel){if(kernel.disposeFunc!=null){kernel.disposeFunc(_this.registry[backendName])}})};Engine2.prototype.initializeBackend=function(backendName){var _this=this;var registryFactoryEntry=this.registryFactory[backendName];if(registryFactoryEntry==null){throw new Error("Cannot initialize backend "+backendName+", no registration found.")}try{var backend2=registryFactoryEntry.factory();if(backend2&&!(backend2 instanceof KernelBackend2)&&typeof backend2.then==="function"){var promiseId_1=++this.pendingBackendInitId;var success=backend2.then(function(backendInstance){if(promiseId_1<_this.pendingBackendInitId){return false}_this.registry[backendName]=backendInstance;_this.pendingBackendInit=null;return true}).catch(function(err){if(promiseId_1<_this.pendingBackendInitId){return false}_this.pendingBackendInit=null;console.warn("Initialization of backend "+backendName+" failed");console.warn(err.stack||err.message);return false});this.pendingBackendInit=success;return{success,asyncInit:true}}else{this.registry[backendName]=backend2;return{success:true,asyncInit:false}}}catch(err){console.warn("Initialization of backend "+backendName+" failed");console.warn(err.stack||err.message);return{success:false,asyncInit:false}}};Engine2.prototype.removeBackend=function(backendName){if(!(backendName in this.registryFactory)){throw new Error(backendName+" backend not found in registry")}if(this.backendName===backendName&&this.pendingBackendInit!=null){this.pendingBackendInitId++}if(backendName in this.registry){this.disposeRegisteredKernels(backendName);this.registry[backendName].dispose();delete this.registry[backendName]}delete this.registryFactory[backendName];if(this.backendName===backendName){this.pendingBackendInit=null;this.backendName=null;this.backendInstance=null}};Engine2.prototype.getSortedBackends=function(){var _this=this;if(Object.keys(this.registryFactory).length===0){throw new Error("No backend found in registry.")}return Object.keys(this.registryFactory).sort(function(a,b){return _this.registryFactory[b].priority-_this.registryFactory[a].priority})};Engine2.prototype.initializeBackendsAndReturnBest=function(){var sortedBackends=this.getSortedBackends();for(var i=0;i<sortedBackends.length;i++){var backendName=sortedBackends[i];var _a=this.initializeBackend(backendName),success=_a.success,asyncInit=_a.asyncInit;if(asyncInit||success){return{name:backendName,asyncInit}}}throw new Error("Could not initialize any backends, all backend initializations failed.")};Engine2.prototype.moveData=function(backend2,dataId){var info=this.state.tensorInfo.get(dataId);var srcBackend=info.backend;var values=this.readSync(dataId);srcBackend.disposeData(dataId);info.backend=backend2;backend2.move(dataId,values,info.shape,info.dtype);if(this.shouldCheckForMemLeaks()){this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}};Engine2.prototype.tidy=function(nameOrFn,fn){var _this=this;var name=null;if(fn==null){if(typeof nameOrFn!=="function"){throw new Error("Please provide a function to tidy()")}fn=nameOrFn}else{if(typeof nameOrFn!=="string"&&!(nameOrFn instanceof String)){throw new Error("When calling with two arguments, the first argument to tidy() must be a string")}if(typeof fn!=="function"){throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function")}name=nameOrFn}var result;return this.scopedRun(function(){return _this.startScope(name)},function(){return _this.endScope(result)},function(){result=fn();if(result instanceof Promise){console.error("Cannot return a Promise inside of tidy.")}return result})};Engine2.prototype.scopedRun=function(start,end,f){start();try{var res=f();end();return res}catch(ex){end();throw ex}};Engine2.prototype.nextTensorId=function(){return Engine2.nextTensorId++};Engine2.prototype.nextVariableId=function(){return Engine2.nextVariableId++};Engine2.prototype.clone=function(x){var y=this.makeTensorFromDataId(x.dataId,x.shape,x.dtype);var inputs={x};var grad2=function(dy){return{x:function(){var dtype="float32";var gradInputs={x:dy};var attrs={dtype};return ENGINE.runKernelFunc(function(backend2){return backend2.cast(dy,dtype)},gradInputs,null,Cast5,attrs)}}};var saved=[];this.addTapeNode(this.state.activeScope.name,inputs,[y],grad2,saved,{});return y};Engine2.prototype.runKernel=function(kernelName,inputs,attrs,inputsToSave,outputsToSave){var forwardFunc=null;var backwardsFunc=null;return this.runKernelFunc(forwardFunc,inputs,backwardsFunc,kernelName,attrs,inputsToSave,outputsToSave)};Engine2.prototype.shouldCheckForMemLeaks=function(){return this.ENV.getBool("IS_TEST")};Engine2.prototype.checkKernelForMemLeak=function(kernelName,numDataIdsBefore,outInfos){var numDataIdsAfter=this.backend.numDataIds();var numOutputDataIds=0;outInfos.forEach(function(info){numOutputDataIds+=info.dtype==="complex64"?3:1});var numMoves=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1];var dataIdsLeaked=numDataIdsAfter-numDataIdsBefore-numOutputDataIds-numMoves;if(dataIdsLeaked>0){throw new Error("Backend '"+this.backendName+"' has an internal memory leak "+("("+dataIdsLeaked+" data ids) after running '"+kernelName+"'"))}};Engine2.prototype.runKernelFunc=function(forwardFunc,inputs,backwardsFunc,kernelName,attrs,inputsToSave,outputsToSave){var _this=this;var outputs;var saved=[];var isTapeOn=this.isTapeOn();if(kernelName==null){kernelName=this.state.activeScope!=null?this.state.activeScope.name:""}var startingBytecount=this.state.numBytes;var startingNumTensors=this.state.numTensors;if(this.shouldCheckForMemLeaks()){this.state.numDataMovesStack.push(0)}var kernelFunc3;var kernel=getKernel(kernelName,this.backendName);var out;if(kernel!=null){kernelFunc3=function(){var numDataIdsBefore=_this.backend.numDataIds();out=kernel.kernelFunc({inputs,attrs,backend:_this.backend});var outInfos=Array.isArray(out)?out:[out];if(_this.shouldCheckForMemLeaks()){_this.checkKernelForMemLeak(kernelName,numDataIdsBefore,outInfos)}var outTensors=outInfos.map(function(_a){var dataId=_a.dataId,shape=_a.shape,dtype=_a.dtype;return _this.makeTensorFromDataId(dataId,shape,dtype)});if(isTapeOn){var tensorsToSave=_this.getTensorsForGradient(kernelName,inputs,outTensors);if(tensorsToSave==null){if(outputsToSave==null){outputsToSave=[]}var outsToSave=outTensors.filter(function(_,i){return outputsToSave[i]});tensorsToSave=(inputsToSave||[]).slice().concat(outsToSave)}saved=_this.saveTensorsForBackwardMode(tensorsToSave)}return outTensors}}else{var saveFunc_1=function(tensors){if(!isTapeOn){return}saved=tensors.map(function(tensor2){return _this.keep(_this.clone(tensor2))})};kernelFunc3=function(){var numDataIdsBefore=_this.backend.numDataIds();out=_this.tidy(function(){return forwardFunc(_this.backend,saveFunc_1)});var outs=Array.isArray(out)?out:[out];if(_this.shouldCheckForMemLeaks()){_this.checkKernelForMemLeak(kernelName,numDataIdsBefore,outs)}return outs}}var kernelProfile;this.scopedRun(function(){return _this.state.kernelDepth++},function(){return _this.state.kernelDepth--},function(){if(!_this.ENV.getBool("DEBUG")&&!_this.state.profiling){outputs=kernelFunc3()}else{kernelProfile=_this.profiler.profileKernel(kernelName,inputs,function(){return kernelFunc3()});if(_this.ENV.getBool("DEBUG")){_this.profiler.logKernelProfile(kernelProfile)}outputs=kernelProfile.outputs}});if(isTapeOn){this.addTapeNode(kernelName,inputs,outputs,backwardsFunc,saved,attrs)}if(this.state.profiling){this.state.activeProfile.kernels.push({name:kernelName,bytesAdded:this.state.numBytes-startingBytecount,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-startingNumTensors,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(inputs).map(function(key){return inputs[key]!=null?inputs[key].shape:null}),outputShapes:outputs.map(function(item){return item.shape}),kernelTimeMs:kernelProfile.timeMs,extraInfo:kernelProfile.extraInfo})}return Array.isArray(out)?outputs:outputs[0]};Engine2.prototype.saveTensorsForBackwardMode=function(tensors){var _this=this;var saved=tensors.map(function(tensor2){return _this.keep(_this.clone(tensor2))});return saved};Engine2.prototype.getTensorsForGradient=function(kernelName,inputs,outputs){var gradConfig=getGradient(kernelName);if(gradConfig!=null){var inputsToSave=gradConfig.inputsToSave||[];var outputsToSave_1=gradConfig.outputsToSave||[];var inputTensorsToSave=void 0;if(gradConfig.saveAllInputs){assert(Array.isArray(inputs),function(){return"saveAllInputs is true, expected inputs to be an array."});inputTensorsToSave=Object.keys(inputs).map(function(key){return inputs[key]})}else{inputTensorsToSave=inputsToSave.map(function(inputName){return inputs[inputName]})}var outputTensorsToSave=outputs.filter(function(_,i){return outputsToSave_1[i]});return inputTensorsToSave.concat(outputTensorsToSave)}return null};Engine2.prototype.makeTensor=function(values,shape,dtype,backend2){if(values==null){throw new Error("Values passed to engine.makeTensor() are null")}dtype=dtype||"float32";backend2=backend2||this.backend;var backendVals=values;if(dtype==="string"&&isString(values[0])){backendVals=values.map(function(d){return encodeString(d)})}var dataId=backend2.write(backendVals,shape,dtype);var t=new Tensor(shape,dtype,dataId,this.nextTensorId());this.incRef(t,backend2);if(dtype==="string"){var info=this.state.tensorInfo.get(dataId);var newBytes=bytesFromStringArray(backendVals);this.state.numBytes+=newBytes-info.bytes;info.bytes=newBytes}return t};Engine2.prototype.makeTensorFromDataId=function(dataId,shape,dtype,backend2){dtype=dtype||"float32";var t=new Tensor(shape,dtype,dataId,this.nextTensorId());this.incRef(t,backend2);return t};Engine2.prototype.makeVariable=function(initialValue,trainable,name,dtype){if(trainable===void 0){trainable=true}name=name||this.nextVariableId().toString();if(dtype!=null&&dtype!==initialValue.dtype){initialValue=initialValue.cast(dtype)}var v=new Variable(initialValue,trainable,name,this.nextTensorId());if(this.state.registeredVariables[v.name]!=null){throw new Error("Variable with name "+v.name+" was already registered")}this.state.registeredVariables[v.name]=v;this.incRef(v,this.backend);return v};Engine2.prototype.incRef=function(a,backend2){var refCount=this.state.tensorInfo.has(a.dataId)?this.state.tensorInfo.get(a.dataId).refCount:0;this.state.numTensors++;if(a.dtype==="string"){this.state.numStringTensors++}if(refCount===0){this.state.numDataBuffers++;var bytes=0;if(a.dtype!=="complex64"&&a.dtype!=="string"){bytes=a.size*bytesPerElement(a.dtype)}this.state.tensorInfo.set(a.dataId,{backend:backend2||this.backend,dtype:a.dtype,shape:a.shape,bytes,refCount:0});this.state.numBytes+=bytes}this.state.tensorInfo.get(a.dataId).refCount++;if(!(a instanceof Variable)){this.track(a)}};Engine2.prototype.disposeTensor=function(a){if(!this.state.tensorInfo.has(a.dataId)){return}this.state.numTensors--;if(a.dtype==="string"){this.state.numStringTensors--}var info=this.state.tensorInfo.get(a.dataId);var refCount=info.refCount;if(refCount<=1){if(a.dtype!=="complex64"){this.state.numBytes-=info.bytes}this.state.numDataBuffers--;info.backend.disposeData(a.dataId);this.state.tensorInfo.delete(a.dataId)}else{this.state.tensorInfo.get(a.dataId).refCount--}};Engine2.prototype.disposeVariables=function(){for(var varName in this.state.registeredVariables){var v=this.state.registeredVariables[varName];this.disposeVariable(v)}};Engine2.prototype.disposeVariable=function(v){this.disposeTensor(v);if(this.state.registeredVariables[v.name]!=null){delete this.state.registeredVariables[v.name]}};Engine2.prototype.memory=function(){var info=this.backend.memory();info.numTensors=this.state.numTensors;info.numDataBuffers=this.state.numDataBuffers;info.numBytes=this.state.numBytes;if(this.state.numStringTensors>0){info.unreliable=true;if(info.reasons==null){info.reasons=[]}info.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")}return info};Engine2.prototype.profile=function(query){return __awaiter(this,void 0,void 0,function(){var startBytes,startNumTensors,_a,_i2,_b,kernel,_c,_d;return __generator(this,function(_e){switch(_e.label){case 0:this.state.profiling=true;startBytes=this.state.numBytes;startNumTensors=this.state.numTensors;this.state.activeProfile.kernels=[];_a=this.state.activeProfile;return[4,query()];case 1:_a.result=_e.sent();this.state.profiling=false;this.state.activeProfile.peakBytes=Math.max.apply(Math,this.state.activeProfile.kernels.map(function(d){return d.totalBytesSnapshot}));this.state.activeProfile.newBytes=this.state.numBytes-startBytes;this.state.activeProfile.newTensors=this.state.numTensors-startNumTensors;_i2=0,_b=this.state.activeProfile.kernels;_e.label=2;case 2:if(!(_i2<_b.length))return[3,6];kernel=_b[_i2];_c=kernel;return[4,kernel.kernelTimeMs];case 3:_c.kernelTimeMs=_e.sent();_d=kernel;return[4,kernel.extraInfo];case 4:_d.extraInfo=_e.sent();_e.label=5;case 5:_i2++;return[3,2];case 6:return[2,this.state.activeProfile]}})})};Engine2.prototype.isTapeOn=function(){return this.state.gradientDepth>0&&this.state.kernelDepth===0};Engine2.prototype.addTapeNode=function(kernelName,inputs,outputs,gradientsFunc,saved,attrs){var _this=this;var tapeNode={id:this.state.nextTapeNodeId++,kernelName,inputs,outputs,saved};var gradConfig=getGradient(kernelName);if(gradConfig!=null){gradientsFunc=gradConfig.gradFunc}if(gradientsFunc!=null){tapeNode.gradient=function(dys){dys=dys.map(function(dy,i){if(dy==null){var output=outputs[i];var vals=makeZerosTypedArray(output.size,output.dtype);return _this.makeTensor(vals,output.shape,output.dtype)}return dy});return gradientsFunc(dys.length>1?dys:dys[0],saved,attrs)}}this.state.activeTape.push(tapeNode)};Engine2.prototype.keep=function(result){result.kept=true;return result};Engine2.prototype.startTape=function(){if(this.state.gradientDepth===0){this.state.activeTape=[]}this.state.gradientDepth++};Engine2.prototype.endTape=function(){this.state.gradientDepth--};Engine2.prototype.startScope=function(name){var scopeInfo={track:[],name:"unnamed scope",id:this.state.nextScopeId++};if(name){scopeInfo.name=name}this.state.scopeStack.push(scopeInfo);this.state.activeScope=scopeInfo};Engine2.prototype.endScope=function(result){var _this=this;var tensorsToTrackInParent=getTensorsInContainer(result);var tensorsToTrackInParentSet=new Set(tensorsToTrackInParent.map(function(t){return t.id}));for(var i=0;i<this.state.activeScope.track.length;i++){var tensor2=this.state.activeScope.track[i];if(!tensor2.kept&&!tensorsToTrackInParentSet.has(tensor2.id)){tensor2.dispose()}}var oldScope=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1];tensorsToTrackInParent.forEach(function(tensor3){if(!tensor3.kept&&tensor3.scopeId===oldScope.id){_this.track(tensor3)}})};Engine2.prototype.gradients=function(f,xs,dy,allowNoGradients){var _this=this;if(allowNoGradients===void 0){allowNoGradients=false}assert(xs.length>0,function(){return"gradients() received an empty list of xs."});if(dy!=null&&dy.dtype!=="float32"){throw new Error("dy must have 'float32' dtype, but has '"+dy.dtype+"'")}var y=this.scopedRun(function(){return _this.startTape()},function(){return _this.endTape()},function(){return _this.tidy("forward",f)});assert(y instanceof Tensor,function(){return"The result y returned by f() must be a tensor."});var filteredTape=getFilteredNodesXToY(this.state.activeTape,xs,y);if(!allowNoGradients&&filteredTape.length===0&&xs.length>0){throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.")}return this.tidy("backward",function(){var accumulatedGradientMap={};accumulatedGradientMap[y.id]=dy==null?ones(y.shape):dy;backpropagateGradients(accumulatedGradientMap,filteredTape,function(f2){return _this.tidy(f2)},add);var grads2=xs.map(function(x){return accumulatedGradientMap[x.id]});if(_this.state.gradientDepth===0){_this.state.activeTape.forEach(function(node){for(var _i2=0,_a=node.saved;_i2<_a.length;_i2++){var tensor2=_a[_i2];tensor2.dispose()}});_this.state.activeTape=null}return{value:y,grads:grads2}})};Engine2.prototype.customGrad=function(f){var _this=this;assert(isFunction(f),function(){return"The f passed in customGrad(f) must be a function."});return function(){var inputs=[];for(var _i2=0;_i2<arguments.length;_i2++){inputs[_i2]=arguments[_i2]}assert(inputs.every(function(t){return t instanceof Tensor}),function(){return"The args passed in customGrad(f)(x1, x2,...) must all be tensors"});var res;var inputMap={};inputs.forEach(function(input,i){inputMap[i]=input});return _this.runKernelFunc(function(_,save){res=f.apply(void 0,inputs.concat([save]));assert(res.value instanceof Tensor,function(){return"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"});assert(isFunction(res.gradFunc),function(){return"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."});return res.value},inputMap,function(dy,saved){var gradRes=res.gradFunc(dy,saved);var grads2=Array.isArray(gradRes)?gradRes:[gradRes];assert(grads2.length===inputs.length,function(){return"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."});assert(grads2.every(function(t){return t instanceof Tensor}),function(){return"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors."});var gradMap={};grads2.forEach(function(grad2,i){gradMap[i]=function(){return grad2}});return gradMap})}};Engine2.prototype.readSync=function(dataId){var info=this.state.tensorInfo.get(dataId);return info.backend.readSync(dataId)};Engine2.prototype.read=function(dataId){var info=this.state.tensorInfo.get(dataId);return info.backend.read(dataId)};Engine2.prototype.time=function(query){return __awaiter(this,void 0,void 0,function(){var start,timingInfo;return __generator(this,function(_a){switch(_a.label){case 0:start=now2();return[4,this.backend.time(query)];case 1:timingInfo=_a.sent();timingInfo.wallMs=now2()-start;return[2,timingInfo]}})})};Engine2.prototype.track=function(result){if(this.state.activeScope!=null){result.scopeId=this.state.activeScope.id;this.state.activeScope.track.push(result)}return result};Object.defineProperty(Engine2.prototype,"registeredVariables",{get:function(){return this.state.registeredVariables},enumerable:true,configurable:true});Engine2.prototype.reset=function(){this.pendingBackendInitId++;this.state.dispose();this.ENV.reset();this.state=new EngineState;for(var backendName in this.registry){this.disposeRegisteredKernels(backendName);this.registry[backendName].dispose();delete this.registry[backendName]}this.backendName=null;this.backendInstance=null;this.pendingBackendInit=null};Engine2.nextTensorId=0;Engine2.nextVariableId=0;return Engine2}();function ones(shape){var values=makeOnesTypedArray(sizeFromShape(shape),"float32");return ENGINE.makeTensor(values,shape,"float32")}function getOrMakeEngine(){var ns=getGlobalNamespace();if(ns._tfengine==null){var environment=new Environment(ns);ns._tfengine=new Engine(environment)}setEnvironmentGlobal(ns._tfengine.ENV);setTensorTracker(function(){return ns._tfengine});return ns._tfengine}var ENGINE=getOrMakeEngine();function add(a,b){var inputs={a,b};return ENGINE.runKernelFunc(function(backend2,save){var res=backend2.add(a,b);save([a,b]);return res},inputs,null,Add3)}function _isNavigatorDefined(){return typeof navigator!=="undefined"&&navigator!=null}function isMobile(){if(_isNavigatorDefined()){var a=navigator.userAgent||navigator.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(a)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(a.substr(0,4))}return false}function isBrowser(){return typeof window!=="undefined"&&window.document!=null||typeof WorkerGlobalScope!=="undefined"}var device_util={__proto__:null,isMobile,isBrowser};var ENV2=env3();ENV2.registerFlag("DEBUG",function(){return false},function(debugValue){if(debugValue){console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")}});ENV2.registerFlag("IS_BROWSER",function(){return isBrowser()});ENV2.registerFlag("IS_NODE",function(){return typeof process!=="undefined"&&typeof process.versions!=="undefined"&&typeof process.versions.node!=="undefined"});ENV2.registerFlag("IS_CHROME",function(){return typeof navigator!=="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor)});ENV2.registerFlag("PROD",function(){return false});ENV2.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",function(){return ENV2.getBool("DEBUG")});ENV2.registerFlag("DEPRECATION_WARNINGS_ENABLED",function(){return true});ENV2.registerFlag("IS_TEST",function(){return false});function inferShape(val,dtype){var firstElem=val;if(isTypedArray(val)){return dtype==="string"?[]:[val.length]}if(!Array.isArray(val)){return[]}var shape=[];while(Array.isArray(firstElem)||isTypedArray(firstElem)&&dtype!=="string"){shape.push(firstElem.length);firstElem=firstElem[0]}if(Array.isArray(val)&&env3().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")){deepAssertShapeConsistency(val,shape,[])}return shape}function deepAssertShapeConsistency(val,shape,indices){indices=indices||[];if(!Array.isArray(val)&&!isTypedArray(val)){assert(shape.length===0,function(){return"Element arr["+indices.join("][")+"] is a primitive, "+("but should be an array/TypedArray of "+shape[0]+" elements")});return}assert(shape.length>0,function(){return"Element arr["+indices.join("][")+"] should be a primitive, "+("but is an array of "+val.length+" elements")});assert(val.length===shape[0],function(){return"Element arr["+indices.join("][")+"] should have "+shape[0]+" "+("elements, but has "+val.length+" elements")});var subShape=shape.slice(1);for(var i=0;i<val.length;++i){deepAssertShapeConsistency(val[i],subShape,indices.concat(i))}}function assertDtype(expectedDtype,actualDType,argName,functionName){if(expectedDtype==null){return}if(expectedDtype!=="numeric"&&expectedDtype!==actualDType||expectedDtype==="numeric"&&actualDType==="string"){throw new Error("Argument '"+argName+"' passed to '"+functionName+"' must "+("be "+expectedDtype+" tensor, but got "+actualDType+" tensor"))}}function convertToTensor(x,argName,functionName,parseAsDtype){if(parseAsDtype===void 0){parseAsDtype="numeric"}if(x instanceof Tensor){assertDtype(parseAsDtype,x.dtype,argName,functionName);return x}var inferredDtype=inferDtype(x);if(inferredDtype!=="string"&&["bool","int32","float32"].indexOf(parseAsDtype)>=0){inferredDtype=parseAsDtype}assertDtype(parseAsDtype,inferredDtype,argName,functionName);if(x==null||!isTypedArray(x)&&!Array.isArray(x)&&typeof x!=="number"&&typeof x!=="boolean"&&typeof x!=="string"){var type=x==null?"null":x.constructor.name;throw new Error("Argument '"+argName+"' passed to '"+functionName+"' must be a "+("Tensor or TensorLike, but got '"+type+"'"))}var inferredShape=inferShape(x,inferredDtype);if(!isTypedArray(x)&&!Array.isArray(x)){x=[x]}var skipTypedArray=true;var values=inferredDtype!=="string"?toTypedArray(x,inferredDtype):flatten(x,[],skipTypedArray);return ENGINE.makeTensor(values,inferredShape,inferredDtype)}function convertToTensorArray(arg,argName,functionName,parseAsDtype){if(parseAsDtype===void 0){parseAsDtype="numeric"}if(!Array.isArray(arg)){throw new Error("Argument "+argName+" passed to "+functionName+" must be a `Tensor[]` or `TensorLike[]`")}var tensors=arg;return tensors.map(function(t,i){return convertToTensor(t,argName+"["+i+"]",functionName)},parseAsDtype)}var OP_SCOPE_SUFFIX="__op";function op(f){var keys=Object.keys(f);if(keys.length!==1){throw new Error("Please provide an object with a single key (operation name) mapping to a function. Got an object with "+(keys.length+" keys."))}var opName=keys[0];var fn=f[opName];if(opName.endsWith("_")){opName=opName.substring(0,opName.length-1)}opName=opName+OP_SCOPE_SUFFIX;var f2=function(){var args=[];for(var _i2=0;_i2<arguments.length;_i2++){args[_i2]=arguments[_i2]}ENGINE.startScope(opName);try{var result=fn.apply(void 0,args);if(isPromise(result)){console.error("Cannot return a Promise inside of tidy.")}ENGINE.endScope(result);return result}catch(ex){ENGINE.endScope(null);throw ex}};Object.defineProperty(f2,"name",{value:opName,configurable:true});return f2}function complex_(real2,imag2){var $real=convertToTensor(real2,"real","complex");var $imag=convertToTensor(imag2,"imag","complex");assertShapesMatch($real.shape,$imag.shape,"real and imag shapes, "+$real.shape+" and "+$imag.shape+", must match in call to tf.complex().");var forward=function(backend2){return backend2.complex($real,$imag)};var inputs={real:$real,imag:$imag};return ENGINE.runKernelFunc(forward,inputs,null,Complex)}var complex=op({complex_});function makeTensor(values,shape,inferredShape,dtype){if(dtype==null){dtype=inferDtype(values)}if(dtype==="complex64"){throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).")}if(!isTypedArray(values)&&!Array.isArray(values)&&typeof values!=="number"&&typeof values!=="boolean"&&typeof values!=="string"){throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray")}if(shape!=null){assertNonNegativeIntegerDimensions(shape);var providedSize_1=sizeFromShape(shape);var inferredSize_1=sizeFromShape(inferredShape);assert(providedSize_1===inferredSize_1,function(){return"Based on the provided shape, ["+shape+"], the tensor should have "+(providedSize_1+" values but has "+inferredSize_1)});for(var i=0;i<inferredShape.length;++i){var inferred=inferredShape[i];var flatDimsDontMatch=i===inferredShape.length-1?inferred!==sizeFromShape(shape.slice(i)):true;assert(inferredShape[i]===shape[i]||!flatDimsDontMatch,function(){return"Error creating a new Tensor. Inferred shape "+("("+inferredShape+") does not match the provided ")+("shape ("+shape+"). ")})}}if(!isTypedArray(values)&&!Array.isArray(values)){values=[values]}shape=shape||inferredShape;values=dtype!=="string"?toTypedArray(values,dtype):flatten(values,[],true);return ENGINE.makeTensor(values,shape,dtype)}function tensor(values,shape,dtype){var inferredShape=inferShape(values,dtype);return makeTensor(values,shape,inferredShape,dtype)}var DTYPE_VALUE_SIZE_MAP={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8};var NUM_BYTES_STRING_LENGTH=4;function encodeWeights(tensors,group){return __awaiter(this,void 0,void 0,function(){var specs,dataPromises,names,_loop_1,i,tensorValues;var _this=this;return __generator(this,function(_a){switch(_a.label){case 0:specs=[];dataPromises=[];names=Array.isArray(tensors)?tensors.map(function(tensor2){return tensor2.name}):Object.keys(tensors);_loop_1=function(i2){var name_1=names[i2];var t=Array.isArray(tensors)?tensors[i2].tensor:tensors[name_1];if(t.dtype!=="float32"&&t.dtype!=="int32"&&t.dtype!=="bool"&&t.dtype!=="string"&&t.dtype!=="complex64"){throw new Error("Unsupported dtype in weight '"+name_1+"': "+t.dtype)}var spec={name:name_1,shape:t.shape,dtype:t.dtype};if(t.dtype==="string"){var utf8bytes=new Promise(function(resolve){return __awaiter(_this,void 0,void 0,function(){var vals,totalNumBytes,bytes,offset,i_1,val,bytesOfLength;return __generator(this,function(_a2){switch(_a2.label){case 0:return[4,t.bytes()];case 1:vals=_a2.sent();totalNumBytes=vals.reduce(function(p,c){return p+c.length},0)+NUM_BYTES_STRING_LENGTH*vals.length;bytes=new Uint8Array(totalNumBytes);offset=0;for(i_1=0;i_1<vals.length;i_1++){val=vals[i_1];bytesOfLength=new Uint8Array(new Uint32Array([val.length]).buffer);bytes.set(bytesOfLength,offset);offset+=NUM_BYTES_STRING_LENGTH;bytes.set(val,offset);offset+=val.length}resolve(bytes);return[2]}})})});dataPromises.push(utf8bytes)}else{dataPromises.push(t.data())}if(group!=null){spec.group=group}specs.push(spec)};for(i=0;i<names.length;++i){_loop_1(i)}return[4,Promise.all(dataPromises)];case 1:tensorValues=_a.sent();return[2,{data:concatenateTypedArrays(tensorValues),specs}]}})})}function decodeWeights(buffer3,specs){var out={};var float16Decode;var offset=0;for(var _i2=0,specs_1=specs;_i2<specs_1.length;_i2++){var spec=specs_1[_i2];var name_2=spec.name;var dtype=spec.dtype;var shape=spec.shape;var size=sizeFromShape(shape);var values=void 0;if("quantization"in spec){var quantization=spec.quantization;if(quantization.dtype==="uint8"||quantization.dtype==="uint16"){if(!("min"in quantization&&"scale"in quantization)){throw new Error("Weight "+spec.name+" with quantization "+quantization.dtype+" doesn't have corresponding metadata min and scale.")}}else if(quantization.dtype==="float16"){if(dtype!=="float32"){throw new Error("Weight "+spec.name+" is quantized with "+quantization.dtype+" "+("which only supports weights of type float32 not "+dtype+"."))}}else{throw new Error("Weight "+spec.name+" has unknown "+("quantization dtype "+quantization.dtype+". ")+"Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.")}var quantizationSizeFactor=DTYPE_VALUE_SIZE_MAP[quantization.dtype];var byteBuffer=buffer3.slice(offset,offset+size*quantizationSizeFactor);var quantizedArray=quantization.dtype==="uint8"?new Uint8Array(byteBuffer):new Uint16Array(byteBuffer);if(dtype==="float32"){if(quantization.dtype==="uint8"||quantization.dtype==="uint16"){values=new Float32Array(quantizedArray.length);for(var i=0;i<quantizedArray.length;i++){var v=quantizedArray[i];values[i]=v*quantization.scale+quantization.min}}else if(quantization.dtype==="float16"){if(float16Decode===void 0){float16Decode=getFloat16Decoder()}values=float16Decode(quantizedArray)}else{throw new Error("Unsupported quantization type "+quantization.dtype+" for weight type float32.")}}else if(dtype==="int32"){if(quantization.dtype!=="uint8"&&quantization.dtype!=="uint16"){throw new Error("Unsupported quantization type "+quantization.dtype+" for weight type int32.")}values=new Int32Array(quantizedArray.length);for(var i=0;i<quantizedArray.length;i++){var v=quantizedArray[i];values[i]=Math.round(v*quantization.scale+quantization.min)}}else{throw new Error("Unsupported dtype in weight '"+name_2+"': "+dtype)}offset+=size*quantizationSizeFactor}else if(dtype==="string"){var size_1=sizeFromShape(spec.shape);values=[];for(var i=0;i<size_1;i++){var byteLength=new Uint32Array(buffer3.slice(offset,offset+NUM_BYTES_STRING_LENGTH))[0];offset+=NUM_BYTES_STRING_LENGTH;var bytes=new Uint8Array(buffer3.slice(offset,offset+byteLength));values.push(bytes);offset+=byteLength}}else{var dtypeFactor=DTYPE_VALUE_SIZE_MAP[dtype];var byteBuffer=buffer3.slice(offset,offset+size*dtypeFactor);if(dtype==="float32"){values=new Float32Array(byteBuffer)}else if(dtype==="int32"){values=new Int32Array(byteBuffer)}else if(dtype==="bool"){values=new Uint8Array(byteBuffer)}else if(dtype==="complex64"){values=new Float32Array(byteBuffer);var real2=new Float32Array(values.length/2);var image3=new Float32Array(values.length/2);for(var i=0;i<real2.length;i++){real2[i]=values[i*2];image3[i]=values[i*2+1]}var realTensor=tensor(real2,shape,"float32");var imageTensor=tensor(image3,shape,"float32");out[name_2]=complex(realTensor,imageTensor);realTensor.dispose();imageTensor.dispose()}else{throw new Error("Unsupported dtype in weight '"+name_2+"': "+dtype)}offset+=size*dtypeFactor}if(dtype!=="complex64"){out[name_2]=tensor(values,shape,dtype)}}return out}function concatenateTypedArrays(xs){if(xs===null){throw new Error("Invalid input value: "+JSON.stringify(xs))}var totalByteLength=0;var normalizedXs=[];xs.forEach(function(x){totalByteLength+=x.byteLength;normalizedXs.push(x.byteLength===x.buffer.byteLength?x:new x.constructor(x));if(!(x instanceof Float32Array||x instanceof Int32Array||x instanceof Uint8Array)){throw new Error("Unsupported TypedArray subtype: "+x.constructor.name)}});var y=new Uint8Array(totalByteLength);var offset=0;normalizedXs.forEach(function(x){y.set(new Uint8Array(x.buffer),offset);offset+=x.byteLength});return y.buffer}var useNodeBuffer=typeof Buffer!=="undefined"&&(typeof Blob==="undefined"||typeof atob==="undefined"||typeof btoa==="undefined");function stringByteLength(str){if(useNodeBuffer){return Buffer.byteLength(str)}return new Blob([str]).size}function arrayBufferToBase64String(buffer3){if(useNodeBuffer){return Buffer.from(buffer3).toString("base64")}var buf=new Uint8Array(buffer3);var s="";for(var i=0,l=buf.length;i<l;i++){s+=String.fromCharCode(buf[i])}return btoa(s)}function base64StringToArrayBuffer(str){if(useNodeBuffer){var buf=Buffer.from(str,"base64");return buf.buffer.slice(buf.byteOffset,buf.byteOffset+buf.byteLength)}var s=atob(str);var buffer3=new Uint8Array(s.length);for(var i=0;i<s.length;++i){buffer3.set([s.charCodeAt(i)],i)}return buffer3.buffer}function concatenateArrayBuffers(buffers){if(buffers.length===1){return buffers[0]}var totalByteLength=0;buffers.forEach(function(buffer3){totalByteLength+=buffer3.byteLength});var temp=new Uint8Array(totalByteLength);var offset=0;buffers.forEach(function(buffer3){temp.set(new Uint8Array(buffer3),offset);offset+=buffer3.byteLength});return temp.buffer}function basename(path){var SEPARATOR="/";path=path.trim();while(path.endsWith(SEPARATOR)){path=path.slice(0,path.length-1)}var items=path.split(SEPARATOR);return items[items.length-1]}function getModelArtifactsInfoForJSON(modelArtifacts){if(modelArtifacts.modelTopology instanceof ArrayBuffer){throw new Error("Expected JSON model topology, received ArrayBuffer.")}return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:modelArtifacts.modelTopology==null?0:stringByteLength(JSON.stringify(modelArtifacts.modelTopology)),weightSpecsBytes:modelArtifacts.weightSpecs==null?0:stringByteLength(JSON.stringify(modelArtifacts.weightSpecs)),weightDataBytes:modelArtifacts.weightData==null?0:modelArtifacts.weightData.byteLength}}function computeFloat16MantisaTable(){var convertMantissa=function(i2){var m=i2<<13;var e=0;while((m&8388608)===0){e-=8388608;m<<=1}m&=~8388608;e+=947912704;return m|e};var mantisaTable=new Uint32Array(2048);mantisaTable[0]=0;for(var i=1;i<1024;i++){mantisaTable[i]=convertMantissa(i)}for(var i=1024;i<2048;i++){mantisaTable[i]=939524096+(i-1024<<13)}return mantisaTable}function computeFloat16ExponentTable(){var exponentTable=new Uint32Array(64);exponentTable[0]=0;exponentTable[31]=1199570944;exponentTable[32]=2147483648;exponentTable[63]=3347054592;for(var i=1;i<31;i++){exponentTable[i]=i<<23}for(var i=33;i<63;i++){exponentTable[i]=2147483648+(i-32<<23)}return exponentTable}function computeFloat16OffsetTable(){var offsetTable=new Uint32Array(64);for(var i=0;i<64;i++){offsetTable[i]=1024}offsetTable[0]=offsetTable[32]=0;return offsetTable}function getFloat16Decoder(){var mantisaTable=computeFloat16MantisaTable();var exponentTable=computeFloat16ExponentTable();var offsetTable=computeFloat16OffsetTable();return function(quantizedArray){var buffer3=new ArrayBuffer(4*quantizedArray.length);var bufferUint32View=new Uint32Array(buffer3);for(var index=0;index<quantizedArray.length;index++){var float16Bits=quantizedArray[index];var float32Bits=mantisaTable[offsetTable[float16Bits>>10]+(float16Bits&1023)]+exponentTable[float16Bits>>10];bufferUint32View[index]=float32Bits}return new Float32Array(buffer3)}}var IORouterRegistry=function(){function IORouterRegistry2(){this.saveRouters=[];this.loadRouters=[]}IORouterRegistry2.getInstance=function(){if(IORouterRegistry2.instance==null){IORouterRegistry2.instance=new IORouterRegistry2}return IORouterRegistry2.instance};IORouterRegistry2.registerSaveRouter=function(saveRouter){IORouterRegistry2.getInstance().saveRouters.push(saveRouter)};IORouterRegistry2.registerLoadRouter=function(loadRouter){IORouterRegistry2.getInstance().loadRouters.push(loadRouter)};IORouterRegistry2.getSaveHandlers=function(url){return IORouterRegistry2.getHandlers(url,"save")};IORouterRegistry2.getLoadHandlers=function(url,loadOptions){return IORouterRegistry2.getHandlers(url,"load",loadOptions)};IORouterRegistry2.getHandlers=function(url,handlerType,loadOptions){var validHandlers=[];var routers=handlerType==="load"?IORouterRegistry2.getInstance().loadRouters:IORouterRegistry2.getInstance().saveRouters;routers.forEach(function(router){var handler=router(url,loadOptions);if(handler!==null){validHandlers.push(handler)}});return validHandlers};return IORouterRegistry2}();var registerSaveRouter=function(loudRouter){return IORouterRegistry.registerSaveRouter(loudRouter)};var registerLoadRouter=function(loudRouter){return IORouterRegistry.registerLoadRouter(loudRouter)};var getSaveHandlers=function(url){return IORouterRegistry.getSaveHandlers(url)};var getLoadHandlers=function(url,loadOptions){return IORouterRegistry.getLoadHandlers(url,loadOptions)};var DATABASE_NAME="tensorflowjs";var DATABASE_VERSION=1;var MODEL_STORE_NAME="models_store";var INFO_STORE_NAME="model_info_store";function getIndexedDBFactory(){if(!env3().getBool("IS_BROWSER")){throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.")}var theWindow=typeof window==="undefined"?self:window;var factory=theWindow.indexedDB||theWindow.mozIndexedDB||theWindow.webkitIndexedDB||theWindow.msIndexedDB||theWindow.shimIndexedDB;if(factory==null){throw new Error("The current browser does not appear to support IndexedDB.")}return factory}function setUpDatabase(openRequest){var db=openRequest.result;db.createObjectStore(MODEL_STORE_NAME,{keyPath:"modelPath"});db.createObjectStore(INFO_STORE_NAME,{keyPath:"modelPath"})}var BrowserIndexedDB=function(){function BrowserIndexedDB2(modelPath){this.indexedDB=getIndexedDBFactory();if(modelPath==null||!modelPath){throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.")}this.modelPath=modelPath}BrowserIndexedDB2.prototype.save=function(modelArtifacts){return __awaiter(this,void 0,void 0,function(){return __generator(this,function(_a){if(modelArtifacts.modelTopology instanceof ArrayBuffer){throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.")}return[2,this.databaseAction(this.modelPath,modelArtifacts)]})})};BrowserIndexedDB2.prototype.load=function(){return __awaiter(this,void 0,void 0,function(){return __generator(this,function(_a){return[2,this.databaseAction(this.modelPath)]})})};BrowserIndexedDB2.prototype.databaseAction=function(modelPath,modelArtifacts){var _this=this;return new Promise(function(resolve,reject){var openRequest=_this.indexedDB.open(DATABASE_NAME,DATABASE_VERSION);openRequest.onupgradeneeded=function(){return setUpDatabase(openRequest)};openRequest.onsuccess=function(){var db=openRequest.result;if(modelArtifacts==null){var modelTx=db.transaction(MODEL_STORE_NAME,"readonly");var modelStore=modelTx.objectStore(MODEL_STORE_NAME);var getRequest_1=modelStore.get(_this.modelPath);getRequest_1.onsuccess=function(){if(getRequest_1.result==null){db.close();return reject(new Error("Cannot find model with path '"+_this.modelPath+"' in IndexedDB."))}else{resolve(getRequest_1.result.modelArtifacts)}};getRequest_1.onerror=function(error){db.close();return reject(getRequest_1.error)};modelTx.oncomplete=function(){return db.close()}}else{var modelArtifactsInfo_1=getModelArtifactsInfoForJSON(modelArtifacts);var infoTx_1=db.transaction(INFO_STORE_NAME,"readwrite");var infoStore_1=infoTx_1.objectStore(INFO_STORE_NAME);var putInfoRequest_1=infoStore_1.put({modelPath:_this.modelPath,modelArtifactsInfo:modelArtifactsInfo_1});var modelTx_1;putInfoRequest_1.onsuccess=function(){modelTx_1=db.transaction(MODEL_STORE_NAME,"readwrite");var modelStore2=modelTx_1.objectStore(MODEL_STORE_NAME);var putModelRequest=modelStore2.put({modelPath:_this.modelPath,modelArtifacts,modelArtifactsInfo:modelArtifactsInfo_1});putModelRequest.onsuccess=function(){return resolve({modelArtifactsInfo:modelArtifactsInfo_1})};putModelRequest.onerror=function(error){infoStore_1=infoTx_1.objectStore(INFO_STORE_NAME);var deleteInfoRequest=infoStore_1.delete(_this.modelPath);deleteInfoRequest.onsuccess=function(){db.close();return reject(putModelRequest.error)};deleteInfoRequest.onerror=function(error2){db.close();return reject(putModelRequest.error)}}};putInfoRequest_1.onerror=function(error){db.close();return reject(putInfoRequest_1.error)};infoTx_1.oncomplete=function(){if(modelTx_1==null){db.close()}else{modelTx_1.oncomplete=function(){return db.close()}}}}};openRequest.onerror=function(error){return reject(openRequest.error)}})};BrowserIndexedDB2.URL_SCHEME="indexeddb://";return BrowserIndexedDB2}();var indexedDBRouter=function(url){if(!env3().getBool("IS_BROWSER")){return null}else{if(!Array.isArray(url)&&url.startsWith(BrowserIndexedDB.URL_SCHEME)){return browserIndexedDB(url.slice(BrowserIndexedDB.URL_SCHEME.length))}else{return null}}};IORouterRegistry.registerSaveRouter(indexedDBRouter);IORouterRegistry.registerLoadRouter(indexedDBRouter);function browserIndexedDB(modelPath){return new BrowserIndexedDB(modelPath)}function maybeStripScheme(key){return key.startsWith(BrowserIndexedDB.URL_SCHEME)?key.slice(BrowserIndexedDB.URL_SCHEME.length):key}var BrowserIndexedDBManager=function(){function BrowserIndexedDBManager2(){this.indexedDB=getIndexedDBFactory()}BrowserIndexedDBManager2.prototype.listModels=function(){return __awaiter(this,void 0,void 0,function(){var _this=this;return __generator(this,function(_a){return[2,new Promise(function(resolve,reject){var openRequest=_this.indexedDB.open(DATABASE_NAME,DATABASE_VERSION);openRequest.onupgradeneeded=function(){return setUpDatabase(openRequest)};openRequest.onsuccess=function(){var db=openRequest.result;var tx=db.transaction(INFO_STORE_NAME,"readonly");var store=tx.objectStore(INFO_STORE_NAME);var getAllInfoRequest=store.getAll();getAllInfoRequest.onsuccess=function(){var out={};for(var _i2=0,_a2=getAllInfoRequest.result;_i2<_a2.length;_i2++){var item=_a2[_i2];out[item.modelPath]=item.modelArtifactsInfo}resolve(out)};getAllInfoRequest.onerror=function(error){db.close();return reject(getAllInfoRequest.error)};tx.oncomplete=function(){return db.close()}};openRequest.onerror=function(error){return reject(openRequest.error)}})]})})};BrowserIndexedDBManager2.prototype.removeModel=function(path){return __awaiter(this,void 0,void 0,function(){var _this=this;return __generator(this,function(_a){path=maybeStripScheme(path);return[2,new Promise(function(resolve,reject){var openRequest=_this.indexedDB.open(DATABASE_NAME,DATABASE_VERSION);openRequest.onupgradeneeded=function(){return setUpDatabase(openRequest)};openRequest.onsuccess=function(){var db=openRequest.result;var infoTx=db.transaction(INFO_STORE_NAME,"readwrite");var infoStore=infoTx.objectStore(INFO_STORE_NAME);var getInfoRequest=infoStore.get(path);var modelTx;getInfoRequest.onsuccess=function(){if(getInfoRequest.result==null){db.close();return reject(new Error("Cannot find model with path '"+path+"' in IndexedDB."))}else{var deleteInfoRequest=infoStore.delete(path);var deleteModelData_1=function(){modelTx=db.transaction(MODEL_STORE_NAME,"readwrite");var modelStore=modelTx.objectStore(MODEL_STORE_NAME);var deleteModelRequest=modelStore.delete(path);deleteModelRequest.onsuccess=function(){return resolve(getInfoRequest.result.modelArtifactsInfo)};deleteModelRequest.onerror=function(error){return reject(getInfoRequest.error)}};deleteInfoRequest.onsuccess=deleteModelData_1;deleteInfoRequest.onerror=function(error){deleteModelData_1();db.close();return reject(getInfoRequest.error)}}};getInfoRequest.onerror=function(error){db.close();return reject(getInfoRequest.error)};infoTx.oncomplete=function(){if(modelTx==null){db.close()}else{modelTx.oncomplete=function(){return db.close()}}}};openRequest.onerror=function(error){return reject(openRequest.error)}})]})})};return BrowserIndexedDBManager2}();var PATH_SEPARATOR="/";var PATH_PREFIX="tensorflowjs_models";var INFO_SUFFIX="info";var MODEL_TOPOLOGY_SUFFIX="model_topology";var WEIGHT_SPECS_SUFFIX="weight_specs";var WEIGHT_DATA_SUFFIX="weight_data";var MODEL_METADATA_SUFFIX="model_metadata";function getModelKeys(path){return{info:[PATH_PREFIX,path,INFO_SUFFIX].join(PATH_SEPARATOR),topology:[PATH_PREFIX,path,MODEL_TOPOLOGY_SUFFIX].join(PATH_SEPARATOR),weightSpecs:[PATH_PREFIX,path,WEIGHT_SPECS_SUFFIX].join(PATH_SEPARATOR),weightData:[PATH_PREFIX,path,WEIGHT_DATA_SUFFIX].join(PATH_SEPARATOR),modelMetadata:[PATH_PREFIX,path,MODEL_METADATA_SUFFIX].join(PATH_SEPARATOR)}}function getModelPathFromKey(key){var items=key.split(PATH_SEPARATOR);if(items.length<3){throw new Error("Invalid key format: "+key)}return items.slice(1,items.length-1).join(PATH_SEPARATOR)}function maybeStripScheme$1(key){return key.startsWith(BrowserLocalStorage.URL_SCHEME)?key.slice(BrowserLocalStorage.URL_SCHEME.length):key}var BrowserLocalStorage=function(){function BrowserLocalStorage2(modelPath){if(!env3().getBool("IS_BROWSER")||typeof window==="undefined"||typeof window.localStorage==="undefined"){throw new Error("The current environment does not support local storage.")}this.LS=window.localStorage;if(modelPath==null||!modelPath){throw new Error("For local storage, modelPath must not be null, undefined or empty.")}this.modelPath=modelPath;this.keys=getModelKeys(this.modelPath)}BrowserLocalStorage2.prototype.save=function(modelArtifacts){return __awaiter(this,void 0,void 0,function(){var topology,weightSpecs,modelArtifactsInfo;return __generator(this,function(_a){if(modelArtifacts.modelTopology instanceof ArrayBuffer){throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.")}else{topology=JSON.stringify(modelArtifacts.modelTopology);weightSpecs=JSON.stringify(modelArtifacts.weightSpecs);modelArtifactsInfo=getModelArtifactsInfoForJSON(modelArtifacts);try{this.LS.setItem(this.keys.info,JSON.stringify(modelArtifactsInfo));this.LS.setItem(this.keys.topology,topology);this.LS.setItem(this.keys.weightSpecs,weightSpecs);this.LS.setItem(this.keys.weightData,arrayBufferToBase64String(modelArtifacts.weightData));this.LS.setItem(this.keys.modelMetadata,JSON.stringify({format:modelArtifacts.format,generatedBy:modelArtifacts.generatedBy,convertedBy:modelArtifacts.convertedBy,userDefinedMetadata:modelArtifacts.userDefinedMetadata}));return[2,{modelArtifactsInfo}]}catch(err){this.LS.removeItem(this.keys.info);this.LS.removeItem(this.keys.topology);this.LS.removeItem(this.keys.weightSpecs);this.LS.removeItem(this.keys.weightData);this.LS.removeItem(this.keys.modelMetadata);throw new Error("Failed to save model '"+this.modelPath+"' to local storage: size quota being exceeded is a possible cause of this failure: "+("modelTopologyBytes="+modelArtifactsInfo.modelTopologyBytes+", ")+("weightSpecsBytes="+modelArtifactsInfo.weightSpecsBytes+", ")+("weightDataBytes="+modelArtifactsInfo.weightDataBytes+"."))}}return[2]})})};BrowserLocalStorage2.prototype.load=function(){return __awaiter(this,void 0,void 0,function(){var info,out,topology,weightSpecs,metadataString,metadata,weightDataBase64;return __generator(this,function(_a){info=JSON.parse(this.LS.getItem(this.keys.info));if(info==null){throw new Error("In local storage, there is no model with name '"+this.modelPath+"'")}if(info.modelTopologyType!=="JSON"){throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.")}out={};topology=JSON.parse(this.LS.getItem(this.keys.topology));if(topology==null){throw new Error("In local storage, the topology of model '"+this.modelPath+"' is missing.")}out.modelTopology=topology;weightSpecs=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(weightSpecs==null){throw new Error("In local storage, the weight specs of model '"+this.modelPath+"' are missing.")}out.weightSpecs=weightSpecs;metadataString=this.LS.getItem(this.keys.modelMetadata);if(metadataString!=null){metadata=JSON.parse(metadataString);out.format=metadata["format"];out.generatedBy=metadata["generatedBy"];out.convertedBy=metadata["convertedBy"];out.userDefinedMetadata=metadata["userDefinedMetadata"]}weightDataBase64=this.LS.getItem(this.keys.weightData);if(weightDataBase64==null){throw new Error("In local storage, the binary weight values of model "+("'"+this.modelPath+"' are missing."))}out.weightData=base64StringToArrayBuffer(weightDataBase64);return[2,out]})})};BrowserLocalStorage2.URL_SCHEME="localstorage://";return BrowserLocalStorage2}();var localStorageRouter=function(url){if(!env3().getBool("IS_BROWSER")){return null}else{if(!Array.isArray(url)&&url.startsWith(BrowserLocalStorage.URL_SCHEME)){return browserLocalStorage(url.slice(BrowserLocalStorage.URL_SCHEME.length))}else{return null}}};IORouterRegistry.registerSaveRouter(localStorageRouter);IORouterRegistry.registerLoadRouter(localStorageRouter);function browserLocalStorage(modelPath){return new BrowserLocalStorage(modelPath)}var BrowserLocalStorageManager=function(){function BrowserLocalStorageManager2(){assert(env3().getBool("IS_BROWSER"),function(){return"Current environment is not a web browser"});assert(typeof window==="undefined"||typeof window.localStorage!=="undefined",function(){return"Current browser does not appear to support localStorage"});this.LS=window.localStorage}BrowserLocalStorageManager2.prototype.listModels=function(){return __awaiter(this,void 0,void 0,function(){var out,prefix,suffix,i,key,modelPath;return __generator(this,function(_a){out={};prefix=PATH_PREFIX+PATH_SEPARATOR;suffix=PATH_SEPARATOR+INFO_SUFFIX;for(i=0;i<this.LS.length;++i){key=this.LS.key(i);if(key.startsWith(prefix)&&key.endsWith(suffix)){modelPath=getModelPathFromKey(key);out[modelPath]=JSON.parse(this.LS.getItem(key))}}return[2,out]})})};BrowserLocalStorageManager2.prototype.removeModel=function(path){return __awaiter(this,void 0,void 0,function(){var keys,info;return __generator(this,function(_a){path=maybeStripScheme$1(path);keys=getModelKeys(path);if(this.LS.getItem(keys.info)==null){throw new Error("Cannot find model at path '"+path+"'")}info=JSON.parse(this.LS.getItem(keys.info));this.LS.removeItem(keys.info);this.LS.removeItem(keys.topology);this.LS.removeItem(keys.weightSpecs);this.LS.removeItem(keys.weightData);return[2,info]})})};return BrowserLocalStorageManager2}();var URL_SCHEME_SUFFIX="://";var ModelStoreManagerRegistry=function(){function ModelStoreManagerRegistry2(){this.managers={}}ModelStoreManagerRegistry2.getInstance=function(){if(ModelStoreManagerRegistry2.instance==null){ModelStoreManagerRegistry2.instance=new ModelStoreManagerRegistry2}return ModelStoreManagerRegistry2.instance};ModelStoreManagerRegistry2.registerManager=function(scheme,manager){assert(scheme!=null,function(){return"scheme must not be undefined or null."});if(scheme.endsWith(URL_SCHEME_SUFFIX)){scheme=scheme.slice(0,scheme.indexOf(URL_SCHEME_SUFFIX))}assert(scheme.length>0,function(){return"scheme must not be an empty string."});var registry=ModelStoreManagerRegistry2.getInstance();assert(registry.managers[scheme]==null,function(){return"A model store manager is already registered for scheme '"+scheme+"'."});registry.managers[scheme]=manager};ModelStoreManagerRegistry2.getManager=function(scheme){var manager=this.getInstance().managers[scheme];if(manager==null){throw new Error("Cannot find model manager for scheme '"+scheme+"'")}return manager};ModelStoreManagerRegistry2.getSchemes=function(){return Object.keys(this.getInstance().managers)};return ModelStoreManagerRegistry2}();function parseURL(url){if(url.indexOf(URL_SCHEME_SUFFIX)===-1){throw new Error("The url string provided does not contain a scheme. Supported schemes are: "+(""+ModelStoreManagerRegistry.getSchemes().join(",")))}return{scheme:url.split(URL_SCHEME_SUFFIX)[0],path:url.split(URL_SCHEME_SUFFIX)[1]}}function cloneModelInternal(sourceURL,destURL,deleteSource){if(deleteSource===void 0){deleteSource=false}return __awaiter(this,void 0,void 0,function(){var loadHandlers,loadHandler,saveHandlers,saveHandler,sourceScheme,sourcePath,sameMedium,modelArtifacts,saveResult;return __generator(this,function(_a){switch(_a.label){case 0:assert(sourceURL!==destURL,function(){return"Old path and new path are the same: '"+sourceURL+"'"});loadHandlers=IORouterRegistry.getLoadHandlers(sourceURL);assert(loadHandlers.length>0,function(){return"Copying failed because no load handler is found for source URL "+sourceURL+"."});assert(loadHandlers.length<2,function(){return"Copying failed because more than one ("+loadHandlers.length+") "+("load handlers for source URL "+sourceURL+".")});loadHandler=loadHandlers[0];saveHandlers=IORouterRegistry.getSaveHandlers(destURL);assert(saveHandlers.length>0,function(){return"Copying failed because no save handler is found for destination "+("URL "+destURL+".")});assert(saveHandlers.length<2,function(){return"Copying failed because more than one ("+loadHandlers.length+") "+("save handlers for destination URL "+destURL+".")});saveHandler=saveHandlers[0];sourceScheme=parseURL(sourceURL).scheme;sourcePath=parseURL(sourceURL).path;sameMedium=sourceScheme===parseURL(sourceURL).scheme;return[4,loadHandler.load()];case 1:modelArtifacts=_a.sent();if(!(deleteSource&&sameMedium))return[3,3];return[4,ModelStoreManagerRegistry.getManager(sourceScheme).removeModel(sourcePath)];case 2:_a.sent();_a.label=3;case 3:return[4,saveHandler.save(modelArtifacts)];case 4:saveResult=_a.sent();if(!(deleteSource&&!sameMedium))return[3,6];return[4,ModelStoreManagerRegistry.getManager(sourceScheme).removeModel(sourcePath)];case 5:_a.sent();_a.label=6;case 6:return[2,saveResult.modelArtifactsInfo]}})})}function listModels(){return __awaiter(this,void 0,void 0,function(){var schemes,out,_i2,schemes_1,scheme,schemeOut,path,url;return __generator(this,function(_a){switch(_a.label){case 0:schemes=ModelStoreManagerRegistry.getSchemes();out={};_i2=0,schemes_1=schemes;_a.label=1;case 1:if(!(_i2<schemes_1.length))return[3,4];scheme=schemes_1[_i2];return[4,ModelStoreManagerRegistry.getManager(scheme).listModels()];case 2:schemeOut=_a.sent();for(path in schemeOut){url=scheme+URL_SCHEME_SUFFIX+path;out[url]=schemeOut[path]}_a.label=3;case 3:_i2++;return[3,1];case 4:return[2,out]}})})}function removeModel(url){return __awaiter(this,void 0,void 0,function(){var schemeAndPath,manager;return __generator(this,function(_a){schemeAndPath=parseURL(url);manager=ModelStoreManagerRegistry.getManager(schemeAndPath.scheme);return[2,manager.removeModel(schemeAndPath.path)]})})}function copyModel(sourceURL,destURL){return __awaiter(this,void 0,void 0,function(){var deleteSource;return __generator(this,function(_a){deleteSource=false;return[2,cloneModelInternal(sourceURL,destURL,deleteSource)]})})}function moveModel(sourceURL,destURL){return __awaiter(this,void 0,void 0,function(){var deleteSource;return __generator(this,function(_a){deleteSource=true;return[2,cloneModelInternal(sourceURL,destURL,deleteSource)]})})}var PlatformBrowser=function(){function PlatformBrowser2(){}PlatformBrowser2.prototype.fetch=function(path,init2){return fetch(path,init2)};PlatformBrowser2.prototype.now=function(){return performance.now()};PlatformBrowser2.prototype.encode=function(text,encoding){if(encoding!=="utf-8"&&encoding!=="utf8"){throw new Error("Browser's encoder only supports utf-8, but got "+encoding)}if(this.textEncoder==null){this.textEncoder=new TextEncoder}return this.textEncoder.encode(text)};PlatformBrowser2.prototype.decode=function(bytes,encoding){return new TextDecoder(encoding).decode(bytes)};return PlatformBrowser2}();if(env3().get("IS_BROWSER")){env3().setPlatform("browser",new PlatformBrowser);try{ModelStoreManagerRegistry.registerManager(BrowserLocalStorage.URL_SCHEME,new BrowserLocalStorageManager)}catch(err){}try{ModelStoreManagerRegistry.registerManager(BrowserIndexedDB.URL_SCHEME,new BrowserIndexedDBManager)}catch(err){}}var getNodeFetch={importFetch:function(){return require_lib()}};var systemFetch;var PlatformNode=function(){function PlatformNode2(){this.util=require("util");this.textEncoder=new this.util.TextEncoder}PlatformNode2.prototype.fetch=function(path,requestInits){if(env3().global.fetch!=null){return env3().global.fetch(path,requestInits)}if(systemFetch==null){systemFetch=getNodeFetch.importFetch()}return systemFetch(path,requestInits)};PlatformNode2.prototype.now=function(){var time2=process.hrtime();return time2[0]*1e3+time2[1]/1e6};PlatformNode2.prototype.encode=function(text,encoding){if(encoding!=="utf-8"&&encoding!=="utf8"){throw new Error("Node built-in encoder only supports utf-8, but got "+encoding)}return this.textEncoder.encode(text)};PlatformNode2.prototype.decode=function(bytes,encoding){if(bytes.length===0){return""}return new this.util.TextDecoder(encoding).decode(bytes)};return PlatformNode2}();if(env3().get("IS_NODE")){env3().setPlatform("node",new PlatformNode)}function buffer2(shape,dtype,values){if(dtype===void 0){dtype="float32"}dtype=dtype||"float32";assertNonNegativeIntegerDimensions(shape);return new TensorBuffer(shape,dtype,values)}function cast_(x,dtype){var $x=convertToTensor(x,"x","cast");if(!isValidDtype(dtype)){throw new Error("Failed to cast to unknown dtype "+dtype)}if(dtype==="string"&&$x.dtype!=="string"||dtype!=="string"&&$x.dtype==="string"){throw new Error("Only strings can be casted to strings")}var inputs={x:$x};var attrs={dtype};return ENGINE.runKernelFunc(function(backend2){return backend2.cast($x,dtype)},inputs,null,Cast5,attrs)}var cast2=op({cast_});function clone_(x){var $x=convertToTensor(x,"x","clone",null);var forward=function(){return ENGINE.makeTensorFromDataId($x.dataId,$x.shape,$x.dtype)};var inputs={x:$x};return ENGINE.runKernelFunc(forward,inputs,null,Identity5)}var clone=op({clone_});function print2(x,verbose){if(verbose===void 0){verbose=false}console.log(x.toString(verbose))}getOrMakeEngine();var opHandler$1={buffer:buffer2,cast:cast2,clone,print:print2};setOpHandler(opHandler$1);var DEFAULT_FILE_NAME_PREFIX="model";var DEFAULT_JSON_EXTENSION_NAME=".json";var DEFAULT_WEIGHT_DATA_EXTENSION_NAME=".weights.bin";function defer(f){return new Promise(function(resolve){return setTimeout(resolve)}).then(f)}var BrowserDownloads=function(){function BrowserDownloads2(fileNamePrefix){if(!env3().getBool("IS_BROWSER")){throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.")}if(fileNamePrefix.startsWith(BrowserDownloads2.URL_SCHEME)){fileNamePrefix=fileNamePrefix.slice(BrowserDownloads2.URL_SCHEME.length)}if(fileNamePrefix==null||fileNamePrefix.length===0){fileNamePrefix=DEFAULT_FILE_NAME_PREFIX}this.modelTopologyFileName=fileNamePrefix+DEFAULT_JSON_EXTENSION_NAME;this.weightDataFileName=fileNamePrefix+DEFAULT_WEIGHT_DATA_EXTENSION_NAME}BrowserDownloads2.prototype.save=function(modelArtifacts){return __awaiter(this,void 0,void 0,function(){var weightsURL,weightsManifest,modelTopologyAndWeightManifest,modelTopologyAndWeightManifestURL,jsonAnchor_1,weightDataAnchor_1;return __generator(this,function(_a){switch(_a.label){case 0:if(typeof document==="undefined"){throw new Error("Browser downloads are not supported in this environment since `document` is not present")}weightsURL=window.URL.createObjectURL(new Blob([modelArtifacts.weightData],{type:"application/octet-stream"}));if(!(modelArtifacts.modelTopology instanceof ArrayBuffer))return[3,1];throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");case 1:weightsManifest=[{paths:["./"+this.weightDataFileName],weights:modelArtifacts.weightSpecs}];modelTopologyAndWeightManifest={modelTopology:modelArtifacts.modelTopology,format:modelArtifacts.format,generatedBy:modelArtifacts.generatedBy,convertedBy:modelArtifacts.convertedBy,weightsManifest};modelTopologyAndWeightManifestURL=window.URL.createObjectURL(new Blob([JSON.stringify(modelTopologyAndWeightManifest)],{type:"application/json"}));jsonAnchor_1=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;jsonAnchor_1.download=this.modelTopologyFileName;jsonAnchor_1.href=modelTopologyAndWeightManifestURL;return[4,defer(function(){return jsonAnchor_1.dispatchEvent(new MouseEvent("click"))})];case 2:_a.sent();if(!(modelArtifacts.weightData!=null))return[3,4];weightDataAnchor_1=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;weightDataAnchor_1.download=this.weightDataFileName;weightDataAnchor_1.href=weightsURL;return[4,defer(function(){return weightDataAnchor_1.dispatchEvent(new MouseEvent("click"))})];case 3:_a.sent();_a.label=4;case 4:return[2,{modelArtifactsInfo:getModelArtifactsInfoForJSON(modelArtifacts)}]}})})};BrowserDownloads2.URL_SCHEME="downloads://";return BrowserDownloads2}();var BrowserFiles=function(){function BrowserFiles2(files){if(files==null||files.length<1){throw new Error("When calling browserFiles, at least 1 file is required, "+("but received "+files))}this.files=files}BrowserFiles2.prototype.load=function(){return __awaiter(this,void 0,void 0,function(){var jsonFile,weightFiles;var _this=this;return __generator(this,function(_a){jsonFile=this.files[0];weightFiles=this.files.slice(1);return[2,new Promise(function(resolve,reject){var jsonReader=new FileReader;jsonReader.onload=function(event){var modelJSON=JSON.parse(event.target.result);var modelTopology=modelJSON.modelTopology;if(modelTopology==null){reject(new Error("modelTopology field is missing from file "+jsonFile.name));return}if(weightFiles.length===0){resolve({modelTopology})}var weightsManifest=modelJSON.weightsManifest;if(weightsManifest==null){reject(new Error("weightManifest field is missing from file "+jsonFile.name));return}var pathToFile;try{pathToFile=_this.checkManifestAndWeightFiles(weightsManifest,weightFiles)}catch(err){reject(err);return}var weightSpecs=[];var paths=[];var perFileBuffers=[];weightsManifest.forEach(function(weightsGroup){weightsGroup.paths.forEach(function(path){paths.push(path);perFileBuffers.push(null)});weightSpecs.push.apply(weightSpecs,weightsGroup.weights)});weightsManifest.forEach(function(weightsGroup){weightsGroup.paths.forEach(function(path){var weightFileReader=new FileReader;weightFileReader.onload=function(event2){var weightData=event2.target.result;var index=paths.indexOf(path);perFileBuffers[index]=weightData;if(perFileBuffers.indexOf(null)===-1){resolve({modelTopology,weightSpecs,weightData:concatenateArrayBuffers(perFileBuffers),format:modelJSON.format,generatedBy:modelJSON.generatedBy,convertedBy:modelJSON.convertedBy,userDefinedMetadata:modelJSON.userDefinedMetadata})}};weightFileReader.onerror=function(error){return reject("Failed to weights data from file of path '"+path+"'.")};weightFileReader.readAsArrayBuffer(pathToFile[path])})})};jsonReader.onerror=function(error){return reject("Failed to read model topology and weights manifest JSON "+("from file '"+jsonFile.name+"'. BrowserFiles supports loading ")+"Keras-style tf.Model artifacts only.")};jsonReader.readAsText(jsonFile)})]})})};BrowserFiles2.prototype.checkManifestAndWeightFiles=function(manifest,files){var basenames=[];var fileNames=files.map(function(file){return basename(file.name)});var pathToFile={};for(var _i2=0,manifest_1=manifest;_i2<manifest_1.length;_i2++){var group=manifest_1[_i2];group.paths.forEach(function(path){var pathBasename=basename(path);if(basenames.indexOf(pathBasename)!==-1){throw new Error("Duplicate file basename found in weights manifest: "+("'"+pathBasename+"'"))}basenames.push(pathBasename);if(fileNames.indexOf(pathBasename)===-1){throw new Error("Weight file with basename '"+pathBasename+"' is not provided.")}else{pathToFile[path]=files[fileNames.indexOf(pathBasename)]}})}if(basenames.length!==files.length){throw new Error("Mismatch in the number of files in weights manifest "+("("+basenames.length+") and the number of weight files provided ")+("("+files.length+")."))}return pathToFile};return BrowserFiles2}();var browserDownloadsRouter=function(url){if(!env3().getBool("IS_BROWSER")){return null}else{if(!Array.isArray(url)&&url.startsWith(BrowserDownloads.URL_SCHEME)){return browserDownloads(url.slice(BrowserDownloads.URL_SCHEME.length))}else{return null}}};IORouterRegistry.registerSaveRouter(browserDownloadsRouter);function browserDownloads(fileNamePrefix){if(fileNamePrefix===void 0){fileNamePrefix="model"}return new BrowserDownloads(fileNamePrefix)}function browserFiles(files){return new BrowserFiles(files)}function monitorPromisesProgress(promises,onProgress,startFraction,endFraction){checkPromises(promises);startFraction=startFraction==null?0:startFraction;endFraction=endFraction==null?1:endFraction;checkFraction(startFraction,endFraction);var resolvedPromise=0;var registerMonitor=function(promise){promise.then(function(value){var fraction=startFraction+ ++resolvedPromise/promises.length*(endFraction-startFraction);onProgress(fraction);return value});return promise};function checkPromises(promises2){assert(promises2!=null&&Array.isArray(promises2)&&promises2.length>0,function(){return"promises must be a none empty array"})}function checkFraction(startFraction2,endFraction2){assert(startFraction2>=0&&startFraction2<=1,function(){return"Progress fraction must be in range [0, 1], but "+("got startFraction "+startFraction2)});assert(endFraction2>=0&&endFraction2<=1,function(){return"Progress fraction must be in range [0, 1], but "+("got endFraction "+endFraction2)});assert(endFraction2>=startFraction2,function(){return"startFraction must be no more than endFraction, but "+("got startFraction "+startFraction2+" and endFraction ")+(""+endFraction2)})}return Promise.all(promises.map(registerMonitor))}function loadWeightsAsArrayBuffer(fetchURLs,loadOptions){return __awaiter(this,void 0,void 0,function(){var fetchFunc,requests,fetchStartFraction,fetchEndFraction,responses,_a,bufferPromises,bufferStartFraction,bufferEndFraction,buffers,_b;return __generator(this,function(_c){switch(_c.label){case 0:if(loadOptions==null){loadOptions={}}fetchFunc=loadOptions.fetchFunc==null?env3().platform.fetch:loadOptions.fetchFunc;requests=fetchURLs.map(function(fetchURL){return fetchFunc(fetchURL,loadOptions.requestInit,{isBinary:true})});fetchStartFraction=0;fetchEndFraction=.5;if(!(loadOptions.onProgress==null))return[3,2];return[4,Promise.all(requests)];case 1:_a=_c.sent();return[3,4];case 2:return[4,monitorPromisesProgress(requests,loadOptions.onProgress,fetchStartFraction,fetchEndFraction)];case 3:_a=_c.sent();_c.label=4;case 4:responses=_a;bufferPromises=responses.map(function(response){return response.arrayBuffer()});bufferStartFraction=.5;bufferEndFraction=1;if(!(loadOptions.onProgress==null))return[3,6];return[4,Promise.all(bufferPromises)];case 5:_b=_c.sent();return[3,8];case 6:return[4,monitorPromisesProgress(bufferPromises,loadOptions.onProgress,bufferStartFraction,bufferEndFraction)];case 7:_b=_c.sent();_c.label=8;case 8:buffers=_b;return[2,buffers]}})})}function loadWeights(manifest,filePathPrefix,weightNames,requestInit){if(filePathPrefix===void 0){filePathPrefix=""}return __awaiter(this,void 0,void 0,function(){var fetchWeights,loadWeights2;return __generator(this,function(_a){fetchWeights=function(fetchUrls){return loadWeightsAsArrayBuffer(fetchUrls,{requestInit})};loadWeights2=weightsLoaderFactory(fetchWeights);return[2,loadWeights2(manifest,filePathPrefix,weightNames)]})})}function weightsLoaderFactory(fetchWeightsFunction){var _this=this;return function(manifest,filePathPrefix,weightNames){if(filePathPrefix===void 0){filePathPrefix=""}return __awaiter(_this,void 0,void 0,function(){var groupIndicesToFetchMap,groupWeightsToFetch,weightsFound,allManifestWeightNames,weightsNotFound,groupIndicesToFetch,fetchUrls,buffers,weightsTensorMap,bufferIndexOffset;return __generator(this,function(_a){switch(_a.label){case 0:groupIndicesToFetchMap=manifest.map(function(){return false});groupWeightsToFetch={};weightsFound=weightNames!=null?weightNames.map(function(){return false}):[];allManifestWeightNames=[];manifest.forEach(function(manifestGroupConfig,groupIndex){var groupOffset=0;manifestGroupConfig.weights.forEach(function(weightsEntry){var rawDtype="quantization"in weightsEntry?weightsEntry.quantization.dtype:weightsEntry.dtype;var weightsBytes=DTYPE_VALUE_SIZE_MAP[rawDtype]*sizeFromShape(weightsEntry.shape);var enqueueWeightsForFetchingFn=function(){groupIndicesToFetchMap[groupIndex]=true;if(groupWeightsToFetch[groupIndex]==null){groupWeightsToFetch[groupIndex]=[]}groupWeightsToFetch[groupIndex].push({manifestEntry:weightsEntry,groupOffset,sizeBytes:weightsBytes})};if(weightNames!=null){weightNames.forEach(function(weightName,weightIndex){if(weightName===weightsEntry.name){enqueueWeightsForFetchingFn();weightsFound[weightIndex]=true}})}else{enqueueWeightsForFetchingFn()}allManifestWeightNames.push(weightsEntry.name);groupOffset+=weightsBytes})});if(!weightsFound.every(function(found){return found})){weightsNotFound=weightNames.filter(function(_,i){return!weightsFound[i]});throw new Error("Could not find weights in manifest with names: "+(weightsNotFound.join(", ")+". \n")+"Manifest JSON has weights with names: "+(allManifestWeightNames.join(", ")+"."))}groupIndicesToFetch=groupIndicesToFetchMap.reduce(function(accumulator,shouldFetch,i){if(shouldFetch){accumulator.push(i)}return accumulator},[]);fetchUrls=[];groupIndicesToFetch.forEach(function(i){manifest[i].paths.forEach(function(filepath){var fetchUrl=filePathPrefix+(!filePathPrefix.endsWith("/")?"/":"")+filepath;fetchUrls.push(fetchUrl)})});return[4,fetchWeightsFunction(fetchUrls)];case 1:buffers=_a.sent();weightsTensorMap={};bufferIndexOffset=0;groupIndicesToFetch.forEach(function(i){var numBuffers=manifest[i].paths.length;var groupBytes=0;for(var i_1=0;i_1<numBuffers;i_1++){groupBytes+=buffers[bufferIndexOffset+i_1].byteLength}var groupBuffer=new ArrayBuffer(groupBytes);var groupByteBuffer=new Uint8Array(groupBuffer);var groupBufferOffset=0;for(var i_2=0;i_2<numBuffers;i_2++){var buffer3=new Uint8Array(buffers[bufferIndexOffset+i_2]);groupByteBuffer.set(buffer3,groupBufferOffset);groupBufferOffset+=buffer3.byteLength}var weightsEntries=groupWeightsToFetch[i];weightsEntries.forEach(function(weightsEntry){var byteBuffer=groupBuffer.slice(weightsEntry.groupOffset,weightsEntry.groupOffset+weightsEntry.sizeBytes);var nameToTensorMap=decodeWeights(byteBuffer,[weightsEntry.manifestEntry]);for(var name_1 in nameToTensorMap){weightsTensorMap[name_1]=nameToTensorMap[name_1]}});bufferIndexOffset+=numBuffers});return[2,weightsTensorMap]}})})}}var OCTET_STREAM_MIME_TYPE="application/octet-stream";var JSON_TYPE="application/json";var HTTPRequest=function(){function HTTPRequest2(path,loadOptions){this.DEFAULT_METHOD="POST";if(loadOptions==null){loadOptions={}}this.weightPathPrefix=loadOptions.weightPathPrefix;this.onProgress=loadOptions.onProgress;this.weightUrlConverter=loadOptions.weightUrlConverter;if(loadOptions.fetchFunc!=null){assert(typeof loadOptions.fetchFunc==="function",function(){return"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"});this.fetch=loadOptions.fetchFunc}else{this.fetch=env3().platform.fetch}assert(path!=null&&path.length>0,function(){return"URL path for http must not be null, undefined or empty."});if(Array.isArray(path)){assert(path.length===2,function(){return"URL paths for http must have a length of 2, "+("(actual length is "+path.length+").")})}this.path=path;if(loadOptions.requestInit!=null&&loadOptions.requestInit.body!=null){throw new Error("requestInit is expected to have no pre-existing body, but has one.")}this.requestInit=loadOptions.requestInit||{}}HTTPRequest2.prototype.save=function(modelArtifacts){return __awaiter(this,void 0,void 0,function(){var init2,weightsManifest,modelTopologyAndWeightManifest,response;return __generator(this,function(_a){switch(_a.label){case 0:if(modelArtifacts.modelTopology instanceof ArrayBuffer){throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.")}init2=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);init2.body=new FormData;weightsManifest=[{paths:["./model.weights.bin"],weights:modelArtifacts.weightSpecs}];modelTopologyAndWeightManifest={modelTopology:modelArtifacts.modelTopology,format:modelArtifacts.format,generatedBy:modelArtifacts.generatedBy,convertedBy:modelArtifacts.convertedBy,userDefinedMetadata:modelArtifacts.userDefinedMetadata,weightsManifest};init2.body.append("model.json",new Blob([JSON.stringify(modelTopologyAndWeightManifest)],{type:JSON_TYPE}),"model.json");if(modelArtifacts.weightData!=null){init2.body.append("model.weights.bin",new Blob([modelArtifacts.weightData],{type:OCTET_STREAM_MIME_TYPE}),"model.weights.bin")}return[4,this.fetch(this.path,init2)];case 1:response=_a.sent();if(response.ok){return[2,{modelArtifactsInfo:getModelArtifactsInfoForJSON(modelArtifacts),responses:[response]}]}else{throw new Error("BrowserHTTPRequest.save() failed due to HTTP response status "+(response.status+"."))}}})})};HTTPRequest2.prototype.load=function(){return __awaiter(this,void 0,void 0,function(){var modelConfigRequest,modelConfig,e_1,message,modelTopology,weightsManifest,generatedBy,convertedBy,format,userDefinedMetadata,weightSpecs,weightData,results,artifacts,initializer;return __generator(this,function(_a){switch(_a.label){case 0:return[4,this.fetch(this.path,this.requestInit)];case 1:modelConfigRequest=_a.sent();if(!modelConfigRequest.ok){throw new Error("Request to "+this.path+" failed with status code "+(modelConfigRequest.status+". Please verify this URL points to ")+"the model JSON of the model to load.")}_a.label=2;case 2:_a.trys.push([2,4,,5]);return[4,modelConfigRequest.json()];case 3:modelConfig=_a.sent();return[3,5];case 4:e_1=_a.sent();message="Failed to parse model JSON of response from "+this.path+".";if(this.path.endsWith(".pb")){message+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository."}else{message+=" Please make sure the server is serving valid JSON for this request."}throw new Error(message);case 5:modelTopology=modelConfig.modelTopology;weightsManifest=modelConfig.weightsManifest;generatedBy=modelConfig.generatedBy;convertedBy=modelConfig.convertedBy;format=modelConfig.format;userDefinedMetadata=modelConfig.userDefinedMetadata;if(modelTopology==null&&weightsManifest==null){throw new Error("The JSON from HTTP path "+this.path+" contains neither model topology or manifest for weights.")}if(!(weightsManifest!=null))return[3,7];return[4,this.loadWeights(weightsManifest)];case 6:results=_a.sent();weightSpecs=results[0],weightData=results[1];_a.label=7;case 7:artifacts={modelTopology,weightSpecs,weightData,userDefinedMetadata,generatedBy,convertedBy,format};initializer=modelConfig.modelInitializer;if(initializer){artifacts.modelInitializer=initializer}return[2,artifacts]}})})};HTTPRequest2.prototype.loadWeights=function(weightsManifest){return __awaiter(this,void 0,void 0,function(){var weightPath,_a,prefix,suffix,pathPrefix,weightSpecs,_i2,weightsManifest_1,entry,fetchURLs,urlPromises,_b,weightsManifest_2,weightsGroup,_c,_d,path,_e,_f,_g,buffers;return __generator(this,function(_h){switch(_h.label){case 0:weightPath=Array.isArray(this.path)?this.path[1]:this.path;_a=parseUrl(weightPath),prefix=_a[0],suffix=_a[1];pathPrefix=this.weightPathPrefix||prefix;weightSpecs=[];for(_i2=0,weightsManifest_1=weightsManifest;_i2<weightsManifest_1.length;_i2++){entry=weightsManifest_1[_i2];weightSpecs.push.apply(weightSpecs,entry.weights)}fetchURLs=[];urlPromises=[];for(_b=0,weightsManifest_2=weightsManifest;_b<weightsManifest_2.length;_b++){weightsGroup=weightsManifest_2[_b];for(_c=0,_d=weightsGroup.paths;_c<_d.length;_c++){path=_d[_c];if(this.weightUrlConverter!=null){urlPromises.push(this.weightUrlConverter(path))}else{fetchURLs.push(pathPrefix+path+suffix)}}}if(!this.weightUrlConverter)return[3,2];_f=(_e=fetchURLs.push).apply;_g=[fetchURLs];return[4,Promise.all(urlPromises)];case 1:_f.apply(_e,_g.concat([_h.sent()]));_h.label=2;case 2:return[4,loadWeightsAsArrayBuffer(fetchURLs,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress})];case 3:buffers=_h.sent();return[2,[weightSpecs,concatenateArrayBuffers(buffers)]]}})})};HTTPRequest2.URL_SCHEME_REGEX=/^https?:\/\//;return HTTPRequest2}();function parseUrl(url){var lastSlash=url.lastIndexOf("/");var lastSearchParam=url.lastIndexOf("?");var prefix=url.substring(0,lastSlash);var suffix=lastSearchParam>lastSlash?url.substring(lastSearchParam):"";return[prefix+"/",suffix]}function isHTTPScheme(url){return url.match(HTTPRequest.URL_SCHEME_REGEX)!=null}var httpRouter=function(url,loadOptions){if(typeof fetch==="undefined"&&(loadOptions==null||loadOptions.fetchFunc==null)){return null}else{var isHTTP=true;if(Array.isArray(url)){isHTTP=url.every(function(urlItem){return isHTTPScheme(urlItem)})}else{isHTTP=isHTTPScheme(url)}if(isHTTP){return http(url,loadOptions)}}return null};IORouterRegistry.registerSaveRouter(httpRouter);IORouterRegistry.registerLoadRouter(httpRouter);function http(path,loadOptions){return new HTTPRequest(path,loadOptions)}function browserHTTPRequest(path,loadOptions){return http(path,loadOptions)}var PassthroughLoader=function(){function PassthroughLoader2(modelArtifacts){this.modelArtifacts=modelArtifacts}PassthroughLoader2.prototype.load=function(){return __awaiter(this,void 0,void 0,function(){return __generator(this,function(_a){return[2,this.modelArtifacts]})})};return PassthroughLoader2}();var PassthroughSaver=function(){function PassthroughSaver2(saveHandler){this.saveHandler=saveHandler}PassthroughSaver2.prototype.save=function(modelArtifacts){return __awaiter(this,void 0,void 0,function(){return __generator(this,function(_a){return[2,this.saveHandler(modelArtifacts)]})})};return PassthroughSaver2}();function fromMemory(modelArtifacts,weightSpecs,weightData,trainingConfig){if(arguments.length===1){var isModelArtifacts=modelArtifacts.modelTopology!=null||modelArtifacts.weightSpecs!=null;if(isModelArtifacts){return new PassthroughLoader(modelArtifacts)}else{console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release.");return new PassthroughLoader({modelTopology:modelArtifacts})}}else{console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release.");return new PassthroughLoader({modelTopology:modelArtifacts,weightSpecs,weightData,trainingConfig})}}function withSaveHandler(saveHandler){return new PassthroughSaver(saveHandler)}var io={__proto__:null,browserFiles,browserHTTPRequest,concatenateArrayBuffers,decodeWeights,encodeWeights,fromMemory,getLoadHandlers,getModelArtifactsInfoForJSON,getSaveHandlers,http,isHTTPScheme,loadWeights,registerLoadRouter,registerSaveRouter,weightsLoaderFactory,withSaveHandler,copyModel,listModels,moveModel,removeModel};function reshape_(x,shape){var $x=convertToTensor(x,"x","reshape",null);var inputs={x:$x};var attrs={shape};var forward=function(backend2,save){shape=inferFromImplicitShape(shape,$x.size);assert($x.size===sizeFromShape(shape),function(){return"new shape and old shape must have the same number of elements."});save([$x]);return backend2.reshape($x,shape)};return ENGINE.runKernelFunc(forward,inputs,null,Reshape6,attrs)}var reshape2=op({reshape_});function matMul_(a,b,transposeA,transposeB){var _a;if(transposeA===void 0){transposeA=false}if(transposeB===void 0){transposeB=false}var $a=convertToTensor(a,"a","matMul");var $b=convertToTensor(b,"b","matMul");_a=makeTypesMatch($a,$b),$a=_a[0],$b=_a[1];var forward=function(backend2,save){save([$a,$b]);var innerShapeA=transposeA?$a.shape[$a.rank-2]:$a.shape[$a.rank-1];var innerShapeB=transposeB?$b.shape[$b.rank-1]:$b.shape[$b.rank-2];var outerShapeA=transposeA?$a.shape[$a.rank-1]:$a.shape[$a.rank-2];var outerShapeB=transposeB?$b.shape[$b.rank-2]:$b.shape[$b.rank-1];var outerDimsA=$a.shape.slice(0,-2);var outerDimsB=$b.shape.slice(0,-2);var batchDimA=sizeFromShape(outerDimsA);var batchDimB=sizeFromShape(outerDimsB);var batchDimsCompatible=batchDimA===batchDimB||batchDimA===1||batchDimB===1;assert($a.rank>=2&&$b.rank>=2&&batchDimsCompatible,function(){return"Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input "+("batch dimensions of ("+outerDimsA+") and ("+outerDimsB+").")});assert(innerShapeA===innerShapeB,function(){return"Error in matMul: inner shapes ("+innerShapeA+") and ("+(innerShapeB+") of Tensors with shapes "+$a.shape+" and ")+($b.shape+" and transposeA="+transposeA)+(" and transposeB="+transposeB+" must match.")});var outShapeOuterDims=batchDimA>batchDimB?outerDimsA:outerDimsB;var outShape=outShapeOuterDims.concat([outerShapeA,outerShapeB]);var a3D=transposeA?reshape2($a,[batchDimA,innerShapeA,outerShapeA]):reshape2($a,[batchDimA,outerShapeA,innerShapeA]);var b3D=transposeB?reshape2($b,[batchDimB,outerShapeB,innerShapeB]):reshape2($b,[batchDimB,innerShapeB,outerShapeB]);var res3d=backend2.batchMatMul(a3D,b3D,transposeA,transposeB);return reshape2(res3d,outShape)};var inputs={a:$a,b:$b};var attrs={transposeA,transposeB};return ENGINE.runKernelFunc(forward,inputs,null,BatchMatMul3,attrs)}var matMul=op({matMul_});function oneHot_(indices,depth,onValue,offValue){if(onValue===void 0){onValue=1}if(offValue===void 0){offValue=0}if(depth<2){throw new Error("Error in oneHot: depth must be >=2, but it is "+depth)}var $indices=convertToTensor(indices,"indices","oneHot","int32");var outShape=$indices.shape.concat([depth]);var forward=function(backend2,save){save([$indices]);return reshape2(backend2.oneHot(reshape2($indices,[$indices.size]),depth,onValue,offValue),outShape)};var inputs={indices:$indices};var attrs={depth,onValue,offValue};return ENGINE.runKernelFunc(forward,inputs,null,OneHot3,attrs)}var oneHot2=op({oneHot_});function transpose_(x,perm){var $x=convertToTensor(x,"x","transpose");if(perm==null){perm=$x.shape.map(function(s,i){return i}).reverse()}assert($x.rank===perm.length,function(){return"Error in transpose: rank of input "+$x.rank+" "+("must match length of perm "+perm+".")});perm.forEach(function(axis){assert(axis>=0&&axis<$x.rank,function(){return"All entries in 'perm' must be between 0 and "+($x.rank-1)+(" but got "+perm)})});if($x.rank<=1){return $x.clone()}var inputs={x:$x};var attrs={perm};return ENGINE.runKernelFunc(function(backend2){return backend2.transpose($x,perm)},inputs,null,Transpose5,attrs)}var transpose2=op({transpose_});function confusionMatrix_(labels,predictions,numClasses){var $labels=convertToTensor(labels,"labels","confusionMatrix");var $predictions=convertToTensor(predictions,"predictions","confusionMatrix");assert(numClasses==null||numClasses>0&&Number.isInteger(numClasses),function(){return"If provided, numClasses must be a positive integer, "+("but got "+numClasses)});assert($labels.rank===1,function(){return"Expected the rank of labels to be 1, but got "+$labels.rank});assert($predictions.rank===1,function(){return"Expected the rank of predictions to be 1, "+("but got "+$predictions.rank)});assert($labels.shape[0]===$predictions.shape[0],function(){return"Mismatch in the number of examples: "+($labels.shape[0]+" vs. "+$predictions.shape[0]+". ")+"Labels and predictions should have the same number of elements."});assert(numClasses>0&&Number.isInteger(numClasses),function(){return"numClasses is required to be a positive integer, but got "+(""+numClasses)});var oneHotLabels=oneHot2(cast2($labels,"int32"),numClasses);var oneHotPredictions=oneHot2(cast2($predictions,"int32"),numClasses);var oneHotLabelsT=transpose2(oneHotLabels);var product=matMul(oneHotLabelsT,oneHotPredictions);return cast2(product,"int32")}var confusionMatrix=op({confusionMatrix_});var math={__proto__:null,confusionMatrix};function tensor3d(values,shape,dtype){assertNonNull(values);if(shape!=null&&shape.length!==3){throw new Error("tensor3d() requires shape to have three numbers")}var inferredShape=inferShape(values,dtype);if(inferredShape.length!==3&&inferredShape.length!==1){throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray")}if(inferredShape.length===1&&shape==null){throw new Error("tensor3d() requires shape to be provided when `values` are a flat array")}return makeTensor(values,shape,inferredShape,dtype)}var fromPixels2DContext;function fromPixels_(pixels,numChannels){if(numChannels===void 0){numChannels=3}if(numChannels>4){throw new Error("Cannot construct Tensor with more than 4 channels from pixels.")}if(pixels==null){throw new Error("pixels passed to tf.browser.fromPixels() can not be null")}var isPixelData=false;var isImageData=false;var isVideo=false;var isImage=false;var isCanvasLike=false;if(pixels.data instanceof Uint8Array){isPixelData=true}else if(typeof ImageData!=="undefined"&&pixels instanceof ImageData){isImageData=true}else if(typeof HTMLVideoElement!=="undefined"&&pixels instanceof HTMLVideoElement){isVideo=true}else if(typeof HTMLImageElement!=="undefined"&&pixels instanceof HTMLImageElement){isImage=true}else if(pixels.getContext!=null){isCanvasLike=true}else{throw new Error("pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, "+("but was "+pixels.constructor.name))}if(isVideo){var HAVE_CURRENT_DATA_READY_STATE=2;if(isVideo&&pixels.readyState<HAVE_CURRENT_DATA_READY_STATE){throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}}var kernel=getKernel(FromPixels,ENGINE.backendName);if(kernel!=null){var inputs={pixels};var attrs={numChannels};return ENGINE.runKernel(FromPixels,inputs,attrs)}var _a=isVideo?[pixels.videoWidth,pixels.videoHeight]:[pixels.width,pixels.height],width=_a[0],height=_a[1];var vals;if(isCanvasLike){vals=pixels.getContext("2d").getImageData(0,0,width,height).data}else if(isImageData||isPixelData){vals=pixels.data}else if(isImage||isVideo){if(fromPixels2DContext==null){fromPixels2DContext=document.createElement("canvas").getContext("2d")}fromPixels2DContext.canvas.width=width;fromPixels2DContext.canvas.height=height;fromPixels2DContext.drawImage(pixels,0,0,width,height);vals=fromPixels2DContext.getImageData(0,0,width,height).data}var values;if(numChannels===4){values=new Int32Array(vals)}else{var numPixels=width*height;values=new Int32Array(numPixels*numChannels);for(var i=0;i<numPixels;i++){for(var channel=0;channel<numChannels;++channel){values[i*numChannels+channel]=vals[i*4+channel]}}}var outShape=[height,width,numChannels];return tensor3d(values,outShape,"int32")}function toPixels(img,canvas){return __awaiter(this,void 0,void 0,function(){var $img,originalImgTensor,_a,height,width,depth,data2,multiplier,bytes,i,rgba,d,value,j,ctx,imageData;return __generator(this,function(_b){switch(_b.label){case 0:$img=convertToTensor(img,"img","toPixels");if(!(img instanceof Tensor)){originalImgTensor=$img;$img=cast2(originalImgTensor,"int32");originalImgTensor.dispose()}if($img.rank!==2&&$img.rank!==3){throw new Error("toPixels only supports rank 2 or 3 tensors, got rank "+$img.rank+".")}_a=$img.shape.slice(0,2),height=_a[0],width=_a[1];depth=$img.rank===2?1:$img.shape[2];if(depth>4||depth===2){throw new Error("toPixels only supports depth of size "+("1, 3 or 4 but got "+depth))}if($img.dtype!=="float32"&&$img.dtype!=="int32"){throw new Error("Unsupported type for toPixels: "+$img.dtype+". Please use float32 or int32 tensors.")}return[4,$img.data()];case 1:data2=_b.sent();multiplier=$img.dtype==="float32"?255:1;bytes=new Uint8ClampedArray(width*height*4);for(i=0;i<height*width;++i){rgba=[0,0,0,255];for(d=0;d<depth;d++){value=data2[i*depth+d];if($img.dtype==="float32"){if(value<0||value>1){throw new Error("Tensor values for a float32 Tensor must be in the "+("range [0 - 1] but encountered "+value+"."))}}else if($img.dtype==="int32"){if(value<0||value>255){throw new Error("Tensor values for a int32 Tensor must be in the "+("range [0 - 255] but encountered "+value+"."))}}if(depth===1){rgba[0]=value*multiplier;rgba[1]=value*multiplier;rgba[2]=value*multiplier}else{rgba[d]=value*multiplier}}j=i*4;bytes[j+0]=Math.round(rgba[0]);bytes[j+1]=Math.round(rgba[1]);bytes[j+2]=Math.round(rgba[2]);bytes[j+3]=Math.round(rgba[3])}if(canvas!=null){canvas.width=width;canvas.height=height;ctx=canvas.getContext("2d");imageData=new ImageData(bytes,width,height);ctx.putImageData(imageData,0,0)}if($img!==img){$img.dispose()}return[2,bytes]}})})}var fromPixels=op({fromPixels_});var browser={__proto__:null,toPixels,fromPixels};function prepareAndValidate(tensor2,indices){if(tensor2.rank<1){throw new Error("tf.gatherND() expects the input to be rank 1 or higher,"+(" but the rank was "+tensor2.rank+"."))}if(indices.rank<1){throw new Error("tf.gatherND() expects the indices to be rank 1 or higher,"+(" but the rank was "+indices.rank+"."))}if(indices.dtype!=="int32"){throw new Error("tf.gatherND() expects the indices to be int32 type,"+(" but the dtype was "+indices.dtype+"."))}if(indices.shape[indices.rank-1]>tensor2.rank){throw new Error("index innermost dimension length must be <= tensor rank; saw: "+(indices.shape[indices.rank-1]+" vs. "+tensor2.rank))}if(tensor2.size===0){throw new Error("Requested more than 0 entries, but input is empty."+(" Input shape: "+tensor2.shape+"."))}var indicesShape=indices.shape;var sliceRank=indicesShape[indicesShape.length-1];var nResult=1;for(var i=0;i<indicesShape.length-1;++i){nResult*=indicesShape[i]}var inputShape=tensor2.shape;var resultShape=indicesShape.slice();resultShape.pop();var sliceSize=1;for(var i=sliceRank;i<tensor2.rank;++i){sliceSize*=inputShape[i];resultShape.push(inputShape[i])}var strides=computeStrides(tensor2.shape).map(function(stride){return stride/sliceSize}).concat([1]).slice(0,sliceRank);return[resultShape,nResult,sliceSize,strides]}var gather_nd_util={__proto__:null,prepareAndValidate};function validateUpdateShape(shape,indices,updates){var sliceDim=indices.rank>1?indices.shape[indices.rank-1]:1;var batchDim=indices.rank>1?indices.rank-1:1;var shapeError="Must have updates.shape = indices.shape[:batchDim] + "+("shape[sliceDim:], got updates.shape: "+updates.shape)+(", indices.shape: "+indices.shape+", shape: "+shape)+(", sliceDim: "+sliceDim+", and batchDim: "+batchDim+".");if(updates.rank<batchDim){throw new Error(shapeError+(" update.rank < "+batchDim+". "))}if(shape.length<sliceDim+(updates.rank-batchDim)){throw new Error(shapeError+(" Output shape length < "+(sliceDim+(updates.rank-batchDim))))}if(updates.rank!==batchDim+shape.length-sliceDim){throw new Error(shapeError+(" update.rank != "+(batchDim+shape.length-sliceDim)))}for(var d=0;d<batchDim;++d){if(updates.shape[d]!==indices.shape[d]){throw new Error(shapeError+(" updates.shape["+d+"] ("+updates.shape[d]+") != indices.shape["+d+"] ("+indices.shape[d]+")."))}}for(var d=0;d<updates.rank-batchDim;++d){if(updates.shape[d+batchDim]!==shape[d+sliceDim]){throw new Error(shapeError+(" updates.shape["+(d+batchDim)+"] ("+updates.shape[d+batchDim]+") != shape["+(d+batchDim)+"] ("+shape[d+batchDim]+")"))}}}function validateInput(updates,indices,shape){if(indices.rank<1){throw new Error("tf.scatterND() expects the indices to be rank 1 or higher,"+(" but the rank was "+indices.rank+"."))}if(updates.rank<1){throw new Error("tf.scatterND() expects the updates to be rank 1 or higher,"+(" but the rank was "+updates.rank+"."))}if(indices.dtype!=="int32"){throw new Error("The dtype of 'indices' should be int32, but got dtype: "+indices.dtype)}if(shape.length<1){throw new Error("Output rank must be greater or equal to 1, but got shape: "+shape)}if(shape.length===0){if(indices.size===0){throw new Error("Indices specified for empty output. indices shape: "+indices.shape)}if(updates.size===0){throw new Error("Updates specified for empty output. updates shape: "+updates.shape)}}validateUpdateShape(shape,indices,updates)}function calculateShapes(updates,indices,shape){var indicesRank=indices.shape.length;var sliceRank=indicesRank>1?indices.shape[indicesRank-1]:1;var totalNd=shape.length;var sliceSize=1;for(var i=sliceRank;i<totalNd;++i){sliceSize*=shape[i]}var safeSliceDim=sliceRank<1?1:sliceRank;var numUpdates=sizeFromShape(indices.shape)/safeSliceDim;var strides=computeStrides(shape.slice(0,sliceRank)).concat([1]);var outputSize=sizeFromShape(shape);return{sliceRank,numUpdates,sliceSize,strides,outputSize}}var scatter_nd_util={__proto__:null,validateUpdateShape,validateInput,calculateShapes};function assertParamsValid(input,begin,size){var inputRank=input.shape.length;assert(inputRank===begin.length,function(){return"Error in slice"+inputRank+"D: Length of begin "+begin+" must "+("match the rank of the array ("+inputRank+").")});assert(inputRank===size.length,function(){return"Error in slice"+inputRank+"D: Length of size "+size+" must "+("match the rank of the array ("+inputRank+").")});var _loop_1=function(i2){assert(begin[i2]+size[i2]<=input.shape[i2],function(){return"Error in slice"+inputRank+"D: begin["+i2+"] + size["+i2+"] "+("("+(begin[i2]+size[i2])+") would overflow input.shape["+i2+"] ("+input.shape[i2]+")")})};for(var i=0;i<inputRank;++i){_loop_1(i)}}function maskToAxes(mask){var axes=[];var axis=0;while(mask>0){if(mask&1){axes.push(axis)}mask/=2;axis++}return axes}function computeOutShape2(begin,end,strides){var size=[];for(var axis=0;axis<begin.length;axis++){size[axis]=Math.ceil((end[axis]-begin[axis])/strides[axis])}return size}function stridesWithElidedDims(strides,ellipsisInsertionIndex,numElidedAxes,inputShape){var newStrides=strides.slice();for(var i=newStrides.length;i<inputShape.length;i++){newStrides.push(1)}for(var i=0;i<numElidedAxes;i++){if(i===0){newStrides[ellipsisInsertionIndex]=1}else{newStrides.splice(ellipsisInsertionIndex,0,1);newStrides.pop()}}return newStrides}function unnormalizeAxis(ellipsisInsertionIndex,numElidedAxes,normalizedAxis){if(normalizedAxis<=ellipsisInsertionIndex){return normalizedAxis}return normalizedAxis-(numElidedAxes-1)}function getElidedAxes(numElidedAxes,ellipsisInsertionIndex){var elidedAxes=[];for(var i=0;i<numElidedAxes;i++){elidedAxes.push(ellipsisInsertionIndex+i)}return elidedAxes}function getNormalizedAxes(inputShape,ellipsisAxes,numInterpolatedAxes,begin,end,strides,beginMask,endMask,ellipsisMask){var inputRank=inputShape.length;var normalizedBegin=new Array(inputRank),normalizedEnd=new Array(inputRank),normalizedStrides=new Array(inputRank);if(ellipsisAxes.length&&numInterpolatedAxes>0){var fullIndex=ellipsisAxes[0];var numElidedAxes=numInterpolatedAxes+1;normalizedBegin=startIndicesWithElidedDims(beginMask,fullIndex,numElidedAxes,begin,inputShape);normalizedEnd=stopIndicesWithElidedDims(endMask,fullIndex,numElidedAxes,end,inputShape);normalizedStrides=stridesWithElidedDims(strides,fullIndex,numElidedAxes,inputShape)}else{for(var axis=0;axis<inputRank;axis++){normalizedBegin[axis]=startForAxis(beginMask,begin,strides,inputShape,axis,ellipsisMask);normalizedEnd[axis]=stopForAxis(endMask,end,strides,inputShape,axis,ellipsisMask);normalizedStrides[axis]=stridesForAxis(strides,axis,ellipsisMask)}}return{begin:normalizedBegin,end:normalizedEnd,strides:normalizedStrides}}function startIndicesWithElidedDims(beginMask,ellipsisInsertionIndex,numElidedAxes,originalBegin,inputShape){var newIndices=inputShape.slice();var elidedAxes=getElidedAxes(numElidedAxes,ellipsisInsertionIndex);for(var axis=0;axis<newIndices.length;axis++){if(elidedAxes.indexOf(axis)>-1){newIndices[axis]=0}else{var originalAxis=unnormalizeAxis(ellipsisInsertionIndex,numElidedAxes,axis);var originalValue=originalBegin[originalAxis];if(beginMask&1<<originalAxis){originalValue=0}newIndices[axis]=originalValue}}return newIndices}function stopIndicesWithElidedDims(endMask,ellipsisInsertionIndex,numElidedAxes,originalEnd,inputShape){var newIndices=inputShape.slice();var elidedAxes=getElidedAxes(numElidedAxes,ellipsisInsertionIndex);for(var axis=0;axis<newIndices.length;axis++){if(elidedAxes.indexOf(axis)>-1){newIndices[axis]=Number.MAX_SAFE_INTEGER}else{var originalAxis=unnormalizeAxis(ellipsisInsertionIndex,numElidedAxes,axis);var originalValue=originalEnd[originalAxis];if(endMask&1<<originalAxis){originalValue=Number.MAX_SAFE_INTEGER}newIndices[axis]=originalValue}}for(var i=0;i<newIndices.length;i++){var axisSize=inputShape[i];if(newIndices[i]<0){newIndices[i]+=axisSize}newIndices[i]=clamp(0,newIndices[i],inputShape[i])}return newIndices}function stridesForAxis(strides,axis,ellipsisMask){var stride=strides[axis];if(ellipsisMask&1<<axis||stride==null){stride=1}return stride}function startForAxis(beginMask,startIndices,strides,inputShape,axis,ellipsisMask){var start=startIndices[axis];var stride=strides[axis]||1;if(beginMask&1<<axis||ellipsisMask&1<<axis||start==null){if(stride>0){start=Number.MIN_SAFE_INTEGER}else{start=Number.MAX_SAFE_INTEGER}}var axisSize=inputShape[axis];if(start<0){start+=axisSize}start=clamp(0,start,axisSize-1);return start}function stopForAxis(endMask,stopIndices,strides,inputShape,axis,ellipsisMask){var stop=stopIndices[axis];var stride=strides[axis]||1;if(endMask&1<<axis||ellipsisMask&1<<axis||stop==null){if(stride>0){stop=Number.MAX_SAFE_INTEGER}else{stop=Number.MIN_SAFE_INTEGER}}var axisSize=inputShape[axis];if(stop<0){stop+=axisSize}if(stride>0){stop=clamp(0,stop,axisSize)}else{stop=clamp(-1,stop,axisSize-1)}return stop}function isSliceContinous(shape,begin,size){var firstNonOneAxis=size.length;for(var i=0;i<size.length;i++){if(size[i]>1){firstNonOneAxis=i;break}}for(var i=firstNonOneAxis+1;i<size.length;i++){if(begin[i]>0||size[i]!==shape[i]){return false}}return true}function computeFlatOffset(begin,strides){var flatOffset=begin.length>0?begin[begin.length-1]:1;for(var i=0;i<begin.length-1;i++){flatOffset+=begin[i]*strides[i]}return flatOffset}function parseSliceParams(x,begin,size){var begin_;var xRank=x.shape.length;if(typeof begin==="number"){begin_=[begin].concat(new Array(xRank-1).fill(0))}else if(begin.length<xRank){begin_=begin.concat(new Array(xRank-begin.length).fill(0))}else{begin_=begin.slice()}begin_.forEach(function(d){assert(d!==-1,function(){return"slice() does not support negative begin indexing."})});var size_;if(size==null){size_=new Array(xRank).fill(-1)}else if(typeof size==="number"){size_=[size].concat(new Array(xRank-1).fill(-1))}else if(size.length<xRank){size_=size.concat(new Array(xRank-size.length).fill(-1))}else{size_=size}size_=size_.map(function(d,i){if(d>=0){return d}else{assert(d===-1,function(){return"Negative size values should be exactly -1 but got "+(d+" for the slice() size at index "+i+".")});return x.shape[i]-begin_[i]}});return[begin_,size_]}var slice_util2={__proto__:null,assertParamsValid,maskToAxes,computeOutShape:computeOutShape2,stridesWithElidedDims,getNormalizedAxes,startIndicesWithElidedDims,stopIndicesWithElidedDims,stridesForAxis,startForAxis,stopForAxis,isSliceContinous,computeFlatOffset,parseSliceParams};var Serializable=function(){function Serializable2(){}Serializable2.prototype.getClassName=function(){return this.constructor.className};Serializable2.fromConfig=function(cls,config2){return new cls(config2)};return Serializable2}();var SerializationMap=function(){function SerializationMap2(){this.classNameMap={}}SerializationMap2.getMap=function(){if(SerializationMap2.instance==null){SerializationMap2.instance=new SerializationMap2}return SerializationMap2.instance};SerializationMap2.register=function(cls){SerializationMap2.getMap().classNameMap[cls.className]=[cls,cls.fromConfig]};return SerializationMap2}();function registerClass(cls){assert(cls.className!=null,function(){return"Class being registered does not have the static className property defined."});assert(typeof cls.className==="string",function(){return"className is required to be a string, but got type "+typeof cls.className});assert(cls.className.length>0,function(){return"Class being registered has an empty-string as its className, which is disallowed."});SerializationMap.register(cls)}var serialization={__proto__:null,Serializable,SerializationMap,registerClass};var TEST_EPSILON_FLOAT32=.001;var TEST_EPSILON_FLOAT16=.1;function expectArraysClose(actual,expected,epsilon){if(epsilon==null){epsilon=testEpsilon()}return expectArraysPredicate(actual,expected,function(a,b){return areClose(a,b,epsilon)})}function testEpsilon(){return ENGINE.backend.floatPrecision()===32?TEST_EPSILON_FLOAT32:TEST_EPSILON_FLOAT16}function expectArraysPredicate(actual,expected,predicate){var checkClassType=true;if(isTypedArray(actual)||isTypedArray(expected)){checkClassType=false}if(isTypedArray(actual)&&isTypedArray(expected)){checkClassType=true}if(checkClassType){var aType=actual.constructor.name;var bType=expected.constructor.name;if(aType!==bType){throw new Error("Arrays are of different type. Actual: "+aType+". "+("Expected: "+bType))}}if(Array.isArray(actual)&&Array.isArray(expected)){var actualShape=inferShape(actual);var expectedShape=inferShape(expected);if(!arraysEqual(actualShape,expectedShape)){throw new Error("Arrays have different shapes. "+("Actual: ["+actualShape+"]. Expected: ["+expectedShape+"]"))}}var actualFlat=isTypedArray(actual)?actual:flatten(actual);var expectedFlat=isTypedArray(expected)?expected:flatten(expected);if(actualFlat.length!==expectedFlat.length){throw new Error("Arrays have different lengths actual: "+actualFlat.length+" vs "+("expected: "+expectedFlat.length+".\n")+("Actual: "+actualFlat+".\n")+("Expected: "+expectedFlat+"."))}for(var i=0;i<expectedFlat.length;++i){var a=actualFlat[i];var e=expectedFlat[i];if(!predicate(a,e)){throw new Error("Arrays differ: actual["+i+"] = "+a+", expected["+i+"] = "+e+".\n"+("Actual: "+actualFlat+".\n")+("Expected: "+expectedFlat+"."))}}}function expectPromiseToFail(fn,done){fn().then(function(){return done.fail()},function(){return done()})}function expectArraysEqual(actual,expected){var exp2=typeof expected==="string"||typeof expected==="number"||typeof expected==="boolean"?[expected]:expected;if(isString(actual)||isString(actual[0])||isString(expected)||isString(expected[0])){return expectArraysPredicate(actual,exp2,function(a,b){return a==b})}return expectArraysPredicate(actual,expected,function(a,b){return areClose(a,b,0)})}function expectNumbersClose(a,e,epsilon){if(epsilon==null){epsilon=testEpsilon()}if(!areClose(a,e,epsilon)){throw new Error("Numbers differ: actual === "+a+", expected === "+e)}}function areClose(a,e,epsilon){if(!isFinite(a)&&!isFinite(e)){return true}if(isNaN(a)||isNaN(e)||Math.abs(a-e)>epsilon){return false}return true}function expectValuesInRange(actual,low,high){for(var i=0;i<actual.length;i++){if(actual[i]<low||actual[i]>high){throw new Error("Value out of range:"+actual[i]+" low: "+low+", high: "+high)}}}function expectArrayBuffersEqual(actual,expected){expect(new Float32Array(actual)).toEqual(new Float32Array(expected))}var test_util={__proto__:null,TEST_EPSILON_FLOAT16,expectArraysClose,testEpsilon,expectPromiseToFail,expectArraysEqual,expectNumbersClose,expectValuesInRange,expectArrayBuffersEqual};var version4="2.7.0";function enableProdMode(){env3().set("PROD",true)}function enableDebugMode(){env3().set("DEBUG",true)}function disableDeprecationWarnings(){env3().set("DEPRECATION_WARNINGS_ENABLED",false);console.warn("TensorFlow.js deprecation warnings have been disabled.")}function deprecationWarn2(msg){if(env3().getBool("DEPRECATION_WARNINGS_ENABLED")){console.warn(msg+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}}function disposeVariables(){ENGINE.disposeVariables()}function engine2(){return ENGINE}function memory(){return ENGINE.memory()}function profile2(f){return ENGINE.profile(f)}function tidy(nameOrFn,fn){return ENGINE.tidy(nameOrFn,fn)}function dispose(container){var tensors=getTensorsInContainer(container);tensors.forEach(function(tensor2){return tensor2.dispose()})}function keep(result){return ENGINE.keep(result)}function time(f){return ENGINE.time(f)}function setBackend(backendName){return ENGINE.setBackend(backendName)}function ready(){return ENGINE.ready()}function getBackend(){return ENGINE.backendName}function removeBackend(name){ENGINE.removeBackend(name)}function findBackend(name){return ENGINE.findBackend(name)}function findBackendFactory(name){return ENGINE.findBackendFactory(name)}function registerBackend2(name,factory,priority){if(priority===void 0){priority=1}return ENGINE.registerBackend(name,factory,priority)}function backend(){return ENGINE.backend}function setPlatform(platformName,platform){env3().setPlatform(platformName,platform)}function add_(a,b){var _a;var $a=convertToTensor(a,"a","add");var $b=convertToTensor(b,"b","add");_a=makeTypesMatch($a,$b),$a=_a[0],$b=_a[1];var forward=function(backend2,save){var res=backend2.add($a,$b);save([$a,$b]);return res};var inputs={a:$a,b:$b};return ENGINE.runKernelFunc(forward,inputs,null,Add3)}var add$1=op({add_});function floorDiv_(a,b){var _a;var $a=convertToTensor(a,"a","floorDiv");var $b=convertToTensor(b,"b","floorDiv");_a=makeTypesMatch($a,$b),$a=_a[0],$b=_a[1];var forward=function(backend2,save){var res=backend2.floorDiv($a,$b);save([$a,$b]);return res};var inputs={a:$a,b:$b};return ENGINE.runKernelFunc(forward,inputs,null,FloorDiv3)}var floorDiv=op({floorDiv_});function div_(a,b){var _a;var $a=convertToTensor(a,"a","div");var $b=convertToTensor(b,"b","div");_a=makeTypesMatch($a,$b),$a=_a[0],$b=_a[1];if($a.dtype==="int32"&&$b.dtype==="int32"){return floorDiv($a,$b)}var forward=function(backend2,save){var res=backend2.realDivide($a,$b);save([$a,$b]);return res};var inputs={a:$a,b:$b};var attrs={};return ENGINE.runKernelFunc(forward,inputs,null,Div3,attrs)}var div=op({div_});function mul_(a,b){var _a;var $a=convertToTensor(a,"a","mul");var $b=convertToTensor(b,"b","mul");_a=makeTypesMatch($a,$b),$a=_a[0],$b=_a[1];var forward=function(backend2,save){var res=backend2.multiply($a,$b);save([$a,$b]);return res};var inputs={a:$a,b:$b};return ENGINE.runKernelFunc(forward,inputs,null,Multiply3)}var mul=op({mul_});function abs_(x){var $x=convertToTensor(x,"x","abs");var inputs={x:$x};return ENGINE.runKernelFunc(function(backend2,save){save([$x]);if($x.dtype==="complex64"){return backend2.complexAbs($x)}return backend2.abs($x)},inputs,null,Abs3)}var abs=op({abs_});function acos_(x){var $x=convertToTensor(x,"x","acos");var inputs={x:$x};return ENGINE.runKernelFunc(function(backend2,save){var res=backend2.acos($x);save([$x]);return res},inputs,null,Acos)}var acos=op({acos_});function acosh_(x){var $x=convertToTensor(x,"x","acosh");var inputs={x:$x};return ENGINE.runKernelFunc(function(backend2,save){var res=backend2.acosh($x);save([$x]);return res},inputs,null,Acosh)}var acosh=op({acosh_});function addN_(tensors){assert(Array.isArray(tensors),function(){return"The argument passed to tf.addN() must be a list of tensors"});assert(tensors.length>=1,function(){return"Must pass at least one tensor to tf.addN(), but got "+(""+tensors.length)});var $tensors=tensors.map(function(t,i){return convertToTensor(t,"tensors"+i,"addN")});var firstTensor=$tensors[0];$tensors.forEach(function(t){if(t.dtype!==firstTensor.dtype){throw new Error("All tensors passed to tf.addN() must have the same dtype")}});$tensors.forEach(function(t){if(!arraysEqual(t.shape,firstTensor.shape)){throw new Error("All tensors passed to tf.addN() must have the same shape")}});var forward=function(backend2,save){var res=backend2.addN($tensors);save($tensors);return res};var inputs=$tensors;return ENGINE.runKernelFunc(forward,inputs,null,AddN3)}var addN=op({addN_});function axesAreInnerMostDims(axes,rank){for(var i=0;i<axes.length;++i){if(axes[axes.length-i-1]!==rank-1-i){return false}}return true}function combineLocations(outputLoc,reduceLoc,axes){var rank=outputLoc.length+reduceLoc.length;var loc=[];var outIdx=0;var reduceIdx=0;for(var dim=0;dim<rank;dim++){if(axes.indexOf(dim)===-1){loc.push(outputLoc[outIdx++])}else{loc.push(reduceLoc[reduceIdx++])}}return loc}function computeOutAndReduceShapes(aShape,axes){var outShape=[];var rank=aShape.length;for(var dim=0;dim<rank;dim++){if(axes.indexOf(dim)===-1){outShape.push(aShape[dim])}}var reduceShape=axes.map(function(dim2){return aShape[dim2]});return[outShape,reduceShape]}function expandShapeToKeepDim(shape,axes){var reduceSubShape=axes.map(function(x){return 1});return combineLocations(shape,reduceSubShape,axes)}function assertAxesAreInnerMostDims(msg,axes,rank){assert(axesAreInnerMostDims(axes,rank),function(){return msg+" supports only inner-most axes for now. "+("Got axes "+axes+" and rank-"+rank+" input.")})}function getAxesPermutation(axes,rank){if(axesAreInnerMostDims(axes,rank)){return null}var result=[];for(var i=0;i<rank;++i){if(axes.indexOf(i)===-1){result.push(i)}}axes.forEach(function(axis){return result.push(axis)});return result}function getUndoAxesPermutation(axes){return axes.map(function(axis,i){return[i,axis]}).sort(function(a,b){return a[1]-b[1]}).map(function(x){return x[0]})}function getInnerMostAxes(numAxes,rank){var res=[];for(var i=rank-numAxes;i<rank;++i){res.push(i)}return res}function all_(x,axis,keepDims){if(axis===void 0){axis=null}if(keepDims===void 0){keepDims=false}var $x=convertToTensor(x,"x","all","bool");var forward=function(backend2){var origAxes=parseAxisParam(axis,$x.shape);var axes=origAxes;var permutedAxes=getAxesPermutation(axes,$x.rank);if(permutedAxes!=null){$x=transpose2($x,permutedAxes);axes=getInnerMostAxes(axes.length,$x.rank)}var res=backend2.all($x,axes);if(keepDims){var newShape=expandShapeToKeepDim(res.shape,origAxes);return reshape2(res,newShape)}return res};var inputs={x:$x};var attrs={axis,keepDims};return ENGINE.runKernelFunc(forward,inputs,null,All,attrs)}var all=op({all_});function any_(x,axis,keepDims){if(axis===void 0){axis=null}if(keepDims===void 0){keepDims=false}var $x=convertToTensor(x,"x","any","bool");var forward=function(backend2){var origAxes=parseAxisParam(axis,$x.shape);var axes=origAxes;var permutedAxes=getAxesPermutation(axes,$x.rank);if(permutedAxes!=null){$x=transpose2($x,permutedAxes);axes=getInnerMostAxes(axes.length,$x.rank)}var res=backend2.any($x,axes);if(keepDims){var newShape=expandShapeToKeepDim(res.shape,origAxes);return reshape2(res,newShape)}return res};var inputs={x:$x};var attrs={axis,keepDims};return ENGINE.runKernelFunc(forward,inputs,null,Any,attrs)}var any=op({any_});function argMax_(x,axis){if(axis===void 0){axis=0}var $x=convertToTensor(x,"x","argMax");var forward=function(backend2,save){save([$x]);var axes=parseAxisParam(axis,$x.shape);var permutedAxes=getAxesPermutation(axes,$x.rank);if(permutedAxes!=null){$x=transpose2($x,permutedAxes);axes=getInnerMostAxes(axes.length,$x.rank)}return backend2.argMax($x,axes[0])};var inputs={x:$x};var attrs={axis};return ENGINE.runKernelFunc(forward,inputs,null,ArgMax3,attrs)}var argMax=op({argMax_});function argMin_(x,axis){if(axis===void 0){axis=0}var $x=convertToTensor(x,"x","argMin");var forward=function(backend2,save){save([$x]);if(axis==null){axis=0}var axes=parseAxisParam(axis,$x.shape);var permutedAxes=getAxesPermutation(axes,$x.rank);if(permutedAxes!=null){$x=transpose2($x,permutedAxes);axes=getInnerMostAxes(axes.length,$x.rank)}return backend2.argMin($x,axes[0])};var inputs={x:$x};var attrs={axis};return ENGINE.runKernelFunc(forward,inputs,null,ArgMin,attrs)}var argMin=op({argMin_});function asin_(x){var $x=convertToTensor(x,"x","asin");var inputs={x:$x};return ENGINE.runKernelFunc(function(backend2,save){var res=backend2.asin($x);save([$x]);return res},inputs,null,Asin)}var asin=op({asin_});function asinh_(x){var $x=convertToTensor(x,"x","asinh");var inputs={x:$x};return ENGINE.runKernelFunc(function(backend2,save){var res=backend2.asinh($x);save([$x]);return res},inputs,null,Asinh)}var asinh=op({asinh_});function atan_(x){var $x=convertToTensor(x,"x","atan");var inputs={x:$x};return ENGINE.runKernelFunc(function(backend2,save){var res=backend2.atan($x);save([$x]);return res},inputs,null,Atan)}var atan=op({atan_});function atan2_(a,b){var _a;var $a=convertToTensor(a,"a","atan2");var $b=convertToTensor(b,"b","atan2");_a=makeTypesMatch($a,$b),$a=_a[0],$b=_a[1];var forward=function(backend2,save){var res=backend2.atan2($a,$b);save([$a,$b]);return res};var inputs={a:$a,b:$b};return ENGINE.runKernelFunc(forward,inputs,null,Atan2)}var atan2=op({atan2_});function atanh_(x){var $x=convertToTensor(x,"x","atanh");var inputs={x:$x};return ENGINE.runKernelFunc(function(backend2,save){var res=backend2.atanh($x);save([$x]);return res},inputs,null,Atanh)}var atanh=op({atanh_});function computeDilation2DInfo(inputShape,filterShape,strides,pad3,dataFormat,dilations){if(dataFormat===void 0){dataFormat="NHWC"}var inputChannels=inputShape[3];var $filterShape=filterShape.concat([inputChannels]);var $dataFormat=convertConv2DDataFormat(dataFormat);return computeConv2DInfo(inputShape,$filterShape,strides,dilations,pad3,null,null,$dataFormat)}function computePool2DInfo(inShape,filterSize,strides,dilations,pad3,roundingMode,dataFormat){if(dataFormat===void 0){dataFormat="channelsLast"}var _a=parseTupleParam(filterSize),filterHeight=_a[0],filterWidth=_a[1];var filterShape;if(dataFormat==="channelsLast"){filterShape=[filterHeight,filterWidth,inShape[3],inShape[3]]}else if(dataFormat==="channelsFirst"){filterShape=[filterHeight,filterWidth,inShape[1],inShape[1]]}else{throw new Error("Unknown dataFormat "+dataFormat)}return computeConv2DInfo(inShape,filterShape,strides,dilations,pad3,roundingMode,false,dataFormat)}function computePool3DInfo(inShape,filterSize,strides,dilations,pad3,roundingMode,dataFormat){if(dataFormat===void 0){dataFormat="NDHWC"}var _a=parse3TupleParam(filterSize),filterDepth=_a[0],filterHeight=_a[1],filterWidth=_a[2];var filterShape;var $dataFormat;if(dataFormat==="NDHWC"){$dataFormat="channelsLast";filterShape=[filterDepth,filterHeight,filterWidth,inShape[4],inShape[4]]}else if(dataFormat==="NCDHW"){$dataFormat="channelsFirst";filterShape=[filterDepth,filterHeight,filterWidth,inShape[1],inShape[1]]}else{throw new Error("Unknown dataFormat "+dataFormat)}return computeConv3DInfo(inShape,filterShape,strides,dilations,pad3,false,$dataFormat,roundingMode)}function computeConv2DInfo(inShape,filterShape,strides,dilations,pad3,roundingMode,depthwise,dataFormat){if(depthwise===void 0){depthwise=false}if(dataFormat===void 0){dataFormat="channelsLast"}var _a=[-1,-1,-1,-1],batchSize=_a[0],inHeight=_a[1],inWidth=_a[2],inChannels=_a[3];if(dataFormat==="channelsLast"){batchSize=inShape[0],inHeight=inShape[1],inWidth=inShape[2],inChannels=inShape[3]}else if(dataFormat==="channelsFirst"){batchSize=inShape[0],inChannels=inShape[1],inHeight=inShape[2],inWidth=inShape[3]}else{throw new Error("Unknown dataFormat "+dataFormat)}var filterHeight=filterShape[0],filterWidth=filterShape[1],filterChannels=filterShape[3];var _b=parseTupleParam(strides),strideHeight=_b[0],strideWidth=_b[1];var _c=parseTupleParam(dilations),dilationHeight=_c[0],dilationWidth=_c[1];var effectiveFilterHeight=getEffectiveFilterSize(filterHeight,dilationHeight);var effectiveFilterWidth=getEffectiveFilterSize(filterWidth,dilationWidth);var _d=getPadAndOutInfo(pad3,inHeight,inWidth,strideHeight,strideWidth,effectiveFilterHeight,effectiveFilterWidth,roundingMode,dataFormat),padInfo=_d.padInfo,outHeight=_d.outHeight,outWidth=_d.outWidth;var outChannels=depthwise?filterChannels*inChannels:filterChannels;var outShape;if(dataFormat==="channelsFirst"){outShape=[batchSize,outChannels,outHeight,outWidth]}else if(dataFormat==="channelsLast"){outShape=[batchSize,outHeight,outWidth,outChannels]}return{batchSize,dataFormat,inHeight,inWidth,inChannels,outHeight,outWidth,outChannels,padInfo,strideHeight,strideWidth,filterHeight,filterWidth,effectiveFilterHeight,effectiveFilterWidth,dilationHeight,dilationWidth,inShape,outShape,filterShape}}function computeConv3DInfo(inShape,filterShape,strides,dilations,pad3,depthwise,dataFormat,roundingMode){if(depthwise===void 0){depthwise=false}if(dataFormat===void 0){dataFormat="channelsLast"}var _a=[-1,-1,-1,-1,-1],batchSize=_a[0],inDepth=_a[1],inHeight=_a[2],inWidth=_a[3],inChannels=_a[4];if(dataFormat==="channelsLast"){batchSize=inShape[0],inDepth=inShape[1],inHeight=inShape[2],inWidth=inShape[3],inChannels=inShape[4]}else if(dataFormat==="channelsFirst"){batchSize=inShape[0],inChannels=inShape[1],inDepth=inShape[2],inHeight=inShape[3],inWidth=inShape[4]}else{throw new Error("Unknown dataFormat "+dataFormat)}var filterDepth=filterShape[0],filterHeight=filterShape[1],filterWidth=filterShape[2],filterChannels=filterShape[4];var _b=parse3TupleParam(strides),strideDepth=_b[0],strideHeight=_b[1],strideWidth=_b[2];var _c=parse3TupleParam(dilations),dilationDepth=_c[0],dilationHeight=_c[1],dilationWidth=_c[2];var effectiveFilterDepth=getEffectiveFilterSize(filterDepth,dilationDepth);var effectiveFilterHeight=getEffectiveFilterSize(filterHeight,dilationHeight);var effectiveFilterWidth=getEffectiveFilterSize(filterWidth,dilationWidth);var _d=get3DPadAndOutInfo(pad3,inDepth,inHeight,inWidth,strideDepth,strideHeight,strideWidth,effectiveFilterDepth,effectiveFilterHeight,effectiveFilterWidth,roundingMode),padInfo=_d.padInfo,outDepth=_d.outDepth,outHeight=_d.outHeight,outWidth=_d.outWidth;var outChannels=depthwise?filterChannels*inChannels:filterChannels;var outShape;if(dataFormat==="channelsFirst"){outShape=[batchSize,outChannels,outDepth,outHeight,outWidth]}else if(dataFormat==="channelsLast"){outShape=[batchSize,outDepth,outHeight,outWidth,outChannels]}return{batchSize,dataFormat,inDepth,inHeight,inWidth,inChannels,outDepth,outHeight,outWidth,outChannels,padInfo,strideDepth,strideHeight,strideWidth,filterDepth,filterHeight,filterWidth,effectiveFilterDepth,effectiveFilterHeight,effectiveFilterWidth,dilationDepth,dilationHeight,dilationWidth,inShape,outShape,filterShape}}function computeOutputShape2D(inShape,fieldSize,stride,zeroPad,roundingMode){if(zeroPad==null){zeroPad=computeDefaultPad(inShape,fieldSize,stride)}var inputRows=inShape[0];var inputCols=inShape[1];var outputRows=conditionalRound((inputRows-fieldSize+2*zeroPad)/stride+1,roundingMode);assert(isInt(outputRows),function(){return"The output # of rows ("+outputRows+") must be an integer. Change the stride and/or zero pad parameters"});var outputCols=conditionalRound((inputCols-fieldSize+2*zeroPad)/stride+1,roundingMode);assert(isInt(outputCols),function(){return"The output # of columns ("+outputCols+") must be an integer. Change the stride and/or zero pad parameters"});return[outputRows,outputCols]}function computeOutputShape4D(inShape,fieldSize,outChannels,stride,zeroPad,roundingMode){if(zeroPad==null){zeroPad=computeDefaultPad(inShape,fieldSize,stride)}var inputDepth=inShape[0];var inputRows=inShape[1];var inputCols=inShape[2];var outputDepths=conditionalRound((inputDepth-fieldSize+2*zeroPad)/stride+1,roundingMode);assert(isInt(outputDepths),function(){return"The output # of depths ("+outputDepths+") must be an integer. Change the stride and/or zero pad parameters"});var outputRows=conditionalRound((inputRows-fieldSize+2*zeroPad)/stride+1,roundingMode);assert(isInt(outputRows),function(){return"The output # of rows ("+outputRows+") must be an integer. Change the stride and/or zero pad parameters"});var outputCols=conditionalRound((inputCols-fieldSize+2*zeroPad)/stride+1,roundingMode);assert(isInt(outputCols),function(){return"The output # of columns ("+outputCols+") must be an integer. Change the stride and/or zero pad parameters"});return[outputDepths,outputRows,outputCols,outChannels]}function computeDefaultPad(inputShape,fieldSize,stride,dilation){if(dilation===void 0){dilation=1}var effectiveFieldSize=getEffectiveFilterSize(fieldSize,dilation);return Math.floor((inputShape[0]*(stride-1)-stride+effectiveFieldSize)/2)}function parseTupleParam(param){if(typeof param==="number"){return[param,param,param]}if(param.length===2){return[param[0],param[1],1]}return param}function parse3TupleParam(param){return typeof param==="number"?[param,param,param]:param}function getEffectiveFilterSize(filterSize,dilation){if(dilation<=1){return filterSize}return filterSize+(filterSize-1)*(dilation-1)}function getPadAndOutInfo(pad3,inHeight,inWidth,strideHeight,strideWidth,filterHeight,filterWidth,roundingMode,dataFormat){var padInfo;var outHeight;var outWidth;if(typeof pad3==="number"){var padType=pad3===0?"VALID":"NUMBER";padInfo={top:pad3,bottom:pad3,left:pad3,right:pad3,type:padType};var outShape=computeOutputShape2D([inHeight,inWidth],filterHeight,strideHeight,pad3,roundingMode);outHeight=outShape[0];outWidth=outShape[1]}else if(pad3==="same"){outHeight=Math.ceil(inHeight/strideHeight);outWidth=Math.ceil(inWidth/strideWidth);var padAlongHeight=Math.max(0,(outHeight-1)*strideHeight+filterHeight-inHeight);var padAlongWidth=Math.max(0,(outWidth-1)*strideWidth+filterWidth-inWidth);var top_1=Math.floor(padAlongHeight/2);var bottom=padAlongHeight-top_1;var left=Math.floor(padAlongWidth/2);var right=padAlongWidth-left;padInfo={top:top_1,bottom,left,right,type:"SAME"}}else if(pad3==="valid"){padInfo={top:0,bottom:0,left:0,right:0,type:"VALID"};outHeight=Math.ceil((inHeight-filterHeight+1)/strideHeight);outWidth=Math.ceil((inWidth-filterWidth+1)/strideWidth)}else if(typeof pad3==="object"){var top_2=dataFormat==="channelsLast"?pad3[1][0]:pad3[2][0];var bottom=dataFormat==="channelsLast"?pad3[1][1]:pad3[2][1];var left=dataFormat==="channelsLast"?pad3[2][0]:pad3[3][0];var right=dataFormat==="channelsLast"?pad3[2][1]:pad3[3][1];var padType=top_2===0&&bottom===0&&left===0&&right===0?"VALID":"EXPLICIT";padInfo={top:top_2,bottom,left,right,type:padType};outHeight=conditionalRound((inHeight-filterHeight+top_2+bottom)/strideHeight+1,roundingMode);outWidth=conditionalRound((inWidth-filterWidth+left+right)/strideWidth+1,roundingMode)}else{throw Error("Unknown padding parameter: "+pad3)}return{padInfo,outHeight,outWidth}}function get3DPadAndOutInfo(pad3,inDepth,inHeight,inWidth,strideDepth,strideHeight,strideWidth,filterDepth,filterHeight,filterWidth,roundingMode){var padInfo;var outDepth;var outHeight;var outWidth;if(typeof pad3==="number"){var padType=pad3===0?"VALID":"NUMBER";padInfo={top:pad3,bottom:pad3,left:pad3,right:pad3,front:pad3,back:pad3,type:padType};var outShape=computeOutputShape4D([inDepth,inHeight,inWidth,1],filterDepth,1,strideDepth,pad3,roundingMode);outDepth=outShape[0];outHeight=outShape[1];outWidth=outShape[2]}else if(pad3==="same"){outDepth=Math.ceil(inDepth/strideDepth);outHeight=Math.ceil(inHeight/strideHeight);outWidth=Math.ceil(inWidth/strideWidth);var padAlongDepth=(outDepth-1)*strideDepth+filterDepth-inDepth;var padAlongHeight=(outHeight-1)*strideHeight+filterHeight-inHeight;var padAlongWidth=(outWidth-1)*strideWidth+filterWidth-inWidth;var front=Math.floor(padAlongDepth/2);var back=padAlongDepth-front;var top_3=Math.floor(padAlongHeight/2);var bottom=padAlongHeight-top_3;var left=Math.floor(padAlongWidth/2);var right=padAlongWidth-left;padInfo={top:top_3,bottom,left,right,front,back,type:"SAME"}}else if(pad3==="valid"){padInfo={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"};outDepth=Math.ceil((inDepth-filterDepth+1)/strideDepth);outHeight=Math.ceil((inHeight-filterHeight+1)/strideHeight);outWidth=Math.ceil((inWidth-filterWidth+1)/strideWidth)}else{throw Error("Unknown padding parameter: "+pad3)}return{padInfo,outDepth,outHeight,outWidth}}function conditionalRound(value,roundingMode){if(!roundingMode){return value}switch(roundingMode){case"round":return Math.round(value);case"ceil":return Math.ceil(value);case"floor":return Math.floor(value);default:throw new Error("Unknown roundingMode "+roundingMode)}}function tupleValuesAreOne(param){var _a=parseTupleParam(param),dimA=_a[0],dimB=_a[1],dimC=_a[2];return dimA===1&&dimB===1&&dimC===1}function eitherStridesOrDilationsAreOne(strides,dilations){return tupleValuesAreOne(strides)||tupleValuesAreOne(dilations)}function convertConv2DDataFormat(dataFormat){if(dataFormat==="NHWC"){return"channelsLast"}else if(dataFormat==="NCHW"){return"channelsFirst"}else{throw new Error("Unknown dataFormat "+dataFormat)}}function avgPool_(x,filterSize,strides,pad3,dimRoundingMode){var $x=convertToTensor(x,"x","avgPool","float32");var dilations=1;assert(eitherStridesOrDilationsAreOne(strides,dilations),function(){return"Error in avgPool: Either strides or dilations must be 1. "+("Got strides "+strides+" and dilations '"+dilations+"'")});var x4D=$x;var reshapedTo4D=false;if($x.rank===3){reshapedTo4D=true;x4D=reshape2($x,[1,$x.shape[0],$x.shape[1],$x.shape[2]])}assert(x4D.rank===4,function(){return"Error in avgPool: x must be rank 4 but got rank "+x4D.rank+"."});if(dimRoundingMode!=null){assert(isInt(pad3),function(){return"Error in avgPool: pad must be an integer when using, "+("dimRoundingMode "+dimRoundingMode+" but got pad "+pad3+".")})}var forward=function(backend2,save){var convInfo=computePool2DInfo(x4D.shape,filterSize,strides,1,pad3,dimRoundingMode);save([x4D]);if(convInfo.filterWidth===1&&convInfo.filterHeight===1&&arraysEqual(convInfo.inShape,convInfo.outShape)){return x4D.clone()}return backend2.avgPool(x4D,convInfo)};var inputs={x:x4D};var attrs={filterSize,strides,pad:pad3,dimRoundingMode};var res=ENGINE.runKernelFunc(forward,inputs,null,AvgPool3,attrs);res=cast2(res,$x.dtype);if(reshapedTo4D){return reshape2(res,[res.shape[1],res.shape[2],res.shape[3]])}return res}var avgPool2=op({avgPool_});function avgPool3d_(x,filterSize,strides,pad3,dimRoundingMode,dataFormat,dilations){if(dataFormat===void 0){dataFormat="NDHWC"}if(dilations==null){dilations=[1,1,1]}else{deprecationWarn2("dilations is deprecated, this field will be gone in v3.0.0.")}var $x=convertToTensor(x,"x","avgPool3d","float32");var x5D=$x;var reshapedTo5D=false;if($x.rank===4){reshapedTo5D=true;x5D=reshape2($x,[1,$x.shape[0],$x.shape[1],$x.shape[2],$x.shape[3]])}assert(x5D.rank===5,function(){return"Error in avgPool3d: x must be rank 5 but got rank "+x5D.rank+"."});assert(dataFormat==="NDHWC",function(){return"Error in avgPool3d: Only NDHWC is currently supported, "+("but got dataFormat of "+dataFormat)});assert(eitherStridesOrDilationsAreOne(strides,dilations),function(){return"Error in avgPool3d: Either strides or dilations must be 1. "+("Got strides "+strides+" and dilations '"+dilations+"'")});if(dimRoundingMode!=null){assert(isInt(pad3),function(){return"Error in avgPool3d: pad must be an integer when using, "+("dimRoundingMode "+dimRoundingMode+" but got pad "+pad3+".")})}var forward=function(backend2,save){if(dilations==null){dilations=[1,1,1]}var convInfo=computePool3DInfo(x5D.shape,filterSize,strides,dilations,pad3,dimRoundingMode,dataFormat);save([x5D]);return backend2.avgPool3d(x5D,convInfo)};var inputs={x:x5D};var attrs={filterSize,strides,pad:pad3,dimRoundingMode,dataFormat,dilations};var res=ENGINE.runKernelFunc(forward,inputs,null,AvgPool3D,attrs);res=cast2(res,x5D.dtype);if(reshapedTo5D){return reshape2(res,[res.shape[1],res.shape[2],res.shape[3],res.shape[4]])}return res}var avgPool3d=op({avgPool3d_});function assertParamsConsistent(shapes,axis){var rank=shapes[0].length;shapes.forEach(function(shape,i){assert(shape.length===rank,function(){return"Error in concat"+rank+"D: rank of tensors["+i+"] must be the same "+("as the rank of the rest ("+rank+")")})});assert(axis>=0&&axis<rank,function(){return"Error in concat"+rank+"D: axis must be between 0 and "+(rank-1)+"."});var firstShape=shapes[0];shapes.forEach(function(shape,i){for(var r=0;r<rank;r++){assert(r===axis||shape[r]===firstShape[r],function(){return"Error in concat"+rank+"D: Shape of tensors["+i+"] ("+shape+") "+("does not match the shape of the rest ("+firstShape+") ")+("along the non-concatenated axis "+i+".")})}})}function computeOutShape$1(shapes,axis){var outputShape=shapes[0].slice();for(var i=1;i<shapes.length;i++){outputShape[axis]+=shapes[i][axis]}return outputShape}function concat_(tensors,axis){if(axis===void 0){axis=0}assert(tensors.length>=1,function(){return"Pass at least one tensor to concat"});var $tensors=convertToTensorArray(tensors,"tensors","concat");if($tensors[0].dtype==="complex64"){$tensors.forEach(function(tensor2){if(tensor2.dtype!=="complex64"){throw new Error("Cannot concatenate complex64 tensors with a tensor\n with dtype "+tensor2.dtype+". ")}})}var forward=function(backend2,save){var $axis=parseAxisParam(axis,$tensors[0].shape)[0];var outShape=computeOutShape$1($tensors.map(function(t){return t.shape}),$axis);if(sizeFromShape(outShape)===0){return tensor([],outShape)}$tensors=$tensors.filter(function(t){return t.size>0});if($tensors.length===1){return $tensors[0]}var shapes=$tensors.map(function(t){return t.shape});assertParamsConsistent(shapes,$axis);var res=backend2.concat($tensors,$axis);save($tensors);return res};var inputs=$tensors;var attr={axis};return ENGINE.runKernelFunc(forward,inputs,null,Concat3,attr)}var concat2=op({concat_});function sigmoid_(x){var $x=convertToTensor(x,"x","sigmoid");var inputs={x:$x};return ENGINE.runKernelFunc(function(backend2,save){var res=backend2.sigmoid($x);save([res]);return res},inputs,null,Sigmoid3)}var sigmoid2=op({sigmoid_});function slice_(x,begin,size){var $x=convertToTensor(x,"x","slice");if($x.rank===0){throw new Error("Slicing scalar is not possible")}var forward=function(backend2,save){var _a=parseSliceParams($x,begin,size),begin_=_a[0],size_=_a[1];assertParamsValid($x,begin_,size_);save([$x]);return backend2.slice($x,begin_,size_)};var inputs={x:$x};var attrs={begin,size};return ENGINE.runKernelFunc(forward,inputs,null,Slice6,attrs)}var slice2=op({slice_});function tanh_(x){var $x=convertToTensor(x,"x","tanh");var inputs={x:$x};return ENGINE.runKernelFunc(function(backend2,save){var y=backend2.tanh($x);save([y]);return y},inputs,null,Tanh3)}var tanh$1=op({tanh_});function basicLSTMCell_(forgetBias,lstmKernel,lstmBias,data2,c,h){var $forgetBias=convertToTensor(forgetBias,"forgetBias","basicLSTMCell");var $lstmKernel=convertToTensor(lstmKernel,"lstmKernel","basicLSTMCell");var $lstmBias=convertToTensor(lstmBias,"lstmBias","basicLSTMCell");var $data=convertToTensor(data2,"data","basicLSTMCell");var $c=convertToTensor(c,"c","basicLSTMCell");var $h=convertToTensor(h,"h","basicLSTMCell");var combined=concat2([$data,$h],1);var weighted=matMul(combined,$lstmKernel);var res=add$1(weighted,$lstmBias);var batchSize=res.shape[0];var sliceCols=res.shape[1]/4;var sliceSize=[batchSize,sliceCols];var i=slice2(res,[0,0],sliceSize);var j=slice2(res,[0,sliceCols],sliceSize);var f=slice2(res,[0,sliceCols*2],sliceSize);var o=slice2(res,[0,sliceCols*3],sliceSize);var newC=add$1(mul(sigmoid2(i),tanh$1(j)),mul($c,sigmoid2(add$1($forgetBias,f))));var newH=mul(tanh$1(newC),sigmoid2(o));return[newC,newH]}var basicLSTMCell=op({basicLSTMCell_});function batchToSpaceND_(x,blockShape,crops){var $x=convertToTensor(x,"x","batchToSpaceND");var prod2=blockShape.reduce(function(a,b){return a*b});assert($x.rank>=1+blockShape.length,function(){return"input rank is "+$x.rank+" but should be > than blockShape.length "+blockShape.length});assert(crops.length===blockShape.length,function(){return"crops.length is "+crops.length+" but should be equal to blockShape.length "+blockShape.length});assert($x.shape[0]%prod2===0,function(){return"input tensor batch is "+$x.shape[0]+" but is not divisible by the product of "+("the elements of blockShape "+blockShape.join(" * ")+" === "+prod2)});var forward=function(backend2){return backend2.batchToSpaceND($x,blockShape,crops)};var inputs={x:$x};var attrs={blockShape,crops};return ENGINE.runKernelFunc(forward,inputs,null,BatchToSpaceND,attrs)}var batchToSpaceND=op({batchToSpaceND_});function xAs4D(x){var x4D;if(x.rank===0||x.rank===1){x4D=reshape2(x,[1,1,1,x.size])}else if(x.rank===2){x4D=reshape2(x,[1,1,x.shape[0],x.shape[1]])}else if(x.rank===3){x4D=reshape2(x,[1,x.shape[0],x.shape[1],x.shape[2]])}else{x4D=x}return x4D}function batchNorm_(x,mean2,variance,offset,scale,varianceEpsilon){if(varianceEpsilon==null){varianceEpsilon=.001}var $x=convertToTensor(x,"x","batchNorm");var $mean=convertToTensor(mean2,"mean","batchNorm");var $variance=convertToTensor(variance,"variance","batchNorm");var $scale;if(scale!=null){$scale=convertToTensor(scale,"scale","batchNorm")}var $offset;if(offset!=null){$offset=convertToTensor(offset,"offset","batchNorm")}assert($mean.rank===$variance.rank,function(){return"Batch normalization gradient requires mean and variance to have equal ranks."});assert($offset==null||$mean.rank===$offset.rank,function(){return"Batch normalization gradient requires mean and offset to have equal ranks."});assert($scale==null||$mean.rank===$scale.rank,function(){return"Batch normalization gradient requires mean and scale to have equal ranks."});var x4D=xAs4D($x);var forward=function(backend2,save){save([x4D,$mean,$variance,$scale]);return backend2.batchNorm(x4D,as1DOr4D($mean),as1DOr4D($variance),as1DOr4D($offset),as1DOr4D($scale),varianceEpsilon)};var inputs={x:x4D,scale:$scale,offset:$offset,mean:$mean,variance:$variance};var attrs={varianceEpsilon};var res=ENGINE.runKernelFunc(forward,inputs,null,FusedBatchNorm3,attrs);return reshape2(res,$x.shape)}function as1DOr4D(x){if(x==null){return null}if(x.rank===0){return reshape2(x,[x.size])}else if(x.rank===1){return x}else if(x.rank===2){return reshape2(x,[1,1,x.shape[0],x.shape[1]])}else if(x.rank===3){return reshape2(x,[1,x.shape[0],x.shape[1],x.shape[2]])}return x}var batchNorm=op({batchNorm_});function batchNorm2d_(x,mean2,variance,offset,scale,varianceEpsilon){var $x=convertToTensor(x,"x","batchNorm");var $mean=convertToTensor(mean2,"mean","batchNorm");var $variance=convertToTensor(variance,"variance","batchNorm");var $scale;if(scale!=null){$scale=convertToTensor(scale,"scale","batchNorm")}var $offset;if(offset!=null){$offset=convertToTensor(offset,"offset","batchNorm")}assert($x.rank===2,function(){return"Error in batchNorm2D: x must be rank 2 but got rank "+($x.rank+".")});assert($mean.rank===2||$mean.rank===1,function(){return"Error in batchNorm2D: mean must be rank 2 or rank 1 but "+("got rank "+$mean.rank+".")});assert($variance.rank===2||$variance.rank===1,function(){return"Error in batchNorm2D: variance must be rank 2 or rank 1 "+("but got rank "+$variance.rank+".")});if($scale!=null){assert($scale.rank===2||$scale.rank===1,function(){return"Error in batchNorm2D: scale must be rank 2 or rank 1 "+("but got rank "+$scale.rank+".")})}if($offset!=null){assert($offset.rank===2||$offset.rank===1,function(){return"Error in batchNorm2D: offset must be rank 2 or rank 1 "+("but got rank "+$offset.rank+".")})}return batchNorm($x,$mean,$variance,$offset,$scale,varianceEpsilon)}var batchNorm2d=op({batchNorm2d_});function batchNorm3d_(x,mean2,variance,offset,scale,varianceEpsilon){var $x=convertToTensor(x,"x","batchNorm");var $mean=convertToTensor(mean2,"mean","batchNorm");var $variance=convertToTensor(variance,"variance","batchNorm");var $scale;if(scale!=null){$scale=convertToTensor(scale,"scale","batchNorm")}var $offset;if(offset!=null){$offset=convertToTensor(offset,"offset","batchNorm")}assert($x.rank===3,function(){return"Error in batchNorm3D: x must be rank 3 but got rank "+($x.rank+".")});assert($mean.rank===3||$mean.rank===1,function(){return"Error in batchNorm3D: mean must be rank 3 or rank 1 but "+("got rank "+$mean.rank+".")});assert($variance.rank===3||$variance.rank===1,function(){return"Error in batchNorm3D: variance must be rank 3 or rank 1 "+("but got rank "+$variance.rank+".")});if($scale!=null){assert($scale.rank===3||$scale.rank===1,function(){return"Error in batchNorm3D: scale must be rank 3 or rank 1 "+("but got rank "+$scale.rank+".")})}if($offset!=null){assert($offset.rank===3||$offset.rank===1,function(){return"Error in batchNorm3D: offset must be rank 3 or rank 1 "+("but got rank "+$offset.rank+".")})}return batchNorm($x,$mean,$variance,$offset,$scale,varianceEpsilon)}var batchNorm3d=op({batchNorm3d_});function batchNorm4d_(x,mean2,variance,offset,scale,varianceEpsilon){var $x=convertToTensor(x,"x","batchNorm");var $mean=convertToTensor(mean2,"mean","batchNorm");var $variance=convertToTensor(variance,"variance","batchNorm");var $scale;if(scale!=null){$scale=convertToTensor(scale,"scale","batchNorm")}var $offset;if(offset!=null){$offset=convertToTensor(offset,"offset","batchNorm")}assert($x.rank===4,function(){return"Error in batchNorm4D: x must be rank 4 but got rank "+($x.rank+".")});assert($mean.rank===4||$mean.rank===1,function(){return"Error in batchNorm4D: mean must be rank 4 or rank 1 but "+("got rank "+$mean.rank+".")});assert($variance.rank===4||$variance.rank===1,function(){return"Error in batchNorm4D: variance must be rank 4 or rank 1 "+("but got rank "+$variance.rank+".")});if($scale!=null){assert($scale.rank===4||$scale.rank===1,function(){return"Error in batchNorm4D: scale must be rank 4 or rank 1 "+("but got rank "+$scale.rank+".")})}if($offset!=null){assert($offset.rank===4||$offset.rank===1,function(){return"Error in batchNorm4D: offset must be rank 4 or rank 1 "+("but got rank "+$offset.rank+".")})}return batchNorm($x,$mean,$variance,$offset,$scale,varianceEpsilon)}var batchNorm4d=op({batchNorm4d_});function broadcastTo_(x,shape){var input=convertToTensor(x,"broadcastTo","x");var xShape=input.shape;if(shape.some(function(d){return!(d>0)||d%1!==0})){throw new Error("broadcastTo(): Invalid broadcast shape ["+shape+"].")}if(shape.length<input.rank){throw new Error("broadcastTo(): shape.length="+shape.length+" < input.rank="+input.rank+".")}if(shape.length>input.rank){var newShape=input.shape.slice();while(newShape.length<shape.length){newShape.unshift(1)}input=reshape2(input,newShape)}var inputShape=input.shape;var reps=Array.from(shape);for(var i=shape.length-1;i>=0;i--){if(inputShape[i]===shape[i]){reps[i]=1}else if(input.shape[i]!==1){throw new Error("broadcastTo(): ["+xShape+"] cannot be broadcast to ["+shape+"].")}}var axes=reps.map(function(n,i2){return n>1?i2:-1}).filter(function(i2){return i2>=0});if(axes.length===0){return clone(input)}var forward=function(backend2){return backend2.tile(input,reps)};var inputs={x:input};var attrs={shape,inputShape};return ENGINE.runKernelFunc(forward,inputs,null,BroadcastTo,attrs)}var broadcastTo=op({broadcastTo_});function ceil_(x){var $x=convertToTensor(x,"x","ceil");var inputs={x:$x};return ENGINE.runKernelFunc(function(backend2){return backend2.ceil($x)},inputs,null,Ceil)}var ceil=op({ceil_});function clipByValue_(x,clipValueMin,clipValueMax){var $x=convertToTensor(x,"x","clipByValue");assert(clipValueMin<=clipValueMax,function(){return"Error in clip: min ("+clipValueMin+") must be "+("less than or equal to max ("+clipValueMax+").")});var inputs={x:$x};var attrs={clipValueMin,clipValueMax};return ENGINE.runKernelFunc(function(backend2,save){var res=backend2.clip($x,clipValueMin,clipValueMax);save([$x]);return res},inputs,null,ClipByValue3,attrs)}var clipByValue=op({clipByValue_});function concat1d_(tensors){return concat2(tensors,0)}var concat1d=op({concat1d_});function concat2d_(tensors,axis){return concat2(tensors,axis)}var concat2d=op({concat2d_});function concat3d_(tensors,axis){return concat2(tensors,axis)}var concat3d=op({concat3d_});function concat4d_(tensors,axis){return concat2(tensors,axis)}var concat4d=op({concat4d_});function conv2d_(x,filter,strides,pad3,dataFormat,dilations,dimRoundingMode){if(dataFormat===void 0){dataFormat="NHWC"}if(dilations===void 0){dilations=[1,1]}var $x=convertToTensor(x,"x","conv2d");var $filter=convertToTensor(filter,"filter","conv2d");var x4D=$x;var reshapedTo4D=false;if($x.rank===3){reshapedTo4D=true;x4D=reshape2($x,[1,$x.shape[0],$x.shape[1],$x.shape[2]])}assert(x4D.rank===4,function(){return"Error in conv2d: input must be rank 4, but got rank "+x4D.rank+"."});assert($filter.rank===4,function(){return"Error in conv2d: filter must be rank 4, but got rank "+($filter.rank+".")});if(dimRoundingMode!=null){assert(isInt(pad3),function(){return"Error in conv2d: pad must be an integer when using, "+("dimRoundingMode "+dimRoundingMode+" but got pad "+pad3+".")})}var inDepth=dataFormat==="NHWC"?x4D.shape[3]:x4D.shape[1];assert(inDepth===$filter.shape[2],function(){return"Error in conv2d: depth of input ("+inDepth+") must match "+("input depth for filter "+$filter.shape[2]+".")});assert(eitherStridesOrDilationsAreOne(strides,dilations),function(){return"Error in conv2D: Either strides or dilations must be 1. "+("Got strides "+strides+" and dilations '"+dilations+"'")});var forward=function(backend2,save){var $dataFormat=convertConv2DDataFormat(dataFormat);var convInfo=computeConv2DInfo(x4D.shape,$filter.shape,strides,dilations,pad3,dimRoundingMode,false,$dataFormat);var res2=backend2.conv2d(x4D,$filter,convInfo);save([x4D,$filter]);return res2};var inputs={x:x4D,filter:$filter};var attrs={strides,pad:pad3,dataFormat,dilations,dimRoundingMode};var res=ENGINE.runKernelFunc(forward,inputs,null,Conv2D3,attrs);if(reshapedTo4D){return reshape2(res,[res.shape[1],res.shape[2],res.shape[3]])}return res}var conv2d2=op({conv2d_});function conv1d_(x,filter,stride,pad3,dataFormat,dilation,dimRoundingMode){if(dataFormat===void 0){dataFormat="NWC"}if(dilation===void 0){dilation=1}var $x=convertToTensor(x,"x","conv1d");var $filter=convertToTensor(filter,"filter","conv1d");var x3D=$x;var reshapedTo3D=false;if($x.rank===2){reshapedTo3D=true;x3D=reshape2($x,[1,$x.shape[0],$x.shape[1]])}assert(x3D.rank===3,function(){return"Error in conv1d: input must be rank 3, but got rank "+x3D.rank+"."});assert($filter.rank===3,function(){return"Error in conv1d: filter must be rank 3, but got rank "+($filter.rank+".")});if(dimRoundingMode!=null){assert(isInt(pad3),function(){return"Error in conv1d: pad must be an integer when using, "+("dimRoundingMode "+dimRoundingMode+" but got pad "+pad3+".")})}assert(x3D.shape[2]===$filter.shape[1],function(){return"Error in conv1d: depth of input ("+x3D.shape[2]+") must match "+("input depth for filter "+$filter.shape[1]+".")});assert(eitherStridesOrDilationsAreOne(stride,dilation),function(){return"Error in conv1D: Either stride or dilation must be 1. "+("Got stride "+stride+" and dilation '"+dilation+"'")});assert(dataFormat==="NWC",function(){return"Error in conv1d: got dataFormat of "+dataFormat+" but only NWC is currently supported."});var filter4D=reshape2($filter,[1,$filter.shape[0],$filter.shape[1],$filter.shape[2]]);var input4D=reshape2(x3D,[x3D.shape[0],1,x3D.shape[1],x3D.shape[2]]);var strides=[1,stride];var dilations=[1,dilation];var conv2dDataFormat="NHWC";var res=conv2d2(input4D,filter4D,strides,pad3,conv2dDataFormat,dilations,dimRoundingMode);if(reshapedTo3D){return reshape2(res,[res.shape[2],res.shape[3]])}return reshape2(res,[res.shape[0],res.shape[2],res.shape[3]])}var conv1d=op({conv1d_});function conv2DBackpropInput_(xShape,dy,filter,strides,pad3,dataFormat,dimRoundingMode){if(dataFormat===void 0){dataFormat="NHWC"}assert(xShape.length===dy.rank,function(){return"Length of inShape "+("("+xShape.length+") and rank of dy ("+dy.rank+") must match")});var xShape4D=xShape;var dy4D=dy;var reshapedTo4D=false;if(dy.rank===3){reshapedTo4D=true;dy4D=reshape2(dy,[1,dy.shape[0],dy.shape[1],dy.shape[2]]);xShape4D=[1,xShape[0],xShape[1],xShape[2]]}assert(xShape4D.length===4,function(){return"Error in conv2dDerInput: inShape must be length 4, but got length "+(xShape4D.length+".")});assert(dy4D.rank===4,function(){return"Error in conv2dDerInput: dy must be rank 4, but got "+("rank "+dy4D.rank)});assert(filter.rank===4,function(){return"Error in conv2dDerInput: filter must be rank 4, but got "+("rank "+filter.rank)});var inDepth=dataFormat==="NHWC"?xShape4D[3]:xShape4D[1];var outDepth=dataFormat==="NHWC"?dy4D.shape[3]:dy4D.shape[1];assert(inDepth===filter.shape[2],function(){return"Error in conv2dDerInput: depth of input ("+inDepth+") must "+("match input depth for filter "+filter.shape[2]+".")});assert(outDepth===filter.shape[3],function(){return"Error in conv2dDerInput: depth of output ("+outDepth+") must "+("match output depth for filter "+filter.shape[3]+".")});if(dimRoundingMode!=null){assert(isInt(pad3),function(){return"Error in conv2dDerInput: pad must be an integer when using, "+("dimRoundingMode "+dimRoundingMode+" but got pad "+pad3+".")})}var forward=function(backend2,save){var dilations=1;var $dataFormat=convertConv2DDataFormat(dataFormat);var convInfo=computeConv2DInfo(xShape4D,filter.shape,strides,dilations,pad3,dimRoundingMode,false,$dataFormat);var res2=backend2.conv2dDerInput(dy4D,filter,convInfo);save([dy4D,filter]);return res2};var inputs={dy:dy4D,filter};var attrs={strides,pad:pad3,dataFormat,dimRoundingMode,inputShape:xShape4D};var res=ENGINE.runKernelFunc(forward,inputs,null,Conv2DBackpropInput3,attrs);if(reshapedTo4D){return reshape2(res,[res.shape[1],res.shape[2],res.shape[3]])}return res}var conv2DBackpropInput2=op({conv2DBackpropInput_});function conv2dTranspose_(x,filter,outputShape,strides,pad3,dimRoundingMode){var $x=convertToTensor(x,"x","conv2dTranspose");var $filter=convertToTensor(filter,"filter","conv2dTranspose");return conv2DBackpropInput2(outputShape,$x,$filter,strides,pad3,"NHWC",dimRoundingMode)}var conv2dTranspose=op({conv2dTranspose_});function conv3d_(x,filter,strides,pad3,dataFormat,dilations){if(dataFormat===void 0){dataFormat="NDHWC"}if(dilations===void 0){dilations=[1,1,1]}var $x=convertToTensor(x,"x","conv3d");var $filter=convertToTensor(filter,"filter","conv3d");var x5D=$x;var reshapedTo5D=false;if($x.rank===4){reshapedTo5D=true;x5D=reshape2($x,[1,$x.shape[0],$x.shape[1],$x.shape[2],$x.shape[3]])}assert(x5D.rank===5,function(){return"Error in conv3d: input must be rank 5, but got rank "+x5D.rank+"."});assert($filter.rank===5,function(){return"Error in conv3d: filter must be rank 5, but got rank "+($filter.rank+".")});assert(x5D.shape[4]===$filter.shape[3],function(){return"Error in conv3d: depth of input ("+x5D.shape[4]+") must match "+("input depth for filter "+$filter.shape[3]+".")});assert(eitherStridesOrDilationsAreOne(strides,dilations),function(){return"Error in conv3D: Either strides or dilations must be 1. "+("Got strides "+strides+" and dilations '"+dilations+"'")});assert(dataFormat==="NDHWC",function(){return"Error in conv3d: got dataFormat of "+dataFormat+" but only NDHWC is currently supported."});var forward=function(backend2,save){var convInfo=computeConv3DInfo(x5D.shape,$filter.shape,strides,dilations,pad3);var res2=backend2.conv3d(x5D,$filter,convInfo);save([x5D,$filter]);return res2};var inputs={x:x5D,filter:$filter};var attrs={strides,pad:pad3,dataFormat,dilations};var res=ENGINE.runKernelFunc(forward,inputs,null,Conv3D,attrs);if(reshapedTo5D){return reshape2(res,[res.shape[1],res.shape[2],res.shape[3],res.shape[4]])}return res}var conv3d=op({conv3d_});function conv3DBackpropInput_(xShape,dy,filter,strides,pad3){assert(xShape.length===dy.rank,function(){return"Length of inShape "+("("+xShape.length+") and rank of dy ("+dy.rank+") must match")});var xShape5D=xShape;var dy5D=dy;var reshapedTo5D=false;if(dy.rank===4){reshapedTo5D=true;dy5D=reshape2(dy,[1,dy.shape[0],dy.shape[1],dy.shape[2],dy.shape[3]]);xShape5D=[1,xShape[0],xShape[1],xShape[2],xShape[3]]}var inDepth=xShape5D[4];var outDepth=dy5D.shape[4];assert(xShape5D.length===5,function(){return"Error in conv3dDerInput: inShape must be length 5, but got length "+(xShape5D.length+".")});assert(dy5D.rank===5,function(){return"Error in conv3dDerInput: dy must be rank 5, but got "+("rank "+dy5D.rank)});assert(filter.rank===5,function(){return"Error in conv3dDerInput: filter must be rank 5, but got "+("rank "+filter.rank)});assert(inDepth===filter.shape[3],function(){return"Error in conv3dDerInput: depth of input ("+inDepth+") must "+("match input depth for filter "+filter.shape[3]+".")});assert(outDepth===filter.shape[4],function(){return"Error in conv3dDerInput: depth of output ("+outDepth+") must "+("match output depth for filter "+filter.shape[4]+".")});var forward=function(backend2){var dilations=1;var convInfo=computeConv3DInfo(xShape5D,filter.shape,strides,dilations,pad3);return backend2.conv3dDerInput(dy5D,filter,convInfo)};var inputs={dy:dy5D,filter};var attrs={pad:pad3,strides,inputShape:xShape5D};var res=ENGINE.runKernelFunc(forward,inputs,null,Conv3DBackpropInputV2,attrs);if(reshapedTo5D){return reshape2(res,[res.shape[1],res.shape[2],res.shape[3],res.shape[4]])}return res}var conv3DBackpropInput=op({conv3DBackpropInput_});function conv3dTranspose_(x,filter,outputShape,strides,pad3){var $x=convertToTensor(x,"x","conv3dTranspose");var $filter=convertToTensor(filter,"filter","conv3dTranspose");return conv3DBackpropInput(outputShape,$x,$filter,strides,pad3)}var conv3dTranspose=op({conv3dTranspose_});function cos_(x){var $x=convertToTensor(x,"x","cos");var inputs={x:$x};return ENGINE.runKernelFunc(function(backend2,save){var res=backend2.cos($x);save([$x]);return res},inputs,null,Cos3)}var cos=op({cos_});function cosh_(x){var $x=convertToTensor(x,"x","cosh");var inputs={x:$x};return ENGINE.runKernelFunc(function(backend2,save){var res=backend2.cosh($x);save([$x]);return res},inputs,null,Cosh)}var cosh=op({cosh_});function cumsum_(x,axis,exclusive,reverse3){if(axis===void 0){axis=0}if(exclusive===void 0){exclusive=false}if(reverse3===void 0){reverse3=false}var $x=convertToTensor(x,"x","cumsum");var forward=function(backend2,save){var permutation=getAxesPermutation([axis],$x.rank);var permutedX=$x;if(permutation!=null){permutedX=transpose2($x,permutation)}var permutedAxis=getInnerMostAxes(1,$x.rank)[0];var value=backend2.cumsum(permutedX,permutedAxis,exclusive,reverse3);save([$x]);if(permutation!=null){var reversePermutation=getUndoAxesPermutation(permutation);value=transpose2(value,reversePermutation)}return value};var inputs={x:$x};var attrs={axis,exclusive,reverse:reverse3};return ENGINE.runKernelFunc(forward,inputs,null,Cumsum3,attrs)}var cumsum2=op({cumsum_});function depthToSpace_(x,blockSize,dataFormat){if(dataFormat===void 0){dataFormat="NHWC"}var $x=convertToTensor(x,"x","depthToSpace");var inputHeight=dataFormat==="NHWC"?$x.shape[1]:$x.shape[2];var inputWidth=dataFormat==="NHWC"?$x.shape[2]:$x.shape[3];var inputDepth=dataFormat==="NHWC"?$x.shape[3]:$x.shape[1];assert(inputHeight*blockSize>=0,function(){return"Negative dimension size caused by overflow when multiplying\n "+inputHeight+" and "+blockSize+" for depthToSpace with input shape\n "+$x.shape});assert(inputWidth*blockSize>=0,function(){return"Negative dimension size caused by overflow when multiplying\n "+inputWidth+" and "+blockSize+" for depthToSpace with input shape\n "+$x.shape});assert(inputDepth%(blockSize*blockSize)===0,function(){return"Dimension size must be evenly divisible by "+blockSize*blockSize+" but is "+inputDepth+" for depthToSpace with input shape "+$x.shape});var forward=function(backend2){return backend2.depthToSpace($x,blockSize,dataFormat)};var inputs={x:$x};var attrs={blockSize,dataFormat};return ENGINE.runKernelFunc(forward,inputs,null,DepthToSpace3,attrs)}var depthToSpace2=op({depthToSpace_});function depthwiseConv2d_(x,filter,strides,pad3,dataFormat,dilations,dimRoundingMode){if(dataFormat===void 0){dataFormat="NHWC"}if(dilations===void 0){dilations=[1,1]}var $x=convertToTensor(x,"x","depthwiseConv2d");var $filter=convertToTensor(filter,"filter","depthwiseConv2d");var x4D=$x;var reshapedTo4D=false;if($x.rank===3){reshapedTo4D=true;x4D=reshape2($x,[1,$x.shape[0],$x.shape[1],$x.shape[2]])}assert(x4D.rank===4,function(){return"Error in depthwiseConv2d: input must be rank 4, but got "+("rank "+x4D.rank+".")});assert($filter.rank===4,function(){return"Error in depthwiseConv2d: filter must be rank 4, but got rank "+($filter.rank+".")});assert(x4D.shape[3]===$filter.shape[2],function(){return"Error in depthwiseConv2d: number of input channels "+("("+x4D.shape[3]+") must match the inChannels dimension in ")+("filter "+$filter.shape[2]+".")});if(dimRoundingMode!=null){assert(isInt(pad3),function(){return"Error in depthwiseConv2d: pad must be an integer when using, "+("dimRoundingMode "+dimRoundingMode+" but got pad "+pad3+".")})}var forward=function(backend2,save){if(dilations==null){dilations=[1,1]}assert(eitherStridesOrDilationsAreOne(strides,dilations),function(){return"Error in depthwiseConv2d: Either strides or dilations must be "+("1. Got strides "+strides+" and dilations '"+dilations+"'")});var convInfo=computeConv2DInfo(x4D.shape,$filter.shape,strides,dilations,pad3,dimRoundingMode,true);var res2=backend2.depthwiseConv2D(x4D,$filter,convInfo);save([x4D,$filter]);return res2};var inputs={x:x4D,filter:$filter};var attrs={strides,pad:pad3,dataFormat,dilations,dimRoundingMode};var res=ENGINE.runKernelFunc(forward,inputs,null,DepthwiseConv2dNative3,attrs);if(reshapedTo4D){return reshape2(res,[res.shape[1],res.shape[2],res.shape[3]])}return res}var depthwiseConv2d2=op({depthwiseConv2d_});function diag_(x){var $x=convertToTensor(x,"x","diag");var forward=function(backend2){var flat=reshape2($x,[$x.size]);var result=backend2.diag(flat);var outShape=x.shape.concat(x.shape);return reshape2(result,outShape)};var inputs={x:$x};return ENGINE.runKernelFunc(forward,inputs,null,Diag)}var diag=op({diag_});function dilation2d_(x,filter,strides,pad3,dilations,dataFormat){if(dilations===void 0){dilations=[1,1]}if(dataFormat===void 0){dataFormat="NHWC"}var $x=convertToTensor(x,"x","dilation2d");var $filter=convertToTensor(filter,"filter","dilation2d");assert($x.rank===3||$x.rank===4,function(){return"Error in dilation2d: input must be rank 3 or 4, but got rank "+($x.rank+".")});assert($filter.rank===3,function(){return"Error in dilation2d: filter must be rank 3, but got rank "+($filter.rank+".")});assert(dataFormat==="NHWC",function(){return"Error in dilation2d: Only NHWC is currently supported, "+("but got dataFormat of "+dataFormat)});var x4D=$x;var reshapedTo4D=false;if($x.rank===3){x4D=reshape2($x,[1,$x.shape[0],$x.shape[1],$x.shape[2]]);reshapedTo4D=true}var inputs={x:x4D,filter:$filter};var attrs={strides,pad:pad3,dilations};var res=ENGINE.runKernel(Dilation2D,inputs,attrs);if(reshapedTo4D){return reshape2(res,[res.shape[1],res.shape[2],res.shape[3]])}return res}var dilation2d=op({dilation2d_});function getBroadcastDims(inShape,outShape){var inRank=inShape.length;var dims=[];for(var i=0;i<inRank;i++){var dim=inRank-1-i;var a=inShape[dim]||1;var b=outShape[outShape.length-1-i]||1;if(b>1&&a===1){dims.unshift(dim)}}return dims}function getReductionAxes(inShape,outShape){var result=[];for(var i=0;i<outShape.length;i++){var inDim=inShape[inShape.length-i-1];var outAxis=outShape.length-i-1;var outDim=outShape[outAxis];if(inDim==null||inDim===1&&outDim>1){result.unshift(outAxis)}}return result}function assertAndGetBroadcastShape(shapeA,shapeB){var result=[];var l=Math.max(shapeA.length,shapeB.length);for(var i=0;i<l;i++){var a=shapeA[shapeA.length-i-1];if(a==null){a=1}var b=shapeB[shapeB.length-i-1];if(b==null){b=1}if(a===1){result.unshift(b)}else if(b===1){result.unshift(a)}else if(a!==b){var errMsg="Operands could not be broadcast together with shapes "+(shapeA+" and "+shapeB+".");throw Error(errMsg)}else{result.unshift(a)}}return result}function equal_(a,b){var _a;var $a=convertToTensor(a,"a","equal");var $b=convertToTensor(b,"b","equal");_a=makeTypesMatch($a,$b),$a=_a[0],$b=_a[1];assertAndGetBroadcastShape($a.shape,$b.shape);var forward=function(backend2){return backend2.equal($a,$b)};var inputs={a:$a,b:$b};return ENGINE.runKernelFunc(forward,inputs,null,Equal3)}var equal=op({equal_});function where_(condition,a,b){var $a=convertToTensor(a,"a","where");var $b=convertToTensor(b,"b","where");var $condition=convertToTensor(condition,"condition","where","bool");var broadcastShape=assertAndGetBroadcastShape($a.shape,$b.shape);var $broadcastedA=broadcastTo($a,broadcastShape);var $broadcastedB=broadcastTo($b,broadcastShape);if($condition.rank===1){assert($condition.shape[0]===$a.shape[0],function(){return"The first dimension of `a` must match the size of `condition`."})}if($condition.rank!==1){assertShapesMatch($condition.shape,$broadcastedB.shape,"Error in where: ")}var forward=function(backend2,save){var res=backend2.select($condition,$broadcastedA,$broadcastedB);save([$condition]);return res};var inputs={condition:$condition,t:$broadcastedA,e:$broadcastedB};return ENGINE.runKernelFunc(forward,inputs,null,SelectV23)}var where=op({where_});function zerosLike_(x){var $x=convertToTensor(x,"x","zerosLike");var inputs={x:$x};return ENGINE.runKernelFunc(function(backend2){return backend2.zerosLike($x)},inputs,null,ZerosLike3)}var zerosLike2=op({zerosLike_});function divNoNan_(a,b){var _a;var $a=convertToTensor(a,"a","div");var $b=convertToTensor(b,"b","div");_a=makeTypesMatch($a,$b),$a=_a[0],$b=_a[1];var divResult=div($a,$b);var zeros2=zerosLike2(divResult);var bEqualsZero=equal($b,zeros2);return where(bEqualsZero,zeros2,divResult)}var divNoNan=op({divNoNan_});function dot_(t1,t2){var $t1=convertToTensor(t1,"t1","dot");var $t2=convertToTensor(t2,"t2","dot");assert(($t1.rank===1||$t1.rank===2)&&($t2.rank===1||$t2.rank===2),function(){return"Error in dot: inputs must all be rank 1 or 2, but got ranks "+($t1.rank+" and "+$t2.rank+".")});var t1Inner=$t1.rank===1?$t1.size:$t1.shape[1];var t2Inner=$t2.rank===1?$t2.size:$t2.shape[0];assert(t1Inner===t2Inner,function(){return"Error in dot: inner dimensions of inputs must match, but got "+(t1Inner+" and "+t2Inner+".")});if($t1.rank===1&&$t2.rank===1){var t12D=reshape2($t1,[1,-1]);var t22D=reshape2($t2,[-1,1]);var t1t2=matMul(t12D,t22D);return reshape2(t1t2,[])}else if($t1.rank===1&&$t2.rank===2){var t12D=reshape2($t1,[1,-1]);var t22D=reshape2($t2,[$t2.shape[0],$t2.shape[1]]);var t1t2=matMul(t12D,t22D);return reshape2(t1t2,[t1t2.size])}else if($t1.rank===2&&$t2.rank===1){var t22D=reshape2($t2,[-1,1]);var t1t2=matMul($t1,t22D);return reshape2(t1t2,[t1t2.size])}else{var t22D=reshape2($t2,[$t2.shape[0],$t2.shape[1]]);var t1t2=matMul($t1,t22D);return t1t2}}var dot2=op({dot_});function elu_(x){var $x=convertToTensor(x,"x","elu");var forward=function(backend2,save){var y=backend2.elu($x);save([y]);return y};var inputs={x:$x};return ENGINE.runKernelFunc(forward,inputs,null,Elu)}var elu=op({elu_});function erf_(x){var $x=convertToTensor(x,"x","erf");assert($x.dtype==="int32"||$x.dtype==="float32",function(){return"Input dtype must be `int32` or `float32`."});if($x.dtype==="int32"){$x=cast2($x,"float32")}var inputs={x:$x};return ENGINE.runKernelFunc(function(backend2,save){var res=backend2.erf($x);save([$x]);return res},inputs,null,Erf)}var erf=op({erf_});function exp_(x){var $x=convertToTensor(x,"x","exp");var inputs={x:$x};return ENGINE.runKernelFunc(function(backend2,save){var res=backend2.exp($x);save([res]);return res},inputs,null,Exp3)}var exp=op({exp_});function expandDims_(x,axis){if(axis===void 0){axis=0}var parseAs=null;var $x=convertToTensor(x,"x","expandDims",parseAs);assert(axis<=$x.rank,function(){return"Axis must be <= rank of the tensor"});var newShape=$x.shape.slice();if(axis<0){assert(-($x.rank+1)<=axis,function(){return"Axis must be in the interval ["+-($x.rank+1)+", "+$x.rank+"]"});axis=$x.rank+axis+1}newShape.splice(axis,0,1);return reshape2($x,newShape)}var expandDims=op({expandDims_});function expm1_(x){var $x=convertToTensor(x,"x","expm1");var inputs={x:$x};return ENGINE.runKernelFunc(function(backend2,save){var res=backend2.expm1($x);save([$x]);return res},inputs,null,Expm1)}var expm1=op({expm1_});function tile_(x,reps){var parseAs=null;var $x=convertToTensor(x,"x","tile",parseAs);assert($x.rank===reps.length,function(){return"Error in transpose: rank of input "+$x.rank+" "+("must match length of reps "+reps+".")});var forward=function(backend2,save){var res=backend2.tile($x,reps);save([$x]);return res};var inputsToSave=[$x];var inputs={x:$x};var attrs={reps};return ENGINE.runKernelFunc(forward,inputs,null,Tile3,attrs,inputsToSave)}var tile2=op({tile_});function eye_(numRows,numColumns,batchShape,dtype){if(dtype===void 0){dtype="float32"}if(numColumns==null){numColumns=numRows}var buff=buffer2([numRows,numColumns],dtype);var n=numRows<=numColumns?numRows:numColumns;for(var i=0;i<n;++i){buff.set(1,i,i)}var out=reshape2(buff.toTensor(),[numRows,numColumns]);if(batchShape==null){return out}else{if(batchShape.length===1){return tile2(expandDims(out,0),[batchShape[0],1,1])}else if(batchShape.length===2){return tile2(expandDims(expandDims(out,0),0),[batchShape[0],batchShape[1],1,1])}else if(batchShape.length===3){return tile2(expandDims(expandDims(expandDims(out,0),0),0),[batchShape[0],batchShape[1],batchShape[2],1,1])}else{throw new Error("eye() currently supports only 1D and 2D "+("batchShapes, but received "+batchShape.length+"D."))}}}var eye=op({eye_});function fill2(shape,value,dtype){var attrs={shape,value,dtype};return ENGINE.runKernelFunc(function(backend2){return backend2.fill(shape,value,dtype)},{},null,Fill3,attrs)}function floor_(x){var $x=convertToTensor(x,"x","floor");var inputs={x:$x};return ENGINE.runKernelFunc(function(backend2){return backend2.floor($x)},inputs,null,Floor)}var floor=op({floor_});var PARALLELIZE_THRESHOLD=30;function computeOptimalWindowSize(inSize){if(inSize<=PARALLELIZE_THRESHOLD){return inSize}return nearestDivisor(inSize,Math.floor(Math.sqrt(inSize)))}function segOpComputeOptimalWindowSize(inSize,numSegments){var done=false;var res;if(inSize<=PARALLELIZE_THRESHOLD){res=inSize;done=true}else{res=nearestDivisor(inSize,Math.floor(Math.sqrt(inSize)))}while(!done){if(res>numSegments||res===inSize){done=true}else{res=nearestDivisor(inSize,res+1)}}return res}function computeOutShape$2(aShape,axis,numSegments){var outShape=[];var rank=aShape.length;for(var dim=0;dim<rank;dim++){if(dim!==axis){outShape.push(aShape[dim])}else{outShape.push(numSegments)}}return outShape}function collectGatherOpShapeInfo(x,indices,axis){var dimSize=x.shape[axis];var outputShape=[];var batchSize=1;var sliceSize=1;for(var i=0;i<axis;i++){outputShape.push(x.shape[i]);batchSize*=x.shape[i]}for(var i=0;i<indices.rank;i++){outputShape.push(indices.shape[i])}for(var i=axis+1;i<x.rank;i++){outputShape.push(x.shape[i]);sliceSize*=x.shape[i]}return{batchSize,sliceSize,dimSize,outputShape}}var segment_util={__proto__:null,segOpComputeOptimalWindowSize,computeOutShape:computeOutShape$2,collectGatherOpShapeInfo};function gather_(x,indices,axis){if(axis===void 0){axis=0}var $x=convertToTensor(x,"x","gather");var $indices=convertToTensor(indices,"indices","gather","int32");var inputs={x:$x,indices:$indices};var attrs={axis};var forward=function(backend2,save){var parsedAxis=parseAxisParam(axis,$x.shape)[0];var shapeInfo=collectGatherOpShapeInfo($x,$indices,parsedAxis);var res=backend2.gather($x,reshape2($indices,[$indices.size]),parsedAxis);save([$x,$indices]);return reshape2(res,shapeInfo.outputShape)};return ENGINE.runKernelFunc(forward,inputs,null,GatherV23,attrs)}var gather=op({gather_});function greater_(a,b){var _a;var $a=convertToTensor(a,"a","greater");var $b=convertToTensor(b,"b","greater");_a=makeTypesMatch($a,$b),$a=_a[0],$b=_a[1];assertAndGetBroadcastShape($a.shape,$b.shape);var forward=function(backend2){return backend2.greater($a,$b)};var inputs={a:$a,b:$b};return ENGINE.runKernelFunc(forward,inputs,null,Greater3)}var greater=op({greater_});function greaterEqual_(a,b){var _a;var $a=convertToTensor(a,"a","greaterEqual");var $b=convertToTensor(b,"b","greaterEqual");_a=makeTypesMatch($a,$b),$a=_a[0],$b=_a[1];assertAndGetBroadcastShape($a.shape,$b.shape);var forward=function(backend2,save){var res=backend2.greaterEqual($a,$b);save([$a,$b]);return res};var inputs={a:$a,b:$b};return ENGINE.runKernelFunc(forward,inputs,null,GreaterEqual3)}var greaterEqual=op({greaterEqual_});function imag_(input){var $input=convertToTensor(input,"input","imag");var forward=function(backend2){return backend2.imag($input)};var inputs={input:$input};return ENGINE.runKernelFunc(forward,inputs,null,Imag)}var imag=op({imag_});function isFinite_(x){var $x=convertToTensor(x,"x","isFinite");var inputs={x:$x};return ENGINE.runKernelFunc(function(backend2){return backend2.isFinite($x)},inputs,null,IsFinite)}var isFinite$1=op({isFinite_});function isInf_(x){var $x=convertToTensor(x,"x","isInf");var inputs={x:$x};return ENGINE.runKernelFunc(function(backend2){return backend2.isInf($x)},inputs,null,IsInf)}var isInf=op({isInf_});function isNaN_(x){var $x=convertToTensor(x,"x","isNaN");var inputs={x:$x};return ENGINE.runKernelFunc(function(backend2){return backend2.isNaN($x)},inputs,null,IsNan)}var isNaN$1=op({isNaN_});function maximum_(a,b){var _a;var $a=convertToTensor(a,"a","maximum");var $b=convertToTensor(b,"b","maximum");_a=makeTypesMatch($a,$b),$a=_a[0],$b=_a[1];if($a.dtype==="bool"){$a=cast2($a,"int32");$b=cast2($b,"int32")}assertAndGetBroadcastShape($a.shape,$b.shape);var forward=function(backend2,save){var res=backend2.maximum($a,$b);save([$a,$b]);return res};var inputs={a:$a,b:$b};return ENGINE.runKernelFunc(forward,inputs,null,Maximum3)}var maximum=op({maximum_});function scalar(value,dtype){if((isTypedArray(value)&&dtype!=="string"||Array.isArray(value))&&dtype!=="complex64"){throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)")}if(dtype==="string"&&isTypedArray(value)&&!(value instanceof Uint8Array)){throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.")}var shape=[];var inferredShape=[];return makeTensor(value,shape,inferredShape,dtype)}function leakyRelu_(x,alpha){if(alpha===void 0){alpha=.2}var $x=convertToTensor(x,"x","leakyRelu");return maximum(mul(scalar(alpha),$x),$x)}var leakyRelu=op({leakyRelu_});function less_(a,b){var _a;var $a=convertToTensor(a,"a","less");var $b=convertToTensor(b,"b","less");_a=makeTypesMatch($a,$b),$a=_a[0],$b=_a[1];assertAndGetBroadcastShape($a.shape,$b.shape);var forward=function(backend2){return backend2.less($a,$b)};var inputs={a:$a,b:$b};return ENGINE.runKernelFunc(forward,inputs,null,Less3)}var less=op({less_});function lessEqual_(a,b){var _a;var $a=convertToTensor(a,"a","lessEqual");var $b=convertToTensor(b,"b","lessEqual");_a=makeTypesMatch($a,$b),$a=_a[0],$b=_a[1];assertAndGetBroadcastShape($a.shape,$b.shape);var forward=function(backend2,save){var res=backend2.lessEqual($a,$b);save([$a,$b]);return res};var inputs={a:$a,b:$b};return ENGINE.runKernelFunc(forward,inputs,null,LessEqual3)}var lessEqual=op({lessEqual_});function linspace(start,stop,num){if(num<=0){throw new Error("The number of values should be positive.")}var attrs={start,stop,num};return ENGINE.runKernelFunc(function(backend2){return backend2.linspace(start,stop,num)},{},null,LinSpace,attrs)}function localResponseNormalization_(x,depthRadius,bias,alpha,beta){if(depthRadius===void 0){depthRadius=5}if(bias===void 0){bias=1}if(alpha===void 0){alpha=1}if(beta===void 0){beta=.5}var $x=convertToTensor(x,"x","localResponseNormalization");assert($x.rank===4||$x.rank===3,function(){return"Error in localResponseNormalization: x must be rank 3 or 4 but got\n rank "+$x.rank+"."});assert(isInt(depthRadius),function(){return"Error in localResponseNormalization: depthRadius must be an "+("integer but got depthRadius "+depthRadius+".")});var x4D=$x;var reshapedTo4D=false;if($x.rank===3){reshapedTo4D=true;x4D=reshape2($x,[1,$x.shape[0],$x.shape[1],$x.shape[2]])}var forward=function(backend2,save){var y=backend2.localResponseNormalization4D(x4D,depthRadius,bias,alpha,beta);save([x4D,y]);return y};var inputs={x:x4D};var attrs={depthRadius,bias,alpha,beta};var res=ENGINE.runKernelFunc(forward,inputs,null,LRN,attrs);if(reshapedTo4D){return reshape2(res,[res.shape[1],res.shape[2],res.shape[3]])}else{return res}}var localResponseNormalization=op({localResponseNormalization_});function log_(x){var $x=convertToTensor(x,"x","log");var inputs={x:$x};return ENGINE.runKernelFunc(function(backend2,save){var res=backend2.log($x);save([$x]);return res},inputs,null,Log3)}var log=op({log_});function log1p_(x){var $x=convertToTensor(x,"x","log1p");var inputs={x:$x};return ENGINE.runKernelFunc(function(backend2,save){var res=backend2.log1p($x);save([$x]);return res},inputs,null,Log1p)}var log1p=op({log1p_});function grad(f){assert(isFunction(f),function(){return"The f passed in grad(f) must be a function"});return function(x,dy){var $x=convertToTensor(x,"x","tf.grad",null);var $dy=dy!=null?convertToTensor(dy,"dy","tf.grad"):null;return ENGINE.tidy(function(){var _a=ENGINE.gradients(function(){return f($x)},[$x],$dy),value=_a.value,grads2=_a.grads;if($dy!=null){assertShapesMatch(value.shape,$dy.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)")}checkGrads(grads2);return grads2[0]})}}function grads(f){assert(isFunction(f),function(){return"The f passed in grads(f) must be a function"});return function(args,dy){assert(Array.isArray(args),function(){return"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s"});var $args=convertToTensorArray(args,"args","tf.grads",null);var $dy=dy!=null?convertToTensor(dy,"dy","tf.grads"):null;return ENGINE.tidy(function(){var _a=ENGINE.gradients(function(){return f.apply(void 0,$args)},$args,$dy),value=_a.value,grads2=_a.grads;if($dy!=null){assertShapesMatch(value.shape,$dy.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])")}checkGrads(grads2);return grads2})}}function valueAndGrad(f){assert(isFunction(f),function(){return"The f passed in valueAndGrad(f) must be a function"});return function(x,dy){assert(x instanceof Tensor,function(){return"The x passed in valueAndGrad(f)(x) must be a tensor"});assert(dy==null||dy instanceof Tensor,function(){return"The dy passed in valueAndGrad(f)(x, dy) must be a tensor"});var _a=ENGINE.gradients(function(){return f(x)},[x],dy),grads2=_a.grads,value=_a.value;checkGrads(grads2);return{grad:grads2[0],value}}}function valueAndGrads(f){assert(isFunction(f),function(){return"The f passed in valueAndGrads(f) must be a function"});return function(args,dy){assert(Array.isArray(args)&&args.every(function(arg){return arg instanceof Tensor}),function(){return"The args passed in valueAndGrads(f)(args) must be array of tensors"});assert(dy==null||dy instanceof Tensor,function(){return"The dy passed in valueAndGrads(f)(args, dy) must be a tensor"});var res=ENGINE.gradients(function(){return f.apply(void 0,args)},args,dy);if(dy!=null){assertShapesMatch(res.value.shape,dy.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])")}checkGrads(res.grads);return res}}function variableGrads(f,varList){assert(isFunction(f),function(){return"The f passed in variableGrads(f) must be a function"});assert(varList==null||Array.isArray(varList)&&varList.every(function(v){return v instanceof Variable}),function(){return"The varList passed in variableGrads(f, varList) must be an array of variables"});var specifiedVarList=varList!=null;if(!specifiedVarList){varList=[];for(var varName in ENGINE.registeredVariables){varList.push(ENGINE.registeredVariables[varName])}}var specifiedNonTrainable=specifiedVarList?varList.filter(function(variable2){return!variable2.trainable}):null;var originalVarCount=varList.length;varList=varList.filter(function(variable2){return variable2.trainable});assert(varList.length>0,function(){return"variableGrads() expects at least one of the input variables to "+("be trainable, but none of the "+originalVarCount+" variables is ")+"trainable."});var allowNoGradients=true;var _a=ENGINE.gradients(f,varList,null,allowNoGradients),value=_a.value,grads2=_a.grads;assert(grads2.some(function(g){return g!=null}),function(){return"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."});assert(value.rank===0,function(){return"The f passed in variableGrads(f) must return a scalar, but it "+("returned a rank-"+value.rank+" tensor")});var namedGrads={};varList.forEach(function(v,i){if(grads2[i]!=null){namedGrads[v.name]=grads2[i]}});if(specifiedNonTrainable!=null){specifiedNonTrainable.forEach(function(v){return namedGrads[v.name]=null})}return{value,grads:namedGrads}}function customGrad(f){return ENGINE.customGrad(f)}function checkGrads(grads2){var numNullGradients=grads2.filter(function(g){return g==null}).length;if(numNullGradients>0){throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that\n the f you passed encloses all operations that lead from x to y.")}}function neg_(x){var $x=convertToTensor(x,"x","neg");var inputs={x:$x};return ENGINE.runKernelFunc(function(backend2){return backend2.neg($x)},inputs,null,Negate3)}var neg=op({neg_});function softplus_(x){var $x=convertToTensor(x,"x","softplus");var inputs={x:$x};return ENGINE.runKernelFunc(function(backend2,save){var res=backend2.softplus($x);save([$x]);return res},inputs,null,Softplus)}var softplus=op({softplus_});function logSigmoid_(x){var $x=convertToTensor(x,"x","logSigmoid");var customOp=customGrad(function(x2){var value=neg(softplus(neg(x2)));var gradFunc=function(dy){var derX=mul(dy,sigmoid2(neg(x2)));return derX};return{value,gradFunc}});return customOp($x)}var logSigmoid=op({logSigmoid_});function max_(x,axis,keepDims){if(axis===void 0){axis=null}if(keepDims===void 0){keepDims=false}var $x=convertToTensor(x,"x","max");var forward=function(backend2,save){var origAxes=parseAxisParam(axis,$x.shape);var axes=origAxes;var permutedAxes=getAxesPermutation(axes,$x.rank);var maxInput=$x;if(permutedAxes!=null){maxInput=transpose2($x,permutedAxes);axes=getInnerMostAxes(axes.length,maxInput.rank)}var y=backend2.max(maxInput,axes);if(permutedAxes!=null){maxInput.dispose()}var res=y;if(keepDims){var expandedShape=expandShapeToKeepDim(res.shape,parseAxisParam(axis,$x.shape));res=reshape2(res,expandedShape);y.dispose()}save([$x,res]);return res};var inputs={x:$x};var attrs={reductionIndices:axis,keepDims};return ENGINE.runKernelFunc(forward,inputs,null,Max3,attrs)}var max2=op({max_});function sub_(a,b){var _a;var $a=convertToTensor(a,"a","sub");var $b=convertToTensor(b,"b","sub");_a=makeTypesMatch($a,$b),$a=_a[0],$b=_a[1];var forward=function(backend2,save){var res=backend2.subtract($a,$b);save([$a,$b]);return res};var inputs={a:$a,b:$b};return ENGINE.runKernelFunc(forward,inputs,null,Sub3)}var sub=op({sub_});function sum_(x,axis,keepDims){if(axis===void 0){axis=null}if(keepDims===void 0){keepDims=false}var $x=convertToTensor(x,"x","sum");if($x.dtype==="bool"){$x=cast2($x,"int32")}var forward=function(backend2,save){save([$x]);var axes=parseAxisParam(axis,$x.shape);var permutation=getAxesPermutation(axes,$x.rank);var reductionAxes=axes;var permutedX=$x;if(permutation!=null){permutedX=transpose2($x,permutation);reductionAxes=getInnerMostAxes(reductionAxes.length,$x.rank)}var value=backend2.sum(permutedX,reductionAxes);if(keepDims){var newShape=expandShapeToKeepDim(value.shape,axes);value=reshape2(value,newShape)}return value};var inputs={x:$x};var attrs={axis,keepDims};return ENGINE.runKernelFunc(forward,inputs,null,Sum3,attrs)}var sum$1=op({sum_});function logSoftmax_(logits,axis){if(axis===void 0){axis=-1}var $logits=convertToTensor(logits,"logits","logSoftmax");if(axis===-1){axis=$logits.rank-1}if(axis!==$logits.rank-1){throw Error("Log Softmax along a non-last dimension is not yet supported. "+("Logits was rank "+$logits.rank+" and axis was "+axis))}var forward=function(backend2,save){var keepDims=true;var xMax=max2(logits,axis,true);var shifted=sub(logits,xMax);var value=sub(cast2(shifted,"float32"),log(sum$1(exp(shifted),axis,keepDims)));save([value]);return value};var inputs={logits:$logits};var attrs={axis};return ENGINE.runKernelFunc(forward,inputs,null,LogSoftmax,attrs)}var logSoftmax=op({logSoftmax_});function logSumExp_(x,axis,keepDims){if(axis===void 0){axis=null}if(keepDims===void 0){keepDims=false}var $x=convertToTensor(x,"x","logSumExp");var axes=parseAxisParam(axis,$x.shape);var xMax=max2($x,axes,true);var a=sub($x,xMax);var b=exp(a);var c=sum$1(b,axes);var d=log(c);var res=add$1(reshape2(xMax,d.shape),d);if(keepDims){var newShape=expandShapeToKeepDim(res.shape,axes);return reshape2(res,newShape)}return res}var logSumExp=op({logSumExp_});function logicalAnd_(a,b){var $a=convertToTensor(a,"a","logicalAnd","bool");var $b=convertToTensor(b,"b","logicalAnd","bool");assertAndGetBroadcastShape($a.shape,$b.shape);var inputs={a:$a,b:$b};return ENGINE.runKernelFunc(function(backend2){return backend2.logicalAnd($a,$b)},inputs,null,LogicalAnd3)}var logicalAnd=op({logicalAnd_});function logicalNot_(x){var $x=convertToTensor(x,"x","logicalNot","bool");var inputs={x:$x};return ENGINE.runKernelFunc(function(backend2){return backend2.logicalNot($x)},inputs,null,LogicalNot)}var logicalNot=op({logicalNot_});function logicalOr_(a,b){var $a=convertToTensor(a,"a","logicalOr","bool");var $b=convertToTensor(b,"b","logicalOr","bool");assertAndGetBroadcastShape($a.shape,$b.shape);var inputs={a:$a,b:$b};return ENGINE.runKernelFunc(function(backend2){return backend2.logicalOr($a,$b)},inputs,null,LogicalOr)}var logicalOr=op({logicalOr_});function logicalXor_(a,b){var $a=convertToTensor(a,"a","logicalXor","bool");var $b=convertToTensor(b,"b","logicalXor","bool");assertAndGetBroadcastShape($a.shape,$b.shape);return logicalAnd(logicalOr(a,b),logicalNot(logicalAnd(a,b)))}var logicalXor=op({logicalXor_});function maxPool_(x,filterSize,strides,pad3,dimRoundingMode){var $x=convertToTensor(x,"x","maxPool");var dilations=1;var x4D=$x;var reshapedTo4D=false;if($x.rank===3){reshapedTo4D=true;x4D=reshape2($x,[1,$x.shape[0],$x.shape[1],$x.shape[2]])}assert(x4D.rank===4,function(){return"Error in maxPool: input must be rank 4 but got rank "+x4D.rank+"."});assert(eitherStridesOrDilationsAreOne(strides,dilations),function(){return"Error in maxPool: Either strides or dilations must be 1. "+("Got strides "+strides+" and dilations '"+dilations+"'")});if(dimRoundingMode!=null){assert(isInt(pad3),function(){return"Error in maxPool: pad must be an integer when using, "+("dimRoundingMode "+dimRoundingMode+" but got pad "+pad3+".")})}var forward=function(backend2,save){var convInfo=computePool2DInfo(x4D.shape,filterSize,strides,1,pad3,dimRoundingMode);var y;if(convInfo.filterWidth===1&&convInfo.filterHeight===1&&arraysEqual(convInfo.inShape,convInfo.outShape)){y=x4D.clone()}else{y=backend2.maxPool(x4D,convInfo)}save([x4D,y]);return y};var inputs={x:x4D};var attrs={filterSize,strides,pad:pad3,dimRoundingMode};var res=ENGINE.runKernelFunc(forward,inputs,null,MaxPool3,attrs);if(reshapedTo4D){return reshape2(res,[res.shape[1],res.shape[2],res.shape[3]])}return res}var maxPool2=op({maxPool_});function maxPool3d_(x,filterSize,strides,pad3,dimRoundingMode,dataFormat,dilations){if(filterSize===void 0){filterSize=[1,1,1]}if(dataFormat===void 0){dataFormat="NDHWC"}if(dilations==null){dilations=[1,1,1]}else{deprecationWarn2("dilations is deprecated, this field will be gone in v3.0.0.")}var $x=convertToTensor(x,"x","maxPool3d");var x5D=$x;var reshapedTo5D=false;if($x.rank===4){reshapedTo5D=true;x5D=reshape2($x,[1,$x.shape[0],$x.shape[1],$x.shape[2],$x.shape[3]])}assert(x5D.rank===5,function(){return"Error in maxPool3d: x must be rank 5 but got rank "+x5D.rank+"."});assert(dataFormat==="NDHWC",function(){return"Error in maxPool3d: Only NDHWC is currently supported, "+("but got dataFormat of "+dataFormat)});assert(eitherStridesOrDilationsAreOne(strides,dilations),function(){return"Error in maxPool3d: Either strides or dilations must be 1. "+("Got strides "+strides+" and dilations '"+dilations+"'")});if(dimRoundingMode!=null){assert(isInt(pad3),function(){return"Error in maxPool3d: pad must be an integer when using, "+("dimRoundingMode "+dimRoundingMode+" but got pad "+pad3+".")})}var forward=function(backend2,save){if(dilations==null){dilations=[1,1,1]}var convInfo=computePool3DInfo(x5D.shape,filterSize,strides,dilations,pad3,dimRoundingMode,dataFormat);var y=backend2.maxPool3d(x5D,convInfo);save([x5D,y]);return y};var inputs={x:x5D};var attrs={filterSize,strides,pad:pad3,dimRoundingMode,dataFormat,dilations};var res=ENGINE.runKernelFunc(forward,inputs,null,MaxPool3D,attrs);if(reshapedTo5D){return reshape2(res,[res.shape[1],res.shape[2],res.shape[3],res.shape[4]])}return res}var maxPool3d=op({maxPool3d_});function maxPoolWithArgmax_(x,filterSize,strides,pad3,includeBatchInIndex){if(includeBatchInIndex===void 0){includeBatchInIndex=false}var $x=convertToTensor(x,"x","maxPoolWithArgmax");var inputs={x:$x};var attrs={filterSize,strides,pad:pad3,includeBatchInIndex};var result=ENGINE.runKernel(MaxPoolWithArgmax,inputs,attrs);return{result:result[0],indexes:result[1]}}var maxPoolWithArgmax=op({maxPoolWithArgmax_});function zeros(shape,dtype){if(dtype===void 0){dtype="float32"}if(dtype==="complex64"){var real2=zeros(shape,"float32");var imag2=zeros(shape,"float32");return complex(real2,imag2)}var values=makeZerosTypedArray(sizeFromShape(shape),dtype);return ENGINE.makeTensor(values,shape,dtype)}function ones$1(shape,dtype){if(dtype===void 0){dtype="float32"}if(dtype==="complex64"){var real2=ones$1(shape,"float32");var imag2=zeros(shape,"float32");return complex(real2,imag2)}var values=makeOnesTypedArray(sizeFromShape(shape),dtype);return ENGINE.makeTensor(values,shape,dtype)}function mean_(x,axis,keepDims){if(axis===void 0){axis=null}if(keepDims===void 0){keepDims=false}var $x=convertToTensor(x,"x","mean");var axes=parseAxisParam(axis,$x.shape);var shapes=computeOutAndReduceShapes($x.shape,axes);var reduceShape=shapes[1];var reduceSize=sizeFromShape(reduceShape);var inputs={x:$x};var attrs={axis,keepDims};var forward=function(){var reduceSizeScalar=scalar(reduceSize);var xReduce=reduceSizeScalar.dtype===$x.dtype?$x:cast2($x,reduceSizeScalar.dtype);var res=div(xReduce,reduceSizeScalar);return sum$1(res,axis,keepDims)};var customOp=customGrad(function(x2){var value=ENGINE.runKernelFunc(forward,inputs,null,Mean,attrs);var gradFunc=function(dy){var expandedDyShape=x2.shape.slice();axes.forEach(function(axis2){expandedDyShape[axis2]=1});var expandedDy=reshape2(dy,expandedDyShape);var derX=div(mul(expandedDy,ones$1(x2.shape,"float32")),reduceSize);return derX};return{value,gradFunc}});return customOp($x)}var mean=op({mean_});function min_(x,axis,keepDims){if(axis===void 0){axis=null}if(keepDims===void 0){keepDims=false}var $x=convertToTensor(x,"x","min");var forward=function(backend2,save){var origAxes=parseAxisParam(axis,$x.shape);var axes=origAxes;var permutedAxes=getAxesPermutation(axes,$x.rank);var minInput=$x;if(permutedAxes!=null){minInput=transpose2($x,permutedAxes);axes=getInnerMostAxes(axes.length,$x.rank)}var y=backend2.min(minInput,axes);if(permutedAxes!=null){minInput.dispose()}var res=y;if(keepDims){var expandedShape=expandShapeToKeepDim(res.shape,origAxes);res=reshape2(y,expandedShape);y.dispose()}save([$x,res]);return res};var inputs={x:$x};var attrs={axis,keepDims};return ENGINE.runKernelFunc(forward,inputs,null,Min3,attrs)}var min2=op({min_});function minimum_(a,b){var _a;var $a=convertToTensor(a,"a","minimum");var $b=convertToTensor(b,"b","minimum");_a=makeTypesMatch($a,$b),$a=_a[0],$b=_a[1];if($a.dtype==="bool"){$a=cast2($a,"int32");$b=cast2($b,"int32")}assertAndGetBroadcastShape($a.shape,$b.shape);var forward=function(backend2,save){var res=backend2.minimum($a,$b);save([$a,$b]);return res};var inputs={a:$a,b:$b};return ENGINE.runKernelFunc(forward,inputs,null,Minimum3)}var minimum=op({minimum_});function mirrorPad_(x,paddings,mode){assert(mode==="reflect"||mode==="symmetric",function(){return"Invalid mode. Mode must be either reflect or symmetric. "+("Got "+mode+".")});var $x=convertToTensor(x,"x","mirrorPad");if($x.rank===0){throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad")}assert(paddings.length===$x.rank,function(){return"Padding doesn't match input. Must be "+$x.rank+". "+("Got "+paddings.length+".")});var shapeOffset=mode==="reflect"?1:0;var _loop_1=function(i2){assert(paddings[i2].length===2,function(){return"Invalid number of paddings. Must be length of 2 each."});assert(paddings[i2][0]>=0&&paddings[i2][0]<=$x.shape[i2]-shapeOffset&&paddings[i2][1]>=0&&paddings[i2][1]<=$x.shape[i2]-shapeOffset,function(){return"Padding in dimension "+i2+" cannot be greater than or equal "+("to "+($x.shape[i2]-shapeOffset)+" or less than 0 for input of ")+("shape "+$x.shape)})};for(var i=0;i<$x.rank;i++){_loop_1(i)}var attrs={paddings,mode};var inputs={x:$x};return ENGINE.runKernel(MirrorPad,inputs,attrs)}var mirrorPad=op({mirrorPad_});function mod_(a,b){var _a;var $a=convertToTensor(a,"a","mod");var $b=convertToTensor(b,"b","mod");_a=makeTypesMatch($a,$b),$a=_a[0],$b=_a[1];var forward=function(backend2,save){var res=backend2.mod($a,$b);save([$a,$b]);return res};var inputs={a:$a,b:$b};return ENGINE.runKernelFunc(forward,inputs,null,Mod)}var mod=op({mod_});function square_(x){var $x=convertToTensor(x,"x","square");var attrs={};var inputsToSave=[$x];var outputsToSave=[];return ENGINE.runKernelFunc(function(backend2,save){save([$x]);return backend2.square($x)},{x:$x},null,"Square",attrs,inputsToSave,outputsToSave)}var square=op({square_});function moments_(x,axis,keepDims){if(axis===void 0){axis=null}if(keepDims===void 0){keepDims=false}x=convertToTensor(x,"x","moments");var axes=parseAxisParam(axis,x.shape);var xMean=mean(x,axes,keepDims);var keepDimsShape=xMean.shape;if(!keepDims){keepDimsShape=expandShapeToKeepDim(xMean.shape,axes)}var devSquared=square(sub(cast2(x,"float32"),reshape2(xMean,keepDimsShape)));var variance=mean(devSquared,axes,keepDims);return{mean:xMean,variance}}var moments=op({moments_});function multiRNNCell_(lstmCells,data2,c,h){var $data=convertToTensor(data2,"data","multiRNNCell");var $c=convertToTensorArray(c,"c","multiRNNCell");var $h=convertToTensorArray(h,"h","multiRNNCell");var input=$data;var newStates=[];for(var i=0;i<lstmCells.length;i++){var output=lstmCells[i](input,$c[i],$h[i]);newStates.push(output[0]);newStates.push(output[1]);input=output[1]}var newC=[];var newH=[];for(var i=0;i<newStates.length;i+=2){newC.push(newStates[i]);newH.push(newStates[i+1])}return[newC,newH]}var multiRNNCell=op({multiRNNCell_});function multinomial_(logits,numSamples,seed,normalized){if(normalized===void 0){normalized=false}var $logits=convertToTensor(logits,"logits","multinomial");var numOutcomes=$logits.size;var origRank=$logits.rank;if(numOutcomes<2){throw new Error("Error in multinomial: you need at least 2 outcomes, but got "+(numOutcomes+"."))}if(origRank>2){throw new Error("Rank of probabilities must be 1 or 2, but is "+origRank)}seed=seed||Math.random();var logits2D=origRank===1?reshape2($logits,[1,-1]):$logits;var res=ENGINE.runKernelFunc(function(backend2){return backend2.multinomial(logits2D,normalized,numSamples,seed)},{logits2D});return origRank===1?reshape2(res,[res.size]):res}var multinomial=op({multinomial_});function notEqual_(a,b){var _a;var $a=convertToTensor(a,"a","notEqual");var $b=convertToTensor(b,"b","notEqual");_a=makeTypesMatch($a,$b),$a=_a[0],$b=_a[1];assertAndGetBroadcastShape($a.shape,$b.shape);var forward=function(backend2){return backend2.notEqual($a,$b)};var inputs={a:$a,b:$b};return ENGINE.runKernelFunc(forward,inputs,null,NotEqual3)}var notEqual=op({notEqual_});function real_(input){var $input=convertToTensor(input,"input","real");var forward=function(backend2){return backend2.real($input)};var inputs={input:$input};return ENGINE.runKernelFunc(forward,inputs,null,Real)}var real=op({real_});function onesLike_(x){var $x=convertToTensor(x,"x","onesLike");var forward=function(backend2,save){if($x.dtype==="complex64"){var r=onesLike2(real($x));var i=zerosLike2(imag($x));return complex(r,i)}return backend2.onesLike($x)};var inputs={x:$x};return ENGINE.runKernelFunc(forward,inputs,null,OnesLike3)}var onesLike2=op({onesLike_});function outerProduct_(v1,v2){var $v1=convertToTensor(v1,"v1","outerProduct");var $v2=convertToTensor(v2,"v2","outerProduct");assert($v1.rank===1&&$v2.rank===1,function(){return"Error in outerProduct: inputs must be rank 1, but got ranks "+($v1.rank+" and "+$v2.rank+".")});var v12D=reshape2($v1,[-1,1]);var v22D=reshape2($v2,[1,-1]);return matMul(v12D,v22D)}var outerProduct=op({outerProduct_});function pad_(x,paddings,constantValue){if(constantValue===void 0){constantValue=0}var $x=convertToTensor(x,"x","pad");if($x.rank===0){throw new Error("pad(scalar) is not defined. Pass non-scalar to pad")}var forward=function(backend2,save){save([$x]);return backend2.pad($x,paddings,constantValue)};var attrs={paddings,constantValue};var inputs={x:$x};return ENGINE.runKernelFunc(forward,inputs,null,PadV23,attrs)}var pad2=op({pad_});function pad1d_(x,paddings,constantValue){if(constantValue===void 0){constantValue=0}assert(paddings.length===2,function(){return"Invalid number of paddings. Must be length of 2."});return pad2(x,[paddings],constantValue)}var pad1d=op({pad1d_});function pad2d_(x,paddings,constantValue){if(constantValue===void 0){constantValue=0}assert(paddings.length===2&&paddings[0].length===2&&paddings[1].length===2,function(){return"Invalid number of paddings. Must be length of 2 each."});return pad2(x,paddings,constantValue)}var pad2d=op({pad2d_});function pad3d_(x,paddings,constantValue){if(constantValue===void 0){constantValue=0}assert(paddings.length===3&&paddings[0].length===2&&paddings[1].length===2&&paddings[2].length===2,function(){return"Invalid number of paddings. Must be length of 2 each."});return pad2(x,paddings,constantValue)}var pad3d=op({pad3d_});function pad4d_(x,paddings,constantValue){if(constantValue===void 0){constantValue=0}assert(paddings.length===4&&paddings[0].length===2&&paddings[1].length===2&&paddings[2].length===2&&paddings[3].length===2,function(){return"Invalid number of paddings. Must be length of 2 each."});return pad2(x,paddings,constantValue)}var pad4d=op({pad4d_});function spaceToBatchND_(x,blockShape,paddings){var $x=convertToTensor(x,"x","spaceToBatchND");assert($x.rank>=1+blockShape.length,function(){return"input rank "+$x.rank+" should be > than [blockShape] "+blockShape.length});assert(paddings.length===blockShape.length,function(){return"paddings.shape[0] "+paddings.length+" must be equal to [blockShape] "+blockShape.length});assert($x.shape.reduce(function(a,b,i){if(i>0&&i<=blockShape.length){return a&&(b+paddings[i-1][0]+paddings[i-1][1])%blockShape[i-1]===0}return a},true),function(){return"input spatial dimensions "+$x.shape.slice(1)+" with paddings "+paddings.toString()+" must be divisible by blockShapes "+blockShape.toString()});var forward=function(backend2){return backend2.spaceToBatchND($x,blockShape,paddings)};var inputs={x:$x};var attrs={blockShape,paddings};return ENGINE.runKernelFunc(forward,inputs,null,SpaceToBatchND,attrs)}var spaceToBatchND=op({spaceToBatchND_});function pool_(input,windowShape,poolingType,pad3,dilations,strides){if(dilations==null){dilations=[1,1]}if(strides==null){strides=1}if(pad3===0){pad3="valid"}var $x=convertToTensor(input,"x","maxPool");var x4D=$x;var reshapedTo4D=false;if($x.rank===3){reshapedTo4D=true;x4D=reshape2($x,[1,$x.shape[0],$x.shape[1],$x.shape[2]])}assert(eitherStridesOrDilationsAreOne(strides,dilations),function(){return"Error in pool: Either strides or dilations must be 1. "+("Got strides "+strides+" and dilations '"+dilations+"'")});var convInfo=computePool2DInfo(x4D.shape,windowShape,strides,dilations,pad3);var dilation=[convInfo.dilationHeight,convInfo.dilationWidth];var basePadding;if(pad3==="same"){basePadding=withSpaceToBatchBasePaddings([convInfo.filterHeight,convInfo.filterWidth],dilation)}else{basePadding=[[0,0],[0,0]]}var isDilationOne=dilation[0]===1&&dilation[1]===1;var _a=requiredSpaceToBatchPaddings([convInfo.inHeight,convInfo.inWidth],dilation,basePadding),adjustedPadding=_a[0],adjustedCrops=_a[1];var convertedPad=isDilationOne?pad3:"valid";var convertedX=isDilationOne?x4D:spaceToBatchND(x4D,dilation,adjustedPadding);var forwardOp=poolingType==="avg"?function(){return avgPool2(convertedX,windowShape,strides,convertedPad)}:function(){return maxPool2(convertedX,windowShape,strides,convertedPad)};var y=forwardOp();var res=isDilationOne?y:batchToSpaceND(y,dilation,adjustedCrops);if(reshapedTo4D){return reshape2(res,[res.shape[1],res.shape[2],res.shape[3]])}return res}function requiredSpaceToBatchPaddings(inputShape,blockShape,basePadding){var padStart=basePadding.map(function(b){return b[0]});var origPadEnd=basePadding.map(function(b){return b[1]});var fullInputShape=inputShape.concat(padStart,origPadEnd);var padEndExtra=blockShape.map(function(b,i){return(b-fullInputShape[i]%b)%b});var padEnd=origPadEnd.map(function(s,i){return s+padEndExtra[i]});var paddings=blockShape.map(function(_,i){return[padStart[i],padEnd[i]]});var crops=blockShape.map(function(_,i){return[0,padEndExtra[i]]});return[paddings,crops]}function withSpaceToBatchBasePaddings(filterShape,dilation){var dilatedFilterShape=filterShape.map(function(s,i){return s+(s-1)*(dilation[i]-1)});var padExtraShape=dilatedFilterShape.map(function(s){return s-1});var padExtraStart=padExtraShape.map(function(s){return Math.floor(s/2)});var padExtraEnd=padExtraShape.map(function(s,i){return s-padExtraStart[i]});return padExtraShape.map(function(_,i){return[padExtraStart[i],padExtraEnd[i]]})}var pool=op({pool_});function pow_(base,exp2){var _a;var $base=convertToTensor(base,"base","pow");var $exp=convertToTensor(exp2,"exp","pow");_a=makeTypesMatch($base,$exp),$base=_a[0],$exp=_a[1];var inputs={a:$base,b:$exp};var forward=function(backend2,save){var y=backend2.pow($base,$exp);save([$base,$exp,y]);return y};return ENGINE.runKernelFunc(forward,inputs,null,Pow3)}var pow=op({pow_});function prelu_(x,alpha){var $x=convertToTensor(x,"x","prelu");var $alpha=convertToTensor(alpha,"alpha","prelu");var forward=function(backend2,save){var res=backend2.prelu($x,$alpha);save([$x,$alpha]);return res};var inputs={x:$x,alpha:$alpha};return ENGINE.runKernelFunc(forward,inputs,null,Prelu3)}var prelu2=op({prelu_});function prod_(x,axis,keepDims){if(axis===void 0){axis=null}if(keepDims===void 0){keepDims=false}var $x=convertToTensor(x,"x","prod");if($x.dtype==="bool"){$x=cast2($x,"int32")}var forward=function(backend2){var axes=parseAxisParam(axis,$x.shape);var permutation=getAxesPermutation(axes,$x.rank);var reductionAxes=axes;var permutedX=$x;if(permutation!=null){permutedX=transpose2($x,permutation);reductionAxes=getInnerMostAxes(reductionAxes.length,$x.rank)}var value=backend2.prod(permutedX,reductionAxes);if(keepDims){var newShape=expandShapeToKeepDim(value.shape,axes);value=reshape2(value,newShape)}return value};var inputs={x:$x};var attrs={axis,keepDims};return ENGINE.runKernelFunc(forward,inputs,null,Prod,attrs)}var prod=op({prod_});function rand_(shape,randFunction,dtype){var size=sizeFromShape(shape);var values=null;if(dtype==null||dtype==="float32"){values=new Float32Array(size)}else if(dtype==="int32"){values=new Int32Array(size)}else if(dtype==="bool"){values=new Uint8Array(size)}else{throw new Error("Unknown data type "+dtype)}for(var i=0;i<size;i++){values[i]=randFunction()}return ENGINE.makeTensor(values,shape,dtype)}var rand=op({rand_});var commonjsGlobal=typeof globalThis!=="undefined"?globalThis:typeof window!=="undefined"?window:typeof global!=="undefined"?global:typeof self!=="undefined"?self:{};function createCommonjsModule(fn,module3){return module3={exports:{}},fn(module3,module3.exports),module3.exports}var alea=createCommonjsModule(function(module3){(function(global2,module4,define2){function Alea(seed){var me=this,mash=Mash();me.next=function(){var t=2091639*me.s0+me.c*23283064365386963e-26;me.s0=me.s1;me.s1=me.s2;return me.s2=t-(me.c=t|0)};me.c=1;me.s0=mash(" ");me.s1=mash(" ");me.s2=mash(" ");me.s0-=mash(seed);if(me.s0<0){me.s0+=1}me.s1-=mash(seed);if(me.s1<0){me.s1+=1}me.s2-=mash(seed);if(me.s2<0){me.s2+=1}mash=null}function copy(f,t){t.c=f.c;t.s0=f.s0;t.s1=f.s1;t.s2=f.s2;return t}function impl(seed,opts){var xg=new Alea(seed),state=opts&&opts.state,prng=xg.next;prng.int32=function(){return xg.next()*4294967296|0};prng.double=function(){return prng()+(prng()*2097152|0)*11102230246251565e-32};prng.quick=prng;if(state){if(typeof state=="object")copy(state,xg);prng.state=function(){return copy(xg,{})}}return prng}function Mash(){var n=4022871197;var mash=function(data2){data2=data2.toString();for(var i=0;i<data2.length;i++){n+=data2.charCodeAt(i);var h=.02519603282416938*n;n=h>>>0;h-=n;h*=n;n=h>>>0;h-=n;n+=h*4294967296}return(n>>>0)*23283064365386963e-26};return mash}if(module4&&module4.exports){module4.exports=impl}else if(define2&&define2.amd){define2(function(){return impl})}else{this.alea=impl}})(commonjsGlobal,module3,false)});var xor128=createCommonjsModule(function(module3){(function(global2,module4,define2){function XorGen(seed){var me=this,strseed="";me.x=0;me.y=0;me.z=0;me.w=0;me.next=function(){var t=me.x^me.x<<11;me.x=me.y;me.y=me.z;me.z=me.w;return me.w^=me.w>>>19^t^t>>>8};if(seed===(seed|0)){me.x=seed}else{strseed+=seed}for(var k=0;k<strseed.length+64;k++){me.x^=strseed.charCodeAt(k)|0;me.next()}}function copy(f,t){t.x=f.x;t.y=f.y;t.z=f.z;t.w=f.w;return t}function impl(seed,opts){var xg=new XorGen(seed),state=opts&&opts.state,prng=function(){return(xg.next()>>>0)/4294967296};prng.double=function(){do{var top=xg.next()>>>11,bot=(xg.next()>>>0)/4294967296,result=(top+bot)/(1<<21)}while(result===0);return result};prng.int32=xg.next;prng.quick=prng;if(state){if(typeof state=="object")copy(state,xg);prng.state=function(){return copy(xg,{})}}return prng}if(module4&&module4.exports){module4.exports=impl}else if(define2&&define2.amd){define2(function(){return impl})}else{this.xor128=impl}})(commonjsGlobal,module3,false)});var xorwow=createCommonjsModule(function(module3){(function(global2,module4,define2){function XorGen(seed){var me=this,strseed="";me.next=function(){var t=me.x^me.x>>>2;me.x=me.y;me.y=me.z;me.z=me.w;me.w=me.v;return(me.d=me.d+362437|0)+(me.v=me.v^me.v<<4^(t^t<<1))|0};me.x=0;me.y=0;me.z=0;me.w=0;me.v=0;if(seed===(seed|0)){me.x=seed}else{strseed+=seed}for(var k=0;k<strseed.length+64;k++){me.x^=strseed.charCodeAt(k)|0;if(k==strseed.length){me.d=me.x<<10^me.x>>>4}me.next()}}function copy(f,t){t.x=f.x;t.y=f.y;t.z=f.z;t.w=f.w;t.v=f.v;t.d=f.d;return t}function impl(seed,opts){var xg=new XorGen(seed),state=opts&&opts.state,prng=function(){return(xg.next()>>>0)/4294967296};prng.double=function(){do{var top=xg.next()>>>11,bot=(xg.next()>>>0)/4294967296,result=(top+bot)/(1<<21)}while(result===0);return result};prng.int32=xg.next;prng.quick=prng;if(state){if(typeof state=="object")copy(state,xg);prng.state=function(){return copy(xg,{})}}return prng}if(module4&&module4.exports){module4.exports=impl}else if(define2&&define2.amd){define2(function(){return impl})}else{this.xorwow=impl}})(commonjsGlobal,module3,false)});var xorshift7=createCommonjsModule(function(module3){(function(global2,module4,define2){function XorGen(seed){var me=this;me.next=function(){var X=me.x,i=me.i,t,v;t=X[i];t^=t>>>7;v=t^t<<24;t=X[i+1&7];v^=t^t>>>10;t=X[i+3&7];v^=t^t>>>3;t=X[i+4&7];v^=t^t<<7;t=X[i+7&7];t=t^t<<13;v^=t^t<<9;X[i]=v;me.i=i+1&7;return v};function init2(me2,seed2){var j,w,X=[];if(seed2===(seed2|0)){w=X[0]=seed2}else{seed2=""+seed2;for(j=0;j<seed2.length;++j){X[j&7]=X[j&7]<<15^seed2.charCodeAt(j)+X[j+1&7]<<13}}while(X.length<8)X.push(0);for(j=0;j<8&&X[j]===0;++j);if(j==8)w=X[7]=-1;else w=X[j];me2.x=X;me2.i=0;for(j=256;j>0;--j){me2.next()}}init2(me,seed)}function copy(f,t){t.x=f.x.slice();t.i=f.i;return t}function impl(seed,opts){if(seed==null)seed=+new Date;var xg=new XorGen(seed),state=opts&&opts.state,prng=function(){return(xg.next()>>>0)/4294967296};prng.double=function(){do{var top=xg.next()>>>11,bot=(xg.next()>>>0)/4294967296,result=(top+bot)/(1<<21)}while(result===0);return result};prng.int32=xg.next;prng.quick=prng;if(state){if(state.x)copy(state,xg);prng.state=function(){return copy(xg,{})}}return prng}if(module4&&module4.exports){module4.exports=impl}else if(define2&&define2.amd){define2(function(){return impl})}else{this.xorshift7=impl}})(commonjsGlobal,module3,false)});var xor4096=createCommonjsModule(function(module3){(function(global2,module4,define2){function XorGen(seed){var me=this;me.next=function(){var w=me.w,X=me.X,i=me.i,t,v;me.w=w=w+1640531527|0;v=X[i+34&127];t=X[i=i+1&127];v^=v<<13;t^=t<<17;v^=v>>>15;t^=t>>>12;v=X[i]=v^t;me.i=i;return v+(w^w>>>16)|0};function init2(me2,seed2){var t,v,i,j,w,X=[],limit=128;if(seed2===(seed2|0)){v=seed2;seed2=null}else{seed2=seed2+"\0";v=0;limit=Math.max(limit,seed2.length)}for(i=0,j=-32;j<limit;++j){if(seed2)v^=seed2.charCodeAt((j+32)%seed2.length);if(j===0)w=v;v^=v<<10;v^=v>>>15;v^=v<<4;v^=v>>>13;if(j>=0){w=w+1640531527|0;t=X[j&127]^=v+w;i=t==0?i+1:0}}if(i>=128){X[(seed2&&seed2.length||0)&127]=-1}i=127;for(j=4*128;j>0;--j){v=X[i+34&127];t=X[i=i+1&127];v^=v<<13;t^=t<<17;v^=v>>>15;t^=t>>>12;X[i]=v^t}me2.w=w;me2.X=X;me2.i=i}init2(me,seed)}function copy(f,t){t.i=f.i;t.w=f.w;t.X=f.X.slice();return t}function impl(seed,opts){if(seed==null)seed=+new Date;var xg=new XorGen(seed),state=opts&&opts.state,prng=function(){return(xg.next()>>>0)/4294967296};prng.double=function(){do{var top=xg.next()>>>11,bot=(xg.next()>>>0)/4294967296,result=(top+bot)/(1<<21)}while(result===0);return result};prng.int32=xg.next;prng.quick=prng;if(state){if(state.X)copy(state,xg);prng.state=function(){return copy(xg,{})}}return prng}if(module4&&module4.exports){module4.exports=impl}else if(define2&&define2.amd){define2(function(){return impl})}else{this.xor4096=impl}})(commonjsGlobal,module3,false)});var tychei=createCommonjsModule(function(module3){(function(global2,module4,define2){function XorGen(seed){var me=this,strseed="";me.next=function(){var b=me.b,c=me.c,d=me.d,a=me.a;b=b<<25^b>>>7^c;c=c-d|0;d=d<<24^d>>>8^a;a=a-b|0;me.b=b=b<<20^b>>>12^c;me.c=c=c-d|0;me.d=d<<16^c>>>16^a;return me.a=a-b|0};me.a=0;me.b=0;me.c=2654435769|0;me.d=1367130551;if(seed===Math.floor(seed)){me.a=seed/4294967296|0;me.b=seed|0}else{strseed+=seed}for(var k=0;k<strseed.length+20;k++){me.b^=strseed.charCodeAt(k)|0;me.next()}}function copy(f,t){t.a=f.a;t.b=f.b;t.c=f.c;t.d=f.d;return t}function impl(seed,opts){var xg=new XorGen(seed),state=opts&&opts.state,prng=function(){return(xg.next()>>>0)/4294967296};prng.double=function(){do{var top=xg.next()>>>11,bot=(xg.next()>>>0)/4294967296,result=(top+bot)/(1<<21)}while(result===0);return result};prng.int32=xg.next;prng.quick=prng;if(state){if(typeof state=="object")copy(state,xg);prng.state=function(){return copy(xg,{})}}return prng}if(module4&&module4.exports){module4.exports=impl}else if(define2&&define2.amd){define2(function(){return impl})}else{this.tychei=impl}})(commonjsGlobal,module3,false)});var seedrandom=createCommonjsModule(function(module3){(function(pool2,math2){var global2=this,width=256,chunks=6,digits=52,rngname="random",startdenom=math2.pow(width,chunks),significance=math2.pow(2,digits),overflow=significance*2,mask=width-1,nodecrypto;function seedrandom2(seed,options,callback){var key=[];options=options==true?{entropy:true}:options||{};var shortseed=mixkey(flatten2(options.entropy?[seed,tostring(pool2)]:seed==null?autoseed():seed,3),key);var arc4=new ARC4(key);var prng=function(){var n=arc4.g(chunks),d=startdenom,x=0;while(n<significance){n=(n+x)*width;d*=width;x=arc4.g(1)}while(n>=overflow){n/=2;d/=2;x>>>=1}return(n+x)/d};prng.int32=function(){return arc4.g(4)|0};prng.quick=function(){return arc4.g(4)/4294967296};prng.double=prng;mixkey(tostring(arc4.S),pool2);return(options.pass||callback||function(prng2,seed2,is_math_call,state){if(state){if(state.S){copy(state,arc4)}prng2.state=function(){return copy(arc4,{})}}if(is_math_call){math2[rngname]=prng2;return seed2}else return prng2})(prng,shortseed,"global"in options?options.global:this==math2,options.state)}math2["seed"+rngname]=seedrandom2;function ARC4(key){var t,keylen=key.length,me=this,i=0,j=me.i=me.j=0,s=me.S=[];if(!keylen){key=[keylen++]}while(i<width){s[i]=i++}for(i=0;i<width;i++){s[i]=s[j=mask&j+key[i%keylen]+(t=s[i])];s[j]=t}(me.g=function(count){var t2,r=0,i2=me.i,j2=me.j,s2=me.S;while(count--){t2=s2[i2=mask&i2+1];r=r*width+s2[mask&(s2[i2]=s2[j2=mask&j2+t2])+(s2[j2]=t2)]}me.i=i2;me.j=j2;return r})(width)}function copy(f,t){t.i=f.i;t.j=f.j;t.S=f.S.slice();return t}function flatten2(obj,depth){var result=[],typ=typeof obj,prop;if(depth&&typ=="object"){for(prop in obj){try{result.push(flatten2(obj[prop],depth-1))}catch(e){}}}return result.length?result:typ=="string"?obj:obj+"\0"}function mixkey(seed,key){var stringseed=seed+"",smear,j=0;while(j<stringseed.length){key[mask&j]=mask&(smear^=key[mask&j]*19)+stringseed.charCodeAt(j++)}return tostring(key)}function autoseed(){try{var out;if(nodecrypto&&(out=nodecrypto.randomBytes)){out=out(width)}else{out=new Uint8Array(width);(global2.crypto||global2.msCrypto).getRandomValues(out)}return tostring(out)}catch(e){var browser2=global2.navigator,plugins=browser2&&browser2.plugins;return[+new Date,global2,plugins,global2.screen,tostring(pool2)]}}function tostring(a){return String.fromCharCode.apply(0,a)}mixkey(math2.random(),pool2);if(module3.exports){module3.exports=seedrandom2;try{nodecrypto=require("crypto")}catch(ex){}}})([],Math)});seedrandom.alea=alea;seedrandom.xor128=xor128;seedrandom.xorwow=xorwow;seedrandom.xorshift7=xorshift7;seedrandom.xor4096=xor4096;seedrandom.tychei=tychei;var seedrandom$1=seedrandom;var seedrandom_1=seedrandom$1.alea;var MPRandGauss=function(){function MPRandGauss2(mean2,stdDeviation,dtype,truncated,seed){this.mean=mean2;this.stdDev=stdDeviation;this.dtype=dtype;this.nextVal=NaN;this.truncated=truncated;if(this.truncated){this.upper=this.mean+this.stdDev*2;this.lower=this.mean-this.stdDev*2}var seedValue=seed?seed:Math.random();this.random=seedrandom_1(seedValue.toString())}MPRandGauss2.prototype.nextValue=function(){if(!isNaN(this.nextVal)){var value=this.nextVal;this.nextVal=NaN;return value}var resultX,resultY;var isValid=false;while(!isValid){var v1=void 0,v2=void 0,s=void 0;do{v1=2*this.random()-1;v2=2*this.random()-1;s=v1*v1+v2*v2}while(s>=1||s===0);var mul2=Math.sqrt(-2*Math.log(s)/s);resultX=this.mean+this.stdDev*v1*mul2;resultY=this.mean+this.stdDev*v2*mul2;if(!this.truncated||this.isValidTruncated(resultX)){isValid=true}}if(!this.truncated||this.isValidTruncated(resultY)){this.nextVal=this.convertValue(resultY)}return this.convertValue(resultX)};MPRandGauss2.prototype.convertValue=function(value){if(this.dtype==null||this.dtype==="float32"){return value}return Math.round(value)};MPRandGauss2.prototype.isValidTruncated=function(value){return value<=this.upper&&value>=this.lower};return MPRandGauss2}();var RandGamma=function(){function RandGamma2(alpha,beta,dtype,seed){this.alpha=alpha;this.beta=1/beta;this.dtype=dtype;var seedValue=seed?seed:Math.random();this.randu=seedrandom_1(seedValue.toString());this.randn=new MPRandGauss(0,1,dtype,false,this.randu());if(alpha<1){this.d=alpha+2/3}else{this.d=alpha-1/3}this.c=1/Math.sqrt(9*this.d)}RandGamma2.prototype.nextValue=function(){var x2,v0,v1,x,u,v;while(true){do{x=this.randn.nextValue();v=1+this.c*x}while(v<=0);v*=v*v;x2=x*x;v0=1-.331*x2*x2;v1=.5*x2+this.d*(1-v+Math.log(v));u=this.randu();if(u<v0||Math.log(u)<v1){break}}v=1/this.beta*this.d*v;if(this.alpha<1){v*=Math.pow(this.randu(),1/this.alpha)}return this.convertValue(v)};RandGamma2.prototype.convertValue=function(value){if(this.dtype==="float32"){return value}return Math.round(value)};return RandGamma2}();var UniformRandom=function(){function UniformRandom2(min3,max3,dtype,seed){var _this=this;if(min3===void 0){min3=0}if(max3===void 0){max3=1}this.canReturnFloat=function(){return _this.dtype==null||_this.dtype==="float32"};this.min=min3;this.range=max3-min3;this.dtype=dtype;if(seed==null){seed=Math.random()}if(typeof seed==="number"){seed=seed.toString()}if(!this.canReturnFloat()&&this.range<=1){throw new Error("The difference between "+min3+" - "+max3+" <= 1 and dtype is not float")}this.random=seedrandom_1(seed)}UniformRandom2.prototype.convertValue=function(value){if(this.canReturnFloat()){return value}return Math.round(value)};UniformRandom2.prototype.nextValue=function(){return this.convertValue(this.min+this.range*this.random())};return UniformRandom2}();function randomGamma_(shape,alpha,beta,dtype,seed){if(beta===void 0){beta=1}if(dtype===void 0){dtype="float32"}if(beta==null){beta=1}if(dtype==null){dtype="float32"}if(dtype!=="float32"&&dtype!=="int32"){throw new Error("Unsupported data type "+dtype)}var rgamma=new RandGamma(alpha,beta,dtype,seed);var res=buffer2(shape,dtype);for(var i=0;i<res.values.length;i++){res.values[i]=rgamma.nextValue()}return res.toTensor()}var randomGamma=op({randomGamma_});function randomNormal_(shape,mean2,stdDev,dtype,seed){if(mean2===void 0){mean2=0}if(stdDev===void 0){stdDev=1}if(dtype!=null&&dtype==="bool"){throw new Error("Unsupported data type "+dtype)}var randGauss=new MPRandGauss(mean2,stdDev,dtype,false,seed);var res=buffer2(shape,dtype);for(var i=0;i<res.values.length;i++){res.values[i]=randGauss.nextValue()}return res.toTensor()}var randomNormal=op({randomNormal_});function randomUniform_(shape,minval,maxval,dtype,seed){if(minval===void 0){minval=0}if(maxval===void 0){maxval=1}if(dtype===void 0){dtype="float32"}var res=buffer2(shape,dtype);var random=new UniformRandom(minval,maxval,null,seed);for(var i=0;i<res.values.length;i++){res.values[i]=random.nextValue()}return res.toTensor()}var randomUniform=op({randomUniform_});function tensor1d(values,dtype){assertNonNull(values);var inferredShape=inferShape(values,dtype);if(inferredShape.length!==1){throw new Error("tensor1d() requires values to be a flat/TypedArray")}var shape=null;return makeTensor(values,shape,inferredShape,dtype)}function range(start,stop,step2,dtype){if(step2===void 0){step2=1}if(dtype===void 0){dtype="float32"}if(step2===0){throw new Error("Cannot have a step of zero")}var forward=function(){var sameStartStop=start===stop;var increasingRangeNegativeStep=start<stop&&step2<0;var decreasingRangePositiveStep=stop<start&&step2>1;if(sameStartStop||increasingRangeNegativeStep||decreasingRangePositiveStep){return zeros([0],dtype)}var numElements=Math.abs(Math.ceil((stop-start)/step2));var values=makeZerosTypedArray(numElements,dtype);if(stop<start&&step2===1){step2=-1}values[0]=start;for(var i=1;i<values.length;i++){values[i]=values[i-1]+step2}return tensor1d(values,dtype)};var attrs={start,stop,step:step2,dtype};return ENGINE.runKernelFunc(forward,{},null,Range,attrs)}function reciprocal_(x){var $x=convertToTensor(x,"x","reciprocal");var inputs={x:$x};return ENGINE.runKernelFunc(function(backend2,save){var res=backend2.reciprocal($x);save([$x]);return res},inputs,null,Reciprocal)}var reciprocal=op({reciprocal_});function relu_(x){var $x=convertToTensor(x,"x","relu");var forward=function(backend2,save){save([$x]);if($x.dtype==="bool"){return cast2($x,"int32")}return backend2.relu($x)};var inputs={x:$x};return ENGINE.runKernelFunc(forward,inputs,null,Relu3)}var relu=op({relu_});function relu6_(x){var $x=convertToTensor(x,"x","relu6");var forward=function(backend2,save){save([$x]);if($x.dtype==="bool"){return cast2($x,"int32")}return backend2.relu6($x)};var inputs={x:$x};return ENGINE.runKernelFunc(forward,inputs,null,Relu63)}var relu6=op({relu6_});function reverse_(x,axis){var $x=convertToTensor(x,"x","reverse");var forward=function(backend2){var axes=parseAxisParam(axis,$x.shape);if($x.rank===0){return clone($x)}var res=backend2.reverse($x,axes);return reshape2(res,$x.shape)};var inputs={x:$x};var attrs={dims:axis};return ENGINE.runKernelFunc(forward,inputs,null,Reverse3,attrs)}var reverse2=op({reverse_});function reverse1d_(x){var $x=convertToTensor(x,"x","reverse");assert($x.rank===1,function(){return"Error in reverse1D: x must be rank 1 but got rank "+$x.rank+"."});return reverse2($x,0)}var reverse1d=op({reverse1d_});function reverse2d_(x,axis){var $x=convertToTensor(x,"x","reverse");assert($x.rank===2,function(){return"Error in reverse2D: x must be rank 2 but got rank "+$x.rank+"."});return reverse2($x,axis)}var reverse2d=op({reverse2d_});function reverse3d_(x,axis){var $x=convertToTensor(x,"x","reverse");assert($x.rank===3,function(){return"Error in reverse3D: x must be rank 3 but got rank "+$x.rank+"."});return reverse2($x,axis)}var reverse3d=op({reverse3d_});function reverse4d_(x,axis){var $x=convertToTensor(x,"x","reverse");assert($x.rank===4,function(){return"Error in reverse4D: x must be rank 4 but got rank "+$x.rank+"."});return reverse2($x,axis)}var reverse4d=op({reverse4d_});function round_(x){var $x=convertToTensor(x,"x","round");var inputs={x:$x};return ENGINE.runKernelFunc(function(backend2){return backend2.round($x)},inputs,null,Round)}var round=op({round_});function rsqrt_(x){var $x=convertToTensor(x,"x","rsqrt");var inputs={x:$x};return ENGINE.runKernelFunc(function(backend2,save){var res=backend2.rsqrt($x);save([$x]);return res},inputs,null,Rsqrt3)}var rsqrt=op({rsqrt_});function selu_(x){var $x=convertToTensor(x,"x","selu");var forward=function(backend2,save){var res=backend2.selu($x);save([$x]);return res};var inputs={x:$x};return ENGINE.runKernelFunc(forward,inputs,null,Selu)}var selu=op({selu_});function separableConv2d_(x,depthwiseFilter,pointwiseFilter,strides,pad3,dilation,dataFormat){if(dilation===void 0){dilation=[1,1]}if(dataFormat===void 0){dataFormat="NHWC"}var $x=convertToTensor(x,"x","separableConv2d");var $depthwiseFilter=convertToTensor(depthwiseFilter,"depthwiseFilter","separableConv2d");var $pointwiseFilter=convertToTensor(pointwiseFilter,"pointwiseFilter","separableConv2d");var x4D=$x;var reshapedTo4D=false;if($x.rank===3){reshapedTo4D=true;x4D=reshape2($x,[1,$x.shape[0],$x.shape[1],$x.shape[2]])}if(dataFormat==="NCHW"){throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported")}assert(x4D.rank===4,function(){return"Error in separableConv2d: input must be rank 4, but got "+("rank "+x4D.rank+".")});assert($depthwiseFilter.rank===4,function(){return"Error in separableConv2d: depthwise filter must be rank 4, but "+("got rank "+$depthwiseFilter.rank+".")});assert($pointwiseFilter.rank===4,function(){return"Error in separableConv2d: pointwise filter must be rank 4, but "+("got rank "+$depthwiseFilter.rank+".")});assert($pointwiseFilter.shape[0]===1,function(){return"Error in separableConv2d: the first dimension of pointwise filter "+(" must be 1, but got "+$pointwiseFilter.shape[0]+".")});assert($pointwiseFilter.shape[1]===1,function(){return"Error in separableConv2d: the second dimension of pointwise "+("filter must be 1, but got "+$pointwiseFilter.shape[1]+".")});var inChannels=$depthwiseFilter.shape[2];var channelMultiplier=$depthwiseFilter.shape[3];assert($pointwiseFilter.shape[2]===inChannels*channelMultiplier,function(){return"Error in separableConv2d: the third dimension of pointwise filter "+("must be "+inChannels*channelMultiplier+", ")+("but got "+$pointwiseFilter.shape[2]+".")});var depthwise=depthwiseConv2d2(x4D,$depthwiseFilter,strides,pad3,dataFormat,dilation);var pointwiseStride=1;var res=conv2d2(depthwise,$pointwiseFilter,pointwiseStride,"valid",dataFormat);if(reshapedTo4D){return reshape2(res,[res.shape[1],res.shape[2],res.shape[3]])}return res}var separableConv2d=op({separableConv2d_});function setdiff1dAsync_(x,y){return __awaiter(this,void 0,void 0,function(){var $x,$y,xVals,yVals,ySet,outputSize,i,buffer3,indices,i,p;return __generator(this,function(_a){switch(_a.label){case 0:$x=convertToTensor(x,"x","setdiff1d");$y=convertToTensor(y,"y","setdiff1d");assert($x.dtype===$y.dtype,function(){return"x and y should have the same dtype, but got x ("+$x.dtype+") and y ("+$y.dtype+")."});assert($x.rank===1,function(){return"x should be 1D tensor, but got x ("+$x.shape+")."});assert($y.rank===1,function(){return"y should be 1D tensor, but got y ("+$y.shape+")."});return[4,$x.data()];case 1:xVals=_a.sent();return[4,$y.data()];case 2:yVals=_a.sent();ySet=new Set(yVals);outputSize=0;for(i=0;i<xVals.length;i++){if(!ySet.has(xVals[i])){outputSize++}}buffer3=new TensorBuffer([outputSize],$x.dtype);indices=new TensorBuffer([outputSize],"int32");for(i=0,p=0;i<xVals.length;i++){if(!ySet.has(xVals[i])){buffer3.values[p]=xVals[i];indices.values[p]=i;p++}}return[2,[buffer3.toTensor(),indices.toTensor()]]}})})}var setdiff1dAsync=setdiff1dAsync_;function sign_(x){var $x=convertToTensor(x,"x","sign");var inputs={x:$x};return ENGINE.runKernelFunc(function(backend2){return backend2.sign($x)},inputs,null,Sign)}var sign=op({sign_});function sin_(x){var $x=convertToTensor(x,"x","sin");var inputs={x:$x};return ENGINE.runKernelFunc(function(backend2,save){var res=backend2.sin($x);save([$x]);return res},inputs,null,Sin3)}var sin=op({sin_});function sinh_(x){var $x=convertToTensor(x,"x","sinh");var inputs={x:$x};return ENGINE.runKernelFunc(function(backend2,save){var res=backend2.sinh($x);save([$x]);return res},inputs,null,Sinh)}var sinh=op({sinh_});function slice1d_(x,begin,size){var $x=convertToTensor(x,"x","slice1d");assert($x.rank===1,function(){return"slice1d expects a rank-1 tensor, but got a rank-"+$x.rank+" tensor"});return slice2($x,[begin],[size])}var slice1d=op({slice1d_});function slice2d_(x,begin,size){var $x=convertToTensor(x,"x","slice2d");assert($x.rank===2,function(){return"slice2d expects a rank-2 tensor, but got a rank-"+$x.rank+" tensor"});return slice2($x,begin,size)}var slice2d2=op({slice2d_});function slice3d_(x,begin,size){var $x=convertToTensor(x,"x","slice3d");assert($x.rank===3,function(){return"slice3d expects a rank-3 tensor, but got a rank-"+$x.rank+" tensor"});return slice2($x,begin,size)}var slice3d2=op({slice3d_});function slice4d_(x,begin,size){var $x=convertToTensor(x,"x","slice4d");assert($x.rank===4,function(){return"slice4d expects a rank-4 tensor, but got a rank-"+$x.rank+" tensor"});return slice2($x,begin,size)}var slice4d2=op({slice4d_});function softmax_(logits,dim){if(dim===void 0){dim=-1}var $logits=convertToTensor(logits,"logits","softmax","float32");if(dim===-1){dim=$logits.rank-1}if(dim!==$logits.rank-1){throw Error("Softmax along a non-last dimension is not yet supported. "+("Logits was rank "+$logits.rank+" and dim was "+dim))}var inputs={logits:$logits};var attrs={dim};return ENGINE.runKernelFunc(function(backend2,save){var y=backend2.softmax($logits,dim);save([y]);return y},inputs,null,Softmax3,attrs)}var softmax2=op({softmax_});function fft_(input){assert(input.dtype==="complex64",function(){return"The dtype for tf.spectral.fft() must be complex64 "+("but got "+input.dtype+".")});var inputs={input};return ENGINE.runKernelFunc(function(backend2){var innerDimensionSize=input.shape[input.shape.length-1];var batch=input.size/innerDimensionSize;var input2D=input.as2D(batch,innerDimensionSize);var result=backend2.fft(input2D);return result.reshape(input.shape)},inputs,null,FFT)}var fft=op({fft_});function ifft_(input){assert(input.dtype==="complex64",function(){return"The dtype for tf.spectral.ifft() must be complex64 "+("but got "+input.dtype+".")});var inputs={input};return ENGINE.runKernelFunc(function(backend2){var innerDimensionSize=input.shape[input.shape.length-1];var batch=input.size/innerDimensionSize;var input2D=reshape2(input,[batch,innerDimensionSize]);var result=backend2.ifft(input2D);return reshape2(result,input.shape)},inputs,null,IFFT)}var ifft=op({ifft_});function irfft_(input){var innerDimensionSize=input.shape[input.shape.length-1];var batch=input.size/innerDimensionSize;var ret;if(innerDimensionSize<=2){var complexInput=reshape2(input,[batch,innerDimensionSize]);ret=ifft(complexInput)}else{var outputShape=[batch,2*(innerDimensionSize-1)];var realInput=reshape2(real(input),[batch,innerDimensionSize]);var imagInput=reshape2(imag(input),[batch,innerDimensionSize]);var realConjugate=reverse2(slice2(realInput,[0,1],[batch,innerDimensionSize-2]),1);var imagConjugate=mul(reverse2(slice2(imagInput,[0,1],[batch,innerDimensionSize-2]),1),scalar(-1));var r=concat2([realInput,realConjugate],1);var i=concat2([imagInput,imagConjugate],1);var complexInput=reshape2(complex(r,i),[outputShape[0],outputShape[1]]);ret=ifft(complexInput)}ret=real(ret);if(input.rank===3&&input.shape[0]!==0){var temp=ret;var batch_1=input.shape[0];ret=reshape2(ret,[batch_1,ret.shape[0]/batch_1,ret.shape[1]]);temp.dispose()}return ret}var irfft=op({irfft_});function prepareSplitSize(x,numOrSizeSplits,axis){if(axis===void 0){axis=0}var splitSizes=[];if(typeof numOrSizeSplits==="number"){assert(x.shape[axis]%numOrSizeSplits===0,function(){return"Number of splits must evenly divide the axis."});splitSizes=new Array(numOrSizeSplits).fill(x.shape[axis]/numOrSizeSplits)}else{var numOfNegs=numOrSizeSplits.reduce(function(count,value){if(value===-1){count+=1}return count},0);assert(numOfNegs<=1,function(){return"There should be only one negative value in split array."});var negIndex=numOrSizeSplits.indexOf(-1);if(negIndex!==-1){var total=numOrSizeSplits.reduce(function(a,b){return b>0?a+b:a});numOrSizeSplits[negIndex]=x.shape[axis]-total}assert(x.shape[axis]===numOrSizeSplits.reduce(function(a,b){return a+b}),function(){return"The sum of sizes must match the size of the axis dimension."});splitSizes=numOrSizeSplits}return splitSizes}function split_(x,numOrSizeSplits,axis){if(axis===void 0){axis=0}var $x=convertToTensor(x,"x","split");var forward=function(backend2,_){var $axis=parseAxisParam(axis,$x.shape)[0];var splitSizes=prepareSplitSize($x,numOrSizeSplits,$axis);return backend2.split($x,splitSizes,$axis)};var inputs={x:$x};var attr={numOrSizeSplits,axis};return ENGINE.runKernelFunc(forward,inputs,null,SplitV2,attr)}var split2=op({split_});function rfft_(input,fftLength){assert(input.dtype==="float32",function(){return"The dtype for rfft() must be real value but got "+input.dtype});var innerDimensionSize=input.shape[input.shape.length-1];var batch=input.size/innerDimensionSize;var adjustedInput;if(fftLength!=null&&fftLength<innerDimensionSize){var begin=input.shape.map(function(v){return 0});var size=input.shape.map(function(v){return v});size[input.shape.length-1]=fftLength;adjustedInput=slice2(input,begin,size);innerDimensionSize=fftLength}else if(fftLength!=null&&fftLength>innerDimensionSize){var zerosShape=input.shape.map(function(v){return v});zerosShape[input.shape.length-1]=fftLength-innerDimensionSize;adjustedInput=concat2([input,zeros(zerosShape)],input.shape.length-1);innerDimensionSize=fftLength}else{adjustedInput=input}var zerosInput=zerosLike2(adjustedInput);var complexInput=reshape2(complex(adjustedInput,zerosInput),[batch,innerDimensionSize]);var ret=fft(complexInput);var half=Math.floor(innerDimensionSize/2)+1;var realValues=real(ret);var imagValues=imag(ret);var realComplexConjugate=split2(realValues,[half,innerDimensionSize-half],realValues.shape.length-1);var imagComplexConjugate=split2(imagValues,[half,innerDimensionSize-half],imagValues.shape.length-1);var outputShape=adjustedInput.shape.slice();outputShape[adjustedInput.shape.length-1]=half;return reshape2(complex(realComplexConjugate[0],imagComplexConjugate[0]),outputShape)}var rfft=op({rfft_});function sqrt_(x){var $x=convertToTensor(x,"x","sqrt");var inputs={x:$x};return ENGINE.runKernelFunc(function(backend2,save){var res=backend2.sqrt($x);save([$x]);return res},inputs,null,Sqrt3)}var sqrt=op({sqrt_});function squaredDifference_(a,b){var _a;var $a=convertToTensor(a,"a","squaredDifference");var $b=convertToTensor(b,"b","squaredDifference");_a=makeTypesMatch($a,$b),$a=_a[0],$b=_a[1];assertAndGetBroadcastShape($a.shape,$b.shape);var forward=function(backend2,save){var res=backend2.squaredDifference($a,$b);save([$a,$b]);return res};var inputs={a:$a,b:$b};var attrs={};return ENGINE.runKernelFunc(forward,inputs,null,SquaredDifference3,attrs)}var squaredDifference=op({squaredDifference_});function squeeze_(x,axis){var $x=convertToTensor(x,"x","squeeze");return reshape2($x,squeezeShape($x.shape,axis).newShape)}var squeeze=op({squeeze_});function stack_(tensors,axis){if(axis===void 0){axis=0}var $tensors=convertToTensorArray(tensors,"tensors","stack");assert($tensors.length>=1,function(){return"Pass at least one tensor to tf.stack"});if($tensors.length===1){return expandDims($tensors[0],axis)}var rank=$tensors[0].rank;var shape=$tensors[0].shape;var dtype=$tensors[0].dtype;assert(axis<=rank,function(){return"Axis must be <= rank of the tensor"});$tensors.forEach(function(t){assertShapesMatch(shape,t.shape,"All tensors passed to stack must have matching shapes");assert(dtype===t.dtype,function(){return"All tensors passed to stack must have matching dtypes"})});var expandedTensors=$tensors.map(function(t){return expandDims(t,axis)});return concat2(expandedTensors,axis)}var stack=op({stack_});function step_(x,alpha){if(alpha===void 0){alpha=0}var $x=convertToTensor(x,"x","step");var inputs={x:$x};var attrs={alpha};return ENGINE.runKernelFunc(function(backend2){return backend2.step($x,alpha)},inputs,null,Step,attrs)}var step=op({step_});function stridedSlice_(x,begin,end,strides,beginMask,endMask,ellipsisMask,newAxisMask,shrinkAxisMask){if(beginMask===void 0){beginMask=0}if(endMask===void 0){endMask=0}if(ellipsisMask===void 0){ellipsisMask=0}if(newAxisMask===void 0){newAxisMask=0}if(shrinkAxisMask===void 0){shrinkAxisMask=0}var $x=convertToTensor(x,"x","stridedSlice");var forward=function(backend2){if(strides==null){strides=new Array(begin.length)}var ellipsisAxes=maskToAxes(ellipsisMask);if(ellipsisAxes.length>1){throw new Error("Multiple ellipses in slice is not allowed.")}if(ellipsisMask!==0&&newAxisMask!==0){throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.")}if(ellipsisMask!==0&&shrinkAxisMask!==0){throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.")}var numInterpolatedAxes=$x.rank-begin.length;var expandAxes=maskToAxes(newAxisMask);var newShape=$x.shape.slice();expandAxes.forEach(function(axis){begin[axis]=0;end[axis]=1;newShape.splice(axis,0,1)});$x=reshape2($x,newShape);var _a=getNormalizedAxes($x.shape,ellipsisAxes,numInterpolatedAxes,begin,end,strides,beginMask,endMask,ellipsisMask),normalizedBegin=_a.begin,normalizedEnd=_a.end,normalizedStrides=_a.strides;begin=normalizedBegin;end=normalizedEnd;strides=normalizedStrides;var shrinkAxes=maskToAxes(shrinkAxisMask);shrinkAxes.forEach(function(axis){end[axis]=begin[axis]+1;strides[axis]=1});var size=computeOutShape2(begin,end,strides);var outShape=size.filter(function(_,axis){return shrinkAxes.indexOf(axis)===-1});var nonStrided=strides.every(function(v){return v===1});if(nonStrided){return reshape2(slice2($x,begin,size),outShape)}var res=backend2.stridedSlice($x,begin,end,strides);return reshape2(res,outShape)};var inputs={x:$x};var attrs={begin,end,strides,beginMask,endMask,ellipsisMask,newAxisMask,shrinkAxisMask};return ENGINE.runKernelFunc(forward,inputs,null,StridedSlice3,attrs)}var stridedSlice2=op({stridedSlice_});function tan_(x){var $x=convertToTensor(x,"x","tan");var inputs={x:$x};return ENGINE.runKernelFunc(function(backend2,save){var res=backend2.tan($x);save([$x]);return res},inputs,null,Tan)}var tan=op({tan_});function tensor2d(values,shape,dtype){assertNonNull(values);if(shape!=null&&shape.length!==2){throw new Error("tensor2d() requires shape to have two numbers")}var inferredShape=inferShape(values,dtype);if(inferredShape.length!==2&&inferredShape.length!==1){throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray")}if(inferredShape.length===1&&shape==null){throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray")}return makeTensor(values,shape,inferredShape,dtype)}function tensor4d(values,shape,dtype){assertNonNull(values);if(shape!=null&&shape.length!==4){throw new Error("tensor4d() requires shape to have four numbers")}var inferredShape=inferShape(values,dtype);if(inferredShape.length!==4&&inferredShape.length!==1){throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray")}if(inferredShape.length===1&&shape==null){throw new Error("tensor4d() requires shape to be provided when `values` are a flat array")}return makeTensor(values,shape,inferredShape,dtype)}function tensor5d(values,shape,dtype){assertNonNull(values);if(shape!=null&&shape.length!==5){throw new Error("tensor5d() requires shape to have five numbers")}var inferredShape=inferShape(values,dtype);if(inferredShape.length!==5&&inferredShape.length!==1){throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray")}if(inferredShape.length===1&&shape==null){throw new Error("tensor5d() requires shape to be provided when `values` are a flat array")}return makeTensor(values,shape,inferredShape,dtype)}function tensor6d(values,shape,dtype){assertNonNull(values);if(shape!=null&&shape.length!==6){throw new Error("tensor6d() requires shape to have six numbers")}var inferredShape=inferShape(values,dtype);if(inferredShape.length!==6&&inferredShape.length!==1){throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray")}if(inferredShape.length===1&&shape==null){throw new Error("tensor6d() requires shape to be provided when `values` are a flat array")}shape=shape||inferredShape;return makeTensor(values,shape,inferredShape,dtype)}function topk_(x,k,sorted){if(k===void 0){k=1}if(sorted===void 0){sorted=true}var $x=convertToTensor(x,"x","topk");if($x.rank===0){throw new Error("topk() expects the input to be of rank 1 or higher")}var lastDim=$x.shape[$x.shape.length-1];if(k>lastDim){throw new Error("'k' passed to topk() must be <= the last dimension ("+lastDim+") "+("but got "+k))}var inputs={x:$x};var attrs={k,sorted};var _a=ENGINE.runKernelFunc(function(b){return b.topk($x,k,sorted)},inputs,null,TopK,attrs),values=_a[0],indices=_a[1];return{values,indices}}var topk=op({topk_});function truncatedNormal_(shape,mean2,stdDev,dtype,seed){if(mean2===void 0){mean2=0}if(stdDev===void 0){stdDev=1}if(dtype!=null&&dtype==="bool"){throw new Error("Unsupported data type $ { dtype }")}var randGauss=new MPRandGauss(mean2,stdDev,dtype,true,seed);var res=buffer2(shape,dtype);for(var i=0;i<res.values.length;i++){res.values[i]=randGauss.nextValue()}return res.toTensor()}var truncatedNormal=op({truncatedNormal_});function unique_(x,axis){if(axis===void 0){axis=0}var $x=convertToTensor(x,"x","unique",null);assert($x.rank>0,function(){return"The input tensor must be at least 1D"});var inputs={x:$x};var attrs={axis};var _a=ENGINE.runKernel(Unique,inputs,attrs),values=_a[0],indices=_a[1];return{values,indices}}var unique=op({unique_});function unsortedSegmentSum_(x,segmentIds,numSegments){var $x=convertToTensor(x,"x","unsortedSegmentSum");var $segmentIds=convertToTensor(segmentIds,"segmentIds","unsortedSegmentSum","int32");assert(isInt(numSegments),function(){return"numSegments must be of dtype int"});var inputs={x:$x,segmentIds:$segmentIds};var attrs={numSegments};var forward=function(backend2,save){var res=backend2.unsortedSegmentSum($x,$segmentIds,numSegments);save([$segmentIds]);return res};return ENGINE.runKernelFunc(forward,inputs,null,UnsortedSegmentSum,attrs)}var unsortedSegmentSum=op({unsortedSegmentSum_});function unstack_(x,axis){if(axis===void 0){axis=0}var $x=convertToTensor(x,"x","unstack");assert(axis>=-$x.shape.length&&axis<$x.shape.length,function(){return"Axis = "+axis+" is not in [-"+$x.shape.length+", "+$x.shape.length+")"});if(axis<0){axis+=$x.shape.length}var inputs={value:$x};var attrs={axis};var forward=function(backend2){return backend2.unstack($x,axis)};return ENGINE.runKernelFunc(forward,inputs,null,Unpack3,attrs)}var unstack=op({unstack_});function variable(initialValue,trainable,name,dtype){if(trainable===void 0){trainable=true}return ENGINE.makeVariable(initialValue,trainable,name,dtype)}function whereImpl(condShape,condVals){var indices=[];for(var i=0;i<condVals.length;i++){if(condVals[i]){indices.push(i)}}var inBuffer=buffer2(condShape,"int32");var out=buffer2([indices.length,condShape.length],"int32");for(var i=0;i<indices.length;i++){var loc=inBuffer.indexToLoc(indices[i]);var offset=i*condShape.length;out.values.set(loc,offset)}return out.toTensor()}function whereAsync_(condition){return __awaiter(this,void 0,void 0,function(){var $condition,vals,res;return __generator(this,function(_a){switch(_a.label){case 0:$condition=convertToTensor(condition,"condition","whereAsync","bool");return[4,$condition.data()];case 1:vals=_a.sent();res=whereImpl($condition.shape,vals);if(condition!==$condition){$condition.dispose()}return[2,res]}})})}var whereAsync=whereAsync_;function booleanMaskAsync_(tensor2,mask,axis){return __awaiter(this,void 0,void 0,function(){var $tensor,$mask,axisFrom,maskDim,tensorShape,leadingSize,i,targetTensorShape,reshapedTensor,reshapedMask,positivePositions,indices,res;return __generator(this,function(_a){switch(_a.label){case 0:$tensor=convertToTensor(tensor2,"tensor","boolMask");$mask=convertToTensor(mask,"mask","boolMask","bool");axisFrom=axis==null?0:axis;maskDim=$mask.rank;tensorShape=$tensor.shape;assert(maskDim>0,function(){return"mask cannot be scalar"});assertShapesMatch(tensorShape.slice(axisFrom,axisFrom+maskDim),$mask.shape,"mask's shape must match the first K dimensions of tensor's shape,");leadingSize=1;for(i=axisFrom;i<axisFrom+maskDim;i++){leadingSize*=tensorShape[i]}targetTensorShape=tensorShape.slice(0,axisFrom).concat([leadingSize],tensorShape.slice(axisFrom+maskDim));reshapedTensor=reshape2($tensor,targetTensorShape);reshapedMask=reshape2($mask,[-1]);return[4,whereAsync(reshapedMask)];case 1:positivePositions=_a.sent();indices=squeeze(positivePositions,[1]);res=gather(reshapedTensor,indices,axisFrom);if(tensor2!==$tensor){$tensor.dispose()}if(mask!==$mask){$mask.dispose()}indices.dispose();reshapedTensor.dispose();reshapedMask.dispose();positivePositions.dispose();return[2,res]}})})}var booleanMaskAsync=booleanMaskAsync_;function notEqualStrict_(a,b){deprecationWarn2("strict variants of ops have been deprecated and will be removed in future");var $a=convertToTensor(a,"a","notEqualStrict");var $b=convertToTensor(b,"b","notEqualStrict");assertShapesMatch($a.shape,$b.shape,"Error in notEqualStrict: ");return notEqual($a,$b)}function lessStrict_(a,b){deprecationWarn2("strict variants of ops have been deprecated and will be removed in future");var $a=convertToTensor(a,"a","lessStrict");var $b=convertToTensor(b,"b","lessStrict");assertShapesMatch($a.shape,$b.shape,"Error in lessStrict: ");return less($a,$b)}function equalStrict_(a,b){deprecationWarn2("strict variants of ops have been deprecated and will be removed in future");var $a=convertToTensor(a,"a","equalStrict");var $b=convertToTensor(b,"b","equalStrict");assertShapesMatch($a.shape,$b.shape,"Error in equalStrict: ");return equal($a,$b)}function lessEqualStrict_(a,b){deprecationWarn2("strict variants of ops have been deprecated and will be removed in future");var $a=convertToTensor(a,"a","lessEqualStrict");var $b=convertToTensor(b,"b","lessEqualStrict");assertShapesMatch($a.shape,$b.shape,"Error in lessEqualStrict: ");return lessEqual($a,$b)}function greaterStrict_(a,b){deprecationWarn2("strict variants of ops have been deprecated and will be removed in future");var $a=convertToTensor(a,"a","greaterStrict");var $b=convertToTensor(b,"b","greaterStrict");assertShapesMatch($a.shape,$b.shape,"Error in greaterStrict: ");return greater($a,$b)}function greaterEqualStrict_(a,b){deprecationWarn2("strict variants of ops have been deprecated and will be removed in future");var $a=convertToTensor(a,"a","greaterEqualStrict");var $b=convertToTensor(b,"b","greaterEqualStrict");assertShapesMatch($a.shape,$b.shape,"Error in greaterEqualStrict: ");return greaterEqual($a,$b)}var equalStrict=op({equalStrict_});var greaterEqualStrict=op({greaterEqualStrict_});var greaterStrict=op({greaterStrict_});var lessEqualStrict=op({lessEqualStrict_});var lessStrict=op({lessStrict_});var notEqualStrict=op({notEqualStrict_});function addStrict_(a,b){deprecationWarn2("strict variants of ops have been deprecated and will be removed in future");var $a=convertToTensor(a,"a","addStrict");var $b=convertToTensor(b,"b","addStrict");assertShapesMatch($a.shape,$b.shape,"Error in addStrict: ");return add$1($a,$b)}function subStrict_(a,b){deprecationWarn2("strict variants of ops have been deprecated and will be removed in future");var $a=convertToTensor(a,"a","subStrict");var $b=convertToTensor(b,"b","subStrict");assertShapesMatch($a.shape,$b.shape,"Error in subStrict: ");return sub($a,$b)}function powStrict_(base,exp2){deprecationWarn2("strict variants of ops have been deprecated and will be removed in future");assertShapesMatch(base.shape,exp2.shape,"Error in powStrict: ");return pow(base,exp2)}function mulStrict_(a,b){deprecationWarn2("strict variants of ops have been deprecated and will be removed in future");var $a=convertToTensor(a,"a","mul");var $b=convertToTensor(b,"b","mul");assertShapesMatch($a.shape,$b.shape,"Error in multiplyStrict: ");return mul($a,$b)}function divStrict_(a,b){deprecationWarn2("strict variants of ops have been deprecated and will be removed in future");var $a=convertToTensor(a,"a","div");var $b=convertToTensor(b,"b","div");assertShapesMatch($a.shape,$b.shape,"Error in divideStrict: ");return div($a,$b)}function modStrict_(a,b){deprecationWarn2("strict variants of ops have been deprecated and will be removed in future");var $a=convertToTensor(a,"a","modStrict");var $b=convertToTensor(b,"b","modStrict");assertShapesMatch($a.shape,$b.shape,"Error in modStrict: ");return mod($a,$b)}function minimumStrict_(a,b){deprecationWarn2("strict variants of ops have been deprecated and will be removed in future");var $a=convertToTensor(a,"a","minimumStrict");var $b=convertToTensor(b,"b","minimumStrict");assertShapesMatch($a.shape,$b.shape,"Error in minimumStrict: ");return minimum($a,$b)}function maximumStrict_(a,b){deprecationWarn2("strict variants of ops have been deprecated and will be removed in future");var $a=convertToTensor(a,"a","maximumStrict");var $b=convertToTensor(b,"b","maximumStrict");assertShapesMatch($a.shape,$b.shape,"Error in maximumStrict: ");return maximum($a,$b)}function squaredDifferenceStrict_(a,b){deprecationWarn2("strict variants of ops have been deprecated and will be removed in future");var $a=convertToTensor(a,"a","squaredDifferenceStrict");var $b=convertToTensor(b,"b","squaredDifferenceStrict");assertShapesMatch($a.shape,$b.shape,"Error in squaredDifferenceStrict: ");return squaredDifference($a,$b)}var addStrict=op({addStrict_});var divStrict=op({divStrict_});var maximumStrict=op({maximumStrict_});var minimumStrict=op({minimumStrict_});var modStrict=op({modStrict_});var mulStrict=op({mulStrict_});var powStrict=op({powStrict_});var squaredDifferenceStrict=op({squaredDifferenceStrict_});var subStrict=op({subStrict_});function norm_(x,ord,axis,keepDims){if(ord===void 0){ord="euclidean"}if(axis===void 0){axis=null}if(keepDims===void 0){keepDims=false}x=convertToTensor(x,"x","norm");var norm2=normImpl(x,ord,axis);var keepDimsShape=norm2.shape;if(keepDims){var axes=parseAxisParam(axis,x.shape);keepDimsShape=expandShapeToKeepDim(norm2.shape,axes)}return reshape2(norm2,keepDimsShape)}function normImpl(x,p,axis){if(axis===void 0){axis=null}if(x.rank===0){return abs(x)}if(x.rank!==1&&axis===null){return normImpl(reshape2(x,[-1]),p,axis)}if(x.rank===1||typeof axis==="number"||Array.isArray(axis)&&axis.length===1){if(p===1){return sum$1(abs(x),axis)}if(p===Infinity){return max2(abs(x),axis)}if(p===-Infinity){return min2(abs(x),axis)}if(p==="euclidean"||p===2){return sqrt(sum$1(pow(abs(x),scalar(2,"int32")),axis))}throw new Error("Error in norm: invalid ord value: "+p)}if(Array.isArray(axis)&&axis.length===2){if(p===1){return max2(sum$1(abs(x),axis[0]),axis[1]-1)}if(p===Infinity){return max2(sum$1(abs(x),axis[1]),axis[0])}if(p===-Infinity){return min2(sum$1(abs(x),axis[1]),axis[0])}if(p==="fro"||p==="euclidean"){return sqrt(sum$1(square(x),axis))}throw new Error("Error in norm: invalid ord value: "+p)}throw new Error("Error in norm: invalid axis: "+axis)}var norm=op({norm_});function movingAverage_(v,x,decay,step2,zeroDebias){if(zeroDebias===void 0){zeroDebias=true}var $v=convertToTensor(v,"v","movingAverage");var $x=convertToTensor(x,"x","movingAverage");var $decay=convertToTensor(decay,"decay","movingAverage");assertTypesMatch($v,$x);assert(arraysEqual($v.shape,$x.shape),function(){return"Shape mismatch in v and x"});var one=scalar(1);var oneMinusDecay=sub(one,$decay);var update=mul(sub($x,$v),oneMinusDecay);if(zeroDebias){assert(step2!=null,function(){return"When using zeroDebias: true, step is required."});var $step=convertToTensor(step2,"step","movingAverage");update=div(update,sub(one,pow($decay,$step)))}return add$1($v,update)}var movingAverage=op({movingAverage_});function scatterND_(indices,updates,shape){var $indices=convertToTensor(indices,"indices","scatterND","int32");var $updates=convertToTensor(updates,"updates","scatterND");validateInput($updates,$indices,shape);var forward=function(backend2){return backend2.scatterND($indices,$updates,shape)};var inputs={indices:$indices,updates:$updates};var attrs={shape};return ENGINE.runKernelFunc(forward,inputs,null,ScatterNd3,attrs)}var scatterND=op({scatterND_});function validateInput$1(sparseIndices,sparseValues,outputShape,defaultValues){if(sparseIndices.dtype!=="int32"){throw new Error("tf.sparseToDense() expects the indices to be int32 type,"+(" but the dtype was "+sparseIndices.dtype+"."))}if(sparseIndices.rank>2){throw new Error("sparseIndices should be a scalar, vector, or matrix,"+(" but got shape "+sparseIndices.shape+"."))}var numElems=sparseIndices.rank>0?sparseIndices.shape[0]:1;var numDims=sparseIndices.rank>1?sparseIndices.shape[1]:1;if(outputShape.length!==numDims){throw new Error("outputShape has incorrect number of elements:,"+(" "+outputShape.length+", should be: "+numDims+"."))}var numValues=sparseValues.size;if(!(sparseValues.rank===0||sparseValues.rank===1&&numValues===numElems)){throw new Error("sparseValues has incorrect shape "+(sparseValues.shape+", should be [] or ["+numElems+"]"))}if(sparseValues.dtype!==defaultValues.dtype){throw new Error("sparseValues.dtype must match defaultValues.dtype")}}function sparseToDense_(sparseIndices,sparseValues,outputShape,defaultValue){if(defaultValue===void 0){defaultValue=0}var $sparseIndices=convertToTensor(sparseIndices,"sparseIndices","sparseToDense","int32");var $sparseValues=convertToTensor(sparseValues,"sparseValues","sparseToDense");var $defaultValue=convertToTensor(defaultValue,"defaultValue","sparseToDense",$sparseValues.dtype);validateInput$1($sparseIndices,$sparseValues,outputShape,$defaultValue);var inputs={sparseIndices:$sparseIndices,sparseValues:$sparseValues,defaultValue:$defaultValue};var attrs={outputShape};return ENGINE.runKernelFunc(function(backend2){return backend2.sparseToDense($sparseIndices,$sparseValues,outputShape,$defaultValue)},inputs,null,SparseToDense,attrs)}var sparseToDense=op({sparseToDense_});function gatherND_(x,indices){var $indices=convertToTensor(indices,"indices","gatherND","int32");var $x=convertToTensor(x,"x","gatherND");var forward=function(backend2){return backend2.gatherND($x,$indices)};var inputs={params:$x,indices:$indices};return ENGINE.runKernelFunc(forward,inputs,null,GatherNd3)}var gatherND=op({gatherND_});function getNoiseShape(x,noiseShape){if(noiseShape==null){return x.shape.slice()}if(arraysEqual(x.shape,noiseShape)){return noiseShape}if(x.shape.length===noiseShape.length){var newDimension=[];for(var i=0;i<x.shape.length;i++){if(noiseShape[i]==null&&x.shape[i]!=null){newDimension.push(x.shape[i])}else{newDimension.push(noiseShape[i])}}return newDimension}return noiseShape}function dropout_(x,rate,noiseShape,seed){var $x=convertToTensor(x,"x","dropout");assert($x.dtype==="float32",function(){return"x has to be a floating point tensor since it's going to be "+("scaled, but got a "+$x.dtype+" tensor instead.")});assert(rate>=0&&rate<1,function(){return"rate must be a float in the range [0, 1), but got "+rate+"."});if(rate===0){return x instanceof Tensor?$x.clone():$x}var $noiseShape=getNoiseShape($x,noiseShape);var keepProb=1-rate;var multiplier=div(floor(add$1(randomUniform($noiseShape,0,1,"float32",seed),keepProb)),keepProb);return mul($x,multiplier)}var dropout=op({dropout_});function enclosingPowerOfTwo(value){return Math.floor(Math.pow(2,Math.ceil(Math.log(value)/Math.log(2))))}function cosineWindow(windowLength,a,b){var even=1-windowLength%2;var newValues=new Float32Array(windowLength);for(var i=0;i<windowLength;++i){var cosArg=2*Math.PI*i/(windowLength+even-1);newValues[i]=a-b*Math.cos(cosArg)}return tensor1d(newValues,"float32")}function inTopKAsync_(predictions,targets,k){if(k===void 0){k=1}return __awaiter(this,void 0,void 0,function(){var $predictions,$targets,lastDim,predictionsVals,targetsVals,_a,batch,size,precision,b,offset,vals,valAndInd,i,i;return __generator(this,function(_b){switch(_b.label){case 0:$predictions=convertToTensor(predictions,"predictions","inTopK");$targets=convertToTensor(targets,"targets","inTopK");assert($predictions.rank>1,function(){return"inTopK() expects the predictions to be of rank 2 or higher, "+("but got "+$predictions.rank)});assert($predictions.rank-1===$targets.rank,function(){return"predictions rank should be 1 larger than targets rank, but got predictions rank "+($predictions.rank+" and targets rank "+$targets.rank)});assertShapesMatch($predictions.shape.slice(0,$predictions.shape.length-1),$targets.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");lastDim=$predictions.shape[$predictions.shape.length-1];assert(k>0&&k<=lastDim,function(){return"'k' passed to inTopK() must be > 0 && <= the predictions last "+("dimension ("+lastDim+"), but got "+k)});return[4,$predictions.data()];case 1:predictionsVals=_b.sent();return[4,$targets.data()];case 2:targetsVals=_b.sent();_a=[predictionsVals.length/lastDim,lastDim],batch=_a[0],size=_a[1];precision=getTypedArrayFromDType("bool",batch);for(b=0;b<batch;b++){offset=b*size;vals=predictionsVals.subarray(offset,offset+size);valAndInd=[];for(i=0;i<vals.length;i++){valAndInd.push({value:vals[i],index:i})}valAndInd.sort(function(a,b2){return b2.value-a.value});precision[b]=0;for(i=0;i<k;i++){if(valAndInd[i].index===targetsVals[b]){precision[b]=1;break}}}if(predictions!==$predictions){$predictions.dispose()}if(targets!==$targets){$targets.dispose()}return[2,tensor(precision,$targets.shape,"bool")]}})})}var inTopKAsync=inTopKAsync_;function conv2DBackpropFilter_(x,dy,filterShape,strides,pad3,dataFormat,dimRoundingMode){if(dataFormat===void 0){dataFormat="NHWC"}var x4D=x;if(x.rank===3){x4D=reshape2(x,[1,x.shape[0],x.shape[1],x.shape[2]])}var dy4D=dy;if(dy4D.rank===3){dy4D=reshape2(dy,[1,dy.shape[0],dy.shape[1],dy.shape[2]])}assert(x4D.rank===4,function(){return"Error in conv2dDerFilter: input must be rank 4, but got shape "+(x4D.shape+".")});assert(dy4D.rank===4,function(){return"Error in conv2dDerFilter: dy must be rank 4, but got shape "+(dy4D.shape+".")});assert(filterShape.length===4,function(){return"Error in conv2dDerFilter: filterShape must be length 4, but got "+(filterShape+".")});var inDepth=dataFormat==="NHWC"?x4D.shape[3]:x4D.shape[1];var outDepth=dataFormat==="NHWC"?dy4D.shape[3]:dy4D.shape[1];assert(inDepth===filterShape[2],function(){return"Error in conv2dDerFilter: depth of input "+inDepth+") must "+("match input depth in filter ("+filterShape[2]+".")});assert(outDepth===filterShape[3],function(){return"Error in conv2dDerFilter: depth of dy ("+outDepth+") must "+("match output depth for filter ("+filterShape[3]+").")});if(dimRoundingMode!=null){assert(isInt(pad3),function(){return"Error in conv2dDerFilter: pad must be an integer when using, "+("dimRoundingMode "+dimRoundingMode+" but got pad "+pad3+".")})}var forward=function(backend2){var dilations=1;var $dataFormat=convertConv2DDataFormat(dataFormat);var convInfo=computeConv2DInfo(x4D.shape,filterShape,strides,dilations,pad3,dimRoundingMode,false,$dataFormat);return backend2.conv2dDerFilter(x4D,dy4D,convInfo)};var inputs={x:x4D,dy:dy4D};var attrs={strides,pad:pad3,dataFormat,dimRoundingMode,filterShape};return ENGINE.runKernelFunc(forward,inputs,null,Conv2DBackpropFilter,attrs)}var conv2DBackpropFilter=op({conv2DBackpropFilter_});function getFusedDyActivation(dy,y,activation){if(activation==null||activation==="linear"){return dy}if(activation==="relu"){return mul(dy,step(y))}throw new Error("Cannot compute gradient for fused activation "+activation+".")}function getFusedBiasGradient(bias,dyActivation){var res=dyActivation;var reduceAxes=getReductionAxes(bias.shape,dyActivation.shape);if(reduceAxes.length>0){res=sum$1(res,reduceAxes)}return reshape2(res,bias.shape)}function applyActivation(x,activation,preluActivationWeights){if(activation==="linear"){return x}else if(activation==="relu"){return relu(x)}else if(activation==="elu"){return elu(x)}else if(activation==="relu6"){return relu6(x)}else if(activation==="prelu"){return prelu2(x,preluActivationWeights)}throw new Error("Unknown fused activation "+activation+".")}var shouldFuse=function(gradientDepth,activation){var gradientMode=gradientDepth>0;return!gradientMode||activation==="linear"};function fusedConv2d_(_a){var x=_a.x,filter=_a.filter,strides=_a.strides,pad3=_a.pad,_b=_a.dataFormat,dataFormat=_b===void 0?"NHWC":_b,_c=_a.dilations,dilations=_c===void 0?[1,1]:_c,dimRoundingMode=_a.dimRoundingMode,bias=_a.bias,_d=_a.activation,activation=_d===void 0?"linear":_d,preluActivationWeights=_a.preluActivationWeights;activation=activation||"linear";if(shouldFuse(ENGINE.state.gradientDepth,activation)===false){var result=conv2d2(x,filter,strides,pad3,dataFormat,dilations,dimRoundingMode);if(bias!=null){result=add$1(result,bias)}return applyActivation(result,activation,preluActivationWeights)}var $x=convertToTensor(x,"x","conv2d");var $filter=convertToTensor(filter,"filter","conv2d");var x4D=$x;var reshapedTo4D=false;if($x.rank===3){reshapedTo4D=true;x4D=reshape2($x,[1,$x.shape[0],$x.shape[1],$x.shape[2]])}assert(x4D.rank===4,function(){return"Error in fused conv2d: input must be rank 4, but got rank "+(x4D.rank+".")});assert($filter.rank===4,function(){return"Error in fused conv2d: filter must be rank 4, but got rank "+($filter.rank+".")});if(dimRoundingMode!=null){assert(isInt(pad3),function(){return"Error in fused conv2d: pad must be an integer when using, "+("dimRoundingMode "+dimRoundingMode+" but got pad "+pad3+".")})}assert(x4D.shape[3]===$filter.shape[2],function(){return"Error in conv2d: depth of input ("+x4D.shape[3]+") must match "+("input depth for filter "+$filter.shape[2]+".")});assert(eitherStridesOrDilationsAreOne(strides,dilations),function(){return"Error in conv2D: Either strides or dilations must be 1. "+("Got strides "+strides+" and dilations '"+dilations+"'")});assert(dataFormat==="NHWC",function(){return"Error in conv2d: got dataFormat of "+dataFormat+" but only NHWC is currently supported."});var convInfo=computeConv2DInfo(x4D.shape,$filter.shape,strides,dilations,pad3,dimRoundingMode);var $bias;if(bias!=null){$bias=convertToTensor(bias,"bias","fused conv2d");$bias=makeTypesMatch($bias,$x)[0];assertAndGetBroadcastShape(convInfo.outShape,$bias.shape)}var $preluActivationWeights;if(preluActivationWeights!=null){$preluActivationWeights=convertToTensor(preluActivationWeights,"prelu weights","fused conv2d")}var grad2=function(dy,saved){var _a2=saved,$filter2=_a2[0],x4D2=_a2[1],y=_a2[2],$bias2=_a2[3];var dyActivation=getFusedDyActivation(dy,y,activation);assert(tupleValuesAreOne(dilations),function(){return"Error in gradient of fused conv2D: dilation rates greater than 1 "+("are not yet supported in gradients. Got dilations '"+dilations+"'")});var xDer=conv2DBackpropInput2(x4D2.shape,dyActivation,$filter2,strides,pad3);var filterDer=conv2DBackpropFilter(x4D2,dyActivation,$filter2.shape,strides,pad3);var der=[xDer,filterDer];if($bias2!=null){var biasDer=getFusedBiasGradient($bias2,dyActivation);der.push(biasDer)}return der};var forward=function(backend2){var res=backend2.fusedConv2d({input:x4D,filter:$filter,convInfo,bias:$bias,activation,preluActivationWeights:$preluActivationWeights});return res};var inputs={x:x4D,filter:$filter,bias:$bias,preluActivationWeights:$preluActivationWeights};var attrs={strides,pad:pad3,dataFormat,dilations,dimRoundingMode,activation};if(bias==null){var customOp=customGrad(function(x4D2,filter2,save){var res=ENGINE.runKernelFunc(forward,inputs,null,FusedConv2D3,attrs);save([filter2,x4D2,res]);if(reshapedTo4D){res=reshape2(res,[res.shape[1],res.shape[2],res.shape[3]])}return{value:res,gradFunc:grad2}});return customOp(x4D,$filter)}else{var customOpWithBias=customGrad(function(x4D2,filter2,bias2,save){var res=ENGINE.runKernelFunc(forward,inputs,null,FusedConv2D3,attrs);save([filter2,x4D2,res,bias2]);if(reshapedTo4D){res=reshape2(res,[res.shape[1],res.shape[2],res.shape[3]])}return{value:res,gradFunc:grad2}});return customOpWithBias(x4D,$filter,$bias)}}var conv2d$1=op({fusedConv2d_});function depthwiseConv2dNativeBackpropFilter_(x,dy,filterShape,strides,pad3,dilations,dimRoundingMode){if(dilations===void 0){dilations=[1,1]}var x4D=x;if(x.rank===3){x4D=reshape2(x,[1,x.shape[0],x.shape[1],x.shape[2]])}var dy4D=dy;if(dy4D.rank===3){dy4D=reshape2(dy,[1,dy.shape[0],dy.shape[1],dy.shape[2]])}var forward=function(backend2){var convInfo=computeConv2DInfo(x.shape,filterShape,strides,dilations,pad3,dimRoundingMode,true);return backend2.depthwiseConv2DDerFilter(x4D,dy4D,convInfo)};var inputs={x:x4D,dy:dy4D};var attrs={strides,pad:pad3,dimRoundingMode,dilations,filterShape};return ENGINE.runKernelFunc(forward,inputs,null,DepthwiseConv2dNativeBackpropFilter,attrs)}var depthwiseConv2dNativeBackpropFilter=op({depthwiseConv2dNativeBackpropFilter_});function depthwiseConv2dNativeBackpropInput_(xShape,dy,filter,strides,pad3,dilations,dimRoundingMode){if(dilations===void 0){dilations=[1,1]}var dy4D=dy;var reshapedTo4D=false;if(dy.rank===3){reshapedTo4D=true;dy4D=reshape2(dy,[1,dy.shape[0],dy.shape[1],dy.shape[2]])}var forward=function(backend2){var convInfo=computeConv2DInfo(xShape,filter.shape,strides,dilations,pad3,dimRoundingMode,true);return backend2.depthwiseConv2DDerInput(dy4D,filter,convInfo)};var inputs={dy:dy4D,filter};var attrs={strides,pad:pad3,dimRoundingMode,dilations,inputShape:xShape};var res=ENGINE.runKernelFunc(forward,inputs,null,DepthwiseConv2dNativeBackpropInput,attrs);if(reshapedTo4D){return reshape2(res,[res.shape[1],res.shape[2],res.shape[3]])}return res}var depthwiseConv2dNativeBackpropInput=op({depthwiseConv2dNativeBackpropInput_});function fusedDepthwiseConv2d_(_a){var x=_a.x,filter=_a.filter,strides=_a.strides,pad3=_a.pad,_b=_a.dataFormat,dataFormat=_b===void 0?"NHWC":_b,_c=_a.dilations,dilations=_c===void 0?[1,1]:_c,dimRoundingMode=_a.dimRoundingMode,bias=_a.bias,_d=_a.activation,activation=_d===void 0?"linear":_d,preluActivationWeights=_a.preluActivationWeights;if(shouldFuse(ENGINE.state.gradientDepth,activation)===false){var result=depthwiseConv2d2(x,filter,strides,pad3,dataFormat,dilations,dimRoundingMode);if(bias!=null){result=add$1(result,bias)}return applyActivation(result,activation,preluActivationWeights)}var $x=convertToTensor(x,"x","depthwiseConv2d");var $filter=convertToTensor(filter,"filter","depthwiseConv2d");var x4D=$x;var reshapedTo4D=false;if($x.rank===3){reshapedTo4D=true;x4D=reshape2($x,[1,$x.shape[0],$x.shape[1],$x.shape[2]])}assert(x4D.rank===4,function(){return"Error in fused depthwiseConv2d: input must be rank 4, but got "+("rank "+x4D.rank+".")});assert($filter.rank===4,function(){return"Error in fused depthwiseConv2d: filter must be rank 4, "+("but got rank "+$filter.rank+".")});assert(x4D.shape[3]===$filter.shape[2],function(){return"Error in fused depthwiseConv2d: number of input channels "+("("+x4D.shape[3]+") must match the inChannels dimension in ")+("filter "+$filter.shape[2]+".")});if(dilations==null){dilations=[1,1]}assert(eitherStridesOrDilationsAreOne(strides,dilations),function(){return"Error in fused depthwiseConv2d: Either strides or dilations must "+("be 1. Got strides "+strides+" and dilations '"+dilations+"'")});if(dimRoundingMode!=null){assert(isInt(pad3),function(){return"Error in fused depthwiseConv2d: pad must be an integer when "+("using dimRoundingMode "+dimRoundingMode+" but got pad "+pad3+".")})}var convInfo=computeConv2DInfo(x4D.shape,$filter.shape,strides,dilations,pad3,dimRoundingMode,true);var $bias;if(bias!=null){$bias=convertToTensor(bias,"bias","fused conv2d");$bias=makeTypesMatch($bias,$x)[0];assertAndGetBroadcastShape(convInfo.outShape,$bias.shape)}var $preluActivationWeights;if(preluActivationWeights!=null){$preluActivationWeights=convertToTensor(preluActivationWeights,"prelu weights","fused depthwiseConv2d")}var grad2=function(dy,saved){assert(tupleValuesAreOne(dilations),function(){return"Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations "+("'"+dilations+"'")});var $filter2=saved[0],x4D2=saved[1],y=saved[2],bias2=saved[3];var dyActivation=getFusedDyActivation(dy,y,activation);var xDer=depthwiseConv2dNativeBackpropInput(x4D2.shape,dyActivation,$filter2,strides,pad3,dilations,dimRoundingMode);var filterDer=depthwiseConv2dNativeBackpropFilter(x4D2,dyActivation,$filter2.shape,strides,pad3,dilations,dimRoundingMode);if(bias2!=null){var biasDer=getFusedBiasGradient($bias,dyActivation);return[xDer,filterDer,biasDer]}return[xDer,filterDer]};var forward=function(backend2){var res=backend2.fusedDepthwiseConv2D({input:x4D,filter:$filter,convInfo,bias:$bias,activation,preluActivationWeights:$preluActivationWeights});return res};var inputs={x:x4D,filter:$filter,bias:$bias,preluActivationWeights:$preluActivationWeights};var attrs={strides,pad:pad3,dataFormat,dilations,dimRoundingMode,activation};if(bias==null){var customOp=customGrad(function(x4D2,filter2,save){var res=ENGINE.runKernelFunc(forward,inputs,null,FusedDepthwiseConv2D3,attrs);save([filter2,x4D2,res]);if(reshapedTo4D){res=reshape2(res,[res.shape[1],res.shape[2],res.shape[3]])}return{value:res,gradFunc:grad2}});return customOp(x4D,$filter)}else{var customOpWithBias=customGrad(function(x4D2,filter2,bias2,save){var res=ENGINE.runKernelFunc(forward,inputs,null,FusedDepthwiseConv2D3,attrs);save([filter2,x4D2,res,bias2]);if(reshapedTo4D){res=reshape2(res,[res.shape[1],res.shape[2],res.shape[3]])}return{value:res,gradFunc:grad2}});return customOpWithBias(x4D,$filter,$bias)}}var depthwiseConv2d$1=op({fusedDepthwiseConv2d_});function fusedMatMul_(_a){var _b;var a=_a.a,b=_a.b,_c=_a.transposeA,transposeA=_c===void 0?false:_c,_d=_a.transposeB,transposeB=_d===void 0?false:_d,bias=_a.bias,_e=_a.activation,activation=_e===void 0?"linear":_e,preluActivationWeights=_a.preluActivationWeights;if(shouldFuse(ENGINE.state.gradientDepth,activation)===false){var result=matMul(a,b,transposeA,transposeB);if(bias!=null){result=add$1(result,bias)}return applyActivation(result,activation,preluActivationWeights)}var $a=convertToTensor(a,"a","fused matMul");var $b=convertToTensor(b,"b","fused matMul");_b=makeTypesMatch($a,$b),$a=_b[0],$b=_b[1];var innerShapeA=transposeA?$a.shape[$a.rank-2]:$a.shape[$a.rank-1];var innerShapeB=transposeB?$b.shape[$b.rank-1]:$b.shape[$b.rank-2];var outerShapeA=transposeA?$a.shape[$a.rank-1]:$a.shape[$a.rank-2];var outerShapeB=transposeB?$b.shape[$b.rank-2]:$b.shape[$b.rank-1];var outerDimsA=$a.shape.slice(0,-2);var outerDimsB=$b.shape.slice(0,-2);var batchDimA=sizeFromShape(outerDimsA);var batchDimB=sizeFromShape(outerDimsB);assert($a.rank>=2&&$b.rank>=2&&$a.rank===$b.rank,function(){return"Error in fused matMul: inputs must have the same rank of at least "+("2, got ranks "+$a.rank+" and "+$b.rank+".")});assert(arraysEqual(outerDimsA,outerDimsB),function(){return"Error in fused matMul: outer dimensions ("+outerDimsA+") and ("+(outerDimsB+") of Tensors with shapes "+$a.shape+" and ")+($b.shape+" must match.")});assert(innerShapeA===innerShapeB,function(){return"Error in fused matMul: inner shapes ("+innerShapeA+") and ("+(innerShapeB+") of Tensors with shapes "+$a.shape+" and ")+($b.shape+" and transposeA="+transposeA)+(" and transposeB="+transposeB+" must match.")});var outShape=$a.shape.slice(0,-2).concat([outerShapeA,outerShapeB]);var a3D=transposeA?reshape2($a,[batchDimA,innerShapeA,outerShapeA]):reshape2($a,[batchDimA,outerShapeA,innerShapeA]);var b3D=transposeB?reshape2($b,[batchDimB,outerShapeB,innerShapeB]):reshape2($b,[batchDimB,innerShapeB,outerShapeB]);var $bias;if(bias!=null){$bias=convertToTensor(bias,"bias","fused matMul");$bias=makeTypesMatch($bias,$a)[0];assertAndGetBroadcastShape(outShape,$bias.shape)}var $preluActivationWeights;if(preluActivationWeights!=null){$preluActivationWeights=convertToTensor(preluActivationWeights,"prelu weights","fused matMul")}var grad2=function(dy,saved){var a3D2=saved[0],b3D2=saved[1],y=saved[2],$bias2=saved[3];var dyActivation=getFusedDyActivation(reshape2(dy,y.shape),y,activation);var aDer;var bDer;if(!transposeA&&!transposeB){aDer=matMul(dyActivation,b3D2,false,true);bDer=matMul(a3D2,dyActivation,true,false)}else if(!transposeA&&transposeB){aDer=matMul(dyActivation,b3D2,false,false);bDer=matMul(dyActivation,a3D2,true,false)}else if(transposeA&&!transposeB){aDer=matMul(b3D2,dyActivation,false,true);bDer=matMul(a3D2,dyActivation,false,false)}else{aDer=matMul(b3D2,dyActivation,true,true);bDer=matMul(dyActivation,a3D2,true,true)}if(bias!=null){var biasDer=getFusedBiasGradient($bias2,dyActivation);return[aDer,bDer,biasDer]}else{return[aDer,bDer]}};var forward=function(backend2){var y=backend2.fusedBatchMatMul({a:a3D,b:b3D,transposeA,transposeB,bias:$bias,activation,preluActivationWeights:$preluActivationWeights});return y};var inputs={a:a3D,b:b3D,bias:$bias,preluActivationWeights:$preluActivationWeights};var attrs={transposeA,transposeB,activation};if(bias==null){var customOp=customGrad(function(a3D2,b3D2,save){var res=ENGINE.runKernelFunc(forward,inputs,null,_FusedMatMul2,attrs);save([a3D2,b3D2,res]);return{value:reshape2(res,outShape),gradFunc:grad2}});return customOp(a3D,b3D)}else{var customOpWithBias=customGrad(function(a3D2,b3D2,$bias2,save){var res=ENGINE.runKernelFunc(forward,inputs,null,_FusedMatMul2,attrs);save([a3D2,b3D2,res,$bias2]);return{value:reshape2(res,outShape),gradFunc:grad2}});return customOpWithBias(a3D,b3D,$bias)}}var matMul$1=op({fusedMatMul_});var fused_ops={__proto__:null,conv2d:conv2d$1,depthwiseConv2d:depthwiseConv2d$1,matMul:matMul$1};function hammingWindow_(windowLength){return cosineWindow(windowLength,.54,.46)}var hammingWindow=op({hammingWindow_});function hannWindow_(windowLength){return cosineWindow(windowLength,.5,.5)}var hannWindow=op({hannWindow_});function frame_(signal2,frameLength,frameStep,padEnd,padValue){if(padEnd===void 0){padEnd=false}if(padValue===void 0){padValue=0}var start=0;var output=[];while(start+frameLength<=signal2.size){output.push(slice2(signal2,start,frameLength));start+=frameStep}if(padEnd){while(start<signal2.size){var padLen=start+frameLength-signal2.size;var pad3=concat2([slice2(signal2,start,frameLength-padLen),fill2([padLen],padValue)]);output.push(pad3);start+=frameStep}}if(output.length===0){return tensor2d([],[0,frameLength])}return reshape2(concat2(output),[output.length,frameLength])}var frame=op({frame_});function stft_(signal2,frameLength,frameStep,fftLength,windowFn){if(windowFn===void 0){windowFn=hannWindow}if(fftLength==null){fftLength=enclosingPowerOfTwo(frameLength)}var framedSignal=frame(signal2,frameLength,frameStep);var windowedSignal=mul(framedSignal,windowFn(frameLength));var output=[];for(var i=0;i<framedSignal.shape[0];i++){output.push(rfft(slice2(windowedSignal,[i,0],[1,frameLength]),fftLength))}return concat2(output)}var stft=op({stft_});function cropAndResize_(image3,boxes,boxInd,cropSize,method,extrapolationValue){var $image=convertToTensor(image3,"image","cropAndResize");var $boxes=convertToTensor(boxes,"boxes","cropAndResize","float32");var $boxInd=convertToTensor(boxInd,"boxInd","cropAndResize","int32");method=method||"bilinear";extrapolationValue=extrapolationValue||0;var numBoxes=$boxes.shape[0];assert($image.rank===4,function(){return"Error in cropAndResize: image must be rank 4,"+("but got rank "+$image.rank+".")});assert($boxes.rank===2&&$boxes.shape[1]===4,function(){return"Error in cropAndResize: boxes must be have size ["+numBoxes+",4] "+("but had shape "+$boxes.shape+".")});assert($boxInd.rank===1&&$boxInd.shape[0]===numBoxes,function(){return"Error in cropAndResize: boxInd must be have size ["+numBoxes+"] "+("but had shape "+$boxes.shape+".")});assert(cropSize.length===2,function(){return"Error in cropAndResize: cropSize must be of length 2, but got "+("length "+cropSize.length+".")});assert(cropSize[0]>=1&&cropSize[1]>=1,function(){return"cropSize must be atleast [1,1], but was "+cropSize});assert(method==="bilinear"||method==="nearest",function(){return"method must be bilinear or nearest, but was "+method});var forward=function(backend2){return backend2.cropAndResize($image,$boxes,$boxInd,cropSize,method,extrapolationValue)};var inputs={image:$image,boxes:$boxes,boxInd:$boxInd};var attrs={method,extrapolationValue,cropSize};var res=ENGINE.runKernelFunc(forward,inputs,null,CropAndResize3,attrs);return res}var cropAndResize2=op({cropAndResize_});function flipLeftRight_(image3){var $image=convertToTensor(image3,"image","flipLeftRight","float32");assert($image.rank===4,function(){return"Error in flipLeftRight: image must be rank 4,"+("but got rank "+$image.rank+".")});var inputs={image:$image};var res=ENGINE.runKernel(FlipLeftRight3,inputs,{});return res}var flipLeftRight2=op({flipLeftRight_});function rotateWithOffset_(image3,radians,fillValue,center){if(fillValue===void 0){fillValue=0}if(center===void 0){center=.5}var $image=convertToTensor(image3,"image","rotateWithOffset","float32");assert($image.rank===4,function(){return"Error in rotateWithOffset: image must be rank 4,"+("but got rank "+$image.rank+".")});var inputs={image:$image};var attrs={radians,fillValue,center};var res=ENGINE.runKernel(RotateWithOffset3,inputs,attrs);return res}var rotateWithOffset2=op({rotateWithOffset_});function nonMaxSuppSanityCheck(boxes,scores,maxOutputSize,iouThreshold,scoreThreshold,softNmsSigma){if(iouThreshold==null){iouThreshold=.5}if(scoreThreshold==null){scoreThreshold=Number.NEGATIVE_INFINITY}if(softNmsSigma==null){softNmsSigma=0}var numBoxes=boxes.shape[0];maxOutputSize=Math.min(maxOutputSize,numBoxes);assert(0<=iouThreshold&&iouThreshold<=1,function(){return"iouThreshold must be in [0, 1], but was '"+iouThreshold+"'"});assert(boxes.rank===2,function(){return"boxes must be a 2D tensor, but was of rank '"+boxes.rank+"'"});assert(boxes.shape[1]===4,function(){return"boxes must have 4 columns, but 2nd dimension was "+boxes.shape[1]});assert(scores.rank===1,function(){return"scores must be a 1D tensor"});assert(scores.shape[0]===numBoxes,function(){return"scores has incompatible shape with boxes. Expected "+numBoxes+", "+("but was "+scores.shape[0])});assert(0<=softNmsSigma&&softNmsSigma<=1,function(){return"softNmsSigma must be in [0, 1], but was '"+softNmsSigma+"'"});return{maxOutputSize,iouThreshold,scoreThreshold,softNmsSigma}}function nonMaxSuppression_(boxes,scores,maxOutputSize,iouThreshold,scoreThreshold){if(iouThreshold===void 0){iouThreshold=.5}if(scoreThreshold===void 0){scoreThreshold=Number.NEGATIVE_INFINITY}var $boxes=convertToTensor(boxes,"boxes","nonMaxSuppression");var $scores=convertToTensor(scores,"scores","nonMaxSuppression");var inputs=nonMaxSuppSanityCheck($boxes,$scores,maxOutputSize,iouThreshold,scoreThreshold);maxOutputSize=inputs.maxOutputSize;iouThreshold=inputs.iouThreshold;scoreThreshold=inputs.scoreThreshold;var attrs={maxOutputSize,iouThreshold,scoreThreshold};return ENGINE.runKernelFunc(function(b){return b.nonMaxSuppression($boxes,$scores,maxOutputSize,iouThreshold,scoreThreshold)},{boxes:$boxes,scores:$scores},null,NonMaxSuppressionV33,attrs)}var nonMaxSuppression=op({nonMaxSuppression_});function binaryInsert(arr,element,comparator){var index=binarySearch(arr,element,comparator);var insertionPoint=index<0?-(index+1):index;arr.splice(insertionPoint,0,element)}function binarySearch(arr,target,comparator){return binarySearch_(arr,target,comparator||defaultComparator)}function defaultComparator(a,b){return a>b?1:a<b?-1:0}function binarySearch_(arr,target,comparator){var left=0;var right=arr.length;var middle=0;var found=false;while(left<right){middle=left+(right-left>>>1);var compareResult=comparator(target,arr[middle]);if(compareResult>0){left=middle+1}else{right=middle;found=!compareResult}}return found?left:-left-1}function nonMaxSuppressionV3Impl(boxes,scores,maxOutputSize,iouThreshold,scoreThreshold){return nonMaxSuppressionImpl_(boxes,scores,maxOutputSize,iouThreshold,scoreThreshold,0).selectedIndices}function nonMaxSuppressionV4Impl(boxes,scores,maxOutputSize,iouThreshold,scoreThreshold,padToMaxOutputSize){return nonMaxSuppressionImpl_(boxes,scores,maxOutputSize,iouThreshold,scoreThreshold,0,false,padToMaxOutputSize,true)}function nonMaxSuppressionV5Impl(boxes,scores,maxOutputSize,iouThreshold,scoreThreshold,softNmsSigma){return nonMaxSuppressionImpl_(boxes,scores,maxOutputSize,iouThreshold,scoreThreshold,softNmsSigma,true)}function nonMaxSuppressionImpl_(boxes,scores,maxOutputSize,iouThreshold,scoreThreshold,softNmsSigma,returnScoresTensor,padToMaxOutputSize,returnValidOutputs){if(returnScoresTensor===void 0){returnScoresTensor=false}if(padToMaxOutputSize===void 0){padToMaxOutputSize=false}if(returnValidOutputs===void 0){returnValidOutputs=false}var candidates=[];for(var i=0;i<scores.length;i++){if(scores[i]>scoreThreshold){candidates.push({score:scores[i],boxIndex:i,suppressBeginIndex:0})}}candidates.sort(ascendingComparator);var scale=softNmsSigma>0?-.5/softNmsSigma:0;var selectedIndices=[];var selectedScores=[];while(selectedIndices.length<maxOutputSize&&candidates.length>0){var candidate=candidates.pop();var originalScore=candidate.score,boxIndex=candidate.boxIndex,suppressBeginIndex=candidate.suppressBeginIndex;if(originalScore<scoreThreshold){break}var ignoreCandidate=false;for(var j=selectedIndices.length-1;j>=suppressBeginIndex;--j){var iou=intersectionOverUnion(boxes,boxIndex,selectedIndices[j]);if(iou>=iouThreshold){ignoreCandidate=true;break}candidate.score=candidate.score*suppressWeight(iouThreshold,scale,iou);if(candidate.score<=scoreThreshold){break}}candidate.suppressBeginIndex=selectedIndices.length;if(!ignoreCandidate){if(candidate.score===originalScore){selectedIndices.push(boxIndex);selectedScores.push(candidate.score)}else if(candidate.score>scoreThreshold){binaryInsert(candidates,candidate,ascendingComparator)}}}var validOutputs=selectedIndices.length;var elemsToPad=maxOutputSize-validOutputs;if(padToMaxOutputSize&&elemsToPad>0){selectedIndices.push.apply(selectedIndices,new Array(elemsToPad).fill(0));selectedScores.push.apply(selectedScores,new Array(elemsToPad).fill(0))}var result={selectedIndices:tensor1d(selectedIndices,"int32")};if(returnScoresTensor){result["selectedScores"]=tensor1d(selectedScores,"float32")}if(returnValidOutputs){result["validOutputs"]=scalar(validOutputs,"int32")}return result}function intersectionOverUnion(boxes,i,j){var iCoord=boxes.subarray(i*4,i*4+4);var jCoord=boxes.subarray(j*4,j*4+4);var yminI=Math.min(iCoord[0],iCoord[2]);var xminI=Math.min(iCoord[1],iCoord[3]);var ymaxI=Math.max(iCoord[0],iCoord[2]);var xmaxI=Math.max(iCoord[1],iCoord[3]);var yminJ=Math.min(jCoord[0],jCoord[2]);var xminJ=Math.min(jCoord[1],jCoord[3]);var ymaxJ=Math.max(jCoord[0],jCoord[2]);var xmaxJ=Math.max(jCoord[1],jCoord[3]);var areaI=(ymaxI-yminI)*(xmaxI-xminI);var areaJ=(ymaxJ-yminJ)*(xmaxJ-xminJ);if(areaI<=0||areaJ<=0){return 0}var intersectionYmin=Math.max(yminI,yminJ);var intersectionXmin=Math.max(xminI,xminJ);var intersectionYmax=Math.min(ymaxI,ymaxJ);var intersectionXmax=Math.min(xmaxI,xmaxJ);var intersectionArea=Math.max(intersectionYmax-intersectionYmin,0)*Math.max(intersectionXmax-intersectionXmin,0);return intersectionArea/(areaI+areaJ-intersectionArea)}function suppressWeight(iouThreshold,scale,iou){var weight=Math.exp(scale*iou*iou);return iou<=iouThreshold?weight:0}function ascendingComparator(c1,c2){return c1.score-c2.score||c1.score===c2.score&&c2.boxIndex-c1.boxIndex}function nonMaxSuppressionAsync_(boxes,scores,maxOutputSize,iouThreshold,scoreThreshold){if(iouThreshold===void 0){iouThreshold=.5}if(scoreThreshold===void 0){scoreThreshold=Number.NEGATIVE_INFINITY}return __awaiter(this,void 0,void 0,function(){var $boxes,$scores,inputs,boxesAndScores,boxesVals,scoresVals,res;return __generator(this,function(_a){switch(_a.label){case 0:$boxes=convertToTensor(boxes,"boxes","nonMaxSuppressionAsync");$scores=convertToTensor(scores,"scores","nonMaxSuppressionAsync");inputs=nonMaxSuppSanityCheck($boxes,$scores,maxOutputSize,iouThreshold,scoreThreshold);maxOutputSize=inputs.maxOutputSize;iouThreshold=inputs.iouThreshold;scoreThreshold=inputs.scoreThreshold;return[4,Promise.all([$boxes.data(),$scores.data()])];case 1:boxesAndScores=_a.sent();boxesVals=boxesAndScores[0];scoresVals=boxesAndScores[1];res=nonMaxSuppressionV3Impl(boxesVals,scoresVals,maxOutputSize,iouThreshold,scoreThreshold);if($boxes!==boxes){$boxes.dispose()}if($scores!==scores){$scores.dispose()}return[2,res]}})})}var nonMaxSuppressionAsync=nonMaxSuppressionAsync_;function nonMaxSuppressionWithScore_(boxes,scores,maxOutputSize,iouThreshold,scoreThreshold,softNmsSigma){if(iouThreshold===void 0){iouThreshold=.5}if(scoreThreshold===void 0){scoreThreshold=Number.NEGATIVE_INFINITY}if(softNmsSigma===void 0){softNmsSigma=0}var $boxes=convertToTensor(boxes,"boxes","nonMaxSuppression");var $scores=convertToTensor(scores,"scores","nonMaxSuppression");var params=nonMaxSuppSanityCheck($boxes,$scores,maxOutputSize,iouThreshold,scoreThreshold,softNmsSigma);maxOutputSize=params.maxOutputSize;iouThreshold=params.iouThreshold;scoreThreshold=params.scoreThreshold;softNmsSigma=params.softNmsSigma;var inputs={boxes:$boxes,scores:$scores};var attrs={maxOutputSize,iouThreshold,scoreThreshold,softNmsSigma};var result=ENGINE.runKernel(NonMaxSuppressionV53,inputs,attrs);return{selectedIndices:result[0],selectedScores:result[1]}}var nonMaxSuppressionWithScore=op({nonMaxSuppressionWithScore_});function nonMaxSuppressionWithScoreAsync_(boxes,scores,maxOutputSize,iouThreshold,scoreThreshold,softNmsSigma){if(iouThreshold===void 0){iouThreshold=.5}if(scoreThreshold===void 0){scoreThreshold=Number.NEGATIVE_INFINITY}if(softNmsSigma===void 0){softNmsSigma=0}return __awaiter(this,void 0,void 0,function(){var $boxes,$scores,params,boxesAndScores,boxesVals,scoresVals,res;return __generator(this,function(_a){switch(_a.label){case 0:$boxes=convertToTensor(boxes,"boxes","nonMaxSuppressionAsync");$scores=convertToTensor(scores,"scores","nonMaxSuppressionAsync");params=nonMaxSuppSanityCheck($boxes,$scores,maxOutputSize,iouThreshold,scoreThreshold,softNmsSigma);maxOutputSize=params.maxOutputSize;iouThreshold=params.iouThreshold;scoreThreshold=params.scoreThreshold;softNmsSigma=params.softNmsSigma;return[4,Promise.all([$boxes.data(),$scores.data()])];case 1:boxesAndScores=_a.sent();boxesVals=boxesAndScores[0];scoresVals=boxesAndScores[1];res=nonMaxSuppressionV5Impl(boxesVals,scoresVals,maxOutputSize,iouThreshold,scoreThreshold,softNmsSigma);if($boxes!==boxes){$boxes.dispose()}if($scores!==scores){$scores.dispose()}return[2,res]}})})}var nonMaxSuppressionWithScoreAsync=nonMaxSuppressionWithScoreAsync_;function nonMaxSuppressionPadded_(boxes,scores,maxOutputSize,iouThreshold,scoreThreshold,padToMaxOutputSize){if(iouThreshold===void 0){iouThreshold=.5}if(scoreThreshold===void 0){scoreThreshold=Number.NEGATIVE_INFINITY}if(padToMaxOutputSize===void 0){padToMaxOutputSize=false}var $boxes=convertToTensor(boxes,"boxes","nonMaxSuppression");var $scores=convertToTensor(scores,"scores","nonMaxSuppression");var params=nonMaxSuppSanityCheck($boxes,$scores,maxOutputSize,iouThreshold,scoreThreshold,null);var $maxOutputSize=params.maxOutputSize;var $iouThreshold=params.iouThreshold;var $scoreThreshold=params.scoreThreshold;var inputs={boxes:$boxes,scores:$scores};var attrs={maxOutputSize:$maxOutputSize,iouThreshold:$iouThreshold,scoreThreshold:$scoreThreshold,padToMaxOutputSize};var result=ENGINE.runKernel(NonMaxSuppressionV43,inputs,attrs);return{selectedIndices:result[0],validOutputs:result[1]}}var nonMaxSuppressionPadded=op({nonMaxSuppressionPadded_});function nonMaxSuppressionPaddedAsync_(boxes,scores,maxOutputSize,iouThreshold,scoreThreshold,padToMaxOutputSize){if(iouThreshold===void 0){iouThreshold=.5}if(scoreThreshold===void 0){scoreThreshold=Number.NEGATIVE_INFINITY}if(padToMaxOutputSize===void 0){padToMaxOutputSize=false}return __awaiter(this,void 0,void 0,function(){var $boxes,$scores,params,$maxOutputSize,$iouThreshold,$scoreThreshold,_a,boxesVals,scoresVals,res;return __generator(this,function(_b){switch(_b.label){case 0:$boxes=convertToTensor(boxes,"boxes","nonMaxSuppressionAsync");$scores=convertToTensor(scores,"scores","nonMaxSuppressionAsync");params=nonMaxSuppSanityCheck($boxes,$scores,maxOutputSize,iouThreshold,scoreThreshold,null);$maxOutputSize=params.maxOutputSize;$iouThreshold=params.iouThreshold;$scoreThreshold=params.scoreThreshold;return[4,Promise.all([$boxes.data(),$scores.data()])];case 1:_a=_b.sent(),boxesVals=_a[0],scoresVals=_a[1];res=nonMaxSuppressionV4Impl(boxesVals,scoresVals,$maxOutputSize,$iouThreshold,$scoreThreshold,padToMaxOutputSize);if($boxes!==boxes){$boxes.dispose()}if($scores!==scores){$scores.dispose()}return[2,res]}})})}var nonMaxSuppressionPaddedAsync=nonMaxSuppressionPaddedAsync_;function resizeBilinear_(images,size,alignCorners){if(alignCorners===void 0){alignCorners=false}var $images=convertToTensor(images,"images","resizeBilinear");assert($images.rank===3||$images.rank===4,function(){return"Error in resizeBilinear: x must be rank 3 or 4, but got "+("rank "+$images.rank+".")});assert(size.length===2,function(){return"Error in resizeBilinear: new shape must 2D, but got shape "+(size+".")});var batchImages=$images;var reshapedTo4D=false;if($images.rank===3){reshapedTo4D=true;batchImages=reshape2($images,[1,$images.shape[0],$images.shape[1],$images.shape[2]])}var newHeight=size[0],newWidth=size[1];var forward=function(backend2,save){save([batchImages]);return backend2.resizeBilinear(batchImages,newHeight,newWidth,alignCorners)};var inputs={images:batchImages};var attrs={alignCorners,size};var res=ENGINE.runKernelFunc(forward,inputs,null,ResizeBilinear3,attrs);if(reshapedTo4D){return reshape2(res,[res.shape[1],res.shape[2],res.shape[3]])}return res}var resizeBilinear2=op({resizeBilinear_});function resizeNearestNeighbor_(images,size,alignCorners){if(alignCorners===void 0){alignCorners=false}var $images=convertToTensor(images,"images","resizeNearestNeighbor");assert($images.rank===3||$images.rank===4,function(){return"Error in resizeNearestNeighbor: x must be rank 3 or 4, but got "+("rank "+$images.rank+".")});assert(size.length===2,function(){return"Error in resizeNearestNeighbor: new shape must 2D, but got shape "+(size+".")});assert($images.dtype==="float32"||$images.dtype==="int32",function(){return"`images` must have `int32` or `float32` as dtype"});var batchImages=$images;var reshapedTo4D=false;if($images.rank===3){reshapedTo4D=true;batchImages=reshape2($images,[1,$images.shape[0],$images.shape[1],$images.shape[2]])}var newHeight=size[0],newWidth=size[1];var inputs={images:batchImages};var attrs={alignCorners,size};var forward=function(backend2,save){save([batchImages]);return backend2.resizeNearestNeighbor(batchImages,newHeight,newWidth,alignCorners)};var res=ENGINE.runKernelFunc(forward,inputs,null,ResizeNearestNeighbor,attrs);if(reshapedTo4D){return reshape2(res,[res.shape[1],res.shape[2],res.shape[3]])}return res}var resizeNearestNeighbor=op({resizeNearestNeighbor_});function bandPart_(a,numLower,numUpper){assert(numLower%1===0,function(){return"bandPart(): numLower must be an integer, got "+numLower+"."});assert(numUpper%1===0,function(){return"bandPart(): numUpper must be an integer, got "+numUpper+"."});var $a=convertToTensor(a,"a","bandPart");assert($a.rank>=2,function(){return"bandPart(): Rank must be at least 2, got "+$a.rank+"."});var shape=$a.shape;var _a=$a.shape.slice(-2),M=_a[0],N=_a[1];if(!(numLower<=M)){throw new Error("bandPart(): numLower ("+numLower+")"+(" must not be greater than the number of rows ("+M+")."))}if(!(numUpper<=N)){throw new Error("bandPart(): numUpper ("+numUpper+")"+(" must not be greater than the number of columns ("+N+")."))}if(numLower<0){numLower=M}if(numUpper<0){numUpper=N}var i=reshape2(range(0,M,1,"int32"),[-1,1]);var j=range(0,N,1,"int32");var ij=sub(i,j);var inBand=logicalAnd(lessEqual(ij,scalar(+numLower,"int32")),greaterEqual(ij,scalar(-numUpper,"int32")));var zero=zeros([M,N],$a.dtype);return reshape2(stack(unstack(reshape2($a,[-1,M,N])).map(function(mat){return where(inBand,mat,zero)})),shape)}var bandPart=op({bandPart_});function gramSchmidt_(xs){var inputIsTensor2D;if(Array.isArray(xs)){inputIsTensor2D=false;assert(xs!=null&&xs.length>0,function(){return"Gram-Schmidt process: input must not be null, undefined, or empty"});var dim_1=xs[0].shape[0];var _loop_1=function(i2){assert(xs[i2].shape[0]===dim_1,function(){return"Gram-Schmidt: Non-unique lengths found in the input vectors: "+("("+xs[i2].shape[0]+" vs. "+dim_1+")")})};for(var i=1;i<xs.length;++i){_loop_1(i)}}else{inputIsTensor2D=true;xs=split2(xs,xs.shape[0],0).map(function(x){return squeeze(x,[0])})}assert(xs.length<=xs[0].shape[0],function(){return"Gram-Schmidt: Number of vectors ("+xs.length+") exceeds "+("number of dimensions ("+xs[0].shape[0]+").")});var ys=[];var xs1d=xs;var _loop_2=function(i2){ys.push(ENGINE.tidy(function(){var x=xs1d[i2];if(i2>0){for(var j=0;j<i2;++j){var proj=mul(sum$1(mul(ys[j],x)),ys[j]);x=sub(x,proj)}}return div(x,norm(x,"euclidean"))}))};for(var i=0;i<xs.length;++i){_loop_2(i)}if(inputIsTensor2D){return stack(ys,0)}else{return ys}}var gramSchmidt=op({gramSchmidt_});function qr_(x,fullMatrices){if(fullMatrices===void 0){fullMatrices=false}assert(x.rank>=2,function(){return"qr() requires input tensor to have a rank >= 2, but got rank "+x.rank});if(x.rank===2){return qr2d(x,fullMatrices)}else{var outerDimsProd=x.shape.slice(0,x.shape.length-2).reduce(function(value,prev){return value*prev});var x2ds=unstack(reshape2(x,[outerDimsProd,x.shape[x.shape.length-2],x.shape[x.shape.length-1]]),0);var q2ds_1=[];var r2ds_1=[];x2ds.forEach(function(x2d){var _a=qr2d(x2d,fullMatrices),q2d=_a[0],r2d=_a[1];q2ds_1.push(q2d);r2ds_1.push(r2d)});var q=reshape2(stack(q2ds_1,0),x.shape);var r=reshape2(stack(r2ds_1,0),x.shape);return[q,r]}}function qr2d(x,fullMatrices){if(fullMatrices===void 0){fullMatrices=false}return ENGINE.tidy(function(){assert(x.shape.length===2,function(){return"qr2d() requires a 2D Tensor, but got a "+x.shape.length+"D Tensor."});var m=x.shape[0];var n=x.shape[1];var q=eye(m);var r=clone(x);var one2D=tensor2d([[1]],[1,1]);var w=clone(one2D);var iters=m>=n?n:m;var _loop_1=function(j2){var _a;var rTemp=r;var wTemp=w;var qTemp=q;_a=ENGINE.tidy(function(){var rjEnd1=slice2(r,[j2,j2],[m-j2,1]);var normX=norm(rjEnd1);var rjj=slice2(r,[j2,j2],[1,1]);var s=where(greater(rjj,0),tensor2d([[-1]]),tensor2d([[1]]));var u1=sub(rjj,mul(s,normX));var wPre=div(rjEnd1,u1);if(wPre.shape[0]===1){w=clone(one2D)}else{w=concat2([one2D,slice2(wPre,[1,0],[wPre.shape[0]-1,wPre.shape[1]])],0)}var tau=neg(div(matMul(s,u1),normX));var rjEndAll=slice2(r,[j2,0],[m-j2,n]);var tauTimesW=mul(tau,w);var wT=transpose2(w);if(j2===0){r=sub(rjEndAll,matMul(tauTimesW,matMul(wT,rjEndAll)))}else{var rTimesTau=sub(rjEndAll,matMul(tauTimesW,matMul(wT,rjEndAll)));r=concat2([slice2(r,[0,0],[j2,n]),rTimesTau],0)}var tawTimesWT=transpose2(tauTimesW);var qAllJEnd=slice2(q,[0,j2],[m,q.shape[1]-j2]);if(j2===0){q=sub(qAllJEnd,matMul(matMul(qAllJEnd,w),tawTimesWT))}else{var qTimesTau=sub(qAllJEnd,matMul(matMul(qAllJEnd,w),tawTimesWT));q=concat2([slice2(q,[0,0],[m,j2]),qTimesTau],1)}return[w,r,q]}),w=_a[0],r=_a[1],q=_a[2];dispose([rTemp,wTemp,qTemp])};for(var j=0;j<iters;++j){_loop_1(j)}if(!fullMatrices&&m>n){q=slice2(q,[0,0],[m,n]);r=slice2(r,[0,0],[n,n])}return[q,r]})}var qr=op({qr_});(function(Reduction){Reduction[Reduction["NONE"]=0]="NONE";Reduction[Reduction["MEAN"]=1]="MEAN";Reduction[Reduction["SUM"]=2]="SUM";Reduction[Reduction["SUM_BY_NONZERO_WEIGHTS"]=3]="SUM_BY_NONZERO_WEIGHTS"})(exports2.Reduction||(exports2.Reduction={}));function computeWeightedLoss_(losses2,weights,reduction){if(reduction===void 0){reduction=exports2.Reduction.SUM_BY_NONZERO_WEIGHTS}var $losses=convertToTensor(losses2,"losses","computeWeightedLoss");var $weights=null;if(weights!=null){$weights=convertToTensor(weights,"weights","computeWeightedLoss")}var weightedLoss=$weights==null?$losses:mul($losses,$weights);if(reduction===exports2.Reduction.NONE){return weightedLoss}if(reduction===exports2.Reduction.SUM){return sum$1(weightedLoss)}if(reduction===exports2.Reduction.MEAN){if($weights==null){return mean(weightedLoss)}else{var broadcastFactor=$losses.size/$weights.size;var result=div(sum$1(weightedLoss),sum$1($weights));return broadcastFactor>1?div(result,scalar(broadcastFactor)):result}}if(reduction===exports2.Reduction.SUM_BY_NONZERO_WEIGHTS){if($weights==null){return div(sum$1(weightedLoss),scalar($losses.size))}else{var broadcastedWeights=mul($weights,ones$1($losses.shape));var numNonZeros=cast2(sum$1(notEqual(broadcastedWeights,scalar(0))),"float32");return div(sum$1(weightedLoss),numNonZeros)}}throw Error("Unknown reduction: "+reduction)}var computeWeightedLoss=op({computeWeightedLoss_});function absoluteDifference_(labels,predictions,weights,reduction){if(reduction===void 0){reduction=exports2.Reduction.SUM_BY_NONZERO_WEIGHTS}var $labels=convertToTensor(labels,"labels","absoluteDifference");var $predictions=convertToTensor(predictions,"predictions","absoluteDifference");var $weights=null;if(weights!=null){$weights=convertToTensor(weights,"weights","absoluteDifference")}assertShapesMatch($labels.shape,$predictions.shape,"Error in absoluteDifference: ");var losses2=abs(sub($labels,$predictions));return computeWeightedLoss(losses2,$weights,reduction)}var absoluteDifference=op({absoluteDifference_});function cosineDistance_(labels,predictions,axis,weights,reduction){if(reduction===void 0){reduction=exports2.Reduction.SUM_BY_NONZERO_WEIGHTS}var $labels=convertToTensor(labels,"labels","cosineDistance");var $predictions=convertToTensor(predictions,"predictions","cosineDistance");var $weights=null;if(weights!=null){$weights=convertToTensor(weights,"weights","cosineDistance")}assertShapesMatch($labels.shape,$predictions.shape,"Error in cosineDistance: ");var one=scalar(1);var losses2=sub(one,sum$1(mul($labels,$predictions),axis,true));return computeWeightedLoss(losses2,$weights,reduction)}var cosineDistance=op({cosineDistance_});function hingeLoss_(labels,predictions,weights,reduction){if(reduction===void 0){reduction=exports2.Reduction.SUM_BY_NONZERO_WEIGHTS}var $labels=convertToTensor(labels,"labels","hingeLoss");var $predictions=convertToTensor(predictions,"predictions","hingeLoss");var $weights=null;if(weights!=null){$weights=convertToTensor(weights,"weights","hingeLoss")}assertShapesMatch($labels.shape,$predictions.shape,"Error in hingeLoss: ");var one=scalar(1);$labels=sub(mul(scalar(2),$labels),one);var losses2=relu(sub(one,mul($labels,$predictions)));return computeWeightedLoss(losses2,$weights,reduction)}var hingeLoss=op({hingeLoss_});function huberLoss_(labels,predictions,weights,delta,reduction){if(delta===void 0){delta=1}if(reduction===void 0){reduction=exports2.Reduction.SUM_BY_NONZERO_WEIGHTS}var $labels=convertToTensor(labels,"labels","huberLoss");var $predictions=convertToTensor(predictions,"predictions","huberLoss");var $weights=null;if(weights!=null){$weights=convertToTensor(weights,"weights","huberLoss")}assertShapesMatch($labels.shape,$predictions.shape,"Error in huberLoss: ");var deltaScalar=scalar(delta);var error=abs(sub($predictions,$labels));var quadratic=minimum(error,deltaScalar);var linear=sub(error,quadratic);var losses2=add$1(mul(scalar(.5),square(quadratic)),mul(deltaScalar,linear));return computeWeightedLoss(losses2,$weights,reduction)}var huberLoss=op({huberLoss_});function logLoss_(labels,predictions,weights,epsilon,reduction){if(epsilon===void 0){epsilon=1e-7}if(reduction===void 0){reduction=exports2.Reduction.SUM_BY_NONZERO_WEIGHTS}var $labels=convertToTensor(labels,"labels","logLoss");var $predictions=convertToTensor(predictions,"predictions","logLoss");var $weights=null;if(weights!=null){$weights=convertToTensor(weights,"weights","logLoss")}assertShapesMatch($labels.shape,$predictions.shape,"Error in logLoss: ");var one=scalar(1);var epsilonScalar=scalar(epsilon);var l1=neg(mul($labels,log(add$1($predictions,epsilonScalar))));var l2=mul(sub(one,$labels),log(add$1(sub(one,$predictions),epsilonScalar)));var losses2=sub(l1,l2);return computeWeightedLoss(losses2,$weights,reduction)}var logLoss=op({logLoss_});function meanSquaredError_(labels,predictions,weights,reduction){if(reduction===void 0){reduction=exports2.Reduction.SUM_BY_NONZERO_WEIGHTS}var $labels=convertToTensor(labels,"labels","meanSquaredError");var $predictions=convertToTensor(predictions,"predictions","meanSquaredError");var $weights=null;if(weights!=null){$weights=convertToTensor(weights,"weights","meanSquaredError")}assertShapesMatch($labels.shape,$predictions.shape,"Error in meanSquaredError: ");var losses2=squaredDifference($labels,$predictions);return computeWeightedLoss(losses2,$weights,reduction)}var meanSquaredError=op({meanSquaredError_});function sigmoidCrossEntropyWithLogits_(labels,logits){var $labels=convertToTensor(labels,"labels","sigmoidCrossEntropyWithLogits");var $logits=convertToTensor(logits,"logits","sigmoidCrossEntropyWithLogits");assertShapesMatch($labels.shape,$logits.shape,"Error in sigmoidCrossEntropyWithLogits: ");var maxOutput=relu($logits);var outputXTarget=mul($logits,$labels);var sigmoidOutput=log1p(exp(neg(abs($logits))));return add$1(sub(maxOutput,outputXTarget),sigmoidOutput)}function sigmoidCrossEntropy_(multiClassLabels,logits,weights,labelSmoothing,reduction){if(labelSmoothing===void 0){labelSmoothing=0}if(reduction===void 0){reduction=exports2.Reduction.SUM_BY_NONZERO_WEIGHTS}var $multiClassLabels=convertToTensor(multiClassLabels,"multiClassLabels","sigmoidCrossEntropy");var $logits=convertToTensor(logits,"logits","sigmoidCrossEntropy");var $weights=null;if(weights!=null){$weights=convertToTensor(weights,"weights","sigmoidCrossEntropy")}assertShapesMatch($multiClassLabels.shape,$logits.shape,"Error in sigmoidCrossEntropy: ");if(labelSmoothing>0){var labelSmoothingScalar=scalar(labelSmoothing);var one=scalar(1);var half=scalar(.5);$multiClassLabels=add$1(mul($multiClassLabels,sub(one,labelSmoothingScalar)),mul(half,labelSmoothingScalar))}var losses2=sigmoidCrossEntropyWithLogits_($multiClassLabels,$logits);return computeWeightedLoss(losses2,$weights,reduction)}var sigmoidCrossEntropy=op({sigmoidCrossEntropy_});function softmaxCrossEntropyWithLogits_(labels,logits,dim){if(dim===void 0){dim=-1}if(dim===-1){dim=logits.rank-1}if(dim!==logits.rank-1){throw Error("Softmax cross entropy along a non-last dimension is not yet "+("supported. Labels / logits was rank "+logits.rank+" ")+("and dim was "+dim))}var customOp=customGrad(function(labels2,logits2,save){var keepDims=true;var lse=logSumExp(logits2,[dim],keepDims);var logResult=sub(cast2(logits2,"float32"),lse);save([labels2,logResult]);var costVector=neg(mul(logResult,labels2));var value=sum$1(costVector,[dim]);var gradFunc=function(dy,saved){var labels3=saved[0],logResult2=saved[1];var dyShape=expandShapeToKeepDim(dy.shape,[dim]);return[mul(reshape2(dy,dyShape),sub(cast2(labels3,"float32"),exp(logResult2))),mul(reshape2(dy,dyShape),sub(exp(logResult2),cast2(labels3,"float32")))]};return{value,gradFunc}});return customOp(labels,logits)}function softmaxCrossEntropy_(onehotLabels,logits,weights,labelSmoothing,reduction){if(labelSmoothing===void 0){labelSmoothing=0}if(reduction===void 0){reduction=exports2.Reduction.SUM_BY_NONZERO_WEIGHTS}var $onehotLabels=convertToTensor(onehotLabels,"onehotLabels","softmaxCrossEntropy");var $logits=convertToTensor(logits,"logits","softmaxCrossEntropy");var $weights=null;if(weights!=null){$weights=convertToTensor(weights,"weights","softmaxCrossEntropy")}assertShapesMatch($onehotLabels.shape,$logits.shape,"Error in softmaxCrossEntropy: ");if(labelSmoothing>0){var labelSmoothingScalar=scalar(labelSmoothing);var one=scalar(1);var numClasses=scalar($onehotLabels.shape[1]);$onehotLabels=add$1(mul($onehotLabels,sub(one,labelSmoothingScalar)),div(labelSmoothingScalar,numClasses))}var losses2=softmaxCrossEntropyWithLogits_($onehotLabels,$logits);return computeWeightedLoss(losses2,$weights,reduction)}var softmaxCrossEntropy=op({softmaxCrossEntropy_});var spectral={fft,ifft,rfft,irfft};var signal={hammingWindow,hannWindow,frame,stft};var image2={flipLeftRight:flipLeftRight2,resizeNearestNeighbor,resizeBilinear:resizeBilinear2,rotateWithOffset:rotateWithOffset2,cropAndResize:cropAndResize2,nonMaxSuppression,nonMaxSuppressionAsync,nonMaxSuppressionWithScore,nonMaxSuppressionWithScoreAsync,nonMaxSuppressionPadded,nonMaxSuppressionPaddedAsync};var linalg={bandPart,gramSchmidt,qr};var losses={absoluteDifference,computeWeightedLoss,cosineDistance,hingeLoss,huberLoss,logLoss,meanSquaredError,sigmoidCrossEntropy,softmaxCrossEntropy};var Optimizer=function(_super){__extends(Optimizer2,_super);function Optimizer2(){return _super!==null&&_super.apply(this,arguments)||this}Optimizer2.prototype.minimize=function(f,returnCost,varList){if(returnCost===void 0){returnCost=false}var _a=this.computeGradients(f,varList),value=_a.value,grads2=_a.grads;if(varList!=null){var gradArray=varList.map(function(v){return{name:v.name,tensor:grads2[v.name]}});this.applyGradients(gradArray)}else{this.applyGradients(grads2)}dispose(grads2);if(returnCost){return value}else{value.dispose();return null}};Object.defineProperty(Optimizer2.prototype,"iterations",{get:function(){if(this.iterations_==null){this.iterations_=0}return this.iterations_},enumerable:true,configurable:true});Optimizer2.prototype.incrementIterations=function(){this.iterations_=this.iterations+1};Optimizer2.prototype.computeGradients=function(f,varList){return variableGrads(f,varList)};Optimizer2.prototype.dispose=function(){if(this.iterations_!=null){dispose(this.iterations_)}};Optimizer2.prototype.saveIterations=function(){return __awaiter(this,void 0,void 0,function(){return __generator(this,function(_a){if(this.iterations_==null){this.iterations_=0}return[2,{name:"iter",tensor:scalar(this.iterations_,"int32")}]})})};Optimizer2.prototype.getWeights=function(){return __awaiter(this,void 0,void 0,function(){return __generator(this,function(_a){throw new Error("getWeights() is not implemented for this optimizer yet.")})})};Optimizer2.prototype.setWeights=function(weightValues){return __awaiter(this,void 0,void 0,function(){return __generator(this,function(_a){throw new Error("setWeights() is not implemented for this optimizer class "+(""+this.getClassName()))})})};Optimizer2.prototype.extractIterations=function(weightValues){return __awaiter(this,void 0,void 0,function(){var _a;return __generator(this,function(_b){switch(_b.label){case 0:_a=this;return[4,weightValues[0].tensor.data()];case 1:_a.iterations_=_b.sent()[0];return[2,weightValues.slice(1)]}})})};return Optimizer2}(Serializable);Object.defineProperty(Optimizer,Symbol.hasInstance,{value:function(instance){return instance.minimize!=null&&instance.computeGradients!=null&&instance.applyGradients!=null}});var AdadeltaOptimizer=function(_super){__extends(AdadeltaOptimizer2,_super);function AdadeltaOptimizer2(learningRate,rho,epsilon){if(epsilon===void 0){epsilon=null}var _this=_super.call(this)||this;_this.learningRate=learningRate;_this.rho=rho;_this.epsilon=epsilon;_this.accumulatedGrads=[];_this.accumulatedUpdates=[];if(epsilon==null){_this.epsilon=ENGINE.backend.epsilon()}return _this}AdadeltaOptimizer2.prototype.applyGradients=function(variableGradients){var _this=this;var variableNames=Array.isArray(variableGradients)?variableGradients.map(function(item){return item.name}):Object.keys(variableGradients);variableNames.forEach(function(name,i){var value=ENGINE.registeredVariables[name];var trainable=false;if(_this.accumulatedGrads[i]==null){_this.accumulatedGrads[i]={originalName:name+"/accum_grad",variable:tidy(function(){return zerosLike2(value).variable(trainable)})}}if(_this.accumulatedUpdates[i]==null){_this.accumulatedUpdates[i]={originalName:name+"/accum_var",variable:tidy(function(){return zerosLike2(value).variable(trainable)})}}var gradient=Array.isArray(variableGradients)?variableGradients[i].tensor:variableGradients[name];if(gradient==null){return}var accumulatedGrad=_this.accumulatedGrads[i].variable;var accumulatedUpdate=_this.accumulatedUpdates[i].variable;tidy(function(){var newAccumulatedGrad=add$1(mul(accumulatedGrad,_this.rho),mul(square(gradient),1-_this.rho));var updates=mul(div(sqrt(add$1(accumulatedUpdate,_this.epsilon)),sqrt(add$1(accumulatedGrad,_this.epsilon))),gradient);var newAccumulatedUpdate=add$1(mul(accumulatedUpdate,_this.rho),mul(square(updates),1-_this.rho));accumulatedGrad.assign(newAccumulatedGrad);accumulatedUpdate.assign(newAccumulatedUpdate);var newValue=add$1(mul(updates,-_this.learningRate),value);value.assign(newValue)})});this.incrementIterations()};AdadeltaOptimizer2.prototype.dispose=function(){if(this.accumulatedUpdates!=null){dispose(this.accumulatedGrads.map(function(v){return v.variable}));dispose(this.accumulatedUpdates.map(function(v){return v.variable}))}};AdadeltaOptimizer2.prototype.getWeights=function(){return __awaiter(this,void 0,void 0,function(){var variables;return __generator(this,function(_a){switch(_a.label){case 0:variables=this.accumulatedGrads.concat(this.accumulatedUpdates);return[4,this.saveIterations()];case 1:return[2,[_a.sent()].concat(variables.map(function(v){return{name:v.originalName,tensor:v.variable}}))]}})})};AdadeltaOptimizer2.prototype.setWeights=function(weightValues){return __awaiter(this,void 0,void 0,function(){var variableCount,trainable;return __generator(this,function(_a){switch(_a.label){case 0:return[4,this.extractIterations(weightValues)];case 1:weightValues=_a.sent();variableCount=weightValues.length/2;trainable=false;this.accumulatedGrads=weightValues.slice(0,variableCount).map(function(v){return{originalName:v.name,variable:v.tensor.variable(trainable)}});this.accumulatedUpdates=weightValues.slice(variableCount,variableCount*2).map(function(v){return{originalName:v.name,variable:v.tensor.variable(trainable)}});return[2]}})})};AdadeltaOptimizer2.prototype.getConfig=function(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}};AdadeltaOptimizer2.fromConfig=function(cls,config2){return new cls(config2["learningRate"],config2["rho"],config2["epsilon"])};AdadeltaOptimizer2.className="Adadelta";return AdadeltaOptimizer2}(Optimizer);registerClass(AdadeltaOptimizer);var AdagradOptimizer=function(_super){__extends(AdagradOptimizer2,_super);function AdagradOptimizer2(learningRate,initialAccumulatorValue){if(initialAccumulatorValue===void 0){initialAccumulatorValue=.1}var _this=_super.call(this)||this;_this.learningRate=learningRate;_this.initialAccumulatorValue=initialAccumulatorValue;_this.accumulatedGrads=[];return _this}AdagradOptimizer2.prototype.applyGradients=function(variableGradients){var _this=this;var variableNames=Array.isArray(variableGradients)?variableGradients.map(function(item){return item.name}):Object.keys(variableGradients);variableNames.forEach(function(name,i){var value=ENGINE.registeredVariables[name];if(_this.accumulatedGrads[i]==null){var trainable_1=false;_this.accumulatedGrads[i]={originalName:name+"/accumulator",variable:tidy(function(){return fill2(value.shape,_this.initialAccumulatorValue).variable(trainable_1)})}}var gradient=Array.isArray(variableGradients)?variableGradients[i].tensor:variableGradients[name];if(gradient==null){return}var accumulatedGrad=_this.accumulatedGrads[i].variable;tidy(function(){var newAccumulatedGrad=add$1(accumulatedGrad,square(gradient));accumulatedGrad.assign(newAccumulatedGrad);var newValue=add$1(mul(div(gradient,sqrt(add$1(newAccumulatedGrad,ENGINE.backend.epsilon()))),-_this.learningRate),value);value.assign(newValue)})});this.incrementIterations()};AdagradOptimizer2.prototype.dispose=function(){if(this.accumulatedGrads!=null){dispose(this.accumulatedGrads.map(function(v){return v.variable}))}};AdagradOptimizer2.prototype.getWeights=function(){return __awaiter(this,void 0,void 0,function(){return __generator(this,function(_a){switch(_a.label){case 0:return[4,this.saveIterations()];case 1:return[2,[_a.sent()].concat(this.accumulatedGrads.map(function(v){return{name:v.originalName,tensor:v.variable}}))]}})})};AdagradOptimizer2.prototype.setWeights=function(weightValues){return __awaiter(this,void 0,void 0,function(){var trainable;return __generator(this,function(_a){switch(_a.label){case 0:return[4,this.extractIterations(weightValues)];case 1:weightValues=_a.sent();trainable=false;this.accumulatedGrads=weightValues.map(function(v){return{originalName:v.name,variable:v.tensor.variable(trainable)}});return[2]}})})};AdagradOptimizer2.prototype.getConfig=function(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}};AdagradOptimizer2.fromConfig=function(cls,config2){return new cls(config2["learningRate"],config2["initialAccumulatorValue"])};AdagradOptimizer2.className="Adagrad";return AdagradOptimizer2}(Optimizer);registerClass(AdagradOptimizer);var AdamOptimizer=function(_super){__extends(AdamOptimizer2,_super);function AdamOptimizer2(learningRate,beta1,beta2,epsilon){if(epsilon===void 0){epsilon=null}var _this=_super.call(this)||this;_this.learningRate=learningRate;_this.beta1=beta1;_this.beta2=beta2;_this.epsilon=epsilon;_this.accumulatedFirstMoment=[];_this.accumulatedSecondMoment=[];tidy(function(){_this.accBeta1=scalar(beta1).variable();_this.accBeta2=scalar(beta2).variable()});if(epsilon==null){_this.epsilon=ENGINE.backend.epsilon()}return _this}AdamOptimizer2.prototype.applyGradients=function(variableGradients){var _this=this;var varNames=Array.isArray(variableGradients)?variableGradients.map(function(v){return v.name}):Object.keys(variableGradients);tidy(function(){var oneMinusAccBeta1=sub(1,_this.accBeta1);var oneMinusAccBeta2=sub(1,_this.accBeta2);varNames.forEach(function(name,i){var value=ENGINE.registeredVariables[name];var trainable=false;if(_this.accumulatedFirstMoment[i]==null){_this.accumulatedFirstMoment[i]={originalName:name+"/m",variable:tidy(function(){return zerosLike2(value).variable(trainable)})}}if(_this.accumulatedSecondMoment[i]==null){_this.accumulatedSecondMoment[i]={originalName:name+"/v",variable:tidy(function(){return zerosLike2(value).variable(trainable)})}}var gradient=Array.isArray(variableGradients)?variableGradients[i].tensor:variableGradients[name];if(gradient==null){return}var firstMoment=_this.accumulatedFirstMoment[i].variable;var secondMoment=_this.accumulatedSecondMoment[i].variable;var newFirstMoment=add$1(mul(firstMoment,_this.beta1),mul(gradient,1-_this.beta1));var newSecondMoment=add$1(mul(secondMoment,_this.beta2),mul(square(gradient),1-_this.beta2));var biasCorrectedFirstMoment=div(newFirstMoment,oneMinusAccBeta1);var biasCorrectedSecondMoment=div(newSecondMoment,oneMinusAccBeta2);firstMoment.assign(newFirstMoment);secondMoment.assign(newSecondMoment);var newValue=add$1(mul(div(biasCorrectedFirstMoment,add$1(sqrt(biasCorrectedSecondMoment),_this.epsilon)),-_this.learningRate),value);value.assign(newValue)});_this.accBeta1.assign(mul(_this.accBeta1,_this.beta1));_this.accBeta2.assign(mul(_this.accBeta2,_this.beta2))});this.incrementIterations()};AdamOptimizer2.prototype.dispose=function(){this.accBeta1.dispose();this.accBeta2.dispose();if(this.accumulatedFirstMoment!=null){dispose(this.accumulatedFirstMoment.map(function(v){return v.variable}))}if(this.accumulatedSecondMoment!=null){dispose(this.accumulatedSecondMoment.map(function(v){return v.variable}))}};AdamOptimizer2.prototype.getWeights=function(){return __awaiter(this,void 0,void 0,function(){var variables;return __generator(this,function(_a){switch(_a.label){case 0:variables=this.accumulatedFirstMoment.concat(this.accumulatedSecondMoment);return[4,this.saveIterations()];case 1:return[2,[_a.sent()].concat(variables.map(function(v){return{name:v.originalName,tensor:v.variable}}))]}})})};AdamOptimizer2.prototype.setWeights=function(weightValues){return __awaiter(this,void 0,void 0,function(){var variableCount,trainable;var _this=this;return __generator(this,function(_a){switch(_a.label){case 0:return[4,this.extractIterations(weightValues)];case 1:weightValues=_a.sent();tidy(function(){_this.accBeta1.assign(pow(_this.beta1,_this.iterations_+1));_this.accBeta2.assign(pow(_this.beta2,_this.iterations_+1))});variableCount=weightValues.length/2;trainable=false;this.accumulatedFirstMoment=weightValues.slice(0,variableCount).map(function(v){return{originalName:v.name,variable:v.tensor.variable(trainable)}});this.accumulatedSecondMoment=weightValues.slice(variableCount,variableCount*2).map(function(v){return{originalName:v.name,variable:v.tensor.variable(trainable)}});return[2]}})})};AdamOptimizer2.prototype.getConfig=function(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}};AdamOptimizer2.fromConfig=function(cls,config2){return new cls(config2["learningRate"],config2["beta1"],config2["beta2"],config2["epsilon"])};AdamOptimizer2.className="Adam";return AdamOptimizer2}(Optimizer);registerClass(AdamOptimizer);var AdamaxOptimizer=function(_super){__extends(AdamaxOptimizer2,_super);function AdamaxOptimizer2(learningRate,beta1,beta2,epsilon,decay){if(epsilon===void 0){epsilon=null}if(decay===void 0){decay=0}var _this=_super.call(this)||this;_this.learningRate=learningRate;_this.beta1=beta1;_this.beta2=beta2;_this.epsilon=epsilon;_this.decay=decay;_this.accumulatedFirstMoment=[];_this.accumulatedWeightedInfNorm=[];tidy(function(){_this.iteration=scalar(0).variable();_this.accBeta1=scalar(beta1).variable()});if(epsilon==null){_this.epsilon=ENGINE.backend.epsilon()}return _this}AdamaxOptimizer2.prototype.applyGradients=function(variableGradients){var _this=this;var variableNames=Array.isArray(variableGradients)?variableGradients.map(function(item){return item.name}):Object.keys(variableGradients);tidy(function(){var oneMinusAccBeta1=sub(1,_this.accBeta1);var lr=div(-_this.learningRate,add$1(mul(_this.iteration,_this.decay),1));variableNames.forEach(function(name,i){var value=ENGINE.registeredVariables[name];var trainable=false;if(_this.accumulatedFirstMoment[i]==null){_this.accumulatedFirstMoment[i]={originalName:name+"/m",variable:zerosLike2(value).variable(trainable)}}if(_this.accumulatedWeightedInfNorm[i]==null){_this.accumulatedWeightedInfNorm[i]={originalName:name+"/v",variable:zerosLike2(value).variable(trainable)}}var gradient=Array.isArray(variableGradients)?variableGradients[i].tensor:variableGradients[name];if(gradient==null){return}var firstMoment=_this.accumulatedFirstMoment[i].variable;var weightedInfNorm=_this.accumulatedWeightedInfNorm[i].variable;var newFirstMoment=add$1(mul(firstMoment,_this.beta1),mul(gradient,1-_this.beta1));var ut0=mul(weightedInfNorm,_this.beta2);var ut1=abs(gradient);var newWeightedInfNorm=maximum(ut0,ut1);firstMoment.assign(newFirstMoment);weightedInfNorm.assign(newWeightedInfNorm);var newValue=add$1(mul(div(lr,oneMinusAccBeta1),div(newFirstMoment,add$1(newWeightedInfNorm,_this.epsilon))),value);value.assign(newValue)});_this.iteration.assign(add$1(_this.iteration,1));_this.accBeta1.assign(mul(_this.accBeta1,_this.beta1))});this.incrementIterations()};AdamaxOptimizer2.prototype.dispose=function(){this.accBeta1.dispose();this.iteration.dispose();if(this.accumulatedFirstMoment!=null){dispose(this.accumulatedFirstMoment.map(function(v){return v.variable}))}if(this.accumulatedWeightedInfNorm!=null){dispose(this.accumulatedWeightedInfNorm.map(function(v){return v.variable}))}};AdamaxOptimizer2.prototype.getWeights=function(){return __awaiter(this,void 0,void 0,function(){return __generator(this,function(_a){throw new Error("getWeights() is not implemented for Adamax yet.")})})};AdamaxOptimizer2.prototype.setWeights=function(weightValues){return __awaiter(this,void 0,void 0,function(){return __generator(this,function(_a){throw new Error("setWeights() is not implemented for Adamax yet.")})})};AdamaxOptimizer2.prototype.getConfig=function(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}};AdamaxOptimizer2.fromConfig=function(cls,config2){return new cls(config2["learningRate"],config2["beta1"],config2["beta2"],config2["epsilon"],config2["decay"])};AdamaxOptimizer2.className="Adamax";return AdamaxOptimizer2}(Optimizer);registerClass(AdamaxOptimizer);var SGDOptimizer=function(_super){__extends(SGDOptimizer2,_super);function SGDOptimizer2(learningRate){var _this=_super.call(this)||this;_this.learningRate=learningRate;_this.setLearningRate(learningRate);return _this}SGDOptimizer2.prototype.applyGradients=function(variableGradients){var _this=this;var varNames=Array.isArray(variableGradients)?variableGradients.map(function(v){return v.name}):Object.keys(variableGradients);varNames.forEach(function(name,i){var gradient=Array.isArray(variableGradients)?variableGradients[i].tensor:variableGradients[name];if(gradient==null){return}var value=ENGINE.registeredVariables[name];tidy(function(){var newValue=add$1(mul(_this.c,gradient),value);value.assign(newValue)})});this.incrementIterations()};SGDOptimizer2.prototype.setLearningRate=function(learningRate){this.learningRate=learningRate;if(this.c!=null){this.c.dispose()}this.c=keep(scalar(-learningRate))};SGDOptimizer2.prototype.dispose=function(){this.c.dispose()};SGDOptimizer2.prototype.getWeights=function(){return __awaiter(this,void 0,void 0,function(){return __generator(this,function(_a){switch(_a.label){case 0:return[4,this.saveIterations()];case 1:return[2,[_a.sent()]]}})})};SGDOptimizer2.prototype.setWeights=function(weightValues){return __awaiter(this,void 0,void 0,function(){return __generator(this,function(_a){switch(_a.label){case 0:return[4,this.extractIterations(weightValues)];case 1:weightValues=_a.sent();if(weightValues.length!==0){throw new Error("SGD optimizer does not have settable weights.")}return[2]}})})};SGDOptimizer2.prototype.getConfig=function(){return{learningRate:this.learningRate}};SGDOptimizer2.fromConfig=function(cls,config2){return new cls(config2["learningRate"])};SGDOptimizer2.className="SGD";return SGDOptimizer2}(Optimizer);registerClass(SGDOptimizer);var MomentumOptimizer=function(_super){__extends(MomentumOptimizer2,_super);function MomentumOptimizer2(learningRate,momentum,useNesterov){if(useNesterov===void 0){useNesterov=false}var _this=_super.call(this,learningRate)||this;_this.learningRate=learningRate;_this.momentum=momentum;_this.useNesterov=useNesterov;_this.accumulations=[];_this.m=scalar(_this.momentum);return _this}MomentumOptimizer2.prototype.applyGradients=function(variableGradients){var _this=this;var variableNames=Array.isArray(variableGradients)?variableGradients.map(function(item){return item.name}):Object.keys(variableGradients);variableNames.forEach(function(name,i){var value=ENGINE.registeredVariables[name];if(_this.accumulations[i]==null){var trainable_1=false;_this.accumulations[i]={originalName:name+"/momentum",variable:tidy(function(){return zerosLike2(value).variable(trainable_1)})}}var accumulation=_this.accumulations[i].variable;var gradient=Array.isArray(variableGradients)?variableGradients[i].tensor:variableGradients[name];if(gradient==null){return}tidy(function(){var newValue;var newAccumulation=add$1(mul(_this.m,accumulation),gradient);if(_this.useNesterov){newValue=add$1(mul(_this.c,add$1(gradient,mul(newAccumulation,_this.m))),value)}else{newValue=add$1(mul(_this.c,newAccumulation),value)}accumulation.assign(newAccumulation);value.assign(newValue)})});this.incrementIterations()};MomentumOptimizer2.prototype.dispose=function(){this.m.dispose();if(this.accumulations!=null){dispose(this.accumulations.map(function(v){return v.variable}))}};MomentumOptimizer2.prototype.setMomentum=function(momentum){this.momentum=momentum};MomentumOptimizer2.prototype.getWeights=function(){return __awaiter(this,void 0,void 0,function(){return __generator(this,function(_a){switch(_a.label){case 0:return[4,this.saveIterations()];case 1:return[2,[_a.sent()].concat(this.accumulations.map(function(v){return{name:v.originalName,tensor:v.variable}}))]}})})};MomentumOptimizer2.prototype.setWeights=function(weightValues){return __awaiter(this,void 0,void 0,function(){var trainable;return __generator(this,function(_a){switch(_a.label){case 0:return[4,this.extractIterations(weightValues)];case 1:weightValues=_a.sent();trainable=false;this.accumulations=weightValues.map(function(v){return{originalName:v.name,variable:v.tensor.variable(trainable)}});return[2]}})})};MomentumOptimizer2.prototype.getConfig=function(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}};MomentumOptimizer2.fromConfig=function(cls,config2){return new cls(config2["learningRate"],config2["momentum"],config2["useNesterov"])};MomentumOptimizer2.className="Momentum";return MomentumOptimizer2}(SGDOptimizer);registerClass(MomentumOptimizer);var RMSPropOptimizer=function(_super){__extends(RMSPropOptimizer2,_super);function RMSPropOptimizer2(learningRate,decay,momentum,epsilon,centered){if(decay===void 0){decay=.9}if(momentum===void 0){momentum=0}if(epsilon===void 0){epsilon=null}if(centered===void 0){centered=false}var _this=_super.call(this)||this;_this.learningRate=learningRate;_this.decay=decay;_this.momentum=momentum;_this.epsilon=epsilon;_this.accumulatedMeanSquares=[];_this.accumulatedMoments=[];_this.accumulatedMeanGrads=[];_this.centered=centered;if(epsilon==null){_this.epsilon=ENGINE.backend.epsilon()}if(learningRate==null){throw new Error("learningRate for RMSPropOptimizer must be defined.")}return _this}RMSPropOptimizer2.prototype.applyGradients=function(variableGradients){var _this=this;var variableNames=Array.isArray(variableGradients)?variableGradients.map(function(item){return item.name}):Object.keys(variableGradients);variableNames.forEach(function(name,i){var value=ENGINE.registeredVariables[name];var trainable=false;if(_this.accumulatedMeanSquares[i]==null){_this.accumulatedMeanSquares[i]={originalName:name+"/rms",variable:tidy(function(){return zerosLike2(value).variable(trainable)})}}if(_this.accumulatedMoments[i]==null){_this.accumulatedMoments[i]={originalName:name+"/momentum",variable:tidy(function(){return zerosLike2(value).variable(trainable)})}}if(_this.accumulatedMeanGrads[i]==null&&_this.centered){_this.accumulatedMeanGrads[i]={originalName:name+"/mg",variable:tidy(function(){return zerosLike2(value).variable(trainable)})}}var gradient=Array.isArray(variableGradients)?variableGradients[i].tensor:variableGradients[name];if(gradient==null){return}var accumulatedMeanSquare=_this.accumulatedMeanSquares[i].variable;var accumulatedMoments=_this.accumulatedMoments[i].variable;tidy(function(){var newAccumulatedMeanSquare=add$1(mul(accumulatedMeanSquare,_this.decay),mul(square(gradient),1-_this.decay));if(_this.centered){var accumulatedMeanGrad=_this.accumulatedMeanGrads[i].variable;var newAccumulatedMeanGrad=add$1(mul(accumulatedMeanGrad,_this.decay),mul(gradient,1-_this.decay));var gradContribution=div(mul(gradient,_this.learningRate),sqrt(sub(newAccumulatedMeanSquare,add$1(square(newAccumulatedMeanGrad),_this.epsilon))));var newAccumulatedMoments=add$1(mul(accumulatedMoments,_this.momentum),gradContribution);accumulatedMeanSquare.assign(newAccumulatedMeanSquare);accumulatedMeanGrad.assign(newAccumulatedMeanGrad);accumulatedMoments.assign(newAccumulatedMoments);var newValue=sub(value,newAccumulatedMoments);value.assign(newValue)}else{var newAccumulatedMeanSquare_1=add$1(mul(accumulatedMeanSquare,_this.decay),mul(square(gradient),1-_this.decay));var newAccumulatedMoments=add$1(mul(accumulatedMoments,_this.momentum),div(mul(gradient,_this.learningRate),sqrt(add$1(newAccumulatedMeanSquare_1,_this.epsilon))));accumulatedMeanSquare.assign(newAccumulatedMeanSquare_1);accumulatedMoments.assign(newAccumulatedMoments);var newValue=sub(value,newAccumulatedMoments);value.assign(newValue)}})});this.incrementIterations()};RMSPropOptimizer2.prototype.dispose=function(){if(this.accumulatedMeanSquares!=null){dispose(this.accumulatedMeanSquares.map(function(v){return v.variable}))}if(this.accumulatedMeanGrads!=null&&this.centered){dispose(this.accumulatedMeanGrads.map(function(v){return v.variable}))}if(this.accumulatedMoments!=null){dispose(this.accumulatedMoments.map(function(v){return v.variable}))}};RMSPropOptimizer2.prototype.getWeights=function(){return __awaiter(this,void 0,void 0,function(){var variables;return __generator(this,function(_a){switch(_a.label){case 0:variables=this.accumulatedMeanSquares.concat(this.accumulatedMoments);if(this.centered){variables.push.apply(variables,this.accumulatedMeanGrads)}return[4,this.saveIterations()];case 1:return[2,[_a.sent()].concat(variables.map(function(v){return{name:v.originalName,tensor:v.variable}}))]}})})};RMSPropOptimizer2.prototype.setWeights=function(weightValues){return __awaiter(this,void 0,void 0,function(){var variableCount,trainable;return __generator(this,function(_a){switch(_a.label){case 0:return[4,this.extractIterations(weightValues)];case 1:weightValues=_a.sent();variableCount=this.centered?weightValues.length/3:weightValues.length/2;trainable=false;this.accumulatedMeanSquares=weightValues.slice(0,variableCount).map(function(v){return{originalName:v.name,variable:v.tensor.variable(trainable)}});this.accumulatedMoments=weightValues.slice(variableCount,variableCount*2).map(function(v){return{originalName:v.name,variable:v.tensor.variable(trainable)}});if(this.centered){this.accumulatedMeanGrads=weightValues.slice(variableCount*2,variableCount*3).map(function(v){return{originalName:v.name,variable:v.tensor.variable(trainable)}})}return[2]}})})};RMSPropOptimizer2.prototype.getConfig=function(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}};RMSPropOptimizer2.fromConfig=function(cls,config2){return new cls(config2["learningRate"],config2["decay"],config2["momentum"],config2["epsilon"],config2["centered"])};RMSPropOptimizer2.className="RMSProp";return RMSPropOptimizer2}(Optimizer);registerClass(RMSPropOptimizer);var OptimizerConstructors=function(){function OptimizerConstructors2(){}OptimizerConstructors2.sgd=function(learningRate){return new SGDOptimizer(learningRate)};OptimizerConstructors2.momentum=function(learningRate,momentum,useNesterov){if(useNesterov===void 0){useNesterov=false}return new MomentumOptimizer(learningRate,momentum,useNesterov)};OptimizerConstructors2.rmsprop=function(learningRate,decay,momentum,epsilon,centered){if(decay===void 0){decay=.9}if(momentum===void 0){momentum=0}if(epsilon===void 0){epsilon=null}if(centered===void 0){centered=false}return new RMSPropOptimizer(learningRate,decay,momentum,epsilon,centered)};OptimizerConstructors2.adam=function(learningRate,beta1,beta2,epsilon){if(learningRate===void 0){learningRate=.001}if(beta1===void 0){beta1=.9}if(beta2===void 0){beta2=.999}if(epsilon===void 0){epsilon=null}return new AdamOptimizer(learningRate,beta1,beta2,epsilon)};OptimizerConstructors2.adadelta=function(learningRate,rho,epsilon){if(learningRate===void 0){learningRate=.001}if(rho===void 0){rho=.95}if(epsilon===void 0){epsilon=null}return new AdadeltaOptimizer(learningRate,rho,epsilon)};OptimizerConstructors2.adamax=function(learningRate,beta1,beta2,epsilon,decay){if(learningRate===void 0){learningRate=.002}if(beta1===void 0){beta1=.9}if(beta2===void 0){beta2=.999}if(epsilon===void 0){epsilon=null}if(decay===void 0){decay=0}return new AdamaxOptimizer(learningRate,beta1,beta2,epsilon,decay)};OptimizerConstructors2.adagrad=function(learningRate,initialAccumulatorValue){if(initialAccumulatorValue===void 0){initialAccumulatorValue=.1}return new AdagradOptimizer(learningRate,initialAccumulatorValue)};return OptimizerConstructors2}();var train={sgd:OptimizerConstructors.sgd,momentum:OptimizerConstructors.momentum,adadelta:OptimizerConstructors.adadelta,adagrad:OptimizerConstructors.adagrad,rmsprop:OptimizerConstructors.rmsprop,adamax:OptimizerConstructors.adamax,adam:OptimizerConstructors.adam};var delayCallback=function(){if(typeof requestAnimationFrame!=="undefined"){return requestAnimationFrame}else if(typeof setImmediate!=="undefined"){return setImmediate}return function(f){return f()}}();function nextFrame(){return new Promise(function(resolve){return delayCallback(function(){return resolve()})})}function getImageCenter(center,imageHeight,imageWidth){var centerX=imageWidth*(typeof center==="number"?center:center[0]);var centerY=imageHeight*(typeof center==="number"?center:center[1]);return[centerX,centerY]}function getReshaped(inputShape,blockShape,prod2,batchToSpace){if(batchToSpace===void 0){batchToSpace=true}var reshaped=[];if(batchToSpace){reshaped=reshaped.concat(blockShape.slice(0));reshaped.push(inputShape[0]/prod2);reshaped=reshaped.concat(inputShape.slice(1))}else{reshaped=reshaped.concat(inputShape[0]);var spatialLength=blockShape.length;for(var i=0;i<spatialLength;++i){reshaped=reshaped.concat([inputShape[i+1]/blockShape[i],blockShape[i]])}reshaped=reshaped.concat(inputShape.slice(spatialLength+1))}return reshaped}function getPermuted(reshapedRank,blockShapeRank,batchToSpace){if(batchToSpace===void 0){batchToSpace=true}var permuted=[];if(batchToSpace){permuted.push(blockShapeRank);for(var i=blockShapeRank+1;i<reshapedRank;++i){if(i<=2*blockShapeRank){permuted.push(i);permuted.push(i-(blockShapeRank+1))}else{permuted.push(i)}}}else{var permutedBeforeBatch=[];var permutedAfterBatch=[];for(var i=1;i<reshapedRank;++i){if(i>=blockShapeRank*2+1||i%2===1){permutedAfterBatch.push(i)}else{permutedBeforeBatch.push(i)}}permuted.push.apply(permuted,permutedBeforeBatch);permuted.push(0);permuted.push.apply(permuted,permutedAfterBatch)}return permuted}function getReshapedPermuted(inputShape,blockShape,prod2,batchToSpace){if(batchToSpace===void 0){batchToSpace=true}var reshapedPermuted=[];if(batchToSpace){reshapedPermuted.push(inputShape[0]/prod2)}else{reshapedPermuted.push(inputShape[0]*prod2)}for(var i=1;i<inputShape.length;++i){if(i<=blockShape.length){if(batchToSpace){reshapedPermuted.push(blockShape[i-1]*inputShape[i])}else{reshapedPermuted.push(inputShape[i]/blockShape[i-1])}}else{reshapedPermuted.push(inputShape[i])}}return reshapedPermuted}function getSliceBeginCoords(crops,blockShape){var sliceBeginCoords=[0];for(var i=0;i<blockShape;++i){sliceBeginCoords.push(crops[i][0])}return sliceBeginCoords}function getSliceSize(uncroppedShape,crops,blockShape){var sliceSize=uncroppedShape.slice(0,1);for(var i=0;i<blockShape;++i){sliceSize.push(uncroppedShape[i+1]-crops[i][0]-crops[i][1])}return sliceSize}var SELU_SCALEALPHA=1.7580993408473768;var SELU_SCALE=1.0507009873554805;var ERF_P=.3275911;var ERF_A1=.254829592;var ERF_A2=-.284496736;var ERF_A3=1.421413741;var ERF_A4=-1.453152027;var ERF_A5=1.061405429;function warn(){var msg=[];for(var _i2=0;_i2<arguments.length;_i2++){msg[_i2]=arguments[_i2]}if(!env3().getBool("IS_TEST")){console.warn.apply(console,msg)}}function log$1(){var msg=[];for(var _i2=0;_i2<arguments.length;_i2++){msg[_i2]=arguments[_i2]}if(!env3().getBool("IS_TEST")){console.log.apply(console,msg)}}function mergeRealAndImagArrays(real2,imag2){if(real2.length!==imag2.length){throw new Error("Cannot merge real and imag arrays of different lengths. real:"+(real2.length+", imag: "+imag2.length+"."))}var result=new Float32Array(real2.length*2);for(var i=0;i<result.length;i+=2){result[i]=real2[i/2];result[i+1]=imag2[i/2]}return result}function splitRealAndImagArrays(complex2){var real2=new Float32Array(complex2.length/2);var imag2=new Float32Array(complex2.length/2);for(var i=0;i<complex2.length;i+=2){real2[i/2]=complex2[i];imag2[i/2]=complex2[i+1]}return{real:real2,imag:imag2}}function complexWithEvenIndex(complex2){var len=Math.ceil(complex2.length/4);var real2=new Float32Array(len);var imag2=new Float32Array(len);for(var i=0;i<complex2.length;i+=4){real2[Math.floor(i/4)]=complex2[i];imag2[Math.floor(i/4)]=complex2[i+1]}return{real:real2,imag:imag2}}function complexWithOddIndex(complex2){var len=Math.floor(complex2.length/4);var real2=new Float32Array(len);var imag2=new Float32Array(len);for(var i=2;i<complex2.length;i+=4){real2[Math.floor(i/4)]=complex2[i];imag2[Math.floor(i/4)]=complex2[i+1]}return{real:real2,imag:imag2}}function getComplexWithIndex(complex2,index){var real2=complex2[index*2];var imag2=complex2[index*2+1];return{real:real2,imag:imag2}}function assignToTypedArray(data2,real2,imag2,index){data2[index*2]=real2;data2[index*2+1]=imag2}function exponents(n,inverse){var real2=new Float32Array(n/2);var imag2=new Float32Array(n/2);for(var i=0;i<Math.ceil(n/2);i++){var x=(inverse?2:-2)*Math.PI*(i/n);real2[i]=Math.cos(x);imag2[i]=Math.sin(x)}return{real:real2,imag:imag2}}function exponent(k,n,inverse){var x=(inverse?2:-2)*Math.PI*(k/n);var real2=Math.cos(x);var imag2=Math.sin(x);return{real:real2,imag:imag2}}function castTensor(x,dtype,backend2){if(dtype==="complex64"){if(x.dtype==="complex64"){return x.clone()}var zerosTensor=zeros(x.shape);var floatX=cast2(x,"float32");var result=backend2.complex(floatX,zerosTensor);zerosTensor.dispose();floatX.dispose();return result}if(!hasEncodingLoss(x.dtype,dtype)){return ENGINE.makeTensorFromDataId(x.dataId,x.shape,dtype)}if(x.dtype==="complex64"){var real2=backend2.real(x);var result=cast2(real2,dtype);real2.dispose();return result}if(dtype==="int32"){return backend2.int(x)}else if(dtype==="bool"){var zero=scalar(0,x.dtype);var result=backend2.notEqual(x,zero);zero.dispose();return result}else{throw new Error("Error in Cast: failed to cast "+x.dtype+" to "+dtype)}}function reshapeTensor(x,shape){return ENGINE.makeTensorFromDataId(x.dataId,shape,x.dtype)}function linspaceImpl(start,stop,num){var step2=(stop-start)/(num-1);var values=makeZerosTypedArray(num,"float32");values[0]=start;for(var i=1;i<values.length;i++){values[i]=values[i-1]+step2}return tensor1d(values,"float32")}var backend_util19={__proto__:null,slice_util:slice_util2,segment_util,castTensor,reshapeTensor,linspaceImpl,upcastType,axesAreInnerMostDims,combineLocations,computeOutAndReduceShapes,expandShapeToKeepDim,assertAxesAreInnerMostDims,getAxesPermutation,getUndoAxesPermutation,getInnerMostAxes,getBroadcastDims,getReductionAxes,assertAndGetBroadcastShape,assertParamsConsistent,computeOutShape:computeOutShape$1,computeDilation2DInfo,computePool2DInfo,computePool3DInfo,computeConv2DInfo,computeConv3DInfo,computeDefaultPad,tupleValuesAreOne,eitherStridesOrDilationsAreOne,convertConv2DDataFormat,getFusedDyActivation,getFusedBiasGradient,applyActivation,shouldFuse,PARALLELIZE_THRESHOLD,computeOptimalWindowSize,getImageCenter,getReshaped,getPermuted,getReshapedPermuted,getSliceBeginCoords,getSliceSize,prepareAndValidate,validateUpdateShape,validateInput,calculateShapes,SELU_SCALEALPHA,SELU_SCALE,ERF_P,ERF_A1,ERF_A2,ERF_A3,ERF_A4,ERF_A5,warn,log:log$1,mergeRealAndImagArrays,splitRealAndImagArrays,complexWithEvenIndex,complexWithOddIndex,getComplexWithIndex,assignToTypedArray,exponents,exponent,prepareSplitSize};function split$1(x,sizeSplits,axis){var begin=new Array(x.rank).fill(0);var size=x.shape.slice();return sizeSplits.map(function(s){var sliceSize=size.slice();sliceSize[axis]=s;var sliceT=slice2(x,begin,sliceSize);begin[axis]+=s;return sliceT})}function tile$1(xBuf,reps){var newShape=new Array(xBuf.rank);for(var i=0;i<newShape.length;i++){newShape[i]=xBuf.shape[i]*reps[i]}var result=buffer2(newShape,xBuf.dtype);for(var i=0;i<result.values.length;++i){var newLoc=result.indexToLoc(i);var originalLoc=new Array(xBuf.rank);for(var j=0;j<originalLoc.length;j++){originalLoc[j]=newLoc[j]%xBuf.shape[j]}var originalIndex=xBuf.locToIndex(originalLoc);result.values[i]=xBuf.values[originalIndex]}return result.toTensor()}function topkImpl(x,xShape,xDtype,k,sorted){var lastDim=xShape[xShape.length-1];var _a=[x.length/lastDim,lastDim],batch=_a[0],size=_a[1];var allTopKVals=getTypedArrayFromDType(xDtype,batch*k);var allTopKIndices=getTypedArrayFromDType("int32",batch*k);for(var b=0;b<batch;b++){var offset=b*size;var vals=x.subarray(offset,offset+size);var valAndInd=[];for(var i=0;i<vals.length;i++){valAndInd.push({value:vals[i],index:i})}valAndInd.sort(function(a,b2){return b2.value-a.value});var outOffset=b*k;var topKVals=allTopKVals.subarray(outOffset,outOffset+k);var topKIndices=allTopKIndices.subarray(outOffset,outOffset+k);for(var i=0;i<k;i++){topKVals[i]=valAndInd[i].value;topKIndices[i]=valAndInd[i].index}}var outputShape=xShape.slice();outputShape[outputShape.length-1]=k;return[tensor(allTopKVals,outputShape,xDtype),tensor(allTopKIndices,outputShape,"int32")]}var kernel_impls={__proto__:null,nonMaxSuppressionV3Impl,nonMaxSuppressionV4Impl,nonMaxSuppressionV5Impl,split:split$1,tile:tile$1,topkImpl,whereImpl};var absGradConfig={kernelName:Abs3,inputsToSave:["x"],gradFunc:function(dy,saved){var x=saved[0];return{x:function(){return mul(dy,step(cast2(x,"float32"),-1))}}}};var acosGradConfig={kernelName:Acos,inputsToSave:["x"],gradFunc:function(dy,saved){var x=saved[0];return{x:function(){var a=square(cast2(x,"float32"));var b=sqrt(sub(scalar(1),a));return neg(div(dy,b))}}}};var acoshGradConfig={kernelName:Acosh,inputsToSave:["x"],gradFunc:function(dy,saved){var x=saved[0];return{x:function(){var a=sqrt(sub(square(cast2(x,"float32")),1));return div(dy,a)}}}};var addGradConfig={kernelName:Add3,inputsToSave:["a","b"],gradFunc:function(dy,saved){var a=saved[0],b=saved[1];var outShape=assertAndGetBroadcastShape(a.shape,b.shape);var derA=function(){var res=dy;var reduceAxes=getReductionAxes(a.shape,outShape);if(reduceAxes.length>0){res=sum$1(res,reduceAxes)}return reshape2(res,a.shape)};var derB=function(){var res=dy;var reduceAxes=getReductionAxes(b.shape,outShape);if(reduceAxes.length>0){res=sum$1(res,reduceAxes)}return reshape2(res,b.shape)};return{a:derA,b:derB}}};var addNGradConfig={kernelName:AddN3,saveAllInputs:true,gradFunc:function(dy,saved){var ders={};saved.forEach(function(_,i){ders[i]=function(){return dy.clone()}});return ders}};var argMaxGradConfig={kernelName:ArgMax3,inputsToSave:["x"],gradFunc:function(dy,saved){var x=saved[0];return{x:function(){return zerosLike2(x)}}}};var argMinGradConfig={kernelName:ArgMin,inputsToSave:["x"],gradFunc:function(dy,saved){var x=saved[0];return{x:function(){return zerosLike2(x)}}}};var asinGradConfig={kernelName:Asin,inputsToSave:["x"],gradFunc:function(dy,saved){var x=saved[0];return{x:function(){return div(dy,sqrt(sub(scalar(1),square(cast2(x,"float32")))))}}}};var asinhGradConfig={kernelName:Asinh,inputsToSave:["x"],gradFunc:function(dy,saved){var x=saved[0];return{x:function(){var a=sqrt(add$1(scalar(1),square(cast2(x,"float32"))));return div(dy,a)}}}};var atan2GradConfig={kernelName:Atan2,inputsToSave:["a","b"],gradFunc:function(dy,saved){var a=saved[0],b=saved[1];var outShape=assertAndGetBroadcastShape(a.shape,b.shape);var derA=function(){var d=add$1(square(a),square(b));var res=mul(dy,div(b,d));var reduceAxes=getReductionAxes(a.shape,outShape);if(reduceAxes.length>0){res=sum$1(res,reduceAxes)}return reshape2(res,a.shape)};var derB=function(){var d=add$1(square(a),square(b));var res=neg(mul(dy,div(a,d)));var reduceAxes=getReductionAxes(b.shape,outShape);if(reduceAxes.length>0){res=sum$1(res,reduceAxes)}return reshape2(res,b.shape)};return{a:derA,b:derB}}};var atanGradConfig={kernelName:Atan,inputsToSave:["x"],gradFunc:function(dy,saved){var x=saved[0];return{x:function(){return div(dy,add$1(square(cast2(x,"float32")),1))}}}};var atanhGradConfig={kernelName:Atanh,inputsToSave:["x"],gradFunc:function(dy,saved){var x=saved[0];return{x:function(){return div(dy,sub(scalar(1),square(cast2(x,"float32"))))}}}};function avgPool3dBackprop_(dy,input,filterSize,strides,dilations,pad3,dimRoundingMode){if(dilations===void 0){dilations=[1,1,1]}var $dy=convertToTensor(dy,"dy","avgPool3dBackprop");var $input=convertToTensor(input,"input","avgPool3dBackprop");var dy5D=$dy;var input5D=$input;var reshapedTo5D=false;if($input.rank===4){reshapedTo5D=true;dy5D=reshape2($dy,[1,$dy.shape[0],$dy.shape[1],$dy.shape[2],$dy.shape[3]]);input5D=reshape2($input,[1,$input.shape[0],$input.shape[1],$input.shape[2],$input.shape[3]])}assert(dy5D.rank===5,function(){return"Error in avgPool3dBackprop: dy must be rank 5 but got rank "+(dy5D.rank+".")});assert(input5D.rank===5,function(){return"Error in avgPool3dBackprop: input must be rank 5 but got rank "+(input5D.rank+".")});assert(eitherStridesOrDilationsAreOne(strides,dilations),function(){return"Error in avgPool3dBackprop: Either strides or dilations "+("must be 1. Got strides "+strides+" and dilations '"+dilations+"'")});if(dimRoundingMode!=null){assert(isInt(pad3),function(){return"Error in maxPool3dBackprop: pad must be an integer when "+("using, dimRoundingMode "+dimRoundingMode+" but got pad "+pad3+".")})}var forward=function(backend2){var convInfo=computePool3DInfo(input5D.shape,filterSize,strides,dilations,pad3,dimRoundingMode);return backend2.avgPool3dBackprop(dy5D,input5D,convInfo)};var inputs={dy:dy5D,input:input5D};var attrs={filterSize,strides,dilations,pad:pad3,dimRoundingMode};var res=ENGINE.runKernelFunc(forward,inputs,null,AvgPool3DBackprop,attrs);if(reshapedTo5D){return reshape2(res,[res.shape[1],res.shape[2],res.shape[3],res.shape[4]])}return res}var avgPool3dBackprop=op({avgPool3dBackprop_});var avgPool3DGradConfig={kernelName:AvgPool3D,inputsToSave:["x"],gradFunc:function(dy,saved,attrs){var x=saved[0];var _a=attrs,filterSize=_a.filterSize,strides=_a.strides,dilations=_a.dilations,pad3=_a.pad,dimRoundingMode=_a.dimRoundingMode;var $dilations=dilations==null?[1,1,1]:dilations;return{x:function(){return avgPool3dBackprop(dy,x,filterSize,strides,$dilations,pad3,dimRoundingMode)}}}};function avgPoolBackprop_(dy,input,filterSize,strides,pad3){var $dy=convertToTensor(dy,"dy","avgPoolBackprop");var $input=convertToTensor(input,"input","avgPoolBackprop");assert($input.rank===$dy.rank,function(){return"Rank of input ("+$input.rank+") does not match rank of dy ("+$dy.rank+")"});var input4D=$input;var dy4D=$dy;var reshapedTo4D=false;if($input.rank===3){reshapedTo4D=true;input4D=reshape2($input,[1,$input.shape[0],$input.shape[1],$input.shape[2]]);dy4D=reshape2($dy,[1,$dy.shape[0],$dy.shape[1],$dy.shape[2]])}assert(dy4D.rank===4,function(){return"Error in avgPoolBackprop: dy must be rank 4 but got rank "+(dy4D.rank+".")});assert(input4D.rank===4,function(){return"Error in avgPoolBackprop: input must be rank 4 but got rank "+(input4D.rank+".")});var forward=function(backend2){var convInfo=computePool2DInfo(input4D.shape,filterSize,strides,1,pad3);return backend2.avgPoolBackprop(dy4D,input4D,convInfo)};var inputs={dy:dy4D,input:input4D};var attrs={filterSize,strides,pad:pad3};var res=ENGINE.runKernelFunc(forward,inputs,null,AvgPoolBackprop,attrs);if(reshapedTo4D){return reshape2(res,[res.shape[1],res.shape[2],res.shape[3]])}return res}var avgPoolBackprop=op({avgPoolBackprop_});var avgPoolGradConfig={kernelName:AvgPool3,inputsToSave:["x"],gradFunc:function(dy,saved,attrs){var x=saved[0];var _a=attrs,filterSize=_a.filterSize,strides=_a.strides,pad3=_a.pad;return{x:function(){return avgPoolBackprop(dy,x,filterSize,strides,pad3)}}}};var batchMatMulGradConfig={kernelName:BatchMatMul3,inputsToSave:["a","b"],gradFunc:function(dy,saved,attrs){var a=saved[0],b=saved[1];var _a=attrs,transposeA=_a.transposeA,transposeB=_a.transposeB;if(!transposeA&&!transposeB){return{a:function(){return matMul(dy,b,false,true)},b:function(){return matMul(a,dy,true,false)}}}else if(!transposeA&&transposeB){return{a:function(){return matMul(dy,b,false,false)},b:function(){return matMul(dy,a,true,false)}}}else if(transposeA&&!transposeB){return{a:function(){return matMul(b,dy,false,true)},b:function(){return matMul(a,dy,false,false)}}}else{return{a:function(){return matMul(b,dy,true,true)},b:function(){return matMul(dy,a,true,true)}}}}};var batchToSpaceNDGradConfig={kernelName:BatchToSpaceND,gradFunc:function(dy,saved,attrs){var _a=attrs,blockShape=_a.blockShape,crops=_a.crops;return{x:function(){return spaceToBatchND(dy,blockShape,crops)}}}};var broadcastToGradConfig={kernelName:BroadcastTo,gradFunc:function(dy,saved,attrs){var broadCastToAttrs=attrs;var inputShape=broadCastToAttrs.inputShape;var outputShape=broadCastToAttrs.shape;var reps=Array.from(outputShape);for(var i=inputShape.length-1;i>=0;i--){if(inputShape[i]===outputShape[i]){reps[i]=1}else if(inputShape[i]!==1){throw new Error("broadcastTo(): ["+inputShape+"] cannot be broadcast to ["+outputShape+"].")}}var axes=[];for(var i=0;i<reps.length;i++){if(reps[i]>1){axes.push(i)}}return{x:function(){return sum$1(dy,axes,true)}}}};var castGradConfig={kernelName:Cast5,gradFunc:function(dy){return{x:function(){return dy.clone()}}}};var ceilGradConfig={kernelName:Ceil,gradFunc:function(dy){return{x:function(){return zerosLike2(dy)}}}};var clipByValueGradConfig={kernelName:ClipByValue3,inputsToSave:["x"],gradFunc:function(dy,saved,attrs){var x=saved[0];var _a=attrs,clipValueMin=_a.clipValueMin,clipValueMax=_a.clipValueMax;return{x:function(){return where(logicalAnd(greaterEqual(x,clipValueMin),lessEqual(x,clipValueMax)),dy,zerosLike2(dy))}}}};var concatGradConfig={kernelName:Concat3,saveAllInputs:true,gradFunc:function(dy,saved,attrs){var shapes=saved.map(function(t){return t.shape});var axis=attrs.axis;var $axis=parseAxisParam(axis,saved[0].shape)[0];var sizeSplits=shapes.map(function(s){return s[$axis]});var derTensors=split2(dy,sizeSplits,$axis);return derTensors.map(function(t){return function(){return t}})}};var conv2DGradConfig={kernelName:Conv2D3,inputsToSave:["x","filter"],gradFunc:function(dy,saved,attrs){var _a=saved,x4D=_a[0],$filter=_a[1];var _b=attrs,dilations=_b.dilations,strides=_b.strides,pad3=_b.pad,dataFormat=_b.dataFormat;assert(tupleValuesAreOne(dilations),function(){return"Error in gradient of conv2D: dilation rates greater than 1 "+("are not yet supported in gradients. Got dilations '"+dilations+"'")});return{x:function(){return conv2DBackpropInput2(x4D.shape,dy,$filter,strides,pad3,dataFormat)},filter:function(){return conv2DBackpropFilter(x4D,dy,$filter.shape,strides,pad3,dataFormat)}}}};var conv2DBackpropInputGradConfig={kernelName:Conv2DBackpropInput3,inputsToSave:["dy","filter"],gradFunc:function(ddx,saved,attrs){var _a=saved,dy=_a[0],filter=_a[1];var _b=attrs,strides=_b.strides,pad3=_b.pad,dataFormat=_b.dataFormat,dimRoundingMode=_b.dimRoundingMode;return{dy:function(){return conv2d2(ddx,filter,strides,pad3,dataFormat,1,dimRoundingMode)},filter:function(){return conv2DBackpropFilter(ddx,dy,filter.shape,strides,pad3,dataFormat,dimRoundingMode)}}}};function conv3DBackpropFilter_(x,dy,filterShape,strides,pad3){var x5D=x;if(x.rank===4){x5D=reshape2(x,[1,x.shape[0],x.shape[1],x.shape[2],x.shape[3]])}var dy5D=dy;if(dy5D.rank===4){dy5D=reshape2(dy,[1,dy.shape[0],dy.shape[1],dy.shape[2],dy.shape[3]])}assert(x5D.rank===5,function(){return"Error in conv3dDerFilter: input must be rank 5, but got shape "+(x5D.shape+".")});assert(dy5D.rank===5,function(){return"Error in conv3dDerFilter: dy must be rank 5, but got shape "+(dy5D.shape+".")});assert(filterShape.length===5,function(){return"Error in conv3dDerFilter: filterShape must be length 5, but got "+(filterShape+".")});assert(x5D.shape[4]===filterShape[3],function(){return"Error in conv3dDerFilter: depth of input "+x5D.shape[4]+") must "+("match input depth in filter ("+filterShape[3]+".")});assert(dy5D.shape[4]===filterShape[4],function(){return"Error in conv3dDerFilter: depth of dy ("+dy5D.shape[4]+") must "+("match output depth for filter ("+filterShape[4]+").")});var forward=function(backend2){var dilations=1;var convInfo=computeConv3DInfo(x5D.shape,filterShape,strides,dilations,pad3);return backend2.conv3dDerFilter(x5D,dy5D,convInfo)};var inputs={x:x5D,dy:dy5D};var attrs={strides,pad:pad3,filterShape};return ENGINE.runKernelFunc(forward,inputs,null,Conv3DBackpropFilterV2,attrs)}var conv3DBackpropFilter=op({conv3DBackpropFilter_});var conv3DGradConfig={kernelName:Conv3D,inputsToSave:["x","filter"],gradFunc:function(dy,saved,attrs){var _a=attrs,dilations=_a.dilations,strides=_a.strides,pad3=_a.pad;assert(tupleValuesAreOne(dilations),function(){return"Error in gradient of conv3D: dilation rates greater than 1 are "+("not yet supported in gradients. Got dilations '"+dilations+"'")});var x5D=saved[0],$filter=saved[1];return{x:function(){return conv3DBackpropInput(x5D.shape,dy,$filter,strides,pad3)},filter:function(){return conv3DBackpropFilter(x5D,dy,$filter.shape,strides,pad3)}}}};var cosGradConfig={kernelName:Cos3,inputsToSave:["x"],gradFunc:function(dy,saved){var x=saved[0];return{x:function(){return mul(neg(sin(cast2(x,"float32"))),dy)}}}};var coshGradConfig={kernelName:Cosh,inputsToSave:["x"],gradFunc:function(dy,saved){var x=saved[0];return{x:function(){return mul(sinh(cast2(x,"float32")),dy)}}}};var cumsumGradConfig={kernelName:Cumsum3,inputsToSave:["x"],gradFunc:function(dy,saved,attrs){var x=saved[0];var _a=attrs,axis=_a.axis,exclusive=_a.exclusive,reverse3=_a.reverse;return{x:function(){var permutation=getAxesPermutation([axis],x.rank);var out=cumsum2(dy,axis,exclusive,!reverse3);if(permutation!=null){out=transpose2(out,permutation)}return out}}}};var depthwiseConv2dNativeGradConfig={kernelName:DepthwiseConv2dNative3,inputsToSave:["x","filter"],gradFunc:function(dy,saved,attrs){var _a=attrs,dilations=_a.dilations,strides=_a.strides,pad3=_a.pad,dimRoundingMode=_a.dimRoundingMode;var $dilations=dilations==null?[1,1]:dilations;assert(tupleValuesAreOne($dilations),function(){return"Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations "+("'"+$dilations+"'")});var _b=saved,x=_b[0],filter=_b[1];assert(x.rank===4,function(){return"Error in gradient of depthwiseConv2dNative: input must be "+("rank 4, but got rank "+x.rank+".")});assert(filter.rank===4,function(){return"Error in gradient of depthwiseConv2dNative: filter must be "+("rank 4, but got rank "+filter.rank+".")});assert(x.shape[3]===filter.shape[2],function(){return"Error in gradient of depthwiseConv2d: number of input "+("channels ("+x.shape[3]+") must match the inChannels dimension ")+("in filter "+filter.shape[2]+".")});assert(eitherStridesOrDilationsAreOne(strides,$dilations),function(){return"Error in gradient of depthwiseConv2d: Either strides or "+("dilations must be 1. Got strides "+strides+" and dilations ")+("'"+$dilations+"'.")});if(dimRoundingMode!=null){assert(isInt(pad3),function(){return"Error in depthwiseConv2d: pad must be an integer when using, "+("dimRoundingMode "+dimRoundingMode+" but got pad "+pad3+".")})}return{x:function(){return depthwiseConv2dNativeBackpropInput(x.shape,dy,filter,strides,pad3,dilations,dimRoundingMode)},filter:function(){return depthwiseConv2dNativeBackpropFilter(x,dy,filter.shape,strides,pad3,dilations,dimRoundingMode)}}}};var dilation2dGradConfig={kernelName:Dilation2D,inputsToSave:["x","filter"],gradFunc:function(dy,saved,attrs){var _a=saved,x=_a[0],filter=_a[1];var inputInputs={x,filter,dy};var filterInputs={x,filter,dy};return{x:function(){return ENGINE.runKernel(Dilation2DBackpropInput,inputInputs,attrs)},filter:function(){return ENGINE.runKernel(Dilation2DBackpropFilter,filterInputs,attrs)}}}};var divGradConfig={kernelName:Div3,inputsToSave:["a","b"],gradFunc:function(dy,saved){var a=saved[0],b=saved[1];var outShape=assertAndGetBroadcastShape(a.shape,b.shape);var derA=function(){var res=div(dy,cast2(b,"float32"));var reduceAxes=getReductionAxes(a.shape,outShape);if(reduceAxes.length>0){return reshape2(sum$1(res,reduceAxes),a.shape)}return res};var derB=function(){var res=mul(dy,cast2(a,"float32"));var reduceAxes=getReductionAxes(b.shape,outShape);if(reduceAxes.length>0){res=reshape2(sum$1(res,reduceAxes),b.shape)}var tmp=square(b);return neg(div(res,cast2(tmp,"float32")))};return{a:derA,b:derB}}};var eluGradConfig={kernelName:Elu,outputsToSave:[true],gradFunc:function(dy,saved){var y=saved[0];var backPropKernelFunc=function(backend2){return backend2.eluDer(dy,y)};var inputs={dy,y};return{x:function(){return ENGINE.runKernelFunc(backPropKernelFunc,inputs,null,EluGrad)}}}};var erfGradConfig={kernelName:Erf,inputsToSave:["x"],gradFunc:function(dy,saved){var x=saved[0];var a=mul(exp(neg(square(x))),2/Math.sqrt(Math.PI));return{x:function(){return mul(dy,a)}}}};var expGradConfig={kernelName:Exp3,outputsToSave:[true],gradFunc:function(dy,saved){var y=saved[0];return{x:function(){return mul(dy,y)}}}};var expm1GradConfig={kernelName:Expm1,inputsToSave:["x"],gradFunc:function(dy,saved){var x=saved[0];return{x:function(){return mul(dy,exp(x))}}}};var floorGradConfig={kernelName:Floor,gradFunc:function(dy){return{x:function(){return zerosLike2(dy)}}}};var floorDivGradConfig={kernelName:FloorDiv3,inputsToSave:["a","b"],gradFunc:function(dy,saved){var a=saved[0],b=saved[1];var outShape=assertAndGetBroadcastShape(a.shape,b.shape);var derA=function(){var res=div(dy,cast2(b,"float32"));var reduceAxes=getReductionAxes(a.shape,outShape);if(reduceAxes.length>0){return reshape2(sum$1(res,reduceAxes),a.shape)}return res};var derB=function(){var res=mul(dy,cast2(a,"float32"));var reduceAxes=getReductionAxes(b.shape,outShape);if(reduceAxes.length>0){res=reshape2(sum$1(res,reduceAxes),b.shape)}var tmp=square(b);return neg(div(res,cast2(tmp,"float32")))};return{a:derA,b:derB}}};var fusedBatchNormGradConfig={kernelName:FusedBatchNorm3,inputsToSave:["x","mean","variance","scale"],gradFunc:function(dy,saved,attrs){var varianceEpsilon=attrs.varianceEpsilon;var x=saved[0],mean2=saved[1],variance=saved[2],scale=saved[3];var scaleValue=scale==null?scalar(1):scale;var reductionAxes=getReductionAxes(mean2.shape,x.shape);var tileShape=[];if(mean2.rank===1){for(var i=0;i<x.shape.length-1;++i){tileShape.push(x.shape[i])}tileShape.push(1)}var xMinusMean=sub(x,mean2);var dyTimesScaleValue=mul(dy,scaleValue);var oneOverSqrtVariance=rsqrt(add$1(variance,scalar(varianceEpsilon)));var minusHalfRCube=mul(mul(mul(oneOverSqrtVariance,oneOverSqrtVariance),oneOverSqrtVariance),scalar(-.5));var derX=function(){if(mean2.rank===1){return reshape2(mul(mul(dy,tile2(reshape2(oneOverSqrtVariance,[1,1,1,mean2.shape[0]]),tileShape)),scaleValue),x.shape)}else{return reshape2(mul(mul(dy,oneOverSqrtVariance),scaleValue),x.shape)}};var derMean=function(){var meanDer=mul(mul(oneOverSqrtVariance,scalar(-1)),dyTimesScaleValue);if(mean2.rank===1){meanDer=sum$1(meanDer,reductionAxes)}return reshape2(meanDer,mean2.shape)};var derVariance=function(){var varianceDer=mul(mul(minusHalfRCube,xMinusMean),dyTimesScaleValue);if(mean2.rank===1){varianceDer=sum$1(varianceDer,reductionAxes)}return reshape2(varianceDer,mean2.shape)};var derScale=function(){var xMinusMean2TimesRsqrt=mul(xMinusMean,oneOverSqrtVariance);var scaleDer=mul(dy,xMinusMean2TimesRsqrt);if(mean2.rank===1){scaleDer=sum$1(scaleDer,reductionAxes)}return reshape2(scaleDer,mean2.shape)};var derOffset=function(){var offsetDer=dy;if(mean2.rank===1){offsetDer=sum$1(offsetDer,reductionAxes)}return reshape2(offsetDer,mean2.shape)};return{x:derX,mean:derMean,variance:derVariance,scale:derScale,offset:derOffset}}};var gatherGradConfig={kernelName:GatherV23,inputsToSave:["x","indices"],gradFunc:function(dy,saved,attrs){var x=saved[0],indices=saved[1];var axis=attrs.axis;var parsedAxis=parseAxisParam(axis,x.shape)[0];var derX=function(){var paramsShape=x.shape;var indicesSize=indices.size;var outerShape=paramsShape.slice(0,parsedAxis);var outerDims=outerShape.length;var innerShape=paramsShape.slice(axis,paramsShape.length).slice(1);var innerDims=innerShape.length;var outerAxesIndices=arrayRange(0,outerDims);var innerAxesIndices=arrayRange(outerDims+1,outerDims+1+innerDims);var valuesShape=arrayConcat([outerShape,[indicesSize],innerShape]);var values=reshape2(dy,valuesShape);var reshapedIndices=reshape2(indices,[indicesSize]);var transposeDims=arrayConcat([[outerDims],outerAxesIndices,innerAxesIndices]);var valuesTranspose=transpose2(values,transposeDims);var paramsGrad=unsortedSegmentSum(valuesTranspose,reshapedIndices,x.shape[parsedAxis]);var invertTransposeDims=getUndoAxesPermutation(transposeDims);paramsGrad=transpose2(paramsGrad,invertTransposeDims);return paramsGrad};return{x:derX,indices:function(){return indices}}}};function arrayRange(start,stop){var result=[];for(var i=start;i<stop;++i){result.push(i)}return result}function arrayConcat(arrays){var result=[];for(var i=0;i<arrays.length;++i){for(var j=0;j<arrays[i].length;++j){result.push(arrays[i][j])}}return result}var greaterEqualGradConfig={kernelName:GreaterEqual3,inputsToSave:["a","b"],gradFunc:function(dy,saved){var a=saved[0],b=saved[1];return{a:function(){return zerosLike2(a)},b:function(){return zerosLike2(b)}}}};var identityGradConfig={kernelName:Identity5,gradFunc:function(dy){return{x:function(){return cast2(dy,"float32")}}}};var isFiniteGradConfig={kernelName:IsFinite,gradFunc:function(dy){return{x:function(){return zerosLike2(dy)}}}};var isInfGradConfig={kernelName:IsInf,gradFunc:function(dy){return{x:function(){return zerosLike2(dy)}}}};var isNanGradConfig={kernelName:IsNan,gradFunc:function(dy){return{x:function(){return zerosLike2(dy)}}}};var log1pGradConfig={kernelName:Log1p,inputsToSave:["x"],gradFunc:function(dy,saved){var x=saved[0];return{x:function(){return div(dy,add$1(x,1))}}}};var logGradConfig={kernelName:Log3,inputsToSave:["x"],gradFunc:function(dy,saved){var x=saved[0];return{x:function(){return div(dy,cast2(x,"float32"))}}}};var logSoftmaxGradConfig={kernelName:LogSoftmax,inputsToSave:[],outputsToSave:[true],gradFunc:function(dy,saved,attrs){var value=saved[0];var axis=attrs.axis;return{logits:function(){var keepDims=true;var softmax3=exp(value);return sub(dy,mul(sum$1(dy,axis,keepDims),softmax3))}}}};function localResponseNormalizationBackprop_(x,y,dy,depthRadius,bias,alpha,beta){if(depthRadius===void 0){depthRadius=5}if(bias===void 0){bias=1}if(alpha===void 0){alpha=1}if(beta===void 0){beta=.5}var forward=function(backend2){return backend2.LRNGrad(dy,x,y,depthRadius,bias,alpha,beta)};var inputs={x,y,dy};var attrs={depthRadius,bias,alpha,beta};return ENGINE.runKernelFunc(forward,inputs,null,LRNBackprop,attrs)}var localResponseNormalizationBackprop=op({localResponseNormalizationBackprop_});var lrnGradConfig={kernelName:LRN,inputsToSave:["x"],outputsToSave:[true],gradFunc:function(dy,saved,attrs){var _a=saved,x=_a[0],y=_a[1];var _b=attrs,depthRadius=_b.depthRadius,bias=_b.bias,alpha=_b.alpha,beta=_b.beta;return{x:function(){return localResponseNormalizationBackprop(x,y,dy,depthRadius,bias,alpha,beta)}}}};function gradForMinAndMax(dy,y,xOrig,origAxes){if(y.rank<xOrig.rank){y=reshape2(y,expandShapeToKeepDim(y.shape,origAxes))}if(dy.rank<xOrig.rank){dy=reshape2(dy,expandShapeToKeepDim(dy.shape,origAxes))}return{x:function(){var dx=mul(dy,cast2(equal(xOrig,y),dy.dtype));return dx}}}var maxGradConfig={kernelName:Max3,inputsToSave:["x"],outputsToSave:[true],gradFunc:function(dy,saved,attrs){var maxAttrs=attrs;var reductionIndices=maxAttrs.reductionIndices;var x=saved[0];var y=saved[1];var origAxes=parseAxisParam(reductionIndices,x.shape);var maxGrad=gradForMinAndMax(dy,y,x,origAxes);return{x:function(){return maxGrad["x"]()}}}};var maximumGradConfig={kernelName:Maximum3,inputsToSave:["a","b"],gradFunc:function(dy,saved){var a=saved[0],b=saved[1];var derA=function(){return mul(dy,cast2(greaterEqual(a,b),"float32"))};var derB=function(){return mul(dy,cast2(less(a,b),"float32"))};return{a:derA,b:derB}}};function maxPool3dBackprop_(dy,input,output,filterSize,strides,dilations,pad3,dimRoundingMode){if(dilations===void 0){dilations=[1,1,1]}var $dy=convertToTensor(dy,"dy","maxPool3dBackprop");var $input=convertToTensor(input,"input","maxPool3dBackprop");var $output=convertToTensor(output,"output","maxPool3dBackprop");var dy5D=$dy;var input5D=$input;var output5D=$output;var reshapedTo5D=false;if($input.rank===4){reshapedTo5D=true;dy5D=reshape2($dy,[1,$dy.shape[0],$dy.shape[1],$dy.shape[2],$dy.shape[3]]);input5D=reshape2($input,[1,$input.shape[0],$input.shape[1],$input.shape[2],$input.shape[3]]);output5D=reshape2($output,[1,$output.shape[0],$output.shape[1],$output.shape[2],$output.shape[3]])}assert(dy5D.rank===5,function(){return"Error in maxPool3dBackprop: dy must be rank 5 but got rank "+(dy5D.rank+".")});assert(input5D.rank===5,function(){return"Error in maxPool3dBackprop: input must be rank 5 but got rank "+(input5D.rank+".")});assert(output5D.rank===5,function(){return"Error in maxPool3dBackprop: output must be rank 5 but got rank "+(output5D.rank+".")});assert(eitherStridesOrDilationsAreOne(strides,dilations),function(){return"Error in maxPool3dBackprop: Either strides or dilations "+("must be 1. Got strides "+strides+" and dilations '"+dilations+"'")});if(dimRoundingMode!=null){assert(isInt(pad3),function(){return"Error in maxPool3dBackprop: pad must be an integer when "+("using, dimRoundingMode "+dimRoundingMode+" but got pad "+pad3+".")})}var forward=function(backend2){var convInfo=computePool3DInfo(input5D.shape,filterSize,strides,dilations,pad3,dimRoundingMode);return backend2.maxPool3dBackprop(dy5D,input5D,output5D,convInfo)};var inputs={dy:dy5D,input:input5D,output:output5D};var attrs={filterSize,strides,dilations,pad:pad3,dimRoundingMode};var res=ENGINE.runKernelFunc(forward,inputs,null,MaxPool3DBackprop,attrs);if(reshapedTo5D){return reshape2(res,[res.shape[1],res.shape[2],res.shape[3],res.shape[4]])}return res}var maxPool3dBackprop=op({maxPool3dBackprop_});var maxPool3DGradConfig={kernelName:MaxPool3D,inputsToSave:["x"],outputsToSave:[true],gradFunc:function(dy,saved,attrs){var _a=saved,x=_a[0],y=_a[1];var _b=attrs,filterSize=_b.filterSize,strides=_b.strides,dilations=_b.dilations,pad3=_b.pad,dimRoundingMode=_b.dimRoundingMode;var $dilations=dilations==null?[1,1,1]:dilations;return{x:function(){return maxPool3dBackprop(dy,x,y,filterSize,strides,$dilations,pad3,dimRoundingMode)}}}};function maxPoolBackprop_(dy,input,output,filterSize,strides,pad3,dimRoundingMode){var $dy=convertToTensor(dy,"dy","maxPoolBackprop");var $input=convertToTensor(input,"input","maxPoolBackprop");var $output=convertToTensor(output,"output","maxPoolBackprop");assert($input.rank===$dy.rank,function(){return"Rank of input ("+$input.rank+") does not match rank of dy "+("("+$dy.rank+")")});assert($dy.rank===4,function(){return"Error in maxPoolBackprop: dy must be rank 4 but got rank "+($dy.rank+".")});assert($input.rank===4,function(){return"Error in maxPoolBackprop: input must be rank 4 but got rank "+($input.rank+".")});if(dimRoundingMode!=null){assert(isInt(pad3),function(){return"Error in maxPoolBackprop: pad must be an integer when using, "+("dimRoundingMode "+dimRoundingMode+" but got pad "+pad3+".")})}var forward=function(backend2){var convInfo=computePool2DInfo($input.shape,filterSize,strides,1,pad3,dimRoundingMode);return backend2.maxPoolBackprop($dy,$input,$output,convInfo)};var inputs={dy:$dy,input:$input,output:$output};var attrs={filterSize,strides,pad:pad3,dimRoundingMode};return ENGINE.runKernelFunc(forward,inputs,null,MaxPoolBackprop,attrs)}var maxPoolBackprop=op({maxPoolBackprop_});var maxPoolGradConfig={kernelName:MaxPool3,inputsToSave:["x"],outputsToSave:[true],gradFunc:function(dy,saved,attrs){var _a=saved,x=_a[0],y=_a[1];var _b=attrs,filterSize=_b.filterSize,strides=_b.strides,pad3=_b.pad;return{x:function(){return maxPoolBackprop(dy,x,y,filterSize,strides,pad3)}}}};var minGradConfig={kernelName:Min3,inputsToSave:["x"],outputsToSave:[true],gradFunc:function(dy,saved,attrs){var minAttrs=attrs;var axis=minAttrs.axis;var x=saved[0],y=saved[1];var origAxes=parseAxisParam(axis,x.shape);var minGrad=gradForMinAndMax(dy,y,x,origAxes);return{x:function(){return minGrad["x"]()}}}};var minimumGradConfig={kernelName:Minimum3,inputsToSave:["a","b"],gradFunc:function(dy,saved){var a=saved[0],b=saved[1];var derA=function(){return mul(dy,cast2(lessEqual(a,b),"float32"))};var derB=function(){return mul(dy,cast2(greater(a,b),"float32"))};return{a:derA,b:derB}}};var mirrorPadGradConfig={kernelName:MirrorPad,inputsToSave:["x"],gradFunc:function(dy,saved,attrs){var x=saved[0];var paddings=attrs.paddings;var begin=paddings.map(function(p){return p[0]});return{x:function(){return slice2(dy,begin,x.shape)}}}};var modGradConfig={kernelName:Mod,inputsToSave:["a","b"],gradFunc:function(dy,saved){var a=saved[0],b=saved[1];var outShape=assertAndGetBroadcastShape(a.shape,b.shape);var derA=function(){var reduceAxes=getReductionAxes(a.shape,outShape);if(reduceAxes.length>0){return reshape2(sum$1(dy,reduceAxes),a.shape)}return dy};var derB=function(){var res=mul(dy,neg(floor(div(a,b))));var reduceAxes=getReductionAxes(b.shape,outShape);if(reduceAxes.length>0){return reshape2(sum$1(res,reduceAxes),b.shape)}return res};return{a:derA,b:derB}}};var multiplyGradConfig={kernelName:Multiply3,inputsToSave:["a","b"],gradFunc:function(dy,saved){var a=saved[0],b=saved[1];var outShape=assertAndGetBroadcastShape(a.shape,b.shape);var derA=function(){var res=mul(dy,cast2(b,"float32"));var reduceAxes=getReductionAxes(a.shape,outShape);if(reduceAxes.length>0){return reshape2(sum$1(res,reduceAxes),a.shape)}return res};var derB=function(){var res=mul(dy,cast2(a,"float32"));var reduceAxes=getReductionAxes(b.shape,outShape);if(reduceAxes.length>0){return reshape2(sum$1(res,reduceAxes),b.shape)}return res};return{a:derA,b:derB}}};var negateGradConfig={kernelName:Negate3,gradFunc:function(dy){return{x:function(){return neg(dy)}}}};var oneHotGradConfig={kernelName:OneHot3,inputsToSave:["indices"],gradFunc:function(dy,saved){var indices=saved[0];return{indices:function(){return zeros(indices.shape,"float32")}}}};var onesLikeGradConfig={kernelName:OnesLike3,gradFunc:function(dy){return{x:function(){return zerosLike2(dy)}}}};var padV2GradConfig={kernelName:PadV23,inputsToSave:["x"],gradFunc:function(dy,saved,attrs){var x=saved[0];var paddings=attrs.paddings;var begin=paddings.map(function(p){return p[0]});return{x:function(){return slice2(dy,begin,x.shape)}}}};var powGradConfig={kernelName:Pow3,inputsToSave:["a","b"],outputsToSave:[true],gradFunc:function(dy,saved){var a=saved[0],b=saved[1],y=saved[2];var base=a;var exp2=b;var outShape=assertAndGetBroadcastShape(base.shape,exp2.shape);var derBase=function(){var expFloat=cast2(exp2,"float32");var res=mul(dy,mul(expFloat,pow(base,sub(expFloat,scalar(1)))));var reduceAxes=getReductionAxes(base.shape,outShape);if(reduceAxes.length>0){res=sum$1(res,reduceAxes)}return reshape2(res,base.shape)};var derExp=function(){var condition=greater(base,0);var logBase=where(condition,log(base),zerosLike2(base));var res=mul(dy,mul(y,logBase));var reduceAxes=getReductionAxes(exp2.shape,outShape);if(reduceAxes.length>0){res=sum$1(res,reduceAxes)}return reshape2(res,exp2.shape)};return{a:derBase,b:derExp}}};var preluGradConfig={kernelName:Prelu3,inputsToSave:["x","alpha"],gradFunc:function(dy,saved){var x=saved[0],alpha=saved[1];var mask=greater(x,0);return{x:function(){return where(mask,dy,mul(dy,alpha))},alpha:function(){var res=where(mask,zerosLike2(dy),mul(dy,x));var reduceAxes=getReductionAxes(alpha.shape,dy.shape);if(reduceAxes.length>0){res=sum$1(res,reduceAxes)}return reshape2(res,alpha.shape)}}}};var reciprocalGradConfig={kernelName:Reciprocal,inputsToSave:["x"],gradFunc:function(dy,saved){var x=saved[0];return{x:function(){return div(dy,neg(square(x)))}}}};var relu6GradConfig={kernelName:Relu63,inputsToSave:["x"],gradFunc:function(dy,saved){var x=saved[0];var mask=mul(lessEqual(x,6),step(x));return{x:function(){return mul(dy,cast2(mask,"float32"))}}}};var reluGradConfig={kernelName:Relu3,inputsToSave:["x"],gradFunc:function(dy,saved){var x=saved[0];return{x:function(){return mul(dy,cast2(step(x),"float32"))}}}};var reshapeGradConfig={kernelName:Reshape6,inputsToSave:["x"],gradFunc:function(dy,saved){var x=saved[0];return{x:function(){return reshape2(dy,x.shape)}}}};var resizeBilinearGradConfig={kernelName:ResizeBilinear3,inputsToSave:["images"],gradFunc:function(dy,saved,attrs){var images=saved[0];var backPropKernelFunc=function(backend2){var alignCorners=attrs.alignCorners;return backend2.resizeBilinearBackprop(dy,images,alignCorners)};var inputs={images};var imagesDer=function(){return ENGINE.runKernelFunc(backPropKernelFunc,inputs,null,ResizeBilinearGrad,attrs)};return{images:imagesDer}}};var resizeNearestNeighborGradConfig={kernelName:ResizeNearestNeighbor,inputsToSave:["images"],gradFunc:function(dy,saved,attrs){var images=saved[0];var backPropKernelFunc=function(backend2){var alignCorners=attrs.alignCorners;return backend2.resizeNearestNeighborBackprop(dy,images,alignCorners)};var inputs={images};var imagesDer=function(){return ENGINE.runKernelFunc(backPropKernelFunc,inputs,null,ResizeNearestNeighborGrad,attrs)};return{images:imagesDer}}};var reverseGradConfig={kernelName:Reverse3,gradFunc:function(dy,saved,attrs){var dims=attrs.dims;var axes=parseAxisParam(dims,dy.shape);return{x:function(){return reverse2(dy,axes)}}}};var roundGradConfig={kernelName:Round,gradFunc:function(dy){return{x:function(){return zerosLike2(dy)}}}};var rsqrtGradConfig={kernelName:Rsqrt3,inputsToSave:["x"],gradFunc:function(dy,saved){var x=saved[0];return{x:function(){return neg(div(dy,mul(pow(x,1.5),2)))}}}};var selectV2PoolGradConfig={kernelName:SelectV23,inputsToSave:["condition"],gradFunc:function(dy,saved){var condition=saved[0];return{condition:function(){return cast2(zerosLike2(condition),"float32")},t:function(){return mul(dy,cast2(condition,dy.dtype))},e:function(){return mul(dy,cast2(logicalNot(condition),dy.dtype))}}}};var seluGradConfig={kernelName:Selu,inputsToSave:["x"],gradFunc:function(dy,saved){var x=saved[0];return{x:function(){var mask=greater(x,scalar(0));var scaleAlpha=scalar(SELU_SCALEALPHA);var scale=scalar(SELU_SCALE);var greaterThanZeroDer=mul(dy,scale);var lessEqualZeroDer=mul(mul(dy,scaleAlpha),exp(cast2(x,"float32")));return where(mask,greaterThanZeroDer,lessEqualZeroDer)}}}};var sigmoidGradConfig={kernelName:Sigmoid3,outputsToSave:[true],gradFunc:function(dy,saved){var y=saved[0];return{x:function(){return mul(dy,mul(y,sub(scalar(1),y)))}}}};var signGradConfig={kernelName:Sign,gradFunc:function(dy){return{x:function(){return zerosLike2(dy)}}}};var sinGradConfig={kernelName:Sin3,inputsToSave:["x"],gradFunc:function(dy,saved){var x=saved[0];return{x:function(){return mul(cos(cast2(x,"float32")),dy)}}}};var sinhGradConfig={kernelName:Sinh,inputsToSave:["x"],gradFunc:function(dy,saved){var x=saved[0];return{x:function(){return mul(cosh(cast2(x,"float32")),dy)}}}};var sliceGradConfig={kernelName:Slice6,inputsToSave:["x"],gradFunc:function(dy,saved,attrs){var x=saved[0];var _a=attrs,begin=_a.begin,size=_a.size;var inputShape=x.shape;var _b=parseSliceParams(x,begin,size),begin_=_b[0],size_=_b[1];var paddings=[];for(var i=0;i<dy.rank;i++){paddings.push([begin_[i],inputShape[i]-begin_[i]-size_[i]])}return{x:function(){return pad2(dy,paddings)}}}};var softmaxGradConfig={kernelName:Softmax3,outputsToSave:[true],gradFunc:function(dy,saved,attrs){var y=saved[0];var dim=attrs.dim;var keepDims=true;var dyTimesY=mul(dy,y);return{logits:function(){return sub(dyTimesY,mul(sum$1(dyTimesY,[dim],keepDims),y))}}}};var softplusGradConfig={kernelName:Softplus,inputsToSave:["x"],gradFunc:function(dy,saved){var x=saved[0];return{x:function(){return mul(dy,sigmoid2(x))}}}};var spaceToBatchNDGradConfig={kernelName:SpaceToBatchND,gradFunc:function(dy,saved,attrs){var _a=attrs,blockShape=_a.blockShape,paddings=_a.paddings;return{x:function(){return batchToSpaceND(dy,blockShape,paddings)}}}};var splitVGradConfig={kernelName:SplitV2,gradFunc:function(dy,saved,attrs){var axis=attrs.axis;return{x:function(){return concat2(dy,axis)}}}};var sqrtGradConfig={kernelName:Sqrt3,inputsToSave:["x"],gradFunc:function(dy,saved){var x=saved[0];return{x:function(){return div(dy,mul(sqrt(cast2(x,"float32")),2))}}}};var squareGradConfig={kernelName:Square3,inputsToSave:["x"],gradFunc:function(dy,saved){var x=saved[0];return{x:function(){return mul(dy,mul(cast2(x,"float32"),2))}}}};var squaredDifferenceGradConfig={kernelName:SquaredDifference3,inputsToSave:["a","b"],gradFunc:function(dy,saved){var a=saved[0],b=saved[1];var two=scalar(2);var derA=function(){return mul(dy,mul(two,sub(a,b)))};var derB=function(){return mul(dy,mul(two,sub(b,a)))};return{a:derA,b:derB}}};var stepGradConfig={kernelName:Step,gradFunc:function(dy){return{x:function(){return zerosLike2(dy)}}}};var subGradConfig={kernelName:Sub3,inputsToSave:["a","b"],gradFunc:function(dy,saved){var a=saved[0],b=saved[1];var outShape=assertAndGetBroadcastShape(a.shape,b.shape);var derA=function(){var res=dy;var reduceAxes=getReductionAxes(a.shape,outShape);if(reduceAxes.length>0){res=sum$1(res,reduceAxes)}return reshape2(res,a.shape)};var derB=function(){var res=dy;var reduceAxes=getReductionAxes(b.shape,outShape);if(reduceAxes.length>0){res=sum$1(res,reduceAxes)}return reshape2(neg(res),b.shape)};return{a:derA,b:derB}}};var sumGradConfig={kernelName:Sum3,inputsToSave:["x"],gradFunc:function(dy,saved,attrs){var x=saved[0];var expandedDyShape=x.shape.slice();var axis=attrs.axis;var axes=parseAxisParam(axis,x.shape);axes.forEach(function(axis2){expandedDyShape[axis2]=1});var expandedDy=reshape2(dy,expandedDyShape);var derX=mul(expandedDy,ones$1(x.shape,"float32"));return{x:function(){return derX}}}};var tanGradConfig={kernelName:Tan,inputsToSave:["x"],gradFunc:function(dy,saved){var x=saved[0];return{x:function(){return div(dy,square(cos(x)))}}}};var tanhGradConfig={kernelName:Tanh3,outputsToSave:[true],gradFunc:function(dy,saved){var y=saved[0];return{x:function(){return mul(sub(scalar(1),square(y)),dy)}}}};var tileGradConfig={kernelName:Tile3,inputsToSave:["x"],gradFunc:function(dy,saved,attrs){var x=saved[0];var reps=attrs.reps;var derX=function(){var xGrad=zerosLike2(x);if(x.rank===1){for(var i=0;i<reps[0];++i){xGrad=add$1(xGrad,slice2(dy,[i*x.shape[0]],[x.shape[0]]))}}else if(x.rank===2){for(var i=0;i<reps[0];++i){for(var j=0;j<reps[1];++j){xGrad=add$1(xGrad,slice2(dy,[i*x.shape[0],j*x.shape[1]],[x.shape[0],x.shape[1]]))}}}else if(x.rank===3){for(var i=0;i<reps[0];++i){for(var j=0;j<reps[1];++j){for(var k=0;k<reps[2];++k){xGrad=add$1(xGrad,slice2(dy,[i*x.shape[0],j*x.shape[1],k*x.shape[2]],[x.shape[0],x.shape[1],x.shape[2]]))}}}}else if(x.rank===4){for(var i=0;i<reps[0];++i){for(var j=0;j<reps[1];++j){for(var k=0;k<reps[2];++k){for(var l=0;l<reps[3];++l){xGrad=add$1(xGrad,slice2(dy,[i*x.shape[0],j*x.shape[1],k*x.shape[2],l*x.shape[3]],[x.shape[0],x.shape[1],x.shape[2],x.shape[3]]))}}}}}else{throw new Error("Gradient for tile operation is not implemented for rank-"+(x.rank+" tensors yet."))}return xGrad};return{x:derX}}};var transposeGradConfig={kernelName:Transpose5,gradFunc:function(dy,saved,attrs){var transposeAttrs=attrs;var perm=transposeAttrs.perm;var undoPerm=getUndoAxesPermutation(perm);return{x:function(){return transpose2(dy,undoPerm)}}}};var unpackGradConfig={kernelName:Unpack3,gradFunc:function(dy,saved,attrs){var unpackAttrs=attrs;var axis=unpackAttrs.axis;return{value:function(){return stack(dy,axis)}}}};var unsortedSegmentSumGradConfig={kernelName:UnsortedSegmentSum,inputsToSave:["segmentIds"],gradFunc:function(dy,saved){var segmentIds=saved[0];var derX=function(){return gatherDropNegatives(dy,segmentIds)};return{x:derX}}};function gatherDropNegatives(x,indices){var zeroClippedIndices=maximum(indices,zerosLike2(indices));var gathered=gather(x,zeroClippedIndices);var isPositive=greaterEqual(indices,scalar(0,"int32"));var numIters=gathered.rank-isPositive.rank;for(var i=0;i<numIters;++i){isPositive=expandDims(isPositive,i+1)}isPositive=logicalAnd(isPositive,ones$1(gathered.shape,"bool"));var zeroSlice=zerosLike2(gathered);return where(isPositive,gathered,zeroSlice)}var zerosLikeGradConfig={kernelName:ZerosLike3,gradFunc:function(dy){return{x:function(){return zerosLike2(dy)}}}};var gradConfigs=[absGradConfig,acosGradConfig,acoshGradConfig,addGradConfig,addNGradConfig,argMaxGradConfig,argMinGradConfig,asinGradConfig,asinhGradConfig,atan2GradConfig,atanGradConfig,atanhGradConfig,avgPool3DGradConfig,avgPoolGradConfig,batchMatMulGradConfig,batchToSpaceNDGradConfig,broadcastToGradConfig,castGradConfig,ceilGradConfig,clipByValueGradConfig,concatGradConfig,conv2DBackpropInputGradConfig,conv2DGradConfig,conv3DGradConfig,cosGradConfig,coshGradConfig,cumsumGradConfig,depthwiseConv2dNativeGradConfig,dilation2dGradConfig,divGradConfig,eluGradConfig,erfGradConfig,expGradConfig,expm1GradConfig,floorDivGradConfig,floorGradConfig,fusedBatchNormGradConfig,gatherGradConfig,greaterEqualGradConfig,identityGradConfig,isFiniteGradConfig,isInfGradConfig,isNanGradConfig,log1pGradConfig,logGradConfig,logSoftmaxGradConfig,lrnGradConfig,maxGradConfig,maxGradConfig,maximumGradConfig,maxPool3DGradConfig,maxPoolGradConfig,minGradConfig,minimumGradConfig,mirrorPadGradConfig,modGradConfig,multiplyGradConfig,negateGradConfig,oneHotGradConfig,onesLikeGradConfig,padV2GradConfig,padV2GradConfig,powGradConfig,preluGradConfig,reciprocalGradConfig,relu6GradConfig,reluGradConfig,reshapeGradConfig,resizeBilinearGradConfig,resizeNearestNeighborGradConfig,reverseGradConfig,roundGradConfig,rsqrtGradConfig,selectV2PoolGradConfig,seluGradConfig,sigmoidGradConfig,signGradConfig,sinGradConfig,sinhGradConfig,sliceGradConfig,softmaxGradConfig,softplusGradConfig,spaceToBatchNDGradConfig,spaceToBatchNDGradConfig,splitVGradConfig,splitVGradConfig,sqrtGradConfig,squaredDifferenceGradConfig,squareGradConfig,stepGradConfig,subGradConfig,sumGradConfig,tanGradConfig,tanhGradConfig,tileGradConfig,transposeGradConfig,unpackGradConfig,unsortedSegmentSumGradConfig,zerosLikeGradConfig];for(var _i=0,gradConfigs_1=gradConfigs;_i<gradConfigs_1.length;_i++){var gradientConfig=gradConfigs_1[_i];registerGradient(gradientConfig)}Tensor.prototype.abs=function(){this.throwIfDisposed();return abs(this)};Tensor.prototype.acos=function(){this.throwIfDisposed();return acos(this)};Tensor.prototype.acosh=function(){this.throwIfDisposed();return acosh(this)};Tensor.prototype.addStrict=function(x){this.throwIfDisposed();return addStrict(this,x)};Tensor.prototype.add=function(b){this.throwIfDisposed();return add$1(this,b)};Tensor.prototype.all=function(axis,keepDims){this.throwIfDisposed();return all(this,axis,keepDims)};Tensor.prototype.any=function(axis,keepDims){this.throwIfDisposed();return any(this,axis,keepDims)};Tensor.prototype.argMax=function(axis){this.throwIfDisposed();return argMax(this,axis)};Tensor.prototype.argMin=function(axis){this.throwIfDisposed();return argMin(this,axis)};Tensor.prototype.asScalar=function(){this.throwIfDisposed();assert(this.size===1,function(){return"The array must have only 1 element."});return reshape2(this,[])};Tensor.prototype.asType=function(dtype){this.throwIfDisposed();return cast2(this,dtype)};Tensor.prototype.as1D=function(){this.throwIfDisposed();return reshape2(this,[this.size])};Tensor.prototype.as2D=function(rows,columns){this.throwIfDisposed();return reshape2(this,[rows,columns])};Tensor.prototype.as3D=function(rows,columns,depth){this.throwIfDisposed();return reshape2(this,[rows,columns,depth])};Tensor.prototype.as4D=function(rows,columns,depth,depth2){this.throwIfDisposed();return reshape2(this,[rows,columns,depth,depth2])};Tensor.prototype.as5D=function(rows,columns,depth,depth2,depth3){this.throwIfDisposed();return reshape2(this,[rows,columns,depth,depth2,depth3])};Tensor.prototype.asin=function(){this.throwIfDisposed();return asin(this)};Tensor.prototype.asinh=function(){this.throwIfDisposed();return asinh(this)};Tensor.prototype.atan=function(){this.throwIfDisposed();return atan(this)};Tensor.prototype.atan2=function(b){this.throwIfDisposed();return atan2(this,b)};Tensor.prototype.atanh=function(){this.throwIfDisposed();return atanh(this)};Tensor.prototype.avgPool=function(filterSize,strides,pad3,dimRoundingMode){this.throwIfDisposed();return avgPool2(this,filterSize,strides,pad3,dimRoundingMode)};Tensor.prototype.batchToSpaceND=function(blockShape,crops){this.throwIfDisposed();return batchToSpaceND(this,blockShape,crops)};Tensor.prototype.batchNorm=function(mean2,variance,offset,scale,varianceEpsilon){this.throwIfDisposed();return batchNorm(this,mean2,variance,offset,scale,varianceEpsilon)};Tensor.prototype.broadcastTo=function(shape){this.throwIfDisposed();return broadcastTo(this,shape)};Tensor.prototype.cast=function(dtype){this.throwIfDisposed();return cast2(this,dtype)};Tensor.prototype.ceil=function(){this.throwIfDisposed();return ceil(this)};Tensor.prototype.clipByValue=function(min3,max3){this.throwIfDisposed();return clipByValue(this,min3,max3)};Tensor.prototype.concat=function(x,axis){this.throwIfDisposed();if(x instanceof Tensor){x=[x]}return concat2([this].concat(x),axis)};Tensor.prototype.conv1d=function(filter,stride,pad3,dataFormat,dilation,dimRoundingMode){this.throwIfDisposed();return conv1d(this,filter,stride,pad3,dataFormat,dilation,dimRoundingMode)};Tensor.prototype.conv2dTranspose=function(filter,outputShape,strides,pad3,dimRoundingMode){this.throwIfDisposed();return conv2dTranspose(this,filter,outputShape,strides,pad3,dimRoundingMode)};Tensor.prototype.conv2d=function(filter,strides,pad3,dataFormat,dilations,dimRoundingMode){this.throwIfDisposed();return conv2d2(this,filter,strides,pad3,dataFormat,dilations,dimRoundingMode)};Tensor.prototype.cos=function(){this.throwIfDisposed();return cos(this)};Tensor.prototype.cosh=function(){this.throwIfDisposed();return cosh(this)};Tensor.prototype.cumsum=function(axis,exclusive,reverse3){this.throwIfDisposed();return cumsum2(this,axis,exclusive,reverse3)};Tensor.prototype.depthToSpace=function(blockSize,dataFormat){this.throwIfDisposed();return depthToSpace2(this,blockSize,dataFormat)};Tensor.prototype.depthwiseConv2D=function(filter,strides,pad3,dataFormat,dilations,dimRoundingMode){deprecationWarn2("depthwiseConv2D is deprecated, use depthwiseConv2d instead");this.throwIfDisposed();return depthwiseConv2d2(this,filter,strides,pad3,dataFormat,dilations,dimRoundingMode)};Tensor.prototype.depthwiseConv2d=function(filter,strides,pad3,dataFormat,dilations,dimRoundingMode){this.throwIfDisposed();return depthwiseConv2d2(this,filter,strides,pad3,dataFormat,dilations,dimRoundingMode)};Tensor.prototype.dilation2d=function(filter,strides,pad3,dilations,dataFormat){this.throwIfDisposed();return dilation2d(this,filter,strides,pad3,dilations,dataFormat)};Tensor.prototype.divNoNan=function(b){this.throwIfDisposed();return divNoNan(this,b)};Tensor.prototype.divStrict=function(x){this.throwIfDisposed();return divStrict(this,x)};Tensor.prototype.div=function(b){this.throwIfDisposed();return div(this,b)};Tensor.prototype.dot=function(b){this.throwIfDisposed();return dot2(this,b)};Tensor.prototype.elu=function(){this.throwIfDisposed();return elu(this)};Tensor.prototype.equalStrict=function(x){this.throwIfDisposed();return equalStrict(this,x)};Tensor.prototype.equal=function(b){this.throwIfDisposed();return equal(this,b)};Tensor.prototype.erf=function(){this.throwIfDisposed();return erf(this)};Tensor.prototype.exp=function(){this.throwIfDisposed();return exp(this)};Tensor.prototype.expandDims=function(axis){this.throwIfDisposed();return expandDims(this,axis)};Tensor.prototype.expm1=function(){this.throwIfDisposed();return expm1(this)};Tensor.prototype.fft=function(){this.throwIfDisposed();return fft(this)};Tensor.prototype.flatten=function(){this.throwIfDisposed();return reshape2(this,[this.size])};Tensor.prototype.floor=function(){this.throwIfDisposed();return floor(this)};Tensor.prototype.floorDiv=function(b){this.throwIfDisposed();return floorDiv(this,b)};Tensor.prototype.gather=function(indices,axis){this.throwIfDisposed();return gather(this,indices,axis)};Tensor.prototype.greaterEqualStrict=function(x){this.throwIfDisposed();return greaterEqualStrict(this,x)};Tensor.prototype.greaterEqual=function(b){this.throwIfDisposed();return greaterEqual(this,b)};Tensor.prototype.greaterStrict=function(x){this.throwIfDisposed();return greaterStrict(this,x)};Tensor.prototype.greater=function(b){this.throwIfDisposed();return greater(this,b)};Tensor.prototype.ifft=function(){this.throwIfDisposed();return ifft(this)};Tensor.prototype.irfft=function(){this.throwIfDisposed();return irfft(this)};Tensor.prototype.isFinite=function(){this.throwIfDisposed();return isFinite$1(this)};Tensor.prototype.isInf=function(){this.throwIfDisposed();return isInf(this)};Tensor.prototype.isNaN=function(){this.throwIfDisposed();return isNaN$1(this)};Tensor.prototype.leakyRelu=function(alpha){this.throwIfDisposed();return leakyRelu(this,alpha)};Tensor.prototype.lessEqualStrict=function(x){this.throwIfDisposed();return lessEqualStrict(this,x)};Tensor.prototype.lessEqual=function(b){this.throwIfDisposed();return lessEqual(this,b)};Tensor.prototype.lessStrict=function(x){this.throwIfDisposed();return lessStrict(this,x)};Tensor.prototype.less=function(b){this.throwIfDisposed();return less(this,b)};Tensor.prototype.localResponseNormalization=function(depthRadius,bias,alpha,beta){this.throwIfDisposed();return localResponseNormalization(this,depthRadius,bias,alpha,beta)};Tensor.prototype.logSigmoid=function(){this.throwIfDisposed();return logSigmoid(this)};Tensor.prototype.logSoftmax=function(axis){this.throwIfDisposed();return logSoftmax(this,axis)};Tensor.prototype.logSumExp=function(axis,keepDims){this.throwIfDisposed();return logSumExp(this,axis,keepDims)};Tensor.prototype.log=function(){this.throwIfDisposed();return log(this)};Tensor.prototype.log1p=function(){this.throwIfDisposed();return log1p(this)};Tensor.prototype.logicalAnd=function(b){this.throwIfDisposed();return logicalAnd(this,b)};Tensor.prototype.logicalNot=function(){this.throwIfDisposed();return logicalNot(this)};Tensor.prototype.logicalOr=function(b){this.throwIfDisposed();return logicalOr(this,b)};Tensor.prototype.logicalXor=function(b){this.throwIfDisposed();return logicalXor(this,b)};Tensor.prototype.matMul=function(b,transposeA,transposeB){this.throwIfDisposed();return matMul(this,b,transposeA,transposeB)};Tensor.prototype.maxPool=function(filterSize,strides,pad3,dimRoundingMode){this.throwIfDisposed();return maxPool2(this,filterSize,strides,pad3,dimRoundingMode)};Tensor.prototype.max=function(axis,keepDims){this.throwIfDisposed();return max2(this,axis,keepDims)};Tensor.prototype.maximumStrict=function(x){this.throwIfDisposed();return maximumStrict(this,x)};Tensor.prototype.maximum=function(b){this.throwIfDisposed();return maximum(this,b)};Tensor.prototype.mean=function(axis,keepDims){this.throwIfDisposed();return mean(this,axis,keepDims)};Tensor.prototype.min=function(axis,keepDims){this.throwIfDisposed();return min2(this,axis,keepDims)};Tensor.prototype.minimumStrict=function(x){this.throwIfDisposed();return minimumStrict(this,x)};Tensor.prototype.minimum=function(b){this.throwIfDisposed();return minimum(this,b)};Tensor.prototype.mirrorPad=function(paddings,mode){this.throwIfDisposed();return mirrorPad(this,paddings,mode)};Tensor.prototype.modStrict=function(x){this.throwIfDisposed();return modStrict(this,x)};Tensor.prototype.mod=function(b){this.throwIfDisposed();return mod(this,b)};Tensor.prototype.mulStrict=function(x){this.throwIfDisposed();return mulStrict(this,x)};Tensor.prototype.mul=function(b){this.throwIfDisposed();return mul(this,b)};Tensor.prototype.neg=function(){this.throwIfDisposed();return neg(this)};Tensor.prototype.norm=function(ord,axis,keepDims){this.throwIfDisposed();return norm(this,ord,axis,keepDims)};Tensor.prototype.notEqualStrict=function(x){this.throwIfDisposed();return notEqualStrict(this,x)};Tensor.prototype.notEqual=function(b){this.throwIfDisposed();return notEqual(this,b)};Tensor.prototype.oneHot=function(depth,onValue,offValue){if(onValue===void 0){onValue=1}if(offValue===void 0){offValue=0}this.throwIfDisposed();return oneHot2(this,depth,onValue,offValue)};Tensor.prototype.onesLike=function(){this.throwIfDisposed();return onesLike2(this)};Tensor.prototype.pad=function(paddings,constantValue){this.throwIfDisposed();return pad2(this,paddings,constantValue)};Tensor.prototype.pool=function(windowShape,poolingType,padding,dilationRate,strides){this.throwIfDisposed();return pool(this,windowShape,poolingType,padding,dilationRate,strides)};Tensor.prototype.powStrict=function(exp2){this.throwIfDisposed();return powStrict(this,exp2)};Tensor.prototype.pow=function(exp2){this.throwIfDisposed();return pow(this,exp2)};Tensor.prototype.prelu=function(alpha){this.throwIfDisposed();return prelu2(this,alpha)};Tensor.prototype.prod=function(axis,keepDims){this.throwIfDisposed();return prod(this,axis,keepDims)};Tensor.prototype.reciprocal=function(){this.throwIfDisposed();return reciprocal(this)};Tensor.prototype.relu=function(){this.throwIfDisposed();return relu(this)};Tensor.prototype.relu6=function(){this.throwIfDisposed();return relu6(this)};Tensor.prototype.reshapeAs=function(x){this.throwIfDisposed();return reshape2(this,x.shape)};Tensor.prototype.reshape=function(shape){this.throwIfDisposed();return reshape2(this,shape)};Tensor.prototype.resizeBilinear=function(newShape2D,alignCorners){this.throwIfDisposed();return resizeBilinear2(this,newShape2D,alignCorners)};Tensor.prototype.resizeNearestNeighbor=function(newShape2D,alignCorners){this.throwIfDisposed();return resizeNearestNeighbor(this,newShape2D,alignCorners)};Tensor.prototype.reverse=function(axis){this.throwIfDisposed();return reverse2(this,axis)};Tensor.prototype.rfft=function(){this.throwIfDisposed();return rfft(this)};Tensor.prototype.round=function(){this.throwIfDisposed();return round(this)};Tensor.prototype.rsqrt=function(){this.throwIfDisposed();return rsqrt(this)};Tensor.prototype.selu=function(){this.throwIfDisposed();return selu(this)};Tensor.prototype.separableConv2d=function(depthwiseFilter,pointwiseFilter,strides,pad3,dilation,dataFormat){this.throwIfDisposed();return separableConv2d(this,depthwiseFilter,pointwiseFilter,strides,pad3,dilation,dataFormat)};Tensor.prototype.sigmoid=function(){this.throwIfDisposed();return sigmoid2(this)};Tensor.prototype.sign=function(){this.throwIfDisposed();return sign(this)};Tensor.prototype.sin=function(){this.throwIfDisposed();return sin(this)};Tensor.prototype.sinh=function(){this.throwIfDisposed();return sinh(this)};Tensor.prototype.slice=function(begin,size){this.throwIfDisposed();return slice2(this,begin,size)};Tensor.prototype.softmax=function(dim){this.throwIfDisposed();return softmax2(this,dim)};Tensor.prototype.softplus=function(){this.throwIfDisposed();return softplus(this)};Tensor.prototype.spaceToBatchND=function(blockShape,paddings){this.throwIfDisposed();return spaceToBatchND(this,blockShape,paddings)};Tensor.prototype.split=function(numOrSizeSplits,axis){this.throwIfDisposed();return split2(this,numOrSizeSplits,axis)};Tensor.prototype.sqrt=function(){this.throwIfDisposed();return sqrt(this)};Tensor.prototype.square=function(){this.throwIfDisposed();return square(this)};Tensor.prototype.squaredDifference=function(b){this.throwIfDisposed();return squaredDifference(this,b)};Tensor.prototype.squaredDifferenceStrict=function(x){this.throwIfDisposed();return squaredDifferenceStrict(this,x)};Tensor.prototype.squeeze=function(axis){this.throwIfDisposed();return squeeze(this,axis)};Tensor.prototype.stack=function(x,axis){this.throwIfDisposed();var tensorsToBeStacked=x instanceof Tensor?[this,x]:[this].concat(x);return stack(tensorsToBeStacked,axis)};Tensor.prototype.step=function(alpha){this.throwIfDisposed();return step(this,alpha)};Tensor.prototype.stridedSlice=function(begin,end,strides,beginMask,endMask,ellipsisMask,newAxisMask,shrinkAxisMask){this.throwIfDisposed();return stridedSlice2(this,begin,end,strides,beginMask,endMask,ellipsisMask,newAxisMask,shrinkAxisMask)};Tensor.prototype.subStrict=function(x){this.throwIfDisposed();return subStrict(this,x)};Tensor.prototype.sub=function(b){this.throwIfDisposed();return sub(this,b)};Tensor.prototype.sum=function(axis,keepDims){this.throwIfDisposed();return sum$1(this,axis,keepDims)};Tensor.prototype.tan=function(){this.throwIfDisposed();return tan(this)};Tensor.prototype.tanh=function(){this.throwIfDisposed();return tanh$1(this)};Tensor.prototype.tile=function(reps){this.throwIfDisposed();return tile2(this,reps)};Tensor.prototype.toBool=function(){this.throwIfDisposed();return cast2(this,"bool")};Tensor.prototype.toFloat=function(){this.throwIfDisposed();return cast2(this,"float32")};Tensor.prototype.toInt=function(){this.throwIfDisposed();return cast2(this,"int32")};Tensor.prototype.topk=function(k,sorted){this.throwIfDisposed();return topk(this,k,sorted)};Tensor.prototype.transpose=function(perm){this.throwIfDisposed();return transpose2(this,perm)};Tensor.prototype.unique=function(axis){this.throwIfDisposed();return unique(this,axis)};Tensor.prototype.unsortedSegmentSum=function(segmentIds,numSegments){this.throwIfDisposed();return unsortedSegmentSum(this,segmentIds,numSegments)};Tensor.prototype.unstack=function(axis){this.throwIfDisposed();return unstack(this,axis)};Tensor.prototype.where=function(condition,x){this.throwIfDisposed();return where(condition,this,x)};Tensor.prototype.zerosLike=function(){this.throwIfDisposed();return zerosLike2(this)};exports2.Abs=Abs3;exports2.Acos=Acos;exports2.Acosh=Acosh;exports2.AdadeltaOptimizer=AdadeltaOptimizer;exports2.AdagradOptimizer=AdagradOptimizer;exports2.AdamOptimizer=AdamOptimizer;exports2.AdamaxOptimizer=AdamaxOptimizer;exports2.Add=Add3;exports2.AddN=AddN3;exports2.All=All;exports2.Any=Any;exports2.ArgMax=ArgMax3;exports2.ArgMin=ArgMin;exports2.Asin=Asin;exports2.Asinh=Asinh;exports2.Atan=Atan;exports2.Atan2=Atan2;exports2.Atanh=Atanh;exports2.AvgPool=AvgPool3;exports2.AvgPool3D=AvgPool3D;exports2.AvgPool3DBackprop=AvgPool3DBackprop;exports2.AvgPoolBackprop=AvgPoolBackprop;exports2.BatchMatMul=BatchMatMul3;exports2.BatchToSpaceND=BatchToSpaceND;exports2.BroadcastTo=BroadcastTo;exports2.Cast=Cast5;exports2.Ceil=Ceil;exports2.ClipByValue=ClipByValue3;exports2.Complex=Complex;exports2.Concat=Concat3;exports2.Conv2D=Conv2D3;exports2.Conv2DBackpropFilter=Conv2DBackpropFilter;exports2.Conv2DBackpropInput=Conv2DBackpropInput3;exports2.Conv3D=Conv3D;exports2.Conv3DBackpropFilterV2=Conv3DBackpropFilterV2;exports2.Conv3DBackpropInputV2=Conv3DBackpropInputV2;exports2.Cos=Cos3;exports2.Cosh=Cosh;exports2.CropAndResize=CropAndResize3;exports2.Cumsum=Cumsum3;exports2.DataStorage=DataStorage2;exports2.DepthToSpace=DepthToSpace3;exports2.DepthwiseConv2dNative=DepthwiseConv2dNative3;exports2.DepthwiseConv2dNativeBackpropFilter=DepthwiseConv2dNativeBackpropFilter;exports2.DepthwiseConv2dNativeBackpropInput=DepthwiseConv2dNativeBackpropInput;exports2.Diag=Diag;exports2.Dilation2D=Dilation2D;exports2.Dilation2DBackpropFilter=Dilation2DBackpropFilter;exports2.Dilation2DBackpropInput=Dilation2DBackpropInput;exports2.Div=Div3;exports2.Elu=Elu;exports2.EluGrad=EluGrad;exports2.Environment=Environment;exports2.Equal=Equal3;exports2.Erf=Erf;exports2.Exp=Exp3;exports2.Expm1=Expm1;exports2.FFT=FFT;exports2.Fill=Fill3;exports2.FlipLeftRight=FlipLeftRight3;exports2.Floor=Floor;exports2.FloorDiv=FloorDiv3;exports2.FromPixels=FromPixels;exports2.FusedBatchNorm=FusedBatchNorm3;exports2.FusedConv2D=FusedConv2D3;exports2.FusedDepthwiseConv2D=FusedDepthwiseConv2D3;exports2.GatherNd=GatherNd3;exports2.GatherV2=GatherV23;exports2.Greater=Greater3;exports2.GreaterEqual=GreaterEqual3;exports2.IFFT=IFFT;exports2.Identity=Identity5;exports2.Imag=Imag;exports2.IsFinite=IsFinite;exports2.IsInf=IsInf;exports2.IsNan=IsNan;exports2.KernelBackend=KernelBackend2;exports2.LRN=LRN;exports2.LRNBackprop=LRNBackprop;exports2.Less=Less3;exports2.LessEqual=LessEqual3;exports2.LinSpace=LinSpace;exports2.Log=Log3;exports2.Log1p=Log1p;exports2.LogSoftmax=LogSoftmax;exports2.LogicalAnd=LogicalAnd3;exports2.LogicalNot=LogicalNot;exports2.LogicalOr=LogicalOr;exports2.Max=Max3;exports2.MaxPool=MaxPool3;exports2.MaxPool3D=MaxPool3D;exports2.MaxPool3DBackprop=MaxPool3DBackprop;exports2.MaxPoolBackprop=MaxPoolBackprop;exports2.MaxPoolWithArgmax=MaxPoolWithArgmax;exports2.Maximum=Maximum3;exports2.Mean=Mean;exports2.Min=Min3;exports2.Minimum=Minimum3;exports2.MirrorPad=MirrorPad;exports2.Mod=Mod;exports2.MomentumOptimizer=MomentumOptimizer;exports2.Multiply=Multiply3;exports2.Negate=Negate3;exports2.NonMaxSuppressionV3=NonMaxSuppressionV33;exports2.NonMaxSuppressionV4=NonMaxSuppressionV43;exports2.NonMaxSuppressionV5=NonMaxSuppressionV53;exports2.NotEqual=NotEqual3;exports2.OP_SCOPE_SUFFIX=OP_SCOPE_SUFFIX;exports2.OneHot=OneHot3;exports2.OnesLike=OnesLike3;exports2.Optimizer=Optimizer;exports2.PadV2=PadV23;exports2.Pool=Pool;exports2.Pow=Pow3;exports2.Prelu=Prelu3;exports2.Prod=Prod;exports2.RMSPropOptimizer=RMSPropOptimizer;exports2.Range=Range;exports2.Real=Real;exports2.Reciprocal=Reciprocal;exports2.Relu=Relu3;exports2.Relu6=Relu63;exports2.Reshape=Reshape6;exports2.ResizeBilinear=ResizeBilinear3;exports2.ResizeBilinearGrad=ResizeBilinearGrad;exports2.ResizeNearestNeighbor=ResizeNearestNeighbor;exports2.ResizeNearestNeighborGrad=ResizeNearestNeighborGrad;exports2.Reverse=Reverse3;exports2.RotateWithOffset=RotateWithOffset3;exports2.Round=Round;exports2.Rsqrt=Rsqrt3;exports2.SGDOptimizer=SGDOptimizer;exports2.ScatterNd=ScatterNd3;exports2.SelectV2=SelectV23;exports2.Selu=Selu;exports2.Sigmoid=Sigmoid3;exports2.Sign=Sign;exports2.Sin=Sin3;exports2.Sinh=Sinh;exports2.Slice=Slice6;exports2.Softmax=Softmax3;exports2.Softplus=Softplus;exports2.SpaceToBatchND=SpaceToBatchND;exports2.SparseToDense=SparseToDense;exports2.SplitV=SplitV2;exports2.Sqrt=Sqrt3;exports2.Square=Square3;exports2.SquaredDifference=SquaredDifference3;exports2.Step=Step;exports2.StridedSlice=StridedSlice3;exports2.Sub=Sub3;exports2.Sum=Sum3;exports2.Tan=Tan;exports2.Tanh=Tanh3;exports2.Tensor=Tensor;exports2.TensorBuffer=TensorBuffer;exports2.Tile=Tile3;exports2.TopK=TopK;exports2.Transpose=Transpose5;exports2.Unique=Unique;exports2.Unpack=Unpack3;exports2.UnsortedSegmentSum=UnsortedSegmentSum;exports2.Variable=Variable;exports2.ZerosLike=ZerosLike3;exports2._FusedMatMul=_FusedMatMul2;exports2.abs=abs;exports2.acos=acos;exports2.acosh=acosh;exports2.add=add$1;exports2.addN=addN;exports2.addStrict=addStrict;exports2.all=all;exports2.any=any;exports2.argMax=argMax;exports2.argMin=argMin;exports2.asin=asin;exports2.asinh=asinh;exports2.atan=atan;exports2.atan2=atan2;exports2.atanh=atanh;exports2.avgPool=avgPool2;exports2.avgPool3d=avgPool3d;exports2.backend=backend;exports2.backend_util=backend_util19;exports2.basicLSTMCell=basicLSTMCell;exports2.batchNorm=batchNorm;exports2.batchNorm2d=batchNorm2d;exports2.batchNorm3d=batchNorm3d;exports2.batchNorm4d=batchNorm4d;exports2.batchToSpaceND=batchToSpaceND;exports2.booleanMaskAsync=booleanMaskAsync;exports2.broadcastTo=broadcastTo;exports2.browser=browser;exports2.buffer=buffer2;exports2.cast=cast2;exports2.ceil=ceil;exports2.clipByValue=clipByValue;exports2.clone=clone;exports2.complex=complex;exports2.concat=concat2;exports2.concat1d=concat1d;exports2.concat2d=concat2d;exports2.concat3d=concat3d;exports2.concat4d=concat4d;exports2.conv1d=conv1d;exports2.conv2d=conv2d2;exports2.conv2dTranspose=conv2dTranspose;exports2.conv3d=conv3d;exports2.conv3dTranspose=conv3dTranspose;exports2.copyRegisteredKernels=copyRegisteredKernels;exports2.cos=cos;exports2.cosh=cosh;exports2.cosineWindow=cosineWindow;exports2.cumsum=cumsum2;exports2.customGrad=customGrad;exports2.deprecationWarn=deprecationWarn2;exports2.depthToSpace=depthToSpace2;exports2.depthwiseConv2d=depthwiseConv2d2;exports2.device_util=device_util;exports2.diag=diag;exports2.dilation2d=dilation2d;exports2.disableDeprecationWarnings=disableDeprecationWarnings;exports2.dispose=dispose;exports2.disposeVariables=disposeVariables;exports2.div=div;exports2.divNoNan=divNoNan;exports2.divStrict=divStrict;exports2.dot=dot2;exports2.dropout=dropout;exports2.elu=elu;exports2.enableDebugMode=enableDebugMode;exports2.enableProdMode=enableProdMode;exports2.enclosingPowerOfTwo=enclosingPowerOfTwo;exports2.engine=engine2;exports2.env=env3;exports2.equal=equal;exports2.equalStrict=equalStrict;exports2.erf=erf;exports2.exp=exp;exports2.expandDims=expandDims;exports2.expm1=expm1;exports2.eye=eye;exports2.fft=fft;exports2.fill=fill2;exports2.findBackend=findBackend;exports2.findBackendFactory=findBackendFactory;exports2.floor=floor;exports2.floorDiv=floorDiv;exports2.fused=fused_ops;exports2.gather=gather;exports2.gatherND=gatherND;exports2.gather_util=gather_nd_util;exports2.getBackend=getBackend;exports2.getGradient=getGradient;exports2.getKernel=getKernel;exports2.getKernelsForBackend=getKernelsForBackend;exports2.grad=grad;exports2.grads=grads;exports2.greater=greater;exports2.greaterEqual=greaterEqual;exports2.greaterEqualStrict=greaterEqualStrict;exports2.greaterStrict=greaterStrict;exports2.ifft=ifft;exports2.imag=imag;exports2.image=image2;exports2.inTopKAsync=inTopKAsync;exports2.io=io;exports2.irfft=irfft;exports2.isFinite=isFinite$1;exports2.isInf=isInf;exports2.isNaN=isNaN$1;exports2.keep=keep;exports2.kernel_impls=kernel_impls;exports2.leakyRelu=leakyRelu;exports2.less=less;exports2.lessEqual=lessEqual;exports2.lessEqualStrict=lessEqualStrict;exports2.lessStrict=lessStrict;exports2.linalg=linalg;exports2.linspace=linspace;exports2.localResponseNormalization=localResponseNormalization;exports2.log=log;exports2.log1p=log1p;exports2.logSigmoid=logSigmoid;exports2.logSoftmax=logSoftmax;exports2.logSumExp=logSumExp;exports2.logicalAnd=logicalAnd;exports2.logicalNot=logicalNot;exports2.logicalOr=logicalOr;exports2.logicalXor=logicalXor;exports2.losses=losses;exports2.matMul=matMul;exports2.math=math;exports2.max=max2;exports2.maxPool=maxPool2;exports2.maxPool3d=maxPool3d;exports2.maxPoolWithArgmax=maxPoolWithArgmax;exports2.maximum=maximum;exports2.maximumStrict=maximumStrict;exports2.mean=mean;exports2.memory=memory;exports2.min=min2;exports2.minimum=minimum;exports2.minimumStrict=minimumStrict;exports2.mirrorPad=mirrorPad;exports2.mod=mod;exports2.modStrict=modStrict;exports2.moments=moments;exports2.movingAverage=movingAverage;exports2.mul=mul;exports2.mulStrict=mulStrict;exports2.multiRNNCell=multiRNNCell;exports2.multinomial=multinomial;exports2.neg=neg;exports2.nextFrame=nextFrame;exports2.norm=norm;exports2.notEqual=notEqual;exports2.notEqualStrict=notEqualStrict;exports2.oneHot=oneHot2;exports2.ones=ones$1;exports2.onesLike=onesLike2;exports2.op=op;exports2.outerProduct=outerProduct;exports2.pad=pad2;exports2.pad1d=pad1d;exports2.pad2d=pad2d;exports2.pad3d=pad3d;exports2.pad4d=pad4d;exports2.pool=pool;exports2.pow=pow;exports2.powStrict=powStrict;exports2.prelu=prelu2;exports2.print=print2;exports2.prod=prod;exports2.profile=profile2;exports2.rand=rand;exports2.randomGamma=randomGamma;exports2.randomNormal=randomNormal;exports2.randomUniform=randomUniform;exports2.range=range;exports2.ready=ready;exports2.real=real;exports2.reciprocal=reciprocal;exports2.registerBackend=registerBackend2;exports2.registerGradient=registerGradient;exports2.registerKernel=registerKernel2;exports2.relu=relu;exports2.relu6=relu6;exports2.removeBackend=removeBackend;exports2.reshape=reshape2;exports2.reverse=reverse2;exports2.reverse1d=reverse1d;exports2.reverse2d=reverse2d;exports2.reverse3d=reverse3d;exports2.reverse4d=reverse4d;exports2.rfft=rfft;exports2.round=round;exports2.rsqrt=rsqrt;exports2.scalar=scalar;exports2.scatterND=scatterND;exports2.scatter_util=scatter_nd_util;exports2.selu=selu;exports2.separableConv2d=separableConv2d;exports2.serialization=serialization;exports2.setBackend=setBackend;exports2.setPlatform=setPlatform;exports2.setdiff1dAsync=setdiff1dAsync;exports2.sigmoid=sigmoid2;exports2.sign=sign;exports2.signal=signal;exports2.sin=sin;exports2.sinh=sinh;exports2.slice=slice2;exports2.slice1d=slice1d;exports2.slice2d=slice2d2;exports2.slice3d=slice3d2;exports2.slice4d=slice4d2;exports2.slice_util=slice_util2;exports2.softmax=softmax2;exports2.softplus=softplus;exports2.spaceToBatchND=spaceToBatchND;exports2.sparseToDense=sparseToDense;exports2.spectral=spectral;exports2.split=split2;exports2.sqrt=sqrt;exports2.square=square;exports2.squaredDifference=squaredDifference;exports2.squaredDifferenceStrict=squaredDifferenceStrict;exports2.squeeze=squeeze;exports2.stack=stack;exports2.step=step;exports2.stridedSlice=stridedSlice2;exports2.sub=sub;exports2.subStrict=subStrict;exports2.sum=sum$1;exports2.sumOutType=sumOutType;exports2.tan=tan;exports2.tanh=tanh$1;exports2.tensor=tensor;exports2.tensor1d=tensor1d;exports2.tensor2d=tensor2d;exports2.tensor3d=tensor3d;exports2.tensor4d=tensor4d;exports2.tensor5d=tensor5d;exports2.tensor6d=tensor6d;exports2.tensor_util=tensor_util;exports2.test_util=test_util;exports2.tidy=tidy;exports2.tile=tile2;exports2.time=time;exports2.topk=topk;exports2.train=train;exports2.transpose=transpose2;exports2.truncatedNormal=truncatedNormal;exports2.unique=unique;exports2.unregisterGradient=unregisterGradient;exports2.unregisterKernel=unregisterKernel;exports2.unsortedSegmentSum=unsortedSegmentSum;exports2.unstack=unstack;exports2.upcastType=upcastType;exports2.util=util27;exports2.valueAndGrad=valueAndGrad;exports2.valueAndGrads=valueAndGrads;exports2.variable=variable;exports2.variableGrads=variableGrads;exports2.version_core=version4;exports2.where=where;exports2.whereAsync=whereAsync;exports2.zeros=zeros;exports2.zerosLike=zerosLike2});var require_tfjs_backend_wasm_threaded_simd=__commonJS((exports2,module2)=>{var WasmBackendModuleThreadedSimd=function(){var _scriptDir=typeof document!=="undefined"&&document.currentScript?document.currentScript.src:void 0;if(typeof __filename!=="undefined")_scriptDir=_scriptDir||__filename;return function(WasmBackendModuleThreadedSimd2){WasmBackendModuleThreadedSimd2=WasmBackendModuleThreadedSimd2||{};function GROWABLE_HEAP_I8(){if(wasmMemory.buffer!=buffer2){updateGlobalBufferAndViews(wasmMemory.buffer)}return HEAP8}function GROWABLE_HEAP_U8(){if(wasmMemory.buffer!=buffer2){updateGlobalBufferAndViews(wasmMemory.buffer)}return HEAPU8}function GROWABLE_HEAP_I32(){if(wasmMemory.buffer!=buffer2){updateGlobalBufferAndViews(wasmMemory.buffer)}return HEAP32}function GROWABLE_HEAP_U32(){if(wasmMemory.buffer!=buffer2){updateGlobalBufferAndViews(wasmMemory.buffer)}return HEAPU32}function GROWABLE_HEAP_F64(){if(wasmMemory.buffer!=buffer2){updateGlobalBufferAndViews(wasmMemory.buffer)}return HEAPF64}var Module=typeof WasmBackendModuleThreadedSimd2!=="undefined"?WasmBackendModuleThreadedSimd2:{};var moduleOverrides={};var key;for(key in Module){if(Module.hasOwnProperty(key)){moduleOverrides[key]=Module[key]}}var arguments_=[];var thisProgram="./this.program";var quit_=function(status,toThrow){throw toThrow};var ENVIRONMENT_IS_WEB=false;var ENVIRONMENT_IS_WORKER=false;var ENVIRONMENT_IS_NODE=false;var ENVIRONMENT_IS_SHELL=false;ENVIRONMENT_IS_WEB=typeof window==="object";ENVIRONMENT_IS_WORKER=typeof importScripts==="function";ENVIRONMENT_IS_NODE=typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string";ENVIRONMENT_IS_SHELL=!ENVIRONMENT_IS_WEB&&!ENVIRONMENT_IS_NODE&&!ENVIRONMENT_IS_WORKER;var ENVIRONMENT_IS_PTHREAD=Module["ENVIRONMENT_IS_PTHREAD"]||false;if(ENVIRONMENT_IS_PTHREAD){buffer2=Module["buffer"];DYNAMIC_BASE=Module["DYNAMIC_BASE"];DYNAMICTOP_PTR=Module["DYNAMICTOP_PTR"]}var scriptDirectory="";function locateFile(path){if(Module["locateFile"]){return Module["locateFile"](path,scriptDirectory)}return scriptDirectory+path}var read_,readAsync,readBinary,setWindowTitle;var nodeFS;var nodePath;if(ENVIRONMENT_IS_NODE){if(ENVIRONMENT_IS_WORKER){scriptDirectory=require("path").dirname(scriptDirectory)+"/"}else{scriptDirectory=__dirname+"/"}read_=function shell_read(filename,binary){if(!nodeFS)nodeFS=require("fs");if(!nodePath)nodePath=require("path");filename=nodePath["normalize"](filename);return nodeFS["readFileSync"](filename,binary?null:"utf8")};readBinary=function readBinary2(filename){var ret=read_(filename,true);if(!ret.buffer){ret=new Uint8Array(ret)}assert(ret.buffer);return ret};if(process["argv"].length>1){thisProgram=process["argv"][1].replace(/\\/g,"/")}arguments_=process["argv"].slice(2);process["on"]("uncaughtException",function(ex){if(!(ex instanceof ExitStatus)){throw ex}});process["on"]("unhandledRejection",abort);quit_=function(status){process["exit"](status)};Module["inspect"]=function(){return"[Emscripten Module object]"};var nodeWorkerThreads;try{nodeWorkerThreads=require("worker_threads")}catch(e){console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?');throw e}Worker=nodeWorkerThreads.Worker}else if(ENVIRONMENT_IS_SHELL){if(typeof read!="undefined"){read_=function shell_read(f){return read(f)}}readBinary=function readBinary2(f){var data2;if(typeof readbuffer==="function"){return new Uint8Array(readbuffer(f))}data2=read(f,"binary");assert(typeof data2==="object");return data2};if(typeof scriptArgs!="undefined"){arguments_=scriptArgs}else if(typeof arguments!="undefined"){arguments_=arguments}if(typeof quit==="function"){quit_=function(status){quit(status)}}if(typeof print!=="undefined"){if(typeof console==="undefined")console={};console.log=print;console.warn=console.error=typeof printErr!=="undefined"?printErr:print}}else if(ENVIRONMENT_IS_WEB||ENVIRONMENT_IS_WORKER){if(ENVIRONMENT_IS_WORKER){scriptDirectory=self.location.href}else if(document.currentScript){scriptDirectory=document.currentScript.src}if(_scriptDir){scriptDirectory=_scriptDir}if(scriptDirectory.indexOf("blob:")!==0){scriptDirectory=scriptDirectory.substr(0,scriptDirectory.lastIndexOf("/")+1)}else{scriptDirectory=""}if(ENVIRONMENT_IS_NODE){read_=function shell_read(filename,binary){if(!nodeFS)nodeFS=require("fs");if(!nodePath)nodePath=require("path");filename=nodePath["normalize"](filename);return nodeFS["readFileSync"](filename,binary?null:"utf8")};readBinary=function readBinary2(filename){var ret=read_(filename,true);if(!ret.buffer){ret=new Uint8Array(ret)}assert(ret.buffer);return ret}}else{read_=function shell_read(url){var xhr=new XMLHttpRequest;xhr.open("GET",url,false);xhr.send(null);return xhr.responseText};if(ENVIRONMENT_IS_WORKER){readBinary=function readBinary2(url){var xhr=new XMLHttpRequest;xhr.open("GET",url,false);xhr.responseType="arraybuffer";xhr.send(null);return new Uint8Array(xhr.response)}}readAsync=function readAsync2(url,onload,onerror){var xhr=new XMLHttpRequest;xhr.open("GET",url,true);xhr.responseType="arraybuffer";xhr.onload=function xhr_onload(){if(xhr.status==200||xhr.status==0&&xhr.response){onload(xhr.response);return}onerror()};xhr.onerror=onerror;xhr.send(null)}}setWindowTitle=function(title){document.title=title}}else{}if(ENVIRONMENT_IS_NODE){if(typeof performance==="undefined"){performance=require("perf_hooks").performance}}var out=Module["print"]||console.log.bind(console);var err=Module["printErr"]||console.warn.bind(console);for(key in moduleOverrides){if(moduleOverrides.hasOwnProperty(key)){Module[key]=moduleOverrides[key]}}moduleOverrides=null;if(Module["arguments"])arguments_=Module["arguments"];if(Module["thisProgram"])thisProgram=Module["thisProgram"];if(Module["quit"])quit_=Module["quit"];var Atomics_load=Atomics.load;var Atomics_store=Atomics.store;var Atomics_compareExchange=Atomics.compareExchange;var wasmBinary;if(Module["wasmBinary"])wasmBinary=Module["wasmBinary"];var noExitRuntime;if(Module["noExitRuntime"])noExitRuntime=Module["noExitRuntime"];if(typeof WebAssembly!=="object"){err("no native wasm support detected")}var wasmMemory;var wasmTable=new WebAssembly.Table({initial:165,maximum:165+0,element:"anyfunc"});var wasmModule;var threadInfoStruct=0;var selfThreadId=0;var ABORT=false;var EXITSTATUS=0;function assert(condition,text){if(!condition){abort("Assertion failed: "+text)}}function getCFunc(ident){var func=Module["_"+ident];assert(func,"Cannot call unknown function "+ident+", make sure it is exported");return func}function ccall(ident,returnType,argTypes,args,opts){var toC={string:function(str){var ret2=0;if(str!==null&&str!==void 0&&str!==0){var len=(str.length<<2)+1;ret2=stackAlloc(len);stringToUTF8(str,ret2,len)}return ret2},array:function(arr){var ret2=stackAlloc(arr.length);writeArrayToMemory(arr,ret2);return ret2}};function convertReturnValue(ret2){if(returnType==="string")return UTF8ToString(ret2);if(returnType==="boolean")return Boolean(ret2);return ret2}var func=getCFunc(ident);var cArgs=[];var stack=0;if(args){for(var i=0;i<args.length;i++){var converter=toC[argTypes[i]];if(converter){if(stack===0)stack=stackSave();cArgs[i]=converter(args[i])}else{cArgs[i]=args[i]}}}var ret=func.apply(null,cArgs);ret=convertReturnValue(ret);if(stack!==0)stackRestore(stack);return ret}function cwrap(ident,returnType,argTypes,opts){argTypes=argTypes||[];var numericArgs=argTypes.every(function(type){return type==="number"});var numericRet=returnType!=="string";if(numericRet&&numericArgs&&!opts){return getCFunc(ident)}return function(){return ccall(ident,returnType,argTypes,arguments,opts)}}function UTF8ArrayToString(heap,idx,maxBytesToRead){var endIdx=idx+maxBytesToRead;var str="";while(!(idx>=endIdx)){var u0=heap[idx++];if(!u0)return str;if(!(u0&128)){str+=String.fromCharCode(u0);continue}var u1=heap[idx++]&63;if((u0&224)==192){str+=String.fromCharCode((u0&31)<<6|u1);continue}var u2=heap[idx++]&63;if((u0&240)==224){u0=(u0&15)<<12|u1<<6|u2}else{u0=(u0&7)<<18|u1<<12|u2<<6|heap[idx++]&63}if(u0<65536){str+=String.fromCharCode(u0)}else{var ch=u0-65536;str+=String.fromCharCode(55296|ch>>10,56320|ch&1023)}}return str}function UTF8ToString(ptr,maxBytesToRead){return ptr?UTF8ArrayToString(GROWABLE_HEAP_U8(),ptr,maxBytesToRead):""}function stringToUTF8Array(str,heap,outIdx,maxBytesToWrite){if(!(maxBytesToWrite>0))return 0;var startIdx=outIdx;var endIdx=outIdx+maxBytesToWrite-1;for(var i=0;i<str.length;++i){var u=str.charCodeAt(i);if(u>=55296&&u<=57343){var u1=str.charCodeAt(++i);u=65536+((u&1023)<<10)|u1&1023}if(u<=127){if(outIdx>=endIdx)break;heap[outIdx++]=u}else if(u<=2047){if(outIdx+1>=endIdx)break;heap[outIdx++]=192|u>>6;heap[outIdx++]=128|u&63}else if(u<=65535){if(outIdx+2>=endIdx)break;heap[outIdx++]=224|u>>12;heap[outIdx++]=128|u>>6&63;heap[outIdx++]=128|u&63}else{if(outIdx+3>=endIdx)break;heap[outIdx++]=240|u>>18;heap[outIdx++]=128|u>>12&63;heap[outIdx++]=128|u>>6&63;heap[outIdx++]=128|u&63}}heap[outIdx]=0;return outIdx-startIdx}function stringToUTF8(str,outPtr,maxBytesToWrite){return stringToUTF8Array(str,GROWABLE_HEAP_U8(),outPtr,maxBytesToWrite)}function lengthBytesUTF8(str){var len=0;for(var i=0;i<str.length;++i){var u=str.charCodeAt(i);if(u>=55296&&u<=57343)u=65536+((u&1023)<<10)|str.charCodeAt(++i)&1023;if(u<=127)++len;else if(u<=2047)len+=2;else if(u<=65535)len+=3;else len+=4}return len}function writeArrayToMemory(array,buffer3){GROWABLE_HEAP_I8().set(array,buffer3)}var WASM_PAGE_SIZE=65536;function alignUp(x,multiple){if(x%multiple>0){x+=multiple-x%multiple}return x}var buffer2,HEAP8,HEAPU8,HEAP16,HEAPU16,HEAP32,HEAPU32,HEAPF32,HEAPF64;function updateGlobalBufferAndViews(buf){buffer2=buf;Module["HEAP8"]=HEAP8=new Int8Array(buf);Module["HEAP16"]=HEAP16=new Int16Array(buf);Module["HEAP32"]=HEAP32=new Int32Array(buf);Module["HEAPU8"]=HEAPU8=new Uint8Array(buf);Module["HEAPU16"]=HEAPU16=new Uint16Array(buf);Module["HEAPU32"]=HEAPU32=new Uint32Array(buf);Module["HEAPF32"]=HEAPF32=new Float32Array(buf);Module["HEAPF64"]=HEAPF64=new Float64Array(buf)}var STACK_BASE=5256384,STACKTOP=STACK_BASE,STACK_MAX=13504,DYNAMIC_BASE=5256384,DYNAMICTOP_PTR=12576;if(ENVIRONMENT_IS_PTHREAD){}var INITIAL_INITIAL_MEMORY=Module["INITIAL_MEMORY"]||16777216;if(ENVIRONMENT_IS_PTHREAD){wasmMemory=Module["wasmMemory"];buffer2=Module["buffer"]}else{if(Module["wasmMemory"]){wasmMemory=Module["wasmMemory"]}else{wasmMemory=new WebAssembly.Memory({initial:INITIAL_INITIAL_MEMORY/WASM_PAGE_SIZE,maximum:2147483648/WASM_PAGE_SIZE,shared:true});if(!(wasmMemory.buffer instanceof SharedArrayBuffer)){err("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag");if(ENVIRONMENT_IS_NODE){console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)")}throw Error("bad memory")}}}if(wasmMemory){buffer2=wasmMemory.buffer}INITIAL_INITIAL_MEMORY=buffer2.byteLength;updateGlobalBufferAndViews(buffer2);if(!ENVIRONMENT_IS_PTHREAD){GROWABLE_HEAP_I32()[DYNAMICTOP_PTR>>2]=DYNAMIC_BASE}function callRuntimeCallbacks(callbacks){while(callbacks.length>0){var callback=callbacks.shift();if(typeof callback=="function"){callback(Module);continue}var func=callback.func;if(typeof func==="number"){if(callback.arg===void 0){Module["dynCall_v"](func)}else{Module["dynCall_vi"](func,callback.arg)}}else{func(callback.arg===void 0?null:callback.arg)}}}var __ATPRERUN__=[];var __ATINIT__=[];var __ATMAIN__=[];var __ATEXIT__=[];var __ATPOSTRUN__=[];var runtimeInitialized=false;if(ENVIRONMENT_IS_PTHREAD)runtimeInitialized=true;function preRun(){if(ENVIRONMENT_IS_PTHREAD)return;if(Module["preRun"]){if(typeof Module["preRun"]=="function")Module["preRun"]=[Module["preRun"]];while(Module["preRun"].length){addOnPreRun(Module["preRun"].shift())}}callRuntimeCallbacks(__ATPRERUN__)}function initRuntime(){runtimeInitialized=true;callRuntimeCallbacks(__ATINIT__)}function preMain(){if(ENVIRONMENT_IS_PTHREAD)return;callRuntimeCallbacks(__ATMAIN__)}function postRun(){if(ENVIRONMENT_IS_PTHREAD)return;if(Module["postRun"]){if(typeof Module["postRun"]=="function")Module["postRun"]=[Module["postRun"]];while(Module["postRun"].length){addOnPostRun(Module["postRun"].shift())}}callRuntimeCallbacks(__ATPOSTRUN__)}function addOnPreRun(cb){__ATPRERUN__.unshift(cb)}function addOnPostRun(cb){__ATPOSTRUN__.unshift(cb)}var Math_ceil=Math.ceil;var Math_floor=Math.floor;var runDependencies=0;var runDependencyWatcher=null;var dependenciesFulfilled=null;function addRunDependency(id){assert(!ENVIRONMENT_IS_PTHREAD,"addRunDependency cannot be used in a pthread worker");runDependencies++;if(Module["monitorRunDependencies"]){Module["monitorRunDependencies"](runDependencies)}}function removeRunDependency(id){runDependencies--;if(Module["monitorRunDependencies"]){Module["monitorRunDependencies"](runDependencies)}if(runDependencies==0){if(runDependencyWatcher!==null){clearInterval(runDependencyWatcher);runDependencyWatcher=null}if(dependenciesFulfilled){var callback=dependenciesFulfilled;dependenciesFulfilled=null;callback()}}}Module["preloadedImages"]={};Module["preloadedAudios"]={};function abort(what){if(Module["onAbort"]){Module["onAbort"](what)}if(ENVIRONMENT_IS_PTHREAD)console.error("Pthread aborting at "+new Error().stack);what+="";out(what);err(what);ABORT=true;EXITSTATUS=1;what="abort("+what+"). Build with -s ASSERTIONS=1 for more info.";throw new WebAssembly.RuntimeError(what)}function hasPrefix(str,prefix){return String.prototype.startsWith?str.startsWith(prefix):str.indexOf(prefix)===0}var dataURIPrefix="data:application/octet-stream;base64,";function isDataURI(filename){return hasPrefix(filename,dataURIPrefix)}var fileURIPrefix="file://";function isFileURI(filename){return hasPrefix(filename,fileURIPrefix)}var wasmBinaryFile="tfjs-backend-wasm-threaded-simd.wasm";if(!isDataURI(wasmBinaryFile)){wasmBinaryFile=locateFile(wasmBinaryFile)}function getBinary(){try{if(wasmBinary){return new Uint8Array(wasmBinary)}if(readBinary){return readBinary(wasmBinaryFile)}else{throw"both async and sync fetching of the wasm failed"}}catch(err2){abort(err2)}}function getBinaryPromise(){if(!wasmBinary&&(ENVIRONMENT_IS_WEB||ENVIRONMENT_IS_WORKER)&&typeof fetch==="function"&&!isFileURI(wasmBinaryFile)){return fetch(wasmBinaryFile,{credentials:"same-origin"}).then(function(response){if(!response["ok"]){throw"failed to load wasm binary file at '"+wasmBinaryFile+"'"}return response["arrayBuffer"]()}).catch(function(){return getBinary()})}return new Promise(function(resolve,reject){resolve(getBinary())})}function createWasm(){var info={a:asmLibraryArg};function receiveInstance(instance,module3){var exports4=instance.exports;Module["asm"]=exports4;wasmModule=module3;if(!ENVIRONMENT_IS_PTHREAD){var numWorkersToLoad=PThread.unusedWorkers.length;PThread.unusedWorkers.forEach(function(w){PThread.loadWasmModuleToWorker(w,function(){if(!--numWorkersToLoad)removeRunDependency("wasm-instantiate")})})}}if(!ENVIRONMENT_IS_PTHREAD){addRunDependency("wasm-instantiate")}function receiveInstantiatedSource(output){receiveInstance(output["instance"],output["module"])}function instantiateArrayBuffer(receiver){return getBinaryPromise().then(function(binary){return WebAssembly.instantiate(binary,info)}).then(receiver,function(reason){err("failed to asynchronously prepare wasm: "+reason);abort(reason)})}function instantiateAsync(){if(!wasmBinary&&typeof WebAssembly.instantiateStreaming==="function"&&!isDataURI(wasmBinaryFile)&&!isFileURI(wasmBinaryFile)&&typeof fetch==="function"){fetch(wasmBinaryFile,{credentials:"same-origin"}).then(function(response){var result=WebAssembly.instantiateStreaming(response,info);return result.then(receiveInstantiatedSource,function(reason){err("wasm streaming compile failed: "+reason);err("falling back to ArrayBuffer instantiation");instantiateArrayBuffer(receiveInstantiatedSource)})})}else{return instantiateArrayBuffer(receiveInstantiatedSource)}}if(Module["instantiateWasm"]){try{var exports3=Module["instantiateWasm"](info,receiveInstance);return exports3}catch(e){err("Module.instantiateWasm callback failed with error: "+e);return false}}instantiateAsync();return{}}var ASM_CONSTS={};function initPthreadsJS(){PThread.initRuntime()}if(!ENVIRONMENT_IS_PTHREAD)__ATINIT__.push({func:function(){___wasm_call_ctors()}});var __pthread_ptr=0;var __pthread_is_main_runtime_thread=0;var __pthread_is_main_browser_thread=0;function __register_pthread_ptr(pthreadPtr,isMainBrowserThread,isMainRuntimeThread){pthreadPtr=pthreadPtr|0;isMainBrowserThread=isMainBrowserThread|0;isMainRuntimeThread=isMainRuntimeThread|0;__pthread_ptr=pthreadPtr;__pthread_is_main_browser_thread=isMainBrowserThread;__pthread_is_main_runtime_thread=isMainRuntimeThread}Module["__register_pthread_ptr"]=__register_pthread_ptr;var ERRNO_CODES={EPERM:63,ENOENT:44,ESRCH:71,EINTR:27,EIO:29,ENXIO:60,E2BIG:1,ENOEXEC:45,EBADF:8,ECHILD:12,EAGAIN:6,EWOULDBLOCK:6,ENOMEM:48,EACCES:2,EFAULT:21,ENOTBLK:105,EBUSY:10,EEXIST:20,EXDEV:75,ENODEV:43,ENOTDIR:54,EISDIR:31,EINVAL:28,ENFILE:41,EMFILE:33,ENOTTY:59,ETXTBSY:74,EFBIG:22,ENOSPC:51,ESPIPE:70,EROFS:69,EMLINK:34,EPIPE:64,EDOM:18,ERANGE:68,ENOMSG:49,EIDRM:24,ECHRNG:106,EL2NSYNC:156,EL3HLT:107,EL3RST:108,ELNRNG:109,EUNATCH:110,ENOCSI:111,EL2HLT:112,EDEADLK:16,ENOLCK:46,EBADE:113,EBADR:114,EXFULL:115,ENOANO:104,EBADRQC:103,EBADSLT:102,EDEADLOCK:16,EBFONT:101,ENOSTR:100,ENODATA:116,ETIME:117,ENOSR:118,ENONET:119,ENOPKG:120,EREMOTE:121,ENOLINK:47,EADV:122,ESRMNT:123,ECOMM:124,EPROTO:65,EMULTIHOP:36,EDOTDOT:125,EBADMSG:9,ENOTUNIQ:126,EBADFD:127,EREMCHG:128,ELIBACC:129,ELIBBAD:130,ELIBSCN:131,ELIBMAX:132,ELIBEXEC:133,ENOSYS:52,ENOTEMPTY:55,ENAMETOOLONG:37,ELOOP:32,EOPNOTSUPP:138,EPFNOSUPPORT:139,ECONNRESET:15,ENOBUFS:42,EAFNOSUPPORT:5,EPROTOTYPE:67,ENOTSOCK:57,ENOPROTOOPT:50,ESHUTDOWN:140,ECONNREFUSED:14,EADDRINUSE:3,ECONNABORTED:13,ENETUNREACH:40,ENETDOWN:38,ETIMEDOUT:73,EHOSTDOWN:142,EHOSTUNREACH:23,EINPROGRESS:26,EALREADY:7,EDESTADDRREQ:17,EMSGSIZE:35,EPROTONOSUPPORT:66,ESOCKTNOSUPPORT:137,EADDRNOTAVAIL:4,ENETRESET:39,EISCONN:30,ENOTCONN:53,ETOOMANYREFS:141,EUSERS:136,EDQUOT:19,ESTALE:72,ENOTSUP:138,ENOMEDIUM:148,EILSEQ:25,EOVERFLOW:61,ECANCELED:11,ENOTRECOVERABLE:56,EOWNERDEAD:62,ESTRPIPE:135};var __main_thread_futex_wait_address=13488;function _emscripten_futex_wake(addr,count){if(addr<=0||addr>GROWABLE_HEAP_I8().length||addr&true||count<0)return-28;if(count==0)return 0;if(count>=2147483647)count=Infinity;var mainThreadWaitAddress=Atomics.load(GROWABLE_HEAP_I32(),__main_thread_futex_wait_address>>2);var mainThreadWoken=0;if(mainThreadWaitAddress==addr){var loadedAddr=Atomics.compareExchange(GROWABLE_HEAP_I32(),__main_thread_futex_wait_address>>2,mainThreadWaitAddress,0);if(loadedAddr==mainThreadWaitAddress){--count;mainThreadWoken=1;if(count<=0)return 1}}var ret=Atomics.notify(GROWABLE_HEAP_I32(),addr>>2,count);if(ret>=0)return ret+mainThreadWoken;throw"Atomics.notify returned an unexpected value "+ret}Module["_emscripten_futex_wake"]=_emscripten_futex_wake;function __kill_thread(pthread_ptr){if(ENVIRONMENT_IS_PTHREAD)throw"Internal Error! _kill_thread() can only ever be called from main application thread!";if(!pthread_ptr)throw"Internal Error! Null pthread_ptr in _kill_thread!";GROWABLE_HEAP_I32()[pthread_ptr+12>>2]=0;var pthread=PThread.pthreads[pthread_ptr];pthread.worker.terminate();PThread.freeThreadData(pthread);PThread.runningWorkers.splice(PThread.runningWorkers.indexOf(pthread.worker),1);pthread.worker.pthread=void 0}function __cancel_thread(pthread_ptr){if(ENVIRONMENT_IS_PTHREAD)throw"Internal Error! _cancel_thread() can only ever be called from main application thread!";if(!pthread_ptr)throw"Internal Error! Null pthread_ptr in _cancel_thread!";var pthread=PThread.pthreads[pthread_ptr];pthread.worker.postMessage({cmd:"cancel"})}function __cleanup_thread(pthread_ptr){if(ENVIRONMENT_IS_PTHREAD)throw"Internal Error! _cleanup_thread() can only ever be called from main application thread!";if(!pthread_ptr)throw"Internal Error! Null pthread_ptr in _cleanup_thread!";GROWABLE_HEAP_I32()[pthread_ptr+12>>2]=0;var pthread=PThread.pthreads[pthread_ptr];if(pthread){var worker=pthread.worker;PThread.returnWorkerToPool(worker)}}var PThread={MAIN_THREAD_ID:1,mainThreadInfo:{schedPolicy:0,schedPrio:0},unusedWorkers:[],runningWorkers:[],initRuntime:function(){__register_pthread_ptr(PThread.mainThreadBlock,!ENVIRONMENT_IS_WORKER,1);_emscripten_register_main_browser_thread_id(PThread.mainThreadBlock)},initMainThreadBlock:function(){var pthreadPoolSize=8;for(var i=0;i<pthreadPoolSize;++i){PThread.allocateUnusedWorker()}PThread.mainThreadBlock=12736;for(var i=0;i<232/4;++i)GROWABLE_HEAP_U32()[PThread.mainThreadBlock/4+i]=0;GROWABLE_HEAP_I32()[PThread.mainThreadBlock+12>>2]=PThread.mainThreadBlock;var headPtr=PThread.mainThreadBlock+156;GROWABLE_HEAP_I32()[headPtr>>2]=headPtr;var tlsMemory=12976;for(var i=0;i<128;++i)GROWABLE_HEAP_U32()[tlsMemory/4+i]=0;Atomics.store(GROWABLE_HEAP_U32(),PThread.mainThreadBlock+104>>2,tlsMemory);Atomics.store(GROWABLE_HEAP_U32(),PThread.mainThreadBlock+40>>2,PThread.mainThreadBlock);Atomics.store(GROWABLE_HEAP_U32(),PThread.mainThreadBlock+44>>2,42)},initWorker:function(){},pthreads:{},exitHandlers:null,setThreadStatus:function(){},runExitHandlers:function(){if(PThread.exitHandlers!==null){while(PThread.exitHandlers.length>0){PThread.exitHandlers.pop()()}PThread.exitHandlers=null}if(ENVIRONMENT_IS_PTHREAD&&threadInfoStruct)___pthread_tsd_run_dtors()},threadExit:function(exitCode){var tb=_pthread_self();if(tb){Atomics.store(GROWABLE_HEAP_U32(),tb+4>>2,exitCode);Atomics.store(GROWABLE_HEAP_U32(),tb+0>>2,1);Atomics.store(GROWABLE_HEAP_U32(),tb+60>>2,1);Atomics.store(GROWABLE_HEAP_U32(),tb+64>>2,0);PThread.runExitHandlers();_emscripten_futex_wake(tb+0,2147483647);__register_pthread_ptr(0,0,0);threadInfoStruct=0;if(ENVIRONMENT_IS_PTHREAD){postMessage({cmd:"exit"})}}},threadCancel:function(){PThread.runExitHandlers();Atomics.store(GROWABLE_HEAP_U32(),threadInfoStruct+4>>2,-1);Atomics.store(GROWABLE_HEAP_U32(),threadInfoStruct+0>>2,1);_emscripten_futex_wake(threadInfoStruct+0,2147483647);threadInfoStruct=selfThreadId=0;__register_pthread_ptr(0,0,0);postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var t in PThread.pthreads){var pthread=PThread.pthreads[t];if(pthread&&pthread.worker){PThread.returnWorkerToPool(pthread.worker)}}PThread.pthreads={};for(var i=0;i<PThread.unusedWorkers.length;++i){var worker=PThread.unusedWorkers[i];worker.terminate()}PThread.unusedWorkers=[];for(var i=0;i<PThread.runningWorkers.length;++i){var worker=PThread.runningWorkers[i];var pthread=worker.pthread;PThread.freeThreadData(pthread);worker.terminate()}PThread.runningWorkers=[]},freeThreadData:function(pthread){if(!pthread)return;if(pthread.threadInfoStruct){var tlsMemory=GROWABLE_HEAP_I32()[pthread.threadInfoStruct+104>>2];GROWABLE_HEAP_I32()[pthread.threadInfoStruct+104>>2]=0;_free(tlsMemory);_free(pthread.threadInfoStruct)}pthread.threadInfoStruct=0;if(pthread.allocatedOwnStack&&pthread.stackBase)_free(pthread.stackBase);pthread.stackBase=0;if(pthread.worker)pthread.worker.pthread=null},returnWorkerToPool:function(worker){delete PThread.pthreads[worker.pthread.thread];PThread.unusedWorkers.push(worker);PThread.runningWorkers.splice(PThread.runningWorkers.indexOf(worker),1);PThread.freeThreadData(worker.pthread);worker.pthread=void 0},receiveObjectTransfer:function(data2){},loadWasmModuleToWorker:function(worker,onFinishedLoading){worker.onmessage=function(e){var d=e["data"];var cmd=d["cmd"];if(worker.pthread)PThread.currentProxiedOperationCallerThread=worker.pthread.threadInfoStruct;if(d["targetThread"]&&d["targetThread"]!=_pthread_self()){var thread=PThread.pthreads[d.targetThread];if(thread){thread.worker.postMessage(e.data,d["transferList"])}else{console.error('Internal error! Worker sent a message "'+cmd+'" to target pthread '+d["targetThread"]+", but that thread no longer exists!")}PThread.currentProxiedOperationCallerThread=void 0;return}if(cmd==="processQueuedMainThreadWork"){_emscripten_main_thread_process_queued_calls()}else if(cmd==="spawnThread"){__spawn_thread(e.data)}else if(cmd==="cleanupThread"){__cleanup_thread(d["thread"])}else if(cmd==="killThread"){__kill_thread(d["thread"])}else if(cmd==="cancelThread"){__cancel_thread(d["thread"])}else if(cmd==="loaded"){worker.loaded=true;if(onFinishedLoading)onFinishedLoading(worker);if(worker.runPthread){worker.runPthread();delete worker.runPthread}}else if(cmd==="print"){out("Thread "+d["threadId"]+": "+d["text"])}else if(cmd==="printErr"){err("Thread "+d["threadId"]+": "+d["text"])}else if(cmd==="alert"){alert("Thread "+d["threadId"]+": "+d["text"])}else if(cmd==="exit"){var detached=worker.pthread&&Atomics.load(GROWABLE_HEAP_U32(),worker.pthread.thread+68>>2);if(detached){PThread.returnWorkerToPool(worker)}}else if(cmd==="cancelDone"){PThread.returnWorkerToPool(worker)}else if(cmd==="objectTransfer"){PThread.receiveObjectTransfer(e.data)}else if(e.data.target==="setimmediate"){worker.postMessage(e.data)}else{err("worker sent an unknown command "+cmd)}PThread.currentProxiedOperationCallerThread=void 0};worker.onerror=function(e){err("pthread sent an error! "+e.filename+":"+e.lineno+": "+e.message)};if(ENVIRONMENT_IS_NODE){worker.on("message",function(data2){worker.onmessage({data:data2})});worker.on("error",function(data2){worker.onerror(data2)});worker.on("exit",function(data2){console.log("worker exited - TODO: update the worker queue?")})}worker.postMessage({cmd:"load",urlOrBlob:Module["mainScriptUrlOrBlob"]||_scriptDir,wasmMemory,wasmModule,DYNAMIC_BASE,DYNAMICTOP_PTR})},allocateUnusedWorker:function(){var pthreadMainJs=locateFile("tfjs-backend-wasm-threaded-simd.worker.js");PThread.unusedWorkers.push(new Worker(pthreadMainJs))},getNewWorker:function(){if(PThread.unusedWorkers.length==0){PThread.allocateUnusedWorker();PThread.loadWasmModuleToWorker(PThread.unusedWorkers[0])}if(PThread.unusedWorkers.length>0)return PThread.unusedWorkers.pop();else return null},busySpinWait:function(msecs){var t=performance.now()+msecs;while(performance.now()<t){}}};function establishStackSpace(stackTop,stackMax){STACK_BASE=STACKTOP=stackTop;STACK_MAX=stackMax;stackRestore(stackTop)}Module["establishStackSpace"]=establishStackSpace;function getNoExitRuntime(){return noExitRuntime}Module["getNoExitRuntime"]=getNoExitRuntime;function ___assert_fail(condition,filename,line,func){abort("Assertion failed: "+UTF8ToString(condition)+", at: "+[filename?UTF8ToString(filename):"unknown filename",line,func?UTF8ToString(func):"unknown function"])}function ___call_main(argc,argv){var returnCode=_main(argc,argv)}var _emscripten_get_now;if(ENVIRONMENT_IS_NODE){_emscripten_get_now=function(){var t=process["hrtime"]();return t[0]*1e3+t[1]/1e6}}else if(ENVIRONMENT_IS_PTHREAD){_emscripten_get_now=function(){return performance.now()-Module["__performance_now_clock_drift"]}}else if(typeof dateNow!=="undefined"){_emscripten_get_now=dateNow}else _emscripten_get_now=function(){return performance.now()};function setErrNo(value){GROWABLE_HEAP_I32()[___errno_location()>>2]=value;return value}function _atexit(func,arg){if(ENVIRONMENT_IS_PTHREAD)return _emscripten_proxy_to_main_thread_js(1,1,func,arg);__ATEXIT__.unshift({func,arg})}function __emscripten_notify_thread_queue(targetThreadId,mainThreadId){if(targetThreadId==mainThreadId){postMessage({cmd:"processQueuedMainThreadWork"})}else if(ENVIRONMENT_IS_PTHREAD){postMessage({targetThread:targetThreadId,cmd:"processThreadQueue"})}else{var pthread=PThread.pthreads[targetThreadId];var worker=pthread&&pthread.worker;if(!worker){return}worker.postMessage({cmd:"processThreadQueue"})}return 1}function _abort(){abort()}function _emscripten_conditional_set_current_thread_status(expectedStatus,newStatus){expectedStatus=expectedStatus|0;newStatus=newStatus|0}function _emscripten_futex_wait(addr,val,timeout){if(addr<=0||addr>GROWABLE_HEAP_I8().length||addr&true)return-28;if(ENVIRONMENT_IS_WORKER){var ret=Atomics.wait(GROWABLE_HEAP_I32(),addr>>2,val,timeout);if(ret==="timed-out")return-73;if(ret==="not-equal")return-6;if(ret==="ok")return 0;throw"Atomics.wait returned an unexpected value "+ret}else{var loadedVal=Atomics.load(GROWABLE_HEAP_I32(),addr>>2);if(val!=loadedVal)return-6;var tNow=performance.now();var tEnd=tNow+timeout;Atomics.store(GROWABLE_HEAP_I32(),__main_thread_futex_wait_address>>2,addr);var ourWaitAddress=addr;while(addr==ourWaitAddress){tNow=performance.now();if(tNow>tEnd){return-73}_emscripten_main_thread_process_queued_calls();addr=Atomics.load(GROWABLE_HEAP_I32(),__main_thread_futex_wait_address>>2)}return 0}}function _emscripten_is_main_browser_thread(){return __pthread_is_main_browser_thread|0}function _emscripten_is_main_runtime_thread(){return __pthread_is_main_runtime_thread|0}function _emscripten_memcpy_big(dest,src,num){GROWABLE_HEAP_U8().copyWithin(dest,src,src+num)}function _emscripten_num_logical_cores(){return navigator["hardwareConcurrency"]}function _emscripten_proxy_to_main_thread_js(index,sync){var numCallArgs=arguments.length-2;var stack=stackSave();var args=stackAlloc(numCallArgs*8);var b=args>>3;for(var i=0;i<numCallArgs;i++){GROWABLE_HEAP_F64()[b+i]=arguments[2+i]}var ret=_emscripten_run_in_main_runtime_thread_js(index,numCallArgs,args,sync);stackRestore(stack);return ret}var _emscripten_receive_on_main_thread_js_callArgs=[];function readAsmConstArgs(sigPtr,buf){if(!readAsmConstArgs.array){readAsmConstArgs.array=[]}var args=readAsmConstArgs.array;args.length=0;var ch;while(ch=GROWABLE_HEAP_U8()[sigPtr++]){if(ch===100||ch===102){buf=buf+7&~7;args.push(GROWABLE_HEAP_F64()[buf>>3]);buf+=8}else{buf=buf+3&~3;args.push(GROWABLE_HEAP_I32()[buf>>2]);buf+=4}}return args}function _emscripten_receive_on_main_thread_js(index,numCallArgs,args){_emscripten_receive_on_main_thread_js_callArgs.length=numCallArgs;var b=args>>3;for(var i=0;i<numCallArgs;i++){_emscripten_receive_on_main_thread_js_callArgs[i]=GROWABLE_HEAP_F64()[b+i]}var isEmAsmConst=index<0;var func=!isEmAsmConst?proxiedFunctionTable[index]:ASM_CONSTS[-index-1];if(isEmAsmConst){var sigPtr=_emscripten_receive_on_main_thread_js_callArgs[1];var varargPtr=_emscripten_receive_on_main_thread_js_callArgs[2];var constArgs=readAsmConstArgs(sigPtr,varargPtr);return func.apply(null,constArgs)}return func.apply(null,_emscripten_receive_on_main_thread_js_callArgs)}function _emscripten_get_heap_size(){return GROWABLE_HEAP_U8().length}function emscripten_realloc_buffer(size){try{wasmMemory.grow(size-buffer2.byteLength+65535>>>16);updateGlobalBufferAndViews(wasmMemory.buffer);return 1}catch(e){}}function _emscripten_resize_heap(requestedSize){requestedSize=requestedSize>>>0;var oldSize=_emscripten_get_heap_size();if(requestedSize<=oldSize){return false}var PAGE_MULTIPLE=65536;var maxHeapSize=2147483648;if(requestedSize>maxHeapSize){return false}var minHeapSize=16777216;for(var cutDown=1;cutDown<=4;cutDown*=2){var overGrownHeapSize=oldSize*(1+.2/cutDown);overGrownHeapSize=Math.min(overGrownHeapSize,requestedSize+100663296);var newSize=Math.min(maxHeapSize,alignUp(Math.max(minHeapSize,requestedSize,overGrownHeapSize),PAGE_MULTIPLE));var replacement=emscripten_realloc_buffer(newSize);if(replacement){return true}}return false}var JSEvents={keyEvent:0,mouseEvent:0,wheelEvent:0,uiEvent:0,focusEvent:0,deviceOrientationEvent:0,deviceMotionEvent:0,fullscreenChangeEvent:0,pointerlockChangeEvent:0,visibilityChangeEvent:0,touchEvent:0,previousFullscreenElement:null,previousScreenX:null,previousScreenY:null,removeEventListenersRegistered:false,removeAllEventListeners:function(){for(var i=JSEvents.eventHandlers.length-1;i>=0;--i){JSEvents._removeHandler(i)}JSEvents.eventHandlers=[];JSEvents.deferredCalls=[]},registerRemoveEventListeners:function(){if(!JSEvents.removeEventListenersRegistered){__ATEXIT__.push(JSEvents.removeAllEventListeners);JSEvents.removeEventListenersRegistered=true}},deferredCalls:[],deferCall:function(targetFunction,precedence,argsList){function arraysHaveEqualContent(arrA,arrB){if(arrA.length!=arrB.length)return false;for(var i2 in arrA){if(arrA[i2]!=arrB[i2])return false}return true}for(var i in JSEvents.deferredCalls){var call=JSEvents.deferredCalls[i];if(call.targetFunction==targetFunction&&arraysHaveEqualContent(call.argsList,argsList)){return}}JSEvents.deferredCalls.push({targetFunction,precedence,argsList});JSEvents.deferredCalls.sort(function(x,y){return x.precedence<y.precedence})},removeDeferredCalls:function(targetFunction){for(var i=0;i<JSEvents.deferredCalls.length;++i){if(JSEvents.deferredCalls[i].targetFunction==targetFunction){JSEvents.deferredCalls.splice(i,1);--i}}},canPerformEventHandlerRequests:function(){return JSEvents.inEventHandler&&JSEvents.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(!JSEvents.canPerformEventHandlerRequests()){return}for(var i=0;i<JSEvents.deferredCalls.length;++i){var call=JSEvents.deferredCalls[i];JSEvents.deferredCalls.splice(i,1);--i;call.targetFunction.apply(null,call.argsList)}},inEventHandler:0,currentEventHandler:null,eventHandlers:[],removeAllHandlersOnTarget:function(target,eventTypeString){for(var i=0;i<JSEvents.eventHandlers.length;++i){if(JSEvents.eventHandlers[i].target==target&&(!eventTypeString||eventTypeString==JSEvents.eventHandlers[i].eventTypeString)){JSEvents._removeHandler(i--)}}},_removeHandler:function(i){var h=JSEvents.eventHandlers[i];h.target.removeEventListener(h.eventTypeString,h.eventListenerFunc,h.useCapture);JSEvents.eventHandlers.splice(i,1)},registerOrRemoveHandler:function(eventHandler){var jsEventHandler=function jsEventHandler2(event){++JSEvents.inEventHandler;JSEvents.currentEventHandler=eventHandler;JSEvents.runDeferredCalls();eventHandler.handlerFunc(event);JSEvents.runDeferredCalls();--JSEvents.inEventHandler};if(eventHandler.callbackfunc){eventHandler.eventListenerFunc=jsEventHandler;eventHandler.target.addEventListener(eventHandler.eventTypeString,jsEventHandler,eventHandler.useCapture);JSEvents.eventHandlers.push(eventHandler);JSEvents.registerRemoveEventListeners()}else{for(var i=0;i<JSEvents.eventHandlers.length;++i){if(JSEvents.eventHandlers[i].target==eventHandler.target&&JSEvents.eventHandlers[i].eventTypeString==eventHandler.eventTypeString){JSEvents._removeHandler(i--)}}}},queueEventHandlerOnThread_iiii:function(targetThread,eventHandlerFunc,eventTypeId,eventData,userData){var stackTop=stackSave();var varargs=stackAlloc(12);GROWABLE_HEAP_I32()[varargs>>2]=eventTypeId;GROWABLE_HEAP_I32()[varargs+4>>2]=eventData;GROWABLE_HEAP_I32()[varargs+8>>2]=userData;_emscripten_async_queue_on_thread_(targetThread,637534208,eventHandlerFunc,eventData,varargs);stackRestore(stackTop)},getTargetThreadForEventCallback:function(targetThread){switch(targetThread){case 1:return 0;case 2:return PThread.currentProxiedOperationCallerThread;default:return targetThread}},getNodeNameForTarget:function(target){if(!target)return"";if(target==window)return"#window";if(target==screen)return"#screen";return target&&target.nodeName?target.nodeName:""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function stringToNewUTF8(jsString){var length=lengthBytesUTF8(jsString)+1;var cString=_malloc(length);stringToUTF8(jsString,cString,length);return cString}function _emscripten_set_offscreencanvas_size_on_target_thread_js(targetThread,targetCanvas,width,height){var stackTop=stackSave();var varargs=stackAlloc(12);var targetCanvasPtr=0;if(targetCanvas){targetCanvasPtr=stringToNewUTF8(targetCanvas)}GROWABLE_HEAP_I32()[varargs>>2]=targetCanvasPtr;GROWABLE_HEAP_I32()[varargs+4>>2]=width;GROWABLE_HEAP_I32()[varargs+8>>2]=height;_emscripten_async_queue_on_thread_(targetThread,657457152,0,targetCanvasPtr,varargs);stackRestore(stackTop)}function _emscripten_set_offscreencanvas_size_on_target_thread(targetThread,targetCanvas,width,height){targetCanvas=targetCanvas?UTF8ToString(targetCanvas):"";_emscripten_set_offscreencanvas_size_on_target_thread_js(targetThread,targetCanvas,width,height)}function __maybeCStringToJsString(cString){return cString>2?UTF8ToString(cString):cString}var specialHTMLTargets=[0,typeof document!=="undefined"?document:0,typeof window!=="undefined"?window:0];function __findEventTarget(target){target=__maybeCStringToJsString(target);var domElement=specialHTMLTargets[target]||(typeof document!=="undefined"?document.querySelector(target):void 0);return domElement}function __findCanvasEventTarget(target){return __findEventTarget(target)}function _emscripten_set_canvas_element_size_calling_thread(target,width,height){var canvas=__findCanvasEventTarget(target);if(!canvas)return-4;if(canvas.canvasSharedPtr){GROWABLE_HEAP_I32()[canvas.canvasSharedPtr>>2]=width;GROWABLE_HEAP_I32()[canvas.canvasSharedPtr+4>>2]=height}if(canvas.offscreenCanvas||!canvas.controlTransferredOffscreen){if(canvas.offscreenCanvas)canvas=canvas.offscreenCanvas;var autoResizeViewport=false;if(canvas.GLctxObject&&canvas.GLctxObject.GLctx){var prevViewport=canvas.GLctxObject.GLctx.getParameter(2978);autoResizeViewport=prevViewport[0]===0&&prevViewport[1]===0&&prevViewport[2]===canvas.width&&prevViewport[3]===canvas.height}canvas.width=width;canvas.height=height;if(autoResizeViewport){canvas.GLctxObject.GLctx.viewport(0,0,width,height)}}else if(canvas.canvasSharedPtr){var targetThread=GROWABLE_HEAP_I32()[canvas.canvasSharedPtr+8>>2];_emscripten_set_offscreencanvas_size_on_target_thread(targetThread,target,width,height);return 1}else{return-4}return 0}function _emscripten_set_canvas_element_size_main_thread(target,width,height){if(ENVIRONMENT_IS_PTHREAD)return _emscripten_proxy_to_main_thread_js(2,1,target,width,height);return _emscripten_set_canvas_element_size_calling_thread(target,width,height)}function _emscripten_set_canvas_element_size(target,width,height){var canvas=__findCanvasEventTarget(target);if(canvas){return _emscripten_set_canvas_element_size_calling_thread(target,width,height)}else{return _emscripten_set_canvas_element_size_main_thread(target,width,height)}}function _emscripten_set_current_thread_status(newStatus){newStatus=newStatus|0}function _emscripten_set_thread_name(threadId,name){threadId=threadId|0;name=name|0}function __webgl_enable_ANGLE_instanced_arrays(ctx){var ext=ctx.getExtension("ANGLE_instanced_arrays");if(ext){ctx["vertexAttribDivisor"]=function(index,divisor){ext["vertexAttribDivisorANGLE"](index,divisor)};ctx["drawArraysInstanced"]=function(mode,first,count,primcount){ext["drawArraysInstancedANGLE"](mode,first,count,primcount)};ctx["drawElementsInstanced"]=function(mode,count,type,indices,primcount){ext["drawElementsInstancedANGLE"](mode,count,type,indices,primcount)};return 1}}function __webgl_enable_OES_vertex_array_object(ctx){var ext=ctx.getExtension("OES_vertex_array_object");if(ext){ctx["createVertexArray"]=function(){return ext["createVertexArrayOES"]()};ctx["deleteVertexArray"]=function(vao){ext["deleteVertexArrayOES"](vao)};ctx["bindVertexArray"]=function(vao){ext["bindVertexArrayOES"](vao)};ctx["isVertexArray"]=function(vao){return ext["isVertexArrayOES"](vao)};return 1}}function __webgl_enable_WEBGL_draw_buffers(ctx){var ext=ctx.getExtension("WEBGL_draw_buffers");if(ext){ctx["drawBuffers"]=function(n,bufs){ext["drawBuffersWEBGL"](n,bufs)};return 1}}var GL={counter:1,lastError:0,buffers:[],mappedBuffers:{},programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},currentContext:null,offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,init:function(){var miniTempFloatBuffer=new Float32Array(GL.MINI_TEMP_BUFFER_SIZE);for(var i=0;i<GL.MINI_TEMP_BUFFER_SIZE;i++){GL.miniTempBufferFloatViews[i]=miniTempFloatBuffer.subarray(0,i+1)}var miniTempIntBuffer=new Int32Array(GL.MINI_TEMP_BUFFER_SIZE);for(var i=0;i<GL.MINI_TEMP_BUFFER_SIZE;i++){GL.miniTempBufferIntViews[i]=miniTempIntBuffer.subarray(0,i+1)}},recordError:function recordError(errorCode){if(!GL.lastError){GL.lastError=errorCode}},getNewId:function(table){var ret=GL.counter++;for(var i=table.length;i<ret;i++){table[i]=null}return ret},MINI_TEMP_BUFFER_SIZE:256,miniTempBufferFloatViews:[0],miniTempBufferIntViews:[0],getSource:function(shader,count,string,length){var source="";for(var i=0;i<count;++i){var len=length?GROWABLE_HEAP_I32()[length+i*4>>2]:-1;source+=UTF8ToString(GROWABLE_HEAP_I32()[string+i*4>>2],len<0?void 0:len)}return source},createContext:function(canvas,webGLContextAttributes){var ctx=canvas.getContext("webgl",webGLContextAttributes);if(!ctx)return 0;var handle=GL.registerContext(ctx,webGLContextAttributes);return handle},registerContext:function(ctx,webGLContextAttributes){var handle=_malloc(8);GROWABLE_HEAP_I32()[handle+4>>2]=_pthread_self();var context={handle,attributes:webGLContextAttributes,version:webGLContextAttributes.majorVersion,GLctx:ctx};if(ctx.canvas)ctx.canvas.GLctxObject=context;GL.contexts[handle]=context;if(typeof webGLContextAttributes.enableExtensionsByDefault==="undefined"||webGLContextAttributes.enableExtensionsByDefault){GL.initExtensions(context)}return handle},makeContextCurrent:function(contextHandle){GL.currentContext=GL.contexts[contextHandle];Module.ctx=GLctx=GL.currentContext&&GL.currentContext.GLctx;return!(contextHandle&&!GLctx)},getContext:function(contextHandle){return GL.contexts[contextHandle]},deleteContext:function(contextHandle){if(GL.currentContext===GL.contexts[contextHandle])GL.currentContext=null;if(typeof JSEvents==="object")JSEvents.removeAllHandlersOnTarget(GL.contexts[contextHandle].GLctx.canvas);if(GL.contexts[contextHandle]&&GL.contexts[contextHandle].GLctx.canvas)GL.contexts[contextHandle].GLctx.canvas.GLctxObject=void 0;_free(GL.contexts[contextHandle].handle);GL.contexts[contextHandle]=null},initExtensions:function(context){if(!context)context=GL.currentContext;if(context.initExtensionsDone)return;context.initExtensionsDone=true;var GLctx2=context.GLctx;__webgl_enable_ANGLE_instanced_arrays(GLctx2);__webgl_enable_OES_vertex_array_object(GLctx2);__webgl_enable_WEBGL_draw_buffers(GLctx2);GLctx2.disjointTimerQueryExt=GLctx2.getExtension("EXT_disjoint_timer_query");var automaticallyEnabledExtensions=["OES_texture_float","OES_texture_half_float","OES_standard_derivatives","OES_vertex_array_object","WEBGL_compressed_texture_s3tc","WEBGL_depth_texture","OES_element_index_uint","EXT_texture_filter_anisotropic","EXT_frag_depth","WEBGL_draw_buffers","ANGLE_instanced_arrays","OES_texture_float_linear","OES_texture_half_float_linear","EXT_blend_minmax","EXT_shader_texture_lod","EXT_texture_norm16","WEBGL_compressed_texture_pvrtc","EXT_color_buffer_half_float","WEBGL_color_buffer_float","EXT_sRGB","WEBGL_compressed_texture_etc1","EXT_disjoint_timer_query","WEBGL_compressed_texture_etc","WEBGL_compressed_texture_astc","EXT_color_buffer_float","WEBGL_compressed_texture_s3tc_srgb","EXT_disjoint_timer_query_webgl2","WEBKIT_WEBGL_compressed_texture_pvrtc"];var exts=GLctx2.getSupportedExtensions()||[];exts.forEach(function(ext){if(automaticallyEnabledExtensions.indexOf(ext)!=-1){GLctx2.getExtension(ext)}})},populateUniformTable:function(program){var p=GL.programs[program];var ptable=GL.programInfos[program]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1};var utable=ptable.uniforms;var numUniforms=GLctx.getProgramParameter(p,35718);for(var i=0;i<numUniforms;++i){var u=GLctx.getActiveUniform(p,i);var name=u.name;ptable.maxUniformLength=Math.max(ptable.maxUniformLength,name.length+1);if(name.slice(-1)=="]"){name=name.slice(0,name.lastIndexOf("["))}var loc=GLctx.getUniformLocation(p,name);if(loc){var id=GL.getNewId(GL.uniforms);utable[name]=[u.size,id];GL.uniforms[id]=loc;for(var j=1;j<u.size;++j){var n=name+"["+j+"]";loc=GLctx.getUniformLocation(p,n);id=GL.getNewId(GL.uniforms);GL.uniforms[id]=loc}}}}};var __emscripten_webgl_power_preferences=["default","low-power","high-performance"];function _emscripten_webgl_do_create_context(target,attributes){var contextAttributes={};var a=attributes>>2;contextAttributes["alpha"]=!!GROWABLE_HEAP_I32()[a+(0>>2)];contextAttributes["depth"]=!!GROWABLE_HEAP_I32()[a+(4>>2)];contextAttributes["stencil"]=!!GROWABLE_HEAP_I32()[a+(8>>2)];contextAttributes["antialias"]=!!GROWABLE_HEAP_I32()[a+(12>>2)];contextAttributes["premultipliedAlpha"]=!!GROWABLE_HEAP_I32()[a+(16>>2)];contextAttributes["preserveDrawingBuffer"]=!!GROWABLE_HEAP_I32()[a+(20>>2)];var powerPreference=GROWABLE_HEAP_I32()[a+(24>>2)];contextAttributes["powerPreference"]=__emscripten_webgl_power_preferences[powerPreference];contextAttributes["failIfMajorPerformanceCaveat"]=!!GROWABLE_HEAP_I32()[a+(28>>2)];contextAttributes.majorVersion=GROWABLE_HEAP_I32()[a+(32>>2)];contextAttributes.minorVersion=GROWABLE_HEAP_I32()[a+(36>>2)];contextAttributes.enableExtensionsByDefault=GROWABLE_HEAP_I32()[a+(40>>2)];contextAttributes.explicitSwapControl=GROWABLE_HEAP_I32()[a+(44>>2)];contextAttributes.proxyContextToMainThread=GROWABLE_HEAP_I32()[a+(48>>2)];contextAttributes.renderViaOffscreenBackBuffer=GROWABLE_HEAP_I32()[a+(52>>2)];var canvas=__findCanvasEventTarget(target);if(!canvas){return-4}if(contextAttributes.explicitSwapControl){return-1}var contextHandle=GL.createContext(canvas,contextAttributes);return contextHandle}function _emscripten_webgl_create_context(a0,a1){return _emscripten_webgl_do_create_context(a0,a1)}var PATH={splitPath:function(filename){var splitPathRe=/^(\/?|)([\s\S]*?)((?:\.{1,2}|[^\/]+?|)(\.[^.\/]*|))(?:[\/]*)$/;return splitPathRe.exec(filename).slice(1)},normalizeArray:function(parts,allowAboveRoot){var up=0;for(var i=parts.length-1;i>=0;i--){var last=parts[i];if(last==="."){parts.splice(i,1)}else if(last===".."){parts.splice(i,1);up++}else if(up){parts.splice(i,1);up--}}if(allowAboveRoot){for(;up;up--){parts.unshift("..")}}return parts},normalize:function(path){var isAbsolute=path.charAt(0)==="/",trailingSlash=path.substr(-1)==="/";path=PATH.normalizeArray(path.split("/").filter(function(p){return!!p}),!isAbsolute).join("/");if(!path&&!isAbsolute){path="."}if(path&&trailingSlash){path+="/"}return(isAbsolute?"/":"")+path},dirname:function(path){var result=PATH.splitPath(path),root=result[0],dir=result[1];if(!root&&!dir){return"."}if(dir){dir=dir.substr(0,dir.length-1)}return root+dir},basename:function(path){if(path==="/")return"/";var lastSlash=path.lastIndexOf("/");if(lastSlash===-1)return path;return path.substr(lastSlash+1)},extname:function(path){return PATH.splitPath(path)[3]},join:function(){var paths=Array.prototype.slice.call(arguments,0);return PATH.normalize(paths.join("/"))},join2:function(l,r){return PATH.normalize(l+"/"+r)}};var SYSCALLS={mappings:{},buffers:[null,[],[]],printChar:function(stream,curr){var buffer3=SYSCALLS.buffers[stream];if(curr===0||curr===10){(stream===1?out:err)(UTF8ArrayToString(buffer3,0));buffer3.length=0}else{buffer3.push(curr)}},varargs:void 0,get:function(){SYSCALLS.varargs+=4;var ret=GROWABLE_HEAP_I32()[SYSCALLS.varargs-4>>2];return ret},getStr:function(ptr){var ret=UTF8ToString(ptr);return ret},get64:function(low,high){return low}};function _fd_close(fd){if(ENVIRONMENT_IS_PTHREAD)return _emscripten_proxy_to_main_thread_js(3,1,fd);return 0}function _fd_seek(fd,offset_low,offset_high,whence,newOffset){if(ENVIRONMENT_IS_PTHREAD)return _emscripten_proxy_to_main_thread_js(4,1,fd,offset_low,offset_high,whence,newOffset)}function _fd_write(fd,iov,iovcnt,pnum){if(ENVIRONMENT_IS_PTHREAD)return _emscripten_proxy_to_main_thread_js(5,1,fd,iov,iovcnt,pnum);var num=0;for(var i=0;i<iovcnt;i++){var ptr=GROWABLE_HEAP_I32()[iov+i*8>>2];var len=GROWABLE_HEAP_I32()[iov+(i*8+4)>>2];for(var j=0;j<len;j++){SYSCALLS.printChar(fd,GROWABLE_HEAP_U8()[ptr+j])}num+=len}GROWABLE_HEAP_I32()[pnum>>2]=num;return 0}function _pthread_cleanup_pop(execute){var routine=PThread.exitHandlers.pop();if(execute)routine()}function _pthread_cleanup_push(routine,arg){if(PThread.exitHandlers===null){PThread.exitHandlers=[]}PThread.exitHandlers.push(function(){dynCall_vi(routine,arg)})}function __spawn_thread(threadParams){if(ENVIRONMENT_IS_PTHREAD)throw"Internal Error! _spawn_thread() can only ever be called from main application thread!";var worker=PThread.getNewWorker();if(worker.pthread!==void 0)throw"Internal error!";if(!threadParams.pthread_ptr)throw"Internal error, no pthread ptr!";PThread.runningWorkers.push(worker);var tlsMemory=_malloc(128*4);for(var i=0;i<128;++i){GROWABLE_HEAP_I32()[tlsMemory+i*4>>2]=0}var stackHigh=threadParams.stackBase+threadParams.stackSize;var pthread=PThread.pthreads[threadParams.pthread_ptr]={worker,stackBase:threadParams.stackBase,stackSize:threadParams.stackSize,allocatedOwnStack:threadParams.allocatedOwnStack,thread:threadParams.pthread_ptr,threadInfoStruct:threadParams.pthread_ptr};var tis=pthread.threadInfoStruct>>2;Atomics.store(GROWABLE_HEAP_U32(),tis+(0>>2),0);Atomics.store(GROWABLE_HEAP_U32(),tis+(4>>2),0);Atomics.store(GROWABLE_HEAP_U32(),tis+(8>>2),0);Atomics.store(GROWABLE_HEAP_U32(),tis+(68>>2),threadParams.detached);Atomics.store(GROWABLE_HEAP_U32(),tis+(104>>2),tlsMemory);Atomics.store(GROWABLE_HEAP_U32(),tis+(48>>2),0);Atomics.store(GROWABLE_HEAP_U32(),tis+(40>>2),pthread.threadInfoStruct);Atomics.store(GROWABLE_HEAP_U32(),tis+(44>>2),42);Atomics.store(GROWABLE_HEAP_U32(),tis+(108>>2),threadParams.stackSize);Atomics.store(GROWABLE_HEAP_U32(),tis+(84>>2),threadParams.stackSize);Atomics.store(GROWABLE_HEAP_U32(),tis+(80>>2),stackHigh);Atomics.store(GROWABLE_HEAP_U32(),tis+(108+8>>2),stackHigh);Atomics.store(GROWABLE_HEAP_U32(),tis+(108+12>>2),threadParams.detached);Atomics.store(GROWABLE_HEAP_U32(),tis+(108+20>>2),threadParams.schedPolicy);Atomics.store(GROWABLE_HEAP_U32(),tis+(108+24>>2),threadParams.schedPrio);var global_libc=_emscripten_get_global_libc();var global_locale=global_libc+40;Atomics.store(GROWABLE_HEAP_U32(),tis+(176>>2),global_locale);worker.pthread=pthread;var msg={cmd:"run",start_routine:threadParams.startRoutine,arg:threadParams.arg,threadInfoStruct:threadParams.pthread_ptr,selfThreadId:threadParams.pthread_ptr,parentThreadId:threadParams.parent_pthread_ptr,stackBase:threadParams.stackBase,stackSize:threadParams.stackSize};worker.runPthread=function(){msg.time=performance.now();worker.postMessage(msg,threadParams.transferList)};if(worker.loaded){worker.runPthread();delete worker.runPthread}}function _pthread_getschedparam(thread,policy,schedparam){if(!policy&&!schedparam)return ERRNO_CODES.EINVAL;if(!thread){err("pthread_getschedparam called with a null thread pointer!");return ERRNO_CODES.ESRCH}var self2=GROWABLE_HEAP_I32()[thread+12>>2];if(self2!==thread){err("pthread_getschedparam attempted on thread "+thread+", which does not point to a valid thread, or does not exist anymore!");return ERRNO_CODES.ESRCH}var schedPolicy=Atomics.load(GROWABLE_HEAP_U32(),thread+108+20>>2);var schedPrio=Atomics.load(GROWABLE_HEAP_U32(),thread+108+24>>2);if(policy)GROWABLE_HEAP_I32()[policy>>2]=schedPolicy;if(schedparam)GROWABLE_HEAP_I32()[schedparam>>2]=schedPrio;return 0}function _pthread_self(){return __pthread_ptr|0}Module["_pthread_self"]=_pthread_self;function _pthread_create(pthread_ptr,attr,start_routine,arg){if(typeof SharedArrayBuffer==="undefined"){err("Current environment does not support SharedArrayBuffer, pthreads are not available!");return 6}if(!pthread_ptr){err("pthread_create called with a null thread pointer!");return 28}var transferList=[];var error=0;if(ENVIRONMENT_IS_PTHREAD&&(transferList.length===0||error)){return _emscripten_sync_run_in_main_thread_4(687865856,pthread_ptr,attr,start_routine,arg)}if(error)return error;var stackSize=0;var stackBase=0;var detached=0;var schedPolicy=0;var schedPrio=0;if(attr){stackSize=GROWABLE_HEAP_I32()[attr>>2];stackSize+=81920;stackBase=GROWABLE_HEAP_I32()[attr+8>>2];detached=GROWABLE_HEAP_I32()[attr+12>>2]!==0;var inheritSched=GROWABLE_HEAP_I32()[attr+16>>2]===0;if(inheritSched){var prevSchedPolicy=GROWABLE_HEAP_I32()[attr+20>>2];var prevSchedPrio=GROWABLE_HEAP_I32()[attr+24>>2];var parentThreadPtr=PThread.currentProxiedOperationCallerThread?PThread.currentProxiedOperationCallerThread:_pthread_self();_pthread_getschedparam(parentThreadPtr,attr+20,attr+24);schedPolicy=GROWABLE_HEAP_I32()[attr+20>>2];schedPrio=GROWABLE_HEAP_I32()[attr+24>>2];GROWABLE_HEAP_I32()[attr+20>>2]=prevSchedPolicy;GROWABLE_HEAP_I32()[attr+24>>2]=prevSchedPrio}else{schedPolicy=GROWABLE_HEAP_I32()[attr+20>>2];schedPrio=GROWABLE_HEAP_I32()[attr+24>>2]}}else{stackSize=2097152}var allocatedOwnStack=stackBase==0;if(allocatedOwnStack){stackBase=_memalign(16,stackSize)}else{stackBase-=stackSize;assert(stackBase>0)}var threadInfoStruct2=_malloc(232);for(var i=0;i<232>>2;++i)GROWABLE_HEAP_U32()[(threadInfoStruct2>>2)+i]=0;GROWABLE_HEAP_I32()[pthread_ptr>>2]=threadInfoStruct2;GROWABLE_HEAP_I32()[threadInfoStruct2+12>>2]=threadInfoStruct2;var headPtr=threadInfoStruct2+156;GROWABLE_HEAP_I32()[headPtr>>2]=headPtr;var threadParams={stackBase,stackSize,allocatedOwnStack,schedPolicy,schedPrio,detached,startRoutine:start_routine,pthread_ptr:threadInfoStruct2,parent_pthread_ptr:_pthread_self(),arg,transferList};if(ENVIRONMENT_IS_PTHREAD){threadParams.cmd="spawnThread";postMessage(threadParams,transferList)}else{__spawn_thread(threadParams)}return 0}function _roundf(d){d=+d;return d>=0?+Math_floor(d+.5):+Math_ceil(d-.5)}function _sysconf(name){if(ENVIRONMENT_IS_PTHREAD)return _emscripten_proxy_to_main_thread_js(6,1,name);switch(name){case 30:return 16384;case 85:var maxHeapSize=2147483648;return maxHeapSize/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 80:case 81:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:case 79:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:{if(typeof navigator==="object")return navigator["hardwareConcurrency"]||1;return 1}}setErrNo(28);return-1}if(!ENVIRONMENT_IS_PTHREAD)PThread.initMainThreadBlock();else PThread.initWorker();var GLctx;GL.init();var proxiedFunctionTable=[null,_atexit,_emscripten_set_canvas_element_size_main_thread,_fd_close,_fd_seek,_fd_write,_sysconf];var asmLibraryArg={e:___assert_fail,r:___call_main,w:__emscripten_notify_thread_queue,a:_abort,l:_emscripten_conditional_set_current_thread_status,d:_emscripten_futex_wait,c:_emscripten_futex_wake,h:_emscripten_get_now,g:_emscripten_is_main_browser_thread,x:_emscripten_is_main_runtime_thread,q:_emscripten_memcpy_big,B:_emscripten_num_logical_cores,t:_emscripten_receive_on_main_thread_js,A:_emscripten_resize_heap,u:_emscripten_set_canvas_element_size,k:_emscripten_set_current_thread_status,s:_emscripten_set_thread_name,v:_emscripten_webgl_create_context,m:_fd_close,o:_fd_seek,i:_fd_write,p:initPthreadsJS,memory:wasmMemory||Module["wasmMemory"],y:_pthread_cleanup_pop,z:_pthread_cleanup_push,j:_pthread_create,b:_pthread_self,f:_roundf,n:_sysconf,table:wasmTable};var asm=createWasm();Module["asm"]=asm;var ___wasm_call_ctors=Module["___wasm_call_ctors"]=function(){return(___wasm_call_ctors=Module["___wasm_call_ctors"]=Module["asm"]["C"]).apply(null,arguments)};var _init=Module["_init"]=function(){return(_init=Module["_init"]=Module["asm"]["D"]).apply(null,arguments)};var _register_tensor=Module["_register_tensor"]=function(){return(_register_tensor=Module["_register_tensor"]=Module["asm"]["E"]).apply(null,arguments)};var _dispose_data=Module["_dispose_data"]=function(){return(_dispose_data=Module["_dispose_data"]=Module["asm"]["F"]).apply(null,arguments)};var _dispose=Module["_dispose"]=function(){return(_dispose=Module["_dispose"]=Module["asm"]["G"]).apply(null,arguments)};var _Abs=Module["_Abs"]=function(){return(_Abs=Module["_Abs"]=Module["asm"]["H"]).apply(null,arguments)};var _Add=Module["_Add"]=function(){return(_Add=Module["_Add"]=Module["asm"]["I"]).apply(null,arguments)};var _AddN=Module["_AddN"]=function(){return(_AddN=Module["_AddN"]=Module["asm"]["J"]).apply(null,arguments)};var _ArgMax=Module["_ArgMax"]=function(){return(_ArgMax=Module["_ArgMax"]=Module["asm"]["K"]).apply(null,arguments)};var _AvgPool=Module["_AvgPool"]=function(){return(_AvgPool=Module["_AvgPool"]=Module["asm"]["L"]).apply(null,arguments)};var _BatchMatMul=Module["_BatchMatMul"]=function(){return(_BatchMatMul=Module["_BatchMatMul"]=Module["asm"]["M"]).apply(null,arguments)};var _ClipByValue=Module["_ClipByValue"]=function(){return(_ClipByValue=Module["_ClipByValue"]=Module["asm"]["N"]).apply(null,arguments)};var _Conv2D=Module["_Conv2D"]=function(){return(_Conv2D=Module["_Conv2D"]=Module["asm"]["O"]).apply(null,arguments)};var _Conv2DBackpropInput=Module["_Conv2DBackpropInput"]=function(){return(_Conv2DBackpropInput=Module["_Conv2DBackpropInput"]=Module["asm"]["P"]).apply(null,arguments)};var _Cos=Module["_Cos"]=function(){return(_Cos=Module["_Cos"]=Module["asm"]["Q"]).apply(null,arguments)};var _CropAndResize=Module["_CropAndResize"]=function(){return(_CropAndResize=Module["_CropAndResize"]=Module["asm"]["R"]).apply(null,arguments)};var _Cumsum=Module["_Cumsum"]=function(){return(_Cumsum=Module["_Cumsum"]=Module["asm"]["S"]).apply(null,arguments)};var _DepthToSpace=Module["_DepthToSpace"]=function(){return(_DepthToSpace=Module["_DepthToSpace"]=Module["asm"]["T"]).apply(null,arguments)};var _DepthwiseConv2dNative=Module["_DepthwiseConv2dNative"]=function(){return(_DepthwiseConv2dNative=Module["_DepthwiseConv2dNative"]=Module["asm"]["U"]).apply(null,arguments)};var _Div=Module["_Div"]=function(){return(_Div=Module["_Div"]=Module["asm"]["V"]).apply(null,arguments)};var _Equal=Module["_Equal"]=function(){return(_Equal=Module["_Equal"]=Module["asm"]["W"]).apply(null,arguments)};var _Exp=Module["_Exp"]=function(){return(_Exp=Module["_Exp"]=Module["asm"]["X"]).apply(null,arguments)};var _FlipLeftRight=Module["_FlipLeftRight"]=function(){return(_FlipLeftRight=Module["_FlipLeftRight"]=Module["asm"]["Y"]).apply(null,arguments)};var _FloorDiv=Module["_FloorDiv"]=function(){return(_FloorDiv=Module["_FloorDiv"]=Module["asm"]["Z"]).apply(null,arguments)};var _FusedBatchNorm=Module["_FusedBatchNorm"]=function(){return(_FusedBatchNorm=Module["_FusedBatchNorm"]=Module["asm"]["_"]).apply(null,arguments)};var _FusedConv2D=Module["_FusedConv2D"]=function(){return(_FusedConv2D=Module["_FusedConv2D"]=Module["asm"]["$"]).apply(null,arguments)};var _FusedDepthwiseConv2D=Module["_FusedDepthwiseConv2D"]=function(){return(_FusedDepthwiseConv2D=Module["_FusedDepthwiseConv2D"]=Module["asm"]["aa"]).apply(null,arguments)};var _Gather=Module["_Gather"]=function(){return(_Gather=Module["_Gather"]=Module["asm"]["ba"]).apply(null,arguments)};var _GatherNd=Module["_GatherNd"]=function(){return(_GatherNd=Module["_GatherNd"]=Module["asm"]["ca"]).apply(null,arguments)};var _Greater=Module["_Greater"]=function(){return(_Greater=Module["_Greater"]=Module["asm"]["da"]).apply(null,arguments)};var _GreaterEqual=Module["_GreaterEqual"]=function(){return(_GreaterEqual=Module["_GreaterEqual"]=Module["asm"]["ea"]).apply(null,arguments)};var _Less=Module["_Less"]=function(){return(_Less=Module["_Less"]=Module["asm"]["fa"]).apply(null,arguments)};var _LessEqual=Module["_LessEqual"]=function(){return(_LessEqual=Module["_LessEqual"]=Module["asm"]["ga"]).apply(null,arguments)};var _Log=Module["_Log"]=function(){return(_Log=Module["_Log"]=Module["asm"]["ha"]).apply(null,arguments)};var _LogicalAnd=Module["_LogicalAnd"]=function(){return(_LogicalAnd=Module["_LogicalAnd"]=Module["asm"]["ia"]).apply(null,arguments)};var _Max=Module["_Max"]=function(){return(_Max=Module["_Max"]=Module["asm"]["ja"]).apply(null,arguments)};var _MaxPool=Module["_MaxPool"]=function(){return(_MaxPool=Module["_MaxPool"]=Module["asm"]["ka"]).apply(null,arguments)};var _Maximum=Module["_Maximum"]=function(){return(_Maximum=Module["_Maximum"]=Module["asm"]["la"]).apply(null,arguments)};var _Min=Module["_Min"]=function(){return(_Min=Module["_Min"]=Module["asm"]["ma"]).apply(null,arguments)};var _Minimum=Module["_Minimum"]=function(){return(_Minimum=Module["_Minimum"]=Module["asm"]["na"]).apply(null,arguments)};var _Multiply=Module["_Multiply"]=function(){return(_Multiply=Module["_Multiply"]=Module["asm"]["oa"]).apply(null,arguments)};var _Negate=Module["_Negate"]=function(){return(_Negate=Module["_Negate"]=Module["asm"]["pa"]).apply(null,arguments)};var _NonMaxSuppressionV3=Module["_NonMaxSuppressionV3"]=function(){return(_NonMaxSuppressionV3=Module["_NonMaxSuppressionV3"]=Module["asm"]["qa"]).apply(null,arguments)};var _NonMaxSuppressionV4=Module["_NonMaxSuppressionV4"]=function(){return(_NonMaxSuppressionV4=Module["_NonMaxSuppressionV4"]=Module["asm"]["ra"]).apply(null,arguments)};var _NonMaxSuppressionV5=Module["_NonMaxSuppressionV5"]=function(){return(_NonMaxSuppressionV5=Module["_NonMaxSuppressionV5"]=Module["asm"]["sa"]).apply(null,arguments)};var _NotEqual=Module["_NotEqual"]=function(){return(_NotEqual=Module["_NotEqual"]=Module["asm"]["ta"]).apply(null,arguments)};var _OneHot=Module["_OneHot"]=function(){return(_OneHot=Module["_OneHot"]=Module["asm"]["ua"]).apply(null,arguments)};var _PadV2=Module["_PadV2"]=function(){return(_PadV2=Module["_PadV2"]=Module["asm"]["va"]).apply(null,arguments)};var _Pow=Module["_Pow"]=function(){return(_Pow=Module["_Pow"]=Module["asm"]["wa"]).apply(null,arguments)};var _Prelu=Module["_Prelu"]=function(){return(_Prelu=Module["_Prelu"]=Module["asm"]["xa"]).apply(null,arguments)};var _Relu=Module["_Relu"]=function(){return(_Relu=Module["_Relu"]=Module["asm"]["ya"]).apply(null,arguments)};var _Relu6=Module["_Relu6"]=function(){return(_Relu6=Module["_Relu6"]=Module["asm"]["za"]).apply(null,arguments)};var _ResizeBilinear=Module["_ResizeBilinear"]=function(){return(_ResizeBilinear=Module["_ResizeBilinear"]=Module["asm"]["Aa"]).apply(null,arguments)};var _Reverse=Module["_Reverse"]=function(){return(_Reverse=Module["_Reverse"]=Module["asm"]["Ba"]).apply(null,arguments)};var _RotateWithOffset=Module["_RotateWithOffset"]=function(){return(_RotateWithOffset=Module["_RotateWithOffset"]=Module["asm"]["Ca"]).apply(null,arguments)};var _Rsqrt=Module["_Rsqrt"]=function(){return(_Rsqrt=Module["_Rsqrt"]=Module["asm"]["Da"]).apply(null,arguments)};var _ScatterNd=Module["_ScatterNd"]=function(){return(_ScatterNd=Module["_ScatterNd"]=Module["asm"]["Ea"]).apply(null,arguments)};var _SelectV2=Module["_SelectV2"]=function(){return(_SelectV2=Module["_SelectV2"]=Module["asm"]["Fa"]).apply(null,arguments)};var _Sigmoid=Module["_Sigmoid"]=function(){return(_Sigmoid=Module["_Sigmoid"]=Module["asm"]["Ga"]).apply(null,arguments)};var _Sin=Module["_Sin"]=function(){return(_Sin=Module["_Sin"]=Module["asm"]["Ha"]).apply(null,arguments)};var _Softmax=Module["_Softmax"]=function(){return(_Softmax=Module["_Softmax"]=Module["asm"]["Ia"]).apply(null,arguments)};var _Sqrt=Module["_Sqrt"]=function(){return(_Sqrt=Module["_Sqrt"]=Module["asm"]["Ja"]).apply(null,arguments)};var _Square=Module["_Square"]=function(){return(_Square=Module["_Square"]=Module["asm"]["Ka"]).apply(null,arguments)};var _SquaredDifference=Module["_SquaredDifference"]=function(){return(_SquaredDifference=Module["_SquaredDifference"]=Module["asm"]["La"]).apply(null,arguments)};var _StridedSlice=Module["_StridedSlice"]=function(){return(_StridedSlice=Module["_StridedSlice"]=Module["asm"]["Ma"]).apply(null,arguments)};var _Sub=Module["_Sub"]=function(){return(_Sub=Module["_Sub"]=Module["asm"]["Na"]).apply(null,arguments)};var _Sum=Module["_Sum"]=function(){return(_Sum=Module["_Sum"]=Module["asm"]["Oa"]).apply(null,arguments)};var _Tanh=Module["_Tanh"]=function(){return(_Tanh=Module["_Tanh"]=Module["asm"]["Pa"]).apply(null,arguments)};var _Tile=Module["_Tile"]=function(){return(_Tile=Module["_Tile"]=Module["asm"]["Qa"]).apply(null,arguments)};var _Transpose=Module["_Transpose"]=function(){return(_Transpose=Module["_Transpose"]=Module["asm"]["Ra"]).apply(null,arguments)};var __FusedMatMul=Module["__FusedMatMul"]=function(){return(__FusedMatMul=Module["__FusedMatMul"]=Module["asm"]["Sa"]).apply(null,arguments)};var _malloc=Module["_malloc"]=function(){return(_malloc=Module["_malloc"]=Module["asm"]["Ta"]).apply(null,arguments)};var _free=Module["_free"]=function(){return(_free=Module["_free"]=Module["asm"]["Ua"]).apply(null,arguments)};var _emscripten_get_global_libc=Module["_emscripten_get_global_libc"]=function(){return(_emscripten_get_global_libc=Module["_emscripten_get_global_libc"]=Module["asm"]["Va"]).apply(null,arguments)};var ___errno_location=Module["___errno_location"]=function(){return(___errno_location=Module["___errno_location"]=Module["asm"]["Wa"]).apply(null,arguments)};var ___em_js__initPthreadsJS=Module["___em_js__initPthreadsJS"]=function(){return(___em_js__initPthreadsJS=Module["___em_js__initPthreadsJS"]=Module["asm"]["Xa"]).apply(null,arguments)};var _memalign=Module["_memalign"]=function(){return(_memalign=Module["_memalign"]=Module["asm"]["Ya"]).apply(null,arguments)};var ___pthread_tsd_run_dtors=Module["___pthread_tsd_run_dtors"]=function(){return(___pthread_tsd_run_dtors=Module["___pthread_tsd_run_dtors"]=Module["asm"]["Za"]).apply(null,arguments)};var _emscripten_main_thread_process_queued_calls=Module["_emscripten_main_thread_process_queued_calls"]=function(){return(_emscripten_main_thread_process_queued_calls=Module["_emscripten_main_thread_process_queued_calls"]=Module["asm"]["_a"]).apply(null,arguments)};var _emscripten_current_thread_process_queued_calls=Module["_emscripten_current_thread_process_queued_calls"]=function(){return(_emscripten_current_thread_process_queued_calls=Module["_emscripten_current_thread_process_queued_calls"]=Module["asm"]["$a"]).apply(null,arguments)};var _emscripten_register_main_browser_thread_id=Module["_emscripten_register_main_browser_thread_id"]=function(){return(_emscripten_register_main_browser_thread_id=Module["_emscripten_register_main_browser_thread_id"]=Module["asm"]["ab"]).apply(null,arguments)};var _emscripten_main_browser_thread_id=Module["_emscripten_main_browser_thread_id"]=function(){return(_emscripten_main_browser_thread_id=Module["_emscripten_main_browser_thread_id"]=Module["asm"]["bb"]).apply(null,arguments)};var _emscripten_async_run_in_main_thread=Module["_emscripten_async_run_in_main_thread"]=function(){return(_emscripten_async_run_in_main_thread=Module["_emscripten_async_run_in_main_thread"]=Module["asm"]["cb"]).apply(null,arguments)};var _emscripten_sync_run_in_main_thread=Module["_emscripten_sync_run_in_main_thread"]=function(){return(_emscripten_sync_run_in_main_thread=Module["_emscripten_sync_run_in_main_thread"]=Module["asm"]["db"]).apply(null,arguments)};var _emscripten_sync_run_in_main_thread_0=Module["_emscripten_sync_run_in_main_thread_0"]=function(){return(_emscripten_sync_run_in_main_thread_0=Module["_emscripten_sync_run_in_main_thread_0"]=Module["asm"]["eb"]).apply(null,arguments)};var _emscripten_sync_run_in_main_thread_1=Module["_emscripten_sync_run_in_main_thread_1"]=function(){return(_emscripten_sync_run_in_main_thread_1=Module["_emscripten_sync_run_in_main_thread_1"]=Module["asm"]["fb"]).apply(null,arguments)};var _emscripten_sync_run_in_main_thread_2=Module["_emscripten_sync_run_in_main_thread_2"]=function(){return(_emscripten_sync_run_in_main_thread_2=Module["_emscripten_sync_run_in_main_thread_2"]=Module["asm"]["gb"]).apply(null,arguments)};var _emscripten_sync_run_in_main_thread_xprintf_varargs=Module["_emscripten_sync_run_in_main_thread_xprintf_varargs"]=function(){return(_emscripten_sync_run_in_main_thread_xprintf_varargs=Module["_emscripten_sync_run_in_main_thread_xprintf_varargs"]=Module["asm"]["hb"]).apply(null,arguments)};var _emscripten_sync_run_in_main_thread_3=Module["_emscripten_sync_run_in_main_thread_3"]=function(){return(_emscripten_sync_run_in_main_thread_3=Module["_emscripten_sync_run_in_main_thread_3"]=Module["asm"]["ib"]).apply(null,arguments)};var _emscripten_sync_run_in_main_thread_4=Module["_emscripten_sync_run_in_main_thread_4"]=function(){return(_emscripten_sync_run_in_main_thread_4=Module["_emscripten_sync_run_in_main_thread_4"]=Module["asm"]["jb"]).apply(null,arguments)};var _emscripten_sync_run_in_main_thread_5=Module["_emscripten_sync_run_in_main_thread_5"]=function(){return(_emscripten_sync_run_in_main_thread_5=Module["_emscripten_sync_run_in_main_thread_5"]=Module["asm"]["kb"]).apply(null,arguments)};var _emscripten_sync_run_in_main_thread_6=Module["_emscripten_sync_run_in_main_thread_6"]=function(){return(_emscripten_sync_run_in_main_thread_6=Module["_emscripten_sync_run_in_main_thread_6"]=Module["asm"]["lb"]).apply(null,arguments)};var _emscripten_sync_run_in_main_thread_7=Module["_emscripten_sync_run_in_main_thread_7"]=function(){return(_emscripten_sync_run_in_main_thread_7=Module["_emscripten_sync_run_in_main_thread_7"]=Module["asm"]["mb"]).apply(null,arguments)};var _emscripten_run_in_main_runtime_thread_js=Module["_emscripten_run_in_main_runtime_thread_js"]=function(){return(_emscripten_run_in_main_runtime_thread_js=Module["_emscripten_run_in_main_runtime_thread_js"]=Module["asm"]["nb"]).apply(null,arguments)};var _emscripten_async_queue_on_thread_=Module["_emscripten_async_queue_on_thread_"]=function(){return(_emscripten_async_queue_on_thread_=Module["_emscripten_async_queue_on_thread_"]=Module["asm"]["ob"]).apply(null,arguments)};var _emscripten_tls_init=Module["_emscripten_tls_init"]=function(){return(_emscripten_tls_init=Module["_emscripten_tls_init"]=Module["asm"]["pb"]).apply(null,arguments)};var stackSave=Module["stackSave"]=function(){return(stackSave=Module["stackSave"]=Module["asm"]["qb"]).apply(null,arguments)};var stackAlloc=Module["stackAlloc"]=function(){return(stackAlloc=Module["stackAlloc"]=Module["asm"]["rb"]).apply(null,arguments)};var stackRestore=Module["stackRestore"]=function(){return(stackRestore=Module["stackRestore"]=Module["asm"]["sb"]).apply(null,arguments)};var dynCall_vi=Module["dynCall_vi"]=function(){return(dynCall_vi=Module["dynCall_vi"]=Module["asm"]["tb"]).apply(null,arguments)};var dynCall_v=Module["dynCall_v"]=function(){return(dynCall_v=Module["dynCall_v"]=Module["asm"]["ub"]).apply(null,arguments)};var dynCall_ii=Module["dynCall_ii"]=function(){return(dynCall_ii=Module["dynCall_ii"]=Module["asm"]["vb"]).apply(null,arguments)};Module["asm"]=asm;Module["cwrap"]=cwrap;Module["PThread"]=PThread;Module["PThread"]=PThread;Module["_pthread_self"]=_pthread_self;Module["wasmMemory"]=wasmMemory;Module["ExitStatus"]=ExitStatus;var calledRun;Module["then"]=function(func){if(calledRun){func(Module)}else{var old=Module["onRuntimeInitialized"];Module["onRuntimeInitialized"]=function(){if(old)old();func(Module)}}return Module};function ExitStatus(status){this.name="ExitStatus";this.message="Program terminated with exit("+status+")";this.status=status}dependenciesFulfilled=function runCaller(){if(!calledRun)run();if(!calledRun)dependenciesFulfilled=runCaller};function run(args){args=args||arguments_;if(runDependencies>0){return}preRun();if(runDependencies>0)return;function doRun(){if(calledRun)return;calledRun=true;Module["calledRun"]=true;if(ABORT)return;initRuntime();preMain();if(Module["onRuntimeInitialized"])Module["onRuntimeInitialized"]();postRun()}if(Module["setStatus"]){Module["setStatus"]("Running...");setTimeout(function(){setTimeout(function(){Module["setStatus"]("")},1);doRun()},1)}else{doRun()}}Module["run"]=run;if(Module["preInit"]){if(typeof Module["preInit"]=="function")Module["preInit"]=[Module["preInit"]];while(Module["preInit"].length>0){Module["preInit"].pop()()}}if(!ENVIRONMENT_IS_PTHREAD)noExitRuntime=true;if(!ENVIRONMENT_IS_PTHREAD)run();return WasmBackendModuleThreadedSimd2}}();if(typeof exports2==="object"&&typeof module2==="object")module2.exports=WasmBackendModuleThreadedSimd;else if(typeof define==="function"&&define["amd"])define([],function(){return WasmBackendModuleThreadedSimd});else if(typeof exports2==="object")exports2["WasmBackendModuleThreadedSimd"]=WasmBackendModuleThreadedSimd});var require_tfjs_backend_wasm=__commonJS((exports2,module2)=>{var WasmBackendModule=function(){var _scriptDir=typeof document!=="undefined"&&document.currentScript?document.currentScript.src:void 0;if(typeof __filename!=="undefined")_scriptDir=_scriptDir||__filename;return function(WasmBackendModule2){WasmBackendModule2=WasmBackendModule2||{};var Module=typeof WasmBackendModule2!=="undefined"?WasmBackendModule2:{};var moduleOverrides={};var key;for(key in Module){if(Module.hasOwnProperty(key)){moduleOverrides[key]=Module[key]}}var arguments_=[];var thisProgram="./this.program";var quit_=function(status,toThrow){throw toThrow};var ENVIRONMENT_IS_WEB=false;var ENVIRONMENT_IS_WORKER=false;var ENVIRONMENT_IS_NODE=false;var ENVIRONMENT_IS_SHELL=false;ENVIRONMENT_IS_WEB=typeof window==="object";ENVIRONMENT_IS_WORKER=typeof importScripts==="function";ENVIRONMENT_IS_NODE=typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string";ENVIRONMENT_IS_SHELL=!ENVIRONMENT_IS_WEB&&!ENVIRONMENT_IS_NODE&&!ENVIRONMENT_IS_WORKER;var scriptDirectory="";function locateFile(path){if(Module["locateFile"]){return Module["locateFile"](path,scriptDirectory)}return scriptDirectory+path}var read_,readAsync,readBinary,setWindowTitle;var nodeFS;var nodePath;if(ENVIRONMENT_IS_NODE){if(ENVIRONMENT_IS_WORKER){scriptDirectory=require("path").dirname(scriptDirectory)+"/"}else{scriptDirectory=__dirname+"/"}read_=function shell_read(filename,binary){if(!nodeFS)nodeFS=require("fs");if(!nodePath)nodePath=require("path");filename=nodePath["normalize"](filename);return nodeFS["readFileSync"](filename,binary?null:"utf8")};readBinary=function readBinary2(filename){var ret=read_(filename,true);if(!ret.buffer){ret=new Uint8Array(ret)}assert(ret.buffer);return ret};if(process["argv"].length>1){thisProgram=process["argv"][1].replace(/\\/g,"/")}arguments_=process["argv"].slice(2);process["on"]("uncaughtException",function(ex){if(!(ex instanceof ExitStatus)){throw ex}});process["on"]("unhandledRejection",abort);quit_=function(status){process["exit"](status)};Module["inspect"]=function(){return"[Emscripten Module object]"}}else if(ENVIRONMENT_IS_SHELL){if(typeof read!="undefined"){read_=function shell_read(f){return read(f)}}readBinary=function readBinary2(f){var data2;if(typeof readbuffer==="function"){return new Uint8Array(readbuffer(f))}data2=read(f,"binary");assert(typeof data2==="object");return data2};if(typeof scriptArgs!="undefined"){arguments_=scriptArgs}else if(typeof arguments!="undefined"){arguments_=arguments}if(typeof quit==="function"){quit_=function(status){quit(status)}}if(typeof print!=="undefined"){if(typeof console==="undefined")console={};console.log=print;console.warn=console.error=typeof printErr!=="undefined"?printErr:print}}else if(ENVIRONMENT_IS_WEB||ENVIRONMENT_IS_WORKER){if(ENVIRONMENT_IS_WORKER){scriptDirectory=self.location.href}else if(document.currentScript){scriptDirectory=document.currentScript.src}if(_scriptDir){scriptDirectory=_scriptDir}if(scriptDirectory.indexOf("blob:")!==0){scriptDirectory=scriptDirectory.substr(0,scriptDirectory.lastIndexOf("/")+1)}else{scriptDirectory=""}{read_=function shell_read(url){var xhr=new XMLHttpRequest;xhr.open("GET",url,false);xhr.send(null);return xhr.responseText};if(ENVIRONMENT_IS_WORKER){readBinary=function readBinary2(url){var xhr=new XMLHttpRequest;xhr.open("GET",url,false);xhr.responseType="arraybuffer";xhr.send(null);return new Uint8Array(xhr.response)}}readAsync=function readAsync2(url,onload,onerror){var xhr=new XMLHttpRequest;xhr.open("GET",url,true);xhr.responseType="arraybuffer";xhr.onload=function xhr_onload(){if(xhr.status==200||xhr.status==0&&xhr.response){onload(xhr.response);return}onerror()};xhr.onerror=onerror;xhr.send(null)}}setWindowTitle=function(title){document.title=title}}else{}var out=Module["print"]||console.log.bind(console);var err=Module["printErr"]||console.warn.bind(console);for(key in moduleOverrides){if(moduleOverrides.hasOwnProperty(key)){Module[key]=moduleOverrides[key]}}moduleOverrides=null;if(Module["arguments"])arguments_=Module["arguments"];if(Module["thisProgram"])thisProgram=Module["thisProgram"];if(Module["quit"])quit_=Module["quit"];var wasmBinary;if(Module["wasmBinary"])wasmBinary=Module["wasmBinary"];var noExitRuntime;if(Module["noExitRuntime"])noExitRuntime=Module["noExitRuntime"];if(typeof WebAssembly!=="object"){err("no native wasm support detected")}var wasmMemory;var wasmTable=new WebAssembly.Table({initial:147,maximum:147+0,element:"anyfunc"});var ABORT=false;var EXITSTATUS=0;function assert(condition,text){if(!condition){abort("Assertion failed: "+text)}}function getCFunc(ident){var func=Module["_"+ident];assert(func,"Cannot call unknown function "+ident+", make sure it is exported");return func}function ccall(ident,returnType,argTypes,args,opts){var toC={string:function(str){var ret2=0;if(str!==null&&str!==void 0&&str!==0){var len=(str.length<<2)+1;ret2=stackAlloc(len);stringToUTF8(str,ret2,len)}return ret2},array:function(arr){var ret2=stackAlloc(arr.length);writeArrayToMemory(arr,ret2);return ret2}};function convertReturnValue(ret2){if(returnType==="string")return UTF8ToString(ret2);if(returnType==="boolean")return Boolean(ret2);return ret2}var func=getCFunc(ident);var cArgs=[];var stack=0;if(args){for(var i=0;i<args.length;i++){var converter=toC[argTypes[i]];if(converter){if(stack===0)stack=stackSave();cArgs[i]=converter(args[i])}else{cArgs[i]=args[i]}}}var ret=func.apply(null,cArgs);ret=convertReturnValue(ret);if(stack!==0)stackRestore(stack);return ret}function cwrap(ident,returnType,argTypes,opts){argTypes=argTypes||[];var numericArgs=argTypes.every(function(type){return type==="number"});var numericRet=returnType!=="string";if(numericRet&&numericArgs&&!opts){return getCFunc(ident)}return function(){return ccall(ident,returnType,argTypes,arguments,opts)}}var UTF8Decoder=typeof TextDecoder!=="undefined"?new TextDecoder("utf8"):void 0;function UTF8ArrayToString(heap,idx,maxBytesToRead){var endIdx=idx+maxBytesToRead;var endPtr=idx;while(heap[endPtr]&&!(endPtr>=endIdx))++endPtr;if(endPtr-idx>16&&heap.subarray&&UTF8Decoder){return UTF8Decoder.decode(heap.subarray(idx,endPtr))}else{var str="";while(idx<endPtr){var u0=heap[idx++];if(!(u0&128)){str+=String.fromCharCode(u0);continue}var u1=heap[idx++]&63;if((u0&224)==192){str+=String.fromCharCode((u0&31)<<6|u1);continue}var u2=heap[idx++]&63;if((u0&240)==224){u0=(u0&15)<<12|u1<<6|u2}else{u0=(u0&7)<<18|u1<<12|u2<<6|heap[idx++]&63}if(u0<65536){str+=String.fromCharCode(u0)}else{var ch=u0-65536;str+=String.fromCharCode(55296|ch>>10,56320|ch&1023)}}}return str}function UTF8ToString(ptr,maxBytesToRead){return ptr?UTF8ArrayToString(HEAPU8,ptr,maxBytesToRead):""}function stringToUTF8Array(str,heap,outIdx,maxBytesToWrite){if(!(maxBytesToWrite>0))return 0;var startIdx=outIdx;var endIdx=outIdx+maxBytesToWrite-1;for(var i=0;i<str.length;++i){var u=str.charCodeAt(i);if(u>=55296&&u<=57343){var u1=str.charCodeAt(++i);u=65536+((u&1023)<<10)|u1&1023}if(u<=127){if(outIdx>=endIdx)break;heap[outIdx++]=u}else if(u<=2047){if(outIdx+1>=endIdx)break;heap[outIdx++]=192|u>>6;heap[outIdx++]=128|u&63}else if(u<=65535){if(outIdx+2>=endIdx)break;heap[outIdx++]=224|u>>12;heap[outIdx++]=128|u>>6&63;heap[outIdx++]=128|u&63}else{if(outIdx+3>=endIdx)break;heap[outIdx++]=240|u>>18;heap[outIdx++]=128|u>>12&63;heap[outIdx++]=128|u>>6&63;heap[outIdx++]=128|u&63}}heap[outIdx]=0;return outIdx-startIdx}function stringToUTF8(str,outPtr,maxBytesToWrite){return stringToUTF8Array(str,HEAPU8,outPtr,maxBytesToWrite)}function writeArrayToMemory(array,buffer3){HEAP8.set(array,buffer3)}var buffer2,HEAP8,HEAPU8,HEAP16,HEAPU16,HEAP32,HEAPU32,HEAPF32,HEAPF64;function updateGlobalBufferAndViews(buf){buffer2=buf;Module["HEAP8"]=HEAP8=new Int8Array(buf);Module["HEAP16"]=HEAP16=new Int16Array(buf);Module["HEAP32"]=HEAP32=new Int32Array(buf);Module["HEAPU8"]=HEAPU8=new Uint8Array(buf);Module["HEAPU16"]=HEAPU16=new Uint16Array(buf);Module["HEAPU32"]=HEAPU32=new Uint32Array(buf);Module["HEAPF32"]=HEAPF32=new Float32Array(buf);Module["HEAPF64"]=HEAPF64=new Float64Array(buf)}var INITIAL_INITIAL_MEMORY=Module["INITIAL_MEMORY"]||16777216;function callRuntimeCallbacks(callbacks){while(callbacks.length>0){var callback=callbacks.shift();if(typeof callback=="function"){callback(Module);continue}var func=callback.func;if(typeof func==="number"){if(callback.arg===void 0){Module["dynCall_v"](func)}else{Module["dynCall_vi"](func,callback.arg)}}else{func(callback.arg===void 0?null:callback.arg)}}}var __ATPRERUN__=[];var __ATINIT__=[];var __ATMAIN__=[];var __ATPOSTRUN__=[];var runtimeInitialized=false;var runtimeExited=false;function preRun(){if(Module["preRun"]){if(typeof Module["preRun"]=="function")Module["preRun"]=[Module["preRun"]];while(Module["preRun"].length){addOnPreRun(Module["preRun"].shift())}}callRuntimeCallbacks(__ATPRERUN__)}function initRuntime(){runtimeInitialized=true;callRuntimeCallbacks(__ATINIT__)}function preMain(){callRuntimeCallbacks(__ATMAIN__)}function exitRuntime(){runtimeExited=true}function postRun(){if(Module["postRun"]){if(typeof Module["postRun"]=="function")Module["postRun"]=[Module["postRun"]];while(Module["postRun"].length){addOnPostRun(Module["postRun"].shift())}}callRuntimeCallbacks(__ATPOSTRUN__)}function addOnPreRun(cb){__ATPRERUN__.unshift(cb)}function addOnPostRun(cb){__ATPOSTRUN__.unshift(cb)}var Math_ceil=Math.ceil;var Math_floor=Math.floor;var runDependencies=0;var runDependencyWatcher=null;var dependenciesFulfilled=null;function addRunDependency(id){runDependencies++;if(Module["monitorRunDependencies"]){Module["monitorRunDependencies"](runDependencies)}}function removeRunDependency(id){runDependencies--;if(Module["monitorRunDependencies"]){Module["monitorRunDependencies"](runDependencies)}if(runDependencies==0){if(runDependencyWatcher!==null){clearInterval(runDependencyWatcher);runDependencyWatcher=null}if(dependenciesFulfilled){var callback=dependenciesFulfilled;dependenciesFulfilled=null;callback()}}}Module["preloadedImages"]={};Module["preloadedAudios"]={};function abort(what){if(Module["onAbort"]){Module["onAbort"](what)}what+="";out(what);err(what);ABORT=true;EXITSTATUS=1;what="abort("+what+"). Build with -s ASSERTIONS=1 for more info.";throw new WebAssembly.RuntimeError(what)}function hasPrefix(str,prefix){return String.prototype.startsWith?str.startsWith(prefix):str.indexOf(prefix)===0}var dataURIPrefix="data:application/octet-stream;base64,";function isDataURI(filename){return hasPrefix(filename,dataURIPrefix)}var fileURIPrefix="file://";function isFileURI(filename){return hasPrefix(filename,fileURIPrefix)}var wasmBinaryFile="tfjs-backend-wasm.wasm";if(!isDataURI(wasmBinaryFile)){wasmBinaryFile=locateFile(wasmBinaryFile)}function getBinary(){try{if(wasmBinary){return new Uint8Array(wasmBinary)}if(readBinary){return readBinary(wasmBinaryFile)}else{throw"both async and sync fetching of the wasm failed"}}catch(err2){abort(err2)}}function getBinaryPromise(){if(!wasmBinary&&(ENVIRONMENT_IS_WEB||ENVIRONMENT_IS_WORKER)&&typeof fetch==="function"&&!isFileURI(wasmBinaryFile)){return fetch(wasmBinaryFile,{credentials:"same-origin"}).then(function(response){if(!response["ok"]){throw"failed to load wasm binary file at '"+wasmBinaryFile+"'"}return response["arrayBuffer"]()}).catch(function(){return getBinary()})}return new Promise(function(resolve,reject){resolve(getBinary())})}function createWasm(){var info={env:asmLibraryArg,wasi_snapshot_preview1:asmLibraryArg};function receiveInstance(instance,module3){var exports4=instance.exports;Module["asm"]=exports4;wasmMemory=exports4["memory"];updateGlobalBufferAndViews(wasmMemory.buffer);removeRunDependency("wasm-instantiate")}addRunDependency("wasm-instantiate");function receiveInstantiatedSource(output){receiveInstance(output["instance"])}function instantiateArrayBuffer(receiver){return getBinaryPromise().then(function(binary){return WebAssembly.instantiate(binary,info)}).then(receiver,function(reason){err("failed to asynchronously prepare wasm: "+reason);abort(reason)})}function instantiateAsync(){if(!wasmBinary&&typeof WebAssembly.instantiateStreaming==="function"&&!isDataURI(wasmBinaryFile)&&!isFileURI(wasmBinaryFile)&&typeof fetch==="function"){fetch(wasmBinaryFile,{credentials:"same-origin"}).then(function(response){var result=WebAssembly.instantiateStreaming(response,info);return result.then(receiveInstantiatedSource,function(reason){err("wasm streaming compile failed: "+reason);err("falling back to ArrayBuffer instantiation");instantiateArrayBuffer(receiveInstantiatedSource)})})}else{return instantiateArrayBuffer(receiveInstantiatedSource)}}if(Module["instantiateWasm"]){try{var exports3=Module["instantiateWasm"](info,receiveInstance);return exports3}catch(e){err("Module.instantiateWasm callback failed with error: "+e);return false}}instantiateAsync();return{}}__ATINIT__.push();function _emscripten_notify_memory_growth(memoryIndex){updateGlobalBufferAndViews(wasmMemory.buffer)}var PATH={splitPath:function(filename){var splitPathRe=/^(\/?|)([\s\S]*?)((?:\.{1,2}|[^\/]+?|)(\.[^.\/]*|))(?:[\/]*)$/;return splitPathRe.exec(filename).slice(1)},normalizeArray:function(parts,allowAboveRoot){var up=0;for(var i=parts.length-1;i>=0;i--){var last=parts[i];if(last==="."){parts.splice(i,1)}else if(last===".."){parts.splice(i,1);up++}else if(up){parts.splice(i,1);up--}}if(allowAboveRoot){for(;up;up--){parts.unshift("..")}}return parts},normalize:function(path){var isAbsolute=path.charAt(0)==="/",trailingSlash=path.substr(-1)==="/";path=PATH.normalizeArray(path.split("/").filter(function(p){return!!p}),!isAbsolute).join("/");if(!path&&!isAbsolute){path="."}if(path&&trailingSlash){path+="/"}return(isAbsolute?"/":"")+path},dirname:function(path){var result=PATH.splitPath(path),root=result[0],dir=result[1];if(!root&&!dir){return"."}if(dir){dir=dir.substr(0,dir.length-1)}return root+dir},basename:function(path){if(path==="/")return"/";var lastSlash=path.lastIndexOf("/");if(lastSlash===-1)return path;return path.substr(lastSlash+1)},extname:function(path){return PATH.splitPath(path)[3]},join:function(){var paths=Array.prototype.slice.call(arguments,0);return PATH.normalize(paths.join("/"))},join2:function(l,r){return PATH.normalize(l+"/"+r)}};var SYSCALLS={mappings:{},buffers:[null,[],[]],printChar:function(stream,curr){var buffer3=SYSCALLS.buffers[stream];if(curr===0||curr===10){(stream===1?out:err)(UTF8ArrayToString(buffer3,0));buffer3.length=0}else{buffer3.push(curr)}},varargs:void 0,get:function(){SYSCALLS.varargs+=4;var ret=HEAP32[SYSCALLS.varargs-4>>2];return ret},getStr:function(ptr){var ret=UTF8ToString(ptr);return ret},get64:function(low,high){return low}};function _fd_close(fd){return 0}function _fd_seek(fd,offset_low,offset_high,whence,newOffset){}function _fd_write(fd,iov,iovcnt,pnum){var num=0;for(var i=0;i<iovcnt;i++){var ptr=HEAP32[iov+i*8>>2];var len=HEAP32[iov+(i*8+4)>>2];for(var j=0;j<len;j++){SYSCALLS.printChar(fd,HEAPU8[ptr+j])}num+=len}HEAP32[pnum>>2]=num;return 0}function _exit(status){exit(status)}function _proc_exit(code){_exit(code)}function _roundf(d){d=+d;return d>=0?+Math_floor(d+.5):+Math_ceil(d-.5)}var asmLibraryArg={emscripten_notify_memory_growth:_emscripten_notify_memory_growth,fd_close:_fd_close,fd_seek:_fd_seek,fd_write:_fd_write,proc_exit:_proc_exit,roundf:_roundf};var asm=createWasm();Module["asm"]=asm;var _init=Module["_init"]=function(){return(_init=Module["_init"]=Module["asm"]["init"]).apply(null,arguments)};var _register_tensor=Module["_register_tensor"]=function(){return(_register_tensor=Module["_register_tensor"]=Module["asm"]["register_tensor"]).apply(null,arguments)};var _dispose_data=Module["_dispose_data"]=function(){return(_dispose_data=Module["_dispose_data"]=Module["asm"]["dispose_data"]).apply(null,arguments)};var _dispose=Module["_dispose"]=function(){return(_dispose=Module["_dispose"]=Module["asm"]["dispose"]).apply(null,arguments)};var _Abs=Module["_Abs"]=function(){return(_Abs=Module["_Abs"]=Module["asm"]["Abs"]).apply(null,arguments)};var _Add=Module["_Add"]=function(){return(_Add=Module["_Add"]=Module["asm"]["Add"]).apply(null,arguments)};var _AddN=Module["_AddN"]=function(){return(_AddN=Module["_AddN"]=Module["asm"]["AddN"]).apply(null,arguments)};var _ArgMax=Module["_ArgMax"]=function(){return(_ArgMax=Module["_ArgMax"]=Module["asm"]["ArgMax"]).apply(null,arguments)};var _AvgPool=Module["_AvgPool"]=function(){return(_AvgPool=Module["_AvgPool"]=Module["asm"]["AvgPool"]).apply(null,arguments)};var _BatchMatMul=Module["_BatchMatMul"]=function(){return(_BatchMatMul=Module["_BatchMatMul"]=Module["asm"]["BatchMatMul"]).apply(null,arguments)};var _ClipByValue=Module["_ClipByValue"]=function(){return(_ClipByValue=Module["_ClipByValue"]=Module["asm"]["ClipByValue"]).apply(null,arguments)};var _Conv2D=Module["_Conv2D"]=function(){return(_Conv2D=Module["_Conv2D"]=Module["asm"]["Conv2D"]).apply(null,arguments)};var _Conv2DBackpropInput=Module["_Conv2DBackpropInput"]=function(){return(_Conv2DBackpropInput=Module["_Conv2DBackpropInput"]=Module["asm"]["Conv2DBackpropInput"]).apply(null,arguments)};var _Cos=Module["_Cos"]=function(){return(_Cos=Module["_Cos"]=Module["asm"]["Cos"]).apply(null,arguments)};var _CropAndResize=Module["_CropAndResize"]=function(){return(_CropAndResize=Module["_CropAndResize"]=Module["asm"]["CropAndResize"]).apply(null,arguments)};var _Cumsum=Module["_Cumsum"]=function(){return(_Cumsum=Module["_Cumsum"]=Module["asm"]["Cumsum"]).apply(null,arguments)};var _DepthToSpace=Module["_DepthToSpace"]=function(){return(_DepthToSpace=Module["_DepthToSpace"]=Module["asm"]["DepthToSpace"]).apply(null,arguments)};var _DepthwiseConv2dNative=Module["_DepthwiseConv2dNative"]=function(){return(_DepthwiseConv2dNative=Module["_DepthwiseConv2dNative"]=Module["asm"]["DepthwiseConv2dNative"]).apply(null,arguments)};var _Div=Module["_Div"]=function(){return(_Div=Module["_Div"]=Module["asm"]["Div"]).apply(null,arguments)};var _Equal=Module["_Equal"]=function(){return(_Equal=Module["_Equal"]=Module["asm"]["Equal"]).apply(null,arguments)};var _Exp=Module["_Exp"]=function(){return(_Exp=Module["_Exp"]=Module["asm"]["Exp"]).apply(null,arguments)};var _FlipLeftRight=Module["_FlipLeftRight"]=function(){return(_FlipLeftRight=Module["_FlipLeftRight"]=Module["asm"]["FlipLeftRight"]).apply(null,arguments)};var _FloorDiv=Module["_FloorDiv"]=function(){return(_FloorDiv=Module["_FloorDiv"]=Module["asm"]["FloorDiv"]).apply(null,arguments)};var _FusedBatchNorm=Module["_FusedBatchNorm"]=function(){return(_FusedBatchNorm=Module["_FusedBatchNorm"]=Module["asm"]["FusedBatchNorm"]).apply(null,arguments)};var _FusedConv2D=Module["_FusedConv2D"]=function(){return(_FusedConv2D=Module["_FusedConv2D"]=Module["asm"]["FusedConv2D"]).apply(null,arguments)};var _FusedDepthwiseConv2D=Module["_FusedDepthwiseConv2D"]=function(){return(_FusedDepthwiseConv2D=Module["_FusedDepthwiseConv2D"]=Module["asm"]["FusedDepthwiseConv2D"]).apply(null,arguments)};var _Gather=Module["_Gather"]=function(){return(_Gather=Module["_Gather"]=Module["asm"]["Gather"]).apply(null,arguments)};var _GatherNd=Module["_GatherNd"]=function(){return(_GatherNd=Module["_GatherNd"]=Module["asm"]["GatherNd"]).apply(null,arguments)};var _Greater=Module["_Greater"]=function(){return(_Greater=Module["_Greater"]=Module["asm"]["Greater"]).apply(null,arguments)};var _GreaterEqual=Module["_GreaterEqual"]=function(){return(_GreaterEqual=Module["_GreaterEqual"]=Module["asm"]["GreaterEqual"]).apply(null,arguments)};var _Less=Module["_Less"]=function(){return(_Less=Module["_Less"]=Module["asm"]["Less"]).apply(null,arguments)};var _LessEqual=Module["_LessEqual"]=function(){return(_LessEqual=Module["_LessEqual"]=Module["asm"]["LessEqual"]).apply(null,arguments)};var _Log=Module["_Log"]=function(){return(_Log=Module["_Log"]=Module["asm"]["Log"]).apply(null,arguments)};var _LogicalAnd=Module["_LogicalAnd"]=function(){return(_LogicalAnd=Module["_LogicalAnd"]=Module["asm"]["LogicalAnd"]).apply(null,arguments)};var _Max=Module["_Max"]=function(){return(_Max=Module["_Max"]=Module["asm"]["Max"]).apply(null,arguments)};var _MaxPool=Module["_MaxPool"]=function(){return(_MaxPool=Module["_MaxPool"]=Module["asm"]["MaxPool"]).apply(null,arguments)};var _Maximum=Module["_Maximum"]=function(){return(_Maximum=Module["_Maximum"]=Module["asm"]["Maximum"]).apply(null,arguments)};var _Min=Module["_Min"]=function(){return(_Min=Module["_Min"]=Module["asm"]["Min"]).apply(null,arguments)};var _Minimum=Module["_Minimum"]=function(){return(_Minimum=Module["_Minimum"]=Module["asm"]["Minimum"]).apply(null,arguments)};var _Multiply=Module["_Multiply"]=function(){return(_Multiply=Module["_Multiply"]=Module["asm"]["Multiply"]).apply(null,arguments)};var _Negate=Module["_Negate"]=function(){return(_Negate=Module["_Negate"]=Module["asm"]["Negate"]).apply(null,arguments)};var _NonMaxSuppressionV3=Module["_NonMaxSuppressionV3"]=function(){return(_NonMaxSuppressionV3=Module["_NonMaxSuppressionV3"]=Module["asm"]["NonMaxSuppressionV3"]).apply(null,arguments)};var _NonMaxSuppressionV4=Module["_NonMaxSuppressionV4"]=function(){return(_NonMaxSuppressionV4=Module["_NonMaxSuppressionV4"]=Module["asm"]["NonMaxSuppressionV4"]).apply(null,arguments)};var _NonMaxSuppressionV5=Module["_NonMaxSuppressionV5"]=function(){return(_NonMaxSuppressionV5=Module["_NonMaxSuppressionV5"]=Module["asm"]["NonMaxSuppressionV5"]).apply(null,arguments)};var _NotEqual=Module["_NotEqual"]=function(){return(_NotEqual=Module["_NotEqual"]=Module["asm"]["NotEqual"]).apply(null,arguments)};var _OneHot=Module["_OneHot"]=function(){return(_OneHot=Module["_OneHot"]=Module["asm"]["OneHot"]).apply(null,arguments)};var _PadV2=Module["_PadV2"]=function(){return(_PadV2=Module["_PadV2"]=Module["asm"]["PadV2"]).apply(null,arguments)};var _Pow=Module["_Pow"]=function(){return(_Pow=Module["_Pow"]=Module["asm"]["Pow"]).apply(null,arguments)};var _Prelu=Module["_Prelu"]=function(){return(_Prelu=Module["_Prelu"]=Module["asm"]["Prelu"]).apply(null,arguments)};var _Relu=Module["_Relu"]=function(){return(_Relu=Module["_Relu"]=Module["asm"]["Relu"]).apply(null,arguments)};var _Relu6=Module["_Relu6"]=function(){return(_Relu6=Module["_Relu6"]=Module["asm"]["Relu6"]).apply(null,arguments)};var _ResizeBilinear=Module["_ResizeBilinear"]=function(){return(_ResizeBilinear=Module["_ResizeBilinear"]=Module["asm"]["ResizeBilinear"]).apply(null,arguments)};var _Reverse=Module["_Reverse"]=function(){return(_Reverse=Module["_Reverse"]=Module["asm"]["Reverse"]).apply(null,arguments)};var _RotateWithOffset=Module["_RotateWithOffset"]=function(){return(_RotateWithOffset=Module["_RotateWithOffset"]=Module["asm"]["RotateWithOffset"]).apply(null,arguments)};var _Rsqrt=Module["_Rsqrt"]=function(){return(_Rsqrt=Module["_Rsqrt"]=Module["asm"]["Rsqrt"]).apply(null,arguments)};var _ScatterNd=Module["_ScatterNd"]=function(){return(_ScatterNd=Module["_ScatterNd"]=Module["asm"]["ScatterNd"]).apply(null,arguments)};var _SelectV2=Module["_SelectV2"]=function(){return(_SelectV2=Module["_SelectV2"]=Module["asm"]["SelectV2"]).apply(null,arguments)};var _Sigmoid=Module["_Sigmoid"]=function(){return(_Sigmoid=Module["_Sigmoid"]=Module["asm"]["Sigmoid"]).apply(null,arguments)};var _Sin=Module["_Sin"]=function(){return(_Sin=Module["_Sin"]=Module["asm"]["Sin"]).apply(null,arguments)};var _Softmax=Module["_Softmax"]=function(){return(_Softmax=Module["_Softmax"]=Module["asm"]["Softmax"]).apply(null,arguments)};var _Sqrt=Module["_Sqrt"]=function(){return(_Sqrt=Module["_Sqrt"]=Module["asm"]["Sqrt"]).apply(null,arguments)};var _Square=Module["_Square"]=function(){return(_Square=Module["_Square"]=Module["asm"]["Square"]).apply(null,arguments)};var _SquaredDifference=Module["_SquaredDifference"]=function(){return(_SquaredDifference=Module["_SquaredDifference"]=Module["asm"]["SquaredDifference"]).apply(null,arguments)};var _StridedSlice=Module["_StridedSlice"]=function(){return(_StridedSlice=Module["_StridedSlice"]=Module["asm"]["StridedSlice"]).apply(null,arguments)};var _Sub=Module["_Sub"]=function(){return(_Sub=Module["_Sub"]=Module["asm"]["Sub"]).apply(null,arguments)};var _Sum=Module["_Sum"]=function(){return(_Sum=Module["_Sum"]=Module["asm"]["Sum"]).apply(null,arguments)};var _Tanh=Module["_Tanh"]=function(){return(_Tanh=Module["_Tanh"]=Module["asm"]["Tanh"]).apply(null,arguments)};var _Tile=Module["_Tile"]=function(){return(_Tile=Module["_Tile"]=Module["asm"]["Tile"]).apply(null,arguments)};var _Transpose=Module["_Transpose"]=function(){return(_Transpose=Module["_Transpose"]=Module["asm"]["Transpose"]).apply(null,arguments)};var __FusedMatMul=Module["__FusedMatMul"]=function(){return(__FusedMatMul=Module["__FusedMatMul"]=Module["asm"]["_FusedMatMul"]).apply(null,arguments)};var _malloc=Module["_malloc"]=function(){return(_malloc=Module["_malloc"]=Module["asm"]["malloc"]).apply(null,arguments)};var _free=Module["_free"]=function(){return(_free=Module["_free"]=Module["asm"]["free"]).apply(null,arguments)};var __start=Module["__start"]=function(){return(__start=Module["__start"]=Module["asm"]["_start"]).apply(null,arguments)};var stackSave=Module["stackSave"]=function(){return(stackSave=Module["stackSave"]=Module["asm"]["stackSave"]).apply(null,arguments)};var stackAlloc=Module["stackAlloc"]=function(){return(stackAlloc=Module["stackAlloc"]=Module["asm"]["stackAlloc"]).apply(null,arguments)};var stackRestore=Module["stackRestore"]=function(){return(stackRestore=Module["stackRestore"]=Module["asm"]["stackRestore"]).apply(null,arguments)};Module["asm"]=asm;Module["cwrap"]=cwrap;var calledRun;Module["then"]=function(func){if(calledRun){func(Module)}else{var old=Module["onRuntimeInitialized"];Module["onRuntimeInitialized"]=function(){if(old)old();func(Module)}}return Module};function ExitStatus(status){this.name="ExitStatus";this.message="Program terminated with exit("+status+")";this.status=status}var calledMain=false;dependenciesFulfilled=function runCaller(){if(!calledRun)run();if(!calledRun)dependenciesFulfilled=runCaller};function callMain(args){var entryFunction=Module["__start"];try{entryFunction();var ret=0;exit(ret,true)}catch(e){if(e instanceof ExitStatus){return}else if(e=="unwind"){noExitRuntime=true;return}else{var toLog=e;if(e&&typeof e==="object"&&e.stack){toLog=[e,e.stack]}err("exception thrown: "+toLog);quit_(1,e)}}finally{calledMain=true}}function run(args){args=args||arguments_;if(runDependencies>0){return}preRun();if(runDependencies>0)return;function doRun(){if(calledRun)return;calledRun=true;Module["calledRun"]=true;if(ABORT)return;initRuntime();preMain();if(Module["onRuntimeInitialized"])Module["onRuntimeInitialized"]();if(shouldRunNow)callMain(args);postRun()}if(Module["setStatus"]){Module["setStatus"]("Running...");setTimeout(function(){setTimeout(function(){Module["setStatus"]("")},1);doRun()},1)}else{doRun()}}Module["run"]=run;function exit(status,implicit){if(implicit&&noExitRuntime&&status===0){return}if(noExitRuntime){}else{ABORT=true;EXITSTATUS=status;exitRuntime();if(Module["onExit"])Module["onExit"](status)}quit_(status,new ExitStatus(status))}if(Module["preInit"]){if(typeof Module["preInit"]=="function")Module["preInit"]=[Module["preInit"]];while(Module["preInit"].length>0){Module["preInit"].pop()()}}var shouldRunNow=true;if(Module["noInitialRun"])shouldRunNow=false;noExitRuntime=true;run();return WasmBackendModule2}}();if(typeof exports2==="object"&&typeof module2==="object")module2.exports=WasmBackendModule;else if(typeof define==="function"&&define["amd"])define([],function(){return WasmBackendModule});else if(typeof exports2==="object")exports2["WasmBackendModule"]=WasmBackendModule});var require_blazeface=__commonJS(exports2=>{const NUM_LANDMARKS=6;function generateAnchors(inputSize){const spec={strides:[inputSize/16,inputSize/8],anchors:[2,6]};const anchors=[];for(let i=0;i<spec.strides.length;i++){const stride=spec.strides[i];const gridRows=Math.floor((inputSize+stride-1)/stride);const gridCols=Math.floor((inputSize+stride-1)/stride);const anchorsNum=spec.anchors[i];for(let gridY=0;gridY<gridRows;gridY++){const anchorY=stride*(gridY+.5);for(let gridX=0;gridX<gridCols;gridX++){const anchorX=stride*(gridX+.5);for(let n=0;n<anchorsNum;n++){anchors.push([anchorX,anchorY])}}}}return anchors}const disposeBox=box=>{box.startEndTensor.dispose();box.startPoint.dispose();box.endPoint.dispose()};const createBox=startEndTensor=>({startEndTensor,startPoint:tf.slice(startEndTensor,[0,0],[-1,2]),endPoint:tf.slice(startEndTensor,[0,2],[-1,2])});const scaleBox=(box,factors)=>{const starts=tf.mul(box.startPoint,factors);const ends=tf.mul(box.endPoint,factors);const newCoordinates=tf.concat2d([starts,ends],1);return createBox(newCoordinates)};function decodeBounds(boxOutputs,anchors,inputSize){const boxStarts=tf.slice(boxOutputs,[0,1],[-1,2]);const centers=tf.add(boxStarts,anchors);const boxSizes=tf.slice(boxOutputs,[0,3],[-1,2]);const boxSizesNormalized=tf.div(boxSizes,inputSize);const centersNormalized=tf.div(centers,inputSize);const halfBoxSize=tf.div(boxSizesNormalized,2);const starts=tf.sub(centersNormalized,halfBoxSize);const ends=tf.add(centersNormalized,halfBoxSize);const startNormalized=tf.mul(starts,inputSize);const endNormalized=tf.mul(ends,inputSize);const concatAxis=1;return tf.concat2d([startNormalized,endNormalized],concatAxis)}function scaleBoxFromPrediction(face2,scaleFactor){return tf.tidy(()=>{const box=face2["box"]?face2["box"]:face2;return scaleBox(box,scaleFactor).startEndTensor.squeeze()})}class BlazeFaceModel{constructor(model,config2){this.blazeFaceModel=model;this.width=config2.detector.inputSize;this.height=config2.detector.inputSize;this.anchorsData=generateAnchors(config2.detector.inputSize);this.anchors=tf.tensor2d(this.anchorsData);this.inputSize=tf.tensor1d([this.width,this.height]);this.config=config2;this.scaleFaces=.8}async getBoundingBoxes(inputImage){if(!inputImage||inputImage.isDisposedInternal||inputImage.shape.length!==4||inputImage.shape[1]<1||inputImage.shape[2]<1)return null;const[detectedOutputs,boxes,scores]=tf.tidy(()=>{const resizedImage=inputImage.resizeBilinear([this.width,this.height]);const normalizedImage=tf.sub(resizedImage.div(127.5),1);const batchedPrediction=this.blazeFaceModel.predict(normalizedImage);let prediction;if(Array.isArray(batchedPrediction)){const sorted=batchedPrediction.sort((a,b)=>a.size-b.size);const concat384=tf.concat([sorted[0],sorted[2]],2);const concat512=tf.concat([sorted[1],sorted[3]],2);const concat2=tf.concat([concat512,concat384],1);prediction=concat2.squeeze(0)}else{prediction=batchedPrediction.squeeze()}const decodedBounds=decodeBounds(prediction,this.anchors,this.inputSize);const logits=tf.slice(prediction,[0,0],[-1,1]);const scoresOut=tf.sigmoid(logits).squeeze();return[prediction,decodedBounds,scoresOut]});const boxIndicesTensor=await tf.image.nonMaxSuppressionAsync(boxes,scores,this.config.detector.maxFaces,this.config.detector.iouThreshold,this.config.detector.scoreThreshold);const boxIndices=boxIndicesTensor.arraySync();boxIndicesTensor.dispose();const boundingBoxesMap=boxIndices.map(boxIndex=>tf.slice(boxes,[boxIndex,0],[1,-1]));const boundingBoxes=boundingBoxesMap.map(boundingBox=>{const vals=boundingBox.arraySync();boundingBox.dispose();return vals});const scoresVal=scores.dataSync();const annotatedBoxes=[];for(const i in boundingBoxes){const boxIndex=boxIndices[i];const confidence=scoresVal[boxIndex];if(confidence>this.config.detector.minConfidence){const box=createBox(boundingBoxes[i]);const anchor=this.anchorsData[boxIndex];const landmarks=tf.tidy(()=>tf.slice(detectedOutputs,[boxIndex,NUM_LANDMARKS-1],[1,-1]).squeeze().reshape([NUM_LANDMARKS,-1]));annotatedBoxes.push({box,landmarks,anchor,confidence})}}detectedOutputs.dispose();boxes.dispose();scores.dispose();detectedOutputs.dispose();return{boxes:annotatedBoxes,scaleFactor:[inputImage.shape[2]/this.width,inputImage.shape[1]/this.height]}}async estimateFaces(input){const{boxes,scaleFactor}=await this.getBoundingBoxes(input);const faces=[];for(const face2 of boxes){const landmarkData=face2.landmarks.arraySync();const scaledBox=scaleBoxFromPrediction(face2,scaleFactor);const boxData=scaleBox.arraySync();const probabilityData=face2.probability.arraySync();const anchor=face2.anchor;const[scaleFactorX,scaleFactorY]=scaleFactor;const scaledLandmarks=landmarkData.map(landmark=>[(landmark[0]+anchor[0])*scaleFactorX,(landmark[1]+anchor[1])*scaleFactorY]);const normalizedFace={topLeft:boxData.slice(0,2),bottomRight:boxData.slice(2),landmarks:scaledLandmarks,probability:probabilityData};disposeBox(face2.box);face2.landmarks.dispose();face2.probability.dispose();scaledBox.dispose();faces.push(normalizedFace)}return faces}}async function load2(config2){const blazeface=await loadGraphModel(config2.detector.modelPath,{fromTFHub:config2.detector.modelPath.includes("tfhub.dev")});const model=new BlazeFaceModel(blazeface,config2);console.log(`Human: load model: ${config2.detector.modelPath.match(/\/(.*)\./)[1]}`);return model}exports2.load=load2;exports2.BlazeFaceModel=BlazeFaceModel;exports2.disposeBox=disposeBox});var require_box=__commonJS(exports2=>{function scaleBoxCoordinates2(box,factor){const startPoint=[box.startPoint[0]*factor[0],box.startPoint[1]*factor[1]];const endPoint=[box.endPoint[0]*factor[0],box.endPoint[1]*factor[1]];return{startPoint,endPoint}}exports2.scaleBoxCoordinates=scaleBoxCoordinates2;function getBoxSize2(box){return[Math.abs(box.endPoint[0]-box.startPoint[0]),Math.abs(box.endPoint[1]-box.startPoint[1])]}exports2.getBoxSize=getBoxSize2;function getBoxCenter2(box){return[box.startPoint[0]+(box.endPoint[0]-box.startPoint[0])/2,box.startPoint[1]+(box.endPoint[1]-box.startPoint[1])/2]}exports2.getBoxCenter=getBoxCenter2;function cutBoxFromImageAndResize2(box,image2,cropSize){const h=image2.shape[1];const w=image2.shape[2];const boxes=[[box.startPoint[1]/h,box.startPoint[0]/w,box.endPoint[1]/h,box.endPoint[0]/w]];return tf.image.cropAndResize(image2,boxes,[0],cropSize)}exports2.cutBoxFromImageAndResize=cutBoxFromImageAndResize2;function enlargeBox2(box,factor=1.5){const center=getBoxCenter2(box);const size=getBoxSize2(box);const newHalfSize=[factor*size[0]/2,factor*size[1]/2];const startPoint=[center[0]-newHalfSize[0],center[1]-newHalfSize[1]];const endPoint=[center[0]+newHalfSize[0],center[1]+newHalfSize[1]];return{startPoint,endPoint,landmarks:box.landmarks}}exports2.enlargeBox=enlargeBox2;function squarifyBox2(box){const centers=getBoxCenter2(box);const size=getBoxSize2(box);const maxEdge=Math.max(...size);const halfSize=maxEdge/2;const startPoint=[centers[0]-halfSize,centers[1]-halfSize];const endPoint=[centers[0]+halfSize,centers[1]+halfSize];return{startPoint,endPoint,landmarks:box.landmarks}}exports2.squarifyBox=squarifyBox2});var require_util=__commonJS(exports2=>{exports2.IDENTITY_MATRIX=[[1,0,0],[0,1,0],[0,0,1]];function normalizeRadians2(angle){return angle-2*Math.PI*Math.floor((angle+Math.PI)/(2*Math.PI))}exports2.normalizeRadians=normalizeRadians2;function computeRotation2(point1,point2){const radians=Math.PI/2-Math.atan2(-(point2[1]-point1[1]),point2[0]-point1[0]);return normalizeRadians2(radians)}exports2.computeRotation=computeRotation2;function radToDegrees(rad){return rad*180/Math.PI}exports2.radToDegrees=radToDegrees;function buildTranslationMatrix2(x,y){return[[1,0,x],[0,1,y],[0,0,1]]}function dot2(v1,v2){let product=0;for(let i=0;i<v1.length;i++){product+=v1[i]*v2[i]}return product}exports2.dot=dot2;function getColumnFrom2DArr2(arr,columnIndex){const column=[];for(let i=0;i<arr.length;i++){column.push(arr[i][columnIndex])}return column}exports2.getColumnFrom2DArr=getColumnFrom2DArr2;function multiplyTransformMatrices2(mat1,mat2){const product=[];const size=mat1.length;for(let row=0;row<size;row++){product.push([]);for(let col=0;col<size;col++){product[row].push(dot2(mat1[row],getColumnFrom2DArr2(mat2,col)))}}return product}function buildRotationMatrix2(rotation,center){const cosA=Math.cos(rotation);const sinA=Math.sin(rotation);const rotationMatrix=[[cosA,-sinA,0],[sinA,cosA,0],[0,0,1]];const translationMatrix=buildTranslationMatrix2(center[0],center[1]);const translationTimesRotation=multiplyTransformMatrices2(translationMatrix,rotationMatrix);const negativeTranslationMatrix=buildTranslationMatrix2(-center[0],-center[1]);return multiplyTransformMatrices2(translationTimesRotation,negativeTranslationMatrix)}exports2.buildRotationMatrix=buildRotationMatrix2;function invertTransformMatrix2(matrix){const rotationComponent=[[matrix[0][0],matrix[1][0]],[matrix[0][1],matrix[1][1]]];const translationComponent=[matrix[0][2],matrix[1][2]];const invertedTranslation=[-dot2(rotationComponent[0],translationComponent),-dot2(rotationComponent[1],translationComponent)];return[rotationComponent[0].concat(invertedTranslation[0]),rotationComponent[1].concat(invertedTranslation[1]),[0,0,1]]}exports2.invertTransformMatrix=invertTransformMatrix2;function rotatePoint2(homogeneousCoordinate,rotationMatrix){return[dot2(homogeneousCoordinate,rotationMatrix[0]),dot2(homogeneousCoordinate,rotationMatrix[1])]}exports2.rotatePoint=rotatePoint2;function xyDistanceBetweenPoints(a,b){return Math.sqrt((a[0]-b[0])**2+(a[1]-b[1])**2)}exports2.xyDistanceBetweenPoints=xyDistanceBetweenPoints});var require_coords=__commonJS(exports2=>{const MESH_ANNOTATIONS={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]};const MESH_TO_IRIS_INDICES_MAP=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]},{key:"EyebrowUpper",indices:[63,64,65,66,67,68,69,70]},{key:"EyebrowLower",indices:[48,49,50,51,52,53]}];const UV468=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]];const TRI468=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];const TRI68=[0,1,36,0,36,17,1,2,41,1,41,36,2,3,31,2,31,41,3,4,48,3,48,31,4,5,48,5,6,48,6,7,59,6,59,48,7,8,58,7,58,59,8,9,56,8,56,57,8,57,58,9,10,55,9,55,56,10,11,54,10,54,55,11,12,54,12,13,54,13,14,35,13,35,54,14,15,46,14,46,35,15,16,45,15,45,46,16,26,45,17,36,18,18,37,19,18,36,37,19,38,20,19,37,38,20,39,21,20,38,39,21,39,27,22,42,23,22,27,42,23,43,24,23,42,43,24,44,25,24,43,44,25,45,26,25,44,45,27,39,28,27,28,42,28,39,29,28,29,42,29,31,30,29,30,35,29,40,31,29,35,47,29,39,40,29,47,42,30,31,32,30,32,33,30,33,34,30,34,35,31,50,32,31,40,41,31,48,49,31,49,50,32,51,33,32,50,51,33,51,34,34,52,35,34,51,52,35,46,47,35,52,53,35,53,54,36,41,37,37,40,38,37,41,40,38,40,39,42,47,43,43,47,44,44,46,45,44,47,46,48,60,49,48,59,60,49,61,50,49,60,61,50,62,51,50,61,62,51,62,52,52,63,53,52,62,63,53,64,54,53,63,64,54,64,55,55,65,56,55,64,65,56,66,57,56,65,66,57,66,58,58,67,59,58,66,67,59,67,60,60,67,61,61,66,62,61,67,66,62,66,63,63,65,64,63,66,65,21,27,22];const TRI33=[0,8,7,7,8,1,2,10,9,9,10,3,17,0,18,18,0,7,18,7,19,19,7,1,19,1,11,19,11,20,21,3,22,21,9,3,20,9,21,20,2,9,20,11,2,23,17,18,25,21,22,24,19,20,24,18,19,24,20,21,24,23,18,24,21,25,11,12,4,11,4,13,1,12,11,11,13,2,12,14,4,4,14,13,14,5,15,14,15,6,12,5,14,14,6,13,8,12,1,2,13,10,8,26,12,10,13,27,26,5,12,13,6,27,0,26,8,10,27,3,5,32,16,16,32,6,5,30,32,6,32,31,26,30,5,27,6,31,0,28,26,3,27,29,17,28,0,3,29,22,23,28,17,22,29,25,28,30,26,27,31,29];const TRI7=[0,4,1,2,4,3,4,5,6];const VTX68=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178];const VTX33=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152];const VTX7=[33,133,362,263,1,78,308];exports2.MESH_ANNOTATIONS=MESH_ANNOTATIONS;exports2.MESH_TO_IRIS_INDICES_MAP=MESH_TO_IRIS_INDICES_MAP;exports2.TRI468=TRI468;exports2.TRI68=TRI68;exports2.TRI33=TRI33;exports2.TRI7=TRI7;exports2.UV468=UV468;exports2.UV68=VTX68.map(x=>UV468[x]);exports2.UV33=VTX33.map(x=>UV468[x]);exports2.UV7=VTX7.map(x=>UV468[x])});var require_facepipeline=__commonJS(exports2=>{const bounding=__toModule(require_box());const util27=__toModule(require_util());const coords=__toModule(require_coords());const LANDMARKS_COUNT=468;const MESH_MOUTH_INDEX=13;const MESH_KEYPOINTS_LINE_OF_SYMMETRY_INDICES=[MESH_MOUTH_INDEX,coords.MESH_ANNOTATIONS["midwayBetweenEyes"][0]];const BLAZEFACE_MOUTH_INDEX=3;const BLAZEFACE_NOSE_INDEX=2;const BLAZEFACE_KEYPOINTS_LINE_OF_SYMMETRY_INDICES=[BLAZEFACE_MOUTH_INDEX,BLAZEFACE_NOSE_INDEX];const LEFT_EYE_OUTLINE=coords.MESH_ANNOTATIONS["leftEyeLower0"];const LEFT_EYE_BOUNDS=[LEFT_EYE_OUTLINE[0],LEFT_EYE_OUTLINE[LEFT_EYE_OUTLINE.length-1]];const RIGHT_EYE_OUTLINE=coords.MESH_ANNOTATIONS["rightEyeLower0"];const RIGHT_EYE_BOUNDS=[RIGHT_EYE_OUTLINE[0],RIGHT_EYE_OUTLINE[RIGHT_EYE_OUTLINE.length-1]];const IRIS_UPPER_CENTER_INDEX=3;const IRIS_LOWER_CENTER_INDEX=4;const IRIS_IRIS_INDEX=71;const IRIS_NUM_COORDINATES=76;function replaceRawCoordinates(rawCoords,newCoords,prefix,keys){for(let i=0;i<coords.MESH_TO_IRIS_INDICES_MAP.length;i++){const{key,indices}=coords.MESH_TO_IRIS_INDICES_MAP[i];const originalIndices=coords.MESH_ANNOTATIONS[`${prefix}${key}`];const shouldReplaceAllKeys=keys==null;if(shouldReplaceAllKeys||keys.includes(key)){for(let j=0;j<indices.length;j++){const index=indices[j];rawCoords[originalIndices[j]]=[newCoords[index][0],newCoords[index][1],(newCoords[index][2]+rawCoords[originalIndices[j]][2])/2]}}}}class Pipeline{constructor(boundingBoxDetector,meshDetector,irisModel,config2){this.storedBoxes=[];this.runsWithoutFaceDetector=0;this.boundingBoxDetector=boundingBoxDetector;this.meshDetector=meshDetector;this.irisModel=irisModel;this.meshWidth=config2.mesh.inputSize;this.meshHeight=config2.mesh.inputSize;this.irisSize=config2.iris.inputSize;this.irisEnlarge=2.3;this.skipped=1e3;this.detectedFaces=0}transformRawCoords(rawCoords,box,angle,rotationMatrix){const boxSize=bounding.getBoxSize({startPoint:box.startPoint,endPoint:box.endPoint});const scaleFactor=[boxSize[0]/this.meshWidth,boxSize[1]/this.meshHeight];const coordsScaled=rawCoords.map(coord=>[scaleFactor[0]*(coord[0]-this.meshWidth/2),scaleFactor[1]*(coord[1]-this.meshHeight/2),coord[2]]);const coordsRotationMatrix=util27.buildRotationMatrix(angle,[0,0]);const coordsRotated=coordsScaled.map(coord=>[...util27.rotatePoint(coord,coordsRotationMatrix),coord[2]]);const inverseRotationMatrix=util27.invertTransformMatrix(rotationMatrix);const boxCenter=[...bounding.getBoxCenter({startPoint:box.startPoint,endPoint:box.endPoint}),1];const originalBoxCenter=[util27.dot(boxCenter,inverseRotationMatrix[0]),util27.dot(boxCenter,inverseRotationMatrix[1])];return coordsRotated.map(coord=>[coord[0]+originalBoxCenter[0],coord[1]+originalBoxCenter[1],coord[2]])}getLeftToRightEyeDepthDifference(rawCoords){const leftEyeZ=rawCoords[LEFT_EYE_BOUNDS[0]][2];const rightEyeZ=rawCoords[RIGHT_EYE_BOUNDS[0]][2];return leftEyeZ-rightEyeZ}getEyeBox(rawCoords,face2,eyeInnerCornerIndex,eyeOuterCornerIndex,flip=false){const box=bounding.squarifyBox(bounding.enlargeBox(this.calculateLandmarksBoundingBox([rawCoords[eyeInnerCornerIndex],rawCoords[eyeOuterCornerIndex]]),this.irisEnlarge));const boxSize=bounding.getBoxSize(box);let crop=tf.image.cropAndResize(face2,[[box.startPoint[1]/this.meshHeight,box.startPoint[0]/this.meshWidth,box.endPoint[1]/this.meshHeight,box.endPoint[0]/this.meshWidth]],[0],[this.irisSize,this.irisSize]);if(flip){crop=tf.image.flipLeftRight(crop)}return{box,boxSize,crop}}getEyeCoords(eyeData,eyeBox,eyeBoxSize,flip=false){const eyeRawCoords=[];for(let i=0;i<IRIS_NUM_COORDINATES;i++){const x=eyeData[i*3];const y=eyeData[i*3+1];const z=eyeData[i*3+2];eyeRawCoords.push([(flip?1-x/this.irisSize:x/this.irisSize)*eyeBoxSize[0]+eyeBox.startPoint[0],y/this.irisSize*eyeBoxSize[1]+eyeBox.startPoint[1],z])}return{rawCoords:eyeRawCoords,iris:eyeRawCoords.slice(IRIS_IRIS_INDEX)}}getAdjustedIrisCoords(rawCoords,irisCoords,direction){const upperCenterZ=rawCoords[coords.MESH_ANNOTATIONS[`${direction}EyeUpper0`][IRIS_UPPER_CENTER_INDEX]][2];const lowerCenterZ=rawCoords[coords.MESH_ANNOTATIONS[`${direction}EyeLower0`][IRIS_LOWER_CENTER_INDEX]][2];const averageZ=(upperCenterZ+lowerCenterZ)/2;return irisCoords.map((coord,i)=>{let z=averageZ;if(i===2){z=upperCenterZ}else if(i===4){z=lowerCenterZ}return[coord[0],coord[1],z]})}async predict(input,config2){this.skipped++;let useFreshBox=false;let detector;if(this.skipped>config2.detector.skipFrames||!config2.mesh.enabled||!config2.videoOptimized){detector=await this.boundingBoxDetector.getBoundingBoxes(input);if(input.shape[1]!==255&&input.shape[2]!==255)this.skipped=0}if(detector&&detector.boxes&&detector.boxes.length>0&&(!config2.mesh.enabled||detector.boxes.length!==this.detectedFaces&&this.detectedFaces!==config2.detector.maxFaces)){this.storedBoxes=[];this.detectedFaces=0;for(const possible of detector.boxes){this.storedBoxes.push({startPoint:possible.box.startPoint.dataSync(),endPoint:possible.box.endPoint.dataSync(),landmarks:possible.landmarks,confidence:possible.confidence})}if(this.storedBoxes.length>0)useFreshBox=true}if(useFreshBox){if(!detector||!detector.boxes||detector.boxes.length===0){this.storedBoxes=[];this.detectedFaces=0;return null}for(const i in this.storedBoxes){const scaledBox=bounding.scaleBoxCoordinates({startPoint:this.storedBoxes[i].startPoint,endPoint:this.storedBoxes[i].endPoint},detector.scaleFactor);const enlargedBox=bounding.enlargeBox(scaledBox);const landmarks=this.storedBoxes[i].landmarks.arraySync();const confidence=this.storedBoxes[i].confidence;this.storedBoxes[i]={...enlargedBox,confidence,landmarks}}this.runsWithoutFaceDetector=0}if(detector&&detector.boxes){detector.boxes.forEach(prediction=>{prediction.box.startPoint.dispose();prediction.box.endPoint.dispose();prediction.landmarks.dispose()})}let results=tf.tidy(()=>this.storedBoxes.map((box,i)=>{let angle=0;const boxLandmarksFromMeshModel=box.landmarks.length>=LANDMARKS_COUNT;let[indexOfMouth,indexOfForehead]=MESH_KEYPOINTS_LINE_OF_SYMMETRY_INDICES;if(boxLandmarksFromMeshModel===false){[indexOfMouth,indexOfForehead]=BLAZEFACE_KEYPOINTS_LINE_OF_SYMMETRY_INDICES}angle=util27.computeRotation(box.landmarks[indexOfMouth],box.landmarks[indexOfForehead]);const faceCenter=bounding.getBoxCenter({startPoint:box.startPoint,endPoint:box.endPoint});const faceCenterNormalized=[faceCenter[0]/input.shape[2],faceCenter[1]/input.shape[1]];let rotatedImage=input;let rotationMatrix=util27.IDENTITY_MATRIX;if(angle!==0){rotatedImage=tf.image.rotateWithOffset(input,angle,0,faceCenterNormalized);rotationMatrix=util27.buildRotationMatrix(-angle,faceCenter)}const face2=bounding.cutBoxFromImageAndResize({startPoint:box.startPoint,endPoint:box.endPoint},rotatedImage,[this.meshHeight,this.meshWidth]).div(255);const outputFace=config2.detector.rotation?tf.image.rotateWithOffset(face2,angle):face2;if(!config2.mesh.enabled){const prediction2={coords:null,box,faceConfidence:null,confidence:box.confidence,image:outputFace};return prediction2}const[,confidence,contourCoords]=this.meshDetector.predict(face2);const confidenceVal=confidence.dataSync()[0];confidence.dispose();if(confidenceVal<config2.detector.minConfidence){contourCoords.dispose();return null}const coordsReshaped=tf.reshape(contourCoords,[-1,3]);let rawCoords=coordsReshaped.arraySync();if(config2.iris.enabled){const{box:leftEyeBox,boxSize:leftEyeBoxSize,crop:leftEyeCrop}=this.getEyeBox(rawCoords,face2,LEFT_EYE_BOUNDS[0],LEFT_EYE_BOUNDS[1],true);const{box:rightEyeBox,boxSize:rightEyeBoxSize,crop:rightEyeCrop}=this.getEyeBox(rawCoords,face2,RIGHT_EYE_BOUNDS[0],RIGHT_EYE_BOUNDS[1]);const eyePredictions=this.irisModel.predict(tf.concat([leftEyeCrop,rightEyeCrop]));const eyePredictionsData=eyePredictions.dataSync();eyePredictions.dispose();const leftEyeData=eyePredictionsData.slice(0,IRIS_NUM_COORDINATES*3);const{rawCoords:leftEyeRawCoords,iris:leftIrisRawCoords}=this.getEyeCoords(leftEyeData,leftEyeBox,leftEyeBoxSize,true);const rightEyeData=eyePredictionsData.slice(IRIS_NUM_COORDINATES*3);const{rawCoords:rightEyeRawCoords,iris:rightIrisRawCoords}=this.getEyeCoords(rightEyeData,rightEyeBox,rightEyeBoxSize);const leftToRightEyeDepthDifference=this.getLeftToRightEyeDepthDifference(rawCoords);if(Math.abs(leftToRightEyeDepthDifference)<30){replaceRawCoordinates(rawCoords,leftEyeRawCoords,"left");replaceRawCoordinates(rawCoords,rightEyeRawCoords,"right")}else if(leftToRightEyeDepthDifference<1){replaceRawCoordinates(rawCoords,leftEyeRawCoords,"left",["EyeUpper0","EyeLower0"])}else{replaceRawCoordinates(rawCoords,rightEyeRawCoords,"right",["EyeUpper0","EyeLower0"])}const adjustedLeftIrisCoords=this.getAdjustedIrisCoords(rawCoords,leftIrisRawCoords,"left");const adjustedRightIrisCoords=this.getAdjustedIrisCoords(rawCoords,rightIrisRawCoords,"right");rawCoords=rawCoords.concat(adjustedLeftIrisCoords).concat(adjustedRightIrisCoords)}const transformedCoordsData=this.transformRawCoords(rawCoords,box,angle,rotationMatrix);tf.dispose(rawCoords);const landmarksBox=bounding.enlargeBox(this.calculateLandmarksBoundingBox(transformedCoordsData));const transformedCoords=tf.tensor2d(transformedCoordsData);const prediction={coords:transformedCoords,box:landmarksBox,faceConfidence:confidenceVal,confidence:box.confidence,image:outputFace};this.storedBoxes[i]={...landmarksBox,landmarks:transformedCoords.arraySync(),confidence:box.confidence,faceConfidence:confidenceVal};return prediction}));results=results.filter(a=>a!==null);this.detectedFaces=results.length;return results}calculateLandmarksBoundingBox(landmarks){const xs=landmarks.map(d=>d[0]);const ys=landmarks.map(d=>d[1]);const startPoint=[Math.min(...xs),Math.min(...ys)];const endPoint=[Math.max(...xs),Math.max(...ys)];return{startPoint,endPoint,landmarks}}}exports2.Pipeline=Pipeline});var require_facemesh=__commonJS(exports2=>{const blazeface=__toModule(require_blazeface());const pipe=__toModule(require_facepipeline());const coords=__toModule(require_coords());class MediaPipeFaceMesh{constructor(blazeFace,blazeMeshModel,irisModel,config2){this.pipeline=new pipe.Pipeline(blazeFace,blazeMeshModel,irisModel,config2);if(config2)this.config=config2}async estimateFaces(input,config2){if(config2)this.config=config2;const predictions=await this.pipeline.predict(input,config2);const results=[];for(const prediction of predictions||[]){if(prediction.isDisposedInternal)continue;const mesh=prediction.coords?prediction.coords.arraySync():null;const annotations={};if(mesh&&mesh.length>0){for(const key in coords.MESH_ANNOTATIONS){if(this.config.iris.enabled||key.includes("Iris")===false){annotations[key]=coords.MESH_ANNOTATIONS[key].map(index=>mesh[index])}}}results.push({confidence:prediction.confidence||0,box:prediction.box?[prediction.box.startPoint[0],prediction.box.startPoint[1],prediction.box.endPoint[0]-prediction.box.startPoint[0],prediction.box.endPoint[1]-prediction.box.startPoint[1]]:0,mesh,annotations,image:prediction.image?tf.clone(prediction.image):null});if(prediction.coords)prediction.coords.dispose();if(prediction.image)prediction.image.dispose()}return results}}async function load2(config2){const models=await Promise.all([blazeface.load(config2),loadGraphModel(config2.mesh.modelPath,{fromTFHub:config2.mesh.modelPath.includes("tfhub.dev")}),loadGraphModel(config2.iris.modelPath,{fromTFHub:config2.iris.modelPath.includes("tfhub.dev")})]);const faceMesh=new MediaPipeFaceMesh(models[0],models[1],models[2],config2);console.log(`Human: load model: ${config2.mesh.modelPath.match(/\/(.*)\./)[1]}`);console.log(`Human: load model: ${config2.iris.modelPath.match(/\/(.*)\./)[1]}`);return faceMesh}exports2.load=load2;exports2.MediaPipeFaceMesh=MediaPipeFaceMesh;exports2.triangulation=coords.TRI468});var require_profile=__commonJS(exports2=>{const profileData={};function profile2(name,data2){if(!data2||!data2.kernels)return;const maxResults=5;const time=data2.kernels.filter(a=>a.kernelTimeMs>0).reduce((a,b)=>a+=b.kernelTimeMs,0);const slowest=data2.kernels.map((a,i)=>{a.id=i;return a}).filter(a=>a.kernelTimeMs>0).sort((a,b)=>b.kernelTimeMs-a.kernelTimeMs);const largest=data2.kernels.map((a,i)=>{a.id=i;return a}).filter(a=>a.totalBytesSnapshot>0).sort((a,b)=>b.totalBytesSnapshot-a.totalBytesSnapshot);if(slowest.length>maxResults)slowest.length=maxResults;if(largest.length>maxResults)largest.length=maxResults;const res={newBytes:data2.newBytes,newTensors:data2.newTensors,peakBytes:data2.peakBytes,numKernelOps:data2.kernels.length,timeKernelOps:time,slowestKernelOps:slowest,largestKernelOps:largest};profileData[name]=res;console.log("Human profiler",name,res)}exports2.run=profile2});var require_age=__commonJS(exports2=>{const profile2=__toModule(require_profile());const models={};let last={age:0};let frame=Number.MAX_SAFE_INTEGER;async function load2(config2){if(!models.age){models.age=await loadGraphModel(config2.face.age.modelPath);console.log(`Human: load model: ${config2.face.age.modelPath.match(/\/(.*)\./)[1]}`)}return models.age}async function predict2(image2,config2){if(!models.age)return null;if(frame<config2.face.age.skipFrames&&config2.videoOptimized&&last.age&&last.age>0){frame+=1;return last}frame=0;return new Promise(async resolve=>{const resize=tf.image.resizeBilinear(image2,[config2.face.age.inputSize,config2.face.age.inputSize],false);const enhance=tf.mul(resize,[255]);tf.dispose(resize);let ageT;const obj={};if(!config2.profile){if(config2.face.age.enabled)ageT=await models.age.predict(enhance)}else{const profileAge=config2.face.age.enabled?await tf.profile(()=>models.age.predict(enhance)):{};ageT=profileAge.result.clone();profileAge.result.dispose();profile2.run("age",profileAge)}enhance.dispose();if(ageT){const data2=ageT.dataSync();obj.age=Math.trunc(10*data2[0])/10}ageT.dispose();last=obj;resolve(obj)})}exports2.predict=predict2;exports2.load=load2});var require_gender=__commonJS(exports2=>{const profile2=__toModule(require_profile());const models={};let last={gender:""};let frame=Number.MAX_SAFE_INTEGER;let alternative=false;const rgb=[.2989,.587,.114];async function load2(config2){if(!models.gender){models.gender=await loadGraphModel(config2.face.gender.modelPath);alternative=models.gender.inputs[0].shape[3]===1;console.log(`Human: load model: ${config2.face.gender.modelPath.match(/\/(.*)\./)[1]}`)}return models.gender}async function predict2(image2,config2){if(!models.gender)return null;if(frame<config2.face.gender.skipFrames&&config2.videoOptimized&&last.gender!==""){frame+=1;return last}frame=0;return new Promise(async resolve=>{const resize=tf.image.resizeBilinear(image2,[config2.face.gender.inputSize,config2.face.gender.inputSize],false);let enhance;if(alternative){enhance=tf.tidy(()=>{const[red,green,blue]=tf.split(resize,3,3);const redNorm=tf.mul(red,rgb[0]);const greenNorm=tf.mul(green,rgb[1]);const blueNorm=tf.mul(blue,rgb[2]);const grayscale=tf.addN([redNorm,greenNorm,blueNorm]);return grayscale.sub(.5).mul(2)})}else{enhance=tf.mul(resize,[255])}tf.dispose(resize);let genderT;const obj={};if(!config2.profile){if(config2.face.gender.enabled)genderT=await models.gender.predict(enhance)}else{const profileGender=config2.face.gender.enabled?await tf.profile(()=>models.gender.predict(enhance)):{};genderT=profileGender.result.clone();profileGender.result.dispose();profile2.run("gender",profileGender)}enhance.dispose();if(genderT){const data2=genderT.dataSync();if(alternative){const confidence=Math.trunc(100*Math.abs(data2[0]-data2[1]))/100;if(confidence>config2.face.gender.minConfidence){obj.gender=data2[0]>data2[1]?"female":"male";obj.confidence=confidence}}else{const confidence=Math.trunc(200*Math.abs(data2[0]-.5))/100;if(confidence>config2.face.gender.minConfidence){obj.gender=data2[0]<=.5?"female":"male";obj.confidence=Math.min(.99,confidence)}}}genderT.dispose();last=obj;resolve(obj)})}exports2.predict=predict2;exports2.load=load2});var require_emotion=__commonJS(exports2=>{const profile2=__toModule(require_profile());const annotations=["angry","disgust","fear","happy","sad","surpise","neutral"];const models={};let last=[];let frame=Number.MAX_SAFE_INTEGER;const rgb=[.2989,.587,.114];const scale=1;async function load2(config2){if(!models.emotion){models.emotion=await loadGraphModel(config2.face.emotion.modelPath);console.log(`Human: load model: ${config2.face.emotion.modelPath.match(/\/(.*)\./)[1]}`)}return models.emotion}async function predict2(image2,config2){if(!models.emotion)return null;if(frame<config2.face.emotion.skipFrames&&config2.videoOptimized&&last.length>0){frame+=1;return last}frame=0;return new Promise(async resolve=>{const resize=tf.image.resizeBilinear(image2,[config2.face.emotion.inputSize,config2.face.emotion.inputSize],false);const[red,green,blue]=tf.split(resize,3,3);resize.dispose();const redNorm=tf.mul(red,rgb[0]);const greenNorm=tf.mul(green,rgb[1]);const blueNorm=tf.mul(blue,rgb[2]);red.dispose();green.dispose();blue.dispose();const grayscale=tf.addN([redNorm,greenNorm,blueNorm]);redNorm.dispose();greenNorm.dispose();blueNorm.dispose();const normalize=tf.tidy(()=>grayscale.sub(.5).mul(2));grayscale.dispose();const obj=[];if(config2.face.emotion.enabled){let data2;if(!config2.profile){const emotionT=await models.emotion.predict(normalize);data2=emotionT.dataSync();tf.dispose(emotionT)}else{const profileData=await tf.profile(()=>models.emotion.predict(normalize));data2=profileData.result.dataSync();profileData.result.dispose();profile2.run("emotion",profileData)}for(let i=0;i<data2.length;i++){if(scale*data2[i]>config2.face.emotion.minConfidence)obj.push({score:Math.min(.99,Math.trunc(100*scale*data2[i])/100),emotion:annotations[i]})}obj.sort((a,b)=>b.score-a.score)}normalize.dispose();last=obj;resolve(obj)})}exports2.predict=predict2;exports2.load=load2});var require_embedding=__commonJS(exports2=>{const profile2=__toModule(require_profile());const models={};async function load2(config2){if(!models.embedding){models.embedding=await loadGraphModel(config2.face.embedding.modelPath);console.log(`Human: load model: ${config2.face.embedding.modelPath.match(/\/(.*)\./)[1]}`)}return models.embedding}function simmilarity2(embedding1,embedding2){if((embedding1==null?void 0:embedding1.length)!==(embedding2==null?void 0:embedding2.length))return 0;const distance=10*Math.sqrt(embedding1.map((val,i)=>val-embedding2[i]).reduce((dist2,diff)=>dist2+diff**2,0));const confidence=2*(.5-distance);return Math.trunc(1e3*confidence)/1e3}async function predict2(image2,config2){if(!models.embedding)return null;return new Promise(async resolve=>{const resize=tf.image.resizeBilinear(image2,[config2.face.embedding.inputSize,config2.face.embedding.inputSize],false);let data2=[];if(config2.face.embedding.enabled){if(!config2.profile){const embeddingT=await models.embedding.predict({img_inputs:resize});data2=[...embeddingT.dataSync()];tf.dispose(embeddingT)}else{const profileData=await tf.profile(()=>models.embedding.predict({img_inputs:resize}));data2=[...profileData.result.dataSync()];profileData.result.dispose();profile2.run("emotion",profileData)}}resize.dispose();resolve(data2)})}exports2.predict=predict2;exports2.simmilarity=simmilarity2;exports2.load=load2});var require_modelBase=__commonJS(exports2=>{class BaseModel{constructor(model,outputStride){this.model=model;this.outputStride=outputStride}predict(input){return tf.tidy(()=>{const asFloat=this.preprocessInput(input.toFloat());const asBatch=asFloat.expandDims(0);const results=this.model.predict(asBatch);const results3d=results.map(y=>y.squeeze([0]));const namedResults=this.nameOutputResults(results3d);return{heatmapScores:namedResults.heatmap.sigmoid(),offsets:namedResults.offsets,displacementFwd:namedResults.displacementFwd,displacementBwd:namedResults.displacementBwd}})}dispose(){this.model.dispose()}}exports2.BaseModel=BaseModel});var require_modelMobileNet=__commonJS(exports2=>{const modelBase=__toModule(require_modelBase());class MobileNet extends modelBase.BaseModel{preprocessInput(input){return tf.tidy(()=>tf.div(input,127.5).sub(1))}nameOutputResults(results){const[offsets,heatmap,displacementFwd,displacementBwd]=results;return{offsets,heatmap,displacementFwd,displacementBwd}}}exports2.MobileNet=MobileNet});var require_heapSort=__commonJS(exports2=>{function half(k){return Math.floor(k/2)}class MaxHeap{constructor(maxSize,getElementValue){this.priorityQueue=new Array(maxSize);this.numberOfElements=-1;this.getElementValue=getElementValue}enqueue(x){this.priorityQueue[++this.numberOfElements]=x;this.swim(this.numberOfElements)}dequeue(){const max2=this.priorityQueue[0];this.exchange(0,this.numberOfElements--);this.sink(0);this.priorityQueue[this.numberOfElements+1]=null;return max2}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(k){while(k>0&&this.less(half(k),k)){this.exchange(k,half(k));k=half(k)}}sink(k){while(2*k<=this.numberOfElements){let j=2*k;if(j<this.numberOfElements&&this.less(j,j+1))j++;if(!this.less(k,j))break;this.exchange(k,j);k=j}}getValueAt(i){return this.getElementValue(this.priorityQueue[i])}less(i,j){return this.getValueAt(i)<this.getValueAt(j)}exchange(i,j){const t=this.priorityQueue[i];this.priorityQueue[i]=this.priorityQueue[j];this.priorityQueue[j]=t}}exports2.MaxHeap=MaxHeap});var require_buildParts=__commonJS(exports2=>{const heapSort=__toModule(require_heapSort());function scoreIsMaximumInLocalWindow(keypointId,score,heatmapY,heatmapX,localMaximumRadius,scores){const[height,width]=scores.shape;let localMaximum=true;const yStart=Math.max(heatmapY-localMaximumRadius,0);const yEnd=Math.min(heatmapY+localMaximumRadius+1,height);for(let yCurrent=yStart;yCurrent<yEnd;++yCurrent){const xStart=Math.max(heatmapX-localMaximumRadius,0);const xEnd=Math.min(heatmapX+localMaximumRadius+1,width);for(let xCurrent=xStart;xCurrent<xEnd;++xCurrent){if(scores.get(yCurrent,xCurrent,keypointId)>score){localMaximum=false;break}}if(!localMaximum){break}}return localMaximum}function buildPartWithScoreQueue(scoreThreshold,localMaximumRadius,scores){const[height,width,numKeypoints]=scores.shape;const queue=new heapSort.MaxHeap(height*width*numKeypoints,({score})=>score);for(let heatmapY=0;heatmapY<height;++heatmapY){for(let heatmapX=0;heatmapX<width;++heatmapX){for(let keypointId=0;keypointId<numKeypoints;++keypointId){const score=scores.get(heatmapY,heatmapX,keypointId);if(score<scoreThreshold)continue;if(scoreIsMaximumInLocalWindow(keypointId,score,heatmapY,heatmapX,localMaximumRadius,scores)){queue.enqueue({score,part:{heatmapY,heatmapX,id:keypointId}})}}}}return queue}exports2.buildPartWithScoreQueue=buildPartWithScoreQueue});var require_keypoints=__commonJS(exports2=>{exports2.partNames=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"];exports2.NUM_KEYPOINTS=exports2.partNames.length;exports2.partIds=exports2.partNames.reduce((result,jointName,i)=>{result[jointName]=i;return result},{});const connectedPartNames=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]];exports2.poseChain=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];exports2.connectedPartIndices=connectedPartNames.map(([jointNameA,jointNameB])=>[exports2.partIds[jointNameA],exports2.partIds[jointNameB]]);exports2.partChannels=["left_face","right_face","right_upper_leg_front","right_lower_leg_back","right_upper_leg_back","left_lower_leg_front","left_upper_leg_front","left_upper_leg_back","left_lower_leg_back","right_feet","right_lower_leg_front","left_feet","torso_front","torso_back","right_upper_arm_front","right_upper_arm_back","right_lower_arm_back","left_lower_arm_front","left_upper_arm_front","left_upper_arm_back","left_lower_arm_back","right_hand","right_lower_arm_front","left_hand"]});var require_vectors=__commonJS(exports2=>{const kpt=__toModule(require_keypoints());function getOffsetPoint(y,x,keypoint,offsets){return{y:offsets.get(y,x,keypoint),x:offsets.get(y,x,keypoint+kpt.NUM_KEYPOINTS)}}exports2.getOffsetPoint=getOffsetPoint;function getImageCoords(part,outputStride,offsets){const{heatmapY,heatmapX,id:keypoint}=part;const{y,x}=getOffsetPoint(heatmapY,heatmapX,keypoint,offsets);return{x:part.heatmapX*outputStride+x,y:part.heatmapY*outputStride+y}}exports2.getImageCoords=getImageCoords;function fillArray(element,size){const result=new Array(size);for(let i=0;i<size;i++){result[i]=element}return result}exports2.fillArray=fillArray;function clamp(a,min2,max2){if(a<min2)return min2;if(a>max2)return max2;return a}exports2.clamp=clamp;function squaredDistance(y1,x1,y2,x2){const dy=y2-y1;const dx=x2-x1;return dy*dy+dx*dx}exports2.squaredDistance=squaredDistance;function addVectors(a,b){return{x:a.x+b.x,y:a.y+b.y}}exports2.addVectors=addVectors;function clampVector(a,min2,max2){return{y:clamp(a.y,min2,max2),x:clamp(a.x,min2,max2)}}exports2.clampVector=clampVector});var require_decodePose=__commonJS(exports2=>{const keypoints=__toModule(require_keypoints());const vectors=__toModule(require_vectors());const parentChildrenTuples=keypoints.poseChain.map(([parentJoinName,childJoinName])=>[keypoints.partIds[parentJoinName],keypoints.partIds[childJoinName]]);const parentToChildEdges=parentChildrenTuples.map(([,childJointId])=>childJointId);const childToParentEdges=parentChildrenTuples.map(([parentJointId])=>parentJointId);function getDisplacement(edgeId,point,displacements){const numEdges=displacements.shape[2]/2;return{y:displacements.get(point.y,point.x,edgeId),x:displacements.get(point.y,point.x,numEdges+edgeId)}}function getStridedIndexNearPoint(point,outputStride,height,width){return{y:vectors.clamp(Math.round(point.y/outputStride),0,height-1),x:vectors.clamp(Math.round(point.x/outputStride),0,width-1)}}function traverseToTargetKeypoint(edgeId,sourceKeypoint,targetKeypointId,scoresBuffer,offsets,outputStride,displacements,offsetRefineStep=2){const[height,width]=scoresBuffer.shape;const sourceKeypointIndices=getStridedIndexNearPoint(sourceKeypoint.position,outputStride,height,width);const displacement=getDisplacement(edgeId,sourceKeypointIndices,displacements);const displacedPoint=vectors.addVectors(sourceKeypoint.position,displacement);let targetKeypoint=displacedPoint;for(let i=0;i<offsetRefineStep;i++){const targetKeypointIndices=getStridedIndexNearPoint(targetKeypoint,outputStride,height,width);const offsetPoint=vectors.getOffsetPoint(targetKeypointIndices.y,targetKeypointIndices.x,targetKeypointId,offsets);targetKeypoint=vectors.addVectors({x:targetKeypointIndices.x*outputStride,y:targetKeypointIndices.y*outputStride},{x:offsetPoint.x,y:offsetPoint.y})}const targetKeyPointIndices=getStridedIndexNearPoint(targetKeypoint,outputStride,height,width);const score=scoresBuffer.get(targetKeyPointIndices.y,targetKeyPointIndices.x,targetKeypointId);return{position:targetKeypoint,part:keypoints.partNames[targetKeypointId],score}}function decodePose(root,scores,offsets,outputStride,displacementsFwd,displacementsBwd){const numParts=scores.shape[2];const numEdges=parentToChildEdges.length;const instanceKeypoints=new Array(numParts);const{part:rootPart,score:rootScore}=root;const rootPoint=vectors.getImageCoords(rootPart,outputStride,offsets);instanceKeypoints[rootPart.id]={score:rootScore,part:keypoints.partNames[rootPart.id],position:rootPoint};for(let edge=numEdges-1;edge>=0;--edge){const sourceKeypointId=parentToChildEdges[edge];const targetKeypointId=childToParentEdges[edge];if(instanceKeypoints[sourceKeypointId]&&!instanceKeypoints[targetKeypointId]){instanceKeypoints[targetKeypointId]=traverseToTargetKeypoint(edge,instanceKeypoints[sourceKeypointId],targetKeypointId,scores,offsets,outputStride,displacementsBwd)}}for(let edge=0;edge<numEdges;++edge){const sourceKeypointId=childToParentEdges[edge];const targetKeypointId=parentToChildEdges[edge];if(instanceKeypoints[sourceKeypointId]&&!instanceKeypoints[targetKeypointId]){instanceKeypoints[targetKeypointId]=traverseToTargetKeypoint(edge,instanceKeypoints[sourceKeypointId],targetKeypointId,scores,offsets,outputStride,displacementsFwd)}}return instanceKeypoints}exports2.decodePose=decodePose});var require_decodeMultiple=__commonJS(exports2=>{const buildParts=__toModule(require_buildParts());const decodePose=__toModule(require_decodePose());const vectors=__toModule(require_vectors());function withinNmsRadiusOfCorrespondingPoint(poses,squaredNmsRadius,{x,y},keypointId){return poses.some(({keypoints})=>{const correspondingKeypoint=keypoints[keypointId].position;return vectors.squaredDistance(y,x,correspondingKeypoint.y,correspondingKeypoint.x)<=squaredNmsRadius})}function getInstanceScore(existingPoses,squaredNmsRadius,instanceKeypoints){const notOverlappedKeypointScores=instanceKeypoints.reduce((result,{position,score},keypointId)=>{if(!withinNmsRadiusOfCorrespondingPoint(existingPoses,squaredNmsRadius,position,keypointId)){result+=score}return result},0);return notOverlappedKeypointScores/instanceKeypoints.length}const kLocalMaximumRadius=1;function decodeMultiplePoses(scoresBuffer,offsetsBuffer,displacementsFwdBuffer,displacementsBwdBuffer,outputStride,maxPoseDetections,scoreThreshold=.5,nmsRadius=20){const poses=[];const queue=buildParts.buildPartWithScoreQueue(scoreThreshold,kLocalMaximumRadius,scoresBuffer);const squaredNmsRadius=nmsRadius*nmsRadius;while(poses.length<maxPoseDetections&&!queue.empty()){const root=queue.dequeue();const rootImageCoords=vectors.getImageCoords(root.part,outputStride,offsetsBuffer);if(withinNmsRadiusOfCorrespondingPoint(poses,squaredNmsRadius,rootImageCoords,root.part.id))continue;const keypoints=decodePose.decodePose(root,scoresBuffer,offsetsBuffer,outputStride,displacementsFwdBuffer,displacementsBwdBuffer);const score=getInstanceScore(poses,squaredNmsRadius,keypoints);poses.push({keypoints,score})}return poses}exports2.decodeMultiplePoses=decodeMultiplePoses});var require_util2=__commonJS(exports2=>{const kpt=__toModule(require_keypoints());function eitherPointDoesntMeetConfidence(a,b,minConfidence){return a<minConfidence||b<minConfidence}function getAdjacentKeyPoints(keypoints,minConfidence){return kpt.connectedPartIndices.reduce((result,[leftJoint,rightJoint])=>{if(eitherPointDoesntMeetConfidence(keypoints[leftJoint].score,keypoints[rightJoint].score,minConfidence)){return result}result.push([keypoints[leftJoint],keypoints[rightJoint]]);return result},[])}exports2.getAdjacentKeyPoints=getAdjacentKeyPoints;const{NEGATIVE_INFINITY,POSITIVE_INFINITY}=Number;function getBoundingBox(keypoints){return keypoints.reduce(({maxX,maxY,minX,minY},{position:{x,y}})=>({maxX:Math.max(maxX,x),maxY:Math.max(maxY,y),minX:Math.min(minX,x),minY:Math.min(minY,y)}),{maxX:NEGATIVE_INFINITY,maxY:NEGATIVE_INFINITY,minX:POSITIVE_INFINITY,minY:POSITIVE_INFINITY})}exports2.getBoundingBox=getBoundingBox;function getBoundingBoxPoints(keypoints){const{minX,minY,maxX,maxY}=getBoundingBox(keypoints);return[{x:minX,y:minY},{x:maxX,y:minY},{x:maxX,y:maxY},{x:minX,y:maxY}]}exports2.getBoundingBoxPoints=getBoundingBoxPoints;async function toTensorBuffers3D(tensors){return Promise.all(tensors.map(tensor=>tensor.buffer()))}exports2.toTensorBuffers3D=toTensorBuffers3D;function scalePose(pose,scaleY,scaleX){return{score:pose.score,keypoints:pose.keypoints.map(({score,part,position})=>({score,part,position:{x:position.x*scaleX,y:position.y*scaleY}}))}}exports2.scalePose=scalePose;function resizeTo(image2,[targetH,targetW]){const input=image2.squeeze(0);const resized=input.resizeBilinear([targetH,targetW]);input.dispose();return resized}exports2.resizeTo=resizeTo;function scaleAndFlipPoses(poses,[height,width],[inputResolutionHeight,inputResolutionWidth]){const scaledPoses=poses.map(pose=>scalePose(pose,height/inputResolutionHeight,width/inputResolutionWidth));return scaledPoses}exports2.scaleAndFlipPoses=scaleAndFlipPoses});var require_modelPoseNet=__commonJS(exports2=>{const modelMobileNet=__toModule(require_modelMobileNet());const decodeMultiple=__toModule(require_decodeMultiple());const util27=__toModule(require_util2());class PoseNet{constructor(net){this.baseModel=net;this.outputStride=16}async estimatePoses(input,config2){return new Promise(async resolve=>{const height=input.shape[1];const width=input.shape[2];const resized=util27.resizeTo(input,[config2.body.inputSize,config2.body.inputSize]);const res=this.baseModel.predict(resized);const allTensorBuffers=await util27.toTensorBuffers3D([res.heatmapScores,res.offsets,res.displacementFwd,res.displacementBwd]);const scoresBuffer=allTensorBuffers[0];const offsetsBuffer=allTensorBuffers[1];const displacementsFwdBuffer=allTensorBuffers[2];const displacementsBwdBuffer=allTensorBuffers[3];const poses=await decodeMultiple.decodeMultiplePoses(scoresBuffer,offsetsBuffer,displacementsFwdBuffer,displacementsBwdBuffer,this.outputStride,config2.body.maxDetections,config2.body.scoreThreshold,config2.body.nmsRadius);const resultPoses=util27.scaleAndFlipPoses(poses,[height,width],[config2.body.inputSize,config2.body.inputSize]);res.heatmapScores.dispose();res.offsets.dispose();res.displacementFwd.dispose();res.displacementBwd.dispose();resized.dispose();resolve(resultPoses)})}dispose(){this.baseModel.dispose()}}exports2.PoseNet=PoseNet;async function load2(config2){const graphModel=await loadGraphModel(config2.body.modelPath);const mobilenet=new modelMobileNet.MobileNet(graphModel,this.outputStride);console.log(`Human: load model: ${config2.body.modelPath.match(/\/(.*)\./)[1]}`);return new PoseNet(mobilenet)}exports2.load=load2});var require_posenet=__commonJS(exports2=>{const modelMobileNet=__toModule(require_modelMobileNet());const modelPoseNet=__toModule(require_modelPoseNet());const decodeMultiple=__toModule(require_decodeMultiple());const keypoints=__toModule(require_keypoints());const util27=__toModule(require_util2());exports2.load=modelPoseNet.load;exports2.PoseNet=modelPoseNet.PoseNet;exports2.MobileNet=modelMobileNet.MobileNet;exports2.decodeMultiplePoses=decodeMultiple.decodeMultiplePoses;exports2.partChannels=keypoints.partChannels;exports2.partIds=keypoints.partIds;exports2.partNames=keypoints.partNames;exports2.poseChain=keypoints.poseChain;exports2.getAdjacentKeyPoints=util27.getAdjacentKeyPoints;exports2.getBoundingBox=util27.getBoundingBox;exports2.getBoundingBoxPoints=util27.getBoundingBoxPoints;exports2.scaleAndFlipPoses=util27.scaleAndFlipPoses;exports2.scalePose=util27.scalePose});var require_handdetector=__commonJS(exports2=>{class HandDetector{constructor(model,inputSize,anchorsAnnotated){this.model=model;this.anchors=anchorsAnnotated.map(anchor=>[anchor.x_center,anchor.y_center]);this.anchorsTensor=tf.tensor2d(this.anchors);this.inputSizeTensor=tf.tensor1d([inputSize,inputSize]);this.doubleInputSizeTensor=tf.tensor1d([inputSize*2,inputSize*2])}normalizeBoxes(boxes){return tf.tidy(()=>{const boxOffsets=tf.slice(boxes,[0,0],[-1,2]);const boxSizes=tf.slice(boxes,[0,2],[-1,2]);const boxCenterPoints=tf.add(tf.div(boxOffsets,this.inputSizeTensor),this.anchorsTensor);const halfBoxSizes=tf.div(boxSizes,this.doubleInputSizeTensor);const startPoints=tf.mul(tf.sub(boxCenterPoints,halfBoxSizes),this.inputSizeTensor);const endPoints=tf.mul(tf.add(boxCenterPoints,halfBoxSizes),this.inputSizeTensor);return tf.concat2d([startPoints,endPoints],1)})}normalizeLandmarks(rawPalmLandmarks,index){return tf.tidy(()=>{const landmarks=tf.add(tf.div(rawPalmLandmarks.reshape([-1,7,2]),this.inputSizeTensor),this.anchors[index]);return tf.mul(landmarks,this.inputSizeTensor)})}async getBoxes(input,config2){const batched=this.model.predict(input);const predictions=batched.squeeze();batched.dispose();const scores=tf.tidy(()=>tf.sigmoid(tf.slice(predictions,[0,0],[-1,1])).squeeze());const scoresVal=scores.dataSync();const rawBoxes=tf.slice(predictions,[0,1],[-1,4]);const boxes=this.normalizeBoxes(rawBoxes);rawBoxes.dispose();const filteredT=await tf.image.nonMaxSuppressionAsync(boxes,scores,config2.maxHands,config2.iouThreshold,config2.scoreThreshold);const filtered=filteredT.arraySync();scores.dispose();filteredT.dispose();const hands=[];for(const boxIndex of filtered){if(scoresVal[boxIndex]>=config2.minConfidence){const matchingBox=tf.slice(boxes,[boxIndex,0],[1,-1]);const rawPalmLandmarks=tf.slice(predictions,[boxIndex,5],[1,14]);const palmLandmarks=tf.tidy(()=>this.normalizeLandmarks(rawPalmLandmarks,boxIndex).reshape([-1,2]));rawPalmLandmarks.dispose();hands.push({box:matchingBox,palmLandmarks,confidence:scoresVal[boxIndex]})}}predictions.dispose();boxes.dispose();return hands}async estimateHandBounds(input,config2){const inputHeight=input.shape[1];const inputWidth=input.shape[2];const image2=tf.tidy(()=>input.resizeBilinear([config2.inputSize,config2.inputSize]).div(127.5).sub(1));const predictions=await this.getBoxes(image2,config2);image2.dispose();if(!predictions||predictions.length===0)return null;const hands=[];for(const prediction of predictions){const boxes=prediction.box.dataSync();const startPoint=boxes.slice(0,2);const endPoint=boxes.slice(2,4);const palmLandmarks=prediction.palmLandmarks.arraySync();prediction.box.dispose();prediction.palmLandmarks.dispose();hands.push(scaleBoxCoordinates({startPoint,endPoint,palmLandmarks,confidence:prediction.confidence},[inputWidth/config2.inputSize,inputHeight/config2.inputSize]))}return hands}}exports2.HandDetector=HandDetector});var require_handpipeline=__commonJS(exports2=>{const PALM_BOX_SHIFT_VECTOR=[0,-.4];const PALM_BOX_ENLARGE_FACTOR=3;const HAND_BOX_SHIFT_VECTOR=[0,-.1];const HAND_BOX_ENLARGE_FACTOR=1.65;const PALM_LANDMARK_IDS=[0,5,9,13,17,1,2];const PALM_LANDMARKS_INDEX_OF_PALM_BASE=0;const PALM_LANDMARKS_INDEX_OF_MIDDLE_FINGER_BASE=2;class HandPipeline{constructor(boundingBoxDetector,meshDetector,inputSize){this.boxDetector=boundingBoxDetector;this.meshDetector=meshDetector;this.inputSize=inputSize;this.storedBoxes=[];this.skipped=1e3;this.detectedHands=0}getBoxForPalmLandmarks(palmLandmarks,rotationMatrix){const rotatedPalmLandmarks=palmLandmarks.map(coord=>{const homogeneousCoordinate=[...coord,1];return rotatePoint(homogeneousCoordinate,rotationMatrix)});const boxAroundPalm=this.calculateLandmarksBoundingBox(rotatedPalmLandmarks);return enlargeBox(squarifyBox(shiftBox(boxAroundPalm,PALM_BOX_SHIFT_VECTOR)),PALM_BOX_ENLARGE_FACTOR)}getBoxForHandLandmarks(landmarks){const boundingBox=this.calculateLandmarksBoundingBox(landmarks);const boxAroundHand=enlargeBox(squarifyBox(shiftBox(boundingBox,HAND_BOX_SHIFT_VECTOR)),HAND_BOX_ENLARGE_FACTOR);const palmLandmarks=[];for(let i=0;i<PALM_LANDMARK_IDS.length;i++){palmLandmarks.push(landmarks[PALM_LANDMARK_IDS[i]].slice(0,2))}boxAroundHand.palmLandmarks=palmLandmarks;return boxAroundHand}transformRawCoords(rawCoords,box2,angle,rotationMatrix){const boxSize=getBoxSize(box2);const scaleFactor=[boxSize[0]/this.inputSize,boxSize[1]/this.inputSize];const coordsScaled=rawCoords.map(coord=>[scaleFactor[0]*(coord[0]-this.inputSize/2),scaleFactor[1]*(coord[1]-this.inputSize/2),coord[2]]);const coordsRotationMatrix=buildRotationMatrix(angle,[0,0]);const coordsRotated=coordsScaled.map(coord=>{const rotated=rotatePoint(coord,coordsRotationMatrix);return[...rotated,coord[2]]});const inverseRotationMatrix=invertTransformMatrix(rotationMatrix);const boxCenter=[...getBoxCenter(box2),1];const originalBoxCenter=[dot(boxCenter,inverseRotationMatrix[0]),dot(boxCenter,inverseRotationMatrix[1])];return coordsRotated.map(coord=>[coord[0]+originalBoxCenter[0],coord[1]+originalBoxCenter[1],coord[2]])}async estimateHands(image2,config2){this.skipped++;let useFreshBox=false;let boxes;if(this.skipped>config2.skipFrames||!config2.landmarks||!config2.videoOptimized){boxes=await this.boxDetector.estimateHandBounds(image2,config2);if(image2.shape[1]!==255&&image2.shape[2]!==255)this.skipped=0}if(boxes&&boxes.length>0&&(boxes.length!==this.detectedHands&&this.detectedHands!==config2.maxHands||!config2.landmarks)){this.storedBoxes=[];this.detectedHands=0;for(const possible of boxes)this.storedBoxes.push(possible);if(this.storedBoxes.length>0)useFreshBox=true}const hands=[];for(const i in this.storedBoxes){const currentBox=this.storedBoxes[i];if(!currentBox)continue;if(config2.landmarks){const angle=computeRotation(currentBox.palmLandmarks[PALM_LANDMARKS_INDEX_OF_PALM_BASE],currentBox.palmLandmarks[PALM_LANDMARKS_INDEX_OF_MIDDLE_FINGER_BASE]);const palmCenter=getBoxCenter(currentBox);const palmCenterNormalized=[palmCenter[0]/image2.shape[2],palmCenter[1]/image2.shape[1]];const rotatedImage=tf.image.rotateWithOffset(image2,angle,0,palmCenterNormalized);const rotationMatrix=buildRotationMatrix(-angle,palmCenter);const newBox=useFreshBox?this.getBoxForPalmLandmarks(currentBox.palmLandmarks,rotationMatrix):currentBox;const croppedInput=cutBoxFromImageAndResize(newBox,rotatedImage,[this.inputSize,this.inputSize]);const handImage=croppedInput.div(255);croppedInput.dispose();rotatedImage.dispose();const[confidence,keypoints]=await this.meshDetector.predict(handImage);handImage.dispose();const confidenceValue=confidence.dataSync()[0];confidence.dispose();if(confidenceValue>=config2.minConfidence){const keypointsReshaped=tf.reshape(keypoints,[-1,3]);const rawCoords=keypointsReshaped.arraySync();keypoints.dispose();keypointsReshaped.dispose();const coords=this.transformRawCoords(rawCoords,newBox,angle,rotationMatrix);const nextBoundingBox=this.getBoxForHandLandmarks(coords);this.storedBoxes[i]=nextBoundingBox;const result={landmarks:coords,confidence:confidenceValue,box:{topLeft:nextBoundingBox.startPoint,bottomRight:nextBoundingBox.endPoint}};hands.push(result)}else{this.storedBoxes[i]=null}keypoints.dispose()}else{const enlarged=enlargeBox(squarifyBox(shiftBox(currentBox,HAND_BOX_SHIFT_VECTOR)),HAND_BOX_ENLARGE_FACTOR);const result={confidence:currentBox.confidence,box:{topLeft:enlarged.startPoint,bottomRight:enlarged.endPoint}};hands.push(result)}}this.storedBoxes=this.storedBoxes.filter(a=>a!==null);this.detectedHands=hands.length;return hands}calculateLandmarksBoundingBox(landmarks){const xs=landmarks.map(d=>d[0]);const ys=landmarks.map(d=>d[1]);const startPoint=[Math.min(...xs),Math.min(...ys)];const endPoint=[Math.max(...xs),Math.max(...ys)];return{startPoint,endPoint}}}exports2.HandPipeline=HandPipeline});var require_anchors=__commonJS(exports2=>{exports2.anchors=[{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375}]});var require_handpose=__commonJS(exports2=>{const handdetector=__toModule(require_handdetector());const pipeline=__toModule(require_handpipeline());const anchors=__toModule(require_anchors());const MESH_ANNOTATIONS={thumb:[1,2,3,4],indexFinger:[5,6,7,8],middleFinger:[9,10,11,12],ringFinger:[13,14,15,16],pinky:[17,18,19,20],palmBase:[0]};class HandPose{constructor(pipe){this.pipeline=pipe}static getAnnotations(){return MESH_ANNOTATIONS}async estimateHands(input,config2){const predictions=await this.pipeline.estimateHands(input,config2);if(!predictions)return[];const hands=[];for(const prediction of predictions){const annotations={};if(prediction.landmarks){for(const key of Object.keys(MESH_ANNOTATIONS)){annotations[key]=MESH_ANNOTATIONS[key].map(index=>prediction.landmarks[index])}}hands.push({confidence:prediction.confidence,box:prediction.box?[prediction.box.topLeft[0],prediction.box.topLeft[1],prediction.box.bottomRight[0]-prediction.box.topLeft[0],prediction.box.bottomRight[1]-prediction.box.topLeft[1]]:0,landmarks:prediction.landmarks,annotations})}return hands}}exports2.HandPose=HandPose;async function load2(config2){const[handDetectorModel,handPoseModel]=await Promise.all([loadGraphModel(config2.detector.modelPath,{fromTFHub:config2.detector.modelPath.includes("tfhub.dev")}),loadGraphModel(config2.skeleton.modelPath,{fromTFHub:config2.skeleton.modelPath.includes("tfhub.dev")})]);const detector=new handdetector.HandDetector(handDetectorModel,config2.inputSize,anchors.anchors);const pipe=new pipeline.HandPipeline(detector,handPoseModel,config2.inputSize);const handpose2=new HandPose(pipe);console.log(`Human: load model: ${config2.detector.modelPath.match(/\/(.*)\./)[1]}`);console.log(`Human: load model: ${config2.skeleton.modelPath.match(/\/(.*)\./)[1]}`);return handpose2}exports2.load=load2});var require_gesture=__commonJS(exports2=>{exports2.body=res=>{if(!res)return[];const gestures=[];for(const pose of res){const leftWrist=pose.keypoints.find(a=>a.part==="leftWrist");const rightWrist=pose.keypoints.find(a=>a.part==="rightWrist");const nose=pose.keypoints.find(a=>a.part==="nose");if(nose&&leftWrist&&rightWrist&&leftWrist.position.y<nose.position.y&&rightWrist.position.y<nose.position.y)gestures.push("i give up");else if(nose&&leftWrist&&leftWrist.position.y<nose.position.y)gestures.push("raise left hand");else if(nose&&rightWrist&&rightWrist.position.y<nose.position.y)gestures.push("raise right hand");const leftShoulder=pose.keypoints.find(a=>a.part==="leftShoulder");const rightShoulder=pose.keypoints.find(a=>a.part==="rightShoulder");if(leftShoulder&&rightShoulder)gestures.push(`leaning ${leftShoulder.position.y>rightShoulder.position.y?"left":"right"}`)}return gestures};exports2.face=res=>{if(!res)return[];const gestures=[];for(const face2 of res){if(face2.mesh&&face2.mesh.length>0){const eyeFacing=face2.mesh[35][2]-face2.mesh[263][2];if(Math.abs(eyeFacing)<10)gestures.push("facing camera");else gestures.push(`facing ${eyeFacing<0?"right":"left"}`);const openLeft=Math.abs(face2.mesh[374][1]-face2.mesh[386][1])/Math.abs(face2.mesh[443][1]-face2.mesh[450][1]);if(openLeft<.2)gestures.push("blink left eye");const openRight=Math.abs(face2.mesh[145][1]-face2.mesh[159][1])/Math.abs(face2.mesh[223][1]-face2.mesh[230][1]);if(openRight<.2)gestures.push("blink right eye");const mouthOpen=Math.min(100,500*Math.abs(face2.mesh[13][1]-face2.mesh[14][1])/Math.abs(face2.mesh[10][1]-face2.mesh[152][1]));if(mouthOpen>10)gestures.push(`mouth ${Math.trunc(mouthOpen)}% open`);const chinDepth=face2.mesh[152][2];if(Math.abs(chinDepth)>10)gestures.push(`head ${chinDepth<0?"up":"down"}`)}}return gestures};exports2.hand=res=>{if(!res)return[];const gestures=[];for(const hand2 of res){const fingers=[];for(const[finger,pos]of Object.entries(hand2["annotations"])){if(finger!=="palmBase")fingers.push({name:finger.toLowerCase(),position:pos[0]})}if(fingers&&fingers.length>0){const closest=fingers.reduce((best,a)=>best.position[2]<a.position[2]?best:a);const highest=fingers.reduce((best,a)=>best.position[1]<a.position[1]?best:a);gestures.push(`${closest.name} forward ${highest.name} up`)}}return gestures}});var require_imagefx=__commonJS(exports2=>{const WebGLProgram=function(gl,vertexSource,fragmentSource){const _collect=function(source,prefix,collection){const r=new RegExp("\\b"+prefix+" \\w+ (\\w+)","ig");source.replace(r,(match,name)=>{collection[name]=0;return match})};const _compile=function(source,type){const shader=gl.createShader(type);gl.shaderSource(shader,source);gl.compileShader(shader);if(!gl.getShaderParameter(shader,gl.COMPILE_STATUS)){throw new Error("Filter: GL compile failed",gl.getShaderInfoLog(shader))}return shader};this.uniform={};this.attribute={};const _vsh=_compile(vertexSource,gl.VERTEX_SHADER);const _fsh=_compile(fragmentSource,gl.FRAGMENT_SHADER);this.id=gl.createProgram();gl.attachShader(this.id,_vsh);gl.attachShader(this.id,_fsh);gl.linkProgram(this.id);if(!gl.getProgramParameter(this.id,gl.LINK_STATUS)){throw new Error("Filter: GL link failed",gl.getProgramInfoLog(this.id))}gl.useProgram(this.id);_collect(vertexSource,"attribute",this.attribute);for(const a in this.attribute){this.attribute[a]=gl.getAttribLocation(this.id,a)}_collect(vertexSource,"uniform",this.uniform);_collect(fragmentSource,"uniform",this.uniform);for(const u in this.uniform){this.uniform[u]=gl.getUniformLocation(this.id,u)}};const WebGLImageFilter=function(params){if(!params)params={};let _drawCount=0;let _sourceTexture=null;let _lastInChain=false;let _currentFramebufferIndex=-1;let _tempFramebuffers=[null,null];let _filterChain=[];let _width=-1;let _height=-1;let _vertexBuffer=null;let _currentProgram=null;const _canvas=params.canvas||document.createElement("canvas");const _shaderProgramCache={};const gl=_canvas.getContext("webgl");if(!gl)throw new Error("Filter: getContext() failed");this.addFilter=function(name){const args=Array.prototype.slice.call(arguments,1);const filter=_filter[name];_filterChain.push({func:filter,args})};this.reset=function(){_filterChain=[]};this.apply=function(image2){_resize(image2.width,image2.height);_drawCount=0;if(!_sourceTexture)_sourceTexture=gl.createTexture();gl.bindTexture(gl.TEXTURE_2D,_sourceTexture);gl.texParameteri(gl.TEXTURE_2D,gl.TEXTURE_WRAP_S,gl.CLAMP_TO_EDGE);gl.texParameteri(gl.TEXTURE_2D,gl.TEXTURE_WRAP_T,gl.CLAMP_TO_EDGE);gl.texParameteri(gl.TEXTURE_2D,gl.TEXTURE_MIN_FILTER,gl.NEAREST);gl.texParameteri(gl.TEXTURE_2D,gl.TEXTURE_MAG_FILTER,gl.NEAREST);gl.texImage2D(gl.TEXTURE_2D,0,gl.RGBA,gl.RGBA,gl.UNSIGNED_BYTE,image2);if(_filterChain.length===0){_draw();return _canvas}for(let i=0;i<_filterChain.length;i++){_lastInChain=i===_filterChain.length-1;const f=_filterChain[i];f.func.apply(this,f.args||[])}return _canvas};const _resize=function(width,height){if(width===_width&&height===_height){return}_canvas.width=width;_width=width;_canvas.height=height;_height=height;if(!_vertexBuffer){const vertices=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);_vertexBuffer=gl.createBuffer(),gl.bindBuffer(gl.ARRAY_BUFFER,_vertexBuffer);gl.bufferData(gl.ARRAY_BUFFER,vertices,gl.STATIC_DRAW);gl.pixelStorei(gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL,true)}gl.viewport(0,0,_width,_height);_tempFramebuffers=[null,null]};const _getTempFramebuffer=function(index){_tempFramebuffers[index]=_tempFramebuffers[index]||_createFramebufferTexture(_width,_height);return _tempFramebuffers[index]};const _createFramebufferTexture=function(width,height){const fbo=gl.createFramebuffer();gl.bindFramebuffer(gl.FRAMEBUFFER,fbo);const renderbuffer=gl.createRenderbuffer();gl.bindRenderbuffer(gl.RENDERBUFFER,renderbuffer);const texture=gl.createTexture();gl.bindTexture(gl.TEXTURE_2D,texture);gl.texImage2D(gl.TEXTURE_2D,0,gl.RGBA,width,height,0,gl.RGBA,gl.UNSIGNED_BYTE,null);gl.texParameteri(gl.TEXTURE_2D,gl.TEXTURE_MAG_FILTER,gl.LINEAR);gl.texParameteri(gl.TEXTURE_2D,gl.TEXTURE_MIN_FILTER,gl.LINEAR);gl.texParameteri(gl.TEXTURE_2D,gl.TEXTURE_WRAP_S,gl.CLAMP_TO_EDGE);gl.texParameteri(gl.TEXTURE_2D,gl.TEXTURE_WRAP_T,gl.CLAMP_TO_EDGE);gl.framebufferTexture2D(gl.FRAMEBUFFER,gl.COLOR_ATTACHMENT0,gl.TEXTURE_2D,texture,0);gl.bindTexture(gl.TEXTURE_2D,null);gl.bindFramebuffer(gl.FRAMEBUFFER,null);return{fbo,texture}};const _draw=function(flags){let source=null;let target=null;let flipY=false;if(_drawCount===0){source=_sourceTexture}else{source=_getTempFramebuffer(_currentFramebufferIndex).texture}_drawCount++;if(_lastInChain&&!(flags&DRAW.INTERMEDIATE)){target=null;flipY=_drawCount%2===0}else{_currentFramebufferIndex=(_currentFramebufferIndex+1)%2;target=_getTempFramebuffer(_currentFramebufferIndex).fbo}gl.bindTexture(gl.TEXTURE_2D,source);gl.bindFramebuffer(gl.FRAMEBUFFER,target);gl.uniform1f(_currentProgram.uniform.flipY,flipY?-1:1);gl.drawArrays(gl.TRIANGLES,0,6)};const _compileShader=function(fragmentSource){if(_shaderProgramCache[fragmentSource]){_currentProgram=_shaderProgramCache[fragmentSource];gl.useProgram(_currentProgram.id);return _currentProgram}_currentProgram=new WebGLProgram(gl,SHADER.VERTEX_IDENTITY,fragmentSource);const floatSize=Float32Array.BYTES_PER_ELEMENT;const vertSize=4*floatSize;gl.enableVertexAttribArray(_currentProgram.attribute.pos);gl.vertexAttribPointer(_currentProgram.attribute.pos,2,gl.FLOAT,false,vertSize,0*floatSize);gl.enableVertexAttribArray(_currentProgram.attribute.uv);gl.vertexAttribPointer(_currentProgram.attribute.uv,2,gl.FLOAT,false,vertSize,2*floatSize);_shaderProgramCache[fragmentSource]=_currentProgram;return _currentProgram};let DRAW={INTERMEDIATE:1};let SHADER={};SHADER.VERTEX_IDENTITY=["precision highp float;","attribute vec2 pos;","attribute vec2 uv;","varying vec2 vUv;","uniform float flipY;","void main(void) {","vUv = uv;","gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);","}"].join("\n");SHADER.FRAGMENT_IDENTITY=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","void main(void) {","gl_FragColor = texture2D(texture, vUv);","}"].join("\n");let _filter={};_filter.colorMatrix=function(matrix){const m=new Float32Array(matrix);m[4]/=255;m[9]/=255;m[14]/=255;m[19]/=255;const shader=m[18]===1&&m[3]===0&&m[8]===0&&m[13]===0&&m[15]===0&&m[16]===0&&m[17]===0&&m[19]===0?_filter.colorMatrix.SHADER.WITHOUT_ALPHA:_filter.colorMatrix.SHADER.WITH_ALPHA;const program=_compileShader(shader);gl.uniform1fv(program.uniform.m,m);_draw()};_filter.colorMatrix.SHADER={};_filter.colorMatrix.SHADER.WITH_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];","gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];","}"].join("\n");_filter.colorMatrix.SHADER.WITHOUT_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];","gl_FragColor.a = c.a;","}"].join("\n");_filter.brightness=function(brightness){const b=(brightness||0)+1;_filter.colorMatrix([b,0,0,0,0,0,b,0,0,0,0,0,b,0,0,0,0,0,1,0])};_filter.saturation=function(amount){const x=(amount||0)*2/3+1;const y=(x-1)*-.5;_filter.colorMatrix([x,y,y,0,0,y,x,y,0,0,y,y,x,0,0,0,0,0,1,0])};_filter.desaturate=function(){_filter.saturation(-1)};_filter.contrast=function(amount){const v=(amount||0)+1;const o=-128*(v-1);_filter.colorMatrix([v,0,0,0,o,0,v,0,0,o,0,0,v,0,o,0,0,0,1,0])};_filter.negative=function(){_filter.contrast(-2)};_filter.hue=function(rotation){rotation=(rotation||0)/180*Math.PI;const cos=Math.cos(rotation);const sin=Math.sin(rotation);const lumR=.213;const lumG=.715;const lumB=.072;_filter.colorMatrix([lumR+cos*(1-lumR)+sin*-lumR,lumG+cos*-lumG+sin*-lumG,lumB+cos*-lumB+sin*(1-lumB),0,0,lumR+cos*-lumR+sin*.143,lumG+cos*(1-lumG)+sin*.14,lumB+cos*-lumB+sin*-.283,0,0,lumR+cos*-lumR+sin*-(1-lumR),lumG+cos*-lumG+sin*lumG,lumB+cos*(1-lumB)+sin*lumB,0,0,0,0,0,1,0])};_filter.desaturateLuminance=function(){_filter.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])};_filter.sepia=function(){_filter.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])};_filter.brownie=function(){_filter.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])};_filter.vintagePinhole=function(){_filter.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])};_filter.kodachrome=function(){_filter.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])};_filter.technicolor=function(){_filter.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])};_filter.polaroid=function(){_filter.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])};_filter.shiftToBGR=function(){_filter.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])};_filter.convolution=function(matrix){const m=new Float32Array(matrix);const pixelSizeX=1/_width;const pixelSizeY=1/_height;const program=_compileShader(_filter.convolution.SHADER);gl.uniform1fv(program.uniform.m,m);gl.uniform2f(program.uniform.px,pixelSizeX,pixelSizeY);_draw()};_filter.convolution.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","uniform float m[9];","void main(void) {","vec4 c11 = texture2D(texture, vUv - px);","vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y));","vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y));","vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) );","vec4 c22 = texture2D(texture, vUv);","vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) );","vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) );","vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) );","vec4 c33 = texture2D(texture, vUv + px );","gl_FragColor = ","c11 * m[0] + c12 * m[1] + c22 * m[2] +","c21 * m[3] + c22 * m[4] + c23 * m[5] +","c31 * m[6] + c32 * m[7] + c33 * m[8];","gl_FragColor.a = c22.a;","}"].join("\n");_filter.detectEdges=function(){_filter.convolution.call(this,[0,1,0,1,-4,1,0,1,0])};_filter.sobelX=function(){_filter.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])};_filter.sobelY=function(){_filter.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])};_filter.sharpen=function(amount){const a=amount||1;_filter.convolution.call(this,[0,-1*a,0,-1*a,1+4*a,-1*a,0,-1*a,0])};_filter.emboss=function(size){const s=size||1;_filter.convolution.call(this,[-2*s,-1*s,0,-1*s,1,1*s,0,1*s,2*s])};_filter.blur=function(size){const blurSizeX=size/7/_width;const blurSizeY=size/7/_height;const program=_compileShader(_filter.blur.SHADER);gl.uniform2f(program.uniform.px,0,blurSizeY);_draw(DRAW.INTERMEDIATE);gl.uniform2f(program.uniform.px,blurSizeX,0);_draw()};_filter.blur.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","void main(void) {","gl_FragColor = vec4(0.0);","gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;","gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv )*0.159576912161;","gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;","}"].join("\n");_filter.pixelate=function(size){const blurSizeX=size/_width;const blurSizeY=size/_height;const program=_compileShader(_filter.pixelate.SHADER);gl.uniform2f(program.uniform.size,blurSizeX,blurSizeY);_draw()};_filter.pixelate.SHADER=["precision highp float;","varying vec2 vUv;","uniform vec2 size;","uniform sampler2D texture;","vec2 pixelate(vec2 coord, vec2 size) {","return floor( coord / size ) * size;","}","void main(void) {","gl_FragColor = vec4(0.0);","vec2 coord = pixelate(vUv, size);","gl_FragColor += texture2D(texture, coord);","}"].join("\n")};exports2.Canvas=WebGLImageFilter});var require_image=__commonJS(exports2=>{const fxImage=__toModule(require_imagefx());let inCanvas=null;let outCanvas=null;function process3(input,config2){let tensor;if(input instanceof tf.Tensor){tensor=tf.clone(input)}else{const originalWidth=input.naturalWidth||input.videoWidth||input.width||input.shape&&input.shape[1]>0;const originalHeight=input.naturalHeight||input.videoHeight||input.height||input.shape&&input.shape[2]>0;let targetWidth=originalWidth;let targetHeight=originalHeight;if(config2.filter.width>0)targetWidth=config2.filter.width;else if(config2.filter.height>0)targetWidth=originalWidth*(config2.filter.height/originalHeight);if(config2.filter.height>0)targetHeight=config2.filter.height;else if(config2.filter.width>0)targetHeight=originalHeight*(config2.filter.width/originalWidth);if(!inCanvas||inCanvas.width!==targetWidth||inCanvas.height!==targetHeight){inCanvas=typeof OffscreenCanvas!=="undefined"?new OffscreenCanvas(targetWidth,targetHeight):document.createElement("canvas");if(inCanvas.width!==targetWidth)inCanvas.width=targetWidth;if(inCanvas.height!==targetHeight)inCanvas.height=targetHeight}const ctx=inCanvas.getContext("2d");if(input instanceof ImageData)ctx.putImageData(input,0,0);else ctx.drawImage(input,0,0,originalWidth,originalHeight,0,0,inCanvas.width,inCanvas.height);if(config2.filter.enabled){if(!this.fx||!outCanvas||inCanvas.width!==outCanvas.width||inCanvas.height!==outCanvas.height){outCanvas=typeof OffscreenCanvas!=="undefined"?new OffscreenCanvas(inCanvas.width,inCanvas.height):document.createElement("canvas");if(outCanvas.width!==inCanvas.width)outCanvas.width=inCanvas.width;if(outCanvas.height!==inCanvas.height)outCanvas.height=inCanvas.height;this.fx=tf.ENV.flags.IS_BROWSER?new fxImage.Canvas({canvas:outCanvas}):null}this.fx.reset();this.fx.addFilter("brightness",config2.filter.brightness);if(config2.filter.contrast!==0)this.fx.addFilter("contrast",config2.filter.contrast);if(config2.filter.sharpness!==0)this.fx.addFilter("sharpen",config2.filter.sharpness);if(config2.filter.blur!==0)this.fx.addFilter("blur",config2.filter.blur);if(config2.filter.saturation!==0)this.fx.addFilter("saturation",config2.filter.saturation);if(config2.filter.hue!==0)this.fx.addFilter("hue",config2.filter.hue);if(config2.filter.negative)this.fx.addFilter("negative");if(config2.filter.sepia)this.fx.addFilter("sepia");if(config2.filter.vintage)this.fx.addFilter("brownie");if(config2.filter.sepia)this.fx.addFilter("sepia");if(config2.filter.kodachrome)this.fx.addFilter("kodachrome");if(config2.filter.technicolor)this.fx.addFilter("technicolor");if(config2.filter.polaroid)this.fx.addFilter("polaroid");if(config2.filter.pixelate!==0)this.fx.addFilter("pixelate",config2.filter.pixelate);this.fx.apply(inCanvas);const gl=false;if(gl){const glBuffer=new Uint8Array(outCanvas.width*outCanvas.height*4);const pixBuffer=new Uint8Array(outCanvas.width*outCanvas.height*3);gl.readPixels(0,0,outCanvas.width,outCanvas.height,gl.RGBA,gl.UNSIGNED_BYTE,glBuffer);let i=0;for(let y=outCanvas.height-1;y>=0;y--){for(let x=0;x<outCanvas.width;x++){const index=(x+y*outCanvas.width)*4;pixBuffer[i++]=glBuffer[index+0];pixBuffer[i++]=glBuffer[index+1];pixBuffer[i++]=glBuffer[index+2]}}outCanvas.data=pixBuffer}}else{outCanvas=inCanvas}let pixels;if(outCanvas.data){const shape=[outCanvas.height,outCanvas.width,3];pixels=tf.tensor3d(outCanvas.data,shape,"int32")}else if(config2.backend==="webgl"||outCanvas instanceof ImageData){pixels=tf.browser.fromPixels(outCanvas)}else{const tempCanvas=typeof OffscreenCanvas!=="undefined"?new OffscreenCanvas(targetWidth,targetHeight):document.createElement("canvas");tempCanvas.width=targetWidth;tempCanvas.height=targetHeight;const tempCtx=tempCanvas.getContext("2d");tempCtx.drawImage(outCanvas,0,0);const data2=tempCtx.getImageData(0,0,targetWidth,targetHeight);pixels=tf.browser.fromPixels(data2)}const casted=pixels.toFloat();tensor=casted.expandDims(0);pixels.dispose();casted.dispose()}return{tensor,canvas:config2.filter.return?outCanvas:null}}exports2.process=process3});__export(exports,{default:()=>Human});const tf=__toModule(require_tf_es2017());const tfjs_core83=__toModule(require_tf_core_node());const tfjs_core=__toModule(require_tf_core_node());var CppDType;(function(CppDType2){CppDType2[CppDType2["float32"]=0]="float32";CppDType2[CppDType2["int32"]=1]="int32";CppDType2[CppDType2["bool"]=2]="bool";CppDType2[CppDType2["string"]=3]="string";CppDType2[CppDType2["complex64"]=4]="complex64"})(CppDType||(CppDType={}));var FusableActivation;(function(FusableActivation2){FusableActivation2[FusableActivation2["linear"]=0]="linear";FusableActivation2[FusableActivation2["relu"]=1]="relu";FusableActivation2[FusableActivation2["relu6"]=2]="relu6";FusableActivation2[FusableActivation2["prelu"]=3]="prelu"})(FusableActivation||(FusableActivation={}));let wasmFusedMatMul;function setup(backend){wasmFusedMatMul=backend.wasm.cwrap(tfjs_core._FusedMatMul,null,["number","array","number","number","array","number","number","number","number","number","number","number"])}function fusedBatchMatMul(args){const{inputs,backend,attrs}=args;const{a,b,bias,preluActivationWeights}=inputs;if(a.dtype!=="float32"||b.dtype!=="float32"){throw new Error(`_FusedMatMul for non non-float32 tensors not yet supported.`)}const{transposeA,transposeB,activation}=attrs;const aId=backend.dataIdMap.get(a.dataId).id;const bId=backend.dataIdMap.get(b.dataId).id;let biasId=0;if(bias!=null){const biasData=backend.dataIdMap.get(bias.dataId);if(biasData.shape.length!==1){throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${biasData.shape.length}.`)}biasId=biasData.id}const preluActivationWeightsId=preluActivationWeights==null?0:backend.dataIdMap.get(preluActivationWeights.dataId).id;const fusedActivation=FusableActivation[activation];if(fusedActivation==null){throw new Error(`${activation} activation not yet supported for FusedConv2D in the wasm backend.`)}const leftDim=transposeA?a.shape[2]:a.shape[1];const rightDim=transposeB?b.shape[1]:b.shape[2];const batchDim=a.shape[0];const out=backend.makeOutput([batchDim,leftDim,rightDim],a.dtype);const outId=backend.dataIdMap.get(out.dataId).id;const aShapeBytes=new Uint8Array(new Int32Array(a.shape).buffer);const bShapeBytes=new Uint8Array(new Int32Array(b.shape).buffer);wasmFusedMatMul(aId,aShapeBytes,a.shape.length,bId,bShapeBytes,b.shape.length,transposeA,transposeB,fusedActivation,biasId,preluActivationWeightsId,outId);return out}const fusedMatMulConfig={kernelName:tfjs_core._FusedMatMul,backendName:"wasm",setupFunc:setup,kernelFunc:fusedBatchMatMul};const tfjs_core3=__toModule(require_tf_core_node());const tfjs_core2=__toModule(require_tf_core_node());function createUnaryKernelConfig(kernelName){let wasmFunc8;function setupFunc2(backend){wasmFunc8=backend.wasm.cwrap(kernelName,null,["number","number"])}function kernelFunc3(args){const{backend,inputs:{x}}=args;const xId=backend.dataIdMap.get(x.dataId).id;const out=backend.makeOutput(x.shape,x.dtype);const outId=backend.dataIdMap.get(out.dataId).id;if(tfjs_core2.util.sizeFromShape(out.shape)===0){return out}wasmFunc8(xId,outId);return out}return{kernelName,backendName:"wasm",setupFunc:setupFunc2,kernelFunc:kernelFunc3}}const absConfig=createUnaryKernelConfig(tfjs_core3.Abs);const tfjs_core5=__toModule(require_tf_core_node());const tfjs_core4=__toModule(require_tf_core_node());function createBinaryKernelConfig(kernelName,supportsFullBroadcast17,dtype){let wasmFunc8;function setupFunc2(backend){wasmFunc8=backend.wasm.cwrap(kernelName,null,["number","array","number","number","array","number","number","number"])}function kernelFunc3(args){const{backend,inputs}=args;const{a,b}=inputs;const aId=backend.dataIdMap.get(a.dataId).id;const bId=backend.dataIdMap.get(b.dataId).id;const outputType=dtype!=null?dtype:a.dtype;const newShape=tfjs_core4.backend_util.assertAndGetBroadcastShape(a.shape,b.shape);const out=backend.makeOutput(newShape,outputType);if(tfjs_core4.util.sizeFromShape(newShape)===0){return out}const aShapeBytes=new Uint8Array(new Int32Array(a.shape).buffer);const bShapeBytes=new Uint8Array(new Int32Array(b.shape).buffer);const outId=backend.dataIdMap.get(out.dataId).id;const kernelFunc4=()=>wasmFunc8(aId,aShapeBytes,a.shape.length,bId,bShapeBytes,b.shape.length,CppDType[a.dtype],outId);if(supportsFullBroadcast17&&a.dtype==="float32"){kernelFunc4();return out}const aBroadcastDims=tfjs_core4.backend_util.getBroadcastDims(a.shape,newShape);const bBroadcastDims=tfjs_core4.backend_util.getBroadcastDims(b.shape,newShape);const loopsOverAllOfA=aBroadcastDims.every((v,i)=>v===i);const loopsOverAllOfB=bBroadcastDims.every((v,i)=>v===i);if(loopsOverAllOfA&&loopsOverAllOfB){kernelFunc4();return out}else{throw new Error(`Broadcasting along outer dims is not yet supported for ${a.dtype} ${kernelName}.`)}}return{kernelName,backendName:"wasm",setupFunc:setupFunc2,kernelFunc:kernelFunc3}}const supportsFullBroadcast=true;const addConfig=createBinaryKernelConfig(tfjs_core5.Add,supportsFullBroadcast);const tfjs_core6=__toModule(require_tf_core_node());let wasmFunc;function setupFunc(backend){wasmFunc=backend.wasm.cwrap(tfjs_core6.AddN,null,["array","number","number","number"])}function addn(args){const{inputs,backend}=args;const out=backend.makeOutput(inputs[0].shape,inputs[0].dtype);if(tfjs_core6.util.sizeFromShape(out.shape)===0){return out}const inputIds=inputs.map(x=>backend.dataIdMap.get(x.dataId).id);const inputIdsBytes=new Uint8Array(new Int32Array(inputIds).buffer);const outId=backend.dataIdMap.get(out.dataId).id;wasmFunc(inputIdsBytes,inputIds.length,CppDType[out.dtype],outId);return out}const addNConfig={kernelName:tfjs_core6.AddN,backendName:"wasm",setupFunc,kernelFunc:addn};const tfjs_core10=__toModule(require_tf_core_node());const tfjs_core9=__toModule(require_tf_core_node());const tfjs_core8=__toModule(require_tf_core_node());const tfjs_core7=__toModule(require_tf_core_node());function identity(args){const{inputs:{x},backend}=args;const out=backend.makeOutput(x.shape,x.dtype);const inVals=backend.typedArrayFromHeap(x);const outVals=backend.typedArrayFromHeap(out);outVals.set(inVals);return out}const identityConfig={kernelName:tfjs_core7.Identity,backendName:"wasm",kernelFunc:identity};let wasmTranspose;function setup2(backend){wasmTranspose=backend.wasm.cwrap(tfjs_core8.Transpose,null,["number","array","number","number","number","array","number"])}function transpose(args){const{inputs,backend,attrs}=args;const[reducedShape,perm]=removeOneSizeDims(inputs.x.shape,attrs.perm);let permIsNoOp=true;for(let i=0;i<perm.length;i++){if(perm[i]!==i){permIsNoOp=false}}const outShape=computeOutShape(inputs.x.shape,attrs.perm);const x={dataId:inputs.x.dataId,shape:reducedShape,dtype:inputs.x.dtype};if(permIsNoOp){const cloned=identity({inputs,backend});cloned.shape=outShape;return cloned}const out=backend.makeOutput(outShape,x.dtype);const xId=backend.dataIdMap.get(x.dataId).id;const outId=backend.dataIdMap.get(out.dataId).id;const permBytes=new Uint8Array(new Int32Array(perm).buffer);const xShapeBytes=new Uint8Array(new Int32Array(x.shape).buffer);wasmTranspose(xId,xShapeBytes,x.shape.length,CppDType[x.dtype],outId,permBytes,perm.length);return out}function computeOutShape(inShape,perm){const outShape=new Array(inShape.length);for(let i=0;i<outShape.length;i++){outShape[i]=inShape[perm[i]]}return outShape}function removeOneSizeDims(shape,perm){const newShape=[];const newPerm=[];for(let i=0;i<shape.length;++i){if(shape[i]!==1){newShape.push(shape[i])}if(shape[perm[i]]!==1){newPerm.push(perm[i])}}for(let i=0;i<newPerm.length;++i){let minValIdx=-1;for(let j=0;j<newPerm.length;++j){if(newPerm[j]>=i&&(minValIdx===-1||newPerm[minValIdx]>newPerm[j])){minValIdx=j}}newPerm[minValIdx]=i}return[newShape,newPerm]}const transposeConfig={kernelName:tfjs_core8.Transpose,backendName:"wasm",kernelFunc:transpose,setupFunc:setup2};function permuteAxesAndTranspose(x,axis,backend){const xShape=x.shape;const xRank=x.shape.length;const originalAxes=tfjs_core9.util.parseAxisParam(axis,xShape);let axes=originalAxes;const permutedAxes=tfjs_core9.backend_util.getAxesPermutation(axes,xRank);let xTransposed=null;let inputWasTransposed=false;if(permutedAxes!=null){const newShape=new Array(xRank);for(let i=0;i<newShape.length;i++){newShape[i]=xShape[permutedAxes[i]]}axes=tfjs_core9.backend_util.getInnerMostAxes(axes.length,xRank);xTransposed=transpose({inputs:{x},attrs:{perm:permutedAxes},backend});const xId=backend.dataIdMap.get(x.dataId).id;const transposedId=backend.dataIdMap.get(xTransposed.dataId).id;if(transposedId!==xId){inputWasTransposed=true}}return{transposed:xTransposed,originalAxes,axes,inputWasTransposed}}let wasmFunc2;function setup3(backend){wasmFunc2=backend.wasm.cwrap(tfjs_core10.ArgMax,null,["number","number","number","number","number"])}function argmax(args){const{backend,inputs,attrs}=args;const{axis}=attrs;const{x}=inputs;const xId=backend.dataIdMap.get(x.dataId).id;let inputId=xId;let input=x;const{transposed,axes,inputWasTransposed}=permuteAxesAndTranspose(x,axis,backend);if(inputWasTransposed){const transposedId=backend.dataIdMap.get(transposed.dataId).id;if(transposedId!==xId){input=transposed;inputId=transposedId}}const outShape=input.shape.slice(0,-1);const out=backend.makeOutput(outShape,"int32");const outId=backend.dataIdMap.get(out.dataId).id;const outerSize=tfjs_core10.util.sizeFromShape(out.shape);const innerSize=input.shape[axes[0]];wasmFunc2(inputId,CppDType[input.dtype],outerSize,innerSize,outId);if(inputWasTransposed){backend.disposeData(transposed.dataId)}return out}const argMaxConfig={kernelName:tfjs_core10.ArgMax,backendName:"wasm",kernelFunc:argmax,setupFunc:setup3};const tfjs_core11=__toModule(require_tf_core_node());let wasmAvgPool;function setup4(backend){wasmAvgPool=backend.wasm.cwrap(tfjs_core11.AvgPool,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function avgPool(args){const{inputs,attrs,backend}=args;const x=inputs.x;const xId=backend.dataIdMap.get(x.dataId).id;const{filterSize,strides,pad:pad2,dimRoundingMode}=attrs;const convInfo=tfjs_core11.backend_util.computePool2DInfo(x.shape,filterSize,strides,1,pad2,dimRoundingMode);const filterHeight=convInfo.filterHeight;const filterWidth=convInfo.filterWidth;const padTop=convInfo.padInfo.top;const padRight=convInfo.padInfo.right;const padBottom=convInfo.padInfo.bottom;const padLeft=convInfo.padInfo.left;const strideHeight=convInfo.strideHeight;const strideWidth=convInfo.strideWidth;const channels=convInfo.inChannels;if(convInfo.dataFormat!=="channelsLast"){throw new Error(`wasm backend does not support dataFormat:'${convInfo.dataFormat}'. Please use 'channelsLast'.`)}if(convInfo.dilationWidth!==1||convInfo.dilationHeight!==1){throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${convInfo.dilationHeight}, ${convInfo.dilationWidth}].`)}const out=backend.makeOutput(convInfo.outShape,"float32");const outId=backend.dataIdMap.get(out.dataId).id;wasmAvgPool(xId,x.shape[0],x.shape[1],x.shape[2],filterHeight,filterWidth,padTop,padRight,padBottom,padLeft,strideHeight,strideWidth,channels,outId);return out}const avgPoolConfig={kernelName:tfjs_core11.AvgPool,backendName:"wasm",setupFunc:setup4,kernelFunc:avgPool};const tfjs_core13=__toModule(require_tf_core_node());const tfjs_core12=__toModule(require_tf_core_node());function reshape(args){const{inputs,attrs}=args;const{x}=inputs;const{shape}=attrs;const xSize=tfjs_core12.util.sizeFromShape(x.shape);const $shape=tfjs_core12.util.inferFromImplicitShape(shape,xSize);tfjs_core12.util.assert(xSize===tfjs_core12.util.sizeFromShape($shape),()=>`new shape: ${$shape}, old shape: ${x.shape}. New shape and old shape must have the same number of elements.`);return{dataId:x.dataId,shape:$shape,dtype:x.dtype}}const reshapeConfig={kernelName:tfjs_core12.Reshape,backendName:"wasm",kernelFunc:reshape};let wasmBatchMatMul;function setup5(backend){wasmBatchMatMul=backend.wasm.cwrap(tfjs_core13.BatchMatMul,null,["number","array","number","number","array","number","number","number","number"])}function batchMatMul(args){const{inputs,backend,attrs}=args;const{a,b}=inputs;const{transposeA,transposeB}=attrs;if(a.dtype!=="float32"||b.dtype!=="float32"){throw new Error(`BatchMatMul for non non-float32 tensors not yet supported.`)}const aRank=a.shape.length;const bRank=b.shape.length;const innerShapeA=transposeA?a.shape[aRank-2]:a.shape[aRank-1];const innerShapeB=transposeB?b.shape[bRank-1]:b.shape[bRank-2];const outerShapeA=transposeA?a.shape[aRank-1]:a.shape[aRank-2];const outerShapeB=transposeB?b.shape[bRank-2]:b.shape[bRank-1];const outerDimsA=a.shape.slice(0,-2);const outerDimsB=b.shape.slice(0,-2);const batchDimA=tfjs_core13.util.sizeFromShape(outerDimsA);const batchDimB=tfjs_core13.util.sizeFromShape(outerDimsB);const batchDimsCompatible=batchDimA===batchDimB||batchDimA===1||batchDimB===1;tfjs_core13.util.assert(aRank>=2&&bRank>=2&&batchDimsCompatible,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${outerDimsA}) and (${outerDimsB}).`);const outShapeOuterDims=batchDimA>batchDimB?a.shape.slice(0,-2):b.shape.slice(0,-2);const outShape=outShapeOuterDims.concat([outerShapeA,outerShapeB]);tfjs_core13.util.assert(innerShapeA===innerShapeB,()=>`Error in matMul: inner shapes (${innerShapeA}) and (${innerShapeB}) of Tensors with shapes ${a.shape} and ${b.shape} and transposeA=${transposeA} and transposeB=${transposeB} must match.`);const a3dShape=transposeA?[batchDimA,innerShapeA,outerShapeA]:[batchDimA,outerShapeA,innerShapeA];const b3dShape=transposeB?[batchDimB,outerShapeB,innerShapeB]:[batchDimB,innerShapeB,outerShapeB];const a3d=reshape({inputs:{x:a},backend,attrs:{shape:a3dShape}});const b3d=reshape({inputs:{x:b},backend,attrs:{shape:b3dShape}});const a3dId=backend.dataIdMap.get(a3d.dataId).id;const b3dId=backend.dataIdMap.get(b3d.dataId).id;const leftDim=transposeA?a3d.shape[2]:a3d.shape[1];const rightDim=transposeB?b3d.shape[1]:b3d.shape[2];const batchDim=Math.max(batchDimA,batchDimB);const out=backend.makeOutput([batchDim,leftDim,rightDim],a3d.dtype);const outId=backend.dataIdMap.get(out.dataId).id;const aShapeBytes=new Uint8Array(new Int32Array(a3d.shape).buffer);const bShapeBytes=new Uint8Array(new Int32Array(b3d.shape).buffer);wasmBatchMatMul(a3dId,aShapeBytes,a3d.shape.length,b3dId,bShapeBytes,b3d.shape.length,transposeA,transposeB,outId);out.shape=outShape;return out}const batchMatMulConfig={kernelName:tfjs_core13.BatchMatMul,backendName:"wasm",setupFunc:setup5,kernelFunc:batchMatMul};const tfjs_core14=__toModule(require_tf_core_node());function cast(args){const{inputs:{x},attrs:{dtype},backend}=args;const out=backend.makeOutput(x.shape,dtype);const inVals=backend.typedArrayFromHeap(x);const outVals=backend.typedArrayFromHeap(out);outVals.set(inVals);return out}const castConfig={kernelName:tfjs_core14.Cast,backendName:"wasm",kernelFunc:cast};const tfjs_core15=__toModule(require_tf_core_node());let wasmClip;function setup6(backend){wasmClip=backend.wasm.cwrap(tfjs_core15.ClipByValue,null,["number","number","number","number"])}function clip(args){const{inputs,backend,attrs}=args;const{x}=inputs;const{clipValueMin,clipValueMax}=attrs;const xId=backend.dataIdMap.get(x.dataId).id;const out=backend.makeOutput(x.shape,x.dtype);const outId=backend.dataIdMap.get(out.dataId).id;wasmClip(xId,clipValueMin,clipValueMax,outId);return out}const clipByValueConfig={kernelName:tfjs_core15.ClipByValue,backendName:"wasm",setupFunc:setup6,kernelFunc:clip};const tfjs_core16=__toModule(require_tf_core_node());function concat(args){const{inputs,backend}=args;const axis=tfjs_core16.util.parseAxisParam(args.attrs.axis,inputs[0].shape)[0];const outShape=tfjs_core16.backend_util.computeOutShape(inputs.map(t=>t.shape),axis);const out=backend.makeOutput(outShape,inputs[0].dtype);if(tfjs_core16.util.sizeFromShape(outShape)===0){return out}const $inputs=inputs.filter(t=>tfjs_core16.util.sizeFromShape(t.shape)>0);if($inputs.length===1){return $inputs[0]}const shapes=$inputs.map(t=>t.shape);tfjs_core16.backend_util.assertParamsConsistent(shapes,axis);const batchDim=tfjs_core16.util.sizeFromShape($inputs[0].shape.slice(0,axis));let sumInnerDims=0;const innerDims=$inputs.map(input=>{const innerDim=tfjs_core16.util.sizeFromShape(input.shape.slice(axis));sumInnerDims+=innerDim;return innerDim});const inVals=$inputs.map(input=>backend.typedArrayFromHeap(input));const outVals=backend.typedArrayFromHeap(out);for(let b=0;b<batchDim;b++){let outOffset=b*sumInnerDims;for(let i=0;i<inVals.length;i++){const innerDim=innerDims[i];const inOffset=b*innerDim;const vals=inVals[i].subarray(inOffset,inOffset+innerDim);outVals.set(vals,outOffset);outOffset+=innerDim}}return out}const concatConfig={kernelName:tfjs_core16.Concat,backendName:"wasm",kernelFunc:concat};const tfjs_core17=__toModule(require_tf_core_node());let wasmConv2d;function setup7(backend){wasmConv2d=backend.wasm.cwrap(tfjs_core17.Conv2D,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function conv2d(args){const{inputs,attrs,backend}=args;const{x,filter}=inputs;const xId=backend.dataIdMap.get(x.dataId).id;const filterId=backend.dataIdMap.get(filter.dataId).id;const{strides,dilations,pad:pad2,dimRoundingMode,dataFormat}=attrs;const $dataFormat=tfjs_core17.backend_util.convertConv2DDataFormat(dataFormat);const convInfo=tfjs_core17.backend_util.computeConv2DInfo(x.shape,filter.shape,strides,dilations,pad2,dimRoundingMode,false,$dataFormat);const filterHeight=convInfo.filterHeight;const filterWidth=convInfo.filterWidth;const padTop=convInfo.padInfo.top;const padRight=convInfo.padInfo.right;const padBottom=convInfo.padInfo.bottom;const padLeft=convInfo.padInfo.left;const dilationHeight=convInfo.dilationHeight;const dilationWidth=convInfo.dilationWidth;const strideHeight=convInfo.strideHeight;const strideWidth=convInfo.strideWidth;const inputChannels=convInfo.inChannels;const outputChannels=convInfo.outChannels;const isSamePad=convInfo.padInfo.type==="SAME"?1:0;if(convInfo.dataFormat!=="channelsLast"){throw new Error(`wasm backend Conv2D does not support dataFormat:'${convInfo.dataFormat}'. Please use 'channelsLast'.`)}const out=backend.makeOutput(convInfo.outShape,"float32");const outId=backend.dataIdMap.get(out.dataId).id;wasmConv2d(xId,x.shape[0],x.shape[1],x.shape[2],filterId,filterHeight,filterWidth,padTop,padRight,padBottom,padLeft,isSamePad,dilationHeight,dilationWidth,strideHeight,strideWidth,inputChannels,outputChannels,outId);return out}const conv2DConfig={kernelName:tfjs_core17.Conv2D,backendName:"wasm",setupFunc:setup7,kernelFunc:conv2d};const tfjs_core18=__toModule(require_tf_core_node());let wasmConv2DBackpropInput;function setup8(backend){wasmConv2DBackpropInput=backend.wasm.cwrap(tfjs_core18.Conv2DBackpropInput,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function conv2DBackpropInput(args){const{backend,inputs,attrs}=args;const{dy,filter}=inputs;const{strides,pad:pad2,dataFormat,dimRoundingMode,inputShape}=attrs;const dilations=1;const $dataFormat=tfjs_core18.backend_util.convertConv2DDataFormat(dataFormat);const convInfo=tfjs_core18.backend_util.computeConv2DInfo(inputShape,filter.shape,strides,dilations,pad2,dimRoundingMode,false,$dataFormat);const{batchSize,filterHeight,filterWidth,inChannels,inHeight,inWidth,outChannels,outHeight,outWidth,strideHeight,strideWidth}=convInfo;const topPad=filterHeight-1-convInfo.padInfo.top;const leftPad=filterWidth-1-convInfo.padInfo.left;const isChannelsLast=convInfo.dataFormat==="channelsLast";const dxStrides=tfjs_core18.util.computeStrides(convInfo.inShape);const dyStrides=tfjs_core18.util.computeStrides(dy.shape);const[fltS0,fltS1,fltS2]=tfjs_core18.util.computeStrides(filter.shape);const xBatchStride=dxStrides[0];const xRowStride=isChannelsLast?dxStrides[1]:dxStrides[2];const xColStride=isChannelsLast?dxStrides[2]:1;const xChannelStride=isChannelsLast?1:dxStrides[1];const yBatchStride=dyStrides[0];const yRowStride=isChannelsLast?dyStrides[1]:dyStrides[2];const yColStride=isChannelsLast?dyStrides[2]:1;const yChannelStride=isChannelsLast?1:dyStrides[1];const out=backend.makeOutput(convInfo.inShape,"float32");const outId=backend.dataIdMap.get(out.dataId).id;const dyId=backend.dataIdMap.get(dy.dataId).id;const filterId=backend.dataIdMap.get(filter.dataId).id;wasmConv2DBackpropInput(dyId,filterId,batchSize,filterHeight,filterWidth,inHeight,inWidth,inChannels,outHeight,outWidth,outChannels,strideHeight,strideWidth,topPad,leftPad,fltS0,fltS1,fltS2,xBatchStride,xRowStride,xColStride,xChannelStride,yBatchStride,yRowStride,yColStride,yChannelStride,outId);return out}const conv2DBackpropInputConfig={kernelName:tfjs_core18.Conv2DBackpropInput,backendName:"wasm",setupFunc:setup8,kernelFunc:conv2DBackpropInput};const tfjs_core19=__toModule(require_tf_core_node());const cosConfig=createUnaryKernelConfig(tfjs_core19.Cos);const tfjs_core20=__toModule(require_tf_core_node());var InterpolationMethod;(function(InterpolationMethod2){InterpolationMethod2[InterpolationMethod2["bilinear"]=0]="bilinear";InterpolationMethod2[InterpolationMethod2["nearest"]=1]="nearest"})(InterpolationMethod||(InterpolationMethod={}));let wasmCropAndResize;function setup9(backend){wasmCropAndResize=backend.wasm.cwrap(tfjs_core20.CropAndResize,null,["number","number","number","number","array","number","number","number","number","number"])}function cropAndResize(args){const{backend,inputs,attrs}=args;const{method,extrapolationValue,cropSize}=attrs;const{image:image2,boxes,boxInd}=inputs;const numBoxes=boxes.shape[0];const[cropHeight,cropWidth]=cropSize;const outShape=[numBoxes,cropHeight,cropWidth,image2.shape[3]];let imagesData=backend.dataIdMap.get(image2.dataId);let castedData;if(image2.dtype!=="float32"){castedData=cast({backend,inputs:{x:image2},attrs:{dtype:"float32"}});imagesData=backend.dataIdMap.get(castedData.dataId)}const imagesId=imagesData.id;const boxesId=backend.dataIdMap.get(boxes.dataId).id;const boxIndId=backend.dataIdMap.get(boxInd.dataId).id;const out=backend.makeOutput(outShape,"float32");const outId=backend.dataIdMap.get(out.dataId).id;const imagesShapeBytes=new Uint8Array(new Int32Array(image2.shape).buffer);wasmCropAndResize(imagesId,boxesId,boxIndId,numBoxes,imagesShapeBytes,cropHeight,cropWidth,InterpolationMethod[method],extrapolationValue,outId);if(castedData!=null){backend.disposeData(castedData.dataId)}return out}const cropAndResizeConfig={kernelName:tfjs_core20.CropAndResize,backendName:"wasm",setupFunc:setup9,kernelFunc:cropAndResize};const tfjs_core21=__toModule(require_tf_core_node());let wasmCumsum;function setup10(backend){wasmCumsum=backend.wasm.cwrap(tfjs_core21.Cumsum,null,["number","number","number","number","number","number"])}function cumsum(args){const{inputs,backend,attrs}=args;const{x}=inputs;const{axis,exclusive,reverse:reverse2}=attrs;const xRank=x.shape.length;tfjs_core21.util.assert(x.dtype==="float32"||x.dtype==="int32",()=>`cumsum does not support ${x.dtype} tensors in the WASM backend`);const permutation=tfjs_core21.backend_util.getAxesPermutation([axis],xRank);let permutedX=x;if(permutation!==null){permutedX=transpose({inputs:{x},attrs:{perm:permutation},backend})}const permutedAxis=tfjs_core21.backend_util.getInnerMostAxes(1,xRank)[0];tfjs_core21.backend_util.assertAxesAreInnerMostDims("cumsum",[permutedAxis],xRank);const permutedOut=backend.makeOutput(permutedX.shape,permutedX.dtype);const finalDim=permutedX.shape[permutedAxis];const permutedXId=backend.dataIdMap.get(permutedX.dataId).id;const permutedOutId=backend.dataIdMap.get(permutedOut.dataId).id;wasmCumsum(permutedXId,exclusive?1:0,reverse2?1:0,finalDim,permutedOutId,CppDType[x.dtype]);let out=permutedOut;if(permutation!==null){const undoPermutation=tfjs_core21.backend_util.getUndoAxesPermutation(permutation);out=transpose({inputs:{x:permutedOut},attrs:{perm:undoPermutation},backend});backend.disposeData(permutedX.dataId);backend.disposeData(permutedOut.dataId)}return out}const cumsumConfig={kernelName:tfjs_core21.Cumsum,backendName:"wasm",setupFunc:setup10,kernelFunc:cumsum};const tfjs_core22=__toModule(require_tf_core_node());let wasmDepthToSpace;function setup11(backend){wasmDepthToSpace=backend.wasm.cwrap(tfjs_core22.DepthToSpace,null,["number","number","number","array","number","array","array","number","number"])}function depthToSpace(args){const{backend,inputs,attrs}=args;const{x}=inputs;const{blockSize,dataFormat}=attrs;tfjs_core22.util.assert(blockSize>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${blockSize}`);const batchSize=x.shape[0];const inputHeight=dataFormat==="NHWC"?x.shape[1]:x.shape[2];const inputWidth=dataFormat==="NHWC"?x.shape[2]:x.shape[3];const inputDepth=dataFormat==="NHWC"?x.shape[3]:x.shape[1];const outputHeight=inputHeight*blockSize;const outputWidth=inputWidth*blockSize;const outputDepth=inputDepth/(blockSize*blockSize);const outputShape=dataFormat==="NHWC"?[batchSize,outputHeight,outputWidth,outputDepth]:[batchSize,outputDepth,outputHeight,outputWidth];const out=backend.makeOutput(outputShape,"float32");const xData=backend.dataIdMap.get(x.dataId);const xId=xData.id;const xStridesBytes=new Uint8Array(new Int32Array(tfjs_core22.util.computeStrides(x.shape)).buffer);const outputShapeBytes=new Uint8Array(new Int32Array(outputShape).buffer);const outStridesBytes=new Uint8Array(new Int32Array(tfjs_core22.util.computeStrides(outputShape)).buffer);const outId=backend.dataIdMap.get(out.dataId).id;const channelsLast=dataFormat==="NHWC"?1:0;wasmDepthToSpace(xId,blockSize,channelsLast,xStridesBytes,x.shape.length-1,outputShapeBytes,outStridesBytes,outputShape.length,outId);return out}const depthToSpaceConfig={kernelName:tfjs_core22.DepthToSpace,backendName:"wasm",setupFunc:setup11,kernelFunc:depthToSpace};const tfjs_core23=__toModule(require_tf_core_node());let wasmDepthwiseConv2d;function setup12(backend){wasmDepthwiseConv2d=backend.wasm.cwrap(tfjs_core23.DepthwiseConv2dNative,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function depthwiseConv2d(args){const{inputs,attrs,backend}=args;const{x,filter}=inputs;const xId=backend.dataIdMap.get(x.dataId).id;const filterId=backend.dataIdMap.get(filter.dataId).id;const{strides,dilations,pad:pad2,dimRoundingMode}=attrs;const $dilations=dilations==null?[1,1]:dilations;const convInfo=tfjs_core23.backend_util.computeConv2DInfo(x.shape,filter.shape,strides,$dilations,pad2,dimRoundingMode,true);const filterHeight=convInfo.filterHeight;const filterWidth=convInfo.filterWidth;const padTop=convInfo.padInfo.top;const padRight=convInfo.padInfo.right;const padBottom=convInfo.padInfo.bottom;const padLeft=convInfo.padInfo.left;const dilationHeight=convInfo.dilationHeight;const dilationWidth=convInfo.dilationWidth;const strideHeight=convInfo.strideHeight;const strideWidth=convInfo.strideWidth;const inputChannels=convInfo.inChannels;const outputChannels=convInfo.outChannels;const isSamePad=convInfo.padInfo.type==="SAME"?1:0;if(convInfo.dataFormat!=="channelsLast"){throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${convInfo.dataFormat}'. Please use 'channelsLast'.`)}const out=backend.makeOutput(convInfo.outShape,"float32");const outId=backend.dataIdMap.get(out.dataId).id;wasmDepthwiseConv2d(xId,x.shape[0],x.shape[1],x.shape[2],filterId,filterHeight,filterWidth,padTop,padRight,padBottom,padLeft,isSamePad,dilationHeight,dilationWidth,strideHeight,strideWidth,inputChannels,outputChannels,outId);return out}const depthwiseConv2dNativeConfig={kernelName:tfjs_core23.DepthwiseConv2dNative,backendName:"wasm",setupFunc:setup12,kernelFunc:depthwiseConv2d};const tfjs_core24=__toModule(require_tf_core_node());const supportsFullBroadcast2=true;const divConfig=createBinaryKernelConfig(tfjs_core24.Div,supportsFullBroadcast2);const tfjs_core25=__toModule(require_tf_core_node());const supportsFullBroadcast3=false;const equalConfig=createBinaryKernelConfig(tfjs_core25.Equal,supportsFullBroadcast3,"bool");const tfjs_core26=__toModule(require_tf_core_node());const expConfig=createUnaryKernelConfig(tfjs_core26.Exp);const tfjs_core27=__toModule(require_tf_core_node());function fill(args){const{attrs:{shape,value,dtype},backend}=args;const out=backend.makeOutput(shape,dtype);const outVals=backend.typedArrayFromHeap(out);outVals.fill(value);return out}const fillConfig={kernelName:tfjs_core27.Fill,backendName:"wasm",kernelFunc:fill};const tfjs_core28=__toModule(require_tf_core_node());let wasmFlipLeftRight;function setup13(backend){wasmFlipLeftRight=backend.wasm.cwrap(tfjs_core28.FlipLeftRight,null,["number","number","number","number","number","number"])}function flipLeftRight(args){const{inputs,backend}=args;const{image:image2}=inputs;const out=backend.makeOutput(image2.shape,image2.dtype);const imageId=backend.dataIdMap.get(image2.dataId).id;const outId=backend.dataIdMap.get(out.dataId).id;const[batch,imageHeight,imageWidth,numChannels]=image2.shape;wasmFlipLeftRight(imageId,batch,imageHeight,imageWidth,numChannels,outId);return out}const flipLeftRightConfig={kernelName:tfjs_core28.FlipLeftRight,backendName:"wasm",kernelFunc:flipLeftRight,setupFunc:setup13};const tfjs_core29=__toModule(require_tf_core_node());const supportsFullBroadcast4=false;const floorDivConfig=createBinaryKernelConfig(tfjs_core29.FloorDiv,supportsFullBroadcast4);const tfjs_core30=__toModule(require_tf_core_node());let wasmBatchNorm;function setup14(backend){wasmBatchNorm=backend.wasm.cwrap(tfjs_core30.FusedBatchNorm,null,["number","number","number","number","number","number","number"])}function fusedBatchNorm(args){const{backend,inputs,attrs}=args;const{varianceEpsilon}=attrs;const{x,mean,variance,offset,scale}=inputs;const xId=backend.dataIdMap.get(x.dataId).id;const meanId=backend.dataIdMap.get(mean.dataId).id;const varianceId=backend.dataIdMap.get(variance.dataId).id;const offsetId=offset!=null?backend.dataIdMap.get(offset.dataId).id:0;const scaleId=scale!=null?backend.dataIdMap.get(scale.dataId).id:0;const out=backend.makeOutput(x.shape,x.dtype);if(tfjs_core30.util.sizeFromShape(x.shape)===0){return out}const outId=backend.dataIdMap.get(out.dataId).id;wasmBatchNorm(xId,meanId,varianceId,offsetId,scaleId,varianceEpsilon,outId);return out}const fusedBatchNormConfig={kernelName:tfjs_core30.FusedBatchNorm,backendName:"wasm",setupFunc:setup14,kernelFunc:fusedBatchNorm};const tfjs_core31=__toModule(require_tf_core_node());let wasmFusedConv2d;function setup15(backend){wasmFusedConv2d=backend.wasm.cwrap(tfjs_core31.FusedConv2D,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function fusedConv2d(args){const{inputs,attrs,backend}=args;const{x,filter,bias,preluActivationWeights}=inputs;const{strides,pad:pad2,dilations,dataFormat,dimRoundingMode,activation}=attrs;const convInfo=tfjs_core31.backend_util.computeConv2DInfo(x.shape,filter.shape,strides,dilations,pad2,dimRoundingMode);const fusedActivation=FusableActivation[activation];if(fusedActivation==null){throw new Error(`${activation} activation not yet supported for FusedConv2D in the wasm backend.`)}const xId=backend.dataIdMap.get(x.dataId).id;const filterId=backend.dataIdMap.get(filter.dataId).id;const outputChannels=convInfo.outChannels;let biasId=0;if(bias!=null){const biasData=backend.dataIdMap.get(bias.dataId);if(biasData.shape.length!==1){throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${biasData.shape.length}.`)}if(biasData.shape[0]!==outputChannels){throw new Error(`FusedConv2D bias shape (${biasData.shape}) does not match the number of output channels (${outputChannels})`)}biasId=biasData.id}const filterHeight=convInfo.filterHeight;const filterWidth=convInfo.filterWidth;const padTop=convInfo.padInfo.top;const padRight=convInfo.padInfo.right;const padBottom=convInfo.padInfo.bottom;const padLeft=convInfo.padInfo.left;const dilationHeight=convInfo.dilationHeight;const dilationWidth=convInfo.dilationWidth;const strideHeight=convInfo.strideHeight;const strideWidth=convInfo.strideWidth;const inputChannels=convInfo.inChannels;const isSamePad=convInfo.padInfo.type==="SAME"?1:0;const batchSize=convInfo.batchSize;const inHeight=convInfo.inHeight;const inWidth=convInfo.inWidth;if(dataFormat!=="NHWC"){throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${dataFormat}'. Please use 'NHWC'.`)}const out=backend.makeOutput(convInfo.outShape,"float32");const outId=backend.dataIdMap.get(out.dataId).id;const preluActivationWeightsId=preluActivationWeights==null?0:backend.dataIdMap.get(preluActivationWeights.dataId).id;wasmFusedConv2d(xId,batchSize,inHeight,inWidth,filterId,filterHeight,filterWidth,biasId,padTop,padRight,padBottom,padLeft,isSamePad,dilationHeight,dilationWidth,strideHeight,strideWidth,inputChannels,outputChannels,fusedActivation,preluActivationWeightsId,outId);return out}const fusedConv2DConfig={kernelName:tfjs_core31.FusedConv2D,backendName:"wasm",setupFunc:setup15,kernelFunc:fusedConv2d};const tfjs_core32=__toModule(require_tf_core_node());let wasmFusedDepthwiseConv2d;function setup16(backend){wasmFusedDepthwiseConv2d=backend.wasm.cwrap(tfjs_core32.FusedDepthwiseConv2D,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function fusedDepthwiseConv2d(args){const{inputs,attrs,backend}=args;const{x,filter,bias,preluActivationWeights}=inputs;const{strides,pad:pad2,dilations,dataFormat,dimRoundingMode,activation}=attrs;const convInfo=tfjs_core32.backend_util.computeConv2DInfo(x.shape,filter.shape,strides,dilations,pad2,dimRoundingMode,true);const fusedActivation=FusableActivation[activation];if(fusedActivation==null){throw new Error(`${activation} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`)}const xId=backend.dataIdMap.get(x.dataId).id;const filterId=backend.dataIdMap.get(filter.dataId).id;const outputChannels=convInfo.outChannels;let biasId=0;if(bias!=null){const biasData=backend.dataIdMap.get(bias.dataId);if(biasData.shape.length!==1){throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${biasData.shape.length}.`)}if(biasData.shape[0]!==outputChannels){throw new Error(`FusedDepthwiseConv2D bias shape (${biasData.shape}) does not match the number of output channels (${outputChannels})`)}biasId=biasData.id}const filterHeight=convInfo.filterHeight;const filterWidth=convInfo.filterWidth;const padTop=convInfo.padInfo.top;const padRight=convInfo.padInfo.right;const padBottom=convInfo.padInfo.bottom;const padLeft=convInfo.padInfo.left;const dilationHeight=convInfo.dilationHeight;const dilationWidth=convInfo.dilationWidth;const strideHeight=convInfo.strideHeight;const strideWidth=convInfo.strideWidth;const inputChannels=convInfo.inChannels;const isSamePad=convInfo.padInfo.type==="SAME"?1:0;const batchSize=convInfo.batchSize;const inHeight=convInfo.inHeight;const inWidth=convInfo.inWidth;if(dataFormat!=="NHWC"){throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${dataFormat}'. Please use 'NHWC'.`)}const out=backend.makeOutput(convInfo.outShape,"float32");const outId=backend.dataIdMap.get(out.dataId).id;const preluActivationWeightsId=preluActivationWeights==null?0:backend.dataIdMap.get(preluActivationWeights.dataId).id;wasmFusedDepthwiseConv2d(xId,batchSize,inHeight,inWidth,filterId,filterHeight,filterWidth,biasId,padTop,padRight,padBottom,padLeft,isSamePad,dilationHeight,dilationWidth,strideHeight,strideWidth,inputChannels,outputChannels,fusedActivation,preluActivationWeightsId,outId);return out}const fusedDepthwiseConv2DConfig={kernelName:tfjs_core32.FusedDepthwiseConv2D,backendName:"wasm",setupFunc:setup16,kernelFunc:fusedDepthwiseConv2d};const tfjs_core33=__toModule(require_tf_core_node());let wasmGatherNd;function setup17(backend){wasmGatherNd=backend.wasm.cwrap(tfjs_core33.GatherNd,null,["number","number","number","number","number","number","array","number"])}function gatherNd(args){const{backend,inputs}=args;const{params,indices}=inputs;const[resultShape,numSlices,sliceSize,strides]=tfjs_core33.gather_util.prepareAndValidate(params,indices);const out=backend.makeOutput(resultShape,params.dtype);if(numSlices===0){return out}const indicesShape=indices.shape;const sliceRank=indicesShape[indicesShape.length-1];const xData=backend.dataIdMap.get(params.dataId);const xId=xData.id;const indicesData=backend.dataIdMap.get(indices.dataId);const indicesId=indicesData.id;const stridesBytes=new Uint8Array(new Int32Array(strides).buffer);const outId=backend.dataIdMap.get(out.dataId).id;wasmGatherNd(xId,CppDType[params.dtype],indicesId,numSlices,sliceRank,sliceSize,stridesBytes,outId);return out}const gatherNdConfig={kernelName:tfjs_core33.GatherNd,backendName:"wasm",setupFunc:setup17,kernelFunc:gatherNd};const tfjs_core34=__toModule(require_tf_core_node());let wasmGather;function setup18(backend){wasmGather=backend.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function gatherV2(args){const{backend,inputs,attrs}=args;const{x,indices}=inputs;const{axis}=attrs;const newShape=x.shape.slice();newShape[axis]=tfjs_core34.util.sizeFromShape(indices.shape);const stridesSize=x.shape.length-1;const out=backend.makeOutput(newShape,x.dtype);if(tfjs_core34.util.sizeFromShape(x.shape)===0){return out}const xData=backend.dataIdMap.get(x.dataId);const xId=xData.id;const indicesData=backend.dataIdMap.get(indices.dataId);const indicesId=indicesData.id;const outId=backend.dataIdMap.get(out.dataId).id;const xStridesBytes=new Uint8Array(new Int32Array(tfjs_core34.util.computeStrides(x.shape)).buffer);const outStridesBytes=new Uint8Array(new Int32Array(tfjs_core34.util.computeStrides(newShape)).buffer);wasmGather(xId,CppDType[x.dtype],xStridesBytes,stridesSize,indicesId,axis,outStridesBytes,outId);const parsedAxis=tfjs_core34.util.parseAxisParam(axis,x.shape)[0];const shapeInfo=tfjs_core34.backend_util.segment_util.collectGatherOpShapeInfo(x,indices,parsedAxis);out.shape=shapeInfo.outputShape;return out}const gatherV2Config={kernelName:tfjs_core34.GatherV2,backendName:"wasm",setupFunc:setup18,kernelFunc:gatherV2};const tfjs_core35=__toModule(require_tf_core_node());const supportsFullBroadcast5=false;const greaterConfig=createBinaryKernelConfig(tfjs_core35.Greater,supportsFullBroadcast5,"bool");const tfjs_core36=__toModule(require_tf_core_node());const supportsFullBroadcast6=false;const greaterEqualConfig=createBinaryKernelConfig(tfjs_core36.GreaterEqual,supportsFullBroadcast6,"bool");const tfjs_core37=__toModule(require_tf_core_node());const supportsFullBroadcast7=false;const lessConfig=createBinaryKernelConfig(tfjs_core37.Less,supportsFullBroadcast7,"bool");const tfjs_core38=__toModule(require_tf_core_node());const supportsFullBroadcast8=false;const lessEqualConfig=createBinaryKernelConfig(tfjs_core38.LessEqual,supportsFullBroadcast8,"bool");const tfjs_core39=__toModule(require_tf_core_node());const logConfig=createUnaryKernelConfig(tfjs_core39.Log);const tfjs_core40=__toModule(require_tf_core_node());const supportsFullBroadcast9=false;const logicalAndConfig=createBinaryKernelConfig(tfjs_core40.LogicalAnd,supportsFullBroadcast9,"bool");const tfjs_core41=__toModule(require_tf_core_node());const tfjs_core42=__toModule(require_tf_core_node());let wasmMax;function setup19(backend){wasmMax=backend.wasm.cwrap(tfjs_core42.Max,null,["number, number, number"])}function max(args){const{backend,inputs,attrs}=args;const{reductionIndices:axis,keepDims}=attrs;const{x}=inputs;const xId=backend.dataIdMap.get(x.dataId).id;let inputId=xId;let input=x;const{transposed,axes,originalAxes,inputWasTransposed}=permuteAxesAndTranspose(x,axis,backend);if(inputWasTransposed){const transposedId=backend.dataIdMap.get(transposed.dataId).id;input=transposed;inputId=transposedId}const inputRank=input.shape.length;tfjs_core41.backend_util.assertAxesAreInnerMostDims("max",axes,inputRank);const[outShape,reduceShape]=tfjs_core41.backend_util.computeOutAndReduceShapes(input.shape,axes);const reduceSize=tfjs_core41.util.sizeFromShape(reduceShape);const out=backend.makeOutput(outShape,x.dtype);if(tfjs_core41.util.sizeFromShape(input.shape)!==0){const outId=backend.dataIdMap.get(out.dataId).id;wasmMax(inputId,reduceSize,outId)}if(inputWasTransposed){backend.disposeData(transposed.dataId)}if(keepDims){const newShape=tfjs_core41.backend_util.expandShapeToKeepDim(out.shape,originalAxes);out.shape=newShape}return out}const maxConfig={kernelName:tfjs_core42.Max,backendName:"wasm",setupFunc:setup19,kernelFunc:max};const tfjs_core43=__toModule(require_tf_core_node());const supportsFullBroadcast10=false;const maximumConfig=createBinaryKernelConfig(tfjs_core43.Maximum,supportsFullBroadcast10);const tfjs_core44=__toModule(require_tf_core_node());let wasmMaxPool;function setup20(backend){wasmMaxPool=backend.wasm.cwrap(tfjs_core44.MaxPool,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function maxPool(args){const{inputs,attrs,backend}=args;const x=inputs.x;const xId=backend.dataIdMap.get(x.dataId).id;const{filterSize,strides,pad:pad2,dimRoundingMode}=attrs;const convInfo=tfjs_core44.backend_util.computePool2DInfo(x.shape,filterSize,strides,1,pad2,dimRoundingMode);const filterHeight=convInfo.filterHeight;const filterWidth=convInfo.filterWidth;const padTop=convInfo.padInfo.top;const padRight=convInfo.padInfo.right;const padBottom=convInfo.padInfo.bottom;const padLeft=convInfo.padInfo.left;const dilationHeight=convInfo.dilationHeight;const dilationWidth=convInfo.dilationWidth;const strideHeight=convInfo.strideHeight;const strideWidth=convInfo.strideWidth;const inputChannels=convInfo.inChannels;const outputChannels=convInfo.outChannels;if(convInfo.dataFormat!=="channelsLast"){throw new Error(`wasm backend does not support dataFormat:'${convInfo.dataFormat}'. Please use 'channelsLast'.`)}const out=backend.makeOutput(convInfo.outShape,"float32");const outId=backend.dataIdMap.get(out.dataId).id;wasmMaxPool(xId,x.shape[0],x.shape[1],x.shape[2],filterHeight,filterWidth,padTop,padRight,padBottom,padLeft,dilationHeight,dilationWidth,strideHeight,strideWidth,inputChannels,outputChannels,outId);return out}const maxPoolConfig={kernelName:tfjs_core44.MaxPool,backendName:"wasm",setupFunc:setup20,kernelFunc:maxPool};const tfjs_core45=__toModule(require_tf_core_node());let wasmMin;function setup21(backend){wasmMin=backend.wasm.cwrap(tfjs_core45.Min,null,["number, number, number"])}function min(args){const{backend,inputs,attrs}=args;const{axis,keepDims}=attrs;const{x}=inputs;const xId=backend.dataIdMap.get(x.dataId).id;let inputId=xId;let input=x;const{transposed,axes,originalAxes,inputWasTransposed}=permuteAxesAndTranspose(x,axis,backend);if(inputWasTransposed){const transposedId=backend.dataIdMap.get(transposed.dataId).id;if(transposedId!==xId){input=transposed;inputId=transposedId}}const inputRank=input.shape.length;tfjs_core45.backend_util.assertAxesAreInnerMostDims("min",axes,inputRank);const[outShape,reduceShape]=tfjs_core45.backend_util.computeOutAndReduceShapes(input.shape,axes);const reduceSize=tfjs_core45.util.sizeFromShape(reduceShape);const out=backend.makeOutput(outShape,input.dtype);if(tfjs_core45.util.sizeFromShape(input.shape)!==0){const outId=backend.dataIdMap.get(out.dataId).id;wasmMin(inputId,reduceSize,outId)}if(inputWasTransposed){backend.disposeData(transposed.dataId)}if(keepDims){const newShape=tfjs_core45.backend_util.expandShapeToKeepDim(out.shape,originalAxes);out.shape=newShape}return out}const minConfig={kernelName:tfjs_core45.Min,backendName:"wasm",setupFunc:setup21,kernelFunc:min};const tfjs_core46=__toModule(require_tf_core_node());const supportsFullBroadcast11=false;const minimumConfig=createBinaryKernelConfig(tfjs_core46.Minimum,supportsFullBroadcast11);const tfjs_core47=__toModule(require_tf_core_node());const supportsFullBroadcast12=true;const multiplyConfig=createBinaryKernelConfig(tfjs_core47.Multiply,supportsFullBroadcast12);const tfjs_core48=__toModule(require_tf_core_node());const negateConfig=createUnaryKernelConfig(tfjs_core48.Negate);const tfjs_core49=__toModule(require_tf_core_node());function parseResultStruct(backend,resOffset){const result=new Int32Array(backend.wasm.HEAPU8.buffer,resOffset,4);const pSelectedIndices=result[0];const selectedSize=result[1];const pSelectedScores=result[2];const pValidOutputs=result[3];backend.wasm._free(resOffset);return{pSelectedIndices,selectedSize,pSelectedScores,pValidOutputs}}let wasmFunc3;function setup22(backend){wasmFunc3=backend.wasm.cwrap(tfjs_core49.NonMaxSuppressionV3,"number",["number","number","number","number","number"])}function kernelFunc(args){const{backend,inputs,attrs}=args;const{iouThreshold,maxOutputSize,scoreThreshold}=attrs;const{boxes,scores}=inputs;const boxesId=backend.dataIdMap.get(boxes.dataId).id;const scoresId=backend.dataIdMap.get(scores.dataId).id;const resOffset=wasmFunc3(boxesId,scoresId,maxOutputSize,iouThreshold,scoreThreshold);const{pSelectedIndices,selectedSize,pSelectedScores,pValidOutputs}=parseResultStruct(backend,resOffset);backend.wasm._free(pSelectedScores);backend.wasm._free(pValidOutputs);const selectedIndicesTensor=backend.makeOutput([selectedSize],"int32",pSelectedIndices);return selectedIndicesTensor}const nonMaxSuppressionV3Config={kernelName:tfjs_core49.NonMaxSuppressionV3,backendName:"wasm",setupFunc:setup22,kernelFunc};const tfjs_core50=__toModule(require_tf_core_node());let wasmFunc4;function setup23(backend){wasmFunc4=backend.wasm.cwrap(tfjs_core50.NonMaxSuppressionV4,"number",["number","number","number","number","number","bool"])}function nonMaxSuppressionV4(args){const{backend,inputs,attrs}=args;const{iouThreshold,maxOutputSize,scoreThreshold,padToMaxOutputSize}=attrs;const{boxes,scores}=inputs;const boxesId=backend.dataIdMap.get(boxes.dataId).id;const scoresId=backend.dataIdMap.get(scores.dataId).id;const resOffset=wasmFunc4(boxesId,scoresId,maxOutputSize,iouThreshold,scoreThreshold,padToMaxOutputSize);const{pSelectedIndices,selectedSize,pSelectedScores,pValidOutputs}=parseResultStruct(backend,resOffset);backend.wasm._free(pSelectedScores);const selectedIndicesTensor=backend.makeOutput([selectedSize],"int32",pSelectedIndices);const validOutputsTensor=backend.makeOutput([],"int32",pValidOutputs);return[selectedIndicesTensor,validOutputsTensor]}const nonMaxSuppressionV4Config={kernelName:tfjs_core50.NonMaxSuppressionV4,backendName:"wasm",setupFunc:setup23,kernelFunc:nonMaxSuppressionV4};const tfjs_core51=__toModule(require_tf_core_node());let wasmFunc5;function setup24(backend){wasmFunc5=backend.wasm.cwrap(tfjs_core51.NonMaxSuppressionV5,"number",["number","number","number","number","number","number"])}function kernelFunc2(args){const{backend,inputs,attrs}=args;const{iouThreshold,maxOutputSize,scoreThreshold,softNmsSigma}=attrs;const{boxes,scores}=inputs;const boxesId=backend.dataIdMap.get(boxes.dataId).id;const scoresId=backend.dataIdMap.get(scores.dataId).id;const resOffset=wasmFunc5(boxesId,scoresId,maxOutputSize,iouThreshold,scoreThreshold,softNmsSigma);const{pSelectedIndices,selectedSize,pSelectedScores,pValidOutputs}=parseResultStruct(backend,resOffset);backend.wasm._free(pValidOutputs);const selectedIndicesTensor=backend.makeOutput([selectedSize],"int32",pSelectedIndices);const selectedScoresTensor=backend.makeOutput([selectedSize],"float32",pSelectedScores);return[selectedIndicesTensor,selectedScoresTensor]}const nonMaxSuppressionV5Config={kernelName:tfjs_core51.NonMaxSuppressionV5,backendName:"wasm",setupFunc:setup24,kernelFunc:kernelFunc2};const tfjs_core52=__toModule(require_tf_core_node());const supportsFullBroadcast13=false;const notEqualConfig=createBinaryKernelConfig(tfjs_core52.NotEqual,supportsFullBroadcast13,"bool");const tfjs_core53=__toModule(require_tf_core_node());let wasmOneHot;function setup25(backend){wasmOneHot=backend.wasm.cwrap(tfjs_core53.OneHot,null,["number","number","number","number","number"])}function oneHot(args){const{inputs,backend,attrs}=args;const{indices}=inputs;const{depth,onValue,offValue}=attrs;const out=backend.makeOutput([...indices.shape,depth],"int32");const outId=backend.dataIdMap.get(out.dataId).id;const indicesData=backend.dataIdMap.get(indices.dataId);const indicesId=indicesData.id;wasmOneHot(indicesId,depth,onValue,offValue,outId);return out}const oneHotConfig={kernelName:tfjs_core53.OneHot,backendName:"wasm",setupFunc:setup25,kernelFunc:oneHot};const tfjs_core54=__toModule(require_tf_core_node());function onesLike(args){const{inputs:{x},backend}=args;const out=backend.makeOutput(x.shape,x.dtype);const outVals=backend.typedArrayFromHeap(out);outVals.fill(1);return out}const onesLikeConfig={kernelName:tfjs_core54.OnesLike,backendName:"wasm",kernelFunc:onesLike};const tfjs_core55=__toModule(require_tf_core_node());let wasmPadV2;function setup26(backend){wasmPadV2=backend.wasm.cwrap(tfjs_core55.PadV2,null,["number","array","number","number","array","array","number","number"])}function pad(args){const{inputs:{x},backend,attrs:{paddings,constantValue}}=args;const outShape=paddings.map((p,i)=>p[0]+x.shape[i]+p[1]);const xId=backend.dataIdMap.get(x.dataId).id;const out=backend.makeOutput(outShape,x.dtype);const outId=backend.dataIdMap.get(out.dataId).id;const xShapeBytes=new Uint8Array(new Int32Array(x.shape).buffer);const prePaddingsFlat=paddings.map(padTuple=>padTuple[0]);const postPaddingsFlat=paddings.map(padTuple=>padTuple[1]);const prePaddingsBytes=new Uint8Array(new Int32Array(prePaddingsFlat).buffer);const postPaddingsBytes=new Uint8Array(new Int32Array(postPaddingsFlat).buffer);wasmPadV2(xId,xShapeBytes,x.shape.length,CppDType[x.dtype],prePaddingsBytes,postPaddingsBytes,constantValue,outId);return out}const padV2Config={kernelName:tfjs_core55.PadV2,backendName:"wasm",kernelFunc:pad,setupFunc:setup26};const tfjs_core56=__toModule(require_tf_core_node());const supportsFullBroadcast14=false;const powConfig=createBinaryKernelConfig(tfjs_core56.Pow,supportsFullBroadcast14);const tfjs_core57=__toModule(require_tf_core_node());let wasmPrelu;function setup27(backend){wasmPrelu=backend.wasm.cwrap(tfjs_core57.Prelu,null,["number","number","number"])}function prelu(args){const{inputs,backend}=args;const{x,alpha}=inputs;const xId=backend.dataIdMap.get(x.dataId).id;const weightsId=backend.dataIdMap.get(alpha.dataId).id;const out=backend.makeOutput(x.shape,"float32");const outId=backend.dataIdMap.get(out.dataId).id;wasmPrelu(xId,weightsId,outId);return out}const preluConfig={kernelName:tfjs_core57.Prelu,backendName:"wasm",setupFunc:setup27,kernelFunc:prelu};const tfjs_core58=__toModule(require_tf_core_node());const reluConfig=createUnaryKernelConfig(tfjs_core58.Relu);const tfjs_core59=__toModule(require_tf_core_node());const relu6Config=createUnaryKernelConfig(tfjs_core59.Relu6);const tfjs_core60=__toModule(require_tf_core_node());let wasmResizeBilinear;function setup28(backend){wasmResizeBilinear=backend.wasm.cwrap(tfjs_core60.ResizeBilinear,null,["number","number","number","number","number","number","number","number","number"])}function resizeBilinear(args){const{backend,inputs,attrs}=args;const{images}=inputs;const{alignCorners,size}=attrs;const[newHeight,newWidth]=size;const[batch,oldHeight,oldWidth,numChannels]=images.shape;const outShape=[batch,newHeight,newWidth,numChannels];let xData=backend.dataIdMap.get(images.dataId);let castedData;if(xData.dtype!=="float32"){castedData=cast({backend,inputs:{x:images},attrs:{dtype:"float32"}});xData=backend.dataIdMap.get(castedData.dataId)}const xId=xData.id;const out=backend.makeOutput(outShape,"float32");if(tfjs_core60.util.sizeFromShape(images.shape)===0){return out}const outId=backend.dataIdMap.get(out.dataId).id;wasmResizeBilinear(xId,batch,oldHeight,oldWidth,numChannels,newHeight,newWidth,alignCorners?1:0,outId);if(castedData!=null){backend.disposeData(castedData.dataId)}return out}const resizeBilinearConfig={kernelName:tfjs_core60.ResizeBilinear,backendName:"wasm",setupFunc:setup28,kernelFunc:resizeBilinear};const tfjs_core61=__toModule(require_tf_core_node());let wasmReverse;function setup29(backend){wasmReverse=backend.wasm.cwrap(tfjs_core61.Reverse,null,["number","array","number","array","number","number"])}function reverse(args){const{inputs,backend,attrs}=args;const{x}=inputs;const{dims}=attrs;const axes=tfjs_core61.util.parseAxisParam(dims,x.shape);if(x.shape.length===0){return identity({inputs:{x},backend})}const out=backend.makeOutput(x.shape,x.dtype);const xId=backend.dataIdMap.get(x.dataId).id;const outId=backend.dataIdMap.get(out.dataId).id;const axesBytes=new Uint8Array(new Int32Array(axes).buffer);const outShapeBytes=new Uint8Array(new Int32Array(x.shape).buffer);wasmReverse(xId,axesBytes,axes.length,outShapeBytes,x.shape.length,outId);return reshape({inputs:{x:out},attrs:{shape:x.shape},backend})}const reverseConfig={kernelName:tfjs_core61.Reverse,backendName:"wasm",kernelFunc:reverse,setupFunc:setup29};const tfjs_core62=__toModule(require_tf_core_node());const tfjs_core63=__toModule(require_tf_core_node());let wasmRotate;function setup30(backend){wasmRotate=backend.wasm.cwrap(tfjs_core62.RotateWithOffset,null,["number","number","number","number","number","number","number","number","array","number","number"])}function rotateWithOffset(args){const{inputs,backend,attrs}=args;const{image:image2}=inputs;const{radians,fillValue,center}=attrs;const out=backend.makeOutput(image2.shape,image2.dtype);const imageId=backend.dataIdMap.get(image2.dataId).id;const outId=backend.dataIdMap.get(out.dataId).id;const[batch,imageHeight,imageWidth,numChannels]=image2.shape;const[centerX,centerY]=tfjs_core63.backend_util.getImageCenter(center,imageHeight,imageWidth);const fillIsBlack=fillValue===0;const fullOpacityValue=255;const fillValues=typeof fillValue==="number"?[fillValue,fillValue,fillValue,fillIsBlack?0:fullOpacityValue]:[...fillValue,fullOpacityValue];const fillBytes=new Uint8Array(new Int32Array(fillValues).buffer);wasmRotate(imageId,batch,imageHeight,imageWidth,numChannels,radians,centerX,centerY,fillBytes,fillValues.length,outId);return out}const rotateWithOffsetConfig={kernelName:tfjs_core62.RotateWithOffset,backendName:"wasm",kernelFunc:rotateWithOffset,setupFunc:setup30};const tfjs_core64=__toModule(require_tf_core_node());const rsqrtConfig=createUnaryKernelConfig(tfjs_core64.Rsqrt);const tfjs_core65=__toModule(require_tf_core_node());let wasmScatterNd;function setup31(backend){wasmScatterNd=backend.wasm.cwrap(tfjs_core65.ScatterNd,null,["number","number","number","number","number","number","array","number","number"])}function scatterNd(args){const{backend,inputs,attrs}=args;const{indices,updates}=inputs;const{shape}=attrs;const out=backend.makeOutput(shape,updates.dtype);if(tfjs_core65.util.sizeFromShape(shape)===0){return out}const{sliceRank,numUpdates,sliceSize,strides,outputSize}=tfjs_core65.scatter_util.calculateShapes(updates,indices,shape);const indicesData=backend.dataIdMap.get(indices.dataId);const indicesId=indicesData.id;const updatesData=backend.dataIdMap.get(updates.dataId);const updatesId=updatesData.id;const stridesBytes=new Uint8Array(new Int32Array(strides).buffer);const outId=backend.dataIdMap.get(out.dataId).id;wasmScatterNd(indicesId,updatesId,CppDType[updates.dtype],sliceRank,numUpdates,sliceSize,stridesBytes,outputSize,outId);return out}const scatterNdConfig={kernelName:tfjs_core65.ScatterNd,backendName:"wasm",setupFunc:setup31,kernelFunc:scatterNd};const tfjs_core66=__toModule(require_tf_core_node());let wasmSelect;function setup32(backend){wasmSelect=backend.wasm.cwrap(tfjs_core66.SelectV2,null,["number","number","number","number","number"])}function select(args){const{inputs,backend}=args;const{condition,t,e}=inputs;const conditionId=backend.dataIdMap.get(condition.dataId).id;const tId=backend.dataIdMap.get(t.dataId).id;const eId=backend.dataIdMap.get(e.dataId).id;const out=backend.makeOutput(t.shape,t.dtype);const outId=backend.dataIdMap.get(out.dataId).id;const cRank=condition.shape.length;const tRank=t.shape.length;const offset=cRank===0||cRank>1||tRank===1?1:tfjs_core66.util.sizeFromShape(t.shape.slice(1));wasmSelect(conditionId,tId,eId,offset,outId);return out}const selectV2Config={kernelName:tfjs_core66.SelectV2,backendName:"wasm",kernelFunc:select,setupFunc:setup32};const tfjs_core67=__toModule(require_tf_core_node());let wasmFunc6;function setup33(backend){wasmFunc6=backend.wasm.cwrap(tfjs_core67.Sigmoid,null,["number","number"])}function sigmoid(args){const{backend,inputs:{x}}=args;const xId=backend.dataIdMap.get(x.dataId).id;const out=backend.makeOutput(x.shape,x.dtype);const outId=backend.dataIdMap.get(out.dataId).id;if(tfjs_core67.util.sizeFromShape(out.shape)===0){return out}wasmFunc6(xId,outId);return out}const sigmoidConfig={kernelName:"Sigmoid",backendName:"wasm",setupFunc:setup33,kernelFunc:sigmoid};const tfjs_core68=__toModule(require_tf_core_node());const sinConfig=createUnaryKernelConfig(tfjs_core68.Sin);const tfjs_core69=__toModule(require_tf_core_node());function slice(args){const{inputs:{x},attrs:{begin,size},backend}=args;const[begin_,size_]=tfjs_core69.slice_util.parseSliceParams(x,begin,size);const isContinous=tfjs_core69.slice_util.isSliceContinous(x.shape,begin_,size_);const xVals=backend.typedArrayFromHeap(x);const out=backend.makeOutput(size_,x.dtype);const outVals=backend.typedArrayFromHeap(out);const xStrides=tfjs_core69.util.computeStrides(x.shape);if(isContinous){const flatOffset=tfjs_core69.slice_util.computeFlatOffset(begin_,xStrides);outVals.set(xVals.subarray(flatOffset,flatOffset+tfjs_core69.util.sizeFromShape(size_)));return out}const rank=x.shape.length;if(rank===2){slice2d(xVals,xStrides[0],outVals,begin_,size_)}else if(rank===3){slice3d(xVals,xStrides[0],xStrides[1],outVals,begin_,size_)}else if(rank===4){slice4d(xVals,xStrides[0],xStrides[1],xStrides[2],outVals,begin_,size_)}else{genericSliceSlow(xVals,x,outVals,begin_,size_)}return out}function slice2d(xVals,xStride,outVals,begin,size){let outOffset=0;const beginI=begin[0];const beginJ=begin[1];const endI=beginI+size[0];for(let i=beginI;i<endI;i++){const xOffset=i*xStride+beginJ;outVals.set(xVals.subarray(xOffset,xOffset+size[1]),outOffset);outOffset+=size[1]}}function slice3d(xVals,xStride1,xStride2,outVals,begin,size){let outOffset=0;const beginI=begin[0];const beginJ=begin[1];const beginK=begin[2];const endI=beginI+size[0];const endJ=beginJ+size[1];for(let i=beginI;i<endI;i++){for(let j=beginJ;j<endJ;j++){const xOffset=i*xStride1+j*xStride2+beginK;outVals.set(xVals.subarray(xOffset,xOffset+size[2]),outOffset);outOffset+=size[2]}}}function slice4d(xVals,xStride1,xStride2,xStride3,outVals,begin,size){let outOffset=0;const beginI=begin[0];const beginJ=begin[1];const beginK=begin[2];const endI=beginI+size[0];const endJ=beginJ+size[1];const endK=beginK+size[2];const beginL=begin[3];for(let i=beginI;i<endI;i++){for(let j=beginJ;j<endJ;j++){for(let k=beginK;k<endK;k++){const xOffset=i*xStride1+j*xStride2+k*xStride3+beginL;outVals.set(xVals.subarray(xOffset,xOffset+size[3]),outOffset);outOffset+=size[3]}}}}function genericSliceSlow(xVals,xInfo,outVals,begin,size){const outBuf=tfjs_core69.buffer(size,xInfo.dtype,outVals);const xBuf=tfjs_core69.buffer(xInfo.shape,xInfo.dtype,xVals);for(let i=0;i<outBuf.size;++i){const loc=outBuf.indexToLoc(i);const xLoc=loc.map((idx,j)=>idx+begin[j]);outVals[i]=xBuf.get(...xLoc)}}const sliceConfig={kernelName:tfjs_core69.Slice,backendName:"wasm",kernelFunc:slice};const tfjs_core70=__toModule(require_tf_core_node());let wasmFunc7;function setup34(backend){wasmFunc7=backend.wasm.cwrap(tfjs_core70.Softmax,null,["number","number","number","number"])}function softmax(args){const{backend,inputs:{logits},attrs:{dim}}=args;const xId=backend.dataIdMap.get(logits.dataId).id;const out=backend.makeOutput(logits.shape,logits.dtype);const outId=backend.dataIdMap.get(out.dataId).id;const channels=logits.shape[dim];const batch=tfjs_core70.util.sizeFromShape(logits.shape)/channels;if(tfjs_core70.util.sizeFromShape(out.shape)===0){return out}wasmFunc7(xId,outId,channels,batch);return out}const softmaxConfig={kernelName:tfjs_core70.Softmax,backendName:"wasm",setupFunc:setup34,kernelFunc:softmax};const tfjs_core71=__toModule(require_tf_core_node());const tfjs_core72=__toModule(require_tf_core_node());function split(args){const{inputs,attrs,backend}=args;const{x}=inputs;const{numOrSizeSplits,axis}=attrs;const $axis=tfjs_core71.util.parseAxisParam(axis,x.shape)[0];const splitSizes=tfjs_core72.backend_util.prepareSplitSize(x,numOrSizeSplits,axis);const begin=new Array(x.shape.length).fill(0);const size=x.shape.slice();return splitSizes.map(s=>{const xSliceSize=[...size];xSliceSize[$axis]=s;const xSlice=slice({inputs:{x},attrs:{begin,size:xSliceSize},backend});begin[$axis]+=s;return xSlice})}const splitVConfig={kernelName:tfjs_core71.SplitV,backendName:"wasm",kernelFunc:split};const tfjs_core73=__toModule(require_tf_core_node());const sqrtConfig=createUnaryKernelConfig(tfjs_core73.Sqrt);const tfjs_core74=__toModule(require_tf_core_node());const squareConfig=createUnaryKernelConfig(tfjs_core74.Square);const tfjs_core75=__toModule(require_tf_core_node());const supportsFullBroadcast15=true;const squaredDifferenceConfig=createBinaryKernelConfig(tfjs_core75.SquaredDifference,supportsFullBroadcast15);const tfjs_core76=__toModule(require_tf_core_node());let wasmStridedSlice;function setup35(backend){wasmStridedSlice=backend.wasm.cwrap(tfjs_core76.StridedSlice,null,["number","array","number","array","array","array","array","array","number","number"])}function stridedSlice(args){const{backend,inputs,attrs}=args;const{x}=inputs;let{begin,end,strides}=attrs;if(strides==null){strides=new Array(begin.length)}const{beginMask,endMask,ellipsisMask,newAxisMask,shrinkAxisMask}=attrs;const ellipsisAxes=tfjs_core76.backend_util.slice_util.maskToAxes(ellipsisMask);if(ellipsisAxes.length>1){throw new Error("Multiple ellipses in slice is not allowed.")}if(ellipsisMask!==0&&newAxisMask!==0){throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.")}if(ellipsisMask!==0&&shrinkAxisMask!==0){throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.")}const numInterpolatedAxes=x.shape.length-begin.length;const expandAxes=tfjs_core76.backend_util.slice_util.maskToAxes(newAxisMask);const newShape=x.shape.slice();expandAxes.forEach(axis=>{begin[axis]=0;end[axis]=1;newShape.splice(axis,0,1)});const xReshaped=reshape({inputs:{x},attrs:{shape:newShape},backend});const{begin:normalizedBegin,end:normalizedEnd,strides:normalizedStrides}=tfjs_core76.backend_util.slice_util.getNormalizedAxes(xReshaped.shape,ellipsisAxes,numInterpolatedAxes,begin,end,strides,beginMask,endMask,ellipsisMask);begin=normalizedBegin;end=normalizedEnd;strides=normalizedStrides;const shrinkAxes=tfjs_core76.backend_util.slice_util.maskToAxes(shrinkAxisMask);shrinkAxes.forEach(axis=>{end[axis]=begin[axis]+1;strides[axis]=1});const size=tfjs_core76.backend_util.slice_util.computeOutShape(begin,end,strides);const outShape=size.filter((_,axis)=>shrinkAxes.indexOf(axis)===-1);const nonStrided=strides.every(v=>v===1);if(nonStrided){const xSliced=slice({inputs:{x},attrs:{begin,size},backend});return reshape({inputs:{x:xSliced},attrs:{shape:outShape},backend})}const out=backend.makeOutput(outShape,"float32");if(!outShape.some(axis=>axis===0)){const xId=backend.dataIdMap.get(xReshaped.dataId).id;const xStridesBytes=new Uint8Array(new Int32Array(tfjs_core76.util.computeStrides(xReshaped.shape)).buffer);const beginBytes=new Uint8Array(new Int32Array(begin).buffer);const endBytes=new Uint8Array(new Int32Array(end).buffer);const stridesBytes=new Uint8Array(new Int32Array(strides).buffer);const outputShapeBytes=new Uint8Array(new Int32Array(outShape).buffer);const outStridesBytes=new Uint8Array(new Int32Array(tfjs_core76.util.computeStrides(outShape)).buffer);const outId=backend.dataIdMap.get(out.dataId).id;wasmStridedSlice(xId,xStridesBytes,xReshaped.shape.length,beginBytes,endBytes,stridesBytes,outputShapeBytes,outStridesBytes,outShape.length,outId)}return reshape({inputs:{x:out},attrs:{shape:outShape},backend})}const stridedSliceConfig={kernelName:tfjs_core76.StridedSlice,backendName:"wasm",setupFunc:setup35,kernelFunc:stridedSlice};const tfjs_core77=__toModule(require_tf_core_node());const supportsFullBroadcast16=true;const subConfig=createBinaryKernelConfig(tfjs_core77.Sub,supportsFullBroadcast16);const tfjs_core78=__toModule(require_tf_core_node());let wasmSum;function setup36(backend){wasmSum=backend.wasm.cwrap(tfjs_core78.Sum,null,["number, number, number"])}function sum(args){const{backend,inputs,attrs}=args;const{axis,keepDims}=attrs;const{x}=inputs;const xId=backend.dataIdMap.get(x.dataId).id;let inputId=xId;let input=x;const{transposed,axes,originalAxes,inputWasTransposed}=permuteAxesAndTranspose(x,axis,backend);let reductionAxes=axes;if(inputWasTransposed){const transposedId=backend.dataIdMap.get(transposed.dataId).id;if(transposedId!==xId){input=transposed;inputId=transposedId;reductionAxes=tfjs_core78.backend_util.getInnerMostAxes(reductionAxes.length,input.shape.length)}}tfjs_core78.backend_util.assertAxesAreInnerMostDims("sum",reductionAxes,input.shape.length);const[outShape,reduceShape]=tfjs_core78.backend_util.computeOutAndReduceShapes(input.shape,reductionAxes);const reduceSize=tfjs_core78.util.sizeFromShape(reduceShape);const out=backend.makeOutput(outShape,input.dtype);if(tfjs_core78.util.sizeFromShape(input.shape)!==0){const outId=backend.dataIdMap.get(out.dataId).id;wasmSum(inputId,reduceSize,outId)}if(inputWasTransposed){backend.disposeData(transposed.dataId)}if(keepDims){const newShape=tfjs_core78.backend_util.expandShapeToKeepDim(out.shape,originalAxes);out.shape=newShape}return out}const sumConfig={kernelName:tfjs_core78.Sum,backendName:"wasm",setupFunc:setup36,kernelFunc:sum};const tfjs_core79=__toModule(require_tf_core_node());const tanhConfig=createUnaryKernelConfig(tfjs_core79.Tanh);const tfjs_core80=__toModule(require_tf_core_node());let wasmTile;function setup37(backend){wasmTile=backend.wasm.cwrap(tfjs_core80.Tile,null,["number","array","number","array","number","number"])}function tile(args){const{inputs,backend,attrs}=args;const{x}=inputs;const xId=backend.dataIdMap.get(x.dataId).id;const{reps}=attrs;const newShape=new Array(x.shape.length);for(let i=0;i<newShape.length;i++){newShape[i]=x.shape[i]*reps[i]}const xShapeBytes=new Uint8Array(new Int32Array(x.shape).buffer);const newShapeBytes=new Uint8Array(new Int32Array(newShape).buffer);const out=backend.makeOutput(newShape,x.dtype);const outId=backend.dataIdMap.get(out.dataId).id;wasmTile(xId,xShapeBytes,x.shape.length,newShapeBytes,newShape.length,CppDType[out.dtype],outId);return out}const tileConfig={kernelName:tfjs_core80.Tile,backendName:"wasm",setupFunc:setup37,kernelFunc:tile};const tfjs_core81=__toModule(require_tf_core_node());function unpack(args){const{inputs,backend,attrs}=args;const{value}=inputs;const{axis}=attrs;const numOutputs=value.shape[axis];const rank=value.shape.length;const outShape=new Array(rank-1);let outIndex=0;for(let i=0;i<rank;i++){if(i!==axis){outShape[outIndex++]=value.shape[i]}}const outs=new Array(numOutputs);const begin=new Array(rank).fill(0);const size=value.shape.slice();size[axis]=1;for(let i=0;i<outs.length;i++){begin[axis]=i;outs[i]=slice({inputs:{x:value},attrs:{begin,size},backend})}return outs.map(({dataId,dtype})=>({dataId,dtype,shape:outShape}))}const unpackConfig={kernelName:tfjs_core81.Unpack,backendName:"wasm",kernelFunc:unpack};const tfjs_core82=__toModule(require_tf_core_node());function zerosLike(args){const{inputs:{x},backend}=args;const out=backend.makeOutput(x.shape,x.dtype);const outVals=backend.typedArrayFromHeap(out);outVals.fill(0);return out}const zerosLikeConfig={kernelName:tfjs_core82.ZerosLike,backendName:"wasm",kernelFunc:zerosLike};const kernelConfigs=[absConfig,addConfig,addNConfig,argMaxConfig,avgPoolConfig,batchMatMulConfig,castConfig,clipByValueConfig,concatConfig,conv2DConfig,conv2DBackpropInputConfig,cosConfig,cropAndResizeConfig,cumsumConfig,depthToSpaceConfig,depthwiseConv2dNativeConfig,divConfig,equalConfig,expConfig,fillConfig,flipLeftRightConfig,floorDivConfig,fusedMatMulConfig,fusedBatchNormConfig,fusedConv2DConfig,fusedDepthwiseConv2DConfig,gatherNdConfig,gatherV2Config,greaterConfig,greaterEqualConfig,identityConfig,lessConfig,lessEqualConfig,logConfig,logicalAndConfig,maxConfig,maximumConfig,maxPoolConfig,minConfig,minimumConfig,multiplyConfig,negateConfig,nonMaxSuppressionV3Config,nonMaxSuppressionV4Config,nonMaxSuppressionV5Config,notEqualConfig,oneHotConfig,onesLikeConfig,padV2Config,powConfig,preluConfig,reluConfig,relu6Config,reshapeConfig,resizeBilinearConfig,reverseConfig,rotateWithOffsetConfig,rsqrtConfig,scatterNdConfig,selectV2Config,sigmoidConfig,sinConfig,sliceConfig,softmaxConfig,splitVConfig,sqrtConfig,squareConfig,squaredDifferenceConfig,stridedSliceConfig,subConfig,sumConfig,tanhConfig,tileConfig,transposeConfig,unpackConfig,zerosLikeConfig];for(const kernelConfig of kernelConfigs){tfjs_core83.registerKernel(kernelConfig)}const tfjs_core84=__toModule(require_tf_core_node());const ENV=tfjs_core84.env();ENV.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));ENV.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(ENV.get("IS_NODE")){return false}try{new MessageChannel().port1.postMessage(new SharedArrayBuffer(1));return WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return false}});const tfjs_core85=__toModule(require_tf_core_node());const tfjs_backend_wasm_threaded_simd=__toModule(require_tfjs_backend_wasm_threaded_simd());const wasmWorkerContents='var threadInfoStruct=0;var selfThreadId=0;var parentThreadId=0;var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:selfThreadId})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["DYNAMIC_BASE"]=e.data.DYNAMIC_BASE;Module["DYNAMICTOP_PTR"]=e.data.DYNAMICTOP_PTR;Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}Module=WasmBackendModuleThreadedSimd(Module);postMessage({"cmd":"loaded"})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;threadInfoStruct=e.data.threadInfoStruct;Module["__register_pthread_ptr"](threadInfoStruct,0,0);selfThreadId=e.data.selfThreadId;parentThreadId=e.data.parentThreadId;var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["dynCall_ii"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){Atomics.store(Module["HEAPU32"],threadInfoStruct+4>>2,ex instanceof Module["ExitStatus"]?ex.status:-2);Atomics.store(Module["HEAPU32"],threadInfoStruct+0>>2,1);Module["_emscripten_futex_wake"](threadInfoStruct+0,2147483647);if(!(ex instanceof Module["ExitStatus"]))throw ex}}}else if(e.data.cmd==="cancel"){if(threadInfoStruct){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(threadInfoStruct){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}';const tfjs_backend_wasm=__toModule(require_tfjs_backend_wasm());const WASM_PRIORITY=2;class BackendWasm extends tfjs_core85.KernelBackend{constructor(wasm){super();this.wasm=wasm;this.dataIdNextNumber=1;this.wasm.tfjs.init();this.dataIdMap=new tfjs_core85.DataStorage(this,tfjs_core85.engine())}write(values,shape,dtype){const dataId={};this.move(dataId,values,shape,dtype);return dataId}numDataIds(){return this.dataIdMap.numDataIds()}async time(f){const start=tfjs_core85.util.now();f();const kernelMs=tfjs_core85.util.now()-start;return{kernelMs}}move(dataId,values,shape,dtype){const id=this.dataIdNextNumber++;if(dtype==="string"){const stringBytes=values;this.dataIdMap.set(dataId,{id,stringBytes,shape,dtype,memoryOffset:null});return}const size=tfjs_core85.util.sizeFromShape(shape);const numBytes=size*tfjs_core85.util.bytesPerElement(dtype);const memoryOffset=this.wasm._malloc(numBytes);this.dataIdMap.set(dataId,{id,memoryOffset,shape,dtype});this.wasm.tfjs.registerTensor(id,size,memoryOffset);if(values!=null){this.wasm.HEAPU8.set(new Uint8Array(values.buffer,values.byteOffset,numBytes),memoryOffset)}}async read(dataId){return this.readSync(dataId)}readSync(dataId){const{memoryOffset,dtype,shape,stringBytes}=this.dataIdMap.get(dataId);if(dtype==="string"){return stringBytes}const bytes=this.wasm.HEAPU8.slice(memoryOffset,memoryOffset+tfjs_core85.util.sizeFromShape(shape)*tfjs_core85.util.bytesPerElement(dtype));return typedArrayFromBuffer(bytes.buffer,dtype)}disposeData(dataId){const data2=this.dataIdMap.get(dataId);this.wasm._free(data2.memoryOffset);this.wasm.tfjs.disposeData(data2.id);this.dataIdMap.delete(dataId)}floatPrecision(){return 32}getMemoryOffset(dataId){return this.dataIdMap.get(dataId).memoryOffset}dispose(){this.wasm.tfjs.dispose();this.wasm=null}memory(){return{unreliable:false}}makeOutput(shape,dtype,memoryOffset){let dataId;if(memoryOffset==null){dataId=this.write(null,shape,dtype)}else{dataId={};const id=this.dataIdNextNumber++;this.dataIdMap.set(dataId,{id,memoryOffset,shape,dtype});const size=tfjs_core85.util.sizeFromShape(shape);this.wasm.tfjs.registerTensor(id,size,memoryOffset)}return{dataId,shape,dtype}}typedArrayFromHeap({shape,dtype,dataId}){const buffer2=this.wasm.HEAPU8.buffer;const{memoryOffset}=this.dataIdMap.get(dataId);const size=tfjs_core85.util.sizeFromShape(shape);switch(dtype){case"float32":return new Float32Array(buffer2,memoryOffset,size);case"int32":return new Int32Array(buffer2,memoryOffset,size);case"bool":return new Uint8Array(buffer2,memoryOffset,size);default:throw new Error(`Unknown dtype ${dtype}`)}}}tfjs_core85.registerBackend("wasm",async()=>{const{wasm}=await init();return new BackendWasm(wasm)},WASM_PRIORITY);function createInstantiateWasmFunc(path){return(imports,callback)=>{tfjs_core85.util.fetch(path,{credentials:"same-origin"}).then(response=>{if(!response["ok"]){imports.env.a(`failed to load wasm binary file at '${path}'`)}response.arrayBuffer().then(binary=>{WebAssembly.instantiate(binary,imports).then(output=>{callback(output.instance)})})});return{}}}function getPathToWasmBinary(simdSupported,threadsSupported,wasmModuleFolder){if(wasmPath!=null){return wasmPath}let path="tfjs-backend-wasm.wasm";if(simdSupported&&threadsSupported){path="tfjs-backend-wasm-threaded-simd.wasm"}else if(simdSupported){path="tfjs-backend-wasm-simd.wasm"}if(wasmFileMap!=null){if(wasmFileMap[path]!=null){return wasmFileMap[path]}}return wasmModuleFolder+path}async function init(){const[simdSupported,threadsSupported]=await Promise.all([tfjs_core85.env().getAsync("WASM_HAS_SIMD_SUPPORT"),tfjs_core85.env().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((resolve,reject)=>{const factoryConfig={};factoryConfig.locateFile=(path,prefix)=>{if(path.endsWith(".worker.js")){const response=wasmWorkerContents;const blob=new Blob([response],{type:"application/javascript"});return URL.createObjectURL(blob)}if(path.endsWith(".wasm")){return getPathToWasmBinary(simdSupported,threadsSupported,wasmPathPrefix!=null?wasmPathPrefix:prefix)}return prefix+path};if(customFetch){factoryConfig.instantiateWasm=createInstantiateWasmFunc(getPathToWasmBinary(simdSupported,threadsSupported,wasmPathPrefix!=null?wasmPathPrefix:""))}let wasm;if(threadsSupported&&simdSupported&&wasmPath==null){wasm=tfjs_backend_wasm_threaded_simd.default(factoryConfig);wasm.mainScriptUrlOrBlob=new Blob([`var _scriptDir = undefined; var WasmBackendModuleThreadedSimd = `+tfjs_backend_wasm_threaded_simd.default.toString()],{type:"text/javascript"})}else{wasm=tfjs_backend_wasm.default(factoryConfig)}const voidReturnType=null;wasm.tfjs={init:wasm.cwrap("init",null,[]),registerTensor:wasm.cwrap("register_tensor",null,["number","number","number"]),disposeData:wasm.cwrap("dispose_data",voidReturnType,["number"]),dispose:wasm.cwrap("dispose",voidReturnType,[])};let initialized=false;wasm.onRuntimeInitialized=()=>{initialized=true;initAborted=false;resolve({wasm})};wasm.onAbort=()=>{if(initialized){return}if(initAborted){return}initAborted=true;const rejectMsg="Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers";reject({message:rejectMsg})}})}function typedArrayFromBuffer(buffer2,dtype){switch(dtype){case"float32":return new Float32Array(buffer2);case"int32":return new Int32Array(buffer2);case"bool":return new Uint8Array(buffer2);default:throw new Error(`Unknown dtype ${dtype}`)}}const wasmBinaryNames=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"];let wasmPath=null;let wasmPathPrefix=null;let wasmFileMap={};let initAborted=false;let customFetch=false;function setWasmPaths(prefixOrFileMap,usePlatformFetch=false){if(initAborted){throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`")}if(typeof prefixOrFileMap==="string"){wasmPathPrefix=prefixOrFileMap}else{wasmFileMap=prefixOrFileMap;const missingPaths=wasmBinaryNames.filter(name=>wasmFileMap[name]==null);if(missingPaths.length>0){throw new Error(`There were no entries found for the following binaries: ${missingPaths.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}}customFetch=usePlatformFetch}const loadGraphModel=tf.loadGraphModel;const facemesh=__toModule(require_facemesh());const age=__toModule(require_age());const gender=__toModule(require_gender());const emotion=__toModule(require_emotion());const embedding=__toModule(require_embedding());const posenet=__toModule(require_posenet());function getBoxSize(box){return[Math.abs(box.endPoint[0]-box.startPoint[0]),Math.abs(box.endPoint[1]-box.startPoint[1])]}function getBoxCenter(box){return[box.startPoint[0]+(box.endPoint[0]-box.startPoint[0])/2,box.startPoint[1]+(box.endPoint[1]-box.startPoint[1])/2]}function cutBoxFromImageAndResize(box,image2,cropSize){const h=image2.shape[1];const w=image2.shape[2];const boxes=[[box.startPoint[1]/h,box.startPoint[0]/w,box.endPoint[1]/h,box.endPoint[0]/w]];return tf.image.cropAndResize(image2,boxes,[0],cropSize)}function scaleBoxCoordinates(box,factor){const startPoint=[box.startPoint[0]*factor[0],box.startPoint[1]*factor[1]];const endPoint=[box.endPoint[0]*factor[0],box.endPoint[1]*factor[1]];const palmLandmarks=box.palmLandmarks.map(coord=>{const scaledCoord=[coord[0]*factor[0],coord[1]*factor[1]];return scaledCoord});return{startPoint,endPoint,palmLandmarks,confidence:box.confidence}}function enlargeBox(box,factor=1.5){const center=getBoxCenter(box);const size=getBoxSize(box);const newHalfSize=[factor*size[0]/2,factor*size[1]/2];const startPoint=[center[0]-newHalfSize[0],center[1]-newHalfSize[1]];const endPoint=[center[0]+newHalfSize[0],center[1]+newHalfSize[1]];return{startPoint,endPoint,palmLandmarks:box.palmLandmarks}}function squarifyBox(box){const centers=getBoxCenter(box);const size=getBoxSize(box);const maxEdge=Math.max(...size);const halfSize=maxEdge/2;const startPoint=[centers[0]-halfSize,centers[1]-halfSize];const endPoint=[centers[0]+halfSize,centers[1]+halfSize];return{startPoint,endPoint,palmLandmarks:box.palmLandmarks}}function shiftBox(box,shiftFactor){const boxSize=[box.endPoint[0]-box.startPoint[0],box.endPoint[1]-box.startPoint[1]];const shiftVector=[boxSize[0]*shiftFactor[0],boxSize[1]*shiftFactor[1]];const startPoint=[box.startPoint[0]+shiftVector[0],box.startPoint[1]+shiftVector[1]];const endPoint=[box.endPoint[0]+shiftVector[0],box.endPoint[1]+shiftVector[1]];return{startPoint,endPoint,palmLandmarks:box.palmLandmarks}}function normalizeRadians(angle){return angle-2*Math.PI*Math.floor((angle+Math.PI)/(2*Math.PI))}function computeRotation(point1,point2){const radians=Math.PI/2-Math.atan2(-(point2[1]-point1[1]),point2[0]-point1[0]);return normalizeRadians(radians)}const buildTranslationMatrix=(x,y)=>[[1,0,x],[0,1,y],[0,0,1]];function dot(v1,v2){let product=0;for(let i=0;i<v1.length;i++){product+=v1[i]*v2[i]}return product}function getColumnFrom2DArr(arr,columnIndex){const column=[];for(let i=0;i<arr.length;i++){column.push(arr[i][columnIndex])}return column}function multiplyTransformMatrices(mat1,mat2){const product=[];const size=mat1.length;for(let row=0;row<size;row++){product.push([]);for(let col=0;col<size;col++){product[row].push(dot(mat1[row],getColumnFrom2DArr(mat2,col)))}}return product}function buildRotationMatrix(rotation,center){const cosA=Math.cos(rotation);const sinA=Math.sin(rotation);const rotationMatrix=[[cosA,-sinA,0],[sinA,cosA,0],[0,0,1]];const translationMatrix=buildTranslationMatrix(center[0],center[1]);const translationTimesRotation=multiplyTransformMatrices(translationMatrix,rotationMatrix);const negativeTranslationMatrix=buildTranslationMatrix(-center[0],-center[1]);return multiplyTransformMatrices(translationTimesRotation,negativeTranslationMatrix)}function invertTransformMatrix(matrix){const rotationComponent=[[matrix[0][0],matrix[1][0]],[matrix[0][1],matrix[1][1]]];const translationComponent=[matrix[0][2],matrix[1][2]];const invertedTranslation=[-dot(rotationComponent[0],translationComponent),-dot(rotationComponent[1],translationComponent)];return[rotationComponent[0].concat(invertedTranslation[0]),rotationComponent[1].concat(invertedTranslation[1]),[0,0,1]]}function rotatePoint(homogeneousCoordinate,rotationMatrix){return[dot(homogeneousCoordinate,rotationMatrix[0]),dot(homogeneousCoordinate,rotationMatrix[1])]}const handpose=__toModule(require_handpose());const gesture=__toModule(require_gesture());const image=__toModule(require_image());const profile=__toModule(require_profile());var config_default={backend:"webgl",wasmPath:"../assets/",console:true,async:true,profile:false,deallocate:false,scoped:false,videoOptimized:true,filter:{enabled:true,width:0,height:0,return:true,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:false,sepia:false,vintage:false,kodachrome:false,technicolor:false,polaroid:false,pixelate:0},gesture:{enabled:true},face:{enabled:true,detector:{modelPath:"../models/blazeface-back.json",inputSize:256,rotation:false,maxFaces:10,skipFrames:15,minConfidence:.5,iouThreshold:.2,scoreThreshold:.5},mesh:{enabled:true,modelPath:"../models/facemesh.json",inputSize:192},iris:{enabled:true,modelPath:"../models/iris.json",inputSize:64},age:{enabled:true,modelPath:"../models/age-ssrnet-imdb.json",inputSize:64,skipFrames:15},gender:{enabled:true,minConfidence:.1,modelPath:"../models/gender-ssrnet-imdb.json",inputSize:64,skipFrames:15},emotion:{enabled:true,inputSize:64,minConfidence:.2,skipFrames:15,modelPath:"../models/emotion-large.json"},embedding:{enabled:false,inputSize:112,modelPath:"../models/mobilefacenet.json"}},body:{enabled:true,modelPath:"../models/posenet.json",inputSize:257,maxDetections:10,scoreThreshold:.8,nmsRadius:20},hand:{enabled:true,inputSize:256,skipFrames:15,minConfidence:.5,iouThreshold:.1,scoreThreshold:.8,maxHands:1,landmarks:true,detector:{modelPath:"../models/handdetect.json"},skeleton:{modelPath:"../models/handskeleton.json"}}};var version3="0.9.2";const now=()=>{if(typeof performance!=="undefined")return performance.now();return parseInt(Number(process.hrtime.bigint())/1e3/1e3)};function mergeDeep(...objects){const isObject=obj=>obj&&typeof obj==="object";return objects.reduce((prev,obj)=>{Object.keys(obj||{}).forEach(key=>{const pVal=prev[key];const oVal=obj[key];if(Array.isArray(pVal)&&Array.isArray(oVal)){prev[key]=pVal.concat(...oVal)}else if(isObject(pVal)&&isObject(oVal)){prev[key]=mergeDeep(pVal,oVal)}else{prev[key]=oVal}});return prev},{})}class Human{constructor(userConfig={}){this.tf=tf;this.version=version3;this.config=mergeDeep(config_default,userConfig);this.fx=null;this.state="idle";this.numTensors=0;this.analyzeMemoryLeaks=false;this.checkSanity=false;this.firstRun=true;this.perf={};this.models={facemesh:null,posenet:null,handpose:null,iris:null,age:null,gender:null,emotion:null};this.facemesh=facemesh;this.age=age;this.gender=gender;this.emotion=emotion;this.body=posenet;this.hand=handpose}log(...msg){if(msg&&this.config.console)console.log("Human:",...msg)}profile(){if(this.config.profile)return profile.data;return{}}analyze(...msg){if(!this.analyzeMemoryLeaks)return;const current=tf.engine().state.numTensors;const previous=this.numTensors;this.numTensors=current;const leaked=current-previous;if(leaked!==0)this.log(...msg,leaked)}sanity(input){if(!this.checkSanity)return null;if(!input)return"input is not defined";if(tf.ENV.flags.IS_NODE&&!(input instanceof tf.Tensor)){return"input must be a tensor"}try{tf.getBackend()}catch(e){return"backend not loaded"}return null}simmilarity(embedding1,embedding2){if(this.config.face.embedding.enabled)return embedding.simmilarity(embedding1,embedding2);return 0}async load(userConfig){this.state="load";const timeStamp=now();if(userConfig)this.config=mergeDeep(this.config,userConfig);if(this.firstRun){this.checkBackend(true);this.log(`version: ${this.version} TensorFlow/JS version: ${tf.version_core}`);this.log("configuration:",this.config);this.log("flags:",tf.ENV.flags);this.firstRun=false}if(this.config.async){[this.models.facemesh,this.models.age,this.models.gender,this.models.emotion,this.models.embedding,this.models.posenet,this.models.handpose]=await Promise.all([this.models.facemesh||(this.config.face.enabled?facemesh.load(this.config.face):null),this.models.age||(this.config.face.enabled&&this.config.face.age.enabled?age.load(this.config):null),this.models.gender||(this.config.face.enabled&&this.config.face.gender.enabled?gender.load(this.config):null),this.models.emotion||(this.config.face.enabled&&this.config.face.emotion.enabled?emotion.load(this.config):null),this.models.embedding||(this.config.face.enabled&&this.config.face.embedding.enabled?embedding.load(this.config):null),this.models.posenet||(this.config.body.enabled?posenet.load(this.config):null),this.models.handpose||(this.config.hand.enabled?handpose.load(this.config.hand):null)])}else{if(this.config.face.enabled&&!this.models.facemesh)this.models.facemesh=await facemesh.load(this.config.face);if(this.config.face.enabled&&this.config.face.age.enabled&&!this.models.age)this.models.age=await age.load(this.config);if(this.config.face.enabled&&this.config.face.gender.enabled&&!this.models.gender)this.models.gender=await gender.load(this.config);if(this.config.face.enabled&&this.config.face.emotion.enabled&&!this.models.emotion)this.models.emotion=await emotion.load(this.config);if(this.config.face.enabled&&this.config.face.embedding.enabled&&!this.models.embedding)this.models.embedding=await embedding.load(this.config);if(this.config.body.enabled&&!this.models.posenet)this.models.posenet=await posenet.load(this.config);if(this.config.hand.enabled&&!this.models.handpose)this.models.handpose=await handpose.load(this.config.hand)}const current=Math.trunc(now()-timeStamp);if(current>(this.perf.load||0))this.perf.load=current}async checkBackend(force){const timeStamp=now();if(this.config.backend&&this.config.backend!==""&&force||tf.getBackend()!==this.config.backend){this.state="backend";this.log("setting backend:",this.config.backend);if(this.config.backend==="wasm"){this.log("settings wasm path:",this.config.wasmPath);setWasmPaths(this.config.wasmPath);const simd=await tf.env().getAsync("WASM_HAS_SIMD_SUPPORT");if(!simd)this.log("warning: wasm simd support is not enabled")}await tf.setBackend(this.config.backend);tf.enableProdMode();if(tf.getBackend()==="webgl"){if(this.config.deallocate){this.log("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",this.config.deallocate);tf.ENV.set("WEBGL_DELETE_TEXTURE_THRESHOLD",this.config.deallocate?0:-1)}tf.ENV.set("WEBGL_PACK_DEPTHWISECONV",true)}await tf.ready()}const current=Math.trunc(now()-timeStamp);if(current>(this.perf.backend||0))this.perf.backend=current}async detectFace(input){let timeStamp;let ageRes;let genderRes;let emotionRes;let embeddingRes;const faceRes=[];this.state="run:face";timeStamp=now();const faces=await this.models.facemesh.estimateFaces(input,this.config.face);this.perf.face=Math.trunc(now()-timeStamp);for(const face2 of faces){this.analyze("Get Face");if(!face2.image||face2.image.isDisposedInternal){this.log("Face object is disposed:",face2.image);continue}this.analyze("Start Age:");if(this.config.async){ageRes=this.config.face.age.enabled?age.predict(face2.image,this.config):{}}else{this.state="run:age";timeStamp=now();ageRes=this.config.face.age.enabled?await age.predict(face2.image,this.config):{};this.perf.age=Math.trunc(now()-timeStamp)}this.analyze("Start Gender:");if(this.config.async){genderRes=this.config.face.gender.enabled?gender.predict(face2.image,this.config):{}}else{this.state="run:gender";timeStamp=now();genderRes=this.config.face.gender.enabled?await gender.predict(face2.image,this.config):{};this.perf.gender=Math.trunc(now()-timeStamp)}this.analyze("Start Emotion:");if(this.config.async){emotionRes=this.config.face.emotion.enabled?emotion.predict(face2.image,this.config):{}}else{this.state="run:emotion";timeStamp=now();emotionRes=this.config.face.emotion.enabled?await emotion.predict(face2.image,this.config):{};this.perf.emotion=Math.trunc(now()-timeStamp)}this.analyze("End Emotion:");this.analyze("Start Embedding:");if(this.config.async){embeddingRes=this.config.face.embedding.enabled?embedding.predict(face2.image,this.config):{}}else{this.state="run:embedding";timeStamp=now();embeddingRes=this.config.face.embedding.enabled?await embedding.predict(face2.image,this.config):{};this.perf.embedding=Math.trunc(now()-timeStamp)}this.analyze("End Emotion:");if(this.config.async){[ageRes,genderRes,emotionRes,embeddingRes]=await Promise.all([ageRes,genderRes,emotionRes,embeddingRes])}this.analyze("Finish Face:");face2.image.dispose();const irisSize=face2.annotations.leftEyeIris&&face2.annotations.rightEyeIris?11.7*Math.max(Math.abs(face2.annotations.leftEyeIris[3][0]-face2.annotations.leftEyeIris[1][0]),Math.abs(face2.annotations.rightEyeIris[4][1]-face2.annotations.rightEyeIris[2][1])):0;faceRes.push({confidence:face2.confidence,box:face2.box,mesh:face2.mesh,annotations:face2.annotations,age:ageRes.age,gender:genderRes.gender,genderConfidence:genderRes.confidence,emotion:emotionRes,embedding:embeddingRes,iris:irisSize!==0?Math.trunc(irisSize)/100:0});this.analyze("End Face")}this.analyze("End FaceMesh:");if(this.config.async){if(this.perf.face)delete this.perf.face;if(this.perf.age)delete this.perf.age;if(this.perf.gender)delete this.perf.gender;if(this.perf.emotion)delete this.perf.emotion}return faceRes}async image(input,userConfig={}){this.state="image";this.config=mergeDeep(this.config,userConfig);const process3=image.process(input,this.config);process3.tensor.dispose();return process3.canvas}async detect(input,userConfig={}){return new Promise(async resolve=>{this.state="config";let timeStamp;this.config=mergeDeep(this.config,userConfig);this.state="check";const error=this.sanity(input);if(error){this.log(error,input);resolve({error})}let poseRes;let handRes;let faceRes;const timeStart=now();await this.checkBackend();await this.load();if(this.config.scoped)tf.engine().startScope();this.analyze("Start Scope:");timeStamp=now();const process3=image.process(input,this.config);this.perf.image=Math.trunc(now()-timeStamp);this.analyze("Get Image:");if(this.config.async){faceRes=this.config.face.enabled?this.detectFace(process3.tensor):[];if(this.perf.face)delete this.perf.face}else{this.state="run:face";timeStamp=now();faceRes=this.config.face.enabled?await this.detectFace(process3.tensor):[];this.perf.face=Math.trunc(now()-timeStamp)}this.analyze("Start Body:");if(this.config.async){poseRes=this.config.body.enabled?this.models.posenet.estimatePoses(process3.tensor,this.config):[];if(this.perf.body)delete this.perf.body}else{this.state="run:body";timeStamp=now();poseRes=this.config.body.enabled?await this.models.posenet.estimatePoses(process3.tensor,this.config):[];this.perf.body=Math.trunc(now()-timeStamp)}this.analyze("End Body:");this.analyze("Start Hand:");if(this.config.async){handRes=this.config.hand.enabled?this.models.handpose.estimateHands(process3.tensor,this.config.hand):[];if(this.perf.hand)delete this.perf.hand}else{this.state="run:hand";timeStamp=now();handRes=this.config.hand.enabled?await this.models.handpose.estimateHands(process3.tensor,this.config.hand):[];this.perf.hand=Math.trunc(now()-timeStamp)}if(this.config.async){[faceRes,poseRes,handRes]=await Promise.all([faceRes,poseRes,handRes])}process3.tensor.dispose();if(this.config.scoped)tf.engine().endScope();this.analyze("End Scope:");let gestureRes=[];if(this.config.gesture.enabled){timeStamp=now();gestureRes={face:gesture.face(faceRes),body:gesture.body(poseRes),hand:gesture.hand(handRes)};if(!this.config.async)this.perf.gesture=Math.trunc(now()-timeStamp);else if(this.perf.gesture)delete this.perf.gesture}this.perf.total=Math.trunc(now()-timeStart);this.state="idle";resolve({face:faceRes,body:poseRes,hand:handRes,gesture:gestureRes,performance:this.perf,canvas:process3.canvas})})}async warmup(userConfig,sample){if(!sample)sample=new ImageData(255,255);const warmup=await this.detect(sample,userConfig);this.log("warmed up");return warmup}}
/*! *****************************************************************************
Copyright (c) Microsoft Corporation. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License. You may obtain a copy of the
License at http://www.apache.org/licenses/LICENSE-2.0
THIS CODE IS PROVIDED ON AN *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABLITY OR NON-INFRINGEMENT.
See the Apache Version 2.0 License for specific language governing permissions
and limitations under the License.
***************************************************************************** */
/**
* @license
* Copyright 2017 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the License);
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/** @license See the LICENSE file. */
//# sourceMappingURL=human.node.js.map