mirror of https://github.com/vladmandic/human
8290 lines
1.4 MiB
8290 lines
1.4 MiB
/*
|
|
Human
|
|
homepage: <https://github.com/vladmandic/human>
|
|
author: <https://github.com/vladmandic>'
|
|
*/
|
|
|
|
"use strict";var Human=(()=>{var uc=Object.defineProperty;var NI=Object.getOwnPropertyDescriptor;var EI=Object.getOwnPropertyNames;var RI=Object.prototype.hasOwnProperty;var MI=(e,t,a)=>t in e?uc(e,t,{enumerable:!0,configurable:!0,writable:!0,value:a}):e[t]=a;var hr=(e,t)=>{for(var a in t)uc(e,a,{get:t[a],enumerable:!0})},$I=(e,t,a,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of EI(t))!RI.call(e,r)&&r!==a&&uc(e,r,{get:()=>t[r],enumerable:!(n=NI(t,r))||n.enumerable});return e};var _I=e=>$I(uc({},"__esModule",{value:!0}),e);var de=(e,t,a)=>(MI(e,typeof t!="symbol"?t+"":t,a),a),$5=(e,t,a)=>{if(!t.has(e))throw TypeError("Cannot "+a)};var Ga=(e,t,a)=>($5(e,t,"read from private field"),a?a.call(e):t.get(e)),Gn=(e,t,a)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,a)},fr=(e,t,a,n)=>($5(e,t,"write to private field"),n?n.call(e,a):t.set(e,a),a);var ife={};hr(ife,{Env:()=>bp,Human:()=>A5,default:()=>A5,defaults:()=>So,draw:()=>t0,empty:()=>or,env:()=>ne,match:()=>N0,models:()=>y5});var He={};hr(He,{Abs:()=>vl,Acos:()=>kl,Acosh:()=>wl,AdadeltaOptimizer:()=>j1,AdagradOptimizer:()=>q1,AdamOptimizer:()=>X1,AdamaxOptimizer:()=>K1,Add:()=>as,AddN:()=>Ks,All:()=>Zs,Any:()=>Ys,ArgMax:()=>Js,ArgMin:()=>Sd,Asin:()=>Il,Asinh:()=>Sl,Atan:()=>Tl,Atan2:()=>Nl,Atanh:()=>Cl,AvgPool:()=>Qs,AvgPool3D:()=>Zc,AvgPool3DGrad:()=>L2,AvgPoolGrad:()=>Kc,BackendWasm:()=>k8,BatchMatMul:()=>ei,BatchToSpaceND:()=>El,Bincount:()=>Td,BroadcastArgs:()=>Yc,BroadcastTo:()=>IS,Cast:()=>ti,Ceil:()=>ai,ClipByValue:()=>ns,Complex:()=>Cd,ComplexAbs:()=>Jc,Concat:()=>Rl,Conv2D:()=>ni,Conv2DBackpropFilter:()=>Nd,Conv2DBackpropInput:()=>ri,Conv3D:()=>Qc,Conv3DBackpropFilterV2:()=>B2,Conv3DBackpropInputV2:()=>eh,Cos:()=>si,Cosh:()=>ii,CropAndResize:()=>ui,Cumprod:()=>oi,Cumsum:()=>li,DataStorage:()=>wd,DenseBincount:()=>Ed,DepthToSpace:()=>di,DepthwiseConv2dNative:()=>pi,DepthwiseConv2dNativeBackpropFilter:()=>th,DepthwiseConv2dNativeBackpropInput:()=>ah,Diag:()=>Rd,Dilation2D:()=>Md,Dilation2DBackpropFilter:()=>Bm,Dilation2DBackpropInput:()=>Lm,ENV:()=>D2,Einsum:()=>$d,Elu:()=>hi,EluGrad:()=>W2,Environment:()=>py,Equal:()=>fi,Erf:()=>Ml,Exp:()=>mi,ExpandDims:()=>$l,Expm1:()=>_l,FFT:()=>_d,Fill:()=>Pl,FlipLeftRight:()=>gi,Floor:()=>xi,FloorDiv:()=>yi,FromPixels:()=>rd,FusedBatchNorm:()=>Ai,FusedConv2D:()=>qr,FusedDepthwiseConv2D:()=>Xr,GPGPUContext:()=>sl,GatherNd:()=>bi,GatherV2:()=>Fl,GraphModel:()=>dp,Greater:()=>vi,GreaterEqual:()=>ki,IFFT:()=>Pd,Identity:()=>wi,Imag:()=>Fd,IsFinite:()=>Ol,IsInf:()=>Dl,IsNan:()=>Ii,KernelBackend:()=>Al,LRN:()=>Dd,LRNGrad:()=>V2,LeakyRelu:()=>Si,Less:()=>Ti,LessEqual:()=>Ci,LinSpace:()=>Od,Log:()=>Ni,Log1p:()=>zl,LogSoftmax:()=>SS,LogicalAnd:()=>Ei,LogicalNot:()=>Ri,LogicalOr:()=>Mi,LogicalXor:()=>hy,LowerBound:()=>TS,MathBackendCPU:()=>Ch,MathBackendWebGL:()=>fu,Max:()=>$i,MaxPool:()=>Pi,MaxPool3D:()=>nh,MaxPool3DGrad:()=>G2,MaxPoolGrad:()=>U2,MaxPoolWithArgmax:()=>rh,Maximum:()=>_i,Mean:()=>Fi,Min:()=>Oi,Minimum:()=>Di,MirrorPad:()=>zi,Mod:()=>Ll,MomentumOptimizer:()=>Z1,Multinomial:()=>sh,Multiply:()=>Li,Neg:()=>Bl,NonMaxSuppressionV3:()=>Wi,NonMaxSuppressionV4:()=>Wl,NonMaxSuppressionV5:()=>Vi,NotEqual:()=>Bi,OP_SCOPE_SUFFIX:()=>K2,OneHot:()=>Ui,OnesLike:()=>Vl,Optimizer:()=>os,OptimizerConstructors:()=>x4,Pack:()=>Ul,PadV2:()=>Gi,Pool:()=>CS,Pow:()=>Hi,Prelu:()=>ji,Prod:()=>qi,RMSPropOptimizer:()=>Y1,RaggedGather:()=>ih,RaggedRange:()=>oh,RaggedTensorToTensor:()=>lh,Range:()=>Gl,Rank:()=>Um,Real:()=>zd,RealDiv:()=>ci,Reciprocal:()=>Xi,Reduction:()=>Aa,Relu:()=>Ki,Relu6:()=>Ji,Reshape:()=>Hl,ResizeBilinear:()=>Yi,ResizeBilinearGrad:()=>j2,ResizeNearestNeighbor:()=>Zi,ResizeNearestNeighborGrad:()=>H2,Reverse:()=>Qi,RotateWithOffset:()=>go,Round:()=>eo,Rsqrt:()=>to,SGDOptimizer:()=>Th,ScatterNd:()=>ao,SearchSorted:()=>Ld,Select:()=>jl,Selu:()=>ql,Sigmoid:()=>ro,Sign:()=>Zl,Sin:()=>no,Sinh:()=>Kl,Slice:()=>Xl,Softmax:()=>oo,Softplus:()=>Yl,SpaceToBatchND:()=>Jl,SparseFillEmptyRows:()=>Bd,SparseReshape:()=>eu,SparseSegmentMean:()=>Wd,SparseSegmentSum:()=>Vd,SparseToDense:()=>Ud,SplitV:()=>Ql,Sqrt:()=>so,Square:()=>Gd,SquaredDifference:()=>lo,Step:()=>ss,StridedSlice:()=>uo,StringNGrams:()=>tu,StringSplit:()=>Hd,StringToHashBucketFast:()=>jd,Sub:()=>po,Sum:()=>io,Tan:()=>co,Tanh:()=>ho,Tensor:()=>pt,TensorBuffer:()=>jt,Tile:()=>rs,TopK:()=>fo,Transform:()=>mo,Transpose:()=>yr,Unique:()=>uh,Unpack:()=>au,UnsortedSegmentSum:()=>dh,UpperBound:()=>NS,Variable:()=>od,WebGPUBackend:()=>Dh,ZerosLike:()=>nu,_FusedMatMul:()=>jr,abs:()=>qa,acos:()=>Py,acosh:()=>Fy,add:()=>be,addN:()=>ch,all:()=>Oy,any:()=>Dy,argMax:()=>ar,argMin:()=>zy,asin:()=>Ly,asinh:()=>By,atan:()=>Wy,atan2:()=>Vy,atanh:()=>Uy,avgPool:()=>r1,avgPool3d:()=>qy,backend:()=>tr,backend_util:()=>T,basicLSTMCell:()=>Xy,batchNorm:()=>ap,batchNorm2d:()=>Ky,batchNorm3d:()=>Zy,batchNorm4d:()=>Yy,batchToSpaceND:()=>s1,bincount:()=>i1,booleanMaskAsync:()=>_b,broadcastArgs:()=>Jy,broadcastTo:()=>rl,broadcast_util:()=>yo,browser:()=>Ir,buffer:()=>_e,cast:()=>qe,ceil:()=>Qy,clipByValue:()=>eA,clone:()=>ka,complex:()=>br,concat:()=>rt,concat1d:()=>tA,concat2d:()=>ru,concat3d:()=>aA,concat4d:()=>nA,conv1d:()=>rA,conv2d:()=>np,conv2dTranspose:()=>iA,conv3d:()=>oA,conv3dTranspose:()=>lA,copyRegisteredKernels:()=>_S,cos:()=>uA,cosh:()=>dA,cosineWindow:()=>vh,cumprod:()=>pA,cumsum:()=>cA,customGrad:()=>Qn,denseBincount:()=>hA,deprecationWarn:()=>t1,depthToSpace:()=>fA,depthwiseConv2d:()=>hh,deregisterOp:()=>AP,device_util:()=>Zd,diag:()=>mA,dilation2d:()=>gA,disableDeprecationWarnings:()=>UT,dispose:()=>Y,disposeVariables:()=>GT,div:()=>me,divNoNan:()=>yA,dot:()=>AA,dropout:()=>Lb,einsum:()=>bA,elu:()=>u1,enableDebugMode:()=>VT,enableProdMode:()=>e1,enclosingPowerOfTwo:()=>U1,engine:()=>vt,env:()=>B,equal:()=>l1,erf:()=>vA,euclideanNorm:()=>IA,exp:()=>Yr,expandDims:()=>Gt,expm1:()=>SA,eye:()=>p1,fft:()=>Ah,fill:()=>nr,findBackend:()=>a1,findBackendFactory:()=>KT,floor:()=>c1,floorDiv:()=>ep,forceHalfFloat:()=>V6,fused:()=>G1,gather:()=>h1,gatherND:()=>zb,gather_util:()=>e3,getBackend:()=>la,getGradient:()=>Wm,getKernel:()=>Ec,getKernelsForBackend:()=>Zn,getThreadsCount:()=>Ene,gpgpu_util:()=>b6,grad:()=>qN,grads:()=>XN,greater:()=>ip,greaterEqual:()=>f1,ifft:()=>md,imag:()=>op,image:()=>ge,inTopKAsync:()=>Bb,io:()=>jn,irfft:()=>F1,isFinite:()=>TA,isInf:()=>CA,isNaN:()=>NA,keep:()=>On,kernel_impls:()=>Tn,leakyRelu:()=>m1,less:()=>EA,lessEqual:()=>fh,linalg:()=>Xb,linspace:()=>RA,loadGraphModel:()=>s3,loadGraphModelSync:()=>wF,localResponseNormalization:()=>MA,log:()=>ul,log1p:()=>g1,logSigmoid:()=>_A,logSoftmax:()=>PA,logSumExp:()=>y1,logicalAnd:()=>hd,logicalNot:()=>A1,logicalOr:()=>b1,logicalXor:()=>FA,losses:()=>Kb,lowerBound:()=>OA,matMul:()=>it,math:()=>i4,max:()=>ca,maxPool:()=>v1,maxPool3d:()=>DA,maxPoolWithArgmax:()=>zA,maximum:()=>k1,mean:()=>fd,memory:()=>HT,meshgrid:()=>LA,min:()=>Zr,minimum:()=>w1,mirrorPad:()=>BA,mod:()=>su,moments:()=>WA,movingAverage:()=>Pb,mul:()=>ae,multiRNNCell:()=>VA,multinomial:()=>UA,neg:()=>Xn,nextFrame:()=>y4,norm:()=>sp,notEqual:()=>I1,oneHot:()=>_c,ones:()=>Wr,onesLike:()=>GA,op:()=>D,outerProduct:()=>HA,pad:()=>rr,pad1d:()=>jA,pad2d:()=>qA,pad3d:()=>XA,pad4d:()=>KA,pool:()=>ZA,pow:()=>ll,prelu:()=>T1,print:()=>Q2,prod:()=>YA,profile:()=>jT,raggedGather:()=>JA,raggedRange:()=>QA,raggedTensorToTensor:()=>eb,rand:()=>tb,randomGamma:()=>sb,randomNormal:()=>M1,randomStandardNormal:()=>ib,randomUniform:()=>$1,range:()=>dl,ready:()=>Qd,real:()=>pl,reciprocal:()=>ob,registerBackend:()=>xo,registerGradient:()=>RS,registerKernel:()=>mn,registerOp:()=>yP,relu:()=>lp,relu6:()=>_1,removeBackend:()=>XT,reshape:()=>J,reverse:()=>Jr,reverse1d:()=>lb,reverse2d:()=>ub,reverse3d:()=>db,reverse4d:()=>pb,rfft:()=>bh,round:()=>P1,rsqrt:()=>cb,scalar:()=>ze,scatterND:()=>Ob,scatter_util:()=>B1,searchSorted:()=>gh,selu:()=>hb,separableConv2d:()=>fb,serialization:()=>Jb,setBackend:()=>Jd,setPlatform:()=>ZT,setThreadsCount:()=>Nne,setWasmPath:()=>Cne,setWasmPaths:()=>Oh,setWebGLContext:()=>Rh,setdiff1dAsync:()=>mb,shared:()=>Nh,sigmoid:()=>Da,sign:()=>gb,signal:()=>qb,sin:()=>xb,sinh:()=>yb,slice:()=>De,slice1d:()=>Ab,slice2d:()=>bb,slice3d:()=>up,slice4d:()=>xh,slice_util:()=>St,softmax:()=>yh,softplus:()=>x1,spaceToBatchND:()=>S1,sparse:()=>Zb,sparseToDense:()=>Db,spectral:()=>jb,split:()=>wa,sqrt:()=>Jn,square:()=>In,squaredDifference:()=>O1,squeeze:()=>Oe,stack:()=>oa,step:()=>D1,stridedSlice:()=>vb,string:()=>Yb,sub:()=>he,sum:()=>nt,sumOutType:()=>Kd,tan:()=>kb,tanh:()=>$c,tensor:()=>Ve,tensor1d:()=>Ht,tensor2d:()=>Kn,tensor3d:()=>z1,tensor4d:()=>wb,tensor5d:()=>Ib,tensor6d:()=>Sb,tensor_util:()=>xy,test_util:()=>ab,tidy:()=>Fe,tile:()=>Gr,time:()=>qT,topk:()=>Tb,train:()=>m_,transpose:()=>Vs,truncatedNormal:()=>Cb,unique:()=>Nb,unregisterGradient:()=>$S,unregisterKernel:()=>MS,unsortedSegmentSum:()=>Eb,unstack:()=>Ta,upcastType:()=>ha,upperBound:()=>Rb,util:()=>v,valueAndGrad:()=>KN,valueAndGrads:()=>ZN,variable:()=>Mb,variableGrads:()=>$A,version:()=>Ap,version_converter:()=>SF,version_core:()=>t3,version_cpu:()=>$O,version_wasm:()=>Rne,version_webgl:()=>yG,webgl:()=>AG,webgl_util:()=>G7,webgpu_util:()=>S8,where:()=>Ws,whereAsync:()=>L1,zeros:()=>fn,zerosLike:()=>Ka});var PI=Object.create,F2=Object.defineProperty,FI=Object.getOwnPropertyDescriptor,OI=Object.getOwnPropertyNames,DI=Object.getPrototypeOf,zI=Object.prototype.hasOwnProperty,qt=(e,t)=>()=>(t||e((t={exports:{}}).exports,t),t.exports),Ke=(e,t)=>{for(var a in t)F2(e,a,{get:t[a],enumerable:!0})},LI=(e,t,a,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of OI(t))!zI.call(e,r)&&r!==a&&F2(e,r,{get:()=>t[r],enumerable:!(n=FI(t,r))||n.enumerable});return e},yl=(e,t,a)=>(a=e!=null?PI(DI(e)):{},LI(t||!e||!e.__esModule?F2(a,"default",{value:e,enumerable:!0}):a,e)),BI=qt((e,t)=>{t.exports=n;var a=null;try{a=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(I){}function n(I,N,O){this.low=I|0,this.high=N|0,this.unsigned=!!O}n.prototype.__isLong__,Object.defineProperty(n.prototype,"__isLong__",{value:!0});function r(I){return(I&&I.__isLong__)===!0}n.isLong=r;var s={},i={};function o(I,N){var O,L,W;return N?(I>>>=0,(W=0<=I&&I<256)&&(L=i[I],L)?L:(O=u(I,(I|0)<0?-1:0,!0),W&&(i[I]=O),O)):(I|=0,(W=-128<=I&&I<128)&&(L=s[I],L)?L:(O=u(I,I<0?-1:0,!1),W&&(s[I]=O),O))}n.fromInt=o;function l(I,N){if(isNaN(I))return N?b:A;if(N){if(I<0)return b;if(I>=g)return _}else{if(I<=-x)return $;if(I+1>=x)return E}return I<0?l(-I,N).neg():u(I%m|0,I/m|0,N)}n.fromNumber=l;function u(I,N,O){return new n(I,N,O)}n.fromBits=u;var p=Math.pow;function c(I,N,O){if(I.length===0)throw Error("empty string");if(I==="NaN"||I==="Infinity"||I==="+Infinity"||I==="-Infinity")return A;if(typeof N=="number"?(O=N,N=!1):N=!!N,O=O||10,O<2||36<O)throw RangeError("radix");var L;if((L=I.indexOf("-"))>0)throw Error("interior hyphen");if(L===0)return c(I.substring(1),N,O).neg();for(var W=l(p(O,8)),G=A,H=0;H<I.length;H+=8){var U=Math.min(8,I.length-H),j=parseInt(I.substring(H,H+U),O);if(U<8){var V=l(p(O,U));G=G.mul(V).add(l(j))}else G=G.mul(W),G=G.add(l(j))}return G.unsigned=N,G}n.fromString=c;function d(I,N){return typeof I=="number"?l(I,N):typeof I=="string"?c(I,N):u(I.low,I.high,typeof N=="boolean"?N:I.unsigned)}n.fromValue=d;var h=1<<16,f=1<<24,m=h*h,g=m*m,x=g/2,y=o(f),A=o(0);n.ZERO=A;var b=o(0,!0);n.UZERO=b;var k=o(1);n.ONE=k;var S=o(1,!0);n.UONE=S;var C=o(-1);n.NEG_ONE=C;var E=u(-1,2147483647,!1);n.MAX_VALUE=E;var _=u(-1,-1,!0);n.MAX_UNSIGNED_VALUE=_;var $=u(0,-2147483648,!1);n.MIN_VALUE=$;var M=n.prototype;M.toInt=function(){return this.unsigned?this.low>>>0:this.low},M.toNumber=function(){return this.unsigned?(this.high>>>0)*m+(this.low>>>0):this.high*m+(this.low>>>0)},M.toString=function(I){if(I=I||10,I<2||36<I)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq($)){var N=l(I),O=this.div(N),L=O.mul(N).sub(this);return O.toString(I)+L.toInt().toString(I)}else return"-"+this.neg().toString(I);for(var W=l(p(I,6),this.unsigned),G=this,H="";;){var U=G.div(W),j=G.sub(U.mul(W)).toInt()>>>0,V=j.toString(I);if(G=U,G.isZero())return V+H;for(;V.length<6;)V="0"+V;H=""+V+H}},M.getHighBits=function(){return this.high},M.getHighBitsUnsigned=function(){return this.high>>>0},M.getLowBits=function(){return this.low},M.getLowBitsUnsigned=function(){return this.low>>>0},M.getNumBitsAbs=function(){if(this.isNegative())return this.eq($)?64:this.neg().getNumBitsAbs();for(var I=this.high!=0?this.high:this.low,N=31;N>0&&!(I&1<<N);N--);return this.high!=0?N+33:N+1},M.isZero=function(){return this.high===0&&this.low===0},M.eqz=M.isZero,M.isNegative=function(){return!this.unsigned&&this.high<0},M.isPositive=function(){return this.unsigned||this.high>=0},M.isOdd=function(){return(this.low&1)===1},M.isEven=function(){return(this.low&1)===0},M.equals=function(I){return r(I)||(I=d(I)),this.unsigned!==I.unsigned&&this.high>>>31===1&&I.high>>>31===1?!1:this.high===I.high&&this.low===I.low},M.eq=M.equals,M.notEquals=function(I){return!this.eq(I)},M.neq=M.notEquals,M.ne=M.notEquals,M.lessThan=function(I){return this.comp(I)<0},M.lt=M.lessThan,M.lessThanOrEqual=function(I){return this.comp(I)<=0},M.lte=M.lessThanOrEqual,M.le=M.lessThanOrEqual,M.greaterThan=function(I){return this.comp(I)>0},M.gt=M.greaterThan,M.greaterThanOrEqual=function(I){return this.comp(I)>=0},M.gte=M.greaterThanOrEqual,M.ge=M.greaterThanOrEqual,M.compare=function(I){if(r(I)||(I=d(I)),this.eq(I))return 0;var N=this.isNegative(),O=I.isNegative();return N&&!O?-1:!N&&O?1:this.unsigned?I.high>>>0>this.high>>>0||I.high===this.high&&I.low>>>0>this.low>>>0?-1:1:this.sub(I).isNegative()?-1:1},M.comp=M.compare,M.negate=function(){return!this.unsigned&&this.eq($)?$:this.not().add(k)},M.neg=M.negate,M.add=function(I){r(I)||(I=d(I));var N=this.high>>>16,O=this.high&65535,L=this.low>>>16,W=this.low&65535,G=I.high>>>16,H=I.high&65535,U=I.low>>>16,j=I.low&65535,V=0,Q=0,Z=0,re=0;return re+=W+j,Z+=re>>>16,re&=65535,Z+=L+U,Q+=Z>>>16,Z&=65535,Q+=O+H,V+=Q>>>16,Q&=65535,V+=N+G,V&=65535,u(Z<<16|re,V<<16|Q,this.unsigned)},M.subtract=function(I){return r(I)||(I=d(I)),this.add(I.neg())},M.sub=M.subtract,M.multiply=function(I){if(this.isZero())return A;if(r(I)||(I=d(I)),a){var N=a.mul(this.low,this.high,I.low,I.high);return u(N,a.get_high(),this.unsigned)}if(I.isZero())return A;if(this.eq($))return I.isOdd()?$:A;if(I.eq($))return this.isOdd()?$:A;if(this.isNegative())return I.isNegative()?this.neg().mul(I.neg()):this.neg().mul(I).neg();if(I.isNegative())return this.mul(I.neg()).neg();if(this.lt(y)&&I.lt(y))return l(this.toNumber()*I.toNumber(),this.unsigned);var O=this.high>>>16,L=this.high&65535,W=this.low>>>16,G=this.low&65535,H=I.high>>>16,U=I.high&65535,j=I.low>>>16,V=I.low&65535,Q=0,Z=0,re=0,ee=0;return ee+=G*V,re+=ee>>>16,ee&=65535,re+=W*V,Z+=re>>>16,re&=65535,re+=G*j,Z+=re>>>16,re&=65535,Z+=L*V,Q+=Z>>>16,Z&=65535,Z+=W*j,Q+=Z>>>16,Z&=65535,Z+=G*U,Q+=Z>>>16,Z&=65535,Q+=O*V+L*j+W*U+G*H,Q&=65535,u(re<<16|ee,Q<<16|Z,this.unsigned)},M.mul=M.multiply,M.divide=function(I){if(r(I)||(I=d(I)),I.isZero())throw Error("division by zero");if(a){if(!this.unsigned&&this.high===-2147483648&&I.low===-1&&I.high===-1)return this;var N=(this.unsigned?a.div_u:a.div_s)(this.low,this.high,I.low,I.high);return u(N,a.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?b:A;var O,L,W;if(this.unsigned){if(I.unsigned||(I=I.toUnsigned()),I.gt(this))return b;if(I.gt(this.shru(1)))return S;W=b}else{if(this.eq($)){if(I.eq(k)||I.eq(C))return $;if(I.eq($))return k;var G=this.shr(1);return O=G.div(I).shl(1),O.eq(A)?I.isNegative()?k:C:(L=this.sub(I.mul(O)),W=O.add(L.div(I)),W)}else if(I.eq($))return this.unsigned?b:A;if(this.isNegative())return I.isNegative()?this.neg().div(I.neg()):this.neg().div(I).neg();if(I.isNegative())return this.div(I.neg()).neg();W=A}for(L=this;L.gte(I);){O=Math.max(1,Math.floor(L.toNumber()/I.toNumber()));for(var H=Math.ceil(Math.log(O)/Math.LN2),U=H<=48?1:p(2,H-48),j=l(O),V=j.mul(I);V.isNegative()||V.gt(L);)O-=U,j=l(O,this.unsigned),V=j.mul(I);j.isZero()&&(j=k),W=W.add(j),L=L.sub(V)}return W},M.div=M.divide,M.modulo=function(I){if(r(I)||(I=d(I)),a){var N=(this.unsigned?a.rem_u:a.rem_s)(this.low,this.high,I.low,I.high);return u(N,a.get_high(),this.unsigned)}return this.sub(this.div(I).mul(I))},M.mod=M.modulo,M.rem=M.modulo,M.not=function(){return u(~this.low,~this.high,this.unsigned)},M.and=function(I){return r(I)||(I=d(I)),u(this.low&I.low,this.high&I.high,this.unsigned)},M.or=function(I){return r(I)||(I=d(I)),u(this.low|I.low,this.high|I.high,this.unsigned)},M.xor=function(I){return r(I)||(I=d(I)),u(this.low^I.low,this.high^I.high,this.unsigned)},M.shiftLeft=function(I){return r(I)&&(I=I.toInt()),(I&=63)===0?this:I<32?u(this.low<<I,this.high<<I|this.low>>>32-I,this.unsigned):u(0,this.low<<I-32,this.unsigned)},M.shl=M.shiftLeft,M.shiftRight=function(I){return r(I)&&(I=I.toInt()),(I&=63)===0?this:I<32?u(this.low>>>I|this.high<<32-I,this.high>>I,this.unsigned):u(this.high>>I-32,this.high>=0?0:-1,this.unsigned)},M.shr=M.shiftRight,M.shiftRightUnsigned=function(I){if(r(I)&&(I=I.toInt()),I&=63,I===0)return this;var N=this.high;if(I<32){var O=this.low;return u(O>>>I|N<<32-I,N>>>I,this.unsigned)}else return I===32?u(N,0,this.unsigned):u(N>>>I-32,0,this.unsigned)},M.shru=M.shiftRightUnsigned,M.shr_u=M.shiftRightUnsigned,M.toSigned=function(){return this.unsigned?u(this.low,this.high,!1):this},M.toUnsigned=function(){return this.unsigned?this:u(this.low,this.high,!0)},M.toBytes=function(I){return I?this.toBytesLE():this.toBytesBE()},M.toBytesLE=function(){var I=this.high,N=this.low;return[N&255,N>>>8&255,N>>>16&255,N>>>24,I&255,I>>>8&255,I>>>16&255,I>>>24]},M.toBytesBE=function(){var I=this.high,N=this.low;return[I>>>24,I>>>16&255,I>>>8&255,I&255,N>>>24,N>>>16&255,N>>>8&255,N&255]},n.fromBytes=function(I,N,O){return O?n.fromBytesLE(I,N):n.fromBytesBE(I,N)},n.fromBytesLE=function(I,N){return new n(I[0]|I[1]<<8|I[2]<<16|I[3]<<24,I[4]|I[5]<<8|I[6]<<16|I[7]<<24,N)},n.fromBytesBE=function(I,N){return new n(I[4]<<24|I[5]<<16|I[6]<<8|I[7],I[0]<<24|I[1]<<16|I[2]<<8|I[3],N)}}),WI=qt(()=>{}),VI=qt(()=>{}),UI=qt((e,t)=>{(function(a,n,r){function s(u){var p=this,c=l();p.next=function(){var d=2091639*p.s0+p.c*23283064365386963e-26;return p.s0=p.s1,p.s1=p.s2,p.s2=d-(p.c=d|0)},p.c=1,p.s0=c(" "),p.s1=c(" "),p.s2=c(" "),p.s0-=c(u),p.s0<0&&(p.s0+=1),p.s1-=c(u),p.s1<0&&(p.s1+=1),p.s2-=c(u),p.s2<0&&(p.s2+=1),c=null}function i(u,p){return p.c=u.c,p.s0=u.s0,p.s1=u.s1,p.s2=u.s2,p}function o(u,p){var c=new s(u),d=p&&p.state,h=c.next;return h.int32=function(){return c.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,d&&(typeof d=="object"&&i(d,c),h.state=function(){return i(c,{})}),h}function l(){var u=4022871197,p=function(c){c=String(c);for(var d=0;d<c.length;d++){u+=c.charCodeAt(d);var h=.02519603282416938*u;u=h>>>0,h-=u,h*=u,u=h>>>0,h-=u,u+=h*4294967296}return(u>>>0)*23283064365386963e-26};return p}n&&n.exports?n.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),GI=qt((e,t)=>{(function(a,n,r){function s(l){var u=this,p="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var d=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^d^d>>>8},l===(l|0)?u.x=l:p+=l;for(var c=0;c<p.length+64;c++)u.x^=p.charCodeAt(c)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var p=new s(l),c=u&&u.state,d=function(){return(p.next()>>>0)/4294967296};return d.double=function(){do var h=p.next()>>>11,f=(p.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=p.next,d.quick=d,c&&(typeof c=="object"&&i(c,p),d.state=function(){return i(p,{})}),d}n&&n.exports?n.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),HI=qt((e,t)=>{(function(a,n,r){function s(l){var u=this,p="";u.next=function(){var d=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(d^d<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:p+=l;for(var c=0;c<p.length+64;c++)u.x^=p.charCodeAt(c)|0,c==p.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var p=new s(l),c=u&&u.state,d=function(){return(p.next()>>>0)/4294967296};return d.double=function(){do var h=p.next()>>>11,f=(p.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=p.next,d.quick=d,c&&(typeof c=="object"&&i(c,p),d.state=function(){return i(p,{})}),d}n&&n.exports?n.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),jI=qt((e,t)=>{(function(a,n,r){function s(l){var u=this;u.next=function(){var c=u.x,d=u.i,h,f,m;return h=c[d],h^=h>>>7,f=h^h<<24,h=c[d+1&7],f^=h^h>>>10,h=c[d+3&7],f^=h^h>>>3,h=c[d+4&7],f^=h^h<<7,h=c[d+7&7],h=h^h<<13,f^=h^h<<9,c[d]=f,u.i=d+1&7,f};function p(c,d){var h,f,m=[];if(d===(d|0))f=m[0]=d;else for(d=""+d,h=0;h<d.length;++h)m[h&7]=m[h&7]<<15^d.charCodeAt(h)+m[h+1&7]<<13;for(;m.length<8;)m.push(0);for(h=0;h<8&&m[h]===0;++h);for(h==8?f=m[7]=-1:f=m[h],c.x=m,c.i=0,h=256;h>0;--h)c.next()}p(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var p=new s(l),c=u&&u.state,d=function(){return(p.next()>>>0)/4294967296};return d.double=function(){do var h=p.next()>>>11,f=(p.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=p.next,d.quick=d,c&&(c.x&&i(c,p),d.state=function(){return i(p,{})}),d}n&&n.exports?n.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),qI=qt((e,t)=>{(function(a,n,r){function s(l){var u=this;u.next=function(){var c=u.w,d=u.X,h=u.i,f,m;return u.w=c=c+1640531527|0,m=d[h+34&127],f=d[h=h+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=d[h]=m^f,u.i=h,m+(c^c>>>16)|0};function p(c,d){var h,f,m,g,x,y=[],A=128;for(d===(d|0)?(f=d,d=null):(d=d+"\0",f=0,A=Math.max(A,d.length)),m=0,g=-32;g<A;++g)d&&(f^=d.charCodeAt((g+32)%d.length)),g===0&&(x=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,g>=0&&(x=x+1640531527|0,h=y[g&127]^=f+x,m=h==0?m+1:0);for(m>=128&&(y[(d&&d.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=y[m+34&127],h=y[m=m+1&127],f^=f<<13,h^=h<<17,f^=f>>>15,h^=h>>>12,y[m]=f^h;c.w=x,c.X=y,c.i=m}p(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var p=new s(l),c=u&&u.state,d=function(){return(p.next()>>>0)/4294967296};return d.double=function(){do var h=p.next()>>>11,f=(p.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=p.next,d.quick=d,c&&(c.X&&i(c,p),d.state=function(){return i(p,{})}),d}n&&n.exports?n.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),XI=qt((e,t)=>{(function(a,n,r){function s(l){var u=this,p="";u.next=function(){var d=u.b,h=u.c,f=u.d,m=u.a;return d=d<<25^d>>>7^h,h=h-f|0,f=f<<24^f>>>8^m,m=m-d|0,u.b=d=d<<20^d>>>12^h,u.c=h=h-f|0,u.d=f<<16^h>>>16^m,u.a=m-d|0},u.a=0,u.b=0,u.c=-1640531527,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):p+=l;for(var c=0;c<p.length+20;c++)u.b^=p.charCodeAt(c)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var p=new s(l),c=u&&u.state,d=function(){return(p.next()>>>0)/4294967296};return d.double=function(){do var h=p.next()>>>11,f=(p.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=p.next,d.quick=d,c&&(typeof c=="object"&&i(c,p),d.state=function(){return i(p,{})}),d}n&&n.exports?n.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),KI=qt(()=>{}),ZI=qt((e,t)=>{(function(a,n,r){var s=256,i=6,o=52,l="random",u=r.pow(s,i),p=r.pow(2,o),c=p*2,d=s-1,h;function f(k,S,C){var E=[];S=S==!0?{entropy:!0}:S||{};var _=y(x(S.entropy?[k,b(n)]:k==null?A():k,3),E),$=new m(E),M=function(){for(var I=$.g(i),N=u,O=0;I<p;)I=(I+O)*s,N*=s,O=$.g(1);for(;I>=c;)I/=2,N/=2,O>>>=1;return(I+O)/N};return M.int32=function(){return $.g(4)|0},M.quick=function(){return $.g(4)/4294967296},M.double=M,y(b($.S),n),(S.pass||C||function(I,N,O,L){return L&&(L.S&&g(L,$),I.state=function(){return g($,{})}),O?(r[l]=I,N):I})(M,_,"global"in S?S.global:this==r,S.state)}function m(k){var S,C=k.length,E=this,_=0,$=E.i=E.j=0,M=E.S=[];for(C||(k=[C++]);_<s;)M[_]=_++;for(_=0;_<s;_++)M[_]=M[$=d&$+k[_%C]+(S=M[_])],M[$]=S;(E.g=function(I){for(var N,O=0,L=E.i,W=E.j,G=E.S;I--;)N=G[L=d&L+1],O=O*s+G[d&(G[L]=G[W=d&W+N])+(G[W]=N)];return E.i=L,E.j=W,O})(s)}function g(k,S){return S.i=k.i,S.j=k.j,S.S=k.S.slice(),S}function x(k,S){var C=[],E=typeof k,_;if(S&&E=="object")for(_ in k)try{C.push(x(k[_],S-1))}catch($){}return C.length?C:E=="string"?k:k+"\0"}function y(k,S){for(var C=k+"",E,_=0;_<C.length;)S[d&_]=d&(E^=S[d&_]*19)+C.charCodeAt(_++);return b(S)}function A(){try{var k;return h&&(k=h.randomBytes)?k=k(s):(k=new Uint8Array(s),(a.crypto||a.msCrypto).getRandomValues(k)),b(k)}catch(E){var S=a.navigator,C=S&&S.plugins;return[+new Date,a,C,a.screen,b(n)]}}function b(k){return String.fromCharCode.apply(0,k)}if(y(r.random(),n),typeof t=="object"&&t.exports){t.exports=f;try{h=KI()}catch(k){}}else typeof define=="function"&&define.amd?define(function(){return f}):r["seed"+l]=f})(typeof self!="undefined"?self:e,[],Math)}),Jx=qt((e,t)=>{var a=UI(),n=GI(),r=HI(),s=jI(),i=qI(),o=XI(),l=ZI();l.alea=a,l.xor128=n,l.xorwow=r,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),Qx=qt(()=>{}),ey=qt(()=>{}),YI=qt(()=>{}),JI=qt(()=>{}),QI=qt(()=>{}),eS=qt((e,t)=>{var a=(()=>{var n=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(n=n||__filename),function(r){r=r||{};function s(){return ie.buffer!=Ue&&ut(ie.buffer),ht}function i(){return ie.buffer!=Ue&&ut(ie.buffer),Va}function o(){return ie.buffer!=Ue&&ut(ie.buffer),Ot}function l(){return ie.buffer!=Ue&&ut(ie.buffer),na}function u(){return ie.buffer!=Ue&&ut(ie.buffer),$a}function p(){return ie.buffer!=Ue&&ut(ie.buffer),on}function c(){return ie.buffer!=Ue&&ut(ie.buffer),_a}var d=typeof r!="undefined"?r:{},h,f;d.ready=new Promise(function(F,q){h=F,f=q});var m;typeof process!="undefined"&&process.listeners&&(m={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var g=Object.assign({},d),x=[],y="./this.program",A=(F,q)=>{throw q},b=typeof window=="object",k=typeof importScripts=="function",S=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",C=d.ENVIRONMENT_IS_PTHREAD||!1,E="";function _(F){return d.locateFile?d.locateFile(F,E):E+F}var $,M,I,N;function O(F){F instanceof Cs||j("exiting due to exception: "+F)}if(S){var L=Qx(),W=ey();k?E=W.dirname(E)+"/":E=__dirname+"/",$=(q,oe)=>(q=Uo(q)?new URL(q):W.normalize(q),L.readFileSync(q,oe?void 0:"utf8")),I=q=>{var oe=$(q,!0);return oe.buffer||(oe=new Uint8Array(oe)),oe},M=(q,oe,Re)=>{q=Uo(q)?new URL(q):W.normalize(q),L.readFile(q,function(Ge,We){Ge?Re(Ge):oe(We.buffer)})},process.argv.length>1&&(y=process.argv[1].replace(/\\/g,"/")),x=process.argv.slice(2),process.on("uncaughtException",function(q){if(!(q instanceof Cs))throw q}),process.on("unhandledRejection",function(q){throw q}),A=(q,oe)=>{if(bn())throw process.exitCode=q,oe;O(oe),process.exit(q)},d.inspect=function(){return"[Emscripten Module object]"};let F;try{F=YI()}catch(q){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),q}global.Worker=F.Worker}else(b||k)&&(k?E=self.location.href:typeof document!="undefined"&&document.currentScript&&(E=document.currentScript.src),typeof n!="undefined"&&n&&(E=n),E.indexOf("blob:")!==0?E=E.substr(0,E.replace(/[?#].*/,"").lastIndexOf("/")+1):E="",S||($=F=>{var q=new XMLHttpRequest;return q.open("GET",F,!1),q.send(null),q.responseText},k&&(I=F=>{var q=new XMLHttpRequest;return q.open("GET",F,!1),q.responseType="arraybuffer",q.send(null),new Uint8Array(q.response)}),M=(F,q,oe)=>{var Re=new XMLHttpRequest;Re.open("GET",F,!0),Re.responseType="arraybuffer",Re.onload=()=>{if(Re.status==200||Re.status==0&&Re.response){q(Re.response);return}oe()},Re.onerror=oe,Re.send(null)}),N=F=>document.title=F);S&&typeof performance=="undefined"&&(global.performance=JI().performance);var G=console.log.bind(console),H=console.warn.bind(console);S&&(G=F=>L.writeSync(1,F+`
|
|
`),H=F=>L.writeSync(2,F+`
|
|
`));var U=d.print||G,j=d.printErr||H;Object.assign(d,g),g=null,d.arguments&&(x=d.arguments),d.thisProgram&&(y=d.thisProgram),d.quit&&(A=d.quit);var V=4,Q=Atomics.load,Z=Atomics.store,re=Atomics.compareExchange,ee;d.wasmBinary&&(ee=d.wasmBinary);var fe=d.noExitRuntime||!0;typeof WebAssembly!="object"&&Ts("no native wasm support detected");var ie,ye,Se=!1,Ee;function je(F,q){F||Ts(q)}var Ze=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function dt(F,q,oe){for(var Re=q+oe,Ge=q;F[Ge]&&!(Ge>=Re);)++Ge;if(Ge-q>16&&F.buffer&&Ze)return Ze.decode(F.buffer instanceof SharedArrayBuffer?F.slice(q,Ge):F.subarray(q,Ge));for(var We="";q<Ge;){var ce=F[q++];if(!(ce&128)){We+=String.fromCharCode(ce);continue}var Te=F[q++]&63;if((ce&224)==192){We+=String.fromCharCode((ce&31)<<6|Te);continue}var It=F[q++]&63;if((ce&240)==224?ce=(ce&15)<<12|Te<<6|It:ce=(ce&7)<<18|Te<<12|It<<6|F[q++]&63,ce<65536)We+=String.fromCharCode(ce);else{var un=ce-65536;We+=String.fromCharCode(55296|un>>10,56320|un&1023)}}return We}function st(F,q){return F?dt(i(),F,q):""}function tt(F,q,oe,Re){if(!(Re>0))return 0;for(var Ge=oe,We=oe+Re-1,ce=0;ce<F.length;++ce){var Te=F.charCodeAt(ce);if(Te>=55296&&Te<=57343){var It=F.charCodeAt(++ce);Te=65536+((Te&1023)<<10)|It&1023}if(Te<=127){if(oe>=We)break;q[oe++]=Te}else if(Te<=2047){if(oe+1>=We)break;q[oe++]=192|Te>>6,q[oe++]=128|Te&63}else if(Te<=65535){if(oe+2>=We)break;q[oe++]=224|Te>>12,q[oe++]=128|Te>>6&63,q[oe++]=128|Te&63}else{if(oe+3>=We)break;q[oe++]=240|Te>>18,q[oe++]=128|Te>>12&63,q[oe++]=128|Te>>6&63,q[oe++]=128|Te&63}}return q[oe]=0,oe-Ge}function at(F,q,oe){return tt(F,i(),q,oe)}var Ue,ht,Va,Ot,sn,na,$a,on,_a;C&&(Ue=d.buffer);function ut(F){Ue=F,d.HEAP8=ht=new Int8Array(F),d.HEAP16=Ot=new Int16Array(F),d.HEAP32=na=new Int32Array(F),d.HEAPU8=Va=new Uint8Array(F),d.HEAPU16=sn=new Uint16Array(F),d.HEAPU32=$a=new Uint32Array(F),d.HEAPF32=on=new Float32Array(F),d.HEAPF64=_a=new Float64Array(F)}var Pa=d.INITIAL_MEMORY||16777216;if(C)ie=d.wasmMemory,Ue=d.buffer;else if(d.wasmMemory)ie=d.wasmMemory;else if(ie=new WebAssembly.Memory({initial:Pa/65536,maximum:32768,shared:!0}),!(ie.buffer instanceof SharedArrayBuffer))throw j("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),S&&j("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and/or recent version)"),Error("bad memory");ie&&(Ue=ie.buffer),Pa=Ue.byteLength,ut(Ue);var Ua,ur=[],Wo=[],Un=[],_u=!1;function bn(){return fe}function _r(){if(d.preRun)for(typeof d.preRun=="function"&&(d.preRun=[d.preRun]);d.preRun.length;)L0(d.preRun.shift());Fu(ur)}function Xt(){_u=!0,!C&&Fu(Wo)}function Fp(){if(!C){if(d.postRun)for(typeof d.postRun=="function"&&(d.postRun=[d.postRun]);d.postRun.length;)b5(d.postRun.shift());Fu(Un)}}function L0(F){ur.unshift(F)}function B0(F){Wo.unshift(F)}function b5(F){Un.unshift(F)}var Pr=0,Vo=null,dr=null;function W0(F){Pr++,d.monitorRunDependencies&&d.monitorRunDependencies(Pr)}function Op(F){if(Pr--,d.monitorRunDependencies&&d.monitorRunDependencies(Pr),Pr==0&&(Vo!==null&&(clearInterval(Vo),Vo=null),dr)){var q=dr;dr=null,q()}}function Ts(F){d.onAbort&&d.onAbort(F),F="Aborted("+F+")",j(F),Se=!0,Ee=1,F+=". Build with -sASSERTIONS for more info.";var q=new WebAssembly.RuntimeError(F);throw f(q),q}var V0="data:application/octet-stream;base64,";function Dp(F){return F.startsWith(V0)}function Uo(F){return F.startsWith("file://")}var pa;pa="tfjs-backend-wasm-threaded-simd.wasm",Dp(pa)||(pa=_(pa));function zp(F){try{if(F==pa&&ee)return new Uint8Array(ee);if(I)return I(F);throw"both async and sync fetching of the wasm failed"}catch(q){Ts(q)}}function U0(){if(!ee&&(b||k)){if(typeof fetch=="function"&&!Uo(pa))return fetch(pa,{credentials:"same-origin"}).then(function(F){if(!F.ok)throw"failed to load wasm binary file at '"+pa+"'";return F.arrayBuffer()}).catch(function(){return zp(pa)});if(M)return new Promise(function(F,q){M(pa,function(oe){F(new Uint8Array(oe))},q)})}return Promise.resolve().then(function(){return zp(pa)})}function G0(){var F={env:Yp,wasi_snapshot_preview1:Yp};function q(ce,Te){var It=ce.exports;if(d.asm=It,Q0(d.asm._emscripten_tls_init),Ua=d.asm.__indirect_function_table,B0(d.asm.__wasm_call_ctors),ye=Te,!C){var un=Be.unusedWorkers.length;Be.unusedWorkers.forEach(function(cr){Be.loadWasmModuleToWorker(cr,function(){--un||Op("wasm-instantiate")})})}}C||W0("wasm-instantiate");function oe(ce){q(ce.instance,ce.module)}function Re(ce){return U0().then(function(Te){return WebAssembly.instantiate(Te,F)}).then(function(Te){return Te}).then(ce,function(Te){j("failed to asynchronously prepare wasm: "+Te),Ts(Te)})}function Ge(){return!ee&&typeof WebAssembly.instantiateStreaming=="function"&&!Dp(pa)&&!Uo(pa)&&!S&&typeof fetch=="function"?fetch(pa,{credentials:"same-origin"}).then(function(ce){var Te=WebAssembly.instantiateStreaming(ce,F);return Te.then(oe,function(It){return j("wasm streaming compile failed: "+It),j("falling back to ArrayBuffer instantiation"),Re(oe)})}):Re(oe)}if(d.instantiateWasm)try{var We=d.instantiateWasm(F,q);return We}catch(ce){j("Module.instantiateWasm callback failed with error: "+ce),f(ce)}return Ge().catch(f),{}}var v5,k5,Lp={};function Cs(F){this.name="ExitStatus",this.message="Program terminated with exit("+F+")",this.status=F}function H0(F){var q=Be.pthreads[F];delete Be.pthreads[F],q.terminate(),Sm(F),Be.runningWorkers.splice(Be.runningWorkers.indexOf(q),1),q.pthread_ptr=0}function j0(F){var q=Be.pthreads[F];q.postMessage({cmd:"cancel"})}function Pu(F){var q=Be.pthreads[F];je(q),Be.returnWorkerToPool(q)}function q0(F){var q=Be.getNewWorker();if(!q)return 6;Be.runningWorkers.push(q),Be.pthreads[F.pthread_ptr]=q,q.pthread_ptr=F.pthread_ptr;var oe={cmd:"run",start_routine:F.startRoutine,arg:F.arg,pthread_ptr:F.pthread_ptr};return q.runPthread=()=>{S&&q.ref(),q.postMessage(oe,F.transferList),delete q.runPthread},q.loaded&&q.runPthread(),0}var Bp={varargs:void 0,get:function(){Bp.varargs+=4;var F=l()[Bp.varargs-4>>2];return F},getStr:function(F){var q=st(F);return q}};function Wp(F){if(C)return Fr(1,1,F);Ee=F,bn()||(Be.terminateAllThreads(),d.onExit&&d.onExit(F),Se=!0),A(F,new Cs(F))}function X0(F,q){if(Ee=F,!q&&C)throw Up(F),"unwind";Wp(F)}var Vp=X0;function K0(F){if(F instanceof Cs||F=="unwind")return Ee;A(1,F)}var Be={unusedWorkers:[],runningWorkers:[],tlsInitFunctions:[],pthreads:{},init:function(){C?Be.initWorker():Be.initMainThread()},initMainThread:function(){for(var F=8;F--;)Be.allocateUnusedWorker()},initWorker:function(){fe=!1},setExitStatus:function(F){Ee=F},terminateAllThreads:function(){for(var F of Object.values(Be.pthreads))Be.returnWorkerToPool(F);for(var F of Be.unusedWorkers)F.terminate();Be.unusedWorkers=[]},returnWorkerToPool:function(F){var q=F.pthread_ptr;delete Be.pthreads[q],Be.unusedWorkers.push(F),Be.runningWorkers.splice(Be.runningWorkers.indexOf(F),1),F.pthread_ptr=0,S&&F.unref(),Sm(q)},receiveObjectTransfer:function(F){},threadInitTLS:function(){Be.tlsInitFunctions.forEach(F=>F())},loadWasmModuleToWorker:function(F,q){F.onmessage=We=>{var ce=We.data,Te=ce.cmd;if(F.pthread_ptr&&(Be.currentProxiedOperationCallerThread=F.pthread_ptr),ce.targetThread&&ce.targetThread!=nc()){var It=Be.pthreads[ce.targetThread];It?It.postMessage(ce,ce.transferList):j('Internal error! Worker sent a message "'+Te+'" to target pthread '+ce.targetThread+", but that thread no longer exists!"),Be.currentProxiedOperationCallerThread=void 0;return}Te==="processProxyingQueue"?Ou(ce.queue):Te==="spawnThread"?q0(ce):Te==="cleanupThread"?Pu(ce.thread):Te==="killThread"?H0(ce.thread):Te==="cancelThread"?j0(ce.thread):Te==="loaded"?(F.loaded=!0,S&&F.unref(),q&&q(F),F.runPthread&&F.runPthread()):Te==="print"?U("Thread "+ce.threadId+": "+ce.text):Te==="printErr"?j("Thread "+ce.threadId+": "+ce.text):Te==="alert"?alert("Thread "+ce.threadId+": "+ce.text):ce.target==="setimmediate"?F.postMessage(ce):Te==="callHandler"?d[ce.handler](...ce.args):Te&&j("worker sent an unknown command "+Te),Be.currentProxiedOperationCallerThread=void 0},F.onerror=We=>{var ce="worker sent an error!";throw j(ce+" "+We.filename+":"+We.lineno+": "+We.message),We},S&&(F.on("message",function(We){F.onmessage({data:We})}),F.on("error",function(We){F.onerror(We)}),F.on("detachedExit",function(){}));var oe=[],Re=["onExit","onAbort","print","printErr"];for(var Ge of Re)d.hasOwnProperty(Ge)&&oe.push(Ge);F.postMessage({cmd:"load",handlers:oe,urlOrBlob:d.mainScriptUrlOrBlob||n,wasmMemory:ie,wasmModule:ye})},allocateUnusedWorker:function(){var F,q=_("tfjs-backend-wasm-threaded-simd.worker.js");F=new Worker(q),Be.unusedWorkers.push(F)},getNewWorker:function(){return Be.unusedWorkers.length==0&&(Be.allocateUnusedWorker(),Be.loadWasmModuleToWorker(Be.unusedWorkers[0])),Be.unusedWorkers.pop()}};d.PThread=Be;function Fu(F){for(;F.length>0;)F.shift()(d)}function Z0(){var F=nc(),q=l()[F+52>>2],oe=l()[F+56>>2],Re=q-oe;N5(q,Re),rc(q)}d.establishStackSpace=Z0;function Up(F){if(C)return Fr(2,0,F);try{Vp(F)}catch(q){K0(q)}}var Go=[];function Y0(F){var q=Go[F];return q||(F>=Go.length&&(Go.length=F+1),Go[F]=q=Ua.get(F)),q}function J0(F,q){var oe=Y0(F)(q);bn()?Be.setExitStatus(oe):C5(oe)}d.invokeEntryPoint=J0;function Q0(F){Be.tlsInitFunctions.push(F)}function ef(F){I5(F,!k,1,!b),Be.threadInitTLS()}function tf(F){C?postMessage({cmd:"cleanupThread",thread:F}):Pu(F)}function Gp(F,q,oe,Re){return C?Fr(3,1,F,q,oe,Re):Hp(F,q,oe,Re)}function Hp(F,q,oe,Re){if(typeof SharedArrayBuffer=="undefined")return j("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;var Ge=[],We=0;if(C&&(Ge.length===0||We))return Gp(F,q,oe,Re);if(We)return We;var ce={startRoutine:oe,pthread_ptr:F,arg:Re,transferList:Ge};return C?(ce.cmd="spawnThread",postMessage(ce,Ge),0):q0(ce)}function af(){return 65536}var nf=!0;function rf(){return nf}function Ou(F){Atomics.store(l(),F>>2,1),nc()&&T5(F),Atomics.compareExchange(l(),F>>2,1,0)}d.executeNotifiedProxyingQueue=Ou;function sf(F,q,oe,Re){if(F==q)setTimeout(()=>Ou(Re));else if(C)postMessage({targetThread:F,cmd:"processProxyingQueue",queue:Re});else{var Ge=Be.pthreads[F];if(!Ge)return;Ge.postMessage({cmd:"processProxyingQueue",queue:Re})}return 1}function of(F,q,oe){return-1}function lf(){Ts("")}function Ns(F){Ns.shown||(Ns.shown={}),Ns.shown[F]||(Ns.shown[F]=1,S&&(F="warning: "+F),j(F))}function uf(){S||k||Ns("Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread")}function df(){return Date.now()}function jp(){return 2147483648}function pf(){return jp()}var Du;S?Du=()=>{var F=process.hrtime();return F[0]*1e3+F[1]/1e6}:Du=()=>performance.timeOrigin+performance.now();function cf(F,q,oe){i().copyWithin(F,q,q+oe)}function hf(){return S?QI().cpus().length:navigator.hardwareConcurrency}function ff(F){var q=Tm(),oe=F();return rc(q),oe}function Fr(F,q){var oe=arguments.length-2,Re=arguments;return ff(()=>{for(var Ge=oe,We=sc(Ge*8),ce=We>>3,Te=0;Te<oe;Te++){var It=Re[2+Te];c()[ce+Te]=It}return S5(F,Ge,We,q)})}var zu=[];function mf(F,q,oe){zu.length=q;for(var Re=oe>>3,Ge=0;Ge<q;Ge++)zu[Ge]=c()[Re+Ge];var We=F<0,ce=We?Lp[-F-1]:If[F];return ce.apply(null,zu)}function gf(F){try{return ie.grow(F-Ue.byteLength+65535>>>16),ut(ie.buffer),1}catch(q){}}function xf(F){var q=i().length;if(F=F>>>0,F<=q)return!1;var oe=jp();if(F>oe)return!1;let Re=(It,un)=>It+(un-It%un)%un;for(var Ge=1;Ge<=4;Ge*=2){var We=q*(1+.2/Ge);We=Math.min(We,F+100663296);var ce=Math.min(oe,Re(Math.max(F,We),65536)),Te=gf(ce);if(Te)return!0}return!1}function yf(){throw"unwind"}function qp(F){return C?Fr(4,1,F):52}function Xp(F,q,oe,Re,Ge){return C?Fr(5,1,F,q,oe,Re,Ge):70}var Af=[null,[],[]];function bf(F,q){var oe=Af[F];q===0||q===10?((F===1?U:j)(dt(oe,0)),oe.length=0):oe.push(q)}function Kp(F,q,oe,Re){if(C)return Fr(6,1,F,q,oe,Re);for(var Ge=0,We=0;We<oe;We++){var ce=u()[q>>2],Te=u()[q+4>>2];q+=8;for(var It=0;It<Te;It++)bf(F,i()[ce+It]);Ge+=Te}return u()[Re>>2]=Ge,0}function Zp(F){var q=d["_"+F];return q}function vf(F,q){s().set(F,q)}function kf(F,q,oe,Re,Ge){var We={string:dn=>{var Xo=0;if(dn!=null&&dn!==0){var M5=(dn.length<<2)+1;Xo=sc(M5),at(dn,Xo,M5)}return Xo},array:dn=>{var Xo=sc(dn.length);return vf(dn,Xo),Xo}};function ce(dn){return q==="string"?st(dn):q==="boolean"?Boolean(dn):dn}var Te=Zp(F),It=[],un=0;if(Re)for(var cr=0;cr<Re.length;cr++){var R5=We[oe[cr]];R5?(un===0&&(un=Tm()),It[cr]=R5(Re[cr])):It[cr]=Re[cr]}var Cm=Te.apply(null,It);function CI(dn){return un!==0&&rc(un),ce(dn)}return Cm=CI(Cm),Cm}function wf(F,q,oe,Re){oe=oe||[];var Ge=oe.every(ce=>ce==="number"||ce==="boolean"),We=q!=="string";return We&&Ge&&!Re?Zp(F):function(){return kf(F,q,oe,arguments,Re)}}Be.init();var If=[null,Wp,Up,Gp,qp,Xp,Kp],Yp={__emscripten_init_main_thread_js:ef,__emscripten_thread_cleanup:tf,__pthread_create_js:Hp,_emscripten_default_pthread_stack_size:af,_emscripten_get_now_is_monotonic:rf,_emscripten_notify_task_queue:sf,_emscripten_set_offscreencanvas_size:of,abort:lf,emscripten_check_blocking_allowed:uf,emscripten_date_now:df,emscripten_get_heap_max:pf,emscripten_get_now:Du,emscripten_memcpy_big:cf,emscripten_num_logical_cores:hf,emscripten_receive_on_main_thread_js:mf,emscripten_resize_heap:xf,emscripten_unwind_to_js_event_loop:yf,exit:Vp,fd_close:qp,fd_seek:Xp,fd_write:Kp,memory:ie||d.wasmMemory},w5=G0(),Sf=d.___wasm_call_ctors=function(){return(Sf=d.___wasm_call_ctors=d.asm.__wasm_call_ctors).apply(null,arguments)},Tf=d._init=function(){return(Tf=d._init=d.asm.init).apply(null,arguments)},Cf=d._init_with_threads_count=function(){return(Cf=d._init_with_threads_count=d.asm.init_with_threads_count).apply(null,arguments)},Nf=d._get_threads_count=function(){return(Nf=d._get_threads_count=d.asm.get_threads_count).apply(null,arguments)},Ef=d._register_tensor=function(){return(Ef=d._register_tensor=d.asm.register_tensor).apply(null,arguments)},Rf=d._dispose_data=function(){return(Rf=d._dispose_data=d.asm.dispose_data).apply(null,arguments)},Mf=d._dispose=function(){return(Mf=d._dispose=d.asm.dispose).apply(null,arguments)},$f=d._Abs=function(){return($f=d._Abs=d.asm.Abs).apply(null,arguments)},_f=d._Add=function(){return(_f=d._Add=d.asm.Add).apply(null,arguments)},Pf=d._AddN=function(){return(Pf=d._AddN=d.asm.AddN).apply(null,arguments)},Ff=d._All=function(){return(Ff=d._All=d.asm.All).apply(null,arguments)},Of=d._Any=function(){return(Of=d._Any=d.asm.Any).apply(null,arguments)},Df=d._ArgMax=function(){return(Df=d._ArgMax=d.asm.ArgMax).apply(null,arguments)},zf=d._AvgPool=function(){return(zf=d._AvgPool=d.asm.AvgPool).apply(null,arguments)},Lf=d._BatchMatMul=function(){return(Lf=d._BatchMatMul=d.asm.BatchMatMul).apply(null,arguments)},Bf=d._Ceil=function(){return(Bf=d._Ceil=d.asm.Ceil).apply(null,arguments)},Wf=d._ClipByValue=function(){return(Wf=d._ClipByValue=d.asm.ClipByValue).apply(null,arguments)},Vf=d._Conv2D=function(){return(Vf=d._Conv2D=d.asm.Conv2D).apply(null,arguments)},Uf=d._Conv2DBackpropInput=function(){return(Uf=d._Conv2DBackpropInput=d.asm.Conv2DBackpropInput).apply(null,arguments)},Gf=d._Cos=function(){return(Gf=d._Cos=d.asm.Cos).apply(null,arguments)},Hf=d._Cosh=function(){return(Hf=d._Cosh=d.asm.Cosh).apply(null,arguments)},jf=d._CropAndResize=function(){return(jf=d._CropAndResize=d.asm.CropAndResize).apply(null,arguments)},qf=d._Cumprod=function(){return(qf=d._Cumprod=d.asm.Cumprod).apply(null,arguments)},Xf=d._Cumsum=function(){return(Xf=d._Cumsum=d.asm.Cumsum).apply(null,arguments)},Kf=d._DepthToSpace=function(){return(Kf=d._DepthToSpace=d.asm.DepthToSpace).apply(null,arguments)},Zf=d._DepthwiseConv2dNative=function(){return(Zf=d._DepthwiseConv2dNative=d.asm.DepthwiseConv2dNative).apply(null,arguments)},Yf=d._Elu=function(){return(Yf=d._Elu=d.asm.Elu).apply(null,arguments)},Jf=d._Equal=function(){return(Jf=d._Equal=d.asm.Equal).apply(null,arguments)},Qf=d._Exp=function(){return(Qf=d._Exp=d.asm.Exp).apply(null,arguments)},em=d._FlipLeftRight=function(){return(em=d._FlipLeftRight=d.asm.FlipLeftRight).apply(null,arguments)},tm=d._Floor=function(){return(tm=d._Floor=d.asm.Floor).apply(null,arguments)},am=d._FloorDiv=function(){return(am=d._FloorDiv=d.asm.FloorDiv).apply(null,arguments)},nm=d._FusedBatchNorm=function(){return(nm=d._FusedBatchNorm=d.asm.FusedBatchNorm).apply(null,arguments)},rm=d._FusedConv2D=function(){return(rm=d._FusedConv2D=d.asm.FusedConv2D).apply(null,arguments)},sm=d._FusedDepthwiseConv2D=function(){return(sm=d._FusedDepthwiseConv2D=d.asm.FusedDepthwiseConv2D).apply(null,arguments)},im=d._Gather=function(){return(im=d._Gather=d.asm.Gather).apply(null,arguments)},om=d._GatherNd=function(){return(om=d._GatherNd=d.asm.GatherNd).apply(null,arguments)},lm=d._Greater=function(){return(lm=d._Greater=d.asm.Greater).apply(null,arguments)},um=d._GreaterEqual=function(){return(um=d._GreaterEqual=d.asm.GreaterEqual).apply(null,arguments)},dm=d._IsNan=function(){return(dm=d._IsNan=d.asm.IsNan).apply(null,arguments)},pm=d._LeakyRelu=function(){return(pm=d._LeakyRelu=d.asm.LeakyRelu).apply(null,arguments)},cm=d._Less=function(){return(cm=d._Less=d.asm.Less).apply(null,arguments)},hm=d._LessEqual=function(){return(hm=d._LessEqual=d.asm.LessEqual).apply(null,arguments)},fm=d._Log=function(){return(fm=d._Log=d.asm.Log).apply(null,arguments)},mm=d._LogicalAnd=function(){return(mm=d._LogicalAnd=d.asm.LogicalAnd).apply(null,arguments)},gm=d._LogicalNot=function(){return(gm=d._LogicalNot=d.asm.LogicalNot).apply(null,arguments)},xm=d._LogicalOr=function(){return(xm=d._LogicalOr=d.asm.LogicalOr).apply(null,arguments)},ym=d._LogicalXor=function(){return(ym=d._LogicalXor=d.asm.LogicalXor).apply(null,arguments)},Am=d._Max=function(){return(Am=d._Max=d.asm.Max).apply(null,arguments)},bm=d._MaxPool=function(){return(bm=d._MaxPool=d.asm.MaxPool).apply(null,arguments)},Jp=d._Maximum=function(){return(Jp=d._Maximum=d.asm.Maximum).apply(null,arguments)},Qp=d._Mean=function(){return(Qp=d._Mean=d.asm.Mean).apply(null,arguments)},Lu=d._Min=function(){return(Lu=d._Min=d.asm.Min).apply(null,arguments)},vm=d._Minimum=function(){return(vm=d._Minimum=d.asm.Minimum).apply(null,arguments)},km=d._MirrorPad=function(){return(km=d._MirrorPad=d.asm.MirrorPad).apply(null,arguments)},Ho=d._Multiply=function(){return(Ho=d._Multiply=d.asm.Multiply).apply(null,arguments)},ec=d._Neg=function(){return(ec=d._Neg=d.asm.Neg).apply(null,arguments)},jo=d._NonMaxSuppressionV3=function(){return(jo=d._NonMaxSuppressionV3=d.asm.NonMaxSuppressionV3).apply(null,arguments)},qo=d._NonMaxSuppressionV4=function(){return(qo=d._NonMaxSuppressionV4=d.asm.NonMaxSuppressionV4).apply(null,arguments)},wm=d._NonMaxSuppressionV5=function(){return(wm=d._NonMaxSuppressionV5=d.asm.NonMaxSuppressionV5).apply(null,arguments)},K=d._NotEqual=function(){return(K=d._NotEqual=d.asm.NotEqual).apply(null,arguments)},se=d._OneHot=function(){return(se=d._OneHot=d.asm.OneHot).apply(null,arguments)},Ne=d._PadV2=function(){return(Ne=d._PadV2=d.asm.PadV2).apply(null,arguments)},Je=d._Pow=function(){return(Je=d._Pow=d.asm.Pow).apply(null,arguments)},At=d._Prelu=function(){return(At=d._Prelu=d.asm.Prelu).apply(null,arguments)},bt=d._Prod=function(){return(bt=d._Prod=d.asm.Prod).apply(null,arguments)},Ye=d._RealDiv=function(){return(Ye=d._RealDiv=d.asm.RealDiv).apply(null,arguments)},Xe=d._Reciprocal=function(){return(Xe=d._Reciprocal=d.asm.Reciprocal).apply(null,arguments)},Dt=d._Relu=function(){return(Dt=d._Relu=d.asm.Relu).apply(null,arguments)},ln=d._Relu6=function(){return(ln=d._Relu6=d.asm.Relu6).apply(null,arguments)},pr=d._ResizeBilinear=function(){return(pr=d._ResizeBilinear=d.asm.ResizeBilinear).apply(null,arguments)},tc=d._ResizeNearestNeighbor=function(){return(tc=d._ResizeNearestNeighbor=d.asm.ResizeNearestNeighbor).apply(null,arguments)},Bu=d._Reverse=function(){return(Bu=d._Reverse=d.asm.Reverse).apply(null,arguments)},Im=d._RotateWithOffset=function(){return(Im=d._RotateWithOffset=d.asm.RotateWithOffset).apply(null,arguments)},Fa=d._Round=function(){return(Fa=d._Round=d.asm.Round).apply(null,arguments)},Or=d._Rsqrt=function(){return(Or=d._Rsqrt=d.asm.Rsqrt).apply(null,arguments)},ac=d._ScatterNd=function(){return(ac=d._ScatterNd=d.asm.ScatterNd).apply(null,arguments)},Kw=d._SelectV2=function(){return(Kw=d._SelectV2=d.asm.SelectV2).apply(null,arguments)},Zw=d._Sigmoid=function(){return(Zw=d._Sigmoid=d.asm.Sigmoid).apply(null,arguments)},Yw=d._Sin=function(){return(Yw=d._Sin=d.asm.Sin).apply(null,arguments)},Jw=d._Softmax=function(){return(Jw=d._Softmax=d.asm.Softmax).apply(null,arguments)},Qw=d._SparseFillEmptyRows=function(){return(Qw=d._SparseFillEmptyRows=d.asm.SparseFillEmptyRows).apply(null,arguments)},eI=d._SparseReshape=function(){return(eI=d._SparseReshape=d.asm.SparseReshape).apply(null,arguments)},tI=d._SparseSegmentReduction=function(){return(tI=d._SparseSegmentReduction=d.asm.SparseSegmentReduction).apply(null,arguments)},aI=d._Sqrt=function(){return(aI=d._Sqrt=d.asm.Sqrt).apply(null,arguments)},nI=d._Square=function(){return(nI=d._Square=d.asm.Square).apply(null,arguments)},rI=d._SquaredDifference=function(){return(rI=d._SquaredDifference=d.asm.SquaredDifference).apply(null,arguments)},sI=d._Step=function(){return(sI=d._Step=d.asm.Step).apply(null,arguments)},iI=d._StridedSlice=function(){return(iI=d._StridedSlice=d.asm.StridedSlice).apply(null,arguments)},oI=d._Sub=function(){return(oI=d._Sub=d.asm.Sub).apply(null,arguments)},lI=d._Sum=function(){return(lI=d._Sum=d.asm.Sum).apply(null,arguments)},uI=d._Tan=function(){return(uI=d._Tan=d.asm.Tan).apply(null,arguments)},dI=d._Tanh=function(){return(dI=d._Tanh=d.asm.Tanh).apply(null,arguments)},pI=d._Tile=function(){return(pI=d._Tile=d.asm.Tile).apply(null,arguments)},cI=d._TopK=function(){return(cI=d._TopK=d.asm.TopK).apply(null,arguments)},hI=d._Transform=function(){return(hI=d._Transform=d.asm.Transform).apply(null,arguments)},fI=d._Transpose=function(){return(fI=d._Transpose=d.asm.Transpose).apply(null,arguments)},mI=d.__FusedMatMul=function(){return(mI=d.__FusedMatMul=d.asm._FusedMatMul).apply(null,arguments)},gI=d._malloc=function(){return(gI=d._malloc=d.asm.malloc).apply(null,arguments)},xI=d._free=function(){return(xI=d._free=d.asm.free).apply(null,arguments)},yI=d.__emscripten_tls_init=function(){return(yI=d.__emscripten_tls_init=d.asm._emscripten_tls_init).apply(null,arguments)},nc=d._pthread_self=function(){return(nc=d._pthread_self=d.asm.pthread_self).apply(null,arguments)},AI=d.___errno_location=function(){return(AI=d.___errno_location=d.asm.__errno_location).apply(null,arguments)},I5=d.__emscripten_thread_init=function(){return(I5=d.__emscripten_thread_init=d.asm._emscripten_thread_init).apply(null,arguments)},bI=d.__emscripten_thread_crashed=function(){return(bI=d.__emscripten_thread_crashed=d.asm._emscripten_thread_crashed).apply(null,arguments)},vI=d._emscripten_main_thread_process_queued_calls=function(){return(vI=d._emscripten_main_thread_process_queued_calls=d.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},kI=d._emscripten_main_browser_thread_id=function(){return(kI=d._emscripten_main_browser_thread_id=d.asm.emscripten_main_browser_thread_id).apply(null,arguments)},S5=d._emscripten_run_in_main_runtime_thread_js=function(){return(S5=d._emscripten_run_in_main_runtime_thread_js=d.asm.emscripten_run_in_main_runtime_thread_js).apply(null,arguments)},wI=d._emscripten_dispatch_to_thread_=function(){return(wI=d._emscripten_dispatch_to_thread_=d.asm.emscripten_dispatch_to_thread_).apply(null,arguments)},T5=d.__emscripten_proxy_execute_task_queue=function(){return(T5=d.__emscripten_proxy_execute_task_queue=d.asm._emscripten_proxy_execute_task_queue).apply(null,arguments)},Sm=d.__emscripten_thread_free_data=function(){return(Sm=d.__emscripten_thread_free_data=d.asm._emscripten_thread_free_data).apply(null,arguments)},C5=d.__emscripten_thread_exit=function(){return(C5=d.__emscripten_thread_exit=d.asm._emscripten_thread_exit).apply(null,arguments)},N5=d._emscripten_stack_set_limits=function(){return(N5=d._emscripten_stack_set_limits=d.asm.emscripten_stack_set_limits).apply(null,arguments)},Tm=d.stackSave=function(){return(Tm=d.stackSave=d.asm.stackSave).apply(null,arguments)},rc=d.stackRestore=function(){return(rc=d.stackRestore=d.asm.stackRestore).apply(null,arguments)},sc=d.stackAlloc=function(){return(sc=d.stackAlloc=d.asm.stackAlloc).apply(null,arguments)},II=d.dynCall_iijjiiii=function(){return(II=d.dynCall_iijjiiii=d.asm.dynCall_iijjiiii).apply(null,arguments)},SI=d.dynCall_jiji=function(){return(SI=d.dynCall_jiji=d.asm.dynCall_jiji).apply(null,arguments)};d.keepRuntimeAlive=bn,d.wasmMemory=ie,d.cwrap=wf,d.ExitStatus=Cs,d.PThread=Be;var ic;dr=function F(){ic||E5(),ic||(dr=F)};function E5(F){if(F=F||x,Pr>0)return;if(C){h(d),Xt(),startWorker(d);return}if(_r(),Pr>0)return;function q(){ic||(ic=!0,d.calledRun=!0,!Se&&(Xt(),h(d),d.onRuntimeInitialized&&d.onRuntimeInitialized(),Fp()))}d.setStatus?(d.setStatus("Running..."),setTimeout(function(){setTimeout(function(){d.setStatus("")},1),q()},1)):q()}if(d.preInit)for(typeof d.preInit=="function"&&(d.preInit=[d.preInit]);d.preInit.length>0;)d.preInit.pop()();E5();var oc;m&&(oc={uncaughtException:process.listeners("uncaughtException").filter(function(F){return!m.uncaughtException.indexOf(F)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(F){return!m.unhandledRejection.indexOf(F)>-1})});var lc;if(typeof WasmBackendModule!="undefined")lc=WasmBackendModule;else if(typeof r!="undefined")lc=r;else throw new Error("Could not find wasm module in post.js");if(oc){var TI=lc._dispose;lc._dispose=function(){TI(),oc.uncaughtException.forEach(function(F){process.removeListener("uncaughtException",F)}),oc.unhandledRejection.forEach(function(F){process.removeListener("unhandledRejection",F)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=a:typeof define=="function"&&define.amd?define([],function(){return a}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=a)}),tS=qt((e,t)=>{t.exports.wasmWorkerContents=`"use strict";var Module={};var ENVIRONMENT_IS_NODE=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require("worker_threads");var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",data=>onmessage({data:data}));var fs=require("fs");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:function(f){(0,eval)(fs.readFileSync(f,"utf8")+"//# sourceURL="+f)},postMessage:function(msg){parentPort.postMessage(msg)},performance:global.performance||{now:function(){return Date.now()}}})}var initializedJS=false;var pendingNotifiedProxyingQueues=[];function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+"
|
|
");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;self.alert=threadAlert;Module["instantiateWasm"]=(info,receiveInstance)=>{var instance=new WebAssembly.Instance(Module["wasmModule"],info);receiveInstance(instance);Module["wasmModule"]=null;return instance.exports};self.onunhandledrejection=e=>{throw e.reason??e};self.startWorker=instance=>{Module=instance;postMessage({"cmd":"loaded"})};self.onmessage=e=>{try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;for(const handler of e.data.handlers){Module[handler]=function(){postMessage({cmd:"callHandler",handler:handler,args:[...arguments]})}}Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob=="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module)}else if(e.data.cmd==="run"){Module["__emscripten_thread_init"](e.data.pthread_ptr,0,0,1);Module["establishStackSpace"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].threadInitTLS();if(!initializedJS){pendingNotifiedProxyingQueues.forEach(queue=>{Module["executeNotifiedProxyingQueue"](queue)});pendingNotifiedProxyingQueues=[];initializedJS=true}try{Module["invokeEntryPoint"](e.data.start_routine,e.data.arg)}catch(ex){if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["keepRuntimeAlive"]()){}else{Module["__emscripten_thread_exit"](ex.status)}}else{throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["__emscripten_thread_exit"](-1)}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processProxyingQueue"){if(initializedJS){Module["executeNotifiedProxyingQueue"](e.data.queue)}else{pendingNotifiedProxyingQueues.push(e.data.queue)}}else if(e.data.cmd){err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){if(Module["__emscripten_thread_crashed"]){Module["__emscripten_thread_crashed"]()}throw ex}};`}),aS=qt((e,t)=>{var a=(()=>{var n=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(n=n||__filename),function(r){r=r||{};var s=typeof r!="undefined"?r:{},i,o;s.ready=new Promise(function(K,se){i=K,o=se});var l;typeof process!="undefined"&&process.listeners&&(l={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var u=Object.assign({},s),p=[],c="./this.program",d=(K,se)=>{throw se},h=typeof window=="object",f=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g="";function x(K){return s.locateFile?s.locateFile(K,g):g+K}var y,A,b,k;function S(K){K instanceof Vo||$("exiting due to exception: "+K)}if(m){var C=Qx(),E=ey();f?g=E.dirname(g)+"/":g=__dirname+"/",y=(K,se)=>(K=_r(K)?new URL(K):E.normalize(K),C.readFileSync(K,se?void 0:"utf8")),b=K=>{var se=y(K,!0);return se.buffer||(se=new Uint8Array(se)),se},A=(K,se,Ne)=>{K=_r(K)?new URL(K):E.normalize(K),C.readFile(K,function(Je,At){Je?Ne(Je):se(At.buffer)})},process.argv.length>1&&(c=process.argv[1].replace(/\\/g,"/")),p=process.argv.slice(2),process.on("uncaughtException",function(K){if(!(K instanceof Vo))throw K}),process.on("unhandledRejection",function(K){throw K}),d=(K,se)=>{if(Va())throw process.exitCode=K,se;S(se),process.exit(K)},s.inspect=function(){return"[Emscripten Module object]"}}else(h||f)&&(f?g=self.location.href:typeof document!="undefined"&&document.currentScript&&(g=document.currentScript.src),n&&(g=n),g.indexOf("blob:")!==0?g=g.substr(0,g.replace(/[?#].*/,"").lastIndexOf("/")+1):g="",y=K=>{var se=new XMLHttpRequest;return se.open("GET",K,!1),se.send(null),se.responseText},f&&(b=K=>{var se=new XMLHttpRequest;return se.open("GET",K,!1),se.responseType="arraybuffer",se.send(null),new Uint8Array(se.response)}),A=(K,se,Ne)=>{var Je=new XMLHttpRequest;Je.open("GET",K,!0),Je.responseType="arraybuffer",Je.onload=()=>{if(Je.status==200||Je.status==0&&Je.response){se(Je.response);return}Ne()},Je.onerror=Ne,Je.send(null)},k=K=>document.title=K);var _=s.print||console.log.bind(console),$=s.printErr||console.warn.bind(console);Object.assign(s,u),u=null,s.arguments&&(p=s.arguments),s.thisProgram&&(c=s.thisProgram),s.quit&&(d=s.quit);var M=4,I;s.wasmBinary&&(I=s.wasmBinary);var N=s.noExitRuntime||!0;typeof WebAssembly!="object"&&Un("no native wasm support detected");var O,L=!1,W;function G(K,se){K||Un(se)}var H=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function U(K,se,Ne){for(var Je=se+Ne,At=se;K[At]&&!(At>=Je);)++At;if(At-se>16&&K.buffer&&H)return H.decode(K.subarray(se,At));for(var bt="";se<At;){var Ye=K[se++];if(!(Ye&128)){bt+=String.fromCharCode(Ye);continue}var Xe=K[se++]&63;if((Ye&224)==192){bt+=String.fromCharCode((Ye&31)<<6|Xe);continue}var Dt=K[se++]&63;if((Ye&240)==224?Ye=(Ye&15)<<12|Xe<<6|Dt:Ye=(Ye&7)<<18|Xe<<12|Dt<<6|K[se++]&63,Ye<65536)bt+=String.fromCharCode(Ye);else{var ln=Ye-65536;bt+=String.fromCharCode(55296|ln>>10,56320|ln&1023)}}return bt}function j(K,se){return K?U(ee,K,se):""}function V(K,se,Ne,Je){if(!(Je>0))return 0;for(var At=Ne,bt=Ne+Je-1,Ye=0;Ye<K.length;++Ye){var Xe=K.charCodeAt(Ye);if(Xe>=55296&&Xe<=57343){var Dt=K.charCodeAt(++Ye);Xe=65536+((Xe&1023)<<10)|Dt&1023}if(Xe<=127){if(Ne>=bt)break;se[Ne++]=Xe}else if(Xe<=2047){if(Ne+1>=bt)break;se[Ne++]=192|Xe>>6,se[Ne++]=128|Xe&63}else if(Xe<=65535){if(Ne+2>=bt)break;se[Ne++]=224|Xe>>12,se[Ne++]=128|Xe>>6&63,se[Ne++]=128|Xe&63}else{if(Ne+3>=bt)break;se[Ne++]=240|Xe>>18,se[Ne++]=128|Xe>>12&63,se[Ne++]=128|Xe>>6&63,se[Ne++]=128|Xe&63}}return se[Ne]=0,Ne-At}function Q(K,se,Ne){return V(K,ee,se,Ne)}var Z,re,ee,fe,ie,ye,Se,Ee,je;function Ze(K){Z=K,s.HEAP8=re=new Int8Array(K),s.HEAP16=fe=new Int16Array(K),s.HEAP32=ye=new Int32Array(K),s.HEAPU8=ee=new Uint8Array(K),s.HEAPU16=ie=new Uint16Array(K),s.HEAPU32=Se=new Uint32Array(K),s.HEAPF32=Ee=new Float32Array(K),s.HEAPF64=je=new Float64Array(K)}var dt=s.INITIAL_MEMORY||16777216,st,tt=[],at=[],Ue=[],ht=!1;function Va(){return N}function Ot(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)$a(s.preRun.shift());dr(tt)}function sn(){ht=!0,dr(at)}function na(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)_a(s.postRun.shift());dr(Ue)}function $a(K){tt.unshift(K)}function on(K){at.unshift(K)}function _a(K){Ue.unshift(K)}var ut=0,Pa=null,Ua=null;function ur(K){ut++,s.monitorRunDependencies&&s.monitorRunDependencies(ut)}function Wo(K){if(ut--,s.monitorRunDependencies&&s.monitorRunDependencies(ut),ut==0&&(Pa!==null&&(clearInterval(Pa),Pa=null),Ua)){var se=Ua;Ua=null,se()}}function Un(K){s.onAbort&&s.onAbort(K),K="Aborted("+K+")",$(K),L=!0,W=1,K+=". Build with -sASSERTIONS for more info.";var se=new WebAssembly.RuntimeError(K);throw o(se),se}var _u="data:application/octet-stream;base64,";function bn(K){return K.startsWith(_u)}function _r(K){return K.startsWith("file://")}var Xt;Xt="tfjs-backend-wasm.wasm",bn(Xt)||(Xt=x(Xt));function Fp(K){try{if(K==Xt&&I)return new Uint8Array(I);if(b)return b(K);throw"both async and sync fetching of the wasm failed"}catch(se){Un(se)}}function L0(){if(!I&&(h||f)){if(typeof fetch=="function"&&!_r(Xt))return fetch(Xt,{credentials:"same-origin"}).then(function(K){if(!K.ok)throw"failed to load wasm binary file at '"+Xt+"'";return K.arrayBuffer()}).catch(function(){return Fp(Xt)});if(A)return new Promise(function(K,se){A(Xt,function(Ne){K(new Uint8Array(Ne))},se)})}return Promise.resolve().then(function(){return Fp(Xt)})}function B0(){var K={env:Pu,wasi_snapshot_preview1:Pu};function se(Ye,Xe){var Dt=Ye.exports;s.asm=Dt,O=s.asm.memory,Ze(O.buffer),st=s.asm.__indirect_function_table,on(s.asm.__wasm_call_ctors),Wo("wasm-instantiate")}ur("wasm-instantiate");function Ne(Ye){se(Ye.instance)}function Je(Ye){return L0().then(function(Xe){return WebAssembly.instantiate(Xe,K)}).then(function(Xe){return Xe}).then(Ye,function(Xe){$("failed to asynchronously prepare wasm: "+Xe),Un(Xe)})}function At(){return!I&&typeof WebAssembly.instantiateStreaming=="function"&&!bn(Xt)&&!_r(Xt)&&!m&&typeof fetch=="function"?fetch(Xt,{credentials:"same-origin"}).then(function(Ye){var Xe=WebAssembly.instantiateStreaming(Ye,K);return Xe.then(Ne,function(Dt){return $("wasm streaming compile failed: "+Dt),$("falling back to ArrayBuffer instantiation"),Je(Ne)})}):Je(Ne)}if(s.instantiateWasm)try{var bt=s.instantiateWasm(K,se);return bt}catch(Ye){$("Module.instantiateWasm callback failed with error: "+Ye),o(Ye)}return At().catch(o),{}}var b5,Pr;function Vo(K){this.name="ExitStatus",this.message="Program terminated with exit("+K+")",this.status=K}function dr(K){for(;K.length>0;)K.shift()(s)}function W0(){Un("")}function Op(){return 2147483648}function Ts(){return Op()}function V0(K,se,Ne){ee.copyWithin(K,se,se+Ne)}function Dp(K){try{return O.grow(K-Z.byteLength+65535>>>16),Ze(O.buffer),1}catch(se){}}function Uo(K){var se=ee.length;K=K>>>0;var Ne=Op();if(K>Ne)return!1;let Je=(Dt,ln)=>Dt+(ln-Dt%ln)%ln;for(var At=1;At<=4;At*=2){var bt=se*(1+.2/At);bt=Math.min(bt,K+100663296);var Ye=Math.min(Ne,Je(Math.max(K,bt),65536)),Xe=Dp(Ye);if(Xe)return!0}return!1}var pa={varargs:void 0,get:function(){pa.varargs+=4;var K=ye[pa.varargs-4>>2];return K},getStr:function(K){var se=j(K);return se}};function zp(K){return 52}function U0(K,se,Ne,Je,At){return 70}var G0=[null,[],[]];function v5(K,se){var Ne=G0[K];se===0||se===10?((K===1?_:$)(U(Ne,0)),Ne.length=0):Ne.push(se)}function k5(K,se,Ne,Je){for(var At=0,bt=0;bt<Ne;bt++){var Ye=Se[se>>2],Xe=Se[se+4>>2];se+=8;for(var Dt=0;Dt<Xe;Dt++)v5(K,ee[Ye+Dt]);At+=Xe}return Se[Je>>2]=At,0}function Lp(K){var se=s["_"+K];return se}function Cs(K,se){re.set(K,se)}function H0(K,se,Ne,Je,At){var bt={string:Fa=>{var Or=0;if(Fa!=null&&Fa!==0){var ac=(Fa.length<<2)+1;Or=Lu(ac),Q(Fa,Or,ac)}return Or},array:Fa=>{var Or=Lu(Fa.length);return Cs(Fa,Or),Or}};function Ye(Fa){return se==="string"?j(Fa):se==="boolean"?Boolean(Fa):Fa}var Xe=Lp(K),Dt=[],ln=0;if(Je)for(var pr=0;pr<Je.length;pr++){var tc=bt[Ne[pr]];tc?(ln===0&&(ln=Jp()),Dt[pr]=tc(Je[pr])):Dt[pr]=Je[pr]}var Bu=Xe.apply(null,Dt);function Im(Fa){return ln!==0&&Qp(ln),Ye(Fa)}return Bu=Im(Bu),Bu}function j0(K,se,Ne,Je){Ne=Ne||[];var At=Ne.every(Ye=>Ye==="number"||Ye==="boolean"),bt=se!=="string";return bt&&At&&!Je?Lp(K):function(){return H0(K,se,Ne,arguments,Je)}}var Pu={abort:W0,emscripten_get_heap_max:Ts,emscripten_memcpy_big:V0,emscripten_resize_heap:Uo,fd_close:zp,fd_seek:U0,fd_write:k5},q0=B0(),Bp=s.___wasm_call_ctors=function(){return(Bp=s.___wasm_call_ctors=s.asm.__wasm_call_ctors).apply(null,arguments)},Wp=s._init=function(){return(Wp=s._init=s.asm.init).apply(null,arguments)},X0=s._init_with_threads_count=function(){return(X0=s._init_with_threads_count=s.asm.init_with_threads_count).apply(null,arguments)},Vp=s._get_threads_count=function(){return(Vp=s._get_threads_count=s.asm.get_threads_count).apply(null,arguments)},K0=s._register_tensor=function(){return(K0=s._register_tensor=s.asm.register_tensor).apply(null,arguments)},Be=s._dispose_data=function(){return(Be=s._dispose_data=s.asm.dispose_data).apply(null,arguments)},Fu=s._dispose=function(){return(Fu=s._dispose=s.asm.dispose).apply(null,arguments)},Z0=s._Abs=function(){return(Z0=s._Abs=s.asm.Abs).apply(null,arguments)},Up=s._Add=function(){return(Up=s._Add=s.asm.Add).apply(null,arguments)},Go=s._AddN=function(){return(Go=s._AddN=s.asm.AddN).apply(null,arguments)},Y0=s._All=function(){return(Y0=s._All=s.asm.All).apply(null,arguments)},J0=s._Any=function(){return(J0=s._Any=s.asm.Any).apply(null,arguments)},Q0=s._ArgMax=function(){return(Q0=s._ArgMax=s.asm.ArgMax).apply(null,arguments)},ef=s._AvgPool=function(){return(ef=s._AvgPool=s.asm.AvgPool).apply(null,arguments)},tf=s._BatchMatMul=function(){return(tf=s._BatchMatMul=s.asm.BatchMatMul).apply(null,arguments)},Gp=s._Ceil=function(){return(Gp=s._Ceil=s.asm.Ceil).apply(null,arguments)},Hp=s._ClipByValue=function(){return(Hp=s._ClipByValue=s.asm.ClipByValue).apply(null,arguments)},af=s._Conv2D=function(){return(af=s._Conv2D=s.asm.Conv2D).apply(null,arguments)},nf=s._Conv2DBackpropInput=function(){return(nf=s._Conv2DBackpropInput=s.asm.Conv2DBackpropInput).apply(null,arguments)},rf=s._Cos=function(){return(rf=s._Cos=s.asm.Cos).apply(null,arguments)},Ou=s._Cosh=function(){return(Ou=s._Cosh=s.asm.Cosh).apply(null,arguments)},sf=s._CropAndResize=function(){return(sf=s._CropAndResize=s.asm.CropAndResize).apply(null,arguments)},of=s._Cumprod=function(){return(of=s._Cumprod=s.asm.Cumprod).apply(null,arguments)},lf=s._Cumsum=function(){return(lf=s._Cumsum=s.asm.Cumsum).apply(null,arguments)},Ns=s._DepthToSpace=function(){return(Ns=s._DepthToSpace=s.asm.DepthToSpace).apply(null,arguments)},uf=s._DepthwiseConv2dNative=function(){return(uf=s._DepthwiseConv2dNative=s.asm.DepthwiseConv2dNative).apply(null,arguments)},df=s._Elu=function(){return(df=s._Elu=s.asm.Elu).apply(null,arguments)},jp=s._Equal=function(){return(jp=s._Equal=s.asm.Equal).apply(null,arguments)},pf=s._Exp=function(){return(pf=s._Exp=s.asm.Exp).apply(null,arguments)},Du=s._FlipLeftRight=function(){return(Du=s._FlipLeftRight=s.asm.FlipLeftRight).apply(null,arguments)},cf=s._Floor=function(){return(cf=s._Floor=s.asm.Floor).apply(null,arguments)},hf=s._FloorDiv=function(){return(hf=s._FloorDiv=s.asm.FloorDiv).apply(null,arguments)},ff=s._FusedBatchNorm=function(){return(ff=s._FusedBatchNorm=s.asm.FusedBatchNorm).apply(null,arguments)},Fr=s._FusedConv2D=function(){return(Fr=s._FusedConv2D=s.asm.FusedConv2D).apply(null,arguments)},zu=s._FusedDepthwiseConv2D=function(){return(zu=s._FusedDepthwiseConv2D=s.asm.FusedDepthwiseConv2D).apply(null,arguments)},mf=s._Gather=function(){return(mf=s._Gather=s.asm.Gather).apply(null,arguments)},gf=s._GatherNd=function(){return(gf=s._GatherNd=s.asm.GatherNd).apply(null,arguments)},xf=s._Greater=function(){return(xf=s._Greater=s.asm.Greater).apply(null,arguments)},yf=s._GreaterEqual=function(){return(yf=s._GreaterEqual=s.asm.GreaterEqual).apply(null,arguments)},qp=s._IsNan=function(){return(qp=s._IsNan=s.asm.IsNan).apply(null,arguments)},Xp=s._LeakyRelu=function(){return(Xp=s._LeakyRelu=s.asm.LeakyRelu).apply(null,arguments)},Af=s._Less=function(){return(Af=s._Less=s.asm.Less).apply(null,arguments)},bf=s._LessEqual=function(){return(bf=s._LessEqual=s.asm.LessEqual).apply(null,arguments)},Kp=s._Log=function(){return(Kp=s._Log=s.asm.Log).apply(null,arguments)},Zp=s._LogicalAnd=function(){return(Zp=s._LogicalAnd=s.asm.LogicalAnd).apply(null,arguments)},vf=s._LogicalNot=function(){return(vf=s._LogicalNot=s.asm.LogicalNot).apply(null,arguments)},kf=s._LogicalOr=function(){return(kf=s._LogicalOr=s.asm.LogicalOr).apply(null,arguments)},wf=s._LogicalXor=function(){return(wf=s._LogicalXor=s.asm.LogicalXor).apply(null,arguments)},If=s._Max=function(){return(If=s._Max=s.asm.Max).apply(null,arguments)},Yp=s._MaxPool=function(){return(Yp=s._MaxPool=s.asm.MaxPool).apply(null,arguments)},w5=s._Maximum=function(){return(w5=s._Maximum=s.asm.Maximum).apply(null,arguments)},Sf=s._Mean=function(){return(Sf=s._Mean=s.asm.Mean).apply(null,arguments)},Tf=s._Min=function(){return(Tf=s._Min=s.asm.Min).apply(null,arguments)},Cf=s._Minimum=function(){return(Cf=s._Minimum=s.asm.Minimum).apply(null,arguments)},Nf=s._MirrorPad=function(){return(Nf=s._MirrorPad=s.asm.MirrorPad).apply(null,arguments)},Ef=s._Multiply=function(){return(Ef=s._Multiply=s.asm.Multiply).apply(null,arguments)},Rf=s._Neg=function(){return(Rf=s._Neg=s.asm.Neg).apply(null,arguments)},Mf=s._NonMaxSuppressionV3=function(){return(Mf=s._NonMaxSuppressionV3=s.asm.NonMaxSuppressionV3).apply(null,arguments)},$f=s._NonMaxSuppressionV4=function(){return($f=s._NonMaxSuppressionV4=s.asm.NonMaxSuppressionV4).apply(null,arguments)},_f=s._NonMaxSuppressionV5=function(){return(_f=s._NonMaxSuppressionV5=s.asm.NonMaxSuppressionV5).apply(null,arguments)},Pf=s._NotEqual=function(){return(Pf=s._NotEqual=s.asm.NotEqual).apply(null,arguments)},Ff=s._OneHot=function(){return(Ff=s._OneHot=s.asm.OneHot).apply(null,arguments)},Of=s._PadV2=function(){return(Of=s._PadV2=s.asm.PadV2).apply(null,arguments)},Df=s._Pow=function(){return(Df=s._Pow=s.asm.Pow).apply(null,arguments)},zf=s._Prelu=function(){return(zf=s._Prelu=s.asm.Prelu).apply(null,arguments)},Lf=s._Prod=function(){return(Lf=s._Prod=s.asm.Prod).apply(null,arguments)},Bf=s._RealDiv=function(){return(Bf=s._RealDiv=s.asm.RealDiv).apply(null,arguments)},Wf=s._Reciprocal=function(){return(Wf=s._Reciprocal=s.asm.Reciprocal).apply(null,arguments)},Vf=s._Relu=function(){return(Vf=s._Relu=s.asm.Relu).apply(null,arguments)},Uf=s._Relu6=function(){return(Uf=s._Relu6=s.asm.Relu6).apply(null,arguments)},Gf=s._ResizeBilinear=function(){return(Gf=s._ResizeBilinear=s.asm.ResizeBilinear).apply(null,arguments)},Hf=s._ResizeNearestNeighbor=function(){return(Hf=s._ResizeNearestNeighbor=s.asm.ResizeNearestNeighbor).apply(null,arguments)},jf=s._Reverse=function(){return(jf=s._Reverse=s.asm.Reverse).apply(null,arguments)},qf=s._RotateWithOffset=function(){return(qf=s._RotateWithOffset=s.asm.RotateWithOffset).apply(null,arguments)},Xf=s._Round=function(){return(Xf=s._Round=s.asm.Round).apply(null,arguments)},Kf=s._Rsqrt=function(){return(Kf=s._Rsqrt=s.asm.Rsqrt).apply(null,arguments)},Zf=s._ScatterNd=function(){return(Zf=s._ScatterNd=s.asm.ScatterNd).apply(null,arguments)},Yf=s._SelectV2=function(){return(Yf=s._SelectV2=s.asm.SelectV2).apply(null,arguments)},Jf=s._Sigmoid=function(){return(Jf=s._Sigmoid=s.asm.Sigmoid).apply(null,arguments)},Qf=s._Sin=function(){return(Qf=s._Sin=s.asm.Sin).apply(null,arguments)},em=s._Softmax=function(){return(em=s._Softmax=s.asm.Softmax).apply(null,arguments)},tm=s._SparseFillEmptyRows=function(){return(tm=s._SparseFillEmptyRows=s.asm.SparseFillEmptyRows).apply(null,arguments)},am=s._SparseReshape=function(){return(am=s._SparseReshape=s.asm.SparseReshape).apply(null,arguments)},nm=s._SparseSegmentReduction=function(){return(nm=s._SparseSegmentReduction=s.asm.SparseSegmentReduction).apply(null,arguments)},rm=s._Sqrt=function(){return(rm=s._Sqrt=s.asm.Sqrt).apply(null,arguments)},sm=s._Square=function(){return(sm=s._Square=s.asm.Square).apply(null,arguments)},im=s._SquaredDifference=function(){return(im=s._SquaredDifference=s.asm.SquaredDifference).apply(null,arguments)},om=s._Step=function(){return(om=s._Step=s.asm.Step).apply(null,arguments)},lm=s._StridedSlice=function(){return(lm=s._StridedSlice=s.asm.StridedSlice).apply(null,arguments)},um=s._Sub=function(){return(um=s._Sub=s.asm.Sub).apply(null,arguments)},dm=s._Sum=function(){return(dm=s._Sum=s.asm.Sum).apply(null,arguments)},pm=s._Tan=function(){return(pm=s._Tan=s.asm.Tan).apply(null,arguments)},cm=s._Tanh=function(){return(cm=s._Tanh=s.asm.Tanh).apply(null,arguments)},hm=s._Tile=function(){return(hm=s._Tile=s.asm.Tile).apply(null,arguments)},fm=s._TopK=function(){return(fm=s._TopK=s.asm.TopK).apply(null,arguments)},mm=s._Transform=function(){return(mm=s._Transform=s.asm.Transform).apply(null,arguments)},gm=s._Transpose=function(){return(gm=s._Transpose=s.asm.Transpose).apply(null,arguments)},xm=s.__FusedMatMul=function(){return(xm=s.__FusedMatMul=s.asm._FusedMatMul).apply(null,arguments)},ym=s._malloc=function(){return(ym=s._malloc=s.asm.malloc).apply(null,arguments)},Am=s._free=function(){return(Am=s._free=s.asm.free).apply(null,arguments)},bm=s.___errno_location=function(){return(bm=s.___errno_location=s.asm.__errno_location).apply(null,arguments)},Jp=s.stackSave=function(){return(Jp=s.stackSave=s.asm.stackSave).apply(null,arguments)},Qp=s.stackRestore=function(){return(Qp=s.stackRestore=s.asm.stackRestore).apply(null,arguments)},Lu=s.stackAlloc=function(){return(Lu=s.stackAlloc=s.asm.stackAlloc).apply(null,arguments)},vm=s.dynCall_iijjiiii=function(){return(vm=s.dynCall_iijjiiii=s.asm.dynCall_iijjiiii).apply(null,arguments)},km=s.dynCall_jiji=function(){return(km=s.dynCall_jiji=s.asm.dynCall_jiji).apply(null,arguments)};s.cwrap=j0;var Ho;Ua=function K(){Ho||ec(),Ho||(Ua=K)};function ec(K){if(K=K||p,ut>0||(Ot(),ut>0))return;function se(){Ho||(Ho=!0,s.calledRun=!0,!L&&(sn(),i(s),s.onRuntimeInitialized&&s.onRuntimeInitialized(),na()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),se()},1)):se()}if(s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();ec();var jo;l&&(jo={uncaughtException:process.listeners("uncaughtException").filter(function(K){return!l.uncaughtException.indexOf(K)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(K){return!l.unhandledRejection.indexOf(K)>-1})});var qo;if(typeof r!="undefined")qo=r;else if(typeof WasmBackendModuleThreadedSimd!="undefined")qo=WasmBackendModuleThreadedSimd;else throw new Error("Could not find wasm module in post.js");if(jo){var wm=qo._dispose;qo._dispose=function(){wm(),jo.uncaughtException.forEach(function(K){process.removeListener("uncaughtException",K)}),jo.unhandledRejection.forEach(function(K){process.removeListener("unhandledRejection",K)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=a:typeof define=="function"&&define.amd?define([],function(){return a}):typeof e=="object"&&(e.WasmBackendModule=a)}),wd=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},Al=class{refCount(e){return Ha("refCount")}incRef(e){return Ha("incRef")}timerAvailable(){return!0}time(e){return Ha("time")}read(e){return Ha("read")}readSync(e){return Ha("readSync")}readToGPU(e,t){return Ha("readToGPU")}numDataIds(){return Ha("numDataIds")}disposeData(e,t){return Ha("disposeData")}write(e,t,a){return Ha("write")}move(e,t,a,n,r){return Ha("move")}createTensorFromGPUData(e,t,a){return Ha("createTensorFromGPUData")}memory(){return Ha("memory")}floatPrecision(){return Ha("floatPrecision")}epsilon(){return this.floatPrecision()===32?1e-7:1e-4}dispose(){return Ha("dispose")}};function Ha(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function ty(e){let t=e.length,a=0;for(;t>0;)a=Math.random()*t|0,t--,Tc(e,t,a)}function nS(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let a=e.length,n=0;for(;a>0;)n=Math.random()*a|0,a--,Tc(e,a,n),Tc(t,a,n)}function nd(e,t,a){return Math.max(e,Math.min(t,a))}function rS(e){return e%2===0?e:e+1}function Tc(e,t,a){let n=e[t];e[t]=e[a],e[a]=n}function sS(e){let t=0;for(let a=0;a<e.length;a++)t+=e[a];return t}function iS(e,t){let a=Math.random();return t*a+(1-a)*e}function oS(e,t){let a=0;for(let n=0;n<e.length;n++){let r=Number(e[n])-Number(t[n]);a+=r*r}return a}function P(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function Sa(e,t,a=""){P(ts(e,t),()=>a+` Shapes ${e} and ${t} must match`)}function Xs(e){P(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function yt(e){if(e.length===0)return 1;let t=e[0];for(let a=1;a<e.length;a++)t*=e[a];return t}function lS(e){return e.length===0}function ts(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let a=0;a<e.length;a++)if(e[a]!==t[a])return!1;return!0}function il(e){return e%1===0}function uS(e){if(Math.tanh!=null)return Math.tanh(e);if(e===1/0)return 1;if(e===-1/0)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function dS(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function pS(e){let t=new Uint32Array(e);for(let a=0;a<e;++a)t[a]=a;return ty(t),t}function Qu(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function cS(e,t=r=>0,a,n){return new Promise((r,s)=>{let i=0,o=()=>{if(e()){r();return}i++;let l=t(i);if(a!=null&&i>=a){s();return}n!=null?n(o,l):setTimeout(o,l)};o()})}function hS(e,t){let a=1,n=-1;for(let s=0;s<e.length;++s)if(e[s]>=0)a*=e[s];else if(e[s]===-1){if(n!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${n} and dim ${s}`);n=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(n===-1){if(t>0&&t!==a)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(a===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%a!==0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${a}`);let r=e.slice();return r[n]=t/a,r}function Id(e,t){let a=t.length;return e=e==null?t.map((n,r)=>r):[].concat(e),P(e.every(n=>n>=-a&&n<a),()=>`All values in axis param must be in range [-${a}, ${a}) but got axis ${e}`),P(e.every(n=>il(n)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(n=>n<0?a+n:n)}function ay(e,t){let a=[],n=[],r=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||r?null:Id(t,e).sort(),i=0;for(let o=0;o<e.length;++o){if(s!=null){if(s[i]===o&&e[o]!==1)throw new Error(`Can't squeeze axis ${o} since its dim '${e[o]}' is not 1`);(s[i]==null||s[i]>o)&&e[o]===1&&(a.push(e[o]),n.push(o)),s[i]<=o&&i++}e[o]!==1&&(a.push(e[o]),n.push(o))}return{newShape:a,keptDims:n}}function ny(e,t){let a=null;if(e==null||e==="float32")a=new Float32Array(t);else if(e==="int32")a=new Int32Array(t);else if(e==="bool")a=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return a}function ry(e,t){let a=null;if(e==null||e==="float32")a=new Float32Array(t);else if(e==="int32")a=new Int32Array(t);else if(e==="bool")a=new Uint8Array(t);else if(e==="string")a=new Array(t);else throw new Error(`Unknown data type ${e}`);return a}function sy(e,t){for(let a=0;a<e.length;a++){let n=e[a];if(isNaN(n)||!isFinite(n))throw Error(`A tensor of type ${t} being uploaded contains ${n}.`)}}function iy(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function fS(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function Cc(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function oy(e){if(e==null)return 0;let t=0;return e.forEach(a=>t+=a.length),t}function Lr(e){return typeof e=="string"||e instanceof String}function ly(e){return typeof e=="boolean"}function uy(e){return typeof e=="number"}function jc(e){return Array.isArray(e)?jc(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray?"int32":uy(e)?"float32":Lr(e)?"string":ly(e)?"bool":"float32"}function Hr(e){return!!(e&&e.constructor&&e.call&&e.apply)}function Nc(e,t){for(let a=t;a<e;++a)if(e%a===0)return a;return e}function bl(e){let t=e.length;if(t<2)return[];let a=new Array(t-1);a[t-2]=e[t-1];for(let n=t-3;n>=0;--n)a[n]=a[n+1]*e[n+1];return a}function dy(e,t,a,n=!1){let r=new Array;if(t.length===1){let s=t[0]*(n?2:1);for(let i=0;i<s;i++)r[i]=a[e+i]}else{let s=t[0],i=t.slice(1),o=i.reduce((l,u)=>l*u)*(n?2:1);for(let l=0;l<s;l++)r[l]=dy(e+l*o,i,a,n)}return r}function tl(e,t,a=!1){if(e.length===0)return t[0];let n=e.reduce((r,s)=>r*s)*(a?2:1);if(n===0)return[];if(n!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${a?" for a complex tensor":""}.`);return dy(0,e,t,a)}function mS(e,t){if(Array.isArray(e))return e;if(t==="float32")return e instanceof Float32Array?e:new Float32Array(e);if(t==="int32")return e instanceof Int32Array?e:new Int32Array(e);if(t==="bool"||t==="string")return Uint8Array.from(new Int32Array(e));throw new Error(`Unknown dtype ${t}`)}function O2(e,t){let a=qc(e,t);for(let n=0;n<a.length;n++)a[n]=1;return a}function qc(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function gS(e,t){let a=e.reduce((n,r)=>n*r,1);if(t==null||t==="float32")return tl(e,new Float32Array(a));if(t==="int32")return tl(e,new Int32Array(a));if(t==="bool")return tl(e,new Uint8Array(a));throw new Error(`Unknown data type ${t}`)}function Ja(e){e.forEach(t=>{P(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function xS(e,t,a){if(t===0)return 0;if(t===1)return e[0];let n=e[e.length-1];for(let r=0;r<e.length-1;++r)n+=a[r]*e[r];return n}function yS(e,t,a){if(t===0)return[];if(t===1)return[e];let n=new Array(t);for(let r=0;r<n.length-1;++r)n[r]=Math.floor(e/a[r]),e-=n[r]*a[r];return n[n.length-1]=e,n}function Xc(e){return e&&e.then&&typeof e.then=="function"}var _5="tfjsflags",py=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=AS,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&(B().getBool("IS_TEST")||B().getBool("PROD")||console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${e}.`)),this.platformName=e,this.platform=t}registerFlag(e,t,a){if(this.flagRegistry[e]={evaluationFn:t,setHook:a},this.urlFlags[e]!=null){let n=this.urlFlags[e];B().getBool("IS_TEST")||B().getBool("PROD")||console.warn(`Setting feature override from URL ${e}: ${n}.`),this.set(e,n)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(Xc(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);_5 in e&&e[_5].split(",").forEach(t=>{let[a,n]=t.split(":");this.urlFlags[a]=vS(a,n)})}};function AS(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(a,...n)=>(bS(t,n[0],n[1]),n.join("="))),t}function bS(e,t,a){e[decodeURIComponent(t)]=decodeURIComponent(a||"")}function vS(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function B(){return D2}var D2=null;function kS(e){D2=e}var Nm;function cy(){if(Nm==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");Nm=e}return Nm}function wS(){let e=cy();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function z2(e,t){let a=wS();if(a.has(e))return a.get(e);{let n=t();return a.set(e,n),a.get(e)}}var vl="Abs",kl="Acos",wl="Acosh",as="Add",Ks="AddN",Zs="All",Ys="Any",Js="ArgMax",Sd="ArgMin",Il="Asin",Sl="Asinh",Tl="Atan",Cl="Atanh",Nl="Atan2",Qs="AvgPool",Kc="AvgPoolGrad",Zc="AvgPool3D",L2="AvgPool3DGrad",ei="BatchMatMul",El="BatchToSpaceND",Td="Bincount",IS="BroadcastTo",Yc="BroadcastArgs",ti="Cast",ai="Ceil",ns="ClipByValue",Cd="Complex",Jc="ComplexAbs",Rl="Concat",ni="Conv2D",Nd="Conv2DBackpropFilter",ri="Conv2DBackpropInput",Qc="Conv3D",B2="Conv3DBackpropFilterV2",eh="Conv3DBackpropInputV2",si="Cos",ii="Cosh",oi="Cumprod",li="Cumsum",ui="CropAndResize",Ed="DenseBincount",di="DepthToSpace",pi="DepthwiseConv2dNative",th="DepthwiseConv2dNativeBackpropFilter",ah="DepthwiseConv2dNativeBackpropInput",Rd="Diag",Md="Dilation2D",Lm="Dilation2DBackpropInput",Bm="Dilation2DBackpropFilter",ci="RealDiv",$d="Einsum",hi="Elu",W2="EluGrad",Ml="Erf",fi="Equal",mi="Exp",$l="ExpandDims",_l="Expm1",_d="FFT",Pl="Fill",gi="FlipLeftRight",xi="Floor",yi="FloorDiv",Ai="FusedBatchNorm",Fl="GatherV2",bi="GatherNd",vi="Greater",ki="GreaterEqual",wi="Identity",Pd="IFFT",Fd="Imag",Ol="IsFinite",Dl="IsInf",Ii="IsNan",Si="LeakyRelu",Ti="Less",Ci="LessEqual",Od="LinSpace",Ni="Log",zl="Log1p",Ei="LogicalAnd",Ri="LogicalNot",Mi="LogicalOr",hy="LogicalXor",SS="LogSoftmax",TS="LowerBound",Dd="LRN",V2="LRNGrad",$i="Max",_i="Maximum",Pi="MaxPool",U2="MaxPoolGrad",nh="MaxPool3D",G2="MaxPool3DGrad",rh="MaxPoolWithArgmax",Fi="Mean",Oi="Min",Di="Minimum",zi="MirrorPad",Ll="Mod",sh="Multinomial",Li="Multiply",Bl="Neg",Bi="NotEqual",Wi="NonMaxSuppressionV3",Wl="NonMaxSuppressionV4",Vi="NonMaxSuppressionV5",Vl="OnesLike",Ui="OneHot",Ul="Pack",Gi="PadV2",CS="Pool",Hi="Pow",ji="Prelu",qi="Prod",ih="RaggedGather",oh="RaggedRange",lh="RaggedTensorToTensor",Gl="Range",zd="Real",Xi="Reciprocal",Ki="Relu",Hl="Reshape",Zi="ResizeNearestNeighbor",H2="ResizeNearestNeighborGrad",Yi="ResizeBilinear",j2="ResizeBilinearGrad",Ji="Relu6",Qi="Reverse",eo="Round",to="Rsqrt",ao="ScatterNd",Ld="SearchSorted",jl="Select",ql="Selu",Xl="Slice",no="Sin",Kl="Sinh",Zl="Sign",ro="Sigmoid",Yl="Softplus",so="Sqrt",io="Sum",Jl="SpaceToBatchND",Ql="SplitV",oo="Softmax",Bd="SparseFillEmptyRows",eu="SparseReshape",Wd="SparseSegmentMean",Vd="SparseSegmentSum",Ud="SparseToDense",lo="SquaredDifference",Gd="Square",uo="StridedSlice",tu="StringNGrams",Hd="StringSplit",jd="StringToHashBucketFast",po="Sub",co="Tan",ho="Tanh",rs="Tile",fo="TopK",mo="Transform",yr="Transpose",uh="Unique",au="Unpack",dh="UnsortedSegmentSum",NS="UpperBound",nu="ZerosLike",ss="Step",rd="FromPixels",go="RotateWithOffset",jr="_FusedMatMul",qr="FusedConv2D",Xr="FusedDepthwiseConv2D";function zr(...e){B().getBool("IS_TEST")||B().getBool("PROD")||console.warn(...e)}function ES(...e){B().getBool("IS_TEST")||B().getBool("PROD")||console.log(...e)}var ol=z2("kernelRegistry",()=>new Map),sd=z2("gradRegistry",()=>new Map);function Ec(e,t){let a=q2(e,t);return ol.get(a)}function Wm(e){return sd.get(e)}function Zn(e){let t=ol.entries(),a=[];for(;;){let{done:n,value:r}=t.next();if(n)break;let[s,i]=r,[o]=s.split("_");o===e&&a.push(i)}return a}function mn(e){let{kernelName:t,backendName:a}=e,n=q2(t,a);ol.has(n)&&zr(`The kernel '${t}' for backend '${a}' is already registered`),ol.set(n,e)}function RS(e){let{kernelName:t}=e;sd.has(t)&&B().getBool("DEBUG")&&zr(`Overriding the gradient for '${t}'`),sd.set(t,e)}function MS(e,t){let a=q2(e,t);if(!ol.has(a))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);ol.delete(a)}function $S(e){if(!sd.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);sd.delete(e)}function _S(e,t){Zn(e).forEach(a=>{let n=Object.assign({},a,{backendName:t});mn(n)})}function q2(e,t){return`${t}_${e}`}var v={};Ke(v,{arraysEqual:()=>ts,assert:()=>P,assertNonNegativeIntegerDimensions:()=>Ja,assertNonNull:()=>Xs,assertShapesMatch:()=>Sa,bytesFromStringArray:()=>oy,bytesPerElement:()=>Cc,checkConversionForErrors:()=>sy,clamp:()=>nd,computeStrides:()=>bl,convertBackendValuesAndArrayBuffer:()=>mS,createScalarValue:()=>LS,createShuffledIndices:()=>pS,decodeString:()=>Rc,distSquared:()=>oS,encodeString:()=>Xd,fetch:()=>WS,fingerPrint64:()=>zS,flatten:()=>Kr,getArrayFromDType:()=>ry,getTypedArrayFromDType:()=>ny,hasEncodingLoss:()=>fS,hexToLong:()=>qd,indexToLoc:()=>yS,inferDtype:()=>jc,inferFromImplicitShape:()=>hS,isBoolean:()=>ly,isFunction:()=>Hr,isInt:()=>il,isNumber:()=>uy,isPromise:()=>Xc,isScalarShape:()=>lS,isString:()=>Lr,isTypedArray:()=>ra,isValidDtype:()=>iy,locToIndex:()=>xS,makeOnesTypedArray:()=>O2,makeZerosNestedTypedArray:()=>gS,makeZerosTypedArray:()=>qc,nearestDivisor:()=>Nc,nearestLargerEven:()=>rS,now:()=>id,parseAxisParam:()=>Id,randUniform:()=>iS,repeatedTry:()=>cS,rightPad:()=>Qu,shuffle:()=>ty,shuffleCombo:()=>nS,sizeFromShape:()=>yt,sizeToSquarishShape:()=>dS,squeezeShape:()=>ay,sum:()=>sS,swap:()=>Tc,tanh:()=>uS,toNestedArray:()=>tl,toTypedArray:()=>ph});var P5=yl(BI()),_s=P5.default||P5;function qd(e){return _s.fromString(e,!0,16)}var fy=qd("c3a5c85c97cb3127"),Ms=qd("b492b66fbe98f273"),ya=qd("9ae16a3b2f90404f");function Vm(e){return e.xor(e.shru(47))}function my(e,t,a){let n=e.slice(t,t+a);return _s.fromBytes(Array.from(n),!0,!0)}function ft(e,t){return my(e,t,8)}function F5(e,t){return my(e,t,4)}function Kt(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function Ur(e,t,a=qd("9ddfea08eb382d69")){let n=e.xor(t).mul(a);n=n.xor(n.shru(47));let r=t.xor(n).mul(a);return r=r.xor(r.shru(47)),r=r.mul(a),r}function PS(e,t,a,n,r,s){r=r.add(e),s=Kt(s.add(r).add(n),21);let i=r;return r=r.add(t),r=r.add(a),s=s.add(Kt(r,44)),[r.add(n),s.add(i)]}function dc(e,t,a,n){return PS(ft(e,t),ft(e,t+8),ft(e,t+16),ft(e,t+24),a,n)}function FS(e,t=e.length){if(t>=8){let a=ya.add(t*2),n=ft(e,0).add(ya),r=ft(e,t-8),s=Kt(r,37).mul(a).add(n),i=Kt(n,25).add(r).mul(a);return Ur(s,i,a)}if(t>=4){let a=ya.add(t*2),n=F5(e,0);return Ur(n.shl(3).add(t),F5(e,t-4),a)}if(t>0){let a=e[0],n=e[t>>1],r=e[t-1],s=a+(n<<8),i=t+(r<<2);return Vm(ya.mul(s).xor(fy.mul(i))).mul(ya)}return ya}function OS(e,t=e.length){let a=ya.add(t*2),n=ft(e,0).mul(Ms),r=ft(e,8),s=ft(e,t-8).mul(a),i=ft(e,t-16).mul(ya);return Ur(Kt(n.add(r),43).add(Kt(s,30)).add(i),n.add(Kt(r.add(ya),18)).add(s),a)}function DS(e,t=e.length){let a=ya.add(t*2),n=ft(e,0).mul(ya),r=ft(e,8),s=ft(e,t-8).mul(a),i=ft(e,t-16).mul(ya),o=Kt(n.add(r),43).add(Kt(s,30)).add(i),l=Ur(o,n.add(Kt(r.add(ya),18)).add(s),a),u=ft(e,16).mul(a),p=ft(e,24),c=o.add(ft(e,t-32)).mul(a),d=l.add(ft(e,t-24)).mul(a);return Ur(Kt(u.add(p),43).add(Kt(c,30)).add(d),u.add(Kt(p.add(n),18)).add(c),a)}function zS(e,t=e.length){let a=_s.fromNumber(81,!0);if(t<=32)return t<=16?FS(e,t):OS(e,t);if(t<=64)return DS(e,t);let n=a,r=a.mul(Ms).add(113),s=Vm(r.mul(ya).add(113)).mul(ya),i=[_s.UZERO,_s.UZERO],o=[_s.UZERO,_s.UZERO];n=n.mul(ya).add(ft(e,0));let l=0,u=(t-1>>6)*64,p=u+(t-1&63)-63;do n=Kt(n.add(r).add(i[0]).add(ft(e,l+8)),37).mul(Ms),r=Kt(r.add(i[1]).add(ft(e,l+48)),42).mul(Ms),n=n.xor(o[1]),r=r.add(i[0]).add(ft(e,l+40)),s=Kt(s.add(o[0]),33).mul(Ms),i=dc(e,l,i[1].mul(Ms),n.add(o[0])),o=dc(e,l+32,s.add(o[1]),r.add(ft(e,l+16))),[s,n]=[n,s],l+=64;while(l!==u);let c=Ms.add(s.and(255).shl(1));return l=p,o[0]=o[0].add(t-1&63),i[0]=i[0].add(o[0]),o[0]=o[0].add(i[0]),n=Kt(n.add(r).add(i[0]).add(ft(e,l+8)),37).mul(c),r=Kt(r.add(i[1]).add(ft(e,l+48)),42).mul(c),n=n.xor(o[1].mul(9)),r=r.add(i[0].mul(9).add(ft(e,l+40))),s=Kt(s.add(o[0]),33).mul(c),i=dc(e,l,i[1].mul(c),n.add(o[0])),o=dc(e,l+32,s.add(o[1]),r.add(ft(e,l+16))),[s,n]=[n,s],Ur(Ur(i[0],o[0],c).add(Vm(r).mul(fy)).add(s),Ur(i[1],o[1],c).add(n),c)}function LS(e,t){return t==="string"?Xd(e):ph([e],t)}function BS(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function ph(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=Kr(e)),B().getBool("DEBUG")&&sy(e,t),BS(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let a=new Uint8Array(e.length);for(let n=0;n<a.length;++n)Math.round(e[n])!==0&&(a[n]=1);return a}else throw new Error(`Unknown data type ${t}`)}function id(){return B().platform.now()}function WS(e,t){return B().platform.fetch(e,t)}function Xd(e,t="utf-8"){return t=t||"utf-8",B().platform.encode(e,t)}function Rc(e,t="utf-8"){return t=t||"utf-8",B().platform.decode(e,t)}function ra(e){return B().platform.isTypedArray(e)}function Kr(e,t=[],a=!1){if(t==null&&(t=[]),typeof e=="boolean"||typeof e=="number"||typeof e=="string"||Xc(e)||e==null||ra(e)&&a)t.push(e);else if(Array.isArray(e)||ra(e))for(let n=0;n<e.length;++n)Kr(e[n],t,a);else{let n=-1;for(let r of Object.keys(e))/^([1-9]+[0-9]*|0)$/.test(r)&&(n=Math.max(n,Number(r)));for(let r=0;r<=n;r++)Kr(e[r],t,a)}return t}var VS=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new GS)}profileKernel(e,t,a){let n,r=()=>{n=a()},s,i=id();if(this.backendTimer.timerAvailable())s=this.backendTimer.time(r);else{r();for(let o of n)o.dataSync();s=Promise.resolve({kernelMs:id()-i})}if(B().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let o=0;o<n.length;o++){let l=n[o];l.data().then(u=>{US(u,l.dtype,e)})}return{kernelName:e,outputs:n,inputs:t,timeMs:s.then(o=>o.kernelMs),extraInfo:s.then(o=>o.getExtraProfileInfo!=null?o.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:a,timeMs:n,inputs:r,extraInfo:s}=e;a.forEach(i=>{Promise.all([i.data(),n,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],r,o[2])})})}};function US(e,t,a){if(t!=="float32")return!1;for(let n=0;n<e.length;n++){let r=e[n];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${a}'`),!0}return!1}var GS=class{logKernelProfile(e,t,a,n,r,s){let i=typeof n=="number"?Qu(`${n}ms`,9):n.error,o=Qu(e,25),l=t.rank,u=t.size,p=Qu(t.shape.toString(),14),c="";for(let d in r){let h=r[d];if(h!=null){let f=h.shape||t.shape,m=f.length;c+=`${d}: ${m}D ${m>0?f:""} `}}console.log(`%c${o} %c${i} %c${l}D ${p} %c${u} %c${c} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function HS(e,t,a){let n={},r={};for(let l=0;l<t.length;l++)n[t[l].id]=!0;for(let l=0;l<e.length;l++){let u=e[l],p=u.inputs;for(let c in p){let d=p[c],h=!1;for(let f=0;f<t.length;f++)if(n[d.id]){u.outputs.forEach(m=>n[m.id]=!0),h=!0,r[u.id]=!0;break}if(h)break}}let s={};s[a.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let u=e[l],p=u.inputs;for(let c=0;c<u.outputs.length;c++)if(s[u.outputs[c].id]){for(let d in p)s[p[d].id]=!0,i[u.id]=!0;break}}let o=[];for(let l=0;l<e.length;l++){let u=e[l];if(r[u.id]&&i[u.id]){let p={};for(let d in u.inputs){let h=u.inputs[d];n[h.id]&&(p[d]=h)}let c=Object.assign({},u);c.inputs=p,c.outputs=u.outputs,o.push(c)}}return o}function jS(e,t,a,n){for(let r=t.length-1;r>=0;r--){let s=t[r],i=[];if(s.outputs.forEach(l=>{let u=e[l.id];u!=null?i.push(u):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let u=a(()=>o[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let p=s.inputs[l];if(!ts(u.shape,p.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${p.shape}'`);if(e[p.id]==null)e[p.id]=u;else{let c=e[p.id];e[p.id]=n(c,u),c.dispose()}}}}var O5=20,Wu=3,Em=7;function qS(e,t,a,n){let r=bl(t),s=XS(e,t,a,r),i=t.length,o=xc(e,t,a,r,s),l=["Tensor"];return n&&(l.push(` dtype: ${a}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(u=>" "+u).join(`
|
|
`)),l.join(`
|
|
`)}function XS(e,t,a,n){let r=yt(t),s=n[n.length-1],i=new Array(s).fill(0),o=t.length,l=a==="complex64"?Gu(e):e;if(o>1)for(let u=0;u<r/s;u++){let p=u*s;for(let c=0;c<s;c++)i[c]=Math.max(i[c],Uu(l[p+c],0,a).length)}return i}function Uu(e,t,a){let n;return Array.isArray(e)?n=`${parseFloat(e[0].toFixed(Em))} + ${parseFloat(e[1].toFixed(Em))}j`:Lr(e)?n=`'${e}'`:a==="bool"?n=gy(e):n=parseFloat(e.toFixed(Em)).toString(),Qu(n,t)}function gy(e){return e===0?"false":"true"}function xc(e,t,a,n,r,s=!0){let i=a==="complex64"?2:1,o=t[0],l=t.length;if(l===0){if(a==="complex64"){let m=Gu(e);return[Uu(m[0],0,a)]}return a==="bool"?[gy(e[0])]:[e[0].toString()]}if(l===1){if(o>O5){let m=Wu*i,g=Array.from(e.slice(0,m)),x=Array.from(e.slice((o-Wu)*i,o*i));return a==="complex64"&&(g=Gu(g),x=Gu(x)),["["+g.map((y,A)=>Uu(y,r[A],a)).join(", ")+", ..., "+x.map((y,A)=>Uu(y,r[o-Wu+A],a)).join(", ")+"]"]}return["["+(a==="complex64"?Gu(e):Array.from(e)).map((m,g)=>Uu(m,r[g],a)).join(", ")+"]"]}let u=t.slice(1),p=n.slice(1),c=n[0]*i,d=[];if(o>O5){for(let m=0;m<Wu;m++){let g=m*c,x=g+c;d.push(...xc(e.slice(g,x),u,a,p,r,!1))}d.push("...");for(let m=o-Wu;m<o;m++){let g=m*c,x=g+c;d.push(...xc(e.slice(g,x),u,a,p,r,m===o-1))}}else for(let m=0;m<o;m++){let g=m*c,x=g+c;d.push(...xc(e.slice(g,x),u,a,p,r,m===o-1))}let h=l===2?",":"";d[0]="["+(o>0?d[0]+h:"");for(let m=1;m<d.length-1;m++)d[m]=" "+d[m]+h;let f=`,
|
|
`;for(let m=2;m<l;m++)f+=`
|
|
`;return d[d.length-1]=" "+d[d.length-1]+"]"+(s?"":f),d}function Gu(e){let t=[];for(let a=0;a<e.length;a+=2)t.push([e[a],e[a+1]]);return t}var jt=class{constructor(e,t,a){if(this.dtype=t,this.shape=e.slice(),this.size=yt(e),a!=null){let n=a.length;P(n===this.size,()=>`Length of values '${n}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=a||ry(t,this.size),this.strides=bl(e)}set(e,...t){t.length===0&&(t=[0]),P(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let a=this.locToIndex(t);this.values[a]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let n of e){if(n<0||n>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let a=e[e.length-1];for(let n=0;n<e.length-1;++n)a+=this.strides[n]*e[n];return this.values[a]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let a=0;a<e.length-1;++a)t+=this.strides[a]*e[a];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let a=0;a<t.length-1;++a)t[a]=Math.floor(e/this.strides[a]),e-=t[a]*this.strides[a];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return Fn().makeTensor(this.values,this.shape,this.dtype)}},Fn=null,Jo=null,KS=null;function ZS(e){Fn=e}function YS(e){Jo=e}function JS(e){KS=e}var pt=class{constructor(e,t,a,n){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=yt(e),this.strides=bl(e),this.dataId=a,this.id=n,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return Jo.buffer(this.shape,this.dtype,e)}bufferSync(){return Jo.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return tl(this.shape,e,this.dtype==="complex64")}arraySync(){return tl(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=Fn().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(a=>Rc(a))}catch(a){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataToGPU(e){return this.throwIfDisposed(),Fn().readToGPU(this.dataId,e)}dataSync(){this.throwIfDisposed();let e=Fn().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Rc(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Fn().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Fn().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return Jo.print(this,e)}clone(){return this.throwIfDisposed(),Jo.clone(this)}toString(e=!1){let t=this.dataSync();return qS(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),Jo.cast(this,e)}variable(e=!0,t,a){return this.throwIfDisposed(),Fn().makeVariable(this,e,t,a)}};Object.defineProperty(pt,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function QS(){return z2("Tensor",()=>pt)}QS();var od=class extends pt{constructor(e,t,a,n){super(e.shape,e.dtype,e.dataId,n),this.trainable=t,this.name=a}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!ts(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Fn().disposeTensor(this),this.dataId=e.dataId,Fn().incRef(this,null)}dispose(){Fn().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(od,Symbol.hasInstance,{value:e=>e instanceof pt&&e.assign!=null&&e.assign instanceof Function});var xy={};Ke(xy,{assertTypesMatch:()=>yy,getTensorsInContainer:()=>X2,isTensorInList:()=>tT,makeTypesMatch:()=>Tt});var Um;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(Um||(Um={}));var Gm;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(Gm||(Gm={}));var Hm;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(Hm||(Hm={}));var jm;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(jm||(jm={}));var qm;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(qm||(qm={}));var eT={float32:jm,int32:Gm,bool:Hm,complex64:qm};function ha(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return eT[e][t]}function Kd(e){return ha(e,"int32")}function Tt(e,t){if(e.dtype===t.dtype)return[e,t];let a=ha(e.dtype,t.dtype);return[e.cast(a),t.cast(a)]}function yy(e,t){P(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function tT(e,t){return t.some(a=>a.id===e.id)}function X2(e){let t=[];return Ay(e,t,new Set),t}function Ay(e,t,a){if(e==null)return;if(e instanceof pt){t.push(e);return}if(!aT(e))return;let n=e;for(let r in n){let s=n[r];a.has(s)||(a.add(s),Ay(s,t,a))}}function aT(e){return Array.isArray(e)||typeof e=="object"}function Rm(e){return e.kernelName!=null}var D5=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},ld=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new D5}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let a=e[t];if(await this.initializeBackend(a).success){await this.setBackend(a);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,a=1){return e in this.registryFactory?(zr(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:a},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:a}=this.initializeBackend(e);if(!(a?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new VS(this.backendInstance),!0}setupRegisteredKernels(){Zn(this.backendName).forEach(e=>{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){Zn(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let a=t.factory();if(a&&!(a instanceof Al)&&typeof a.then=="function"){let n=++this.pendingBackendInitId,r=a.then(s=>n<this.pendingBackendInitId?!1:(this.registry[e]=s,this.pendingBackendInit=null,!0)).catch(s=>(n<this.pendingBackendInitId||(this.pendingBackendInit=null,zr(`Initialization of backend ${e} failed`),zr(s.stack||s.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=a,{success:!0,asyncInit:!1}}catch(a){return zr(`Initialization of backend ${e} failed`),zr(a.stack||a.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let a=e[t],{success:n,asyncInit:r}=this.initializeBackend(a);if(r||n)return{name:a,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let a=this.state.tensorInfo.get(t),n=a.backend,r=this.readSync(t),s=n.refCount(t);n.disposeData(t,!0),a.backend=e,e.move(t,r,a.shape,a.dtype,s),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let a=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");a=e}let n;return this.scopedRun(()=>this.startScope(a),()=>this.endScope(n),()=>(n=t(),n instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),n))}scopedRun(e,t,a){e();try{let n=a();return t(),n}catch(n){throw t(),n}}nextTensorId(){return ld.nextTensorId++}nextVariableId(){return ld.nextVariableId++}clone(e){let t=z.runKernel(wi,{x:e}),a={x:e},n=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return z.runKernel(ti,o,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,a,[t],n,r,{}),t}runKernel(e,t,a){if(this.backendName==null&&this.backend,Ec(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:a})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,a){let n=this.backend.numDataIds(),r=0;a.forEach(o=>{r+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=n-t-r-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,a=[],n=this.isTapeOn(),r=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=Rm(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(Rm(e)){let{kernelName:h,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let g=Ec(h,this.backendName);P(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),i=()=>{let x=this.backend.numDataIds();o=g.kernelFunc({inputs:f,attrs:m,backend:this.backend});let y=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,x,y);let A=y.map(b=>b.rank!=null?b:this.makeTensorFromTensorInfo(b));if(n){let b=this.getTensorsForGradient(h,f,A);a=this.saveTensorsForBackwardMode(b)}return A}}else{let{forwardFunc:h}=e,f=m=>{n&&(a=m.map(g=>this.keep(this.clone(g))))};i=()=>{let m=this.backend.numDataIds();o=this.tidy(()=>h(this.backend,f));let g=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,m,g),g}}let{inputs:u,attrs:p}=e,c=Rm(e)?null:e.backwardsFunc,d;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(d=this.profiler.profileKernel(l,u,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(d),t=d.outputs)}),n&&this.addTapeNode(l,u,t,c,a,p),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(h=>u[h]!=null?u[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:d.timeMs,extraInfo:d.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,a){let n=Wm(e);if(n!=null){let r=n.inputsToSave||[],s=n.outputsToSave||[],i;n.saveAllInputs?(P(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=r.map(l=>t[l]);let o=a.filter((l,u)=>s[u]);return i.concat(o)}return[]}makeTensor(e,t,a,n){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");a=a||"float32",n=n||this.backend;let r=e;a==="string"&&Lr(e[0])&&(r=e.map(o=>Xd(o)));let s=n.write(r,t,a),i=new pt(t,a,s,this.nextTensorId());if(this.trackTensor(i,n),a==="string"){let o=this.state.tensorInfo.get(s),l=oy(r);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,a,n){a=a||"float32";let r={dataId:e,shape:t,dtype:a};return this.makeTensorFromTensorInfo(r,n)}makeTensorFromTensorInfo(e,t){let{dataId:a,shape:n,dtype:r}=e,s=new pt(n,r,a,this.nextTensorId());return this.trackTensor(s,t),s}makeVariable(e,t=!0,a,n){a=a||this.nextVariableId().toString(),n!=null&&n!==e.dtype&&(e=e.cast(n));let r=new od(e,t,a,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let a=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(a=e.size*Cc(e.dtype)),this.state.numBytes+=a,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:a})),e instanceof od||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let a=e.size*Cc(e.dtype);this.state.numBytes-=a}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,a=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(n=>n.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-a;for(let n of this.state.activeProfile.kernels)n.kernelTimeMs=await n.kernelTimeMs,n.extraInfo=await n.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,a,n,r,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:a,saved:r},o=Wm(e);o!=null&&(n=o.gradFunc),n!=null&&(i.gradient=l=>(l=l.map((u,p)=>{if(u==null){let c=a[p],d=qc(c.size,c.dtype);return this.makeTensor(d,c.shape,c.dtype)}return u}),n(l.length>1?l:l[0],r,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=X2(e),a=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let s=this.state.activeScope.track[r];!s.kept&&!a.has(s.id)&&s.dispose()}let n=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===n.id&&this.track(r)})}gradients(e,t,a,n=!1){if(P(t.length>0,()=>"gradients() received an empty list of xs."),a!=null&&a.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${a.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));P(r instanceof pt,()=>"The result y returned by f() must be a tensor.");let s=HS(this.state.activeTape,t,r);if(!n&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[r.id]=a==null?nT(r.shape):a,jS(i,s,l=>this.tidy(l),rT);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:r,grads:o}})}customGrad(e){return P(Hr(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{P(t.every(i=>i instanceof pt),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let a,n={};t.forEach((i,o)=>{n[o]=i});let r=(i,o)=>(a=e(...t,o),P(a.value instanceof pt,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),P(Hr(a.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),a.value),s=(i,o)=>{let l=a.gradFunc(i,o),u=Array.isArray(l)?l:[l];P(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),P(u.every(c=>c instanceof pt),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let p={};return u.forEach((c,d)=>{p[d]=()=>c}),p};return this.runKernelFunc({forwardFunc:r,backwardsFunc:s,inputs:n})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}readToGPU(e,t){return this.state.tensorInfo.get(e).backend.readToGPU(e,t)}async time(e){let t=id(),a=await this.backend.time(e);return a.wallMs=id()-t,a}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new D5;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};ld.nextTensorId=0;ld.nextVariableId=0;function nT(e){let t=O2(yt(e),"float32");return z.makeTensor(t,e,"float32")}function by(){let e=cy();if(e._tfengine==null){let t=new py(e);e._tfengine=new ld(t)}return kS(e._tfengine.ENV),ZS(()=>e._tfengine),e._tfengine}var z=by();function rT(e,t){let a={a:e,b:t};return z.runKernel(as,a)}var Zd={};Ke(Zd,{isBrowser:()=>vy,isMobile:()=>oT,mockIsMobile:()=>iT});function sT(){return typeof navigator!="undefined"&&navigator!=null}var Xm;function iT(e){Xm=e}function oT(e){if(Xm!==void 0)return Xm;if(e||sT()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let a=e;return a.userAgentData&&a.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function vy(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var hn=B();hn.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});hn.registerFlag("IS_BROWSER",()=>vy());hn.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");hn.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));hn.registerFlag("PROD",()=>!1);hn.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>hn.getBool("DEBUG"));hn.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);hn.registerFlag("IS_TEST",()=>!1);hn.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);hn.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);hn.registerFlag("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU",()=>!1);hn.registerFlag("USE_SETTIMEOUTCUSTOM",()=>!1);function Yn(e,t){let a=e;if(ra(e))return t==="string"?[]:[e.length];if(typeof e=="object"){if("texture"in e){let r=e.channels||"RGBA";return[e.height,e.width*r.length]}else if("buffer"in e&&!(e.buffer instanceof ArrayBuffer))return[e.buffer.size/(t==null?4:Cc(t))]}if(!Array.isArray(e))return[];let n=[];for(;Array.isArray(a)||ra(a)&&t!=="string";)n.push(a.length),a=a[0];return Array.isArray(e)&&B().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&ky(e,n,[]),n}function ky(e,t,a){if(a=a||[],!Array.isArray(e)&&!ra(e)){P(t.length===0,()=>`Element arr[${a.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}P(t.length>0,()=>`Element arr[${a.join("][")}] should be a primitive, but is an array of ${e.length} elements`),P(e.length===t[0],()=>`Element arr[${a.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let n=t.slice(1);for(let r=0;r<e.length;++r)ky(e[r],n,a.concat(r))}function z5(e,t,a,n){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${a}' passed to '${n}' must be ${e} tensor, but got ${t} tensor`)}}function R(e,t,a,n="numeric"){if(e instanceof pt)return z5(n,e.dtype,t,a),e;let r=jc(e);if(r!=="string"&&["bool","int32","float32"].indexOf(n)>=0&&(r=n),z5(n,r,t,a),e==null||!ra(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${a}' must be a Tensor or TensorLike, but got '${o}'`)}let s=Yn(e,r);!ra(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?ph(e,r):Kr(e,[],!0);return z.makeTensor(i,s,r)}function ud(e,t,a,n="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${a} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((r,s)=>R(r,`${t}[${s}]`,a,n))}var K2="__op";function D(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let a=t[0],n=e[a];a.endsWith("_")&&(a=a.substring(0,a.length-1)),a=a+K2;let r=(...s)=>{z.startScope(a);try{let i=n(...s);return Xc(i)&&console.error("Cannot return a Promise inside of tidy."),z.endScope(i),i}catch(i){throw z.endScope(null),i}};return Object.defineProperty(r,"name",{value:a,configurable:!0}),r}function lT(e,t){let a=R(e,"real","complex"),n=R(t,"imag","complex");Sa(a.shape,n.shape,`real and imag shapes, ${a.shape} and ${n.shape}, must match in call to tf.complex().`);let r={real:a,imag:n};return z.runKernel(Cd,r)}var br=D({complex_:lT});function is(e,t,a,n){if(n==null)n=jc(e);else if(n==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(typeof e=="object"&&("texture"in e||"buffer"in e&&!(e.buffer instanceof ArrayBuffer))){if(n!=="float32"&&n!=="int32")throw new Error(`Creating tensor from GPU data only supports 'float32'|'int32' dtype, while the dtype is ${n}.`);return z.backend.createTensorFromGPUData(e,t||a,n)}if(!ra(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){Ja(t);let r=yt(t),s=yt(a);P(r===s,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${s}`);for(let i=0;i<a.length;++i){let o=a[i],l=i===a.length-1?o!==yt(t.slice(i)):!0;P(a[i]===t[i]||!l,()=>`Error creating a new Tensor. Inferred shape (${a}) does not match the provided shape (${t}). `)}}return!ra(e)&&!Array.isArray(e)&&(e=[e]),t=t||a,e=n!=="string"?ph(e,n):Kr(e,[],!0),z.makeTensor(e,t,n)}function Ve(e,t,a){let n=Yn(e,a);return is(e,t,n,a)}var Km={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},Mc=4;async function uT(e,t){let a=[],n=[],r=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i<r.length;++i){let o=r[i],l=Array.isArray(e)?e[i].tensor:e[o];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${o}': ${l.dtype}`);let u={name:o,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let p=new Promise(async c=>{let d=await l.bytes(),h=d.reduce((g,x)=>g+x.length,0)+Mc*d.length,f=new Uint8Array(h),m=0;for(let g=0;g<d.length;g++){let x=d[g],y=new Uint8Array(new Uint32Array([x.length]).buffer);f.set(y,m),m+=Mc,f.set(x,m),m+=x.length}c(f)});n.push(p)}else n.push(l.data());t!=null&&(u.group=t),a.push(u)}let s=await Promise.all(n);return{data:dT(s),specs:a}}function wy(e,t){let a={},n,r=0;for(let s of t){let i=s.name,o=s.dtype,l=s.shape,u=yt(l),p;if("quantization"in s){let c=s.quantization;if(c.dtype==="uint8"||c.dtype==="uint16"){if(!("min"in c&&"scale"in c))throw new Error(`Weight ${s.name} with quantization ${c.dtype} doesn't have corresponding metadata min and scale.`)}else if(c.dtype==="float16"){if(o!=="float32")throw new Error(`Weight ${s.name} is quantized with ${c.dtype} which only supports weights of type float32 not ${o}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${c.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let d=Km[c.dtype],h=e.slice(r,r+u*d),f=c.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(o==="float32")if(c.dtype==="uint8"||c.dtype==="uint16"){p=new Float32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];p[m]=g*c.scale+c.min}}else if(c.dtype==="float16")n===void 0&&(n=gT()),p=n(f);else throw new Error(`Unsupported quantization type ${c.dtype} for weight type float32.`);else if(o==="int32"){if(c.dtype!=="uint8"&&c.dtype!=="uint16")throw new Error(`Unsupported quantization type ${c.dtype} for weight type int32.`);p=new Int32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];p[m]=Math.round(g*c.scale+c.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=u*d}else if(o==="string"){let c=yt(s.shape);p=[];for(let d=0;d<c;d++){let h=new Uint32Array(e.slice(r,r+Mc))[0];r+=Mc;let f=new Uint8Array(e.slice(r,r+h));p.push(f),r+=h}}else{let c=Km[o],d=e.slice(r,r+u*c);if(o==="float32")p=new Float32Array(d);else if(o==="int32")p=new Int32Array(d);else if(o==="bool")p=new Uint8Array(d);else if(o==="complex64"){p=new Float32Array(d);let h=new Float32Array(p.length/2),f=new Float32Array(p.length/2);for(let x=0;x<h.length;x++)h[x]=p[x*2],f[x]=p[x*2+1];let m=Ve(h,l,"float32"),g=Ve(f,l,"float32");a[i]=br(m,g),m.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=u*c}o!=="complex64"&&(a[i]=Ve(p,l,o))}return a}function dT(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,a=[];e.forEach(s=>{if(t+=s.byteLength,a.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let n=new Uint8Array(t),r=0;return a.forEach(s=>{n.set(new Uint8Array(s.buffer),r),r+=s.byteLength}),n.buffer}var Z2=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function L5(e){return Z2?Buffer.byteLength(e):new Blob([e]).size}function pT(e){if(Z2)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),a="";for(let n=0,r=t.length;n<r;n++)a+=String.fromCharCode(t[n]);return btoa(a)}function cT(e){if(Z2){let n=Buffer.from(e,"base64");return n.buffer.slice(n.byteOffset,n.byteOffset+n.byteLength)}let t=atob(e),a=new Uint8Array(t.length);for(let n=0;n<t.length;++n)a.set([t.charCodeAt(n)],n);return a.buffer}function Y2(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let a=new Uint8Array(t),n=0;return e.forEach(r=>{a.set(new Uint8Array(r),n),n+=r.byteLength}),a.buffer}function B5(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let a=e.split(t);return a[a.length-1]}function Iy(e,t){let a={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer),e.initializerSignature!=null&&(a.initializerSignature=e.initializerSignature),e.trainingConfig!=null&&(a.trainingConfig=e.trainingConfig),a}function Sy(e,t,a){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),e.weightsManifest!=null){if(!t)throw new Error("modelJSON has weightsManifest but weightSpecs is null");if(!a)throw new Error("modelJSON has weightsManifest but weightData is null");n.weightSpecs=t,n.weightData=a}return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.initializerSignature!=null&&(n.initializerSignature=e.initializerSignature),n}async function J2(e,t){let a,n;return e.weightsManifest!=null&&([a,n]=await t(e.weightsManifest)),Sy(e,a,n)}function Yd(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:L5(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:L5(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function Ty(e){let t=[];for(let a of e)t.push(...a.weights);return t}function hT(){let e=a=>{let n=a<<13,r=0;for(;!(n&8388608);)r-=8388608,n<<=1;return n&=-8388609,r+=947912704,n|r},t=new Uint32Array(2048);t[0]=0;for(let a=1;a<1024;a++)t[a]=e(a);for(let a=1024;a<2048;a++)t[a]=939524096+(a-1024<<13);return t}function fT(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function mT(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function gT(){let e=hT(),t=fT(),a=mT();return n=>{let r=new ArrayBuffer(4*n.length),s=new Uint32Array(r);for(let i=0;i<n.length;i++){let o=n[i],l=e[a[o>>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(r)}}var Mt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Mt.instance==null&&(Mt.instance=new Mt),Mt.instance}static registerSaveRouter(e){Mt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Mt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Mt.getHandlers(e,"save")}static getLoadHandlers(e,t){return Mt.getHandlers(e,"load",t)}static getHandlers(e,t,a){let n=[];return(t==="load"?Mt.getInstance().loadRouters:Mt.getInstance().saveRouters).forEach(r=>{let s=r(e,a);s!==null&&n.push(s)}),n}},xT=e=>Mt.registerSaveRouter(e),yT=e=>Mt.registerLoadRouter(e),AT=e=>Mt.getSaveHandlers(e),bT=(e,t)=>Mt.getLoadHandlers(e,t),Zm="tensorflowjs",Ym=1,Os="models_store",Br="model_info_store";function Cy(){if(!B().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function Jm(e){let t=e.result;t.createObjectStore(Os,{keyPath:"modelPath"}),t.createObjectStore(Br,{keyPath:"modelPath"})}var zs=class{constructor(e){if(this.indexedDB=Cy(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((a,n)=>{let r=this.indexedDB.open(Zm,Ym);r.onupgradeneeded=()=>Jm(r),r.onsuccess=()=>{let s=r.result;if(t==null){let i=s.transaction(Os,"readonly"),o=i.objectStore(Os).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),n(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));a(o.result.modelArtifacts)},o.onerror=l=>(s.close(),n(o.error)),i.oncomplete=()=>s.close()}else{let i=Yd(t),o=s.transaction(Br,"readwrite"),l=o.objectStore(Br),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),p;u.onsuccess=()=>{p=s.transaction(Os,"readwrite");let c=p.objectStore(Os).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});c.onsuccess=()=>a({modelArtifactsInfo:i}),c.onerror=d=>{l=o.objectStore(Br);let h=l.delete(this.modelPath);h.onsuccess=()=>(s.close(),n(c.error)),h.onerror=f=>(s.close(),n(c.error))}},u.onerror=c=>(s.close(),n(u.error)),o.oncomplete=()=>{p==null?s.close():p.oncomplete=()=>s.close()}}},r.onerror=s=>n(r.error)})}};zs.URL_SCHEME="indexeddb://";var Ny=e=>B().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(zs.URL_SCHEME)?vT(e.slice(zs.URL_SCHEME.length)):null;Mt.registerSaveRouter(Ny);Mt.registerLoadRouter(Ny);function vT(e){return new zs(e)}function kT(e){return e.startsWith(zs.URL_SCHEME)?e.slice(zs.URL_SCHEME.length):e}var wT=class{constructor(){this.indexedDB=Cy()}async listModels(){return new Promise((e,t)=>{let a=this.indexedDB.open(Zm,Ym);a.onupgradeneeded=()=>Jm(a),a.onsuccess=()=>{let n=a.result,r=n.transaction(Br,"readonly"),s=r.objectStore(Br).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(n.close(),t(s.error)),r.oncomplete=()=>n.close()},a.onerror=n=>t(a.error)})}async removeModel(e){return e=kT(e),new Promise((t,a)=>{let n=this.indexedDB.open(Zm,Ym);n.onupgradeneeded=()=>Jm(n),n.onsuccess=()=>{let r=n.result,s=r.transaction(Br,"readwrite"),i=s.objectStore(Br),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return r.close(),a(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=i.delete(e),p=()=>{l=r.transaction(Os,"readwrite");let c=l.objectStore(Os).delete(e);c.onsuccess=()=>t(o.result.modelArtifactsInfo),c.onerror=d=>a(o.error)};u.onsuccess=p,u.onerror=c=>(p(),r.close(),a(o.error))}},o.onerror=u=>(r.close(),a(o.error)),s.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},n.onerror=r=>a(n.error)})}},xr="/",Qo="tensorflowjs_models",Ey="info",IT="model_topology",ST="weight_specs",TT="weight_data",CT="model_metadata";function Ry(e){return{info:[Qo,e,Ey].join(xr),topology:[Qo,e,IT].join(xr),weightSpecs:[Qo,e,ST].join(xr),weightData:[Qo,e,TT].join(xr),modelMetadata:[Qo,e,CT].join(xr)}}function My(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function NT(e){let t=e.split(xr);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(xr)}function ET(e){return e.startsWith(Ls.URL_SCHEME)?e.slice(Ls.URL_SCHEME.length):e}var Ls=class{constructor(e){if(!B().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=Ry(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),a=JSON.stringify(e.weightSpecs),n=Yd(e);try{this.LS.setItem(this.keys.info,JSON.stringify(n)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,a),this.LS.setItem(this.keys.weightData,pT(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,initializerSignature:e.initializerSignature!=null?e.initializerSignature:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:n}}catch(r){throw My(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${n.modelTopologyBytes}, weightSpecsBytes=${n.weightSpecsBytes}, weightDataBytes=${n.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},a=JSON.parse(this.LS.getItem(this.keys.topology));if(a==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=a;let n=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(n==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=n;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let i=JSON.parse(r);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer),i.initializerSignature!=null&&(t.initializerSignature=i.initializerSignature),i.trainingConfig!=null&&(t.trainingConfig=i.trainingConfig)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=cT(s),t}};Ls.URL_SCHEME="localstorage://";var $y=e=>B().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Ls.URL_SCHEME)?RT(e.slice(Ls.URL_SCHEME.length)):null;Mt.registerSaveRouter($y);Mt.registerLoadRouter($y);function RT(e){return new Ls(e)}var MT=class{constructor(){P(B().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),P(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Qo+xr,a=xr+Ey;for(let n=0;n<this.LS.length;++n){let r=this.LS.key(n);if(r.startsWith(t)&&r.endsWith(a)){let s=NT(r);e[s]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=ET(e);let t=Ry(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let a=JSON.parse(this.LS.getItem(t.info));return My(t),a}},al="://",Oa=class{constructor(){this.managers={}}static getInstance(){return Oa.instance==null&&(Oa.instance=new Oa),Oa.instance}static registerManager(e,t){P(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(al)&&(e=e.slice(0,e.indexOf(al))),P(e.length>0,()=>"scheme must not be an empty string.");let a=Oa.getInstance();P(a.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),a.managers[e]=t}static getManager(e){let t=Oa.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(Oa.getInstance().managers)}};function yc(e){if(e.indexOf(al)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Oa.getSchemes().join(",")}`);return{scheme:e.split(al)[0],path:e.split(al)[1]}}async function _y(e,t,a=!1){P(e!==t,()=>`Old path and new path are the same: '${e}'`);let n=Mt.getLoadHandlers(e);P(n.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),P(n.length<2,()=>`Copying failed because more than one (${n.length}) load handlers for source URL ${e}.`);let r=n[0],s=Mt.getSaveHandlers(t);P(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),P(s.length<2,()=>`Copying failed because more than one (${n.length}) save handlers for destination URL ${t}.`);let i=s[0],o=yc(e).scheme,l=yc(e).path,u=o===yc(e).scheme,p=await r.load();a&&u&&await Oa.getManager(o).removeModel(l);let c=await i.save(p);return a&&!u&&await Oa.getManager(o).removeModel(l),c.modelArtifactsInfo}async function $T(){let e=Oa.getSchemes(),t={};for(let a of e){let n=await Oa.getManager(a).listModels();for(let r in n){let s=a+al+r;t[s]=n[r]}}return t}async function _T(e){let t=yc(e);return Oa.getManager(t.scheme).removeModel(t.path)}async function PT(e,t){return _y(e,t,!1)}async function FT(e,t){return _y(e,t,!0)}var OT=class{constructor(){this.messageName="setTimeoutCustom",this.functionRefs=[],this.handledMessageCount=0,this.hasEventListener=!1}fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}setTimeoutCustom(e,t){if(typeof window=="undefined"||!B().getBool("USE_SETTIMEOUTCUSTOM")){setTimeout(e,t);return}this.functionRefs.push(e),setTimeout(()=>{window.postMessage({name:this.messageName,index:this.functionRefs.length-1},"*")},t),this.hasEventListener||(this.hasEventListener=!0,window.addEventListener("message",a=>{if(a.source===window&&a.data.name===this.messageName){a.stopPropagation();let n=this.functionRefs[a.data.index];n(),this.handledMessageCount++,this.handledMessageCount===this.functionRefs.length&&(this.functionRefs=[],this.handledMessageCount=0)}},!0))}isTypedArray(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray}};if(B().get("IS_BROWSER")){B().setPlatform("browser",new OT);try{Oa.registerManager(Ls.URL_SCHEME,new MT)}catch(e){}try{Oa.registerManager(zs.URL_SCHEME,new wT)}catch(e){}}var DT={importFetch:()=>WI()},Mm,zT=class{constructor(){this.util=VI(),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return B().global.fetch!=null?B().global.fetch(e,t):(Mm==null&&(Mm=DT.importFetch()),Mm(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}isTypedArray(e){return this.util.types.isFloat32Array(e)||this.util.types.isInt32Array(e)||this.util.types.isUint8Array(e)||this.util.types.isUint8ClampedArray(e)}};B().get("IS_NODE")&&!B().get("IS_BROWSER")&&B().setPlatform("node",new zT);function _e(e,t="float32",a){return t=t||"float32",Ja(e),new jt(e,t,a)}function LT(e,t){let a=R(e,"x","cast");if(!iy(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&a.dtype!=="string"||t!=="string"&&a.dtype==="string")throw new Error("Only strings can be casted to strings");let n={x:a},r={dtype:t};return z.runKernel(ti,n,r)}var qe=D({cast_:LT});function BT(e){let t={x:R(e,"x","clone","string_or_numeric")};return z.runKernel(wi,t)}var ka=D({clone_:BT});function Q2(e,t=!1){console.log(e.toString(t))}by();var WT={buffer:_e,cast:qe,clone:ka,print:Q2};YS(WT);function e1(){B().set("PROD",!0)}function VT(){B().set("DEBUG",!0)}function UT(){B().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function t1(e){B().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}JS(t1);function GT(){z.disposeVariables()}function vt(){return z}function HT(){return z.memory()}function jT(e){return z.profile(e)}function Fe(e,t){return z.tidy(e,t)}function Y(e){X2(e).forEach(t=>t.dispose())}function On(e){return z.keep(e)}function qT(e){return z.time(e)}function Jd(e){return z.setBackend(e)}function Qd(){return z.ready()}function la(){return z.backendName}function XT(e){z.removeBackend(e)}function a1(e){return z.findBackend(e)}function KT(e){return z.findBackendFactory(e)}function xo(e,t,a=1){return z.registerBackend(e,t,a)}function tr(){return z.backend}function ZT(e,t){B().setPlatform(e,t)}function YT(e,t){let a=R(e,"a","add"),n=R(t,"b","add");[a,n]=Tt(a,n);let r={a,b:n};return z.runKernel(as,r)}var be=D({add_:YT});function JT(e,t){let a=R(e,"a","floorDiv"),n=R(t,"b","floorDiv");[a,n]=Tt(a,n);let r={a,b:n};return z.runKernel(yi,r)}var ep=D({floorDiv_:JT});function QT(e,t){let a=R(e,"a","div"),n=R(t,"b","div");if([a,n]=Tt(a,n),a.dtype==="int32"&&n.dtype==="int32")return ep(a,n);let r={a,b:n},s={};return z.runKernel(ci,r,s)}var me=D({div_:QT});function eC(e,t){let a=R(e,"a","mul"),n=R(t,"b","mul");[a,n]=Tt(a,n);let r={a,b:n};return z.runKernel(Li,r)}var ae=D({mul_:eC});function tC(e){let t=R(e,"x","abs");if(t.dtype==="complex64"){let a={x:t};return z.runKernel(Jc,a)}else{let a={x:t};return z.runKernel(vl,a)}}var qa=D({abs_:tC});function aC(e){let t={x:R(e,"x","acos")};return z.runKernel(kl,t)}var Py=D({acos_:aC});function nC(e){let t={x:R(e,"x","acosh")};return z.runKernel(wl,t)}var Fy=D({acosh_:nC});function rC(e){P(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),P(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,s)=>R(r,`tensors${s}`,"addN")),a=t[0];t.forEach(r=>{if(r.dtype!==a.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!ts(r.shape,a.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let n=t;return z.runKernel(Ks,n)}var ch=D({addN_:rC});function sC(e,t=null,a=!1){let n={x:R(e,"x","all","bool")},r={axis:t,keepDims:a};return z.runKernel(Zs,n,r)}var Oy=D({all_:sC});function iC(e,t=null,a=!1){let n={x:R(e,"x","any","bool")},r={axis:t,keepDims:a};return z.runKernel(Ys,n,r)}var Dy=D({any_:iC});function oC(e,t=0){let a={x:R(e,"x","argMax")},n={axis:t};return z.runKernel(Js,a,n)}var ar=D({argMax_:oC});function lC(e,t=0){let a={x:R(e,"x","argMin")},n={axis:t};return z.runKernel(Sd,a,n)}var zy=D({argMin_:lC});function uC(e){let t={x:R(e,"x","asin")};return z.runKernel(Il,t)}var Ly=D({asin_:uC});function dC(e){let t={x:R(e,"x","asinh")};return z.runKernel(Sl,t)}var By=D({asinh_:dC});function pC(e){let t={x:R(e,"x","atan")};return z.runKernel(Tl,t)}var Wy=D({atan_:pC});function cC(e,t){let a=R(e,"a","atan2"),n=R(t,"b","atan2");[a,n]=Tt(a,n);let r={a,b:n};return z.runKernel(Nl,r)}var Vy=D({atan2_:cC});function hC(e){let t={x:R(e,"x","atanh")};return z.runKernel(Cl,t)}var Uy=D({atanh_:hC});function fC(e,t,a,n,r="NHWC",s){let i=e[3],o=[...t,i],l=jy(r);return tp(e,o,a,s,n,null,null,l)}function Gy(e,t,a,n,r,s,i="channelsLast"){let[o,l]=dd(t),u;if(i==="channelsLast")u=[o,l,e[3],e[3]];else if(i==="channelsFirst")u=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return tp(e,u,a,n,r,s,!1,i)}function mC(e,t,a,n,r,s,i="NDHWC"){let[o,l,u]=Qm(t),p,c;if(i==="NDHWC")c="channelsLast",p=[o,l,u,e[4],e[4]];else if(i==="NCDHW")c="channelsFirst",p=[o,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Hy(e,p,a,n,r,!1,c,s)}function tp(e,t,a,n,r,s,i=!1,o="channelsLast"){let[l,u,p,c]=[-1,-1,-1,-1];if(o==="channelsLast")[l,u,p,c]=e;else if(o==="channelsFirst")[l,c,u,p]=e;else throw new Error(`Unknown dataFormat ${o}`);let[d,h,,f]=t,[m,g]=dd(a),[x,y]=dd(n),A=nl(d,x),b=nl(h,y),{padInfo:k,outHeight:S,outWidth:C}=yC(r,u,p,m,g,A,b,s,o),E=i?f*c:f,_;return o==="channelsFirst"?_=[l,E,S,C]:o==="channelsLast"&&(_=[l,S,C,E]),{batchSize:l,dataFormat:o,inHeight:u,inWidth:p,inChannels:c,outHeight:S,outWidth:C,outChannels:E,padInfo:k,strideHeight:m,strideWidth:g,filterHeight:d,filterWidth:h,effectiveFilterHeight:A,effectiveFilterWidth:b,dilationHeight:x,dilationWidth:y,inShape:e,outShape:_,filterShape:t}}function Hy(e,t,a,n,r,s=!1,i="channelsLast",o){let[l,u,p,c,d]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,u,p,c,d]=e;else if(i==="channelsFirst")[l,d,u,p,c]=e;else throw new Error(`Unknown dataFormat ${i}`);let[h,f,m,,g]=t,[x,y,A]=Qm(a),[b,k,S]=Qm(n),C=nl(h,b),E=nl(f,k),_=nl(m,S),{padInfo:$,outDepth:M,outHeight:I,outWidth:N}=AC(r,u,p,c,x,y,A,C,E,_,o),O=s?g*d:g,L;return i==="channelsFirst"?L=[l,O,M,I,N]:i==="channelsLast"&&(L=[l,M,I,N,O]),{batchSize:l,dataFormat:i,inDepth:u,inHeight:p,inWidth:c,inChannels:d,outDepth:M,outHeight:I,outWidth:N,outChannels:O,padInfo:$,strideDepth:x,strideHeight:y,strideWidth:A,filterDepth:h,filterHeight:f,filterWidth:m,effectiveFilterDepth:C,effectiveFilterHeight:E,effectiveFilterWidth:_,dilationDepth:b,dilationHeight:k,dilationWidth:S,inShape:e,outShape:L,filterShape:t}}function gC(e,t,a,n,r){n==null&&(n=n1(e,t,a));let s=e[0],i=e[1],o=pd((s-t+2*n)/a+1,r),l=pd((i-t+2*n)/a+1,r);return[o,l]}function xC(e,t,a,n,r,s){r==null&&(r=n1(e,t[0],n[0]));let i=[0,0,0,a];for(let o=0;o<3;o++)e[o]+2*r>=t[o]&&(i[o]=pd((e[o]-t[o]+2*r)/n[o]+1,s));return i}function n1(e,t,a,n=1){let r=nl(t,n);return Math.floor((e[0]*(a-1)-a+r)/2)}function dd(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function Qm(e){return typeof e=="number"?[e,e,e]:e}function nl(e,t){return t<=1?e:e+(e-1)*(t-1)}function yC(e,t,a,n,r,s,i,o,l){let u,p,c;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let d=gC([t,a],s,n,e,o);p=d[0],c=d[1]}else if(e==="same"){p=Math.ceil(t/n),c=Math.ceil(a/r);let d=Math.max(0,(p-1)*n+s-t),h=Math.max(0,(c-1)*r+i-a),f=Math.floor(d/2),m=d-f,g=Math.floor(h/2),x=h-g;u={top:f,bottom:m,left:g,right:x,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},p=Math.ceil((t-s+1)/n),c=Math.ceil((a-i+1)/r);else if(typeof e=="object"){let d=l==="channelsLast"?e[1][0]:e[2][0],h=l==="channelsLast"?e[1][1]:e[2][1],f=l==="channelsLast"?e[2][0]:e[3][0],m=l==="channelsLast"?e[2][1]:e[3][1];u={top:d,bottom:h,left:f,right:m,type:d===0&&h===0&&f===0&&m===0?"VALID":"EXPLICIT"},p=pd((t-s+d+h)/n+1,o),c=pd((a-i+f+m)/r+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:p,outWidth:c}}function AC(e,t,a,n,r,s,i,o,l,u,p){let c,d,h,f;if(e==="valid"&&(e=0),typeof e=="number"){c={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let m=xC([t,a,n,1],[o,l,u],1,[r,s,i],e,p);d=m[0],h=m[1],f=m[2]}else if(e==="same"){d=Math.ceil(t/r),h=Math.ceil(a/s),f=Math.ceil(n/i);let m=(d-1)*r+o-t,g=(h-1)*s+l-a,x=(f-1)*i+u-n,y=Math.floor(m/2),A=m-y,b=Math.floor(g/2),k=g-b,S=Math.floor(x/2),C=x-S;c={top:b,bottom:k,left:S,right:C,front:y,back:A,type:"SAME"}}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:c,outDepth:d,outHeight:h,outWidth:f}}function pd(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function cd(e){let[t,a,n]=dd(e);return t===1&&a===1&&n===1}function kr(e,t){return cd(e)||cd(t)}function Bs(e){return dd(e).every(t=>t>0)}function jy(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function Sn(e,t,a){if(a!=null){if(typeof t=="string")throw Error(`Error in ${e}: pad must be an integer when using dimRoundingMode ${a} but got pad ${t}.`);if(typeof t=="number")P(il(t),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${a} but got pad ${t}.`);else if(typeof t=="object")t.forEach(n=>{n.forEach(r=>{P(il(r),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${a} but got pad ${r}.`)})});else throw Error(`Error in ${e}: Unknown padding parameter: ${t}`)}}function bC(e,t){let a={x:R(e,"x","reshape","string_or_numeric")},n={shape:t};return z.runKernel(Hl,a,n)}var J=D({reshape_:bC});function vC(e,t,a,n,r){let s=R(e,"x","avgPool","float32"),i=1;P(kr(a,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=J(s,[1,s.shape[0],s.shape[1],s.shape[2]])),P(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),Sn("avgPool",n,r);let u={x:o},p={filterSize:t,strides:a,pad:n,dimRoundingMode:r},c=z.runKernel(Qs,u,p);return c=qe(c,s.dtype),l?J(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var r1=D({avgPool_:vC});function kC(e,t,a,n,r,s="NDHWC"){let i=R(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=J(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),P(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),P(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),P(typeof a=="number"&&a>0||Array.isArray(a)&&a[0]>0&&a[1]>0&&a[2]>0,()=>`Error in avgPool3d: Stride must be > 0, but got '${a}'`),Sn("avgPool3d",n,r);let u={x:o},p={filterSize:t,strides:a,pad:n,dimRoundingMode:r,dataFormat:s},c=z.runKernel(Zc,u,p);return c=qe(c,o.dtype),l?J(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var qy=D({avgPool3d_:kC});function wC(e,t=0){P(e.length>=1,()=>"Pass at least one tensor to concat");let a=ud(e,"tensors","concat","string_or_numeric");if(a[0].dtype==="complex64"&&a.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${s.dtype}. `)}),a.length===1)return ka(a[0]);let n=a,r={axis:t};return z.runKernel(Rl,n,r)}var rt=D({concat_:wC});function IC(e,t,a=!1,n=!1){let r=R(e,"a","matMul"),s=R(t,"b","matMul");[r,s]=Tt(r,s);let i={a:r,b:s},o={transposeA:a,transposeB:n};return z.runKernel(ei,i,o)}var it=D({matMul_:IC});function SC(e){let t={x:R(e,"x","sigmoid","float32")};return z.runKernel(ro,t)}var Da=D({sigmoid_:SC});function TC(e,t,a){let n=R(e,"x","slice","string_or_numeric");if(n.rank===0)throw new Error("Slicing scalar is not possible");let r={x:n},s={begin:t,size:a};return z.runKernel(Xl,r,s)}var De=D({slice_:TC});function CC(e){let t={x:R(e,"x","tanh","float32")};return z.runKernel(ho,t)}var $c=D({tanh_:CC});function NC(e,t,a,n,r,s){let i=R(e,"forgetBias","basicLSTMCell"),o=R(t,"lstmKernel","basicLSTMCell"),l=R(a,"lstmBias","basicLSTMCell"),u=R(n,"data","basicLSTMCell"),p=R(r,"c","basicLSTMCell"),c=R(s,"h","basicLSTMCell"),d=rt([u,c],1),h=it(d,o),f=be(h,l),m=f.shape[0],g=f.shape[1]/4,x=[m,g],y=De(f,[0,0],x),A=De(f,[0,g],x),b=De(f,[0,g*2],x),k=De(f,[0,g*3],x),S=be(ae(Da(y),$c(A)),ae(p,Da(be(i,b)))),C=ae($c(S),Da(k));return[S,C]}var Xy=D({basicLSTMCell_:NC});function EC(e,t,a){let n=R(e,"x","batchToSpaceND"),r=t.reduce((o,l)=>o*l);P(n.rank>=1+t.length,()=>`input rank is ${n.rank} but should be > than blockShape.length ${t.length}`),P(a.length===t.length,()=>`crops.length is ${a.length} but should be equal to blockShape.length ${t.length}`),P(n.shape[0]%r===0,()=>`input tensor batch is ${n.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let s={x:n},i={blockShape:t,crops:a};return z.runKernel(El,s,i)}var s1=D({batchToSpaceND_:EC});function RC(e){let t;return e.rank===0||e.rank===1?t=J(e,[1,1,1,e.size]):e.rank===2?t=J(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=J(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function MC(e,t,a,n,r,s){s==null&&(s=.001);let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(a,"variance","batchNorm"),u;r!=null&&(u=R(r,"scale","batchNorm"));let p;n!=null&&(p=R(n,"offset","batchNorm")),P(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),P(p==null||o.rank===p.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),P(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let c={x:RC(i),scale:u,offset:p,mean:o,variance:l},d={varianceEpsilon:s},h=z.runKernel(Ai,c,d);return J(h,i.shape)}var ap=D({batchNorm_:MC});function $C(e,t,a,n,r,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(a,"variance","batchNorm"),u;r!=null&&(u=R(r,"scale","batchNorm"));let p;return n!=null&&(p=R(n,"offset","batchNorm")),P(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),P(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),P(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&P(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),p!=null&&P(p.rank===2||p.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${p.rank}.`),ap(i,o,l,p,u,s)}var Ky=D({batchNorm2d_:$C});function _C(e,t,a,n,r,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(a,"variance","batchNorm"),u;r!=null&&(u=R(r,"scale","batchNorm"));let p;return n!=null&&(p=R(n,"offset","batchNorm")),P(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),P(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),P(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&P(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),p!=null&&P(p.rank===3||p.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${p.rank}.`),ap(i,o,l,p,u,s)}var Zy=D({batchNorm3d_:_C});function PC(e,t,a,n,r,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(a,"variance","batchNorm"),u;r!=null&&(u=R(r,"scale","batchNorm"));let p;return n!=null&&(p=R(n,"offset","batchNorm")),P(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),P(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),P(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&P(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),p!=null&&P(p.rank===4||p.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${p.rank}.`),ap(i,o,l,p,u,s)}var Yy=D({batchNorm4d_:PC});function FC(e,t,a){let n=R(e,"x","bincount"),r=R(t,"weights","bincount");P(n.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${n.dtype}`),P(a>=0,()=>`size must be non-negative, but got ${a}.`),P(r.size===n.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${n.shape}, weights shape: ${r.shape}.`);let s={x:n,weights:r},i={size:a};return z.runKernel(Td,s,i)}var i1=D({bincount_:FC});function OC(e,t){let a=R(e,"s0","broadcastArgs","int32"),n=R(t,"s1","broadcastArgs","int32");if(a.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${a.rank}`);if(n.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${n.rank}`);let r={s0:a,s1:n};return z.runKernel(Yc,r)}var Jy=D({broadcastArgs_:OC});function DC(e,t){let a=R(e,"broadcastTo","x"),n=a.shape;if(Ja(t),t.length<a.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${a.rank}.`);if(t.length>a.rank){let l=a.shape.slice();for(;l.length<t.length;)l.unshift(1);a=J(a,l)}let r=a.shape,s=Array.from(t);for(let l=t.length-1;l>=0;l--)if(r[l]===t[l])s[l]=1;else if(a.shape[l]!==1)throw new Error(`broadcastTo(): [${n}] cannot be broadcast to [${t}].`);if(s.map((l,u)=>l>1?u:-1).filter(l=>l>=0).length===0)return ka(a);let i={x:a},o={reps:s};return z.runKernel(rs,i,o)}var rl=D({broadcastTo_:DC});function zC(e){let t={x:R(e,"x","ceil","float32")};return z.runKernel(ai,t)}var Qy=D({ceil_:zC});function nr(e,t,a){Ja(e);let n={shape:e,value:t,dtype:a};return z.runKernel(Pl,{},n)}function LC(e,t,a){let n=R(e,"x","clipByValue");if(P(t<=a,()=>`Error in clip: min (${t}) must be less than or equal to max (${a}).`),t===a)return nr(n.shape,t,n.dtype);let r={x:n},s={clipValueMin:t,clipValueMax:a};return z.runKernel(ns,r,s)}var eA=D({clipByValue_:LC});function BC(e){return rt(e,0)}var tA=D({concat1d_:BC});function WC(e,t){return rt(e,t)}var ru=D({concat2d_:WC});function VC(e,t){return rt(e,t)}var aA=D({concat3d_:VC});function UC(e,t){return rt(e,t)}var nA=D({concat4d_:UC});function GC(e,t,a,n,r="NHWC",s=[1,1],i){let o=R(e,"x","conv2d","float32"),l=R(t,"filter","conv2d","float32"),u=o,p=!1;o.rank===3&&(p=!0,u=J(o,[1,o.shape[0],o.shape[1],o.shape[2]])),P(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),P(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),Sn("conv2d",n,i);let c=r==="NHWC"?u.shape[3]:u.shape[1];P(c===l.shape[2],()=>`Error in conv2d: depth of input (${c}) must match input depth for filter ${l.shape[2]}.`),P(kr(a,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${a} and dilations '${s}'`),P(Bs(s),()=>"Error in conv2D: Dilated rates should be larger than 0."),P(Bs(a),()=>"Error in conv2D: Strides should be larger than 0.");let d={x:u,filter:l},h={strides:a,pad:n,dataFormat:r,dilations:s,dimRoundingMode:i},f=z.runKernel(ni,d,h);return p?J(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var np=D({conv2d_:GC});function HC(e,t,a,n,r="NWC",s=1,i){let o=R(e,"x","conv1d"),l=R(t,"filter","conv1d"),u=o,p=!1;o.rank===2&&(p=!0,u=J(o,[1,o.shape[0],o.shape[1]])),P(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),P(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),Sn("conv1d",n,i),P(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),P(kr(a,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${a} and dilation '${s}'`),P(Bs(s),()=>"Error in conv1D: Dilated rates should be larger than 0."),P(Bs(a),()=>"Error in conv1D: Stride should be larger than 0."),P(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let c=J(l,[1,l.shape[0],l.shape[1],l.shape[2]]),d=J(u,[u.shape[0],1,u.shape[1],u.shape[2]]),h=np(d,c,[1,a],n,"NHWC",[1,s],i);return p?J(h,[h.shape[2],h.shape[3]]):J(h,[h.shape[0],h.shape[2],h.shape[3]])}var rA=D({conv1d_:HC});function jC(e,t,a,n,r,s="NHWC",i){P(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,u=!1;t.rank===3&&(u=!0,l=J(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),P(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),P(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),P(a.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${a.rank}`);let p=s==="NHWC"?o[3]:o[1],c=s==="NHWC"?l.shape[3]:l.shape[1];P(p===a.shape[2],()=>`Error in conv2dDerInput: depth of input (${p}) must match input depth for filter ${a.shape[2]}.`),P(c===a.shape[3],()=>`Error in conv2dDerInput: depth of output (${c}) must match output depth for filter ${a.shape[3]}.`),Sn("conv2dDerInput",r,i);let d={dy:l,filter:a},h={strides:n,pad:r,dataFormat:s,dimRoundingMode:i,inputShape:o},f=z.runKernel(ri,d,h);return u?J(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var sA=D({conv2DBackpropInput_:jC});function qC(e,t,a,n,r,s){let i=R(e,"x","conv2dTranspose"),o=R(t,"filter","conv2dTranspose");return sA(a,i,o,n,r,"NHWC",s)}var iA=D({conv2dTranspose_:qC});function XC(e,t,a,n,r="NDHWC",s=[1,1,1]){let i=R(e,"x","conv3d"),o=R(t,"filter","conv3d"),l=i,u=!1;i.rank===4&&(u=!0,l=J(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),P(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),P(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),P(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),P(kr(a,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${a} and dilations '${s}'`),P(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`),P(Bs(s),()=>"Error in conv3D: Dilated rates should be larger than 0."),P(Bs(a),()=>"Error in conv3D: Strides should be larger than 0.");let p={x:l,filter:o},c={strides:a,pad:n,dataFormat:r,dilations:s},d=z.runKernel(Qc,p,c);return u?J(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var oA=D({conv3d_:XC});function KC(e,t,a,n,r){P(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=J(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],u=i.shape[4];P(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),P(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),P(a.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${a.rank}`),P(l===a.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${a.shape[3]}.`),P(u===a.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${a.shape[4]}.`);let p={dy:i,filter:a},c={pad:r,strides:n,inputShape:s},d=z.runKernel(eh,p,c);return o?J(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var ZC=D({conv3DBackpropInput_:KC});function YC(e,t,a,n,r){let s=R(e,"x","conv3dTranspose"),i=R(t,"filter","conv3dTranspose");return ZC(a,s,i,n,r)}var lA=D({conv3dTranspose_:YC});function JC(e){let t={x:R(e,"x","cos","float32")};return z.runKernel(si,t)}var uA=D({cos_:JC});function QC(e){let t={x:R(e,"x","cosh","float32")};return z.runKernel(ii,t)}var dA=D({cosh_:QC});function eN(e,t=0,a=!1,n=!1){let r={x:R(e,"x","cumprod")},s={axis:t,exclusive:a,reverse:n};return z.runKernel(oi,r,s)}var pA=D({cumprod_:eN});function tN(e,t=0,a=!1,n=!1){let r={x:R(e,"x","cumsum")},s={axis:t,exclusive:a,reverse:n};return z.runKernel(li,r,s)}var cA=D({cumsum_:tN});function aN(e,t,a,n=!1){let r=R(e,"x","denseBincount"),s=R(t,"weights","denseBincount");P(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),P(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),P(a>=0,()=>`size must be non-negative, but got ${a}.`),P(s.size===r.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${s.shape}.`);let i={x:r,weights:s},o={size:a,binaryOutput:n};return z.runKernel(Ed,i,o)}var hA=D({denseBincount_:aN});function nN(e,t,a="NHWC"){let n=R(e,"x","depthToSpace","float32"),r=a==="NHWC"?n.shape[1]:n.shape[2],s=a==="NHWC"?n.shape[2]:n.shape[3],i=a==="NHWC"?n.shape[3]:n.shape[1];P(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`),P(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${r} and ${t} for depthToSpace with input shape
|
|
${n.shape}`),P(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${s} and ${t} for depthToSpace with input shape
|
|
${n.shape}`),P(i%(t*t)===0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${n.shape}`);let o={x:n},l={blockSize:t,dataFormat:a};return z.runKernel(di,o,l)}var fA=D({depthToSpace_:nN});function rN(e,t,a,n,r="NHWC",s=[1,1],i){let o=R(e,"x","depthwiseConv2d","float32"),l=R(t,"filter","depthwiseConv2d","float32"),u=o,p=!1;o.rank===3&&(p=!0,u=J(o,[1,o.shape[0],o.shape[1],o.shape[2]])),P(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),P(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`);let c=r==="NHWC"?u.shape[3]:u.shape[1];P(c===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${c}) must match the inChannels dimension in filter ${l.shape[2]}.`),Sn("depthwiseConv2d",n,i);let d={x:u,filter:l},h={strides:a,pad:n,dataFormat:r,dilations:s,dimRoundingMode:i},f=z.runKernel(pi,d,h);return p?J(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var hh=D({depthwiseConv2d_:rN});function sN(e){let t={x:R(e,"x","diag")};return z.runKernel(Rd,t)}var mA=D({diag_:sN});function iN(e,t,a,n,r=[1,1],s="NHWC"){let i=R(e,"x","dilation2d"),o=R(t,"filter","dilation2d");P(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),P(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),P(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,u=!1;i.rank===3&&(l=J(i,[1,i.shape[0],i.shape[1],i.shape[2]]),u=!0),P(l.shape[3]===o.shape[2],()=>`Error in dilation2d: input and filter must have the same depth: ${l.shape[3]} vs ${o.shape[2]}`);let p={x:l,filter:o},c={strides:a,pad:n,dilations:r},d=z.runKernel(Md,p,c);return u?J(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var gA=D({dilation2d_:iN}),yo={};Ke(yo,{assertAndGetBroadcastShape:()=>zt,getBroadcastDims:()=>xA,getReductionAxes:()=>o1});function xA(e,t){let a=e.length,n=[];for(let r=0;r<a;r++){let s=a-1-r,i=e[s]||1;(t[t.length-1-r]||1)>1&&i===1&&n.unshift(s)}return n}function o1(e,t){let a=[];for(let n=0;n<t.length;n++){let r=e[e.length-n-1],s=t.length-n-1,i=t[s];(r==null||r===1&&i>1)&&a.unshift(s)}return a}function zt(e,t){let a=[],n=Math.max(e.length,t.length);for(let r=0;r<n;r++){let s=e[e.length-r-1];s==null&&(s=1);let i=t[t.length-r-1];if(i==null&&(i=1),s===1)a.unshift(i);else if(i===1)a.unshift(s);else if(s!==i){let o=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(o)}else a.unshift(s)}return a}function oN(e,t){let a=R(e,"a","equal","string_or_numeric"),n=R(t,"b","equal","string_or_numeric");[a,n]=Tt(a,n),zt(a.shape,n.shape);let r={a,b:n};return z.runKernel(fi,r)}var l1=D({equal_:oN});function lN(e,t,a){let n=R(t,"a","where"),r=R(a,"b","where"),s=R(e,"condition","where","bool"),i=zt(zt(s.shape,n.shape),r.shape),o=rl(s,i),l=rl(n,i),u=rl(r,i),p={condition:o,t:l,e:u};return z.runKernel(jl,p)}var Ws=D({where_:lN});function uN(e){let t={x:R(e,"x","zerosLike")};return z.runKernel(nu,t)}var Ka=D({zerosLike_:uN});function dN(e,t){let a=R(e,"a","div"),n=R(t,"b","div");[a,n]=Tt(a,n);let r=me(a,n),s=Ka(r),i=l1(n,s);return Ws(i,s,r)}var yA=D({divNoNan_:dN});function pN(e,t){let a=R(e,"t1","dot"),n=R(t,"t2","dot");P((a.rank===1||a.rank===2)&&(n.rank===1||n.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${a.rank} and ${n.rank}.`);let r=a.rank===1?a.size:a.shape[1],s=n.rank===1?n.size:n.shape[0];if(P(r===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${s}.`),a.rank===1&&n.rank===1){let i=J(a,[1,-1]),o=J(n,[-1,1]),l=it(i,o);return J(l,[])}else if(a.rank===1&&n.rank===2){let i=J(a,[1,-1]),o=J(n,[n.shape[0],n.shape[1]]),l=it(i,o);return J(l,[l.size])}else if(a.rank===2&&n.rank===1){let i=J(n,[-1,1]),o=it(a,i);return J(o,[o.size])}else{let i=J(n,[n.shape[0],n.shape[1]]);return it(a,i)}}var AA=D({dot_:pN});function cN(e,...t){let a=t.map((r,s)=>R(r,`tensors${s}`,"einsum")),n={equation:e};return z.runKernel($d,a,n)}var bA=D({einsum_:cN});function hN(e){let t={x:R(e,"x","elu","float32")};return z.runKernel(hi,t)}var u1=D({elu_:hN});function fN(e){let t=R(e,"x","erf");P(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=qe(t,"float32"));let a={x:t};return z.runKernel(Ml,a)}var vA=D({erf_:fN});function d1(e,t){for(let a=0;a<e.length;++a)if(e[e.length-a-1]!==t-1-a)return!1;return!0}function kA(e,t,a){let n=e.length+t.length,r=[],s=0,i=0;for(let o=0;o<n;o++)a.indexOf(o)===-1?r.push(e[s++]):r.push(t[i++]);return r}function mN(e,t){let a=[],n=e.length;for(let s=0;s<n;s++)t.indexOf(s)===-1&&a.push(e[s]);let r=t.map(s=>e[s]);return[a,r]}function rp(e,t){let a=t.map(n=>1);return kA(e,a,t)}function gN(e,t,a){P(d1(t,a),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${a} input.`)}function xN(e,t){if(d1(e,t))return null;let a=[];for(let n=0;n<t;++n)e.indexOf(n)===-1&&a.push(n);return e.forEach(n=>a.push(n)),a}function yN(e){return e.map((t,a)=>[a,t]).sort((t,a)=>t[1]-a[1]).map(t=>t[0])}function AN(e,t){let a=[];for(let n=t-e;n<t;++n)a.push(n);return a}function bN(e,t=null,a=!1){let n={x:R(e,"x","max")},r={reductionIndices:t,keepDims:a};return z.runKernel($i,n,r)}var ca=D({max_:bN});function vN(e,t=null,a=!1){let n={x:R(e,"x","min")},r={axis:t,keepDims:a};return z.runKernel(Oi,n,r)}var Zr=D({min_:vN});function kN(e,t){let a=R(e,"base","pow"),n=R(t,"exp","pow");[a,n]=Tt(a,n);let r={a,b:n};return z.runKernel(Hi,r)}var ll=D({pow_:kN});function ze(e,t){if((ra(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&ra(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return is(e,[],[],t)}function wN(e){let t={x:R(e,"x","sqrt","float32")};return z.runKernel(so,t)}var Jn=D({sqrt_:wN});function IN(e){let t=R(e,"x","square"),a={};return z.runKernel("Square",{x:t},a)}var In=D({square_:IN});function SN(e,t=null,a=!1){let n=R(e,"x","sum");n.dtype==="bool"&&(n=qe(n,"int32"));let r={x:n},s={axis:t,keepDims:a};return z.runKernel(io,r,s)}var nt=D({sum_:SN});function TN(e,t="euclidean",a=null,n=!1){e=R(e,"x","norm");let r=wA(e,t,a),s=r.shape;if(n){let i=Id(a,e.shape);s=rp(r.shape,i)}return J(r,s)}function wA(e,t,a=null){if(e.rank===0)return qa(e);if(e.rank!==1&&a===null)return wA(J(e,[-1]),t,a);if(e.rank===1||typeof a=="number"||Array.isArray(a)&&a.length===1){if(t===1)return nt(qa(e),a);if(t===1/0)return ca(qa(e),a);if(t===-1/0)return Zr(qa(e),a);if(t==="euclidean"||t===2)return Jn(nt(ll(qa(e),ze(2,"int32")),a));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(a)&&a.length===2){if(t===1)return ca(nt(qa(e),a[0]),a[1]-1);if(t===1/0)return ca(nt(qa(e),a[1]),a[0]);if(t===-1/0)return Zr(nt(qa(e),a[1]),a[0]);if(t==="fro"||t==="euclidean")return Jn(nt(In(e),a));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${a}`)}var sp=D({norm_:TN});function CN(e,t=null,a=!1){return sp(e,"euclidean",t,a)}var IA=D({euclideanNorm_:CN});function NN(e){let t={x:R(e,"x","exp")};return z.runKernel(mi,t)}var Yr=D({exp_:NN});function EN(e,t=0){let a=R(e,"x","expandDims","string_or_numeric");P(t<=a.rank,()=>"Axis must be <= rank of the tensor");let n={input:a},r={dim:t};return z.runKernel($l,n,r)}var Gt=D({expandDims_:EN});function RN(e){let t={x:R(e,"x","expm1")};return z.runKernel(_l,t)}var SA=D({expm1_:RN});function MN(e,t){let a=R(e,"x","tile","string_or_numeric");P(a.rank===t.length,()=>`Error in transpose: rank of input ${a.rank} must match length of reps ${t}.`);let n={x:a},r={reps:t};return z.runKernel(rs,n,r)}var Gr=D({tile_:MN});function $N(e,t,a,n="float32"){t==null&&(t=e);let r=_e([e,t],n),s=e<=t?e:t;for(let o=0;o<s;++o)r.set(1,o,o);let i=J(r.toTensor(),[e,t]);if(a==null)return i;if(a.length===1)return Gr(Gt(i,0),[a[0],1,1]);if(a.length===2)return Gr(Gt(Gt(i,0),0),[a[0],a[1],1,1]);if(a.length===3)return Gr(Gt(Gt(Gt(i,0),0),0),[a[0],a[1],a[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${a.length}D.`)}var p1=D({eye_:$N});function _N(e){let t={x:R(e,"x","floor","float32")};return z.runKernel(xi,t)}var c1=D({floor_:_N});function PN(e,t,a=0,n=0){let r=R(e,"x","gather"),s=R(t,"indices","gather","int32"),i={x:r,indices:s},o={axis:a,batchDims:n};return z.runKernel(Fl,i,o)}var h1=D({gather_:PN});function FN(e,t){let a=R(e,"a","greater","string_or_numeric"),n=R(t,"b","greater","string_or_numeric");[a,n]=Tt(a,n),zt(a.shape,n.shape);let r={a,b:n};return z.runKernel(vi,r)}var ip=D({greater_:FN});function ON(e,t){let a=R(e,"a","greaterEqual","string_or_numeric"),n=R(t,"b","greaterEqual","string_or_numeric");[a,n]=Tt(a,n),zt(a.shape,n.shape);let r={a,b:n};return z.runKernel(ki,r)}var f1=D({greaterEqual_:ON});function DN(e){let t={input:R(e,"input","imag")};return z.runKernel(Fd,t)}var op=D({imag_:DN});function zN(e){let t={x:R(e,"x","isFinite")};return z.runKernel(Ol,t)}var TA=D({isFinite_:zN});function LN(e){let t={x:R(e,"x","isInf")};return z.runKernel(Dl,t)}var CA=D({isInf_:LN});function BN(e){let t={x:R(e,"x","isNaN")};return z.runKernel(Ii,t)}var NA=D({isNaN_:BN});function WN(e,t=.2){let a={x:R(e,"x","leakyRelu")},n={alpha:t};return z.runKernel(Si,a,n)}var m1=D({leakyRelu_:WN});function VN(e,t){let a=R(e,"a","less","string_or_numeric"),n=R(t,"b","less","string_or_numeric");[a,n]=Tt(a,n),zt(a.shape,n.shape);let r={a,b:n};return z.runKernel(Ti,r)}var EA=D({less_:VN});function UN(e,t){let a=R(e,"a","lessEqual","string_or_numeric"),n=R(t,"b","lessEqual","string_or_numeric");[a,n]=Tt(a,n),zt(a.shape,n.shape);let r={a,b:n};return z.runKernel(Ci,r)}var fh=D({lessEqual_:UN});function RA(e,t,a){if(a<=0)throw new Error("The number of values should be positive.");let n={start:e,stop:t,num:a};return z.runKernel(Od,{},n)}function GN(e,t=5,a=1,n=1,r=.5){let s=R(e,"x","localResponseNormalization");P(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
|
|
rank ${s.rank}.`),P(il(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=J(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},u={depthRadius:t,bias:a,alpha:n,beta:r},p=z.runKernel(Dd,l,u);return o?J(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var MA=D({localResponseNormalization_:GN});function HN(e){let t={x:R(e,"x","log","float32")};return z.runKernel(Ni,t)}var ul=D({log_:HN});function jN(e){let t={x:R(e,"x","log1p")};return z.runKernel(zl,t)}var g1=D({log1p_:jN});function qN(e){return P(Hr(e),()=>"The f passed in grad(f) must be a function"),(t,a)=>{let n=R(t,"x","tf.grad","string_or_numeric"),r=a!=null?R(a,"dy","tf.grad"):null;return z.tidy(()=>{let{value:s,grads:i}=z.gradients(()=>e(n),[n],r);return r!=null&&Sa(s.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),mh(i),i[0]})}}function XN(e){return P(Hr(e),()=>"The f passed in grads(f) must be a function"),(t,a)=>{P(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let n=ud(t,"args","tf.grads","string_or_numeric"),r=a!=null?R(a,"dy","tf.grads"):null;return z.tidy(()=>{let{value:s,grads:i}=z.gradients(()=>e(...n),n,r);return r!=null&&Sa(s.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),mh(i),i})}}function KN(e){return P(Hr(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,a)=>{P(t instanceof pt,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),P(a==null||a instanceof pt,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:n,value:r}=z.gradients(()=>e(t),[t],a);return mh(n),{grad:n[0],value:r}}}function ZN(e){return P(Hr(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,a)=>{P(Array.isArray(t)&&t.every(r=>r instanceof pt),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),P(a==null||a instanceof pt,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let n=z.gradients(()=>e(...t),t,a);return a!=null&&Sa(n.value.shape,a.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),mh(n.grads),n}}function $A(e,t){P(Hr(e),()=>"The f passed in variableGrads(f) must be a function"),P(t==null||Array.isArray(t)&&t.every(u=>u instanceof od),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let a=t!=null;if(!a){t=[];for(let u in z.registeredVariables)t.push(z.registeredVariables[u])}let n=a?t.filter(u=>!u.trainable):null,r=t.length;t=t.filter(u=>u.trainable),P(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let s=!0,{value:i,grads:o}=z.gradients(e,t,null,s);P(o.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),P(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((u,p)=>{o[p]!=null&&(l[u.name]=o[p])}),n!=null&&n.forEach(u=>l[u.name]=null),{value:i,grads:l}}function Qn(e){return z.customGrad(e)}function mh(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
|
|
the f you passed encloses all operations that lead from x to y.`)}function YN(e){let t={x:R(e,"x","neg")};return z.runKernel(Bl,t)}var Xn=D({neg_:YN});function JN(e){let t={x:R(e,"x","softplus")};return z.runKernel(Yl,t)}var x1=D({softplus_:JN});function QN(e){let t=R(e,"x","logSigmoid");return Qn(a=>({value:Xn(x1(Xn(a))),gradFunc:n=>ae(n,Da(Xn(a)))}))(t)}var _A=D({logSigmoid_:QN});function eE(e,t){let a=R(e,"a","sub"),n=R(t,"b","sub");[a,n]=Tt(a,n);let r={a,b:n};return z.runKernel(po,r)}var he=D({sub_:eE});function tE(e,t=-1){let a=R(e,"logits","logSoftmax");if(t===-1&&(t=a.rank-1),t!==a.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${a.rank} and axis was ${t}`);return Qn((n,r)=>{let s=ca(n,t,!0),i=he(n,s),o=he(qe(i,"float32"),ul(nt(Yr(i),t,!0)));return r([o]),{value:o,gradFunc:(l,u)=>{let[p]=u,c=!0,d=Yr(p);return he(l,ae(nt(l,t,c),d))}}})(a)}var PA=D({logSoftmax_:tE});function aE(e,t=null,a=!1){let n=R(e,"x","logSumExp"),r=Id(t,n.shape),s=ca(n,r,!0),i=he(n,s),o=Yr(i),l=nt(o,r),u=ul(l),p=be(J(s,u.shape),u);if(a){let c=rp(p.shape,r);return J(p,c)}return p}var y1=D({logSumExp_:aE});function nE(e,t){let a=R(e,"a","logicalAnd","bool"),n=R(t,"b","logicalAnd","bool");zt(a.shape,n.shape);let r={a,b:n};return z.runKernel(Ei,r)}var hd=D({logicalAnd_:nE});function rE(e){let t={x:R(e,"x","logicalNot","bool")};return z.runKernel(Ri,t)}var A1=D({logicalNot_:rE});function sE(e,t){let a=R(e,"a","logicalOr","bool"),n=R(t,"b","logicalOr","bool");zt(a.shape,n.shape);let r={a,b:n};return z.runKernel(Mi,r)}var b1=D({logicalOr_:sE});function iE(e,t){let a=R(e,"a","logicalXor","bool"),n=R(t,"b","logicalXor","bool");return zt(a.shape,n.shape),hd(b1(e,t),A1(hd(e,t)))}var FA=D({logicalXor_:iE}),pc=2147483648;function oE(e,t,a="left"){let n=R(e,"sortedSequence","searchSorted"),r=R(t,"values","searchSorted"),s=n.shape[n.shape.length-1],i=r.shape[r.shape.length-1],o=J(n,[-1,s]),l=J(r,[-1,i]);if(o.rank<2)throw new Error("Sorted input argument must be at least 2-dimensional");if(o.shape[0]!==l.shape[0])throw new Error("Leading dimension of 'sortedSequence' and 'values' must match.");if(yt(l.shape)>=pc)throw new Error(`values tensor size must less than ${pc}`);if(o.shape[1]>=pc)throw new Error(`trailing dim_size must less than ${pc} for int32 output type, was ${o.shape[1]}`);let u={sortedSequence:o,values:l},p={side:a};return z.runKernel(Ld,u,p)}var gh=D({searchSorted_:oE});function OA(e,t){return gh(e,t,"left")}function lE(e,t,a,n,r){let s=R(e,"x","maxPool"),i=1,o=s,l=!1;s.rank===3&&(l=!0,o=J(s,[1,s.shape[0],s.shape[1],s.shape[2]])),P(o.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),P(kr(a,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${i}'`),Sn("maxPool",n,r);let u={x:o},p={filterSize:t,strides:a,pad:n,dimRoundingMode:r},c=z.runKernel(Pi,u,p);return l?J(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var v1=D({maxPool_:lE});function uE(e,t=[1,1,1],a,n,r,s="NDHWC"){let i=R(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=J(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),P(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),P(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),Sn("maxPool3d",n,r);let u={x:o},p={filterSize:t,strides:a,pad:n,dimRoundingMode:r,dataFormat:s},c=z.runKernel(nh,u,p);return l?J(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var DA=D({maxPool3d_:uE});function dE(e,t,a,n,r=!1){let s={x:R(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:a,pad:n,includeBatchInIndex:r},o=z.runKernel(rh,s,i);return{result:o[0],indexes:o[1]}}var zA=D({maxPoolWithArgmax_:dE});function pE(e,t){let a=R(e,"a","maximum"),n=R(t,"b","maximum");[a,n]=Tt(a,n),a.dtype==="bool"&&(a=qe(a,"int32"),n=qe(n,"int32")),zt(a.shape,n.shape);let r={a,b:n};return z.runKernel(_i,r)}var k1=D({maximum_:pE});function cE(e,t=null,a=!1){let n={x:R(e,"x","mean")},r={axis:t,keepDims:a};return z.runKernel(Fi,n,r)}var fd=D({mean_:cE});function fn(e,t="float32"){if(Ja(e),t==="complex64"){let n=fn(e,"float32"),r=fn(e,"float32");return br(n,r)}let a=qc(yt(e),t);return z.makeTensor(a,e,t)}function Wr(e,t="float32"){if(Ja(e),t==="complex64"){let n=Wr(e,"float32"),r=fn(e,"float32");return br(n,r)}let a=O2(yt(e),t);return z.makeTensor(a,e,t)}function LA(e,t,{indexing:a="xy"}={}){if(a!=="xy"&&a!=="ij")throw new TypeError(`${a} is not a valid third argument to meshgrid`);if(e===void 0)return[];let n=R(e,"x","meshgrid",e instanceof pt?e.dtype:"float32");if(t===void 0)return[n];let r=R(t,"y","meshgrid",t instanceof pt?t.dtype:"float32"),s=yt(n.shape),i=yt(r.shape);return a==="xy"?(n=J(n,[1,-1]),r=J(r,[-1,1]),[it(Wr([i,1],n.dtype),n),it(r,Wr([1,s],r.dtype))]):(n=J(n,[-1,1]),r=J(r,[1,-1]),[it(n,Wr([1,i],n.dtype)),it(Wr([s,1],r.dtype),r)])}function hE(e,t){let a=R(e,"a","minimum"),n=R(t,"b","minimum");[a,n]=Tt(a,n),a.dtype==="bool"&&(a=qe(a,"int32"),n=qe(n,"int32")),zt(a.shape,n.shape);let r={a,b:n};return z.runKernel(Di,r)}var w1=D({minimum_:hE});function fE(e,t,a){P(a==="reflect"||a==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${a}.`);let n=R(e,"x","mirrorPad");if(n.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");P(t.length===n.rank,()=>`Padding doesn't match input. Must be ${n.rank}. Got ${t.length}.`);let r=a==="reflect"?1:0;for(let o=0;o<n.rank;o++)P(t[o].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),P(t[o][0]>=0&&t[o][0]<=n.shape[o]-r&&t[o][1]>=0&&t[o][1]<=n.shape[o]-r,()=>`Padding in dimension ${o} cannot be greater than or equal to ${n.shape[o]-r} or less than 0 for input of shape ${n.shape}`);let s={paddings:t,mode:a},i={x:n};return z.runKernel(zi,i,s)}var BA=D({mirrorPad_:fE});function mE(e,t){let a=R(e,"a","mod"),n=R(t,"b","mod");[a,n]=Tt(a,n);let r={a,b:n};return z.runKernel(Ll,r)}var su=D({mod_:mE});function gE(e,t=null,a=!1){e=R(e,"x","moments");let n=Id(t,e.shape),r=fd(e,n,a),s=r.shape;a||(s=rp(r.shape,n));let i=In(he(qe(e,"float32"),J(r,s))),o=fd(i,n,a);return{mean:r,variance:o}}var WA=D({moments_:gE});function xE(e,t,a,n){let r=R(t,"data","multiRNNCell"),s=ud(a,"c","multiRNNCell"),i=ud(n,"h","multiRNNCell"),o=r,l=[];for(let c=0;c<e.length;c++){let d=e[c](o,s[c],i[c]);l.push(d[0]),l.push(d[1]),o=d[1]}let u=[],p=[];for(let c=0;c<l.length;c+=2)u.push(l[c]),p.push(l[c+1]);return[u,p]}var VA=D({multiRNNCell_:xE});function yE(e,t,a,n=!1){let r=R(e,"logits","multinomial"),s=r.size,i=r.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);a=a||Math.random();let o={logits:i===1?J(r,[1,-1]):r},l={numSamples:t,seed:a,normalized:n},u=z.runKernel(sh,o,l);return i===1?J(u,[u.size]):u}var UA=D({multinomial_:yE});function AE(e,t){let a=R(e,"a","notEqual","string_or_numeric"),n=R(t,"b","notEqual","string_or_numeric");[a,n]=Tt(a,n),zt(a.shape,n.shape);let r={a,b:n};return z.runKernel(Bi,r)}var I1=D({notEqual_:AE});function bE(e,t,a=1,n=0,r="int32"){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let s={indices:R(e,"indices","oneHot","int32")},i={dtype:r,depth:t,onValue:a,offValue:n};return z.runKernel(Ui,s,i)}var _c=D({oneHot_:bE});function vE(e){let t={x:R(e,"x","onesLike")};return z.runKernel(Vl,t)}var GA=D({onesLike_:vE});function kE(e,t){let a=R(e,"v1","outerProduct"),n=R(t,"v2","outerProduct");P(a.rank===1&&n.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${a.rank} and ${n.rank}.`);let r=J(a,[-1,1]),s=J(n,[1,-1]);return it(r,s)}var HA=D({outerProduct_:kE});function wE(e,t,a=0){let n=R(e,"x","pad");if(n.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:a},s={x:n};return z.runKernel(Gi,s,r)}var rr=D({pad_:wE});function IE(e,t,a=0){return P(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),rr(e,[t],a)}var jA=D({pad1d_:IE});function SE(e,t,a=0){return P(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),rr(e,t,a)}var qA=D({pad2d_:SE});function TE(e,t,a=0){return P(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),rr(e,t,a)}var XA=D({pad3d_:TE});function CE(e,t,a=0){return P(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),rr(e,t,a)}var KA=D({pad4d_:CE});function NE(e,t,a){let n=R(e,"x","spaceToBatchND");P(n.rank>=1+t.length,()=>`input rank ${n.rank} should be > than [blockShape] ${t.length}`),P(a.length===t.length,()=>`paddings.shape[0] ${a.length} must be equal to [blockShape] ${t.length}`),P(n.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+a[l-1][0]+a[l-1][1])%t[l-1]===0:i,!0),()=>`input spatial dimensions ${n.shape.slice(1)} with paddings ${a.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:n},s={blockShape:t,paddings:a};return z.runKernel(Jl,r,s)}var S1=D({spaceToBatchND_:NE});function EE(e,t,a,n,r,s,i){r==null&&(r=[1,1]),s==null&&(s=1),n===0&&(n="valid");let o=R(e,"x","maxPool"),l=o,u=!1;o.rank===3&&(u=!0,l=J(o,[1,o.shape[0],o.shape[1],o.shape[2]])),P(kr(s,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${r}'`);let p=Gy(l.shape,t,s,r,n),c=[p.dilationHeight,p.dilationWidth],d;n==="same"?d=ME([p.filterHeight,p.filterWidth],c):d=[[0,0],[0,0]];let h=c[0]===1&&c[1]===1,[f,m]=RE([p.inHeight,p.inWidth],c,d),g=h?n:"valid",x=h?l:S1(l,c,f),y=(a==="avg"?()=>r1(x,t,s,g,i):()=>v1(x,t,s,g,i))(),A=h?y:s1(y,c,m);return u?J(A,[A.shape[1],A.shape[2],A.shape[3]]):A}function RE(e,t,a){let n=a.map(p=>p[0]),r=a.map(p=>p[1]),s=e.concat(n,r),i=t.map((p,c)=>(p-s[c]%p)%p),o=r.map((p,c)=>p+i[c]),l=t.map((p,c)=>[n[c],o[c]]),u=t.map((p,c)=>[0,i[c]]);return[l,u]}function ME(e,t){let a=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),n=a.map(s=>Math.floor(s/2)),r=a.map((s,i)=>s-n[i]);return a.map((s,i)=>[n[i],r[i]])}var ZA=D({pool_:EE});function $E(e,t){let a=R(e,"x","prelu"),n=R(t,"alpha","prelu"),r={x:a,alpha:n};return z.runKernel(ji,r)}var T1=D({prelu_:$E});function _E(e,t=null,a=!1){let n=R(e,"x","prod");n.dtype==="bool"&&(n=qe(n,"int32"));let r={x:n},s={axis:t,keepDims:a};return z.runKernel(qi,r,s)}var YA=D({prod_:_E});function PE(e,t,a,n){let r=e.map((p,c)=>R(p,`tensors${c}`,"raggedGather","int32")),s=R(t,"paramsDenseValues","raggedGather"),i=R(a,"indices","raggedGather","int32"),o={paramsNestedSplits:r,paramsDenseValues:s,indices:i},l={outputRaggedRank:n},u=z.runKernel(ih,o,l);return{outputNestedSplits:u.slice(0,u.length-1),outputDenseValues:u[u.length-1]}}var JA=D({raggedGather_:PE});function FE(e,t,a){let n=R(e,"starts","raggedRange"),r=R(t,"limits","raggedRange",n.dtype),s=R(a,"deltas","raggedRange",n.dtype),i={starts:n,limits:r,deltas:s},o=z.runKernel(oh,i);return{rtNestedSplits:o[0],rtDenseValues:o[1]}}var QA=D({raggedRange_:FE});function OE(e,t,a,n,r){let s=R(e,"shape","raggedTensorToTensor","int32"),i=R(t,"values","raggedTensorToTensor"),o=R(a,"defaultValue","raggedTensorToTensor",i.dtype),l=n.map((c,d)=>R(c,`tensors${d}`,"raggedTensorToTensor","int32")),u={shape:s,values:i,defaultValue:o,rowPartitionTensors:l},p={rowPartitionTypes:r};return z.runKernel(lh,u,p)}var eb=D({raggedTensorToTensor_:OE});function DE(e,t,a){Ja(e);let n=yt(e),r=null;if(a==null||a==="float32")r=new Float32Array(n);else if(a==="int32")r=new Int32Array(n);else if(a==="bool")r=new Uint8Array(n);else throw new Error(`Unknown data type ${a}`);for(let s=0;s<n;s++)r[s]=t();return z.makeTensor(r,e,a)}var tb=D({rand_:DE}),C1=yl(Jx()),ab={};Ke(ab,{TEST_EPSILON_FLOAT16:()=>nb,createVideoElement:()=>HE,encodeStrings:()=>rb,expectArrayBuffersEqual:()=>GE,expectArraysClose:()=>LE,expectArraysEqual:()=>WE,expectNumbersClose:()=>VE,expectPromiseToFail:()=>BE,expectValuesInRange:()=>UE,play:()=>jE,testEpsilon:()=>N1});var zE=.001,nb=.1;function LE(e,t,a){return a==null&&(a=N1()),e2(e,t,(n,r)=>E1(n,r,a))}function N1(){return z.backend.floatPrecision()===32?zE:nb}function e2(e,t,a){let n=!0;if((ra(e)||ra(t))&&(n=!1),ra(e)&&ra(t)&&(n=!0),n){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=Yn(e),o=Yn(t);if(!ts(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let r=ra(e)?e:Kr(e),s=ra(t)?t:Kr(t);if(r.length!==s.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${s.length}.
|
|
Actual: ${r}.
|
|
Expected: ${s}.`);for(let i=0;i<s.length;++i){let o=r[i],l=s[i];if(!a(o,l))throw new Error(`Arrays differ: actual[${i}] = ${o}, expected[${i}] = ${l}.
|
|
Actual: ${r}.
|
|
Expected: ${s}.`)}typeof expect!="undefined"&&expect().nothing()}function BE(e,t){e().then(()=>t.fail(),()=>t()),typeof expect!="undefined"&&expect().nothing()}function WE(e,t){let a=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Lr(e)||Lr(e[0])||Lr(t)||Lr(t[0])?e2(e,a,(n,r)=>n==r):e2(e,t,(n,r)=>E1(n,r,0))}function VE(e,t,a){if(a==null&&(a=N1()),!E1(e,t,a))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`);typeof expect!="undefined"&&expect().nothing()}function E1(e,t,a){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>a)}function UE(e,t,a){for(let n=0;n<e.length;n++)if(e[n]<t||e[n]>a)throw new Error(`Value out of range:${e[n]} low: ${t}, high: ${a}`)}function GE(e,t){let a=new Float32Array(e),n=new Float32Array(t);if(a.length!==n.length)throw new Error(`Expected ArrayBuffer to be of length ${n.length}, but it was ${a.length}`);for(let r=0;r<n.length;r++)if(a[r]!==n[r])throw new Error(`Expected ArrayBuffer value at ${r} to be ${n[r]} but got ${a[r]} instead`)}function rb(e){for(let t=0;t<e.length;t++){let a=e[t];Array.isArray(a)?rb(a):e[t]=Xd(a)}return e}function HE(e){let t=document.createElement("video");return"playsInline"in t&&(t.playsInline=!0),t.muted=!0,t.loop=!0,t.style.position="fixed",t.style.left="0px",t.style.top="0px",t.preload="auto",t.appendChild(e),new Promise(a=>{t.addEventListener("loadeddata",n=>a(t)),t.load()})}async function jE(e){await e.play(),"requestVideoFrameCallback"in e&&await new Promise(t=>{e.requestVideoFrameCallback(t)})}var R1=class{constructor(e,t,a,n,r){this.mean=e,this.stdDev=t,this.dtype=a,this.nextVal=NaN,this.truncated=n,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let s=r||Math.random();this.random=C1.alea(s.toString())}nextValue(){if(!isNaN(this.nextVal)){let n=this.nextVal;return this.nextVal=NaN,n}let e,t,a=!1;for(;!a;){let n,r,s;do n=2*this.random()-1,r=2*this.random()-1,s=n*n+r*r;while(s>=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*n*i,t=this.mean+this.stdDev*r*i,(!this.truncated||this.isValidTruncated(e))&&(a=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},qE=class{constructor(e,t,a,n){this.alpha=e,this.beta=1/t,this.dtype=a;let r=n||Math.random();this.randu=C1.alea(r.toString()),this.randn=new R1(0,1,a,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,a,n,r,s;for(;;){do n=this.randn.nextValue(),s=1+this.c*n;while(s<=0);if(s*=s*s,e=n*n,t=1-.331*e*e,a=.5*e+this.d*(1-s+Math.log(s)),r=this.randu(),r<t||Math.log(r)<a)break}return s=1/this.beta*this.d*s,this.alpha<1&&(s*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(s)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},XE=class{constructor(e=0,t=1,a,n){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=a,n==null&&(n=Math.random()),typeof n=="number"&&(n=n.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=C1.alea(n)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function KE(e,t,a=1,n="float32",r){if(Ja(e),a==null&&(a=1),n==null&&(n="float32"),n!=="float32"&&n!=="int32")throw new Error(`Unsupported data type ${n}`);let s=new qE(t,a,n,r),i=_e(e,n);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var sb=D({randomGamma_:KE});function ZE(e,t=0,a=1,n,r){if(Ja(e),n!=null&&n==="bool")throw new Error(`Unsupported data type ${n}`);let s=new R1(t,a,n,!1,r),i=_e(e,n);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var M1=D({randomNormal_:ZE});function YE(e,t,a){if(t!=null&&t==="bool")throw new Error(`Unsupported data type ${t}`);return M1(e,0,1,t,a)}var ib=D({randomStandardNormal_:YE});function JE(e,t=0,a=1,n="float32",r){Ja(e);let s=_e(e,n),i=new XE(t,a,null,r);for(let o=0;o<s.values.length;o++)s.values[o]=i.nextValue();return s.toTensor()}var $1=D({randomUniform_:JE});function dl(e,t,a=1,n="float32"){if(a===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:a,dtype:n};return z.runKernel(Gl,{},r)}function QE(e){let t={input:R(e,"input","real")};return z.runKernel(zd,t)}var pl=D({real_:QE});function eR(e){let t={x:R(e,"x","reciprocal")};return z.runKernel(Xi,t)}var ob=D({reciprocal_:eR});function tR(e){let t={x:R(e,"x","relu")};return z.runKernel(Ki,t)}var lp=D({relu_:tR});function aR(e){let t={x:R(e,"x","relu6")};return z.runKernel(Ji,t)}var _1=D({relu6_:aR});function nR(e,t){let a={x:R(e,"x","reverse")},n={dims:t};return z.runKernel(Qi,a,n)}var Jr=D({reverse_:nR});function rR(e){let t=R(e,"x","reverse");return P(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Jr(t,0)}var lb=D({reverse1d_:rR});function sR(e,t){let a=R(e,"x","reverse");return P(a.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${a.rank}.`),Jr(a,t)}var ub=D({reverse2d_:sR});function iR(e,t){let a=R(e,"x","reverse");return P(a.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${a.rank}.`),Jr(a,t)}var db=D({reverse3d_:iR});function oR(e,t){let a=R(e,"x","reverse");return P(a.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${a.rank}.`),Jr(a,t)}var pb=D({reverse4d_:oR});function lR(e){let t={x:R(e,"x","round")};return z.runKernel(eo,t)}var P1=D({round_:lR});function uR(e){let t={x:R(e,"x","rsqrt","float32")};return z.runKernel(to,t)}var cb=D({rsqrt_:uR});function dR(e){let t={x:R(e,"x","selu")};return z.runKernel(ql,t)}var hb=D({selu_:dR});function pR(e,t,a,n,r,s=[1,1],i="NHWC"){let o=R(e,"x","separableConv2d"),l=R(t,"depthwiseFilter","separableConv2d"),u=R(a,"pointwiseFilter","separableConv2d"),p=o,c=!1;if(o.rank===3&&(c=!0,p=J(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");P(p.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${p.rank}.`),P(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),P(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),P(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),P(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let d=l.shape[2],h=l.shape[3];P(u.shape[2]===d*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${d*h}, but got ${u.shape[2]}.`);let f=hh(p,l,n,r,i,s),m=np(f,u,1,"valid",i);return c?J(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var fb=D({separableConv2d_:pR});async function cR(e,t){let a=R(e,"x","setdiff1d"),n=R(t,"y","setdiff1d");P(a.dtype===n.dtype,()=>`x and y should have the same dtype, but got x (${a.dtype}) and y (${n.dtype}).`),P(a.rank===1,()=>`x should be 1D tensor, but got x (${a.shape}).`),P(n.rank===1,()=>`y should be 1D tensor, but got y (${n.shape}).`);let r=await a.data(),s=await n.data(),i=new Set(s),o=0;for(let p=0;p<r.length;p++)i.has(r[p])||o++;let l=new jt([o],a.dtype),u=new jt([o],"int32");for(let p=0,c=0;p<r.length;p++)i.has(r[p])||(l.values[c]=r[p],u.values[c]=p,c++);return[l.toTensor(),u.toTensor()]}var mb=cR;function hR(e){let t={x:R(e,"x","sign")};return z.runKernel(Zl,t)}var gb=D({sign_:hR});function fR(e){let t={x:R(e,"x","sin","float32")};return z.runKernel(no,t)}var xb=D({sin_:fR});function mR(e){let t={x:R(e,"x","sinh")};return z.runKernel(Kl,t)}var yb=D({sinh_:mR});function gR(e,t,a){let n=R(e,"x","slice1d");return P(n.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${n.rank} tensor`),De(n,[t],[a])}var Ab=D({slice1d_:gR});function xR(e,t,a){let n=R(e,"x","slice2d");return P(n.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${n.rank} tensor`),De(n,t,a)}var bb=D({slice2d_:xR});function yR(e,t,a){let n=R(e,"x","slice3d");return P(n.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${n.rank} tensor`),De(n,t,a)}var up=D({slice3d_:yR});function AR(e,t,a){let n=R(e,"x","slice4d");return P(n.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${n.rank} tensor`),De(n,t,a)}var xh=D({slice4d_:AR});function bR(e,t=-1){let a=R(e,"logits","softmax","float32");if(t===-1&&(t=a.rank-1),t!==a.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${a.rank} and dim was ${t}`);let n={logits:a},r={dim:t};return z.runKernel(oo,n,r)}var yh=D({softmax_:bR});function vR(e){P(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return z.runKernel(_d,t)}var Ah=D({fft_:vR});function kR(e){P(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return z.runKernel(Pd,t)}var md=D({ifft_:kR});function wR(e){let t=e.shape[e.shape.length-1],a=e.size/t,n;if(t<=2){let r=J(e,[a,t]);n=md(r)}else{let r=[a,2*(t-1)],s=J(pl(e),[a,t]),i=J(op(e),[a,t]),o=Jr(De(s,[0,1],[a,t-2]),1),l=ae(Jr(De(i,[0,1],[a,t-2]),1),ze(-1)),u=rt([s,o],1),p=rt([i,l],1),c=J(br(u,p),[r[0],r[1]]);n=md(c)}if(n=pl(n),e.rank===3&&e.shape[0]!==0){let r=n,s=e.shape[0];n=J(n,[s,n.shape[0]/s,n.shape[1]]),r.dispose()}return n}var F1=D({irfft_:wR});function IR(e,t,a=0){let n={x:R(e,"x","split")},r={numOrSizeSplits:t,axis:a};return z.runKernel(Ql,n,r)}var wa=D({split_:IR});function SR(e,t){P(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let a=e.shape[e.shape.length-1],n=e.size/a,r;if(t!=null&&t<a){let f=e.shape.map(g=>0),m=e.shape.map(g=>g);m[e.shape.length-1]=t,r=De(e,f,m),a=t}else if(t!=null&&t>a){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-a,r=rt([e,fn(f)],e.shape.length-1),a=t}else r=e;let s=Ka(r),i=J(br(r,s),[n,a]),o=Ah(i),l=Math.floor(a/2)+1,u=pl(o),p=op(o),c=wa(u,[l,a-l],u.shape.length-1),d=wa(p,[l,a-l],p.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=l,J(br(c[0],d[0]),h)}var bh=D({rfft_:SR});function TR(e,t){let a=R(e,"a","squaredDifference"),n=R(t,"b","squaredDifference");[a,n]=Tt(a,n),zt(a.shape,n.shape);let r={a,b:n},s={};return z.runKernel(lo,r,s)}var O1=D({squaredDifference_:TR});function CR(e,t){let a=R(e,"x","squeeze","string_or_numeric");return J(a,ay(a.shape,t).newShape)}var Oe=D({squeeze_:CR});function NR(e,t=0){let a=ud(e,"tensors","stack","string_or_numeric");P(a.length>=1,()=>"Pass at least one tensor to tf.stack"),a.length>0&&P(t<=a[0].rank,()=>"Axis must be <= rank of the tensor");let n=a,r={axis:t};return z.runKernel(Ul,n,r)}var oa=D({stack_:NR});function ER(e,t=0){let a={x:R(e,"x","step")},n={alpha:t};return z.runKernel(ss,a,n)}var D1=D({step_:ER});function RR(e,t,a,n,r=0,s=0,i=0,o=0,l=0){let u={x:R(e,"x","stridedSlice","string_or_numeric")},p={begin:t,end:a,strides:n,beginMask:r,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return z.runKernel(uo,u,p)}var vb=D({stridedSlice_:RR});function MR(e){let t={x:R(e,"x","tan","float32")};return z.runKernel(co,t)}var kb=D({tan_:MR});function Ht(e,t){Xs(e);let a=Yn(e,t);if(a.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return is(e,null,a,t)}function Kn(e,t,a){if(Xs(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let n=Yn(e,a);if(n.length!==2&&n.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return is(e,t,n,a)}function z1(e,t,a){if(Xs(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let n=Yn(e,a);if(n.length!==3&&n.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return is(e,t,n,a)}function wb(e,t,a){if(Xs(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let n=Yn(e,a);if(n.length!==4&&n.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return is(e,t,n,a)}function Ib(e,t,a){if(Xs(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let n=Yn(e,a);if(n.length!==5&&n.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return is(e,t,n,a)}function Sb(e,t,a){if(Xs(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let n=Yn(e,a);if(n.length!==6&&n.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||n,is(e,t,n,a)}function $R(e,t=1,a=!0){let n=R(e,"x","topk");if(n.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=n.shape[n.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let s={x:n},i={k:t,sorted:a},[o,l]=z.runKernel(fo,s,i);return{values:o,indices:l}}var Tb=D({topk_:$R});function _R(e,t=0,a=1,n,r){if(Ja(e),n!=null&&n==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new R1(t,a,n,!0,r),i=_e(e,n);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var Cb=D({truncatedNormal_:_R});function PR(e,t=0){let a=R(e,"x","unique","string_or_numeric");P(a.rank>0,()=>"The input tensor must be at least 1D");let n={x:a},r={axis:t},[s,i]=z.runKernel(uh,n,r);return{values:s,indices:i}}var Nb=D({unique_:PR});function FR(e,t,a){let n=R(e,"x","unsortedSegmentSum"),r=R(t,"segmentIds","unsortedSegmentSum","int32");P(il(a),()=>"numSegments must be of dtype int");let s={x:n,segmentIds:r},i={numSegments:a};return z.runKernel(dh,s,i)}var Eb=D({unsortedSegmentSum_:FR});function OR(e,t=0){let a=R(e,"x","unstack","string_or_numeric");P(t>=-a.shape.length&&t<a.shape.length,()=>`Axis = ${t} is not in [-${a.shape.length}, ${a.shape.length})`);let n={value:a},r={axis:t};return z.runKernel(au,n,r)}var Ta=D({unstack_:OR});function Rb(e,t){return gh(e,t,"right")}function Mb(e,t=!0,a,n){return z.makeVariable(e,t,a,n)}function $b(e,t){let a=[];for(let s=0;s<t.length;s++)t[s]&&a.push(s);let n=_e(e,"int32"),r=_e([a.length,e.length],"int32");for(let s=0;s<a.length;s++){let i=n.indexToLoc(a[s]),o=s*e.length;r.values.set(i,o)}return r.toTensor()}async function DR(e){let t=R(e,"condition","whereAsync","bool"),a=await t.data(),n=$b(t.shape,a);return e!==t&&t.dispose(),n}var L1=DR;async function zR(e,t,a){let n=R(e,"tensor","boolMask"),r=R(t,"mask","boolMask","bool"),s=a==null?0:a,i=r.rank,o=n.shape;P(i>0,()=>"mask cannot be scalar"),Sa(o.slice(s,s+i),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let m=s;m<s+i;m++)l*=o[m];let u=o.slice(0,s).concat([l],o.slice(s+i)),p=J(n,u),c=J(r,[-1]),d=await L1(c),h=Oe(d,[1]),f=h1(p,h,s);return e!==n&&n.dispose(),t!==r&&r.dispose(),h.dispose(),p.dispose(),c.dispose(),d.dispose(),f}var _b=zR;function LR(e,t,a){let n=R(e,"x","transpose");if(t==null&&(t=n.shape.map((i,o)=>o).reverse()),P(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(i=>{P(i>=0&&i<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let r={x:n},s={perm:t};return n.dtype==="complex64"?Fe(()=>{let i=pl(n),o=op(n);return i=z.runKernel(yr,{x:i},s),o=z.runKernel(yr,{x:o},s),a&&(o=Xn(o)),br(i,o)}):z.runKernel(yr,r,s)}var Vs=D({transpose_:LR});function BR(e,t,a,n,r=!0){let s=R(e,"v","movingAverage"),i=R(t,"x","movingAverage"),o=R(a,"decay","movingAverage");yy(s,i),P(ts(s.shape,i.shape),()=>"Shape mismatch in v and x");let l=ze(1),u=he(l,o),p=ae(he(i,s),u);if(r){P(n!=null,()=>"When using zeroDebias: true, step is required.");let c=R(n,"step","movingAverage");p=me(p,he(l,ll(o,c)))}return be(s,p)}var Pb=D({movingAverage_:BR}),B1={};Ke(B1,{calculateShapes:()=>Fb,validateInput:()=>V1,validateUpdateShape:()=>W1});function W1(e,t,a){let n=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${a.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${n}, and batchDim: ${r}.`;if(a.rank<r)throw new Error(s+` update.rank < ${r}. `);if(e.length<n+(a.rank-r))throw new Error(s+` Output shape length < ${n+(a.rank-r)}`);if(a.rank!==r+e.length-n)throw new Error(s+` update.rank != ${r+e.length-n}`);for(let i=0;i<r;++i)if(a.shape[i]!==t.shape[i])throw new Error(s+` updates.shape[${i}] (${a.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<a.rank-r;++i)if(a.shape[i+r]!==e[i+n])throw new Error(s+` updates.shape[${i+r}] (${a.shape[i+r]}) != shape[${i+r}] (${e[i+r]})`)}function V1(e,t,a){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(a.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${a}`);if(a.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}W1(a,t,e)}function Fb(e,t,a){let n=t.shape.length,r=n>1?t.shape[n-1]:1,s=a.length,i=1;for(let c=r;c<s;++c)i*=a[c];let o=r<1?1:r,l=yt(t.shape)/o,u=[...bl(a.slice(0,r)),1],p=yt(a);return{sliceRank:r,numUpdates:l,sliceSize:i,strides:u,outputSize:p}}function WR(e,t,a){Ja(a);let n=R(e,"indices","scatterND","int32"),r=R(t,"updates","scatterND");V1(r,n,a);let s={indices:n,updates:r},i={shape:a};return z.runKernel(ao,s,i)}var Ob=D({scatterND_:WR});function VR(e,t,a,n){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(a.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${a.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==n.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function UR(e,t,a,n=0){Ja(a);let r=R(e,"sparseIndices","sparseToDense","int32"),s=R(t,"sparseValues","sparseToDense","string_or_numeric"),i=R(n,"defaultValue","sparseToDense",s.dtype);VR(r,s,a,i);let o={sparseIndices:r,sparseValues:s,defaultValue:i},l={outputShape:a};return z.runKernel(Ud,o,l)}var Db=D({sparseToDense_:UR});function GR(e,t){let a=R(t,"indices","gatherND","int32"),n={params:R(e,"x","gatherND","string_or_numeric"),indices:a};return z.runKernel(bi,n)}var zb=D({gatherND_:GR});function HR(e,t){if(t==null)return e.shape.slice();if(ts(e.shape,t))return t;if(e.shape.length===t.length){let a=[];for(let n=0;n<e.shape.length;n++)t[n]==null&&e.shape[n]!=null?a.push(e.shape[n]):a.push(t[n]);return a}return t}function jR(e,t,a,n){let r=R(e,"x","dropout");if(P(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),P(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof pt?r.clone():r;let s=HR(r,a),i=1-t,o=me(c1(be($1(s,0,1,"float32",n),i)),i);return ae(r,o)}var Lb=D({dropout_:jR});function U1(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function vh(e,t,a){let n=1-e%2,r=new Float32Array(e);for(let s=0;s<e;++s){let i=2*Math.PI*s/(e+n-1);r[s]=t-a*Math.cos(i)}return Ht(r,"float32")}async function qR(e,t,a=1){let n=R(e,"predictions","inTopK"),r=R(t,"targets","inTopK");P(n.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${n.rank}`),P(n.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${n.rank} and targets rank ${r.rank}`),Sa(n.shape.slice(0,n.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=n.shape[n.shape.length-1];P(a>0&&a<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${a}`);let i=await n.data(),o=await r.data(),[l,u]=[i.length/s,s],p=ny("bool",l);for(let c=0;c<l;c++){let d=c*u,h=i.subarray(d,d+u),f=[];for(let m=0;m<h.length;m++)f.push({value:h[m],index:m});f.sort((m,g)=>g.value-m.value),p[c]=0;for(let m=0;m<a;m++)if(f[m].index===o[c]){p[c]=1;break}}return e!==n&&n.dispose(),t!==r&&r.dispose(),Ve(p,r.shape,"bool")}var Bb=qR,G1={};Ke(G1,{conv2d:()=>YR,depthwiseConv2d:()=>nM,matMul:()=>sM});function XR(e,t,a,n,r,s="NHWC",i){let o=e;e.rank===3&&(o=J(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=J(t,[1,t.shape[0],t.shape[1],t.shape[2]])),P(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),P(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),P(a.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${a}.`);let u=s==="NHWC"?o.shape[3]:o.shape[1],p=s==="NHWC"?l.shape[3]:l.shape[1];P(u===a[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${a[2]}.`),P(p===a[3],()=>`Error in conv2dDerFilter: depth of dy (${p}) must match output depth for filter (${a[3]}).`),Sn("conv2dDerFilter",r,i);let c={x:o,dy:l},d={strides:n,pad:r,dataFormat:s,dimRoundingMode:i,filterShape:a};return z.runKernel(Nd,c,d)}var KR=D({conv2DBackpropFilter_:XR});function kh(e,t,a){if(a==null||a==="linear")return e;if(a==="relu")return ae(e,D1(t));throw new Error(`Cannot compute gradient for fused activation ${a}.`)}function wh(e,t){let a=t,n=o1(e.shape,t.shape);return n.length>0&&(a=nt(a,n)),J(a,e.shape)}function Ih(e,t,a,n){if(t==="linear")return e;if(t==="relu")return lp(e);if(t==="elu")return u1(e);if(t==="relu6")return _1(e);if(t==="prelu")return T1(e,a);if(t==="leakyrelu")return m1(e,n);if(t==="sigmoid")return Da(e);throw new Error(`Unknown fused activation ${t}.`)}var Sh=(e,t)=>!(e>0)||t==="linear";function ZR({x:e,filter:t,strides:a,pad:n,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:p}){if(l=l||"linear",Sh(z.state.gradientDepth,l)===!1){P(r==="NHWC",()=>`Error in fused conv2d: got dataFormat of ${r} but only NHWC is currently supported for the case of gradient depth is 0 and the activation is not linear.`);let S=np(e,t,a,n,r,s,i);return o!=null&&(S=be(S,o)),Ih(S,l,u,p)}let c=R(e,"x","conv2d","float32"),d=R(t,"filter","conv2d","float32"),h=c,f=!1;c.rank===3&&(f=!0,h=J(c,[1,c.shape[0],c.shape[1],c.shape[2]])),P(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),P(d.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${d.rank}.`),Sn("fused conv2d",n,i);let m=r==="NHWC"?h.shape[3]:h.shape[1];P(d.shape[2]===m,()=>`Error in conv2d: depth of input (${m}) must match input depth for filter ${d.shape[2]}.`),P(kr(a,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${a} and dilations '${s}'`);let g=tp(h.shape,d.shape,a,s,n,i),x;o!=null&&(x=R(o,"bias","fused conv2d"),[x]=Tt(x,c),r==="NHWC"?zt(g.outShape,x.shape):(P(x.shape.length<=1,()=>`Error in fused conv2d: only supports scalar or 1-D Tensor bias for NCHW format but got the bias of rank-${x.shape.length}.`),P(x.shape.length===0||x.shape[0]===g.outChannels||x.shape[0]===1,()=>`Error in fused conv2d: bias shape (${x.shape}) is not compatible with the number of output channels (${g.outChannels})`)));let y;if(u!=null){let S=u.shape;if(P(S.length<=1||S.length===3,()=>`Error in fused conv2d: only supports scalar, 1-D Tensor or 3-D Tensor PReLU activation weights but got a tensor of rank-${S.length}.`),S.length===1)P(S[0]===1||S[0]===g.outChannels,()=>`Error in fused conv2d: PReLU activation weights (${S}) is not compatible with the number of output channels (${g.outChannels}).`);else if(S.length===3)try{zt(S,g.outShape)}catch(C){let E=`Error in fused conv2d: PReLU activation weights (${S}) is not compatible with the output shape of the conv2d (${g.outShape}).`;throw Error(E)}y=R(u,"prelu weights","fused conv2d")}let A=(S,C)=>{P(r==="NHWC",()=>`Error in gradient of fused conv2D: got dataFormat of ${r} but only NHWC is currently supported.`);let[E,_,$,M]=C,I=kh(S,$,l);P(cd(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let N=sA(_.shape,I,E,a,n),O=KR(_,I,E.shape,a,n),L=[N,O];if(M!=null){let W=wh(M,I);L.push(W)}return L},b={x:h,filter:d,bias:x,preluActivationWeights:y},k={strides:a,pad:n,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:p};return o==null?Qn((S,C,E)=>{let _=z.runKernel(qr,b,k);return E([C,S,_]),f&&(_=J(_,[_.shape[1],_.shape[2],_.shape[3]])),{value:_,gradFunc:A}})(h,d):Qn((S,C,E,_)=>{let $=z.runKernel(qr,b,k);return _([C,S,$,E]),f&&($=J($,[$.shape[1],$.shape[2],$.shape[3]])),{value:$,gradFunc:A}})(h,d,x)}var YR=D({fusedConv2d_:ZR});function JR(e,t,a,n,r,s=[1,1],i){let o=e;e.rank===3&&(o=J(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=J(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:o,dy:l},p={strides:n,pad:r,dimRoundingMode:i,dilations:s,filterShape:a};return z.runKernel(th,u,p)}var QR=D({depthwiseConv2dNativeBackpropFilter_:JR});function eM(e,t,a,n,r,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=J(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:o,filter:a},p={strides:n,pad:r,dimRoundingMode:i,dilations:s,inputShape:e},c=z.runKernel(ah,u,p);return l?J(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var tM=D({depthwiseConv2dNativeBackpropInput_:eM});function aM({x:e,filter:t,strides:a,pad:n,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:p}){if(Sh(z.state.gradientDepth,l)===!1){let k=hh(e,t,a,n,r,s,i);return o!=null&&(k=be(k,o)),Ih(k,l,u,p)}let c=R(e,"x","depthwiseConv2d","float32"),d=R(t,"filter","depthwiseConv2d","float32"),h=c,f=!1;c.rank===3&&(f=!0,h=J(c,[1,c.shape[0],c.shape[1],c.shape[2]])),P(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),P(d.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${d.rank}.`),P(h.shape[3]===d.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${d.shape[2]}.`),s==null&&(s=[1,1]),P(kr(a,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${s}'`),Sn("fused depthwiseConv2d",n,i);let m=tp(h.shape,d.shape,a,s,n,i,!0),g;o!=null&&(g=R(o,"bias","fused conv2d"),[g]=Tt(g,c),zt(m.outShape,g.shape));let x;u!=null&&(x=R(u,"prelu weights","fused depthwiseConv2d"));let y=(k,S)=>{P(cd(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[C,E,_,$]=S,M=kh(k,_,l),I=tM(E.shape,M,C,a,n,s,i),N=QR(E,M,C.shape,a,n,s,i);if($!=null){let O=wh(g,M);return[I,N,O]}return[I,N]},A={x:h,filter:d,bias:g,preluActivationWeights:x},b={strides:a,pad:n,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:p};return o==null?Qn((k,S,C)=>{let E=z.runKernel(Xr,A,b);return C([S,k,E]),f&&(E=J(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:y}})(h,d):Qn((k,S,C,E)=>{let _=z.runKernel(Xr,A,b);return E([S,k,_,C]),f&&(_=J(_,[_.shape[1],_.shape[2],_.shape[3]])),{value:_,gradFunc:y}})(h,d,g)}var nM=D({fusedDepthwiseConv2d_:aM});function rM({a:e,b:t,transposeA:a=!1,transposeB:n=!1,bias:r,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o=.2}){if(Sh(z.state.gradientDepth,s)===!1){let $=it(e,t,a,n);return r!=null&&($=be($,r)),Ih($,s,i,o)}let l=R(e,"a","fused matMul"),u=R(t,"b","fused matMul");[l,u]=Tt(l,u);let p=a?l.shape[l.rank-2]:l.shape[l.rank-1],c=n?u.shape[u.rank-1]:u.shape[u.rank-2],d=a?l.shape[l.rank-1]:l.shape[l.rank-2],h=n?u.shape[u.rank-2]:u.shape[u.rank-1],f=l.shape.slice(0,-2),m=u.shape.slice(0,-2),g=yt(f),x=yt(m);P(p===c,()=>`Error in fused matMul: inner shapes (${p}) and (${c}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${a} and transposeB=${n} must match.`);let y=zt(l.shape.slice(0,-2),u.shape.slice(0,-2)).concat([d,h]),A=a?J(l,[g,p,d]):J(l,[g,d,p]),b=n?J(u,[x,h,c]):J(u,[x,c,h]),k;r!=null&&(k=R(r,"bias","fused matMul"),[k]=Tt(k,l),zt(y,k.shape));let S;i!=null&&(S=R(i,"prelu weights","fused matMul"));let C=($,M)=>{let[I,N,O,L]=M,W=kh(J($,O.shape),O,s),G,H;if(!a&&!n?(G=it(W,N,!1,!0),H=it(I,W,!0,!1)):!a&&n?(G=it(W,N,!1,!1),H=it(W,I,!0,!1)):a&&!n?(G=it(N,W,!1,!0),H=it(I,W,!1,!1)):(G=it(N,W,!0,!0),H=it(W,I,!0,!0)),r!=null){let U=wh(L,W);return[G,H,U]}else return[G,H]},E={a:A,b,bias:k,preluActivationWeights:S},_={transposeA:a,transposeB:n,activation:s,leakyreluAlpha:o};return r==null?Qn(($,M,I)=>{let N=z.runKernel(jr,E,_);return I([$,M,N]),{value:J(N,y),gradFunc:C}})(A,b):Qn(($,M,I,N)=>{let O=z.runKernel(jr,E,_);return N([$,M,O,I]),{value:J(O,y),gradFunc:C}})(A,b,k)}var sM=D({fusedMatMul_:rM});function iM(e){return vh(e,.54,.46)}var oM=D({hammingWindow_:iM});function lM(e){return vh(e,.5,.5)}var Wb=D({hannWindow_:lM});function uM(e,t,a,n=!1,r=0){let s=0,i=[];for(;s+t<=e.size;)i.push(De(e,s,t)),s+=a;if(n)for(;s<e.size;){let o=s+t-e.size,l=rt([De(e,s,t-o),nr([o],r)]);i.push(l),s+=a}return i.length===0?Kn([],[0,t]):J(rt(i),[i.length,t])}var Vb=D({frame_:uM});function dM(e,t,a,n,r=Wb){n==null&&(n=U1(t));let s=Vb(e,t,a),i=ae(s,r(t));return bh(i,n)}var pM=D({stft_:dM});function cM(e,t,a,n,r="bilinear",s=0){let i=R(e,"image","cropAndResize"),o=R(t,"boxes","cropAndResize","float32"),l=R(a,"boxInd","cropAndResize","int32"),u=o.shape[0];P(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),P(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${o.shape}.`),P(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${o.shape}.`),P(n.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${n.length}.`),P(n[0]>=1&&n[1]>=1,()=>`cropSize must be atleast [1,1], but was ${n}`),P(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let p={image:i,boxes:o,boxInd:l},c={method:r,extrapolationValue:s,cropSize:n};return z.runKernel(ui,p,c)}var hM=D({cropAndResize_:cM});function fM(e){let t=R(e,"image","flipLeftRight","float32");P(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let a={image:t};return z.runKernel(gi,a,{})}var mM=D({flipLeftRight_:fM});function gM(e){let t=R(e,"image","grayscaleToRGB"),a=t.rank-1,n=t.shape[a];P(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),P(n===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${n}.`);let r=new Array(t.rank);return r.fill(1,0,a),r[a]=3,Gr(t,r)}var xM=D({grayscaleToRGB_:gM});function yM(e,t,a=0,n=.5){let r=R(e,"image","rotateWithOffset","float32");P(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let s={image:r},i={radians:t,fillValue:a,center:n};return z.runKernel(go,s,i)}var AM=D({rotateWithOffset_:yM});function iu(e,t,a,n,r,s){n==null&&(n=.5),r==null&&(r=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return a=Math.min(a,i),P(0<=n&&n<=1,()=>`iouThreshold must be in [0, 1], but was '${n}'`),P(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),P(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),P(t.rank===1,()=>"scores must be a 1D tensor"),P(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),P(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:a,iouThreshold:n,scoreThreshold:r,softNmsSigma:s}}function bM(e,t,a,n=.5,r=Number.NEGATIVE_INFINITY){let s=R(e,"boxes","nonMaxSuppression","float32"),i=R(t,"scores","nonMaxSuppression","float32"),o=iu(s,i,a,n,r);a=o.maxOutputSize,n=o.iouThreshold,r=o.scoreThreshold;let l={maxOutputSize:a,iouThreshold:n,scoreThreshold:r};return z.runKernel(Wi,{boxes:s,scores:i},l)}var vM=D({nonMaxSuppression_:bM});function kM(e,t,a){let n=wM(e,t,a),r=n<0?-(n+1):n;e.splice(r,0,t)}function wM(e,t,a){return SM(e,t,a||IM)}function IM(e,t){return e>t?1:e<t?-1:0}function SM(e,t,a){let n=0,r=e.length,s=0,i=!1;for(;n<r;){s=n+(r-n>>>1);let o=a(t,e[s]);o>0?n=s+1:(r=s,i=!o)}return i?n:-n-1}function Ub(e,t,a,n,r){return H1(e,t,a,n,r,0)}function Gb(e,t,a,n,r,s){return H1(e,t,a,n,r,0,!1,s,!0)}function Hb(e,t,a,n,r,s){return H1(e,t,a,n,r,s,!0)}function H1(e,t,a,n,r,s,i=!1,o=!1,l=!1){let u=[];for(let g=0;g<t.length;g++)t[g]>r&&u.push({score:t[g],boxIndex:g,suppressBeginIndex:0});u.sort(W5);let p=s>0?-.5/s:0,c=[],d=[];for(;c.length<a&&u.length>0;){let g=u.pop(),{score:x,boxIndex:y,suppressBeginIndex:A}=g;if(x<r)break;let b=!1;for(let k=c.length-1;k>=A;--k){let S=TM(e,y,c[k]);if(S>=n){b=!0;break}if(g.score=g.score*CM(n,p,S),g.score<=r)break}g.suppressBeginIndex=c.length,b||(g.score===x?(c.push(y),d.push(g.score)):g.score>r&&kM(u,g,W5))}let h=c.length,f=a-h;o&&f>0&&(c.push(...new Array(f).fill(0)),d.push(...new Array(f).fill(0)));let m={selectedIndices:c};return i&&(m.selectedScores=d),l&&(m.validOutputs=h),m}function TM(e,t,a){let n=e.subarray(t*4,t*4+4),r=e.subarray(a*4,a*4+4),s=Math.min(n[0],n[2]),i=Math.min(n[1],n[3]),o=Math.max(n[0],n[2]),l=Math.max(n[1],n[3]),u=Math.min(r[0],r[2]),p=Math.min(r[1],r[3]),c=Math.max(r[0],r[2]),d=Math.max(r[1],r[3]),h=(o-s)*(l-i),f=(c-u)*(d-p);if(h<=0||f<=0)return 0;let m=Math.max(s,u),g=Math.max(i,p),x=Math.min(o,c),y=Math.min(l,d),A=Math.max(x-m,0)*Math.max(y-g,0);return A/(h+f-A)}function CM(e,t,a){let n=Math.exp(t*a*a);return a<=e?n:0}function W5(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function NM(e,t,a,n=.5,r=Number.NEGATIVE_INFINITY){let s=R(e,"boxes","nonMaxSuppressionAsync"),i=R(t,"scores","nonMaxSuppressionAsync"),o=iu(s,i,a,n,r);a=o.maxOutputSize,n=o.iouThreshold,r=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),u=l[0],p=l[1],{selectedIndices:c}=Ub(u,p,a,n,r);return s!==e&&s.dispose(),i!==t&&i.dispose(),Ht(c,"int32")}var EM=NM;function RM(e,t,a,n=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=R(e,"boxes","nonMaxSuppression"),o=R(t,"scores","nonMaxSuppression"),l=iu(i,o,a,n,r,s);a=l.maxOutputSize,n=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let u={boxes:i,scores:o},p={maxOutputSize:a,iouThreshold:n,scoreThreshold:r,softNmsSigma:s},c=z.runKernel(Vi,u,p);return{selectedIndices:c[0],selectedScores:c[1]}}var MM=D({nonMaxSuppressionWithScore_:RM});async function $M(e,t,a,n=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=R(e,"boxes","nonMaxSuppressionAsync"),o=R(t,"scores","nonMaxSuppressionAsync"),l=iu(i,o,a,n,r,s);a=l.maxOutputSize,n=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let u=await Promise.all([i.data(),o.data()]),p=u[0],c=u[1],{selectedIndices:d,selectedScores:h}=Hb(p,c,a,n,r,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Ht(d,"int32"),selectedScores:Ht(h)}}var _M=$M;function PM(e,t,a,n=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=R(e,"boxes","nonMaxSuppression"),o=R(t,"scores","nonMaxSuppression"),l=iu(i,o,a,n,r,null),u=l.maxOutputSize,p=l.iouThreshold,c=l.scoreThreshold,d={boxes:i,scores:o},h={maxOutputSize:u,iouThreshold:p,scoreThreshold:c,padToMaxOutputSize:s},f=z.runKernel(Wl,d,h);return{selectedIndices:f[0],validOutputs:f[1]}}var FM=D({nonMaxSuppressionPadded_:PM});async function OM(e,t,a,n=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=R(e,"boxes","nonMaxSuppressionAsync"),o=R(t,"scores","nonMaxSuppressionAsync"),l=iu(i,o,a,n,r,null),u=l.maxOutputSize,p=l.iouThreshold,c=l.scoreThreshold,[d,h]=await Promise.all([i.data(),o.data()]),{selectedIndices:f,validOutputs:m}=Gb(d,h,u,p,c,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Ht(f,"int32"),validOutputs:ze(m,"int32")}}var DM=OM;function zM(e,t,a=!1,n=!1){let r=R(e,"images","resizeBilinear");P(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),P(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),P(n===!1||a===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=J(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:a,halfPixelCenters:n,size:t},u=z.runKernel(Yi,o,l);return i?J(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var LM=D({resizeBilinear_:zM});function BM(e,t,a=!1,n=!1){let r=R(e,"images","resizeNearestNeighbor");P(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),P(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),P(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),P(n===!1||a===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=J(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:a,halfPixelCenters:n,size:t},u=z.runKernel(Zi,o,l);return i?J(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var WM=D({resizeNearestNeighbor_:BM});function VM(e,t="binary",a=!1,n=.5){let r=R(e,"image","threshold"),s=.2989,i=.587,o=.114,l=r.shape[0]*r.shape[1],u=ae(Ht([n]),255),p,c,d,h;if(P(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),P(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),P(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),P(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[p,c,d]=wa(r,[1,1,1],-1);let m=ae(p,s),g=ae(c,i),x=ae(d,o);h=be(be(m,g),x)}else h=e;if(t==="otsu"){let m=i1(qe(P1(h),"int32"),Ve([]),256);u=UM(m,l)}let f=a?fh(h,u):ip(h,u);return qe(ae(f,255),"int32")}function UM(e,t){let a=Ht([-1]),n=Ht([0]),r=Ht([0]),s,i,o,l,u,p;for(let c=0;c<e.size-1;c++){s=De(e,0,c+1),i=De(e,c+1),u=me(nt(s),t),p=me(nt(i),t);let d=nt(ae(s,dl(0,s.size)));o=me(d,nt(s));let h=nr(i.shape,s.size),f=be(dl(0,i.size),h),m=ae(i,f);l=me(nt(m),nt(i));let g=he(o,l),x=he(o,l),y=ae(u,p);r=ae(ae(y,g),x);let A=ip(r,n);n=Ws(A,r,n),a=Ws(A,Ht([c]),a)}return a}var GM=D({threshold_:VM});function HM(e,t,a="nearest",n="constant",r=0,s){let i=R(e,"image","transform","float32"),o=R(t,"transforms","transform","float32");P(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),P(o.rank===2&&(o.shape[0]===i.shape[0]||o.shape[0]===1)&&o.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),P(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let l={image:i,transforms:o},u={interpolation:a,fillMode:n,fillValue:r,outputShape:s};return z.runKernel(mo,l,u)}var jM=D({transform_:HM});function qM(e,t,a){P(t%1===0,()=>`bandPart(): numLower must be an integer, got ${t}.`),P(a%1===0,()=>`bandPart(): numUpper must be an integer, got ${a}.`);let n=R(e,"a","bandPart");P(n.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${n.rank}.`);let r=n.shape,[s,i]=n.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(a<=i))throw new Error(`bandPart(): numUpper (${a}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),a<0&&(a=i);let o=J(dl(0,s,1,"int32"),[-1,1]),l=dl(0,i,1,"int32"),u=he(o,l),p=hd(fh(u,ze(+t,"int32")),f1(u,ze(-a,"int32"))),c=fn([s,i],n.dtype);return J(oa(Ta(J(n,[-1,s,i])).map(d=>Ws(p,d,c))),r)}var XM=D({bandPart_:qM});function KM(e){let t;if(Array.isArray(e)){t=!1,P(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let s=1;s<e.length;++s)P(e[s].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${r})`)}else t=!0,e=wa(e,e.shape[0],0).map(r=>Oe(r,[0]));P(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let a=[],n=e;for(let r=0;r<e.length;++r)a.push(z.tidy(()=>{let s=n[r];if(r>0)for(let i=0;i<r;++i){let o=ae(nt(ae(a[i],s)),a[i]);s=he(s,o)}return me(s,sp(s,"euclidean"))}));return t?oa(a,0):a}var ZM=D({gramSchmidt_:KM});function YM(e,t=!1){if(P(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return V5(e,t);{let a=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),n=Ta(J(e,[a,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],s=[];n.forEach(l=>{let[u,p]=V5(l,t);r.push(u),s.push(p)});let i=J(oa(r,0),e.shape),o=J(oa(s,0),e.shape);return[i,o]}}function V5(e,t=!1){return z.tidy(()=>{P(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let a=e.shape[0],n=e.shape[1],r=p1(a),s=ka(e),i=Kn([[1]],[1,1]),o=ka(i),l=a>=n?n:a;for(let u=0;u<l;++u){let p=s,c=o,d=r;[o,s,r]=z.tidy(()=>{let h=De(s,[u,u],[a-u,1]),f=sp(h),m=De(s,[u,u],[1,1]),g=Ws(ip(m,0),Kn([[-1]]),Kn([[1]])),x=he(m,ae(g,f)),y=me(h,x);y.shape[0]===1?o=ka(i):o=rt([i,De(y,[1,0],[y.shape[0]-1,y.shape[1]])],0);let A=Xn(me(it(g,x),f)),b=De(s,[u,0],[a-u,n]),k=ae(A,o),S=Vs(o);if(u===0)s=he(b,it(k,it(S,b)));else{let _=he(b,it(k,it(S,b)));s=rt([De(s,[0,0],[u,n]),_],0)}let C=Vs(k),E=De(r,[0,u],[a,r.shape[1]-u]);if(u===0)r=he(E,it(it(E,o),C));else{let _=he(E,it(it(E,o),C));r=rt([De(r,[0,0],[a,u]),_],1)}return[o,s,r]}),Y([p,c,d])}return!t&&a>n&&(r=De(r,[0,0],[a,n]),s=De(s,[0,0],[n,n])),[r,s]})}var JM=D({qr_:YM}),Aa;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(Aa||(Aa={}));function QM(e,t,a=Aa.SUM_BY_NONZERO_WEIGHTS){let n=R(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=R(t,"weights","computeWeightedLoss"));let s=r==null?n:ae(n,r);if(a===Aa.NONE)return s;if(a===Aa.SUM)return nt(s);if(a===Aa.MEAN){if(r==null)return fd(s);{let i=n.size/r.size,o=me(nt(s),nt(r));return i>1?me(o,ze(i)):o}}if(a===Aa.SUM_BY_NONZERO_WEIGHTS){if(r==null)return me(nt(s),ze(n.size));{let i=ae(r,Wr(n.shape)),o=qe(nt(I1(i,ze(0))),"float32");return me(nt(s),o)}}throw Error(`Unknown reduction: ${a}`)}var wr=D({computeWeightedLoss_:QM});function e$(e,t,a,n=Aa.SUM_BY_NONZERO_WEIGHTS){let r=R(e,"labels","absoluteDifference"),s=R(t,"predictions","absoluteDifference"),i=null;a!=null&&(i=R(a,"weights","absoluteDifference")),Sa(r.shape,s.shape,"Error in absoluteDifference: ");let o=qa(he(r,s));return wr(o,i,n)}var t$=D({absoluteDifference_:e$});function a$(e,t,a,n,r=Aa.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","cosineDistance"),i=R(t,"predictions","cosineDistance"),o=null;n!=null&&(o=R(n,"weights","cosineDistance")),Sa(s.shape,i.shape,"Error in cosineDistance: ");let l=ze(1),u=he(l,nt(ae(s,i),a,!0));return wr(u,o,r)}var n$=D({cosineDistance_:a$});function r$(e,t,a,n=Aa.SUM_BY_NONZERO_WEIGHTS){let r=R(e,"labels","hingeLoss"),s=R(t,"predictions","hingeLoss"),i=null;a!=null&&(i=R(a,"weights","hingeLoss")),Sa(r.shape,s.shape,"Error in hingeLoss: ");let o=ze(1);r=he(ae(ze(2),r),o);let l=lp(he(o,ae(r,s)));return wr(l,i,n)}var s$=D({hingeLoss_:r$});function i$(e,t,a,n=1,r=Aa.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","huberLoss"),i=R(t,"predictions","huberLoss"),o=null;a!=null&&(o=R(a,"weights","huberLoss")),Sa(s.shape,i.shape,"Error in huberLoss: ");let l=ze(n),u=qa(he(i,s)),p=w1(u,l),c=he(u,p),d=be(ae(ze(.5),In(p)),ae(l,c));return wr(d,o,r)}var o$=D({huberLoss_:i$});function l$(e,t,a,n=1e-7,r=Aa.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","logLoss"),i=R(t,"predictions","logLoss"),o=null;a!=null&&(o=R(a,"weights","logLoss")),Sa(s.shape,i.shape,"Error in logLoss: ");let l=ze(1),u=ze(n),p=Xn(ae(s,ul(be(i,u)))),c=ae(he(l,s),ul(be(he(l,i),u))),d=he(p,c);return wr(d,o,r)}var u$=D({logLoss_:l$});function d$(e,t,a,n=Aa.SUM_BY_NONZERO_WEIGHTS){let r=R(e,"labels","meanSquaredError"),s=R(t,"predictions","meanSquaredError"),i=null;a!=null&&(i=R(a,"weights","meanSquaredError")),Sa(r.shape,s.shape,"Error in meanSquaredError: ");let o=O1(r,s);return wr(o,i,n)}var p$=D({meanSquaredError_:d$});function c$(e,t){let a=R(e,"labels","sigmoidCrossEntropyWithLogits"),n=R(t,"logits","sigmoidCrossEntropyWithLogits");Sa(a.shape,n.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=lp(n),s=ae(n,a),i=g1(Yr(Xn(qa(n))));return be(he(r,s),i)}function h$(e,t,a,n=0,r=Aa.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"multiClassLabels","sigmoidCrossEntropy"),i=R(t,"logits","sigmoidCrossEntropy"),o=null;if(a!=null&&(o=R(a,"weights","sigmoidCrossEntropy")),Sa(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),n>0){let u=ze(n),p=ze(1),c=ze(.5);s=be(ae(s,he(p,u)),ae(c,u))}let l=c$(s,i);return wr(l,o,r)}var f$=D({sigmoidCrossEntropy_:h$});function m$(e,t,a=-1){if(a===-1&&(a=t.rank-1),a!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${a}`);return Qn((n,r,s)=>{let i=y1(r,[a],!0),o=he(qe(r,"float32"),i);s([n,o]);let l=Xn(ae(o,n));return{value:nt(l,[a]),gradFunc:(u,p)=>{let[c,d]=p,h=rp(u.shape,[a]);return[ae(J(u,h),he(qe(c,"float32"),Yr(d))),ae(J(u,h),he(Yr(d),qe(c,"float32")))]}}})(e,t)}function g$(e,t,a,n=0,r=Aa.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"onehotLabels","softmaxCrossEntropy"),i=R(t,"logits","softmaxCrossEntropy"),o=null;if(a!=null&&(o=R(a,"weights","softmaxCrossEntropy")),Sa(s.shape,i.shape,"Error in softmaxCrossEntropy: "),n>0){let u=ze(n),p=ze(1),c=ze(s.shape[1]);s=be(ae(s,he(p,u)),me(u,c))}let l=m$(s,i);return wr(l,o,r)}var x$=D({softmaxCrossEntropy_:g$});function y$(e,t,a,n){let r=R(e,"indices","sparseFillEmptyRows","int32"),s=R(t,"values","sparseFillEmptyRows"),i=R(a,"denseShape","sparseFillEmptyRows","int32"),o=R(n,"defaultValue","sparseFillEmptyRows",s.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
|
|
${r.shape}`);if(s.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${s.shape}`);if(i.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${i.shape}`);if(o.rank!==0)throw new Error(`Default value should be a scalar but received shape ${o.shape}`);let l={indices:r,values:s,denseShape:i,defaultValue:o},u=z.runKernel(Bd,l);return{outputIndices:u[0],outputValues:u[1],emptyRowIndicator:u[2],reverseIndexMap:u[3]}}var A$=D({sparseFillEmptyRows_:y$});function b$(e,t,a){let n=R(e,"inputIndices","sparseReshape","int32"),r=R(t,"inputShape","sparseReshape","int32"),s=R(a,"newShape","sparseReshape","int32");if(n.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
|
|
${n.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(s.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${s.shape}`);let i={inputIndices:n,inputShape:r,newShape:s},o=z.runKernel(eu,i);return{outputIndices:o[0],outputShape:o[1]}}var v$=D({sparseReshape_:b$});function k$(e,t,a){let n=R(e,"data","sparseSegmentMean"),r=R(t,"indices","sparseSegmentMean","int32"),s=R(a,"segmentIds","sparseSegmentMean","int32");if(n.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${s.shape}`);let i={data:n,indices:r,segmentIds:s};return z.runKernel(Wd,i)}var w$=D({sparseSegmentMean_:k$});function I$(e,t,a){let n=R(e,"data","sparseSegmentSum"),r=R(t,"indices","sparseSegmentSum","int32"),s=R(a,"segmentIds","sparseSegmentSum","int32");if(n.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${s.shape}`);let i={data:n,indices:r,segmentIds:s};return z.runKernel(Vd,i)}var S$=D({sparseSegmentSum_:I$});function T$(e,t,a,n,r,s,i,o){let l=R(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let u=R(t,"dataSplits","stringNGrams");if(u.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let p={separator:a,nGramWidths:n,leftPad:r,rightPad:s,padWidth:i,preserveShortSequences:o},c={data:l,dataSplits:u},d=z.runKernel(tu,c,p);return{nGrams:d[0],nGramsSplits:d[1]}}var C$=D({stringNGrams_:T$});function N$(e,t,a=!0){let n=R(e,"input","stringSplit","string"),r=R(t,"delimiter","stringSplit","string");if(n.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${n.shape}`);if(r.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${r.shape}`);let s={skipEmpty:a},i={input:n,delimiter:r},o=z.runKernel(Hd,i,s);return{indices:o[0],values:o[1],shape:o[2]}}var E$=D({stringSplit_:N$});function R$(e,t){let a=R(e,"input","stringToHashBucketFast","string"),n={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let r={input:a};return z.runKernel(jd,r,n)}var M$=D({stringToHashBucketFast_:R$}),jb={fft:Ah,ifft:md,rfft:bh,irfft:F1},qb={hammingWindow:oM,hannWindow:Wb,frame:Vb,stft:pM},ge={flipLeftRight:mM,grayscaleToRGB:xM,resizeNearestNeighbor:WM,resizeBilinear:LM,rotateWithOffset:AM,cropAndResize:hM,nonMaxSuppression:vM,nonMaxSuppressionAsync:EM,nonMaxSuppressionWithScore:MM,nonMaxSuppressionWithScoreAsync:_M,nonMaxSuppressionPadded:FM,nonMaxSuppressionPaddedAsync:DM,threshold:GM,transform:jM},Xb={bandPart:XM,gramSchmidt:ZM,qr:JM},Kb={absoluteDifference:t$,computeWeightedLoss:wr,cosineDistance:n$,hingeLoss:s$,huberLoss:o$,logLoss:u$,meanSquaredError:p$,sigmoidCrossEntropy:f$,softmaxCrossEntropy:x$},Zb={sparseFillEmptyRows:A$,sparseReshape:v$,sparseSegmentMean:w$,sparseSegmentSum:S$},Yb={stringNGrams:C$,stringSplit:E$,stringToHashBucketFast:M$},Jb={};Ke(Jb,{Serializable:()=>Qb,SerializationMap:()=>Ps,registerClass:()=>e4});var Qb=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},Ps=class{constructor(){this.classNameMap={}}static getMap(){return Ps.instance==null&&(Ps.instance=new Ps),Ps.instance}static register(e){Ps.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function e4(e){P(e.className!=null,()=>"Class being registered does not have the static className property defined."),P(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),P(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),Ps.register(e)}var os=class extends Qb{minimize(e,t=!1,a){let{value:n,grads:r}=this.computeGradients(e,a);if(a!=null){let s=a.map(i=>({name:i.name,tensor:r[i.name]}));this.applyGradients(s)}else this.applyGradients(r);return Y(r),t?n:(n.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return $A(e,t)}dispose(){this.iterations_!=null&&Y(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:ze(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(os,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var j1=class extends os{constructor(e,t,a=null){super(),this.learningRate=e,this.rho=t,this.epsilon=a,this.accumulatedGrads=[],this.accumulatedUpdates=[],a==null&&(this.epsilon=z.backend.epsilon())}static get className(){return"Adadelta"}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,a)=>{let n=z.registeredVariables[t],r=!1;this.accumulatedGrads[a]==null&&(this.accumulatedGrads[a]={originalName:`${t}/accum_grad`,variable:Fe(()=>Ka(n).variable(r))}),this.accumulatedUpdates[a]==null&&(this.accumulatedUpdates[a]={originalName:`${t}/accum_var`,variable:Fe(()=>Ka(n).variable(r))});let s=Array.isArray(e)?e[a].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[a].variable,o=this.accumulatedUpdates[a].variable;Fe(()=>{let l=be(ae(i,this.rho),ae(In(s),1-this.rho)),u=ae(me(Jn(be(o,this.epsilon)),Jn(be(i,this.epsilon))),s),p=be(ae(o,this.rho),ae(In(u),1-this.rho));i.assign(l),o.assign(p);let c=be(ae(u,-this.learningRate),n);n.assign(c)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Y(this.accumulatedGrads.map(e=>e.variable)),Y(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,a=!1;this.accumulatedGrads=e.slice(0,t).map(n=>({originalName:n.name,variable:n.tensor.variable(a)})),this.accumulatedUpdates=e.slice(t,t*2).map(n=>({originalName:n.name,variable:n.tensor.variable(a)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}},q1=class extends os{constructor(e,t=.1){super(),this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}static get className(){return"Adagrad"}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,a)=>{let n=z.registeredVariables[t];this.accumulatedGrads[a]==null&&(this.accumulatedGrads[a]={originalName:`${t}/accumulator`,variable:Fe(()=>nr(n.shape,this.initialAccumulatorValue).variable(!1))});let r=Array.isArray(e)?e[a].tensor:e[t];if(r==null)return;let s=this.accumulatedGrads[a].variable;Fe(()=>{let i=be(s,In(r));s.assign(i);let o=be(ae(me(r,Jn(be(i,z.backend.epsilon()))),-this.learningRate),n);n.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Y(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(a=>({originalName:a.name,variable:a.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}},X1=class extends os{constructor(e,t,a,n=null){super(),this.learningRate=e,this.beta1=t,this.beta2=a,this.epsilon=n,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],Fe(()=>{this.accBeta1=ze(t).variable(),this.accBeta2=ze(a).variable()}),n==null&&(this.epsilon=z.backend.epsilon())}static get className(){return"Adam"}applyGradients(e){let t=Array.isArray(e)?e.map(a=>a.name):Object.keys(e);Fe(()=>{let a=he(1,this.accBeta1),n=he(1,this.accBeta2);t.forEach((r,s)=>{let i=z.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:Fe(()=>Ka(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${r}/v`,variable:Fe(()=>Ka(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,p=this.accumulatedSecondMoment[s].variable,c=be(ae(u,this.beta1),ae(l,1-this.beta1)),d=be(ae(p,this.beta2),ae(In(l),1-this.beta2)),h=me(c,a),f=me(d,n);u.assign(c),p.assign(d);let m=be(ae(me(h,be(Jn(f),this.epsilon)),-this.learningRate),i);i.assign(m)}),this.accBeta1.assign(ae(this.accBeta1,this.beta1)),this.accBeta2.assign(ae(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Y(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Y(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),Fe(()=>{this.accBeta1.assign(ll(this.beta1,this.iterations_+1)),this.accBeta2.assign(ll(this.beta2,this.iterations_+1))});let t=e.length/2,a=!1;this.accumulatedFirstMoment=e.slice(0,t).map(n=>({originalName:n.name,variable:n.tensor.variable(a)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(n=>({originalName:n.name,variable:n.tensor.variable(a)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}},K1=class extends os{constructor(e,t,a,n=null,r=0){super(),this.learningRate=e,this.beta1=t,this.beta2=a,this.epsilon=n,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],Fe(()=>{this.iteration=ze(0).variable(),this.accBeta1=ze(t).variable()}),n==null&&(this.epsilon=z.backend.epsilon())}static get className(){return"Adamax"}applyGradients(e){let t=Array.isArray(e)?e.map(a=>a.name):Object.keys(e);Fe(()=>{let a=he(1,this.accBeta1),n=me(-this.learningRate,be(ae(this.iteration,this.decay),1));t.forEach((r,s)=>{let i=z.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:Ka(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${r}/v`,variable:Ka(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,p=this.accumulatedWeightedInfNorm[s].variable,c=be(ae(u,this.beta1),ae(l,1-this.beta1)),d=ae(p,this.beta2),h=qa(l),f=k1(d,h);u.assign(c),p.assign(f);let m=be(ae(me(n,a),me(c,be(f,this.epsilon))),i);i.assign(m)}),this.iteration.assign(be(this.iteration,1)),this.accBeta1.assign(ae(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Y(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Y(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}},Th=class extends os{constructor(e){super(),this.learningRate=e,this.setLearningRate(e)}static get className(){return"SGD"}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,a)=>{let n=Array.isArray(e)?e[a].tensor:e[t];if(n==null)return;let r=z.registeredVariables[t];Fe(()=>{let s=be(ae(this.c,n),r);r.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=On(ze(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}},Z1=class extends Th{constructor(e,t,a=!1){super(e),this.learningRate=e,this.momentum=t,this.useNesterov=a,this.accumulations=[],this.m=ze(this.momentum)}static get className(){return"Momentum"}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,a)=>{let n=z.registeredVariables[t];this.accumulations[a]==null&&(this.accumulations[a]={originalName:`${t}/momentum`,variable:Fe(()=>Ka(n).variable(!1))});let r=this.accumulations[a].variable,s=Array.isArray(e)?e[a].tensor:e[t];s!=null&&Fe(()=>{let i,o=be(ae(this.m,r),s);this.useNesterov?i=be(ae(this.c,be(s,ae(o,this.m))),n):i=be(ae(this.c,o),n),r.assign(o),n.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Y(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(a=>({originalName:a.name,variable:a.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}},Y1=class extends os{constructor(e,t=.9,a=0,n=null,r=!1){if(super(),this.learningRate=e,this.decay=t,this.momentum=a,this.epsilon=n,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,n==null&&(this.epsilon=z.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}static get className(){return"RMSProp"}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,a)=>{let n=z.registeredVariables[t],r=!1;this.accumulatedMeanSquares[a]==null&&(this.accumulatedMeanSquares[a]={originalName:`${t}/rms`,variable:Fe(()=>Ka(n).variable(r))}),this.accumulatedMoments[a]==null&&(this.accumulatedMoments[a]={originalName:`${t}/momentum`,variable:Fe(()=>Ka(n).variable(r))}),this.accumulatedMeanGrads[a]==null&&this.centered&&(this.accumulatedMeanGrads[a]={originalName:`${t}/mg`,variable:Fe(()=>Ka(n).variable(r))});let s=Array.isArray(e)?e[a].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[a].variable,o=this.accumulatedMoments[a].variable;Fe(()=>{let l=be(ae(i,this.decay),ae(In(s),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[a].variable,p=be(ae(u,this.decay),ae(s,1-this.decay)),c=me(ae(s,this.learningRate),Jn(he(l,be(In(p),this.epsilon)))),d=be(ae(o,this.momentum),c);i.assign(l),u.assign(p),o.assign(d);let h=he(n,d);n.assign(h)}else{let u=be(ae(i,this.decay),ae(In(s),1-this.decay)),p=be(ae(o,this.momentum),me(ae(s,this.learningRate),Jn(be(u,this.epsilon))));i.assign(u),o.assign(p);let c=he(n,p);n.assign(c)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Y(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Y(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Y(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,a=!1;this.accumulatedMeanSquares=e.slice(0,t).map(n=>({originalName:n.name,variable:n.tensor.variable(a)})),this.accumulatedMoments=e.slice(t,t*2).map(n=>({originalName:n.name,variable:n.tensor.variable(a)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(n=>({originalName:n.name,variable:n.tensor.variable(a)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}},$$=[j1,q1,X1,K1,Z1,Y1,Th];function _$(){for(let e of $$)e4(e)}var jn={};Ke(jn,{browserFiles:()=>B$,browserHTTPRequest:()=>H$,concatenateArrayBuffers:()=>Y2,copyModel:()=>PT,decodeWeights:()=>wy,encodeWeights:()=>uT,fromMemory:()=>q$,fromMemorySync:()=>s4,getLoadHandlers:()=>bT,getModelArtifactsForJSON:()=>J2,getModelArtifactsForJSONSync:()=>Sy,getModelArtifactsInfoForJSON:()=>Yd,getSaveHandlers:()=>AT,getWeightSpecs:()=>Ty,http:()=>Q1,isHTTPScheme:()=>t2,listModels:()=>$T,loadWeights:()=>W$,moveModel:()=>FT,registerLoadRouter:()=>yT,registerSaveRouter:()=>xT,removeModel:()=>_T,weightsLoaderFactory:()=>a4,withSaveHandler:()=>X$,withSaveHandlerSync:()=>K$});var P$="model",F$=".json",O$=".weights.bin";function U5(e){return new Promise(t=>setTimeout(t)).then(e)}var cl=class{constructor(e){if(!B().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(cl.URL_SCHEME)&&(e=e.slice(cl.URL_SCHEME.length)),(e==null||e.length===0)&&(e=P$),this.modelJsonFileName=e+F$,this.weightDataFileName=e+O$}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let a=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],n=Iy(e,a),r=window.URL.createObjectURL(new Blob([JSON.stringify(n)],{type:"application/json"})),s=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(s.download=this.modelJsonFileName,s.href=r,await U5(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await U5(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Yd(e)}}}};cl.URL_SCHEME="downloads://";var D$=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let a=new FileReader;a.onload=n=>{let r=JSON.parse(n.target.result),s=r.modelTopology;if(s==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(r.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:s});return}let i=J2(r,o=>this.loadWeights(o));e(i)},a.onerror=n=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),a.readAsText(this.jsonFile)})}loadWeights(e){let t=[],a=[];for(let s of e)t.push(...s.weights),a.push(...s.paths);let n=this.checkManifestAndWeightFiles(e),r=a.map(s=>this.loadWeightsFile(s,n[s]));return Promise.all(r).then(s=>[t,Y2(s)])}loadWeightsFile(e,t){return new Promise((a,n)=>{let r=new FileReader;r.onload=s=>{let i=s.target.result;a(i)},r.onerror=s=>n(`Failed to weights data from file of path '${e}'.`),r.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],a=this.weightsFiles.map(r=>B5(r.name)),n={};for(let r of e)r.paths.forEach(s=>{let i=B5(s);if(t.indexOf(i)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${i}'`);if(t.push(i),a.indexOf(i)===-1)throw new Error(`Weight file with basename '${i}' is not provided.`);n[s]=this.weightsFiles[a.indexOf(i)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return n}},z$=e=>B().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(cl.URL_SCHEME)?L$(e.slice(cl.URL_SCHEME.length)):null;Mt.registerSaveRouter(z$);function L$(e="model"){return new cl(e)}function B$(e){return new D$(e)}function G5(e,t,a,n){i(e),a=a==null?0:a,n=n==null?1:n,o(a,n);let r=0,s=l=>(l.then(u=>{let p=a+ ++r/e.length*(n-a);return t(p),u}),l);function i(l){P(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,u){P(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),P(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),P(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(s))}async function t4(e,t){t==null&&(t={});let a=t.fetchFunc==null?B().platform.fetch:t.fetchFunc,n=e.map(u=>a(u,t.requestInit,{isBinary:!0})),r=0,s=.5,i=(t.onProgress==null?await Promise.all(n):await G5(n,t.onProgress,r,s)).map(u=>u.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await G5(i,t.onProgress,o,l)}async function W$(e,t="",a,n){return a4(r=>t4(r,{requestInit:n}))(e,t,a)}function a4(e){return async(t,a="",n)=>{let r=t.map(()=>!1),s={},i=n!=null?n.map(()=>!1):[],o=[];if(t.forEach((h,f)=>{let m=0;h.weights.forEach(g=>{let x="quantization"in g?g.quantization.dtype:g.dtype,y=Km[x]*yt(g.shape),A=()=>{r[f]=!0,s[f]==null&&(s[f]=[]),s[f].push({manifestEntry:g,groupOffset:m,sizeBytes:y})};n!=null?n.forEach((b,k)=>{b===g.name&&(A(),i[k]=!0)}):A(),o.push(g.name),m+=y})}),!i.every(h=>h)){let h=n.filter((f,m)=>!i[m]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
|
|
Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=r.reduce((h,f,m)=>(f&&h.push(m),h),[]),u=[];l.forEach(h=>{t[h].paths.forEach(f=>{let m=a+(a.endsWith("/")?"":"/")+f;u.push(m)})});let p=await e(u),c={},d=0;return l.forEach(h=>{let f=t[h].paths.length,m=0;for(let A=0;A<f;A++)m+=p[d+A].byteLength;let g=new ArrayBuffer(m),x=new Uint8Array(g),y=0;for(let A=0;A<f;A++){let b=new Uint8Array(p[d+A]);x.set(b,y),y+=b.byteLength}s[h].forEach(A=>{let b=g.slice(A.groupOffset,A.groupOffset+A.sizeBytes),k=wy(b,[A.manifestEntry]);for(let S in k)c[S]=k[S]}),d+=f}),c}}var V$="application/octet-stream",U$="application/json",J1=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(P(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=B().platform.fetch,P(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&P(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let a=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],n=Iy(e,a);t.body.append("model.json",new Blob([JSON.stringify(n)],{type:U$}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:V$}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:Yd(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(r){let s=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?s+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":s+=" Please make sure the server is serving valid JSON for this request.",new Error(s)}let a=t.modelTopology,n=t.weightsManifest;if(a==null&&n==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return J2(t,r=>this.loadWeights(r))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[a,n]=G$(t),r=this.weightPathPrefix||a,s=Ty(e),i=[],o=[];for(let u of e)for(let p of u.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(p)):i.push(r+p+n);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await t4(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,Y2(l)]}};J1.URL_SCHEME_REGEX=/^https?:\/\//;function G$(e){let t=e.lastIndexOf("/"),a=e.lastIndexOf("?"),n=e.substring(0,t),r=a>t?e.substring(a):"";return[n+"/",r]}function t2(e){return e.match(J1.URL_SCHEME_REGEX)!=null}var n4=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let a=!0;if(Array.isArray(e)?a=e.every(n=>t2(n)):a=t2(e),a)return Q1(e,t)}return null};Mt.registerSaveRouter(n4);Mt.registerLoadRouter(n4);function Q1(e,t){return new J1(e,t)}function H$(e,t){return Q1(e,t)}var $m=class{constructor(e){this.modelArtifacts=e}load(){return this.modelArtifacts}},r4=class{constructor(e){this.saveHandler=e}save(e){return this.saveHandler(e)}},j$=class{constructor(e){e.load&&(this.load=()=>Promise.resolve(e.load())),e.save&&(this.save=t=>Promise.resolve(e.save(t)))}};function q$(e,t,a,n){let r=arguments;return new j$(s4(...r))}function s4(e,t,a,n){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new $m(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new $m({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new $m({modelTopology:e,weightSpecs:t,weightData:a,trainingConfig:n}))}function X$(e){return new r4(e)}function K$(e){return new r4(e)}var i4={};Ke(i4,{confusionMatrix:()=>Y$});function Z$(e,t,a){let n=R(e,"labels","confusionMatrix"),r=R(t,"predictions","confusionMatrix");P(a==null||a>0&&Number.isInteger(a),()=>`If provided, numClasses must be a positive integer, but got ${a}`),P(n.rank===1,()=>`Expected the rank of labels to be 1, but got ${n.rank}`),P(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),P(n.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${n.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),P(a>0&&Number.isInteger(a),()=>`numClasses is required to be a positive integer, but got ${a}`);let s=_c(qe(n,"int32"),a),i=_c(qe(r,"int32"),a),o=Vs(s),l=it(o,i);return qe(l,"int32")}var Y$=D({confusionMatrix_:Z$}),Ir={};Ke(Ir,{fromPixels:()=>r_,fromPixelsAsync:()=>a_,toPixels:()=>n_});var Es;function o4(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let a=!1,n=!1,r=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)a=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)n=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(Ec(rd,z.backendName)!=null){let d={pixels:e},h={numChannels:t};return z.runKernel(rd,d,h)}let[l,u]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],p;if(i)p=e.getContext("2d").getImageData(0,0,l,u).data;else if(n||a)p=e.data;else if(s||r||o){if(Es==null)if(typeof document=="undefined")if(typeof OffscreenCanvas!="undefined"&&typeof OffscreenCanvasRenderingContext2D!="undefined")Es=new OffscreenCanvas(1,1).getContext("2d");else throw new Error("Cannot parse input in current context. Reason: OffscreenCanvas Context2D rendering is not supported.");else Es=document.createElement("canvas").getContext("2d",{willReadFrequently:!0});Es.canvas.width=l,Es.canvas.height=u,Es.drawImage(e,0,0,l,u),p=Es.getImageData(0,0,l,u).data}let c;if(t===4)c=new Int32Array(p);else{let d=l*u;c=new Int32Array(d*t);for(let h=0;h<d;h++)for(let f=0;f<t;++f)c[h*t+f]=p[h*4+f]}return z1(c,[u,l,t],"int32")}function J$(e){return e!=null&&e.data instanceof Uint8Array}function Q$(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function e_(e){return e!=null&&e.width!==0&&e.height!==0}function t_(e){return Q$()&&!(e instanceof ImageBitmap)&&e_(e)&&!J$(e)}async function a_(e,t=3){let a=null;if(B().getBool("WRAP_TO_IMAGEBITMAP")&&t_(e)){let n;try{n=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(r){n=null}n!=null&&n.width===e.width&&n.height===e.height?a=n:a=e}else a=e;return o4(a,t)}async function n_(e,t){let a=R(e,"img","toPixels");if(!(e instanceof pt)){let u=a;a=qe(u,"int32"),u.dispose()}if(a.rank!==2&&a.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${a.rank}.`);let[n,r]=a.shape.slice(0,2),s=a.rank===2?1:a.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(a.dtype!=="float32"&&a.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${a.dtype}. Please use float32 or int32 tensors.`);let i=await a.data(),o=a.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*n*4);for(let u=0;u<n*r;++u){let p=[0,0,0,255];for(let d=0;d<s;d++){let h=i[u*s+d];if(a.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(a.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);s===1?(p[0]=h*o,p[1]=h*o,p[2]=h*o):p[d]=h*o}let c=u*4;l[c+0]=Math.round(p[0]),l[c+1]=Math.round(p[1]),l[c+2]=Math.round(p[2]),l[c+3]=Math.round(p[3])}if(t!=null){t.width=r,t.height=n;let u=t.getContext("2d"),p=new ImageData(l,r,n);u.putImageData(p,0,0)}return a!==e&&a.dispose(),l}var r_=D({fromPixels_:o4}),e3={};Ke(e3,{prepareAndValidate:()=>l4});function l4(e,t){let a=e.shape.length,n=t.shape.length;if(a<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${a}.`);if(n<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${n}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[n-1]>a)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[n-1]} vs. ${a}`);if(yt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,s=r[r.length-1],i=1;for(let c=0;c<r.length-1;++c)i*=r[c];let o=e.shape,l=r.slice();l.pop();let u=1;for(let c=s;c<a;++c)u*=o[c],l.push(o[c]);let p=[...bl(e.shape).map(c=>c/u),1].slice(0,s);return[l,i,u,p]}var St={};Ke(St,{assertParamsValid:()=>i_,computeFlatOffset:()=>p_,computeOutShape:()=>l_,getNormalizedAxes:()=>u_,isSliceContinous:()=>d_,maskToAxes:()=>o_,parseSliceParams:()=>c_,sliceInfo:()=>h_,startForAxis:()=>m4,startIndicesWithElidedDims:()=>c4,stopForAxis:()=>g4,stopIndicesWithElidedDims:()=>h4,stridesForAxis:()=>f4,stridesWithElidedDims:()=>u4});var a2=-2,s_=-1;function i_(e,t,a){let n=e.shape.length;P(n===t.length,()=>`Error in slice${n}D: Length of begin ${t} must match the rank of the array (${n}).`),P(n===a.length,()=>`Error in slice${n}D: Length of size ${a} must match the rank of the array (${n}).`);for(let r=0;r<n;++r)P(t[r]+a[r]<=e.shape[r],()=>`Error in slice${n}D: begin[${r}] + size[${r}] (${t[r]+a[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function o_(e){let t=[],a=0;for(;e>0;)e&1&&t.push(a),e/=2,a++;return t}function l_(e,t,a){let n=[];for(let r=0;r<e.length;r++)n[r]=Math.ceil((t[r]-e[r])/a[r]);return n}function u4(e,t,a,n){let r=[...e];for(let s=r.length;s<n.length;s++)r.push(1);for(let s=0;s<a;s++)s===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function d4(e,t,a){return a<=e?a:a-(t-1)}function p4(e,t){let a=[];for(let n=0;n<e;n++)a.push(t+n);return a}function u_(e,t,a,n,r,s,i,o,l){let u=e.length,p=new Array(u),c=new Array(u),d=new Array(u);if(t.length&&a>0){let h=t[0],f=a+1;p=c4(i,h,f,n,e),c=h4(o,h,f,r,e),d=u4(s,h,f,e)}else for(let h=0;h<u;h++)p[h]=m4(i,n,s,e,h,l),c[h]=g4(o,r,s,e,h,l),d[h]=f4(s,h,l);return{begin:p,end:c,strides:d}}function c4(e,t,a,n,r){let s=[...r],i=p4(a,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=0;else{let l=d4(t,a,o),u=n[l];e&1<<l&&(u=0),s[o]=u}return s}function h4(e,t,a,n,r){let s=[...r],i=p4(a,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=d4(t,a,o),u=n[l];e&1<<l&&(u=Number.MAX_SAFE_INTEGER),s[o]=u}for(let o=0;o<s.length;o++){let l=r[o];s[o]<0&&(s[o]+=l),s[o]=nd(0,s[o],r[o])}return s}function f4(e,t,a){let n=e[t];return(a&1<<t||n==null)&&(n=1),n}function m4(e,t,a,n,r,s){let i=t[r],o=a[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=n[r];return i<0&&(i+=l),i=nd(0,i,l-1),i}function g4(e,t,a,n,r,s){let i=t[r],o=a[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=n[r];return i<0&&(i+=l),o>0?i=nd(0,i,l):i=nd(-1,i,l-1),i}function d_(e,t,a){let n=a.length;for(let r=0;r<a.length;r++)if(a[r]>1){n=r;break}for(let r=n+1;r<a.length;r++)if(t[r]>0||a[r]!==e[r])return!1;return!0}function p_(e,t){let a=e.length>0?e[e.length-1]:1;for(let n=0;n<e.length-1;n++)a+=e[n]*t[n];return a}function c_(e,t,a){let n,r=e.shape.length;typeof t=="number"?n=[t,...new Array(r-1).fill(0)]:t.length<r?n=t.concat(new Array(r-t.length).fill(0)):n=t.slice(),n.forEach(i=>{P(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return a==null?s=new Array(r).fill(-1):typeof a=="number"?s=[a,...new Array(r-1).fill(-1)]:a.length<r?s=a.concat(new Array(r-a.length).fill(-1)):s=a,s=s.map((i,o)=>i>=0?i:(P(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-n[o])),[n,s]}function h_(e,t,a,n,r,s,i,o,l){let u;if(n==null?(u=new Array(t.length),u.fill(1)):u=n,i!=null&&i&i-1)throw new Error("Multiple ellipses in slice is not allowed.");let p=!1,c={dims:u.length,numAddAxisAfterEllipsis:0,begin:t.slice(),end:a.slice(),strides:u.slice(),beginMask:r,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};for(let y=0;y<c.dims;y++)p&&1<<y&o&&c.numAddAxisAfterEllipsis++,1<<y&i&&(p=!0);p||(c.ellipsisMask|=1<<c.dims,c.dims++);let d={dims:e.length,beginMask:0,endMask:0,beginValid:!1,endValid:!1};f_(c,d);let h=!0,f=!0,m=!0,g=[],x=[];for(let y=0;y<e.length;++y){if(d.strides[y]===0)throw Error(`strides[${y}] must be non-zero`);let A=!!(d.shrinkAxisMask&1<<y),b=e[y];if(b===-1){g.push(A?1:-1);continue}let k=[d.beginMask&1<<y,d.endMask&1<<y],S=[d.strides[y]>0?0:-1,d.strides[y]>0?b:b-1];if(A&&d.strides[y]<=0)throw Error("only stride 1 allowed on non-range indexing.");m=m&&d.strides[y]===1;let C=!!(d.beginMask&1<<y&&d.endMask&1<<y);if(d.beginValid&&d.endValid){if(A){let M=d.begin[y]<0?b+d.begin[y]:d.begin[y];if(d.begin[y]=M,d.end[y]=d.begin[y]+1,M<0||M>=b)throw Error(`slice index ${d.begin[y]} of dimension ${y} out of bounds.`)}else d.begin[y]=H5(d.begin[y],0,d.strides[y],b,k,S),d.end[y]=H5(d.end[y],1,d.strides[y],b,k,S);let $=d.strides[y]===1&&d.begin[y]===0&&d.end[y]===b;h=h&&$,f=f&&(y===0&&d.strides[y]===1||$)}else h=h&&d.strides[y]===1&&C,f=f&&(y===0&&d.strides[y]===1||C);let E,_=!1;if(d.beginValid&&d.endValid?(E=d.end[y]-d.begin[y],_=!0):A?(E=1,_=!0):C&&b>=0&&(d.strides[y]<0?E=-b:E=b,_=!0),_){let $;E===0||E<0!=d.strides[y]<0?$=0:$=Math.trunc(E/d.strides[y])+(E%d.strides[y]!==0?1:0),g.push($)}else g.push(-1)}for(let y=0;y<d.finalShapeGatherIndices.length;++y){let A=d.finalShapeGatherIndices[y];A>=0?x.push(g[A]):A===a2&&x.push(1)}return{finalShapeSparse:x.filter((y,A)=>d.finalShapeGatherIndices[A]!==a2),finalShape:x,isIdentity:h,sliceDim0:f,isSimpleSlice:m,begin:d.begin,end:d.end,strides:d.strides}}function f_(e,t){t.beginMask=0,t.endMask=0,t.shrinkAxisMask=0;let a=0;t.beginValid=e.begin!=null,t.endValid=e.end!=null,t.begin=new Array(t.dims),t.end=new Array(t.dims),t.strides=new Array(t.dims),t.finalShapeGatherIndices=[],t.finalShapeGatherIndicesSparse=[],t.inputShapeGatherIndicesSparse=new Array(t.dims);for(let n=0;n<e.dims;n++)if(1<<n&e.ellipsisMask){let r=Math.min(t.dims-(e.dims-n)+1+e.numAddAxisAfterEllipsis,t.dims);for(;a<r;a++)t.begin[a]=0,t.end[a]=0,t.strides[a]=1,t.beginMask|=1<<a,t.endMask|=1<<a,t.finalShapeGatherIndices.push(a),t.finalShapeGatherIndicesSparse.push(-1),t.inputShapeGatherIndicesSparse[a]=n}else if(1<<n&e.newAxisMask)t.finalShapeGatherIndices.push(a2),t.finalShapeGatherIndicesSparse.push(-1);else{if(a===t.begin.length)throw Error(`Index out of range using input dim ${a}; input has only ${t.dims} dims, ${t.begin.length}.`);e.begin!=null&&(t.begin[a]=e.begin[n]),e.end!=null&&(t.end[a]=e.end[n]),t.strides[a]=e.strides[n],e.beginMask&1<<n&&(t.beginMask|=1<<a),e.endMask&1<<n&&(t.endMask|=1<<a),e.shrinkAxisMask&1<<n?(t.finalShapeGatherIndices.push(s_),t.finalShapeGatherIndicesSparse.push(-1),t.shrinkAxisMask|=1<<a):(t.finalShapeGatherIndices.push(a),t.finalShapeGatherIndicesSparse.push(n)),t.inputShapeGatherIndicesSparse[a]=n,a++}}function H5(e,t,a,n,r,s){if(r[t])return a>0?s[t]:s[t+1&1];{let i=e<0?n+e:e;return i<s[0]?s[0]:i>s[1]?s[1]:i}}var t3="4.2.0",x4=class{static sgd(e){return new Th(e)}static momentum(e,t,a=!1){return new Z1(e,t,a)}static rmsprop(e,t=.9,a=0,n=null,r=!1){return new Y1(e,t,a,n,r)}static adam(e=.001,t=.9,a=.999,n=null){return new X1(e,t,a,n)}static adadelta(e=.001,t=.95,a=null){return new j1(e,t,a)}static adamax(e=.002,t=.9,a=.999,n=null,r=0){return new K1(e,t,a,n,r)}static adagrad(e,t=.1){return new q1(e,t)}},m_=x4,g_=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function y4(){return new Promise(e=>g_(()=>e()))}var T={};Ke(T,{ERF_A1:()=>__,ERF_A2:()=>P_,ERF_A3:()=>F_,ERF_A4:()=>O_,ERF_A5:()=>D_,ERF_P:()=>$_,PARALLELIZE_THRESHOLD:()=>a3,RowPartitionType:()=>Hn,SELU_SCALE:()=>M_,SELU_SCALEALPHA:()=>R_,applyActivation:()=>Ih,assertAndGetBroadcastShape:()=>zt,assertAxesAreInnerMostDims:()=>gN,assertParamsConsistent:()=>x_,assignToTypedArray:()=>U_,axesAreInnerMostDims:()=>d1,calculateShapes:()=>Fb,checkEinsumDimSizes:()=>K_,checkPadOnDimRoundingMode:()=>Sn,combineLocations:()=>kA,combineRaggedTensorToTensorShapes:()=>A_,complexWithEvenIndex:()=>B_,complexWithOddIndex:()=>W_,computeConv2DInfo:()=>tp,computeConv3DInfo:()=>Hy,computeDefaultPad:()=>n1,computeDilation2DInfo:()=>fC,computeOptimalWindowSize:()=>w_,computeOutAndReduceShapes:()=>mN,computeOutShape:()=>y_,computePool2DInfo:()=>Gy,computePool3DInfo:()=>mC,convertConv2DDataFormat:()=>jy,decodeEinsumEquation:()=>q_,eitherStridesOrDilationsAreOne:()=>kr,expandShapeToKeepDim:()=>rp,exponent:()=>H_,exponents:()=>G_,fromStringArrayToUint8:()=>gP,fromUint8ToStringArray:()=>mP,getAxesPermutation:()=>xN,getBroadcastDims:()=>xA,getComplexWithIndex:()=>V_,getEinsumComputePath:()=>Z_,getEinsumPermutation:()=>X_,getFusedBiasGradient:()=>wh,getFusedDyActivation:()=>kh,getImageCenter:()=>I_,getInnerMostAxes:()=>AN,getPermuted:()=>T_,getRaggedRank:()=>v_,getReductionAxes:()=>o1,getReshaped:()=>S_,getReshapedPermuted:()=>C_,getRowPartitionTypesHelper:()=>b_,getSliceBeginCoords:()=>N_,getSliceSize:()=>E_,getSparseFillEmptyRowsIndicesDenseShapeMismatch:()=>eP,getSparseFillEmptyRowsNegativeIndexErrorMessage:()=>tP,getSparseFillEmptyRowsOutOfRangeIndexErrorMessage:()=>aP,getSparseReshapeEmptyTensorZeroOutputDimErrorMessage:()=>sP,getSparseReshapeInputOutputMismatchErrorMessage:()=>oP,getSparseReshapeInputOutputMultipleErrorMessage:()=>iP,getSparseReshapeMultipleNegativeOneOutputDimErrorMessage:()=>nP,getSparseReshapeNegativeOutputDimErrorMessage:()=>rP,getSparseSegmentReductionIndicesOutOfRangeErrorMessage:()=>pP,getSparseSegmentReductionNegativeSegmentIdsErrorMessage:()=>lP,getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage:()=>uP,getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage:()=>dP,getUndoAxesPermutation:()=>yN,isIdentityPermutation:()=>Y_,log:()=>ES,mergeRealAndImagArrays:()=>z_,prepareAndValidate:()=>l4,prepareSplitSize:()=>Q_,segment_util:()=>A4,shouldFuse:()=>Sh,slice_util:()=>St,splitRealAndImagArrays:()=>L_,stridesOrDilationsArePositive:()=>Bs,tupleValuesAreOne:()=>cd,upcastType:()=>ha,validateDefaultValueShape:()=>k_,validateInput:()=>V1,validateUpdateShape:()=>W1,warn:()=>zr});function x_(e,t){let a=e[0].length;e.forEach((r,s)=>{P(r.length===a,()=>`Error in concat${a}D: rank of tensors[${s}] must be the same as the rank of the rest (${a})`)}),P(t>=0&&t<a,()=>`Error in concat${a}D: axis must be between 0 and ${a-1}.`);let n=e[0];e.forEach((r,s)=>{for(let i=0;i<a;i++)P(i===t||r[i]===n[i],()=>`Error in concat${a}D: Shape of tensors[${s}] (${r}) does not match the shape of the rest (${n}) along the non-concatenated axis ${s}.`)})}function y_(e,t){let a=e[0].slice();for(let n=1;n<e.length;n++)a[t]+=e[n][t];return a}var Hn;(function(e){e[e.FIRST_DIM_SIZE=0]="FIRST_DIM_SIZE",e[e.VALUE_ROWIDS=1]="VALUE_ROWIDS",e[e.ROW_LENGTHS=2]="ROW_LENGTHS",e[e.ROW_SPLITS=3]="ROW_SPLITS",e[e.ROW_LIMITS=4]="ROW_LIMITS",e[e.ROW_STARTS=5]="ROW_STARTS"})(Hn||(Hn={}));function A_(e,t,a){let n=new Array;if(a==null&&t==null)return n;if(t==null)for(;n.length<e+a.length;)n.push(-1);else n=t.slice();if(a==null)return n;if(e+a.length!==n.length)throw new Error(`rt input.shape and shape=${t} are incompatible: rt input.rank = ${e+a.length}, but shape.rank = ${n.length}`);for(let r=1;r<a.length;++r){let s=a[r],i=n[n.length-a.length+r],o=n[i];if(s>=0)if(o>=0){if(o!==s)throw new Error(`rt input.shape and shape=${t} are incompatible: rt input.shape[${r+e}] = ${s} but shape[${r+e}] = ${o}`)}else n[i]=s}return n}function b_(e){let t={FIRST_DIM_SIZE:Hn.FIRST_DIM_SIZE,VALUE_ROWIDS:Hn.VALUE_ROWIDS,ROW_LENGTHS:Hn.ROW_LENGTHS,ROW_SPLITS:Hn.ROW_SPLITS,ROW_LIMITS:Hn.ROW_LIMITS,ROW_STARTS:Hn.ROW_STARTS},a=[];for(let n of e)if(n in t)a.push(t[n]);else break;return a}function v_(e){return e.length===0?0:e[0]===Hn.FIRST_DIM_SIZE?e.length-1:e.length}function k_(e,t){if(e==null||t==null)return;let a=e.length,n=t.length;if(a>=n)throw new Error(`defaultValue.shape=${e} and ragged tensor flatValues.shape=${t}, are incompatible: defaultValue.rank = ${a} must be less than ragged tensor input flatValues.rank = ${n})`);for(let r=0;r<Math.min(a,n-1);++r){let s=e[r],i=t[r+1];if(s>=0&&i>=0&&s!==1&&s!==i)throw new Error(`defaultValue.shape=${e}, and ragged tensor input flatValues.shape=${t} are incompatible: defaultValue.shape[${r-e.length}] = ${s} but ragged tensor input.flatValues.shape[${r-e.length}] = ${i}`)}}var a3=30;function w_(e){return e<=a3?e:Nc(e,Math.floor(Math.sqrt(e)))}function I_(e,t,a){let n=a*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[n,r]}function S_(e,t,a,n=!0){let r=[];if(n)r=r.concat(t.slice(0)),r.push(e[0]/a),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let s=t.length;for(let i=0;i<s;++i)r=r.concat([e[i+1]/t[i],t[i]]);r=r.concat(e.slice(s+1))}return r}function T_(e,t,a=!0){let n=[];if(a){n.push(t);for(let r=t+1;r<e;++r)r<=2*t?(n.push(r),n.push(r-(t+1))):n.push(r)}else{let r=[],s=[];for(let i=1;i<e;++i)i>=t*2+1||i%2===1?s.push(i):r.push(i);n.push(...r),n.push(0),n.push(...s)}return n}function C_(e,t,a,n=!0){let r=[];n?r.push(e[0]/a):r.push(e[0]*a);for(let s=1;s<e.length;++s)s<=t.length?n?r.push(t[s-1]*e[s]):r.push(e[s]/t[s-1]):r.push(e[s]);return r}function N_(e,t){let a=[0];for(let n=0;n<t;++n)a.push(e[n][0]);return a}function E_(e,t,a){let n=e.slice(0,1);for(let r=0;r<a;++r)n.push(e[r+1]-t[r][0]-t[r][1]);return n}var R_=1.7580993408473768,M_=1.0507009873554805,$_=.3275911,__=.254829592,P_=-.284496736,F_=1.421413741,O_=-1.453152027,D_=1.061405429;function z_(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let a=new Float32Array(e.length*2);for(let n=0;n<a.length;n+=2)a[n]=e[n/2],a[n+1]=t[n/2];return a}function L_(e){let t=new Float32Array(e.length/2),a=new Float32Array(e.length/2);for(let n=0;n<e.length;n+=2)t[n/2]=e[n],a[n/2]=e[n+1];return{real:t,imag:a}}function B_(e){let t=Math.ceil(e.length/4),a=new Float32Array(t),n=new Float32Array(t);for(let r=0;r<e.length;r+=4)a[Math.floor(r/4)]=e[r],n[Math.floor(r/4)]=e[r+1];return{real:a,imag:n}}function W_(e){let t=Math.floor(e.length/4),a=new Float32Array(t),n=new Float32Array(t);for(let r=2;r<e.length;r+=4)a[Math.floor(r/4)]=e[r],n[Math.floor(r/4)]=e[r+1];return{real:a,imag:n}}function V_(e,t){let a=e[t*2],n=e[t*2+1];return{real:a,imag:n}}function U_(e,t,a,n){e[n*2]=t,e[n*2+1]=a}function G_(e,t){let a=new Float32Array(e/2),n=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let s=(t?2:-2)*Math.PI*(r/e);a[r]=Math.cos(s),n[r]=Math.sin(s)}return{real:a,imag:n}}function H_(e,t,a){let n=(a?2:-2)*Math.PI*(e/t),r=Math.cos(n),s=Math.sin(n);return{real:r,imag:s}}var _m="->",j_=/->/g,j5=",",q5="...";function q_(e,t){e=e.replace(/\s/g,"");let a=(e.length-e.replace(j_,"").length)/_m.length;if(a<1)throw new Error("Equations without an arrow are not supported.");if(a>1)throw new Error(`Equation must contain exactly one arrow ("${_m}").`);let[n,r]=e.split(_m);P(n.indexOf(q5)===-1,()=>`The ellipsis notation ("${q5}") is not supported yet.`);let s=n.split(j5),i=s.length;if(t!==i)throw new Error(`Expected ${i} input tensors, received ${t}`);if(i>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let o=[];for(let d=0;d<r.length;++d){let h=r[d];if(!s.some(f=>f.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);o.indexOf(h)===-1&&o.push(h)}for(let d=0;d<n.length;++d){let h=n[d];o.indexOf(h)===-1&&h!==j5&&o.push(h)}let l=new Array(s.length);for(let d=0;d<i;++d){if(new Set(s[d].split("")).size!==s[d].length)throw new Error(`Found duplicate axes in input component ${s[d]}. Support for duplicate axes in input is not implemented yet.`);l[d]=[];for(let h=0;h<s[d].length;++h)l[d].push(o.indexOf(s[d][h]))}let u=o.length,p=r.length,c=[];for(let d=p;d<u;++d)c.push(d);return{allDims:o,summedDims:c,idDims:l}}function X_(e,t){let a=new Array(e);a.fill(-1);for(let r=0;r<t.length;++r)a[t[r]]=r;let n=[];for(let r=0;r<e;++r)a[r]===-1&&n.push(r);return a=a.filter(r=>r!==-1),{permutationIndices:a,expandDims:n}}function K_(e,t,a){let n=new Array(e);for(let r=0;r<a.length;++r){let s=a[r].shape;for(let i=0;i<t[r].length;++i)n[t[r][i]]===void 0?n[t[r][i]]=s[i]:P(n[t[r][i]]===s[i],()=>`Expected dimension ${n[t[r][i]]} at axis ${i} of input shaped ${JSON.stringify(s)}, but got dimension ${s[i]}`)}}function Z_(e,t){let a=e,n=[],r=0;e.length===0&&a.push(-1),r=e.length+1;for(let i=0;i<r;++i)n.push([]);let s=[];for(let i=0;i<a.length;++i){let o=a[i],l=J_(t,o);for(let u of l)s.indexOf(u)===-1&&(n[i].push(u),s.push(u))}return{path:a,steps:n}}function Y_(e){return e.every((t,a)=>t===a)}function J_(e,t){let a=[];for(let n=0;n<e.length;++n)(e[n].length===0||e[n].indexOf(t)!==-1||t===-1)&&a.push(n);return a}function Q_(e,t,a=0){let n=[];if(typeof t=="number")P(e.shape[a]%t===0,()=>"Number of splits must evenly divide the axis."),n=new Array(t).fill(e.shape[a]/t);else{let r=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);P(r<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[a]-i}P(e.shape[a]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),n=t}return n}function eP(e){return`Received SparseTensor with denseShape[0] = 0 but
|
|
indices.shape[0] = ${e}`}function tP(e,t){return`indices(${e}, 0) is invalid: ${t} < 0`}function aP(e,t,a){return`indices(${e}, 0) is invalid: ${t} >= ${a}`}function nP(e,t){return`only one output dimension may be -1, not both ${e} and ${t}`}function rP(e,t){return`size ${e} must be non-negative, not ${t}`}function sP(){return"reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero"}function iP(e,t){let a=yt(e),n=yt(t);return`Input to reshape is a SparseTensor with ${a}
|
|
dense values, but the requested shape requires a multiple of ${n}. inputShape=${e} outputShape= ${t}`}function oP(e,t){let a=yt(e),n=yt(t);return`Input to reshape is a tensor with ${a} dense values, but the requested shape has ${n}. inputShape=${e} outputShape=${t}`}function lP(){return"segment ids must be >= 0"}function uP(){return"segment ids are not increasing"}function dP(e,t){return`Segment id ${e} out of range [0, ${t}), possibly because segmentIds input is not sorted.`}function pP(e,t,a){return`Bad: indices[${e}] == ${t} out of range [0, ${a})`}var A4={};Ke(A4,{collectGatherOpShapeInfo:()=>fP,computeOutShape:()=>hP,segOpComputeOptimalWindowSize:()=>cP});function cP(e,t){let a=!1,n;for(e<=a3?(n=e,a=!0):n=Nc(e,Math.floor(Math.sqrt(e)));!a;)n>t||n===e?a=!0:n=Nc(e,n+1);return n}function hP(e,t,a){let n=[],r=e.length;for(let s=0;s<r;s++)s!==t?n.push(e[s]):n.push(a);return n}function fP(e,t,a,n){let r=t.shape.length,s=e.shape.length;if(n!==0&&(n<-r||n>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${n}`);if(n<0&&(n+=r),n>s)throw new Error(`batchDims (${n}) must be less than rank(x) (
|
|
${s}).`);if(a<n)throw new Error(`batchDims (${n}) must be less than or equal to axis (${a}).`);for(let c=0;c<n;++c)if(e.shape[c]!==t.shape[c])throw new Error(`x.shape[${c}]: ${e.shape[c]} should be equal to indices.shape[${c}]: ${t.shape[c]}.`);let i=e.shape[a],o=[],l=1,u=1,p=1;for(let c=0;c<n;++c)o.push(e.shape[c]),l*=e.shape[c];for(let c=n;c<a;c++)o.push(e.shape[c]),u*=e.shape[c];for(let c=n;c<r;c++)o.push(t.shape[c]);for(let c=a+1;c<s;c++)o.push(e.shape[c]),p*=e.shape[c];return{batchSize:l,sliceSize:p,outerSize:u,dimSize:i,outputShape:o}}function mP(e){try{return e.map(t=>Rc(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function gP(e){return e.map(t=>Xd(t))}var Tn={};Ke(Tn,{nonMaxSuppressionV3Impl:()=>Ub,nonMaxSuppressionV4Impl:()=>Gb,nonMaxSuppressionV5Impl:()=>Hb,whereImpl:()=>$b});_$();var xP=B();xP.registerFlag("KEEP_INTERMEDIATE_TENSORS",()=>!1,e=>{e&&console.warn("Keep intermediate tensors is ON. This will print the values of all intermediate tensors during model inference. Not all models support this mode. For details, check e2e/benchmarks/ model_config.js. This significantly impacts performance.")});var kn;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_QINT16=15]="DT_QINT16",e[e.DT_QUINT16=16]="DT_QUINT16",e[e.DT_UINT16=17]="DT_UINT16",e[e.DT_COMPLEX128=18]="DT_COMPLEX128",e[e.DT_HALF=19]="DT_HALF",e[e.DT_RESOURCE=20]="DT_RESOURCE",e[e.DT_VARIANT=21]="DT_VARIANT",e[e.DT_UINT32=22]="DT_UINT32",e[e.DT_UINT64=23]="DT_UINT64",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF",e[e.DT_QINT16_REF=115]="DT_QINT16_REF",e[e.DT_QUINT16_REF=116]="DT_QUINT16_REF",e[e.DT_UINT16_REF=117]="DT_UINT16_REF",e[e.DT_COMPLEX128_REF=118]="DT_COMPLEX128_REF",e[e.DT_HALF_REF=119]="DT_HALF_REF",e[e.DT_RESOURCE_REF=120]="DT_RESOURCE_REF",e[e.DT_VARIANT_REF=121]="DT_VARIANT_REF",e[e.DT_UINT32_REF=122]="DT_UINT32_REF",e[e.DT_UINT64_REF=123]="DT_UINT64_REF"})(kn||(kn={}));var X5;(function(e){let t;(function(a){a[a.LEGACY=0]="LEGACY",a[a.V1=1]="V1",a[a.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(X5||(X5={}));var n3={};function yP(e,t){let a={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};n3[e]=a}function b4(e){return n3[e]}function AP(e){delete n3[e]}function w(e,t,a,n,r){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return ba(t.inputNames[s.inputIndexStart],a,n,r);if(s.type==="tensors")return t.inputNames.slice(o,l).map(c=>ba(c,a,n,r));let u=ba(t.inputNames.slice(o)[0],a,n,r),p=u.dataSync();return s.type==="number"?p[0]:v.toNestedArray(u.shape,p)}let i=t.attrParams[e];return i&&i.value}function ba(e,t,a,n){let[r,s]=ja(e);if(n!=null){let o=n.getHashTableHandleByName(r);if(o!=null)return o}let i=a.currentContextIds.find(o=>!!t[Pc(r,o)]);return i!==void 0?t[Pc(r,i)][s]:void 0}function bP(e,t,a){return t[Pc(e,a.currentContextId)]}function mr(e,t){let[a,n,r]=ja(e);return[Pc(a,t&&t.currentContextId),n,r]}function Pc(e,t){return t?`${e}-${t}`:e}function ja(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let a=t[0],n=t.length===3?t[1]:void 0,r=Number(t[t.length-1]);return[a,r,n]}function Ac(e,t,a){let n=w("pad",e,t,a);if(n==="explicit"){n=w("explicitPaddings",e,t,a);let r=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)r[s][0]=n[s*2],r[s][1]=n[s*2+1];return r}return n}function gr(e){return e.kept?e:ka(e)}var v4={};Ke(v4,{json:()=>vP});var vP=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],k4={};Ke(k4,{json:()=>kP});var kP=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],w4={};Ke(w4,{json:()=>wP});var wP=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcatV2",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListLength",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}]},{tfOpName:"TensorListResize",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"size",type:"number"}]}],I4={};Ke(I4,{json:()=>IP});var IP=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number",defaultValue:.2}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],S4={};Ke(S4,{json:()=>SP});var SP=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomStandardNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],T4={};Ke(T4,{json:()=>TP});var TP=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],C4={};Ke(C4,{json:()=>CP});var CP=[{tfOpName:"LowerBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"UpperBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],N4={};Ke(N4,{json:()=>NP});var NP=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],E4={};Ke(E4,{json:()=>EP});var EP=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"InitializeTable",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}]},{tfOpName:"InitializeTableV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}]}],R4={};Ke(R4,{json:()=>RP});var RP=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]},{tfOpName:"ImageProjectiveTransformV3",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"transforms",type:"tensor"},{start:2,name:"outputShape",type:"number[]"},{start:3,name:"fillValue",type:"number"}],attrs:[{tfName:"interpolation",name:"interpolation",type:"string"},{tfName:"fill_mode",name:"fillMode",type:"string"}]}],M4={};Ke(M4,{json:()=>MP});var MP=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],$4={};Ke($4,{json:()=>$P});var $P=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],_4={};Ke(_4,{json:()=>_P});var _P=[{tfOpName:"EuclideanNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",defaultValue:!1}]},{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],P4={};Ke(P4,{json:()=>PP});var PP=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumprod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],F4={};Ke(F4,{json:()=>FP});var FP=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],O4={};Ke(O4,{json:()=>OP});var OP=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],D4={};Ke(D4,{json:()=>DP});var DP=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],z4={};Ke(z4,{json:()=>zP});var zP=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],L4={};Ke(L4,{json:()=>LP});var LP=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}],K5=class{constructor(){let e=[v4,k4,w4,I4,S4,T4,C4,N4,E4,R4,M4,$4,_4,P4,F4,O4,D4,z4,L4],t=[].concat(...e.map(a=>a.json));this.opMappers=t.reduce((a,n)=>(a[n.tfOpName]=n,a),{})}static get Instance(){return this._instance||(this._instance=new this)}transformGraph(e,t={}){let a=e.node,n=[],r=[],s=[],i=a.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?n.push(f[m.name]):m.op==="Const"?r.push(f[m.name]):(m.input==null||m.input.length===0)&&s.push(f[m.name]),f),{}),o=[],l=[],u={},p={};t!=null&&(u=this.mapSignatureEntries(t.inputs),p=this.mapSignatureEntries(t.outputs));let c=Object.keys(i);c.forEach(f=>{let m=i[f];m.inputNames.forEach((g,x)=>{let[y,,A]=mr(g),b=i[y];if(b.outputs!=null){let k=b.outputs.indexOf(A);if(k!==-1){let S=`${y}:${k}`;m.inputNames[x]=S}}m.inputs.push(b),b.children.push(m)})}),Object.keys(p).length===0?c.forEach(f=>{let m=i[f];m.children.length===0&&l.push(m)}):Object.keys(p).forEach(f=>{let[m]=mr(f),g=i[m];g!=null&&(g.signatureKey=p[f],l.push(g))}),Object.keys(u).length>0?Object.keys(u).forEach(f=>{let[m]=mr(f),g=i[m];g&&(g.signatureKey=u[f],o.push(g))}):o=n;let d={};e.library!=null&&e.library.function!=null&&(d=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let h={nodes:i,inputs:o,outputs:l,weights:r,placeholders:n,signature:t,functions:d};return s.length>0&&(h.initNodes=s),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,a)=>(t[e[a].name]=a,t),{})}mapNode(e){let t=b4(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let a={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(n=>n.startsWith("^")?n.slice(1):n),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(a.inputParams=t.inputs.reduce((n,r)=>(n[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},n),{})),t.attrs!=null&&(a.attrParams=t.attrs.reduce((n,r)=>{let s=r.type,i;switch(r.type){case"string":i=n2(e.attr,r.tfName,r.defaultValue),i===void 0&&r.tfDeprecatedName&&(i=n2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":i=d2(e.attr,r.tfName,r.defaultValue),i===void 0&&r.tfDeprecatedName&&(i=d2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":i=s2(e.attr,r.tfName,r.defaultValue||0),i===void 0&&r.tfDeprecatedName&&(i=s2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":i=u2(e.attr,r.tfName,r.defaultValue),i===void 0&&r.tfDeprecatedName&&(i=u2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":i=r2(e.attr,r.tfName,r.defaultValue),i===void 0&&r.tfDeprecatedName&&(i=r2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":i=c2(e.attr,r.tfName,r.defaultValue),i===void 0&&r.tfDeprecatedName&&(i=c2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":i=l2(e.attr,r.tfName,r.defaultValue),i===void 0&&r.tfDeprecatedName&&(i=l2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":i=p2(e.attr,r.tfName,r.defaultValue),i===void 0&&r.tfDeprecatedName&&(i=p2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":i=i2(e.attr,r.tfName,r.defaultValue),i===void 0&&r.tfDeprecatedName&&(i=i2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":i=o2(e.attr,r.tfName,r.defaultValue),i===void 0&&r.tfDeprecatedName&&(i=o2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":i=Z5(e.attr,r.tfName,r.defaultValue),i===void 0&&r.tfDeprecatedName&&(i=Z5(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return n[r.name]={value:i,type:s},n},{})),a}mapFunction(e){let t=e.nodeDef,a=[],n=[],r={};t!=null&&(r=t.reduce((u,p)=>(u[p.name]=this.mapNode(p),p.op==="Const"&&n.push(u[p.name]),u),{}));let s=[],i=[];e.signature.inputArg.forEach(u=>{let[p]=mr(u.name),c={name:p,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:r3(u.type),type:"dtype"}},children:[]};c.signatureKey=u.name,s.push(c),r[p]=c}),Object.keys(r).forEach(u=>{let p=r[u];p.inputNames.forEach((c,d)=>{let[h,,f]=mr(c),m=r[h];if(m.outputs!=null){let g=m.outputs.indexOf(f);if(g!==-1){let x=`${h}:${g}`;p.inputNames[d]=x}}p.inputs.push(m),m.children.push(p)})});let o=e.ret;e.signature.outputArg.forEach(u=>{let[p,c]=mr(o[u.name]),d=r[p];d!=null&&(d.defaultOutput=c,i.push(d))});let l=this.mapArgsToSignature(e);return{nodes:r,inputs:s,outputs:i,weights:n,placeholders:a,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,a)=>(t[a.name]=this.mapArgToTensorInfo(a),t),{}),outputs:e.signature.outputArg.reduce((t,a)=>(t[a.name]=this.mapArgToTensorInfo(a,e.ret),t),{})}}mapArgToTensorInfo(e,t){let a=e.name;return t!=null&&(a=t[a]),{name:a,dtype:e.type}}};function BP(e){let t=B().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function B4(e,t){let a=Array.isArray(e)?String.fromCharCode.apply(null,e):BP(e);return t?a:a.toLowerCase()}function n2(e,t,a,n=!1){let r=e[t];return r!=null?B4(r.s,n):a}function r2(e,t,a){let n=e[t];return n?n.b:a}function s2(e,t,a){let n=e[t]||{},r=n.i!=null?n.i:n.f!=null?n.f:a;return typeof r=="number"?r:parseInt(r,10)}function r3(e){switch(typeof e=="string"&&(e=kn[e]),e){case kn.DT_FLOAT:case kn.DT_HALF:return"float32";case kn.DT_INT32:case kn.DT_INT64:case kn.DT_INT8:case kn.DT_UINT8:return"int32";case kn.DT_BOOL:return"bool";case kn.DT_DOUBLE:return"float32";case kn.DT_STRING:return"string";default:return null}}function Z5(e,t,a){let n=e[t];return n&&n.func?n.func.name:a}function i2(e,t,a){let n=e[t];return n&&n.type?r3(n.type):a}function o2(e,t,a){let n=e[t];return n&&n.list&&n.list.type?n.list.type.map(r=>r3(r)):a}function W4(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function l2(e,t,a){let n=e[t];return n&&n.shape?W4(n.shape):a}function u2(e,t,a){let n=e[t];return n?((n.list.f&&n.list.f.length?n.list.f:n.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):a}function d2(e,t,a,n=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(s=>B4(s,n)):a}function p2(e,t,a){let n=e[t];return n&&n.list&&n.list.shape?n.list.shape.map(r=>W4(r)):a}function c2(e,t,a){let n=e[t];return n&&n.list&&n.list.b?n.list.b:a}var WP=class{constructor(e,t,a){this.node=e,this.tensorMap=t,this.context=a,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(n=>this.getInput(n)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((n,r)=>(n[r]=this.getAttr(r),n),{}))}getInput(e){return ba(e,this.tensorMap,this.context)}getAttr(e,t){let a=this.node.rawAttrs[e];if(a.tensor!=null)return ba(e,this.tensorMap,this.context);if(a.i!=null||a.f!=null)return s2(this.node.rawAttrs,e,t);if(a.s!=null)return n2(this.node.rawAttrs,e,t);if(a.b!=null)return r2(this.node.rawAttrs,e,t);if(a.shape!=null)return l2(this.node.rawAttrs,e,t);if(a.type!=null)return i2(this.node.rawAttrs,e,t);if(a.list!=null){if(a.list.i!=null||a.list.f!=null)return u2(this.node.rawAttrs,e,t);if(a.list.s!=null)return d2(this.node.rawAttrs,e,t);if(a.list.shape!=null)return p2(this.node.rawAttrs,e,t);if(a.list.b!=null)return c2(this.node.rawAttrs,e,t);if(a.list.type!=null)return o2(this.node.rawAttrs,e,t)}return t}},Zt={};Ke(Zt,{OP_SCOPE_SUFFIX:()=>K2,abs:()=>qa,acos:()=>Py,acosh:()=>Fy,add:()=>be,addN:()=>ch,all:()=>Oy,any:()=>Dy,argMax:()=>ar,argMin:()=>zy,asin:()=>Ly,asinh:()=>By,atan:()=>Wy,atan2:()=>Vy,atanh:()=>Uy,avgPool:()=>r1,avgPool3d:()=>qy,basicLSTMCell:()=>Xy,batchNorm:()=>ap,batchNorm2d:()=>Ky,batchNorm3d:()=>Zy,batchNorm4d:()=>Yy,batchToSpaceND:()=>s1,bincount:()=>i1,booleanMaskAsync:()=>_b,broadcastArgs:()=>Jy,broadcastTo:()=>rl,buffer:()=>_e,cast:()=>qe,ceil:()=>Qy,clipByValue:()=>eA,clone:()=>ka,complex:()=>br,concat:()=>rt,concat1d:()=>tA,concat2d:()=>ru,concat3d:()=>aA,concat4d:()=>nA,conv1d:()=>rA,conv2d:()=>np,conv2dTranspose:()=>iA,conv3d:()=>oA,conv3dTranspose:()=>lA,cos:()=>uA,cosh:()=>dA,cosineWindow:()=>vh,cumprod:()=>pA,cumsum:()=>cA,denseBincount:()=>hA,depthToSpace:()=>fA,depthwiseConv2d:()=>hh,diag:()=>mA,dilation2d:()=>gA,div:()=>me,divNoNan:()=>yA,dot:()=>AA,dropout:()=>Lb,einsum:()=>bA,elu:()=>u1,enclosingPowerOfTwo:()=>U1,equal:()=>l1,erf:()=>vA,euclideanNorm:()=>IA,exp:()=>Yr,expandDims:()=>Gt,expm1:()=>SA,eye:()=>p1,fft:()=>Ah,fill:()=>nr,floor:()=>c1,floorDiv:()=>ep,fused:()=>G1,gather:()=>h1,gatherND:()=>zb,greater:()=>ip,greaterEqual:()=>f1,ifft:()=>md,imag:()=>op,image:()=>ge,inTopKAsync:()=>Bb,irfft:()=>F1,isFinite:()=>TA,isInf:()=>CA,isNaN:()=>NA,leakyRelu:()=>m1,less:()=>EA,lessEqual:()=>fh,linalg:()=>Xb,linspace:()=>RA,localResponseNormalization:()=>MA,log:()=>ul,log1p:()=>g1,logSigmoid:()=>_A,logSoftmax:()=>PA,logSumExp:()=>y1,logicalAnd:()=>hd,logicalNot:()=>A1,logicalOr:()=>b1,logicalXor:()=>FA,losses:()=>Kb,lowerBound:()=>OA,matMul:()=>it,max:()=>ca,maxPool:()=>v1,maxPool3d:()=>DA,maxPoolWithArgmax:()=>zA,maximum:()=>k1,mean:()=>fd,meshgrid:()=>LA,min:()=>Zr,minimum:()=>w1,mirrorPad:()=>BA,mod:()=>su,moments:()=>WA,movingAverage:()=>Pb,mul:()=>ae,multiRNNCell:()=>VA,multinomial:()=>UA,neg:()=>Xn,norm:()=>sp,notEqual:()=>I1,oneHot:()=>_c,ones:()=>Wr,onesLike:()=>GA,op:()=>D,outerProduct:()=>HA,pad:()=>rr,pad1d:()=>jA,pad2d:()=>qA,pad3d:()=>XA,pad4d:()=>KA,pool:()=>ZA,pow:()=>ll,prelu:()=>T1,print:()=>Q2,prod:()=>YA,raggedGather:()=>JA,raggedRange:()=>QA,raggedTensorToTensor:()=>eb,rand:()=>tb,randomGamma:()=>sb,randomNormal:()=>M1,randomStandardNormal:()=>ib,randomUniform:()=>$1,range:()=>dl,real:()=>pl,reciprocal:()=>ob,relu:()=>lp,relu6:()=>_1,reshape:()=>J,reverse:()=>Jr,reverse1d:()=>lb,reverse2d:()=>ub,reverse3d:()=>db,reverse4d:()=>pb,rfft:()=>bh,round:()=>P1,rsqrt:()=>cb,scalar:()=>ze,scatterND:()=>Ob,searchSorted:()=>gh,selu:()=>hb,separableConv2d:()=>fb,setdiff1dAsync:()=>mb,sigmoid:()=>Da,sign:()=>gb,signal:()=>qb,sin:()=>xb,sinh:()=>yb,slice:()=>De,slice1d:()=>Ab,slice2d:()=>bb,slice3d:()=>up,slice4d:()=>xh,softmax:()=>yh,softplus:()=>x1,spaceToBatchND:()=>S1,sparse:()=>Zb,sparseToDense:()=>Db,spectral:()=>jb,split:()=>wa,sqrt:()=>Jn,square:()=>In,squaredDifference:()=>O1,squeeze:()=>Oe,stack:()=>oa,step:()=>D1,stridedSlice:()=>vb,string:()=>Yb,sub:()=>he,sum:()=>nt,tan:()=>kb,tanh:()=>$c,tensor:()=>Ve,tensor1d:()=>Ht,tensor2d:()=>Kn,tensor3d:()=>z1,tensor4d:()=>wb,tensor5d:()=>Ib,tensor6d:()=>Sb,tile:()=>Gr,topk:()=>Tb,transpose:()=>Vs,truncatedNormal:()=>Cb,unique:()=>Nb,unsortedSegmentSum:()=>Eb,unstack:()=>Ta,upperBound:()=>Rb,variable:()=>Mb,where:()=>Ws,whereAsync:()=>L1,zeros:()=>fn,zerosLike:()=>Ka});var VP=(e,t,a,n=Zt)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[n.add(w("a",e,t,a),w("b",e,t,a))];case"AddN":return[n.addN(w("tensors",e,t,a))];case"FloorMod":case"Mod":return[n.mod(w("a",e,t,a),w("b",e,t,a))];case"Mul":return[n.mul(w("a",e,t,a),w("b",e,t,a))];case"RealDiv":case"Div":return[n.div(w("a",e,t,a),w("b",e,t,a))];case"DivNoNan":return[n.divNoNan(w("a",e,t,a),w("b",e,t,a))];case"FloorDiv":return[n.floorDiv(w("a",e,t,a),w("b",e,t,a))];case"Sub":return[n.sub(w("a",e,t,a),w("b",e,t,a))];case"Minimum":return[n.minimum(w("a",e,t,a),w("b",e,t,a))];case"Maximum":return[n.maximum(w("a",e,t,a),w("b",e,t,a))];case"Pow":return[n.pow(w("a",e,t,a),w("b",e,t,a))];case"SquaredDifference":return[n.squaredDifference(w("a",e,t,a),w("b",e,t,a))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},UP=(e,t,a,n=Zt)=>{switch(e.op){case"Abs":case"ComplexAbs":return[n.abs(w("x",e,t,a))];case"Acos":return[n.acos(w("x",e,t,a))];case"Acosh":return[n.acosh(w("x",e,t,a))];case"Asin":return[n.asin(w("x",e,t,a))];case"Asinh":return[n.asinh(w("x",e,t,a))];case"Atan":return[n.atan(w("x",e,t,a))];case"Atan2":return[n.atan2(w("x",e,t,a),w("y",e,t,a))];case"Atanh":return[n.atanh(w("x",e,t,a))];case"Ceil":return[n.ceil(w("x",e,t,a))];case"Complex":return[n.complex(w("real",e,t,a),w("imag",e,t,a))];case"Cos":return[n.cos(w("x",e,t,a))];case"Cosh":return[n.cosh(w("x",e,t,a))];case"Elu":return[n.elu(w("x",e,t,a))];case"Erf":return[n.erf(w("x",e,t,a))];case"Exp":return[n.exp(w("x",e,t,a))];case"Expm1":return[n.expm1(w("x",e,t,a))];case"Floor":return[n.floor(w("x",e,t,a))];case"Log":return[n.log(w("x",e,t,a))];case"Log1p":return[n.log1p(w("x",e,t,a))];case"Imag":return[n.imag(w("x",e,t,a))];case"Neg":return[n.neg(w("x",e,t,a))];case"Reciprocal":return[n.reciprocal(w("x",e,t,a))];case"Real":return[n.real(w("x",e,t,a))];case"Relu":return[n.relu(w("x",e,t,a))];case"Round":return[n.round(w("x",e,t,a))];case"Selu":return[n.selu(w("x",e,t,a))];case"Sigmoid":return[n.sigmoid(w("x",e,t,a))];case"Sin":return[n.sin(w("x",e,t,a))];case"Sign":return[n.sign(w("x",e,t,a))];case"Sinh":return[n.sinh(w("x",e,t,a))];case"Softplus":return[n.softplus(w("x",e,t,a))];case"Sqrt":return[n.sqrt(w("x",e,t,a))];case"Square":return[n.square(w("x",e,t,a))];case"Tanh":return[n.tanh(w("x",e,t,a))];case"Tan":return[n.tan(w("x",e,t,a))];case"ClipByValue":return[n.clipByValue(w("x",e,t,a),w("clipValueMin",e,t,a),w("clipValueMax",e,t,a))];case"Relu6":return[n.relu6(w("x",e,t,a))];case"Rsqrt":return[n.rsqrt(ba(e.inputNames[0],t,a))];case"Prod":return[n.prod(w("x",e,t,a),w("axes",e,t,a))];case"LeakyRelu":return[n.leakyRelu(w("x",e,t,a),w("alpha",e,t,a))];case"Prelu":return[n.prelu(w("x",e,t,a),w("alpha",e,t,a))];case"IsNan":return[n.isNaN(ba(e.inputNames[0],t,a))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function wn(e,t,a=""){if(!(typeof e=="number"||typeof t=="number")){v.assert(e.length===t.length,()=>a+` Shapes ${e} and ${t} must match`);for(let n=0;n<e.length;n++){let r=e[n],s=t[n];v.assert(r<0||s<0||r===s,()=>a+` Shapes ${e} and ${t} must match`)}}}function Y5(e){return!(typeof e=="number"||e.some(t=>t<0))}function Vu(e,t,a){let n=h2(e,a),r=!Y5(n);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${n}`);if(r&&t.forEach(s=>{n=h2(s.shape,n)}),!Y5(n))throw new Error(`Non-fully-defined elementShape: ${n}`);return n}function h2(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let a=[];for(let n=0;n<e.length;++n){let r=e[n],s=t[n];if(r>=0&&s>=0&&r!==s)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);a[n]=r>=0?r:s}return a}var GP=class{constructor(e,t,a,n,r,s,i){this.name=e,this.dtype=t,this.maxSize=a,this.elementShape=n,this.identicalElementShapes=r,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=ze(0),On(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let a=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
|
|
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),wn(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),a.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(a.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);a.tensor=t,On(t),a.written=!0,this.tensors[e]=a}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((a,n)=>this.write(a,t[n]))}gather(e,t){if(t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let n=0;n<this.size();n++)e.push(n)}if(e.length===0)return Ve([],[0].concat(this.elementShape));let a=this.readMany(e);return wn(this.elementShape,a[0].shape,"TensorArray shape mismatch: "),oa(a,0)}concat(e){if(e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return Ve([],[0].concat(this.elementShape));let t=[];for(let n=0;n<this.size();n++)t.push(n);let a=this.readMany(t);return wn(this.elementShape,a[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${a[0].shape})`),rt(a,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let a=Math.max(...e);if(!this.dynamicSize&&a>=this.maxSize)throw new Error(`Max index must be < array size (${a} vs. ${this.maxSize})`);this.writeMany(e,Ta(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let a=0,n=e.map(o=>(a+=o,a));if(a!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${a}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=a===0?0:t.size/a,s=[];Fe(()=>{t=J(t,[1,a,r]);for(let o=0;o<e.length;++o){let l=[0,o===0?0:n[o-1],0],u=[1,e[o],r];s[o]=J(De(t,l,u),this.elementShape)}return s});let i=[];for(let o=0;o<e.length;o++)i[o]=o;this.writeMany(i,s)}},hl=class{constructor(e,t,a,n=-1){this.tensors=e,this.elementShape=t,this.elementDtype=a,e!=null&&e.forEach(r=>{if(a!==r.dtype)throw new Error(`Invalid data types; op elements ${a}, but list elements ${r.dtype}`);wn(t,r.shape,"TensorList shape mismatch: "),On(r)}),this.idTensor=ze(0),this.maxNumElements=n,On(this.idTensor)}get id(){return this.idTensor.id}copy(){return new hl([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,a=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(a!==-1&&this.tensors.length!==a)throw new Error(`Operation expected a list with ${a} elements but got a list with ${this.tensors.length} elements.`);wn(e,this.elementShape,"TensorList shape mismatch: ");let n=Vu(this.elementShape,this.tensors,e);return Fe(()=>{let r=this.tensors.map(s=>J(s,n));return oa(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let a=Vu(this.elementShape,this.tensors,e),n=this.tensors.pop();return n.kept=!1,wn(n.shape,e,"TensorList shape mismatch: "),J(n,a)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(wn(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");On(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);let t=new hl([],this.elementShape,this.elementDtype,this.maxNumElements);t.tensors.length=e;for(let a=0;a<Math.min(this.tensors.length,e);++a)t.tensors[a]=this.tensors[a];return t}getItem(e,t,a){if(a!==this.elementDtype)throw new Error(`Invalid data types; op elements ${a}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);wn(this.tensors[e].shape,t,"TensorList shape mismatch: ");let n=Vu(this.elementShape,this.tensors,t);return J(this.tensors[e],n)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);wn(this.elementShape,t.shape,"TensorList shape mismatch: "),On(t),this.tensors[e]!=null&&(this.tensors[e].kept=!1),this.tensors[e]=t}gather(e,t,a){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);wn(this.elementShape,a,"TensorList shape mismatch: "),e=e.slice(0,this.size());let n=Vu(this.elementShape,this.tensors,a);return e.length===0?Ve([],[0].concat(n)):Fe(()=>{let r=e.map(s=>J(this.tensors[s],n));return oa(r,0)})}concat(e,t){if(e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);wn(this.elementShape,t,"TensorList shape mismatch: ");let a=Vu(this.elementShape,this.tensors,t);return this.size()===0?Ve([],[0].concat(a)):Fe(()=>{let n=this.tensors.map(r=>J(r,a));return rt(n,0)})}};function HP(e,t,a){let n=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==a)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${a}`);let r=e.shape.slice(1);wn(r,t,"TensorList shape mismatch: ");let s=Ta(e);return new hl(s,t,n)}function jP(e,t,a,n){return new hl([],e,t,n)}function qP(e,t,a,n){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(n!=null&&n!==-1&&r>=n)throw new Error(`Max index must be < array size (${r} vs. ${n})`);let s=new hl([],a,e.dtype,n),i=Ta(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function XP(e,t,a){let n=0,r=t.map(p=>(n+=p,n));if(n!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${e.shape}`);let s=e.shape.slice(1),i=h2(s,a),o=n===0?0:e.size/n,l=Fe(()=>{let p=[];e=J(e,[1,n,o]);for(let c=0;c<t.length;++c){let d=[0,c===0?0:r[c-1],0],h=[1,t[c],o];p[c]=J(De(e,d,h),i)}return e.dispose(),p}),u=new hl([],a,e.dtype,t.length);for(let p=0;p<l.length;p++)u.setItem(p,l[p]);return u}var KP=async(e,t,a)=>{switch(e.op){case"If":case"StatelessIf":{let n=w("thenBranch",e,t,a),r=w("elseBranch",e,t,a),s=w("cond",e,t,a),i=w("args",e,t,a);return(await s.data())[0]?a.functionMap[n].executeFunctionAsync(i,a.tensorArrayMap,a.tensorListMap):a.functionMap[r].executeFunctionAsync(i,a.tensorArrayMap,a.tensorListMap)}case"While":case"StatelessWhile":{let n=w("body",e,t,a),r=w("cond",e,t,a),s=w("args",e,t,a),i=await a.functionMap[r].executeFunctionAsync(s,a.tensorArrayMap,a.tensorListMap),o=s.map(p=>p.id),l=await i[0].data();i.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&p.dispose()});let u=s;for(;l[0];){let p=u;u=await a.functionMap[n].executeFunctionAsync(u,a.tensorArrayMap,a.tensorListMap);let c=u.map(h=>h.id);p.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&c.indexOf(h.id)===-1&&h.dispose()});let d=await a.functionMap[r].executeFunctionAsync(u,a.tensorArrayMap,a.tensorListMap);l=await d[0].data(),d.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&c.indexOf(h.id)===-1&&h.dispose()})}return u}case"LoopCond":{let n=w("pred",e,t,a);return[gr(n)]}case"Switch":{let n=w("pred",e,t,a),r=w("data",e,t,a);return r.kept||(r=gr(r)),(await n.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let n=e.inputNames.find(r=>ba(r,t,a)!==void 0);if(n){let r=ba(n,t,a);return[gr(r)]}return}case"Enter":{let n=w("frameName",e,t,a),r=w("tensor",e,t,a);return a.enterFrame(n),[gr(r)]}case"Exit":{let n=w("tensor",e,t,a);return a.exitFrame(),[gr(n)]}case"NextIteration":{let n=w("tensor",e,t,a);return a.nextIteration(),[gr(n)]}case"TensorArrayV3":{let n=w("size",e,t,a),r=w("dtype",e,t,a),s=w("elementShape",e,t,a),i=w("dynamicSize",e,t,a),o=w("clearAfterRead",e,t,a),l=w("identicalElementShapes",e,t,a),u=w("name",e,t,a),p=new GP(u,r,n,s,l,i,o);return a.addTensorArray(p),[p.idTensor,ze(1)]}case"TensorArrayWriteV3":{let n=w("tensorArrayId",e,t,a),r=w("index",e,t,a),s=w("tensor",e,t,a),i=a.getTensorArray(n.id);return i.write(r,s),[i.idTensor]}case"TensorArrayReadV3":{let n=w("tensorArrayId",e,t,a),r=w("index",e,t,a);return[a.getTensorArray(n.id).read(r)]}case"TensorArrayGatherV3":{let n=w("tensorArrayId",e,t,a),r=w("indices",e,t,a),s=w("dtype",e,t,a);return[a.getTensorArray(n.id).gather(r,s)]}case"TensorArrayScatterV3":{let n=w("tensorArrayId",e,t,a),r=w("indices",e,t,a),s=w("tensor",e,t,a),i=a.getTensorArray(n.id);return i.scatter(r,s),[i.idTensor]}case"TensorArrayConcatV3":{let n=w("tensorArrayId",e,t,a),r=a.getTensorArray(n.id),s=w("dtype",e,t,a);return[r.concat(s)]}case"TensorArraySplitV3":{let n=w("tensorArrayId",e,t,a),r=w("tensor",e,t,a),s=w("lengths",e,t,a),i=a.getTensorArray(n.id);return i.split(s,r),[i.idTensor]}case"TensorArraySizeV3":{let n=w("tensorArrayId",e,t,a),r=a.getTensorArray(n.id);return[ze(r.size(),"int32")]}case"TensorArrayCloseV3":{let n=w("tensorArrayId",e,t,a),r=a.getTensorArray(n.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let n=w("tensorListId",e,t,a),r=w("index",e,t,a),s=w("tensor",e,t,a),i=a.getTensorList(n.id);return i.setItem(r,s),[i.idTensor]}case"TensorListGetItem":{let n=w("tensorListId",e,t,a),r=w("index",e,t,a),s=w("elementShape",e,t,a),i=w("elementDType",e,t,a);return[a.getTensorList(n.id).getItem(r,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let n=w("indices",e,t,a),r=w("tensor",e,t,a),s=w("elementShape",e,t,a),i=w("numElements",e,t,a),o=qP(r,n,s,i);return a.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let n=w("elementShape",e,t,a),r=w("elementDType",e,t,a),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=w(s,e,t,a),o=e.op==="TensorListReserve"?-1:i,l=jP(n,r,i,o);return a.addTensorList(l),[l.idTensor]}case"TensorListGather":{let n=w("tensorListId",e,t,a),r=w("indices",e,t,a),s=w("elementShape",e,t,a),i=w("elementDType",e,t,a);return[a.getTensorList(n.id).gather(r,i,s)]}case"TensorListStack":{let n=w("tensorListId",e,t,a),r=w("elementShape",e,t,a),s=w("elementDType",e,t,a),i=w("numElements",e,t,a);return[a.getTensorList(n.id).stack(r,s,i)]}case"TensorListFromTensor":{let n=w("tensor",e,t,a),r=w("elementShape",e,t,a),s=w("elementDType",e,t,a),i=HP(n,r,s);return a.addTensorList(i),[i.idTensor]}case"TensorListConcat":case"TensorListConcatV2":{let n=w("tensorListId",e,t,a),r=a.getTensorList(n.id),s=w("dtype",e,t,a),i=w("elementShape",e,t,a);return[r.concat(s,i)]}case"TensorListPushBack":{let n=w("tensorListId",e,t,a),r=w("tensor",e,t,a),s=a.getTensorList(n.id);return s.pushBack(r),[s.idTensor]}case"TensorListPopBack":{let n=w("tensorListId",e,t,a),r=w("elementShape",e,t,a),s=w("elementDType",e,t,a);return[a.getTensorList(n.id).popBack(r,s)]}case"TensorListSplit":{let n=w("tensor",e,t,a),r=w("elementShape",e,t,a),s=w("lengths",e,t,a),i=XP(n,s,r);return a.addTensorList(i),[i.idTensor]}case"TensorListLength":{let n=w("tensorListId",e,t,a),r=a.getTensorList(n.id);return[ze(r.size(),"int32")]}case"TensorListResize":{let n=w("tensorListId",e,t,a),r=w("size",e,t,a),s=a.getTensorList(n.id).resize(r);return a.addTensorList(s),[s.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function J5(e,t,a){let[n,r]=w("fusedOps",e,t,a),s=n==="biasadd",i=!s,o=r==="prelu",l=n==="fusedbatchnorm",u=w("numArgs",e,t,a);if(s){if(o&&u!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&s&&u!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let p=w("strides",e,t,a),c=Ac(e,t,a),d=w("dataFormat",e,t,a).toUpperCase(),h=w("dilations",e,t,a),[f,m]=w("args",e,t,a);i&&(m=f,f=void 0);let g=w("leakyreluAlpha",e,t,a);return{stride:p,pad:c,dataFormat:d,dilations:h,biasArg:f,preluArg:m,activationFunc:r,leakyreluAlpha:g}}var ZP=(e,t,a,n=Zt)=>{switch(e.op){case"Conv1D":{let r=w("stride",e,t,a),s=w("pad",e,t,a),i=w("dataFormat",e,t,a).toUpperCase(),o=w("dilation",e,t,a);return[n.conv1d(w("x",e,t,a),w("filter",e,t,a),r,s,i,o)]}case"Conv2D":{let r=w("strides",e,t,a),s=Ac(e,t,a),i=w("dataFormat",e,t,a).toUpperCase(),o=w("dilations",e,t,a);return[n.conv2d(w("x",e,t,a),w("filter",e,t,a),[r[1],r[2]],s,i,[o[1],o[2]])]}case"_FusedConv2D":{let{stride:r,pad:s,dataFormat:i,dilations:o,biasArg:l,preluArg:u,activationFunc:p,leakyreluAlpha:c}=J5(e,t,a);return[n.fused.conv2d({x:w("x",e,t,a),filter:w("filter",e,t,a),strides:[r[1],r[2]],pad:s,dataFormat:i,dilations:[o[1],o[2]],bias:l,activation:p,preluActivationWeights:u,leakyreluAlpha:c})]}case"FusedDepthwiseConv2dNative":{let{stride:r,pad:s,dataFormat:i,dilations:o,biasArg:l,preluArg:u,activationFunc:p,leakyreluAlpha:c}=J5(e,t,a);return[n.fused.depthwiseConv2d({x:w("x",e,t,a),filter:w("filter",e,t,a),strides:[r[1],r[2]],pad:s,dataFormat:i,dilations:[o[1],o[2]],bias:l,activation:p,preluActivationWeights:u,leakyreluAlpha:c})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let r=w("outputShape",e,t,a),s=w("strides",e,t,a),i=Ac(e,t,a);return[n.conv2dTranspose(w("x",e,t,a),w("filter",e,t,a),r,[s[1],s[2]],i)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let r=w("strides",e,t,a),s=Ac(e,t,a),i=w("dilations",e,t,a),o=w("dataFormat",e,t,a).toUpperCase();return[n.depthwiseConv2d(w("input",e,t,a),w("filter",e,t,a),[r[1],r[2]],s,o,[i[1],i[2]])]}case"Conv3D":{let r=w("strides",e,t,a),s=w("pad",e,t,a),i=w("dataFormat",e,t,a).toUpperCase(),o=w("dilations",e,t,a);return[n.conv3d(w("x",e,t,a),w("filter",e,t,a),[r[1],r[2],r[3]],s,i,[o[1],o[2],o[3]])]}case"AvgPool":{let r=w("strides",e,t,a),s=w("pad",e,t,a),i=w("kernelSize",e,t,a);return[n.avgPool(w("x",e,t,a),[i[1],i[2]],[r[1],r[2]],s)]}case"MaxPool":{let r=w("strides",e,t,a),s=w("pad",e,t,a),i=w("kernelSize",e,t,a);return[n.maxPool(w("x",e,t,a),[i[1],i[2]],[r[1],r[2]],s)]}case"MaxPoolWithArgmax":{let r=w("strides",e,t,a),s=w("pad",e,t,a),i=w("kernelSize",e,t,a),o=w("includeBatchInIndex",e,t,a),{result:l,indexes:u}=n.maxPoolWithArgmax(w("x",e,t,a),[i[1],i[2]],[r[1],r[2]],s,o);return[l,u]}case"AvgPool3D":{let r=w("strides",e,t,a),s=w("pad",e,t,a),i=w("kernelSize",e,t,a);return[n.avgPool3d(w("x",e,t,a),[i[1],i[2],i[3]],[r[1],r[2],r[3]],s)]}case"MaxPool3D":{let r=w("strides",e,t,a),s=w("pad",e,t,a),i=w("kernelSize",e,t,a);return[n.maxPool3d(w("x",e,t,a),[i[1],i[2],i[3]],[r[1],r[2],r[3]],s)]}case"Dilation2D":{let r=w("strides",e,t,a),s=w("pad",e,t,a),i=w("dilations",e,t,a),o=r[1],l=r[2],u=i[1],p=i[2];return[n.dilation2d(w("x",e,t,a),w("filter",e,t,a),[o,l],s,[u,p],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},YP=(e,t,a,n=Zt)=>{switch(e.op){case"Fill":{let r=w("shape",e,t,a),s=w("dtype",e,t,a),i=w("value",e,t,a);return[n.fill(r,i,s)]}case"LinSpace":{let r=w("start",e,t,a),s=w("stop",e,t,a),i=w("num",e,t,a);return[n.linspace(r,s,i)]}case"Multinomial":{let r=w("logits",e,t,a),s=w("numSamples",e,t,a),i=w("seed",e,t,a);return[n.multinomial(r,s,i)]}case"OneHot":{let r=w("indices",e,t,a),s=w("depth",e,t,a),i=w("onValue",e,t,a),o=w("offValue",e,t,a),l=w("dtype",e,t,a);return[n.oneHot(r,s,i,o,l)]}case"Ones":return[n.ones(w("shape",e,t,a),w("dtype",e,t,a))];case"OnesLike":return[n.onesLike(w("x",e,t,a))];case"RandomStandardNormal":return[n.randomStandardNormal(w("shape",e,t,a),w("dtype",e,t,a),w("seed",e,t,a))];case"RandomUniform":return[n.randomUniform(w("shape",e,t,a),w("minval",e,t,a),w("maxval",e,t,a),w("dtype",e,t,a))];case"Range":{let r=w("start",e,t,a),s=w("stop",e,t,a),i=w("step",e,t,a);return[n.range(r,s,i,w("dtype",e,t,a))]}case"TruncatedNormal":{let r=w("shape",e,t,a),s=w("mean",e,t,a),i=w("stdDev",e,t,a),o=w("seed",e,t,a);return[n.truncatedNormal(r,s,i,w("dtype",e,t,a),o)]}case"Zeros":return[n.zeros(w("shape",e,t,a),w("dtype",e,t,a))];case"ZerosLike":return[n.zerosLike(w("x",e,t,a))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Pm(e,t,a){let n=w("boxes",e,t,a),r=w("scores",e,t,a),s=w("maxOutputSize",e,t,a),i=w("iouThreshold",e,t,a),o=w("scoreThreshold",e,t,a),l=w("softNmsSigma",e,t,a);return{boxes:n,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var JP=async(e,t,a,n,r=Zt)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:s,scores:i,maxOutputSize:o,iouThreshold:l,scoreThreshold:u,softNmsSigma:p}=Pm(e,t,a),c=await r.image.nonMaxSuppressionWithScoreAsync(s,i,o,l,u,p);return[c.selectedIndices,c.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:s,scores:i,maxOutputSize:o,iouThreshold:l,scoreThreshold:u}=Pm(e,t,a),p=w("padToMaxOutputSize",e,t,a),c=await r.image.nonMaxSuppressionPaddedAsync(s,i,o,l,u,p);return[c.selectedIndices,c.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:s,scores:i,maxOutputSize:o,iouThreshold:l,scoreThreshold:u}=Pm(e,t,a);return[await r.image.nonMaxSuppressionAsync(s,i,o,l,u)]}case"Where":{let s=r.cast(w("condition",e,t,a),"bool"),i=[await r.whereAsync(s)];return s.dispose(),i}case"ListDiff":return r.setdiff1dAsync(w("x",e,t,a),w("y",e,t,a));default:throw TypeError(`Node type ${e.op} is not implemented`)}},QP=(e,t,a,n=Zt)=>{switch(e.op){case"LowerBound":{let r=w("sortedSequence",e,t,a),s=w("values",e,t,a);return[n.lowerBound(r,s)]}case"TopKV2":{let r=w("x",e,t,a),s=w("k",e,t,a),i=w("sorted",e,t,a),o=n.topk(r,s,i);return[o.values,o.indices]}case"UpperBound":{let r=w("sortedSequence",e,t,a),s=w("values",e,t,a);return[n.upperBound(r,s)]}case"Unique":{let r=w("x",e,t,a),s=n.unique(r);return[s.values,s.indices]}case"UniqueV2":{let r=w("x",e,t,a),s=w("axis",e,t,a),i=n.unique(r,s);return[i.values,i.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},eF=(e,t,a,n=Zt)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let r=w("default",e,t,a);return[ba(e.name,t,a)||r];case"Placeholder":return[ba(e.name,t,a)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let p=w("x",e,t,a);return[gr(p)]}case"IdentityN":return w("x",e,t,a).map(p=>gr(p));case"Snapshot":let s=w("x",e,t,a);return[gr(s)];case"Shape":return[n.tensor1d(w("x",e,t,a).shape,"int32")];case"ShapeN":return w("x",e,t,a).map(p=>n.tensor1d(p.shape));case"Size":return[n.scalar(w("x",e,t,a).size,"int32")];case"Rank":return[n.scalar(w("x",e,t,a).rank,"int32")];case"NoOp":return[n.scalar(1)];case"Print":let i=w("x",e,t,a),o=w("data",e,t,a),l=w("message",e,t,a),u=w("summarize",e,t,a);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(l);for(let p=0;p<o.length;p++)console.log(Array.prototype.slice.call(o[p].dataSync()).slice(0,u));return[i];default:throw TypeError(`Node type ${e.op} is not implemented`)}},tF=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=ze(0),this.tensorMap=new Map,On(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return ze(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let a=await e.data();return this.tensorMap.forEach(n=>n.dispose()),this.tensorMap.clear(),Fe(()=>{let n=Ta(t),r=a.length,s=n.length;v.assert(r===s,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${s} elements.`);for(let i=0;i<r;i++){let o=a[i],l=n[i];On(l),this.tensorMap.set(o,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let a=await e.data();return Fe(()=>{let n=[];for(let r=0;r<a.length;r++){let s=a[r],i=this.findWithDefault(s,t);n.push(i)}return oa(n)})}findWithDefault(e,t){let a=this.tensorMap.get(e);return a!=null?a:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},aF=async(e,t,a,n)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=n.getHashTableHandleByName(e.name);if(r!=null)return[r];{let s=w("keyDType",e,t,a),i=w("valueDType",e,t,a),o=new tF(s,i);return n.addHashTable(e.name,o),[o.handle]}}case"InitializeTable":case"InitializeTableV2":case"LookupTableImport":case"LookupTableImportV2":{let r=w("tableHandle",e,t,a,n),s=w("keys",e,t,a),i=w("values",e,t,a);return[await n.getHashTableById(r.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let r=w("tableHandle",e,t,a,n),s=w("keys",e,t,a),i=w("defaultValue",e,t,a);return[await n.getHashTableById(r.id).find(s,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=w("tableHandle",e,t,a,n);return[n.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},nF=(e,t,a,n=Zt)=>{switch(e.op){case"ResizeBilinear":{let r=w("images",e,t,a),s=w("size",e,t,a),i=w("alignCorners",e,t,a),o=w("halfPixelCenters",e,t,a);return[n.image.resizeBilinear(r,[s[0],s[1]],i,o)]}case"ResizeNearestNeighbor":{let r=w("images",e,t,a),s=w("size",e,t,a),i=w("alignCorners",e,t,a),o=w("halfPixelCenters",e,t,a);return[n.image.resizeNearestNeighbor(r,[s[0],s[1]],i,o)]}case"CropAndResize":{let r=w("image",e,t,a),s=w("boxes",e,t,a),i=w("boxInd",e,t,a),o=w("cropSize",e,t,a),l=w("method",e,t,a),u=w("extrapolationValue",e,t,a);return[n.image.cropAndResize(r,s,i,o,l,u)]}case"ImageProjectiveTransformV3":{let r=w("images",e,t,a),s=w("transforms",e,t,a),i=w("outputShape",e,t,a),o=w("fillValue",e,t,a),l=w("interpolation",e,t,a),u=w("fillMode",e,t,a);return[n.image.transform(r,s,l.toLowerCase(),u.toLowerCase(),o,i)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},rF=(e,t,a,n=Zt)=>{switch(e.op){case"Equal":return[n.equal(w("a",e,t,a),w("b",e,t,a))];case"NotEqual":return[n.notEqual(w("a",e,t,a),w("b",e,t,a))];case"Greater":return[n.greater(w("a",e,t,a),w("b",e,t,a))];case"GreaterEqual":return[n.greaterEqual(w("a",e,t,a),w("b",e,t,a))];case"Less":return[n.less(w("a",e,t,a),w("b",e,t,a))];case"LessEqual":return[n.lessEqual(w("a",e,t,a),w("b",e,t,a))];case"LogicalAnd":return[n.logicalAnd(w("a",e,t,a),w("b",e,t,a))];case"LogicalNot":return[n.logicalNot(w("a",e,t,a))];case"LogicalOr":return[n.logicalOr(w("a",e,t,a),w("b",e,t,a))];case"Select":case"SelectV2":return[n.where(w("condition",e,t,a),w("a",e,t,a),w("b",e,t,a))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},sF=(e,t,a,n=Zt)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[n.matMul(w("a",e,t,a),w("b",e,t,a),w("transposeA",e,t,a),w("transposeB",e,t,a))];case"Einsum":return[n.einsum(w("equation",e,t,a),...w("tensors",e,t,a))];case"Transpose":return[n.transpose(w("x",e,t,a),w("perm",e,t,a))];case"_FusedMatMul":let[r,s]=w("fusedOps",e,t,a),i=r==="biasadd",o=s==="prelu",l=w("numArgs",e,t,a),u=w("leakyreluAlpha",e,t,a);if(i){if(o&&l!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&l!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[p,c]=w("args",e,t,a);return[n.fused.matMul({a:w("a",e,t,a),b:w("b",e,t,a),transposeA:w("transposeA",e,t,a),transposeB:w("transposeB",e,t,a),bias:p,activation:s,preluActivationWeights:c,leakyreluAlpha:u})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},iF=(e,t,a,n=Zt)=>{switch(e.op){case"EuclideanNorm":return[n.euclideanNorm(w("x",e,t,a),w("axis",e,t,a),w("keepDims",e,t,a))];case"FusedBatchNorm":case"FusedBatchNormV2":return[n.batchNorm(w("x",e,t,a),w("mean",e,t,a),w("variance",e,t,a),w("offset",e,t,a),w("scale",e,t,a),w("epsilon",e,t,a))];case"FusedBatchNormV3":return[n.batchNorm(w("x",e,t,a),w("mean",e,t,a),w("variance",e,t,a),w("offset",e,t,a),w("scale",e,t,a),w("epsilon",e,t,a))];case"LRN":return[n.localResponseNormalization(w("x",e,t,a),w("radius",e,t,a),w("bias",e,t,a),w("alpha",e,t,a),w("beta",e,t,a))];case"Softmax":return[n.softmax(w("x",e,t,a))];case"LogSoftmax":return[n.logSoftmax(w("x",e,t,a))];case"SparseToDense":return[n.sparseToDense(w("sparseIndices",e,t,a),w("outputShape",e,t,a),w("sparseValues",e,t,a),w("defaultValue",e,t,a))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},oF=(e,t,a,n=Zt)=>{switch(e.op){case"RaggedGather":{let{outputNestedSplits:r,outputDenseValues:s}=n.raggedGather(w("paramsNestedSplits",e,t,a),w("paramsDenseValues",e,t,a),w("indices",e,t,a),w("outputRaggedRank",e,t,a));return r.concat(s)}case"RaggedRange":{let{rtNestedSplits:r,rtDenseValues:s}=n.raggedRange(w("starts",e,t,a),w("limits",e,t,a),w("splits",e,t,a));return[r,s]}case"RaggedTensorToTensor":return[n.raggedTensorToTensor(w("shape",e,t,a),w("values",e,t,a),w("defaultValue",e,t,a),w("rowPartitionTensors",e,t,a),w("rowPartitionTypes",e,t,a))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},lF=(e,t,a,n=Zt)=>{switch(e.op){case"Max":{let o=w("axis",e,t,a),l=w("keepDims",e,t,a);return[n.max(w("x",e,t,a),o,l)]}case"Mean":{let o=w("axis",e,t,a),l=w("keepDims",e,t,a);return[n.mean(w("x",e,t,a),o,l)]}case"Min":{let o=w("axis",e,t,a),l=w("keepDims",e,t,a);return[n.min(w("x",e,t,a),o,l)]}case"Sum":{let o=w("axis",e,t,a),l=w("keepDims",e,t,a);return[n.sum(w("x",e,t,a),o,l)]}case"All":{let o=w("axis",e,t,a),l=w("keepDims",e,t,a);return[n.all(w("x",e,t,a),o,l)]}case"Any":{let o=w("axis",e,t,a),l=w("keepDims",e,t,a);return[n.any(w("x",e,t,a),o,l)]}case"ArgMax":{let o=w("axis",e,t,a);return[n.argMax(w("x",e,t,a),o)]}case"ArgMin":{let o=w("axis",e,t,a);return[n.argMin(w("x",e,t,a),o)]}case"Prod":{let o=w("axis",e,t,a),l=w("keepDims",e,t,a);return[n.prod(w("x",e,t,a),o,l)]}case"Cumprod":{let o=w("axis",e,t,a),l=w("exclusive",e,t,a),u=w("reverse",e,t,a);return[n.cumprod(w("x",e,t,a),o,l,u)]}case"Cumsum":{let o=w("axis",e,t,a),l=w("exclusive",e,t,a),u=w("reverse",e,t,a);return[n.cumsum(w("x",e,t,a),o,l,u)]}case"Bincount":let r=w("x",e,t,a),s=w("weights",e,t,a),i=w("size",e,t,a);return[n.bincount(r,s,i)];case"DenseBincount":{let o=w("x",e,t,a),l=w("weights",e,t,a),u=w("size",e,t,a),p=w("binaryOutput",e,t,a);return[n.denseBincount(o,l,u,p)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},uF=(e,t,a,n=Zt)=>{switch(e.op){case"ConcatV2":case"Concat":{let r=w("n",e,t,a),s=w("axis",e,t,a),i=w("tensors",e,t,a);return i=i.slice(0,r),[n.concat(i,s)]}case"Gather":{let r=w("x",e,t,a),s=w("indices",e,t,a);return[n.gather(r,n.cast(s,"int32"),0)]}case"GatherV2":{let r=w("axis",e,t,a),s=w("batchDims",e,t,a),i=w("x",e,t,a),o=w("indices",e,t,a);return[n.gather(i,n.cast(o,"int32"),r,s)]}case"Reverse":{let r=w("dims",e,t,a),s=[];for(let o=0;o<r.length;o++)r[o]&&s.push(o);let i=w("x",e,t,a);return[n.reverse(i,s)]}case"ReverseV2":{let r=w("axis",e,t,a),s=w("x",e,t,a);return[n.reverse(s,r)]}case"Slice":{let r=w("begin",e,t,a),s=w("size",e,t,a);return[n.slice(w("x",e,t,a),r,s)]}case"StridedSlice":{let r=w("begin",e,t,a),s=w("end",e,t,a),i=w("strides",e,t,a),o=w("beginMask",e,t,a),l=w("endMask",e,t,a),u=w("ellipsisMask",e,t,a),p=w("newAxisMask",e,t,a),c=w("shrinkAxisMask",e,t,a),d=w("x",e,t,a);return[n.stridedSlice(d,r,s,i,o,l,u,p,c)]}case"Pack":return Fe(()=>{let r=w("axis",e,t,a),s=w("tensors",e,t,a),i=s[0].shape,o=n.squeeze(s[0]).shape,l=s.map(u=>{let p=v.arraysEqual(u.shape,i);if(!p&&!v.arraysEqual(n.squeeze(u).shape,o))throw new Error("the input tensors shape does not match");return p?u:n.reshape(u,i)});return[n.stack(l,r)]});case"Unpack":{let r=w("axis",e,t,a),s=w("tensor",e,t,a);return n.unstack(s,r)}case"Tile":{let r=w("reps",e,t,a);return[n.tile(w("x",e,t,a),r)]}case"Split":case"SplitV":{let r=w("axis",e,t,a),s=w("numOrSizeSplits",e,t,a),i=w("x",e,t,a);return n.split(i,s,r)}case"ScatterNd":{let r=w("indices",e,t,a),s=w("values",e,t,a),i=w("shape",e,t,a);return[n.scatterND(r,s,i)]}case"GatherNd":{let r=w("x",e,t,a),s=w("indices",e,t,a);return[n.gatherND(r,s)]}case"SparseToDense":{let r=w("sparseIndices",e,t,a),s=w("outputShape",e,t,a),i=w("sparseValues",e,t,a),o=w("defaultValue",e,t,a);return[n.sparseToDense(r,i,s,i.dtype===o.dtype?o:n.cast(o,i.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},dF=(e,t,a,n=Zt)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:r,outputValues:s,emptyRowIndicator:i,reverseIndexMap:o}=n.sparse.sparseFillEmptyRows(w("indices",e,t,a),w("values",e,t,a),w("denseShape",e,t,a),w("defaultValue",e,t,a));return[r,s,i,o]}case"SparseReshape":{let{outputIndices:r,outputShape:s}=n.sparse.sparseReshape(w("inputIndices",e,t,a),w("inputShape",e,t,a),w("newShape",e,t,a));return[r,s]}case"SparseSegmentMean":return[n.sparse.sparseSegmentMean(w("data",e,t,a),w("indices",e,t,a),w("segmentIds",e,t,a))];case"SparseSegmentSum":return[n.sparse.sparseSegmentSum(w("data",e,t,a),w("indices",e,t,a),w("segmentIds",e,t,a))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},pF=(e,t,a,n=Zt)=>{switch(e.op){case"FFT":return[n.fft(w("x",e,t,a))];case"IFFT":return[n.ifft(w("x",e,t,a))];case"RFFT":return[n.rfft(w("x",e,t,a))];case"IRFFT":return[n.irfft(w("x",e,t,a))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},cF=(e,t,a,n=Zt)=>{switch(e.op){case"StringNGrams":{let{nGrams:r,nGramsSplits:s}=n.string.stringNGrams(w("data",e,t,a),w("dataSplits",e,t,a),w("separator",e,t,a),w("nGramWidths",e,t,a),w("leftPad",e,t,a),w("rightPad",e,t,a),w("padWidth",e,t,a),w("preserveShortSequences",e,t,a));return[r,s]}case"StringSplit":{let{indices:r,values:s,shape:i}=n.string.stringSplit(w("input",e,t,a),w("delimiter",e,t,a),w("skipEmpty",e,t,a));return[r,s,i]}case"StringToHashBucketFast":return[n.string.stringToHashBucketFast(w("input",e,t,a),w("numBuckets",e,t,a))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},hF=(e,t,a,n=Zt)=>{switch(e.op){case"Cast":return[n.cast(w("x",e,t,a),w("dtype",e,t,a))];case"ExpandDims":{let r=w("axis",e,t,a);return[n.expandDims(w("x",e,t,a),r)]}case"Squeeze":{let r=w("axis",e,t,a);return[n.squeeze(w("x",e,t,a),r)]}case"Reshape":return[n.reshape(w("x",e,t,a),w("shape",e,t,a))];case"MirrorPad":return[n.mirrorPad(w("x",e,t,a),w("padding",e,t,a),w("mode",e,t,a))];case"PadV2":case"Pad":return[n.pad(w("x",e,t,a),w("padding",e,t,a),w("constantValue",e,t,a))];case"SpaceToBatchND":{let r=w("blockShape",e,t,a),s=w("paddings",e,t,a);return[n.spaceToBatchND(w("x",e,t,a),r,s)]}case"BatchToSpaceND":{let r=w("blockShape",e,t,a),s=w("crops",e,t,a);return[n.batchToSpaceND(w("x",e,t,a),r,s)]}case"DepthToSpace":{let r=w("blockSize",e,t,a),s=w("dataFormat",e,t,a).toUpperCase();return[n.depthToSpace(w("x",e,t,a),r,s)]}case"BroadcastTo":return[n.broadcastTo(w("x",e,t,a),w("shape",e,t,a))];case"BroadcastArgs":return[n.broadcastArgs(w("s0",e,t,a),w("s1",e,t,a))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Q5(e,t,a,n,r=Fe){let s=((i,o,l)=>{switch(i.category){case"arithmetic":return r(()=>VP(i,o,l));case"basic_math":return r(()=>UP(i,o,l));case"control":return KP(i,o,l);case"convolution":return r(()=>ZP(i,o,l));case"creation":return r(()=>YP(i,o,l));case"dynamic":return JP(i,o,l);case"evaluation":return r(()=>QP(i,o,l));case"image":return r(()=>nF(i,o,l));case"graph":return r(()=>eF(i,o,l));case"logical":return r(()=>rF(i,o,l));case"matrices":return r(()=>sF(i,o,l));case"normalization":return r(()=>iF(i,o,l));case"ragged":return r(()=>oF(i,o,l));case"reduction":return r(()=>lF(i,o,l));case"slice_join":return r(()=>uF(i,o,l));case"sparse":return r(()=>dF(i,o,l));case"spectral":return r(()=>pF(i,o,l));case"string":return r(()=>cF(i,o,l));case"transformation":return r(()=>hF(i,o,l));case"hash_table":return aF(i,o,l,n);case"custom":let u=b4(i.op);if(u&&u.customExecutor)return u.customExecutor(new WP(i,o,l));throw TypeError(`Custom op ${i.op} is not registered.`);default:throw TypeError(`Unknown op '${i.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,a);return v.isPromise(s)?s.then(i=>[].concat(i)):[].concat(s)}var ex=class{constructor(e={},t={},a={},n={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=a,this.functionMap=n,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let a=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(a))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function tx(e,t,a,n){let r=new Set,s=[],i=null,o=null,l=new Set,u=Object.keys(e).map(d=>ja(d)[0]),p=[];n!=null&&(p=n.map(d=>ja(d.name)[0]));let c=[...t];for(;c.length>0;){let d=c.pop();if((V4(d)||yF(d)||AF(d))&&i==null&&(i=d,o=i.children.map(h=>h.name).filter(h=>r.has(h))),r.add(d.name),a[d.name]==null&&u.indexOf(d.name)===-1&&p.indexOf(d.name)===-1){if(d.inputs.length===0){s.push(d.name);continue}d.inputs.forEach(h=>{l.has(h.name)||(l.add(h.name),c.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:s,dynamicNode:i,syncInputs:o}}function fF(e,t,a){let{usedNodes:n,inputs:r}=a,s=[],i=Object.keys(r).map(p=>ja(p)[0]).map(p=>e.nodes[p]),o=e.initNodes;i.forEach(p=>{n.has(p.name)&&s.push(p)}),e.weights.forEach(p=>{n.has(p.name)&&s.push(p)}),o!=null&&o.forEach(p=>{n.has(p.name)&&s.push(p)});let l=new Set,u=[];for(;s.length>0;){let p=s.pop();l.add(p.name),t[p.name]||u.push(p),p.children.forEach(c=>{!l.has(c.name)&&n.has(c.name)&&c.inputs.every(d=>l.has(d.name))&&s.push(c)})}return u}var mF=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],gF=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],xF=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function V4(e){return mF.indexOf(e.op)>=0}function yF(e){return gF.indexOf(e.op)>=0}function AF(e){return xF.indexOf(e.op)>=0}var f2=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this.keepIntermediateTensors=!1,this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(a=>{this._functionExecutorMap[a]=new f2(e.functions[a],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(a=>e[a].map(n=>n.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let a=e.map(r=>r.name).sort(),n=t.map(r=>r.name).sort();return a.join(this.SEPERATOR)+"--"+n.join(this.SEPERATOR)}compile(e,t){let a=tx(e,t,this.weightMap,this._initNodes),{missingInputs:n,dynamicNode:r,syncInputs:s}=a;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(n.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${n}]`)}return fF(this.graph,this.weightMap,a)}cloneAndKeepTensor(e){if(e==null)return null;let t=e.clone();return On(t),t}cloneTensorList(e){return e?e.map(t=>this.cloneAndKeepTensor(t)):null}cloneTensorMap(e){return Object.fromEntries(Object.entries(e).map(([t,a])=>[t,this.cloneTensorList(a)]))}execute(e,t){this.disposeIntermediateTensors(),e=this.mapInputs(e);let a=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let n=a.map(p=>this.graph.nodes[ja(p)[0]]),r=t.map(p=>ja(p)[0]),s=r.map(p=>this.graph.nodes[p]);s.length===0&&(s=this._outputs);let i=this.getCompilationKey(n,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));try{this.keepIntermediateTensors=B().getBool("KEEP_INTERMEDIATE_TENSORS")}catch(p){this.keepIntermediateTensors=!1,console.warn(p.message)}let l={},u={};return Fe(()=>{let p=new ex(this.weightMap,l,u,this.functionExecutorMap),c=Object.assign({},this.weightMap);this.keepIntermediateTensors&&(this.clonedTensorsMap=this.cloneTensorMap(this.weightMap)),Object.keys(e).forEach(f=>{let[m,g]=ja(f),x=[];x[g]=e[f],c[m]=x,this.keepIntermediateTensors&&(this.clonedTensorsMap[m]=this.cloneTensorList(x))});let d=this.getFrozenTensorIds(c),h={};for(let f=0;f<o.length;f++){let m=o[f];if(!c[m.name]){let g=Q5(m,c,p,this._resourceManager);if(v.isPromise(g))throw new Error(`The execution of the op '${m.op}' returned a promise. Please use model.executeAsync() instead.`);c[m.name]=g,this.keepIntermediateTensors&&(this.clonedTensorsMap[m.name]=this.cloneTensorList(g)),this.checkTensorForDisposal(m.name,m,c,p,d,r,h)}}return this.parent==null&&p.dispose(d),t.map(f=>ba(f,c,p))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(a=>e[a]).map(a=>a.map(n=>n.id)));return new Set(t)}checkTensorForDisposal(e,t,a,n,r,s,i){t.category==="control"||s.indexOf(e)!==-1||(a[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=bP(o.name,a,n);l!=null&&l.forEach(u=>{if(u&&!u.kept&&!r.has(u.id)){let p=i[u.id];p===1?(u.dispose(),delete i[u.id]):p!=null&&i[u.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}disposeIntermediateTensors(){this.clonedTensorsMap&&(Object.values(this.clonedTensorsMap).forEach(e=>{for(let t of e)t&&!t.isDisposed&&t.dispose()}),this.clonedTensorsMap=null)}getIntermediateTensors(){return this.clonedTensorsMap}async _executeAsync(e,t,a=!1,n={},r={}){this.disposeIntermediateTensors(),a||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));try{this.keepIntermediateTensors=B().getBool("KEEP_INTERMEDIATE_TENSORS")}catch(c){this.keepIntermediateTensors=!1,console.warn(c.message)}let s=new ex(this.weightMap,n,r,this.functionExecutorMap);this.keepIntermediateTensors&&(this.clonedTensorsMap=this.cloneTensorMap(this.weightMap));let i=await this.executeWithControlFlow(e,s,t,a),o=t.map(c=>ba(c,i,s)),l=o.map(c=>c.id),u=Object.keys(e).map(c=>e[c].id),p=new Set([...l,...u,...this.weightIds]);return Object.values(i).forEach(c=>{c.forEach(d=>{d&&!d.isDisposed&&!p.has(d.id)&&d.dispose()})}),this.parent==null&&s.dispose(p),o}async executeFunctionAsync(e,t,a){let n=e.reduce((r,s,i)=>(r[this.inputs[i].name]=s,r),{});return this._executeAsync(n,this.outputNodes,!0,t,a)}async executeWithControlFlow(e,t,a,n){let r=Object.keys(e),s=r.map(y=>this.graph.nodes[ja(y)[0]]),i=a.map(y=>ja(y)[0]),o=i.map(y=>this.graph.nodes[y]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:u,dynamicNode:p,syncInputs:c}=tx(e,o,this.weightMap,this._initNodes),d=[...s,...this.graph.weights,...this._initNodes||[]].map(y=>({node:y,contexts:t.currentContext})),h=Object.assign({},this.weightMap);Object.keys(e).forEach(y=>{let[A,b]=ja(y),k=[];k[b]=e[y],h[A]=k});let f={},m=this.getFrozenTensorIds(h),g={};for(;d.length>0;){let y=this.processStack(s,d,t,h,g,m,i,f,l);await Promise.all(y)}p==null&&!n&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let x=o.filter(y=>!V4(y)&&!ba(y.name,h,t)).map(y=>y.name);if(x.length>0){let y="";throw p!=null&&(y=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${c}]`),new Error(`Cannot compute the outputs [${x}] from the provided inputs [${r}]. Consider providing the following inputs: [${u}]. ${y}`)}return h}processStack(e,t,a,n,r,s,i,o,l){let u=[];for(;t.length>0;){let p=t.pop();a.currentContext=p.contexts;let c="";if(p.node.op==="Enter"&&w("isConstant",p.node,n,a)&&([c]=mr(p.node.name,a)),n[p.node.name]==null){let d=Q5(p.node,n,a,this._resourceManager);c||([c]=mr(p.node.name,a));let h=a.currentContext;v.isPromise(d)?u.push(d.then(f=>(n[c]=f,this.keepIntermediateTensors&&(this.clonedTensorsMap[c]=this.cloneTensorList(f)),a.currentContext=h,this.checkTensorForDisposal(c,p.node,n,a,s,i,o),this.processChildNodes(p.node,t,a,n,r,l),f))):(n[c]=d,this.keepIntermediateTensors&&(this.clonedTensorsMap[c]=this.cloneTensorList(d)),this.checkTensorForDisposal(c,p.node,n,a,s,i,o),this.processChildNodes(p.node,t,a,n,r,l))}else this.processChildNodes(p.node,t,a,n,r,l)}return u}processChildNodes(e,t,a,n,r,s){e.children.forEach(i=>{let[o]=mr(i.name,a);r[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!ba(l,n,a))&&(r[o]=!0,t.push({contexts:a.currentContext,node:i})):i.inputNames.every(l=>!!ba(l,n,a))&&(r[o]=!0,t.push({contexts:a.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let a=e[t],[n]=ja(t),r=this.graph.nodes[n];if(r.attrParams.shape&&r.attrParams.shape.value){let s=r.attrParams.shape.value,i=s.length===a.shape.length&&a.shape.every((o,l)=>s[l]===-1||s[l]===o);v.assert(i,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${s}], but was [${a.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&v.assert(a.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${a.dtype}`)})}mapInputs(e){var t,a;let n={};for(let r in e){let s=(a=(t=this._signature)===null||t===void 0?void 0:t.inputs)===null||a===void 0?void 0:a[r];s!=null?n[s.name]=e[r]:n[r]=e[r]}return n}checkInputs(e){let t=Object.keys(e).filter(a=>{let[n]=ja(a);return this.graph.nodes[n]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>{var a,n;let r=(n=(a=this._signature)===null||a===void 0?void 0:a.outputs)===null||n===void 0?void 0:n[t];return r!=null?r.name:t},{})}checkOutputs(e){e.forEach(t=>{let[a]=ja(t);if(!this.graph.nodes[a])throw new Error(`The output '${t}' is not found in the graph`)})}},bF=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},vF="?tfjs-format=file",kF="model.json",dp=class{constructor(e,t={},a=jn){this.modelUrl=e,this.loadOptions=t,this.version="n/a",this.io=a,t==null&&(this.loadOptions={}),this.resourceManager=new bF}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}get modelStructuredOutputKeys(){return this.structuredOutputKeys}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=this.io.browserHTTPRequest(e,this.loadOptions);else{let t=this.io.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(this.io.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=this.handler.load();return v.isPromise(e)?e.then(t=>this.loadSync(t)):this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,a=this.artifacts.signature;if(this.artifacts.userDefinedMetadata!=null){let r=this.artifacts.userDefinedMetadata;r.signature!=null&&(a=r.signature),r.structuredOutputKeys!=null&&(this.structuredOutputKeys=r.structuredOutputKeys)}this.signature=a,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let n=this.io.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new f2(K5.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(n),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=K5.Instance.transformGraph(e.modelInitializer);this.initializer=new f2(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializerSignature=e.initializerSignature}return!0}async save(e,t){if(typeof e=="string"){let a=this.io.getSaveHandlers(e);if(a.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(a.length>1)throw new Error(`Found more than one (${a.length}) save handlers for URL '${e}'`);e=a[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}addStructuredOutputNames(e){if(this.structuredOutputKeys){let t=e instanceof pt?[e]:e,a={};return t.forEach((n,r)=>a[this.structuredOutputKeys[r]]=n),a}return e}predict(e,t){let a=this.execute(e,this.outputNodes);return this.addStructuredOutputNames(a)}async predictAsync(e,t){let a=await this.executeAsync(e,this.outputNodes);return this.addStructuredOutputNames(a)}normalizeInputs(e){var t;if(!(e instanceof pt)&&!Array.isArray(e)){let r=(t=this.signature)===null||t===void 0?void 0:t.inputs;if(r!=null)for(let s in r){let i=r[s];i.resourceId!=null&&(e[s]=this.resourceIdToCapturedInput[i.resourceId])}return e}e=Array.isArray(e)?e:[e];let a=Object.keys(this.resourceIdToCapturedInput).length;if(e.length+a!==this.inputNodes.length)throw new Error(`Input tensor count mismatch, the graph model has ${this.inputNodes.length-a} non-resource placeholders, while there are ${e.length} input tensors provided.`);let n=0;return this.inputNodes.reduce((r,s)=>{var i,o,l;let u=(l=(o=(i=this.signature)===null||i===void 0?void 0:i.inputs)===null||o===void 0?void 0:o[s])===null||l===void 0?void 0:l.resourceId;return u!=null?r[s]=this.resourceIdToCapturedInput[u]:r[s]=e[n++],r},{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}executeInitializerGraph(){return this.initializer==null?[]:this.initializerSignature==null?this.initializer.execute({},[]):this.initializer.execute({},Object.keys(this.initializerSignature.outputs))}async executeInitializerGraphAsync(){return this.initializer==null?[]:this.initializerSignature==null?this.initializer.executeAsync({},[]):this.initializer.executeAsync({},Object.keys(this.initializerSignature.outputs))}setResourceIdToCapturedInput(e){if(this.resourceIdToCapturedInput={},this.initializerSignature){let t=this.initializerSignature.outputs,a=Object.keys(t);for(let n=0;n<a.length;n++){let r=a[n],s=t[r];this.resourceIdToCapturedInput[s.resourceId]=e[n]}}}execute(e,t){this.resourceIdToCapturedInput==null&&this.setResourceIdToCapturedInput(this.executeInitializerGraph()),e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let a=this.executor.execute(e,t);return a.length>1?a:a[0]}async executeAsync(e,t){this.resourceIdToCapturedInput==null&&this.setResourceIdToCapturedInput(await this.executeInitializerGraphAsync()),e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let a=await this.executor.executeAsync(e,t);return a.length>1?a:a[0]}getIntermediateTensors(){return this.executor.getIntermediateTensors()}disposeIntermediateTensors(){this.executor.disposeIntermediateTensors()}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,a)=>(t[a]=[e[a]],t),{})}dispose(){this.executor.dispose(),this.initializer&&(this.initializer.dispose(),this.resourceIdToCapturedInput&&Y(this.resourceIdToCapturedInput)),this.resourceManager.dispose()}};async function s3(e,t={},a=jn){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&typeof e=="string"&&(e=IF(e));let n=new dp(e,t,a);return await n.load(),n}function wF(e){if(e==null)throw new Error("modelUrl in loadGraphModelSync() cannot be null. Please provide model artifacts or an IOHandler that loads the model");let t;if(e instanceof Array){let[n,r]=e;if(!n)throw new Error("modelJSON must be the first element of the array");if(!r||!(r instanceof ArrayBuffer))throw new Error("An ArrayBuffer of weights must be the second element of the array");if(!("modelTopology"in n))throw new Error("Model JSON is missing 'modelTopology'");if(!("weightsManifest"in n))throw new Error("Model JSON is missing 'weightsManifest'");let s=jn.getWeightSpecs(n.weightsManifest),i=jn.getModelArtifactsForJSONSync(n,s,r);t=jn.fromMemorySync(i)}else if("load"in e)t=e;else if("modelTopology"in e&&"weightSpecs"in e&&"weightData"in e)t=jn.fromMemorySync(e);else throw new Error("Unknown model format");let a=new dp(t);return a.load(),a}function IF(e){return e.endsWith("/")||(e=e+"/"),`${e}${kF}${vF}`}var SF="4.2.0";function Ae(e,t){Array.isArray(e)||(e=[e]),e.forEach(a=>{a!=null&&v.assert(a.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var TF=Tn.whereImpl,Ch=class extends Al{constructor(){super(),this.blockSize=48,this.firstUse=!0,this.data=new wd(this,vt())}nextDataId(){return Ch.nextDataId++}write(e,t,a){this.firstUse&&(this.firstUse=!1,B().get("IS_NODE")&&T.warn(`
|
|
============================
|
|
Hi, looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, visit https://github.com/tensorflow/tfjs-node for more details.
|
|
============================`));let n={id:this.nextDataId()};return this.data.set(n,{values:e,dtype:a,refCount:1}),n}makeTensorInfo(e,t,a){let n;if(t==="string"&&a!=null&&a.length>0&&v.isString(a[0])){let r=a.map(s=>v.encodeString(s));n=this.write(r,e,t)}else n=this.write(a,e,t);return{dataId:n,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,a,n,r){this.data.set(e,{values:t,dtype:n,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:a}=this.data.get(e);if(t==="complex64"){let n=this.readSync(a.real.dataId),r=this.readSync(a.imag.dataId);return T.mergeRealAndImagArrays(n,r)}return v.convertBackendValuesAndArrayBuffer(this.data.get(e).values,t)}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let a=t.map(n=>v.decodeString(n));return _e(e.shape,e.dtype,a)}catch(a){throw new Error("Failed to decode encoded string bytes into utf-8")}return _e(e.shape,e.dtype,t)}makeOutput(e,t,a){return vt().makeTensorFromTensorInfo(this.makeTensorInfo(t,a,e),this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:a}=this.data.get(e);a!=null&&(this.disposeData(a.real.dataId,!0),this.disposeData(a.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){Ae([e],"where");let t=this.readSync(e.dataId);return TF(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};Ch.nextDataId=0;var Nh={};Ke(Nh,{addImpl:()=>H4,bincountImpl:()=>o3,bincountReduceImpl:()=>j4,castImpl:()=>G4,ceilImpl:()=>q4,concatImpl:()=>l3,equalImpl:()=>X4,expImpl:()=>Z4,expm1Impl:()=>J4,floorImpl:()=>Q4,gatherNdImpl:()=>e7,gatherV2Impl:()=>t7,greaterEqualImpl:()=>n7,greaterImpl:()=>a7,lessEqualImpl:()=>s7,lessImpl:()=>r7,linSpaceImpl:()=>i7,logImpl:()=>o7,maxImpl:()=>l7,maximumImpl:()=>u7,minimumImpl:()=>d7,multiplyImpl:()=>u3,negImpl:()=>p7,notEqualImpl:()=>c7,prodImpl:()=>h7,raggedGatherImpl:()=>f7,raggedRangeImpl:()=>m7,raggedTensorToTensorImpl:()=>g7,rangeImpl:()=>p3,rsqrtImpl:()=>x7,scatterImpl:()=>el,sigmoidImpl:()=>bO,simpleAbsImpl:()=>U4,sliceImpl:()=>Oc,sparseFillEmptyRowsImpl:()=>A7,sparseReshapeImpl:()=>b7,sparseSegmentReductionImpl:()=>c3,sqrtImpl:()=>wO,squaredDifferenceImpl:()=>v7,stridedSliceImpl:()=>k7,stringNGramsImpl:()=>h3,stringSplitImpl:()=>f3,stringToHashBucketFastImpl:()=>m3,subImpl:()=>w7,tileImpl:()=>I7,topKImpl:()=>T7,transposeImpl:()=>d3,uniqueImpl:()=>C7});function U4(e){let t=new Float32Array(e.length);for(let a=0;a<e.length;++a)t[a]=Math.abs(e[a]);return t}var CF=e=>{let{x:t}=e.inputs,a=e.backend;Ae(t,"abs");let n=new Float32Array(v.sizeFromShape(t.shape)),r=a.data.get(t.dataId).values;return n=U4(r),a.makeOutput(n,t.shape,t.dtype)},NF={kernelName:vl,backendName:"cpu",kernelFunc:CF};function Lt(e){return(t,a,n,r,s)=>{let i=T.assertAndGetBroadcastShape(t,a),o=i.length,l=v.computeStrides(i),u=v.sizeFromShape(i),p=v.getTypedArrayFromDType(s,u),c=t.length,d=a.length,h=v.computeStrides(t),f=v.computeStrides(a),m=T.getBroadcastDims(t,i),g=T.getBroadcastDims(a,i);if(m.length+g.length===0)for(let x=0;x<p.length;++x)p[x]=e(n[x%n.length],r[x%r.length]);else for(let x=0;x<p.length;++x){let y=v.indexToLoc(x,o,l),A=y.slice(-c);m.forEach(C=>A[C]=0);let b=v.locToIndex(A,c,h),k=y.slice(-d);g.forEach(C=>k[C]=0);let S=v.locToIndex(k,d,f);p[x]=e(n[b],r[S])}return[p,i]}}function Xa(e){let{inputs:t,backend:a}=e,{real:n,imag:r}=t,s=a.data.get(n.dataId).values,i=a.data.get(r.dataId).values,o=a.makeTensorInfo(n.shape,"complex64"),l=a.data.get(o.dataId);return l.complexTensorInfos={real:a.makeTensorInfo(n.shape,"float32",s),imag:a.makeTensorInfo(r.shape,"float32",i)},o}var EF={kernelName:Cd,backendName:"cpu",kernelFunc:Xa};function Fc(e,t,a="float32"){if(a==="complex64"){let r=Fc(e,t,"float32"),s=Fc(e,t,"float32");return Xa({inputs:{real:r,imag:s},backend:e})}let n=v.makeZerosTypedArray(v.sizeFromShape(t),a);return e.makeTensorInfo(t,a,n)}function er(e){let{inputs:t,backend:a}=e,{x:n}=t;return a.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var RF={kernelName:wi,backendName:"cpu",kernelFunc:er};function Us(e){let{inputs:t,backend:a}=e,{input:n}=t,r=a.data.get(n.dataId).complexTensorInfos.real,s=a.data.get(r.dataId).values;return a.makeTensorInfo(r.shape,r.dtype,s)}var MF={kernelName:zd,backendName:"cpu",kernelFunc:Us};function G4(e,t,a,n){if(n==="int32"){let r=Int32Array.from(e);return[t,"int32",r]}if(n==="bool"){let r=v.toTypedArray([0],a),[s,i]=Lt((o,l)=>o!==l?1:0)(t,[],e,r,"bool");return[i,"bool",s]}throw new Error(`Error in Cast: failed to cast ${a} to ${n}`)}function Qr(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{dtype:s}=n;if(s==="complex64"){if(r.dtype==="complex64")return er({inputs:{x:r},backend:a});let p=Fc(a,r.shape,r.dtype),c=Qr({inputs:{x:r},backend:a,attrs:{dtype:"float32"}}),d=Xa({inputs:{real:c,imag:p},backend:a});return a.disposeIntermediateTensorInfo(p),a.disposeIntermediateTensorInfo(c),d}if(r.dtype==="complex64"){let p=Us({inputs:{input:r},backend:a}),c=Qr({inputs:{x:p},backend:a,attrs:{dtype:s}});return a.disposeIntermediateTensorInfo(p),c}if(!v.hasEncodingLoss(r.dtype,s)){let p=er({inputs:{x:r},backend:a});return{dataId:p.dataId,shape:p.shape,dtype:s}}let i=a.data.get(r.dataId).values,[o,l,u]=G4(i,r.shape,r.dtype,s);return a.makeTensorInfo(o,l,u)}var $F={kernelName:ti,backendName:"cpu",kernelFunc:Qr};function Yt(e,t,a,n){return a==null?({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;Ae([i,o],e);let u=l.data.get(i.dataId).values,p=l.data.get(o.dataId).values,c=i.dtype==="string"?T.fromUint8ToStringArray(u):u,d=i.dtype==="string"?T.fromUint8ToStringArray(p):p,h=n||i.dtype,[f,m]=t(i.shape,o.shape,c,d,h);return l.makeTensorInfo(m,h,f)}:({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let u=Qr({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),p=l.data.get(u.dataId),c=p.complexTensorInfos.real,d=p.complexTensorInfos.imag,h=l.data.get(c.dataId).values,f=l.data.get(d.dataId).values,m=Qr({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(m.dataId),x=g.complexTensorInfos.real,y=g.complexTensorInfos.imag,A=l.data.get(x.dataId).values,b=l.data.get(y.dataId).values,[k,S,C]=a(i.shape,o.shape,h,f,A,b),E=l.makeTensorInfo(C,"float32",k),_=l.makeTensorInfo(C,"float32",S),$=Xa({inputs:{real:E,imag:_},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(m),l.disposeIntermediateTensorInfo(E),l.disposeIntermediateTensorInfo(_),$}else{let u=l.data.get(i.dataId).values,p=l.data.get(o.dataId).values,c=n||i.dtype,[d,h]=t(i.shape,o.shape,u,p,c);return l.makeTensorInfo(h,c,d)}}}function i3(e){return(t,a,n,r,s,i)=>{let o=T.assertAndGetBroadcastShape(t,a),l=v.sizeFromShape(o),u=o.length,p=v.computeStrides(o),c=v.getTypedArrayFromDType("float32",l),d=v.getTypedArrayFromDType("float32",l),h=T.getBroadcastDims(t,o),f=T.getBroadcastDims(a,o),m=T.mergeRealAndImagArrays(n,r),g=T.mergeRealAndImagArrays(s,i),x=t.length,y=v.computeStrides(t),A=a.length,b=v.computeStrides(a);if(h.length+f.length===0)for(let k=0;k<c.length;k++){let S=k%m.length,C=k%g.length,E=e(m[S*2],m[S*2+1],g[C*2],g[C*2+1]);c[k]=E.real,d[k]=E.imag}else for(let k=0;k<c.length;k++){let S=v.indexToLoc(k,u,p),C=S.slice(-x);h.forEach(I=>C[I]=0);let E=v.locToIndex(C,x,y),_=S.slice(-A);f.forEach(I=>_[I]=0);let $=v.locToIndex(_,A,b),M=e(m[E*2],m[E*2+1],g[$*2],g[$*2+1]);c[k]=M.real,d[k]=M.imag}return[c,d,o]}}var H4=Lt((e,t)=>e+t),_F=i3((e,t,a,n)=>({real:e+a,imag:t+n})),fl=Yt(as,H4,_F),PF={kernelName:as,backendName:"cpu",kernelFunc:fl};function o3(e,t,a,n,r){let s=v.sizeFromShape(n),i=v.makeZerosTypedArray(r,a);for(let o=0;o<e.length;o++){let l=e[o];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function j4(e,t,a,n=!1){let r=e.shape[0],s=e.shape[1],i=_e([r,a],t.dtype);for(let o=0;o<r;o++)for(let l=0;l<s;l++){let u=e.get(o,l);if(u<0)throw new Error("Input x must be non-negative!");u>=a||(n?i.set(1,o,u):t.size>0?i.set(i.get(o,u)+t.get(o,l),o,u):i.set(i.get(o,u)+1,o,u))}return i}function ls(e){return(t,a,n)=>{let r=v.getTypedArrayFromDType(a,t.length);for(let s=0;s<t.length;++s)r[s]=e(t[s],n);return r}}function ot(e,t,a){return({inputs:n,attrs:r,backend:s})=>{let{x:i}=n;if(Ae(i,e),i.dtype==="string"||a==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=v.sizeFromShape(i.shape),p=a||i.dtype,c=v.getArrayFromDType(p,u);for(let d=0;d<u;++d)c[d]=t(l[d],r);return o.makeTensorInfo(i.shape,p,c)}}function ou(e,t,a){return({inputs:n,attrs:r,backend:s})=>{let{x:i}=n;if(Ae(i,e),i.dtype==="string"||a==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=a||i.dtype,p=t(l,u,r);return o.makeTensorInfo(i.shape,u,p)}}var q4=ls(e=>Math.ceil(e)),FF=ou(ai,q4),OF={kernelName:ai,backendName:"cpu",kernelFunc:FF};function l3(e,t,a,n){let r=v.getArrayFromDType(a,v.sizeFromShape(t));if(n&&a!=="string"){let s=0;e.forEach(i=>{let o=v.sizeFromShape(i.shape);r.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=a==="string"?T.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let u=0;u<i.shape[0];++u){let p=u*t[1]+s;for(let c=0;c<i.shape[1];++c)r[p+c]=o[l++]}s+=i.shape[1]})}return r}var X4=Lt((e,t)=>e===t?1:0),K4=Yt(fi,X4,null,"bool"),DF={kernelName:fi,backendName:"cpu",kernelFunc:K4},Z4=ls(e=>Math.exp(e)),Y4=ou(mi,Z4,"float32"),zF={kernelName:mi,backendName:"cpu",kernelFunc:Y4},J4=ls(e=>Math.expm1(e)),LF=ou(_l,J4),BF={kernelName:_l,backendName:"cpu",kernelFunc:LF},Q4=ls(e=>Math.floor(e)),WF=ou(xi,Q4),VF={kernelName:xi,backendName:"cpu",kernelFunc:WF};function e7(e,t,a,n,r,s,i,o,l){let u=_e([n,s],a);for(let p=0;p<n;p++){let c=[],d=0;for(let h=0;h<r;h++){let f=e[p*r+h];d+=f*i[h],c.push(f)}if(d<0||d>=l/s)throw new Error(`Invalid indices: ${c} does not index into ${o}`);for(let h=0;h<s;h++)u.values[p*s+h]=t.get(...t.indexToLoc(d*s+h))}return u}function t7(e,t,a){let n=_e(a,e.dtype);for(let r=0;r<n.size;++r){let s=n.indexToLoc(r).slice(),i=s[0],o=s[2],l=t.locToIndex([i,o]);s[2]=t.values[l];let u=e.locToIndex(s);0<=u&&u<e.values.length&&(n.values[r]=e.values[u])}return n}var a7=Lt((e,t)=>e>t?1:0),UF=Yt(vi,a7,null,"bool"),GF={kernelName:vi,backendName:"cpu",kernelFunc:UF},n7=Lt((e,t)=>e>=t?1:0),HF=Yt(ki,n7,null,"bool"),jF={kernelName:ki,backendName:"cpu",kernelFunc:HF},r7=Lt((e,t)=>e<t?1:0),qF=Yt(Ti,r7,null,"bool"),XF={kernelName:Ti,backendName:"cpu",kernelFunc:qF},s7=Lt((e,t)=>e<=t?1:0),KF=Yt(Ci,s7,null,"bool"),ZF={kernelName:Ci,backendName:"cpu",kernelFunc:KF};function i7(e,t,a){let n=(t-e)/(a-1),r=v.makeZerosTypedArray(a,"float32");r[0]=e;for(let s=1;s<r.length;s++)r[s]=r[s-1]+n;return r}var o7=ls(e=>Math.log(e)),YF=ou(Ni,o7),JF={kernelName:Ni,backendName:"cpu",kernelFunc:YF};function l7(e,t,a,n){let r=v.getTypedArrayFromDType(n,v.sizeFromShape(a));for(let s=0;s<r.length;++s){let i=s*t,o=e[i];for(let l=0;l<t;++l){let u=e[i+l];(Number.isNaN(u)||u>o)&&(o=u)}r[s]=o}return r}var u7=Lt((e,t)=>Math.max(e,t)),QF=Yt(_i,u7),eO={kernelName:_i,backendName:"cpu",kernelFunc:QF},d7=Lt((e,t)=>Math.min(e,t)),tO=Yt(Di,d7),aO={kernelName:Di,backendName:"cpu",kernelFunc:tO},u3=Lt((e,t)=>e*t),nO=i3((e,t,a,n)=>({real:e*a-t*n,imag:e*n+t*a})),Eh=Yt(Li,u3,nO),rO={kernelName:Li,backendName:"cpu",kernelFunc:Eh};function p7(e,t,a){let n=v.createScalarValue(-1,a);return u3([],t,n,e,a)}function sO(e){let{inputs:t,backend:a}=e,{x:n}=t;Ae(n,"neg");let r=a.data.get(n.dataId).values,[s,i]=p7(r,n.shape,n.dtype);return a.makeTensorInfo(i,n.dtype,s)}var iO={kernelName:Bl,backendName:"cpu",kernelFunc:sO},c7=Lt((e,t)=>e!==t?1:0),oO=Yt(Bi,c7,null,"bool"),lO={kernelName:Bi,backendName:"cpu",kernelFunc:oO};function d3(e,t,a,n,r){let s=t.length,i=v.sizeFromShape(t),o=v.computeStrides(t),l=v.computeStrides(r),u=v.getTypedArrayFromDType(a,v.sizeFromShape(r));for(let p=0;p<i;++p){let c=v.indexToLoc(p,s,o),d=new Array(c.length);for(let f=0;f<d.length;f++)d[f]=c[n[f]];let h=v.locToIndex(d,s,l);u[h]=e[p]}return u}function La(e){let{inputs:t,attrs:a,backend:n}=e,{x:r}=t,{perm:s}=a;Ae(r,"transpose");let i=r.shape.length,o=new Array(i);for(let p=0;p<o.length;p++)o[p]=r.shape[s[p]];let l=n.data.get(r.dataId).values,u=d3(l,r.shape,r.dtype,s,o);return{dataId:n.write(u,o,r.dtype),shape:o,dtype:r.dtype}}var uO={kernelName:yr,backendName:"cpu",kernelFunc:La};function h7(e,t,a,n){let[r,s]=T.computeOutAndReduceShapes(e,n),i=ha(t,"int32"),o=v.makeZerosTypedArray(v.sizeFromShape(r),i),l=v.sizeFromShape(s);for(let u=0;u<o.length;++u){let p=u*l,c=1;for(let d=0;d<l;++d)c*=a[p+d];o[u]=c}return{outVals:o,outShape:r,outDtype:i}}function dO(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s,keepDims:i}=n;Ae(r,"prod");let o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=T.getAxesPermutation(l,o),p=l,c=r,d=[];u!=null&&(c=La({inputs:{x:r},backend:a,attrs:{perm:u}}),d.push(c),p=T.getInnerMostAxes(p.length,o));let h=a.data.get(c.dataId).values,{outVals:f,outShape:m,outDtype:g}=h7(c.shape,c.dtype,h,p),x=m;return i&&(x=T.expandShapeToKeepDim(m,l)),d.forEach(y=>a.disposeIntermediateTensorInfo(y)),a.makeTensorInfo(x,g,f)}var pO={kernelName:qi,backendName:"cpu",kernelFunc:dO};function cO(e,t,a){e.forEach((n,r)=>{if(n<0||n>=a){let s=v.indexToLoc(r,t.length,v.computeStrides(t)).join(",");throw new Error(`indices[${s}] = ${n} is not in [0, ${a})`)}})}function hO(e,t){for(let a=0;a<e.length;++a){let n=e[a],r=a===e.length-1?t:e[a+1].length;if(n.length===0)throw new Error("Ragged splits may not be empty");if(n[0]<0)throw new Error("Ragged splits must be non-negative");if(n[n.length-1]>r)throw new Error("Ragged splits must not point past values");for(let s=1;s<n.length;++s)if(n[s-1]>n[s])throw new Error("Ragged splits must be sorted in ascending order")}}function fO(e,t,a,n){let r=[],s=0,i=t.length-1+a.length,o=new Array(i).fill(null).map(()=>[0]);hO(a,n);let l=1;for(let u=0;u<t.length-1;++u){l*=t[u];let p=t[u+1];for(let c=1;c<l+1;++c)o[u].push(c*p)}for(let u=0;u<e.length;++u){let p=e[u],c=e[u]+1;for(let d=0;d<a.length;++d){let h=a[d],f=d+t.length-1;if(f>=0){let m=o[f],g=m[m.length-1]-h[p];for(let x=p;x<c;++x)o[f].push(h[x+1]+g)}p=h[p],c=h[c]}c!==p&&(r.push([p,c]),s+=c-p)}return{outSplits:o,valueSlices:r,numValues:s}}function mO(e){let t=[];for(let a=0;a<e.length;++a){let n=e[a].length,r=v.getArrayFromDType("int32",n);t.push(r),e[a].forEach((s,i)=>r[i]=s)}return t}function ax(e,t){let a=e.slice(0,t);for(;a.length<t;)a.push(1);for(let n=t;n<e.length;n++)a[t-1]*=e[n];return a}function gO(e,t,a,n,r,s){let i=ax(t,2)[1],o=ax(s,2)[1],l=0;for(let u of a)for(let p=u[0];p<u[1];++p){for(let c=0;c<n;++c)r[l*o+c]=e[p*i+c];++l}}function xO(e,t,a,n,r){let s=t.slice();s[0]=r;let i=v.getArrayFromDType(a,v.sizeFromShape(s)),o=e.length,l=o===0?0:o/t[0];return gO(e,t,n,l,i,s),[i,s]}function f7(e,t,a,n,r,s,i,o){if(e.length===0)throw new Error("paramsNestedSplits must be non empty");if(t[0].length===0)throw new Error("Split tensors must not be scalars");let l=t[0][0]-1;if(cO(s,i,l),n.length===0)throw new Error("params.rank must be nonzero");let u=n[0],{outSplits:p,valueSlices:c,numValues:d}=fO(s,i,e,u),h=mO(p),f=xO(a,n,r,c,d);return[h,f[0],f[1]]}var nx=2147483647;function m7(e,t,a,n,r,s,i){if(t.length>1)throw new Error("starts must be a scalar or vector");if(r.length>1)throw new Error("limits must be a scalar or vector");if(i.length>1)throw new Error("deltas must be a scalar or vector");let o=t.length===0,l=r.length===0,u=i.length===0,p=[];o||p.push(t[0]),l||p.push(r[0]),u||p.push(i[0]);for(let g=1;g<p.length;++g)if(p[g]!==p[g-1])throw new Error("starts, limits, and deltas must have the same shape");let c=p.length===0?1:p[0],d=v.getArrayFromDType("int32",c+1);d[0]=0;for(let g=0;g<c;++g){let x=o?e[0]:e[g],y=l?n[0]:n[g],A=u?s[0]:s[g];if(A===0)throw new Error("Requires delta != 0");let b;if(A>0&&y<x||A<0&&y>x)b=0;else if(b=Math.ceil(Math.abs((y-x)/A)),b>nx)throw new Error(`Requires ((limit - start) / delta) <= ${nx}`);d[g+1]=d[g]+b}let h=d[c],f=v.getArrayFromDType(a,h),m=0;for(let g=0;g<c;++g){let x=d[g+1]-d[g],y=o?e[0]:e[g],A=u?s[0]:s[g];for(let b=0;b<x;++b)f[m++]=y,y+=A}return[d,f]}var vn=T.RowPartitionType,m2=class{constructor(e,t,a,n,r,s,i,o,l,u){this.shape=e,this.shapeShape=t,this.values=a,this.valuesShape=n,this.valuesDType=r,this.defaultValue=s,this.defaultValueShape=i,this.rowPartitionValues=o,this.rowPartitionValuesShapes=l,this.rowPartitionTypes=T.getRowPartitionTypesHelper(u),this.raggedRank=T.getRaggedRank(this.rowPartitionTypes)}getRowPartitionTypeByDimension(e){return this.rowPartitionTypes[0]===vn.FIRST_DIM_SIZE?this.rowPartitionTypes[e+1]:this.rowPartitionTypes[e]}getRowPartitionTensor(e){return this.rowPartitionTypes[0]===vn.FIRST_DIM_SIZE?this.rowPartitionValues[e+1]:this.rowPartitionValues[e]}getMaxWidth(e){let t=this.getRowPartitionTensor(e-1);switch(this.getRowPartitionTypeByDimension(e-1)){case vn.VALUE_ROWIDS:return m2.getMaxWidthValueRowID(t);case vn.ROW_SPLITS:return m2.getMaxWidthRowSplit(t);default:throw new Error(`Cannot handle partition type ${vn[this.getRowPartitionTypeByDimension(e-1)]}`)}}static getMaxWidthRowSplit(e){let t=e.length;if(t===0||t===1)return 0;let a=0;for(let n=0;n<t-1;++n){let r=e[n+1]-e[n];r>a&&(a=r)}return a}static getMaxWidthValueRowID(e){let t=e.length;if(t===0)return 0;let a=0,n=e[0],r=0;for(let s=1;s<t;++s){let i=e[s];i!==n&&(n=i,r=Math.max(s-a,r),a=s)}return Math.max(t-a,r)}tensorShapeFromTensor(e,t,a=!0){if(t.length===0){if(e[0]===-1)return[];throw new Error("The only valid scalar shape tensor is the fully unknown shape specified as -1.")}return sx(e,a)}calculateOutputSize(e){let t=this.valuesShape,a=this.defaultValueShape;T.validateDefaultValueShape(a,t);let n=this.tensorShapeFromTensor(this.shape,this.shapeShape),r=T.combineRaggedTensorToTensorShapes(this.raggedRank,n,t);r[0]<0&&(r[0]=e);for(let s=1;s<=this.raggedRank;++s)r[s]<0&&(r[s]=this.getMaxWidth(s));return r}calculateFirstParentOutputIndex(e,t,a){let n=Math.min(e,a),r=[],s=0;for(let i=0;i<n;++i,s+=t)r.push(s);for(let i=n;i<e;++i)r.push(-1);return v.assert(r.length===e,()=>"Final length of result must be equal to firstDimension."),r}calculateOutputIndexRowSplit(e,t,a,n){let r=e.length,s=[];for(let i=0;i<r-1;++i){let o=e[i+1]-e[i],l=Math.min(n,o),u=t[i];u===-1&&(l=0);for(let p=0;p<l;++p)s.push(u),u+=a;for(let p=0;p<o-l;++p)s.push(-1)}if(r>0&&s.length!==e[r-1])throw new Error("Invalid row split size.");return s}calculateOutputIndexValueRowID(e,t,a,n){let r=e.length,s=[];if(r===0)return[];let i=0,o=e[0];if(o>=t.length)throw new Error(`Got currentValueRowId=${o}, which is not less than ${t.length}`);let l=t[o];s.push(l);for(let u=1;u<r;++u){let p=e[u];if(p===o)l>=0&&(++i,i<n?l+=a:l=-1);else{if(i=0,o=p,p>=t.length)throw new Error(`Got nextValueRowId=${p} which is not less than ${t.length}`);l=t[p]}s.push(l)}if(s.length!==e.length)throw new Error("Invalid row ids.");return s}calculateOutputIndex(e,t,a,n){let r=this.getRowPartitionTensor(e),s=this.getRowPartitionTypeByDimension(e);switch(s){case vn.VALUE_ROWIDS:return this.calculateOutputIndexValueRowID(r,t,a,n);case vn.ROW_SPLITS:if(r.length-1>t.length)throw new Error(`Row partition size is greater than output size: ${r.length-1} > ${t.length}`);return this.calculateOutputIndexRowSplit(r,t,a,n);default:throw new Error(`Unsupported partition type: ${vn[s]}`)}}getFirstDimensionSize(){let e=this.rowPartitionValues[0];if(this.rowPartitionTypes.length===0)throw new Error("No row_partition_types given.");let t=this.rowPartitionTypes[0];switch(t){case vn.FIRST_DIM_SIZE:return e[0];case vn.VALUE_ROWIDS:throw new Error("Cannot handle VALUE_ROWIDS in first dimension.");case vn.ROW_SPLITS:return this.rowPartitionValuesShapes[0][0]-1;default:throw new Error(`Cannot handle type ${vn[t]}`)}}compute(){if(this.rowPartitionValues[0].length<=0)throw new Error("Invalid first partition input. Tensor requires at least one element.");let e=this.getFirstDimensionSize(),t=this.calculateOutputSize(e),a=new Array(this.raggedRank+1);a[a.length-1]=1;for(let s=a.length-2;s>=0;--s)a[s]=a[s+1]*t[s+1];let n=sx(t,!1),r=v.getArrayFromDType(this.valuesDType,v.sizeFromShape(n));if(a[0]*t[0]>0){let s=this.calculateFirstParentOutputIndex(e,a[0],t[0]);for(let i=1;i<=this.raggedRank;++i)s=this.calculateOutputIndex(i-1,s,a[i],t[i]);this.setOutput(this.raggedRank,s,r,n)}return[n,r]}setOutput(e,t,a,n){if(a.length===0)return;let r=this.values,s=a,i=n.slice();i=i.slice(e+1);let o=v.sizeFromShape(i),l=t.length,u=this.defaultValue;if(u.length!==o&&u.length!==1){let h=this.defaultValueShape;Fe(()=>{let f=J(u,h);u=rl(f,i).dataSync()})}let p=0,c=0,d=0;for(let h=0;h<=l;++h){let f=h<l?t[h]:-1;if(f===d){++d;continue}if(c<d){let m=r.subarray(p*o),g=s.subarray(c*o),x=(d-c)*o;rx(g,m,x)}if(h>=l){let m=a.length;f=Math.floor(m/o)}if(f>d)if(this.defaultValue.length===1)s.subarray(d*o,f*o).fill(this.defaultValue[0]),d=f;else for(;f>d;){let m=s.slice(d*o);rx(m,u,o),++d}f<0?(p=h+1,c=d):(p=h,c=d,d=c+1)}}};function rx(e,t,a){for(let n=0;n<a;n++)e[n]=t[n]}function sx(e,t){let a=[];for(let n of e){if(n<0){if(!t)throw new Error(`Dimension ${n} must be >= 0`);if(n<-1)throw new Error(`Dimension ${n} must be >= -1`);n=-1}a.push(n)}return a}function g7(e,t,a,n,r,s,i,o,l,u){return new m2(e,t,a,n,r,s,i,o,l,u).compute()}function p3(e,t,a,n){let r=e===t,s=e<t&&a<0,i=t<e&&a>1;if(r||s||i)return v.makeZerosTypedArray(0,n);let o=Math.abs(Math.ceil((t-e)/a)),l=v.makeZerosTypedArray(o,n);t<e&&a===1&&(a=-1),l[0]=e;for(let u=1;u<l.length;u++)l[u]=l[u-1]+a;return l}var x7=ls(e=>1/Math.sqrt(e)),yO=ou(to,x7),AO={kernelName:to,backendName:"cpu",kernelFunc:yO};function el(e,t,a,n,r,s,i,o,l,u){let p=[n/r,r],c=e.values,d=t.values;if(n===0)return _e(a,t.dtype);let h=_e(p,t.dtype);typeof l=="string"||typeof l=="number"?h.values.fill(l):typeof l=="boolean"&&h.values.fill(+l);for(let f=0;f<s;f++){let m=[],g=0;for(let x=0;x<i;x++){let y=c[f*i+x];m.push(y),g+=y*o[x]}if(g<0||g>=n/r)throw new Error(`Invalid indices: ${m} does not index into ${a}`);for(let x=0;x<r;x++)u?h.values[g*r+x]+=d[f*r+x]:h.values[g*r+x]=t.rank===0?d[0]:d[f*r+x]}return h}var bO=ls(e=>1/(1+Math.exp(-e))),y7=ot(ro,e=>1/(1+Math.exp(-e))),vO={kernelName:ro,backendName:"cpu",kernelFunc:y7};function Oc(e,t,a,n,r){let s=St.isSliceContinous(n,t,a),i=v.sizeFromShape(a),o=v.computeStrides(n);if(s){let c=St.computeFlatOffset(t,o);return r==="string"?e.slice(c,c+i):e.subarray(c,c+i)}let l=r==="string"?T.fromUint8ToStringArray(e):e,u=_e(n,r,l),p=_e(a,r);for(let c=0;c<p.size;++c){let d=p.indexToLoc(c),h=d.map((f,m)=>f+t[m]);p.set(u.get(...h),...d)}return r==="string"?T.fromStringArrayToUint8(p.values):p.values}function Gs(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{begin:s,size:i}=n;Ae(r,"slice");let[o,l]=St.parseSliceParams(r,s,i);St.assertParamsValid(r,o,l);let u=a.data.get(r.dataId).values,p=Oc(u,o,l,r.shape,r.dtype);return a.makeTensorInfo(l,r.dtype,p)}var kO={kernelName:Xl,backendName:"cpu",kernelFunc:Gs};function A7(e,t,a,n,r,s,i){let o=t[0],l=s[0],u=new Array(l),p=new Array(o),c=t[1];if(l===0){if(o!==0)throw new Error(T.getSparseFillEmptyRowsIndicesDenseShapeMismatch(o));let g=v.getArrayFromDType(a,0),x=v.getArrayFromDType(r,0);return[g,[0,c],x,u,p]}let d=!0,h=0,f=new Array(l).fill(0);for(let g=0;g<o;++g){let x=e[g*c];if(x<0)throw new Error(T.getSparseFillEmptyRowsNegativeIndexErrorMessage(g,x));if(x>=l)throw new Error(T.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(g,x,l));++f[x],d=d&&x>=h,h=x}let m=!0;for(let g=0;g<l;++g){let x=f[g]===0;u[g]=x,m=m&&!x,f[g]=Math.max(f[g],1),g>0&&(f[g]+=f[g-1])}if(m&&d){let g=e,x=n;for(let y=0;y<o;++y)p[y]=y;return[g,[o,c],x,u,p]}else{let g=f[l-1],x=v.getArrayFromDType(a,g*c),y=v.getArrayFromDType(r,g),A=new Array(l).fill(0);for(let b=0;b<o;++b){let k=e[b*c],S=A[k],C=(k===0?0:f[k-1])+S;A[k]++;for(let E=0;E<c;++E)x[C*c+E]=e[b*c+E];y[C]=n[b],p[b]=C}for(let b=0;b<l;++b)if(A[b]===0){let k=b===0?0:f[b-1];x[k*c+0]=b;for(let S=1;S<c;++S)x[k*c+S]=0;y[k]=i}return[x,[g,c],y,u,p]}}function b7(e,t,a,n,r){let s=v.sizeFromShape(n),i=t[0],o=r.length,l=[],u=1,p=-1;for(let m=0;m<o;++m){let g=r[m];if(g===-1){if(p!==-1)throw new Error(T.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(p,m));p=m,l.push(1)}else{if(g<0)throw new Error(T.getSparseReshapeNegativeOutputDimErrorMessage(m,g));u*=g,l.push(g)}}if(p!==-1){if(u<=0)throw new Error(T.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage());let m=Math.trunc(s/u);if(u*m!==s)throw new Error(T.getSparseReshapeInputOutputMultipleErrorMessage(n,l));l[p]=m}if(v.sizeFromShape(l)!==s)throw new Error(T.getSparseReshapeInputOutputMismatchErrorMessage(n,l));let c=n.length,d=[];if(c>0){d[c-1]=1;for(let m=c-2;m>=0;--m)d[m]=d[m+1]*n[m+1]}let h=[];if(o>0){h[o-1]=1;for(let m=o-2;m>=0;--m)h[m]=h[m+1]*l[m+1]}let f=v.getArrayFromDType(a,i*o);for(let m=0;m<i;++m){let g=0;for(let x=0;x<c;++x)g+=e[m*c+x]*d[x];for(let x=0;x<o;++x)f[m*o+x]=Math.trunc(g/h[x]),g%=h[x]}return[f,[i,o],l]}function c3(e,t,a,n,r,s=!1,i=0){let o=n.length,l=[t[0],e.length/t[0]],u=l[1],p=o>0?r[o-1]+1:0;if(p<0)throw new Error(T.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let c=t.slice();c[0]=p;let d=c.reduce((y,A)=>y*A,1),h=v.getArrayFromDType(a,d);if(o===0)return p>0&&h.fill(i),[h,c];if(p<=0)throw new Error(T.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let f=0,m=1,g=0,x=r[f];for(;;){let y=0;if(m<o){if(y=r[m],x===y){++m;continue}if(x>=y)throw new Error(T.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage())}if(x<0||x>=p)throw new Error(T.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(x,p));x>g&&h.fill(i,g*u,x*u);for(let A=f;A<m;++A){let b=n[A];if(b<0||b>=l[0])throw new Error(T.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(A,n[A],l[0]));for(let k=0;k<u;k++)h[x*u+k]+=e[b*u+k]}if(s)for(let A=0;A<u;A++)h[x*u+A]/=m-f;if(f=m,++m,g=x+1,x=y,m>o)break}return g<p&&h.fill(i,g*u,p*u),[h,c]}var wO=ls(e=>Math.sqrt(e)),IO=ot(so,e=>Math.sqrt(e)),SO={kernelName:so,backendName:"cpu",kernelFunc:IO},v7=Lt((e,t)=>{let a=e-t;return a*a}),TO=Yt(lo,v7),CO={kernelName:lo,backendName:"cpu",kernelFunc:TO};function k7(e,t,a,n){let r=_e(e,t.dtype);for(let s=0;s<r.size;s++){let i=r.indexToLoc(s),o=new Array(i.length);for(let l=0;l<o.length;l++)o[l]=i[l]*a[l]+n[l];r.set(t.get(...o),...i)}return r}var NO=class{constructor(e,t,a,n,r,s){this.separator=v.encodeString(e),this.nGramWidths=t,this.leftPad=v.encodeString(a),this.rightPad=v.encodeString(n),this.padWidth=r,this.preserveShort=s}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let a=this.getPadWidth(t);return Math.max(0,e+2*a-t+1)}createNGrams(e,t,a,n,r,s){for(let i=0;i<r;++i){let o=this.getPadWidth(s),l=Math.max(0,o-i),u=Math.max(0,o-(r-(i+1))),p=s-(l+u),c=t+(l>0?0:i-o),d=0;d+=l*this.leftPad.length;for(let x=0;x<p;++x)d+=e[c+x].length;d+=u*this.rightPad.length;let h=l+u+p-1;d+=h*this.separator.length,a[n+i]=new Uint8Array(d);let f=a[n+i],m=0,g=x=>x.forEach(y=>f[m++]=y);for(let x=0;x<l;++x)g(this.leftPad),g(this.separator);for(let x=0;x<p-1;++x)g(e[c+x]),g(this.separator);if(p>0){g(e[c+p-1]);for(let x=0;x<u;++x)g(this.separator),g(this.rightPad)}else{for(let x=0;x<u-1;++x)g(this.rightPad),g(this.separator);g(this.rightPad)}}}compute(e,t){let a=e.length,n=t.length;if(n>0){let o=t[0];if(o!==0)throw new Error(`First split value must be 0, got ${o}`);for(let l=1;l<n;++l){let u=t[l]>=o;if(u=u&&t[l]<=a,!u)throw new Error(`Invalid split value ${t[l]}, must be in [${o}, ${a}]`);o=t[l]}if(o!==a)throw new Error(`Last split value must be data size. Expected ${a}, got ${o}`)}let r=n-1,s=v.getArrayFromDType("int32",n);if(a===0||n===0){let o=new Array(a);for(let l=0;l<=r;++l)s[l]=0;return[o,s]}s[0]=0;for(let o=1;o<=r;++o){let l=t[o]-t[o-1],u=0;this.nGramWidths.forEach(p=>{u+=this.getNumNGrams(l,p)}),this.preserveShort&&l>0&&u===0&&(u=1),s[o]=s[o-1]+u}let i=new Array(s[r]);for(let o=0;o<r;++o){let l=t[o],u=s[o];if(this.nGramWidths.forEach(p=>{let c=t[o+1]-t[o],d=this.getNumNGrams(c,p);this.createNGrams(e,l,i,u,d,p),u+=d}),this.preserveShort&&u===s[o]){let p=t[o+1]-t[o];if(p===0)continue;let c=p+2*this.padWidth,d=1;this.createNGrams(e,l,i,u,d,c)}}return[i,s]}};function h3(e,t,a,n,r,s,i,o){return new NO(a,n,r,s,i,o).compute(e,t)}function EO(e,t,a,n){if(!e.length)return;if(t.length===0){for(let s=0;s<e.length;++s)n.push(e.subarray(s,s+1));return}if(t.length===1){let s=t[0],i=e.indexOf(s);for(;i!==-1;){let o=e.subarray(0,i);(!a||o.length!==0)&&n.push(o),e=e.subarray(i+1),i=e.indexOf(s)}(!a||e.length!==0)&&n.push(e);return}let r=0;for(let s=0;s<e.length+1;s++)if(s===e.length||t.indexOf(e[s])!==-1){let i=e.subarray(r,s);(!a||i.length!==0)&&n.push(i),r=s+1}}function f3(e,t,a){let n=e.length,r=[],s=0,i=0,o=new Array(n);for(let d=0;d<n;++d){let h=r.length;EO(e[d],t,a,r);let f=r.length-h;o[d]=f,s+=f,i=Math.max(i,f)}let l=v.getArrayFromDType("int32",s*2),u=new Array(s),p=[n,i],c=0;for(let d=0;d<n;++d)for(let h=0;h<o[d];++h)l[c*2]=d,l[c*2+1]=h,u[c]=r[c],++c;return[l,u,p]}function m3(e,t){let a=v.getArrayFromDType("int32",e.length);for(let n=0;n<e.length;++n)a[n]=v.fingerPrint64(e[n]).modulo(t).getLowBitsUnsigned();return a}var w7=Lt((e,t)=>e-t),RO=i3((e,t,a,n)=>({real:e-a,imag:t-n})),g3=Yt(po,w7,RO),MO={kernelName:po,backendName:"cpu",kernelFunc:g3};function I7(e,t){let a=new Array(e.rank);for(let r=0;r<a.length;r++)a[r]=e.shape[r]*t[r];let n=_e(a,e.dtype);for(let r=0;r<n.values.length;++r){let s=n.indexToLoc(r),i=new Array(e.rank);for(let l=0;l<i.length;l++)i[l]=s[l]%e.shape[l];let o=e.locToIndex(i);n.values[r]=e.values[o]}return n}var Hu=(e,t)=>{let a=t.value-e.value;return a===0?e.index-t.index:a};function S7(e,t,a=0,n=e.length-1){for(;n>a;){if(n-a>600){let o=n-a+1,l=t-a+1,u=Math.log(o),p=.5*Math.exp(2*u/3),c=.5*Math.sqrt(u*p*(o-p)/o)*Math.sign(l-o/2),d=Math.max(a,Math.floor(t-l*p/o+c)),h=Math.min(n,Math.floor(t+(o-l)*p/o+c));S7(e,t,d,h)}let r=e[t],s=a,i=n;for(v.swap(e,a,t),Hu(e[n],r)>0&&v.swap(e,a,n);s<i;){for(v.swap(e,s,i),s++,i--;Hu(e[s],r)<0;)s=s+1;for(;Hu(e[i],r)>0;)i=i-1}Hu(e[a],r)===0?v.swap(e,a,i):(i=i+1,v.swap(e,i,n)),i<=t&&(a=i+1),t<=i&&(n=i-1)}}function T7(e,t,a,n,r){let s=t[t.length-1],[i,o]=[e.length/s,s],l=v.getTypedArrayFromDType(a,i*n),u=v.getTypedArrayFromDType("int32",i*n);for(let c=0;c<i;c++){let d=c*o,h=e.subarray(d,d+o),f=new Array(h.length);h.forEach((y,A)=>f[A]={value:y,index:A}),n<f.length&&(S7(f,n),f=f.slice(0,n)),r&&f.sort(Hu);let m=c*n,g=l.subarray(m,m+n),x=u.subarray(m,m+n);for(let y=0;y<n;y++)g[y]=f[y].value,x[y]=f[y].index}let p=t.slice();return p[p.length-1]=n,[_e(p,a,l),_e(p,"int32",u)]}function C7(e,t,a,n){let r=v.parseAxisParam(t,a)[0],s=[1,a[0],1];for(let f=0;f<r;f++)s[0]*=a[f];s[1]=a[r];for(let f=r+1;f<a.length;f++)s[2]*=a[f];let i={},o=new Int32Array(a[r]),l=new jt(s,n,e),u=[],p=s[0]===1&&s[2]===1;for(let f=0;f<a[r];f++){let m;if(p)m=e[f].toString();else{let g=[];for(let x=0;x<s[0];x++)for(let y=0;y<s[2];y++)g.push(l.get(x,f,y));m=g.join(",")}if(i[m]!==void 0)o[f]=i[m];else{let g=Object.keys(i).length;i[m]=g,o[f]=g,u.push(f)}}let c=s.slice();c[1]=Object.keys(i).length;let d=new jt(c,n);u.forEach((f,m)=>{for(let g=0;g<s[0];g++)for(let x=0;x<s[2];x++)d.set(l.get(g,f,x),g,m,x)});let h=a.slice();return h[r]=c[1],{outputValues:d.values,outputShape:h,indices:o}}var $O="4.2.0";xo("cpu",()=>new Ch,1);var N7=ot(hi,e=>e>=0?e:Math.exp(e)-1),_O={kernelName:hi,backendName:"cpu",kernelFunc:N7};function E7(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{alpha:s}=n;Ae([r],"leakyRelu");let i=v.sizeFromShape(r.shape),o=a.data.get(r.dataId).values,l=v.getTypedArrayFromDType("float32",i);for(let u=0;u<o.length;u++)l[u]=o[u]<0?s*o[u]:o[u];return a.makeTensorInfo(r.shape,"float32",l)}var PO={kernelName:Si,backendName:"cpu",kernelFunc:E7},FO=Lt((e,t)=>e<0?t*e:e);function R7(e){let{inputs:t,backend:a}=e,{x:n,alpha:r}=t;Ae([n,r],"prelu");let s=a.data.get(n.dataId).values,i=a.data.get(r.dataId).values,[o,l]=FO(n.shape,r.shape,s,i,"float32");return a.makeTensorInfo(l,"float32",o)}var OO={kernelName:ji,backendName:"cpu",kernelFunc:R7},M7=ot(Ki,e=>Math.max(0,e)),DO={kernelName:Ki,backendName:"cpu",kernelFunc:M7},$7=ot(Ji,e=>Math.min(Math.max(0,e),6)),zO={kernelName:Ji,backendName:"cpu",kernelFunc:$7};function Dc(e,t,a,n,r){if(a==="linear")return er({inputs:{x:t},backend:e});if(a==="relu")return M7({inputs:{x:t},backend:e});if(a==="elu")return N7({inputs:{x:t},backend:e});if(a==="relu6")return $7({inputs:{x:t},backend:e});if(a==="prelu")return R7({inputs:{x:t,alpha:n},backend:e});if(a==="leakyrelu")return E7({inputs:{x:t},backend:e,attrs:{alpha:r}});if(a==="sigmoid")return y7({inputs:{x:t},backend:e});throw new Error(`Activation ${a} has not been implemented for the CPU backend.`)}function mt(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{shape:s}=n,i=v.sizeFromShape(r.shape),o=v.inferFromImplicitShape(s,i),l=v.sizeFromShape(o);v.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),a.incRef(r.dataId);let u=a.data.get(r.dataId);if(u.complexTensorInfos!=null){let p=u.complexTensorInfos.real,c=u.complexTensorInfos.imag;p.shape=o,c.shape=o}return{dataId:r.dataId,shape:o,dtype:r.dtype}}var LO={kernelName:Hl,backendName:"cpu",kernelFunc:mt};function _7(e){let{inputs:t,backend:a,attrs:n}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=n;Ae([r,s],"matMul");let l=r.shape.length,u=s.shape.length,p=i?r.shape[l-2]:r.shape[l-1],c=o?s.shape[u-1]:s.shape[u-2],d=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[u-2]:s.shape[u-1],f=r.shape.slice(0,-2),m=s.shape.slice(0,-2),g=v.sizeFromShape(f),x=v.sizeFromShape(m),y=yo.assertAndGetBroadcastShape(r.shape.slice(0,-2),s.shape.slice(0,-2)).concat([d,h]);v.assert(p===c,()=>`Error in matMul: inner shapes (${p}) and (${c}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let A=i?[g,p,d]:[g,d,p],b=o?[x,h,c]:[x,c,h],k=mt({inputs:{x:r},backend:a,attrs:{shape:A}}),S=mt({inputs:{x:s},backend:a,attrs:{shape:b}}),C=i?k.shape[1]:k.shape[2],E=i?k.shape[2]:k.shape[1],_=o?S.shape[1]:S.shape[2],$=Math.max(g,x),M=a.data.get(k.dataId).values,I=a.data.get(S.dataId).values,N=v.computeStrides(k.shape),O=v.computeStrides(S.shape),[L,W,G]=i?[N[0],1,N[1]]:[N[0],N[1],1],[H,U,j]=o?[1,O[1],O[0]]:[O[1],1,O[0]],V=E*_,Q=_e([$,E,_],k.dtype),Z=Q.values,re=a.blockSize;for(let ee=0;ee<$;ee++){let fe=ee%g,ie=ee%x;for(let ye=0;ye<E;ye+=re){let Se=Math.min(ye+re,E);for(let Ee=0;Ee<_;Ee+=re){let je=Math.min(Ee+re,_);for(let Ze=0;Ze<C;Ze+=re){let dt=Math.min(Ze+re,C);for(let st=ye;st<Se;st++)for(let tt=Ee;tt<je;tt++){let at=0;for(let Ue=Ze;Ue<dt;Ue++){let ht=M[fe*L+st*W+Ue*G],Va=I[Ue*H+tt*U+ie*j];at+=ht*Va}Z[ee*V+(st*_+tt)]+=at}}}}}return a.disposeIntermediateTensorInfo(k),a.disposeIntermediateTensorInfo(S),a.makeTensorInfo(y,Q.dtype,Q.values)}var BO={kernelName:ei,backendName:"cpu",kernelFunc:_7};function WO(e){let{inputs:t,backend:a,attrs:n}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:p,leakyreluAlpha:c}=n,d,h,f,m=[];d=_7({inputs:{a:r,b:s},attrs:{transposeA:l,transposeB:u},backend:a}),i&&(h=fl({inputs:{a:d,b:i},backend:a}),m.push(d),d=h),p&&(f=Dc(a,d,p,o,c),m.push(d),d=f);for(let g of m)a.disposeIntermediateTensorInfo(g);return d}var VO={kernelName:jr,backendName:"cpu",kernelFunc:WO},UO=ot(kl,e=>Math.acos(e)),GO={kernelName:kl,backendName:"cpu",kernelFunc:UO},HO=ot(wl,e=>Math.acosh(e)),jO={kernelName:wl,backendName:"cpu",kernelFunc:HO};function qO(e){let{inputs:t,backend:a}=e,n=t;Ae(t,"addN");let r=n.map(o=>a.data.get(o.dataId).values),s=_e(n[0].shape,n[0].dtype),i=s.values;for(let o=0;o<n.length;o++){let l=r[o];for(let u=0;u<i.length;u++)i[u]+=l[u]}return a.makeTensorInfo(s.shape,s.dtype,s.values)}var XO={kernelName:Ks,backendName:"cpu",kernelFunc:qO};function KO(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s,keepDims:i}=n;Ae(r,"all");let o=v.parseAxisParam(s,r.shape),l=o,u=T.getAxesPermutation(l,r.shape.length),p=r;u!=null&&(p=La({inputs:{x:r},backend:a,attrs:{perm:u}}),l=T.getInnerMostAxes(l.length,r.shape.length)),T.assertAxesAreInnerMostDims("all",l,p.shape.length);let[c,d]=T.computeOutAndReduceShapes(p.shape,l),h=v.sizeFromShape(d),f=v.makeZerosTypedArray(v.sizeFromShape(c),p.dtype),m=a.data.get(p.dataId).values;for(let x=0;x<f.length;++x){let y=x*h,A=m[y];for(let b=0;b<h;++b){let k=m[y+b];A=A&&k}f[x]=A}u!=null&&a.disposeIntermediateTensorInfo(p);let g=a.makeTensorInfo(c,p.dtype,f);if(i){let x=T.expandShapeToKeepDim(c,o),y=mt({inputs:{x:g},backend:a,attrs:{shape:x}});return a.disposeIntermediateTensorInfo(g),y}return g}var ZO={kernelName:Zs,backendName:"cpu",kernelFunc:KO};function YO(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s,keepDims:i}=n;Ae(r,"any");let o=v.parseAxisParam(s,r.shape),l=o,u=T.getAxesPermutation(l,r.shape.length),p=r;u!=null&&(p=La({inputs:{x:r},backend:a,attrs:{perm:u}}),l=T.getInnerMostAxes(l.length,r.shape.length)),T.assertAxesAreInnerMostDims("any",l,p.shape.length);let[c,d]=T.computeOutAndReduceShapes(p.shape,l),h=v.sizeFromShape(d),f=v.makeZerosTypedArray(v.sizeFromShape(c),p.dtype),m=a.data.get(p.dataId).values;for(let x=0;x<f.length;++x){let y=x*h,A=m[y];for(let b=0;b<h;++b){let k=m[y+b];A=A||k}f[x]=A}u!=null&&a.disposeIntermediateTensorInfo(p);let g=a.makeTensorInfo(c,p.dtype,f);if(i){let x=T.expandShapeToKeepDim(c,o),y=mt({inputs:{x:g},backend:a,attrs:{shape:x}});return a.disposeIntermediateTensorInfo(g),y}return g}var JO={kernelName:Ys,backendName:"cpu",kernelFunc:YO};function QO(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s}=n;Ae(r,"argMax");let i=v.parseAxisParam(s,r.shape),o=T.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=La({inputs:{x:r},backend:a,attrs:{perm:o}}),u.push(l),i=T.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],T.assertAxesAreInnerMostDims("argMax",i,l.shape.length);let[p,c]=T.computeOutAndReduceShapes(l.shape,i),d=v.sizeFromShape(p),h=v.makeZerosTypedArray(d,"int32"),f=v.sizeFromShape(c),m=a.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let x=g*f,y=m[x],A=0;for(let b=0;b<f;++b){let k=m[x+b];k>y&&(y=k,A=b)}h[g]=A}return u.forEach(g=>a.disposeIntermediateTensorInfo(g)),a.makeTensorInfo(p,"int32",h)}var eD={kernelName:Js,backendName:"cpu",kernelFunc:QO};function tD(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s}=n;Ae(r,"argMin");let i=v.parseAxisParam(s,r.shape),o=T.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=La({inputs:{x:r},backend:a,attrs:{perm:o}}),u.push(l),i=T.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],T.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[p,c]=T.computeOutAndReduceShapes(l.shape,i),d=v.sizeFromShape(p),h=v.makeZerosTypedArray(d,"int32"),f=v.sizeFromShape(c),m=a.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let x=g*f,y=m[x],A=0;for(let b=0;b<f;++b){let k=m[x+b];k<y&&(y=k,A=b)}h[g]=A}return u.forEach(g=>a.disposeIntermediateTensorInfo(g)),a.makeTensorInfo(p,"int32",h)}var aD={kernelName:Sd,backendName:"cpu",kernelFunc:tD},nD=ot(Il,e=>Math.asin(e)),rD={kernelName:Il,backendName:"cpu",kernelFunc:nD},sD=ot(Sl,e=>Math.asinh(e)),iD={kernelName:Sl,backendName:"cpu",kernelFunc:sD},oD=ot(Tl,e=>Math.atan(e)),lD={kernelName:Tl,backendName:"cpu",kernelFunc:oD},uD=Lt((e,t)=>Math.atan2(e,t)),dD=Yt(Nl,uD),pD={kernelName:Nl,backendName:"cpu",kernelFunc:dD},cD=ot(Cl,e=>Math.atanh(e)),hD={kernelName:Cl,backendName:"cpu",kernelFunc:cD};function x3(e,t,a,n,r,s){let i=r.strideHeight,o=r.strideWidth,l=r.dilationHeight,u=r.dilationWidth,p=r.effectiveFilterHeight,c=r.effectiveFilterWidth,d=r.padInfo.top,h=r.padInfo.left,f=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=_e(r.outShape,a),g=m.values,x=r.outShape[1]*r.outShape[2]*r.outShape[3],y=r.outShape[2]*r.outShape[3],A=r.outShape[3];for(let b=0;b<r.batchSize;++b){let k=b*x,S=b*n[0];for(let C=0;C<r.inChannels;++C)for(let E=0;E<r.outHeight;++E){let _=E*i-d,$=Math.max(0,_),M=Math.min(r.inHeight,p+_),I=k+E*y;for(let N=0;N<r.outWidth;++N){let O=N*o-h,L=Math.max(0,O),W=Math.min(r.inWidth,c+O),G=f,H=0,U=0;for(let V=$;V<M;V+=l){let Q=S+V*n[1];for(let Z=L;Z<W;Z+=u){let re=Q+Z*n[2],ee=e[re+C];s==="max"&&ee>G?G=ee:s==="avg"&&(H+=ee,U++)}if(isNaN(G))break}let j=I+N*A+C;g[j]=s==="avg"?H/U:G}}}return m}function P7(e,t,a,n,r=!1,s=!1){let i=_e(n.outShape,"int32"),o=n.strideHeight,l=n.strideWidth,u=n.dilationHeight,p=n.dilationWidth,c=n.effectiveFilterHeight,d=n.effectiveFilterWidth,h=n.padInfo.top,f=n.padInfo.left,m=_e(t,a,e);for(let g=0;g<n.batchSize;++g)for(let x=0;x<n.inChannels;++x)for(let y=0;y<n.outHeight;++y){let A=y*o-h,b=A;for(;b<0;)b+=u;let k=Math.min(n.inHeight,c+A);for(let S=0;S<n.outWidth;++S){let C=S*l-f,E=C;for(;E<0;)E+=p;let _=Math.min(n.inWidth,d+C),$=Number.NEGATIVE_INFINITY,M=-1;for(let I=b;I<k;I+=u){let N=I-A;for(let O=E;O<_;O+=p){let L=O-C,W=m.get(g,I,O,x);W>$&&($=W,r?M=s?((g*n.inHeight+I)*n.inWidth+O)*n.inChannels+x:(I*n.inWidth+O)*n.inChannels+x:M=N*d+L)}}i.set(M,g,y,S,x)}}return i}function F7(e,t,a,n,r,s){let i=r.strideDepth,o=r.strideHeight,l=r.strideWidth,u=r.dilationDepth,p=r.dilationHeight,c=r.dilationWidth,d=r.effectiveFilterDepth,h=r.effectiveFilterHeight,f=r.effectiveFilterWidth,m=r.padInfo.front,g=r.padInfo.top,x=r.padInfo.left,y=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,A=_e(r.outShape,a),b=A.values,k=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],S=r.outShape[2]*r.outShape[3]*r.outShape[4],C=r.outShape[3]*r.outShape[4],E=r.outShape[4];for(let _=0;_<r.batchSize;++_){let $=_*k,M=_*n[0];for(let I=0;I<r.inChannels;++I)for(let N=0;N<r.outDepth;++N){let O=N*i-m,L=O;for(;L<0;)L+=u;let W=Math.min(r.inDepth,d+O),G=$+N*S;for(let H=0;H<r.outHeight;++H){let U=H*o-g,j=U;for(;j<0;)j+=p;let V=Math.min(r.inHeight,h+U),Q=G+H*C;for(let Z=0;Z<r.outWidth;++Z){let re=Z*l-x,ee=re;for(;ee<0;)ee+=c;let fe=Math.min(r.inWidth,f+re),ie=Q+Z*E,ye=y,Se=0,Ee=0;for(let Ze=L;Ze<W;Ze+=u){let dt=M+Ze*n[1];for(let st=j;st<V;st+=p){let tt=dt+st*n[2];for(let at=ee;at<fe;at+=c){let Ue=tt+at*n[3],ht=e[Ue+I];if(s==="max"&&ht>ye?ye=ht:s==="avg"&&(Se+=ht,Ee++),isNaN(ye))break}if(isNaN(ye))break}if(isNaN(ye))break}let je=ie+I;b[je]=s==="avg"?Se/Math.max(Ee,1):ye}}}}return A}function fD(e,t){let a=_e(t.outShape,"int32"),n=t.strideDepth,r=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,p=t.effectiveFilterHeight,c=t.effectiveFilterWidth,d=t.padInfo.front,h=t.padInfo.top,f=t.padInfo.left;for(let m=0;m<t.batchSize;++m)for(let g=0;g<t.inChannels;++g)for(let x=0;x<t.outDepth;++x){let y=x*n-d,A=y;for(;A<0;)A+=i;let b=Math.min(t.inDepth,u+y);for(let k=0;k<t.outHeight;++k){let S=k*r-h,C=S;for(;C<0;)C+=o;let E=Math.min(t.inHeight,p+S);for(let _=0;_<t.outWidth;++_){let $=_*s-f,M=$;for(;M<0;)M+=l;let I=Math.min(t.inWidth,c+$),N=Number.NEGATIVE_INFINITY,O=-1;for(let L=A;L<b;L+=i){let W=L-y;for(let G=C;G<E;G+=o){let H=G-S;for(let U=M;U<I;U+=l){let j=U-$,V=e.get(m,L,G,U,g);V>=N&&(N=V,O=W*p*c+H*p+j)}}}a.set(O,m,x,k,_,g)}}}return a}function mD(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t;Ae(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n,u=1;v.assert(T.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=T.computePool2DInfo(r.shape,s,i,u,o,l),c;if(p.filterWidth===1&&p.filterHeight===1&&v.arraysEqual(p.inShape,p.outShape))c=er({inputs:{x:r},backend:a});else{let d=a.data.get(r.dataId).values,h=v.computeStrides(r.shape),f=x3(d,r.shape,r.dtype,h,p,"avg");c=a.makeTensorInfo(p.outShape,r.dtype,f.values)}return c}var gD={kernelName:Qs,backendName:"cpu",kernelFunc:mD};function xD(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=n;Ae(r,"avgPool3d");let p=T.computePool3DInfo(r.shape,s,i,1,o,l,u),c=a.data.get(r.dataId).values,d=F7(c,r.shape,r.dtype,v.computeStrides(r.shape),p,"avg");return a.makeTensorInfo(d.shape,"float32",d.values)}var yD={kernelName:Zc,backendName:"cpu",kernelFunc:xD};function AD(e){let{inputs:t,backend:a,attrs:n}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n;Ae([r,s],"avgPool3DGrad");let p=T.computePool3DInfo(s.shape,i,o,1,l,u),c=p.strideDepth,d=p.strideHeight,h=p.strideWidth,f=p.filterDepth,m=p.filterHeight,g=p.filterWidth,x=p.dilationDepth,y=p.dilationHeight,A=p.dilationWidth,b=p.effectiveFilterDepth,k=p.effectiveFilterHeight,S=p.effectiveFilterWidth,C=b-1-p.padInfo.front,E=S-1-p.padInfo.left,_=k-1-p.padInfo.top,$=_e(s.shape,"float32"),M=1/(f*m*g),I=a.bufferSync(r);for(let N=0;N<p.batchSize;++N)for(let O=0;O<p.inChannels;++O)for(let L=0;L<p.inDepth;++L)for(let W=0;W<p.inHeight;++W)for(let G=0;G<p.inWidth;++G){let H=L-C,U=W-_,j=G-E,V=0;for(let Q=0;Q<b;Q+=x){let Z=(H+Q)/c;if(!(Z<0||Z>=p.outDepth||Math.floor(Z)!==Z))for(let re=0;re<k;re+=y){let ee=(U+re)/d;if(!(ee<0||ee>=p.outHeight||Math.floor(ee)!==ee))for(let fe=0;fe<S;fe+=A){let ie=(j+fe)/h;if(ie<0||ie>=p.outWidth||Math.floor(ie)!==ie)continue;let ye=I.get(N,Z,ee,ie,O);V+=ye}}}$.set(V*M,N,L,W,G,O)}return a.makeTensorInfo($.shape,$.dtype,$.values)}var bD={kernelName:L2,backendName:"cpu",kernelFunc:AD};function vD(e){let{inputs:t,backend:a,attrs:n}=e,{dy:r,input:s}=t,i=s;Ae([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=n,p=T.computePool2DInfo(i.shape,o,l,1,u),c=p.strideHeight,d=p.strideWidth,h=p.filterHeight,f=p.filterWidth,m=p.dilationHeight,g=p.dilationWidth,x=p.effectiveFilterHeight,y=p.effectiveFilterWidth,A=y-1-p.padInfo.left,b=x-1-p.padInfo.top,k=_e(i.shape,"float32"),S=1/(h*f),C=a.data.get(r.dataId).values,E=_e(r.shape,"float32",C);for(let _=0;_<p.batchSize;++_)for(let $=0;$<p.inChannels;++$)for(let M=0;M<p.inHeight;++M)for(let I=0;I<p.inWidth;++I){let N=M-b,O=I-A,L=0;for(let W=0;W<x;W+=m){let G=(N+W)/c;if(!(G<0||G>=p.outHeight||Math.floor(G)!==G))for(let H=0;H<y;H+=g){let U=(O+H)/d;if(U<0||U>=p.outWidth||Math.floor(U)!==U)continue;let j=E.get(_,G,U,$);L+=j}}k.set(L*S,_,M,I,$)}return a.makeTensorInfo(k.shape,k.dtype,k.values)}var kD={kernelName:Kc,backendName:"cpu",kernelFunc:vD};function wD(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,scale:s,offset:i,mean:o,variance:l}=t;v.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),Ae([r,o,l,s,i],"batchNorm");let{varianceEpsilon:u}=n;u==null&&(u=.001);let p=a.data.get(r.dataId).values,c=a.data.get(o.dataId).values,d=a.data.get(l.dataId).values,h=s?a.data.get(s.dataId).values:new Float32Array([1]),f=i?a.data.get(i.dataId).values:new Float32Array([0]),m=new Float32Array(p.length),g=f.length,x=h.length,y=d.length,A=c.length,b=0,k=0,S=0,C=0;for(let E=0;E<p.length;++E)m[E]=f[b++]+(p[E]-c[k++])*h[S++]/Math.sqrt(d[C++]+u),b>=g&&(b=0),k>=A&&(k=0),S>=x&&(S=0),C>=y&&(C=0);return a.makeTensorInfo(r.shape,r.dtype,m)}var ID={kernelName:Ai,backendName:"cpu",kernelFunc:wD};function SD(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{blockShape:s,crops:i}=n;Ae([r],"batchToSpaceND");let o=s.reduce((x,y)=>x*y),l=T.getReshaped(r.shape,s,o),u=T.getPermuted(l.length,s.length),p=T.getReshapedPermuted(r.shape,s,o),c=T.getSliceBeginCoords(i,s.length),d=T.getSliceSize(p,i,s.length),h=mt({inputs:{x:r},backend:a,attrs:{shape:l}}),f=La({inputs:{x:h},backend:a,attrs:{perm:u}}),m=mt({inputs:{x:f},backend:a,attrs:{shape:p}}),g=Gs({inputs:{x:m},backend:a,attrs:{begin:c,size:d}});return a.disposeIntermediateTensorInfo(h),a.disposeIntermediateTensorInfo(f),a.disposeIntermediateTensorInfo(m),g}var TD={kernelName:El,backendName:"cpu",kernelFunc:SD};function CD(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,weights:s}=t,{size:i}=n,o=a.data.get(r.dataId).values,l=a.data.get(s.dataId).values,u=o3(o,l,s.dtype,s.shape,i);return a.makeTensorInfo([i],s.dtype,u)}var ND={kernelName:Td,backendName:"cpu",kernelFunc:CD};function ED(e){let{inputs:t,backend:a}=e,{s0:n,s1:r}=t,s=a.data.get(n.dataId).values,i=a.data.get(r.dataId).values,o=T.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return a.makeTensorInfo([o.length],"int32",Int32Array.from(o))}var RD={kernelName:Yc,backendName:"cpu",kernelFunc:ED},MD=ot(ns,(e,t)=>{let a=t;return e>a.clipValueMax?a.clipValueMax:e<a.clipValueMin?a.clipValueMin:e}),$D={kernelName:ns,backendName:"cpu",kernelFunc:MD},_D=e=>{let{x:t}=e.inputs,a=e.backend,n=new Float32Array(v.sizeFromShape(t.shape)),r=a.data.get(t.dataId),s=r.complexTensorInfos.real,i=r.complexTensorInfos.imag,o=a.data.get(s.dataId).values,l=a.data.get(i.dataId).values;for(let u=0;u<o.length;u++){let p=o[u],c=l[u];n[u]=Math.hypot(p,c)}return a.makeOutput(n,t.shape,"float32")},PD={kernelName:Jc,backendName:"cpu",kernelFunc:_D};function ml(e){let{inputs:t,backend:a}=e,{input:n}=t,r=a.data.get(n.dataId).complexTensorInfos.imag,s=a.data.get(r.dataId).values;return a.makeTensorInfo(r.shape,r.dtype,s)}var FD={kernelName:Fd,backendName:"cpu",kernelFunc:ml};function gl(e){let{inputs:t,backend:a,attrs:n}=e,{axis:r}=n,s=v.parseAxisParam(r,t[0].shape)[0],i=t.map(m=>m.shape);T.assertParamsConsistent(i,s);let o=T.computeOutShape(t.map(m=>m.shape),s);if(v.sizeFromShape(o)===0)return a.makeTensorInfo(o,t[0].dtype,[]);let l=t.filter(m=>v.sizeFromShape(m.shape)>0);if(l.length===1)return er({inputs:{x:l[0]},backend:a});if(l[0].dtype==="complex64"){let m=l.map(b=>Us({inputs:{input:b},backend:a})),g=l.map(b=>ml({inputs:{input:b},backend:a})),x=gl({inputs:m,backend:a,attrs:{axis:s}}),y=gl({inputs:g,backend:a,attrs:{axis:s}}),A=Xa({inputs:{real:x,imag:y},backend:a});return m.forEach(b=>a.disposeIntermediateTensorInfo(b)),g.forEach(b=>a.disposeIntermediateTensorInfo(b)),a.disposeIntermediateTensorInfo(x),a.disposeIntermediateTensorInfo(y),A}let u=l.map(m=>{let g=[-1,v.sizeFromShape(m.shape.slice(s))];return mt({inputs:{x:m},backend:a,attrs:{shape:g}})}),p=u.map(m=>({vals:a.data.get(m.dataId).values,shape:m.shape}));o=T.computeOutShape(u.map(m=>m.shape),1);let c=u[0].shape[0]===1,d=l3(p,o,t[0].dtype,c),h=T.computeOutShape(l.map(m=>m.shape),s),f=a.makeTensorInfo(h,t[0].dtype,d);return u.forEach(m=>a.disposeIntermediateTensorInfo(m)),f}var OD={kernelName:Rl,backendName:"cpu",kernelFunc:gl};function O7(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:p}=n;Ae([r,s],"conv2d");let c=T.convertConv2DDataFormat(l),d=T.computeConv2DInfo(r.shape,s.shape,i,u,o,p,!1,c),h=d.filterHeight,f=d.filterWidth,m=d.dilationHeight,g=d.dilationWidth,x=d.padInfo.left,y=d.padInfo.top,A=d.dataFormat==="channelsLast",b=new jt(d.outShape,r.dtype),k=v.computeStrides(r.shape),S=v.computeStrides(s.shape),C=k[0],E=A?k[1]:k[2],_=A?k[2]:1,$=A?1:k[1],M=b.strides[0],I=A?b.strides[1]:b.strides[2],N=A?b.strides[2]:1,O=A?1:b.strides[1],L=a.data.get(r.dataId).values,W=a.data.get(s.dataId).values,G=b.values;for(let H=0;H<d.batchSize;++H){let U=H*C,j=H*M;for(let V=0;V<d.outHeight;++V){let Q=j+V*I,Z=V*d.strideHeight-y;for(let re=0;re<h;++re){let ee=Z+re*m;if(ee<0||ee>=d.inHeight)continue;let fe=re*S[0],ie=U+ee*E;for(let ye=0;ye<d.outWidth;++ye){let Se=Q+ye*N,Ee=ye*d.strideWidth-x;for(let je=0;je<f;++je){let Ze=Ee+je*g;if(Ze<0||Ze>=d.inWidth)continue;let dt=fe+je*S[1],st=ie+Ze*_,tt=dt;for(let at=0;at<d.inChannels;++at){let Ue=L[st+at*$];for(let ht=0;ht<d.outChannels;++ht)G[Se+ht*O]+=Ue*W[tt+ht];tt+=d.outChannels}}}}}}return a.makeTensorInfo(b.shape,b.dtype,G)}var DD={kernelName:ni,backendName:"cpu",kernelFunc:O7};function zD(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:p}=n;Ae([r,s],"conv2dBackpropFilter");let c=T.convertConv2DDataFormat(l),d=T.computeConv2DInfo(r.shape,p,i,1,o,u,!1,c),{strideHeight:h,strideWidth:f,filterHeight:m,filterWidth:g}=d,x=d.dataFormat==="channelsLast",y=new jt(d.filterShape,"float32"),A=d.padInfo.left,b=d.padInfo.top,k=a.data.get(r.dataId).values,S=a.data.get(s.dataId).values,C=new jt(r.shape,r.dtype,k),E=new jt(s.shape,s.dtype,S);for(let _=0;_<m;++_){let $=Math.max(0,Math.ceil((b-_)/h)),M=Math.min(d.outHeight,(d.inHeight+b-_)/h);for(let I=0;I<g;++I){let N=Math.max(0,Math.ceil((A-I)/f)),O=Math.min(d.outWidth,(d.inWidth+A-I)/f);for(let L=0;L<d.inChannels;++L)for(let W=0;W<d.outChannels;++W){let G=0;for(let H=0;H<d.batchSize;++H)for(let U=$;U<M;++U){let j=_+U*h-b;for(let V=N;V<O;++V){let Q=I+V*f-A;x?G+=C.get(H,j,Q,L)*E.get(H,U,V,W):G+=C.get(H,L,j,Q)*E.get(H,W,U,V)}}y.set(G,_,I,L,W)}}}return a.makeTensorInfo(y.shape,y.dtype,y.values)}var LD={kernelName:Nd,backendName:"cpu",kernelFunc:zD};function BD(e){let{inputs:t,backend:a,attrs:n}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:p}=n;Ae([r,s],"conv2dBackpropInput");let c=v.computeStrides(s.shape),d=v.computeStrides(r.shape),h=T.convertConv2DDataFormat(u),f=T.computeConv2DInfo(i,s.shape,o,1,l,p,!1,h),m=new jt(f.inShape,"float32"),g=m.values,x=a.data.get(r.dataId).values,y=a.data.get(s.dataId).values,[A,b,k]=c,{batchSize:S,filterHeight:C,filterWidth:E,inChannels:_,inHeight:$,inWidth:M,outChannels:I,outHeight:N,outWidth:O,strideHeight:L,strideWidth:W}=f;h=f.dataFormat;let G=C-1-f.padInfo.top,H=E-1-f.padInfo.left,U=h==="channelsLast",j=m.strides[0],V=U?m.strides[1]:m.strides[2],Q=U?m.strides[2]:1,Z=U?1:m.strides[1],re=d[0],ee=U?d[1]:d[2],fe=U?d[2]:1,ie=U?1:d[1];for(let ye=0;ye<S;++ye)for(let Se=0;Se<_;++Se)for(let Ee=0;Ee<$;++Ee){let je=Ee-G,Ze=Math.max(0,Math.ceil(je/L)),dt=Math.min(N,(C+je)/L);for(let st=0;st<M;++st){let tt=st-H,at=Math.max(0,Math.ceil(tt/W)),Ue=Math.min(O,(E+tt)/W),ht=0;for(let Ot=Ze;Ot<dt;++Ot){let sn=Ot*L-je;for(let na=at;na<Ue;++na){let $a=na*W-tt,on=re*ye+ee*Ot+fe*na,_a=A*(C-1-sn)+b*(E-1-$a)+k*Se;for(let ut=0;ut<I;++ut){let Pa=x[on+ie*ut],Ua=y[_a+ut];ht+=Pa*Ua}}}let Va=j*ye+V*Ee+Q*st+Z*Se;g[Va]=ht}}return a.makeTensorInfo(m.shape,m.dtype,m.values)}var WD={kernelName:ri,backendName:"cpu",kernelFunc:BD};function VD(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=n;Ae([r,s],"conv3d");let u=T.computeConv3DInfo(r.shape,s.shape,i,l,o),{filterDepth:p,filterHeight:c,filterWidth:d,dilationDepth:h,dilationHeight:f,dilationWidth:m,padInfo:g}=u,x=g.front,y=g.left,A=g.top,b=new jt(u.outShape,r.dtype),k=a.data.get(r.dataId).values,S=a.data.get(s.dataId).values,C=b.values,E=v.computeStrides(r.shape),_=v.computeStrides(s.shape);for(let $=0;$<u.batchSize;++$){let M=$*E[0],I=$*b.strides[0];for(let N=0;N<u.outDepth;++N){let O=I+N*b.strides[1],L=N*u.strideDepth-x;for(let W=0;W<p;++W){let G=L+W*h;if(G<0||G>=u.inDepth)continue;let H=W*_[0],U=M+G*E[1];for(let j=0;j<u.outHeight;++j){let V=O+j*b.strides[2],Q=j*u.strideHeight-A;for(let Z=0;Z<c;++Z){let re=Q+Z*f;if(re<0||re>=u.inHeight)continue;let ee=H+Z*_[1],fe=U+re*E[2];for(let ie=0;ie<u.outWidth;++ie){let ye=V+ie*u.outChannels,Se=ie*u.strideWidth-y;for(let Ee=0;Ee<d;++Ee){let je=Se+Ee*m;if(je<0||je>=u.inWidth)continue;let Ze=ee+Ee*_[2],dt=fe+je*u.inChannels,st=Ze;for(let tt=0;tt<u.inChannels;++tt){let at=k[dt+tt];for(let Ue=0;Ue<u.outChannels;++Ue)C[ye+Ue]+=at*S[st+Ue];st+=u.outChannels}}}}}}}}return a.makeTensorInfo(b.shape,b.dtype,b.values)}var UD={kernelName:Qc,backendName:"cpu",kernelFunc:VD};function GD(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=n;Ae([r,s],"conv3dBackpropFilterV2");let u=v.computeStrides(r.shape),p=v.computeStrides(s.shape),c=T.computeConv3DInfo(r.shape,l,i,1,o),d=c.strideDepth,h=c.strideHeight,f=c.strideWidth,m=c.filterDepth,g=c.filterHeight,x=c.filterWidth,y=new jt(c.filterShape,"float32"),A=y.values,[b,k,S,C]=y.strides,E=a.data.get(s.dataId).values,[_,$,M,I]=p,N=a.data.get(r.dataId).values,[O,L,W,G]=u,H=c.padInfo.front,U=c.padInfo.left,j=c.padInfo.top;for(let V=0;V<m;++V){let Q=Math.max(0,Math.ceil((H-V)/d)),Z=Math.min(c.outDepth,(c.inDepth+H-V)/d),re=V*b;for(let ee=0;ee<g;++ee){let fe=Math.max(0,Math.ceil((j-ee)/h)),ie=Math.min(c.outHeight,(c.inHeight+j-ee)/h),ye=ee*k+re;for(let Se=0;Se<x;++Se){let Ee=Math.max(0,Math.ceil((U-Se)/f)),je=Math.min(c.outWidth,(c.inWidth+U-Se)/f),Ze=Se*S+ye;for(let dt=0;dt<c.inChannels;++dt){let st=dt*C+Ze;for(let tt=0;tt<c.outChannels;++tt){let at=0;for(let Ue=0;Ue<c.batchSize;++Ue){let ht=Ue*O,Va=Ue*_;for(let Ot=Q;Ot<Z;++Ot){let sn=(V+Ot*d-H)*L+ht,na=Ot*$+Va;for(let $a=fe;$a<ie;++$a){let on=(ee+$a*h-j)*W+sn,_a=$a*M+na;for(let ut=Ee;ut<je;++ut){let Pa=(Se+ut*f-U)*G+on,Ua=ut*I+_a;at+=N[Pa+dt]*E[Ua+tt]}}}}A[st+tt]=at}}}}}return a.makeTensorInfo(y.shape,y.dtype,y.values)}var HD={kernelName:B2,backendName:"cpu",kernelFunc:GD};function jD(e){let{inputs:t,backend:a,attrs:n}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=n;Ae([r],"conv3dBackpropInputV2");let u=v.computeStrides(r.shape),p=v.computeStrides(s.shape),c=T.computeConv3DInfo(l,s.shape,o,1,i),d=new jt(c.inShape,"float32"),h=d.values,[f,m,g,x]=d.strides,y=a.data.get(r.dataId).values,[A,b,k,S]=u,C=a.data.get(s.dataId).values,[E,_,$,M]=p,{batchSize:I,filterDepth:N,filterHeight:O,filterWidth:L,inChannels:W,inDepth:G,inHeight:H,inWidth:U,outChannels:j,outDepth:V,outHeight:Q,outWidth:Z,strideDepth:re,strideHeight:ee,strideWidth:fe}=c,ie=N-1-c.padInfo.front,ye=O-1-c.padInfo.top,Se=L-1-c.padInfo.left;for(let Ee=0;Ee<I;++Ee)for(let je=0;je<W;++je)for(let Ze=0;Ze<G;++Ze){let dt=Ze-ie,st=Math.max(0,Math.ceil(dt/re)),tt=Math.min(V,(N+dt)/re);for(let at=0;at<H;++at){let Ue=at-ye,ht=Math.max(0,Math.ceil(Ue/ee)),Va=Math.min(Q,(O+Ue)/ee);for(let Ot=0;Ot<U;++Ot){let sn=Ot-Se,na=Math.max(0,Math.ceil(sn/fe)),$a=Math.min(Z,(L+sn)/fe),on=0;for(let _a=st;_a<tt;++_a){let ut=_a*re-dt;for(let Pa=ht;Pa<Va;++Pa){let Ua=Pa*ee-Ue;for(let ur=na;ur<$a;++ur){let Wo=ur*fe-sn,Un=A*Ee+b*_a+k*Pa+S*ur,_u=E*(N-1-ut)+_*(O-1-Ua)+$*(L-1-Wo)+M*je;for(let bn=0;bn<j;++bn){let _r=y[Un+bn],Xt=C[_u+bn];on+=_r*Xt}}}}h[f*Ee+m*Ze+g*at+x*Ot+je]=on}}}return a.makeTensorInfo(d.shape,d.dtype,d.values)}var qD={kernelName:eh,backendName:"cpu",kernelFunc:jD},XD=ot(si,e=>Math.cos(e)),KD={kernelName:si,backendName:"cpu",kernelFunc:XD},ZD=ot(ii,e=>Math.cosh(e)),YD={kernelName:ii,backendName:"cpu",kernelFunc:ZD};function JD(e){let{inputs:t,backend:a,attrs:n}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=n,[p,c,d,h]=r.shape,f=s.shape[0],[m,g]=o,x=_e([f,m,g,h],"float32"),y=a.data.get(s.dataId).values,A=a.data.get(i.dataId).values,b=a.data.get(r.dataId).values,k=v.computeStrides(r.shape),S=v.computeStrides(x.shape);for(let C=0;C<f;C++){let E=C*4,_=y[E],$=y[E+1],M=y[E+2],I=y[E+3],N=A[C];if(N>=p)continue;let O=m>1?(M-_)*(c-1)/(m-1):0,L=g>1?(I-$)*(d-1)/(g-1):0;for(let W=0;W<m;W++){let G=m>1?_*(c-1)+W*O:.5*(_+M)*(c-1);if(G<0||G>c-1){for(let H=0;H<g;H++)for(let U=0;U<h;U++){let j=U+H*S[2]+W*S[1]+C*S[0];x.values[j]=u}continue}if(l==="bilinear"){let H=Math.floor(G),U=Math.ceil(G),j=G-H;for(let V=0;V<g;V++){let Q=g>1?$*(d-1)+V*L:.5*($+I)*(d-1);if(Q<0||Q>d-1){for(let fe=0;fe<h;fe++){let ie=fe+V*S[2]+W*S[1]+C*S[0];x.values[ie]=u}continue}let Z=Math.floor(Q),re=Math.ceil(Q),ee=Q-Z;for(let fe=0;fe<h;fe++){let ie=fe+Z*k[2]+H*k[1]+N*k[0],ye=b[ie];ie=fe+re*k[2]+H*k[1]+N*k[0];let Se=b[ie];ie=fe+Z*k[2]+U*k[1]+N*k[0];let Ee=b[ie];ie=fe+re*k[2]+U*k[1]+N*k[0];let je=b[ie],Ze=ye+(Se-ye)*ee,dt=Ee+(je-Ee)*ee;ie=fe+V*S[2]+W*S[1]+C*S[0],x.values[ie]=Ze+(dt-Ze)*j}}}else for(let H=0;H<g;++H){let U=g>1?$*(d-1)+H*L:.5*($+I)*(d-1);if(U<0||U>d-1){for(let Q=0;Q<h;Q++){let Z=Q+H*S[2]+W*S[1]+C*S[0];x.values[Z]=u}continue}let j=Math.round(U),V=Math.round(G);for(let Q=0;Q<h;Q++){let Z=Q+j*k[2]+V*k[1]+N*k[0],re=Q+H*S[2]+W*S[1]+C*S[0];x.values[re]=b[Z]}}}}return a.makeTensorInfo(x.shape,x.dtype,x.values)}var QD={kernelName:ui,backendName:"cpu",kernelFunc:JD};function ez(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=n;Ae(r,"cumprod");let l=T.getAxesPermutation([s],r.shape.length),u=r;l!=null&&(u=La({inputs:{x:r},backend:a,attrs:{perm:l}}));let p=T.getInnerMostAxes(1,r.shape.length)[0];if(p!==u.shape.length-1)throw new Error(`backend.cumprod in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${p}`);let c=ha(u.dtype,"int32"),d=v.makeOnesTypedArray(v.sizeFromShape(u.shape),c),h=a.data.get(u.dataId).values,f=u.shape[u.shape.length-1],m=o?(x,y)=>x+f-y-1:(x,y)=>x+y;for(let x=0;x<h.length;x+=f)for(let y=0;y<f;y++){let A=m(x,y);if(y===0)d[A]=i?1:h[A];else{let b=m(x,y-1);d[A]=i?h[b]*d[b]:h[A]*d[b]}}let g=a.makeTensorInfo(u.shape,c,d);if(l!=null){let x=T.getUndoAxesPermutation(l),y=La({inputs:{x:g},backend:a,attrs:{perm:x}});return a.disposeIntermediateTensorInfo(g),a.disposeIntermediateTensorInfo(u),y}return g}var tz={kernelName:oi,backendName:"cpu",kernelFunc:ez};function az(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=n;Ae(r,"cumsum");let l=T.getAxesPermutation([s],r.shape.length),u=r;l!=null&&(u=La({inputs:{x:r},backend:a,attrs:{perm:l}}));let p=T.getInnerMostAxes(1,r.shape.length)[0];if(p!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${p}`);let c=ha(u.dtype,"int32"),d=v.makeZerosTypedArray(v.sizeFromShape(u.shape),c),h=a.data.get(u.dataId).values,f=u.shape[u.shape.length-1],m=o?(x,y)=>x+f-y-1:(x,y)=>x+y;for(let x=0;x<h.length;x+=f)for(let y=0;y<f;y++){let A=m(x,y);if(y===0)d[A]=i?0:h[A];else{let b=m(x,y-1);d[A]=i?h[b]+d[b]:h[A]+d[b]}}let g=a.makeTensorInfo(u.shape,c,d);if(l!=null){let x=T.getUndoAxesPermutation(l),y=La({inputs:{x:g},backend:a,attrs:{perm:x}});return a.disposeIntermediateTensorInfo(g),a.disposeIntermediateTensorInfo(u),y}return g}var nz={kernelName:li,backendName:"cpu",kernelFunc:az};function rz(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=n;if(r.shape.length===1){let l=a.data.get(r.dataId).values,u=a.data.get(s.dataId).values,p=o3(l,u,s.dtype,s.shape,i);return a.makeTensorInfo([i],s.dtype,p)}else if(r.shape.length===2){let l=a.bufferSync(r),u=a.bufferSync(s),p=j4(l,u,i,o);return a.makeTensorInfo(p.shape,s.dtype,p.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var sz={kernelName:Ed,backendName:"cpu",kernelFunc:rz};function iz(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{blockSize:s,dataFormat:i}=n;v.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`);let o=r.shape[0],l=r.shape[1],u=r.shape[2],p=r.shape[3],c=l*s,d=u*s,h=p/(s*s),f=a.data.get(r.dataId).values,m=new Float32Array(o*c*d*h),g=0;for(let x=0;x<o;++x)for(let y=0;y<c;++y){let A=Math.floor(y/s),b=y%s;for(let k=0;k<d;++k){let S=Math.floor(k/s),C=k%s,E=(b*s+C)*h;for(let _=0;_<h;++_){let $=_+E+p*(S+u*(A+l*x));m[g++]=f[$]}}}return a.makeTensorInfo([o,c,d,h],r.dtype,m)}var oz={kernelName:di,backendName:"cpu",kernelFunc:iz};function D7(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=n;Ae([r,s],"depthwiseConv2DNative");let p=v.computeStrides(r.shape),c=v.computeStrides(s.shape),d=l;d==null&&(d=[1,1]),v.assert(T.eitherStridesOrDilationsAreOne(i,d),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let h=T.computeConv2DInfo(r.shape,s.shape,i,d,o,u,!0),{filterHeight:f,filterWidth:m,dilationHeight:g,dilationWidth:x,padInfo:y}=h,A=y.left,b=y.top,k=h.outChannels/h.inChannels,S=new jt(h.outShape,r.dtype),C=a.data.get(r.dataId).values,E=a.data.get(s.dataId).values,_=S.values;for(let $=0;$<h.batchSize;++$){let M=$*p[0],I=$*S.strides[0];for(let N=0;N<h.outHeight;++N){let O=I+N*S.strides[1],L=N*h.strideHeight-b;for(let W=0;W<f;++W){let G=L+W*g;if(G<0||G>=h.inHeight)continue;let H=W*c[0],U=M+G*p[1];for(let j=0;j<h.outWidth;++j){let V=O+j*S.strides[2],Q=j*h.strideWidth-A;for(let Z=0;Z<m;++Z){let re=Q+Z*x;if(re<0||re>=h.inWidth)continue;let ee=H+Z*c[1],fe=U+re*h.inChannels,ie=V,ye=ee;for(let Se=0;Se<h.inChannels;++Se){let Ee=C[fe+Se];for(let je=0;je<k;++je)_[ie+je]+=Ee*E[ye+je];ie+=k,ye+=k}}}}}}return a.makeTensorInfo(S.shape,S.dtype,S.values)}var lz={kernelName:pi,backendName:"cpu",kernelFunc:D7};function uz(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:p}=n;Ae([r,s],"depthwiseConv2dNativeBackpropFilter");let c=T.computeConv2DInfo(r.shape,p,i,o,l,u,!0),{strideHeight:d,strideWidth:h,filterHeight:f,filterWidth:m}=c,g=new jt(c.filterShape,"float32"),x=c.padInfo.left,y=c.padInfo.top,A=c.outChannels/c.inChannels,b=a.data.get(r.dataId).values,k=new jt(r.shape,r.dtype,b),S=a.data.get(s.dataId).values,C=new jt(s.shape,s.dtype,S);for(let E=0;E<f;++E){let _=Math.max(0,Math.ceil((y-E)/d)),$=Math.min(c.outHeight,(c.inHeight+y-E)/d);for(let M=0;M<m;++M){let I=Math.max(0,Math.ceil((x-M)/h)),N=Math.min(c.outWidth,(c.inWidth+x-M)/h);for(let O=0;O<c.outChannels;++O){let L=Math.trunc(O/A),W=O%A,G=0;for(let H=0;H<c.batchSize;++H)for(let U=_;U<$;++U){let j=E+U*d-y;for(let V=I;V<N;++V){let Q=M+V*h-x;G+=k.get(H,j,Q,L)*C.get(H,U,V,O)}}g.set(G,E,M,L,W)}}}return a.makeTensorInfo(g.shape,g.dtype,g.values)}var dz={kernelName:th,backendName:"cpu",kernelFunc:uz};function pz(e){let{inputs:t,backend:a,attrs:n}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:p}=n;Ae([r,s],"depthwiseConv2DNativeBackpropInput");let c=v.computeStrides(r.shape),d=v.computeStrides(s.shape),h=T.computeConv2DInfo(p,s.shape,i,o,l,u,!0),f=new jt(h.inShape,"float32"),m=f.values,[g,x,y]=f.strides,A=a.data.get(r.dataId).values,[b,k,S]=c,C=a.data.get(s.dataId).values,[E,_,$]=d,{batchSize:M,filterHeight:I,filterWidth:N,inChannels:O,inHeight:L,inWidth:W,outChannels:G,outHeight:H,outWidth:U,strideHeight:j,strideWidth:V}=h,Q=I-1-h.padInfo.top,Z=N-1-h.padInfo.left,re=G/O;for(let ee=0;ee<M;++ee)for(let fe=0;fe<O;++fe)for(let ie=0;ie<L;++ie){let ye=ie-Q,Se=Math.max(0,Math.ceil(ye/j)),Ee=Math.min(H,(I+ye)/j);for(let je=0;je<W;++je){let Ze=je-Z,dt=Math.max(0,Math.ceil(Ze/V)),st=Math.min(U,(N+Ze)/V),tt=0;for(let at=Se;at<Ee;++at){let Ue=at*j-ye;for(let ht=dt;ht<st;++ht){let Va=ht*V-Ze,Ot=b*ee+k*at+S*ht,sn=E*(I-1-Ue)+_*(N-1-Va)+$*fe;for(let na=0;na<re;++na){let $a=fe*re+na,on=A[Ot+$a],_a=C[sn+na];tt+=on*_a}}}m[g*ee+x*ie+y*je+fe]=tt}}return a.makeTensorInfo(f.shape,f.dtype,f.values)}var cz={kernelName:ah,backendName:"cpu",kernelFunc:pz};function hz(e){let{inputs:t,backend:a}=e,{x:n}=t,r=v.sizeFromShape(n.shape),s=a.data.get(n.dataId).values,i=_e([r,r],n.dtype),o=i.values;for(let u=0;u<s.length;u++)o[u*r+u]=s[u];let l=[...n.shape,...n.shape];return a.makeTensorInfo(l,i.dtype,i.values)}var fz={kernelName:Rd,backendName:"cpu",kernelFunc:hz},mz={kernelName:Md,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:a})=>{let{x:n,filter:r}=e,{strides:s,pad:i,dilations:o}=a,l=t,u=l.data.get(n.dataId).values,p=n.shape.length,c=l.data.get(r.dataId).values,d=r.shape.length,{batchSize:h,inHeight:f,inWidth:m,inChannels:g,outHeight:x,outWidth:y,padInfo:A,strideHeight:b,strideWidth:k,filterHeight:S,filterWidth:C,dilationHeight:E,dilationWidth:_,outShape:$}=T.computeDilation2DInfo(n.shape,r.shape,s,i,"NHWC",o),M=v.sizeFromShape($),I=$.length,N=v.getArrayFromDType(n.dtype,M);for(let O=0;O<h;++O)for(let L=0;L<x;++L){let W=L*b-A.top;for(let G=0;G<y;++G){let H=G*k-A.left;for(let U=0;U<g;++U){let j=Number.MIN_SAFE_INTEGER;for(let Q=0;Q<S;++Q){let Z=W+Q*E;if(Z>=0&&Z<f)for(let re=0;re<C;++re){let ee=H+re*_;if(ee>=0&&ee<m){let fe=v.locToIndex([O,Z,ee,U],p,v.computeStrides(n.shape)),ie=v.locToIndex([Q,re,U],d,v.computeStrides(r.shape)),ye=u[fe]+c[ie];ye>j&&(j=ye)}}}let V=v.locToIndex([O,L,G,U],I,v.computeStrides($));N[V]=j}}}return{dataId:l.write(v.toTypedArray(N,n.dtype),$,n.dtype),shape:$,dtype:n.dtype}}},gz={kernelName:Bm,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:a})=>{let{x:n,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=a,u=t,p=v.toNestedArray(n.shape,u.data.get(n.dataId).values),c=v.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:d,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:x,padInfo:y,strideHeight:A,strideWidth:b,filterHeight:k,filterWidth:S,dilationHeight:C,dilationWidth:E,outShape:_}=T.computeDilation2DInfo(n.shape,r.shape,i,o,"NHWC",l);v.assert(s.rank===_.length,()=>`Error in ${Bm}, dy must have the same rank as output ${_.length}, but got ${s.rank}`);let $=v.toNestedArray(_,u.data.get(s.dataId).values),M=v.makeZerosNestedTypedArray(r.shape,r.dtype);for(let I=0;I<d;++I)for(let N=0;N<g;++N){let O=N*A-y.top;for(let L=0;L<x;++L){let W=L*b-y.left;for(let G=0;G<m;++G){let H=Number.MIN_SAFE_INTEGER,U=0,j=0;for(let V=0;V<k;++V){let Q=O+V*C;if(Q>=0&&Q<h)for(let Z=0;Z<S;++Z){let re=W+Z*E;if(re>=0&&re<f){let ee=p[I][Q][re][G]+c[V][Z][G];ee>H&&(H=ee,U=V,j=Z)}}}M[U][j][G]+=$[I][N][L][G]}}}return{dataId:u.write(v.toTypedArray(M,n.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},xz={kernelName:Lm,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:a})=>{let{x:n,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=a,u=t,p=v.toNestedArray(n.shape,u.data.get(n.dataId).values),c=v.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:d,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:x,padInfo:y,strideHeight:A,strideWidth:b,filterHeight:k,filterWidth:S,dilationHeight:C,dilationWidth:E,outShape:_}=T.computeDilation2DInfo(n.shape,r.shape,i,o,"NHWC",l);v.assert(s.rank===_.length,()=>`Error in ${Lm}, dy must have the same rank as output ${_.length}, but got ${s.rank}`);let $=v.toNestedArray(_,u.data.get(s.dataId).values),M=v.makeZerosNestedTypedArray(n.shape,n.dtype);for(let I=0;I<d;++I)for(let N=0;N<g;++N){let O=N*A-y.top;for(let L=0;L<x;++L){let W=L*b-y.left;for(let G=0;G<m;++G){let H=Number.MIN_SAFE_INTEGER,U=O<0?0:O,j=W<0?0:W;for(let V=0;V<k;++V){let Q=O+V*C;if(Q>=0&&Q<h)for(let Z=0;Z<S;++Z){let re=W+Z*E;if(re>=0&&re<f){let ee=p[I][Q][re][G]+c[V][Z][G];ee>H&&(H=ee,U=Q,j=re)}}}M[I][U][j][G]+=$[I][N][L][G]}}}return{dataId:u.write(v.toTypedArray(M,n.dtype),n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}};function pp(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s,keepDims:i}=n;Ae(r,"sum");let o;r.dtype==="bool"?o=Qr({inputs:{x:r},backend:a,attrs:{dtype:"int32"}}):o=er({inputs:{x:r},backend:a});let l=o.shape.length,u=v.parseAxisParam(s,o.shape),p=T.getAxesPermutation(u,l),c=u,d=o;p!=null&&(d=La({inputs:{x:o},backend:a,attrs:{perm:p}}),c=T.getInnerMostAxes(c.length,l)),T.assertAxesAreInnerMostDims("sum",c,d.shape.length);let[h,f]=T.computeOutAndReduceShapes(d.shape,c),m=T.upcastType(d.dtype,"int32"),g=Fc(a,h,m),x=v.sizeFromShape(f),y=a.data.get(g.dataId).values,A=a.data.get(d.dataId).values;for(let b=0;b<y.length;++b){let k=b*x,S=0;for(let C=0;C<x;++C)S+=A[k+C];y[b]=S}if(i){let b=T.expandShapeToKeepDim(g.shape,u),k=g;g=mt({inputs:{x:g},backend:a,attrs:{shape:b}}),a.disposeIntermediateTensorInfo(k)}return a.disposeIntermediateTensorInfo(o),p!=null&&a.disposeIntermediateTensorInfo(d),g}var yz={kernelName:io,backendName:"cpu",kernelFunc:pp};function Az(e){let{inputs:t,backend:a,attrs:n}=e,{equation:r}=n,s=t,{allDims:i,summedDims:o,idDims:l}=T.decodeEinsumEquation(r,s.length);T.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:p}=T.getEinsumComputePath(o,l),c=p.length,d=null,h=i.length,f=[];for(let m=0;m<c;++m){for(let g of p[m]){let{permutationIndices:x,expandDims:y}=T.getEinsumPermutation(h,l[g]),A;T.isIdentityPermutation(x)?A=s[g]:(A=La({inputs:{x:s[g]},backend:a,attrs:{perm:x}}),f.push(A));let b=A.shape.slice();for(let k=0;k<y.length;++k)b.splice(y[k],0,1);v.arraysEqual(A.shape,b)||(A=mt({inputs:{x:A},backend:a,attrs:{shape:b}}),f.push(A)),d===null?d=A:(d=Eh({inputs:{a:A,b:d},backend:a}),f.push(d))}m<c-1&&(u[m]>=0&&(d=pp({inputs:{x:d},backend:a,attrs:{axis:u[m]-(i.length-h),keepDims:!1}}),f.push(d)),h--)}for(let m of f)m!==d&&a.disposeIntermediateTensorInfo(m);return d}var bz={kernelName:$d,backendName:"cpu",kernelFunc:Az};function vz(e){let{inputs:t,backend:a}=e,{dy:n,y:r}=t;Ae([n,r],"eluGrad");let s=new Float32Array(v.sizeFromShape(r.shape)),i=a.data.get(r.dataId).values,o=a.data.get(n.dataId).values;for(let l=0;l<i.length;++l){let u=i[l];u>=1?s[l]=o[l]:s[l]=o[l]*(u+1)}return a.makeTensorInfo(r.shape,"float32",s)}var kz={kernelName:W2,backendName:"cpu",kernelFunc:vz},wz=T.ERF_P,Iz=T.ERF_A1,Sz=T.ERF_A2,Tz=T.ERF_A3,Cz=T.ERF_A4,Nz=T.ERF_A5,Ez=ot(Ml,e=>{let t=Math.sign(e),a=Math.abs(e),n=1/(1+wz*a);return t*(1-((((Nz*n+Cz)*n+Tz)*n+Sz)*n+Iz)*n*Math.exp(-a*a))}),Rz={kernelName:Ml,backendName:"cpu",kernelFunc:Ez};function zc(e){let{inputs:t,backend:a,attrs:n}=e,{input:r}=t,{dim:s}=n,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(v.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),mt({inputs:{x:r},backend:a,attrs:{shape:o}})}var Mz={kernelName:$l,backendName:"cpu",kernelFunc:zc},$z=Lt((e,t)=>e/t),y3=Yt(ci,$z),g2={kernelName:ci,backendName:"cpu",kernelFunc:y3};function z7(e,t,a){let n=e.shape,r=n[0],s=n[1],i=a.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,u=[r,s],p=v.sizeFromShape(u),c=v.getTypedArrayFromDType("float32",p),d=v.getTypedArrayFromDType("float32",p);for(let g=0;g<r;g++){let x=Gs({inputs:{x:o},backend:a,attrs:{begin:[g,0],size:[1,s]}}),y=Gs({inputs:{x:l},backend:a,attrs:{begin:[g,0],size:[1,s]}}),A=Xa({inputs:{real:x,imag:y},backend:a}),{real:b,imag:k}=_z(A,t,a),S=T.mergeRealAndImagArrays(b,k);for(let C=0;C<s;C++){let E=T.getComplexWithIndex(S,C);c[g*s+C]=E.real,d[g*s+C]=E.imag}a.disposeIntermediateTensorInfo(x),a.disposeIntermediateTensorInfo(y),a.disposeIntermediateTensorInfo(A)}let h=a.makeTensorInfo(u,"float32",c),f=a.makeTensorInfo(u,"float32",d),m=Xa({inputs:{real:h,imag:f},backend:a});return a.disposeIntermediateTensorInfo(h),a.disposeIntermediateTensorInfo(f),m}function _z(e,t,a){let n=v.sizeFromShape(e.shape),r=a.data.get(e.dataId),s=a.data.get(r.complexTensorInfos.real.dataId).values,i=a.data.get(r.complexTensorInfos.imag.dataId).values;if(Pz(n)){let o=x2(s,i,n,t,a),l=[e.shape[0],e.shape[1]];if(t){let u=a.makeTensorInfo(l,"float32",o.real),p=a.makeTensorInfo(l,"float32",o.imag),c=a.makeTensorInfo([],"float32",v.createScalarValue(n,"float32")),d=er({inputs:{x:c},backend:a}),h=g2.kernelFunc({inputs:{a:u,b:c},backend:a}),f=g2.kernelFunc({inputs:{a:p,b:d},backend:a}),m=a.data.get(h.dataId).values,g=a.data.get(f.dataId).values;return a.disposeIntermediateTensorInfo(u),a.disposeIntermediateTensorInfo(p),a.disposeIntermediateTensorInfo(c),a.disposeIntermediateTensorInfo(d),a.disposeIntermediateTensorInfo(h),a.disposeIntermediateTensorInfo(f),{real:m,imag:g}}return o}else{let o=T.mergeRealAndImagArrays(s,i),l=Fz(o,n,t);return T.splitRealAndImagArrays(l)}}function Pz(e){return(e&e-1)===0}function x2(e,t,a,n,r){if(a===1)return{real:e,imag:t};let s=T.mergeRealAndImagArrays(e,t),i=a/2,o=T.complexWithEvenIndex(s),l=o.real,u=o.imag,p=[l.length],c=r.makeTensorInfo(p,"float32",l),d=r.makeTensorInfo(p,"float32",u),h=Xa({inputs:{real:c,imag:d},backend:r}),f=T.complexWithOddIndex(s),m=f.real,g=f.imag,x=[m.length],y=r.makeTensorInfo(x,"float32",m),A=r.makeTensorInfo(x,"float32",g),b=Xa({inputs:{real:y,imag:A},backend:r}),k=x2(l,u,i,n,r),S=k.real,C=k.imag,E=[S.length],_=r.makeTensorInfo(E,"float32",S),$=r.makeTensorInfo(E,"float32",C),M=Xa({inputs:{real:_,imag:$},backend:r}),I=x2(m,g,i,n,r),N=I.real,O=I.imag,L=[N.length],W=r.makeTensorInfo(L,"float32",N),G=r.makeTensorInfo(L,"float32",O),H=Xa({inputs:{real:W,imag:G},backend:r}),U=T.exponents(a,n),j=[U.real.length],V=r.makeTensorInfo(j,"float32",U.real),Q=r.makeTensorInfo(j,"float32",U.imag),Z=Xa({inputs:{real:V,imag:Q},backend:r}),re=Eh({inputs:{a:Z,b:H},backend:r}),ee=fl({inputs:{a:M,b:re},backend:r}),fe=g3({inputs:{a:M,b:re},backend:r}),ie=Us({inputs:{input:ee},backend:r}),ye=Us({inputs:{input:fe},backend:r}),Se=ml({inputs:{input:ee},backend:r}),Ee=ml({inputs:{input:fe},backend:r}),je=gl({inputs:[ie,ye],backend:r,attrs:{axis:0}}),Ze=gl({inputs:[Se,Ee],backend:r,attrs:{axis:0}}),dt=r.data.get(je.dataId).values,st=r.data.get(Ze.dataId).values;return r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(y),r.disposeIntermediateTensorInfo(A),r.disposeIntermediateTensorInfo(b),r.disposeIntermediateTensorInfo(_),r.disposeIntermediateTensorInfo($),r.disposeIntermediateTensorInfo(M),r.disposeIntermediateTensorInfo(W),r.disposeIntermediateTensorInfo(G),r.disposeIntermediateTensorInfo(H),r.disposeIntermediateTensorInfo(V),r.disposeIntermediateTensorInfo(Q),r.disposeIntermediateTensorInfo(Z),r.disposeIntermediateTensorInfo(re),r.disposeIntermediateTensorInfo(ee),r.disposeIntermediateTensorInfo(fe),r.disposeIntermediateTensorInfo(ie),r.disposeIntermediateTensorInfo(Se),r.disposeIntermediateTensorInfo(ye),r.disposeIntermediateTensorInfo(Ee),r.disposeIntermediateTensorInfo(je),r.disposeIntermediateTensorInfo(Ze),{real:dt,imag:st}}function Fz(e,t,a){let n=new Float32Array(t*2);for(let r=0;r<t;r++){let s=0,i=0;for(let o=0;o<t;o++){let l=T.exponent(r*o,t,a),u=T.getComplexWithIndex(e,o);s+=u.real*l.real-u.imag*l.imag,i+=u.real*l.imag+u.imag*l.real}a&&(s/=t,i/=t),T.assignToTypedArray(n,s,i,r)}return n}function Oz(e){let{inputs:t,backend:a}=e,{input:n}=t,r=v.sizeFromShape(n.shape),s=n.shape[n.shape.length-1],i=r/s,o=mt({inputs:{x:n},backend:a,attrs:{shape:[i,s]}}),l=z7(o,!1,a),u=mt({inputs:{x:l},backend:a,attrs:{shape:n.shape}});return a.disposeIntermediateTensorInfo(o),a.disposeIntermediateTensorInfo(l),u}var Dz={kernelName:_d,backendName:"cpu",kernelFunc:Oz};function A3(e){let{backend:t,attrs:a}=e,{shape:n,value:r,dtype:s}=a,i=s||v.inferDtype(r),o=v.getArrayFromDType(i,v.sizeFromShape(n));return Lz(o,r,i),t.makeTensorInfo(n,i,o)}var zz={kernelName:Pl,backendName:"cpu",kernelFunc:A3};function Lz(e,t,a){e.fill(t)}var Bz={kernelName:gi,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:a})=>{let{image:n}=e,r=a,s=v.getTypedArrayFromDType(n.dtype,v.sizeFromShape(n.shape)),[i,o,l,u]=n.shape,p=r.data.get(n.dataId).values;for(let c=0;c<i;c++){let d=c*l*o*u;for(let h=0;h<o;h++){let f=h*(l*u);for(let m=0;m<l;m++){let g=m*u;for(let x=0;x<u;x++){let y=Math.round(l-m-1),A=d+f+g+x,b=p[A];if(y>=0&&y<l){let k=y*u,S=d+f+k+x;b=p[S]}s[A]=b}}}}return{dataId:r.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},Wz=Lt((e,t)=>Math.floor(e/t)),Vz=Yt(yi,Wz,null,"int32"),Uz={kernelName:yi,backendName:"cpu",kernelFunc:Vz};function Gz(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:p,dilations:c,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=n,m=O7({inputs:{x:r,filter:s},backend:a,attrs:{strides:l,pad:u,dataFormat:p,dilations:c,dimRoundingMode:d}});if(i){let g=m;if(p==="NCHW"&&i.shape.length===1&&i.shape[0]!==1){let x=mt({inputs:{x:i},backend:a,attrs:{shape:[i.shape[0],1,1]}});m=fl({inputs:{a:m,b:x},backend:a}),a.disposeIntermediateTensorInfo(x)}else m=fl({inputs:{a:m,b:i},backend:a});a.disposeIntermediateTensorInfo(g)}if(h){let g=m;if(p==="NCHW"&&h==="prelu"&&o.shape.length===1&&o.shape[0]!==1){let x=mt({inputs:{x:o},backend:a,attrs:{shape:[o.shape[0],1,1]}});m=Dc(a,m,h,x,f),a.disposeIntermediateTensorInfo(x)}else m=Dc(a,m,h,o,f);a.disposeIntermediateTensorInfo(g)}return m}var Hz={kernelName:qr,backendName:"cpu",kernelFunc:Gz};function jz(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:p,dilations:c,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=n,m=D7({inputs:{x:r,filter:s},backend:a,attrs:{strides:l,pad:u,dataFormat:p,dilations:c,dimRoundingMode:d}});if(i){let g=m;m=fl({inputs:{a:m,b:i},backend:a}),a.disposeIntermediateTensorInfo(g)}if(h){let g=m;m=Dc(a,m,h,o,f),a.disposeIntermediateTensorInfo(g)}return m}var qz={kernelName:Xr,backendName:"cpu",kernelFunc:jz};function Xz(e){let{inputs:t,backend:a}=e,{params:n,indices:r}=t,s=v.sizeFromShape(n.shape),i=r.shape,o=i[i.length-1],[l,u,p,c]=T.prepareAndValidate(n,r);if(u===0)return a.makeTensorInfo(l,n.dtype,[]);let d=a.data.get(r.dataId).values,h=a.bufferSync(n),f=e7(d,h,n.dtype,u,o,p,c,n.shape,s);return a.makeTensorInfo(l,n.dtype,f.values)}var Kz={kernelName:bi,backendName:"cpu",kernelFunc:Xz};function Zz(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=n;Ae([r,s],"gatherV2");let l=v.parseAxisParam(i,r.shape)[0],u=a.data.get(s.dataId).values,p=r.shape[l];for(let b=0;b<u.length;++b){let k=u[b];v.assert(k<=p-1&&k>=0,()=>`GatherV2: the index value ${k} is not in [0, ${p-1}]`)}let c=o;o==null&&(c=0);let d=v.sizeFromShape(s.shape),h=T.segment_util.collectGatherOpShapeInfo(r,s,l,c),f=mt({inputs:{x:r},backend:a,attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]}}),m=mt({inputs:{x:s},backend:a,attrs:{shape:[h.batchSize,d/h.batchSize]}}),g=[h.batchSize,h.outerSize,d/h.batchSize,h.sliceSize],x=a.bufferSync(m),y=a.bufferSync(f),A=t7(y,x,g);return a.disposeIntermediateTensorInfo(f),a.disposeIntermediateTensorInfo(m),a.makeTensorInfo(h.outputShape,A.dtype,A.values)}var Yz={kernelName:Fl,backendName:"cpu",kernelFunc:Zz};function Jz(e){let{inputs:t,backend:a}=e,{input:n}=t,r=v.sizeFromShape(n.shape),s=n.shape[n.shape.length-1],i=r/s,o=mt({inputs:{x:n},backend:a,attrs:{shape:[i,s]}}),l=z7(o,!0,a),u=mt({inputs:{x:l},backend:a,attrs:{shape:n.shape}});return a.disposeIntermediateTensorInfo(o),a.disposeIntermediateTensorInfo(l),u}var Qz={kernelName:Pd,backendName:"cpu",kernelFunc:Jz},eL=ot(Ol,e=>Number.isFinite(e)?1:0,"bool"),tL={kernelName:Ol,backendName:"cpu",kernelFunc:eL},aL=ot(Dl,e=>Math.abs(e)===1/0?1:0,"bool"),nL={kernelName:Dl,backendName:"cpu",kernelFunc:aL},rL=ot(Ii,e=>Number.isNaN(e)?1:0,"bool"),sL={kernelName:Ii,backendName:"cpu",kernelFunc:rL};function iL(e){let{backend:t,attrs:a}=e,{start:n,stop:r,num:s}=a,i=i7(n,r,s);return t.makeTensorInfo([i.length],"float32",i)}var oL={kernelName:Od,backendName:"cpu",kernelFunc:iL},lL=ot(zl,e=>Math.log1p(e)),uL={kernelName:zl,backendName:"cpu",kernelFunc:lL},dL=Lt((e,t)=>e&&t),pL=Yt(Ei,dL,null,"bool"),cL={kernelName:Ei,backendName:"cpu",kernelFunc:pL},hL=ot(Ri,e=>e?0:1,"bool"),fL={kernelName:Ri,backendName:"cpu",kernelFunc:hL},mL=Lt((e,t)=>e||t),gL=Yt(Mi,mL,null,"bool"),xL={kernelName:Mi,backendName:"cpu",kernelFunc:gL};function yL(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;Ae(r,"LRN");let u=r.shape[3],p=u-1,c=a.data.get(r.dataId).values,d=v.sizeFromShape(r.shape),h=new Float32Array(d);function f(m){let g=m%u,x=m-g+Math.max(0,g-s),y=m-g+Math.min(g+s,p),A=0;for(;x<=y;x++){let b=c[x];A+=b*b}return A}for(let m=0;m<d;m++){let g=f(m),x=c[m]*Math.pow(i+o*g,-l);h[m]=x}return a.makeTensorInfo(r.shape,r.dtype,h)}var AL={kernelName:Dd,backendName:"cpu",kernelFunc:yL};function bL(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:p}=n;Ae(i,"LRNGrad");let c=v.sizeFromShape(i.shape),d=i.shape[3],h=a.data.get(i.dataId).values,f=a.data.get(r.dataId).values,m=a.data.get(s.dataId).values,g=new Float32Array(c),x=c;for(let y=0;y<x;y++){let A=y%d,b=y-A+Math.max(0,A-o),k=y-A+Math.min(d,A+o+1),S=0;for(let C=b;C<k;C++)S+=Math.pow(f[C],2);S=u*S+l;for(let C=b;C<k;C++){let E=-2*u*p*f[C]*m[y]/S;y===C&&(E+=Math.pow(S,-p)),E*=h[y],g[C]+=E}}return a.makeTensorInfo(i.shape,r.dtype,g)}var vL={kernelName:V2,backendName:"cpu",kernelFunc:bL};function L7(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=n,o=a,l=r.shape,u=l.length,p=v.parseAxisParam(s,l),c=p,d=T.getAxesPermutation(c,u),h=o.data.get(r.dataId).values;if(d!=null){let b=new Array(u);for(let k=0;k<b.length;k++)b[k]=l[d[k]];h=d3(h,l,r.dtype,d,b),c=T.getInnerMostAxes(c.length,u),l=b}Ae(r,"max"),T.assertAxesAreInnerMostDims("max",c,u);let[f,m]=T.computeOutAndReduceShapes(l,c),g=v.sizeFromShape(m),x=l7(h,g,f,r.dtype),y=o.write(x,f,r.dtype),A=f;return i&&(A=T.expandShapeToKeepDim(f,p)),{dataId:y,shape:A,dtype:r.dtype}}var kL={kernelName:$i,backendName:"cpu",kernelFunc:L7};function wL(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t;Ae(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n,u=1;v.assert(T.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=T.computePool2DInfo(r.shape,s,i,u,o,l),c;if(p.filterWidth===1&&p.filterHeight===1&&v.arraysEqual(p.inShape,p.outShape))c=er({inputs:{x:r},backend:a});else{let d=a.data.get(r.dataId).values,h=v.computeStrides(r.shape),f=x3(d,r.shape,r.dtype,h,p,"max");c=a.makeTensorInfo(p.outShape,r.dtype,f.values)}return c}var IL={kernelName:Pi,backendName:"cpu",kernelFunc:wL};function SL(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=n;Ae(r,"maxPool3d");let p=T.computePool3DInfo(r.shape,s,i,1,o,l,u),c=a.data.get(r.dataId).values,d=F7(c,r.shape,r.dtype,v.computeStrides(r.shape),p,"max");return a.makeTensorInfo(d.shape,"float32",d.values)}var TL={kernelName:nh,backendName:"cpu",kernelFunc:SL};function CL(e){let{inputs:t,backend:a,attrs:n}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n;Ae([r,s],"maxPool3DGrad");let p=T.computePool3DInfo(s.shape,i,o,1,l,u),c=a.bufferSync(s),d=fD(c,p),h=p.strideDepth,f=p.strideHeight,m=p.strideWidth,g=p.dilationDepth,x=p.dilationHeight,y=p.dilationWidth,A=p.effectiveFilterDepth,b=p.effectiveFilterHeight,k=p.effectiveFilterWidth,S=A-1-p.padInfo.front,C=k-1-p.padInfo.left,E=b-1-p.padInfo.top,_=_e(s.shape,"float32"),$=a.bufferSync(r);for(let M=0;M<p.batchSize;++M)for(let I=0;I<p.inChannels;++I)for(let N=0;N<p.inDepth;++N)for(let O=0;O<p.inHeight;++O)for(let L=0;L<p.inWidth;++L){let W=N-S,G=O-E,H=L-C,U=0;for(let j=0;j<A;j+=g){let V=(W+j)/h;if(!(V<0||V>=p.outDepth||Math.floor(V)!==V))for(let Q=0;Q<b;Q+=x){let Z=(G+Q)/f;if(!(Z<0||Z>=p.outHeight||Math.floor(Z)!==Z))for(let re=0;re<k;re+=y){let ee=(H+re)/m;if(ee<0||ee>=p.outWidth||Math.floor(ee)!==ee)continue;let fe=A*b*k-1-d.get(M,V,Z,ee,I),ie=j*b*k+Q*k+re,ye=fe===ie?1:0;if(ye===0)continue;let Se=$.get(M,V,Z,ee,I);U+=Se*ye}}}_.set(U,M,N,O,L,I)}return a.makeTensorInfo(_.shape,_.dtype,_.values)}var NL={kernelName:G2,backendName:"cpu",kernelFunc:CL};function EL(e){let{inputs:t,backend:a,attrs:n}=e,{dy:r,input:s,output:i}=t,o=s;Ae([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:p,dimRoundingMode:c}=n,d=T.computePool2DInfo(o.shape,l,u,1,p,c),h=a.data.get(o.dataId).values,f=_e(d.outShape,o.dtype,P7(h,o.shape,o.dtype,d).values),m=d.strideHeight,g=d.strideWidth,x=d.dilationHeight,y=d.dilationWidth,A=d.effectiveFilterHeight,b=d.effectiveFilterWidth,k=b-1-d.padInfo.left,S=A-1-d.padInfo.top,C=_e(o.shape,"float32"),E=a.data.get(r.dataId).values,_=_e(r.shape,"float32",E);for(let $=0;$<d.batchSize;++$)for(let M=0;M<d.inChannels;++M)for(let I=0;I<d.inHeight;++I)for(let N=0;N<d.inWidth;++N){let O=I-S,L=N-k,W=0;for(let G=0;G<A;G+=x){let H=(O+G)/m;if(!(H<0||H>=d.outHeight||Math.floor(H)!==H))for(let U=0;U<b;U+=y){let j=(L+U)/g;if(j<0||j>=d.outWidth||Math.floor(j)!==j)continue;let V=A*b-1-f.get($,H,j,M),Q=G*b+U,Z=V===Q?1:0;if(Z===0)continue;let re=_.get($,H,j,M);W+=re*Z}}C.set(W,$,I,N,M)}return a.makeTensorInfo(C.shape,C.dtype,C.values)}var RL={kernelName:U2,backendName:"cpu",kernelFunc:EL};function ML(e,t,a,n,r){let s=v.computeStrides(t),i=x3(e,t,a,s,r,"max"),o=P7(e,t,a,r,!0,n);return[i.values,o.values]}var $L={kernelName:rh,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:a})=>{let{x:n}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=a;Ae(n,"MaxPoolWithArgmax");let u=l.data.get(n.dataId).values,p=T.computePool2DInfo(n.shape,r,s,[1,1],i),[c,d]=ML(u,n.shape,n.dtype,o,p),h=l.write(c,p.outShape,n.dtype),f=l.write(d,p.outShape,n.dtype);return[{dataId:h,shape:p.outShape,dtype:n.dtype},{dataId:f,shape:p.outShape,dtype:"int32"}]}};function _L(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s,keepDims:i}=n,o=v.parseAxisParam(s,r.shape),l=T.computeOutAndReduceShapes(r.shape,o)[1],u=v.sizeFromShape(l),p=[],c=a.makeTensorInfo([],"float32",new Float32Array([u]));p.push(c);let d=Qr({inputs:{x:r},backend:a,attrs:{dtype:"float32"}});p.push(d);let h=y3({inputs:{a:d,b:c},backend:a});p.push(h);let f=pp({inputs:{x:h},backend:a,attrs:{axis:s,keepDims:i}});return p.forEach(m=>a.disposeIntermediateTensorInfo(m)),f}var PL={kernelName:Fi,backendName:"cpu",kernelFunc:_L};function FL(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s,keepDims:i}=n;Ae(r,"min");let o=v.parseAxisParam(s,r.shape),l=o,u=T.getAxesPermutation(l,r.shape.length),p=r;u!=null&&(p=La({inputs:{x:r},backend:a,attrs:{perm:u}}),l=T.getInnerMostAxes(l.length,r.shape.length)),T.assertAxesAreInnerMostDims("min",l,p.shape.length);let[c,d]=T.computeOutAndReduceShapes(p.shape,l),h=v.sizeFromShape(d),f=v.makeZerosTypedArray(v.sizeFromShape(c),p.dtype),m=a.data.get(p.dataId).values;for(let x=0;x<f.length;++x){let y=x*h,A=m[y];for(let b=0;b<h;++b){let k=m[y+b];(Number.isNaN(k)||k<A)&&(A=k)}f[x]=A}u!=null&&a.disposeIntermediateTensorInfo(p);let g=a.makeTensorInfo(c,p.dtype,f);if(i){let x=T.expandShapeToKeepDim(c,o),y=mt({inputs:{x:g},backend:a,attrs:{shape:x}});return a.disposeIntermediateTensorInfo(g),y}return g}var OL={kernelName:Oi,backendName:"cpu",kernelFunc:FL};function DL(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{paddings:s,mode:i}=n;Ae(r,"mirrorPad");let o=s.map((y,A)=>y[0]+r.shape[A]+y[1]),l=s.map(y=>y[0]),u=s.map((y,A)=>y[0]+r.shape[A]),p=i==="reflect"?0:1,c=a.data.get(r.dataId).values,d=r.shape.length,h=v.computeStrides(r.shape),f=v.sizeFromShape(o),m=o.length,g=v.computeStrides(o),x=v.getTypedArrayFromDType(r.dtype,f);for(let y=0;y<f;y++){let A=v.indexToLoc(y,m,g);for(let k=0;k<m;k++)A[k]<l[k]?A[k]=l[k]*2-A[k]-p:A[k]>=u[k]&&(A[k]=(u[k]-1)*2-A[k]+p);A=A.map((k,S)=>k-l[S]);let b=v.locToIndex(A,d,h);x[y]=c[b]}return{dataId:a.write(x,o,r.dtype),shape:o,dtype:r.dtype}}var zL={kernelName:zi,backendName:"cpu",kernelFunc:DL},LL=Lt((e,t)=>{let a=e%t;return e<0&&t<0||e>=0&&t>=0?a:(a+t)%t}),BL=Yt(Ll,LL),WL={kernelName:Ll,backendName:"cpu",kernelFunc:BL},VL=yl(Jx());function B7(e){let{inputs:t,backend:a,attrs:n}=e,{logits:r}=t,{dim:s}=n,i=r.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=v.parseAxisParam([o],r.shape),u=L7({inputs:{x:r},backend:a,attrs:{reductionIndices:l,keepDims:!1}}),p=T.expandShapeToKeepDim(u.shape,l),c=mt({inputs:{x:u},backend:a,attrs:{shape:p}}),d=g3({inputs:{a:r,b:c},backend:a}),h=Y4({inputs:{x:d},backend:a}),f=pp({inputs:{x:h},backend:a,attrs:{axis:l,keepDims:!1}}),m=mt({inputs:{x:f},backend:a,attrs:{shape:p}}),g=y3({inputs:{a:h,b:m},backend:a});return a.disposeIntermediateTensorInfo(u),a.disposeIntermediateTensorInfo(c),a.disposeIntermediateTensorInfo(d),a.disposeIntermediateTensorInfo(h),a.disposeIntermediateTensorInfo(f),a.disposeIntermediateTensorInfo(m),g}var UL={kernelName:oo,backendName:"cpu",kernelFunc:B7};function GL(e){let{inputs:t,backend:a,attrs:n}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=n;Ae(r,"multinomial");let l=o?r:B7({inputs:{logits:r},backend:a,attrs:{dim:-1}}),u=l.shape[0],p=l.shape[1],c=a.data.get(l.dataId).values,d=[u,s],h=v.makeZerosTypedArray(v.sizeFromShape(d),"int32");for(let f=0;f<u;++f){let m=f*p,g=new Float32Array(p-1);g[0]=c[m];for(let A=1;A<g.length;++A)g[A]=g[A-1]+c[m+A];let x=VL.alea(i.toString()),y=f*s;for(let A=0;A<s;++A){let b=x();h[y+A]=g.length;for(let k=0;k<g.length;k++)if(b<g[k]){h[y+A]=k;break}}}return o||a.disposeIntermediateTensorInfo(l),a.makeTensorInfo(d,"int32",h)}var HL={kernelName:sh,backendName:"cpu",kernelFunc:GL},jL=Tn.nonMaxSuppressionV3Impl;function qL(e){let{inputs:t,backend:a,attrs:n}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=n;Ae(r,"NonMaxSuppression");let u=a.data.get(r.dataId).values,p=a.data.get(s.dataId).values,{selectedIndices:c}=jL(u,p,i,o,l);return a.makeTensorInfo([c.length],"int32",new Int32Array(c))}var XL={kernelName:Wi,backendName:"cpu",kernelFunc:qL},KL=Tn.nonMaxSuppressionV4Impl;function ZL(e){let{inputs:t,backend:a,attrs:n}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=n;Ae(r,"NonMaxSuppressionPadded");let p=a.data.get(r.dataId).values,c=a.data.get(s.dataId).values,{selectedIndices:d,validOutputs:h}=KL(p,c,i,o,l,u);return[a.makeTensorInfo([d.length],"int32",new Int32Array(d)),a.makeTensorInfo([],"int32",new Int32Array([h]))]}var YL={kernelName:Wl,backendName:"cpu",kernelFunc:ZL},JL=Tn.nonMaxSuppressionV5Impl;function QL(e){let{inputs:t,backend:a,attrs:n}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=n;Ae(r,"NonMaxSuppressionWithScore");let p=a.data.get(r.dataId).values,c=a.data.get(s.dataId).values,d=i,h=o,f=l,m=u,{selectedIndices:g,selectedScores:x}=JL(p,c,d,h,f,m);return[a.makeTensorInfo([g.length],"int32",new Int32Array(g)),a.makeTensorInfo([x.length],"float32",new Float32Array(x))]}var eB={kernelName:Vi,backendName:"cpu",kernelFunc:QL};function tB(e){let{inputs:t,backend:a,attrs:n}=e,{indices:r}=t,{dtype:s,depth:i,onValue:o,offValue:l}=n;Ae(r,"oneHot");let u=v.sizeFromShape(r.shape),p=new Float32Array(u*i);p.fill(l);let c=a.data.get(r.dataId).values;for(let d=0;d<u;++d)c[d]>=0&&c[d]<i&&(p[d*i+c[d]]=o);return a.makeTensorInfo([...r.shape,i],s,p)}var aB={kernelName:Ui,backendName:"cpu",kernelFunc:tB};function Lc(e){let{inputs:t,backend:a}=e,{x:n}=t;if(n.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(n.dtype==="complex64"){let r=Us({inputs:{input:n},backend:a}),s=Lc({inputs:{x:r},backend:a}),i=ml({inputs:{input:n},backend:a}),o=Lc({inputs:{x:i},backend:a}),l=Xa({inputs:{real:s,imag:o},backend:a});return a.disposeIntermediateTensorInfo(r),a.disposeIntermediateTensorInfo(s),a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}else return A3({backend:a,attrs:{shape:n.shape,value:0,dtype:n.dtype}})}var nB={kernelName:nu,backendName:"cpu",kernelFunc:Lc};function W7(e){let{inputs:t,backend:a}=e,{x:n}=t;if(n.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(n.dtype==="complex64"){let r=Us({inputs:{input:n},backend:a}),s=W7({inputs:{x:r},backend:a}),i=ml({inputs:{input:n},backend:a}),o=Lc({inputs:{x:i},backend:a}),l=Xa({inputs:{real:s,imag:o},backend:a});return a.disposeIntermediateTensorInfo(r),a.disposeIntermediateTensorInfo(s),a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}else return A3({backend:a,attrs:{shape:n.shape,value:1,dtype:n.dtype}})}var rB={kernelName:Vl,backendName:"cpu",kernelFunc:W7};function V7(e){let{inputs:t,backend:a,attrs:n}=e,{axis:r}=n;if(t.length===1)return zc({inputs:{input:t[0]},backend:a,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(p=>{v.assertShapesMatch(s,p.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===p.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(p=>{let c=zc({inputs:{input:p},backend:a,attrs:{dim:r}});return o.push(c),c}),u=gl({inputs:l,backend:a,attrs:{axis:r}});return o.forEach(p=>a.disposeIntermediateTensorInfo(p)),u}var sB={kernelName:Ul,backendName:"cpu",kernelFunc:V7};function iB(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{paddings:s,constantValue:i}=n;Ae(r,"pad");let o=s.map((x,y)=>x[0]+r.shape[y]+x[1]),l=s.map(x=>x[0]),u=a.data.get(r.dataId).values,p=v.sizeFromShape(r.shape),c=r.shape.length,d=v.computeStrides(r.shape),h=v.sizeFromShape(o),f=o.length,m=v.computeStrides(o),g=v.getTypedArrayFromDType(r.dtype,h);i!==0&&g.fill(i);for(let x=0;x<p;x++){let y=v.indexToLoc(x,c,d).map((b,k)=>b+l[k]),A=v.locToIndex(y,f,m);g[A]=u[x]}return{dataId:a.write(g,o,r.dtype),shape:o,dtype:r.dtype}}var U7={kernelName:Gi,backendName:"cpu",kernelFunc:iB},oB=Lt((e,t)=>Math.pow(e,t)),lB=Yt(Hi,oB),uB={kernelName:Hi,backendName:"cpu",kernelFunc:lB};function dB(e){let{inputs:t,backend:a,attrs:n}=e,{paramsNestedSplits:r,paramsDenseValues:s,indices:i}=t,{outputRaggedRank:o}=n,l=r.map(x=>a.data.get(x.dataId).values),u=r.map(x=>x.shape),p=a.data.get(s.dataId).values,c=a.data.get(i.dataId).values,[d,h,f]=f7(l,u,p,s.shape,s.dtype,c,i.shape,o),m=d.map(x=>a.makeTensorInfo([x.length],"int32",x)),g=a.makeTensorInfo(f,s.dtype,h);return m.concat([g])}var pB={kernelName:ih,backendName:"cpu",kernelFunc:dB};function cB(e){let{inputs:t,backend:a}=e,{starts:n,limits:r,deltas:s}=t,i=a.data.get(n.dataId).values,o=a.data.get(r.dataId).values,l=a.data.get(s.dataId).values,[u,p]=m7(i,n.shape,n.dtype,o,r.shape,l,s.shape),c=a.makeTensorInfo([u.length],"int32",u),d=a.makeTensorInfo([p.length],n.dtype,p);return[c,d]}var hB={kernelName:oh,backendName:"cpu",kernelFunc:cB};function fB(e){let{inputs:t,backend:a,attrs:n}=e,{shape:r,values:s,defaultValue:i,rowPartitionTensors:o}=t,{rowPartitionTypes:l}=n,u=a.data.get(r.dataId).values,p=a.data.get(s.dataId).values,c=a.data.get(i.dataId).values,d=o.map(g=>a.data.get(g.dataId).values),h=o.map(g=>g.shape),[f,m]=g7(u,r.shape,p,s.shape,s.dtype,c,i.shape,d,h,l);return a.makeTensorInfo(f,s.dtype,m)}var mB={kernelName:lh,backendName:"cpu",kernelFunc:fB};function gB(e){let{backend:t,attrs:a}=e,{start:n,stop:r,dtype:s,step:i}=a,o=p3(n,r,i,s);return t.makeTensorInfo([o.length],s,o)}var xB={kernelName:Gl,backendName:"cpu",kernelFunc:gB},yB=ot(Xi,e=>1/e),AB={kernelName:Xi,backendName:"cpu",kernelFunc:yB};function bB(e){let{inputs:t,backend:a,attrs:n}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=n;Ae(r,"resizeBilinear");let l=v.computeStrides(r.shape),[u,p]=o,[c,d,h,f]=r.shape,m=a.data.get(r.dataId).values,g=new Float32Array(v.sizeFromShape([c,u,p,f])),x=[s&&u>1?d-1:d,s&&p>1?h-1:h],y=[s&&u>1?u-1:u,s&&p>1?p-1:p],A=0,b=x[0]/y[0],k=x[1]/y[1];for(let S=0;S<c;S++)for(let C=0;C<u;C++){let E;i?E=b*(C+.5)-.5:E=b*C;let _=Math.max(0,Math.floor(E)),$=E-_,M=Math.min(d-1,Math.ceil(E)),I=S*l[0]+_*l[1],N=S*l[0]+M*l[1];for(let O=0;O<p;O++){let L;i?L=k*(O+.5)-.5:L=k*O;let W=Math.max(0,Math.floor(L)),G=L-W,H=Math.min(h-1,Math.ceil(L)),U=I+W*l[2],j=N+W*l[2],V=I+H*l[2],Q=N+H*l[2];for(let Z=0;Z<f;Z++){let re=m[U+Z],ee=m[j+Z],fe=m[V+Z],ie=m[Q+Z],ye=re+(fe-re)*G,Se=ee+(ie-ee)*G,Ee=ye+(Se-ye)*$;g[A++]=Ee}}}return a.makeTensorInfo([c,u,p,f],"float32",g)}var vB={kernelName:Yi,backendName:"cpu",kernelFunc:bB};function kB(e){let{inputs:t,backend:a,attrs:n}=e,{images:r,dy:s}=t,{alignCorners:i}=n;Ae([s,r],"resizeBilinearGrad");let o=v.computeStrides(r.shape),[l,u,p,c]=r.shape,[,d,h]=s.shape,f=new Float32Array(l*u*p*c),m=[i&&d>1?u-1:u,i&&h>1?p-1:p],g=[i&&d>1?d-1:d,i&&h>1?h-1:h],x=m[0]/g[0],y=m[1]/g[1],A=a.data.get(s.dataId).values,b=0;for(let k=0;k<l;k++){let S=k*o[0];for(let C=0;C<d;C++){let E=C*x,_=Math.floor(E),$=Math.min(Math.ceil(E),u-1),M=S+_*o[1],I=S+$*o[1],N=E-_,O=1-N;for(let L=0;L<h;L++){let W=L*y,G=Math.floor(W),H=Math.min(Math.ceil(W),p-1),U=W-G,j=1-U,V=M+G*o[2],Q=M+H*o[2],Z=I+G*o[2],re=I+H*o[2],ee=O*j,fe=O*U,ie=N*j,ye=N*U;for(let Se=0;Se<c;Se++){let Ee=A[b++];f[V+Se]+=Ee*ee,f[Q+Se]+=Ee*fe,f[Z+Se]+=Ee*ie,f[re+Se]+=Ee*ye}}}}return a.makeTensorInfo([l,p,u,c],"float32",f)}var wB={kernelName:j2,backendName:"cpu",kernelFunc:kB};function IB(e){let{inputs:t,backend:a,attrs:n}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=n;Ae(r,"resizeNearestNeighbor");let l=v.computeStrides(r.shape),[u,p]=o,[c,d,h,f]=r.shape,m=a.data.get(r.dataId).values,g=new Float32Array(c*u*p*f),x=[s&&u>1?d-1:d,s&&p>1?h-1:h],y=[s&&u>1?u-1:u,s&&p>1?p-1:p],A=x[0]/y[0],b=x[1]/y[1],k=0;for(let S=0;S<c;S++){let C=S*l[0];for(let E=0;E<u;E++){let _=i?A*(E+.5):A*E,$=Math.min(d-1,s?Math.round(_):Math.floor(_));i&&($=Math.max(0,$));let M=C+$*l[1];for(let I=0;I<p;I++){let N=i?b*(I+.5):b*I,O=Math.min(h-1,s?Math.round(N):Math.floor(N));i&&(O=Math.max(0,O));let L=M+O*l[2];for(let W=0;W<f;W++){let G=m[L+W];g[k++]=G}}}}return a.makeTensorInfo([c,u,p,f],r.dtype,g)}var SB={kernelName:Zi,backendName:"cpu",kernelFunc:IB};function TB(e){let{inputs:t,backend:a,attrs:n}=e,{images:r,dy:s}=t,{alignCorners:i}=n;Ae([s,r],"resizeNearestNeighborGrad");let o=v.computeStrides(r.shape),l=v.computeStrides(s.shape),[u,p,c,d]=r.shape,[,h,f]=s.shape,m=new Float32Array(u*p*c*d),g=a.data.get(s.dataId).values,x=[i&&h>1?p-1:p,i&&f>1?c-1:c],y=[i&&h>1?h-1:h,i&&f>1?f-1:f],A=x[0]/y[0],b=x[1]/y[1],k=1/A,S=1/b,C=Math.ceil(k)*2+2,E=Math.ceil(S)*2+2;for(let _=0;_<u;_++){let $=_*o[0];for(let M=0;M<p;M++){let I=$+M*o[1],N=Math.floor(M*k),O=Math.floor(N-C/2);for(let L=0;L<c;L++){let W=I+L*o[2],G=Math.floor(L*S),H=Math.floor(G-E/2);for(let U=0;U<d;U++){let j=0;for(let V=0;V<C;V++){let Q=V+O;if(Q<0||Q>=h)continue;let Z=$+Q*l[1],re=Q*A,ee=Math.min(p-1,i?Math.round(re):Math.floor(re));if(M===ee)for(let fe=0;fe<E;fe++){let ie=fe+H;if(ie<0||ie>=f)continue;let ye=Z+ie*l[2],Se=ie*b,Ee=Math.min(c-1,i?Math.round(Se):Math.floor(Se));L===Ee&&(j+=g[ye+U])}}m[W+U]=j}}}}return a.makeTensorInfo(r.shape,r.dtype,m)}var CB={kernelName:H2,backendName:"cpu",kernelFunc:TB};function NB(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{dims:s}=n;Ae(r,"reverse");let i=r.shape.length,o=v.parseAxisParam(s,r.shape);if(i===0)return er({inputs:{x:r},backend:a});let l=new jt(r.shape,r.dtype),u=a.bufferSync(r);for(let p=0;p<l.size;p++){let c=l.indexToLoc(p),d=c.slice();o.forEach(h=>d[h]=r.shape[h]-1-d[h]),l.set(u.get(...d),...c)}return a.makeTensorInfo(l.shape,l.dtype,l.values)}var EB={kernelName:Qi,backendName:"cpu",kernelFunc:NB},RB={kernelName:go,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:a})=>{let{image:n}=e,{radians:r,fillValue:s,center:i}=t,o=a,l=v.getTypedArrayFromDType(n.dtype,v.sizeFromShape(n.shape)),[u,p,c,d]=n.shape,[h,f]=T.getImageCenter(i,p,c),m=255,g=Math.sin(r),x=Math.cos(r),y=o.data.get(n.dataId).values;for(let A=0;A<u;A++){let b=A*c*p*d;for(let k=0;k<p;k++){let S=k*(c*d);for(let C=0;C<c;C++){let E=C*d;for(let _=0;_<d;_++){let $=[u,k,C,_],M=$[2],I=$[1],N=(M-h)*x-(I-f)*g,O=(M-h)*g+(I-f)*x;N=Math.round(N+h),O=Math.round(O+f);let L=s;if(typeof s!="number"&&(_===3?L=m:L=s[_]),N>=0&&N<c&&O>=0&&O<p){let G=O*(c*d),H=N*d,U=b+G+H+_;L=y[U]}let W=b+S+E+_;l[W]=L}}}}return{dataId:o.write(l,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},MB=ot(eo,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2===0?t:t+1}),$B={kernelName:eo,backendName:"cpu",kernelFunc:MB};function _B(e){let{inputs:t,backend:a,attrs:n}=e,{indices:r,updates:s}=t,{shape:i}=n,{sliceRank:o,numUpdates:l,sliceSize:u,strides:p,outputSize:c}=T.calculateShapes(s,r,i),d=!0,h=a.bufferSync(r),f=a.bufferSync(s),m=el(h,f,i,c,u,l,o,p,0,d);return a.makeTensorInfo(i,m.dtype,m.values)}var PB={kernelName:ao,backendName:"cpu",kernelFunc:_B};function FB(e,t){let a=0,n=e.length,r=0;for(;a<n;)r=Math.floor((a+n)/2),e[r]<t?a=r+1:n=r;return n}function OB(e,t){let a=0,n=e.length,r=0;for(;a<n;)r=Math.floor((a+n)/2),e[r]<=t?a=r+1:n=r;return n}function DB(e,t,a,n,r,s){let i=v.getArrayFromDType("int32",a*r);for(let o=0;o<a;++o){let l=e.slice(o*n,(o+1)*n),u=o*r;for(let p=0;p<r;++p)i[u+p]=s==="left"?FB(l,t[p+u]):OB(l,t[p+u])}return i}function zB(e){let{inputs:t,backend:a,attrs:n}=e,{sortedSequence:r,values:s}=t,{side:i}=n,o=a.data.get(r.dataId).values,l=a.data.get(s.dataId).values,u=DB(o,l,r.shape[0],r.shape[1],s.shape[1],i);return a.makeTensorInfo(s.shape,"int32",u)}var LB={kernelName:Ld,backendName:"cpu",kernelFunc:zB};function BB(e){let{inputs:t,backend:a}=e,{condition:n,t:r,e:s}=t;Ae([n,r,s],"select");let i=n.shape.length,o=a.data.get(n.dataId).values,l=a.data.get(r.dataId).values,u=a.data.get(s.dataId).values,p=ha(r.dtype,s.dtype),c=v.makeZerosTypedArray(v.sizeFromShape(r.shape),p),d=0,h=i===0||i>1||r.shape.length===1?1:v.sizeFromShape(r.shape.slice(1));for(let f=0;f<o.length;f++)for(let m=0;m<h;m++)o[f]===1?c[d++]=l[f]:c[d++]=u[f];return a.makeTensorInfo(r.shape,p,c)}var WB={kernelName:jl,backendName:"cpu",kernelFunc:BB},VB=T.SELU_SCALEALPHA,UB=T.SELU_SCALE,GB=ot(ql,e=>e>=0?UB*e:VB*(Math.exp(e)-1)),HB={kernelName:ql,backendName:"cpu",kernelFunc:GB},jB=ot(Zl,e=>e<0?-1:e>0?1:0),qB={kernelName:Zl,backendName:"cpu",kernelFunc:jB},XB=ot(no,e=>Math.sin(e)),KB={kernelName:no,backendName:"cpu",kernelFunc:XB},ZB=ot(Kl,e=>Math.sinh(e)),YB={kernelName:Kl,backendName:"cpu",kernelFunc:ZB},JB=11920928955078125e-23,ix=Math.log(JB)+2,QB=ot(Yl,e=>{let t=e>-ix,a=e<ix,n=Math.exp(e),r;return a?r=n:t?r=e:r=Math.log(1+n),r}),eW={kernelName:Yl,backendName:"cpu",kernelFunc:QB};function tW(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{blockShape:s,paddings:i}=n;Ae([r],"spaceToBatchND");let o=v.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let g=1+s.length;g<r.shape.length;++g)l.push([0,0]);let u=U7.kernelFunc({inputs:{x:r},backend:a,attrs:{paddings:l,constantValue:0}}),p=T.getReshaped(u.shape,s,o,!1),c=T.getPermuted(p.length,s.length,!1),d=T.getReshapedPermuted(u.shape,s,o,!1),h=mt({inputs:{x:u},backend:a,attrs:{shape:p}}),f=La({inputs:{x:h},backend:a,attrs:{perm:c}}),m=mt({inputs:{x:f},backend:a,attrs:{shape:d}});return a.disposeIntermediateTensorInfo(u),a.disposeIntermediateTensorInfo(h),a.disposeIntermediateTensorInfo(f),m}var aW={kernelName:Jl,backendName:"cpu",kernelFunc:tW};function nW(e){let{inputs:t,backend:a}=e,{indices:n,values:r,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${s.shape}`);if(n.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${n.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${i.shape}`);let o=a.data.get(n.dataId).values,l=a.data.get(r.dataId).values,u=a.data.get(s.dataId).values,p=a.data.get(i.dataId).values[0],[c,d,h,f,m]=A7(o,n.shape,n.dtype,l,r.dtype,u,p);return[a.makeTensorInfo(d,n.dtype,c),a.makeTensorInfo([d[0]],r.dtype,h),a.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),a.makeTensorInfo([m.length],n.dtype,new Int32Array(m))]}var rW={kernelName:Bd,backendName:"cpu",kernelFunc:nW};function sW(e){let{inputs:t,backend:a}=e,{inputIndices:n,inputShape:r,newShape:s}=t;if(n.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${n.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(a.data.get(r.dataId).values),o=a.data.get(n.dataId).values,l=Array.from(a.data.get(s.dataId).values),[u,p,c]=b7(o,n.shape,n.dtype,i,l);return[a.makeTensorInfo(p,n.dtype,u),a.makeTensorInfo([c.length],s.dtype,new Int32Array(c))]}var iW={kernelName:eu,backendName:"cpu",kernelFunc:sW};function oW(e){let{inputs:t,backend:a}=e,{data:n,indices:r,segmentIds:s}=t;if(n.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);if(r.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let i=a.data.get(n.dataId).values,o=a.data.get(r.dataId).values,l=a.data.get(s.dataId).values,[u,p]=c3(i,n.shape,n.dtype,o,l,!0);return a.makeTensorInfo(p,n.dtype,u)}var lW={kernelName:Wd,backendName:"cpu",kernelFunc:oW};function uW(e){let{inputs:t,backend:a}=e,{data:n,indices:r,segmentIds:s}=t;if(n.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);if(r.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let i=a.data.get(n.dataId).values,o=a.data.get(r.dataId).values,l=a.data.get(s.dataId).values,[u,p]=c3(i,n.shape,n.dtype,o,l);return a.makeTensorInfo(p,n.dtype,u)}var dW={kernelName:Vd,backendName:"cpu",kernelFunc:uW};function pW(e){let{inputs:t,backend:a,attrs:n}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=n,{sliceRank:l,numUpdates:u,sliceSize:p,strides:c,outputSize:d}=T.calculateShapes(s,r,o),h=!1,f=a.bufferSync(r),m;switch(s.dtype){case"bool":{let g=a.bufferSync(s),x=Boolean(a.data.get(i.dataId).values[0]);m=el(f,g,o,d,p,u,l,c,x,h);break}case"float32":{let g=a.bufferSync(s),x=a.data.get(i.dataId).values[0];m=el(f,g,o,d,p,u,l,c,x,h);break}case"int32":{let g=a.bufferSync(s),x=a.data.get(i.dataId).values[0];m=el(f,g,o,d,p,u,l,c,x,h);break}case"string":{let g=a.bufferSync(s),x=v.decodeString(a.data.get(i.dataId).values[0]);m=el(f,g,o,d,p,u,l,c,x,h);break}default:throw new Error(`Unsupported type ${s.dtype}`)}return a.makeTensorInfo(o,m.dtype,m.values)}var cW={kernelName:Ud,backendName:"cpu",kernelFunc:pW};function hW(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=n,o=v.parseAxisParam(i,r.shape)[0],l=T.prepareSplitSize(r,s,o),u=new Array(r.shape.length).fill(0),p=r.shape.slice();return l.map(c=>{let d=[...p];d[o]=c;let h=Gs({inputs:{x:r},backend:a,attrs:{begin:u,size:d}});return u[o]+=c,h})}var fW={kernelName:Ql,backendName:"cpu",kernelFunc:hW},mW={kernelName:Gd,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:a}=e,n=t;Ae(a,"square");let r=n.data.get(a.dataId).values,s=new Float32Array(r.length);for(let i=0;i<r.length;++i){let o=r[i];s[i]=o*o}return{dataId:n.write(s,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},gW=ot(ss,(e,t)=>{let a=t;return isNaN(e)?NaN:e>0?1:a.alpha}),xW={kernelName:ss,backendName:"cpu",kernelFunc:gW};function yW(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:p,newAxisMask:c,shrinkAxisMask:d}=n;Ae(r,"stridedSlice");let{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:x,begin:y,end:A,strides:b}=St.sliceInfo(r.shape,s,i,o,l,u,p,c,d),k;if(m)k=mt({inputs:{x:r},backend:a,attrs:{shape:f}});else if(g||x){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let S=St.computeOutShape(y,A,b),C=Gs({inputs:{x:r},backend:a,attrs:{begin:y,size:S}});k=mt({inputs:{x:C},backend:a,attrs:{shape:f}}),a.disposeIntermediateTensorInfo(C)}else{let S=a.bufferSync(r),C=k7(h,S,b,y);k=a.makeTensorInfo(f,C.dtype,C.values)}return k}var AW={kernelName:uo,backendName:"cpu",kernelFunc:yW};function bW(e){let{inputs:t,backend:a,attrs:n}=e,{separator:r,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=n,{data:p,dataSplits:c}=t,d=a.data.get(p.dataId).values,h=a.data.get(c.dataId).values,[f,m]=h3(d,h,r,s,i,o,l,u);return[a.makeTensorInfo([f.length],"string",f),a.makeTensorInfo(c.shape,"int32",m)]}var vW={kernelName:tu,backendName:"cpu",kernelFunc:bW};function kW(e){let{inputs:t,backend:a,attrs:n}=e,{skipEmpty:r}=n,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=a.data.get(s.dataId).values,l=a.data.get(i.dataId).values[0],[u,p,c]=f3(o,l,r),d=p.length;return[a.makeTensorInfo([d,2],"int32",u),a.makeTensorInfo([d],"string",p),a.makeTensorInfo([2],"int32",new Int32Array(c))]}var wW={kernelName:Hd,backendName:"cpu",kernelFunc:kW};function IW(e){let{inputs:t,backend:a,attrs:n}=e,{numBuckets:r}=n,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let i=a.data.get(s.dataId).values,o=m3(i,r);return a.makeTensorInfo(s.shape,"int32",o)}var SW={kernelName:jd,backendName:"cpu",kernelFunc:IW},TW=ot(co,e=>Math.tan(e)),CW={kernelName:co,backendName:"cpu",kernelFunc:TW},NW=ot(ho,e=>Math.tanh(e)),EW={kernelName:ho,backendName:"cpu",kernelFunc:NW};function RW(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{reps:s}=n;Ae(r,"tile");let i=I7(a.bufferSync(r),s);return a.makeTensorInfo(i.shape,i.dtype,i.values)}var MW={kernelName:rs,backendName:"cpu",kernelFunc:RW};function $W(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{k:s,sorted:i}=n;Ae(r,"topk");let o=a.data.get(r.dataId).values,[l,u]=T7(o,r.shape,r.dtype,s,i);return[a.makeTensorInfo(l.shape,l.dtype,l.values),a.makeTensorInfo(u.shape,u.dtype,u.values)]}var _W={kernelName:fo,backendName:"cpu",kernelFunc:$W};function PW(e){let{inputs:t,attrs:a,backend:n}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=a,[p,c,d,h]=r.shape,[f,m]=u!=null?u:[c,d],g=[p,f,m,h],x=v.computeStrides(r.shape),y=x[0],A=x[1],b=x[2],k=v.computeStrides(g),S=k[0],C=k[1],E=k[2],_=v.getTypedArrayFromDType(r.dtype,v.sizeFromShape(g));_.fill(l);let $=n.data.get(r.dataId).values,M=n.data.get(s.dataId).values;for(let I=0;I<p;++I){let N=s.shape[0]===1?M:M.subarray(I*8,I*8+8);for(let O=0;O<f;++O)for(let L=0;L<m;++L)for(let W=0;W<h;++W){let G,H=N[6]*L+N[7]*O+1;if(H===0)continue;let U=(N[0]*L+N[1]*O+N[2])/H,j=(N[3]*L+N[4]*O+N[5])/H,V=ox(U,d,o),Q=ox(j,c,o);switch(i){case"nearest":G=BW($,c,d,y,A,b,I,Q,V,W,l);break;case"bilinear":G=WW($,c,d,y,A,b,I,Q,V,W,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${i}`)}let Z=I*S+O*C+L*E+W;_[Z]=G}return n.makeTensorInfo(g,r.dtype,_)}return{dataId:n.write(_,g,r.dtype),shape:r.shape,dtype:r.dtype}}var FW={kernelName:mo,backendName:"cpu",kernelFunc:PW};function ox(e,t,a){switch(a){case"reflect":return OW(e,t);case"wrap":return DW(e,t);case"nearest":return LW(e,t);case"constant":default:return zW(e,t)}}function OW(e,t){let a=e;if(a<0)if(t<=1)a=0;else{let n=2*t;a<n&&(a=n*Math.trunc(-a/n)+a),a=a<-t?a+n:-a-1}else if(a>t-1)if(t<=1)a=0;else{let n=2*t;a-=n*Math.trunc(a/n),a>=t&&(a=n-a-1)}return v.clamp(0,a,t-1)}function DW(e,t){let a=e;if(a<0)if(t<=1)a=0;else{let n=t-1;a+=t*(Math.trunc(-a/n)+1)}else if(a>t-1)if(t<=1)a=0;else{let n=t-1;a-=t*Math.trunc(a/n)}return v.clamp(0,a,t-1)}function zW(e,t){return e}function LW(e,t){return v.clamp(0,e,t-1)}function ju(e,t,a,n,r,s,i,o,l,u,p){let c=i*n+o*r+l*s+u;return 0<=o&&o<t&&0<=l&&l<a?e[c]:p}function BW(e,t,a,n,r,s,i,o,l,u,p){let c=Math.round(o),d=Math.round(l);return ju(e,t,a,n,r,s,i,c,d,u,p)}function WW(e,t,a,n,r,s,i,o,l,u,p){let c=Math.floor(o),d=Math.floor(l),h=c+1,f=d+1,m=(f-l)*ju(e,t,a,n,r,s,i,c,d,u,p)+(l-d)*ju(e,t,a,n,r,s,i,c,f,u,p),g=(f-l)*ju(e,t,a,n,r,s,i,h,d,u,p)+(l-d)*ju(e,t,a,n,r,s,i,h,f,u,p);return(h-o)*m+(o-c)*g}function VW(e){let{inputs:t,attrs:a,backend:n}=e,{axis:r}=a,{x:s}=t;Ae(s,"unique");let i=n.data.get(s.dataId).values,{outputValues:o,outputShape:l,indices:u}=C7(i,r,s.shape,s.dtype);return[n.makeTensorInfo(l,s.dtype,o),n.makeTensorInfo([u.length],"int32",u)]}var UW={kernelName:uh,backendName:"cpu",kernelFunc:VW};function GW(e){let{inputs:t,backend:a,attrs:n}=e,{value:r}=t,{axis:s}=n;s<0&&(s+=r.shape.length);let i=r.shape.length,o=r.shape[s],l=new Array(i-1),u=0;for(let h=0;h<i;h++)h!==s&&(l[u++]=r.shape[h]);let p=new Array(i).fill(0),c=r.shape.slice();c[s]=1;let d=new Array(o);for(let h=0;h<d.length;h++){p[s]=h;let f=Gs({inputs:{x:r},backend:a,attrs:{begin:p,size:c}});d[h]=mt({inputs:{x:f},backend:a,attrs:{shape:l}}),a.disposeIntermediateTensorInfo(f)}return d}var HW={kernelName:au,backendName:"cpu",kernelFunc:GW};function jW(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,segmentIds:s}=t,{numSegments:i}=n;Ae(r,"unsortedSegmentSum");let o=r.shape.length,l=s.shape.length,u=[],p=[],c=o-l,d=s;for(let f=0;f<c;++f){let m=zc({inputs:{input:d},backend:a,attrs:{dim:f+1}});d=m,p.push(m)}for(let f=0;f<i;++f){let m=v.createScalarValue(f,"int32"),g=a.makeTensorInfo([],"int32",m),x=K4({inputs:{a:g,b:d},backend:a}),y=Qr({inputs:{x},backend:a,attrs:{dtype:"float32"}}),A=Eh({inputs:{a:y,b:r},backend:a}),b=pp({inputs:{x:A},backend:a,attrs:{axis:0,keepDims:!1}});u.push(b),p.push(g),p.push(x),p.push(y),p.push(A),p.push(b)}let h=V7({inputs:u,backend:a,attrs:{axis:0}});return p.forEach(f=>a.disposeIntermediateTensorInfo(f)),h}var qW={kernelName:dh,backendName:"cpu",kernelFunc:jW},XW=[VO,NF,GO,jO,PF,XO,ZO,JO,eD,aD,rD,iD,lD,pD,hD,gD,yD,bD,kD,BO,ID,TD,ND,RD,$F,OF,$D,EF,PD,OD,DD,LD,WD,UD,HD,qD,KD,YD,QD,tz,nz,sz,oz,lz,dz,cz,fz,mz,gz,xz,bz,_O,kz,DF,Rz,zF,Mz,BF,Dz,zz,Bz,VF,Uz,Hz,qz,Kz,Yz,GF,jF,RF,Qz,FD,tL,nL,sL,PO,XF,ZF,oL,JF,uL,cL,fL,xL,AL,vL,kL,eO,IL,TL,NL,RL,$L,PL,OL,aO,zL,WL,HL,rO,iO,XL,YL,eB,lO,aB,rB,sB,U7,uB,OO,pO,pB,hB,mB,xB,MF,g2,AB,DO,zO,LO,vB,wB,SB,CB,EB,RB,$B,AO,PB,LB,WB,HB,vO,qB,KB,YB,kO,UL,eW,aW,rW,iW,lW,dW,cW,fW,SO,mW,CO,xW,AW,vW,wW,SW,MO,yz,CW,EW,MW,_W,FW,uO,UW,HW,qW,nB];for(let e of XW)mn(e);var G7={};Ke(G7,{assertNotComplex:()=>uu,bindCanvasToFramebuffer:()=>sV,bindColorTextureToFramebuffer:()=>vc,bindTextureToProgramUniformSampler:()=>s6,bindTextureUnit:()=>a6,bindVertexBufferToProgramAttribute:()=>y2,callAndCheck:()=>ue,canBeRepresented:()=>H7,createFragmentShader:()=>X7,createFramebuffer:()=>t6,createProgram:()=>K7,createStaticIndexBuffer:()=>J7,createStaticVertexBuffer:()=>Y7,createTexture:()=>Q7,createVertexShader:()=>q7,getBatchDim:()=>Hs,getExtensionOrThrow:()=>qu,getFramebufferErrorMessage:()=>i6,getMaxTexturesInShader:()=>d6,getNumChannels:()=>nV,getProgramUniformLocation:()=>r6,getProgramUniformLocationOrThrow:()=>n6,getRowsCols:()=>js,getShapeAs3D:()=>Ku,getTextureShapeFromLogicalShape:()=>l6,getWebGLDisjointQueryTimerVersion:()=>p6,getWebGLErrorMessage:()=>j7,getWebGLMaxTextureSize:()=>u6,hasExtension:()=>cn,isCapableOfRenderingToFloatTexture:()=>c6,isDownloadFloatTextureEnabled:()=>h6,isReshapeFree:()=>xd,isWebGLFenceEnabled:()=>f6,isWebGLVersionEnabled:()=>b2,linkProgram:()=>Z7,logShaderSourceAndInfoLog:()=>v3,resetMaxTextureSize:()=>iV,resetMaxTexturesInShader:()=>oV,unbindColorTextureFromFramebuffer:()=>A2,unbindTextureUnit:()=>rV,validateFramebuffer:()=>Xu,validateProgram:()=>bc,validateTextureSize:()=>e6});var Fs={},cc={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function Rh(e,t){Fs[e]=t}function Dn(e,t){if(!(e in Fs)||t!=null){let n=ZW(e,t);if(n!==null)Fs[e]=n;else return console.log("Could not get context for WebGL version",e),null}let a=Fs[e];return a==null||a.isContextLost()?(delete Fs[e],Dn(e)):(a.disable(a.DEPTH_TEST),a.disable(a.STENCIL_TEST),a.disable(a.BLEND),a.disable(a.DITHER),a.disable(a.POLYGON_OFFSET_FILL),a.disable(a.SAMPLE_COVERAGE),a.enable(a.SCISSOR_TEST),a.enable(a.CULL_FACE),a.cullFace(a.BACK),Fs[e])}function KW(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function ZW(e,t){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let a=t==null?KW(e):t;return a.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete Fs[e]},!1),B().getBool("SOFTWARE_WEBGL_ENABLED")&&(cc.failIfMajorPerformanceCaveat=!1),e===1?a.getContext("webgl",cc)||a.getContext("experimental-webgl",cc):a.getContext("webgl2",cc)}var gd;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(gd||(gd={}));var pn;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(pn||(pn={}));var sa;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(sa||(sa={}));function cp(e,t){return[t,e]}function YW(e,t){return e*t}function hc(e){let t=v.sizeFromShape(e),a=Math.ceil(t/4);return v.sizeToSquarishShape(a)}function lu(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function JW(e,t){let[a,n]=lu(e,t);return a*n*4}function b3(e,t){let a=e,n,r,s,i,o,l,u,p,c,d;return B().getNumber("WEBGL_VERSION")===2?(n=a.R32F,r=a.R16F,s=a.RGBA16F,i=a.RGBA32F,o=a.RED,u=4,p=1,c=a.HALF_FLOAT,d=a.FLOAT,l=a.RGBA8):(n=e.RGBA,r=e.RGBA,s=e.RGBA,i=a.RGBA,o=e.RGBA,u=4,p=4,c=t!=null?t.HALF_FLOAT_OES:null,d=e.FLOAT,l=e.RGBA),{internalFormatFloat:n,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:p,textureTypeHalfFloat:c,textureTypeFloat:d}}function ue(e,t){let a=t();return B().getBool("DEBUG")&&QW(e),a}function QW(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+j7(e,t))}var eV=596e-10,tV=65504;function H7(e){return!!(B().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||eV<Math.abs(e)&&Math.abs(e)<tV)}function j7(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function qu(e,t){return Sr(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function q7(e,t){let a=Sr(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(ue(e,()=>e.shaderSource(a,t)),ue(e,()=>e.compileShader(a)),e.getShaderParameter(a,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(a)),new Error("Failed to compile vertex shader.");return a}function X7(e,t){let a=Sr(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(ue(e,()=>e.shaderSource(a,t)),ue(e,()=>e.compileShader(a)),B().get("ENGINE_COMPILE_ONLY"))return a;if(e.getShaderParameter(a,e.COMPILE_STATUS)===!1)throw v3(t,e.getShaderInfoLog(a)),new Error("Failed to compile fragment shader.");return a}var aV=/ERROR: [0-9]+:([0-9]+):/g;function v3(e,t){let a=aV.exec(t);if(a==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let n=+a[1],r=e.split(`
|
|
`),s=r.length.toString().length+2,i=r.map((c,d)=>v.rightPad((d+1).toString(),s)+c),o=0;for(let c=0;c<i.length;c++)o=Math.max(i[c].length,o);let l=i.slice(0,n-1),u=i.slice(n-1,n),p=i.slice(n);console.log(l.join(`
|
|
`)),console.log(t.split(`
|
|
`)[0]),console.log(`%c ${v.rightPad(u[0],o)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(p.join(`
|
|
`))}function K7(e){return Sr(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function Z7(e,t){if(ue(e,()=>e.linkProgram(t)),!B().get("ENGINE_COMPILE_ONLY")&&e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function bc(e,t){if(ue(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function Y7(e,t){let a=Sr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return ue(e,()=>e.bindBuffer(e.ARRAY_BUFFER,a)),ue(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),a}function J7(e,t){let a=Sr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return ue(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,a)),ue(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),a}function nV(){return B().getNumber("WEBGL_VERSION")===2?1:4}function Q7(e){return Sr(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function e6(e,t){let a=B().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let n=`[${e}x${t}]`;throw new Error("Requested texture size "+n+" is invalid.")}if(e>a||t>a){let n=`[${e}x${t}]`,r=`[${a}x${a}]`;throw new Error("Requested texture size "+n+" greater than WebGL maximum on this browser / GPU "+r+".")}}function t6(e){return Sr(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function y2(e,t,a,n,r,s,i){let o=e.getAttribLocation(t,a);return o===-1?!1:(ue(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),ue(e,()=>e.vertexAttribPointer(o,r,e.FLOAT,!1,s,i)),ue(e,()=>e.enableVertexAttribArray(o)),!0)}function a6(e,t,a){o6(e,a),ue(e,()=>e.activeTexture(e.TEXTURE0+a)),ue(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function rV(e,t){o6(e,t),ue(e,()=>e.activeTexture(e.TEXTURE0+t)),ue(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function n6(e,t,a){return Sr(e,()=>e.getUniformLocation(t,a),'uniform "'+a+'" not present in program.')}function r6(e,t,a){return e.getUniformLocation(t,a)}function s6(e,t,a,n){ue(e,()=>a6(e,t,n)),ue(e,()=>e.uniform1i(a,n))}function sV(e){ue(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),ue(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),ue(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function vc(e,t,a){ue(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,a)),ue(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function A2(e,t){ue(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),ue(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function Xu(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+i6(e,t))}function i6(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function Sr(e,t,a){let n=ue(e,()=>t());if(n==null)throw new Error(a);return n}function o6(e,t){let a=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,n=t+e.TEXTURE0;if(n<e.TEXTURE0||n>a){let r=`[gl.TEXTURE0, gl.TEXTURE${a}]`;throw new Error(`textureUnit must be in ${r}.`)}}function Hs(e,t=2){return v.sizeFromShape(e.slice(0,e.length-t))}function js(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function Ku(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[Hs(e),...js(e)]),t}function l6(e,t=!1){let a=B().getNumber("WEBGL_MAX_TEXTURE_SIZE"),n=B().getNumber("WEBGL_MAX_SIZE_FOR_NARROW_TEXTURE");n===1/0&&B().getBool("WEBGL_AUTO_SQUARIFY_NARROW_TEXTURE_SHAPE")&&(n=a/2),t&&(a=a*2,n=n*2,e=e.map((o,l)=>l>=e.length-2?v.nearestLargerEven(e[l]):e[l]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=v.squeezeShape(e).newShape);let r=v.sizeFromShape(e),s=null;e.length<=1&&r<=a?s=[1,r]:e.length===2&&e[0]<=a&&e[1]<=a?s=e:e.length===3&&e[0]*e[1]<=a&&e[2]<=a?s=[e[0]*e[1],e[2]]:e.length===3&&e[0]<=a&&e[1]*e[2]<=a?s=[e[0],e[1]*e[2]]:e.length===4&&e[0]*e[1]*e[2]<=a&&e[3]<=a?s=[e[0]*e[1]*e[2],e[3]]:e.length===4&&e[0]<=a&&e[1]*e[2]*e[3]<=a&&(s=[e[0],e[1]*e[2]*e[3]]);let i=s!=null&&Math.max(...s)>n&&Math.min(...s)<=(t?2:1)&&Math.min(...s)>0;if(s==null||i)if(t){let o=Hs(e),l=2,u=2;e.length&&([l,u]=js(e)),r=o*(l/2)*(u/2),s=v.sizeToSquarishShape(r).map(p=>p*2)}else s=v.sizeToSquarishShape(r);return s}function fc(e){return e%2===0}function xd(e,t){if(e=e.slice(-2),t=t.slice(-2),v.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let a=e.slice(-1)[0],n=t.slice(-1)[0];if(a===n||fc(a)&&fc(n)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&fc(e[0])&&fc(t[0])}var kc,wc;function u6(e){if(kc==null){let t=Dn(e);kc=t.getParameter(t.MAX_TEXTURE_SIZE)}return kc}function iV(){kc=null}function oV(){wc=null}function d6(e){if(wc==null){let t=Dn(e);wc=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,wc)}function p6(e){if(e===0)return 0;let t,a=Dn(e);return cn(a,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:cn(a,"EXT_disjoint_timer_query")?t=1:t=0,t}function cn(e,t){return e.getExtension(t)!=null}function b2(e){try{if(Dn(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function c6(e){if(e===0)return!1;let t=Dn(e);if(e===1){if(!cn(t,"OES_texture_float"))return!1}else if(!cn(t,"EXT_color_buffer_float"))return!1;return v2(t)}function h6(e){if(e===0)return!1;let t=Dn(e);if(e===1){if(!cn(t,"OES_texture_float")||!cn(t,"WEBGL_color_buffer_float"))return!1}else{if(cn(t,"EXT_color_buffer_float"))return v2(t);let a="EXT_color_buffer_half_float";if(cn(t,a)){let n=t.getExtension(a);return lV(t,n)}return!1}return v2(t)}function v2(e){let t=b3(e),a=e.createTexture();e.bindTexture(e.TEXTURE_2D,a);let n=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,n,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,a,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(a),e.deleteFramebuffer(s),i}function lV(e,t){let a=b3(e,t),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let r=1,s=1;e.texImage2D(e.TEXTURE_2D,0,a.internalFormatHalfFloat,r,s,0,a.textureFormatFloat,a.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(i),o}function f6(e){return e!==2?!1:Dn(e).fenceSync!=null}function uu(e,t){Array.isArray(e)||(e=[e]),e.forEach(a=>{a!=null&&v.assert(a.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var ve=B();ve.registerFlag("HAS_WEBGL",()=>ve.getNumber("WEBGL_VERSION")>0);ve.registerFlag("WEBGL_VERSION",()=>b2(2)?2:b2(1)?1:0);ve.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);ve.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>ve.get("WEBGL_VERSION")===2);ve.registerFlag("WEBGL_CPU_FORWARD",()=>!0);ve.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);ve.registerFlag("WEBGL_PACK",()=>ve.getBool("HAS_WEBGL"));ve.registerFlag("WEBGL_PACK_NORMALIZATION",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_PACK_CLIP",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_PACK_REDUCE",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_LAZILY_UNPACK",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_CONV_IM2COL",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>u6(ve.getNumber("WEBGL_VERSION")));ve.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>d6(ve.getNumber("WEBGL_VERSION")));ve.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=ve.getNumber("WEBGL_VERSION");return e===0?0:p6(e)});ve.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>ve.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Zd.isMobile());ve.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>c6(ve.getNumber("WEBGL_VERSION")));ve.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>ve.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:ve.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));ve.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>h6(ve.getNumber("WEBGL_VERSION")));ve.registerFlag("WEBGL_FENCE_API_ENABLED",()=>f6(ve.getNumber("WEBGL_VERSION")));ve.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>ve.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);ve.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});ve.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>Zd.isMobile()?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});ve.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);ve.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);ve.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);ve.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);ve.registerFlag("WEBGL_EXP_CONV",()=>!1);ve.registerFlag("SOFTWARE_WEBGL_ENABLED",()=>ve.getBool("IS_TEST"));ve.registerFlag("WEBGL_MAX_SIZE_FOR_NARROW_TEXTURE",()=>1/0);ve.registerFlag("WEBGL_AUTO_SQUARIFY_NARROW_TEXTURE_SHAPE",()=>!1);ve.registerFlag("WEBGL2_ISNAN_CUSTOM",()=>!1);ve.registerFlag("ENGINE_COMPILE_ONLY",()=>!1);function Ca(){let e,t,a,n,r,s,i,o,l,u;return B().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",a="out",n="in",r="texture",s="outputColor",i="out vec4 outputColor;",o=B().getBool("WEBGL2_ISNAN_CUSTOM")?`
|
|
bool isnan_custom(float val) {
|
|
uint floatToUint = floatBitsToUint(val);
|
|
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
|
|
}
|
|
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan_custom(val.x),
|
|
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
|
|
}
|
|
|
|
#define isnan(value) isnan_custom(value)
|
|
`:"",l="",u=`
|
|
#define round(value) newRound(value)
|
|
int newRound(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 newRound(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`):(e="",t="attribute",a="varying",n="varying",r="texture2D",s="gl_FragColor",i="",o=`
|
|
#define isnan(value) isnan_custom(value)
|
|
bool isnan_custom(float val) {
|
|
return (val > 0. || val < 1. || val == 0.) ? false : true;
|
|
}
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
|
|
}
|
|
`,l=`
|
|
uniform float INFINITY;
|
|
|
|
bool isinf(float val) {
|
|
return abs(val) == INFINITY;
|
|
}
|
|
bvec4 isinf(vec4 val) {
|
|
return equal(abs(val), vec4(INFINITY));
|
|
}
|
|
`,u=`
|
|
int round(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 round(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`),{version:e,attribute:t,varyingVs:a,varyingFs:n,texture2D:r,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:u}}function Ao(e,t,a="index"){let n=v.computeStrides(t);return n.map((r,s)=>{let i=`int ${e[s]} = ${a} / ${r}`,o=s===n.length-1?`int ${e[s+1]} = ${a} - ${e[s]} * ${r}`:`index -= ${e[s]} * ${r}`;return`${i}; ${o};`}).join("")}function Mh(e,t,a="index"){let n=v.computeStrides(t);return n.map((r,s)=>{let i=`int ${e[s]} = ${a} / outShapeStrides[${s}]`,o=s===n.length-1?`int ${e[s+1]} = ${a} - ${e[s]} * outShapeStrides[${s}]`:`index -= ${e[s]} * outShapeStrides[${s}]`;return`${i}; ${o};`}).join("")}function uV(e,t){let a=e.length,n=e.map(s=>`${t}[${s}]`),r=new Array(a-1);r[a-2]=n[a-1];for(let s=a-3;s>=0;--s)r[s]=`(${r[s+1]} * ${n[s+1]})`;return r}function dV(e,t,a="index"){let n=e.map((s,i)=>i),r=uV(n,t);return r.map((s,i)=>{let o=`int ${e[i]} = ${a} / ${r[i]}`,l=i===r.length-1?`int ${e[i+1]} = ${a} - ${e[i]} * ${r[i]}`:`index -= ${e[i]} * ${r[i]}`;return`${o}; ${l};`}).join("")}function k3(e){let t=v.computeStrides(e).map(a=>a.toString());return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
|
|
}
|
|
`}function w3(){return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
|
|
}
|
|
`}var m6=`
|
|
const float FLOAT_MAX = 1.70141184e38;
|
|
const float FLOAT_MIN = 1.17549435e-38;
|
|
|
|
lowp vec4 encode_float(highp float v) {
|
|
if (isnan(v)) {
|
|
return vec4(255, 255, 255, 255);
|
|
}
|
|
|
|
highp float av = abs(v);
|
|
|
|
if(av < FLOAT_MIN) {
|
|
return vec4(0.0, 0.0, 0.0, 0.0);
|
|
} else if(v > FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
|
|
} else if(v < -FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
|
|
}
|
|
|
|
highp vec4 c = vec4(0,0,0,0);
|
|
|
|
highp float e = floor(log2(av));
|
|
highp float m = exp2(fract(log2(av))) - 1.0;
|
|
|
|
c[2] = floor(128.0 * m);
|
|
m -= c[2] / 128.0;
|
|
c[1] = floor(32768.0 * m);
|
|
m -= c[1] / 32768.0;
|
|
c[0] = floor(8388608.0 * m);
|
|
|
|
highp float ebias = e + 127.0;
|
|
c[3] = floor(ebias / 2.0);
|
|
ebias -= c[3] * 2.0;
|
|
c[2] += floor(ebias) * 128.0;
|
|
|
|
c[3] += 128.0 * step(0.0, -v);
|
|
|
|
return c / 255.0;
|
|
}
|
|
`,{getBroadcastDims:g6}=T;function pV(e,t,a){let n=[];if(e.forEach(d=>{let h=v.sizeFromShape(d.shapeInfo.logicalShape);if(d.shapeInfo.isUniform?n.push(`uniform float ${d.name}${h>1?`[${h}]`:""};`):(n.push(`uniform sampler2D ${d.name};`),n.push(`uniform int offset${d.name};`)),a.enableShapeUniforms){let{uniformShape:f}=I3(a.packedInputs,d.shapeInfo.logicalShape,d.shapeInfo.texShape);switch(f.length){case 1:n.push(`uniform int ${d.name}Shape;`);break;case 2:n.push(`uniform ivec2 ${d.name}Shape;`);break;case 3:n.push(`uniform ivec3 ${d.name}Shape;`);break;case 4:n.push(`uniform ivec4 ${d.name}Shape;`);break;default:break}n.push(`uniform ivec2 ${d.name}TexShape;`)}}),a.enableShapeUniforms){switch(t.logicalShape.length){case 1:n.push("uniform int outShape;");break;case 2:n.push("uniform ivec2 outShape;"),n.push("uniform int outShapeStrides;");break;case 3:n.push("uniform ivec3 outShape;"),n.push("uniform ivec2 outShapeStrides;");break;case 4:n.push("uniform ivec4 outShape;"),n.push("uniform ivec3 outShapeStrides;");break;default:break}n.push("uniform ivec2 outTexShape;")}a.customUniforms&&a.customUniforms.forEach(d=>{n.push(`uniform ${d.type} ${d.name}${d.arrayIndex?`[${d.arrayIndex}]`:""};`)});let r=n.join(`
|
|
`),s=e.map(d=>cV(d,t,a.packedInputs,a.enableShapeUniforms)).join(`
|
|
`),i=t.texShape,o=Ca(),l=mV(o),u,p,c=yV(o);return t.isPacked?(u=hV(t.logicalShape,i,a.enableShapeUniforms),p=xV(o)):(u=fV(t.logicalShape,i,a.enableShapeUniforms),p=gV(o)),a.packedInputs&&(c+=kV),[c,l,p,r,u,s,a.userCode].join(`
|
|
`)}function du(e,t=!1){let a=e.shapeInfo.logicalShape;switch(a.length){case 0:return PV(e,t);case 1:return OV(e,t);case 2:return zV(e,t);case 3:return BV(e,t);case 4:return VV(e,t);case 5:return UV(e);case 6:return GV(e);default:throw new Error(`${a.length}-D input sampling is not yet supported`)}}function x6(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return _V(e);case 1:return FV(e,t);case 2:return DV(e,t);case 3:return LV(e,t);default:return WV(e,t)}}function cV(e,t,a=!1,n){let r="";a?r+=x6(e,n):r+=du(e,n);let s=e.shapeInfo.logicalShape,i=t.logicalShape;return s.length<=i.length&&(a?r+=HV(e,t):r+=jV(e,t)),r}function hV(e,t,a){switch(e.length){case 0:return y6();case 1:return wV(e,t,a);case 2:return MV(e,t,a);case 3:return SV(e,t,a);default:return CV(e,t,a)}}function fV(e,t,a){switch(e.length){case 0:return y6();case 1:return IV(e,t,a);case 2:return $V(e,t,a);case 3:return TV(e,t,a);case 4:return NV(e,t,a);case 5:return EV(e,t);case 6:return RV(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function mV(e){return`
|
|
float sampleTexture(sampler2D textureSampler, vec2 uv) {
|
|
return ${e.texture2D}(textureSampler, uv).r;
|
|
}
|
|
`}function gV(e){return`
|
|
void setOutput(float val) {
|
|
${e.output} = vec4(val, 0, 0, 0);
|
|
}
|
|
`}function xV(e){return`
|
|
void setOutput(vec4 val) {
|
|
${e.output} = val;
|
|
}
|
|
`}function yV(e){return`${e.version}
|
|
precision highp float;
|
|
precision highp int;
|
|
precision highp sampler2D;
|
|
${e.varyingFs} vec2 resultUV;
|
|
${e.defineOutput}
|
|
const vec2 halfCR = vec2(0.5, 0.5);
|
|
|
|
struct ivec5
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
};
|
|
|
|
struct ivec6
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
int v;
|
|
};
|
|
|
|
uniform float NAN;
|
|
${e.defineSpecialNaN}
|
|
${e.defineSpecialInf}
|
|
${e.defineRound}
|
|
|
|
int imod(int x, int y) {
|
|
return x - y * (x / y);
|
|
}
|
|
|
|
int idiv(int a, int b, float sign) {
|
|
int res = a / b;
|
|
int mod = imod(a, b);
|
|
if (sign < 0. && mod != 0) {
|
|
res -= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//Based on the work of Dave Hoskins
|
|
//https://www.shadertoy.com/view/4djSRW
|
|
#define HASHSCALE1 443.8975
|
|
float random(float seed){
|
|
vec2 p = resultUV * seed;
|
|
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
|
|
p3 += dot(p3, p3.yzx + 19.19);
|
|
return fract((p3.x + p3.y) * p3.z);
|
|
}
|
|
|
|
${AV}
|
|
${bV}
|
|
${vV}
|
|
`}var AV=`
|
|
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
|
|
int texelIndex = index / 2;
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,bV=`
|
|
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
|
|
int texNumC, int row, int col) {
|
|
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,vV=`
|
|
vec2 packedUVfrom3D(int texNumR, int texNumC,
|
|
int texelsInBatch, int texelsInLogicalRow, int b,
|
|
int row, int col) {
|
|
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,kV=`
|
|
float getChannel(vec4 frag, vec2 innerDims) {
|
|
vec2 modCoord = mod(innerDims, 2.);
|
|
return modCoord.x == 0. ?
|
|
(modCoord.y == 0. ? frag.r : frag.g) :
|
|
(modCoord.y == 0. ? frag.b : frag.a);
|
|
}
|
|
float getChannel(vec4 frag, int dim) {
|
|
float modCoord = mod(float(dim), 2.);
|
|
return modCoord == 0. ? frag.r : frag.g;
|
|
}
|
|
`;function y6(){return`
|
|
int getOutputCoords() {
|
|
return 0;
|
|
}
|
|
`}function wV(e,t,a){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?a?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ${n[1]}.0);
|
|
}
|
|
`:n[1]===1?a?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ${n[0]}.0);
|
|
}
|
|
`:a?`
|
|
int getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
return 2 * (resTexRC.x * ${n[1]} + resTexRC.y);
|
|
}
|
|
`}function IV(e,t,a){return t[0]===1?a?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * float(outTexShape[1]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * ${t[1]}.0);
|
|
}
|
|
`:t[1]===1?a?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * float(outTexShape[0]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * ${t[0]}.0);
|
|
}
|
|
`:a?`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
return resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
return resTexRC.x * ${t[1]} + resTexRC.y;
|
|
}
|
|
`}function SV(e,t,a){if(a)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`;let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),s=r*Math.ceil(e[1]/2);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
|
|
int b = index / ${s};
|
|
index -= b * ${s};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`}function TV(e,t,a){if(a)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${Mh(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`;let n=Ao(["r","c","d"],e);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${n}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}function CV(e,t,a){if(a)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatchN = texelsInBatch * outShape[1];
|
|
|
|
int b2 = index / texelsInBatchN;
|
|
index -= b2 * texelsInBatchN;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec4(b2, b, r, c);
|
|
}
|
|
`;let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),s=r*Math.ceil(e[e.length-2]/2),i=s,o="",l="b, r, c";for(let u=2;u<e.length-1;u++)i*=e[e.length-u-1],o=`
|
|
int b${u} = index / ${i};
|
|
index -= b${u} * ${i};
|
|
`+o,l=`b${u}, `+l;return`
|
|
ivec${e.length} getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
|
|
${o}
|
|
|
|
int b = index / ${s};
|
|
index -= b * ${s};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec${e.length}(${l});
|
|
}
|
|
`}function NV(e,t,a){if(a)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${Mh(["r","c","d","d2"],e)}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`;let n=Ao(["r","c","d","d2"],e);return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${n}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`}function EV(e,t){let a=Ao(["r","c","d","d2","d3"],e);return`
|
|
ivec5 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
|
|
${t[1]}));
|
|
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${a}
|
|
|
|
ivec5 outShape = ivec5(r, c, d, d2, d3);
|
|
return outShape;
|
|
}
|
|
`}function RV(e,t){let a=Ao(["r","c","d","d2","d3","d4"],e);return`
|
|
ivec6 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${a}
|
|
|
|
ivec6 result = ivec6(r, c, d, d2, d3, d4);
|
|
return result;
|
|
}
|
|
`}function MV(e,t,a){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(v.arraysEqual(e,t))return a?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return 2 * ivec2(resultUV.yx * vec2(${n[0]}, ${n[1]}));
|
|
}
|
|
`;let r=Math.ceil(e[1]/2);return a?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`}function $V(e,t,a){return v.arraysEqual(e,t)?a?`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
|
|
}
|
|
`:e[1]===1?a?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:e[0]===1?a?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:a?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
int r = index / outShape[1];
|
|
int c = index - r * outShape[1];
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
int r = index / ${e[1]};
|
|
int c = index - r * ${e[1]};
|
|
return ivec2(r, c);
|
|
}
|
|
`}function bo(e){return`offset${e}`}function _V(e){let t=e.name,a="get"+t.charAt(0).toUpperCase()+t.slice(1),n=Ca();return`
|
|
vec4 ${a}() {
|
|
return ${n.texture2D}(${t}, halfCR);
|
|
}
|
|
`}function PV(e,t){let a=e.name,n="get"+a.charAt(0).toUpperCase()+a.slice(1);if(e.shapeInfo.isUniform)return`float ${n}() {return ${a};}`;let[r,s]=e.shapeInfo.texShape;if(r===1&&s===1)return`
|
|
float ${n}() {
|
|
return sampleTexture(${a}, halfCR);
|
|
}
|
|
`;let i=bo(a);if(t)return`
|
|
float ${n}() {
|
|
vec2 uv = uvFromFlat(${a}TexShape[0], ${a}TexShape[1], ${i});
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`;let[o,l]=e.shapeInfo.texShape;return`
|
|
float ${n}() {
|
|
vec2 uv = uvFromFlat(${o}, ${l}, ${i});
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`}function FV(e,t){let a=e.name,n="get"+a.charAt(0).toUpperCase()+a.slice(1),r=e.shapeInfo.texShape,s=Ca();if(t)return`
|
|
vec4 ${n}(int index) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${a}TexShape[0]) / 2.0), ceil(float(${a}TexShape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom1D(
|
|
packedTexShape[0], packedTexShape[1], index);
|
|
return ${s.texture2D}(${a}, uv);
|
|
}
|
|
`;let i=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];return`
|
|
vec4 ${n}(int index) {
|
|
vec2 uv = packedUVfrom1D(
|
|
${i[0]}, ${i[1]}, index);
|
|
return ${s.texture2D}(${a}, uv);
|
|
}
|
|
`}function OV(e,t){let a=e.name,n="get"+a.charAt(0).toUpperCase()+a.slice(1);if(e.shapeInfo.isUniform)return`
|
|
float ${n}(int index) {
|
|
${pu(e)}
|
|
}
|
|
`;let r=e.shapeInfo.texShape,s=r[0],i=r[1];if(i===1&&s===1)return`
|
|
float ${n}(int index) {
|
|
return sampleTexture(${a}, halfCR);
|
|
}
|
|
`;let o=bo(a);return i===1?t?`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${o}) + 0.5) / float(${a}TexShape[0]));
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${o}) + 0.5) / ${s}.0);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:s===1?t?`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2((float(index + ${o}) + 0.5) / float(${a}TexShape[1]), 0.5);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2((float(index + ${o}) + 0.5) / ${i}.0, 0.5);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:t?`
|
|
float ${n}(int index) {
|
|
vec2 uv = uvFromFlat(${a}TexShape[0], ${a}TexShape[1], index + ${o});
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${n}(int index) {
|
|
vec2 uv = uvFromFlat(${s}, ${i}, index + ${o});
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`}function DV(e,t){let a=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),s=e.shapeInfo.texShape,i=s[0],o=s[1],l=Ca();if(s!=null&&v.arraysEqual(a,s))return t?`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${n}TexShape[1], ${n}TexShape[0]);
|
|
|
|
return ${l.texture2D}(${n}, uv);
|
|
}
|
|
`:`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${o}.0, ${i}.0);
|
|
|
|
return ${l.texture2D}(${n}, uv);
|
|
}
|
|
`;if(t)return`
|
|
vec4 ${r}(int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${n}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
|
|
return ${l.texture2D}(${n}, uv);
|
|
}
|
|
`;let u=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],p=Math.ceil(a[1]/2);return`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = packedUVfrom2D(${p}, ${u[0]}, ${u[1]}, row, col);
|
|
return ${l.texture2D}(${n}, uv);
|
|
}
|
|
`}function zV(e,t){let a=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),s=e.shapeInfo.texShape;if(s!=null&&v.arraysEqual(a,s)){if(t)return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${n}TexShape[1], ${n}TexShape[0]);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let d=s[0],h=s[1];return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${h}.0, ${d}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}let{newShape:i,keptDims:o}=v.squeezeShape(a),l=i;if(l.length<a.length){let d=cu(e,l),h=["row","col"];return`
|
|
${du(d,t)}
|
|
float ${r}(int row, int col) {
|
|
return ${r}(${hu(h,o)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col) {
|
|
int index = round(dot(vec2(row, col), vec2(${a[1]}, 1)));
|
|
${pu(e)}
|
|
}
|
|
`;let u=s[0],p=s[1],c=bo(n);return p===1?t?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${c}), vec3(${n}Shape[1], 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / float(${n}TexShape[0]));
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${c}), vec3(${a[1]}, 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / ${u}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:u===1?t?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${c}), vec3(${n}Shape[1], 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / float(${n}TexShape[1]), 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${c}), vec3(${a[1]}, 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / ${p}.0, 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:t?`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${n}Shape[1] + col + ${c};
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${a[1]} + col + ${c};
|
|
vec2 uv = uvFromFlat(${u}, ${p}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function LV(e,t){let a=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),s=e.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)];if(a[0]===1){let d=a.slice(1),h=[1,2],f=cu(e,d),m=["b","row","col"];return`
|
|
${x6(f,t)}
|
|
vec4 ${r}(int b, int row, int col) {
|
|
return ${r}(${hu(m,h)});
|
|
}
|
|
`}let o=Ca();if(t)return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${n}Shape[2]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom3D(
|
|
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
|
|
return ${o.texture2D}(${n}, uv);
|
|
}
|
|
`;let l=i[0],u=i[1],p=Math.ceil(a[2]/2),c=p*Math.ceil(a[1]/2);return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
vec2 uv = packedUVfrom3D(
|
|
${l}, ${u}, ${c}, ${p}, b, row, col);
|
|
return ${o.texture2D}(${n}, uv);
|
|
}
|
|
`}function BV(e,t){let a=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),s=a[1]*a[2],i=a[2],{newShape:o,keptDims:l}=v.squeezeShape(a),u=o;if(u.length<a.length){let m=cu(e,u),g=["row","col","depth"];return`
|
|
${du(m,t)}
|
|
float ${r}(int row, int col, int depth) {
|
|
return ${r}(${hu(g,l)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth) {
|
|
int index = round(dot(vec3(row, col, depth),
|
|
vec3(${s}, ${i}, 1)));
|
|
${pu(e)}
|
|
}
|
|
`;let p=e.shapeInfo.texShape,c=p[0],d=p[1],h=e.shapeInfo.flatOffset;if(d===s&&h==null)return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
int stride1 = ${n}Shape[2];
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(stride1, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${n}TexShape[1], ${n}TexShape[0]);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(${i}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${d}.0, ${c}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(d===i&&h==null)return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${n}Shape[1], 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${n}TexShape[1], ${n}TexShape[0]);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${a[1]}, 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${d}.0, ${c}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let f=bo(n);return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int stride0 = ${n}Shape[1] * ${n}Shape[2];
|
|
int stride1 = ${n}Shape[2];
|
|
int index = row * stride0 + col * stride1 + depth + ${f};
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${s} + col * ${i} + depth + ${f};
|
|
vec2 uv = uvFromFlat(${c}, ${d}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function WV(e,t){let a=e.name,n="get"+a.charAt(0).toUpperCase()+a.slice(1),r=Ca();if(t)return`
|
|
vec4 ${n}(int b2, int b, int row, int col) {
|
|
int valuesPerRow = int(ceil(float(${a}Shape[3]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${a}Shape[2]) / 2.0));
|
|
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
|
|
texelsInBatch *= ${a}Shape[1];
|
|
index = b2 * texelsInBatch + index;
|
|
ivec2 packedTexShape = ivec2(ceil(float(${a}TexShape[0]) / 2.0), ceil(float(${a}TexShape[1]) / 2.0));
|
|
int texR = index / packedTexShape[1];
|
|
int texC = index - texR * packedTexShape[1];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${r.texture2D}(${a}, uv);
|
|
}
|
|
`;let s=e.shapeInfo.logicalShape,i=s.length,o=e.shapeInfo.texShape,l=[Math.ceil(o[0]/2),Math.ceil(o[1]/2)],u=l[0],p=l[1],c=Math.ceil(s[i-1]/2),d=c*Math.ceil(s[i-2]/2),h="int b, int row, int col",f=`b * ${d} + (row / 2) * ${c} + (col / 2)`;for(let m=2;m<i-1;m++)h=`int b${m}, `+h,d*=s[i-m-1],f=`b${m} * ${d} + `+f;return`
|
|
vec4 ${n}(${h}) {
|
|
int index = ${f};
|
|
int texR = index / ${p};
|
|
int texC = index - texR * ${p};
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}, ${u});
|
|
return ${r.texture2D}(${a}, uv);
|
|
}
|
|
`}function VV(e,t){let a=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),s=a[3],i=a[2]*s,o=a[1]*i,{newShape:l,keptDims:u}=v.squeezeShape(a);if(l.length<a.length){let y=cu(e,l),A=["row","col","depth","depth2"];return`
|
|
${du(y,t)}
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
return ${r}(${hu(A,u)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
int index = round(dot(vec4(row, col, depth, depth2),
|
|
vec4(${o}, ${i}, ${s}, 1)));
|
|
${pu(e)}
|
|
}
|
|
`;let p=e.shapeInfo.flatOffset,c=e.shapeInfo.texShape,d=c[0],h=c[1],f=`int stride2 = ${n}Shape[3];`,m=`int stride1 = ${n}Shape[2] * stride2;`,g=`int stride0 = ${n}Shape[1] * stride1;`;if(h===o&&p==null)return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
${f}
|
|
${m}
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(stride1, stride2, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${n}TexShape[1], ${n}TexShape[0]);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(${i}, ${s}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${d}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(h===s&&p==null)return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${n}Shape[1] * ${n}Shape[2], ${n}Shape[2], 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${n}TexShape[1], ${n}TexShape[0]);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${a[1]*a[2]}, ${a[2]}, 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${d}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let x=bo(n);return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
${f}
|
|
${m}
|
|
${g}
|
|
int index = row * stride0 + col * stride1 +
|
|
depth * stride2 + depth2;
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${x});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${o} + col * ${i} +
|
|
depth * ${s} + depth2;
|
|
vec2 uv = uvFromFlat(${d}, ${h}, index + ${x});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function UV(e){let t=e.shapeInfo.logicalShape,a=e.name,n="get"+a.charAt(0).toUpperCase()+a.slice(1),r=t[4],s=t[3]*r,i=t[2]*s,o=t[1]*i,{newShape:l,keptDims:u}=v.squeezeShape(t);if(l.length<t.length){let m=cu(e,l),g=["row","col","depth","depth2","depth3"];return`
|
|
${du(m)}
|
|
float ${n}(int row, int col, int depth, int depth2, int depth3) {
|
|
return ${n}(${hu(g,u)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${n}(int row, int col, int depth, int depth2, int depth3) {
|
|
float index = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${o}, ${i}, ${s}, ${r})) +
|
|
depth3;
|
|
${pu(e)}
|
|
}
|
|
`;let p=e.shapeInfo.flatOffset,c=e.shapeInfo.texShape,d=c[0],h=c[1];if(h===o&&p==null)return`
|
|
float ${n}(int row, int col, int depth, int depth2, int depth3) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${i}, ${s}, ${r}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${d}.0);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`;if(h===r&&p==null)return`
|
|
float ${n}(int row, int col, int depth, int depth2, int depth3) {
|
|
float texR = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]},
|
|
${t[2]*t[3]}, ${t[3]}, 1));
|
|
int texC = depth3;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${d}.0);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`;let f=bo(a);return`
|
|
float ${n}(int row, int col, int depth, int depth2, int depth3) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${o} + col * ${i} + depth * ${s} +
|
|
depth2 * ${r} + depth3 + ${f};
|
|
vec2 uv = uvFromFlat(${d}, ${h}, index);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`}function GV(e){let t=e.shapeInfo.logicalShape,a=e.name,n="get"+a.charAt(0).toUpperCase()+a.slice(1),{newShape:r,keptDims:s}=v.squeezeShape(t);if(r.length<t.length){let g=cu(e,r),x=["row","col","depth","depth2","depth3","depth4"];return`
|
|
${du(g)}
|
|
float ${n}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
return ${n}(${hu(x,s)});
|
|
}
|
|
`}let i=t[5],o=t[4]*i,l=t[3]*o,u=t[2]*l,p=t[1]*u;if(e.shapeInfo.isUniform)return`
|
|
float ${n}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int index = round(dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${p}, ${u}, ${l}, ${o})) +
|
|
dot(
|
|
vec2(depth3, depth4),
|
|
vec2(${i}, 1)));
|
|
${pu(e)}
|
|
}
|
|
`;let c=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,h=d[0],f=d[1];if(f===p&&c==null)return`
|
|
float ${n}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${u}, ${l}, ${o}, ${i})) +
|
|
float(depth4);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${h}.0);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`;if(f===i&&c==null)return`
|
|
float ${n}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
float texR = dot(vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]*t[4]},
|
|
${t[2]*t[3]*t[4]},
|
|
${t[3]*t[4]},
|
|
${t[4]})) + float(depth3);
|
|
int texC = depth4;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${h}.0);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`;let m=bo(a);return`
|
|
float ${n}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${p} + col * ${u} + depth * ${l} +
|
|
depth2 * ${o} + depth3 * ${i} + depth4 + ${m};
|
|
vec2 uv = uvFromFlat(${h}, ${f}, index);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`}function pu(e){let t=e.name,a=v.sizeFromShape(e.shapeInfo.logicalShape);return a<2?`return ${t};`:`
|
|
for (int i = 0; i < ${a}; i++) {
|
|
if (i == index) {
|
|
return ${t}[i];
|
|
}
|
|
}
|
|
`}function HV(e,t){let a=e.name,n=a.charAt(0).toUpperCase()+a.slice(1),r="get"+n+"AtOutCoords",s=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=g6(e.shapeInfo.logicalShape,t.logicalShape),l=gt(i),u=i-s,p,c=["x","y","z","w","u","v"];s===0?p="":i<2&&o.length>=1?p="coords = 0;":p=o.map(g=>`coords.${c[g+u]} = 0;`).join(`
|
|
`);let d="";i<2&&s>0?d="coords":d=e.shapeInfo.logicalShape.map((g,x)=>`coords.${c[x+u]}`).join(", ");let h="return outputValue;",f=v.sizeFromShape(e.shapeInfo.logicalShape)===1,m=v.sizeFromShape(t.logicalShape)===1;if(s===1&&!f&&!m)h=`
|
|
return vec4(outputValue.xy, outputValue.xy);
|
|
`;else if(f&&!m)i===1?h=`
|
|
return vec4(outputValue.x, outputValue.x, 0., 0.);
|
|
`:h=`
|
|
return vec4(outputValue.x);
|
|
`;else if(o.length){let g=s-2,x=s-1;o.indexOf(g)>-1&&o.indexOf(x)>-1?h="return vec4(outputValue.x);":o.indexOf(g)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(x)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
|
|
vec4 ${r}() {
|
|
${l} coords = getOutputCoords();
|
|
${p}
|
|
vec4 outputValue = get${n}(${d});
|
|
${h}
|
|
}
|
|
`}function jV(e,t){let a=e.name,n=a.charAt(0).toUpperCase()+a.slice(1),r="get"+n+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&v.arraysEqual(i,s))return`
|
|
float ${r}() {
|
|
return sampleTexture(${a}, resultUV);
|
|
}
|
|
`;let u=gt(l),p=g6(e.shapeInfo.logicalShape,t.logicalShape),c=l-o,d,h=["x","y","z","w","u","v"];o===0?d="":l<2&&p.length>=1?d="coords = 0;":d=p.map(m=>`coords.${h[m+c]} = 0;`).join(`
|
|
`);let f="";return l<2&&o>0?f="coords":f=e.shapeInfo.logicalShape.map((m,g)=>`coords.${h[g+c]}`).join(", "),`
|
|
float ${r}() {
|
|
${u} coords = getOutputCoords();
|
|
${d}
|
|
return get${n}(${f});
|
|
}
|
|
`}function gt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function I3(e,t,a){let{newShape:n,keptDims:r}=v.squeezeShape(t),s=t.length,i=e&&s===3&&t[0]===1,o=i?t.slice(1):n,l=!e&&s>1&&!v.arraysEqual(t,a)&&n.length<s||i;return{useSqueezeShape:l,uniformShape:l?o:t,keptDims:r}}function cu(e,t){let a=JSON.parse(JSON.stringify(e));return a.shapeInfo.logicalShape=t,a}function hu(e,t){return t.map(a=>e[a]).join(", ")}function qV(e,t,a,n){let r=a.map((p,c)=>{let d={logicalShape:p.shape,texShape:p.isUniform?null:p.texData.texShape,isUniform:p.isUniform,isPacked:p.isUniform?!1:p.texData.isPacked,flatOffset:null};return p.texData!=null&&p.texData.slice!=null&&p.texData.slice.flatOffset>0&&(d.flatOffset=p.texData.slice.flatOffset),{name:t.variableNames[c],shapeInfo:d}}),s=r.map(p=>p.shapeInfo),i={logicalShape:n.shape,texShape:n.texData.texShape,isUniform:!1,isPacked:n.texData.isPacked,flatOffset:null},o=pV(r,i,t),l=X7(e.gl,o),u=e.createProgram(l);return B().get("ENGINE_COMPILE_ONLY")?{program:t,fragmentShader:l,source:o,webGLProgram:u,inShapeInfos:s,outShapeInfo:i,uniformLocations:null,customUniformLocations:null,infLoc:null,nanLoc:null,inShapesLocations:null,inTexShapesLocations:null,outShapeLocation:null,outShapeStridesLocation:null,outTexShapeLocation:null}:Object.assign({program:t,fragmentShader:l,source:o,webGLProgram:u,inShapeInfos:s,outShapeInfo:i},A6(e,t,u))}function A6(e,t,a){let n={},r={},s={},i=[],o,l,u,p=null,c=null;c=e.getUniformLocation(a,"NAN",!1),B().getNumber("WEBGL_VERSION")===1&&(p=e.getUniformLocation(a,"INFINITY",!1));let d=!1;for(let h=0;h<t.variableNames.length;h++){let f=t.variableNames[h];n[f]=e.getUniformLocation(a,f,d),n[`offset${f}`]=e.getUniformLocation(a,`offset${f}`,d),t.enableShapeUniforms&&(r[`${f}Shape`]=e.getUniformLocation(a,`${f}Shape`,d),s[`${f}TexShape`]=e.getUniformLocation(a,`${f}TexShape`,d))}return t.enableShapeUniforms&&(o=e.getUniformLocation(a,"outShape",d),u=e.getUniformLocation(a,"outShapeStrides",d),l=e.getUniformLocation(a,"outTexShape",d)),t.customUniforms&&t.customUniforms.forEach((h,f)=>{i[f]=e.getUniformLocation(a,h.name,d)}),{uniformLocations:n,customUniformLocations:i,infLoc:p,nanLoc:c,inShapesLocations:r,inTexShapesLocations:s,outShapeLocation:o,outShapeStridesLocation:u,outTexShapeLocation:l}}function lx(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((a,n)=>{let r=a.logicalShape,s=t[n],i=s.shape;if(!v.arraysEqual(r,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${i} must match`);if(a.isUniform&&s.isUniform)return;let o=a.texShape,l=s.isUniform?null:s.texData.texShape;if(!v.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function XV(e,t,a,n,r){t.program.enableShapeUniforms||(lx(t.inShapeInfos,a),lx([t.outShapeInfo],[n]));let s=n.texData.texture,i=n.texData.texShape;n.texData.isPacked?e.setOutputPackedMatrixTexture(s.texture,i[0],i[1]):e.setOutputMatrixTexture(s.texture,i[0],i[1]),e.setProgram(t.webGLProgram),B().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),a.forEach((l,u)=>{let p=t.program.variableNames[u],c=t.uniformLocations[p],d=t.uniformLocations[`offset${p}`],h=t.inShapesLocations[`${p}Shape`],f=t.inTexShapesLocations[`${p}TexShape`];if(h){let{uniformShape:m}=I3(t.program.packedInputs,l.shape,l.texData.texShape);switch(m.length){case 1:e.gl.uniform1iv(h,new Int32Array(m));break;case 2:e.gl.uniform2iv(h,new Int32Array(m));break;case 3:e.gl.uniform3iv(h,new Int32Array(m));break;case 4:e.gl.uniform4iv(h,new Int32Array(m));break;default:break}}if(f&&e.gl.uniform2i(f,l.texData.texShape[0],l.texData.texShape[1]),c!=null){if(l.isUniform){if(v.sizeFromShape(l.shape)<2)e.gl.uniform1f(c,l.uniformValues[0]);else{let m=l.uniformValues;m instanceof Float32Array||(m=new Float32Array(m)),e.gl.uniform1fv(c,m)}return}l.texData.slice!=null&&d!=null&&e.gl.uniform1i(d,l.texData.slice.flatOffset),e.setInputMatrixTexture(l.texData.texture.texture,c,u)}});let o=t.outShapeLocation;if(o)switch(n.shape.length){case 1:e.gl.uniform1iv(o,new Int32Array(n.shape));break;case 2:e.gl.uniform2iv(o,new Int32Array(n.shape));break;case 3:e.gl.uniform3iv(o,new Int32Array(n.shape));break;case 4:e.gl.uniform4iv(o,new Int32Array(n.shape));break;default:break}if(t.outShapeStridesLocation){let l=v.computeStrides(n.shape);switch(n.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(l));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(l));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(l));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,n.texData.texShape[0],n.texData.texShape[1]),t.program.customUniforms&&r&&t.program.customUniforms.forEach((l,u)=>{let p=t.customUniformLocations[u],c=r[u];if(l.type==="float")e.gl.uniform1fv(p,c);else if(l.type==="vec2")e.gl.uniform2fv(p,c);else if(l.type==="vec3")e.gl.uniform3fv(p,c);else if(l.type==="vec4")e.gl.uniform4fv(p,c);else if(l.type==="int")e.gl.uniform1iv(p,c);else if(l.type==="ivec2")e.gl.uniform2iv(p,c);else if(l.type==="ivec3")e.gl.uniform3iv(p,c);else if(l.type==="ivec4")e.gl.uniform4iv(p,c);else throw Error(`uniform type ${l.type} is not supported yet.`)}),e.executeProgram()}function KV(e,t,a){let n="";t.concat(a).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!i.isUniform){let l=i.texData.texShape,{useSqueezeShape:u,uniformShape:p,keptDims:c}=I3(e.packedInputs,i.shape,l),d="",h="",f="";if(p.length===1&&e.packedInputs){let k=[Math.ceil(l[0]/2),Math.ceil(l[1]/2)];d=`${k[0]>1}_${k[1]>1}`}else if(p.length===2&&!e.packedInputs)h=`${p[0]>1}_${p[1]>1}`;else if(p.length>2&&!e.packedInputs){let k=v.computeStrides(p);f=`${k[0]===l[1]}_${k[k.length-1]===l[1]}`}let m=i.shape.length,g=p.length===2&&v.arraysEqual(i.shape,l),x=v.sizeFromShape(i.shape)===1,y=T.getBroadcastDims(i.shape,a.shape),A=!e.packedInputs&&m===a.shape.length&&v.arraysEqual(l,a.texData.texShape),b=e.packedInputs||p.length>2?"":`${l[0]>1}_${l[1]>1}`;n+=`${m}_${A}_${u?c:""}_${p.length}_${x}_${y}_${g}_${d}_${h}_${f}_${b}_${o}`}else{let l=i.isUniform?"uniform":i.texData.texShape;n+=`${i.shape}_${l}_${o}`}});let r=e.userCode,s=e.constructor.name;return s+="_"+n+"_"+r+`${B().getNumber("WEBGL_VERSION")}`,s}function Na(e){return B().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var ZV=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=gd.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=Ca();this.outputShape=e,this.enableShapeUniforms=Na(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?Mh(["r","c","d"],e):Ao(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getA(rc.x, rc.y, rc.z);
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},YV=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=gd.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=Ca();this.outputShape=e,this.enableShapeUniforms=Na(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?Mh(["r","c","d"],e):Ao(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},JV=class{constructor(e){this.variableNames=["A"],this.outTexUsage=pn.DOWNLOAD;let t=Ca();this.outputShape=e,this.userCode=`
|
|
${m6}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},QV=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=pn.DOWNLOAD;let t=Ca();this.outputShape=e,this.userCode=`
|
|
${m6}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},eU={R:0,G:1,B:2,A:3},ux=class{constructor(e,t=!1,a="RGBA"){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=Ca();this.outputShape=e,this.enableShapeUniforms=Na(this.outputShape.length);let r="result";t&&(r="floor(result * 255. + 0.5)");let s="";for(let i=0;i<a.length;i++){let o=a[i];s+=`
|
|
if(offset == ${i}) {
|
|
result = values[${eU[o]}];
|
|
}`}this.userCode=`
|
|
${this.enableShapeUniforms?w3():k3(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int flatIndex = getFlatIndex(coords);
|
|
float result = 0.;
|
|
int offset = imod(flatIndex, ${a.length});
|
|
|
|
flatIndex = idiv(flatIndex, ${a.length}, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
if (r < texShape[0]) {
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
vec4 values = ${n.texture2D}(A, uv);
|
|
${s}
|
|
}
|
|
${n.output} = vec4(${r}, 0., 0., 0.);
|
|
}
|
|
`}},tU=class{constructor(e,t=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let a=Ca();this.outputShape=e,this.enableShapeUniforms=Na(this.outputShape.length);let n="",r="result";t&&(r="floor(result * 255. + 0.5)");for(let s=0;s<=1;s++)for(let i=0;i<=1;i++){let o=s*2+i;n+=`
|
|
localCoords = coords;
|
|
if(localCoords[2] + ${i} < ${this.enableShapeUniforms?"outShape[2]":`${e[2]}`}) {
|
|
localCoords[2] += ${i};
|
|
if (localCoords[1] + ${s} < ${this.enableShapeUniforms?"outShape[1]":`${e[1]}`}) {
|
|
localCoords[1] += ${s};
|
|
|
|
flatIndex = getFlatIndex(localCoords);
|
|
offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
values = ${a.texture2D}(A, uv);
|
|
|
|
if (offset == 0) {
|
|
result[${o}] = values[0];
|
|
} else if (offset == 1) {
|
|
result[${o}] = values[1];
|
|
} else if (offset == 2) {
|
|
result[${o}] = values[2];
|
|
} else {
|
|
result[${o}] = values[3];
|
|
}
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
${this.enableShapeUniforms?w3():k3(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
int flatIndex, r, c, offset;
|
|
ivec3 localCoords;
|
|
vec2 uv;
|
|
vec4 values;
|
|
|
|
${n}
|
|
|
|
${a.output} = ${r};
|
|
}
|
|
`}},b6={};Ke(b6,{bindVertexProgramAttributeStreams:()=>E6,createBufferFromOutputTexture:()=>$6,createFloat16MatrixTexture:()=>S6,createFloat16PackedMatrixTexture:()=>N6,createFloat32MatrixTexture:()=>I6,createIndexBuffer:()=>w6,createPackedMatrixTexture:()=>C6,createUnsignedBytesMatrixTexture:()=>T6,createVertexBuffer:()=>k6,createVertexShader:()=>v6,downloadByteEncodedFloatMatrixFromOutputTexture:()=>P6,downloadFloat32MatrixFromBuffer:()=>_6,downloadMatrixFromPackedOutputTexture:()=>O6,downloadPackedMatrixFromBuffer:()=>F6,getInternalFormatForFloat16MatrixTexture:()=>T3,getInternalFormatForFloat16PackedMatrixTexture:()=>E3,getInternalFormatForFloat32MatrixTexture:()=>S3,getInternalFormatForPackedMatrixTexture:()=>N3,getInternalFormatForUnsignedBytesMatrixTexture:()=>C3,uploadDenseMatrixToTexture:()=>R6,uploadPixelDataToTexture:()=>M6});function v6(e){let t=Ca(),a=`${t.version}
|
|
precision highp float;
|
|
${t.attribute} vec3 clipSpacePos;
|
|
${t.attribute} vec2 uv;
|
|
${t.varyingVs} vec2 resultUV;
|
|
|
|
void main() {
|
|
gl_Position = vec4(clipSpacePos, 1);
|
|
resultUV = uv;
|
|
}`;return q7(e,a)}function k6(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return Y7(e,t)}function w6(e){let t=new Uint16Array([0,1,2,2,1,3]);return J7(e,t)}function hp(e,t,a,n,r,s){e6(t,a);let i=Q7(e),o=e.TEXTURE_2D;return ue(e,()=>e.bindTexture(o,i)),ue(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),ue(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),ue(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),ue(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),B().getNumber("WEBGL_VERSION")===1?ue(e,()=>e.texImage2D(o,0,n,t,a,0,r,s,null)):ue(e,()=>e.texStorage2D(o,1,n,t,a)),ue(e,()=>e.bindTexture(e.TEXTURE_2D,null)),{texture:i,texShape:[a,t]}}function S3(e){return e.internalFormatFloat}function I6(e,t,a,n){let[r,s]=cp(t,a);return hp(e,r,s,S3(n),n.textureFormatFloat,e.FLOAT)}function T3(e){return e.internalFormatHalfFloat}function S6(e,t,a,n){let[r,s]=cp(t,a);return hp(e,r,s,T3(n),n.textureFormatFloat,n.textureTypeHalfFloat)}function C3(e){return e.downloadTextureFormat}function T6(e,t,a,n){let[r,s]=cp(t,a);return hp(e,r,s,C3(n),e.RGBA,e.UNSIGNED_BYTE)}function N3(e){return e.internalFormatPackedFloat}function C6(e,t,a,n){let[r,s]=lu(t,a);return hp(e,r,s,N3(n),e.RGBA,e.FLOAT)}function E3(e){return e.internalFormatPackedHalfFloat}function N6(e,t,a,n){let[r,s]=lu(t,a);return hp(e,r,s,E3(n),e.RGBA,n.textureTypeHalfFloat)}function E6(e,t,a){return ue(e,()=>e.bindBuffer(e.ARRAY_BUFFER,a)),y2(e,t,"clipSpacePos",a,3,20,0)&&y2(e,t,"uv",a,2,20,12)}function R6(e,t,a,n,r,s){ue(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;r instanceof Uint8Array?(i=new Uint8Array(a*n*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(a*n*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(r),B().getNumber("WEBGL_VERSION")===2?ue(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,a,n,e.RGBA,o,i)):ue(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,a,n,0,e.RGBA,o,i)),ue(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function M6(e,t,a){ue(e,()=>e.bindTexture(e.TEXTURE_2D,t)),a.data instanceof Uint8Array?B().getNumber("WEBGL_VERSION")===2?ue(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,a.width,a.height,e.RGBA,e.UNSIGNED_BYTE,a.data)):ue(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,a.width,a.height,0,e.RGBA,e.UNSIGNED_BYTE,a.data)):B().getNumber("WEBGL_VERSION")===2?ue(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,e.RGBA,e.UNSIGNED_BYTE,a)):ue(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,a)),ue(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function $6(e,t,a,n){let r=e.createBuffer();ue(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let s=4*4*t*a;return ue(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),ue(e,()=>e.readPixels(0,0,a,t,e.RGBA,e.FLOAT,0)),ue(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function _6(e,t,a){let n=e,r=new Float32Array(a);return n.bindBuffer(n.PIXEL_PACK_BUFFER,t),n.getBufferSubData(n.PIXEL_PACK_BUFFER,0,r),n.bindBuffer(n.PIXEL_PACK_BUFFER,null),r}function P6(e,t,a,n){let[r,s]=cp(t,a),i=4,o=new Uint8Array(YW(t*a,i));return ue(e,()=>e.readPixels(0,0,r,s,n.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function F6(e,t,a,n,r,s,i,o){let l=e,u=new Float32Array(JW(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function O6(e,t,a){let n=new Float32Array(t*a*4);return ue(e,()=>e.readPixels(0,0,a,t,e.RGBA,e.FLOAT,n)),n}var sl=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.itemsToPoll=[];let t=B().getNumber("WEBGL_VERSION");if(e!=null?(this.gl=e,Rh(t,e)):this.gl=Dn(t),e=this.gl,B().getNumber("WEBGL_VERSION")===2){let r=e;this.createVertexArray=()=>ue(r,()=>r.createVertexArray()),this.bindVertexArray=s=>ue(r,()=>r.bindVertexArray(s)),this.deleteVertexArray=s=>ue(r,()=>r.deleteVertexArray(s)),this.getVertexArray=()=>ue(r,()=>r.getParameter(r.VERTEX_ARRAY_BINDING))}else if(e!=null){let r=e.getExtension("OES_vertex_array_object");if(r==null)throw new Error("All WebGL1 implementations are expected to offer OES_vertex_array_object.");this.createVertexArray=()=>ue(e,()=>r.createVertexArrayOES()),this.bindVertexArray=s=>ue(e,()=>r.bindVertexArrayOES(s)),this.deleteVertexArray=s=>ue(e,()=>r.deleteVertexArrayOES(s)),this.getVertexArray=()=>ue(e,()=>e.getParameter(r.VERTEX_ARRAY_BINDING_OES))}let a="WEBGL_color_buffer_float",n="EXT_color_buffer_half_float";if(this.parallelCompilationExtension=this.gl.getExtension("KHR_parallel_shader_compile"),B().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=qu(this.gl,r),cn(this.gl,s))this.textureHalfFloatExtension=qu(this.gl,s);else if(B().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(a),cn(this.gl,n))this.colorBufferHalfFloatExtension=qu(this.gl,n);else if(B().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(a="EXT_color_buffer_float",cn(this.gl,a))this.colorBufferFloatExtension=this.gl.getExtension(a);else if(cn(this.gl,n))this.colorBufferHalfFloatExtension=this.gl.getExtension(n);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=k6(this.gl),this.indexBuffer=w6(this.gl),this.framebuffer=t6(this.gl),this.textureConfig=b3(this.gl,this.textureHalfFloatExtension)}get debug(){return B().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;ue(e,()=>e.finish()),ue(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),ue(e,()=>e.deleteFramebuffer(this.framebuffer)),ue(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),ue(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),ue(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),I6(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),S6(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),T6(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),M6(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,a,n){this.throwIfDisposed(),R6(this.gl,e,t,a,n,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),N6(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),C6(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(A2(this.gl,this.framebuffer),this.outputTexture=null),ue(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,a){return this.downloadMatrixDriver(e,()=>P6(this.gl,t,a,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,a,n,r,s){return F6(this.gl,e,t,a,n,r,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return _6(this.gl,e,t)}createBufferFromTexture(e,t,a){this.bindTextureToFrameBuffer(e);let n=$6(this.gl,t,a,this.textureConfig);return this.unbindTextureToFrameBuffer(),n}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,a;if(B().getBool("WEBGL_FENCE_API_ENABLED")){let n=e,r=n.fenceSync(n.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),a=()=>{let s=n.clientWaitSync(r,0,0);return s===n.ALREADY_SIGNALED||s===n.CONDITION_SATISFIED},t=r}else B().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),a=()=>this.isQueryAvailable(t,B().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):a=()=>!0;return{query:t,isFencePassed:a}}downloadMatrixFromPackedTexture(e,t,a){return this.downloadMatrixDriver(e,()=>O6(this.gl,t,a))}createProgram(e){this.throwIfDisposed();let t=this.gl;this.vertexShader==null&&(this.vertexShader=v6(t));let a=K7(t);ue(t,()=>t.attachShader(a,this.vertexShader)),ue(t,()=>t.attachShader(a,e)),Z7(t,a);let n;return n=Object.assign(a,{vao:this.createVertexArray()}),this.bindVertexArray(n.vao),ue(t,()=>t.bindBuffer(t.ELEMENT_ARRAY_BUFFER,this.indexBuffer)),console.assert(E6(t,n,this.vertexBuffer),"gpgpu_util.bindVertexProgramAttributeStreams not fully successful."),this.debug&&bc(t,n),this.setProgram(n),n}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&(ue(this.gl,()=>this.gl.deleteProgram(e)),this.deleteVertexArray(e.vao))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&(this.bindVertexArray(this.program.vao),this.debug&&bc(this.gl,this.program)),ue(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,a=!0){return this.throwIfDisposed(),a?n6(this.gl,e,t):r6(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),ue(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,a){this.throwIfDisposed(),this.throwIfNoProgram(),s6(this.gl,e,t,a)}setOutputMatrixTexture(e,t,a){this.setOutputMatrixTextureDriver(e,a,t)}setOutputPackedMatrixTexture(e,t,a){this.throwIfDisposed();let[n,r]=lu(t,a);this.setOutputMatrixTextureDriver(e,n,r)}setOutputMatrixWriteRegion(e,t,a,n){this.setOutputMatrixWriteRegionDriver(a,e,n,t)}setOutputPackedMatrixWriteRegion(e,t,a,n){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&bc(this.gl,this.program),Xu(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;if(this.debug){let t=this.getVertexArray();console.assert(t===this.program.vao,"VAO changed between setProgram and executeProgram!"),this.debugValidate()}ue(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),ue(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=qu(this.gl,B().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(B().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let a=this.gl,n=this.getQueryTimerExtensionWebGL2(),r=a.createQuery();return a.beginQuery(n.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(B().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,a=this.getQueryTimerExtensionWebGL2();t.endQuery(a.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await v.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,B().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,B().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let a=this.gl;return a.getQueryParameter(e,a.QUERY_RESULT)/1e6}else{let a=this.getQueryTimerExtensionWebGL1();return a.getQueryObjectEXT(e,a.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let a=this.gl,n=this.getQueryTimerExtensionWebGL2(),r=a.getQueryParameter(e,a.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let a=this.getQueryTimerExtensionWebGL1(),n=a.getQueryObjectEXT(e,a.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(a.GPU_DISJOINT_EXT)),n&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=aU(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:a}=this.itemsToPoll[t];a()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){if(this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),this.itemsToPoll.length>1)return;let a;"setTimeoutCustom"in B().platform&&(a=B().platform.setTimeoutCustom.bind(B().platform)),v.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0),()=>0,null,a)}bindTextureToFrameBuffer(e){this.throwIfDisposed(),vc(this.gl,e,this.framebuffer),this.debug&&Xu(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(vc(this.gl,this.outputTexture,this.framebuffer),this.debug&&Xu(this.gl)):A2(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let a=t();return this.unbindTextureToFrameBuffer(),a}setOutputMatrixTextureDriver(e,t,a){this.throwIfDisposed();let n=this.gl;vc(n,e,this.framebuffer),this.debug&&Xu(n),this.outputTexture=e,ue(n,()=>n.viewport(0,0,t,a)),ue(n,()=>n.scissor(0,0,t,a))}setOutputMatrixWriteRegionDriver(e,t,a,n){this.throwIfDisposed(),ue(this.gl,()=>this.gl.scissor(e,t,a,n))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function aU(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{addImpl:nU,bincountImpl:D6,bincountReduceImpl:rU,castImpl:sU,ceilImpl:iU,concatImpl:oU,equalImpl:lU,expImpl:uU,expm1Impl:dU,floorImpl:pU,gatherNdImpl:cU,gatherV2Impl:hU,greaterImpl:fU,greaterEqualImpl:mU,lessImpl:gU,lessEqualImpl:xU,linSpaceImpl:yU,logImpl:AU,maxImpl:bU,maximumImpl:vU,minimumImpl:kU,multiplyImpl:wU,negImpl:IU,notEqualImpl:SU,prodImpl:TU,raggedGatherImpl:CU,raggedRangeImpl:NU,raggedTensorToTensorImpl:EU,rangeImpl:RU,rsqrtImpl:MU,scatterImpl:$U,sigmoidImpl:_U,simpleAbsImpl:z6,sliceImpl:PU,sparseFillEmptyRowsImpl:FU,sparseReshapeImpl:OU,sparseSegmentReductionImpl:L6,sqrtImpl:DU,stridedSliceImpl:zU,stringNGramsImpl:LU,stringSplitImpl:BU,stringToHashBucketFastImpl:WU,subImpl:VU,tileImpl:UU,topKImpl:GU,transposeImpl:R3,uniqueImpl:HU}=Nh;function B6(e,t){return["x","y","z","w","u","v"].slice(0,t).map(a=>`${e}.${a}`)}function va(e,t){return t===1?[e]:B6(e,t)}function jU(e,t){if(e===1)return"rc";let a="";for(let n=0;n<e;n++)a+=t[n],n<e-1&&(a+=",");return a}var qU=class{constructor(e){if(this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.enableShapeUniforms=Na(this.outputShape.length),this.rank===0)this.userCode=`
|
|
void main() {
|
|
setOutput(vec4(getA(), 0., 0., 0.));
|
|
}
|
|
`;else{let t=va("rc",this.rank),a=gt(this.rank),n=this.getOutOfBoundsCondition(t),r=this.getSetup(t),s=this.getOutput(t);this.userCode=`
|
|
void main() {
|
|
${a} rc = getOutputCoords();
|
|
|
|
if(${n}) {
|
|
setOutput(vec4(0));
|
|
} else {
|
|
${r}
|
|
|
|
setOutput(vec4(${s}));
|
|
}
|
|
}
|
|
`}}getSourceCoordsArr(e){let t=[];for(let a=0;a<=1;a++)for(let n=0;n<=1;n++){let r=`${a===0?"r":"rp1"}, ${n===0?"c":"cp1"}`;for(let s=2;s<this.rank;s++)r=`${e[e.length-1-s]},`+r;t.push(r)}return t}getOutOfBoundsCondition(e){if(this.rank===1)return`rc > ${this.enableShapeUniforms?"outShape":this.outputShape[0]}`;let t="";for(let a=this.rank-2;a<this.rank;a++)t+=`${e[a]} >= ${this.enableShapeUniforms?`outShape[${a}]`:this.outputShape[a]}`,a<this.rank-1&&(t+="||");return t}getSetup(e){if(this.rank===1)return"";let t=e.slice(-2),a=this.enableShapeUniforms?`outShape[${this.rank} - 1]`:this.outputShape[this.rank-1],n=this.enableShapeUniforms?`outShape[${this.rank} - 2]`:this.outputShape[this.rank-2];return`
|
|
int r = ${t[0]};
|
|
int c = ${t[1]};
|
|
int rp1 = r + 1;
|
|
int cp1 = c + 1;
|
|
|
|
bool cEdge = cp1 >= ${a};
|
|
bool rEdge = rp1 >= ${n};
|
|
`}getOutput(e){let t=this.getSourceCoordsArr(e);return this.rank===1?`getA(rc), (rc + 1 >= ${this.enableShapeUniforms?"outShape":this.outputShape[0]} ? 0. : getA(rc + 1)), 0, 0`:`getA(${t[0]}),
|
|
cEdge ? 0. : getA(${t[1]}),
|
|
rEdge ? 0. : getA(${t[2]}),
|
|
rEdge || cEdge ? 0. : getA(${t[3]})`}},W6=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=Na(this.outputShape.length);let a="";for(let n=0;n<4;n++){let r="thisRC = rc;";n%2===1&&(r+="thisRC.z += 1;"),n>1&&(r+="thisRC.y += 1;"),a+=`
|
|
${r}
|
|
${n>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
|
|
int flatIndex = getFlatIndex(thisRC);
|
|
|
|
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
|
|
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
|
|
|
|
result[${n}] =
|
|
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
|
|
${n>0?"}":""}
|
|
`}this.userCode=`
|
|
${XU(t,this.enableShapeUniforms)}
|
|
${this.enableShapeUniforms?w3():k3(e)}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
ivec3 thisRC;
|
|
int rows = ${this.enableShapeUniforms?"outShape[1]":e[1]};
|
|
int cols = ${this.enableShapeUniforms?"outShape[2]":e[2]};
|
|
|
|
${a}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function XU(e,t){return`
|
|
ivec3 inputCoordsFromReshapedOutCoords(int index) {
|
|
${t?dV(["r","c","d"],"inputShape"):Ao(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}var KU=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,a){let n=px(t,a),r=cx(e,n,a);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let s=dx(e,n,this.gpgpu.gl,this.gpgpu.textureConfig,a);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[r].shift();return this.usedTextures[r].push(o),o}let i;return n===sa.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):n===sa.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):n===sa.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):n===sa.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):n===sa.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,a,n){if(this.freeTextures==null)return;let r=px(a,n),s=cx(t,r,n);s in this.freeTextures||(this.freeTextures[s]=[]);let i=dx(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,n),o=B().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e.texture),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],u=l.indexOf(e);if(u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(u,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function ZU(e,t){let a=e;if(t===a.R32F)return 4;if(t===a.R16F)return 2;if(t===a.RGBA32F||t===e.RGBA)return 16;if(t===a.RGBA16F)return 8;if(t===a.RGBA8)return 4;throw new Error(`Unknown internal format ${t}`)}function dx(e,t,a,n,r){let s=YU(t,n),i;if(r){let[l,u]=lu(e[0],e[1]);i=l*u}else{let[l,u]=cp(e[0],e[1]);i=l*u}let o=ZU(a,s);return i*o}function YU(e,t){switch(e){case sa.PACKED_2X2_FLOAT32:return N3(t);case sa.PACKED_2X2_FLOAT16:return E3(t);case sa.UNPACKED_FLOAT32:return S3(t);case sa.UNPACKED_FLOAT16:return T3(t);case sa.PACKED_4X1_UNSIGNED_BYTE:return C3(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function JU(e){return B().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?sa.PACKED_2X2_FLOAT32:sa.UNPACKED_FLOAT32:e?sa.PACKED_2X2_FLOAT16:sa.UNPACKED_FLOAT16}function px(e,t){if(e===pn.UPLOAD)return sa.PACKED_2X2_FLOAT32;if(e===pn.RENDER||e==null)return JU(t);if(e===pn.DOWNLOAD||e===pn.PIXELS)return sa.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function cx(e,t,a){return`${e[0]}_${e[1]}_${t}_${a}`}var qn=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=Na(this.outputShape.length),this.userCode=`
|
|
float unaryOperation(float x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
float y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},Cn="if (isnan(x)) return x;",QU="return x;",hx="return abs(x);",eG="return (x >= 0.0) ? x : (exp(x) - 1.0);",tG=Cn+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,aG=Cn+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,Dr="return x;",nG="return 1.0 / (1.0 + exp(-1.0 * x));",rG="return x;",sG=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,iG=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,oG=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,lG="return 1.0 / (1.0 + exp(-1.0 * x));",Vr=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=Na(this.outputShape.length),this.userCode=`
|
|
vec4 unaryOperation(vec4 x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
vec4 x = getAAtOutCoords();
|
|
vec4 y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},uG=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e,this.enableShapeUniforms=Na(this.outputShape.length);let t=e.length,a=va("rc",t),n=gt(t),r=jU(t,a),s=a.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=`
|
|
void main() {
|
|
${n} rc = getOutputCoords();
|
|
vec4 packedInput = getA(${r});
|
|
|
|
setOutput(getChannel(packedInput, ${i}));
|
|
}
|
|
`}},dG=Tn.whereImpl,pG=1e-7,cG=1e-4,Fm={};function hG(e){return e in Fm||(Fm[e]={}),Fm[e]}var fG=B().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),mG=600;function gG(){return B().global.screen==null?1024:B().global.screen.height*B().global.screen.width*window.devicePixelRatio*mG/1024/1024}var fu=class extends Al{constructor(e){if(super(),this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!B().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");let t;if(e!=null){if(e instanceof sl)t=e;else{let a=Dn(B().getNumber("WEBGL_VERSION"),e);t=new sl(a)}this.binaryCache={},this.gpgpuCreatedLocally=!1}else{let a=Dn(B().getNumber("WEBGL_VERSION"));t=new sl(a),this.binaryCache=hG(B().getNumber("WEBGL_VERSION")),this.gpgpuCreatedLocally=!0}this.gpgpu=t,this.canvas=this.gpgpu.gl.canvas,this.textureManager=new KU(this.gpgpu),this.numMBBeforeWarning=gG(),this.texData=new wd(this,vt())}nextDataId(){return fu.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}writeTexture(e,t,a,n,r,s){let i=this.makeTensorInfo(t,a),o=this.texData.get(i.dataId);o.isPacked=!1,o.texture={texture:e,texShape:[n,r]},o.texShape=[n,r];let l=Ku(t),u=new ux(l,!1,s),p=this.runWebGLProgram(u,[i],a,[[n,r]]);return p.shape=t,o.texture=null,this.disposeIntermediateTensorInfo(i),p.dataId}write(e,t,a){if((B().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||B().getBool("DEBUG"))&&this.checkNumericalProblems(e),a==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let n={id:this.nextDataId()};return this.texData.set(n,{shape:t,dtype:a,values:e,usage:pn.UPLOAD,refCount:1}),n}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,a,n,r){if(B().getBool("DEBUG")&&this.checkNumericalProblems(t),n==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:a,dtype:n,values:t,usage:pn.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:a,dtype:n,complexTensorInfos:r,slice:s,shape:i,isPacked:o}=t;if(s!=null){let c;o?c=new Vr(i,Dr):c=new qn(i,Dr);let d=this.runWebGLProgram(c,[{dataId:e,shape:i,dtype:n}],n),h=this.readSync(d.dataId);return this.disposeIntermediateTensorInfo(d),h}if(a!=null)return this.convertAndCacheOnCPU(e);if(n==="string")return a;let l=this.activeTimers!=null,u;l&&(u=v.now());let p;if(n==="complex64"){let c=this.readSync(r.real.dataId),d=this.readSync(r.imag.dataId);p=T.mergeRealAndImagArrays(c,d)}else p=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=v.now()-u),this.convertAndCacheOnCPU(e,p)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(f=>h.push(f))}let t=this.texData.get(e),{values:a,shape:n,slice:r,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(r!=null){let h;o?h=new Vr(n,Dr):h=new qn(n,Dr);let f=this.runWebGLProgram(h,[{dataId:e,shape:n,dtype:s}],s),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(a!=null)return this.convertAndCacheOnCPU(e);if(B().getBool("DEBUG")&&!B().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&B().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(s!=="complex64"&&B().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let h=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(h.texture.texture,...hc(n))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let p;if(s==="complex64"){let h=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),f=h[0],m=h[1];p=T.mergeRealAndImagArrays(f,m)}else if(l==null)p=this.getValuesFromTexture(e);else{let h=v.sizeFromShape(n);p=this.gpgpu.downloadFloat32MatrixFromBuffer(l,h)}if(u!=null&&this.disposeIntermediateTensorInfo(u),l!=null){let h=this.gpgpu.gl;ue(h,()=>h.deleteBuffer(l))}let c=this.convertAndCacheOnCPU(e,p),d=this.pendingRead.get(e);return this.pendingRead.delete(e),d.forEach(h=>h(c)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&vt().removeDataId(e,this),this.pendingDeletes--),c}readToGPU(e,t={}){let a=this.texData.get(e),{values:n,shape:r,slice:s,dtype:i,isPacked:o,texture:l}=a;if(i==="complex64")throw new Error("Does not support reading texture for complex64 dtype.");if(s!=null){let d;o?d=new Vr(r,Dr):d=new qn(r,Dr);let h=this.runWebGLProgram(d,[{dataId:e,shape:r,dtype:i}],i),f=this.readToGPU(h,t);return this.disposeIntermediateTensorInfo(h),f}if(l==null)throw n!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let u=this.decode(e,t.customTexShape),p=vt().makeTensorFromTensorInfo(u),c=this.texData.get(u.dataId);return Object.assign({tensorRef:p},c.texture)}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let a=t.map(n=>v.decodeString(n));return _e(e.shape,e.dtype,a)}catch(a){throw new Error("Failed to decode encoded string bytes into utf-8")}return _e(e.shape,e.dtype,t)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let a=e[t];if(!H7(a))throw B().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${a} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${a} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:a,isPacked:n}=this.texData.get(e),r=v.sizeFromShape(t);if(B().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let c=this.decode(e),d=this.texData.get(c.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(d.texture.texture,...hc(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(c),h}let s=B().getBool("WEBGL_PACK")&&n===!0,i=s?Ku(t):t,o=s?new QV(i):new JV(i),l=this.runWebGLProgram(o,[{shape:i,dtype:a,dataId:e}],"float32"),u=this.texData.get(l.dataId),p=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(u.texture.texture,u.texShape[0],u.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(l),p}timerAvailable(){return B().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}time(e){let t=this.activeTimers,a=[],n=!1;this.programTimersStack==null?(this.programTimersStack=a,n=!0):this.activeTimers.push(a),this.activeTimers=a,e();let r=v.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=v.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,n&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};return(async()=>{if(B().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(r);i.kernelMs=v.sum(o),i.getExtraProfileInfo=()=>o.map((l,u)=>({name:s[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i})()}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return B().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:v.now(),endMs:null}}endTimer(e){return B().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=v.now(),e)}async getQueryTime(e){if(B().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:a}=this.texData.get(e);return a!=null&&(this.disposeData(a.real.dataId,t),this.disposeData(a.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:a,texShape:n,usage:r,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(n,a),this.textureManager.releaseTexture(t,n,r,s)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture.texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=fG){return B().getBool("WEBGL_CPU_FORWARD")&&e.every(a=>this.texData.get(a.dataId).texture==null&&v.sizeFromShape(a.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){T.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return dG(e.shape,t)}packedUnaryOp(e,t,a){let n=new Vr(e.shape,t),r=this.compileAndRun(n,[e],a);return vt().makeTensorFromTensorInfo(r)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let n=z6(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,n)}if(B().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,hx,e.dtype);let t=new qn(e.shape,hx),a=this.compileAndRun(t,[e]);return vt().makeTensorFromTensorInfo(a)}makeTensorInfo(e,t,a){let n;if(t==="string"&&a!=null&&a.length>0&&v.isString(a[0])){let r=a.map(s=>v.encodeString(s));n=this.write(r,e,t)}else n=this.write(a,e,t);return this.texData.get(n).usage=null,{dataId:n,shape:e,dtype:t}}makeOutput(e,t,a){return vt().makeTensorFromTensorInfo(this.makeTensorInfo(e,t,a),this)}unpackTensor(e){let t=new uG(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new qU(e.shape),a=!0;return this.runWebGLProgram(t,[e],e.dtype,null,a)}packedReshape(e,t){let a=[Hs(e.shape),...js(e.shape)],n={dtype:e.dtype,shape:a,dataId:e.dataId},r=[Hs(t),...js(t)],s=new W6(r,a),i=!0,o=[a],l=this.runWebGLProgram(s,[n],e.dtype,o,i);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e,t){let a=this.texData.get(e),{isPacked:n,shape:r,dtype:s}=a;if(t!=null){let c=v.sizeFromShape(r),d=t[0]*t[1]*4;v.assert(c<=d,()=>"customTexShape is too small. Row * Column * 4 should be equal or larger than the size of the tensor data.")}let i=Ku(r),o;n?o=new YV(i):o=new ZV(i);let l=!0,u=[t!=null?t:hc(i)],p=this.runWebGLProgram(o,[{shape:i,dtype:s,dataId:e}],s,u,l,t);return{dtype:s,shape:r,dataId:p.dataId}}runWebGLProgram(e,t,a,n,r=!1,s){let i=this.makeTensorInfo(e.outputShape,a),o=this.texData.get(i.dataId);if(e.packedOutput&&(o.isPacked=!0),e.outPackingScheme===gd.DENSE){let g=s!=null?s:hc(e.outputShape);o.texShape=g.map(x=>x*2)}if(e.outTexUsage!=null&&(o.usage=e.outTexUsage),v.sizeFromShape(i.shape)===0)return o.values=v.getTypedArrayFromDType(i.dtype,0),i;let l=[],u=t.map(g=>{if(g.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let x=this.texData.get(g.dataId);if(x.texture==null){if(!e.packedInputs&&v.sizeFromShape(g.shape)<=B().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:g.shape,texData:null,isUniform:!0,uniformValues:x.values};e.packedInputs&&(x.isPacked=!0,x.shape=g.shape)}if(this.uploadToGPU(g.dataId),!!x.isPacked!=!!e.packedInputs)g=x.isPacked?this.unpackTensor(g):this.packTensor(g),l.push(g),x=this.texData.get(g.dataId);else if(x.isPacked&&!xd(x.shape,g.shape)){let y=g,A=g.shape;g.shape=x.shape,g=this.packedReshape(g,A),l.push(g),x=this.texData.get(g.dataId),y.shape=A}return{shape:g.shape,texData:x,isUniform:!1}});this.uploadToGPU(i.dataId);let p={shape:i.shape,texData:o,isUniform:!1},c=KV(e,u,p),d=this.getAndSaveBinary(c,()=>qV(this.gpgpu,e,u,p)),h=this.activeTimers!=null,f;h&&(f=this.startTimer()),B().get("ENGINE_COMPILE_ONLY")||XV(this.gpgpu,d,u,p,n),l.forEach(g=>this.disposeIntermediateTensorInfo(g)),h&&(f=this.endTimer(f),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(f)}));let m=B().get("WEBGL_FLUSH_THRESHOLD");if(m>0){let g=v.now();g-this.lastGlFlushTime>m&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=g)}if(!B().getBool("WEBGL_LAZILY_UNPACK")&&o.isPacked&&r===!1){let g=this.unpackTensor(i);return this.disposeIntermediateTensorInfo(i),g}return i}compileAndRun(e,t,a,n,r=!1){return a=a||t[0].dtype,this.runWebGLProgram(e,t,a,n,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(B().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=Fe(()=>{if(!B().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=B().getBool("DEBUG");B().set("DEBUG",!1);let t=this.abs(ze(1e-8)).dataSync()[0];if(B().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?pG:cG}uploadToGPU(e){let t=this.texData.get(e),{shape:a,dtype:n,values:r,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,u;l&&(u=v.now());let p=t.texShape;if(p==null&&(p=l6(a,o),t.texShape=p),r!=null){let c=Ku(a),d,h=p[1],f=p[0],m=r instanceof Uint8Array||r instanceof Uint8ClampedArray;(o||!m)&&([h,f]=lu(p[0],p[1])),o?d=new tU(c,m):d=new ux(c,m);let g=m?[f,h]:p,x=this.makeTensorInfo(g,n),y=this.texData.get(x.dataId);m?y.usage=pn.PIXELS:y.usage=pn.UPLOAD,y.texShape=g,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(x.dataId),h,f,r);let A=[[f,h]],b=!0,k=this.runWebGLProgram(d,[x],n,A,b),S=this.texData.get(k.dataId);t.texShape=S.texShape,t.isPacked=S.isPacked,t.usage=S.usage,B().get("ENGINE_COMPILE_ONLY")?this.disposeData(k.dataId):(t.texture=S.texture,t.values=null,this.texData.delete(k.dataId)),this.disposeIntermediateTensorInfo(x),l&&(this.uploadWaitMs+=v.now()-u)}else{let c=this.acquireTexture(p,i,n,o);t.texture=c}}convertAndCacheOnCPU(e,t){let a=this.texData.get(e),{dtype:n}=a;return t!=null&&(a.values=xG(t,n)),a.values}acquireTexture(e,t,a,n){if(this.numBytesInGPU+=this.computeBytes(e,a),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,n)}computeBytes(e,t){return e[0]*e[1]*v.bytesPerElement(t)}checkCompileCompletion(){for(let[,e]of Object.entries(this.binaryCache))this.checkCompletion_(e)}async checkCompileCompletionAsync(){let e=[];if(this.gpgpu.parallelCompilationExtension){for(let[,t]of Object.entries(this.binaryCache))e.push(this.checkCompletionAsync_(t));return Promise.all(e)}else{for(let[,t]of Object.entries(this.binaryCache)){let a=new Promise(n=>{try{this.checkCompletion_(t),n(!0)}catch(r){throw r}});e.push(a)}return Promise.all(e)}}async checkCompletionAsync_(e){return this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.parallelCompilationExtension.COMPLETION_STATUS_KHR)?this.checkCompletion_(e):(await y4(),this.checkCompletionAsync_(e))}checkCompletion_(e){if(this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.gl.LINK_STATUS)===!1)throw console.log(this.gpgpu.gl.getProgramInfoLog(e.webGLProgram)),this.gpgpu.gl.getShaderParameter(e.fragmentShader,this.gpgpu.gl.COMPILE_STATUS)===!1?(v3(e.source,this.gpgpu.gl.getShaderInfoLog(e.fragmentShader)),new Error("Failed to compile fragment shader.")):new Error("Failed to link vertex and fragment shaders.");return!0}getUniformLocations(){for(let[,e]of Object.entries(this.binaryCache)){let{uniformLocations:t,customUniformLocations:a,infLoc:n,nanLoc:r,inShapesLocations:s,inTexShapesLocations:i,outShapeLocation:o,outShapeStridesLocation:l,outTexShapeLocation:u}=A6(this.gpgpu,e.program,e.webGLProgram);e.uniformLocations=t,e.customUniformLocations=a,e.infLoc=n,e.nanLoc=r,e.inShapesLocations=s,e.inTexShapesLocations=i,e.outShapeLocation=o,e.outShapeStridesLocation=l,e.outTexShapeLocation=u}}createTensorFromGPUData(e,t,a){e.channels=e.channels||"RGBA";let{texture:n,height:r,width:s,channels:i}=e,o=vt().backend;if(!o.gpgpu.gl.isTexture(n))throw new Error("The texture is invalid. Also, please make sure the texture and the TFJS WebGL backend are using the same canvas. If you want to use your own custom canvas, you have to create and use the custom TFJS WebGL backend created from the canvas through 'new tf.MathBackendWebGL(customCanvas)'.");let l=o.writeTexture(n,t,a,r,s,i);return vt().makeTensorFromDataId(l,t,a,o)}};fu.nextDataId=0;function xG(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let a=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let n=0;n<a.length;++n)a[n]=Math.round(e[n]);return a}else throw new Error(`Unknown dtype ${t}`)}var yG="4.2.0";function V6(){B().set("WEBGL_FORCE_F16_TEXTURES",!0)}Zd.isBrowser()&&xo("webgl",()=>new fu,2);var AG={forceHalfFloat:V6},M3=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,xl=class{constructor(e,t,a){this.variableNames=["A","B"],this.outputShape=T.assertAndGetBroadcastShape(t,a),this.enableShapeUniforms=Na(this.outputShape.length),this.userCode=`
|
|
float binaryOperation(float a, float b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float a = getAAtOutCoords();
|
|
float b = getBAtOutCoords();
|
|
setOutput(binaryOperation(a, b));
|
|
}
|
|
`}},fp=`
|
|
result.r = isNaN.r ? NAN : result.r;
|
|
result.g = isNaN.g ? NAN : result.g;
|
|
result.b = isNaN.b ? NAN : result.b;
|
|
result.a = isNaN.a ? NAN : result.a;
|
|
`,mp=class{constructor(e,t,a,n=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=T.assertAndGetBroadcastShape(t,a);let r=this.outputShape.length;this.enableShapeUniforms=Na(r);let s="";if(n)if(r===0||v.sizeFromShape(this.outputShape)===1)s=`
|
|
result.y = 0.;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else if(s=`
|
|
${gt(r)} coords = getOutputCoords();
|
|
`,r===1)this.enableShapeUniforms?s+=`
|
|
result.y = (coords + 1) >= outShape ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`:s+=`
|
|
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else{let i=va("coords",r);this.enableShapeUniforms?s+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= outShape[${r} - 2];
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= outShape[${r} - 1];
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`:s+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= ${this.outputShape[r-2]};
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= ${this.outputShape[r-1]};
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`}this.userCode=`
|
|
vec4 binaryOperation(vec4 a, vec4 b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
vec4 a = getAAtOutCoords();
|
|
vec4 b = getBAtOutCoords();
|
|
|
|
vec4 result = binaryOperation(a, b);
|
|
${s}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function Za(e){let{inputs:t,backend:a}=e,{x:n}=t;return a.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var bG={kernelName:wi,backendName:"webgl",kernelFunc:Za};function us(e){let{inputs:t,backend:a}=e,{real:n,imag:r}=t,s=a.makeTensorInfo(n.shape,"complex64"),i=a.texData.get(s.dataId),o=Za({inputs:{x:n},backend:a}),l=Za({inputs:{x:r},backend:a});return i.complexTensorInfos={real:o,imag:l},s}var vG={kernelName:Cd,backendName:"webgl",kernelFunc:us},U6="return (a < 0.) ? b * a : a;",G6=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function kG(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{alpha:s}=n,i=a.makeTensorInfo([],"float32",v.createScalarValue(s,"float32")),o=B().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new mp(G6,r.shape,i.shape):new xl(U6,r.shape,i.shape),l=a.runWebGLProgram(o,[r,i],"float32");return a.disposeIntermediateTensorInfo(i),l}var wG={kernelName:Si,backendName:"webgl",kernelFunc:kG},H6="return (a < 0.) ? b * a : a;",j6=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function IG(e){let{inputs:t,backend:a}=e,{x:n,alpha:r}=t,s=B().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new mp(j6,n.shape,r.shape):new xl(H6,n.shape,r.shape);return a.runWebGLProgram(s,[n,r],"float32")}var SG={kernelName:ji,backendName:"webgl",kernelFunc:IG},mu="if (isnan(x)) return x;";function Qe({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:a,dtype:n}){return({inputs:r,backend:s})=>{let{x:i}=r,o=s,l=n||i.dtype;if(o.shouldExecuteOnCPU([i])&&a!=null){let c=o.texData.get(i.dataId),d=a(c.values,l);return o.makeTensorInfo(i.shape,l,d)}let u=B().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,p;return u?p=new Vr(i.shape,t):p=new qn(i.shape,e),o.runWebGLProgram(p,[i],l)}}function ua({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:a=!1,supportsComplex:n=!1,cpuKernelImpl:r,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:u}=i,p=o;if(n&&l.dtype==="complex64"){let f=p.texData.get(l.dataId),m=p.texData.get(u.dataId),[g,x]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(A=>{let[b,k]=A,S={dataId:b.dataId,dtype:b.dtype,shape:l.shape},C={dataId:k.dataId,dtype:k.dtype,shape:u.shape},E=new xl(e,l.shape,u.shape);return p.runWebGLProgram(E,[S,C],ha(b.dtype,k.dtype))}),y=us({inputs:{real:g,imag:x},backend:p});return p.disposeIntermediateTensorInfo(g),p.disposeIntermediateTensorInfo(x),y}let c=s||ha(l.dtype,u.dtype);if((l.dtype==="string"||u.dtype==="string"||p.shouldExecuteOnCPU([l,u]))&&r!=null){let f=p.texData.get(l.dataId).values,m=p.texData.get(u.dataId).values,g=l.dtype==="string"?T.fromUint8ToStringArray(f):f,x=l.dtype==="string"?T.fromUint8ToStringArray(m):m,[y,A]=r(l.shape,u.shape,g,x,c),b=p.makeTensorInfo(A,c),k=p.texData.get(b.dataId);return k.values=y,b}let d=B().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return d?h=new mp(t,l.shape,u.shape,a):h=new xl(e,l.shape,u.shape),p.runWebGLProgram(h,[l,u],c)}}function yd(e,t=!1){if(e==="linear")return t?rG:QU;if(e==="relu")return t?iG:tG;if(e==="elu")return t?sG:eG;if(e==="relu6")return t?oG:aG;if(e==="prelu")return t?j6:H6;if(e==="leakyrelu")return t?G6:U6;if(e==="sigmoid")return t?lG:nG;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var q6=class{constructor(e,t,a,n=!1,r=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=a,this.enableShapeUniforms=Na(this.outputShape.length);let u=n?e[1]:e[2],p=Math.ceil(u/2),c=n?"i * 2, rc.y":"rc.y, i * 2",d=r?"rc.z, i * 2":"i * 2, rc.z",h=n?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",g="";i&&(o?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${i}
|
|
}`:l?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${i}
|
|
}`:m=`vec4 activation(vec4 x) {
|
|
${i}
|
|
}`,g="result = activation(result);");let x=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let y="rc.x",A="rc.x";e[0]<t[0]?y=`imod(rc.x, ${e[0]})`:t[0]<e[0]&&(A=`imod(rc.x, ${t[0]})`),this.userCode=`
|
|
${m}
|
|
// Don't use uniform for sharedDimensionPacked for performance.
|
|
const float sharedDimension = ${p}.0;
|
|
|
|
vec4 dot2x2ARowBCol(ivec3 rc) {
|
|
vec4 result = vec4(0);
|
|
int batchA = ${y};
|
|
int batchB = ${A};
|
|
for (int i = 0; i < ${p}; i++) {
|
|
vec4 a = getMatrixA(batchA, ${c});
|
|
vec4 b = getMatrixB(batchB, ${d});
|
|
|
|
// These swizzled products need to be separately added.
|
|
// See: https://github.com/tensorflow/tfjs/issues/1735
|
|
result += (${h[0]} * ${f[0]});
|
|
result += (${h[1]} * ${f[1]});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
vec4 result = dot2x2ARowBCol(rc);
|
|
|
|
${x}
|
|
|
|
${g}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}},fx={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},mx=class{constructor(e,t,a){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=T.assertAndGetBroadcastShape(t,a),this.userCode=`
|
|
float binaryOpComplex(
|
|
float areal, float aimag, float breal, float bimag) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float areal = getARealAtOutCoords();
|
|
float aimag = getAImagAtOutCoords();
|
|
float breal = getBRealAtOutCoords();
|
|
float bimag = getBImagAtOutCoords();
|
|
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
`}},gx="return a * b;";function $3(e){let{inputs:t,backend:a}=e,{a:n,b:r}=t,s=T.upcastType(n.dtype,r.dtype);if(n.dtype==="complex64"){let o=a.texData.get(n.dataId),l=a.texData.get(r.dataId),u=new mx(fx.REAL,n.shape,r.shape),p=new mx(fx.IMAG,n.shape,r.shape),c=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:n.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:n.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],d=a.runWebGLProgram(u,c,"float32"),h=a.runWebGLProgram(p,c,"float32"),f=us({inputs:{real:d,imag:h},backend:a});return a.disposeIntermediateTensorInfo(d),a.disposeIntermediateTensorInfo(h),f}if(a.shouldExecuteOnCPU([n,r])){let o=a.texData.get(n.dataId),l=a.texData.get(r.dataId),[u,p]=wU(n.shape,r.shape,o.values,l.values,s),c=a.makeTensorInfo(p,s),d=a.texData.get(c.dataId);return d.values=u,c}let i;return B().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new mp(gx,n.shape,r.shape):i=new xl(gx,n.shape,r.shape),a.runWebGLProgram(i,[n,r],s)}var TG={kernelName:Li,backendName:"webgl",kernelFunc:$3};function CG(e,t,a){let n=[Hs(e.shape),...js(e.shape)],r={dtype:e.dtype,shape:n,dataId:e.dataId},s=[Hs(t),...js(t)],i=new W6(s,n),o=!0,l=[n],u=a.runWebGLProgram(i,[r],e.dtype,l,o);return{dataId:u.dataId,shape:t,dtype:u.dtype}}function pe(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{shape:s}=n,i=a,o=v.sizeFromShape(r.shape),l=v.inferFromImplicitShape(s,o),u=v.sizeFromShape(l);v.assert(o===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let p=i.texData.get(r.dataId);return p.isPacked&&!xd(r.shape,l)&&!(p.texture!==null&&xd(p.shape,l))?CG(r,l,i):(i.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var NG={kernelName:Hl,backendName:"webgl",kernelFunc:pe},xx=class{constructor(e,t){this.variableNames=["x"];let{windowSize:a,batchSize:n,inSize:r,outSize:s}=e;this.outputShape=[n,s];let i=Math.floor(a/4)*4,o=a%4,l="sumValue += dot(values, ones);";if(t!=null){let p=1/t;l=`sumValue += dot(values * ${v.isInt(p)?p.toPrecision(2):p}, ones);`}let u="";r%a>0&&(u=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return 0.0;
|
|
}
|
|
`),this.userCode=`
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${u}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${a};
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${i}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${l}
|
|
}
|
|
|
|
int inIdx = inOffset + ${i};
|
|
if (${o===1}) {
|
|
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${o===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1), 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${o===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2), 0.0);
|
|
|
|
${l}
|
|
}
|
|
setOutput(sumValue);
|
|
}
|
|
`}},EG=class{constructor(e,t){this.variableNames=["x"];let{windowSize:a,batchSize:n,inSize:r,outSize:s}=e;this.outputShape=[n,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(a/4)*4,p=a%4,c=`
|
|
if (${t==="sum"}) {
|
|
sumValue += dot(values, ones);
|
|
} else if (${t==="prod"}) {
|
|
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
|
|
prodValue *= tmp[0] * tmp[1];
|
|
} else {
|
|
minMaxValue = ${o}(values, minMaxValue);
|
|
if (${t==="min"} || ${t==="max"}) {
|
|
minMaxValue = ${o}(values, minMaxValue);
|
|
bvec4 isNaN = isnan(values);
|
|
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
|
|
minMaxValue = vec4(NAN);
|
|
}
|
|
}
|
|
}
|
|
`,d="vec4";t==="all"?(i="1.0",c=`
|
|
bool reducedAllValue = all(values);
|
|
float floatedReducedAllValue = float(reducedAllValue);
|
|
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
|
|
`,d="bvec4"):t==="any"&&(i="0.0",c=`
|
|
bool reducedAnyValue = any(values);
|
|
float floatedReducedAnyValue = float(reducedAnyValue);
|
|
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
|
|
`,d="bvec4");let h="";r%a>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${i};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${h}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${a};
|
|
|
|
vec4 minMaxValue = vec4(${i});
|
|
float prodValue = 1.0;
|
|
float sumValue = 0.0;
|
|
float allValue = 1.0;
|
|
float anyValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${c}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${p===1}) {
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${c}
|
|
} else if (${p===2}) {
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${c}
|
|
} else if (${p===3}) {
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
${c}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function RG(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let a=t.length?t[t.length-1].outSize:e[1],n=T.computeOptimalWindowSize(a);t.push({inSize:a,windowSize:n,outSize:Math.ceil(a/n)})}return t}function vo(e,t,a,n){let r=RG(e.shape),s=e;for(let i=0;i<r.length;i++){let{inSize:o,windowSize:l,outSize:u}=r[i],p,c;a==="mean"?p=i===0?new xx({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},o):new xx({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u}):p=new EG({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},a),c=s,s=n.runWebGLProgram(p,[s],t),c.dataId!==e.dataId&&n.disposeIntermediateTensorInfo(c)}return s}var MG=class{constructor(e,t){this.variableNames=["A"];let a=new Array(e.length);for(let s=0;s<a.length;s++)a[s]=e[t[s]];this.outputShape=a,this.rank=a.length;let n=gt(this.rank),r=$G(t);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function $G(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let a=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],n=new Array(t);for(let r=0;r<e.length;r++)n[e[r]]=a[r];return n.join()}var _G=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let a=new Array(e.length);for(let u=0;u<a.length;u++)a[u]=e[t[u]];if(this.outputShape=a,this.rank=a.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let n=gt(this.rank),r=B6("rc",this.rank),s=new Array(this.rank);for(let u=0;u<t.length;u++)s[t[u]]=r[u];let i=`vec2(${s.slice(-2).join()})`,o=`++${r[this.rank-1]} < ${a[this.rank-1]}`,l=`getChannel(getA(${s.join()}), ${i})`;this.userCode=`
|
|
void main() {
|
|
${n} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result[0] = ${l};
|
|
if(${o}) {
|
|
result[1] = ${l};
|
|
}
|
|
--${r[this.rank-1]};
|
|
if(++${r[this.rank-2]} < ${a[this.rank-2]}) {
|
|
result[2] = ${l};
|
|
if(${o}) {
|
|
result[3] = ${l};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function $h(e,t,a){let n=B().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new _G(e.shape,t):new MG(e.shape,t);return a.runWebGLProgram(n,[e],e.dtype)}function PG(e,t,a,n){let r=t,s=e.shape.length,i=v.parseAxisParam(r,e.shape),o=i,l=T.getAxesPermutation(o,s),u=l!=null,p=e;u&&(p=$h(e,l,n),o=T.getInnerMostAxes(o.length,s)),T.assertAxesAreInnerMostDims("sum",o,s);let[c,d]=T.computeOutAndReduceShapes(p.shape,o),h=c;a&&(h=T.expandShapeToKeepDim(c,i));let f=v.sizeFromShape(d),m=v.sizeFromShape(e.shape)/f,g=pe({inputs:{x:p},attrs:{shape:[m,f]},backend:n}),x=Kd(e.dtype),y=vo(g,x,"sum",n),A=pe({inputs:{x:y},attrs:{shape:h},backend:n});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(y),u&&n.disposeIntermediateTensorInfo(p),A}function _h(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s,keepDims:i}=n;return PG(r,s,i,a)}var FG={kernelName:io,backendName:"webgl",kernelFunc:_h};function Ia(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{perm:s}=n,i=a,o=r.shape.length,l=new Array(o);for(let p=0;p<l.length;p++)l[p]=r.shape[s[p]];let u;if(i.shouldExecuteOnCPU([r])){let p=i.texData.get(r.dataId).values,c=R3(p,r.shape,r.dtype,s,l);u=i.makeTensorInfo(l,r.dtype);let d=i.texData.get(u.dataId);d.values=c}else u=$h(r,s,i);return u}var OG={kernelName:yr,backendName:"webgl",kernelFunc:Ia},X6=1e3;function Bc({a:e,b:t,transposeA:a,transposeB:n,backend:r,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:l=null}){let u=e.shape.length,p=t.shape.length,c=a?e.shape[u-2]:e.shape[u-1],d=n?t.shape[p-1]:t.shape[p-2],h=a?e.shape[u-1]:e.shape[u-2],f=n?t.shape[p-2]:t.shape[p-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),x=v.sizeFromShape(m),y=v.sizeFromShape(g),A=yo.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([h,f]);v.assert(c===d,()=>`Error in matMul: inner shapes (${c}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${a} and transposeB=${n} must match.`);let b=a?[x,c,h]:[x,h,c],k=n?[y,f,d]:[y,d,f],S=pe({inputs:{x:e},backend:r,attrs:{shape:b}}),C=pe({inputs:{x:t},backend:r,attrs:{shape:k}}),E=[S,C],_=Math.max(x,y),$=a?S.shape[1]:S.shape[2],M=s!=null,I=i!=null,N=l==="leakyrelu",O=l!=null?yd(l,!0):null,L=M||I||N||O!=null,W;if((h===1||f===1)&&$>X6&&L===!1){let H=S,U=C;a&&(H=Ia({inputs:{x:S},backend:r,attrs:{perm:[0,2,1]}}),E.push(H)),n&&(U=Ia({inputs:{x:C},backend:r,attrs:{perm:[0,2,1]}}),E.push(U));let j=f!==1,V=f===1,Q=H;j&&(Q=pe({inputs:{x:H},backend:r,attrs:{shape:[_,$,1]}}),E.push(Q));let Z=f===1?2:1,re=U;V&&(re=pe({inputs:{x:U},backend:r,attrs:{shape:[_,1,$]}}),E.push(re));let ee=$3({inputs:{a:Q,b:re},backend:r});W=_h({inputs:{x:ee},backend:r,attrs:{axis:Z,keepDims:!0}}),E.push(ee)}else{let H=ha(e.dtype,t.dtype),U=new q6(b,k,[_,h,f],a,n,M,O,I,N),j=[S,C];if(s!=null&&j.push(s),I&&j.push(i),N){let V=r.makeTensorInfo([],"float32",v.createScalarValue(o,"float32"));j.push(V),E.push(V)}W=r.runWebGLProgram(U,j,H)}let G=pe({inputs:{x:W},backend:r,attrs:{shape:A}});E.push(W);for(let H of E)r.disposeIntermediateTensorInfo(H);return G}function DG(e){let{inputs:t,backend:a,attrs:n}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:p,leakyreluAlpha:c}=n;return Bc({a:r,b:s,transposeA:l,transposeB:u,backend:a,bias:i,preluActivationWeights:o,leakyreluAlpha:c,activation:p})}var zG={kernelName:jr,backendName:"webgl",kernelFunc:DG},yx="return abs(x);";function LG(e){let{inputs:t,backend:a}=e,{x:n}=t;if(a.shouldExecuteOnCPU([n])&&n.dtype!=="complex64"){let s=a.texData.get(n.dataId),i=z6(s.values);return a.makeTensorInfo(n.shape,n.dtype,i)}let r;return B().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new Vr(n.shape,yx):r=new qn(n.shape,yx),a.runWebGLProgram(r,[n],n.dtype)}var BG={kernelName:vl,backendName:"webgl",kernelFunc:LG},WG=Cn+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return acos(x);
|
|
`,VG=Qe({opSnippet:WG}),UG={kernelName:kl,backendName:"webgl",kernelFunc:VG},GG=Cn+`
|
|
if (x < 1.0) return NAN;
|
|
return log(x + sqrt(x * x - 1.0));`,HG=Qe({opSnippet:GG}),jG={kernelName:wl,backendName:"webgl",kernelFunc:HG},Ax="return a + b;",qG=ua({opSnippet:Ax,packedOpSnippet:Ax,supportsComplex:!0,cpuKernelImpl:nU}),XG={kernelName:as,backendName:"webgl",kernelFunc:qG},KG=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let a=[];this.variableNames.forEach(r=>{a.push(`float v${r} = get${r}AtOutCoords();`)});let n=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${a.join(`
|
|
`)}
|
|
|
|
float result = ${n};
|
|
setOutput(result);
|
|
}
|
|
`}},ZG=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let a=[];this.variableNames.forEach(r=>{a.push(`vec4 v${r} = get${r}AtOutCoords();`)});let n=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${a.join(`
|
|
`)}
|
|
|
|
vec4 result = ${n};
|
|
setOutput(result);
|
|
}
|
|
`}};function Ic(e){let{inputs:t,backend:a}=e,n=t;if(n.length===1)return Za({inputs:{x:n[0]},backend:a});if(n.length>B().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(n.length/2),l=Ic({inputs:n.slice(0,o),backend:a}),u=Ic({inputs:n.slice(o),backend:a});return Ic({inputs:[l,u],backend:a})}let r=n.map(o=>o.dtype).reduce((o,l)=>ha(o,l)),s=n.map(o=>o.shape),i=B().getBool("WEBGL_PACK")?new ZG(n[0].shape,s):new KG(n[0].shape,s);return a.runWebGLProgram(i,n,r)}var YG={kernelName:Ks,backendName:"webgl",kernelFunc:Ic};function JG(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s,keepDims:i}=n,o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=l,p=T.getAxesPermutation(u,o),c=r;p!=null&&(c=Ia({inputs:{x:r},backend:a,attrs:{perm:p}}),u=T.getInnerMostAxes(u.length,o)),T.assertAxesAreInnerMostDims("all",u,o);let[d,h]=T.computeOutAndReduceShapes(c.shape,u),f=v.sizeFromShape(h),m=pe({inputs:{x:c},backend:a,attrs:{shape:[-1,f]}}),g=vo(m,m.dtype,"all",a),x;if(i){let y=T.expandShapeToKeepDim(d,l);x=pe({inputs:{x:g},backend:a,attrs:{shape:y}})}else x=pe({inputs:{x:g},backend:a,attrs:{shape:d}});return a.disposeIntermediateTensorInfo(m),a.disposeIntermediateTensorInfo(g),p!=null&&a.disposeIntermediateTensorInfo(c),x}var QG={kernelName:Zs,backendName:"webgl",kernelFunc:JG};function eH(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s,keepDims:i}=n,o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=l,p=T.getAxesPermutation(u,o),c=r;p!=null&&(c=Ia({inputs:{x:r},backend:a,attrs:{perm:p}}),u=T.getInnerMostAxes(u.length,o)),T.assertAxesAreInnerMostDims("any",u,o);let[d,h]=T.computeOutAndReduceShapes(c.shape,u),f=v.sizeFromShape(h),m=pe({inputs:{x:c},backend:a,attrs:{shape:[-1,f]}}),g=vo(m,m.dtype,"any",a),x;if(i){let y=T.expandShapeToKeepDim(d,l);x=pe({inputs:{x:g},backend:a,attrs:{shape:y}})}else x=pe({inputs:{x:g},backend:a,attrs:{shape:d}});return a.disposeIntermediateTensorInfo(m),a.disposeIntermediateTensorInfo(g),p!=null&&a.disposeIntermediateTensorInfo(c),x}var tH={kernelName:Ys,backendName:"webgl",kernelFunc:eH},aH=class{constructor(e,t,a){this.variableNames=["A"];let{windowSize:n,batchSize:r,outSize:s}=e;a||this.variableNames.push("bestIndicesA"),this.outputShape=[r,s];let i=t==="max"?">":"<",o=a?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
int bestIndex = inOffset;
|
|
float bestValue = getA(batch, bestIndex);
|
|
|
|
for (int i = 0; i < ${n}; i++) {
|
|
int inIdx = ${o};
|
|
float candidate = getA(batch, inIdx);
|
|
if (candidate ${i} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = inIdx;
|
|
}
|
|
}
|
|
setOutput(float(bestIndex));
|
|
}
|
|
`}},nH=class{constructor(e,t,a,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,v.assert(e.length>2,()=>`Packed arg${a.charAt(0).toUpperCase()+a.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],s=Math.ceil(r/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),n||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=gt(o),u=va("coords",o),p,c;if(s===1){c=o+1;let C=gt(c);p=`
|
|
${C} sourceLocR = ${C}(${u.join()}, 0);
|
|
++${u[o-1]};
|
|
${C} sourceLocG = ${C}(${u.join()}, 0);
|
|
++${u[o-2]};
|
|
${C} sourceLocA = ${C}(${u.join()}, 0);
|
|
--${u[o-1]};
|
|
${C} sourceLocB = ${C}(${u.join()}, 0);
|
|
--${u[o-2]};`}else c=o,p=`
|
|
${l} sourceLocR = coords;
|
|
++${u[o-1]};
|
|
${l} sourceLocG = coords;
|
|
++${u[o-2]};
|
|
${l} sourceLocA = coords;
|
|
--${u[o-1]};
|
|
${l} sourceLocB = coords;
|
|
--${u[o-2]};`;let d=["x","y","z","w","u","v"].slice(0,c),h="."+d[c-1],f=d.map(C=>"int "+C),m=va("sourceLocR",c-1).concat("inIdx.r"),g=va("sourceLocG",c-1).concat("inIdx.g"),x=va("sourceLocB",c-1).concat("inIdx.b"),y=va("sourceLocA",c-1).concat("inIdx.a"),A=a==="max"?"greaterThan":"lessThan",b=n?"":`
|
|
inIdx = round(vec4(getBestIndicesAChannel(${m.join()}),
|
|
getBestIndicesAChannel(${g.join()}),
|
|
getBestIndicesAChannel(${x.join()}),
|
|
getBestIndicesAChannel(${y.join()})));`,k=`vec4(
|
|
getAChannel(${m.join()}),
|
|
hasNextCol ? getAChannel(${g.join()}) : 0.,
|
|
hasNextRow ? getAChannel(${x.join()}) : 0.,
|
|
hasNextRow && hasNextCol ? getAChannel(${y.join()}) : 0.)`,S=n?"":`
|
|
float getBestIndicesAChannel(${f.join()}) {
|
|
return getChannel(getBestIndicesA(${d.join()}),
|
|
vec2(${d.slice(-2).join()}));
|
|
}`;this.userCode=`
|
|
float getAChannel(${f.join()}) {
|
|
return getChannel(getA(${d.join()}),
|
|
vec2(${d.slice(-2).join()}));
|
|
}
|
|
${S}
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
bool hasNextCol = ${u[o-1]} < ${i[o-1]-1};
|
|
bool hasNextRow = ${u[o-2]} < ${i[o-2]-1};
|
|
${p}
|
|
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
|
|
sourceLocB${h}, sourceLocA${h}) * ${t};
|
|
ivec4 inIdx = srcIdx;
|
|
vec4 bestIndex = vec4(inIdx);
|
|
vec4 bestValue = ${k};
|
|
|
|
for (int i = 0; i < ${t}; i++) {
|
|
inIdx = srcIdx;
|
|
${b}
|
|
vec4 candidate = ${k};
|
|
bvec4 nan = isnan(candidate);
|
|
bvec4 replace = bvec4(
|
|
vec4(${A}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
|
|
|
|
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
|
|
replace.y ? candidate.y : bestValue.y,
|
|
replace.z ? candidate.z : bestValue.z,
|
|
replace.w ? candidate.w : bestValue.w);
|
|
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
|
|
srcIdx++;
|
|
}
|
|
setOutput(bestIndex);
|
|
}
|
|
`}};function K6(e,t,a,n=null){let r=t.shape[0],s=t.shape[1];n!=null&&(r=n.shape[0],s=n.shape[1]);let i=T.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:r,outSize:Math.ceil(s/i)},l=new aH(o,a,n==null),u=[t];n!=null&&u.push(n);let p=e.runWebGLProgram(l,u,"int32");if(p.shape[1]===1)return p;let c=K6(e,t,a,p);return e.disposeIntermediateTensorInfo(p),c}function Z6(e,t,a,n=null){let r=n!=null?n.shape:t.shape,s=r[r.length-1],i=T.computeOptimalWindowSize(s),o=new nH(r,i,a,n==null),l=n==null?[t]:[t,n],u=e.runWebGLProgram(o,l,"int32");if(u.shape.length===t.shape.length){let p=Z6(e,t,a,u);return e.disposeIntermediateTensorInfo(u),p}return u}function Y6(e,t,a,n){let r=[a];if(T.assertAxesAreInnerMostDims("arg"+n.charAt(0).toUpperCase()+n.slice(1),r,t.shape.length),!B().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],i=e.texData.get(t.dataId),o=i!==null&&i.isPacked,l=t;o&&(l=e.unpackTensor(t),s.push(l));let[u,p]=T.computeOutAndReduceShapes(l.shape,r),c=v.sizeFromShape(p),d=pe({inputs:{x:l},backend:e,attrs:{shape:[-1,c]}});s.push(d);let h=K6(e,d,n);s.push(h);let f=pe({inputs:{x:h},backend:e,attrs:{shape:u}});return s.forEach(m=>e.disposeIntermediateTensorInfo(m)),f}return Z6(e,t,n)}function rH(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s}=n,i=v.parseAxisParam(s,r.shape),o=T.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Ia({inputs:{x:r},backend:a,attrs:{perm:o}}),u.push(l),i=T.getInnerMostAxes(i.length,l.shape.length)),T.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let p=Y6(a,l,i[0],"max");return u.forEach(c=>a.disposeIntermediateTensorInfo(c)),p}var sH={kernelName:Js,backendName:"webgl",kernelFunc:rH};function iH(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s}=n,i=v.parseAxisParam(s,r.shape),o=T.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Ia({inputs:{x:r},backend:a,attrs:{perm:o}}),u.push(l),i=T.getInnerMostAxes(i.length,l.shape.length)),T.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let p=Y6(a,l,i[0],"min");return u.forEach(c=>a.disposeIntermediateTensorInfo(c)),p}var oH={kernelName:Sd,backendName:"webgl",kernelFunc:iH},lH=Cn+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return asin(x);
|
|
`,uH=Qe({opSnippet:lH}),dH={kernelName:Il,backendName:"webgl",kernelFunc:uH},pH=Cn+"return log(x + sqrt(x * x + 1.0));",cH=Qe({opSnippet:pH}),hH={kernelName:Sl,backendName:"webgl",kernelFunc:cH},fH=Cn+`
|
|
return atan(x);
|
|
`,mH=Qe({opSnippet:fH}),gH={kernelName:Tl,backendName:"webgl",kernelFunc:mH},xH=M3+`
|
|
return atan(a, b);
|
|
`,yH=`
|
|
vec4 result = atan(a, b);
|
|
bvec4 isNaNA = isnan(a);
|
|
bvec4 isNaNB = isnan(b);
|
|
bvec4 isNaN = bvec4(isNaNA.x || isNaNB.x, isNaNA.y || isNaNB.y, isNaNA.z || isNaNB.z, isNaNA.w || isNaNB.w);
|
|
`+fp+`
|
|
return result;
|
|
`,AH=ua({opSnippet:xH,packedOpSnippet:yH}),bH={kernelName:Nl,backendName:"webgl",kernelFunc:AH},vH=Cn+`
|
|
if ((x < -1.0) || (x > 1.0)) return NAN;
|
|
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,kH=Qe({opSnippet:vH}),wH={kernelName:Cl,backendName:"webgl",kernelFunc:kH},Ad=class{constructor(e,t,a,n=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&a)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,p=e.effectiveFilterHeight,c=e.effectiveFilterWidth,d=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,x="0.0";if(f||(x="-1.0 / 1e-20"),a){let C=">=";this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${d}, ${h});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
float avgValue = 0.0;
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${c};
|
|
wC += ${u}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xR, xC, d);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${C} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${n?r?m:g:`wR * ${c} + wC`};
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let y="max",A=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(A="avgValue / max(count, 1.0)");let b=Math.floor(s/4)*4,k=s%4,S=`
|
|
if (${f}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${y}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${d}, ${h});
|
|
const float initializationValue = ${x};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xR, int xC, int d) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xR, xC, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${x});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${b}; wC += 4) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
getValue(batch, xR, xC + 3 * ${u}, d)
|
|
);
|
|
|
|
${S}
|
|
}
|
|
|
|
int xC = xCCorner + ${b};
|
|
if (${k===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${S}
|
|
} else if (${k===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${S}
|
|
} else if (${k===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
initializationValue
|
|
);
|
|
|
|
${S}
|
|
}
|
|
}
|
|
setOutput(${A});
|
|
}
|
|
`}},_3=class{constructor(e,t,a,n=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&a)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,p=e.dilationHeight,c=e.dilationWidth,d=e.effectiveFilterDepth,h=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,g=e.padInfo.top,x=e.padInfo.left;this.outputShape=e.outShape;let y=t==="avg",A="0.0";if(y||(A="-1.0 / 1e-20"),a){let _=">=";this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${l});
|
|
const ivec3 pads = ivec3(${m}, ${g}, ${x});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
|
|
for (int wD = 0; wD < ${d};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${p}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${f};
|
|
wC += ${c}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xD, xR, xC, ch);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${_} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${n?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${f} +
|
|
wR * ${f} + wC`};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let b="max",k=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(k="avgValue / max(count, 1.0)");let S=Math.floor(s/4)*4,C=s%4,E=`
|
|
if (${y}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${b}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${l});
|
|
const ivec3 pads = ivec3(${m}, ${g}, ${x});
|
|
const float initializationValue = ${A};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xD, int xR, int xC, int ch) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xD, xR, xC, ch);
|
|
}
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${A});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wD = 0; wD < ${d};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${p}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${S}; wC += 4) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${c}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${c}, ch),
|
|
getValue(batch, xD, xR, xC + 3 * ${c}, ch)
|
|
);
|
|
|
|
${E}
|
|
}
|
|
|
|
int xC = xCCorner + ${S};
|
|
if (${C===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${E}
|
|
} else if (${C===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${c}, ch),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${E}
|
|
} else if (${C===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${c}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${c}, ch),
|
|
initializationValue
|
|
);
|
|
|
|
${E}
|
|
}
|
|
}
|
|
}
|
|
setOutput(${k});
|
|
}
|
|
`}};function IH(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t;uu(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n,u=1;v.assert(T.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=T.computePool2DInfo(r.shape,s,i,u,o,l);if(p.filterWidth===1&&p.filterHeight===1&&v.arraysEqual(p.inShape,p.outShape))return Za({inputs:{x:r},backend:a});let c=new Ad(p,"avg",!1);return a.runWebGLProgram(c,[r],"float32")}var SH={kernelName:Qs,backendName:"webgl",kernelFunc:IH};function TH(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=n,p=[1,1,1],c=T.computePool3DInfo(r.shape,s,i,p,o,l,u),d=new _3(c,"avg",!1);return a.runWebGLProgram(d,[r],"float32")}var CH={kernelName:Zc,backendName:"webgl",kernelFunc:TH},NH=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,a=e.filterWidth,n=e.strideHeight,r=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=o-1-e.padInfo.top,p=l-1-e.padInfo.left,c=1/(t*a);this.userCode=`
|
|
const ivec2 pads = ivec2(${u}, ${p});
|
|
const float avgMultiplier = float(${c});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${o};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${l};
|
|
wC+= ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},EH=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,a=e.filterHeight,n=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,p=e.effectiveFilterDepth,c=e.effectiveFilterHeight,d=e.effectiveFilterWidth,h=p-1-e.padInfo.front,f=c-1-e.padInfo.top,m=d-1-e.padInfo.left,g=1/(t*a*n);this.userCode=`
|
|
const ivec3 pads = ivec3(${h}, ${f}, ${m});
|
|
const float avgMultiplier = float(${g});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${p};
|
|
wD += ${o}) {
|
|
float dyD = float(dyDCorner + wD) / ${r}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${c};
|
|
wR += ${l}) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${d};
|
|
wC += ${u}) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function RH(e){let{inputs:t,backend:a,attrs:n}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:p}=n,c=[1,1,1],d=T.computePool3DInfo(i.shape,o,l,c,u,p),h=new EH(d);return a.runWebGLProgram(h,[r],i.dtype)}var MH={kernelName:L2,backendName:"webgl",kernelFunc:RH};function $H(e){let{inputs:t,backend:a,attrs:n}=e,{dy:r,input:s}=t,i=s;uu([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=n,p=T.computePool2DInfo(i.shape,o,l,1,u),c=new NH(p);return a.runWebGLProgram(c,[r],i.dtype)}var _H={kernelName:Kc,backendName:"webgl",kernelFunc:$H};function PH(e){let{inputs:t,backend:a,attrs:n}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=n;return Bc({a:r,b:s,transposeA:i,transposeB:o,backend:a})}var FH={kernelName:ei,backendName:"webgl",kernelFunc:PH},OH=class{constructor(e,t,a,n,r,s){this.outputShape=[],this.variableNames=["x","mean","variance"],T.assertAndGetBroadcastShape(e,t),T.assertAndGetBroadcastShape(e,a);let i="0.0";n!=null&&(T.assertAndGetBroadcastShape(e,n),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";r!=null&&(T.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float x = getXAtOutCoords();
|
|
float mean = getMeanAtOutCoords();
|
|
float variance = getVarianceAtOutCoords();
|
|
float offset = ${i};
|
|
float scale = ${o};
|
|
float inv = scale * inversesqrt(variance + float(${s}));
|
|
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
|
|
}
|
|
`}},DH=class{constructor(e,t,a,n,r,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],T.assertAndGetBroadcastShape(e,t),T.assertAndGetBroadcastShape(e,a);let i="vec4(0.0)";n!=null&&(T.assertAndGetBroadcastShape(e,n),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";r!=null&&(T.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 offset = ${i};
|
|
vec4 scale = ${o};
|
|
|
|
vec4 x = getXAtOutCoords();
|
|
vec4 mean = getMeanAtOutCoords();
|
|
vec4 variance = getVarianceAtOutCoords();
|
|
|
|
vec4 inv = scale * inversesqrt(variance + vec4(${s}));
|
|
|
|
setOutput((x - mean) * inv + offset);
|
|
}
|
|
`}},zH=({inputs:e,backend:t,attrs:a})=>{let{x:n,mean:r,variance:s,offset:i,scale:o}=e;v.assert(r.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=a;l==null&&(l=.001);let u=[n,r,s],p=null;i!=null&&(p=i.shape,u.push(i));let c=null;o!=null&&(c=o.shape,u.push(o));let d=B().getBool("WEBGL_PACK_NORMALIZATION")?new DH(n.shape,r.shape,s.shape,p,c,l):new OH(n.shape,r.shape,s.shape,p,c,l);return t.runWebGLProgram(d,u,u[0].dtype)},LH={kernelName:Ai,backendName:"webgl",kernelFunc:zH},BH=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=gt(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let a=WH(this.rank),n,r=e.map((s,i)=>`sourceLoc.${k2[i]} = start[${i}] + coords.${k2[i]};`);n=`
|
|
${t} sourceLoc;
|
|
${t} coords = getOutputCoords();
|
|
${r.join(`
|
|
`)}
|
|
`,this.userCode=`
|
|
void main() {
|
|
${n}
|
|
setOutput(getSource(${a}));
|
|
}
|
|
`}},k2=["x","y","z","w","u","v"];function WH(e){if(e===1)return"sourceLoc";if(e<=6)return k2.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var VH=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=gt(this.rank),a=va("coords",this.rank),n=va("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${n.slice(-2).join()})`,s=`getChannel(getSource(${n.join()}), ${r})`,i=`
|
|
result.x = ${s};
|
|
if (++${a[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${n[this.rank-1]};
|
|
result.y = ${s};
|
|
--${n[this.rank-1]};
|
|
}
|
|
`,o=this.rank===1?"":`
|
|
--${a[this.rank-1]};
|
|
if (++${a[this.rank-2]} < ${e[this.rank-2]}) {
|
|
++${n[this.rank-2]};
|
|
result.z = ${s};
|
|
if (++${a[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${n[this.rank-1]};
|
|
result.w = ${s};
|
|
}
|
|
}
|
|
`,l=this.rank<=4?`sourceLoc = coords +
|
|
${t}(${e.map((u,p)=>`start[${p}]`).join()});`:e.map((u,p)=>`${n[p]} = ${a[p]} + start[${p}];`).join(`
|
|
`);this.userCode=`
|
|
void main() {
|
|
${t} coords = getOutputCoords();
|
|
${t} sourceLoc;
|
|
${l}
|
|
vec4 result = vec4(0.);
|
|
${i}
|
|
${o}
|
|
setOutput(result);
|
|
}
|
|
`}};function UH(e,t,a,n){let r=n.texData.get(e.dataId),s=n.makeTensorInfo(a,e.dtype),i=n.texData.get(s.dataId);Object.assign(i,r),i.refCount=1,i.shape=a,i.dtype=e.dtype;let o=St.computeFlatOffset(t,v.computeStrides(e.shape));r.slice&&(o+=r.slice.flatOffset),i.slice={flatOffset:o,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=n.dataRefCount.get(i.slice.origDataId)||1;return n.dataRefCount.set(i.slice.origDataId,l+1),s}function gu(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{begin:s,size:i}=n,[o,l]=St.parseSliceParams(r,s,i);if(St.assertParamsValid(r,o,l),v.sizeFromShape(l)===0)return a.makeTensorInfo(l,r.dtype,[]);if(a.shouldExecuteOnCPU([r])||r.dtype==="string"){let c=a.texData.get(r.dataId),d=PU(c.values,o,l,r.shape,r.dtype);return a.makeTensorInfo(l,r.dtype,d)}let{isPacked:u}=a.texData.get(r.dataId),p=St.isSliceContinous(r.shape,o,l);if(u||!p){let c=B().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new VH(l):new BH(l),d=[o];return a.runWebGLProgram(c,[r],r.dtype,d)}return a.uploadToGPU(r.dataId),UH(r,o,l,a)}var GH={kernelName:Xl,backendName:"webgl",kernelFunc:gu},HH=e=>{let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{blockShape:s,crops:i}=n;v.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,A)=>y*A),l=T.getReshaped(r.shape,s,o),u=T.getPermuted(l.length,s.length),p=T.getReshapedPermuted(r.shape,s,o),c=T.getSliceBeginCoords(i,s.length),d=T.getSliceSize(p,i,s.length),h=[],f=pe({inputs:{x:r},backend:a,attrs:{shape:l}}),m=Ia({inputs:{x:f},backend:a,attrs:{perm:u}}),g=pe({inputs:{x:m},backend:a,attrs:{shape:p}}),x=gu({inputs:{x:g},backend:a,attrs:{begin:c,size:d}});return h.push(f),h.push(m),h.push(g),h.forEach(y=>a.disposeIntermediateTensorInfo(y)),x},jH={kernelName:El,backendName:"webgl",kernelFunc:HH};function qH(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,weights:s}=t,{size:i}=n,o=a.readSync(r.dataId),l=a.readSync(s.dataId),u=D6(o,l,s.dtype,s.shape,i);return a.makeTensorInfo([i],s.dtype,u)}var XH={kernelName:Td,backendName:"webgl",kernelFunc:qH};function KH(e){let{inputs:t,backend:a}=e,{s0:n,s1:r}=t,s=a.readSync(n.dataId),i=a.readSync(r.dataId),o=T.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return a.makeTensorInfo([o.length],"int32",Int32Array.from(o))}var ZH={kernelName:Yc,backendName:"webgl",kernelFunc:KH},YH="return float(a != b);",J6=ua({opSnippet:YH,cpuKernelImpl:SU,dtype:"bool"}),JH={kernelName:Bi,backendName:"webgl",kernelFunc:J6};function gp(e){let{inputs:t,backend:a}=e,{input:n}=t,r=a.texData.get(n.dataId);return Za({inputs:{x:r.complexTensorInfos.real},backend:a})}var QH={kernelName:zd,backendName:"webgl",kernelFunc:gp},ej="return float(int(x));";function tj(e,t){let a=new qn(e.shape,ej),n=t.runWebGLProgram(a,[e],"int32");return{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}function w2(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{dtype:s}=n;if(s==="complex64"){if(r.dtype==="complex64")return Za({inputs:{x:r},backend:a});let i=fn(r.shape),o=w2({inputs:{x:r},backend:a,attrs:{dtype:"float32"}}),l=us({inputs:{real:o,imag:i},backend:a});return i.dispose(),a.disposeIntermediateTensorInfo(o),l}if(r.dtype==="complex64"){let i=gp({inputs:{input:r},backend:a}),o=w2({inputs:{x:i},backend:a,attrs:{dtype:s}});return a.disposeIntermediateTensorInfo(i),o}if(!v.hasEncodingLoss(r.dtype,s)){let i=Za({inputs:{x:r},backend:a});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(a.shouldExecuteOnCPU([r])){let i=a.texData.get(r.dataId).values,[o,l,u]=sU(i,r.shape,r.dtype,s);return a.makeTensorInfo(o,l,u)}if(s==="int32")return tj(r,a);if(s==="bool"){let i=a.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),o=J6({inputs:{a:r,b:i},backend:a});return a.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var aj={kernelName:ti,backendName:"webgl",kernelFunc:w2},bx="return ceil(x);",nj=Qe({opSnippet:bx,packedOpSnippet:bx,cpuKernelImpl:iU}),rj={kernelName:ai,backendName:"webgl",kernelFunc:nj},sj=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
|
|
void main() {
|
|
float value = getAAtOutCoords();
|
|
if (isnan(value)) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, minVal, maxVal));
|
|
}
|
|
`}},ij=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 value = getAAtOutCoords();
|
|
|
|
if (any(isnan(value))) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
|
|
}
|
|
`}};function oj(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=n,o;B().getBool("WEBGL_PACK_CLIP")?o=new ij(r.shape):o=new sj(r.shape);let l=[[s],[i]];return a.runWebGLProgram(o,[r],r.dtype,l)}var lj={kernelName:ns,backendName:"webgl",kernelFunc:oj},uj=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float re = abs(getRealAtOutCoords());
|
|
float im = abs(getImagAtOutCoords());
|
|
float mx = max(re, im);
|
|
|
|
// sadly the length function in glsl is not underflow-safe
|
|
// (at least not on Intel GPUs). So the safe solution is
|
|
// to ensure underflow-safety in all cases.
|
|
setOutput(
|
|
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
|
|
);
|
|
}
|
|
`}};function vx(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function dj(e){let{inputs:t,backend:a}=e,{x:n}=t,r=a.texData.get(n.dataId),s=new uj(n.shape),i=[vx(n,r.complexTensorInfos.real),vx(n,r.complexTensorInfos.imag)];return a.runWebGLProgram(s,i,i[0].dtype)}var pj={kernelName:Jc,backendName:"webgl",kernelFunc:dj},cj=class{constructor(e){this.outputShape=[],this.outputShape=T.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s<t.length;s++)t[s]=t[s-1]+e[s][1];let a=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let s=1;s<t.length;s++){let i=t[s-1];a.push(`else if (yC < ${t[s]}) setOutput(getT${s}(yR, yC-${i}));`)}let n=t.length,r=t[t.length-1];a.push(`else setOutput(getT${n}(yR, yC-${r}));`),this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int yR = coords.x;
|
|
int yC = coords.y;
|
|
|
|
${a.join(`
|
|
`)}
|
|
}
|
|
`}},hj=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=T.computeOutShape(e,t);let a=this.outputShape,n=a.length,r=gt(n),s=va("coords",n),i=["x","y","z","w","u","v"].slice(0,n);this.variableNames=e.map((f,m)=>`T${m}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let f=1;f<o.length;f++)o[f]=o[f-1]+e[f][t];let l=i[t],u=i.slice(-2),p=i.join(),c=`if (${l} < ${o[0]}) {
|
|
return getChannel(
|
|
getT0(${p}), vec2(${u.join()}));
|
|
}`;for(let f=1;f<o.length;f++){let m=o[f-1];c+=`
|
|
if (${l} < ${o[f]} && ${l} >= ${o[f-1]}) {
|
|
return getChannel(
|
|
getT${f}(${mc(i,l,m)}),
|
|
vec2(${mc(u,l,m)}));
|
|
}`}let d=o.length,h=o[o.length-1];c+=`
|
|
return getChannel(
|
|
getT${d}(${mc(i,l,h)}),
|
|
vec2(${mc(u,l,h)}));`,this.userCode=`
|
|
float getValue(${i.map(f=>"int "+f)}) {
|
|
${c}
|
|
}
|
|
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
vec4 result = vec4(getValue(${s}), 0., 0., 0.);
|
|
|
|
${s[n-1]} = ${s[n-1]} + 1;
|
|
if (${s[n-1]} < ${a[n-1]}) {
|
|
result.g = getValue(${s});
|
|
}
|
|
|
|
${s[n-2]} = ${s[n-2]} + 1;
|
|
if (${s[n-2]} < ${a[n-2]}) {
|
|
result.a = getValue(${s});
|
|
}
|
|
|
|
${s[n-1]} = ${s[n-1]} - 1;
|
|
if (${s[n-2]} < ${a[n-2]} &&
|
|
${s[n-1]} < ${a[n-1]}) {
|
|
result.b = getValue(${s});
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function mc(e,t,a){let n=e.indexOf(t);return e.map((r,s)=>s===n?`${r} - ${a}`:r).join()}function Ph(e){let{inputs:t,backend:a}=e,{input:n}=t,r=a.texData.get(n.dataId);return Za({inputs:{x:r.complexTensorInfos.imag},backend:a})}var fj={kernelName:Fd,backendName:"webgl",kernelFunc:Ph};function Zu(e,t,a){let n=e[0].dtype;if(n==="complex64"){let h=e.map(y=>gp({inputs:{input:y},backend:a})),f=e.map(y=>Ph({inputs:{input:y},backend:a})),m=Zu(h,t,a),g=Zu(f,t,a),x=us({inputs:{real:m,imag:g},backend:a});return h.forEach(y=>a.disposeIntermediateTensorInfo(y)),f.forEach(y=>a.disposeIntermediateTensorInfo(y)),a.disposeIntermediateTensorInfo(m),a.disposeIntermediateTensorInfo(g),x}let r=a.shouldExecuteOnCPU(e);if(n==="string"&&(r=!0),r){let h=e.map(b=>{let k=[-1,v.sizeFromShape(b.shape.slice(t))];return pe({inputs:{x:b},backend:a,attrs:{shape:k}})}),f=h.map(b=>({vals:a.readSync(b.dataId),shape:b.shape})),m=T.computeOutShape(h.map(b=>b.shape),1),g=h[0].shape[0]===1,x=oU(f,m,n,g),y=T.computeOutShape(e.map(b=>b.shape),t),A=a.makeTensorInfo(y,n,x);return h.forEach(b=>a.disposeIntermediateTensorInfo(b)),A}let s=e.filter(h=>v.sizeFromShape(h.shape)>0),i=B().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&s[0].shape.length>1;if(s.length===1){let h=i?new qn(e[0].shape,Dr):new Vr(e[0].shape,Dr);return a.runWebGLProgram(h,e,n)}let o=B().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER");if(s.length>o){let h=[];for(let m=0;m<s.length;m+=o){let g=s.slice(m,m+o);h.push(Zu(g,t,a))}let f=Zu(h,t,a);for(let m of h)a.disposeIntermediateTensorInfo(m);return f}if(i){let h=new hj(s.map(f=>f.shape),t);return a.runWebGLProgram(h,s,n)}let{tensors2D:l,outShape:u}=mj(s,t,a),p=new cj(l.map(h=>h.shape)),c=a.runWebGLProgram(p,l,n);l.forEach(h=>a.disposeIntermediateTensorInfo(h));let d=pe({inputs:{x:c},attrs:{shape:u},backend:a});return a.disposeIntermediateTensorInfo(c),d}function mj(e,t,a){let n=T.computeOutShape(e.map(r=>r.shape),t);return{tensors2D:e.map(r=>pe({inputs:{x:r},attrs:{shape:[-1,v.sizeFromShape(r.shape.slice(t))]},backend:a})),outShape:n}}function Q6(e){let{inputs:t,backend:a,attrs:n}=e,{axis:r}=n,s=v.parseAxisParam(r,t[0].shape)[0],i=t.map(u=>u.shape);T.assertParamsConsistent(i,s);let o=T.computeOutShape(t.map(u=>u.shape),s);if(v.sizeFromShape(o)===0)return a.makeTensorInfo(o,t[0].dtype,[]);let l=t.filter(u=>v.sizeFromShape(u.shape)>0);return l.length===1?Za({inputs:{x:l[0]},backend:a}):Zu(l,s,a)}var gj={kernelName:Rl,backendName:"webgl",kernelFunc:Q6},ev=class{constructor(e,t=!1,a=null,n=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,p=e.dilationWidth,c=e.filterHeight,d=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",g=m?1:2,x=m?2:3,y=m?3:1,A="",b="";a&&(n?A=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${a}
|
|
}`:r?A=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${a}
|
|
}`:A=`
|
|
float activation(float x) {
|
|
${a}
|
|
}
|
|
`,b="result = activation(result);");let k=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${A}
|
|
|
|
const ivec2 strides = ivec2(${o}, ${l});
|
|
const ivec2 pads = ivec2(${s}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d2 = coords[${y}];
|
|
|
|
ivec2 xRCCorner =
|
|
ivec2(coords[${g}], coords[${x}]) * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${c}; wR++) {
|
|
int xR = xRCorner + wR * ${u};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${d}; wC++) {
|
|
int xC = xCCorner + wC * ${p};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 wValues = vec4(
|
|
getW(wR, wC, d1, d2),
|
|
getW(wR, wC, d1 + 1, d2),
|
|
getW(wR, wC, d1 + 2, d2),
|
|
getW(wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xR, xC, d1),
|
|
getX(batch, xR, xC, d1 + 1),
|
|
getX(batch, xR, xC, d1 + 2),
|
|
getX(batch, xR, xC, d1 + 3)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec4 xValues = vec4(
|
|
getX(batch, d1, xR, xC),
|
|
getX(batch, d1 + 1, xR, xC),
|
|
getX(batch, d1 + 2, xR, xC),
|
|
getX(batch, d1 + 3, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
|
|
if (${f===1}) {
|
|
|
|
if (${m}) {
|
|
dotProd +=
|
|
getX(batch, xR, xC, ${h}) *
|
|
getW(wR, wC, ${h}, d2);
|
|
} else {
|
|
dotProd +=
|
|
getX(batch, ${h}, xR, xC) *
|
|
getW(wR, wC, ${h}, d2);
|
|
}
|
|
|
|
} else if (${f===2}) {
|
|
vec2 wValues = vec2(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec2 xValues = vec2(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
} else if (${f===3}) {
|
|
vec3 wValues = vec3(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2),
|
|
getW(wR, wC, ${h} + 2, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1),
|
|
getX(batch, xR, xC, ${h} + 2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec3 xValues = vec3(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC),
|
|
getX(batch, ${h} + 2, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${k}
|
|
${b}
|
|
setOutput(result);
|
|
}
|
|
`}},xj=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,a=e.padInfo.top,n=e.padInfo.left,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,p=e.filterDepth,c=e.filterHeight,d=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=`
|
|
const ivec3 strides = ivec3(${r}, ${s}, ${i});
|
|
const ivec3 pads = ivec3(${t}, ${a}, ${n});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d2 = coords.u;
|
|
|
|
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xFCorner = xFRCCorner.x;
|
|
int xRCorner = xFRCCorner.y;
|
|
int xCCorner = xFRCCorner.z;
|
|
|
|
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
|
|
// y(yF, yR, yC, d2). ? = to be determined. : = across all
|
|
// values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${p}; wF++) {
|
|
int xF = xFCorner + wF * ${o};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${c}; wR++) {
|
|
int xR = xRCorner + wR * ${l};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${d}; wC++) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xF, xR, xC, d1),
|
|
getX(batch, xF, xR, xC, d1 + 1),
|
|
getX(batch, xF, xR, xC, d1 + 2),
|
|
getX(batch, xF, xR, xC, d1 + 3)
|
|
);
|
|
vec4 wValues = vec4(
|
|
getW(wF, wR, wC, d1, d2),
|
|
getW(wF, wR, wC, d1 + 1, d2),
|
|
getW(wF, wR, wC, d1 + 2, d2),
|
|
getW(wF, wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
if (${f===1}) {
|
|
dotProd +=
|
|
getX(batch, xF, xR, xC, ${h}) *
|
|
getW(wF, wR, wC, ${h}, d2);
|
|
} else if (${f===2}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1)
|
|
);
|
|
vec2 wValues = vec2(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else if (${f===3}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1),
|
|
getX(batch, xF, xR, xC, ${h} + 2)
|
|
);
|
|
vec3 wValues = vec3(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2),
|
|
getW(wF, wR, wC, ${h} + 2, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},tv=class{constructor(e,t=!1,a=null,n=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=Na(this.outputShape.length);let s=e.padInfo.left,i=e.strideWidth,o=e.dilationWidth,l=e.filterHeight,u=e.filterWidth,p=u,c=`
|
|
int xR; int xC; int xCOffset;
|
|
vec4 wTexel; vec4 previous; vec4 final;`;for(let m=0;m<u;m++)c+=`
|
|
vec4 xTexelC${m*2};
|
|
int xTexelC${m*2}Ready;
|
|
vec4 xTexelC${m*2+1};
|
|
int xTexelC${m*2+1}Ready;
|
|
vec4 xC${m};`;c+=`
|
|
for (int r = 0; r < ${l}; r++) {
|
|
for (int d1 = 0; d1 < ${e.inChannels}; d1 += 2) {
|
|
`;for(let m=0;m<u;m++)c+=`
|
|
xTexelC${m*2} = vec4(0.0);
|
|
xTexelC${m*2}Ready = 0;
|
|
xTexelC${m*2+1} = vec4(0.0);
|
|
xTexelC${m*2+1}Ready = 0;
|
|
xC${m} = vec4(0.0);`;c+=`
|
|
xR = xRCorner + r * dilations[0];
|
|
if (xR >=0 && xR < inDims[0]) {
|
|
`;for(let m=0;m<(p+1)/2;m++){let g=m*2;if(c+=`
|
|
xC = xCCorner + ${g*o};
|
|
`,i===1){if(g<u&&(s%2===1?(c+=`
|
|
xCOffset = xC + 1;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g}Ready == 0) {
|
|
xTexelC${g} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${g}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${g}Ready = 1;
|
|
}
|
|
`,o===1&&g>0?c+=`
|
|
xC${g} = vec4(xTexelC${g-2}.zw, xTexelC${g}.xy);
|
|
`:c+=`
|
|
xCOffset = xC + 1 - 2;
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
previous.zw = vec2(0.0);
|
|
}
|
|
|
|
xC${g} = vec4(previous.zw, xTexelC${g}.xy);
|
|
} else {
|
|
xC${g} = vec4(0.0, 0.0, xTexelC${g}.xy);
|
|
}
|
|
`):c+=`
|
|
if (xC >= 0 && xC < inDims[1] && xTexelC${g}Ready == 0) {
|
|
xTexelC${g} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${g}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${g}Ready = 1;
|
|
}
|
|
|
|
xC${g} = xTexelC${g};
|
|
`,g+1<u)){let x=s%2===0?v.nearestLargerEven(o):o;o%2===0&&s%2===1||o%2!==0&&s%2!==1?(c+=`
|
|
xCOffset = xC + imod(pads[1], 2) + ${x};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g+1}Ready == 0) {
|
|
xTexelC${g+1} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${g+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${g+1}Ready = 1;
|
|
}
|
|
`,o>1?c+=`
|
|
xCOffset -= 2;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
xC${g+1} = vec4(previous.zw, xTexelC${g+1}.xy);
|
|
} else {
|
|
xC${g+1} = vec4(0.0, 0.0, xTexelC${g+1}.xy);
|
|
}
|
|
`:c+=`
|
|
xC${g+1} = vec4(xTexelC${g}.zw, xTexelC${g+1}.xy);
|
|
`):x===1?c+=`
|
|
xC${g+1} = xTexelC${g};
|
|
`:c+=`
|
|
xCOffset = xC + ${x};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g+1}Ready == 0) {
|
|
xTexelC${g+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${g+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${g+1}Ready = 1;
|
|
}
|
|
|
|
xC${g+1} = xTexelC${g+1};
|
|
`}}else g<u&&(s%2===1?(c+=`
|
|
xCOffset = xC + 1 - strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g}Ready == 0) {
|
|
xTexelC${g} = getX(batch, xR, xCOffset, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${g}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${g}Ready = 1;
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${g+1}Ready == 0) {
|
|
xTexelC${g+1} = getX(batch, xR, xC + 1, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xC + 2 >= inDims[1]) {
|
|
xTexelC${g+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${g+1}Ready = 1;
|
|
}
|
|
|
|
xC${g} = vec4(xTexelC${g}.zw, xTexelC${g+1}.zw);
|
|
`,g+1<u&&(c+=`
|
|
final = vec4(0.0);
|
|
xCOffset = xC + 1 + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xC${g+1} = vec4(xTexelC${g+1}.xy, final.xy);
|
|
`)):(c+=`
|
|
if(xC >= 0 && xC < inDims[1] && xTexelC${g}Ready == 0) {
|
|
xTexelC${g} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${g}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${g}Ready = 1;
|
|
}
|
|
|
|
xCOffset = xC + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g+1}Ready == 0) {
|
|
xTexelC${g+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${g+1}.zw = vec2(0.);
|
|
}
|
|
xTexelC${g+1}Ready = 1;
|
|
}
|
|
|
|
xC${g} = vec4(
|
|
xTexelC${g}.xy, xTexelC${g+1}.xy);
|
|
`,g+1<u&&(c+=`
|
|
xC${g+1} = vec4(xTexelC${g}.zw, xTexelC${g+1}.zw);
|
|
`)));g<u&&(c+=`
|
|
wTexel = getW(r, ${g}, d1, d2);
|
|
dotProd += xC${g}.xxzz * vec4(wTexel.xy, wTexel.xy);
|
|
if(d1 + 1 < ${e.inChannels}) {
|
|
dotProd += xC${g}.yyww * vec4(wTexel.zw, wTexel.zw);
|
|
}
|
|
`,g+1<u&&(c+=`
|
|
wTexel = getW(r, ${g+1}, d1, d2);
|
|
dotProd += xC${g+1}.xxzz * vec4(wTexel.xy, wTexel.xy);
|
|
if(d1 + 1 < ${e.inChannels}) {
|
|
dotProd += xC${g+1}.yyww * vec4(wTexel.zw, wTexel.zw);
|
|
}
|
|
`))}c+=`
|
|
}
|
|
`,c+=`
|
|
}
|
|
`,c+=`
|
|
}
|
|
`;let d="",h="";a&&(n?d=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${a}
|
|
}`:r?d=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${a}
|
|
}`:d=`vec4 activation(vec4 x) {
|
|
${a}
|
|
}`,h="result = activation(result);");let f=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${d}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
|
|
vec4 dotProd = vec4(0.000000000000001);
|
|
|
|
${c}
|
|
|
|
vec4 result = dotProd - vec4(0.000000000000001);
|
|
${f}
|
|
${h}
|
|
setOutput(result);
|
|
}
|
|
`}},yj=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec4"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=e,this.enableShapeUniforms=Na(this.outputShape.length);let{dataFormat:a}=t,n=Ca(),r=a==="channelsLast",s=r?1:2,i=r?2:3,o=this.enableShapeUniforms?"if(blockIndex < outShape[2] && pos < outShape[1]) {":`if(blockIndex < ${e[2]} && pos < ${e[1]}) {`,l="";for(let u=0;u<=1;u++)for(let p=0;p<=1;p++)l+=`
|
|
blockIndex = rc.z + ${p};
|
|
pos = rc.y + ${u};
|
|
|
|
${o}
|
|
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
|
|
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
|
|
|
|
if(d0 < inputShape[${s}] && d0 >= 0) {
|
|
// Use custom imod instead mod. On Intel GPU, mod may generate
|
|
// unexpected value.
|
|
// https://github.com/tensorflow/tfjs/issues/5447
|
|
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
|
|
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
|
|
inChannels);
|
|
|
|
if(d1 < inputShape[${i}] && d1 >= 0) {
|
|
|
|
ch = imod(pos, inChannels);
|
|
|
|
if (${r}) {
|
|
innerDims = vec2(d1, ch);
|
|
result[${u*2+p}] = getChannel(
|
|
getA(rc.x, d0, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
} else {
|
|
innerDims = vec2(d0, d1);
|
|
result[${u*2+p}] = getChannel(
|
|
getA(rc.x, ch, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`;this.userCode=`
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0);
|
|
|
|
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
|
|
vec2 innerDims;
|
|
|
|
${l}
|
|
|
|
${n.output} = result;
|
|
}
|
|
`}};function Wc(e,t){let a=e.length;return a>=3?t?[...e.slice(0,-3),e[a-3]*e[a-2],e[a-1]]:[...e.slice(0,-3),e[a-3],e[a-2]*e[a-1]]:!t&&a===1&&e[0]>1?[e[0],1]:null}function av({x:e,filter:t,convInfo:a,backend:n,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,u=n.texData.get(e.dataId),p=a.inChannels,c=l[0]*l[1]*l[2],d=a.outChannels,h=a.dataFormat==="channelsLast",f=!1,m=!1,g,x=[];if(s!=null){let y=Wc(s.shape,h);y!=null&&(s=pe({inputs:{x:s},backend:n,attrs:{shape:y}}),x.push(s))}if(r!=null){let y=Wc(r.shape,h);y!=null&&(r=pe({inputs:{x:r},backend:n,attrs:{shape:y}}),x.push(r))}if(!((c===1||d===1)&&p>X6)&&u.isPacked&&h&&u.texture!=null&&l[2]%2!==0&&v.arraysEqual(u.shape.slice(-3),l.slice(-3))){let y=l[0]*l[1]*(l[2]+1),A={dataId:e.dataId,shape:[1,y,a.inChannels],dtype:e.dtype},b=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,v.assert(xd(u.shape,A.shape),()=>`packed reshape ${u.shape} to ${A.shape} isn't free`);let k=pe({inputs:{x:t},backend:n,attrs:{shape:[1,a.inChannels,a.outChannels]}});x.push(k);let S=Bc({a:A,b:k,backend:n,transposeA:f,transposeB:m,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),C=n.texData.get(S.dataId);v.assert(C.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=b,C.shape=a.outShape,g=Za({inputs:{x:S},backend:n}),g.shape=a.outShape,x.push(S)}else{let y=a.outHeight*a.outWidth,A=pe({inputs:{x:e},backend:n,attrs:{shape:h?[a.batchSize,y,a.inChannels]:[a.batchSize,a.inChannels,y]}}),b=pe({inputs:{x:t},backend:n,attrs:{shape:[1,a.inChannels,a.outChannels]}}),k=Bc({a:h?A:b,b:h?b:A,transposeA:!h,transposeB:m,backend:n,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i});g=pe({inputs:{x:k},backend:n,attrs:{shape:a.outShape}}),x.push(A),x.push(b),x.push(k)}for(let y of x)n.disposeIntermediateTensorInfo(y);return g}function nv({x:e,filter:t,convInfo:a,backend:n,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:u,inChannels:p,outWidth:c,outHeight:d,dataFormat:h}=a,f=h==="channelsLast",m=l*u*p,g=d*c,x=[a.batchSize,m,g],y=!0,A=!1,b=[];if(s!=null){let H=Wc(s.shape,f);H!=null&&(s=pe({inputs:{x:s},backend:n,attrs:{shape:H}}),b.push(s))}if(r!=null){let H=Wc(r.shape,f);H!=null&&(r=pe({inputs:{x:r},backend:n,attrs:{shape:H}}),b.push(r))}let k=pe({inputs:{x:t},backend:n,attrs:{shape:[1,m,v.sizeFromShape(t.shape)/m]}});b.push(k);let S=new yj(x,a),C=[e.shape,[a.padInfo.top,a.padInfo.left],[a.strideHeight,a.strideWidth],[a.dilationHeight,a.dilationWidth],[a.inChannels],[a.filterWidth*a.inChannels],[a.outWidth]],E=n.runWebGLProgram(S,[e],"float32",C),_=pe({inputs:{x:E},backend:n,attrs:{shape:x}});b.push(E),b.push(_);let $=r!=null,M=s!=null,I=o==="leakyrelu",N=o?yd(o,!0):null,O=new q6(f?_.shape:k.shape,f?k.shape:_.shape,f?[a.batchSize,g,a.outChannels]:[a.batchSize,a.outChannels,g],y,A,$,N,M,I),L=f?[_,k]:[k,_];if(r&&L.push(r),M&&L.push(s),I){let H=n.makeTensorInfo([],"float32",v.createScalarValue(i,"float32"));L.push(H),b.push(H)}let W=n.runWebGLProgram(O,L,"float32"),G=pe({inputs:{x:W},backend:n,attrs:{shape:a.outShape}});b.push(W);for(let H of b)n.disposeIntermediateTensorInfo(H);return G}function Aj(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:p}=n,c=T.convertConv2DDataFormat(l),d=T.computeConv2DInfo(r.shape,s.shape,i,u,o,p,!1,c),h;if(d.filterHeight===1&&d.filterWidth===1&&d.dilationHeight===1&&d.dilationWidth===1&&d.strideHeight===1&&d.strideWidth===1&&(d.padInfo.type==="SAME"||d.padInfo.type==="VALID"))h=av({x:r,filter:s,convInfo:d,backend:a});else if(d.strideWidth<=2&&c==="channelsLast"&&B().getBool("WEBGL_EXP_CONV")){let m=new tv(d),g=[[d.padInfo.top,d.padInfo.left],[d.strideHeight,d.strideWidth],[d.dilationHeight,d.dilationWidth],[d.inHeight,d.inWidth]];h=a.runWebGLProgram(m,[r,s],"float32",g)}else if(B().getBool("WEBGL_CONV_IM2COL"))h=nv({x:r,filter:s,convInfo:d,backend:a});else{let m=new ev(d);h=a.runWebGLProgram(m,[r,s],"float32")}let f=pe({inputs:{x:h},backend:a,attrs:{shape:d.outShape}});return a.disposeIntermediateTensorInfo(h),f}var bj={kernelName:ni,backendName:"webgl",kernelFunc:Aj},vj=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,a=e.strideWidth,n=e.padInfo.top,r=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int d2 = coords.w;
|
|
|
|
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${n};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${a} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
if (${s}) {
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
} else {
|
|
float dyValue = getDy(b, d2, yR, yC);
|
|
float xValue = getX(b, d1, xR, xC);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},kj=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,a=e.filterWidth,n=e.strideHeight,r=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=a-1-e.padInfo.left,l=s?1:2,u=s?2:3,p=s?3:1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[${p}];
|
|
|
|
ivec2 dyCorner = ivec2(coords[${l}], coords[${u}]) - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${a}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${a} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
|
|
if (${s}) {
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
} else {
|
|
float xValue = getDy(batch, d2, idyR, idyC);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},wj=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,a=e.strideHeight,n=e.strideWidth,r=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=`
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int wF = coords.x;
|
|
int wR = coords.y;
|
|
int wC = coords.z;
|
|
int d1 = coords.w;
|
|
int d2 = coords.u;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yF = 0; yF < ${e.outDepth}; yF++) {
|
|
int xF = wF + yF * ${t} - ${r};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${a} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${i};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yF, yR, yC, d2);
|
|
float xValue = getX(b, xF, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},Ij=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,a=e.filterHeight,n=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=a-1-e.padInfo.top,u=n-1-e.padInfo.left;this.userCode=`
|
|
const ivec3 pads = ivec3(${o}, ${l}, ${u});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.u;
|
|
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyFCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${t}; wF++) {
|
|
float dyF = float(dyFCorner + wF) / ${r}.0;
|
|
|
|
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyF = int(dyF);
|
|
|
|
int wFPerm = ${t} - 1 - wF;
|
|
|
|
for (int wR = 0; wR < ${a}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${a} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
float xValue = getDy(batch, idyF, idyR, idyC, d2);
|
|
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function Sj(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:p}=n,c=T.convertConv2DDataFormat(l),d=T.computeConv2DInfo(r.shape,p,i,1,o,u,!1,c),h=new vj(d);return a.runWebGLProgram(h,[r,s],"float32")}var Tj={kernelName:Nd,backendName:"webgl",kernelFunc:Sj};function Cj(e){let{inputs:t,backend:a,attrs:n}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:p}=n,c=T.convertConv2DDataFormat(u),d=T.computeConv2DInfo(i,s.shape,o,1,l,p,!1,c),h=new kj(d);return a.runWebGLProgram(h,[r,s],"float32")}var Nj={kernelName:ri,backendName:"webgl",kernelFunc:Cj};function Ej(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=n,u=T.computeConv3DInfo(r.shape,s.shape,i,l,o),p=new xj(u);return a.runWebGLProgram(p,[r,s],"float32")}var Rj={kernelName:Qc,backendName:"webgl",kernelFunc:Ej};function Mj(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=n,u=T.computeConv3DInfo(r.shape,l,i,1,o),p=new wj(u);return a.runWebGLProgram(p,[r,s],"float32")}var $j={kernelName:B2,backendName:"webgl",kernelFunc:Mj};function _j(e){let{inputs:t,backend:a,attrs:n}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=n,u=T.computeConv3DInfo(l,s.shape,o,1,i),p=new Ij(u);return a.runWebGLProgram(p,[r,s],"float32")}var Pj={kernelName:eh,backendName:"webgl",kernelFunc:_j},Fj=mu+`
|
|
return cos(x);
|
|
`,Oj=Qe({opSnippet:Fj}),Dj={kernelName:si,backendName:"webgl",kernelFunc:Oj},zj=`
|
|
float e2x = exp(-x);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,Lj=Qe({opSnippet:zj}),Bj={kernelName:ii,backendName:"webgl",kernelFunc:Lj},Wj=class{constructor(e,t,a,n,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[u]=t,[p,c]=a;this.outputShape=[u,p,c,l];let d=n==="bilinear"?1:0,[h,f]=[`${i-1}.0`,`${o-1}.0`],[m,g,x]=p>1?[`${(i-1)/(p-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[y,A,b]=c>1?[`${(o-1)/(c-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=`
|
|
const float height_ratio = float(${m});
|
|
const float width_ratio = float(${y});
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int y = coords[1];
|
|
int x = coords[2];
|
|
int d = coords[3];
|
|
|
|
// get box vals
|
|
float y1 = getBoxes(b,0);
|
|
float x1 = getBoxes(b,1);
|
|
float y2 = getBoxes(b,2);
|
|
float x2 = getBoxes(b,3);
|
|
|
|
// get image in batch index
|
|
int bInd = round(getBoxInd(b));
|
|
if(bInd < 0 || bInd >= ${s}) {
|
|
return;
|
|
}
|
|
|
|
float height_scale = ${g};
|
|
float width_scale = ${A};
|
|
|
|
float in_y = ${x};
|
|
if( in_y < 0.0 || in_y > ${h} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
float in_x = ${b};
|
|
if( in_x < 0.0 || in_x > ${f} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
|
|
vec2 sourceFracIndexCR = vec2(in_x,in_y);
|
|
if(${d} == 1) {
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
|
|
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
|
|
|
|
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
|
|
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
float newValue = top + (bottom - top) * fracCR.y;
|
|
setOutput(newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestCR = ivec2(floor(
|
|
sourceFracIndexCR + vec2(0.5,0.5)));
|
|
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutput(newValue);
|
|
}
|
|
}
|
|
`}},Vj=e=>{let{inputs:t,backend:a,attrs:n}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=n,p=new Wj(r.shape,s.shape,o,l,u);return a.runWebGLProgram(p,[r,s,i],"float32")},Uj={kernelName:ui,backendName:"webgl",kernelFunc:Vj},bd;(function(e){e.Prod="*",e.Sum="+"})(bd||(bd={}));var kx=class{constructor(e,t,a,n){this.op=e,this.outputShape=t,this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}];let r=this.outputShape.length,s=this.op===bd.Prod?"1.0":"0.0",i=a?s:`getX(${wx(r,"coords",this.op)})`,o=this.outputShape[this.outputShape.length-1],l="",u="";a?(l=n?`end != ${o-1}`:"end != 0",u=n?"end + 1":"end - 1"):(l=n?`end + pow2 < ${o}`:"end >= pow2",u=n?"end + pow2":"end - pow2"),this.userCode=`
|
|
void main() {
|
|
${gt(r)} coords = getOutputCoords();
|
|
int end = ${Ix(r,"coords",this.op)};
|
|
float val = ${i};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${l}) {
|
|
int idx = ${u};
|
|
${Ix(r,"coords",this.op)} = idx;
|
|
val ${this.op}= getX(${wx(r,"coords",this.op)});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}};function wx(e,t,a){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw new Error(`Cumulative ${a} for rank ${e} is not yet supported`)}function Ix(e,t,a){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw new Error(`Cumulative ${a} for rank ${e} is not yet supported`)}function rv(e,t,a,n,r,s){let i=t.shape.length,o=T.getAxesPermutation([n],i),l=t;o!=null&&(l=Ia({inputs:{x:t},backend:a,attrs:{perm:o}}));let u=T.getInnerMostAxes(1,i)[0];if(u!==i-1)throw new Error(`WebGL cumprod shader expects an inner-most axis=${t.shape.length-1} but got axis=${n}`);let p=l.shape[u],c=Za({inputs:{x:l},backend:a});for(let d=0;d<=Math.ceil(Math.log2(p))-1;d++){let h=new kx(e,l.shape,!1,s),f=[[d]],m=c;c=a.runWebGLProgram(h,[c],c.dtype,f),a.disposeIntermediateTensorInfo(m)}if(r){let d=new kx(e,l.shape,r,s),h=c;c=a.runWebGLProgram(d,[c],c.dtype),a.disposeIntermediateTensorInfo(h)}if(o!=null){let d=T.getUndoAxesPermutation(o),h=Ia({inputs:{x:c},backend:a,attrs:{perm:d}});return a.disposeIntermediateTensorInfo(c),a.disposeIntermediateTensorInfo(l),h}return c}function Gj(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=n;return rv(bd.Prod,r,a,s,i,o)}var Hj={kernelName:oi,backendName:"webgl",kernelFunc:Gj};function jj(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=n;return rv(bd.Sum,r,a,s,i,o)}var qj={kernelName:li,backendName:"webgl",kernelFunc:jj};function Xj(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=n;if(r.shape.length===1){let l=a.readSync(r.dataId),u=a.readSync(s.dataId),p=D6(l,u,s.dtype,s.shape,i);return a.makeTensorInfo([i],s.dtype,p)}else if(r.shape.length===2){let l=a.bufferSync(r),u=a.bufferSync(s),p=rU(l,u,i,o);return a.makeTensorInfo(p.shape,s.dtype,p.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var Kj={kernelName:Ed,backendName:"webgl",kernelFunc:Xj},Zj=class{constructor(e,t,a){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=a,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int h = ${this.getHeightCoordString()};
|
|
int w = ${this.getWidthCoordString()};
|
|
int d = ${this.getDepthCoordString()};
|
|
|
|
int in_h = h / ${t};
|
|
int offset_h = imod(h, ${t});
|
|
int in_w = w / ${t};
|
|
int offset_w = imod(w, ${t});
|
|
int offset_d = (offset_h * ${t} + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
int in_d = d + offset_d;
|
|
|
|
float result = ${this.getInputSamplingString()};
|
|
setOutput(result);
|
|
}
|
|
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function Yj(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{blockSize:s,dataFormat:i}=n,o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],u=i==="NHWC"?r.shape[2]:r.shape[3],p=i==="NHWC"?r.shape[3]:r.shape[1],c=l*s,d=u*s,h=p/(s*s),f=i==="NHWC"?[o,c,d,h]:[o,h,c,d],m=new Zj(f,s,i);return a.runWebGLProgram(m,[r],r.dtype)}var Jj={kernelName:di,backendName:"webgl",kernelFunc:Yj},sv=class{constructor(e,t=!1,a=null,n=!1,r=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=Na(this.outputShape.length);let s=e.filterHeight,i=e.filterWidth,o=e.outChannels/e.inChannels,l="",u="";a&&(n?l=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${a}
|
|
}`:r?l=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${a}
|
|
}`:l=`
|
|
float activation(float x) {
|
|
${a}
|
|
}
|
|
`,u="result = activation(result);");let p=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${l}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${o};
|
|
int q = d2 - d1 * ${o};
|
|
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
|
|
for (int wR = 0; wR < ${s}; wR++) {
|
|
int xR = xRCorner + wR * dilations[0];
|
|
|
|
if (xR < 0 || xR >= inDims[0]) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${i}; wC++) {
|
|
int xC = xCCorner + wC * dilations[1];
|
|
|
|
if (xC < 0 || xC >= inDims[1]) {
|
|
continue;
|
|
}
|
|
|
|
float xVal = getX(batch, xR, xC, d1);
|
|
float wVal = getW(wR, wC, d1, q);
|
|
dotProd += xVal * wVal;
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${p}
|
|
${u}
|
|
setOutput(result);
|
|
}
|
|
`}},iv=class{constructor(e,t=!1,a=null,n=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=Na(this.outputShape.length);let s=e.outChannels/e.inChannels,i=e.padInfo.left,o=e.strideWidth,l=e.dilationWidth,u=e.filterHeight,p=e.filterWidth,c=p,d=`
|
|
int xR; int xC; int xCOffset;
|
|
vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g<p;g++)d+=`
|
|
vec4 xTexelC${g*2};
|
|
int xTexelC${g*2}Ready;
|
|
vec4 xTexelC${g*2+1};
|
|
int xTexelC${g*2+1}Ready;
|
|
vec4 xC${g};`;d+=`
|
|
for (int r = 0; r < ${u}; r++) {
|
|
`;for(let g=0;g<p;g++)d+=`
|
|
xTexelC${g*2} = vec4(0.0);
|
|
xTexelC${g*2}Ready = 0;
|
|
xTexelC${g*2+1} = vec4(0.0);
|
|
xTexelC${g*2+1}Ready = 0;
|
|
xC${g} = vec4(0.0);`;d+=`
|
|
xR = xRCorner + r * dilations[0];
|
|
if (xR >=0 && xR < inDims[0]) {
|
|
`;for(let g=0;g<(c+1)/2;g++){let x=g*2;if(d+=`
|
|
xC = xCCorner + ${x*l};
|
|
`,o===1){if(x<p&&(i%2===1?(d+=`
|
|
xCOffset = xC + 1;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${x}Ready == 0) {
|
|
xTexelC${x} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${x}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${x}Ready = 1;
|
|
}
|
|
`,l===1&&x>0?d+=`
|
|
xC${x} = vec4(xTexelC${x-2}.zw, xTexelC${x}.xy);
|
|
`:d+=`
|
|
xCOffset = xC + 1 - 2;
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
previous.zw = vec2(0.0);
|
|
}
|
|
|
|
xC${x} = vec4(previous.zw, xTexelC${x}.xy);
|
|
} else {
|
|
xC${x} = vec4(0.0, 0.0, xTexelC${x}.xy);
|
|
}
|
|
`):d+=`
|
|
if (xC >= 0 && xC < inDims[1] && xTexelC${x}Ready == 0) {
|
|
xTexelC${x} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${x}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${x}Ready = 1;
|
|
}
|
|
|
|
xC${x} = xTexelC${x};
|
|
`,x+1<p)){let y=i%2===0?v.nearestLargerEven(l):l;l%2===0&&i%2===1||l%2!==0&&i%2!==1?(d+=`
|
|
xCOffset = xC + imod(pads[1], 2) + ${y};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${x+1}Ready == 0) {
|
|
xTexelC${x+1} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${x+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${x+1}Ready = 1;
|
|
}
|
|
`,l>1?d+=`
|
|
xCOffset -= 2;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
xC${x+1} = vec4(previous.zw, xTexelC${x+1}.xy);
|
|
} else {
|
|
xC${x+1} = vec4(0.0, 0.0, xTexelC${x+1}.xy);
|
|
}
|
|
`:d+=`
|
|
xC${x+1} = vec4(xTexelC${x}.zw, xTexelC${x+1}.xy);
|
|
`):y===1?d+=`
|
|
xC${x+1} = xTexelC${x};
|
|
`:d+=`
|
|
xCOffset = xC + ${y};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${x+1}Ready == 0) {
|
|
xTexelC${x+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${x+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${x+1}Ready = 1;
|
|
}
|
|
|
|
xC${x+1} = xTexelC${x+1};
|
|
`}}else x<p&&(i%2===1?(d+=`
|
|
xCOffset = xC + 1 - strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${x}Ready == 0) {
|
|
xTexelC${x} = getX(batch, xR, xCOffset, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${x}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${x}Ready = 1;
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${x+1}Ready == 0) {
|
|
xTexelC${x+1} = getX(batch, xR, xC + 1, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xC + 2 >= inDims[1]) {
|
|
xTexelC${x+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${x+1}Ready = 1;
|
|
}
|
|
|
|
xC${x} = vec4(xTexelC${x}.zw, xTexelC${x+1}.zw);
|
|
`,x+1<p&&(d+=`
|
|
final = vec4(0.0);
|
|
xCOffset = xC + 1 + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xC${x+1} = vec4(xTexelC${x+1}.xy, final.xy);
|
|
`)):(d+=`
|
|
if(xC >= 0 && xC < inDims[1] && xTexelC${x}Ready == 0) {
|
|
xTexelC${x} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${x}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${x}Ready = 1;
|
|
}
|
|
|
|
xCOffset = xC + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${x+1}Ready == 0) {
|
|
xTexelC${x+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${x+1}.zw = vec2(0.);
|
|
}
|
|
xTexelC${x+1}Ready = 1;
|
|
}
|
|
|
|
xC${x} = vec4(
|
|
xTexelC${x}.xy, xTexelC${x+1}.xy);
|
|
`,x+1<p&&(d+=`
|
|
xC${x+1} = vec4(xTexelC${x}.zw, xTexelC${x+1}.zw);
|
|
`)));x<p&&(d+=`
|
|
wTexel = getW(r, ${x}, d1, q);
|
|
dotProd += xC${x} * vec4(wTexel.xz, wTexel.xz);
|
|
`,x+1<p&&(d+=`
|
|
wTexel = getW(r, ${x+1}, d1, q);
|
|
dotProd += xC${x+1} * vec4(wTexel.xz, wTexel.xz);
|
|
`))}d+=`
|
|
}
|
|
`,d+=`
|
|
}
|
|
`;let h="",f="";a&&(n?h=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${a}
|
|
}`:r?h=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${a}
|
|
}`:h=`vec4 activation(vec4 x) {
|
|
${a}
|
|
}`,f="result = activation(result);");let m=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${h}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${s};
|
|
int q = d2 - d1 * ${s};
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
|
|
vec4 dotProd = vec4(0.000000000000001);
|
|
|
|
${d}
|
|
|
|
vec4 result = dotProd - vec4(0.000000000000001);
|
|
${m}
|
|
${f}
|
|
setOutput(result);
|
|
}
|
|
`}};function Qj(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=n,p=l;p==null&&(p=[1,1]),v.assert(T.eitherStridesOrDilationsAreOne(i,p),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${p}'`);let c=T.computeConv2DInfo(r.shape,s.shape,i,p,o,u,!0),d;B().getBool("WEBGL_PACK_DEPTHWISECONV")&&c.strideWidth<=2&&c.outChannels/c.inChannels===1?d=new iv(c):d=new sv(c);let h=[[c.padInfo.top,c.padInfo.left],[c.strideHeight,c.strideWidth],[c.dilationHeight,c.dilationWidth],[c.inHeight,c.inWidth]];return a.runWebGLProgram(d,[r,s],"float32",h)}var eq={kernelName:pi,backendName:"webgl",kernelFunc:Qj},tq=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,a=e.strideWidth,n=e.padInfo.top,r=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int dm = coords.w;
|
|
int d2 = d1 * ${s} + dm;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
// TO DO: Vec4 over the batch size
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${n};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${a} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},aq=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,a=e.filterWidth,n=e.strideHeight,r=e.strideWidth,s=t-1-e.padInfo.top,i=a-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=`
|
|
const ivec2 pads = ivec2(${s}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[3];
|
|
ivec2 dyCorner = coords.yz - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${a}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${a} - 1 - wC;
|
|
|
|
// TO DO: Vec4 over the channelMul
|
|
for (int dm = 0; dm < ${o}; dm++) {
|
|
int d2 = d1 * ${o} + dm;
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, dm);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function nq(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:p}=n,c=T.computeConv2DInfo(r.shape,p,i,o,l,u,!0),d=new tq(c);return a.runWebGLProgram(d,[r,s],"float32")}var rq={kernelName:th,backendName:"webgl",kernelFunc:nq};function sq(e){let{inputs:t,backend:a,attrs:n}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:p}=n,c=T.computeConv2DInfo(p,s.shape,i,o,l,u,!0),d=new aq(c);return a.runWebGLProgram(d,[r,s],"float32")}var iq={kernelName:ah,backendName:"webgl",kernelFunc:sq},oq=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
|
|
setOutput(val);
|
|
}
|
|
`}};function lq(e){let{inputs:t,backend:a}=e,{x:n}=t,r=[...n.shape,...n.shape],s=v.sizeFromShape(n.shape),i=pe({inputs:{x:n},backend:a,attrs:{shape:[s]}}),o=new oq(s),l=a.runWebGLProgram(o,[i],i.dtype),u=pe({inputs:{x:l},backend:a,attrs:{shape:r}});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(l),u}var uq={kernelName:Rd,backendName:"webgl",kernelFunc:lq},dq=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:a,padInfo:n,strideHeight:r,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:u}=e,{top:p,left:c}=n;this.userCode=`
|
|
const ivec2 strides = ivec2(${r}, ${s});
|
|
const ivec2 pads = ivec2(${p}, ${c});
|
|
const float neg_infinity = -3.4e38;
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.w;
|
|
ivec2 outTopLeftCorner =
|
|
coords.yz * strides - pads;
|
|
int hBeg = outTopLeftCorner.x;
|
|
int wBeg = outTopLeftCorner.y;
|
|
|
|
float curVal = neg_infinity;
|
|
for (int h = 0; h < ${i}; h++) {
|
|
int hIn = hBeg + h * ${l};
|
|
|
|
if (hIn >= 0 && hIn < ${t}) {
|
|
for (int w = 0; w < ${o}; w++) {
|
|
int wIn = wBeg + w * ${u};
|
|
|
|
if (wIn >= 0 && wIn < ${a}) {
|
|
float xVal = getX(batch, hIn, wIn, d1);
|
|
float wVal = getW(h, w, d1);
|
|
|
|
float val = xVal + wVal;
|
|
if (val > curVal) {
|
|
curVal = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = curVal;
|
|
setOutput(result);
|
|
}
|
|
`}};function pq(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=n,u=T.computeDilation2DInfo(r.shape,s.shape,i,o,"NHWC",l),p,c=new dq(u);p=a.runWebGLProgram(c,[r,s],"float32");let d=pe({inputs:{x:p},backend:a,attrs:{shape:u.outShape}});return a.disposeIntermediateTensorInfo(p),d}var cq={kernelName:Md,backendName:"webgl",kernelFunc:pq};function hq(e){let{inputs:t,backend:a,attrs:n}=e,{equation:r}=n,s=t,{allDims:i,summedDims:o,idDims:l}=T.decodeEinsumEquation(r,s.length);T.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:p}=T.getEinsumComputePath(o,l),c=p.length,d=null,h=i.length,f=[];for(let m=0;m<c;++m){for(let g of p[m]){let{permutationIndices:x,expandDims:y}=T.getEinsumPermutation(h,l[g]),A;T.isIdentityPermutation(x)?A=s[g]:(A=Ia({inputs:{x:s[g]},backend:a,attrs:{perm:x}}),f.push(A));let b=A.shape.slice();for(let k=0;k<y.length;++k)b.splice(y[k],0,1);v.arraysEqual(A.shape,b)||(A=pe({inputs:{x:A},backend:a,attrs:{shape:b}}),f.push(A)),d===null?d=A:(d=$3({inputs:{a:A,b:d},backend:a}),f.push(d))}m<c-1&&(u[m]>=0&&(d=_h({inputs:{x:d},backend:a,attrs:{axis:u[m]-(i.length-h),keepDims:!1}}),f.push(d)),h--)}for(let m of f)m!==d&&a.disposeIntermediateTensorInfo(m);return d}var fq={kernelName:$d,backendName:"webgl",kernelFunc:hq},mq="return (x >= 0.0) ? x : (exp(x) - 1.0);",gq=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,xq=Qe({opSnippet:mq,packedOpSnippet:gq}),yq={kernelName:hi,backendName:"webgl",kernelFunc:xq},Aq="return (b >= 1.0) ? a : a * (b + 1.0);",bq=`
|
|
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
|
|
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
|
|
`,vq=e=>{let{inputs:t,backend:a}=e,{dy:n,y:r}=t,s=B().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new mp(bq,n.shape,r.shape):new xl(Aq,n.shape,r.shape);return a.runWebGLProgram(s,[n,r],n.dtype)},kq={kernelName:W2,backendName:"webgl",kernelFunc:vq},wq=`
|
|
return vec4(equal(a, b));
|
|
`,Iq="return float(a == b);",Sq=ua({opSnippet:Iq,packedOpSnippet:wq,dtype:"bool",cpuKernelImpl:lU}),Tq={kernelName:fi,backendName:"webgl",kernelFunc:Sq},Cq=`
|
|
// Error function is calculated approximately with elementary function.
|
|
// See "Handbook of Mathematical Functions with Formulas,
|
|
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
|
|
float p = ${T.ERF_P};
|
|
float a1 = ${T.ERF_A1};
|
|
float a2 = ${T.ERF_A2};
|
|
float a3 = ${T.ERF_A3};
|
|
float a4 = ${T.ERF_A4};
|
|
float a5 = ${T.ERF_A5};
|
|
|
|
float sign = sign(x);
|
|
x = abs(x);
|
|
float t = 1.0 / (1.0 + p * x);
|
|
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
|
|
`,Nq=Qe({opSnippet:Cq}),Eq={kernelName:Ml,backendName:"webgl",kernelFunc:Nq},Rq=mu+`
|
|
return exp(x);
|
|
`,Mq=`
|
|
vec4 result = exp(x);
|
|
bvec4 isNaN = isnan(x);
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,ov=Qe({opSnippet:Rq,packedOpSnippet:Mq,cpuKernelImpl:uU,dtype:"float32"}),$q={kernelName:mi,backendName:"webgl",kernelFunc:ov};function I2(e){let{inputs:t,attrs:a,backend:n}=e,{dim:r}=a,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=r;return r<0&&(v.assert(-(i+1)<=r,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+r+1),o.splice(l,0,1),pe({inputs:{x:s},backend:n,attrs:{shape:o}})}var _q={kernelName:$l,backendName:"webgl",kernelFunc:I2},Sx="return exp(x) - 1.0;",Pq=Qe({opSnippet:Sx,packedOpSnippet:Sx,cpuKernelImpl:dU}),Fq={kernelName:_l,backendName:"webgl",kernelFunc:Pq},Tx=class{constructor(e,t,a){this.variableNames=["real","imag"];let n=t[1];this.outputShape=t;let r=a?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=a?`${n}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
|
|
const float exponentMultiplier = ${r};
|
|
|
|
float unaryOpComplex(float real, float expR, float imag, float expI) {
|
|
${i}
|
|
}
|
|
|
|
float mulMatDFT(int batch, int index) {
|
|
float indexRatio = float(index) / float(${n});
|
|
float exponentMultiplierTimesIndexRatio =
|
|
exponentMultiplier * indexRatio;
|
|
|
|
float result = 0.0;
|
|
|
|
for (int i = 0; i < ${n}; i++) {
|
|
// x = (-2|2 * PI / N) * index * i;
|
|
float x = exponentMultiplierTimesIndexRatio * float(i);
|
|
float expR = cos(x);
|
|
float expI = sin(x);
|
|
float real = getReal(batch, i);
|
|
float imag = getImag(batch, i);
|
|
|
|
result +=
|
|
unaryOpComplex(real, expR, imag, expI) / ${s};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
setOutput(mulMatDFT(coords[0], coords[1]));
|
|
}
|
|
`}};function lv(e,t,a){let n=a.texData.get(e.dataId),r=v.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=r/s,o=pe({inputs:{x:e},backend:a,attrs:{shape:[i,s]}}),l=o.shape,u=new Tx("real",l,t),p=new Tx("imag",l,t),c=[{dataId:n.complexTensorInfos.real.dataId,dtype:n.complexTensorInfos.real.dtype,shape:l},{dataId:n.complexTensorInfos.imag.dataId,dtype:n.complexTensorInfos.imag.dtype,shape:l}],d=a.runWebGLProgram(u,c,"float32"),h=a.runWebGLProgram(p,c,"float32"),f=us({inputs:{real:d,imag:h},backend:a});a.disposeIntermediateTensorInfo(d),a.disposeIntermediateTensorInfo(h);let m=pe({inputs:{x:f},backend:a,attrs:{shape:e.shape}});return a.disposeIntermediateTensorInfo(o),a.disposeIntermediateTensorInfo(f),m}function Oq(e){let{inputs:t,backend:a}=e,{input:n}=t;return lv(n,!1,a)}var Dq={kernelName:_d,backendName:"webgl",kernelFunc:Oq},zq=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Input can be obtained from uniform value.
|
|
setOutput(value);
|
|
}
|
|
`}};function xp(e){let{backend:t,attrs:a}=e,{shape:n,value:r}=a,{dtype:s}=a;if(s=s||v.inferDtype(r),s==="string"){let i=v.getArrayFromDType(s,v.sizeFromShape(n));return i.fill(r),t.makeTensorInfo(n,s,i)}else{let i=new zq(n,r),o=[[r]];return t.runWebGLProgram(i,[],s,o)}}var Lq={kernelName:Pl,backendName:"webgl",kernelFunc:xp},Bq=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
|
|
int coordX = ${t} - x - 1;
|
|
float outputValue;
|
|
if(coordX >= 0 && coordX < ${t}) {
|
|
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
|
|
} else {
|
|
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},Wq={kernelName:gi,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:a}=e,n=t,r=new Bq(a.shape);return n.runWebGLProgram(r,[a],a.dtype)}},Cx="return floor(x);",Vq=Qe({opSnippet:Cx,packedOpSnippet:Cx,cpuKernelImpl:pU}),Uq={kernelName:xi,backendName:"webgl",kernelFunc:Vq},Gq=`
|
|
float s = sign(a) * sign(b);
|
|
int ia = round(a);
|
|
int ib = round(b);
|
|
if (ib != 0) {
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
return float(idiv(ia, ib, s));
|
|
} else {
|
|
return NAN;
|
|
}
|
|
`,Hq=`
|
|
ivec4 ia = round(a);
|
|
ivec4 ib = round(b);
|
|
bvec4 cond = notEqual(ib, ivec4(0));
|
|
ivec4 result = ivec4(0);
|
|
vec4 s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
result[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
result[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
result[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
result[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4(result);
|
|
`,jq=ua({opSnippet:Gq,packedOpSnippet:Hq,dtype:"int32"}),qq={kernelName:yi,backendName:"webgl",kernelFunc:jq},Xq=class{constructor(e){this.variableNames=["A"];let t=Ca(),[a,n]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${n}.0, ${a}.0);
|
|
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
setOutput(floor(value * 255.0 + 0.5));
|
|
}
|
|
`}},Kq=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=Ca(),[a,n]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for(int row=0; row<=1; row++) {
|
|
for(int col=0; col<=1; col++) {
|
|
texC = coords[1] + row;
|
|
depth = coords[2] + col;
|
|
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${n}.0, ${a}.0);
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
result[row * 2 + col] = floor(value * 255.0 + 0.5);
|
|
}
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},Zq={kernelName:rd,backendName:"webgl",kernelFunc:Yq},Ko,Om=B().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU");function Yq(e){let{inputs:t,backend:a,attrs:n}=e,{pixels:r}=t,{numChannels:s}=n,i=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,u]=i?[r.videoWidth,r.videoHeight]:[r.width,r.height],p=[u,l],c=[u,l,s];if(o||i){let m=B().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU");(Ko==null||m!==Om)&&(Om=m,Ko=document.createElement("canvas").getContext("2d",{willReadFrequently:Om})),Ko.canvas.width=l,Ko.canvas.height=u,Ko.drawImage(r,0,0,l,u),r=Ko.canvas}let d=a.makeTensorInfo(p,"int32");a.texData.get(d.dataId).usage=pn.PIXELS,a.gpgpu.uploadPixelDataToTexture(a.getTexture(d.dataId),r);let h=B().getBool("WEBGL_PACK")?new Kq(c):new Xq(c),f=a.runWebGLProgram(h,[d],"int32");return a.disposeData(d.dataId),f}function Jq(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:p,dilations:c,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=n,m=T.convertConv2DDataFormat(p),g=T.computeConv2DInfo(r.shape,s.shape,l,c,u,d,!1,m),x,y=[],A=i!=null,b=o!=null,k=h==="leakyrelu",S=()=>{let E=[r,s],_=($,M)=>{if(M==="NCHW"&&$.shape.length===1&&$.shape[0]!==1){let I=pe({inputs:{x:$},backend:a,attrs:{shape:[$.shape[0],1,1]}});return y.push(I),I}return $};if(A&&E.push(_(i,p)),b&&E.push(_(o,p)),k){let $=a.makeTensorInfo([],"float32",v.createScalarValue(f,"float32"));E.push($),y.push($)}return E};if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))x=av({x:r,filter:s,convInfo:g,backend:a,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:f});else if(g.strideWidth<=2&&m==="channelsLast"&&B().getBool("WEBGL_EXP_CONV")){let E=h?yd(h,!0):null,_=new tv(g,A,E,b,k),$=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],M=S();x=a.runWebGLProgram(_,M,"float32",$)}else if(B().getBool("WEBGL_CONV_IM2COL"))x=nv({x:r,filter:s,convInfo:g,backend:a,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:f});else{let E=h?yd(h,!1):null,_=new ev(g,A,E,b,k),$=S();x=a.runWebGLProgram(_,$,"float32")}let C=pe({inputs:{x},backend:a,attrs:{shape:g.outShape}});return y.push(x),y.forEach(E=>a.disposeIntermediateTensorInfo(E)),C}var Qq={kernelName:qr,backendName:"webgl",kernelFunc:Jq};function eX(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:p,dimRoundingMode:c,activation:d,leakyreluAlpha:h}=n,f=[],m=p;m==null&&(m=[1,1]),v.assert(T.eitherStridesOrDilationsAreOne(l,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${m}'`);let g=T.computeConv2DInfo(r.shape,s.shape,l,m,u,c,!0),x=B().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels===1,y=d?yd(d,x):null,A=[r,s],b=i!=null,k=o!=null,S=d==="leakyrelu";if(b&&A.push(i),k&&A.push(o),S){let $=a.makeTensorInfo([],"float32",v.createScalarValue(h,"float32"));A.push($),f.push($)}let C;x?C=new iv(g,b,y,k,S):C=new sv(g,b,y,k,S);let E=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],_=a.runWebGLProgram(C,A,"float32",E);return f.forEach($=>a.disposeIntermediateTensorInfo($)),_}var tX={kernelName:Xr,backendName:"webgl",kernelFunc:eX},aX=class{constructor(e,t,a,n){this.sliceDim=e,this.strides=t,this.paramsShape=n,this.variableNames=["x","indices"],this.outputShape=a;let r=gt(a.length),s=`
|
|
int index;`;for(let i=0;i<this.sliceDim;i++)s+=`
|
|
index = round(getIndices(coords[0], ${i}));
|
|
out_of_bounds = out_of_bounds || index < 0;
|
|
out_of_bounds = out_of_bounds || index >= ${this.paramsShape[i]};
|
|
flattenIndex += index * ${this.strides[i]};`;this.userCode=`
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
int flattenIndex = 0;
|
|
bool out_of_bounds = false;
|
|
|
|
${s}
|
|
|
|
setOutput(out_of_bounds ? 0.0 : getX(flattenIndex, coords[1]));
|
|
}
|
|
`}};function nX(e){let{inputs:t,backend:a}=e,{params:n,indices:r}=t,s=r.shape,i=s[s.length-1],o=v.sizeFromShape(n.shape),[l,u,p,c]=T.prepareAndValidate(n,r),d=pe({inputs:{x:r},backend:a,attrs:{shape:[u,i]}}),h=pe({inputs:{x:n},backend:a,attrs:{shape:[v.sizeFromShape(n.shape)/p,p]}});if(a.shouldExecuteOnCPU([n,r])||n.dtype==="string"){let x=a.readSync(r.dataId),y=a.bufferSync(n),A=cU(x,y,n.dtype,u,i,p,c,n.shape,o);return a.makeTensorInfo(l,n.dtype,A.values)}let f=new aX(i,c,[u,p],n.shape),m=a.runWebGLProgram(f,[h,d],h.dtype),g=pe({inputs:{x:m},backend:a,attrs:{shape:l}});return a.disposeIntermediateTensorInfo(d),a.disposeIntermediateTensorInfo(h),a.disposeIntermediateTensorInfo(m),g}var rX={kernelName:bi,backendName:"webgl",kernelFunc:nX},sX=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let a=gt(this.rank),n=iX(e,2);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
int index = int(getIndices(resRC.x, resRC.z));
|
|
float inBounds = (index >= 0) && (index < ${e[2]}) ? 1.0 : 0.0;
|
|
setOutput(inBounds * getA(${n}));
|
|
}
|
|
`}};function iX(e,t){let a=["resRC.x","resRC.y","resRC.z","resRC.w"],n=[];for(let r=0;r<e.length;r++)r===2?n.push("index"):n.push(`${a[r]}`);return n.join()}function uv(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=n,l=v.parseAxisParam(i,r.shape)[0];if(B().get("DEBUG")){let y=a.readSync(s.dataId),A=r.shape[l];for(let b=0;b<y.length;++b){let k=y[b];v.assert(k<=A-1&&k>=0,()=>`GatherV2: the index value ${k} is not in [0, ${A-1}]`)}}let u=T.segment_util.collectGatherOpShapeInfo(r,s,l,o),p=v.sizeFromShape(s.shape),c=[],d=pe({inputs:{x:r},backend:a,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),h=pe({inputs:{x:s},backend:a,attrs:{shape:[u.batchSize,p/u.batchSize]}});c.push(d),c.push(h);let f=[u.batchSize,u.outerSize,p/u.batchSize,u.sliceSize];if(a.shouldExecuteOnCPU([r,s])||r.dtype==="string"){let y=a.bufferSync(h),A=a.bufferSync(d),b=hU(A,y,f);return c.forEach(k=>a.disposeIntermediateTensorInfo(k)),a.makeTensorInfo(u.outputShape,b.dtype,b.values)}let m=new sX(d.shape,f),g=a.runWebGLProgram(m,[d,h],d.dtype);c.push(g);let x=pe({inputs:{x:g},backend:a,attrs:{shape:u.outputShape}});return c.forEach(y=>a.disposeIntermediateTensorInfo(y)),x}var oX={kernelName:Fl,backendName:"webgl",kernelFunc:uv},lX="return float(a > b);",uX=`
|
|
return vec4(greaterThan(a, b));
|
|
`,dX=ua({opSnippet:lX,packedOpSnippet:uX,cpuKernelImpl:fU,dtype:"bool"}),pX={kernelName:vi,backendName:"webgl",kernelFunc:dX},cX="return float(a >= b);",hX=`
|
|
return vec4(greaterThanEqual(a, b));
|
|
`,fX=ua({opSnippet:cX,packedOpSnippet:hX,dtype:"bool",cpuKernelImpl:mU}),mX={kernelName:ki,backendName:"webgl",kernelFunc:fX};function gX(e){let{inputs:t,backend:a}=e,{input:n}=t;return lv(n,!0,a)}var xX={kernelName:Pd,backendName:"webgl",kernelFunc:gX},yX="return float(!isnan(x) && !isinf(x));",AX=Qe({opSnippet:yX,dtype:"bool"}),bX={kernelName:Ol,backendName:"webgl",kernelFunc:AX},vX="return float(isinf(x));",kX=Qe({opSnippet:vX,dtype:"bool"}),wX={kernelName:Dl,backendName:"webgl",kernelFunc:kX},IX="return float(isnan(x));",SX=Qe({opSnippet:IX,dtype:"bool"}),TX={kernelName:Ii,backendName:"webgl",kernelFunc:SX},CX="return float(a < b);",NX=`
|
|
return vec4(lessThan(a, b));
|
|
`,EX=ua({opSnippet:CX,packedOpSnippet:NX,cpuKernelImpl:gU,dtype:"bool"}),RX={kernelName:Ti,backendName:"webgl",kernelFunc:EX},MX="return float(a <= b);",$X=`
|
|
return vec4(lessThanEqual(a, b));
|
|
`,_X=ua({opSnippet:MX,packedOpSnippet:$X,cpuKernelImpl:xU,dtype:"bool"}),PX={kernelName:Ci,backendName:"webgl",kernelFunc:_X};function FX(e){let{backend:t,attrs:a}=e,{start:n,stop:r,num:s}=a,i=yU(n,r,s);return t.makeTensorInfo([i.length],"float32",i)}var OX={kernelName:Od,backendName:"webgl",kernelFunc:FX},DX=mu+`
|
|
return x < 0.0 ? 0./0. : log(x);
|
|
`,zX=`
|
|
vec4 result = log(x);
|
|
bvec4 isNaN = isnan(x);
|
|
result.r = isNaN.r ? x.r : (x.r < 0.0 ? 0./0. : result.r);
|
|
result.g = isNaN.g ? x.g : (x.g < 0.0 ? 0./0. : result.g);
|
|
result.b = isNaN.b ? x.b : (x.b < 0.0 ? 0./0. : result.b);
|
|
result.a = isNaN.a ? x.a : (x.a < 0.0 ? 0./0. : result.a);
|
|
return result;
|
|
`,LX=Qe({opSnippet:DX,packedOpSnippet:zX,cpuKernelImpl:AU}),BX={kernelName:Ni,backendName:"webgl",kernelFunc:LX},WX=mu+`
|
|
return log(1.0 + x);
|
|
`,VX=Qe({opSnippet:WX}),UX={kernelName:zl,backendName:"webgl",kernelFunc:VX},GX="return float(a >= 1.0 && b >= 1.0);",HX=`
|
|
return vec4(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) *
|
|
vec4(greaterThanEqual(b, vec4(1.0))));
|
|
`,jX=ua({opSnippet:GX,packedOpSnippet:HX,dtype:"bool"}),qX={kernelName:Ei,backendName:"webgl",kernelFunc:jX},XX="return float(!(x >= 1.0));",KX=Qe({opSnippet:XX}),ZX={kernelName:Ri,backendName:"webgl",kernelFunc:KX},YX="return float(a >= 1.0 || b >= 1.0);",JX=`
|
|
return min(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) +
|
|
vec4(greaterThanEqual(b, vec4(1.0))),
|
|
vec4(1.0));
|
|
`,QX=ua({opSnippet:YX,packedOpSnippet:JX,dtype:"bool"}),eK={kernelName:Mi,backendName:"webgl",kernelFunc:QX},tK=class{constructor(e,t,a,n,r){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${a}) + float(${n}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
int d = coords[3];
|
|
float x = getX(b, r, c, d);
|
|
float sum = 0.0;
|
|
for (int j = -${s}; j <= ${s}; j++) {
|
|
int idx = d + j;
|
|
if (idx >= 0 && idx <= ${i}) {
|
|
float z = getX(b, r, c, idx);
|
|
sum += z * z;
|
|
}
|
|
}
|
|
float val = x * ${o};
|
|
setOutput(val);
|
|
}
|
|
`}},aK=class{constructor(e,t,a,n,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${a}) + float(${n}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords.x;
|
|
int r = coords.y;
|
|
int c = coords.z;
|
|
int d = coords.w;
|
|
|
|
bool hasNextCol = d < ${this.outputShape[3]};
|
|
bool hasNextRow = c < ${this.outputShape[2]};
|
|
|
|
vec4 sum = vec4(0.);
|
|
vec4 xFragAtOutputCoords = getX(b, r, c, d);
|
|
|
|
vec4 xAtOutputCoords = vec4(
|
|
getChannel(xFragAtOutputCoords, vec2(c, d)),
|
|
hasNextCol ?
|
|
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
|
|
hasNextRow ?
|
|
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
|
|
);
|
|
|
|
int firstChannel = d - ${s};
|
|
vec2 cache = vec2(0.);
|
|
if(firstChannel >= 0){
|
|
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
|
|
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
|
|
if(hasNextRow){
|
|
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
|
|
}
|
|
}
|
|
|
|
ivec2 depth = ivec2(d, d + 1);
|
|
for (int j = - ${s}; j <= ${s}; j++) {
|
|
ivec2 idx = depth + j;
|
|
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
|
|
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
|
|
|
|
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
|
|
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
|
|
|
|
if(depthInRange || depthPlusOneInRange){
|
|
vec4 z = vec4(0.);
|
|
vec4 xFragAtCurrentDepth;
|
|
z.xz = cache.xy;
|
|
if(depthPlusOneInRange && hasNextCol){
|
|
xFragAtCurrentDepth = idx.y != d ?
|
|
getX(b, r, c, idx.y) : xFragAtOutputCoords;
|
|
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
|
|
if(hasNextRow){
|
|
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
|
|
}
|
|
}
|
|
cache.xy = z.yw;
|
|
sum += z * z;
|
|
}
|
|
}
|
|
vec4 result = xAtOutputCoords * ${o};
|
|
setOutput(result);
|
|
}
|
|
`}},nK=e=>{let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n,u=B().getBool("WEBGL_PACK_NORMALIZATION")?new aK(r.shape,s,i,o,l):new tK(r.shape,s,i,o,l);return a.runWebGLProgram(u,[r],r.dtype)},rK={kernelName:Dd,backendName:"webgl",kernelFunc:nK},sK=class{constructor(e,t,a,n,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=a,this.alpha=n,this.beta=r,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float result = 0.0;
|
|
for (int d = 0; d < ${this.depth}; ++d) {
|
|
int depthBegin = int(max(0.0, float(d - ${t})));
|
|
int depthEnd = int(min(float(${this.depth}),
|
|
float(d + ${t} + 1)));
|
|
|
|
const int MIN_DEPTH_BEGIN = 0;
|
|
const int MAX_DEPTH_END = ${this.depth};
|
|
|
|
float norm = 0.0;
|
|
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd) {
|
|
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
norm = float(${n}) * norm + float(${a});
|
|
|
|
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd){
|
|
float dyi = -2.0 * float(${n})
|
|
* float(${r})
|
|
* getInputImage(b, r, c, k) * getOutputImage(b, r, c, d)
|
|
/ norm;
|
|
if (k == d) {
|
|
dyi += pow(norm, -1.0 * ${r});
|
|
}
|
|
if (k == coords[3]) {
|
|
dyi *= getDy(b, r, c, d);
|
|
result += dyi;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}},iK=e=>{let{inputs:t,backend:a,attrs:n}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:p}=n,c=new sK(r.shape,o,l,u,p);return a.runWebGLProgram(c,[r,s,i],r.dtype)},oK={kernelName:V2,backendName:"webgl",kernelFunc:iK};function lK(e,t,a,n){let r=v.sizeFromShape(t),s=v.sizeFromShape(e.shape)/r,i=pe({inputs:{x:e},attrs:{shape:[s,r]},backend:n}),o=vo(i,e.dtype,"max",n),l=pe({inputs:{x:o},attrs:{shape:a},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}function dv(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=n,o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=l,p=T.getAxesPermutation(u,o),c=p!=null,d=a.shouldExecuteOnCPU([r]),h=r;if(c){if(d){let y=a.texData.get(h.dataId).values,A=new Array(o);for(let S=0;S<A.length;S++)A[S]=r.shape[p[S]];let b=R3(y,r.shape,r.dtype,p,A);h=a.makeTensorInfo(A,r.dtype);let k=a.texData.get(h.dataId);k.values=b}else h=$h(r,p,a);u=T.getInnerMostAxes(u.length,o)}T.assertAxesAreInnerMostDims("max",u,o);let[f,m]=T.computeOutAndReduceShapes(h.shape,u),g=f;i&&(g=T.expandShapeToKeepDim(f,l));let x;if(d){let y=a.texData.get(h.dataId).values,A=bU(y,v.sizeFromShape(m),g,r.dtype);x=a.makeTensorInfo(g,r.dtype);let b=a.texData.get(x.dataId);b.values=A}else x=lK(h,m,g,a);return c&&a.disposeIntermediateTensorInfo(h),x}var uK={kernelName:$i,backendName:"webgl",kernelFunc:dv},dK=M3+`
|
|
return max(a, b);
|
|
`,pK=`
|
|
vec4 result = vec4(max(a, b));
|
|
bvec4 isNaNA = isnan(a);
|
|
bvec4 isNaNB = isnan(b);
|
|
bvec4 isNaN = bvec4(isNaNA.x || isNaNB.x, isNaNA.y || isNaNB.y, isNaNA.z || isNaNB.z, isNaNA.w || isNaNB.w);
|
|
`+fp+`
|
|
return result;
|
|
`,cK=ua({opSnippet:dK,packedOpSnippet:pK,cpuKernelImpl:vU}),hK={kernelName:_i,backendName:"webgl",kernelFunc:cK};function fK(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t;uu(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n,u=1;v.assert(T.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=T.computePool2DInfo(r.shape,s,i,u,o,l);if(p.filterWidth===1&&p.filterHeight===1&&v.arraysEqual(p.inShape,p.outShape))return Za({inputs:{x:r},backend:a});let c=new Ad(p,"max",!1);return a.runWebGLProgram(c,[r],r.dtype)}var mK={kernelName:Pi,backendName:"webgl",kernelFunc:fK};function gK(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:u}=n,p=[1,1,1],c=T.computePool3DInfo(r.shape,s,i,p,o,u,l),d=new _3(c,"max",!1);return a.runWebGLProgram(d,[r],r.dtype)}var xK={kernelName:nh,backendName:"webgl",kernelFunc:gK},yK=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,a=e.strideWidth,n=e.dilationHeight,r=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=r-1-e.padInfo.top,o=s-1-e.padInfo.left,l=r*s-1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${r};
|
|
wR += ${n}) {
|
|
float dyR = float(dyRCorner + wR) / ${t}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${s}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${a}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue = wR * ${s} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},AK=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,a=e.strideHeight,n=e.strideWidth,r=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,p=o-1-e.padInfo.front,c=l-1-e.padInfo.top,d=u-1-e.padInfo.left,h=o*l*u-1;this.userCode=`
|
|
const ivec3 pads = ivec3(${p}, ${c}, ${d});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${o};
|
|
wD += ${r}) {
|
|
float dyD = float(dyDCorner + wD) / ${t}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${l};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${u};
|
|
wC += ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${n}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
int maxPosValue = ${h} -
|
|
int(getMaxPos(batch, idyD, idyR, idyC, ch));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue =
|
|
wD * ${l} * ${u} +
|
|
wR * ${u} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function bK(e){let{inputs:t,backend:a,attrs:n}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:p}=n,c=[1,1,1],d=T.computePool3DInfo(i.shape,o,l,c,u,p),h=new _3(d,"max",!0),f=a.runWebGLProgram(h,[i],i.dtype),m=new AK(d),g=a.runWebGLProgram(m,[r,f],i.dtype);return a.disposeIntermediateTensorInfo(f),g}var vK={kernelName:G2,backendName:"webgl",kernelFunc:bK};function kK(e){let{inputs:t,backend:a,attrs:n}=e,{dy:r,input:s,output:i}=t,o=s;uu([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:p,dimRoundingMode:c}=n,d=T.computePool2DInfo(o.shape,l,u,1,p,c),h=!0,f=new Ad(d,"max",h),m=a.runWebGLProgram(f,[o],o.dtype),g=new yK(d),x=a.runWebGLProgram(g,[r,m],o.dtype);return a.disposeIntermediateTensorInfo(m),x}var wK={kernelName:U2,backendName:"webgl",kernelFunc:kK};function IK(e,t,a,n){let r=new Ad(a,"max",!1),s=n.runWebGLProgram(r,[e],"float32");r=new Ad(a,"max",!0,!0,t);let i=n.runWebGLProgram(r,[e],"float32");return[s,i]}var SK={kernelName:rh,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:a})=>{let{x:n}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=a;v.assert(n.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${n.shape.length}.`);let u=[1,1];v.assert(T.eitherStridesOrDilationsAreOne(s,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${u}'`);let p=T.computePool2DInfo(n.shape,r,s,u,i),[c,d]=IK(n,o,p,l);return[c,d]}};function TK(e,t,a,n){let r=v.sizeFromShape(t),s=v.sizeFromShape(e.shape)/r,i=pe({inputs:{x:e},attrs:{shape:[s,r]},backend:n}),o=vo(i,"float32","mean",n),l=pe({inputs:{x:o},attrs:{shape:a},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}var CK={kernelName:Fi,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:a})=>{let{x:n}=e,{keepDims:r,axis:s}=t,i=a,o=n.shape.length,l=v.parseAxisParam(s,n.shape),u=l,p=T.getAxesPermutation(u,o),c=p!=null,d=i.shouldExecuteOnCPU([n]),h=[],f=n;if(c){if(d){let A=i.texData.get(f.dataId).values,b=new Array(o);for(let C=0;C<b.length;C++)b[C]=n.shape[p[C]];let k=R3(A,n.shape,n.dtype,p,b);f=i.makeTensorInfo(b,n.dtype);let S=i.texData.get(f.dataId);S.values=k}else f=$h(n,p,i);h.push(f),u=T.getInnerMostAxes(u.length,o)}T.assertAxesAreInnerMostDims("sum",u,o);let[m,g]=T.computeOutAndReduceShapes(f.shape,u),x=m;r&&(x=T.expandShapeToKeepDim(m,l));let y=TK(f,g,x,i);for(let A of h)i.disposeIntermediateTensorInfo(A);return y}};function NK(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s,keepDims:i}=n,o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=l,p=T.getAxesPermutation(u,o),c=r;p!=null&&(c=Ia({inputs:{x:r},backend:a,attrs:{perm:p}}),u=T.getInnerMostAxes(u.length,r.shape.length)),T.assertAxesAreInnerMostDims("min",u,o);let[d,h]=T.computeOutAndReduceShapes(c.shape,u),f=v.sizeFromShape(h),m=pe({inputs:{x:c},backend:a,attrs:{shape:[-1,f]}}),g=vo(m,m.dtype,"min",a),x;if(i){let y=T.expandShapeToKeepDim(d,l);x=pe({inputs:{x:g},backend:a,attrs:{shape:y}})}else x=pe({inputs:{x:g},backend:a,attrs:{shape:d}});return a.disposeIntermediateTensorInfo(m),a.disposeIntermediateTensorInfo(g),p!=null&&a.disposeIntermediateTensorInfo(c),x}var EK={kernelName:Oi,backendName:"webgl",kernelFunc:NK},RK=M3+`
|
|
return min(a, b);
|
|
`,MK=`
|
|
vec4 result = vec4(min(a, b));
|
|
bvec4 isNaNA = isnan(a);
|
|
bvec4 isNaNB = isnan(b);
|
|
bvec4 isNaN = bvec4(isNaNA.x || isNaNB.x, isNaNA.y || isNaNB.y, isNaNA.z || isNaNB.z, isNaNA.w || isNaNB.w);
|
|
`+fp+`
|
|
return result;
|
|
`,$K=ua({opSnippet:RK,packedOpSnippet:MK,cpuKernelImpl:kU}),_K={kernelName:Di,backendName:"webgl",kernelFunc:$K},PK=class{constructor(e,t,a){this.variableNames=["x"],this.outputShape=t.map((u,p)=>u[0]+e[p]+u[1]);let n=e.length,r=gt(n),s=t.map(u=>u[0]).join(","),i=t.map((u,p)=>u[0]+e[p]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,n),l=a==="reflect"?0:1;if(n===1){this.userCode=`
|
|
int start = ${s};
|
|
int end = ${i};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start) {
|
|
outC = start * 2 - outC - ${l};
|
|
} else if(outC >= end) {
|
|
outC = (end - 1) * 2 - outC + ${l};
|
|
}
|
|
setOutput(getX(outC - start));
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${s});
|
|
${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
for (int i = 0; i < ${n}; i++) {
|
|
if (outC[i] < start[i]) {
|
|
outC[i] = start[i] * 2 - outC[i] - ${l};
|
|
} else if(outC[i] >= end[i]) {
|
|
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
|
|
}
|
|
}
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
`}},FK=class{constructor(e,t,a){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,f)=>h[0]+e[f]+h[1]);let n=e.length,r=gt(n),s=t.map(h=>h[0]).join(","),i=t.map((h,f)=>h[0]+e[f]).join(","),o=va("rc",n),l=va("source",n),u=`${o[n-1]} < ${this.outputShape[n-1]}`,p=n===1?"source":`vec2(${l.slice(-2).join()})`,c=a==="reflect"?0:1,d="";if(n===1){let h=`
|
|
${r} source = rc;
|
|
if (source < start) {
|
|
source = start * 2 - source - ${c};
|
|
} else if (source >= end) {
|
|
source = (end - 1) * 2 - source + ${c};
|
|
}
|
|
source -= start;
|
|
`;d=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${p});
|
|
${o[n-1]} += 1;
|
|
if(${u}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${p});
|
|
}
|
|
`}else{let h=`
|
|
${r} source = rc;
|
|
${r} lt = ${r}(lessThan(source, start));
|
|
${r} gte = ${r}(greaterThanEqual(source, end));
|
|
${r} orig = 1 - (lt + gte);
|
|
source = orig * source +
|
|
lt * (start * 2 - source - ${c}) +
|
|
gte * ((end - 1) * 2 - source + ${c});
|
|
source -= start;
|
|
`;d=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${p});
|
|
${o[n-1]} += 1;
|
|
if(${u}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${p});
|
|
}
|
|
rc = outputLoc;
|
|
${o[n-2]} += 1;
|
|
if(${o[n-2]} < ${this.outputShape[n-2]}) {
|
|
${h}
|
|
result[2] = getChannel(getX(${l.join()}), ${p});
|
|
${o[n-1]} += 1;
|
|
if(${u}) {
|
|
${h}
|
|
result[3] = getChannel(getX(${l.join()}), ${p});
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
const ${r} start = ${r}(${s});
|
|
const ${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${d}
|
|
setOutput(result);
|
|
}
|
|
`}},OK=({inputs:e,backend:t,attrs:a})=>{let{x:n}=e,{paddings:r,mode:s}=a,i=B().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new FK(n.shape,r,s):new PK(n.shape,r,s);return t.runWebGLProgram(i,[n],n.dtype)},DK={kernelName:zi,backendName:"webgl",kernelFunc:OK},zK=`if (b == 0.0) return NAN;
|
|
return mod(a, b);`,LK=`
|
|
vec4 result = mod(a, b);
|
|
bvec4 isNaN = equal(b, vec4(0.0));
|
|
`+fp+`
|
|
return result;
|
|
`,BK=ua({opSnippet:zK,packedOpSnippet:LK}),WK={kernelName:Ll,backendName:"webgl",kernelFunc:BK},VK=class{constructor(e,t,a){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,a],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
|
|
float r = random(seed);
|
|
float cdf = 0.0;
|
|
|
|
for (int i = 0; i < ${t-1}; i++) {
|
|
cdf += getProbs(batch, i);
|
|
|
|
if (r < cdf) {
|
|
setOutput(float(i));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If no other event happened, last event happened.
|
|
setOutput(float(${t-1}));
|
|
}
|
|
`}},UK=`
|
|
if (a == b) {
|
|
return 1.0;
|
|
};
|
|
return a / b;`,GK=`
|
|
// vec4 one = vec4(equal(a, b));
|
|
// return one + (vec4(1.0) - one) * a / b;
|
|
vec4 result = a / b;
|
|
if(a.x == b.x) {
|
|
result.x = 1.;
|
|
}
|
|
if(a.y == b.y) {
|
|
result.y = 1.;
|
|
}
|
|
if(a.z == b.z) {
|
|
result.z = 1.;
|
|
}
|
|
if(a.w == b.w) {
|
|
result.w = 1.;
|
|
}
|
|
|
|
return result;
|
|
`,pv=ua({opSnippet:UK,packedOpSnippet:GK,checkOutOfBounds:!0}),HK={kernelName:ci,backendName:"webgl",kernelFunc:pv},Nx="return a - b;",cv=ua({opSnippet:Nx,packedOpSnippet:Nx,supportsComplex:!0,cpuKernelImpl:VU}),jK={kernelName:po,backendName:"webgl",kernelFunc:cv};function hv(e){let{inputs:t,backend:a,attrs:n}=e,{logits:r}=t,{dim:s}=n,i=v.parseAxisParam([s],r.shape),o=dv({inputs:{x:r},backend:a,attrs:{reductionIndices:i,keepDims:!1}}),l=T.expandShapeToKeepDim(o.shape,i),u=pe({inputs:{x:o},backend:a,attrs:{shape:l}}),p=cv({inputs:{a:r,b:u},backend:a}),c=ov({inputs:{x:p},backend:a}),d=_h({inputs:{x:c},backend:a,attrs:{axis:i,keepDims:!1}}),h=pe({inputs:{x:d},backend:a,attrs:{shape:l}}),f=pv({inputs:{a:c,b:h},backend:a});return a.disposeIntermediateTensorInfo(o),a.disposeIntermediateTensorInfo(u),a.disposeIntermediateTensorInfo(p),a.disposeIntermediateTensorInfo(c),a.disposeIntermediateTensorInfo(d),a.disposeIntermediateTensorInfo(h),f}var qK={kernelName:oo,backendName:"webgl",kernelFunc:hv};function XK(e){let{inputs:t,backend:a,attrs:n}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=n,l=o?r:hv({inputs:{logits:r},backend:a,attrs:{dim:r.shape.length-1}}),u=l.shape[0],p=l.shape[1],c=new VK(u,p,s),d=[[i]],h=a.runWebGLProgram(c,[l],"int32",d);return o||a.disposeIntermediateTensorInfo(l),h}var KK={kernelName:sh,backendName:"webgl",kernelFunc:XK},ZK=Cn+`
|
|
return -x;
|
|
`,YK=`
|
|
vec4 result = -x;
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`;function JK(e){let{inputs:t,backend:a}=e,{x:n}=t;if(a.shouldExecuteOnCPU([n])){let s=a.texData.get(n.dataId),[i,o]=IU(s.values,n.shape,n.dtype);return a.makeTensorInfo(o,n.dtype,i)}let r;return B().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new Vr(n.shape,YK):r=new qn(n.shape,ZK),a.runWebGLProgram(r,[n],n.dtype)}var QK={kernelName:Bl,backendName:"webgl",kernelFunc:JK},eZ=Tn.nonMaxSuppressionV3Impl;function tZ(e){T.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:a,attrs:n}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=n,u=a.readSync(r.dataId),p=a.readSync(s.dataId),{selectedIndices:c}=eZ(u,p,i,o,l);return a.makeTensorInfo([c.length],"int32",new Int32Array(c))}var aZ={kernelName:Wi,backendName:"webgl",kernelFunc:tZ},nZ=Tn.nonMaxSuppressionV4Impl;function rZ(e){T.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:a,attrs:n}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=n,p=a.readSync(r.dataId),c=a.readSync(s.dataId),{selectedIndices:d,validOutputs:h}=nZ(p,c,i,o,l,u);return[a.makeTensorInfo([d.length],"int32",new Int32Array(d)),a.makeTensorInfo([],"int32",new Int32Array([h]))]}var sZ={kernelName:Wl,backendName:"webgl",kernelFunc:rZ},iZ=Tn.nonMaxSuppressionV5Impl;function oZ(e){T.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:a,attrs:n}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=n,p=a.readSync(r.dataId),c=a.readSync(s.dataId),d=i,h=o,f=l,m=u,{selectedIndices:g,selectedScores:x}=iZ(p,c,d,h,f,m);return[a.makeTensorInfo([g.length],"int32",new Int32Array(g)),a.makeTensorInfo([x.length],"float32",new Float32Array(x))]}var lZ={kernelName:Vi,backendName:"webgl",kernelFunc:oZ},uZ=class{constructor(e,t,a,n){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int index = round(getIndices(coords.x));
|
|
setOutput(mix(float(${n}), float(${a}),
|
|
float(index == coords.y)));
|
|
}
|
|
`}},dZ=e=>{let{inputs:t,backend:a,attrs:n}=e,{indices:r}=t,{dtype:s,depth:i,onValue:o,offValue:l}=n,u=v.sizeFromShape(r.shape),p=new uZ(u,i,o,l),c=pe({inputs:{x:r},backend:a,attrs:{shape:[u]}}),d=a.runWebGLProgram(p,[c],s);a.disposeIntermediateTensorInfo(c);let h=[...r.shape,i],f=pe({inputs:{x:d},backend:a,attrs:{shape:h}});return a.disposeIntermediateTensorInfo(d),f},pZ={kernelName:Ui,backendName:"webgl",kernelFunc:dZ};function Vc(e){let{inputs:t,backend:a}=e,{x:n}=t;if(n.dtype==="complex64"){let r=gp({inputs:{input:n},backend:a}),s=Vc({inputs:{x:r},backend:a}),i=Ph({inputs:{input:n},backend:a}),o=Vc({inputs:{x:i},backend:a}),l=us({inputs:{real:s,imag:o},backend:a});return a.disposeIntermediateTensorInfo(r),a.disposeIntermediateTensorInfo(s),a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}else return xp({attrs:{shape:n.shape,dtype:n.dtype,value:n.dtype==="string"?"":0},backend:a})}var cZ={kernelName:nu,backendName:"webgl",kernelFunc:Vc};function fv(e){let{inputs:t,backend:a}=e,{x:n}=t;if(n.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(n.dtype==="complex64"){let r=gp({inputs:{input:n},backend:a}),s=fv({inputs:{x:r},backend:a}),i=Ph({inputs:{input:n},backend:a}),o=Vc({inputs:{x:i},backend:a}),l=us({inputs:{real:s,imag:o},backend:a});return a.disposeIntermediateTensorInfo(r),a.disposeIntermediateTensorInfo(s),a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}else return xp({attrs:{shape:n.shape,dtype:n.dtype,value:1},backend:a})}var hZ={kernelName:Vl,backendName:"webgl",kernelFunc:fv};function fZ(e){let{inputs:t,backend:a,attrs:n}=e,{axis:r}=n;if(t.length===1)return I2({inputs:{input:t[0]},backend:a,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(p=>{v.assertShapesMatch(s,p.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===p.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(p=>{let c=I2({inputs:{input:p},backend:a,attrs:{dim:r}});return o.push(c),c}),u=Q6({inputs:l,backend:a,attrs:{axis:r}});return o.forEach(p=>a.disposeIntermediateTensorInfo(p)),u}var mZ={kernelName:Ul,backendName:"webgl",kernelFunc:fZ},gZ=class{constructor(e,t,a){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let n=e.length,r=gt(n),s=t.map(l=>l[0]).join(","),i=t.map((l,u)=>l[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,n);if(n===1){this.userCode=`
|
|
int start = ${s};
|
|
int end = ${i};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start || outC >= end) {
|
|
setOutput(value);
|
|
} else {
|
|
setOutput(getX(outC - start));
|
|
}
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${s});
|
|
${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
|
|
setOutput(value);
|
|
} else {
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
}
|
|
`}},xZ=class{constructor(e,t,a){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let n=e.length,r=gt(n),s=t.map(f=>f[0]).join(","),i=t.map((f,m)=>f[0]+e[m]).join(","),o=va("rc",n),l=va("source",n),u=`${o[n-1]} < ${this.outputShape[n-1]}`,p=n===1?"source":`vec2(${l.slice(-2).join()})`,c=[`${r} rc = outputLoc;`,`${o[n-1]} += 1;
|
|
if(${u}) {
|
|
`,n===1?"":`}
|
|
rc = outputLoc;
|
|
${o[n-2]} += 1;
|
|
if(${o[n-2]} < ${this.outputShape[n-2]}) {`,n===1?"":` ${o[n-1]} += 1;
|
|
if(${u}) {`],d=n===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let f=0,m=n===1?2:4;f<m;f++)h+=`
|
|
${c[f]}
|
|
if (${d}) {
|
|
result[${f}] = float(value);
|
|
} else {
|
|
${r} source = rc - start;
|
|
result[${f}] = getChannel(getX(${l.join()}), ${p});
|
|
}
|
|
`;h+=n===1?"} ":"}}",this.userCode=`
|
|
const ${r} start = ${r}(${s});
|
|
const ${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${h}
|
|
setOutput(result);
|
|
}
|
|
`}},mv=e=>{let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{paddings:s,constantValue:i}=n;if(v.sizeFromShape(r.shape)===0){let u=s.map((p,c)=>p[0]+r.shape[c]+p[1]);return xp({backend:a,attrs:{shape:u,value:i,dtype:r.dtype}})}let o=B().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new xZ(r.shape,s,i):new gZ(r.shape,s,i),l=[[i]];return a.runWebGLProgram(o,[r],r.dtype,l)},yZ={kernelName:Gi,backendName:"webgl",kernelFunc:mv},AZ=`
|
|
if(a < 0.0 && floor(b) < b){
|
|
return NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
return (round(mod(b, 2.0)) != 1) ?
|
|
pow(abs(a), b) : sign(a) * pow(abs(a), b);
|
|
`,bZ=`
|
|
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
|
|
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
|
|
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
|
|
vec4 result = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
bvec4 isExpZero = equal(b, vec4(0.0));
|
|
result.r = isExpZero.r ? 1.0 : result.r;
|
|
result.g = isExpZero.g ? 1.0 : result.g;
|
|
result.b = isExpZero.b ? 1.0 : result.b;
|
|
result.a = isExpZero.a ? 1.0 : result.a;
|
|
|
|
bvec4 isNaN1 = lessThan(a, vec4(0.0));
|
|
bvec4 isNaN2 = lessThan(floor(b), b);
|
|
bvec4 isNaN = bvec4(isNaN1.x && isNaN2.x, isNaN1.y && isNaN2.y, isNaN1.z && isNaN2.z, isNaN1.w && isNaN2.w);
|
|
`+fp+`
|
|
return result;
|
|
`,vZ=ua({opSnippet:AZ,packedOpSnippet:bZ}),kZ={kernelName:Hi,backendName:"webgl",kernelFunc:vZ};function wZ(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s,keepDims:i}=n,o=r.shape.length,l=[],u=v.parseAxisParam(s,r.shape),p=u,c=T.getAxesPermutation(p,o),d=r;c!=null&&(d=Ia({inputs:{x:r},backend:a,attrs:{perm:c}}),p=T.getInnerMostAxes(p.length,o),l.push(d)),T.assertAxesAreInnerMostDims("prod",p,o);let h;if(a.shouldExecuteOnCPU([d])){let f=a.texData.get(d.dataId).values,{outVals:m,outShape:g,outDtype:x}=TU(d.shape,d.dtype,f,p);h=a.makeTensorInfo(g,x,m)}else{let[f,m]=T.computeOutAndReduceShapes(d.shape,p),g=v.sizeFromShape(m),x=pe({inputs:{x:d},backend:a,attrs:{shape:[-1,g]}}),y=Kd(r.dtype),A=vo(x,y,"prod",a);h=pe({inputs:{x:A},backend:a,attrs:{shape:f}}),l.push(x),l.push(A)}if(i){l.push(h);let f=T.expandShapeToKeepDim(h.shape,u);h=pe({inputs:{x:h},backend:a,attrs:{shape:f}})}return l.forEach(f=>a.disposeIntermediateTensorInfo(f)),h}var IZ={kernelName:qi,backendName:"webgl",kernelFunc:wZ};function SZ(e){let{inputs:t,backend:a,attrs:n}=e,{paramsNestedSplits:r,paramsDenseValues:s,indices:i}=t,{outputRaggedRank:o}=n,l=r.map(x=>a.readSync(x.dataId)),u=r.map(x=>x.shape),p=a.readSync(s.dataId),c=a.readSync(i.dataId),[d,h,f]=CU(l,u,p,s.shape,s.dtype,c,i.shape,o),m=d.map(x=>a.makeTensorInfo([x.length],"int32",x)),g=a.makeTensorInfo(f,s.dtype,h);return m.concat([g])}var TZ={kernelName:ih,backendName:"webgl",kernelFunc:SZ};function CZ(e){let{inputs:t,backend:a}=e,{starts:n,limits:r,deltas:s}=t,i=a.readSync(n.dataId),o=a.readSync(r.dataId),l=a.readSync(s.dataId),[u,p]=NU(i,n.shape,n.dtype,o,r.shape,l,s.shape),c=a.makeTensorInfo([u.length],"int32",u),d=a.makeTensorInfo([p.length],n.dtype,p);return[c,d]}var NZ={kernelName:oh,backendName:"webgl",kernelFunc:CZ};function EZ(e){let{inputs:t,backend:a,attrs:n}=e,{shape:r,values:s,defaultValue:i,rowPartitionTensors:o}=t,{rowPartitionTypes:l}=n,u=a.readSync(r.dataId),p=a.readSync(s.dataId),c=a.readSync(i.dataId),d=o.map(g=>a.readSync(g.dataId)),h=o.map(g=>g.shape),[f,m]=EU(u,r.shape,p,s.shape,s.dtype,c,i.shape,d,h,l);return a.makeTensorInfo(f,s.dtype,m)}var RZ={kernelName:lh,backendName:"webgl",kernelFunc:EZ},gv=e=>{let{backend:t,attrs:a}=e,{start:n,stop:r,step:s,dtype:i}=a,o=RU(n,r,s,i);return t.makeTensorInfo([o.length],i,o)},MZ={kernelName:Gl,backendName:"webgl",kernelFunc:gv},$Z="return 1.0 / x;",_Z=Qe({opSnippet:$Z}),PZ={kernelName:Xi,backendName:"webgl",kernelFunc:_Z},FZ=Cn+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,OZ=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,DZ=Qe({opSnippet:FZ,packedOpSnippet:OZ}),zZ={kernelName:Ki,backendName:"webgl",kernelFunc:DZ},LZ=Cn+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,BZ=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,WZ=Qe({opSnippet:LZ,packedOpSnippet:BZ}),VZ={kernelName:Ji,backendName:"webgl",kernelFunc:WZ},UZ=class{constructor(e,t,a,n,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,a,l];let u=[n&&t>1?i-1:i,n&&a>1?o-1:o],p=[n&&t>1?t-1:t,n&&a>1?a-1:a],c;r?c="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":c="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/p[0]},
|
|
${u[1]/p[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${c};
|
|
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
|
|
ivec2 sourceCeilRC = ivec2(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
float newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},GZ=class{constructor(e,t,a,n,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,a,l];let u=[n&&t>1?i-1:i,n&&a>1?o-1:o],p=[n&&t>1?t-1:t,n&&a>1?a-1:a],c;r?c="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":c="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/p[0]},
|
|
${u[1]/p[1]},
|
|
${u[1]/p[1]});
|
|
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
|
|
${o}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${c};
|
|
|
|
// Compute the four integer indices.
|
|
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
|
|
ivec3 sourceCeilRC = ivec3(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${a-1};
|
|
|
|
// In parallel, construct four corners for all four components in
|
|
// packed 2x2 cell.
|
|
vec4 topLeft = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomLeft = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 topRight = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomRight = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
|
|
|
|
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
|
|
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
|
|
vec4 newValue = mix(top, bottom, fracRC.x);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function HZ(e){let{inputs:t,backend:a,attrs:n}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=n,[l,u]=o,p=B().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new GZ(r.shape,l,u,s,i):new UZ(r.shape,l,u,s,i);return a.runWebGLProgram(p,[r],"float32")}var jZ={kernelName:Yi,backendName:"webgl",kernelFunc:HZ},qZ=class{constructor(e,t,a){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,n,r]=t,[,s,i]=e,o=[a&&s>1?n-1:n,a&&i>1?r-1:r],l=[a&&s>1?s-1:s,a&&i>1?i-1:i],u=o[0]/l[0],p=o[1]/l[1],c=1/u,d=1/p,h=Math.ceil(c)*2+2,f=Math.ceil(d)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${p});
|
|
|
|
const float invHeightScale = float(${c});
|
|
const float invWidthScale = float(${d});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(startRLerp - float(winHeight / 2));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(startCLerp - float(winWidth / 2));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float dxR = float(dyR) * heightScale;
|
|
int topDxRIndex = int(floor(dxR));
|
|
int bottomDxRIndex = int(min(ceil(dxR), ${n-1}.0));
|
|
float dxRLerp = dxR - float(topDxRIndex);
|
|
float inverseDxRLerp = 1.0 - dxRLerp;
|
|
|
|
float dxC = float(dyC) * widthScale;
|
|
int leftDxCIndex = int(floor(dxC));
|
|
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
|
|
float dxCLerp = dxC - float(leftDxCIndex);
|
|
float inverseDxCLerp = 1.0 - dxCLerp;
|
|
|
|
if (r == topDxRIndex && c == leftDxCIndex) {
|
|
// topLeft
|
|
accumulator +=
|
|
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == topDxRIndex && c == rightDxCIndex) {
|
|
// topRight
|
|
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == leftDxCIndex) {
|
|
// bottomLeft
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == rightDxCIndex) {
|
|
// bottomRight
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function XZ(e){let{inputs:t,backend:a,attrs:n}=e,{images:r,dy:s}=t,{alignCorners:i}=n,o=new qZ(s.shape,r.shape,i);return a.runWebGLProgram(o,[s],s.dtype)}var KZ={kernelName:j2,backendName:"webgl",kernelFunc:XZ},ZZ=class{constructor(e,t,a,n,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,a,l];let u=[n&&t>1?i-1:i,n&&a>1?o-1:o],p=[n&&t>1?t-1:t,n&&a>1?a-1:a],c=n?"0.5":"0.0",d;r?d="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/p[0]},
|
|
${u[1]/p[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestRC = ivec2(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${c})));
|
|
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},YZ=class{constructor(e,t,a,n,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,a,l];let u=[n&&t>1?i-1:i,n&&a>1?o-1:o],p=[n&&t>1?t-1:t,n&&a>1?a-1:a],c=n?"0.5":"0.0",d;r?d="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/p[0]},
|
|
${u[1]/p[1]},
|
|
${u[1]/p[1]});
|
|
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
|
|
${o}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec3 sourceNearestRC = ivec3(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${c})));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${a-1};
|
|
|
|
vec4 newValue = vec4(
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function JZ(e){let{inputs:t,backend:a,attrs:n}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=n,[l,u]=o,p=B().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new YZ(r.shape,l,u,s,i):new ZZ(r.shape,l,u,s,i);return a.runWebGLProgram(p,[r],r.dtype)}var QZ={kernelName:Zi,backendName:"webgl",kernelFunc:JZ},eY=class{constructor(e,t,a){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,n,r]=t,[,s,i]=e,o=[a&&s>1?n-1:n,a&&i>1?r-1:r],l=[a&&s>1?s-1:s,a&&i>1?i-1:i],u=o[0]/l[0],p=o[1]/l[1],c=1/u,d=1/p,h=Math.ceil(c)*2+2,f=Math.ceil(d)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${p});
|
|
|
|
const float invHeightScale = float(${c});
|
|
const float invWidthScale = float(${d});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float sourceFracRow =
|
|
float(${o[0]}) *
|
|
(float(dyR) / float(${l[0]}));
|
|
|
|
float sourceFracCol =
|
|
float(${o[1]}) *
|
|
(float(dyC) / float(${l[1]}));
|
|
|
|
int sourceNearestRow = int(min(
|
|
float(int(${n}) - 1),
|
|
${a} ? float(round(sourceFracRow)) :
|
|
float(floor(sourceFracRow))));
|
|
|
|
int sourceNearestCol = int(min(
|
|
float(int(${r}) - 1),
|
|
${a} ? float(round(sourceFracCol)) :
|
|
float(floor(sourceFracCol))));
|
|
|
|
if (r == sourceNearestRow && c == sourceNearestCol) {
|
|
accumulator += getDy(b, dyR, dyC, d);
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function tY(e){let{inputs:t,backend:a,attrs:n}=e,{images:r,dy:s}=t,{alignCorners:i}=n,o=new eY(s.shape,r.shape,i);return a.runWebGLProgram(o,[s],s.dtype)}var aY={kernelName:H2,backendName:"webgl",kernelFunc:tY},nY=class{constructor(e,t){this.variableNames=["x"];let a=e.length;if(a>4)throw new Error(`WebGL backend: Reverse of rank-${a} tensor is not yet supported`);if(this.outputShape=e,a===1){this.userCode=`
|
|
void main() {
|
|
int coord = getOutputCoords();
|
|
setOutput(getX(${e[0]} - coord - 1));
|
|
}
|
|
`;return}let n=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,r=e.map((i,o)=>n(o)).join(","),s=gt(a);this.userCode=`
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
setOutput(getX(${r}));
|
|
}
|
|
`}},rY=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let a=e.length;if(a>4)throw new Error(`WebGL backend: Reverse of rank-${a} tensor is not yet supported`);this.outputShape=e;let n=va("rc",a),r=`${n[a-1]} + 1 < ${this.outputShape[a-1]}`,s=`${n[a-2]} + 1 < ${this.outputShape[a-2]}`,i=gt(a);a===1?this.userCode=`
|
|
void main(){
|
|
int rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = getChannel(getX(${e[0]} - rc - 1),
|
|
${e[0]} - rc - 1);
|
|
if(${r}){
|
|
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
|
|
${e[0]} - (rc + 1) - 1);
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`:this.userCode=`
|
|
void main() {
|
|
${i} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = ${o(n.slice())};
|
|
if(${r}){
|
|
result.g = ${l(n.slice())};
|
|
}
|
|
if(${s}) {
|
|
result.b = ${u(n.slice())};
|
|
if(${r}) {
|
|
result.a = ${p(n.slice())};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`;function o(h){return c(h)}function l(h){return h[a-1]="("+h[a-1]+" + 1)",c(h)}function u(h){return h[a-2]="("+h[a-2]+" + 1)",c(h)}function p(h){return h[a-1]="("+h[a-1]+" + 1)",h[a-2]="("+h[a-2]+" + 1)",c(h)}function c(h){let f=e.map((x,y)=>d(y,h)),m=f.join(","),g=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${g}))`}function d(h,f){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${f[h]} - 1`:`${f[h]}`}}};function sY(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{dims:s}=n,i=r.shape.length,o=v.parseAxisParam(s,r.shape);if(i===0)return Za({inputs:{x:r},backend:a});let l=B().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new rY(r.shape,o):new nY(r.shape,o);return a.runWebGLProgram(l,[r],r.dtype)}var iY={kernelName:Qi,backendName:"webgl",kernelFunc:sY},oY=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let a=e[1],n=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
|
|
vec3 fill = vec3(${t.join(",")});
|
|
float outputValue = fill[coords[3]];`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
float coordXFloat = (float(x) - params[0]) * params[3] -
|
|
(float(y) - params[1]) * params[2];
|
|
float coordYFloat = (float(x) - params[0]) * params[2] +
|
|
(float(y) - params[1]) * params[3];
|
|
int coordX = int(round(coordXFloat + params[0]));
|
|
int coordY = int(round(coordYFloat + params[1]));
|
|
${r}
|
|
if(coordX >= 0 && coordX < ${n} && coordY >= 0 && coordY < ${a}) {
|
|
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},lY={kernelName:go,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:a})=>{let{image:n}=e,{radians:r,fillValue:s,center:i}=t,o=a,l=new oY(n.shape,s),[u,p]=T.getImageCenter(i,n.shape[1],n.shape[2]),c=[[u,p,Math.sin(r),Math.cos(r)]];return o.runWebGLProgram(l,[n],n.dtype,c)}},uY=`
|
|
// OpenGL ES does not support round function.
|
|
// The algorithm is based on banker's rounding.
|
|
float base = floor(x);
|
|
if ((x - base) < 0.5) {
|
|
return floor(x);
|
|
} else if ((x - base) > 0.5) {
|
|
return ceil(x);
|
|
} else {
|
|
if (mod(base, 2.0) == 0.0) {
|
|
return base;
|
|
} else {
|
|
return base + 1.0;
|
|
}
|
|
}
|
|
`,dY=Qe({opSnippet:uY}),pY={kernelName:eo,backendName:"webgl",kernelFunc:dY},cY="return inversesqrt(x);",hY=Qe({opSnippet:cY,cpuKernelImpl:MU}),fY={kernelName:to,backendName:"webgl",kernelFunc:hY},xv=class{constructor(e,t,a,n,r,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=gt(r.length),l=gt(s.length),u="";a===1?u="i":a===2&&(u="i, j");let p=`getIndices(${u})`,c="";n===1?c="i":n===2&&(c="i, coords[1]");let d=`getUpdates(${c})`,h=t>1?"strides[j]":"strides";this.userCode=`
|
|
${o} strides = ${o}(${r});
|
|
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
float sum = 0.0;
|
|
bool found = false;
|
|
for (int i = 0; i < ${e}; i++) {
|
|
int flattenedIndex = 0;
|
|
for (int j = 0; j < ${t}; j++) {
|
|
int index = round(${p});
|
|
flattenedIndex += index * ${h};
|
|
}
|
|
if (flattenedIndex == coords[0]) {
|
|
sum += ${d};
|
|
found = true;
|
|
}
|
|
}
|
|
setOutput(mix(getDefaultValue(), sum, float(found)));
|
|
}
|
|
`}};function mY(e){let{inputs:t,backend:a,attrs:n}=e,{indices:r,updates:s}=t,{shape:i}=n,{sliceRank:o,numUpdates:l,sliceSize:u,strides:p,outputSize:c}=T.calculateShapes(s,r,i),d=[c/u,u];if(c===0)return a.makeTensorInfo(i,r.dtype);let h=pe({inputs:{x:r},backend:a,attrs:{shape:[l,o]}}),f=pe({inputs:{x:s},backend:a,attrs:{shape:[l,u]}}),m=a.makeTensorInfo([],"float32",new Float32Array([0])),g=new xv(l,o,h.shape.length,f.shape.length,p,d),x=a.runWebGLProgram(g,[f,h,m],f.dtype),y=pe({inputs:{x},backend:a,attrs:{shape:i}});return a.disposeIntermediateTensorInfo(h),a.disposeIntermediateTensorInfo(f),a.disposeIntermediateTensorInfo(x),a.disposeIntermediateTensorInfo(m),y}var gY={kernelName:ao,backendName:"webgl",kernelFunc:mY},xY=class{constructor(e,t,a,n){this.variableNames=["sortedSequence","values"],this.customUniforms=[{name:"numInputs",type:"int"}],this.outputShape=[e,a];let r="while (left < right) {",s=`for (int i = 0; i < ${Math.ceil(Math.log2(t+1))}; ++i) { if (left >= right) break;`,i=B().getNumber("WEBGL_VERSION")===2?r:s,o=n==="left"?"<":"<=";this.userCode=`
|
|
int findBound(int batch, float value) {
|
|
int left = 0;
|
|
int right = numInputs;
|
|
int mid;
|
|
${i}
|
|
mid = (left + right) / 2;
|
|
if (getSortedSequence(batch, mid) ${o} value) {
|
|
left = mid + 1;
|
|
} else {
|
|
right = mid;
|
|
}
|
|
}
|
|
return right;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int valueIndex = coords[1];
|
|
|
|
float value = getValues(batch, valueIndex);
|
|
|
|
setOutput(float(findBound(batch, value)));
|
|
}
|
|
`}};function yY(e){let{inputs:t,backend:a,attrs:n}=e,{sortedSequence:r,values:s}=t,{side:i}=n,o=new xY(r.shape[0],r.shape[1],s.shape[1],i),l=[[r.shape[1]]];return a.runWebGLProgram(o,[r,s],"int32",l)}var AY={kernelName:Ld,backendName:"webgl",kernelFunc:yY},bY=class{constructor(e,t,a){this.variableNames=["c","a","b"],this.outputShape=t;let n,r;if(a>4)throw Error(`Where for rank ${a} is not yet supported`);if(a===1)r="resRC",n="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let u=0;u<t.length;u++)l.push(`${i[u]}`),u<e&&o.push(`${i[u]}`);n=o.join(),r=l.join()}let s=gt(a);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
float cVal = getC(${n});
|
|
if (cVal >= 1.0) {
|
|
setOutput(getA(${r}));
|
|
} else {
|
|
setOutput(getB(${r}));
|
|
}
|
|
}
|
|
`}};function vY(e){let{inputs:t,backend:a}=e,{condition:n,t:r,e:s}=t,i=new bY(n.shape.length,r.shape,r.shape.length);return a.runWebGLProgram(i,[n,r,s],ha(r.dtype,s.dtype))}var kY={kernelName:jl,backendName:"webgl",kernelFunc:vY},wY=`
|
|
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
|
|
// see: https://arxiv.org/abs/1706.02515
|
|
float scaleAlpha = ${T.SELU_SCALEALPHA};
|
|
float scale = ${T.SELU_SCALE};
|
|
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
|
|
`,IY=Qe({opSnippet:wY}),SY={kernelName:ql,backendName:"webgl",kernelFunc:IY},TY=mu+`
|
|
return 1.0 / (1.0 + exp(-1.0 * x));
|
|
`,CY=`
|
|
vec4 result = 1.0 / (1.0 + exp(-1.0 * x));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,NY=Qe({opSnippet:TY,packedOpSnippet:CY,cpuKernelImpl:_U}),EY={kernelName:ro,backendName:"webgl",kernelFunc:NY},RY=`
|
|
if (isnan(x)) { return 0.0; }
|
|
return sign(x);
|
|
`,MY=Qe({opSnippet:RY}),$Y={kernelName:Zl,backendName:"webgl",kernelFunc:MY},_Y=mu+`
|
|
return sin(x);
|
|
`,PY=Qe({opSnippet:_Y}),FY={kernelName:no,backendName:"webgl",kernelFunc:PY},OY=`
|
|
float e2x = exp(x);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,DY=Qe({opSnippet:OY}),zY={kernelName:Kl,backendName:"webgl",kernelFunc:DY},LY=`
|
|
float epsilon = 1.1920928955078125e-7;
|
|
float threshold = log(epsilon) + 2.0;
|
|
|
|
bool too_large = x > -threshold;
|
|
bool too_small = x < threshold;
|
|
|
|
float result;
|
|
float exp_x = exp(x);
|
|
|
|
if (too_large){
|
|
result = x;
|
|
}
|
|
else if (too_small){
|
|
result = exp_x;
|
|
}
|
|
else{
|
|
result = log(exp_x + 1.0);
|
|
}
|
|
return result;
|
|
`,BY=Qe({opSnippet:LY}),WY={kernelName:Yl,backendName:"webgl",kernelFunc:BY},VY=e=>{let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{blockShape:s,paddings:i}=n;v.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((x,y)=>x*y),l=[[0,0]];l.push(...i);for(let x=1+s.length;x<r.shape.length;++x)l.push([0,0]);let u=[],p=mv({inputs:{x:r},backend:a,attrs:{paddings:l,constantValue:0}}),c=T.getReshaped(p.shape,s,o,!1),d=T.getPermuted(c.length,s.length,!1),h=T.getReshapedPermuted(p.shape,s,o,!1),f=pe({inputs:{x:p},backend:a,attrs:{shape:c}}),m=Ia({inputs:{x:f},backend:a,attrs:{perm:d}}),g=pe({inputs:{x:m},backend:a,attrs:{shape:h}});return u.push(p),u.push(f),u.push(m),u.forEach(x=>a.disposeIntermediateTensorInfo(x)),g},UY={kernelName:Jl,backendName:"webgl",kernelFunc:VY};function GY(e){let{inputs:t,backend:a}=e,{indices:n,values:r,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${s.shape}`);if(n.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${n.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${i.shape}`);let o=a.readSync(n.dataId),l=a.readSync(r.dataId),u=a.readSync(s.dataId),p=a.readSync(i.dataId)[0],[c,d,h,f,m]=FU(o,n.shape,n.dtype,l,r.dtype,u,p);return[a.makeTensorInfo(d,n.dtype,c),a.makeTensorInfo([d[0]],r.dtype,h),a.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),a.makeTensorInfo([m.length],n.dtype,new Int32Array(m))]}var HY={kernelName:Bd,backendName:"webgl",kernelFunc:GY};function jY(e){let{inputs:t,backend:a}=e,{inputIndices:n,inputShape:r,newShape:s}=t;if(n.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${n.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(a.readSync(r.dataId)),o=a.readSync(n.dataId),l=Array.from(a.readSync(s.dataId)),[u,p,c]=OU(o,n.shape,n.dtype,i,l);return[a.makeTensorInfo(p,n.dtype,u),a.makeTensorInfo([c.length],s.dtype,new Int32Array(c))]}var qY={kernelName:eu,backendName:"webgl",kernelFunc:jY};function XY(e){let{inputs:t,backend:a}=e,{data:n,indices:r,segmentIds:s}=t;if(n.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);let i=a.readSync(n.dataId),o=a.readSync(r.dataId),l=a.readSync(s.dataId),[u,p]=L6(i,n.shape,n.dtype,o,l,!0);return a.makeTensorInfo(p,n.dtype,u)}var KY={kernelName:Wd,backendName:"webgl",kernelFunc:XY};function ZY(e){let{inputs:t,backend:a}=e,{data:n,indices:r,segmentIds:s}=t;if(n.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);let i=a.readSync(n.dataId),o=a.readSync(r.dataId),l=a.readSync(s.dataId),[u,p]=L6(i,n.shape,n.dtype,o,l);return a.makeTensorInfo(p,n.dtype,u)}var YY={kernelName:Vd,backendName:"webgl",kernelFunc:ZY};function JY(e){let{inputs:t,backend:a,attrs:n}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=n,{sliceRank:l,numUpdates:u,sliceSize:p,strides:c,outputSize:d}=T.calculateShapes(s,r,o),h=!1;if(s.dtype==="string"){let x=a.bufferSync(r),y=a.bufferSync(s),A=v.decodeString(a.readSync(i.dataId)[0]),b=$U(x,y,o,d,p,u,l,c,A,h);return a.makeTensorInfo(o,b.dtype,b.values)}let f=new xv(u,l,r.shape.length,s.shape.length,c,[d,1],h),m=a.runWebGLProgram(f,[s,r,i],s.dtype),g=pe({inputs:{x:m},backend:a,attrs:{shape:o}});return a.disposeIntermediateTensorInfo(m),g}var QY={kernelName:Ud,backendName:"webgl",kernelFunc:JY};function eJ(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=n,o=v.parseAxisParam(i,r.shape)[0],l=T.prepareSplitSize(r,s,o),u=r.shape.length,p=new Array(u).fill(0),c=r.shape.slice();return l.map(d=>{let h=[...c];h[o]=d;let f=gu({inputs:{x:r},backend:a,attrs:{begin:p,size:h}});return p[o]+=d,f})}var tJ={kernelName:Ql,backendName:"webgl",kernelFunc:eJ},Ex="return sqrt(x);",aJ=Qe({opSnippet:Ex,packedOpSnippet:Ex,cpuKernelImpl:DU}),nJ={kernelName:so,backendName:"webgl",kernelFunc:aJ},rJ="return x * x;",sJ=Qe({opSnippet:rJ}),iJ={kernelName:Gd,backendName:"webgl",kernelFunc:sJ},Rx="return (a - b) * (a - b);",oJ=ua({opSnippet:Rx,packedOpSnippet:Rx}),lJ={kernelName:lo,backendName:"webgl",kernelFunc:oJ};function uJ({inputs:e,attrs:t,backend:a}){let{x:n}=e,r=Cn+`
|
|
return x > 0.0 ? 1.0 : float(${t.alpha});
|
|
`,s=new qn(n.shape,r);return a.runWebGLProgram(s,[n],n.dtype)}var dJ={kernelName:ss,backendName:"webgl",kernelFunc:uJ},pJ=class{constructor(e,t,a){this.variableNames=["x"],this.outputShape=a;let n=a.length,r=gt(a.length),s=gt(a.length),i="";if(n===1)i="coords * strides + begin";else{let o=0;i=a.map((l,u)=>(o++,a.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${o-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=`
|
|
${r} begin = ${r}(${e});
|
|
${r} strides = ${r}(${t});
|
|
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
setOutput(getX(${i}));
|
|
}
|
|
`}};function cJ(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:p,newAxisMask:c,shrinkAxisMask:d}=n,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:x,begin:y,end:A,strides:b}=St.sliceInfo(r.shape,s,i,o,l,u,p,c,d),k;if(m)k=pe({inputs:{x:r},backend:a,attrs:{shape:f}});else if(g||x){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let C=St.computeOutShape(y,A,b),E=gu({inputs:{x:r},backend:a,attrs:{begin:y,size:C}});k=pe({inputs:{x:E},backend:a,attrs:{shape:f}}),a.disposeIntermediateTensorInfo(E)}else if(a.shouldExecuteOnCPU([r])){let C=a.readSync(r.dataId),E=_e(r.shape,r.dtype,C),_=zU(h,E,b,y);k=a.makeTensorInfo(f,r.dtype,_.values)}else{let C=new pJ(y,b,h);k=a.runWebGLProgram(C,[r],r.dtype)}let S=pe({inputs:{x:k},backend:a,attrs:{shape:f}});return a.disposeIntermediateTensorInfo(k),S}var hJ={kernelName:uo,backendName:"webgl",kernelFunc:cJ};function fJ(e){let{inputs:t,backend:a,attrs:n}=e,{separator:r,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=n,{data:p,dataSplits:c}=t,d=a.readSync(p.dataId),h=a.readSync(c.dataId),[f,m]=LU(d,h,r,s,i,o,l,u);return[a.makeTensorInfo([f.length],"string",f),a.makeTensorInfo(c.shape,"int32",m)]}var mJ={kernelName:tu,backendName:"webgl",kernelFunc:fJ};function gJ(e){let{inputs:t,backend:a,attrs:n}=e,{skipEmpty:r}=n,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=a.readSync(s.dataId),l=a.readSync(i.dataId)[0],[u,p,c]=BU(o,l,r),d=p.length;return[a.makeTensorInfo([d,2],"int32",u),a.makeTensorInfo([d],"string",p),a.makeTensorInfo([2],"int32",new Int32Array(c))]}var xJ={kernelName:Hd,backendName:"webgl",kernelFunc:gJ};function yJ(e){let{inputs:t,backend:a,attrs:n}=e,{numBuckets:r}=n,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let i=a.readSync(s.dataId),o=WU(i,r);return a.makeTensorInfo(s.shape,"int32",o)}var AJ={kernelName:jd,backendName:"webgl",kernelFunc:yJ},bJ="return tan(x);",vJ=Qe({opSnippet:bJ}),kJ={kernelName:co,backendName:"webgl",kernelFunc:vJ},wJ=`
|
|
float e2x = exp(-2.0 * abs(x));
|
|
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,IJ=Qe({opSnippet:wJ}),SJ={kernelName:ho,backendName:"webgl",kernelFunc:IJ},TJ=class{constructor(e,t){this.variableNames=["A"];let a=new Array(e.length);for(let s=0;s<a.length;s++)a[s]=e[s]*t[s];this.outputShape=a,this.rank=a.length;let n=gt(this.rank),r=CJ(e);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function CJ(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let a=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],n=[];for(let r=0;r<e.length;r++)n.push(`imod(${a[r]}, ${e[r]})`);return n.join()}function yv(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{reps:s}=n;if(r.dtype==="string"||r.shape.length>5){let o=a.readSync(r.dataId),l=r.dtype==="string"?o.map(c=>v.decodeString(c)):o,u=_e(r.shape,r.dtype,l),p=UU(u,s);return a.makeTensorInfo(p.shape,p.dtype,p.values)}let i=new TJ(r.shape,s);return a.runWebGLProgram(i,[r],r.dtype)}var NJ={kernelName:rs,backendName:"webgl",kernelFunc:yv},EJ=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// We compare elements pair-wise within a group of size 2 * inc.
|
|
// The comparing rule for each group alternates between ascending
|
|
// and descending. Within each group, we compare each pair at
|
|
// positions i and i+inc. To decide whether an element at position i
|
|
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
|
|
// inc, it is in the first half of the group, we denote it as x0,
|
|
// otherwise we denote it as x1.
|
|
// For example, as shown in the Bitonic top K paper referenced above,
|
|
// Figure5(a) shows that element[1] is in the
|
|
// second half of the group when group size is 2, but it is in the
|
|
// first half of the group when group size is 4.
|
|
|
|
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
|
|
int i = isFirstInPair ? elemIdx : elemIdx - inc;
|
|
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
|
|
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
|
|
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
|
|
|
|
// Denotes which direction indices are in (ascending or descending).
|
|
bool reverse = imod(elemIdx, 2 * dir) >= dir;
|
|
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
|
|
if (reverse == isGreater) { // Elements in opposite order of direction
|
|
int iTemp = i0;
|
|
i0 = i1;
|
|
i1 = iTemp;
|
|
}
|
|
if (isFirstInPair) {
|
|
setOutput(float(i0));
|
|
} else {
|
|
setOutput(float(i1));
|
|
}
|
|
}
|
|
`}},RJ=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// The output size is half of the previous size.
|
|
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
|
|
// we only need to output the indices at positions |, the indices at
|
|
// positions _ can be thrown away, see Figure5(b) After Phase 2
|
|
// (Merge phase) in the Bitonic Top K paper referenced above.
|
|
// For example, the paper shows we only need to output the orange bars.
|
|
// The output sequence should look like this | | | | | | | |.
|
|
// Because the sequence is halved, to map the output index back
|
|
// to the previous sequence to find the corresponding value,
|
|
// we need to double the index. When we double the index,
|
|
// we basically interpolate a position, so 2i looks like
|
|
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
|
|
// of each 2k positions by - elemIdx % k. E.g. for output at
|
|
// index 4,5,6,7, we want to get the corresponding element at
|
|
// original index 8,9,10,11, for output at index 8,9,10,11,
|
|
// we want to get the corresponding element at original index
|
|
// 16,17,18,19, so on and so forth.
|
|
|
|
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
|
|
|
|
float x0 = getX(batch, i0);
|
|
float x1 = i1 < n ? getX(batch, i1) : x0;
|
|
|
|
setOutput(x0 >= x1 ? float(i0) : float(i1));
|
|
}
|
|
`}};function Rs(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function Mx(e){let t=1;for(;t<e;)t*=2;return t}function MJ(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{k:s,sorted:i}=n,o=B().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),l=B().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),u=r.shape,p=u[u.length-1];if(a.shouldExecuteOnCPU([r])||p<o||s>l){let _=a.readSync(r.dataId),[$,M]=GU(_,u,r.dtype,s,i);return[a.makeTensorInfo($.shape,$.dtype,$.values),a.makeTensorInfo(M.shape,M.dtype,M.values)]}if(s===0)return u[u.length-1]=0,[a.makeTensorInfo(u,r.dtype,[]),a.makeTensorInfo(u,"int32",[])];if(p===1)return[r,xp({attrs:{shape:u,dtype:"int32",value:0},backend:a})];let c=a.texData.get(r.dataId),d=c!==null&&c.isPacked,h=d?a.unpackTensor(r):r,f=v.sizeFromShape(u)/p,m=pe({inputs:{x:h},attrs:{shape:[f,p]},backend:a});d&&Rs(a,h);let g=Mx(s),x=Mx(p),y=null,A=()=>y===null?[m,m]:[m,y],b=(_,$,M)=>{let I=A(),N=new EJ(M),O=[[p],[y===null?1:0],[Number.NEGATIVE_INFINITY],[_],[$]],L=y;y=a.runWebGLProgram(N,I,"int32",O),Rs(a,L)};for(let _=1;_<g;_*=2){let $=_*2;for(let M=_;M>=1;M/=2)b($,M,[f,x])}for(let _=x;_>g;_/=2){let $=A(),M=new RJ([f,_/2]),I=[[p],[y===null?1:0],[g]],N=y;y=a.runWebGLProgram(M,$,"int32",I),Rs(a,N);let O=g/2,L=O*2;for(let W=O;W>=1;W/=2)b(L,W,y.shape)}let k=y;y=gu({inputs:{x:y},backend:a,attrs:{begin:0,size:[f,s]}}),Rs(a,k);let S=uv({inputs:{x:m,indices:y},backend:a,attrs:{axis:1,batchDims:1}});Rs(a,m);let C=u.slice(0,-1);C.push(s),k=y,y=pe({inputs:{x:y},attrs:{shape:C},backend:a}),Rs(a,k);let E=S;return S=pe({inputs:{x:S},attrs:{shape:C},backend:a}),Rs(a,E),[S,y]}var $J={kernelName:fo,backendName:"webgl",kernelFunc:MJ},_J=class{constructor(e,t,a,n,r,s){this.variableNames=["Image","Transforms"],this.outputShape=s;let i=a==="nearest"?1:2,o;switch(n){case"constant":o=1;break;case"reflect":o=2;break;case"wrap":o=3;break;case"nearest":o=4;break;default:o=1;break}this.userCode=`
|
|
float mapCoord(float outCoord, float len) {
|
|
float inCoord = outCoord;
|
|
if(${o} == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
inCoord -= sz2 * float(int(float(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${o} == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord -= len * float(int(float(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${o} == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
} else {
|
|
return outCoord;
|
|
}
|
|
}
|
|
|
|
float readWithFillValue(int batch, int coordY, int coordX,
|
|
int channel) {
|
|
float outputValue;
|
|
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = float(${r});
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
float outputValue;
|
|
int batch = coords[0];
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
int channel = coords[3];
|
|
float xf = float(x);
|
|
float yf = float(y);
|
|
float a1 = getTransforms(batch, 0);
|
|
float a2 = getTransforms(batch, 1);
|
|
float a3 = getTransforms(batch, 2);
|
|
float b1 = getTransforms(batch, 3);
|
|
float b2 = getTransforms(batch, 4);
|
|
float b3 = getTransforms(batch, 5);
|
|
float c1 = getTransforms(batch, 6);
|
|
float c2 = getTransforms(batch, 7);
|
|
float projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = float(${r});
|
|
} else {
|
|
float inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
float inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
float mapX = mapCoord(inX, float(${t}));
|
|
float mapY = mapCoord(inY, float(${e}));
|
|
|
|
if (${i} == 1) {
|
|
int coordY = int(round(mapY));
|
|
int coordX = int(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
float yFloor = floor(mapY);
|
|
float xFloor = floor(mapX);
|
|
float yCeil = yFloor + 1.0;
|
|
float xCeil = xFloor + 1.0;
|
|
float valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
|
|
float valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}};function PJ(e){let{inputs:t,backend:a,attrs:n}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=n,[p,c,d,h]=r.shape,[f,m]=u!=null?u:[c,d],g=[p,f,m,h],x=new _J(c,d,i,o,l,g);return a.runWebGLProgram(x,[r,s],"float32")}var FJ={kernelName:mo,backendName:"webgl",kernelFunc:PJ};function OJ(e){let{inputs:t,attrs:a,backend:n}=e,{axis:r}=a,{x:s}=t;uu(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=n.readSync(s.dataId),{outputValues:o,outputShape:l,indices:u}=HU(i,r,s.shape,s.dtype);return[n.makeTensorInfo(l,s.dtype,o),n.makeTensorInfo([u.length],"int32",u)]}var DJ={kernelName:uh,backendName:"webgl",kernelFunc:OJ};function zJ(e){let{inputs:t,backend:a,attrs:n}=e,{value:r}=t,{axis:s}=n;s<0&&(s+=r.shape.length);let i=r,o=i.shape.length,l=r.shape[s],u=new Array(o-1),p=0;for(let m=0;m<o;m++)m!==s&&(u[p++]=i.shape[m]);let c=[],d=new Array(o).fill(0),h=i.shape.slice();h[s]=1;let f=new Array(l);for(let m=0;m<f.length;m++){d[s]=m;let g=gu({inputs:{x:i},backend:a,attrs:{begin:d,size:h}}),x=pe({inputs:{x:g},backend:a,attrs:{shape:u}});f[m]=x,c.push(g)}return c.forEach(m=>a.disposeIntermediateTensorInfo(m)),f}var LJ={kernelName:au,backendName:"webgl",kernelFunc:zJ},BJ=class{constructor(e,t){this.variableNames=["x","segmentIds"];let a=e.windowSize,n=e.batchSize,r=e.inSize,s=e.numSegments,i=s*Math.ceil(r/a);this.outputShape=[n,i];let o="0.0",l="sumValue",u=Math.floor(a/4)*4,p=a%4,c=`
|
|
sumValue += dot(values, segFilter);
|
|
`,d="";r%a>0&&(d=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`);let h="";r%a>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return -1.0;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${o};
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${d}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
float getSegmentIdAtIndex(int inIdx) {
|
|
${h}
|
|
return getSegmentIds(inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = int(floor(float(outIdx) / float(
|
|
${s})) * float(${a}));
|
|
int currentSeg = int(mod(float(outIdx), float(${s})));
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
|
|
);
|
|
|
|
${c}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${p===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${c}
|
|
} else if (${p===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${c}
|
|
} else if (${p===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
0
|
|
);
|
|
|
|
${c}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function WJ(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,segmentIds:s}=t,{numSegments:i}=n,o=r.shape.length,l=[],u=0,p=T.getAxesPermutation([u],o),c=r;p!=null&&(c=Ia({inputs:{x:r},backend:a,attrs:{perm:p}}),l.push(c),u=T.getInnerMostAxes(1,o)[0]);let d=T.segment_util.computeOutShape(c.shape,u,i),h=v.sizeFromShape([c.shape[u]]),f=pe({inputs:{x:c},backend:a,attrs:{shape:[-1,h]}});l.push(f);let m=Kd(r.dtype),g=(b,k,S,C,E)=>{let _=b.shape[0],$=b.shape[1],M=T.segment_util.segOpComputeOptimalWindowSize($,E),I={windowSize:M,inSize:$,batchSize:_,numSegments:E},N=new BJ(I,k),O=a.compileAndRun(N,[b,S],C);if(l.push(O),O.shape[1]===E)return O;let L=gv({backend:a,attrs:{start:0,stop:E,step:1,dtype:"float32"}}),W=yv({inputs:{x:L},backend:a,attrs:{reps:[$/M]}});return l.push(L),l.push(W),g(O,k,W,C,E)},x=g(f,"unsortedSegmentSum",s,m,i),y=pe({inputs:{x},backend:a,attrs:{shape:d}}),A=y;if(p!=null){l.push(y);let b=T.getUndoAxesPermutation(p);A=Ia({inputs:{x:A},backend:a,attrs:{perm:b}})}return l.forEach(b=>a.disposeIntermediateTensorInfo(b)),A}var VJ={kernelName:dh,backendName:"webgl",kernelFunc:WJ},UJ=[zG,BG,UG,jG,XG,YG,QG,tH,sH,oH,dH,hH,gH,bH,wH,SH,CH,MH,_H,FH,LH,jH,XH,ZH,aj,rj,lj,vG,pj,gj,bj,Tj,Nj,Rj,$j,Pj,Dj,Bj,Uj,Hj,qj,Kj,Jj,eq,rq,iq,uq,cq,fq,yq,kq,Tq,Eq,$q,_q,Fq,Dq,Lq,Wq,Uq,qq,Zq,Qq,tX,rX,oX,pX,mX,bG,xX,fj,bX,wX,TX,wG,RX,PX,OX,BX,UX,qX,ZX,eK,rK,oK,uK,hK,mK,xK,vK,wK,SK,CK,EK,_K,DK,WK,KK,TG,QK,aZ,sZ,lZ,JH,pZ,hZ,mZ,yZ,kZ,SG,IZ,TZ,NZ,RZ,MZ,QH,HK,PZ,zZ,VZ,NG,jZ,KZ,QZ,aY,iY,lY,pY,fY,gY,AY,kY,SY,EY,$Y,FY,zY,GH,qK,WY,UY,HY,qY,KY,YY,QY,tJ,nJ,iJ,lJ,dJ,hJ,mJ,xJ,AJ,jK,FG,kJ,SJ,NJ,$J,FJ,OG,DJ,LJ,VJ,cZ];for(let e of UJ)mn(e);var Ct;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Ct||(Ct={}));var vd;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu"})(vd||(vd={}));var Av;function GJ(e){Av=e.wasm.cwrap(jr,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function HJ(e){let{inputs:t,backend:a,attrs:n}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:p,leakyreluAlpha:c}=n,d=a.dataIdMap.get(r.dataId).id,h=a.dataIdMap.get(s.dataId).id,f=0;if(i!=null){let E=a.dataIdMap.get(i.dataId);if(E.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${E.shape.length}.`);f=E.id}let m=o==null?0:a.dataIdMap.get(o.dataId).id,g=vd[p];if(g==null)throw new Error(`${p} activation not yet supported for FusedConv2D in the wasm backend.`);let x=l?r.shape[2]:r.shape[1],y=u?s.shape[1]:s.shape[2],A=yo.assertAndGetBroadcastShape(r.shape.slice(0,-2),s.shape.slice(0,-2)),b=a.makeOutput([...A,x,y],r.dtype),k=a.dataIdMap.get(b.dataId).id,S=new Uint8Array(new Int32Array(r.shape).buffer),C=new Uint8Array(new Int32Array(s.shape).buffer);return Av(d,S,r.shape.length,h,C,s.shape.length,l,u,g,f,m,c||0,k),b}var jJ={kernelName:jr,backendName:"wasm",setupFunc:GJ,kernelFunc:HJ};function Bt(e,t){let a;function n(s){a=s.wasm.cwrap(e,null,["number","number","number"])}function r(s){let{backend:i,inputs:{x:o}}=s,l=i.dataIdMap.get(o.dataId).id,u=i.makeOutput(o.shape,t||o.dtype),p=i.dataIdMap.get(u.dataId).id;return v.sizeFromShape(u.shape)===0||a(l,Ct[o.dtype],p),u}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:r}}var qJ=Bt(vl);function da(e,t,a){let n;function r(i){n=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:u,b:p}=l,c=o.dataIdMap.get(u.dataId).id,d=o.dataIdMap.get(p.dataId).id,h=a!=null?a:u.dtype,f=T.assertAndGetBroadcastShape(u.shape,p.shape),m=o.makeOutput(f,h);if(v.sizeFromShape(f)===0)return m;let g=new Uint8Array(new Int32Array(u.shape).buffer),x=new Uint8Array(new Int32Array(p.shape).buffer),y=o.dataIdMap.get(m.dataId).id;return n(c,g,u.shape.length,d,x,p.shape.length,Ct[u.dtype],y),m}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:s}}var XJ=!0,KJ=da(as,XJ),bv;function ZJ(e){bv=e.wasm.cwrap(Ks,null,["array","number","number","number"])}function YJ(e){let{inputs:t,backend:a}=e,n=a.makeOutput(t[0].shape,t[0].dtype);if(v.sizeFromShape(n.shape)===0)return n;let r=t.map(o=>a.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(r).buffer),i=a.dataIdMap.get(n.dataId).id;return bv(s,r.length,Ct[n.dtype],i),n}var JJ={kernelName:Ks,backendName:"wasm",setupFunc:ZJ,kernelFunc:YJ};function Fh(e){let{inputs:{x:t},backend:a}=e;if(t.dtype==="string")return Ve(a.readSync(t.dataId),t.shape,t.dtype);let n=a.makeOutput(t.shape,t.dtype),r=a.typedArrayFromHeap(t);return a.typedArrayFromHeap(n).set(r),n}var QJ={kernelName:wi,backendName:"wasm",kernelFunc:Fh},vv;function eQ(e){vv=e.wasm.cwrap(yr,null,["number","array","number","number","number","array","number"])}function es(e){let{inputs:t,backend:a,attrs:n}=e,[r,s]=aQ(t.x.shape,n.perm),i=!0;for(let f=0;f<s.length;f++)s[f]!==f&&(i=!1);let o=tQ(t.x.shape,n.perm),l={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(i){let f=Fh({inputs:t,backend:a});return f.shape=o,f}let u=a.makeOutput(o,l.dtype),p=a.dataIdMap.get(l.dataId).id,c=a.dataIdMap.get(u.dataId).id,d=new Uint8Array(new Int32Array(s).buffer),h=new Uint8Array(new Int32Array(l.shape).buffer);return vv(p,h,l.shape.length,Ct[l.dtype],c,d,s.length),u}function tQ(e,t){let a=new Array(e.length);for(let n=0;n<a.length;n++)a[n]=e[t[n]];return a}function aQ(e,t){let a=[],n=[];for(let r=0;r<e.length;++r)e[r]!==1&&a.push(e[r]),e[t[r]]!==1&&n.push(t[r]);for(let r=0;r<n.length;++r){let s=-1;for(let i=0;i<n.length;++i)n[i]>=r&&(s===-1||n[s]>n[i])&&(s=i);n[s]=r}return[a,n]}var nQ={kernelName:yr,backendName:"wasm",kernelFunc:es,setupFunc:eQ};function ds(e,t,a){let n=e.shape,r=e.shape.length,s=v.parseAxisParam(t,n),i=s,o=T.getAxesPermutation(i,r),l=null,u=!1;if(o!=null){let p=new Array(r);for(let d=0;d<p.length;d++)p[d]=n[o[d]];i=T.getInnerMostAxes(i.length,r),l=es({inputs:{x:e},attrs:{perm:o},backend:a});let c=a.dataIdMap.get(e.dataId).id;a.dataIdMap.get(l.dataId).id!==c&&(u=!0)}return{transposed:l,originalAxes:s,axes:i,inputWasTransposed:u}}var kv;function rQ(e){kv=e.wasm.cwrap(Zs,null,["number, number, number"])}function sQ(e){let{backend:t,inputs:a,attrs:n}=e,{axis:r,keepDims:s}=n,{x:i}=a,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:p,originalAxes:c,inputWasTransposed:d}=ds(i,r,t);if(d){let y=t.dataIdMap.get(u.dataId).id;l=u,o=y}let h=l.shape.length;T.assertAxesAreInnerMostDims("all",p,h);let[f,m]=T.computeOutAndReduceShapes(l.shape,p),g=v.sizeFromShape(m),x=t.makeOutput(f,i.dtype);if(v.sizeFromShape(l.shape)!==0){let y=t.dataIdMap.get(x.dataId).id;kv(o,g,y)}if(d&&t.disposeData(u.dataId),s){let y=T.expandShapeToKeepDim(x.shape,c);x.shape=y}return x}var iQ={kernelName:Zs,backendName:"wasm",setupFunc:rQ,kernelFunc:sQ},wv;function oQ(e){wv=e.wasm.cwrap(Ys,null,["number, number, number"])}function lQ(e){let{backend:t,inputs:a,attrs:n}=e,{axis:r,keepDims:s}=n,{x:i}=a,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:p,originalAxes:c,inputWasTransposed:d}=ds(i,r,t);if(d){let y=t.dataIdMap.get(u.dataId).id;l=u,o=y}let h=l.shape.length;T.assertAxesAreInnerMostDims("any",p,h);let[f,m]=T.computeOutAndReduceShapes(l.shape,p),g=v.sizeFromShape(m),x=t.makeOutput(f,i.dtype);if(v.sizeFromShape(l.shape)!==0){let y=t.dataIdMap.get(x.dataId).id;wv(o,g,y)}if(d&&t.disposeData(u.dataId),s){let y=T.expandShapeToKeepDim(x.shape,c);x.shape=y}return x}var uQ={kernelName:Ys,backendName:"wasm",setupFunc:oQ,kernelFunc:lQ},Iv;function dQ(e){Iv=e.wasm.cwrap(Js,null,["number","number","number","number","number"])}function pQ(e){let{backend:t,inputs:a,attrs:n}=e,{axis:r}=n,{x:s}=a,i=t.dataIdMap.get(s.dataId).id,o=i,l=s,{transposed:u,axes:p,inputWasTransposed:c}=ds(s,r,t);if(c){let x=t.dataIdMap.get(u.dataId).id;x!==i&&(l=u,o=x)}let d=l.shape.slice(0,-1),h=t.makeOutput(d,"int32"),f=t.dataIdMap.get(h.dataId).id,m=v.sizeFromShape(h.shape),g=l.shape[p[0]];return Iv(o,Ct[l.dtype],m,g,f),c&&t.disposeData(u.dataId),h}var cQ={kernelName:Js,backendName:"wasm",kernelFunc:pQ,setupFunc:dQ},Sv;function hQ(e){Sv=e.wasm.cwrap(Qs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function fQ(e){let{inputs:t,attrs:a,backend:n}=e,r=t.x,s=n.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a,p=T.computePool2DInfo(r.shape,i,o,1,l,u),c=p.filterHeight,d=p.filterWidth,h=p.padInfo.top,f=p.padInfo.right,m=p.padInfo.bottom,g=p.padInfo.left,x=p.strideHeight,y=p.strideWidth,A=p.inChannels;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);if(p.dilationWidth!==1||p.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${p.dilationHeight}, ${p.dilationWidth}].`);let b=n.makeOutput(p.outShape,"float32"),k=n.dataIdMap.get(b.dataId).id;return Sv(s,r.shape[0],r.shape[1],r.shape[2],c,d,h,f,m,g,x,y,A,k),b}var mQ={kernelName:Qs,backendName:"wasm",setupFunc:hQ,kernelFunc:fQ};function za(e){let{inputs:t,attrs:a}=e,{x:n}=t,{shape:r}=a,s=v.sizeFromShape(n.shape),i=v.inferFromImplicitShape(r,s);return v.assert(s===v.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${n.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(n.dataId),{dataId:n.dataId,shape:i,dtype:n.dtype}}var gQ={kernelName:Hl,backendName:"wasm",kernelFunc:za},Tv;function xQ(e){Tv=e.wasm.cwrap(ei,null,["number","array","number","number","array","number","number","number","number"])}function yQ(e){let{inputs:t,backend:a,attrs:n}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=n;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,u=s.shape.length,p=i?r.shape[l-2]:r.shape[l-1],c=o?s.shape[u-1]:s.shape[u-2],d=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[u-2]:s.shape[u-1],f=r.shape.slice(0,-2),m=s.shape.slice(0,-2),g=v.sizeFromShape(f),x=v.sizeFromShape(m),y=yo.assertAndGetBroadcastShape(r.shape.slice(0,-2),s.shape.slice(0,-2)).concat([d,h]);v.assert(p===c,()=>`Error in matMul: inner shapes (${p}) and (${c}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let A=i?[g,p,d]:[g,d,p],b=o?[x,h,c]:[x,c,h],k=za({inputs:{x:r},backend:a,attrs:{shape:A}}),S=za({inputs:{x:s},backend:a,attrs:{shape:b}}),C=a.dataIdMap.get(k.dataId).id,E=a.dataIdMap.get(S.dataId).id,_=i?k.shape[2]:k.shape[1],$=o?S.shape[1]:S.shape[2],M=Math.max(g,x),I=a.makeOutput([M,_,$],k.dtype),N=a.dataIdMap.get(I.dataId).id,O=new Uint8Array(new Int32Array(k.shape).buffer),L=new Uint8Array(new Int32Array(S.shape).buffer);return Tv(C,O,k.shape.length,E,L,S.shape.length,i,o,N),a.disposeData(k.dataId),a.disposeData(S.dataId),I.shape=y,I}var AQ={kernelName:ei,backendName:"wasm",setupFunc:xQ,kernelFunc:yQ};function qs(e){let{inputs:{x:t},attrs:{begin:a,size:n},backend:r}=e,[s,i]=St.parseSliceParams(t,a,n),o=St.isSliceContinous(t.shape,s,i),l=r.readSync(t.dataId),u=r.makeOutput(i,t.dtype),p=v.computeStrides(t.shape),c=r.dataIdMap.get(u.dataId);if(o){let f=St.computeFlatOffset(s,p);return t.dtype==="string"?c.stringBytes=l.slice(f,f+v.sizeFromShape(i)):r.typedArrayFromHeap(u).set(l.subarray(f,f+v.sizeFromShape(i))),u}if(t.dtype==="string"){let f=Oc(l,s,i,t.shape,t.dtype);return c.stringBytes=f,u}let d=r.typedArrayFromHeap(u),h=t.shape.length;if(h===2)bQ(l,p[0],d,s,i);else if(h===3)vQ(l,p[0],p[1],d,s,i);else if(h===4)kQ(l,p[0],p[1],p[2],d,s,i);else{let f=Oc(l,s,i,t.shape,t.dtype);d.set(f)}return u}function bQ(e,t,a,n,r){let s=0,i=n[0],o=n[1],l=i+r[0];for(let u=i;u<l;u++){let p=u*t+o;a.set(e.subarray(p,p+r[1]),s),s+=r[1]}}function vQ(e,t,a,n,r,s){let i=0,o=r[0],l=r[1],u=r[2],p=o+s[0],c=l+s[1];for(let d=o;d<p;d++)for(let h=l;h<c;h++){let f=d*t+h*a+u;n.set(e.subarray(f,f+s[2]),i),i+=s[2]}}function kQ(e,t,a,n,r,s,i){let o=0,l=s[0],u=s[1],p=s[2],c=l+i[0],d=u+i[1],h=p+i[2],f=s[3];for(let m=l;m<c;m++)for(let g=u;g<d;g++)for(let x=p;x<h;x++){let y=m*t+g*a+x*n+f;r.set(e.subarray(y,y+i[3]),o),o+=i[3]}}var wQ={kernelName:Xl,backendName:"wasm",kernelFunc:qs};function IQ(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{blockShape:s,crops:i}=n,o=s.reduce((x,y)=>x*y),l=T.getReshaped(r.shape,s,o),u=T.getPermuted(l.length,s.length),p=T.getReshapedPermuted(r.shape,s,o),c=T.getSliceBeginCoords(i,s.length),d=T.getSliceSize(p,i,s.length),h=za({inputs:{x:r},backend:a,attrs:{shape:l}}),f=es({inputs:{x:h},backend:a,attrs:{perm:u}}),m=za({inputs:{x:f},backend:a,attrs:{shape:p}}),g=qs({inputs:{x:m},backend:a,attrs:{begin:c,size:d}});return a.disposeData(h.dataId),a.disposeData(f.dataId),a.disposeData(h.dataId),g}var SQ={kernelName:El,backendName:"wasm",kernelFunc:IQ};function xu(e){let{inputs:{x:t},attrs:{dtype:a},backend:n}=e,r=n.makeOutput(t.shape,a),s=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(r).set(s),r}var TQ={kernelName:ti,backendName:"wasm",kernelFunc:xu},CQ=Bt(ai),Cv;function NQ(e){Cv=e.wasm.cwrap(ns,null,["number","number","number","number"])}function EQ(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=n,o=a.dataIdMap.get(r.dataId).id,l=a.makeOutput(r.shape,r.dtype),u=a.dataIdMap.get(l.dataId).id;return Cv(o,s,i,u),l}var RQ={kernelName:ns,backendName:"wasm",setupFunc:NQ,kernelFunc:EQ};function Nv(e){let{inputs:t,backend:a}=e,n=v.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=t.map(h=>h.shape);T.assertParamsConsistent(r,n);let s=T.computeOutShape(t.map(h=>h.shape),n),i=t.filter(h=>v.sizeFromShape(h.shape)>0);if(i.length===1)return Fh({inputs:{x:i[0]},backend:a});let o=a.makeOutput(s,t[0].dtype);if(v.sizeFromShape(s)===0)return o;if(i[0].dtype==="string"){let h=i.map(A=>{let b=[-1,v.sizeFromShape(A.shape.slice(n))];return za({inputs:{x:A},backend:a,attrs:{shape:b}})}),f=h.map(A=>({vals:a.readSync(A.dataId),shape:A.shape}));s=T.computeOutShape(h.map(A=>A.shape),1);let m=h[0].shape[0]===1,g=l3(f,s,t[0].dtype,m),x=T.computeOutShape(i.map(A=>A.shape),n);o.shape=x;let y=a.dataIdMap.get(o.dataId);return y.stringBytes=T.fromStringArrayToUint8(g),h.forEach(A=>a.disposeData(A.dataId)),o}let l=v.sizeFromShape(i[0].shape.slice(0,n)),u=0,p=i.map(h=>{let f=v.sizeFromShape(h.shape.slice(n));return u+=f,f}),c=i.map(h=>a.typedArrayFromHeap(h)),d=a.typedArrayFromHeap(o);for(let h=0;h<l;h++){let f=h*u;for(let m=0;m<c.length;m++){let g=p[m],x=h*g,y=c[m].subarray(x,x+g);d.set(y,f),f+=g}}return o}var MQ={kernelName:Rl,backendName:"wasm",kernelFunc:Nv},Ev;function $Q(e){Ev=e.wasm.cwrap(ni,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function _Q(e){let{inputs:t,attrs:a,backend:n}=e,{x:r,filter:s}=t,i=n.dataIdMap.get(r.dataId).id,o=n.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:p,dimRoundingMode:c,dataFormat:d}=a,h=T.convertConv2DDataFormat(d),f=T.computeConv2DInfo(r.shape,s.shape,l,u,p,c,!1,h),m=f.filterHeight,g=f.filterWidth,x=f.padInfo.top,y=f.padInfo.right,A=f.padInfo.bottom,b=f.padInfo.left,k=f.dilationHeight,S=f.dilationWidth,C=f.strideHeight,E=f.strideWidth,_=f.inChannels,$=f.outChannels,M=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let I=n.makeOutput(f.outShape,"float32"),N=n.dataIdMap.get(I.dataId).id;return Ev(i,r.shape[0],r.shape[1],r.shape[2],o,m,g,x,y,A,b,M,k,S,C,E,_,$,N),I}var PQ={kernelName:ni,backendName:"wasm",setupFunc:$Q,kernelFunc:_Q},Rv;function FQ(e){Rv=e.wasm.cwrap(ri,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function OQ(e){let{backend:t,inputs:a,attrs:n}=e,{dy:r,filter:s}=a,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,inputShape:p}=n,c=1,d=T.convertConv2DDataFormat(l),h=T.computeConv2DInfo(p,s.shape,i,c,o,u,!1,d),{batchSize:f,filterHeight:m,filterWidth:g,inChannels:x,inHeight:y,inWidth:A,outChannels:b,outHeight:k,outWidth:S,strideHeight:C,strideWidth:E}=h,_=m-1-h.padInfo.top,$=g-1-h.padInfo.left,M=h.dataFormat==="channelsLast",I=v.computeStrides(h.inShape),N=v.computeStrides(r.shape),[O,L,W]=v.computeStrides(s.shape),G=I[0],H=M?I[1]:I[2],U=M?I[2]:1,j=M?1:I[1],V=N[0],Q=M?N[1]:N[2],Z=M?N[2]:1,re=M?1:N[1],ee=t.makeOutput(h.inShape,"float32"),fe=t.dataIdMap.get(ee.dataId).id,ie=t.dataIdMap.get(r.dataId).id,ye=t.dataIdMap.get(s.dataId).id;return Rv(ie,ye,f,m,g,y,A,x,k,S,b,C,E,_,$,O,L,W,G,H,U,j,V,Q,Z,re,fe),ee}var DQ={kernelName:ri,backendName:"wasm",setupFunc:FQ,kernelFunc:OQ},zQ=Bt(si),LQ=Bt(ii),S2;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(S2||(S2={}));var Mv;function BQ(e){Mv=e.wasm.cwrap(ui,null,["number","number","number","number","array","number","number","number","number","number"])}function WQ(e){let{backend:t,inputs:a,attrs:n}=e,{method:r,extrapolationValue:s,cropSize:i}=n,{image:o,boxes:l,boxInd:u}=a,p=l.shape[0],[c,d]=i,h=[p,c,d,o.shape[3]],f=t.dataIdMap.get(o.dataId),m;o.dtype!=="float32"&&(m=xu({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(m.dataId));let g=f.id,x=t.dataIdMap.get(l.dataId).id,y=t.dataIdMap.get(u.dataId).id,A=t.makeOutput(h,"float32"),b=t.dataIdMap.get(A.dataId).id,k=new Uint8Array(new Int32Array(o.shape).buffer);return Mv(g,x,y,p,k,c,d,S2[r],s,b),m!=null&&t.disposeData(m.dataId),A}var VQ={kernelName:ui,backendName:"wasm",setupFunc:BQ,kernelFunc:WQ},$v;function UQ(e){$v=e.wasm.cwrap(oi,null,["number","number","number","number","number","number"])}function GQ(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=n,l=r.shape.length;v.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumprod does not support ${r.dtype} tensors in the WASM backend`);let u=T.getAxesPermutation([s],l),p=r;u!==null&&(p=es({inputs:{x:r},attrs:{perm:u},backend:a}));let c=T.getInnerMostAxes(1,l)[0];T.assertAxesAreInnerMostDims("cumprod",[c],l);let d=a.makeOutput(p.shape,p.dtype),h=p.shape[c],f=a.dataIdMap.get(p.dataId).id,m=a.dataIdMap.get(d.dataId).id;$v(f,i?1:0,o?1:0,h,m,Ct[r.dtype]);let g=d;if(u!==null){let x=T.getUndoAxesPermutation(u);g=es({inputs:{x:d},attrs:{perm:x},backend:a}),a.disposeData(p.dataId),a.disposeData(d.dataId)}return g}var HQ={kernelName:oi,backendName:"wasm",setupFunc:UQ,kernelFunc:GQ},_v;function jQ(e){_v=e.wasm.cwrap(li,null,["number","number","number","number","number","number"])}function qQ(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=n,l=r.shape.length;v.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let u=T.getAxesPermutation([s],l),p=r;u!==null&&(p=es({inputs:{x:r},attrs:{perm:u},backend:a}));let c=T.getInnerMostAxes(1,l)[0];T.assertAxesAreInnerMostDims("cumsum",[c],l);let d=a.makeOutput(p.shape,p.dtype),h=p.shape[c],f=a.dataIdMap.get(p.dataId).id,m=a.dataIdMap.get(d.dataId).id;_v(f,i?1:0,o?1:0,h,m,Ct[r.dtype]);let g=d;if(u!==null){let x=T.getUndoAxesPermutation(u);g=es({inputs:{x:d},attrs:{perm:x},backend:a}),a.disposeData(p.dataId),a.disposeData(d.dataId)}return g}var XQ={kernelName:li,backendName:"wasm",setupFunc:jQ,kernelFunc:qQ},Pv;function KQ(e){Pv=e.wasm.cwrap(di,null,["number","number","number","array","number","array","array","number","number"])}function ZQ(e){let{backend:t,inputs:a,attrs:n}=e,{x:r}=a,{blockSize:s,dataFormat:i}=n,o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],u=i==="NHWC"?r.shape[2]:r.shape[3],p=i==="NHWC"?r.shape[3]:r.shape[1],c=l*s,d=u*s,h=p/(s*s),f=i==="NHWC"?[o,c,d,h]:[o,h,c,d],m=t.makeOutput(f,"float32"),g=t.dataIdMap.get(r.dataId).id,x=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),y=new Uint8Array(new Int32Array(f).buffer),A=new Uint8Array(new Int32Array(v.computeStrides(f)).buffer),b=t.dataIdMap.get(m.dataId).id;return Pv(g,s,i==="NHWC"?1:0,x,r.shape.length-1,y,A,f.length,b),m}var YQ={kernelName:di,backendName:"wasm",setupFunc:KQ,kernelFunc:ZQ},Fv;function JQ(e){Fv=e.wasm.cwrap(pi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function QQ(e){let{inputs:t,attrs:a,backend:n}=e,{x:r,filter:s}=t,i=n.dataIdMap.get(r.dataId).id,o=n.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:p,dimRoundingMode:c}=a,d=u==null?[1,1]:u,h=T.computeConv2DInfo(r.shape,s.shape,l,d,p,c,!0),f=h.filterHeight,m=h.filterWidth,g=h.padInfo.top,x=h.padInfo.right,y=h.padInfo.bottom,A=h.padInfo.left,b=h.dilationHeight,k=h.dilationWidth,S=h.strideHeight,C=h.strideWidth,E=h.inChannels,_=h.outChannels,$=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let M=n.makeOutput(h.outShape,"float32"),I=n.dataIdMap.get(M.dataId).id;return Fv(i,r.shape[0],r.shape[1],r.shape[2],o,f,m,g,x,y,A,$,b,k,S,C,E,_,I),M}var eee={kernelName:pi,backendName:"wasm",setupFunc:JQ,kernelFunc:QQ},tee=Bt(hi),aee=!1,nee=da(fi,aee,"bool"),ree=Bt(mi,"float32");function T2(e){let{inputs:t,attrs:a,backend:n}=e,{input:r}=t,{dim:s}=a,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(v.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),za({inputs:{x:r},backend:n,attrs:{shape:o}})}var see={kernelName:$l,backendName:"wasm",kernelFunc:T2};function Ov(e){let{attrs:{shape:t,value:a,dtype:n},backend:r}=e,s=r.makeOutput(t,n);return r.typedArrayFromHeap(s).fill(a),s}var iee={kernelName:Pl,backendName:"wasm",kernelFunc:Ov},Dv;function oee(e){Dv=e.wasm.cwrap(gi,null,["number","number","number","number","number","number"])}function lee(e){let{inputs:t,backend:a}=e,{image:n}=t,r=a.makeOutput(n.shape,n.dtype),s=a.dataIdMap.get(n.dataId).id,i=a.dataIdMap.get(r.dataId).id,[o,l,u,p]=n.shape;return Dv(s,o,l,u,p,i),r}var uee={kernelName:gi,backendName:"wasm",kernelFunc:lee,setupFunc:oee},dee=Bt(xi),pee=!1,cee=da(yi,pee),zv;function hee(e){zv=e.wasm.cwrap(Ai,null,["number","number","number","number","number","number","number"])}function fee(e){let{backend:t,inputs:a,attrs:n}=e,{varianceEpsilon:r}=n,{x:s,mean:i,variance:o,offset:l,scale:u}=a,p=t.dataIdMap.get(s.dataId).id,c=t.dataIdMap.get(i.dataId).id,d=t.dataIdMap.get(o.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,f=u!=null?t.dataIdMap.get(u.dataId).id:0,m=t.makeOutput(s.shape,s.dtype);if(v.sizeFromShape(s.shape)===0)return m;let g=t.dataIdMap.get(m.dataId).id;return zv(p,c,d,h,f,r,g),m}var mee={kernelName:Ai,backendName:"wasm",setupFunc:hee,kernelFunc:fee},Lv;function gee(e){Lv=e.wasm.cwrap(qr,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function xee(e){let{inputs:t,attrs:a,backend:n}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:p,dataFormat:c,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=a,m=T.computeConv2DInfo(r.shape,s.shape,l,p,u,d),g=vd[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let x=n.dataIdMap.get(r.dataId).id,y=n.dataIdMap.get(s.dataId).id,A=m.outChannels,b=0;if(i!=null){let Z=n.dataIdMap.get(i.dataId);if(Z.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${Z.shape.length}.`);if(Z.shape[0]!==A)throw new Error(`FusedConv2D bias shape (${Z.shape}) does not match the number of output channels (${A})`);b=Z.id}let k=m.filterHeight,S=m.filterWidth,C=m.padInfo.top,E=m.padInfo.right,_=m.padInfo.bottom,$=m.padInfo.left,M=m.dilationHeight,I=m.dilationWidth,N=m.strideHeight,O=m.strideWidth,L=m.inChannels,W=m.padInfo.type==="SAME"?1:0,G=m.batchSize,H=m.inHeight,U=m.inWidth;if(c!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${c}'. Please use 'NHWC'.`);let j=n.makeOutput(m.outShape,"float32"),V=n.dataIdMap.get(j.dataId).id,Q=o==null?0:n.dataIdMap.get(o.dataId).id;return Lv(x,G,H,U,y,k,S,b,C,E,_,$,W,M,I,N,O,L,A,g,Q,f||0,V),j}var yee={kernelName:qr,backendName:"wasm",setupFunc:gee,kernelFunc:xee},Bv;function Aee(e){Bv=e.wasm.cwrap(Xr,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function bee(e){let{inputs:t,attrs:a,backend:n}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:p,dataFormat:c,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=a,m=T.computeConv2DInfo(r.shape,s.shape,l,p,u,d,!0),g=vd[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let x=n.dataIdMap.get(r.dataId).id,y=n.dataIdMap.get(s.dataId).id,A=m.outChannels,b=0;if(i!=null){let Z=n.dataIdMap.get(i.dataId);if(Z.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${Z.shape.length}.`);if(Z.shape[0]!==A)throw new Error(`FusedDepthwiseConv2D bias shape (${Z.shape}) does not match the number of output channels (${A})`);b=Z.id}let k=m.filterHeight,S=m.filterWidth,C=m.padInfo.top,E=m.padInfo.right,_=m.padInfo.bottom,$=m.padInfo.left,M=m.dilationHeight,I=m.dilationWidth,N=m.strideHeight,O=m.strideWidth,L=m.inChannels,W=m.padInfo.type==="SAME"?1:0,G=m.batchSize,H=m.inHeight,U=m.inWidth;if(c!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${c}'. Please use 'NHWC'.`);let j=n.makeOutput(m.outShape,"float32"),V=n.dataIdMap.get(j.dataId).id,Q=o==null?0:n.dataIdMap.get(o.dataId).id;return Bv(x,G,H,U,y,k,S,b,C,E,_,$,W,M,I,N,O,L,A,g,Q,f||0,V),j}var vee={kernelName:Xr,backendName:"wasm",setupFunc:Aee,kernelFunc:bee},Wv;function kee(e){Wv=e.wasm.cwrap(bi,null,["number","number","number","number","number","number","array","number"])}function wee(e){let{backend:t,inputs:a}=e,{params:n,indices:r}=a,[s,i,o,l]=e3.prepareAndValidate(n,r),u=t.makeOutput(s,n.dtype);if(i===0)return u;let p=r.shape,c=p[p.length-1],d=t.dataIdMap.get(n.dataId).id,h=t.dataIdMap.get(r.dataId).id,f=new Uint8Array(new Int32Array(l).buffer),m=t.dataIdMap.get(u.dataId).id;return Wv(d,Ct[n.dtype],h,i,c,o,f,m),u}var Iee={kernelName:bi,backendName:"wasm",setupFunc:kee,kernelFunc:wee},Vv;function See(e){Vv=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function Tee(e){let{backend:t,inputs:a,attrs:n}=e,{x:r,indices:s}=a,{axis:i,batchDims:o}=n,l=v.parseAxisParam(i,r.shape)[0],u=t.readSync(s.dataId),p=r.shape[l];for(let C=0;C<u.length;++C){let E=u[C];v.assert(E<=p-1&&E>=0,()=>`GatherV2: the index value ${E} is not in [0, ${p-1}]`)}let c=T.segment_util.collectGatherOpShapeInfo(r,s,l,o),d=za({inputs:{x:r},attrs:{shape:[c.batchSize,c.outerSize,c.dimSize,c.sliceSize]},backend:t}),h=v.sizeFromShape(s.shape),f=za({inputs:{x:s},attrs:{shape:[c.batchSize,h/c.batchSize]},backend:t}),m=[c.batchSize,c.outerSize,h/c.batchSize,c.sliceSize],g=t.makeOutput(m,r.dtype);if(v.sizeFromShape(r.shape)===0)return g;let x=d.shape.length-1,y=t.dataIdMap.get(d.dataId).id,A=t.dataIdMap.get(f.dataId).id,b=t.dataIdMap.get(g.dataId).id,k=new Uint8Array(new Int32Array(v.computeStrides(d.shape)).buffer),S=new Uint8Array(new Int32Array(v.computeStrides(m)).buffer);return Vv(y,Ct[r.dtype],k,x,A,c.batchSize,S,b),t.disposeData(d.dataId),t.disposeData(f.dataId),g.shape=c.outputShape,g}var Cee={kernelName:Fl,backendName:"wasm",setupFunc:See,kernelFunc:Tee},Nee=!1,Eee=da(vi,Nee,"bool"),Ree=!1,Mee=da(ki,Ree,"bool"),$ee=Bt(Ii,"bool"),Uv;function _ee(e){Uv=e.wasm.cwrap(Si,null,["number","number","number","number"])}function Pee(e){let{inputs:{x:t},attrs:{alpha:a},backend:n}=e,r=n.dataIdMap.get(t.dataId).id,s=n.makeOutput(t.shape,"float32");if(v.sizeFromShape(t.shape)!==0){let i=n.dataIdMap.get(s.dataId).id;Uv(r,Ct[t.dtype],a,i)}return s}var Fee={kernelName:Si,backendName:"wasm",setupFunc:_ee,kernelFunc:Pee},Oee=!1,Dee=da(Ti,Oee,"bool"),zee=!1,Lee=da(Ci,zee,"bool"),Bee=Bt(Ni),Wee=!1,Vee=da(Ei,Wee,"bool"),Uee=Bt(Ri),Gee=!1,Hee=da(Mi,Gee,"bool"),jee=!1,qee=da(hy,jee,"bool"),Gv;function Xee(e){Gv=e.wasm.cwrap($i,null,["number","number","number","number"])}function Kee(e){let{backend:t,inputs:a,attrs:n}=e,{reductionIndices:r,keepDims:s}=n,{x:i}=a,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:p,originalAxes:c,inputWasTransposed:d}=ds(i,r,t);if(d){let y=t.dataIdMap.get(u.dataId).id;l=u,o=y}let h=l.shape.length;T.assertAxesAreInnerMostDims("max",p,h);let[f,m]=T.computeOutAndReduceShapes(l.shape,p),g=v.sizeFromShape(m),x=t.makeOutput(f,i.dtype);if(v.sizeFromShape(l.shape)!==0){let y=t.dataIdMap.get(x.dataId).id;Gv(o,Ct[i.dtype],g,y)}if(d&&t.disposeData(u.dataId),s){let y=T.expandShapeToKeepDim(x.shape,c);x.shape=y}return x}var Zee={kernelName:$i,backendName:"wasm",setupFunc:Xee,kernelFunc:Kee},Yee=!1,Jee=da(_i,Yee),Hv;function Qee(e){Hv=e.wasm.cwrap(Pi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function ete(e){let{inputs:t,attrs:a,backend:n}=e,r=t.x,s=n.dataIdMap.get(r.dataId).id;v.assert(r.dtype==="float32",()=>`Error in MaxPool: only float32 input is supported. Got ${r.dtype}.`);let{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a,p=T.computePool2DInfo(r.shape,i,o,1,l,u),c=p.filterHeight,d=p.filterWidth,h=p.padInfo.top,f=p.padInfo.right,m=p.padInfo.bottom,g=p.padInfo.left,x=p.dilationHeight,y=p.dilationWidth,A=p.strideHeight,b=p.strideWidth,k=p.inChannels,S=p.outChannels;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);let C=n.makeOutput(p.outShape,"float32"),E=n.dataIdMap.get(C.dataId).id;return Hv(s,r.shape[0],r.shape[1],r.shape[2],c,d,h,f,m,g,x,y,A,b,k,S,E),C}var tte={kernelName:Pi,backendName:"wasm",setupFunc:Qee,kernelFunc:ete},jv;function ate(e){jv=e.wasm.cwrap(Fi,null,["number, number, number"])}function nte(e){let{backend:t,inputs:a,attrs:n}=e,{axis:r,keepDims:s}=n,{x:i}=a,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:c,originalAxes:d,inputWasTransposed:h}=ds(i,r,t),f=c;if(h){let b=t.dataIdMap.get(p.dataId).id;b!==o&&(u=p,l=b,f=T.getInnerMostAxes(f.length,u.shape.length))}T.assertAxesAreInnerMostDims("mean",f,u.shape.length);let[m,g]=T.computeOutAndReduceShapes(u.shape,f),x=v.sizeFromShape(g),y=u;u.dtype!=="float32"&&(y=xu({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(y.dataId).id);let A=t.makeOutput(m,"float32");if(v.sizeFromShape(u.shape)!==0){let b=t.dataIdMap.get(A.dataId).id;jv(l,x,b)}if(h&&t.disposeData(p.dataId),s){let b=T.expandShapeToKeepDim(A.shape,d);A.shape=b}return u.dtype!=="float32"&&t.disposeData(y.dataId),A}var rte={kernelName:Fi,backendName:"wasm",setupFunc:ate,kernelFunc:nte},qv;function ste(e){qv=e.wasm.cwrap(Oi,null,["number","number","number","number"])}function ite(e){let{backend:t,inputs:a,attrs:n}=e,{axis:r,keepDims:s}=n,{x:i}=a,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:c,originalAxes:d,inputWasTransposed:h}=ds(i,r,t);if(h){let A=t.dataIdMap.get(p.dataId).id;A!==o&&(u=p,l=A)}let f=u.shape.length;T.assertAxesAreInnerMostDims("min",c,f);let[m,g]=T.computeOutAndReduceShapes(u.shape,c),x=v.sizeFromShape(g),y=t.makeOutput(m,u.dtype);if(v.sizeFromShape(u.shape)!==0){let A=t.dataIdMap.get(y.dataId).id;qv(l,Ct[i.dtype],x,A)}if(h&&t.disposeData(p.dataId),s){let A=T.expandShapeToKeepDim(y.shape,d);y.shape=A}return y}var ote={kernelName:Oi,backendName:"wasm",setupFunc:ste,kernelFunc:ite},lte=!1,ute=da(Di,lte),C2;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(C2||(C2={}));var Xv;function dte(e){Xv=e.wasm.cwrap(zi,null,["number","array","number","number","array","array","number","number"])}function pte(e){let{inputs:{x:t},backend:a,attrs:{paddings:n,mode:r}}=e,s=n.map((f,m)=>f[0]+t.shape[m]+f[1]),i=a.dataIdMap.get(t.dataId).id,o=a.makeOutput(s,t.dtype),l=a.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),p=n.map(f=>f[0]),c=n.map(f=>f[1]),d=new Uint8Array(new Int32Array(p).buffer),h=new Uint8Array(new Int32Array(c).buffer);return Xv(i,u,t.shape.length,Ct[t.dtype],d,h,C2[r],l),o}var cte={kernelName:zi,backendName:"wasm",kernelFunc:pte,setupFunc:dte},hte=!0,fte=da(Li,hte),mte=Bt(Bl);function P3(e,t){let a=new Int32Array(e.wasm.HEAPU8.buffer,t,4),n=a[0],r=a[1],s=a[2],i=a[3];return e.wasm._free(t),{pSelectedIndices:n,selectedSize:r,pSelectedScores:s,pValidOutputs:i}}var Kv;function gte(e){Kv=e.wasm.cwrap(Wi,"number",["number","number","number","number","number"])}function xte(e){let{backend:t,inputs:a,attrs:n}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i}=n,{boxes:o,scores:l}=a,u=t.dataIdMap.get(o.dataId).id,p=t.dataIdMap.get(l.dataId).id,c=Kv(u,p,s,r,i),{pSelectedIndices:d,selectedSize:h,pSelectedScores:f,pValidOutputs:m}=P3(t,c);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([h],"int32",d)}var yte={kernelName:Wi,backendName:"wasm",setupFunc:gte,kernelFunc:xte},Zv;function Ate(e){Zv=e.wasm.cwrap(Wl,"number",["number","number","number","number","number","bool"])}function bte(e){let{backend:t,inputs:a,attrs:n}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=n,{boxes:l,scores:u}=a,p=t.dataIdMap.get(l.dataId).id,c=t.dataIdMap.get(u.dataId).id,d=Zv(p,c,s,r,i,o),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=P3(t,d);t.wasm._free(m);let x=t.makeOutput([f],"int32",h),y=t.makeOutput([],"int32",g);return[x,y]}var vte={kernelName:Wl,backendName:"wasm",setupFunc:Ate,kernelFunc:bte},Yv;function kte(e){Yv=e.wasm.cwrap(Vi,"number",["number","number","number","number","number","number"])}function wte(e){let{backend:t,inputs:a,attrs:n}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=n,{boxes:l,scores:u}=a,p=t.dataIdMap.get(l.dataId).id,c=t.dataIdMap.get(u.dataId).id,d=Yv(p,c,s,r,i,o),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=P3(t,d);t.wasm._free(g);let x=t.makeOutput([f],"int32",h),y=t.makeOutput([f],"float32",m);return[x,y]}var Ite={kernelName:Vi,backendName:"wasm",setupFunc:kte,kernelFunc:wte},Ste=!1,Tte=da(Bi,Ste,"bool"),Jv;function Cte(e){Jv=e.wasm.cwrap(Ui,null,["number","number","number","number","number"])}function Nte(e){let{inputs:t,backend:a,attrs:n}=e,{indices:r}=t,{dtype:s,depth:i,onValue:o,offValue:l}=n,u=a.makeOutput([...r.shape,i],s),p=a.dataIdMap.get(u.dataId).id,c=a.dataIdMap.get(r.dataId).id;return Jv(c,i,o,l,p),u}var Ete={kernelName:Ui,backendName:"wasm",setupFunc:Cte,kernelFunc:Nte};function Rte(e){let{inputs:{x:t},backend:a}=e,n=a.makeOutput(t.shape,t.dtype);return a.typedArrayFromHeap(n).fill(1),n}var Mte={kernelName:Vl,backendName:"wasm",kernelFunc:Rte};function $te(e){let{inputs:t,backend:a,attrs:n}=e,{axis:r}=n;if(t.length===1)return T2({inputs:{input:t[0]},backend:a,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(p=>{v.assertShapesMatch(s,p.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===p.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(p=>{let c=T2({inputs:{input:p},backend:a,attrs:{dim:r}});return o.push(c),c}),u=Nv({inputs:l,backend:a,attrs:{axis:r}});return o.forEach(p=>a.disposeData(p.dataId)),u}var _te={kernelName:Ul,backendName:"wasm",kernelFunc:$te},Qv;function Pte(e){Qv=e.wasm.cwrap(Gi,null,["number","array","number","number","array","array","number","number"])}function Fte(e){let{inputs:{x:t},backend:a,attrs:{paddings:n,constantValue:r}}=e,s=n.map((f,m)=>f[0]+t.shape[m]+f[1]);if(v.sizeFromShape(t.shape)===0)return Ov({backend:a,attrs:{shape:s,value:r,dtype:t.dtype}});let i=a.dataIdMap.get(t.dataId).id,o=a.makeOutput(s,t.dtype),l=a.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),p=n.map(f=>f[0]),c=n.map(f=>f[1]),d=new Uint8Array(new Int32Array(p).buffer),h=new Uint8Array(new Int32Array(c).buffer);return Qv(i,u,t.shape.length,Ct[t.dtype],d,h,r,l),o}var e8={kernelName:Gi,backendName:"wasm",kernelFunc:Fte,setupFunc:Pte},Ote=!1,Dte=da(Hi,Ote),t8;function zte(e){t8=e.wasm.cwrap(ji,null,["number","number","number"])}function Lte(e){let{inputs:t,backend:a}=e,{x:n,alpha:r}=t,s=a.dataIdMap.get(n.dataId).id,i=a.dataIdMap.get(r.dataId).id,o=s,l=n,u=l;l.dtype!=="float32"&&(u=xu({backend:a,inputs:{x:n},attrs:{dtype:"float32"}}),o=a.dataIdMap.get(u.dataId).id);let p=a.makeOutput(n.shape,"float32"),c=a.dataIdMap.get(p.dataId).id;return t8(o,i,c),l.dtype!=="float32"&&a.disposeData(u.dataId),p}var Bte={kernelName:ji,backendName:"wasm",setupFunc:zte,kernelFunc:Lte},a8;function Wte(e){a8=e.wasm.cwrap(qi,null,["number","number","number","number"])}function Vte(e){let{backend:t,inputs:a,attrs:n}=e,{axis:r,keepDims:s}=n,{x:i}=a,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:c,originalAxes:d,inputWasTransposed:h}=ds(i,r,t),f=c;if(h){let A=t.dataIdMap.get(p.dataId).id;A!==o&&(u=p,l=A,f=T.getInnerMostAxes(f.length,u.shape.length))}T.assertAxesAreInnerMostDims("prod",f,u.shape.length);let[m,g]=T.computeOutAndReduceShapes(u.shape,f),x=v.sizeFromShape(g),y=t.makeOutput(m,u.dtype);if(v.sizeFromShape(u.shape)!==0){let A=t.dataIdMap.get(y.dataId).id;a8(l,x,Ct[y.dtype],A)}if(h&&t.disposeData(p.dataId),s){let A=T.expandShapeToKeepDim(y.shape,d);y.shape=A}return y}var Ute={kernelName:qi,backendName:"wasm",setupFunc:Wte,kernelFunc:Vte},Gte=e=>{let{backend:t,attrs:a}=e,{start:n,stop:r,step:s,dtype:i}=a,o=p3(n,r,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},Hte={kernelName:Gl,backendName:"wasm",kernelFunc:Gte},jte=!0,qte=da(ci,jte),Xte=Bt(Xi),Kte=Bt(Ki),Zte=Bt(Ji),n8;function Yte(e){n8=e.wasm.cwrap(Yi,null,["number","number","number","number","number","number","number","number","number","number"])}function Jte(e){let{backend:t,inputs:a,attrs:n}=e,{images:r}=a,{alignCorners:s,halfPixelCenters:i,size:o}=n,[l,u]=o,[p,c,d,h]=r.shape,f=[p,l,u,h],m=t.dataIdMap.get(r.dataId),g;m.dtype!=="float32"&&(g=xu({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(g.dataId));let x=m.id,y=t.makeOutput(f,"float32");if(v.sizeFromShape(r.shape)===0)return y;let A=t.dataIdMap.get(y.dataId).id;return n8(x,p,c,d,h,l,u,s?1:0,i?1:0,A),g!=null&&t.disposeData(g.dataId),y}var Qte={kernelName:Yi,backendName:"wasm",setupFunc:Yte,kernelFunc:Jte},r8;function eae(e){r8=e.wasm.cwrap(Zi,null,["number","number","number","number","number","number","number","number","number","number"])}function tae(e){let{backend:t,inputs:a,attrs:n}=e,{images:r}=a,{alignCorners:s,halfPixelCenters:i,size:o}=n,[l,u]=o,[p,c,d,h]=r.shape,f=[p,l,u,h],m=t.makeOutput(f,"float32");if(v.sizeFromShape(r.shape)===0)return m;let g=t.dataIdMap.get(r.dataId),x;g.dtype!=="float32"&&(x=xu({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),g=t.dataIdMap.get(x.dataId));let y=g.id,A=t.dataIdMap.get(m.dataId).id;return r8(y,p,c,d,h,l,u,s?1:0,i?1:0,A),x!=null&&t.disposeData(x.dataId),m}var aae={kernelName:Zi,backendName:"wasm",setupFunc:eae,kernelFunc:tae},s8;function nae(e){s8=e.wasm.cwrap(Qi,null,["number","array","number","array","number","number"])}function rae(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{dims:s}=n,i=v.parseAxisParam(s,r.shape);if(r.shape.length===0)return Fh({inputs:{x:r},backend:a});let o=a.makeOutput(r.shape,r.dtype),l=a.dataIdMap.get(r.dataId).id,u=a.dataIdMap.get(o.dataId).id,p=new Uint8Array(new Int32Array(i).buffer),c=new Uint8Array(new Int32Array(r.shape).buffer);s8(l,p,i.length,c,r.shape.length,u);let d=za({inputs:{x:o},attrs:{shape:r.shape},backend:a});return a.disposeData(o.dataId),d}var sae={kernelName:Qi,backendName:"wasm",kernelFunc:rae,setupFunc:nae},i8;function iae(e){i8=e.wasm.cwrap(go,null,["number","number","number","number","number","number","number","number","array","number","number"])}function oae(e){let{inputs:t,backend:a,attrs:n}=e,{image:r}=t,{radians:s,fillValue:i,center:o}=n,l=a.makeOutput(r.shape,r.dtype),u=a.dataIdMap.get(r.dataId).id,p=a.dataIdMap.get(l.dataId).id,[c,d,h,f]=r.shape,[m,g]=T.getImageCenter(o,d,h),x=i===0,y=255,A=typeof i=="number"?[i,i,i,x?0:y]:[...i,y],b=new Uint8Array(new Int32Array(A).buffer);return i8(u,c,d,h,f,s,m,g,b,A.length,p),l}var lae={kernelName:go,backendName:"wasm",kernelFunc:oae,setupFunc:iae},uae=Bt(eo),dae=Bt(to),o8;function pae(e){o8=e.wasm.cwrap(ao,null,["number","number","number","number","number","number","array","number","number"])}function cae(e){let{backend:t,inputs:a,attrs:n}=e,{indices:r,updates:s}=a,{shape:i}=n,o=t.makeOutput(i,s.dtype);if(v.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:u,sliceSize:p,strides:c,outputSize:d}=B1.calculateShapes(s,r,i),h=t.dataIdMap.get(r.dataId).id,f=t.dataIdMap.get(s.dataId).id,m=new Uint8Array(new Int32Array(c).buffer),g=t.dataIdMap.get(o.dataId).id;return o8(h,f,Ct[s.dtype],l,u,p,m,d,g),o}var hae={kernelName:ao,backendName:"wasm",setupFunc:pae,kernelFunc:cae},l8;function fae(e){l8=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function mae(e){let{inputs:t,backend:a}=e,{condition:n,t:r,e:s}=t,i=a.dataIdMap.get(n.dataId).id,o=a.dataIdMap.get(r.dataId).id,l=a.dataIdMap.get(s.dataId).id,u=a.makeOutput(r.shape,r.dtype),p=a.dataIdMap.get(u.dataId).id,c=n.shape.length,d=r.shape.length,h=c===0||c>1||d===1?1:v.sizeFromShape(r.shape.slice(1));return l8(i,o,l,h,p),u}var gae={kernelName:jl,backendName:"wasm",kernelFunc:mae,setupFunc:fae},u8;function xae(e){u8=e.wasm.cwrap(ro,null,["number","number"])}function yae(e){let{backend:t,inputs:{x:a}}=e,n=t.dataIdMap.get(a.dataId).id,r=t.makeOutput(a.shape,a.dtype),s=t.dataIdMap.get(r.dataId).id;return v.sizeFromShape(r.shape)===0||u8(n,s),r}var Aae={kernelName:"Sigmoid",backendName:"wasm",setupFunc:xae,kernelFunc:yae},bae=Bt(no),d8;function vae(e){d8=e.wasm.cwrap(oo,null,["number","number","number","number"])}function kae(e){let{backend:t,inputs:{logits:a},attrs:{dim:n}}=e,r=t.dataIdMap.get(a.dataId).id,s=t.makeOutput(a.shape,a.dtype),i=t.dataIdMap.get(s.dataId).id,o=a.shape[n],l=v.sizeFromShape(a.shape)/o;return v.sizeFromShape(s.shape)===0||d8(r,i,o,l),s}var wae={kernelName:oo,backendName:"wasm",setupFunc:vae,kernelFunc:kae};function Iae(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{blockShape:s,paddings:i}=n,o=v.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let g=1+s.length;g<r.shape.length;++g)l.push([0,0]);let u=e8.kernelFunc({inputs:{x:r},backend:a,attrs:{paddings:l,constantValue:0}}),p=T.getReshaped(u.shape,s,o,!1),c=T.getPermuted(p.length,s.length,!1),d=T.getReshapedPermuted(u.shape,s,o,!1),h=za({inputs:{x:u},backend:a,attrs:{shape:p}}),f=es({inputs:{x:h},backend:a,attrs:{perm:c}}),m=za({inputs:{x:f},backend:a,attrs:{shape:d}});return a.disposeData(u.dataId),a.disposeData(h.dataId),a.disposeData(f.dataId),m}var Sae={kernelName:Jl,backendName:"wasm",kernelFunc:Iae},p8;function Tae(e){p8=e.wasm.cwrap("SparseFillEmptyRows","number",["number","number","number","number","number","number","number","number","number","number","number","number"])}function Cae(e){let{backend:t,inputs:a}=e,{indices:n,values:r,denseShape:s,defaultValue:i}=a,o=n.shape[0],l=n.shape[1],u=t.readSync(s.dataId)[0],p=[o+u,l],c=t.dataIdMap.get(n.dataId).id,d=t.dataIdMap.get(r.dataId).id,h=t.dataIdMap.get(i.dataId).id,f=t.makeOutput(p,n.dtype),m=t.dataIdMap.get(f.dataId).id,g=t.makeOutput(p.slice(0,1),r.dtype),x=t.dataIdMap.get(g.dataId).id,y=t.makeOutput([u],"bool"),A=t.dataIdMap.get(y.dataId).id,b=t.makeOutput([o],n.dtype),k=t.dataIdMap.get(b.dataId).id,S=t.makeOutput([4],"int32"),C=t.dataIdMap.get(S.dataId).id,E=p8(c,d,Ct[r.dtype],o,u,l,h,m,x,A,k,C),_=t.readSync(S.dataId),$;switch(_[0]){case 1:{$=T.getSparseFillEmptyRowsIndicesDenseShapeMismatch(_[1]);break}case 2:{$=T.getSparseFillEmptyRowsNegativeIndexErrorMessage(_[1],_[2]);break}case 3:$=T.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(_[1],_[2],_[3]);break;default:$=""}if(t.disposeData(S.dataId),$)throw t.disposeData(f.dataId),t.disposeData(g.dataId),t.disposeData(y.dataId),t.disposeData(b.dataId),new Error($);let M=f,I=g;return E!==p[0]&&(M=qs({inputs:{x:f},attrs:{begin:0,size:[E,l]},backend:t}),I=qs({inputs:{x:g},attrs:{begin:0,size:E},backend:t}),t.disposeData(f.dataId),t.disposeData(g.dataId)),[M,I,y,b]}var Nae={kernelName:Bd,backendName:"wasm",setupFunc:Tae,kernelFunc:Cae},c8;function Eae(e){c8=e.wasm.cwrap(eu,null,["number","number","number","number","number","number","number"])}function Rae(e){let{backend:t,inputs:a}=e,{inputIndices:n,inputShape:r,newShape:s}=a;if(n.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${n.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=t.dataIdMap.get(n.dataId).id,o=t.dataIdMap.get(r.dataId).id,l=t.dataIdMap.get(s.dataId).id,u=n.shape[0],p=v.sizeFromShape(s.shape),c=t.makeOutput([u,p],n.dtype),d=t.dataIdMap.get(c.dataId).id,h=t.makeOutput([p],s.dtype),f=t.dataIdMap.get(h.dataId).id,m=t.makeOutput([3],"int32"),g=t.dataIdMap.get(m.dataId).id;c8(i,o,l,u,d,f,g);let x=t.readSync(m.dataId),y;switch(x[0]){case 0:{y=T.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(x[1],x[2]);break}case 1:{y=T.getSparseReshapeNegativeOutputDimErrorMessage(x[1],x[2]);break}case 2:y=T.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage();break;case 3:{let A=Array.from(t.readSync(r.dataId)),b=Array.from(t.readSync(h.dataId));y=T.getSparseReshapeInputOutputMultipleErrorMessage(A,b);break}case 4:{let A=Array.from(t.readSync(r.dataId)),b=Array.from(t.readSync(h.dataId));y=T.getSparseReshapeInputOutputMismatchErrorMessage(A,b);break}default:y=""}if(t.disposeData(m.dataId),y)throw t.disposeData(c.dataId),t.disposeData(h.dataId),new Error(y);return[c,h]}var Mae={kernelName:eu,backendName:"wasm",setupFunc:Eae,kernelFunc:Rae},h8;function f8(e){h8=e.wasm.cwrap("SparseSegmentReduction",null,["number","number","number","number","number","number","number","number","number"])}function m8(e,t){let{backend:a,inputs:n}=e,{data:r,indices:s,segmentIds:i}=n,o=s.shape[0],l=a.readSync(i.dataId,o-1,o)[0],u=o>0?l+1:0;if(u<0)throw new Error(T.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let p=r.shape.slice();p[0]=u;let c=a.dataIdMap.get(r.dataId).id,d=a.dataIdMap.get(s.dataId).id,h=a.dataIdMap.get(i.dataId).id,f=a.makeOutput(p,r.dtype),m=a.dataIdMap.get(f.dataId).id,g=a.makeOutput([4],"int32"),x=a.dataIdMap.get(g.dataId).id;h8(c,Ct[r.dtype],r.shape[0],d,h,m,x,t,0);let y=a.readSync(g.dataId),A;switch(y[0]){case 0:{A=T.getSparseSegmentReductionNegativeSegmentIdsErrorMessage();break}case 1:{A=T.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage();break}case 2:A=T.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(y[1],y[2]);break;case 3:A=T.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(y[1],y[2],y[3]);break;default:A=""}if(a.disposeData(g.dataId),A)throw a.disposeData(f.dataId),new Error(A);return f}function $ae(e){return m8(e,!0)}var _ae={kernelName:Wd,backendName:"wasm",setupFunc:f8,kernelFunc:$ae};function Pae(e){return m8(e,!1)}var Fae={kernelName:Vd,backendName:"wasm",setupFunc:f8,kernelFunc:Pae};function Oae(e){let{inputs:t,attrs:a,backend:n}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=v.parseAxisParam(i,r.shape)[0],l=T.prepareSplitSize(r,s,o),u=new Array(r.shape.length).fill(0),p=r.shape.slice();return l.map(c=>{let d=[...p];d[o]=c;let h=qs({inputs:{x:r},attrs:{begin:u,size:d},backend:n});return u[o]+=c,h})}var Dae={kernelName:Ql,backendName:"wasm",kernelFunc:Oae},zae=Bt(so),Lae=Bt(Gd),Bae=!0,Wae=da(lo,Bae),g8;function Vae(e){g8=e.wasm.cwrap(ss,null,["number","number","number","number"])}function Uae(e){let{backend:t,inputs:a,attrs:n}=e,{alpha:r}=n,{x:s}=a,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return g8(i,r,Ct[s.dtype],l),o}var Gae={kernelName:ss,backendName:"wasm",setupFunc:Vae,kernelFunc:Uae},x8;function Hae(e){x8=e.wasm.cwrap(uo,null,["number","array","number","array","array","array","array","array","number","number"])}function jae(e){let{backend:t,inputs:a,attrs:n}=e,{x:r}=a,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:p,newAxisMask:c,shrinkAxisMask:d}=n,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:x,begin:y,end:A,strides:b}=St.sliceInfo(r.shape,s,i,o,l,u,p,c,d),k;if(m)k=za({inputs:{x:r},backend:t,attrs:{shape:f}});else if(g||x){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let S=St.computeOutShape(y,A,b),C=qs({inputs:{x:r},backend:t,attrs:{begin:y,size:S}});k=za({inputs:{x:C},backend:t,attrs:{shape:f}}),t.disposeData(C.dataId)}else{let S=t.makeOutput(h,"float32"),C=t.dataIdMap.get(r.dataId).id,E=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),_=new Uint8Array(new Int32Array(y).buffer),$=new Uint8Array(new Int32Array(A).buffer),M=new Uint8Array(new Int32Array(b).buffer),I=new Uint8Array(new Int32Array(h).buffer),N=new Uint8Array(new Int32Array(v.computeStrides(h)).buffer),O=t.dataIdMap.get(S.dataId).id;x8(C,E,r.shape.length,_,$,M,I,N,h.length,O),k=za({inputs:{x:S},backend:t,attrs:{shape:f}}),t.disposeData(S.dataId)}return k}var qae={kernelName:uo,backendName:"wasm",setupFunc:Hae,kernelFunc:jae};function Xae(e){let{backend:t,inputs:a,attrs:n}=e,{data:r,dataSplits:s}=a,{separator:i,nGramWidths:o,leftPad:l,rightPad:u,padWidth:p,preserveShortSequences:c}=n,d=t.readSync(r.dataId),h=t.readSync(s.dataId),[f,m]=h3(d,h,i,o,l,u,p,c),g=t.makeOutput([f.length],"string"),x=t.dataIdMap.get(g.dataId);x.stringBytes=f;let y=t.makeOutput(s.shape,"int32");return t.typedArrayFromHeap(y).set(m),[g,y]}var Kae={kernelName:tu,backendName:"wasm",kernelFunc:Xae};function Zae(e){let{backend:t,inputs:a,attrs:n}=e,{input:r,delimiter:s}=a,{skipEmpty:i}=n,o=t.readSync(r.dataId),l=t.readSync(s.dataId),[u,p,c]=f3(o,l[0],i),d=p.length,h=t.makeOutput([d,2],"int32");t.typedArrayFromHeap(h).set(u);let f=t.makeOutput([d],"string"),m=t.dataIdMap.get(f.dataId);m.stringBytes=p;let g=t.makeOutput([2],"int32");return t.typedArrayFromHeap(g).set(c),[h,f,g]}var Yae={kernelName:Hd,backendName:"wasm",kernelFunc:Zae};function Jae(e){let{backend:t,inputs:a,attrs:n}=e,{input:r}=a,{numBuckets:s}=n,i=t.readSync(r.dataId),o=m3(i,s),l=t.makeOutput(r.shape,"int32");return t.typedArrayFromHeap(l).set(o),l}var Qae={kernelName:jd,backendName:"wasm",kernelFunc:Jae},ene=!0,tne=da(po,ene),y8;function ane(e){y8=e.wasm.cwrap(io,null,["number","number","number","number"])}function nne(e){let{backend:t,inputs:a,attrs:n}=e,{axis:r,keepDims:s}=n,{x:i}=a,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:c,originalAxes:d,inputWasTransposed:h}=ds(i,r,t),f=c;if(h){let A=t.dataIdMap.get(p.dataId).id;A!==o&&(u=p,l=A,f=T.getInnerMostAxes(f.length,u.shape.length))}T.assertAxesAreInnerMostDims("sum",f,u.shape.length);let[m,g]=T.computeOutAndReduceShapes(u.shape,f),x=v.sizeFromShape(g),y=t.makeOutput(m,u.dtype);if(v.sizeFromShape(u.shape)!==0){let A=t.dataIdMap.get(y.dataId).id;y8(l,x,Ct[y.dtype],A)}if(h&&t.disposeData(p.dataId),s){let A=T.expandShapeToKeepDim(y.shape,d);y.shape=A}return y}var rne={kernelName:io,backendName:"wasm",setupFunc:ane,kernelFunc:nne},sne=Bt(co),ine=Bt(ho),A8;function one(e){A8=e.wasm.cwrap(rs,null,["number","array","number","array","number","number"])}function lne(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,s=a.dataIdMap.get(r.dataId).id,{reps:i}=n,o=new Array(r.shape.length);for(let d=0;d<o.length;d++)o[d]=r.shape[d]*i[d];let l=new Uint8Array(new Int32Array(r.shape).buffer),u=new Uint8Array(new Int32Array(o).buffer),p=a.makeOutput(o,r.dtype),c=a.dataIdMap.get(p.dataId).id;return A8(s,l,r.shape.length,u,o.length,Ct[p.dtype],c),p}var une={kernelName:rs,backendName:"wasm",setupFunc:one,kernelFunc:lne},b8;function dne(e){b8=e.wasm.cwrap(fo,null,["number","array","number","number","number","bool","number","number"])}var pne=({inputs:e,backend:t,attrs:a})=>{let{x:n}=e,{k:r,sorted:s}=a,i=t.dataIdMap.get(n.dataId).id,o=new Uint8Array(new Int32Array(n.shape).buffer),l=n.shape.slice();l[l.length-1]=r;let u=t.makeOutput(l,n.dtype),p=t.dataIdMap.get(u.dataId).id,c=t.makeOutput(l,"int32"),d=t.dataIdMap.get(c.dataId).id;return b8(i,o,n.shape.length,Ct[n.dtype],r,s,p,d),[u,c]},cne={kernelName:fo,backendName:"wasm",setupFunc:dne,kernelFunc:pne},v8;function hne(e){v8=e.wasm.cwrap(mo,null,["number","number","bool","number","number","number","number","number","number","array","number","array","number","number","number","number","number"])}function fne(e){let{backend:t,inputs:a,attrs:n}=e,{image:r,transforms:s}=a,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=n,[p,c,d,h]=r.shape,[f,m]=u!=null?u:[c,d],g=[p,f,m,h],x=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),y=new Uint8Array(new Int32Array(v.computeStrides(g)).buffer),A=t.makeOutput(g,r.dtype),b=t.dataIdMap.get(A.dataId).id,k=t.dataIdMap.get(r.dataId).id,S=t.dataIdMap.get(s.dataId).id,C=i==="nearest"?1:2,E;switch(o){case"constant":E=1;break;case"reflect":E=2;break;case"wrap":E=3;break;case"nearest":E=4;break;default:E=1;break}return v8(k,S,s.shape[0]>1,p,f,m,h,d,c,x,r.shape.length-1,y,g.length-1,C,E,l,b),A}var mne={kernelName:mo,backendName:"wasm",setupFunc:hne,kernelFunc:fne};function gne(e){let{inputs:t,backend:a,attrs:n}=e,{value:r}=t,{axis:s}=n;s<0&&(s+=r.shape.length);let i=r.shape[s],o=r.shape.length,l=new Array(o-1),u=0;for(let h=0;h<o;h++)h!==s&&(l[u++]=r.shape[h]);let p=new Array(i),c=new Array(o).fill(0),d=r.shape.slice();d[s]=1;for(let h=0;h<p.length;h++)c[s]=h,p[h]=qs({inputs:{x:r},attrs:{begin:c,size:d},backend:a});return p.map(({dataId:h,dtype:f})=>({dataId:h,dtype:f,shape:l}))}var xne={kernelName:au,backendName:"wasm",kernelFunc:gne};function yne(e){let{inputs:{x:t},backend:a}=e,n=a.makeOutput(t.shape,t.dtype);return a.typedArrayFromHeap(n).fill(0),n}var Ane={kernelName:nu,backendName:"wasm",kernelFunc:yne},bne=[jJ,qJ,KJ,JJ,iQ,uQ,cQ,mQ,AQ,SQ,TQ,CQ,RQ,MQ,PQ,DQ,zQ,LQ,VQ,HQ,XQ,YQ,eee,tee,nee,ree,see,iee,uee,dee,cee,mee,yee,vee,Iee,Cee,Eee,Mee,QJ,$ee,Fee,Dee,Lee,Bee,Vee,Uee,Hee,qee,Zee,Jee,tte,rte,ote,ute,cte,fte,mte,yte,vte,Ite,Tte,Ete,Mte,_te,e8,Dte,Bte,Ute,Hte,qte,Xte,Kte,Zte,gQ,Qte,aae,sae,lae,uae,dae,hae,gae,Aae,bae,wQ,wae,Sae,Nae,Mae,_ae,Fae,Dae,zae,Lae,Wae,Gae,qae,Kae,Yae,Qae,tne,rne,sne,ine,une,cne,mne,nQ,xne,Ane];for(let e of bne)mn(e);var N2=B();N2.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>{try{return WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11]))}catch(e){return!1}});N2.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(N2.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var $x=yl(eS()),vne=yl(tS()),_x=yl(aS()),Px=$x.default||$x,kne=_x.default||_x,k8=class extends Al{constructor(e){super(),this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(w8),E2=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new wd(this,vt())}write(e,t,a){let n={id:this.dataIdNextNumber++};return this.move(n,e,t,a,1),n}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}move(e,t,a,n,r){let s=this.dataIdNextNumber++;if(n==="string"){let u=t;this.dataIdMap.set(e,{id:s,stringBytes:u,shape:a,dtype:n,memoryOffset:null,refCount:r});return}let i=v.sizeFromShape(a),o=i*v.bytesPerElement(n),l=this.wasm._malloc(o);this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:a,dtype:n,refCount:r}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e,t,a){let{memoryOffset:n,dtype:r,shape:s,stringBytes:i}=this.dataIdMap.get(e);if(r==="string")return(t==null||t===0)&&(a==null||a>=i.length)?i:i.slice(t,a);t=t||0,a=a||v.sizeFromShape(s);let o=v.bytesPerElement(r),l=this.wasm.HEAPU8.slice(n+t*o,n+a*o);return Sne(l.buffer,r)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let a=this.dataIdMap.get(e);if(a.refCount--,!t&&a.refCount>0)return!1;this.wasm._free(a.memoryOffset),this.wasm.tfjs.disposeData(a.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,a){let n;if(a==null)n=this.write(null,e,t);else{let r=this.dataIdNextNumber++;n={id:r},this.dataIdMap.set(n,{id:r,memoryOffset:a,shape:e,dtype:t,refCount:1});let s=v.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,s,a)}return{dataId:n,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:a}){let n=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(a),s=v.sizeFromShape(e);switch(t){case"float32":return new Float32Array(n,r,s);case"int32":return new Int32Array(n,r,s);case"bool":return new Uint8Array(n,r,s);default:throw new Error(`Unknown dtype ${t}`)}}};function wne(e){return(t,a)=>(v.fetch(e,{credentials:"same-origin"}).then(n=>{n.ok||t.env.a(`failed to load wasm binary file at '${e}'`),n.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(s=>{a(s.instance,s.module)})})}),{})}function Fx(e,t,a){if(Uc!=null)return Uc;let n="tfjs-backend-wasm.wasm";return e&&t?n="tfjs-backend-wasm-threaded-simd.wasm":e&&(n="tfjs-backend-wasm-simd.wasm"),ed!=null&&ed[n]!=null?ed[n]:a+n}async function Ine(){let[e,t]=await Promise.all([B().getAsync("WASM_HAS_SIMD_SUPPORT"),B().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((a,n)=>{let r={};r.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let u=vne.wasmWorkerContents.replace(/\n/g,"\\n"),p=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(p)}return o.endsWith(".wasm")?Fx(e,t,Yu!=null?Yu:l):l+o},F3&&(r.instantiateWasm=wne(Fx(e,t,Yu!=null?Yu:"")));let s=!1;r.onAbort=()=>{s||td||(td=!0,n({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&Uc==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+Px.toString()],{type:"text/javascript"}),i=Px(r)):i=kne(r),i.then(o=>{s=!0,td=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),initWithThreadsCount:o.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:o.cwrap("get_threads_count","number",[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},a({wasm:o})}).catch(n)})}function Sne(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var Tne=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Uc=null,Yu=null,ed={},td=!1,F3=!1;function Cne(e,t=!1){if(t1("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),td)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Uc=e,F3=t}function Oh(e,t=!1){if(td)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")Yu=e;else{ed=e;let a=Tne.filter(n=>ed[n]==null);if(a.length>0)throw new Error(`There were no entries found for the following binaries: ${a.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}F3=t}var w8=-1,E2=-1;function Nne(e){w8=e}function Ene(){if(E2===-1)throw new Error("WASM backend not initialized.");return E2}var Rne="4.2.0",Mne=2;xo("wasm",async()=>{let{wasm:e}=await Ine();return new k8(e)},Mne);var zn=B();zn.registerFlag("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE",()=>15);zn.registerFlag("WEBGPU_CPU_FORWARD",()=>!0);zn.registerFlag("WEBGPU_MATMUL_PROGRAM_TYPE",()=>-1);zn.registerFlag("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE",()=>!1);zn.registerFlag("WEBGPU_USE_LOW_POWER_GPU",()=>!1);zn.registerFlag("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e3);zn.registerFlag("WEBGPU_USE_PROFILE_TOOL",()=>!1);zn.registerFlag("WEBGPU_IMPORT_EXTERNAL_TEXTURE",()=>!0);zn.registerFlag("WEBGPU_USE_NAIVE_CONV2D_DEBUG",()=>!1);zn.registerFlag("WEBGPU_THRESHOLD_TO_INCREASE_WORKGROUPS_FOR_MATMUL",()=>0);zn.registerFlag("WEBGPU_CONV_SEPARATE_IM2COL_SHADER",()=>!1);var $ne=class{constructor(e){e&&(this.vendor=e.vendor,this.architecture=e.architecture,this.intelGPUGeneration=this.getIntelGPUGeneration())}getIntelGPUGeneration(){if(this.isIntel()){if(this.architecture.startsWith("gen"))return Number(this.architecture.match(/\d+/));if(this.architecture.startsWith("xe"))return 12}return 0}isIntel(){return this.vendor==="intel"}},_ne=class{constructor(e){this.device=e,this.numUsedBuffers=0,this.numFreeBuffers=0,this.freeBuffers=new Map,this.usedBuffers=new Map,this.numBytesUsed=0,this.numBytesAllocated=0}acquireUploadBuffer(e,t){return this.acquireBuffer(e,t,!0)}acquireBuffer(e,t,a=!1){let n=Ox(e,t);if(this.freeBuffers.has(n)||this.freeBuffers.set(n,[]),this.usedBuffers.has(n)||this.usedBuffers.set(n,[]),this.numBytesUsed+=e,this.numUsedBuffers++,this.freeBuffers.get(n).length>0){this.numFreeBuffers--;let s=this.freeBuffers.get(n).shift();return this.usedBuffers.get(n).push(s),s}this.numBytesAllocated+=e;let r=this.device.createBuffer({size:e,usage:t,mappedAtCreation:a});return this.usedBuffers.get(n).push(r),r}releaseBuffer(e,t,a){if(this.freeBuffers.size===0)return;let n=Ox(t,a);this.freeBuffers.has(n)||this.freeBuffers.set(n,[]),this.freeBuffers.get(n).push(e),this.numFreeBuffers++,this.numUsedBuffers--;let r=this.usedBuffers.get(n),s=r.indexOf(e);if(s<0)throw new Error("Cannot release a buffer that was never provided by this buffer manager");r.splice(s,1),this.numBytesUsed-=t}releaseUploadBuffer(e,t,a){e.mapAsync(GPUMapMode.WRITE).then(()=>{this.releaseBuffer(e,t,a)},n=>{})}getNumUsedBuffers(){return this.numUsedBuffers}getNumFreeBuffers(){return this.numFreeBuffers}dispose(){this.freeBuffers.forEach((e,t)=>{e.forEach(a=>{a.destroy()})}),this.usedBuffers.forEach((e,t)=>{e.forEach(a=>{a.destroy()})}),this.freeBuffers=new Map,this.usedBuffers=new Map,this.numUsedBuffers=0,this.numFreeBuffers=0,this.numBytesUsed=0,this.numBytesAllocated=0}};function Ox(e,t){return`${e}_${t}`}var Pne=class{constructor(e){this.device=e,this.numUsedTextures=0,this.numFreeTextures=0,this.freeTextures=new Map,this.usedTextures=new Map,this.numBytesUsed=0,this.numBytesAllocated=0}acquireTexture(e,t,a,n){let r=zx(a),s=e*t*r,i=Dx(e,t,a,n);if(this.freeTextures.has(i)||this.freeTextures.set(i,[]),this.usedTextures.has(i)||this.usedTextures.set(i,[]),this.numBytesUsed+=s,this.numUsedTextures++,this.freeTextures.get(i).length>0){this.numFreeTextures--;let l=this.freeTextures.get(i).shift();return this.usedTextures.get(i).push(l),l}this.numBytesAllocated+=s;let o=this.device.createTexture({size:[e,t],format:a,usage:n});return this.usedTextures.get(i).push(o),o}releaseTexture(e,t,a,n,r){if(this.freeTextures.size===0)return;let s=Dx(t,a,n,r);this.freeTextures.has(s)||this.freeTextures.set(s,[]),this.freeTextures.get(s).push(e),this.numFreeTextures++,this.numUsedTextures--;let i=this.usedTextures.get(s),o=i.indexOf(e);if(o<0)throw new Error("Cannot release a texture that was never provided by this texture manager");i.splice(o,1);let l=zx(n),u=t*a*l;this.numBytesUsed-=u}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){this.freeTextures.forEach((e,t)=>{e.forEach(a=>{a.destroy()})}),this.usedTextures.forEach((e,t)=>{e.forEach(a=>{a.destroy()})}),this.freeTextures=new Map,this.usedTextures=new Map,this.numUsedTextures=0,this.numFreeTextures=0,this.numBytesUsed=0,this.numBytesAllocated=0}};function Dx(e,t,a,n){return`${e}_${t}_${a}_${n}`}function zx(e){if(e==="rgba8unorm")return 16;throw new Error(`${e} is not supported!`)}function Fne(e,t){if(Math.max(...e)>3)throw new Error("Cannot symbolically compute strides for rank > 4 tensor.");let a=e.length,n=e.map(s=>`${t}[${s}]`),r=new Array(a-1);r[a-2]=n[a-1];for(let s=a-3;s>=0;--s)r[s]=`(${r[s+1]} * ${n[s+1]})`;return r}var O3=(e,t,a)=>a==="int32"?`atomicAdd(${e}, bitcast<i32>(${t}));`:`
|
|
{
|
|
var oldValue = 0;
|
|
loop {
|
|
let newValueF32 = bitcast<f32>(oldValue) + (${t});
|
|
let newValue = bitcast<i32>(newValueF32);
|
|
let res = atomicCompareExchangeWeak(${e}, oldValue, newValue);
|
|
if res.exchanged {
|
|
break;
|
|
}
|
|
oldValue = res.old_value;
|
|
}
|
|
}`,One=(e,t,a,n)=>{let r={dtype:n.dtype,shape:n.shape},s=zne(a,r,t),i=e.createShaderModule({code:s,label:t.constructor.name});return e.createComputePipeline({compute:{module:i,entryPoint:"_start"},label:t.constructor.name,layout:"auto"})};function ia(e){if(e<=1)return"i32";if(e===2)return"vec2<i32>";if(e===3)return"vec3<i32>";if(e===4)return"vec4<i32>";if(e===5)return"vec5";if(e===6)return"vec6";throw Error(`GPU for rank ${e} is not yet supported`)}function Ar(e){if(e===0)return"x";if(e===1)return"y";if(e===2)return"z";if(e===3)return"w";if(e===4)return"u";if(e===5)return"v";throw Error(`Index ${e} is not yet supported`)}function ke(...e){let t;switch(e.length){case 0:t=`
|
|
fn main()
|
|
`;break;case 1:t=`
|
|
fn main(${e[0]} : i32)
|
|
`;break;default:throw Error("Unreachable")}return t}function Lx(e,t){let a;return a=`
|
|
${Dne(t)}
|
|
fn _start(@builtin(local_invocation_id) LocalId : vec3<u32>,
|
|
@builtin(global_invocation_id) GlobalId : vec3<u32>,
|
|
@builtin(local_invocation_index) LocalIndex: u32,
|
|
@builtin(workgroup_id) WorkgroupId : vec3<u32>,
|
|
@builtin(num_workgroups) NumWorkgroups : vec3<u32>) {
|
|
localId = LocalId;
|
|
localIndex = LocalIndex;
|
|
globalId = GlobalId;
|
|
numWorkgroups = NumWorkgroups;
|
|
workgroupId = WorkgroupId;
|
|
${e?"main(getGlobalIndex());":"main();"};
|
|
}
|
|
`,a}function Dne(e){return`
|
|
@compute @workgroup_size(${e.workgroupSize[0]}, ${e.workgroupSize[1]}, ${e.workgroupSize[2]})
|
|
`}function zne(e,t,a){let n=[],r=a.workgroupSize[0]*a.workgroupSize[1]*a.workgroupSize[2];if(n.push(`
|
|
|
|
var<private> localId: vec3<u32>;
|
|
var<private> localIndex: u32;
|
|
var<private> globalId: vec3<u32>;
|
|
var<private> numWorkgroups: vec3<u32>;
|
|
var<private> workgroupId: vec3<u32>;
|
|
|
|
// Only used when the y/z dimension of workgroup size is 1.
|
|
fn getGlobalIndex() -> i32 {
|
|
${I8(a)?" return i32(globalId.x);":` return i32((workgroupId.z * numWorkgroups.x * numWorkgroups.y +
|
|
workgroupId.y * numWorkgroups.x + workgroupId.x) * ${r}u +
|
|
localIndex);
|
|
`}
|
|
}
|
|
`),a.isFromPixels){n.push(`
|
|
struct Uniform {
|
|
size : i32,
|
|
numChannels : i32,
|
|
outShapeStrides : vec2<i32>,
|
|
};
|
|
|
|
@group(0) @binding(0) var<storage, read_write> result: array<${ad(t.dtype,a.isVec4)}>;
|
|
@group(0) @binding(2) var<uniform> uniforms: Uniform;
|
|
`);let h=Vx(a);return[Bx,n.join(`
|
|
`),Wx(t.shape),a.getUserCode(),Lx(h,a)].join(`
|
|
`)}let s="struct Uniforms { NAN : f32, INFINITY : f32, ";a.variableNames.forEach((h,f)=>{let m=ia(e[f].shape.length);s+=`${h.charAt(0).toLowerCase()+h.slice(1)}Shape : ${m}, `});let i=ia(t.shape.length);s+=`outShape : ${i}, `;let o=t.shape.length-1,l=ia(o);s+=`
|
|
outShapeStrides: ${l}, `,a.size&&(s+="size : i32, "),a.uniforms&&(s+=a.uniforms),s+="};",s=qne(s),n.push(s),a.atomic?n.push(`
|
|
@group(0) @binding(0) var<storage, read_write> result: array<atomic<i32>>;
|
|
`):n.push(`
|
|
@group(0) @binding(0) var<storage, read_write> result: array<${ad(t.dtype,a.isVec4)}>;
|
|
`),a.variableNames.forEach((h,f)=>{n.push(`
|
|
@group(0) @binding(${1+f}) var<storage, read> ${h}: array<${a.variableTypes?a.variableTypes[f]:ad(e[f].dtype,a.isVec4)}>;
|
|
`)}),s!==""&&n.push(`
|
|
@group(0) @binding(${1+a.variableNames.length}) var<uniform> uniforms: Uniforms;
|
|
`);let u=Gne(t.shape,a.dispatchLayout),p=[Bx,n.join(`
|
|
`)+Bne,Wx(t.shape),u,Hne(t.shape.length)];a.atomic||p.push(jne(t.shape,t.dtype,a.isVec4));let c=e.map((h,f)=>Une(h,t.shape,a.variableTypes?a.variableTypes[f]==="vec4<f32>":a.isVec4,a.dispatchLayout.x.length===t.shape.length)).join(`
|
|
`);p.push(c),p.push(a.getUserCode());let d=Vx(a);return p.push(Lx(d,a)),p.join(`
|
|
`)}function Lne(e,t,a,n){let r=e.shaderKey;if(e.isFromPixels)return r;let s=a.map(p=>p.dtype).concat(n.dtype),i=a.map(p=>T.getBroadcastDims(p.shape,n.shape)),o=a.map(p=>v.arraysEqual(p.shape,n.shape)).join("_"),l=i.map(p=>p.join("_")).join(";"),u=I8(e)?"flatDispatch":"";return r+="_"+(e.workgroupSize?e.workgroupSize.join(","):"")+t.map(p=>p.length).join(",")+s.join(",")+e.variableNames.join(",")+l+o+u,r}var Bx=`
|
|
struct vec5 {x: i32, y: i32, z: i32, w: i32, u: i32};
|
|
struct vec6 {x: i32, y: i32, z: i32, w: i32, u: i32, v: i32};
|
|
|
|
// Checks whether coordinates lie within the bounds of the shape.
|
|
fn coordsInBounds2D(coord : vec2<i32>, shape : vec2<i32>) -> bool {
|
|
return all(coord >= vec2<i32>(0)) && all(coord < shape);
|
|
}
|
|
fn coordsInBounds3D(coord : vec3<i32>, shape : vec3<i32>) -> bool {
|
|
return all(coord >= vec3<i32>(0)) && all(coord < shape);
|
|
}
|
|
fn coordsInBounds4D(coord : vec4<i32>, shape : vec4<i32>) -> bool {
|
|
return all(coord >= vec4<i32>(0)) && all(coord < shape);
|
|
}
|
|
|
|
fn getIndexFromCoords1D(coord : i32, shape : i32) -> i32 {
|
|
return coord;
|
|
}
|
|
fn getIndexFromCoords2D(coords : vec2<i32>, shape : vec2<i32>) -> i32 {
|
|
return dot(coords, vec2<i32>(shape.y, 1));
|
|
}
|
|
fn getIndexFromCoords3D(coords : vec3<i32>, shape : vec3<i32>) -> i32 {
|
|
return dot(coords, vec3<i32>(shape.y * shape.z, shape.z, 1));
|
|
}
|
|
fn getIndexFromCoords4D(coords : vec4<i32>, shape : vec4<i32>) -> i32 {
|
|
return dot(coords, vec4<i32>(
|
|
shape.y * shape.z * shape.w, shape.z * shape.w, shape.w, 1));
|
|
}
|
|
fn getIndexFromCoords5D(coords : vec5, shape : vec5) -> i32 {
|
|
let shapeStrides: vec5 = vec5(shape.y * shape.z * shape.w * shape.u, shape.z * shape.w * shape.u, shape.w * shape.u, shape.u, 1);
|
|
return coords.x*shapeStrides.x + coords.y*shapeStrides.y + coords.z*shapeStrides.z + coords.w*shapeStrides.w + coords.u*shapeStrides.u;
|
|
}
|
|
fn getIndexFromCoords6D(coords : vec6, shape : vec6) -> i32 {
|
|
let shapeStrides: vec6 = vec6(shape.y * shape.z * shape.w * shape.u * shape.v, shape.z * shape.w * shape.u * shape.v, shape.w * shape.u * shape.v, shape.u * shape.v, shape.v, 1);
|
|
return coords.x*shapeStrides.x + coords.y*shapeStrides.y + coords.z*shapeStrides.z + coords.w*shapeStrides.w + coords.u*shapeStrides.u + coords.v*shapeStrides.v;
|
|
}
|
|
|
|
fn idiv(a: i32, b: i32, sign: f32) -> i32 {
|
|
var res: i32 = a / b;
|
|
let modulo: i32 = a % b;
|
|
if (sign < 0. && modulo != 0) {
|
|
res = res - 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
// NaN defination in IEEE 754-1985 is :
|
|
// - sign = either 0 or 1.
|
|
// - biased exponent = all 1 bits.
|
|
// - fraction = anything except all 0 bits (since all 0 bits represents infinity).
|
|
// https://en.wikipedia.org/wiki/IEEE_754-1985#Representation_of_non-numbers
|
|
fn isnan(val: f32) -> bool {
|
|
let floatToUint: u32 = bitcast<u32>(val);
|
|
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
|
|
}
|
|
fn isnanVec4(val : vec4<f32>) -> vec4<bool> {
|
|
let floatToUint: vec4<u32> = bitcast<vec4<u32>>(val);
|
|
return (floatToUint & vec4<u32>(0x7fffffffu)) > vec4<u32>(0x7f800000u);
|
|
}
|
|
`,Bne=`
|
|
fn isinf(val: f32) -> bool {
|
|
return abs(val) == uniforms.INFINITY;
|
|
}
|
|
`;function Wx(e){let t=e.length;if(t<=1)return"fn getCoordsFromIndex(index : i32) -> i32 { return index; }";let a=v.computeStrides(e),n=ia(t),r=[];for(let i=0;i<t;i++)r.push(`d${i}`);if(a.length===1)return` fn getCoordsFromIndex(index : i32) -> vec2<i32> {
|
|
let d0 = index / uniforms.outShapeStrides; let d1 = index - d0 * uniforms.outShapeStrides;
|
|
return vec2<i32>(d0, d1);
|
|
}`;let s;return s="var index2 = index;"+a.map((i,o)=>{let l=`let ${r[o]} = index2 / uniforms.outShapeStrides.${Ar(o)}`,u=o===a.length-1?`let ${r[o+1]} = index2 - ${r[o]} * uniforms.outShapeStrides.${Ar(o)}`:`index2 = index2 - ${r[o]} * uniforms.outShapeStrides.${Ar(o)}`;return`${l}; ${u};`}).join(""),`
|
|
fn getCoordsFromIndex(index : i32) -> ${n} {
|
|
${s}
|
|
return ${n}(${r.join(",")});
|
|
}
|
|
`}function Wne(e,t){let a=e.name,n=e.shape.length,r=ia(n),s="get"+a.charAt(0).toUpperCase()+a.slice(1),i=["d0","d1","d2","d3","d4","d5"].slice(0,n),o=i.map(p=>`${p} : i32`).join(", ");if(n<1)return t?`
|
|
fn ${s}() -> vec4<f32> {
|
|
return vec4<f32>(${a}[0]);
|
|
}
|
|
`:`
|
|
fn ${s}() ->f32 {
|
|
return f32(${a}[0]);
|
|
}
|
|
`;let l=`uniforms.${a.charAt(0).toLowerCase()+a.slice(1)}Shape`,u=`${n}D`;return n===0&&(u="1D"),t?`
|
|
fn ${s}(${o}) -> vec4<f32> {
|
|
return vec4<f32>(${a}[getIndexFromCoords${u}(${r}(${i.join(",")}),
|
|
${l}) / 4]);
|
|
}
|
|
`:`
|
|
fn ${s}(${o}) -> f32 {
|
|
return f32(${a}[getIndexFromCoords${u}(${r}(${i.join(",")}),
|
|
${l})]);
|
|
}
|
|
`}function Vne(e,t,a,n){let r=e.name,s=r.charAt(0).toUpperCase()+r.slice(1),i="get"+s+"ByOutput",o=e.shape.length,l=t.length,u=ia(l);if(v.arraysEqual(e.shape,t)&&n)return a?`
|
|
fn ${i}Index(globalIndex : i32) -> vec4<f32> {
|
|
return vec4<f32>(${r}[globalIndex]);
|
|
}
|
|
|
|
fn ${i}Coords(coords : ${u}) -> vec4<f32> {
|
|
return vec4<f32>(${r}[${l>1?"getOutputIndexFromCoords(coords)":"coords"} / 4]);
|
|
}
|
|
`:`
|
|
fn ${i}Index(globalIndex : i32) -> f32 {
|
|
return f32(${r}[globalIndex]);
|
|
}
|
|
|
|
fn ${i}Coords(coords : ${u}) -> f32 {
|
|
return f32(${r}[${l>1?"getOutputIndexFromCoords(coords)":"coords"}]);
|
|
}
|
|
`;let p=T.getBroadcastDims(e.shape,t),c=l-o,d="";if(o===0)return a?`
|
|
fn ${i}Index(globalIndex : i32) -> vec4<f32> {
|
|
return get${s}();
|
|
}
|
|
|
|
fn ${i}Coords(coords : ${u}) -> vec4<f32> {
|
|
return get${s}();
|
|
}
|
|
`:`
|
|
fn ${i}Index(globalIndex : i32) -> f32{
|
|
return get${s}();
|
|
}
|
|
|
|
fn ${i}Coords(coords : ${u}) -> f32{
|
|
return get${s}();
|
|
}
|
|
`;l<2&&p.length>=1?d="coords = 0;":d=p.map(g=>`coords.${Ar(g+c)} = 0;`).join(`
|
|
`);let h="";if(l<2&&o>0)h="coords";else if(l>1){let g=ia(o),x=e.shape.map((y,A)=>`coords.${Ar(A+c)}`).join(", ");h=`${g}(${x})`}else h="coords";let f=`uniforms.${r.charAt(0).toLowerCase()+r.slice(1)}Shape`,m=`${o}D`;return a?`
|
|
fn ${i}Index(globalIndex : i32) -> vec4<f32> {
|
|
var coords = getCoordsFromIndex(globalIndex);
|
|
${d}
|
|
return ${r}[getIndexFromCoords${m}(${h}, ${f}) / 4];
|
|
}
|
|
|
|
fn ${i}Coords(coordsIn : ${u}) -> vec4<f32> {
|
|
var coords = coordsIn;
|
|
${d}
|
|
return ${r}[getIndexFromCoords${m}(${h}, ${f}) / 4];
|
|
}
|
|
`:`
|
|
fn ${i}Index(globalIndex : i32) -> f32 {
|
|
var coords = getCoordsFromIndex(globalIndex);
|
|
${d}
|
|
return f32(${r}[getIndexFromCoords${m}(${h}, ${f})]);
|
|
}
|
|
|
|
fn ${i}Coords(coordsIn : ${u}) -> f32 {
|
|
var coords = coordsIn;
|
|
${d}
|
|
return f32(${r}[getIndexFromCoords${m}(${h}, ${f})]);
|
|
}
|
|
`}function Une(e,t,a,n){let r=Wne(e,a);return e.shape.length<=t.length&&(r+=Vne(e,t,a,n)),r}function Gne(e,t){let{x:a,y:n=[],z:r=[]}=t,s=e.length,i=a.length+n.length+r.length;if(i!==s)return"";if(a.length===s)return`fn getOutputCoords() -> ${ia(s)}{
|
|
let globalIndex = getGlobalIndex();
|
|
return getCoordsFromIndex(globalIndex);
|
|
}
|
|
`;let o="",l=[a,n,r];for(let d=0;d<l.length;d++){let h=l[d];if(h.length!==0)if(h.length===1)o+=`let d${h[0]} = i32(globalId[${d}]);`;else{let f=Fne(h,"uniforms.outShape");o+=`var index${d} = i32(globalId[${d}]);`;for(let m=0;m<f.length;m++)o+=`let d${h[m]} = index${d} / ${f[m]};`,m===f.length-1?o+=`let d${h[m+1]} = index${d} - d${h[m]} * ${f[m]};`:o+=`index${d} = index${d} - d${h[m]} * ${f[m]};`}}let u=[];for(let d=0;d<i;d++)u.push(`d${d}`);let p=ia(i),c=`fn getOutputCoords() -> ${p} {
|
|
${o}
|
|
`;return u.length===0?c+=`return ${p}(0); }`:c+=`return ${p}(${u.join(",")}); }`,c}function Hne(e){let t="";switch(e){case 0:case 1:t+=`
|
|
fn getOutputIndexFromCoords(coords : i32) -> i32 {
|
|
return coords;
|
|
}
|
|
`;break;case 2:t+=`
|
|
fn getOutputIndexFromCoords(coords : vec2<i32>) -> i32 {
|
|
return dot(coords, vec2<i32>(uniforms.outShapeStrides, 1));
|
|
}
|
|
`;break;case 3:t+=`
|
|
fn getOutputIndexFromCoords(coords : vec3<i32>) -> i32 {
|
|
return dot(coords, vec3<i32>(uniforms.outShapeStrides.x, uniforms.outShapeStrides.y, 1));
|
|
}
|
|
`;break;case 4:t+=`
|
|
fn getOutputIndexFromCoords(coords : vec4<i32>) -> i32 {
|
|
return dot(coords, vec4<i32>(
|
|
uniforms.outShapeStrides.x, uniforms.outShapeStrides.y, uniforms.outShapeStrides.z, 1));
|
|
}
|
|
`;break;case 5:t+=`
|
|
fn getOutputIndexFromCoords(coords : vec5) -> i32 {
|
|
return coords.x * uniforms.outShapeStrides.x +
|
|
coords.y * uniforms.outShapeStrides.y +
|
|
coords.z * uniforms.outShapeStrides.z +
|
|
coords.w * uniforms.outShapeStrides.w +
|
|
coords.u;
|
|
}
|
|
`;break;case 6:t+=`
|
|
fn getOutputIndexFromCoords(coords : vec6) -> i32 {
|
|
return coords.x * uniforms.outShapeStrides.x +
|
|
coords.y * uniforms.outShapeStrides.y +
|
|
coords.z * uniforms.outShapeStrides.z +
|
|
coords.w * uniforms.outShapeStrides.w +
|
|
coords.u * uniforms.outShapeStrides.u +
|
|
coords.v;
|
|
}
|
|
`;break;default:v.assert(!1,()=>`Unsupported ${e}D shape`);break}return t}function I8(e){return e.dispatch[1]===1&&e.dispatch[2]===1}function ad(e,t){return e==="float32"?t?"vec4<f32>":"f32":e==="int32"||e==="bool"?t?"vec4<i32>":"i32":e}function jne(e,t,a){let n=e.length,r=ad(t,a),s;if(a?s=`fn setOutputAtIndex(flatIndex : i32, value : vec4<f32>) {
|
|
result[flatIndex] = ${r}(value);
|
|
}
|
|
fn setOutputAtIndexI32(flatIndex : i32, value : vec4<i32>) {
|
|
result[flatIndex] = ${r}(value);
|
|
}`:s=`fn setOutputAtIndex(flatIndex : i32, value : f32) {
|
|
result[flatIndex] = ${r}(value);
|
|
}
|
|
fn setOutputAtIndexI32(flatIndex : i32, value : i32) {
|
|
result[flatIndex] = ${r}(value);
|
|
}`,n>=2){let i=["d0","d1","d2","d3","d4","d5"].slice(0,n),o=ia(n);a?s+=`
|
|
fn setOutputAtCoords(${i.map(l=>`${l} : i32`).join(", ")}, value : vec4<f32>) {
|
|
let flatIndex = getOutputIndexFromCoords(${o}(${i.join(", ")}));
|
|
setOutputAtIndex(flatIndex / 4, value);
|
|
}
|
|
fn setOutputAtCoordsI32(${i.map(l=>`${l} : i32`).join(", ")}, value : vec4<i32>) {
|
|
let flatIndex = getOutputIndexFromCoords(${o}(${i.join(", ")}));
|
|
setOutputAtIndexI32(flatIndex / 4, value);
|
|
}
|
|
`:s+=`
|
|
fn setOutputAtCoords(${i.map(l=>`${l} : i32`).join(", ")}, value : f32) {
|
|
let flatIndex = getOutputIndexFromCoords(${o}(${i.join(", ")}));
|
|
setOutputAtIndex(flatIndex, value);
|
|
}
|
|
fn setOutputAtCoordsI32(${i.map(l=>`${l} : i32`).join(", ")}, value : i32) {
|
|
let flatIndex = getOutputIndexFromCoords(${o}(${i.join(", ")}));
|
|
setOutputAtIndexI32(flatIndex, value);
|
|
}
|
|
`}return s}function qne(e){let t=/(\w+)\s*:\s*vec(5|6)/g;e=e.replace(t,n=>"@align(16) "+n);let a=/vec(5|6)\s*,\s*(\w+)/g;return e=e.replace(a,(n,r,s)=>`vec${r}, @align(16) ${s}`),e}function Vx(e){return!(e.dispatchLayout.hasOwnProperty("y")&&e.dispatchLayout.y.length!==0||e.dispatchLayout.hasOwnProperty("z")&&e.dispatchLayout.z.length!==0)}var S8={};Ke(S8,{GPUBytesPerElement:()=>R2,MatMulProgramType:()=>Pn,assertNotComplex:()=>C8,computeDispatch:()=>we,computeWorkPerThreadForConv2d:()=>z3,computeWorkgroupInfoForMatMul:()=>T8,computeWorkgroupSizeForConv2d:()=>D3,flatDispatchLayout:()=>$e,isWebGPUSupported:()=>L3,tilesFitEvenlyIntoShape:()=>Xne});var Ds=e=>{let t=1;for(let a=0;a<e.length;a++)t*=e[a];return t};function Xne(e,t){if(e.length!==t.length)throw new Error(`Cannot compute whether rank ${e.length} tiles fit evenly into rank ${t.length} shape - ranks must match.`);return t.every((a,n)=>a%e[n]===0)}function we(e,t,a=[1,1,1],n=[1,1,1]){let[r,s,i]=[Math.ceil(Ds(e.x.map(o=>t[o]))/(a[0]*n[0])),e.y?Math.ceil(Ds(e.y.map(o=>t[o]))/(a[1]*n[1])):1,e.z?Math.ceil(Ds(e.z.map(o=>t[o]))/(a[2]*n[2])):1];return[r,s,i]}function T8(e,t,a,n=!1){let r=[8,8,1],s=[4,4,1];return n||(e<=8&&(s[1]=1),t<=16&&a<=16&&(r[0]=4)),{workgroupSize:r,elementsPerThread:s}}function D3(e,t,a=!1){if(a)return[8,8,1];let n=Ds(e.x.map(s=>t[s])),r=Ds(e.y.map(s=>t[s]));return n<=4?[4,16,1]:r<=4?[16,4,1]:[16,16,1]}function z3(e,t,a=!1){if(a)return[4,4,1];let n=Ds(e.x.map(s=>t[s])),r=Ds(e.y.map(s=>t[s]));return n<=4?[1,2,1]:r<=4?[2,1,1]:[2,2,1]}function $e(e){return{x:e.map((t,a)=>a)}}function R2(e){if(e==="float32"||e==="int32"||e==="bool"||e==="string")return 4;if(e==="complex64")return 8;throw new Error(`Unknown dtype ${e}`)}function L3(){return(typeof window!="undefined"||typeof WorkerGlobalScope!="undefined")&&!!navigator.gpu}function C8(e,t){Array.isArray(e)||(e=[e]),e.forEach(a=>{a!=null&&v.assert(a.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGPU backend.`)})}var Pn;(function(e){e[e.MatMulReduceProgram=0]="MatMulReduceProgram",e[e.MatMulSplitKProgram=1]="MatMulSplitKProgram",e[e.MatMulSmallOutputSizeProgram=2]="MatMulSmallOutputSizeProgram",e[e.MatMulPackedProgram=3]="MatMulPackedProgram",e[e.MatMulMax=4]="MatMulMax"})(Pn||(Pn={}));var Kne=B().getNumber("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD"),Zne=(e,t)=>{let a=e.limits.maxComputeWorkgroupsPerDimension,n=t.dispatchLayout,r=t.dispatch;if(r.every(i=>i<=a))return r;v.assert(r[0]>a&&n.y===void 0&&n.z===void 0,()=>"Dispatch size exceeds WebGPU limits in Y or Z dimension.");let s=Math.ceil(Math.sqrt(r[0]));return s>a?(s=Math.ceil(Math.cbrt(r[0])),v.assert(s<=a,()=>"Total dispatch size exceeds WebGPU maximum."),[s,s,s]):[s,s,1]},Dh=class extends Al{constructor(e,t){if(super(),this.commandQueueOwnedIds=new WeakSet,this.dispatchNumberInEncoder=0,this.disposed=!1,this.downloadWaitMs=0,this.tensorDataPendingDisposal=[],this.stagingPendingDisposal=[],this.uniformPendingDisposal=[],this.uploadWaitMs=0,!L3())throw new Error("WebGPU is not supported on this device");this.pipelineCache={},this.device=e,this.queue=e.queue,this.currentCommandEncoder=null,this.currentComputePass=null,this.supportTimeQuery=e.features.has("timestamp-query-inside-passes"),this.adapterInfo=new $ne(t),this.thresholdToIncreaseWorkgroups=this.adapterInfo.intelGPUGeneration>=12?16:8,this.bufferManager=new _ne(this.device),this.textureManager=new Pne(this.device),this.tensorMap=new wd(this,vt()),this.supportTimeQuery&&(this.querySet=this.device.createQuerySet({type:"timestamp",count:2})),B().getBool("WEBGPU_USE_PROFILE_TOOL")&&(this.dummyCanvas=document.createElement("canvas"),this.dummyCanvas.width=1,this.dummyCanvas.height=1,this.dummyContext=this.dummyCanvas.getContext("webgpu"),this.dummyContext.configure({device:e,format:"bgra8unorm"}),document.body.appendChild(this.dummyCanvas))}nextDataId(){return Dh.nextDataId++}floatPrecision(){return 32}defaultGpuBufferUsage(){return GPUBufferUsage.STORAGE|GPUBufferUsage.COPY_SRC|GPUBufferUsage.COPY_DST}disposeData(e,t=!1){if(this.tensorDataPendingDisposal.indexOf(e)>=0)return!1;if(!this.tensorMap.has(e))return!0;let a=this.tensorMap.get(e);if(this.decRef(e),!t&&a.refCount>0)return!1;if(this.commandQueueOwnedIds.has(e))return this.tensorDataPendingDisposal.push(e),!1;let{complexTensorInfos:n}=this.tensorMap.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.releaseResource(e),this.tensorMap.delete(e),!0}memory(){return{numBytesInGPU:this.bufferManager.numBytesUsed,numBytesAllocatedInGPU:this.bufferManager.numBytesAllocated,unreliable:!1}}releaseResource(e){let t=this.tensorMap.get(e);if(!(!t||!t.resourceInfo)){if(t.external){t.resourceInfo=null;return}if("texture"in t.resourceInfo){let a=t.resourceInfo;a.texture instanceof GPUTexture&&this.textureManager.releaseTexture(a.texture,a.width,a.height,a.format,a.usage),a.texture=null}else{let a=t.resourceInfo;this.bufferManager.releaseBuffer(a.buffer,a.size,a.usage),a.buffer=null}t.resourceInfo=null}}refCount(e){return this.tensorMap.has(e)?this.tensorMap.get(e).refCount:0}incRef(e){let t=this.tensorMap.get(e);t.refCount++}decRef(e){if(this.tensorMap.has(e)){let t=this.tensorMap.get(e);t.refCount--}}write(e,t,a){if(a==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let n={id:this.nextDataId()};return this.tensorMap.set(n,{dtype:a,shape:t,values:e,refCount:1}),n}move(e,t,a,n,r){if(n==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.tensorMap.set(e,{dtype:n,shape:a,values:t,refCount:r})}submitQueue(){this.ensureComputePassEnded(),this.queue.submit([this.currentCommandEncoder.finish()]),this.currentCommandEncoder=null,this.dispatchNumberInEncoder=0,this.commandQueueOwnedIds=new WeakSet,this.tensorDataPendingDisposal.forEach(e=>{this.releaseResource(e),this.tensorMap.delete(e)}),this.uniformPendingDisposal.forEach(e=>this.bufferManager.releaseBuffer(e.buffer,e.size,e.usage)),this.stagingPendingDisposal.forEach(e=>this.bufferManager.releaseUploadBuffer(e.buffer,e.size,e.usage)),this.tensorDataPendingDisposal=[],this.uniformPendingDisposal=[],this.stagingPendingDisposal=[]}ensureCommandEncoderReady(){this.currentCommandEncoder||(this.currentCommandEncoder=this.device.createCommandEncoder())}ensureComputePassEnded(){this.currentComputePass&&(this.currentComputePass.end(),this.currentComputePass=null)}getComputePass(){return this.currentComputePass||(this.currentComputePass=this.currentCommandEncoder.beginComputePass()),this.currentComputePass}async getBufferData(e,t){let a=this.bufferManager.acquireBuffer(t,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(e,0,a,0,t),this.submitQueue(),await a.mapAsync(GPUMapMode.READ);let n=a.getMappedRange().slice(0);return a.unmap(),a!=null&&this.bufferManager.releaseBuffer(a,t,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ),B().getBool("WEBGPU_USE_PROFILE_TOOL")&&(v.assert(this.dummyContext!==void 0,()=>"Fail to get context for profiling tool"),this.dummyContext.getCurrentTexture()),n}convertAndCacheOnCPU(e,t){let a=this.tensorMap.get(e);return this.releaseResource(e),a.values=t,a.values}readSync(e){let t=this.tensorMap.get(e),{values:a}=t;if(a==null)throw new Error("WebGPU readSync is only available for CPU-resident tensors.");return a}async read(e){if(!this.tensorMap.has(e))throw new Error(`Tensor ${e} was not registered!`);let t=this.tensorMap.get(e),{values:a}=t;if(a!=null)return this.convertAndCacheOnCPU(e,a);let n;if(t.dtype==="complex64"){let r=await Promise.all([this.read(t.complexTensorInfos.real.dataId),this.read(t.complexTensorInfos.imag.dataId)]),s=r[0],i=r[1];n=T.mergeRealAndImagArrays(s,i)}else{let r=t.resourceInfo,s=await this.getBufferData(r.buffer,r.size);n=v.convertBackendValuesAndArrayBuffer(s,t.dtype)}return this.convertAndCacheOnCPU(e,n),n}copyBuffer(e,t,a){let n=this.bufferManager.acquireBuffer(t,a);return this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(e,0,n,0,t),this.submitQueue(),n}createTensorFromGPUData(e,t,a){let n=e.buffer;if(a==="complex64")throw new Error("Cannot write to a complex64 dtype. ");let r={id:this.nextDataId()};this.tensorMap.set(r,{dtype:a,shape:t,values:null,refCount:1,external:e.zeroCopy});let s=this.tensorMap.get(r),i=R2(s.dtype)*v.sizeFromShape(s.shape);if(e.buffer.size<i)throw new Error(`GPUBuffer size(${e.buffer.size}) is smaller than tensor size(${i})!`);if((e.buffer.usage&(GPUBufferUsage.STORAGE|GPUBufferUsage.COPY_SRC))!==(GPUBufferUsage.STORAGE|GPUBufferUsage.COPY_SRC))throw new Error("GPUBuffer.usage should include GPUBufferUsage.STORAGE | GPUBufferUsage.COPY_SRC!");return e.zeroCopy!==!0&&(n=this.copyBuffer(n,i,n.usage)),s.resourceInfo={size:n.size,usage:n.usage,buffer:n},vt().makeTensorFromDataId(r,t,a,this)}readToGPU(e){let t=this.tensorMap.get(e),{values:a,dtype:n,shape:r,resourceInfo:s}=t;if(n==="complex64")throw new Error("Does not support reading buffer for complex64 dtype.");if(s==null)throw a!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let i=s.size,o=this.bufferManager.acquireBuffer(i,s.usage);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(s.buffer,0,o,0,i),this.submitQueue();let l=this.makeTensorInfo(r,n),u=vt().makeTensorFromTensorInfo(l),p=this.tensorMap.get(l.dataId);return p.resourceInfo={size:i,usage:this.defaultGpuBufferUsage(),buffer:o},{tensorRef:u,buffer:o,bufSize:i}}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let a=t.map(n=>v.decodeString(n));return _e(e.shape,e.dtype,a)}catch(a){throw new Error("Failed to decode encoded string bytes into utf-8")}return _e(e.shape,e.dtype,t)}async time(e){this.supportTimeQuery||console.warn("This device doesn't support timestamp-query-inside-passes extension. Start Chrome browser with flag --disable-dawn-features=disallow_unsafe_apis then try again. Otherwise, zero will be shown for the kernel time when profiling mode is enabled. Using performance.now is not workable for webgpu since it doesn't support synchronous data read from GPU.");let t=this.activeTimers,a=[],n=!1;this.programTimersStack==null?(this.programTimersStack=a,n=!0):this.activeTimers.push(a),this.activeTimers=a,e();let r=v.flatten(this.activeTimers.map(l=>l.query)).filter(l=>l!=null),s=v.flatten(this.activeTimers.map(l=>l.name)).filter(l=>l!=null);this.activeTimers=t,n&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null},o=await Promise.all(r);return i.kernelMs=v.sum(o),i.getExtraProfileInfo=()=>o.map((l,u)=>({name:s[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", "),this.uploadWaitMs=0,this.downloadWaitMs=0,i}makeTensorInfo(e,t,a){return t==="string"&&a!=null&&a.length>0&&v.isString(a[0])&&(a=a.map(n=>v.encodeString(n))),{dataId:this.write(a,e,t),shape:e,dtype:t}}tensorToBinding(e){if(!e)return null;let t=this.tensorMap.get(e.dataId);if("texture"in t.resourceInfo){let n=t.resourceInfo;return n.texture instanceof GPUExternalTexture?n.texture:n.texture.createView()}let a=t.resourceInfo;return{offset:0,size:a.size,buffer:a.buffer}}async getQueryTime(e){return this.supportTimeQuery?this.getTimeFromQuerySet(e):0}uploadToGPU(e){let t=this.tensorMap.get(e);if(t.resourceInfo)return;let a=R2(t.dtype)*v.sizeFromShape(t.shape),n=this.bufferManager.acquireBuffer(a,this.defaultGpuBufferUsage());if(t.resourceInfo={size:a,usage:this.defaultGpuBufferUsage(),buffer:n},t.values){let r=this.bufferManager.acquireUploadBuffer(a,GPUBufferUsage.MAP_WRITE|GPUBufferUsage.COPY_SRC),s=r.getMappedRange();t.dtype==="int32"||t.dtype==="bool"?new Int32Array(s).set(t.values):new Float32Array(s).set(t.values),r.unmap(),this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(r,0,n,0,a);let i={size:a,usage:GPUBufferUsage.MAP_WRITE|GPUBufferUsage.COPY_SRC,buffer:r};this.stagingPendingDisposal.push(i)}}makeUniforms(e){let t=0,a=0,n=[],r=1;e.forEach(l=>{l.data.length===0&&(l.data=[1]);let u;switch(l.data.length){case 1:u=4;break;case 2:u=8;break;case 3:u=16;break;case 4:u=16;break;case 5:u=16;break;case 6:u=16;break;default:v.assert(!1,()=>`Unsupported ${l.data.length}D shape`)}(a===5||a===6)&&(u=16),u>r&&(r=u),t=Math.ceil(t/u)*u,a=l.data.length,n.push(t),t+=l.data.length*4}),t=Math.ceil(t/r)*r;let s=new ArrayBuffer(t);e.forEach((l,u)=>{let p=n[u];l.type==="int32"?new Int32Array(s,p,l.data.length).set(l.data):l.type==="uint32"?new Uint32Array(s,p,l.data.length).set(l.data):new Float32Array(s,p,l.data.length).set(l.data)});let i=this.bufferManager.acquireBuffer(t,GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM);this.queue.writeBuffer(i,0,s,0,t);let o={size:t,usage:GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM,buffer:i};return this.uniformPendingDisposal.push(o),{offset:0,size:t,buffer:i}}runWebGPUProgram(e,t,a,n,r){if(r||(r=this.makeTensorInfo(e.outputShape,a)),v.sizeFromShape(r.shape)===0)return this.tensorMap.get(r.dataId).values=v.getTypedArrayFromDType(r.dtype,0),r;this.uploadToGPU(r.dataId),e.dispatch=Zne(this.device,e);let s=[],i=[];if(!e.isFromPixels){s.push({type:"float32",data:[NaN]},{type:"float32",data:[1/0]}),i=t.concat(r).map(g=>g.shape);let f="int32";i.map(g=>{s.push({type:f,data:g})});let m=v.computeStrides(r.shape);if(s.push({type:f,data:m}),e.size){let g=v.sizeFromShape(e.outputShape);s.push({type:f,data:[e.isVec4?g/4:g]})}}let o=t.map((f,m)=>{if(f.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");return this.uploadToGPU(f.dataId),{dtype:this.tensorMap.get(f.dataId).dtype,shape:f.shape,name:e.variableNames[m]}}),l=Lne(e,i,o,r),u;l in this.pipelineCache?u=this.pipelineCache[l]:(u=One(this.device,e,o,r),this.pipelineCache[l]=u),n&&(s=[...s,...n]);let p=[this.tensorToBinding(r),...t.map(f=>this.tensorToBinding(f)),this.makeUniforms(s)],c=this.device.createBindGroup({layout:u.getBindGroupLayout(0),entries:p.map((f,m)=>({binding:m,resource:f}))});this.ensureCommandEncoderReady();let d=this.getComputePass(),h=this.activeTimers!=null;return h&&this.supportTimeQuery&&d.writeTimestamp(this.querySet,0),d.setPipeline(u),d.setBindGroup(0,c),d.dispatchWorkgroups(e.dispatch[0],e.dispatch[1],e.dispatch[2]),h&&this.supportTimeQuery&&d.writeTimestamp(this.querySet,1),this.dispatchNumberInEncoder++,t.forEach(f=>{this.commandQueueOwnedIds.add(f.dataId)}),this.commandQueueOwnedIds.add(r.dataId),B().get("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE")<=this.dispatchNumberInEncoder&&this.submitQueue(),h&&this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(this.querySet)}),r}async getTimeFromQuerySet(e){let t=this.bufferManager.acquireBuffer(16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),a=this.bufferManager.acquireBuffer(16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.resolveQuerySet(e,0,2,t,0),this.currentCommandEncoder.copyBufferToBuffer(t,0,a,0,16),this.submitQueue(),await a.mapAsync(GPUMapMode.READ);let n=new BigUint64Array(a.getMappedRange()),r=Number(n[1]-n[0]);return a.unmap(),this.bufferManager.releaseBuffer(a,16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST),this.bufferManager.releaseBuffer(t,16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),r/1e6}shouldExecuteOnCPU(e,t=Kne){return B().getBool("WEBGPU_CPU_FORWARD")&&e.every(a=>this.tensorMap.get(a.dataId).resourceInfo==null&&v.sizeFromShape(a.shape)<t)}numDataIds(){return this.tensorMap.numDataIds()-this.tensorDataPendingDisposal.length}dispose(){this.disposed||(this.bufferManager.dispose(),this.textureManager.dispose(),this.disposed=!0)}};Dh.nextDataId=0;L3()&&xo("webgpu",async()=>{B().set("CHECK_COMPUTATION_FOR_ERRORS",!1);let e={powerPreference:B().get("WEBGPU_USE_LOW_POWER_GPU")?"low-power":"high-performance"},t=await navigator.gpu.requestAdapter(e),a={};t.features.has("timestamp-query-inside-passes")&&(a.requiredFeatures=["timestamp-query-inside-passes"]);let n=t.limits;a.requiredLimits={maxComputeWorkgroupStorageSize:n.maxComputeWorkgroupStorageSize,maxComputeWorkgroupsPerDimension:n.maxComputeWorkgroupsPerDimension,maxStorageBufferBindingSize:n.maxStorageBufferBindingSize};let r=await t.requestDevice(a),s=await t.requestAdapterInfo();return new Dh(r,s)},3);var Pe;(function(e){e[e.ADD=0]="ADD",e[e.ATAN2=1]="ATAN2",e[e.COMPLEX_MULTIPLY_IMAG=2]="COMPLEX_MULTIPLY_IMAG",e[e.COMPLEX_MULTIPLY_REAL=3]="COMPLEX_MULTIPLY_REAL",e[e.DIV=4]="DIV",e[e.EQUAL=5]="EQUAL",e[e.GREATER=6]="GREATER",e[e.GREATER_EQUAL=7]="GREATER_EQUAL",e[e.INT_DIV=8]="INT_DIV",e[e.LESS=9]="LESS",e[e.LESS_EQUAL=10]="LESS_EQUAL",e[e.LOGICAL_AND=11]="LOGICAL_AND",e[e.LOGICAL_OR=12]="LOGICAL_OR",e[e.MAX=13]="MAX",e[e.MIN=14]="MIN",e[e.MOD=15]="MOD",e[e.MUL=16]="MUL",e[e.NOT_EQUAL=17]="NOT_EQUAL",e[e.POW=18]="POW",e[e.PRELU=19]="PRELU",e[e.SQUARED_DIFFERENCE=20]="SQUARED_DIFFERENCE",e[e.SUB=21]="SUB"})(Pe||(Pe={}));var N8=`
|
|
if (isnan(a)) { return a; }
|
|
if (isnan(b)) { return b; }
|
|
`,zh=`
|
|
resultTemp = select(
|
|
resultTemp, vec4<f32>(valueForNaN),
|
|
vec4<bool>(isNaN) | isnanVec4(a) | isnanVec4(b));
|
|
`,Yne="return a + b;",Jne="return areal * breal - aimag * bimag;",Qne="return areal * bimag + aimag * breal;",ere="return a / b;",tre="return f32(a == b);",are="return vec4<f32>(a == b);",nre="return f32(a > b);",rre="return vec4<f32>(a > b);",sre="return f32(a >= b);",ire="return vec4<f32>(a >= b);",ore=`
|
|
let s = sign(a) * sign(b);
|
|
let ia = i32(round(a));
|
|
let ib = i32(round(b));
|
|
return f32(idiv(ia, ib, s));
|
|
`,lre=`
|
|
let ia = vec4<i32>(round(a));
|
|
let ib = vec4<i32>(round(b));
|
|
let cond = ib != vec4<i32>(0);
|
|
var resultTemp = vec4<i32>(0);
|
|
let s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
resultTemp[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
resultTemp[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
resultTemp[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
resultTemp[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4<f32>(resultTemp);
|
|
`,ure="return f32(a < b);",dre="return vec4<f32>(a < b);",pre="return f32(a <= b);",cre="return vec4<f32>(a <= b);",hre="return f32(a >= 1.0 && b >= 1.0);",fre=`return (vec4<f32>(a >= vec4<f32>(1.0)) *
|
|
vec4<f32>(b >= vec4<f32>(1.0)));`,mre="return f32(a >= 1.0 || b >= 1.0);",gre=`return min(vec4<f32>(a >= vec4<f32>(1.0)) +
|
|
vec4<f32>(b >= vec4<f32>(1.0)), vec4<f32>(1.0));`,xre=`
|
|
${N8}
|
|
if (b == 0.) {
|
|
return uniforms.NAN;
|
|
}
|
|
var resultTemp = a % b;
|
|
if ((a < 0. && b < 0.) || (a >= 0. && b > 0.)) {
|
|
return resultTemp;
|
|
} else {
|
|
return (resultTemp + b) % b;
|
|
}
|
|
`,yre=`
|
|
let isNaN = !vec4<bool>(b);
|
|
let valueForNaN = uniforms.NAN;
|
|
var resultTemp = vec4<f32>(a % b);
|
|
${zh}
|
|
|
|
if (!((a[0] < 0. && b[0] < 0.) || (a[0] >= 0. && b[0] > 0.))) {
|
|
resultTemp[0] = (resultTemp[0] + b[0]) % b[0];
|
|
}
|
|
if (!((a[1] < 0. && b[1] < 0.) || (a[1] >= 0. && b[1] > 0.))) {
|
|
resultTemp[1] = (resultTemp[1] + b[1]) % b[1];
|
|
}
|
|
if (!((a[2] < 0. && b[2] < 0.) || (a[2] >= 0. && b[2] > 0.))) {
|
|
resultTemp[2] = (resultTemp[2] + b[2]) % b[2];
|
|
}
|
|
if (!((a[3] < 0. && b[3] < 0.) || (a[3] >= 0. && b[3] > 0.))) {
|
|
resultTemp[3] = (resultTemp[3] + b[3]) % b[3];
|
|
}
|
|
|
|
return resultTemp;
|
|
`,Are="return a * b;",bre=`
|
|
if (isnan(a) || isnan(b)) {
|
|
return 1.0;
|
|
}
|
|
return f32(a != b);
|
|
`,vre=`
|
|
var resultTemp = vec4<f32>(a != b);
|
|
let valueForNaN = 1.0;
|
|
${zh}
|
|
|
|
return resultTemp;
|
|
`,kre=`
|
|
if(a < 0.0 && floor(b) < b) {
|
|
return uniforms.NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
if (round(abs(b) % 2.0) != 1.0) {
|
|
return pow(abs(a), b);
|
|
}
|
|
return sign(a) * pow(abs(a), b);
|
|
`,wre=`
|
|
let isModRound1Bool = vec4<i32>(round(abs(b) % vec4<f32>(2.0))) == vec4<i32>(1);
|
|
let isModRound1 = vec4<f32>(isModRound1Bool);
|
|
let multiplier = sign(a) * isModRound1 + (vec4<f32>(1.0) - isModRound1);
|
|
var resultTemp = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
let isExpZero = b == vec4<f32>(0.0);
|
|
if (isExpZero.r) {
|
|
resultTemp.r = 1.0;
|
|
}
|
|
if (isExpZero.g) {
|
|
resultTemp.g = 1.0;
|
|
}
|
|
if (isExpZero.b) {
|
|
resultTemp.b = 1.0;
|
|
}
|
|
if (isExpZero.a) {
|
|
resultTemp.a = 1.0;
|
|
}
|
|
let isNaN = (a < vec4<f32>(0.0)) & (floor(b) < b);
|
|
let valueForNaN = uniforms.NAN;
|
|
${zh}
|
|
return resultTemp;
|
|
`,Ire="if (a < 0.0) { return b * a; } return a;",Sre=`
|
|
let aLessThanZero = vec4<f32>(a < vec4<f32>(0.0));
|
|
return (aLessThanZero * (b * a)) + ((vec4<f32>(1.0) - aLessThanZero) * a);
|
|
`,Tre="return (a - b) * (a - b);",Cre="return a - b;";function Dm(e,t,a="uniforms.NAN"){let n=t?zh:N8;return t?`
|
|
let valueForNaN = ${a};
|
|
var resultTemp = vec4<f32>(${e}(a, b));
|
|
`+n+`
|
|
return resultTemp;
|
|
`:n+`
|
|
return ${e}(a, b);
|
|
`}function B3(e,t){switch(e){case Pe.ADD:return Yne;case Pe.ATAN2:return Dm("atan2",t);case Pe.COMPLEX_MULTIPLY_IMAG:return Qne;case Pe.COMPLEX_MULTIPLY_REAL:return Jne;case Pe.DIV:return ere;case Pe.EQUAL:return t?are:tre;case Pe.GREATER:return t?rre:nre;case Pe.GREATER_EQUAL:return t?ire:sre;case Pe.INT_DIV:return t?lre:ore;case Pe.LESS:return t?dre:ure;case Pe.LESS_EQUAL:return t?cre:pre;case Pe.LOGICAL_AND:return t?fre:hre;case Pe.LOGICAL_OR:return t?gre:mre;case Pe.MAX:return Dm("max",t);case Pe.MIN:return Dm("min",t);case Pe.MOD:return t?yre:xre;case Pe.MUL:return Are;case Pe.NOT_EQUAL:return t?vre:bre;case Pe.POW:return t?wre:kre;case Pe.PRELU:return t?Sre:Ire;case Pe.SQUARED_DIFFERENCE:return Tre;case Pe.SUB:return Cre;default:throw new Error(`BinaryType ${e} is not implemented!`)}}var le;(function(e){e[e.ABS=0]="ABS",e[e.ACOS=1]="ACOS",e[e.ACOSH=2]="ACOSH",e[e.ASIN=3]="ASIN",e[e.ASINH=4]="ASINH",e[e.ATAN=5]="ATAN",e[e.ATANH=6]="ATANH",e[e.CEIL=7]="CEIL",e[e.COS=8]="COS",e[e.COSH=9]="COSH",e[e.ELU=10]="ELU",e[e.ERF=11]="ERF",e[e.EXP=12]="EXP",e[e.EXPM1=13]="EXPM1",e[e.FLOOR=14]="FLOOR",e[e.IS_FINITE=15]="IS_FINITE",e[e.IS_INF=16]="IS_INF",e[e.IS_NAN=17]="IS_NAN",e[e.LINEAR=18]="LINEAR",e[e.LOG=19]="LOG",e[e.LOG1P=20]="LOG1P",e[e.LOGICAL_NOT=21]="LOGICAL_NOT",e[e.NEG=22]="NEG",e[e.RELU=23]="RELU",e[e.RELU6=24]="RELU6",e[e.LEAKYRELU=25]="LEAKYRELU",e[e.RECIPROCAL=26]="RECIPROCAL",e[e.ROUND=27]="ROUND",e[e.RSQRT=28]="RSQRT",e[e.SELU=29]="SELU",e[e.SIGMOID=30]="SIGMOID",e[e.SIGN=31]="SIGN",e[e.SIN=32]="SIN",e[e.SINH=33]="SINH",e[e.SOFTPLUS=34]="SOFTPLUS",e[e.SQRT=35]="SQRT",e[e.SQUARE=36]="SQUARE",e[e.STEP=37]="STEP",e[e.TAN=38]="TAN",e[e.TANH=39]="TANH",e[e.TO_INT=40]="TO_INT"})(le||(le={}));var Nre="return abs(a);",Ere=`
|
|
if (abs(a) > 1.) {
|
|
return uniforms.NAN;
|
|
}
|
|
return acos(a);
|
|
`,Rre=`
|
|
if (a < 1.) {
|
|
return uniforms.NAN;
|
|
}
|
|
return acosh(a);
|
|
`,Mre=`
|
|
if (abs(a) > 1.) {
|
|
return uniforms.NAN;
|
|
}
|
|
return asin(a);
|
|
`,$re="return asinh(a);",_re=`
|
|
if (isnan(a)) {
|
|
return uniforms.NAN;
|
|
}
|
|
return atan(a);
|
|
`,Pre=`
|
|
if (abs(a) > 1.) {
|
|
return uniforms.NAN;
|
|
}
|
|
if (a == 1.) {
|
|
return uniforms.INFINITY;
|
|
}
|
|
if (a == -1.) {
|
|
return -uniforms.INFINITY;
|
|
}
|
|
return atanh(a);
|
|
`,Fre="return ceil(a);",Ore="return cos(a);",Dre=`
|
|
let e2x = exp(-a);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,zre="return exp(a) - 1.0;",Lre="if (a >= 0.0) { return a; } return (exp(a) - 1.0);",Bre=`
|
|
var resFloat = exp(a) - vec4<f32>(1.0);
|
|
if (a.r >= 0.0) {
|
|
resFloat.r = a.r;
|
|
}
|
|
if (a.g >= 0.0) {
|
|
resFloat.g = a.g;
|
|
}
|
|
if (a.b >= 0.0) {
|
|
resFloat.b = a.b;
|
|
}
|
|
if (a.a >= 0.0) {
|
|
resFloat.a = a.a;
|
|
}
|
|
return resFloat;
|
|
`,Wre=`
|
|
// Error function is calculated approximately with elementary function.
|
|
// See "Handbook of Mathematical Functions with Formulas,
|
|
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
|
|
let p = ${T.ERF_P};
|
|
let a1 = ${T.ERF_A1};
|
|
let a2 = ${T.ERF_A2};
|
|
let a3 = ${T.ERF_A3};
|
|
let a4 = ${T.ERF_A4};
|
|
let a5 = ${T.ERF_A5};
|
|
|
|
let sign = sign(a);
|
|
let absA = abs(a);
|
|
let t = 1.0 / (1.0 + p * absA);
|
|
return sign * (1.0 - (((((a5 * t + a4) * t) + a3) * t + a2) * t + a1) * t * exp(-absA * absA));
|
|
`,Vre="return exp(a);",Ure="return floor(a);",Gre="return f32(!isnan(a) && !isinf(a));",Hre="return f32(isinf(a));",jre="return f32(isnan(a));",qre="return a;",Xre=`if (a < 0.0) { return uniforms.NAN; }
|
|
return log(a);`,Kre=`
|
|
if (isnan(a)) { return a; }
|
|
return log(1.0 + a);
|
|
`,Zre="return f32(!(a >= 1.0));",Yre="return -a;",Jre="if (a < 0.0) { return uniforms.alpha * a; } return a;",Qre=`
|
|
let aLessThanZero = vec4<f32>(a < vec4<f32>(0.0));
|
|
return (aLessThanZero * (uniforms.alpha * a)) + ((vec4<f32>(1.0) - aLessThanZero) * a);
|
|
`,ese="return 1.0 / a;",tse="return select(a, 0.0, a < 0.0);",ase="return clamp(a, 0.0, 6.0);",nse="return clamp(a, vec4<f32>(0.0, 0.0, 0.0, 0.0), vec4<f32>(6.0, 6.0, 6.0, 6.0));",rse=`
|
|
return select(a, vec4<f32>(0.0), a < vec4<f32>(0.0));
|
|
`,sse="return round(a);",ise="return inverseSqrt(a);",ose=`
|
|
if (a >= 0.0) {
|
|
return ${T.SELU_SCALE} * a;
|
|
} else {
|
|
return ${T.SELU_SCALEALPHA} * (exp(a) - 1.0);
|
|
}
|
|
`,lse="return 1.0 / (1.0 + exp(-1.0 * a));",use="return sign(a);",dse="return sin(a);",pse=`
|
|
let e2x = exp(a);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,cse=`
|
|
let epsilon = 1.1920928955078125e-7;
|
|
let threshold = log(epsilon) + 2.0;
|
|
|
|
let too_large = a > -threshold;
|
|
let too_small = a < threshold;
|
|
let exp_a = exp(a);
|
|
|
|
if (too_large) {
|
|
return a;
|
|
} else if (too_small) {
|
|
return exp_a;
|
|
} else {
|
|
return log(exp_a + 1.0);
|
|
}
|
|
`,hse="return sqrt(a);",fse="return a * a;",mse=`
|
|
if (isnan(a)) {
|
|
return a;
|
|
}
|
|
|
|
return select(uniforms.stepAlpha, 1.0, a > 0.0);
|
|
`,gse="return tan(a);",xse=`
|
|
let e2x = exp(-2.0 * abs(a));
|
|
return sign(a) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,yse="return f32(i32((a)));";function $s(e,t){switch(e){case le.ABS:return Nre;case le.ACOS:return Ere;case le.ACOSH:return Rre;case le.ASIN:return Mre;case le.ASINH:return $re;case le.ATAN:return _re;case le.ATANH:return Pre;case le.COS:return Ore;case le.COSH:return Dre;case le.CEIL:return Fre;case le.ELU:return t?Bre:Lre;case le.ERF:return Wre;case le.EXP:return Vre;case le.EXPM1:return zre;case le.FLOOR:return Ure;case le.IS_FINITE:return Gre;case le.IS_INF:return Hre;case le.IS_NAN:return jre;case le.LINEAR:return qre;case le.LOG:return Xre;case le.LOG1P:return Kre;case le.LOGICAL_NOT:return Zre;case le.NEG:return Yre;case le.LEAKYRELU:return t?Qre:Jre;case le.RECIPROCAL:return ese;case le.RELU:return t?rse:tse;case le.RELU6:return t?nse:ase;case le.ROUND:return sse;case le.RSQRT:return ise;case le.SELU:return ose;case le.SIGMOID:return lse;case le.SIGN:return use;case le.SIN:return dse;case le.SINH:return pse;case le.SOFTPLUS:return cse;case le.SQRT:return hse;case le.SQUARE:return fse;case le.STEP:return mse;case le.TAN:return gse;case le.TANH:return xse;case le.TO_INT:return yse;default:throw new Error(`BinaryType ${e} is not implemented!`)}}var $t=e=>{switch(e){case 1:return"f32";case 2:return"vec2<f32>";case 3:return"vec3<f32>";case 4:return"vec4<f32>";default:throw new Error(`${e}-component is not supported.`)}};function Tr(e,t=!1,a=!1,n=3){if(e===null)return"";let r="";if(e==="linear")r=$s(le.LINEAR);else if(e==="relu")r=$s(le.RELU,a);else if(e==="elu")r=$s(le.ELU,a);else if(e==="relu6")r=$s(le.RELU6,a);else if(e==="prelu")r=B3(Pe.PRELU,a);else if(e==="sigmoid")r=$s(le.SIGMOID,a);else if(e==="leakyrelu")r=$s(le.LEAKYRELU,a);else throw new Error(`Activation ${e} has not been implemented for the WebGPU backend.`);let s=$t(a?4:1),i="";return t?i=`
|
|
fn activation(a : ${s}, coords : vec${n}<i32>) -> ${s} {
|
|
let b = getPreluActivationWeightsByOutputCoords(coords);
|
|
${r}
|
|
}`:i=`
|
|
fn activation(a : ${s}, coords : vec${n}<i32>) -> ${s} {
|
|
${r}
|
|
}`,i}function ko(e,t){return`
|
|
${e?"value = value + getBiasByOutputCoords(coords);":""}
|
|
${t?"value = activation(value, coords);":""}
|
|
`}function E8(e,t,a=!1,n=!1,r=!1,s=1){v.assert(e&&s===1||!e,()=>`transposeA ${e} is not compatible with component size ${s}`);let i=`
|
|
${e?"value = getA(batch, col, row);":"value = getA(batch, row, col);"}
|
|
|
|
`,o=t?"value = getB(batch, col, row);":"value = getB(batch, row, col);";return`
|
|
fn mm_readA(batch: i32, row: i32, colIn: i32) -> ${$t(s)} {
|
|
var value = ${$t(s)}(0.0);
|
|
let col = colIn * ${s};
|
|
${a&&r?i:`
|
|
${e?"if(row < uniforms.dimAOuter && col < uniforms.dimInner)":"if(row < uniforms.aShape[1] && col < uniforms.aShape[2])"}
|
|
{
|
|
${i}
|
|
}
|
|
`}
|
|
return value;
|
|
}
|
|
|
|
fn mm_readB(batch: i32, row: i32, colIn: i32) -> ${$t(s)} {
|
|
let col = colIn * ${s};
|
|
var value = ${$t(s)}(0.0);
|
|
${o}
|
|
return value;
|
|
}
|
|
`}function W3(e,t,a,n,r=!1,s=!1,i=!1,o=1){return`
|
|
${E8(a,n,r,s,i,o)}
|
|
fn mm_write(batch: i32, row: i32, colIn: i32, valueIn: ${$t(o)}) {
|
|
let col = colIn * ${o};
|
|
${r&&s?"":"if (row < uniforms.dimAOuter && col < uniforms.dimBOuter)"}
|
|
{
|
|
var value = valueIn;
|
|
let coords = vec3<i32>(batch, row, col);
|
|
${ko(e,t)}
|
|
setOutputAtCoords(coords[0], coords[1], coords[2], value);
|
|
}
|
|
}
|
|
`}var Ase=(e,t)=>e?`
|
|
mm_Asub[inputRow][inputCol] = mm_readA(batchA,
|
|
kStart + inputRow,
|
|
globalRowStart / ${t} + inputCol);
|
|
`:`
|
|
mm_Asub[inputRow][inputCol] = mm_readA(batchA,
|
|
globalRow + innerRow,
|
|
kStart / ${t} + inputCol);
|
|
`,bse=(e,t,a)=>e?`
|
|
let ACached0 = mm_Asub[k * ${t}][localRow];
|
|
let ACached1 = mm_Asub[k * ${t} + 1][localRow];
|
|
let ACached2 = mm_Asub[k * ${t} + 2][localRow];
|
|
${t===3?"":`let ACached3 = mm_Asub[k * ${t} + 3][localRow];`}
|
|
for (var i = 0; i < ${a}; i++) {
|
|
acc[i] = BCached0 * ACached0[i] + acc[i];
|
|
acc[i] = BCached1 * ACached1[i] + acc[i];
|
|
acc[i] = BCached2 * ACached2[i] + acc[i];
|
|
${t===3?"":"acc[i] = BCached3 * ACached3[i] + acc[i];"}
|
|
}`:`
|
|
for (var i = 0; i < ${a}; i++) {
|
|
let ACached = mm_Asub[tileRow + i][k];
|
|
acc[i] = BCached0 * ACached.x + acc[i];
|
|
acc[i] = BCached1 * ACached.y + acc[i];
|
|
acc[i] = BCached2 * ACached.z + acc[i];
|
|
${t===3?"":"acc[i] = BCached3 * ACached.w + acc[i];"}
|
|
}`;function Lh(e,t,a=!1,n=32,r=!1,s=32,i=!1,o=!1){let l=t[1]*e[1],u=t[0]*e[0],p=a?l:n,c=a?n:l,d=p/t[0],h=n/t[1],f=e[1];return v.assert((a&&d===4&&e[1]===4||!a&&(d===3||d===4))&&p%t[0]===0&&n%t[1]===0&&e[0]===4,()=>`If transposeA ${a} is true, innerElementSize ${d} and workPerThread[1] ${e[1]} must be 4.
|
|
Otherwise, innerElementSize ${d} must be 3 or 4.
|
|
tileAWidth ${p} must be divisible by workgroupSize[0]${t[0]}. tileInner ${n} must be divisible by workgroupSize[1] ${t[1]}. colPerThread ${e[0]} must be 4.`),`
|
|
var<workgroup> mm_Asub : array<array<vec${d}<f32>, ${p/d}>, ${c}>;
|
|
var<workgroup> mm_Bsub : array<array<vec4<f32>, ${u/e[0]}>, ${n}>;
|
|
|
|
${ke()} {
|
|
let localRow = i32(localId.y);
|
|
let tileRow = ${i?"0":`localRow * ${f}`};
|
|
let tileCol = i32(localId.x);
|
|
|
|
let globalRow = ${i?"0":`i32(globalId.y) * ${f}`};
|
|
let globalCol = i32(globalId.x);
|
|
let batch = ${r?"0":"i32(globalId.z)"};
|
|
let batchA = ${r||!o?"batch":"batch % uniforms.aShape[0]"};
|
|
let batchB = ${r||!o?"batch":"batch % uniforms.bShape[0]"};
|
|
let globalRowStart = i32(workgroupId.y) * ${l};
|
|
|
|
let numTiles = ${r?`${Math.ceil(s/n)}`:`(uniforms.dimInner - 1) / ${n} + 1`};
|
|
var kStart = ${r?`i32(globalId.z) * ${s}`:"0"};
|
|
|
|
var acc: array<vec4<f32>, ${f}>;
|
|
|
|
// Loop over shared dimension.
|
|
let tileRowB = localRow * ${h};
|
|
for (var t = 0; t < numTiles; t++) {
|
|
// Load one tile of A into local memory.
|
|
for (var innerRow = 0; innerRow < ${f}; innerRow++) {
|
|
let inputRow = tileRow + innerRow;
|
|
let inputCol = tileCol;
|
|
${Ase(a,d)}
|
|
}
|
|
|
|
// Load one tile of B into local memory.
|
|
for (var innerRow = 0; innerRow < ${h}; innerRow++) {
|
|
let inputRow = tileRowB + innerRow;
|
|
let inputCol = tileCol;
|
|
mm_Bsub[inputRow][inputCol] = mm_readB(batchB, kStart + inputRow, globalCol);
|
|
}
|
|
kStart = kStart + ${n};
|
|
workgroupBarrier();
|
|
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < ${n/d}; k++) {
|
|
let BCached0 = mm_Bsub[k * ${d}][tileCol];
|
|
let BCached1 = mm_Bsub[k * ${d} + 1][tileCol];
|
|
let BCached2 = mm_Bsub[k * ${d} + 2][tileCol];
|
|
${d===3?"":`let BCached3 = mm_Bsub[k * ${d} + 3][tileCol];`}
|
|
|
|
${bse(a,d,f)}
|
|
}
|
|
|
|
workgroupBarrier();
|
|
}
|
|
|
|
for (var innerRow = 0; innerRow < ${f}; innerRow++) {
|
|
mm_write(batch, globalRow + innerRow, globalCol, acc[innerRow]);
|
|
}
|
|
}`}var Ux=e=>e?`
|
|
mm_Asub[inputRow][inputCol] = mm_readA(batchA,
|
|
kStart + inputRow,
|
|
globalRowStart + inputCol);
|
|
`:`
|
|
mm_Asub[inputRow][inputCol] = mm_readA(batchA,
|
|
globalRowStart + inputRow,
|
|
kStart + inputCol);
|
|
`,vse=e=>e?"let ACached = mm_Asub[k][tileRow + innerRow];":"let ACached = mm_Asub[tileRow + innerRow][k];";function Bh(e,t,a=!1,n=32,r=!1,s=32,i=!1,o=!1){let l=e[1]*t[1],u=e[0]*t[0],p=a?l:n,c=a?n:l;v.assert(c%t[1]===0&&p%t[0]===0&&n%t[1]===0,()=>`tileAHight ${c} must be divisible by workgroupSize[1]${t[1]}, tileAWidth ${p} must be divisible by workgroupSize[0]${t[0]}, tileInner ${n} must be divisible by workgroupSize[1]${t[1]}`);let d=c/t[1],h=p/t[0],f=n/t[1],m=e[1],g=e[0],x=i?`
|
|
let localRow = i32(localId.y);
|
|
let localCol = i32(localId.x);
|
|
let globalRowStart = i32(workgroupId.y) * ${l};
|
|
let globalColStart = i32(workgroupId.x) * ${u};
|
|
|
|
// Loop over shared dimension.
|
|
for (var t = 0; t < numTiles; t++) {
|
|
// Load one tile of A into local memory.
|
|
for (var inputRow = localRow; inputRow < ${c}; inputRow = inputRow + ${t[1]}) {
|
|
for (var inputCol = localCol; inputCol < ${p}; inputCol = inputCol + ${t[0]}) {
|
|
${Ux(a)}
|
|
}
|
|
}
|
|
// Load one tile of B into local memory.
|
|
for (var inputRow = localRow; inputRow < ${n}; inputRow = inputRow + ${t[1]}) {
|
|
for (var inputCol = localCol; inputCol < ${u}; inputCol = inputCol + ${t[0]}) {
|
|
mm_Bsub[inputRow][inputCol] = mm_readB(batchB,
|
|
kStart + inputRow,
|
|
globalColStart + inputCol);
|
|
}
|
|
}
|
|
kStart = kStart + ${n};
|
|
workgroupBarrier();
|
|
|
|
// Compute acc values for a single thread.
|
|
var BCached : array<f32, ${g}>;
|
|
for (var k = 0; k < ${n}; k++) {
|
|
for (var inner = 0; inner < ${g}; inner++) {
|
|
BCached[inner] = mm_Bsub[k][localCol + inner * ${t[0]}];
|
|
}
|
|
for (var innerRow = 0; innerRow < ${m}; innerRow++) {
|
|
let ACached = ${a?`mm_Asub[k][localRow + innerRow * ${t[1]}];`:`mm_Asub[localRow + innerRow * ${t[1]}][k];`}
|
|
for (var innerCol = 0; innerCol < ${g}; innerCol++) {
|
|
acc[innerRow][innerCol] = acc[innerRow][innerCol] +
|
|
ACached * BCached[innerCol];
|
|
}
|
|
}
|
|
}
|
|
workgroupBarrier();
|
|
}
|
|
for (var innerRow = 0; innerRow < ${m}; innerRow++) {
|
|
let gRow = globalRowStart + localRow + innerRow * ${t[1]};
|
|
for (var innerCol = 0; innerCol < ${g}; innerCol++) {
|
|
let gCol = globalColStart + localCol + innerCol * ${t[0]};
|
|
mm_write(batch, gRow, gCol, acc[innerRow][innerCol]);
|
|
}
|
|
}
|
|
`:`
|
|
let tileRow = i32(localId.y) * ${m};
|
|
let tileCol = i32(localId.x) * ${g};
|
|
|
|
let globalRow = i32(globalId.y) * ${m};
|
|
let globalCol = i32(globalId.x) * ${g};
|
|
let globalRowStart = i32(workgroupId.y) * ${l};
|
|
|
|
let tileRowA = i32(localId.y) * ${d};
|
|
let tileColA = i32(localId.x) * ${h};
|
|
let tileRowB = i32(localId.y) * ${f};
|
|
// Loop over shared dimension.
|
|
for (var t = 0; t < numTiles; t++) {
|
|
// Load one tile of A into local memory.
|
|
for (var innerRow = 0; innerRow < ${d}; innerRow++) {
|
|
for (var innerCol = 0; innerCol < ${h}; innerCol++) {
|
|
let inputRow = tileRowA + innerRow;
|
|
let inputCol = tileColA + innerCol;
|
|
${Ux(a)}
|
|
}
|
|
}
|
|
|
|
// Load one tile of B into local memory.
|
|
for (var innerRow = 0; innerRow < ${f}; innerRow++) {
|
|
for (var innerCol = 0; innerCol < ${g}; innerCol++) {
|
|
let inputRow = tileRowB + innerRow;
|
|
let inputCol = tileCol + innerCol;
|
|
mm_Bsub[inputRow][inputCol] = mm_readB(batchB,
|
|
kStart + inputRow,
|
|
globalCol + innerCol);
|
|
}
|
|
}
|
|
kStart = kStart + ${n};
|
|
workgroupBarrier();
|
|
|
|
// Compute acc values for a single thread.
|
|
var BCached : array<f32, ${g}>;
|
|
for (var k = 0; k < ${n}; k++) {
|
|
for (var inner = 0; inner < ${g}; inner++) {
|
|
BCached[inner] = mm_Bsub[k][tileCol + inner];
|
|
}
|
|
|
|
for (var innerRow = 0; innerRow < ${m}; innerRow++) {
|
|
${vse(a)}
|
|
for (var innerCol = 0; innerCol < ${g}; innerCol++) {
|
|
acc[innerRow][innerCol] = acc[innerRow][innerCol] + ACached * BCached[innerCol];
|
|
}
|
|
}
|
|
}
|
|
|
|
workgroupBarrier();
|
|
}
|
|
|
|
for (var innerRow = 0; innerRow < ${m}; innerRow++) {
|
|
for (var innerCol = 0; innerCol < ${g}; innerCol++) {
|
|
mm_write(batch, globalRow + innerRow, globalCol + innerCol,
|
|
acc[innerRow][innerCol]);
|
|
}
|
|
}
|
|
`;return`
|
|
var<workgroup> mm_Asub : array<array<f32, ${p}>, ${c}>;
|
|
var<workgroup> mm_Bsub : array<array<f32, ${u}>, ${n}>;
|
|
|
|
${ke()} {
|
|
let batch = ${r?"0":"i32(globalId.z)"};
|
|
let batchA = ${r||!o?"batch":"batch % uniforms.aShape[0]"};
|
|
let batchB = ${r||!o?"batch":"batch % uniforms.bShape[0]"};
|
|
let numTiles = ${r?`${Math.ceil(s/n)}`:`(uniforms.dimInner - 1) / ${n} + 1`};
|
|
var kStart = ${r?`i32(globalId.z) * ${s}`:"0"};
|
|
|
|
var acc : array<array<f32, ${g}>, ${m}>;
|
|
|
|
// Without this initialization strange values show up in acc.
|
|
for (var innerRow = 0; innerRow < ${m}; innerRow++) {
|
|
for (var innerCol = 0; innerCol < ${g}; innerCol++) {
|
|
acc[innerRow][innerCol] = 0.0;
|
|
}
|
|
}
|
|
${x}
|
|
}
|
|
`}var kse=e=>e?`
|
|
mm_readA(batchA, colA, globalRow),
|
|
mm_readA(batchA, colA + 1, globalRow),
|
|
mm_readA(batchA, colA + 2, globalRow),
|
|
mm_readA(batchA, colA + 3, globalRow)
|
|
`:`
|
|
mm_readA(batchA, globalRow, colA),
|
|
mm_readA(batchA, globalRow, colA + 1),
|
|
mm_readA(batchA, globalRow, colA + 2),
|
|
mm_readA(batchA, globalRow, colA + 3)
|
|
`;function wse(e,t=!1){v.assert(e[1]===1&&e[2]===1,()=>`A linear work group size is required. But got ${e}.`);let a=e[0]*4;return`
|
|
var<workgroup> mm_Asub : array<vec4<f32>, ${e[0]}>;
|
|
|
|
${ke()} {
|
|
let tileCol = i32(localId.x);
|
|
let globalCol = i32(globalId.x);
|
|
let globalRow = i32(globalId.y);
|
|
|
|
let numTiles = (uniforms.dimInner - 1) / ${a} + 1;
|
|
let batch = i32(globalId.z);
|
|
let batchA = batch % uniforms.aShape[0];
|
|
let batchB = batch % uniforms.bShape[0];
|
|
// Without this initialization strange values show up in acc.
|
|
var acc = 0.0;
|
|
|
|
// Loop over shared dimension.
|
|
for (var t = 0; t < numTiles; t++) {
|
|
// Load one tile of A into local memory.
|
|
let colA = t * ${a} + tileCol * 4;
|
|
mm_Asub[tileCol] = vec4<f32>(${kse(t)});
|
|
workgroupBarrier();
|
|
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < ${a/4}; k++) {
|
|
let rowB = t * ${a} + k * 4;
|
|
let BCached = vec4<f32>(mm_readB(batchB, rowB, globalCol),
|
|
mm_readB(batchB, rowB + 1, globalCol),
|
|
mm_readB(batchB, rowB + 2, globalCol),
|
|
mm_readB(batchB, rowB + 3, globalCol));
|
|
|
|
let ACached = mm_Asub[k];
|
|
acc = acc + dot(ACached, BCached);
|
|
}
|
|
|
|
workgroupBarrier();
|
|
}
|
|
|
|
mm_write(batch, globalRow, globalCol, acc);
|
|
}
|
|
`}var Ise=class{constructor(e,t,a=!1,n=!1,r=null,s=null,i=null,o=!1){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.outputShape=t,this.dispatchLayout={x:[2],y:[1],z:[0]};let l=a?e[1]:e[2];if(this.isVec4=(l%4===0&&!a||t[1]%4===0&&a)&&t[2]%4===0&&!n,this.isVectorA=t[1]===1&&!a,!this.isVec4&&this.isVectorA)this.elementsPerThread=[1,1,1],this.workgroupSize=[32,1,1];else{let c=T8(t[1],l,t[2],a);this.workgroupSize=c.workgroupSize,this.elementsPerThread=c.elementsPerThread}this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize,this.elementsPerThread);let u=r!=null,p=i!=null;u&&this.variableNames.push("bias"),p&&this.variableNames.push("preluActivationWeights"),this.sequentialAccessByThreads=o,this.transposeA=a,this.transposeB=n,this.addBias=u,this.activation=s,this.hasPreluActivationWeights=p,[this.fitAOuter,this.fitBOuter,this.fitInner]=this.getShapeFit(t[1],t[2],l),this.shaderKey=`matMulPacked_${this.elementsPerThread}_${a}_${n}_${this.activation}_${this.fitAOuter}_${this.fitBOuter}_${this.fitInner}_${this.isVec4}_${this.isVectorA}_${this.sequentialAccessByThreads}`}getShapeFit(e,t,a){let n=this.workgroupSize[1]*this.elementsPerThread[1],r=this.workgroupSize[0]*this.elementsPerThread[0];!this.isVec4&&this.isVectorA?this.tileInner=this.workgroupSize[0]*4:this.tileInner=r;let s=e%n===0,i=t%r===0,o=a%this.tileInner===0;return[s,i,o]}getUserCode(){return`
|
|
${Tr(this.activation,this.hasPreluActivationWeights,this.isVec4)}
|
|
${W3(this.addBias,this.activation,!1,this.transposeB,this.fitAOuter,this.fitBOuter,this.fitInner,this.isVec4?4:1)}
|
|
${this.isVec4?Lh(this.elementsPerThread,this.workgroupSize,this.transposeA,this.tileInner,!1,null,this.isVectorA,!0):this.isVectorA?wse(this.workgroupSize,this.transposeA):Bh(this.elementsPerThread,this.workgroupSize,this.transposeA,this.tileInner,!1,null,this.sequentialAccessByThreads,!0)}
|
|
`}};function Sse(e){return`
|
|
var<workgroup> sumValues : array<f32, ${e}>;
|
|
${ke()} {
|
|
let coords = getOutputCoords();
|
|
let batch = coords[0];
|
|
let batchA = batch % uniforms.aShape[0];
|
|
let batchB = batch % uniforms.bShape[0];
|
|
let row = coords[1];
|
|
let col = coords[2];
|
|
var sum = 0.0;
|
|
let Length = uniforms.dimInner;
|
|
for (var k = i32(localId.x); k < Length; k = k + ${e}) {
|
|
let dataA = mm_readA(batchA, row, k);
|
|
let dataB = mm_readB(batchB, k, col);
|
|
sum = sum + dataA * dataB;
|
|
}
|
|
sumValues[localId.x] = sum;
|
|
workgroupBarrier();
|
|
|
|
for(var currentSize = ${e/2}u; currentSize > 1u;
|
|
currentSize = currentSize / 2u) {
|
|
if (localId.x < currentSize)
|
|
{
|
|
sumValues[localId.x] = sumValues[localId.x] + sumValues[localId.x + currentSize];
|
|
}
|
|
workgroupBarrier();
|
|
}
|
|
|
|
if (localId.x == 0u) {
|
|
sum = sumValues[0] + sumValues[1];
|
|
mm_write(batch, row, col, sum);
|
|
}
|
|
}
|
|
`}var Tse=class{constructor(e,t=!1,a=!1,n=null,r=null,s=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workgroupSize=[256,1,1],this.outputShape=e,this.dispatchLayout={x:[],y:[1,2],z:[0]},this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize);let i=n!=null,o=s!=null;i&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),this.transposeA=t,this.transposeB=a,this.addBias=i,this.activation=r,this.hasPreluActivationWeights=o,this.shaderKey=`matMulReduce_${this.activation}_${t}_${a}`}getUserCode(){return`
|
|
${Tr(this.activation,this.hasPreluActivationWeights)}
|
|
${W3(this.addBias,this.activation,this.transposeA,this.transposeB)}
|
|
${Sse(this.workgroupSize[0])}
|
|
`}};function Cse(e){let t=e[1],a=e[0],n=t>a?t:a;return`
|
|
var<workgroup> mm_Asub : array<array<f32, ${n}>, ${t}>;
|
|
var<workgroup> mm_Bsub : array<array<f32, ${a}>, ${n}>;
|
|
|
|
// If the output size is small for matrix multiplication, avoid to use vec4
|
|
// and handle some elements per thread to optimally utilize the ALU.
|
|
// Read data from global memory to registers firstly, then store them into
|
|
// shared memory, so it is instruction-Level parallelism for arithmetic
|
|
// operations and others handle IO operations between barrier api, makes ALU
|
|
// and load/store units work simultaneously, could improves the performance.
|
|
${ke()} {
|
|
let tileRow = i32(localId.y);
|
|
let tileCol = i32(localId.x);
|
|
let globalRow = i32(globalId.y);
|
|
let globalCol = i32(globalId.x);
|
|
let batch = i32(globalId.z);
|
|
let batchA = batch % uniforms.aShape[0];
|
|
let batchB = batch % uniforms.bShape[0];
|
|
|
|
// uniforms.dimInner should be greater than 0.
|
|
let numTiles = (uniforms.dimInner - 1) / ${n} + 1;
|
|
var acc = 0.0;
|
|
|
|
var globalColA = tileCol;
|
|
var globalRowB = 0;
|
|
var regA = mm_readA(batchA, globalRow, globalColA);
|
|
var regB0 = mm_readB(batchB, globalRowB + 2 * tileRow, globalCol);
|
|
var regB1 = mm_readB(batchB, globalRowB + 2 * tileRow + 1, globalCol);
|
|
globalColA = globalColA + ${n};
|
|
globalRowB = globalRowB + ${n};
|
|
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
mm_Asub[tileRow][tileCol] = regA;
|
|
mm_Bsub[2 * tileRow][tileCol] = regB0;
|
|
mm_Bsub[2 * tileRow + 1][tileCol] = regB1;
|
|
|
|
workgroupBarrier();
|
|
|
|
regA = mm_readA(batchA, globalRow, globalColA);
|
|
regB0 = mm_readB(batchB, globalRowB + 2 * tileRow, globalCol);
|
|
regB1 = mm_readB(batchB, globalRowB + 2 * tileRow + 1, globalCol);
|
|
globalColA = globalColA + ${n};
|
|
globalRowB = globalRowB + ${n};
|
|
|
|
for (var k = 0; k < ${n}; k = k + 1) {
|
|
acc = acc + mm_Asub[tileRow][k] * mm_Bsub[k][tileCol];
|
|
}
|
|
workgroupBarrier();
|
|
}
|
|
|
|
mm_write(batch, globalRow, globalCol, acc);
|
|
}
|
|
`}var Nse=class{constructor(e,t,a,n=!1,r=!1,s=null,i=null,o=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workgroupSize=[16,8,1],this.outputShape=a,this.dispatchLayout={x:[2],y:[1],z:[0]},this.dispatch=[Math.ceil(a[2]/this.workgroupSize[0]),Math.ceil(a[1]/this.workgroupSize[1]),a[0]];let l=s!=null;l&&this.variableNames.push("bias");let u=o!=null;u&&this.variableNames.push("preluActivationWeights"),this.transposeA=n,this.transposeB=r,this.addBias=l,this.activation=i,this.hasPreluActivationWeights=u,this.shaderKey=`matMulSmallOutputSize_${this.activation}_${n}_${r}`}getUserCode(){return`
|
|
${Tr(this.activation,this.hasPreluActivationWeights)}
|
|
${W3(this.addBias,this.activation,this.transposeA,this.transposeB)}
|
|
${Cse(this.workgroupSize)}
|
|
`}},Ese=class{constructor(e,t,a=!1,n=!1){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workgroupSize=[8,8,1],this.atomic=!0,this.isVec4=!1,this.splitedDimInner=128,v.assert(e[0]===1,()=>"MatMulSplitKProgram only supports batch = 1."),this.outputShape=e,this.dispatchLayout={x:[2],y:[1],z:[0,3]},this.isVec4=(a&&this.outputShape[1]%4===0||!a&&t%4===0)&&this.outputShape[2]%4===0,this.elementsPerThread=[4,4,this.splitedDimInner],this.isVec4||(this.outputShape[1]<16&&(this.elementsPerThread[1]=1),this.outputShape[2]<16&&(this.elementsPerThread[0]=1)),this.dispatch=we(this.dispatchLayout,[this.outputShape[0],this.outputShape[1],this.outputShape[2],t],this.workgroupSize,this.elementsPerThread),this.transposeA=a,this.transposeB=n,this.shaderKey=`matMulSplitK_${a}_${n}_${this.elementsPerThread}_${this.isVec4}`}getUserCode(){let e=this.isVec4?4:1;return`
|
|
${E8(!1,this.transposeB,!1,!1,!1,e)}
|
|
fn mm_write(batch: i32, row : i32, colIn : i32, value : ${$t(e)}) {
|
|
let col = colIn * ${e};
|
|
if (row < uniforms.dimAOuter && col < uniforms.dimBOuter) {
|
|
let coords = vec3<i32>(batch, row, col);
|
|
let flatIndex = getOutputIndexFromCoords(coords);
|
|
// The problem is that we should initialize output to zero before using.
|
|
// Otherwise, the original value will be added to the result.
|
|
for (var i = 0; i < ${e}; i = i + 1) {
|
|
${O3("&result[flatIndex + i]",`${e>1?"value[i]":"value"}`,"float32")}
|
|
}
|
|
}
|
|
}
|
|
${this.isVec4?Lh(this.elementsPerThread,this.workgroupSize,this.transposeA,32,!0,this.splitedDimInner):Bh(this.elementsPerThread,this.workgroupSize,this.transposeA,32,!0,this.splitedDimInner)}
|
|
`}},Rse=class{constructor(e,t=null,a=null,n=null){this.uniforms="",this.variableNames=["x"],this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=$e(this.outputShape),this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize),this.addBias=t!=null,this.hasPreluActivationWeights=n!=null,this.activation=a,this.addBias&&this.variableNames.push("bias"),this.hasPreluActivationWeights&&this.variableNames.push("preluActivationWeights"),this.shaderKey=`biasActivation_${a}`}getUserCode(){return`
|
|
${Tr(this.activation,this.hasPreluActivationWeights)}
|
|
${ke("index")} {
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
var value = getXByOutputIndex(index);
|
|
${ko(this.addBias,this.activation)}
|
|
setOutputAtIndex(index, value);
|
|
}
|
|
}
|
|
`}},Mse=class{constructor(e){this.variableNames=[],this.outputShape=[],this.uniforms="value : f32,",this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=$e(this.outputShape),this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey="fill"}getUserCode(){return`
|
|
${ke("index")} {
|
|
if (index < uniforms.size) {
|
|
setOutputAtIndex(index, uniforms.value);
|
|
}
|
|
}
|
|
`}};function Cr(e){let{backend:t,attrs:a}=e,{shape:n,value:r}=a,{dtype:s}=a;if(s=s||v.inferDtype(r),s==="string"){let i=v.getArrayFromDType(s,v.sizeFromShape(n));return i.fill(r),t.makeTensorInfo(n,s,i)}else{let i=new Mse(n),o=[{type:"float32",data:[r]}];return t.runWebGPUProgram(i,[],s,o)}}var $se={kernelName:Pl,backendName:"webgpu",kernelFunc:Cr};function Ie(e){let{inputs:t,attrs:a}=e,{x:n}=t,{shape:r}=a,s=v.sizeFromShape(n.shape),i=v.inferFromImplicitShape(r,s),o=v.sizeFromShape(i);return v.assert(s===o,()=>`The new shape (${i}) has ${o} elements and the old shape (${n.shape}) has ${s} elements. The new shape and old shape must have the same number of elements.`),e.backend.incRef(n.dataId),{dataId:n.dataId,shape:i,dtype:n.dtype}}var _se={kernelName:Hl,backendName:"webgpu",kernelFunc:Ie};function Wh({a:e,b:t,transposeA:a,transposeB:n,backend:r,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:l=null}){let u=e.shape.length,p=t.shape.length,c=a?e.shape[u-2]:e.shape[u-1],d=n?t.shape[p-1]:t.shape[p-2],h=a?e.shape[u-1]:e.shape[u-2],f=n?t.shape[p-2]:t.shape[p-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),x=v.sizeFromShape(m),y=v.sizeFromShape(g),A=yo.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([h,f]);v.assert(c===d,()=>`Error in matMul: inner shapes (${c}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${a} and transposeB=${n} must match.`);let b=a?[x,c,h]:[x,h,c],k=n?[y,f,d]:[y,d,f],S=Ie({inputs:{x:e},backend:r,attrs:{shape:b}}),C=Ie({inputs:{x:t},backend:r,attrs:{shape:k}}),E=[S,C],_=Math.max(x,y),$=[S,C],M=[{type:"int32",data:[h]},{type:"int32",data:[f]},{type:"int32",data:[c]}],I,N,O=[_,h,f],L=B().get("WEBGPU_MATMUL_PROGRAM_TYPE");if(L<0){let G=B().getNumber("WEBGPU_THRESHOLD_TO_INCREASE_WORKGROUPS_FOR_MATMUL"),H=G>0?G:r.thresholdToIncreaseWorkgroups,U=_*Math.ceil(h/32)*Math.ceil(f/32);U<=H||h<=8&&U<=H*2?_*h*f<=128?L=Pn.MatMulReduceProgram:_===1&&d>=2e3?L=Pn.MatMulSplitKProgram:L=Pn.MatMulSmallOutputSizeProgram:L=Pn.MatMulPackedProgram}switch(L){case Pn.MatMulReduceProgram:I=new Tse(O,a,n,s,l,i);break;case Pn.MatMulSplitKProgram:{if(N=Cr({backend:r,attrs:{shape:O,value:0,dtype:e.dtype}}),I=new Ese(O,d,a,n),s||l){N=r.runWebGPUProgram(I,$,e.dtype,M,N);let H=new Rse(N.shape,s,l,i),U=null,j=[N];s&&j.push(s),i&&j.push(i),l==="leakyrelu"&&(U=[{type:"float32",data:[o]}],H.uniforms+=" alpha : f32,");let V=r.runWebGPUProgram(H,j,N.dtype,U);E.push(N);let Q=Ie({inputs:{x:V},backend:r,attrs:{shape:A}});E.push(V);for(let Z of E)r.disposeData(Z.dataId);return Q}break}case Pn.MatMulSmallOutputSizeProgram:I=new Nse(b,k,O,a,n,s,l,i);break;case Pn.MatMulPackedProgram:let G=r.adapterInfo.isIntel();I=new Ise(b,O,a,n,s,l,i,G);break;default:throw new Error(`Unsupported MatMulProgramType ${L}.`)}s&&$.push(s),i&&$.push(i),l==="leakyrelu"&&(M.push({type:"float32",data:[o]}),I.uniforms+=" alpha : f32,"),N=r.runWebGPUProgram(I,$,e.dtype,M,N);let W=Ie({inputs:{x:N},backend:r,attrs:{shape:A}});E.push(N);for(let G of E)r.disposeData(G.dataId);return W}function Pse(e){let{inputs:t,backend:a,attrs:n}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:p,leakyreluAlpha:c}=n;return Wh({a:r,b:s,transposeA:l,transposeB:u,backend:a,bias:i,preluActivationWeights:o,leakyreluAlpha:c,activation:p})}var Fse={kernelName:jr,backendName:"webgpu",kernelFunc:Pse},Gx=class{constructor(e,t,a){this.variableNames=["AReal","AImag","BReal","BImag"],this.workgroupSize=[128,1,1],this.size=!0,this.outputShape=T.assertAndGetBroadcastShape(t,a),this.dispatchLayout=$e(this.outputShape),this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey=`binaryOpComplex_${e}`,this.op=e}getUserCode(){return`
|
|
fn binaryOpComplex(
|
|
areal : f32, aimag : f32, breal : f32, bimag : f32) -> f32 {
|
|
${B3(this.op,!1)}
|
|
}
|
|
|
|
${ke("index")} {
|
|
if(index < uniforms.size) {
|
|
let areal = getARealByOutputIndex(index);
|
|
let aimag = getAImagByOutputIndex(index);
|
|
let breal = getBRealByOutputIndex(index);
|
|
let bimag = getBImagByOutputIndex(index);
|
|
setOutputAtIndex(index, binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
}
|
|
`}},M2=class{constructor(e,t,a){this.size=!0,this.variableNames=["A","B"],this.outputShape=T.assertAndGetBroadcastShape(t,a),this.dispatchLayout=$e(this.outputShape),this.op=e,this.useSharedMemoryWithA=t.length<=1&&a.length>1&&t[0]<128,this.useSharedMemoryWithB=a.length<=1&&t.length>1&&a[0]<128,this.useSharedMemoryWithA||this.useSharedMemoryWithB?(this.isVec4=!1,this.lastDimensionSize=this.useSharedMemoryWithB?a[0]:t[0],this.shaderKey=`binary_${this.type}_${e}_${this.lastDimensionSize}_${this.useSharedMemoryWithB}`,this.type="shared",this.workgroupSize=[256,1,1],this.workPerThread=1):(v.arraysEqual(t,a)&&v.sizeFromShape(t)%4===0?(this.isVec4=!0,this.type="vec4",this.workPerThread=4):(this.isVec4=!1,this.type="plain",this.workPerThread=1),this.shaderKey=`binary_${this.type}_${e}`,this.workgroupSize=[128,1,1]),this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize,[this.workPerThread,1,1])}getUserCode(){let e,t=this.isVec4?"vec4<f32>":"f32",a=`
|
|
fn binaryOperation(a : ${t}, b : ${t}) -> ${t} {
|
|
let isNaN = false;
|
|
{
|
|
${B3(this.op,this.isVec4)}
|
|
}
|
|
};
|
|
`;if(this.type==="shared"){let n=this.lastDimensionSize>1?`coords[${this.outputShape.length-1}]`:"0",r=this.useSharedMemoryWithB?`let a = getAByOutputIndex(index);
|
|
let b = sharedBuf[${n}];`:`let a = sharedBuf[${n}];
|
|
let b = getBByOutputIndex(index);`;e=`
|
|
${a}
|
|
var<workgroup> sharedBuf : array<f32, ${this.lastDimensionSize}>;
|
|
${ke("index")} {
|
|
// Fill in the shared memory buffer.
|
|
let localIndex = i32(localId.x);
|
|
if(localIndex < ${this.lastDimensionSize}) {
|
|
sharedBuf[localIndex] = f32(${this.useSharedMemoryWithB?"B":"A"}[localIndex]);
|
|
}
|
|
workgroupBarrier();
|
|
|
|
if(index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
${r}
|
|
setOutputAtIndex(index, binaryOperation(a, b));
|
|
}
|
|
}
|
|
`}else e=`
|
|
${a}
|
|
${ke("index")} {
|
|
if (index < uniforms.size) {
|
|
let a = getAByOutputIndex(index);
|
|
let b = getBByOutputIndex(index);
|
|
setOutputAtIndex(index, binaryOperation(a, b));
|
|
}
|
|
}
|
|
`;return e}};function Ya(e){let{inputs:t}=e,{x:a}=t;return e.backend.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var Ose={kernelName:wi,backendName:"webgpu",kernelFunc:Ya};function wo(e){let{inputs:t,backend:a}=e,{real:n,imag:r}=t,s=a.makeTensorInfo(n.shape,"complex64"),i=a.tensorMap.get(s.dataId),o=Ya({inputs:{x:n},backend:a}),l=Ya({inputs:{x:r},backend:a});return i.complexTensorInfos={real:o,imag:l},s}var Dse={kernelName:Cd,backendName:"webgpu",kernelFunc:wo},yu=class{constructor(e,t,a=""){this.variableNames=["A"],this.size=!0;let n=128;this.workgroupSize=[n,1,1],this.outputShape=e,this.dispatchLayout=$e(this.outputShape),this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize),this.op=t,a!==""&&(this.uniforms=a),this.shaderKey=`unary_${t}`}getUserCode(){return`
|
|
fn unaryOperation(a : f32) -> f32 {
|
|
${$s(this.op,!1)}
|
|
}
|
|
${ke("index")} {
|
|
if (index < uniforms.size) {
|
|
let a = getAByOutputIndex(index);
|
|
setOutputAtIndex(index, unaryOperation(a));
|
|
}
|
|
}
|
|
`}};function et({opType:e,cpuKernelImpl:t,dtype:a}){return({inputs:n,backend:r})=>{let{x:s}=n,i=r,o=a||s.dtype;if(i.shouldExecuteOnCPU([s])&&t!=null){let u=i.tensorMap.get(s.dataId),p=t(u.values,o);return i.makeTensorInfo(s.shape,o,p)}let l=new yu(s.shape,e);return i.runWebGPUProgram(l,[s],o)}}function Jt({opType:e,cpuKernelImpl:t,supportsComplex:a=!1,dtype:n}){return({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;if(a&&i.dtype==="complex64"){let c=l.tensorMap.get(i.dataId),d=l.tensorMap.get(o.dataId),h,f;if(e!==Pe.MUL)[h,f]=[[c.complexTensorInfos.real,d.complexTensorInfos.real],[c.complexTensorInfos.imag,d.complexTensorInfos.imag]].map(g=>{let[x,y]=g,A={dataId:x.dataId,dtype:x.dtype,shape:i.shape},b={dataId:y.dataId,dtype:y.dtype,shape:o.shape},k=new M2(e,i.shape,o.shape);return l.runWebGPUProgram(k,[A,b],ha(x.dtype,y.dtype))});else{let g=new Gx(Pe.COMPLEX_MULTIPLY_REAL,i.shape,o.shape),x=new Gx(Pe.COMPLEX_MULTIPLY_IMAG,i.shape,o.shape),y=[{dataId:c.complexTensorInfos.real.dataId,dtype:c.complexTensorInfos.real.dtype,shape:i.shape},{dataId:c.complexTensorInfos.imag.dataId,dtype:c.complexTensorInfos.imag.dtype,shape:i.shape},{dataId:d.complexTensorInfos.real.dataId,dtype:d.complexTensorInfos.real.dtype,shape:o.shape},{dataId:d.complexTensorInfos.imag.dataId,dtype:d.complexTensorInfos.imag.dtype,shape:o.shape}];h=l.runWebGPUProgram(g,y,"float32"),f=l.runWebGPUProgram(x,y,"float32")}let m=wo({inputs:{real:h,imag:f},backend:l});return l.disposeData(h.dataId),l.disposeData(f.dataId),m}let u=n||ha(i.dtype,o.dtype);if((i.dtype==="string"||o.dtype==="string"||l.shouldExecuteOnCPU([i,o]))&&t!=null){let c=l.tensorMap.get(i.dataId).values,d=l.tensorMap.get(o.dataId).values,h=i.dtype==="string"?T.fromUint8ToStringArray(c):c,f=i.dtype==="string"?T.fromUint8ToStringArray(d):d,[m,g]=t(i.shape,o.shape,h,f,u);return l.makeTensorInfo(g,u,m)}let p=new M2(e,i.shape,o.shape);return l.runWebGPUProgram(p,[i,o],u)}}var{addImpl:zse,castImpl:Lse,ceilImpl:Bse,concatImpl:Wse,equalImpl:Vse,expImpl:Use,expm1Impl:Gse,floorImpl:Hse,gatherNdImpl:jse,gatherV2Impl:qse,greaterEqualImpl:Xse,greaterImpl:Kse,lessEqualImpl:Zse,lessImpl:Yse,logImpl:Jse,maxImpl:Qse,maximumImpl:eie,minimumImpl:tie,multiplyImpl:aie,negImpl:nie,notEqualImpl:rie,prodImpl:sie,rangeImpl:iie,rsqrtImpl:oie,scatterImpl:lie,simpleAbsImpl:uie,sliceImpl:die,stridedSliceImpl:pie,stringNGramsImpl:cie,subImpl:hie,tileImpl:fie,topKImpl:mie,transposeImpl:gie,uniqueImpl:lfe}=Nh,xie=et({opType:le.ABS,cpuKernelImpl:uie}),yie={kernelName:vl,backendName:"webgpu",kernelFunc:xie},Aie=et({opType:le.ACOS}),bie={kernelName:kl,backendName:"webgpu",kernelFunc:Aie},vie=et({opType:le.ACOSH}),kie={kernelName:wl,backendName:"webgpu",kernelFunc:vie},wie=Jt({opType:Pe.ADD,cpuKernelImpl:zse,supportsComplex:!0}),Iie={kernelName:as,backendName:"webgpu",kernelFunc:wie},Sie=class{constructor(e){this.workPerThread=1,this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e[0],this.variableNames=e.map((t,a)=>`T${a}`),this.dispatchLayout=$e(this.outputShape),this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize,[this.workPerThread,1,1]),this.shaderKey="addN"}getUserCode(){let e=[];this.variableNames.forEach(a=>{e.push(`let v${a} = get${a}ByOutputCoords(coords);`)});let t=this.variableNames.map(a=>`v${a}`).join(" + ");return`
|
|
${ke("index")} {
|
|
for (var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
if (flatIndex < uniforms.size) {
|
|
let coords = getCoordsFromIndex(flatIndex);
|
|
${e.join(`
|
|
`)}
|
|
setOutputAtIndex(flatIndex, ${t});
|
|
}
|
|
}
|
|
}
|
|
`}};function Tie(e){let{inputs:t,backend:a}=e,n=t;if(n.length===1)return Ya({inputs:{x:n[0]},backend:a});let r=n.map(o=>o.dtype).reduce((o,l)=>ha(o,l)),s=n.map(o=>o.shape),i=new Sie(s);return a.runWebGPUProgram(i,n,r)}var Cie={kernelName:Ks,backendName:"webgpu",kernelFunc:Tie},Nie=class{constructor(e,t){this.variableNames=["A"],this.workgroupSize=[16,16,1];let a=new Array(e.length);for(let n=0;n<a.length;n++)a[n]=e[t[n]];this.outputShape=a,this.dispatchLayout={x:[0],y:[1]},this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize,[1,1,1]),this.shaderKey="transposeShared"}getUserCode(){v.assert(this.workgroupSize[0]===this.workgroupSize[1],()=>`Must be a square tile, current tile shape is ${this.workgroupSize[0]} x ${this.workgroupSize[1]}`);let e=this.workgroupSize[0];return`
|
|
var<workgroup> tile : array<array<f32, ${this.workgroupSize[0]+1}>, ${this.workgroupSize[0]}>;
|
|
${ke()} {
|
|
var x = i32(workgroupId.x) * ${e} + i32(localId.x);
|
|
var y = i32(workgroupId.y) * ${e} + i32(localId.y);
|
|
let width = uniforms.outShape[0];
|
|
let height = uniforms.outShape[1];
|
|
if (x < width && y < height) {
|
|
tile[localId.y][localId.x] = f32(A[y * width + x]);
|
|
}
|
|
workgroupBarrier();
|
|
|
|
x = i32(workgroupId.y) * ${e} + i32(localId.x);
|
|
y = i32(workgroupId.x) * ${e} + i32(localId.y);
|
|
if (x < height && y < width) {
|
|
setOutputAtIndex((y * height + x), tile[localId.x]
|
|
[localId.y]);
|
|
}
|
|
}
|
|
`}},Eie=class{constructor(e,t){this.variableNames=["A"],this.workPerThread=1,this.workgroupSize=[64,1,1],this.size=!0;let a=new Array(e.length);for(let n=0;n<a.length;n++)a[n]=e[t[n]];this.outputShape=a,this.dispatchLayout=$e(this.outputShape),this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize,[this.workPerThread,1,1]),this.newDim=t,this.shaderKey=`transpose_${t}`}getUserCode(){let e=ia(this.outputShape.length),t=Rie(this.newDim);return`
|
|
${ke("index")} {
|
|
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
if(flatIndex < uniforms.size) {
|
|
let resRC = getCoordsFromIndex(flatIndex);
|
|
setOutputAtIndex(flatIndex, A[getIndexFromCoords${this.outputShape.length}D(
|
|
${e}(${t}), uniforms.aShape)]);
|
|
}
|
|
}
|
|
}
|
|
`}};function Rie(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let a=new Array(t);for(let n=0;n<e.length;n++)a[e[n]]=`resRC.${Ar(n)}`;return a.join()}function vr(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{perm:s}=n,i=a,o=r.shape.length,l=new Array(o);for(let p=0;p<l.length;p++)l[p]=r.shape[s[p]];if(a.shouldExecuteOnCPU([r])){let p=i.tensorMap.get(r.dataId).values,c=gie(p,r.shape,r.dtype,s,l);return a.makeTensorInfo(l,r.dtype,c)}if(r.shape.length===2&&v.arraysEqual(s,[1,0])){let p=new Nie(r.shape,s);return i.runWebGPUProgram(p,[r],r.dtype)}let u=new Eie(r.shape,s);return i.runWebGPUProgram(u,[r],r.dtype)}var Mie={kernelName:yr,backendName:"webgpu",kernelFunc:vr},$ie=class{constructor(e,t){this.workgroupSize=[64,1,1],this.variableNames=["x"],this.uniforms="reduceSize : i32,",this.size=!0,this.inputShape=[e.batchSize,e.inSize];let[a]=T.computeOutAndReduceShapes(this.inputShape,[1]);this.outputShape=a.length===0?[1]:a,this.dispatchLayout=$e(this.outputShape),this.dispatch=we(this.dispatchLayout,this.outputShape,[1,1,1]),this.reduceType=t,this.shaderKey=`reduce_${t}`}getUserCode(){let e="",t="0.0",a=this.workgroupSize[0];this.reduceType==="min"||this.reduceType==="max"?(e=`
|
|
if (isnan(candidate)) {
|
|
bestValue = uniforms.NAN;
|
|
} else if (!isnan(bestValue) && candidate ${this.reduceType==="min"?"<":">"} bestValue)
|
|
{ bestValue = candidate; }`,t="f32(x[offset])"):this.reduceType==="sum"||this.reduceType==="mean"?e=" bestValue = bestValue + candidate; ":this.reduceType==="prod"?(e=" bestValue = bestValue * candidate; ",t="1.0"):this.reduceType==="all"?(e=" bestValue = f32(bestValue >= 1.0 && candidate >= 1.0); ",t="1.0"):this.reduceType==="any"&&(e=" bestValue = f32(bestValue >= 1.0 || candidate >= 1.0); ",t="0.0");let n=this.reduceType==="mean"?"setOutputAtIndex(outputIndex, bestValue / f32(uniforms.reduceSize));":"setOutputAtIndex(outputIndex, bestValue);";return`
|
|
fn DIV_CEIL(a : u32, b : u32) -> u32 {
|
|
return ((a - 1u) / b + 1u);
|
|
}
|
|
|
|
${`
|
|
var<workgroup> xBestValues : array<f32, ${a}>;
|
|
`}
|
|
fn getOffset(outputIndex : i32) -> i32 {
|
|
let outputCoords = getCoordsFromIndex(outputIndex);
|
|
let offset = ${this.outputShape.length===1?"outputCoords":"outputCoords[0]"} * uniforms.reduceSize;
|
|
return offset;
|
|
}
|
|
${ke("index")} {
|
|
let outputIndex = index / ${a};
|
|
let offset = getOffset(outputIndex);
|
|
var bestValue = ${t};
|
|
let Length = uniforms.reduceSize;
|
|
let WorkPerThread = DIV_CEIL(u32(Length), ${a}u);
|
|
for (var k = i32(localId.x); k < Length && outputIndex < uniforms.size;
|
|
k = k + ${a}) {
|
|
let candidate = f32(x[offset + k]);
|
|
${e}
|
|
}
|
|
xBestValues[localId.x] = bestValue;
|
|
workgroupBarrier();
|
|
|
|
var reduceSize = min(u32(Length), ${a}u);
|
|
for (var currentSize = reduceSize / 2u; reduceSize > 1u;
|
|
currentSize = reduceSize / 2u) {
|
|
let interval = DIV_CEIL(reduceSize, 2u);
|
|
if (localId.x < currentSize) {
|
|
let candidate = xBestValues[localId.x + interval];
|
|
${e}
|
|
xBestValues[localId.x] = bestValue;
|
|
}
|
|
reduceSize = interval;
|
|
workgroupBarrier();
|
|
}
|
|
|
|
if (localId.x == 0u && outputIndex < uniforms.size) {
|
|
${n}
|
|
}
|
|
}
|
|
`}};function Io(e,t,a,n,r){let s=e.shape.length,i=[],o=v.parseAxisParam(t,e.shape),l=o,u=T.getAxesPermutation(l,s),p=e;u!=null&&(p=vr({inputs:{x:e},attrs:{perm:u},backend:r}),l=T.getInnerMostAxes(l.length,s),i.push(p)),T.assertAxesAreInnerMostDims(n,l,s);let[c,d]=T.computeOutAndReduceShapes(p.shape,l),h=c;a&&(h=T.expandShapeToKeepDim(c,o));let f;if((n==="max"||n==="prod")&&r.shouldExecuteOnCPU([p])){let m=r.tensorMap.get(p.dataId).values;switch(n){case"max":let g=Qse(m,v.sizeFromShape(d),h,e.dtype);f=r.makeTensorInfo(h,e.dtype,g);break;case"prod":let{outVals:x,outShape:y,outDtype:A}=sie(p.shape,p.dtype,m,l);f=r.makeTensorInfo(y,A,x);break;default:throw new Error(`${n} CPU implementation is not yet supported.`)}}else{let m=v.sizeFromShape(d),g=v.sizeFromShape(p.shape)/m,x={windowSize:m,inSize:m,batchSize:g,outSize:1},y=n==="mean"?"float32":Kd(e.dtype),A=[{type:"int32",data:[m]}],b=new $ie(x,n),k=r.runWebGPUProgram(b,[p],y,A);i.push(k),f=Ie({inputs:{x:k},attrs:{shape:h},backend:r})}return i.forEach(m=>r.disposeData(m.dataId)),f}function _ie(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{keepDims:s,axis:i}=n;return Io(r,i,s,"all",a)}var Pie={kernelName:Zs,backendName:"webgpu",kernelFunc:_ie};function Fie(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{keepDims:s,axis:i}=n;return Io(r,i,s,"any",a)}var Oie={kernelName:Ys,backendName:"webgpu",kernelFunc:Fie},R8=class{constructor(e,t,a){this.workgroupSize=[64,1,1],this.variableNames=["x"],this.uniforms="infinityValue : f32,",this.size=!0;let n=[t];this.op=a==="min"?"<":">";let[r,s]=T.computeOutAndReduceShapes(e,n);this.outputShape=r.length===0?[1]:r,this.dispatchLayout=$e(this.outputShape),v.sizeFromShape(s)<32||v.sizeFromShape(r)>1e3?(this.type="plain",this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize)):(this.type="shared",this.dispatch=we(this.dispatchLayout,this.outputShape,[1,1,1])),this.inputShape=e,this.shaderKey=`argMinMax_${this.op}_${this.type}`}getUserCode(){let e=this.workgroupSize[0],t=()=>this.inputShape.length===1?"uniforms.xShape":`uniforms.xShape.${Ar(this.inputShape.length-1)}`,a=()=>{let n="";if(this.outputShape.length===1)this.inputShape.length!==1&&(n+="outputCoords,");else for(let r=0;r<this.outputShape.length;r++)n+=`outputCoords.${Ar(r)},`;return n};return this.type==="shared"?`
|
|
fn DIV_CEIL(a : u32, b : u32) -> u32 {
|
|
return ((a - 1u) / b + 1u);
|
|
}
|
|
|
|
${`
|
|
var<workgroup> xBestIndices : array<i32, ${e}>;
|
|
var<workgroup> xBestValues : array<f32, ${e}>;
|
|
`}
|
|
|
|
${ke("index")} {
|
|
let outputIndex = index / ${e};
|
|
let reduceLength = ${t()};
|
|
|
|
var bestIndex = i32(localId.x);
|
|
var bestValue = uniforms.infinityValue;
|
|
let outputCoords = getCoordsFromIndex(outputIndex);
|
|
for (var k = i32(localId.x); k < reduceLength && outputIndex < uniforms.size;
|
|
k = k + ${e}) {
|
|
let candidate = getX(${a()} k);
|
|
if (!isnan(candidate) && candidate ${this.op} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = k;
|
|
}
|
|
}
|
|
xBestValues[localId.x] = bestValue;
|
|
xBestIndices[localId.x] = bestIndex;
|
|
workgroupBarrier();
|
|
|
|
var reduceSize = min(u32(reduceLength), ${e}u);
|
|
for (var currentSize = reduceSize / 2u; reduceSize > 1u;
|
|
currentSize = reduceSize / 2u) {
|
|
let interval = DIV_CEIL(reduceSize, 2u);
|
|
if (localId.x < currentSize) {
|
|
let candidate = xBestValues[localId.x + interval];
|
|
if (candidate ${this.op} bestValue) {
|
|
bestValue = candidate;
|
|
xBestValues[localId.x] = bestValue;
|
|
xBestIndices[localId.x] = xBestIndices[localId.x + interval];
|
|
}
|
|
}
|
|
reduceSize = interval;
|
|
workgroupBarrier();
|
|
}
|
|
|
|
if (localId.x == 0u && outputIndex < uniforms.size) {
|
|
setOutputAtIndexI32(outputIndex, xBestIndices[localId.x]);
|
|
}
|
|
}
|
|
`:`
|
|
${ke("index")} {
|
|
if (index < uniforms.size) {
|
|
let outputCoords = getCoordsFromIndex(index);
|
|
var bestIndex = 0;
|
|
var bestValue = getX(${a()} 0);
|
|
let reduceLength = ${t()};
|
|
for (var i = 1; i < reduceLength; i++) {
|
|
let candidate = getX(${a()} i);
|
|
if (candidate ${this.op} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = i;
|
|
}
|
|
}
|
|
setOutputAtIndexI32(index, bestIndex);
|
|
}
|
|
}
|
|
`}};function Die(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s}=n,i=v.parseAxisParam(s,r.shape),o=T.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=vr({inputs:{x:r},backend:a,attrs:{perm:o}}),u.push(l),i=T.getInnerMostAxes(i.length,l.shape.length)),T.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let p=new R8(l.shape,i[0],"max"),c=[{type:"float32",data:[Number.NEGATIVE_INFINITY]}],d=a.runWebGPUProgram(p,[l],"int32",c);return u.forEach(h=>a.disposeData(h.dataId)),d}var zie={kernelName:Js,backendName:"webgpu",kernelFunc:Die};function Lie(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s}=n,i=v.parseAxisParam(s,r.shape),o=T.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=vr({inputs:{x:r},backend:a,attrs:{perm:o}}),u.push(l),i=T.getInnerMostAxes(i.length,l.shape.length)),T.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let p=new R8(l.shape,i[0],"min"),c=[{type:"float32",data:[Number.POSITIVE_INFINITY]}],d=a.runWebGPUProgram(p,[l],"int32",c);return u.forEach(h=>a.disposeData(h.dataId)),d}var Bie={kernelName:Sd,backendName:"webgpu",kernelFunc:Lie},Wie=et({opType:le.ASIN}),Vie={kernelName:Il,backendName:"webgpu",kernelFunc:Wie},Uie=et({opType:le.ASINH}),Gie={kernelName:Sl,backendName:"webgpu",kernelFunc:Uie},Hie=et({opType:le.ATAN}),jie={kernelName:Tl,backendName:"webgpu",kernelFunc:Hie},qie=Jt({opType:Pe.ATAN2}),Xie={kernelName:Nl,backendName:"webgpu",kernelFunc:qie},Kie=et({opType:le.ATANH}),Zie={kernelName:Cl,backendName:"webgpu",kernelFunc:Kie},Hx=class{constructor(e,t){this.variableNames=["x"],this.uniforms="stride : vec2<i32>, pad : vec2<i32>, dilation : vec2<i32>, convDims : vec2<i32>, filterDims : vec2<i32>,",this.workgroupSize=[128,1,1],this.size=!0,this.outputShape=e.outShape,this.dispatchLayout=$e(this.outputShape),this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey=`pool2D_${t}`,this.poolType=t}getUserCode(){let e="resultValue = max(value, resultValue);";this.poolType==="avg"&&(e="resultValue = resultValue + value; count = count + 1.0;");let t="resultValue";return this.poolType==="avg"&&(t="resultValue / max(count, 1.0)"),`
|
|
${ke("index")} {
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let batch = coords[0];
|
|
let xRCCorner = vec2<i32>(coords.yz) * uniforms.stride - uniforms.pad;
|
|
let xRCorner = xRCCorner.x;
|
|
let xCCorner = xRCCorner.y;
|
|
|
|
var resultValue = ${this.poolType==="avg"?"0.0":"-1.0 / pow(10.0, -20.0)"};
|
|
var count = 0.0;
|
|
|
|
for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + uniforms.dilation.x) {
|
|
let xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= uniforms.convDims.x) {
|
|
continue;
|
|
}
|
|
|
|
for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + uniforms.dilation.y) {
|
|
let xC = xCCorner + wC;
|
|
if (xC < 0 || xC >= uniforms.convDims.y) {
|
|
continue;
|
|
}
|
|
|
|
let value = getX(batch, xR, xC, coords[3]);
|
|
${e}
|
|
}
|
|
}
|
|
|
|
setOutputAtIndex(index, ${t});
|
|
}
|
|
}
|
|
`}},Yie=class{constructor(e){this.variableNames=["x"],this.uniforms="stride : vec2<i32>,",this.workgroupSize=[256,1,1],this.size=!0,this.outputShape=e.outShape,this.dispatchLayout=$e(this.outputShape),this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey="poolWithFilterSizeEqualsOne"}getUserCode(){return`
|
|
${ke("index")} {
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let batch = coords[0];
|
|
let d = coords[3];
|
|
|
|
let xRCCorner = coords.yz * uniforms.stride;
|
|
let xRCorner = xRCCorner.x;
|
|
let xCCorner = xRCCorner.y;
|
|
|
|
let value = getX(batch, xRCorner, xCCorner, d);
|
|
setOutputAtIndex(index, value);
|
|
}
|
|
}
|
|
`}};function V3(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=n;return Io(r,s,i,"max",a)}var Jie={kernelName:$i,backendName:"webgpu",kernelFunc:V3};function M8(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{keepDims:s,axis:i}=n;return Io(r,i,s,"mean",a)}var Qie={kernelName:Fi,backendName:"webgpu",kernelFunc:M8};function $8(e,t,a,n){if(t.filterWidth===1&&t.filterHeight===1&&v.arraysEqual(t.inShape,t.outShape))return Ya({inputs:{x:e},backend:n});if(t.filterWidth===t.inWidth&&t.filterHeight===t.inHeight&&t.batchSize===1&&t.padInfo.type==="VALID"){let i=e.shape.length,o=Ie({inputs:{x:e},backend:n,attrs:{shape:[e.shape[i-3]*e.shape[i-2],e.shape[i-1]]}}),l;a==="avg"?l=M8({inputs:{x:o},backend:n,attrs:{axis:0,keepDims:!1}}):(v.assert(a==="max",()=>`Invalid pool type ${a}`),l=V3({inputs:{x:o},backend:n,attrs:{reductionIndices:0,keepDims:!1}}));let u=Ie({inputs:{x:l},backend:n,attrs:{shape:t.outShape}});return n.disposeData(o.dataId),n.disposeData(l.dataId),u}let r,s=[{type:"int32",data:[t.strideHeight,t.strideWidth]}];return t.filterHeight===1&&t.filterWidth===1?r=new Yie(t):(a==="avg"?r=new Hx(t,"avg"):(v.assert(a==="max",()=>`Invalid pool type ${a}`),r=new Hx(t,"max")),s.push({type:"int32",data:[t.padInfo.top,t.padInfo.left]},{type:"int32",data:[t.dilationHeight,t.dilationWidth]},{type:"int32",data:[t.inHeight,t.inWidth]},{type:"int32",data:[t.effectiveFilterHeight,t.effectiveFilterWidth]})),n.runWebGPUProgram(r,[e],e.dtype,s)}function eoe(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n,u=1,p=T.computePool2DInfo(r.shape,s,i,u,o,l);return $8(r,p,"avg",a)}var toe={kernelName:Qs,backendName:"webgpu",kernelFunc:eoe},aoe=class{constructor(e){this.variableNames=["dy"],this.uniforms=`stride : vec2<i32>, pads : vec2<i32>, dilation : vec2<i32>, filterDims : vec2<i32>,
|
|
outHeight : i32, outWidth : i32, avgMultiplier : f32,`,this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e.inShape,this.dispatchLayout=$e(this.outputShape),this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey="avg_pool2d_backprop"}getUserCode(){return`
|
|
${ke("index")} {
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let batch = coords[0];
|
|
let d = coords[3];
|
|
|
|
let dyRCCorner = vec2<i32>(coords.yz) - uniforms.pads;
|
|
let dyRCorner = dyRCCorner.x;
|
|
let dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
var dotProd = 0.0;
|
|
for (var wR = 0; wR < uniforms.filterDims[0]; wR = wR + uniforms.dilation[0]) {
|
|
let dyR = f32(dyRCorner + wR) / f32(uniforms.stride[0]);
|
|
|
|
if (dyR < 0.0 || dyR >= f32(uniforms.outHeight) || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
let idyR = i32(dyR);
|
|
|
|
for (var wC = 0; wC < uniforms.filterDims[1]; wC = wC + uniforms.dilation[1]) {
|
|
let dyC = f32(dyCCorner + wC) / f32(uniforms.stride[1]);
|
|
|
|
if (dyC < 0.0 || dyC >= f32(uniforms.outWidth) || fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
let idyC = i32(dyC);
|
|
|
|
let dyValue = getDy(batch, idyR, idyC, d);
|
|
|
|
dotProd = dotProd + dyValue * uniforms.avgMultiplier;
|
|
}
|
|
}
|
|
setOutputAtIndex(index, dotProd);
|
|
}
|
|
}
|
|
`}};function noe(e){let{inputs:t,backend:a,attrs:n}=e,{dy:r,input:s}=t,i=s;C8([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=n,p=T.computePool2DInfo(i.shape,o,l,1,u),c=new aoe(p),d=1/(p.filterHeight*p.filterWidth),h=[{type:"int32",data:[p.strideHeight,p.strideWidth]},{type:"int32",data:[p.effectiveFilterHeight-1-p.padInfo.top,p.effectiveFilterWidth-1-p.padInfo.left]},{type:"int32",data:[p.dilationHeight,p.dilationWidth]},{type:"int32",data:[p.effectiveFilterHeight,p.effectiveFilterWidth]},{type:"int32",data:[p.outHeight]},{type:"int32",data:[p.outWidth]},{type:"float32",data:[d]}];return a.runWebGPUProgram(c,[r],i.dtype,h)}var roe={kernelName:Kc,backendName:"webgpu",kernelFunc:noe};function soe(e){let{inputs:t,backend:a,attrs:n}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=n;return Wh({a:r,b:s,transposeA:i,transposeB:o,backend:a})}var ioe={kernelName:ei,backendName:"webgpu",kernelFunc:soe},ooe=class{constructor(e,t){this.variableNames=["source"],this.workPerThread=1,this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.rank=t.length,this.dispatchLayout=$e(this.outputShape),this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize,[this.workPerThread,1,1]),this.start=e,this.uniforms=`start : ${ia(e.length)}, `,this.shaderKey="slice"}getUserCode(){let e=ia(this.rank),t=loe(this.rank),a;return this.start.length===1?a=this.outputShape.map((n,r)=>"sourceLoc = uniforms.start + coords;"):a=this.outputShape.map((n,r)=>`sourceLoc.${$2[r]} = uniforms.start.${Ar(r)} + coords.${$2[r]};`),`
|
|
${ke("index")} {
|
|
if (index < uniforms.size) {
|
|
var sourceLoc : ${e};
|
|
let coords = getCoordsFromIndex(index);
|
|
${a.join(`
|
|
`)}
|
|
setOutputAtIndex(index, getSource(${t}));
|
|
}
|
|
}
|
|
`}},$2=["x","y","z","w","u","v"];function loe(e){if(e===1)return"sourceLoc";if(e<=6)return $2.slice(0,e).map(t=>`sourceLoc.${t}`).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}function Au(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{begin:s,size:i}=n,[o,l]=St.parseSliceParams(r,s,i);if(St.assertParamsValid(r,o,l),a.shouldExecuteOnCPU([r])||r.dtype==="string"){let c=a.tensorMap.get(r.dataId),d=die(c.values,o,l,r.shape,r.dtype);return a.makeTensorInfo(l,r.dtype,d)}if(v.sizeFromShape(l)===0)return a.makeTensorInfo(l,r.dtype,[]);let u=new ooe(o,l),p=[{type:"int32",data:o}];return a.runWebGPUProgram(u,[r],r.dtype,p)}var uoe={kernelName:Xl,backendName:"webgpu",kernelFunc:Au},doe=e=>{let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{blockShape:s,crops:i}=n;v.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGPU backend not implemented yet");let o=s.reduce((y,A)=>y*A),l=T.getReshaped(r.shape,s,o),u=T.getPermuted(l.length,s.length),p=T.getReshapedPermuted(r.shape,s,o),c=T.getSliceBeginCoords(i,s.length),d=T.getSliceSize(p,i,s.length),h=[],f=Ie({inputs:{x:r},backend:a,attrs:{shape:l}}),m=vr({inputs:{x:f},backend:a,attrs:{perm:u}}),g=Ie({inputs:{x:m},backend:a,attrs:{shape:p}}),x=Au({inputs:{x:g},backend:a,attrs:{begin:c,size:d}});return h.push(f),h.push(m),h.push(g),h.forEach(y=>a.disposeData(y.dataId)),x},poe={kernelName:El,backendName:"webgpu",kernelFunc:doe},coe=`
|
|
fn bincount_write(index: i32, value: f32) {
|
|
${O3("&result[index]","value","float32")}
|
|
}
|
|
`,hoe=`
|
|
fn bincount_write(index: i32, value: f32) {
|
|
atomicStore(&result[index], bitcast<i32>(value));
|
|
}
|
|
`,_8=class{constructor(e,t,a=!1){this.outputShape=[],this.variableNames=["x"],this.uniforms="binCountSize : i32,",this.workgroupSize=[64,1,1],this.atomic=!0,this.hasWeights=!0,this.binaryOutput=!1,this.outputShape=e,this.rank=e.length,this.dispatchLayout=$e(this.outputShape),this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize),this.binaryOutput=a,a&&(this.atomic=!1),this.hasWeights=t,this.hasWeights&&this.variableNames.push("w"),this.shaderKey=`bincount_${this.hasWeights}_${this.binaryOutput}_${this.rank}`}getUserCode(){return`
|
|
${this.binaryOutput?hoe:coe}
|
|
${ke("index")} {
|
|
${this.rank===1?`if (index < uniforms.xShape) {
|
|
let indexVal = i32(getX(index));
|
|
if (indexVal < uniforms.binCountSize) {
|
|
let value = ${this.binaryOutput?1:this.hasWeights?"getW(index)":"1."};
|
|
bincount_write(indexVal, value);
|
|
}
|
|
}`:`let coord = getCoordsFromIndex(index);
|
|
if (coordsInBounds2D(coord, uniforms.xShape)) {
|
|
let indexVal = i32(getX(coord[0], coord[1]));
|
|
if (indexVal < uniforms.binCountSize) {
|
|
let value = ${this.binaryOutput?1:this.hasWeights?"getW(coord[0], coord[1])":"1."};
|
|
bincount_write(coord.x * uniforms.binCountSize + indexVal, value);
|
|
}
|
|
}`}
|
|
}
|
|
`}};function foe(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,weights:s}=t,{size:i}=n,o=v.sizeFromShape(r.shape),l=v.sizeFromShape(s.shape)>0,u=[i],p=s.dtype,c=Cr({backend:a,attrs:{shape:u,value:0,dtype:p}}),d=new _8([o],l),h=[{type:"int32",data:[i]}],f=l?[r,s]:[r];return a.runWebGPUProgram(d,f,p,h,c)}var moe={kernelName:Td,backendName:"webgpu",kernelFunc:foe},P8=Jt({opType:Pe.NOT_EQUAL,dtype:"bool",cpuKernelImpl:rie}),goe={kernelName:Bi,backendName:"webgpu",kernelFunc:P8};function yp(e){let{inputs:t,backend:a}=e,{input:n}=t,r=a.tensorMap.get(n.dataId);return Ya({inputs:{x:r.complexTensorInfos.real},backend:a})}var xoe={kernelName:zd,backendName:"webgpu",kernelFunc:yp};function yoe(e,t){let a=new yu(e.shape,le.TO_INT),n=t.runWebGPUProgram(a,[e],"int32");return{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}function _2(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{dtype:s}=n;if(s==="complex64"){if(r.dtype==="complex64")return Ya({inputs:{x:r},backend:a});let i=fn(r.shape),o=_2({inputs:{x:r},backend:a,attrs:{dtype:"float32"}}),l=wo({inputs:{real:o,imag:i},backend:a});return i.dispose(),a.disposeData(o.dataId),l}if(r.dtype==="complex64"){let i=yp({inputs:{input:r},backend:a}),o=_2({inputs:{x:i},backend:a,attrs:{dtype:s}});return a.disposeData(i.dataId),o}if(!v.hasEncodingLoss(r.dtype,s)){let i=Ya({inputs:{x:r},backend:a});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(a.shouldExecuteOnCPU([r])){let i=a.tensorMap.get(r.dataId).values,[o,l,u]=Lse(i,r.shape,r.dtype,s);return a.makeTensorInfo(o,l,u)}if(s==="int32")return yoe(r,a);if(s==="bool"){let i=a.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),o=P8({inputs:{a:r,b:i},backend:a});return a.disposeData(i.dataId),o}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var Aoe={kernelName:ti,backendName:"webgpu",kernelFunc:_2},boe=et({opType:le.CEIL,cpuKernelImpl:Bse}),voe={kernelName:ai,backendName:"webgpu",kernelFunc:boe},koe=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32, maxVal : f32,",this.workPerThread=4,this.workgroupSize=[64,1,1],this.isVec4=!0,this.size=!0,this.outputShape=e,this.dispatchLayout=$e(this.outputShape),this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize,[this.workPerThread,1,1]),this.shaderKey="clipVec4"}getUserCode(){return`
|
|
${ke("index")} {
|
|
if(index < uniforms.size) {
|
|
let value = getAByOutputIndex(index);
|
|
var clampedValue = clamp(
|
|
value, vec4<f32>(uniforms.minVal), vec4<f32>(uniforms.maxVal));
|
|
clampedValue = select(clampedValue, value, isnanVec4(value));
|
|
setOutputAtIndex(index, clampedValue);
|
|
}
|
|
}
|
|
`}},woe=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32, maxVal : f32,",this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=$e(this.outputShape),this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey="clip"}getUserCode(){return`
|
|
${ke("index")} {
|
|
if(index < uniforms.size) {
|
|
let value = getAByOutputIndex(index);
|
|
if (isnan(value)) {
|
|
setOutputAtIndex(index, value);
|
|
return;
|
|
}
|
|
setOutputAtIndex(index, clamp(value, uniforms.minVal, uniforms.maxVal));
|
|
}
|
|
}
|
|
`}};function Ioe(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=n,o,l=[{type:"float32",data:[s]},{type:"float32",data:[i]}];return v.sizeFromShape(r.shape)%4===0?o=new koe(r.shape):o=new woe(r.shape),a.runWebGPUProgram(o,[r],r.dtype,l)}var Soe={kernelName:ns,backendName:"webgpu",kernelFunc:Ioe},Toe=class{constructor(e){this.uniforms="",this.workPerThread=1,this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=T.computeOutShape(e,1),this.variableNames=e.map((t,a)=>`T${a}`),this.dispatchLayout=$e(this.outputShape),this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize,[this.workPerThread,1,1]),this.offsetLength=e.length-1;for(let t=0;t<this.offsetLength;t++)this.uniforms+=`offset${t} : i32,`;this.shaderKey="concat"}getUserCode(){let e=[];if(this.offsetLength>0){e.push("if (yC < uniforms.offset0){ setOutputAtCoords(coords.x, coords.y, getT0(yR, yC)); }");for(let n=1;n<this.offsetLength;n++)e.push(`else if (yC < uniforms.offset${[n]}){ setOutputAtCoords(coords.x, coords.y, getT${n}(yR, yC - uniforms.offset${n-1})); }`);let t=this.offsetLength,a=this.offsetLength-1;e.push(`else { setOutputAtCoords(coords.x, coords.y, getT${t}(yR, yC - uniforms.offset${a})); }`)}else e.push("setOutputAtCoords(coords.x, coords.y, getT0(yR, yC));");return`
|
|
${ke("index")} {
|
|
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
if(flatIndex < uniforms.size) {
|
|
let coords = getCoordsFromIndex(flatIndex);
|
|
let yR = coords.x;
|
|
let yC = coords.y;
|
|
|
|
${e.join(`
|
|
`)}
|
|
}
|
|
}
|
|
}
|
|
`}};function Vh(e){let{inputs:t,backend:a}=e,{input:n}=t,r=a.tensorMap.get(n.dataId);return Ya({inputs:{x:r.complexTensorInfos.imag},backend:a})}var Coe={kernelName:Fd,backendName:"webgpu",kernelFunc:Vh};function Ju(e,t,a){let n=e[0].dtype;if(n==="complex64"){let f=e.map(A=>yp({inputs:{input:A},backend:a})),m=e.map(A=>Vh({inputs:{input:A},backend:a})),g=Ju(f,t,a),x=Ju(m,t,a),y=wo({inputs:{real:g,imag:x},backend:a});return f.forEach(A=>a.disposeData(A.dataId)),m.forEach(A=>a.disposeData(A.dataId)),a.disposeData(g.dataId),a.disposeData(x.dataId),y}let r=a.shouldExecuteOnCPU(e);if(n==="string"&&(r=!0),r){let f=e.map(k=>{let S=[-1,v.sizeFromShape(k.shape.slice(t))];return Ie({inputs:{x:k},backend:a,attrs:{shape:S}})}),m=f.map(k=>({vals:a.readSync(k.dataId),shape:k.shape})),g=T.computeOutShape(f.map(k=>k.shape),1),x=f[0].shape[0]===1,y=Wse(m,g,n,x),A=T.computeOutShape(e.map(k=>k.shape),t),b=a.makeTensorInfo(A,n,y);return f.forEach(k=>a.disposeData(k.dataId)),b}let s=a.device.limits.maxStorageBuffersPerShaderStage-1;if(e.length>s){let f=[];for(let g=0;g<e.length;g+=s){let x=e.slice(g,g+s);f.push(Ju(x,t,a))}let m=Ju(f,t,a);for(let g of f)a.disposeData(g.dataId);return m}let{tensors2D:i,outShape:o}=Noe(e,t,a),l=i.map(f=>f.shape),u=new Toe(l),p=[],c=new Array(l.length-1);if(c.length>0){c[0]=l[0][1],p.push({type:"int32",data:[c[0]]});for(let f=1;f<c.length;f++)c[f]=c[f-1]+l[f][1],p.push({type:"int32",data:[c[f]]})}let d=a.runWebGPUProgram(u,i,i[0].dtype,p);i.forEach(f=>a.disposeData(f.dataId));let h=Ie({inputs:{x:d},backend:a,attrs:{shape:o}});return a.disposeData(d.dataId),h}function Noe(e,t,a){let n=T.computeOutShape(e.map(r=>r.shape),t);return{tensors2D:e.map(r=>Ie({inputs:{x:r},backend:a,attrs:{shape:[v.sizeFromShape(r.shape.slice(0,t)),v.sizeFromShape(r.shape.slice(t))]}})),outShape:n}}function F8(e){let{inputs:t,backend:a,attrs:n}=e,{axis:r}=n,s=v.parseAxisParam(r,t[0].shape)[0],i=t.map(u=>u.shape);T.assertParamsConsistent(i,s);let o=T.computeOutShape(t.map(u=>u.shape),s);if(v.sizeFromShape(o)===0)return a.makeTensorInfo(o,t[0].dtype,[]);let l=t.filter(u=>v.sizeFromShape(u.shape)>0);return l.length===1?Ya({inputs:{x:l[0]},backend:a}):Ju(l,s,a)}var Eoe={kernelName:Rl,backendName:"webgpu",kernelFunc:F8};function Roe(e,t,a,n,r=!1,s=null,i=!1,o=4,l=4,u=4){let p=E=>{switch(E){case 1:return"resData = x[xIndex];";case 3:return"resData = vec3<f32>(x[xIndex], x[xIndex + 1], x[xIndex + 2]);";case 4:return"resData = x[xIndex / 4];";default:throw new Error(`innerElementSize ${E} is not supported.`)}},c=E=>{switch(E){case 1:return"return W[row * uniforms.wShape[3] + colIn];";case 4:return"return W[row * uniforms.wShape[3] / 4 + colIn];";default:throw new Error(`innerElementSize ${E} is not supported.`)}},d=e?`
|
|
let coord = vec4<i32>(batch, xRow, xCol, xCh);
|
|
`:`
|
|
let coord = vec4<i32>(batch, xCh, xRow, xCol);
|
|
`,h=e?`
|
|
let coords = vec4<i32>(
|
|
batch,
|
|
row / outWidth,
|
|
row % outWidth,
|
|
col);
|
|
`:`
|
|
let coords = vec4<i32>(
|
|
batch,
|
|
row,
|
|
col / outWidth,
|
|
col % outWidth);
|
|
`,f=e?"uniforms.xShape[1]":"uniforms.xShape[2]",m=e?"uniforms.xShape[2]":"uniforms.xShape[3]",g=e?"row":"col",x=e?"col":"row",y=`
|
|
let inChannels = uniforms.wShape[2];
|
|
let outWidth = ${e?"uniforms.outShape[2]":"uniforms.outShape[3]"};
|
|
let outRow = ${g} / outWidth;
|
|
let outCol = ${g} % outWidth;
|
|
|
|
let WRow = ${x} / (uniforms.filterDims[1] * inChannels);
|
|
let WCol = ${x} / inChannels % uniforms.filterDims[1];
|
|
let xRow = outRow * uniforms.stride[0] + uniforms.dilation[0] * WRow - uniforms.pad[0];
|
|
let xCol = outCol * uniforms.stride[1] + uniforms.dilation[1] * WCol - uniforms.pad[1];
|
|
let xCh = ${x} % inChannels;
|
|
var resData = ${$t(o)}(0.0);
|
|
// The bounds checking is always needed since we use it to pad zero for
|
|
// the 'same' padding type.
|
|
if (xRow >= 0 && xRow < ${f} && xCol >= 0 && xCol < ${m}) {
|
|
${d}
|
|
let xIndex = getIndexFromCoords4D(coord, uniforms.xShape);
|
|
${p(o)}
|
|
}
|
|
return resData;`,A=e?t&&n?`
|
|
let col = colIn * ${o};
|
|
${y}`:`
|
|
let col = colIn * ${o};
|
|
if (row < uniforms.dimAOuter && col < uniforms.dimInner) {
|
|
${y}
|
|
}
|
|
return ${$t(o)}(0.0);`:n&&a?`
|
|
let col = colIn * ${o};
|
|
${y}`:`
|
|
let col = colIn * ${o};
|
|
if (row < uniforms.dimInner && col < uniforms.dimBOuter) {
|
|
${y}
|
|
}
|
|
return ${$t(o)}(0.0);`,b=`${c(l)}`,k=$t(u),S=$t(e?o:l),C=$t(e?l:o);return`
|
|
${Tr(s,i,u===4,4)}
|
|
fn mm_readA(batch: i32, row : i32, colIn : i32) -> ${S} {
|
|
${e?A:b}
|
|
}
|
|
|
|
fn mm_readB(batch: i32, row : i32, colIn : i32) -> ${C} {
|
|
${e?b:A}
|
|
}
|
|
|
|
fn mm_write(batch: i32, row : i32, colIn : i32, valueIn : ${k}) {
|
|
let col = colIn * ${u};
|
|
if (row < uniforms.dimAOuter && col < uniforms.dimBOuter)
|
|
{
|
|
var value = valueIn;
|
|
let outWidth = ${e?"uniforms.outShape[2]":"uniforms.outShape[3]"};
|
|
${h}
|
|
${ko(r,s)}
|
|
setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value);
|
|
}
|
|
}`}var Moe=class{constructor(e,t,a,n,r=!1,s=null,i=!1,o=!1){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>, pad : vec2<i32>, stride : vec2<i32>, dilation : vec2<i32>, dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.outputShape=e.outShape,this.isChannelsLast=e.dataFormat==="channelsLast",this.isVec4=((e.inChannels%4===0||e.inChannels%3===0)&&this.isChannelsLast||e.outWidth%4===0&&!this.isChannelsLast)&&e.outChannels%4===0,this.dispatchLayout=this.isChannelsLast?{x:[3],y:[1,2],z:[0]}:{x:[2,3],y:[1],z:[0]},this.workgroupSize=D3(this.dispatchLayout,this.outputShape,this.isVec4),this.elementsPerThread=z3(this.dispatchLayout,this.outputShape,this.isVec4),this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize,this.elementsPerThread),this.isVec4?(this.isChannelsLast&&e.inChannels%4!==0?(this.innerElementSize=3,this.variableTypes=["f32","vec4<f32>"]):(this.innerElementSize=4,this.variableTypes=["vec4<f32>","vec4<f32>"]),r&&(this.variableNames.push("bias"),this.variableTypes.push("vec4<f32>")),i&&(this.variableNames.push("preluActivationWeights"),this.variableTypes.push("vec4<f32>"))):(this.innerElementSize=this.elementsPerThread[0],r&&this.variableNames.push("bias"),i&&this.variableNames.push("preluActivationWeights")),this.sequentialAccessByThreads=o,this.addBias=r,this.activation=s,this.hasPreluActivationWeights=i,this.tileAOuter=this.workgroupSize[1]*this.elementsPerThread[1],this.tileBOuter=this.workgroupSize[0]*this.elementsPerThread[0],this.tileInner=Math.max(this.workgroupSize[0]*this.innerElementSize,this.workgroupSize[1]),this.fitAOuter=t%this.tileAOuter===0,this.fitBOuter=a%this.tileBOuter===0,this.fitInner=n%this.tileInner===0,this.shaderKey=`conv2DMM_${this.elementsPerThread}_${this.activation}}_${this.fitAOuter}_${this.fitBOuter}_${this.fitInner}_${this.isVec4}_${this.innerElementSize}_${this.isChannelsLast}_${this.sequentialAccessByThreads}`}getUserCode(){let e=this.isVec4?Lh(this.elementsPerThread,this.workgroupSize,!this.isChannelsLast,this.tileInner):Bh(this.elementsPerThread,this.workgroupSize,!this.isChannelsLast,this.tileInner,!1,null,this.sequentialAccessByThreads),t=this.isVec4?[this.innerElementSize,4,4]:[1,1,1];return`
|
|
${Roe(this.isChannelsLast,this.fitAOuter,this.fitBOuter,this.fitInner,this.addBias,this.activation,this.hasPreluActivationWeights,t[0],t[1],t[2])}
|
|
${e}
|
|
`}},$oe=class{constructor(e,t=!1,a=null,n=!1){this.variableNames=["x","W"],this.uniforms="filterDims: vec2<i32>, pad: vec2<i32>, stride: vec2<i32>, dilation: vec2<i32>,",this.workgroupSize=[4,4,8],this.outputShape=e.outShape,this.isChannelsLast=e.dataFormat==="channelsLast",this.dispatchLayout=this.isChannelsLast?{x:[2],y:[1],z:[0,3]}:{x:[3],y:[2],z:[0,1]},this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize),this.addBias=t,this.activation=a,this.hasPreluActivationWeights=n,t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),this.shaderKey=`conv2dnaive_${this.activation}_${this.isChannelsLast}`}getUserCode(){return`
|
|
${Tr(this.activation,this.hasPreluActivationWeights,!1,4)}
|
|
fn readInp(batch : i32, row : i32, col : i32, chan : i32) -> f32{
|
|
let coords = vec4<i32>(batch, row, col, chan);
|
|
if (coordsInBounds4D(coords, uniforms.xShape)) {
|
|
return getX(batch, row, col, chan);
|
|
} else {
|
|
return 0.0;
|
|
}
|
|
}
|
|
fn readFilt(row : i32, col : i32, xChannel : i32, outChannel : i32) -> f32{
|
|
let coords = vec4<i32>(row, col, xChannel, outChannel);
|
|
if(coordsInBounds4D(coords, uniforms.wShape)) {
|
|
return getW(row, col, xChannel, outChannel);
|
|
} else {
|
|
return 0.0;
|
|
}
|
|
}
|
|
fn writeResult(batch : i32, row : i32, col : i32, chan : i32, valueIn : f32) {
|
|
let coords = ${this.isChannelsLast?"vec4<i32>(batch, row, col, chan);":"vec4<i32>(batch, chan, row, col);"}
|
|
if (coordsInBounds4D(coords, uniforms.outShape)) {
|
|
var value = valueIn;
|
|
${ko(this.addBias,this.activation)}
|
|
setOutputAtCoords(coords.x, coords.y, coords.z, coords.w, value);
|
|
}
|
|
}
|
|
${ke("index")} {
|
|
let coords = getOutputCoords();
|
|
let batch = coords[0];
|
|
let outChannel = ${this.isChannelsLast?"coords[3];":"coords[1];"}
|
|
let outRow = ${this.isChannelsLast?"coords[1];":"coords[2];"}
|
|
let outCol = ${this.isChannelsLast?"coords[2];":"coords[3];"}
|
|
var acc : f32 = 0.0;
|
|
for (var row = 0; row < uniforms.filterDims[0]; row = row + 1) {
|
|
for (var col = 0; col < uniforms.filterDims[1]; col = col + 1) {
|
|
let xRow = outRow * uniforms.stride[0] + uniforms.dilation[0] * row - uniforms.pad[0];
|
|
let xCol = outCol * uniforms.stride[1] + uniforms.dilation[1] * col - uniforms.pad[1];
|
|
for (var xChannel = 0; xChannel < ${this.isChannelsLast?"uniforms.xShape[3];":"uniforms.xShape[1];"} xChannel = xChannel + 1) {
|
|
${this.isChannelsLast?"let v = readInp(batch, xRow, xCol, xChannel);":"let v = readInp(batch, xChannel, xRow, xCol);"}
|
|
let f = readFilt(row, col, xChannel, outChannel);
|
|
acc = acc + v * f;
|
|
}
|
|
}
|
|
}
|
|
writeResult(batch, outRow, outCol, outChannel, acc);
|
|
}
|
|
`}},_oe=class{constructor(e,t){this.variableNames=["x"],this.uniforms=`pad : vec2<i32>, stride : vec2<i32>, dilation : vec2<i32>, outWidth : i32, itemsPerBlockRow : i32,
|
|
inChannels : i32,`,this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=$e(this.outputShape),this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize),this.isChannelsLast=t,this.shaderKey=`im2col_${this.isChannelsLast}`}getUserCode(){let e=this.isChannelsLast?1:2,t=this.isChannelsLast?2:3,a=this.isChannelsLast?"coords[1]":"coords[2]",n=this.isChannelsLast?"coords[2]":"coords[1]",r=this.isChannelsLast?"getX(batch, xRow, xCol, ch)":"getX(batch, ch, xRow, xCol)";return`
|
|
${ke("index")} {
|
|
let coords = getCoordsFromIndex(index);
|
|
if(index < uniforms.size) {
|
|
let batch = coords[0];
|
|
let row = ${a};
|
|
let col = ${n};
|
|
let offsetY = (row / uniforms.outWidth) * uniforms.stride[0] - uniforms.pad[0];
|
|
let xRow = offsetY + uniforms.dilation[0] * (col / uniforms.itemsPerBlockRow);
|
|
var value = 0.0;
|
|
if(xRow < uniforms.xShape[${e}] && xRow >= 0) {
|
|
let offsetX = (row % uniforms.outWidth) * uniforms.stride[1] -
|
|
uniforms.pad[1];
|
|
let xCol = offsetX + uniforms.dilation[1] * ((col %
|
|
uniforms.itemsPerBlockRow) / uniforms.inChannels);
|
|
let ch = col % uniforms.inChannels;
|
|
if(xCol < uniforms.xShape[${t}] && xCol >= 0) {
|
|
value = ${r};
|
|
}
|
|
}
|
|
setOutputAtIndex(index, value);
|
|
}
|
|
}
|
|
`}};function Gc(e,t){let a=e.length;return a>=3?t?[...e.slice(0,-3),e[a-3]*e[a-2],e[a-1]]:[...e.slice(0,-3),e[a-3],e[a-2]*e[a-1]]:!t&&a===1&&e[0]>1?[e[0],1]:null}function Poe({x:e,filter:t,convInfo:a,backend:n,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=a.dataFormat==="channelsLast",u=!l,p=!1,c=l&&a.filterHeight===a.inHeight&&a.filterWidth===a.inWidth&&a.padInfo.type==="VALID",d=[],h,f;if(c){let x=a.inHeight*a.inWidth*a.inChannels;h=Ie({inputs:{x:e},backend:n,attrs:{shape:[1,a.batchSize,x]}}),f=Ie({inputs:{x:t},backend:n,attrs:{shape:[1,x,a.outChannels]}})}else h=Ie({inputs:{x:e},backend:n,attrs:{shape:l?[a.batchSize,a.inHeight*a.inWidth,a.inChannels]:[a.batchSize,a.inChannels,a.inHeight*a.inWidth]}}),f=Ie({inputs:{x:t},backend:n,attrs:{shape:[1,a.inChannels,a.outChannels]}});if(d.push(h),d.push(f),s!=null){let x=Gc(s.shape,l);x!=null&&(s=Ie({inputs:{x:s},backend:n,attrs:{shape:x}}),d.push(s))}if(r!=null){let x=Gc(r.shape,l);x!=null&&(r=Ie({inputs:{x:r},backend:n,attrs:{shape:x}}),d.push(r))}let m=Wh({a:l?h:f,b:l?f:h,transposeA:u,transposeB:p,backend:n,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),g=Ie({inputs:{x:m},backend:n,attrs:{shape:a.outShape}});d.push(m);for(let x of d)n.disposeData(x.dataId);return g}function Foe({x:e,filter:t,convInfo:a,backend:n,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:u,inChannels:p,strideWidth:c,strideHeight:d,padInfo:h,outWidth:f,outHeight:m,dilationWidth:g,dilationHeight:x,dataFormat:y}=a,A=y==="channelsLast",b=l*u*p,k=m*f,S=A?[a.batchSize,k,b]:[a.batchSize,b,k],C=new _oe(S,A),E=[{type:"int32",data:[h.top,h.left]},{type:"int32",data:[d,c]},{type:"int32",data:[x,g]},{type:"int32",data:[f]},{type:"int32",data:[p*l]},{type:"int32",data:[p]}],_=n.runWebGPUProgram(C,[e],e.dtype,E),$=[];$.push(_);let M=Ie({inputs:{x:t},backend:n,attrs:{shape:[1,b,-1]}});if($.push(M),s!=null){let O=Gc(s.shape,A);O!=null&&(s=Ie({inputs:{x:s},backend:n,attrs:{shape:O}}),$.push(s))}if(r!=null){let O=Gc(r.shape,A);O!=null&&(r=Ie({inputs:{x:r},backend:n,attrs:{shape:O}}),$.push(r))}let I=Wh({a:A?_:M,b:A?M:_,transposeA:!A,transposeB:!1,backend:n,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),N=Ie({inputs:{x:I},backend:n,attrs:{shape:a.outShape}});$.push(I);for(let O of $)n.disposeData(O.dataId);return N}function O8({x:e,filter:t,convInfo:a,backend:n,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=r!=null,u=s!=null,p=a.dataFormat==="channelsLast",c=p&&a.filterHeight===a.inHeight&&a.filterWidth===a.inWidth&&a.padInfo.type==="VALID",d=B().getBool("WEBGPU_USE_NAIVE_CONV2D_DEBUG");if(!d&&(c||a.filterHeight===1&&a.filterWidth===1&&a.dilationHeight===1&&a.dilationWidth===1&&a.strideHeight===1&&a.strideWidth===1&&(a.padInfo.type==="SAME"||a.padInfo.type==="VALID")))return Poe({x:e,filter:t,convInfo:a,backend:n,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i});let h=B().getNumber("WEBGPU_THRESHOLD_TO_INCREASE_WORKGROUPS_FOR_MATMUL"),f=h>0?h:n.thresholdToIncreaseWorkgroups,m=a.batchSize*Math.ceil(a.outHeight*a.outWidth/32)*Math.ceil(a.outChannels/32);if(B().getBool("WEBGPU_CONV_SEPARATE_IM2COL_SHADER")||m<=f)return Foe({x:e,filter:t,convInfo:a,backend:n,bias:r,preluActivationWeights:s,leakyreluAlpha:i,activation:o});let g,x=[a.padInfo.top,a.padInfo.left],y=[{type:"int32",data:[a.filterHeight,a.filterWidth]},{type:"int32",data:[...x]},{type:"int32",data:[a.strideHeight,a.strideWidth]},{type:"int32",data:[a.dilationHeight,a.dilationWidth]}];if(d)g=new $oe(a,l,o,u);else{let S=p?a.outHeight*a.outWidth:a.outChannels,C=p?a.outChannels:a.outHeight*a.outWidth,E=a.filterHeight*a.filterWidth*a.inChannels;y.push({type:"int32",data:[S]},{type:"int32",data:[C]},{type:"int32",data:[E]});let _=n.adapterInfo.isIntel();g=new Moe(a,S,C,E,l,o,u,_)}let A=[],b=[e,t];l&&(!p&&r.shape.length===1&&(r=Ie({inputs:{x:r},backend:n,attrs:{shape:[r.shape[0],1,1]}}),A.push(r)),b.push(r)),u&&(!p&&s.shape.length===1&&(s=Ie({inputs:{x:s},backend:n,attrs:{shape:[s.shape[0],1,1]}}),A.push(s)),b.push(s)),o==="leakyrelu"&&(y.push({type:"float32",data:[i]}),g.uniforms+=" alpha : f32,");let k=n.runWebGPUProgram(g,b,e.dtype,y);for(let S of A)n.disposeData(S.dataId);return k}function Ooe(e){let{inputs:t,attrs:a,backend:n}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:p}=a,c=T.convertConv2DDataFormat(l),d=T.computeConv2DInfo(r.shape,s.shape,i,u,o,p,!1,c);return O8({x:r,filter:s,convInfo:d,backend:n})}var Doe={kernelName:ni,backendName:"webgpu",kernelFunc:Ooe},zoe=class{constructor(e){this.variableNames=["dy","W"],this.uniforms="filterDims : vec2<i32>, pads : vec2<i32>, stride : vec2<i32>, outBackprop : vec4<i32>,",this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e.inShape,this.dispatchLayout=$e(this.outputShape),this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize),this.isChannelsLast=e.dataFormat==="channelsLast",this.shaderKey=`conv2DDerInput_${this.isChannelsLast}`}getUserCode(){let e=this.isChannelsLast?1:2,t=this.isChannelsLast?2:3,a=this.isChannelsLast?3:1;return`
|
|
${ke("index")} {
|
|
if(index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let batch = coords[0];
|
|
let d1 = coords[${a}];
|
|
|
|
let dyCorner = vec2<i32>(coords[${e}], coords[${t}]) - uniforms.pads;
|
|
let dyRCorner = dyCorner.x;
|
|
let dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
var dotProd = 0.0;
|
|
for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + 1) {
|
|
let dyR = (f32(dyRCorner) + f32(wR)) / f32(uniforms.stride.x);
|
|
let wRPerm = uniforms.filterDims.x - 1 - wR;
|
|
if (dyR < 0.0 || dyR >= f32(uniforms.outBackprop[1]) || fract(dyR) > 0.0 ||
|
|
wRPerm < 0) {
|
|
continue;
|
|
}
|
|
let idyR = i32(dyR);
|
|
|
|
for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + 1) {
|
|
let dyC = (f32(dyCCorner) + f32(wC)) / f32(uniforms.stride.y);
|
|
let wCPerm = uniforms.filterDims.y - 1 - wC;
|
|
if (dyC < 0.0 || dyC >= f32(uniforms.outBackprop[2]) ||
|
|
fract(dyC) > 0.0 || wCPerm < 0) {
|
|
continue;
|
|
}
|
|
let idyC = i32(dyC);
|
|
|
|
for (var d2 = 0; d2 < uniforms.outBackprop[3]; d2 = d2 + 1) {
|
|
if (${this.isChannelsLast}) {
|
|
let xValue = getDy(batch, idyR, idyC, d2);
|
|
let wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd = dotProd + xValue * wValue;
|
|
} else {
|
|
let xValue = getDy(batch, d2, idyR, idyC);
|
|
let wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd = dotProd + xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutputAtIndex(index, dotProd);
|
|
}
|
|
}
|
|
`}},Loe=class{constructor(e){this.variableNames=["x","dy"],this.uniforms="pad : vec2<i32>, stride : vec2<i32>, batchSize : i32, outHeight : i32, outWidth : i32, inHeight : i32, inWidth : i32,",this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e.filterShape,this.dispatchLayout=$e(this.outputShape),this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize),this.isChannelsLast=e.dataFormat==="channelsLast",this.shaderKey=`conv2DDerFilter_${this.isChannelsLast}`}getUserCode(){return`
|
|
${ke("index")} {
|
|
if(index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let wR = coords[0];
|
|
let wC = coords[1];
|
|
let d1 = coords[2];
|
|
let d2 = coords[3];
|
|
|
|
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
var dotProd = 0.0;
|
|
for (var b = 0; b < uniforms.batchSize; b = b + 1) {
|
|
for (var yR = 0; yR < uniforms.outHeight; yR = yR + 1) {
|
|
let xR = wR + yR * uniforms.stride[0] - uniforms.pad[0];
|
|
if (xR < 0 || xR >= uniforms.inHeight) {
|
|
continue;
|
|
}
|
|
|
|
for (var yC = 0; yC < uniforms.outWidth; yC = yC + 1) {
|
|
let xC = wC + yC * uniforms.stride[1] - uniforms.pad[1];
|
|
|
|
if (xC < 0 || xC >= uniforms.inWidth) {
|
|
continue;
|
|
}
|
|
|
|
if (${this.isChannelsLast}) {
|
|
let dyValue = getDy(b, yR, yC, d2);
|
|
let xValue = getX(b, xR, xC, d1);
|
|
dotProd = dotProd + xValue * dyValue;
|
|
} else {
|
|
let dyValue = getDy(b, d2, yR, yC);
|
|
let xValue = getX(b, d1, xR, xC);
|
|
dotProd = dotProd + xValue * dyValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutputAtIndex(index, dotProd);
|
|
}
|
|
}
|
|
`}};function Boe(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:p}=n,c=T.convertConv2DDataFormat(l),d=T.computeConv2DInfo(r.shape,p,i,1,o,u,!1,c),h=new Loe(d),f=[{type:"int32",data:[d.padInfo.top,d.padInfo.left]},{type:"int32",data:[d.strideHeight,d.strideWidth]},{type:"int32",data:[d.batchSize]},{type:"int32",data:[d.outHeight]},{type:"int32",data:[d.outWidth]},{type:"int32",data:[d.inHeight]},{type:"int32",data:[d.inWidth]}];return a.runWebGPUProgram(h,[r,s],r.dtype,f)}var Woe={kernelName:Nd,backendName:"webgpu",kernelFunc:Boe};function Voe(e=4){let t=n=>{switch(n){case 1:return"return W[getIndexFromCoords4D(coord, uniforms.wShape)];";case 4:return`
|
|
let coord1 = vec4<i32>(coordX, coordY, col + 1, rowInner);
|
|
let coord2 = vec4<i32>(coordX, coordY, col + 2, rowInner);
|
|
let coord3 = vec4<i32>(coordX, coordY, col + 3, rowInner);
|
|
let v0 = W[getIndexFromCoords4D(coord, uniforms.wShape)];
|
|
let v1 = W[getIndexFromCoords4D(coord1, uniforms.wShape)];
|
|
let v2 = W[getIndexFromCoords4D(coord2, uniforms.wShape)];
|
|
let v3 = W[getIndexFromCoords4D(coord3, uniforms.wShape)];
|
|
return vec4<f32>(v0, v1, v2, v3);
|
|
`;default:throw new Error(`innerElementSize ${n} is not supported.`)}},a=`if (row < uniforms.dimAOuter && col < uniforms.dimInner) {
|
|
${`
|
|
let outRow = row / uniforms.outShape[2];
|
|
let outCol = row % uniforms.outShape[2];
|
|
|
|
let WRow = col / (uniforms.filterDims[1] * uniforms.outBackprop[3]);
|
|
let WCol = col / uniforms.outBackprop[3] % uniforms.filterDims[1];
|
|
let xR = f32(outRow - uniforms.pads[0] + WRow) / f32(uniforms.stride[0]);
|
|
let xC = f32(outCol - uniforms.pads[1] + WCol) / f32(uniforms.stride[1]);
|
|
if (xR < 0.0 || xR >= f32(uniforms.outBackprop[1]) || fract(xR) > 0.0) {
|
|
return ${$t(e)}(0.0);
|
|
}
|
|
if (xC < 0.0 || xC >= f32(uniforms.outBackprop[2]) || fract(xC) > 0.0) {
|
|
return ${$t(e)}(0.0);
|
|
}
|
|
let coord = vec4<i32>(
|
|
batch,
|
|
i32(xR),
|
|
i32(xC),
|
|
col % uniforms.outBackprop[3]);
|
|
return x[getIndexFromCoords4D(coord, uniforms.xShape)/${e}];`}
|
|
}
|
|
return ${$t(e)}(0.0);`;return`
|
|
fn mm_readA(batch: i32, row : i32, colIn : i32) -> ${$t(e)} {
|
|
let col = colIn * ${e};
|
|
${a}
|
|
}
|
|
|
|
fn mm_readB(batch: i32, row : i32, colIn : i32) -> ${$t(e)} {
|
|
let col = colIn * ${e};
|
|
let coordX = uniforms.filterDims.x - 1 -
|
|
row / (uniforms.filterDims[1] * uniforms.outBackprop[3]);
|
|
let coordY = uniforms.filterDims.y - 1 -
|
|
(row / uniforms.outBackprop[3]) % uniforms.filterDims[1];
|
|
if (row < uniforms.dimInner && col < uniforms.dimBOuter &&
|
|
coordX >= 0 && coordY >= 0) {
|
|
let rowInner = row % uniforms.outBackprop[3];
|
|
let coord = vec4<i32>(coordX, coordY, col, rowInner);
|
|
${t(e)}
|
|
}
|
|
return ${$t(e)}(0.0);
|
|
}
|
|
|
|
fn mm_write(batch: i32, row : i32, colIn : i32, valueInput : ${$t(e)}) {
|
|
let col = colIn * ${e};
|
|
if (row < uniforms.dimAOuter && (col + ${e-1}) < uniforms.dimBOuter) {
|
|
var value = valueInput;
|
|
let outCoord = vec4<i32>(
|
|
batch,
|
|
row / uniforms.outShape[2],
|
|
row % uniforms.outShape[2],
|
|
col);
|
|
result[getIndexFromCoords4D(outCoord, uniforms.outShape)/${e}] = value;
|
|
}
|
|
}`}var Uoe=class{constructor(e){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>, pads : vec2<i32>, stride : vec2<i32>, outBackprop : vec4<i32>, dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.outputShape=e.inShape,v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.isVec4=e.inChannels%4===0&&e.outChannels%4===0,this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.workgroupSize=D3(this.dispatchLayout,this.outputShape,this.isVec4),this.elementsPerThread=z3(this.dispatchLayout,this.outputShape,this.isVec4),this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize,this.elementsPerThread),this.isVec4&&(this.variableTypes=["vec4<f32>","f32"]),this.shaderKey=`conv2DDerInputMM_${this.isVec4}_${this.elementsPerThread}`}getUserCode(){let e=this.isVec4?Lh(this.elementsPerThread,this.workgroupSize):Bh(this.elementsPerThread,this.workgroupSize);return`
|
|
${Voe(this.isVec4?4:1)}
|
|
${e}
|
|
`}};function Goe(e){let{inputs:t,backend:a,attrs:n}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:p}=n,c=T.convertConv2DDataFormat(u),d=T.computeConv2DInfo(i,s.shape,o,1,l,p,!1,c),h=[{type:"int32",data:[d.filterHeight,d.filterWidth]},{type:"int32",data:[d.filterHeight-1-d.padInfo.top,d.filterWidth-1-d.padInfo.left]},{type:"int32",data:[d.strideHeight,d.strideWidth]},{type:"int32",data:[d.batchSize,d.outHeight,d.outWidth,d.outChannels]}],f;if(B().getBool("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE")||d.filterHeight<=2&&d.filterWidth<=2&&d.outChannels<=16&&d.inChannels===1)f=new zoe(d);else{f=new Uoe(d);let m=d.inHeight*d.inWidth,g=d.inChannels,x=d.filterHeight*d.filterWidth*d.outChannels;h.push({type:"uint32",data:[m]},{type:"uint32",data:[g]},{type:"uint32",data:[x]})}return a.runWebGPUProgram(f,[r,s],"float32",h)}var Hoe={kernelName:ri,backendName:"webgpu",kernelFunc:Goe},joe=et({opType:le.COS}),qoe={kernelName:si,backendName:"webgpu",kernelFunc:joe},Xoe=et({opType:le.COSH}),Koe={kernelName:ii,backendName:"webgpu",kernelFunc:Xoe},Zoe=class{constructor(e,t,a,n){this.variableNames=["Image","Boxes","BoxInd"],this.uniforms="extrapolationValue : f32,",this.workgroupSize=[64,1,1],this.size=!0;let[r]=t;this.outputShape=[r,a[0],a[1],e],this.dispatchLayout=$e(this.outputShape),this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize),this.methodId=n==="bilinear"?1:0,this.cropHeightBiggerThan1=this.outputShape[1]>1,this.cropWidthBiggerThan1=this.outputShape[2]>1,this.shaderKey=`cropAndResize_${this.methodId}_${this.cropHeightBiggerThan1}_${this.cropWidthBiggerThan1}`}getUserCode(){let[e,t]=["f32(uniforms.imageShape[1] - 1)","f32(uniforms.imageShape[2] - 1)"],[a,n,r]=this.cropHeightBiggerThan1?[`(${e} / f32(uniforms.outShape[1] - 1))`,"(y2-y1) * height_ratio",`y1*${e} + f32(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${e}`],[s,i,o]=this.cropWidthBiggerThan1?[`(${t} / f32(uniforms.outShape[2] - 1))`,"(x2-x1) * width_ratio",`x1*${t} + f32(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${t}`];return`
|
|
${ke("index")} {
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let height_ratio = f32(${a});
|
|
let width_ratio = f32(${s});
|
|
let b = coords[0];
|
|
let y = coords[1];
|
|
let x = coords[2];
|
|
let d = coords[3];
|
|
// get box vals
|
|
let y1 = getBoxes(b, 0);
|
|
let x1 = getBoxes(b, 1);
|
|
let y2 = getBoxes(b, 2);
|
|
let x2 = getBoxes(b, 3);
|
|
// get image in batch index
|
|
let bInd = i32(round(getBoxInd(b)));
|
|
if(bInd < 0 || bInd >= uniforms.outShape[0]) {
|
|
return;
|
|
}
|
|
let height_scale = ${n};
|
|
let width_scale = ${i};
|
|
let in_y = ${r};
|
|
if( in_y < 0.0 || in_y > ${e} ) {
|
|
setOutputAtIndex(index, uniforms.extrapolationValue);
|
|
return;
|
|
}
|
|
let in_x = ${o};
|
|
if( in_x < 0.0 || in_x > ${t} ) {
|
|
setOutputAtIndex(index, uniforms.extrapolationValue);
|
|
return;
|
|
}
|
|
let sourceFracIndexCR = vec2<f32>(in_x,in_y);
|
|
if(${this.methodId} == 1) {
|
|
// Compute the four integer indices.
|
|
let sourceFloorCR = vec2<i32>(sourceFracIndexCR);
|
|
let sourceCeilCR = vec2<i32>(ceil(sourceFracIndexCR));
|
|
let topLeft = getImage(bInd, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
let bottomLeft = getImage(bInd, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
let topRight = getImage(bInd, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
let bottomRight = getImage(bInd, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
let fracCR = sourceFracIndexCR - vec2<f32>(sourceFloorCR);
|
|
let top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
let bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
let newValue = top + (bottom - top) * fracCR.y;
|
|
setOutputAtIndex(index, newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
let sourceNearestCR = vec2<i32>(floor(
|
|
sourceFracIndexCR + vec2<f32>(0.5,0.5)));
|
|
let newValue = getImage(
|
|
bInd, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutputAtIndex(index, newValue);
|
|
}
|
|
}
|
|
}
|
|
`}},Yoe=e=>{let{inputs:t,backend:a,attrs:n}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=n,p=new Zoe(r.shape[3],s.shape,o,l),c=[{type:"float32",data:[u]}];return a.runWebGPUProgram(p,[r,s,i],"float32",c)},Joe={kernelName:ui,backendName:"webgpu",kernelFunc:Yoe},kd;(function(e){e.Prod="*",e.Sum="+"})(kd||(kd={}));var jx=class{constructor(e,t,a,n){this.variableNames=["x"],this.uniforms="index : f32,",this.size=!0,this.workgroupSize=[128,1,1],this.outputShape=t,this.dispatchLayout=$e(this.outputShape),this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize),this.exclusive=a,this.reverse=n,this.op=e,this.shaderKey=`cum_${this.op}_${this.exclusive}_${this.reverse}`}getUserCode(){let e=this.outputShape.length,t=this.op===kd.Prod?"1.0":"0.0",a=this.exclusive?t:`getX(${qx(e,"coords",this.op)})`,n=this.outputShape[this.outputShape.length-1],r="",s="";return this.exclusive?(r=this.reverse?`end != ${n-1}`:"end != 0",s=this.reverse?"end + 1":"end - 1"):(r=this.reverse?`end + pow2 < ${n}`:"end >= pow2",s=this.reverse?"end + pow2":"end - pow2"),`
|
|
${ke("index")} {
|
|
if (index < uniforms.size) {
|
|
var coords = getCoordsFromIndex(index);
|
|
|
|
let end = ${Xx(e,"coords",this.op)};
|
|
var val = ${a};
|
|
let pow2 = i32(pow(2.0, uniforms.index));
|
|
if (${r}) {
|
|
let idx = ${s};
|
|
${Xx(e,"coords",this.op)} = idx;
|
|
val ${this.op}= getX(${qx(e,"coords",this.op)});
|
|
}
|
|
setOutputAtIndex(index, val);
|
|
}
|
|
}
|
|
`}};function qx(e,t,a){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative ${a} for rank ${e} is not yet supported`)}function Xx(e,t,a){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative ${a} for rank ${e} is not yet supported`)}function D8(e,t,a,n,r,s){let i=t.shape.length,o=T.getAxesPermutation([n],i),l=t;o!=null&&(l=vr({inputs:{x:t},backend:a,attrs:{perm:o}}));let u=T.getInnerMostAxes(1,i)[0];if(u!==i-1)throw new Error(`WebGPU cumprod shader expects an inner-most axis=${t.shape.length-1} but got axis=${n}`);let p=l.shape[u],c=Ya({inputs:{x:l},backend:a});for(let d=0;d<=Math.ceil(Math.log2(p))-1;d++){let h=new jx(e,l.shape,!1,s),f=c,m=[{type:"float32",data:[d]}];c=a.runWebGPUProgram(h,[c],c.dtype,m),a.disposeData(f.dataId)}if(r){let d=new jx(e,l.shape,r,s),h=c,f=[{type:"float32",data:[0]}];c=a.runWebGPUProgram(d,[c],c.dtype,f),a.disposeData(h.dataId)}if(o!=null){let d=T.getUndoAxesPermutation(o),h=vr({inputs:{x:c},backend:a,attrs:{perm:d}});return a.disposeData(c.dataId),a.disposeData(l.dataId),h}return c}function Qoe(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=n;return D8(kd.Prod,r,a,s,i,o)}var ele={kernelName:oi,backendName:"webgpu",kernelFunc:Qoe};function tle(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=n;return D8(kd.Sum,r,a,s,i,o)}var ale={kernelName:li,backendName:"webgpu",kernelFunc:tle};function nle(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=n,l=r.shape.length===1,u=v.sizeFromShape(s.shape)>0,p=s.dtype,c=l?[r.shape[0]]:[r.shape[0],r.shape[1]],d=l?[i]:[r.shape[0],i],h=Cr({backend:a,attrs:{shape:d,value:0,dtype:p}}),f=new _8(c,u,o),m=[{type:"int32",data:[i]}],g=u?[r,s]:[r];return a.runWebGPUProgram(f,g,p,m,h)}var rle={kernelName:Ed,backendName:"webgpu",kernelFunc:nle},sle=class{constructor(e,t){this.variableNames=["x"],this.workgroupSize=[64,1,1],this.size=!0,this.uniforms="blockSize : i32,",this.outputShape=e,this.dispatchLayout=$e(this.outputShape),this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey=`depthToSpace_${t}`,this.dataFormat=t}getUserCode(){return`
|
|
${ke("index")} {
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let b = coords[0];
|
|
let h = ${this.getHeightCoordString()};
|
|
let w = ${this.getWidthCoordString()};
|
|
let d = ${this.getDepthCoordString()};
|
|
|
|
let in_h = h / uniforms.blockSize;
|
|
let offset_h = h % uniforms.blockSize;
|
|
let in_w = w / uniforms.blockSize;
|
|
let offset_w = w % uniforms.blockSize;
|
|
let offset_d = (offset_h * uniforms.blockSize + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
let in_d = d + offset_d;
|
|
|
|
let rlt = ${this.getInputSamplingString()};
|
|
setOutputAtIndex(index, rlt);
|
|
}
|
|
}`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?"uniforms.outShape[3]":"uniforms.outShape[1]"}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function ile(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{blockSize:s,dataFormat:i}=n,o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],u=i==="NHWC"?r.shape[2]:r.shape[3],p=i==="NHWC"?r.shape[3]:r.shape[1],c=l*s,d=u*s,h=p/(s*s),f=i==="NHWC"?[o,c,d,h]:[o,h,c,d],m=[{type:"int32",data:[s]}],g=new sle(f,i);return a.runWebGPUProgram(g,[r],r.dtype,m)}var ole={kernelName:di,backendName:"webgpu",kernelFunc:ile},lle=class{constructor(e,t,a,n=!1,r=null,s=!1){this.variableNames=["x","W"],this.uniforms="pad : vec2<i32>, inDims : vec2<i32>,",this.workgroupSize=[16,16,1],this.outputShape=e,this.dispatchLayout={x:[3],y:[2],z:[0,1]},this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize),n&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.addBias=n,this.activation=r,this.hasPreluActivation=s,this.filterHeight=t,this.filterWidth=a,this.shaderKey=`depthwiseNCHW_${this.activation}_${this.filterHeight}_${this.filterWidth}`}getUserCode(){let e=this.filterWidth*this.filterHeight,t=this.workgroupSize[0]*this.workgroupSize[1]*this.workgroupSize[2],a=this.workgroupSize[1]+this.filterHeight-1,n=this.workgroupSize[0]+this.filterWidth-1;return`
|
|
${Tr(this.activation,this.hasPreluActivation,!1,4)}
|
|
|
|
var<workgroup> mm_Asub : array<array<f32, ${n}>, ${a}>;
|
|
var<workgroup> mm_Bsub : array<array<f32, ${this.filterWidth}>, ${this.filterHeight}>;
|
|
fn readX(batch : i32, channel : i32, row : i32, col : i32) -> f32 {
|
|
var value = 0.0;
|
|
if (row >=0 && row < uniforms.inDims[0] && col >=0 && col < uniforms.inDims[1])
|
|
{
|
|
value = getX(batch, channel, row, col);
|
|
}
|
|
return value;
|
|
}
|
|
|
|
${ke()} {
|
|
let coords = getOutputCoords();
|
|
let batch = coords[0];
|
|
let xRCCorner = vec2<i32>(coords.zw) - uniforms.pad;
|
|
let channelMul = uniforms.wShape[3];
|
|
let d1 = coords[1] / channelMul;
|
|
let q = coords[1] % channelMul;
|
|
|
|
let inputRowStart = xRCCorner.x;
|
|
let inputColStart = xRCCorner.y;
|
|
|
|
let localRow = i32(localId.y);
|
|
let localCol = i32(localId.x);
|
|
|
|
// Load one tile of X into local memory.
|
|
for (var inputRow = localRow; inputRow < ${a}; inputRow = inputRow + ${this.workgroupSize[1]}) {
|
|
for (var inputCol = localCol; inputCol < ${n}; inputCol = inputCol + ${this.workgroupSize[0]}) {
|
|
let rowOffset = inputRow - localRow;
|
|
let colOffset = inputCol - localCol;
|
|
mm_Asub[inputRow][inputCol] = readX(batch, d1, inputRowStart + rowOffset, inputColStart + colOffset);
|
|
}
|
|
}
|
|
|
|
// Load one tile of W into local memory.
|
|
var wIndex = i32(localIndex);
|
|
${e<t?`if (wIndex < ${e})`:`for(; wIndex < ${e}; wIndex = wIndex + ${t})`}
|
|
|
|
{
|
|
let wRow = wIndex / ${this.filterWidth};
|
|
let wCol = wIndex % ${this.filterWidth};
|
|
mm_Bsub[wRow][wCol] = getW(wRow, wCol, d1, q);
|
|
}
|
|
|
|
workgroupBarrier();
|
|
|
|
var value = 0.0;
|
|
for (var wR = 0; wR < ${this.filterHeight}; wR = wR + 1) {
|
|
for (var wC = 0; wC < ${this.filterWidth}; wC = wC + 1) {
|
|
let xVal = mm_Asub[localRow + wR][localCol + wC];
|
|
let wVal = mm_Bsub[wR][wC];
|
|
value = fma(xVal, wVal, value);
|
|
}
|
|
}
|
|
${ko(this.addBias,this.activation)}
|
|
if (coordsInBounds4D(coords, uniforms.outShape)) {
|
|
setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value);
|
|
}
|
|
}
|
|
`}},z8=class{constructor(e,t=!1,a=null,n=!1){this.variableNames=["x","W"],this.uniforms="pad : vec2<i32>, inDims : vec2<i32>,",this.workgroupSize=[4,4,4],this.workPerThread=4,this.isVec4=!0,this.outputShape=e.outShape,this.dispatchLayout={x:[3],y:[2],z:[0,1]},this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize,[4,this.workPerThread,1]),v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=a,this.hasPreluActivation=n,this.shaderKey=`depthwiseVec4_${a}_${this.convInfo.filterHeight}_${this.convInfo.filterWidth}_${this.convInfo.strideHeight}_${this.convInfo.strideWidth}_${this.workPerThread}`}getUserCode(){let e=(this.workPerThread-1)*this.convInfo.strideWidth+this.convInfo.filterWidth,t=this.convInfo.strideHeight,a=this.convInfo.strideWidth;return`
|
|
${Tr(this.activation,this.hasPreluActivation,!0,4)}
|
|
fn readX(batch : i32, row : i32, col : i32, channel : i32) -> vec4<f32> {
|
|
var value = vec4<f32>(0.0);
|
|
if (col >=0 && col < uniforms.inDims[1]) {
|
|
value = getX(batch, row, col, channel);
|
|
}
|
|
return value;
|
|
}
|
|
|
|
${ke()} {
|
|
let batch = i32(globalId.z) / uniforms.outShape[1];
|
|
let r = i32(globalId.z) % uniforms.outShape[1];
|
|
let c = i32(globalId.y) * ${this.workPerThread};
|
|
let d1 = i32(globalId.x) * 4;
|
|
let xRCCorner = vec2<i32>(r, c) * vec2<i32>(${t}, ${a}) - uniforms.pad;
|
|
|
|
let xRCorner = xRCCorner.x;
|
|
let xCCorner = xRCCorner.y;
|
|
var xVals : array<vec4<f32>, ${e}>;
|
|
var dotProd : array<vec4<f32>, ${this.workPerThread}>;
|
|
for (var i = 0; i < ${this.workPerThread}; i++) {
|
|
dotProd[i] = vec4<f32>(0.0);
|
|
}
|
|
|
|
// Use constant instead of uniform can give better performance.
|
|
for (var wR = 0; wR < ${this.convInfo.filterHeight}; wR = wR + 1) {
|
|
let xR = xRCorner + wR;
|
|
if (xR >=0 && xR < uniforms.inDims[0]) {
|
|
for (var i = 0; i < ${e}; i++) {
|
|
xVals[i] = readX(batch, xR, xCCorner + i, d1);
|
|
}
|
|
for (var wC = 0; wC < ${this.convInfo.filterWidth}; wC = wC + 1) {
|
|
let wValue = getW(wR, wC, d1, 0);
|
|
for (var i = 0; i < ${this.workPerThread}; i++) {
|
|
dotProd[i] = fma(xVals[i * ${a} + wC], wValue, dotProd[i]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let coords = vec4<i32>(batch, r, c + i, d1);
|
|
if (coordsInBounds4D(coords, uniforms.outShape)) {
|
|
var value = dotProd[i];
|
|
${ko(this.addBias,this.activation)}
|
|
setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value);
|
|
}
|
|
}
|
|
}
|
|
`}},L8=class{constructor(e,t=!1,a=null,n=!1){this.variableNames=["x","W"],this.uniforms=`pad : vec2<i32>, inDims : vec2<i32>, filterHeight : i32,
|
|
filterWidth : i32, stride : vec2<i32>, dilation : vec2<i32>,`,this.workgroupSize=[256,1,1],this.size=!0,this.outputShape=e.outShape,this.dispatchLayout=$e(this.outputShape),this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize),this.isChannelsLast=e.dataFormat==="channelsLast",t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=a,this.hasPreluActivation=n,this.shaderKey=`depthwise_${this.activation}_${this.isChannelsLast}`}getUserCode(){let e=this.isChannelsLast?"getX(batch, xR, xC, d1);":"getX(batch, d1, xR, xC);";return`
|
|
${Tr(this.activation,this.hasPreluActivation,!1,4)}
|
|
|
|
${ke("index")} {
|
|
if (index < uniforms.size) {
|
|
let coords = getOutputCoords();
|
|
let batch = coords[0];
|
|
let xRCCorner = vec2<i32>(coords.${this.isChannelsLast?"yz":"zw"}) * uniforms.stride - uniforms.pad;
|
|
let d2 = coords[${this.isChannelsLast?3:1}];
|
|
let channelMul = uniforms.wShape[3];
|
|
let d1 = d2 / channelMul;
|
|
let q = d2 % channelMul;
|
|
|
|
let inputRowStart = xRCCorner.x;
|
|
let inputColStart = xRCCorner.y;
|
|
let inputRowEnd = inputRowStart + uniforms.filterHeight *
|
|
uniforms.dilation[0];
|
|
let inputColEnd = inputColStart + uniforms.filterWidth *
|
|
uniforms.dilation[1];
|
|
|
|
// Convolve x(?, ?, d1)|x(d1, ?, ?) with w(:, :, d1, q) to get
|
|
// y(yR, yC, d2)|y(d2, yR, yC). ? = to be determined. : = across all
|
|
// values in that axis. x(?, ?, d1) and y(yR, yC, d2) is for NHWC.
|
|
// x(d1, ?, ?) and y(d2, yR, yC) is for NCHW.
|
|
var value = 0.0;
|
|
|
|
// Extract if checking out of for loop for performance.
|
|
if (inputRowStart >= 0 && inputColStart >= 0 &&
|
|
inputRowEnd < uniforms.inDims[0] &&
|
|
inputColEnd < uniforms.inDims[1]) {
|
|
for (var wR = 0; wR < uniforms.filterHeight; wR = wR + 1) {
|
|
let xR = inputRowStart + wR * uniforms.dilation[0];
|
|
|
|
for (var wC = 0; wC < uniforms.filterWidth; wC = wC + 1) {
|
|
let xC = inputColStart + wC * uniforms.dilation[1];
|
|
|
|
let xVal = ${e};
|
|
let wVal = getW(wR, wC, d1, q);
|
|
value = value + xVal * wVal;
|
|
}
|
|
}
|
|
} else {
|
|
for (var wR = 0; wR < uniforms.filterHeight; wR = wR + 1) {
|
|
let xR = inputRowStart + wR * uniforms.dilation[0];
|
|
|
|
if (xR < 0 || xR >= uniforms.inDims[0]) {
|
|
continue;
|
|
}
|
|
|
|
for (var wC = 0; wC < uniforms.filterWidth; wC = wC + 1) {
|
|
let xC = inputColStart + wC * uniforms.dilation[1];
|
|
|
|
if (xC < 0 || xC >= uniforms.inDims[1]) {
|
|
continue;
|
|
}
|
|
|
|
let xVal = ${e};
|
|
let wVal = getW(wR, wC, d1, q);
|
|
value = value + xVal * wVal;
|
|
}
|
|
}
|
|
}
|
|
${ko(this.addBias,this.activation)}
|
|
setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value);
|
|
}
|
|
}
|
|
`}};function ule(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:p}=n,c=T.convertConv2DDataFormat(l),d=u;d==null&&(d=[1,1]);let h=T.computeConv2DInfo(r.shape,s.shape,i,d,o,p,!0,c),f=[{type:"int32",data:[h.padInfo.top,h.padInfo.left]},{type:"int32",data:[h.inHeight,h.inWidth]}],m=h.dataFormat==="channelsLast",g;return!m&&h.inHeight>16&&h.inWidth>16&&h.strideHeight===1&&h.strideWidth===1&&h.dilationWidth===1&&h.dilationHeight===1&&h.inChannels===h.outChannels?g=new lle(h.outShape,h.filterHeight,h.filterWidth):m&&h.outHeight>4&&h.outWidth>4&&h.strideWidth<=2&&h.inChannels===h.outChannels&&h.dilationHeight===1&&h.dilationWidth===1&&h.inChannels%4===0?g=new z8(h):(g=new L8(h),f.push({type:"int32",data:[h.filterHeight]},{type:"int32",data:[h.filterWidth]},{type:"int32",data:[h.strideHeight,h.strideWidth]},{type:"int32",data:[h.dilationHeight,h.dilationWidth]})),a.runWebGPUProgram(g,[r,s],r.dtype,f)}var dle={kernelName:pi,backendName:"webgpu",kernelFunc:ule},ple=class{constructor(e){this.variableNames=["x"],this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=[e,e],this.dispatchLayout=$e(this.outputShape),this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey="diag"}getUserCode(){return`
|
|
${ke("index")} {
|
|
if (index < uniforms.size) {
|
|
let coords = getOutputCoords();
|
|
let value = select(0.0, getX(coords[0]), coords[0] == coords[1]);
|
|
setOutputAtIndex(index, value);
|
|
}
|
|
}
|
|
`}};function cle(e){let{inputs:t,backend:a}=e,{x:n}=t,r=[...n.shape,...n.shape],s=v.sizeFromShape(n.shape),i=Ie({inputs:{x:n},backend:a,attrs:{shape:[s]}}),o=new ple(s),l=a.runWebGPUProgram(o,[i],i.dtype),u=Ie({inputs:{x:l},backend:a,attrs:{shape:r}});return a.disposeData(i.dataId),a.disposeData(l.dataId),u}var hle={kernelName:Rd,backendName:"webgpu",kernelFunc:cle},fle=class{constructor(e){this.variableNames=["x","w"],this.uniforms="filterDims: vec2<i32>, pad: vec2<i32>, stride: vec2<i32>, dilation: vec2<i32>",this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e.outShape,this.dispatchLayout=$e(this.outputShape),this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey="dilation2d"}getUserCode(){return`
|
|
${ke("index")} {
|
|
if (index < uniforms.size) {
|
|
let neg_infinity = -3.4e38;
|
|
let coords = getOutputCoords();
|
|
let batch = coords.x;
|
|
let d1 = coords.w;
|
|
let outTopLeftCorner = coords.yz * uniforms.stride - uniforms.pad;
|
|
let hBeg = outTopLeftCorner.x;
|
|
let wBeg = outTopLeftCorner.y;
|
|
|
|
var curVal = neg_infinity;
|
|
for (var h = 0; h < uniforms.filterDims[0]; h = h + 1) {
|
|
let hIn = hBeg + h * uniforms.dilation[0];
|
|
|
|
if (hIn >= 0 && hIn < uniforms.xShape[1]) {
|
|
for (var w = 0; w < uniforms.filterDims[1]; w = w + 1) {
|
|
let wIn = wBeg + w * uniforms.dilation[1];
|
|
|
|
if (wIn >= 0 && wIn < uniforms.xShape[2]) {
|
|
let val = getX(batch, hIn, wIn, d1) + getW(h, w, d1);
|
|
if (val > curVal) {
|
|
curVal = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
setOutputAtIndex(index, curVal);
|
|
}
|
|
}
|
|
`}};function mle(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=n,u=T.computeDilation2DInfo(r.shape,s.shape,i,o,"NHWC",l),p=[u.padInfo.top,u.padInfo.left],c=[{type:"int32",data:[u.filterHeight,u.filterWidth]},{type:"int32",data:[...p]},{type:"int32",data:[u.strideHeight,u.strideWidth]},{type:"int32",data:[u.dilationHeight,u.dilationWidth]}],d=new fle(u);return a.runWebGPUProgram(d,[r,s],r.dtype,c)}var gle={kernelName:Md,backendName:"webgpu",kernelFunc:mle},B8=Jt({opType:Pe.MUL,cpuKernelImpl:aie,supportsComplex:!0}),xle={kernelName:Li,backendName:"webgpu",kernelFunc:B8};function U3(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s,keepDims:i}=n;return Io(r,s,i,"sum",a)}var yle={kernelName:io,backendName:"webgpu",kernelFunc:U3};function Ale(e){let{inputs:t,backend:a,attrs:n}=e,{equation:r}=n,s=t,{allDims:i,summedDims:o,idDims:l}=T.decodeEinsumEquation(r,s.length);T.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:p}=T.getEinsumComputePath(o,l),c=p.length,d=null,h=i.length,f=[];for(let m=0;m<c;++m){for(let g of p[m]){let{permutationIndices:x,expandDims:y}=T.getEinsumPermutation(h,l[g]),A;T.isIdentityPermutation(x)?A=s[g]:(A=vr({inputs:{x:s[g]},backend:a,attrs:{perm:x}}),f.push(A));let b=A.shape.slice();for(let k=0;k<y.length;++k)b.splice(y[k],0,1);v.arraysEqual(A.shape,b)||(A=Ie({inputs:{x:A},backend:a,attrs:{shape:b}}),f.push(A)),d===null?d=A:(d=B8({inputs:{a:A,b:d},backend:a}),f.push(d))}m<c-1&&(u[m]>=0&&(d=U3({inputs:{x:d},backend:a,attrs:{axis:u[m]-(i.length-h),keepDims:!1}}),f.push(d)),h--)}for(let m of f)m!==d&&a.disposeData(m.dataId);return d}var ble={kernelName:$d,backendName:"webgpu",kernelFunc:Ale},vle=et({opType:le.ELU}),kle={kernelName:hi,backendName:"webgpu",kernelFunc:vle},wle=Jt({opType:Pe.EQUAL,dtype:"bool",cpuKernelImpl:Vse}),Ile={kernelName:fi,backendName:"webgpu",kernelFunc:wle},Sle=et({opType:le.ERF}),Tle={kernelName:Ml,backendName:"webgpu",kernelFunc:Sle},W8=et({opType:le.EXP,cpuKernelImpl:Use,dtype:"float32"}),Cle={kernelName:mi,backendName:"webgpu",kernelFunc:W8};function P2(e){let{inputs:t,attrs:a,backend:n}=e,{dim:r}=a,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=r;return r<0&&(v.assert(-(i+1)<=r,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+r+1),o.splice(l,0,1),Ie({inputs:{x:s},backend:n,attrs:{shape:o}})}var Nle={kernelName:$l,backendName:"webgpu",kernelFunc:P2},Ele=et({opType:le.EXPM1,cpuKernelImpl:Gse}),Rle={kernelName:_l,backendName:"webgpu",kernelFunc:Ele},Kx=class{constructor(e,t){this.variableNames=["real","imag"],this.outputShape=[],this.uniforms="exponentMultiplier : f32, denominator: f32,",this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.dispatchLayout=$e(this.outputShape),this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize),this.component=e,this.shaderKey=`fft_${e}`}getUserCode(){return`
|
|
fn unaryOpComplex(real: f32, expR: f32, imag: f32, expI: f32) -> f32 {
|
|
${this.component==="real"?"return real * expR - imag * expI;":"return real * expI + imag * expR;"}
|
|
}
|
|
|
|
fn mulMatDFT(batch: i32, index: i32) -> f32 {
|
|
let indexRatio = f32(index) / f32(uniforms.realShape[1]);
|
|
let exponentMultiplierTimesIndexRatio =
|
|
uniforms.exponentMultiplier * indexRatio;
|
|
|
|
var result = 0.0;
|
|
|
|
for (var i = 0; i < uniforms.realShape[1]; i = i + 1) {
|
|
// x = (-2|2 * PI / N) * index * i;
|
|
let x = exponentMultiplierTimesIndexRatio * f32(i);
|
|
let expR = cos(x);
|
|
let expI = sin(x);
|
|
let real = getReal(batch, i);
|
|
let imag = getImag(batch, i);
|
|
|
|
result = result +
|
|
unaryOpComplex(real, expR, imag, expI) / uniforms.denominator;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
${ke("index")} {
|
|
if (index < uniforms.size) {
|
|
let coords = getOutputCoords();
|
|
setOutputAtIndex(index, mulMatDFT(coords[0], coords[1]));
|
|
}
|
|
}
|
|
`}};function V8(e,t,a){let n=a.tensorMap.get(e.dataId),r=v.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=r/s,o=[],l=Ie({inputs:{x:e},backend:a,attrs:{shape:[i,s]}});o.push(l);let u=l.shape,p=new Kx("real",u),c=new Kx("imag",u),d=[{dataId:n.complexTensorInfos.real.dataId,dtype:n.complexTensorInfos.real.dtype,shape:u},{dataId:n.complexTensorInfos.imag.dataId,dtype:n.complexTensorInfos.imag.dtype,shape:u}],h=t?2*Math.PI:-2*Math.PI,f=t?u[1]:1,m=[{type:"float32",data:[h]},{type:"float32",data:[f]}],g=a.runWebGPUProgram(p,d,"float32",m);o.push(g);let x=a.runWebGPUProgram(c,d,"float32",m);o.push(x);let y=wo({inputs:{real:g,imag:x},backend:a});o.push(y);let A=Ie({inputs:{x:y},backend:a,attrs:{shape:e.shape}});return o.forEach(b=>a.disposeData(b.dataId)),A}function Mle(e){let{inputs:t,backend:a}=e,{input:n}=t;return V8(n,!1,a)}var $le={kernelName:_d,backendName:"webgpu",kernelFunc:Mle},_le=class{constructor(e){this.outputShape=[],this.variableNames=["x"],this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=$e(this.outputShape),this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey="flipLeftRight"}getUserCode(){return`
|
|
${ke("index")} {
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let coordX = uniforms.xShape[2] - coords[2] - 1;
|
|
let outputValue = getX(coords[0], coords[1], coordX, coords[3]);
|
|
setOutputAtIndex(index, outputValue);
|
|
}
|
|
}
|
|
`}},Ple={kernelName:gi,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{image:a}=e,n=t,r=new _le(a.shape);return n.runWebGPUProgram(r,[a],a.dtype)}},Fle=et({opType:le.FLOOR,cpuKernelImpl:Hse}),Ole={kernelName:xi,backendName:"webgpu",kernelFunc:Fle},Dle=Jt({opType:Pe.INT_DIV,dtype:"int32"}),zle={kernelName:yi,backendName:"webgpu",kernelFunc:Dle},Lle=class{constructor(e,t,a=!1){this.isFromPixels=!0,this.outputShape=[0],this.variableNames=[],this.workgroupSize=[256,1,1],this.outputShape=e,this.dispatchLayout=$e(this.outputShape),this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize,[t,1,1]),this.importVideo=a,this.shaderKey=`fromPixels_${this.importVideo}`}getUserCode(){let e=this.importVideo?"textureLoad(src, vec2<i32>(coords.yx));":"textureLoad(src, vec2<i32>(coords.yx), 0)";return`
|
|
@binding(1) @group(0) var src: ${this.importVideo?"texture_external":"texture_2d<f32>"};
|
|
${ke("index")} {
|
|
let flatIndex = index * uniforms.numChannels;
|
|
if (flatIndex < uniforms.size) {
|
|
let coords = getCoordsFromIndex(flatIndex);
|
|
let values = ${e};
|
|
for (var i = 0; i < uniforms.numChannels; i = i + 1) {
|
|
result[flatIndex + i] = i32(floor(255.0 * values[i]));
|
|
}
|
|
}
|
|
}
|
|
`}},Ble={kernelName:rd,backendName:"webgpu",kernelFunc:Wle},Zo,zm=B().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU"),gc=new Map;function Wle(e){let{inputs:t,backend:a,attrs:n}=e,{pixels:r}=t,{numChannels:s}=n;if(r==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let i=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,l=typeof HTMLCanvasElement!="undefined"&&r instanceof HTMLCanvasElement||typeof OffscreenCanvas!="undefined"&&r instanceof OffscreenCanvas,u=typeof ImageBitmap!="undefined"&&r instanceof ImageBitmap,[p,c]=i?[r.videoWidth,r.videoHeight]:[r.width,r.height],d=[c,p,s],h=!1,f=i||o;if(u||l||f){let y;if(h){let $=r;if(!gc.has($)||gc.get($).expired){let M={source:$};gc.set($,a.device.importExternalTexture(M))}y={width:p,height:c,format:null,usage:null,texture:gc.get($)}}else{if(f){let N=B().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU");(Zo==null||N!==zm)&&(zm=N,Zo=document.createElement("canvas").getContext("2d",{willReadFrequently:zm})),Zo.canvas.width=p,Zo.canvas.height=c,Zo.drawImage(r,0,0,p,c),r=Zo.canvas}let $=GPUTextureUsage.COPY_DST|GPUTextureUsage.RENDER_ATTACHMENT|GPUTextureUsage.TEXTURE_BINDING,M="rgba8unorm",I=a.textureManager.acquireTexture(d[1],d[0],M,$);a.queue.copyExternalImageToTexture({source:r},{texture:I},[d[1],d[0]]),y={width:p,height:c,format:M,usage:$,texture:I}}let A=v.sizeFromShape(d),b=v.computeStrides(d),k=new Lle(d,s,h),S=[{type:"uint32",data:[A]},{type:"uint32",data:[s]},{type:"uint32",data:[...b]}],C=a.makeTensorInfo([c,p],"int32"),E=a.tensorMap.get(C.dataId);E.resourceInfo=y;let _=a.runWebGPUProgram(k,[C],"int32",S);return a.disposeData(C.dataId),_}let m=r.data,g=m;if(s!=null&&s!==4){g=new Uint8Array(r.width*r.height*s);let y=m.length,A=0;for(let b=0;b<y;b++)b%4<s&&(g[A++]=m[b])}let x=a.makeTensorInfo(d,"int32",new Int32Array(g));return a.uploadToGPU(x.dataId),x}var Vle=class{constructor(e,t,a,n,r){this.uniforms="varianceEpsilon : f32,",this.workgroupSize=[128,1,1],this.size=!0,this.variableNames=["x","mean","variance"],T.assertAndGetBroadcastShape(e,t),T.assertAndGetBroadcastShape(e,a),this.outputShape=e,this.dispatchLayout=$e(this.outputShape),this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize),n!=null&&(T.assertAndGetBroadcastShape(e,n),this.variableNames.push("offset")),r!=null&&(T.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale")),this.offsetShape=n,this.scaleShape=r,this.shaderKey="batchNorm"}getUserCode(){let e="0.0";this.offsetShape!=null&&(e="getOffsetByOutputIndex(index)");let t="1.0";return this.scaleShape!=null&&(t="getScaleByOutputIndex(index)"),`
|
|
${ke("index")} {
|
|
if (index < uniforms.size)
|
|
{
|
|
let xValue = getXByOutputIndex(index);
|
|
let meanValue = getMeanByOutputIndex(index);
|
|
let varianValue = getVarianceByOutputIndex(index);
|
|
let offsetValue = ${e};
|
|
let scaleValue = ${t};
|
|
let inv = scaleValue * inverseSqrt(varianValue + f32(uniforms.varianceEpsilon));
|
|
setOutputAtIndex(index,dot(vec3<f32>(xValue, -meanValue, offsetValue), vec3<f32>(inv, inv, 1.0)));
|
|
}
|
|
}
|
|
`}},Ule={kernelName:Ai,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:a})=>{let{x:n,scale:r,offset:s,mean:i,variance:o}=e,{varianceEpsilon:l}=t,u=a,p=[n,i,o],c=null;s!=null&&(c=s.shape,p.push(s));let d=null;r!=null&&(d=r.shape,p.push(r));let h=new Vle(n.shape,i.shape,o.shape,c,d),f=[{type:"float32",data:[l]}];return u.runWebGPUProgram(h,p,n.dtype,f)}};function Gle(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:p,dilations:c,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=n,m=T.convertConv2DDataFormat(p),g=T.computeConv2DInfo(r.shape,s.shape,l,c,u,d,!1,m);return O8({x:r,filter:s,convInfo:g,backend:a,bias:i,preluActivationWeights:o,leakyreluAlpha:f,activation:h})}var Hle={kernelName:qr,backendName:"webgpu",kernelFunc:Gle};function jle(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:p,dimRoundingMode:c,activation:d,leakyreluAlpha:h}=n,f=p;f==null&&(f=[1,1]),v.assert(T.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let m=T.computeConv2DInfo(r.shape,s.shape,l,f,u,c,!0),g=[r,s],x=i!=null,y=o!=null;x&&g.push(i),y&&g.push(o);let A=[{type:"int32",data:[m.padInfo.top,m.padInfo.left]},{type:"int32",data:[m.inHeight,m.inWidth]}],b;return m.outHeight>4&&m.outWidth>4&&m.strideWidth<=2&&m.inChannels===m.outChannels&&m.dilationHeight===1&&m.dilationWidth===1&&m.inChannels%4===0?b=new z8(m,x,d,y):(b=new L8(m,x,d,y),A.push({type:"int32",data:[m.filterHeight]},{type:"int32",data:[m.filterWidth]},{type:"int32",data:[m.strideHeight,m.strideWidth]},{type:"int32",data:[m.dilationHeight,m.dilationWidth]})),d==="leakyrelu"&&(A.push({type:"float32",data:[h]}),b.uniforms+=" alpha : f32,"),a.runWebGPUProgram(b,g,"float32",A)}var qle={kernelName:Xr,backendName:"webgpu",kernelFunc:jle},Xle=class{constructor(e,t){this.variableNames=["A","indices"],this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.dispatchLayout=$e(this.outputShape),this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey=`gathernd_${e}`,this.sliceDim=e,this.uniforms=`sliceDim : i32, strides : ${ia(e)},`}getUserCode(){let e;return this.sliceDim>1?e="uniforms.strides[j]":e="uniforms.strides",`
|
|
${ke("index")} {
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
var flattenIndex = 0;
|
|
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
|
|
let indexTemp = i32(round(getIndices(coords[0], j)));
|
|
let strideNum = ${e};
|
|
flattenIndex = flattenIndex + indexTemp * strideNum;
|
|
}
|
|
|
|
setOutputAtIndex(index, getA(flattenIndex, coords[1]));
|
|
}
|
|
}
|
|
`}};function Kle(e){let{inputs:t,backend:a}=e,{params:n,indices:r}=t,s=r.shape,i=s[s.length-1],o=v.sizeFromShape(n.shape),[l,u,p,c]=T.prepareAndValidate(n,r),d=Ie({inputs:{x:r},backend:a,attrs:{shape:[u,i]}}),h=Ie({inputs:{x:n},backend:a,attrs:{shape:[v.sizeFromShape(n.shape)/p,p]}});if(a.shouldExecuteOnCPU([n,r])||n.dtype==="string"){let y=a.readSync(r.dataId),A=a.bufferSync(n),b=jse(y,A,n.dtype,u,i,p,c,n.shape,o);return a.makeTensorInfo(l,n.dtype,b.values)}let f=new Xle(i,[u,p]),m=[{type:"int32",data:[i]},{type:"int32",data:c}],g=a.runWebGPUProgram(f,[h,d],h.dtype,m),x=Ie({inputs:{x:g},backend:a,attrs:{shape:l}});return a.disposeData(d.dataId),a.disposeData(h.dataId),a.disposeData(g.dataId),x}var Zle={kernelName:bi,backendName:"webgpu",kernelFunc:Kle},Yle=class{constructor(e,t){this.variableNames=["A","indices"],this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e.slice(),this.aShape=e,this.outputShape=t,this.dispatchLayout=$e(this.outputShape),this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey="gather"}getUserCode(){let e=Jle(this.aShape);return`
|
|
${ke("index")} {
|
|
if (index < uniforms.size) {
|
|
let resRC = getCoordsFromIndex(index);
|
|
let indexZ = i32(getIndices(resRC.x, resRC.z));
|
|
let inBounds = select(0.0, 1.0, indexZ >= 0 && indexZ < uniforms.aShape[2]);
|
|
setOutputAtIndex(index, inBounds * getA(${e}));
|
|
}
|
|
}
|
|
`}};function Jle(e){let t=["resRC.x","resRC.y","resRC.z","resRC.w"],a=[];for(let n=0;n<e.length;n++)n===2?a.push("indexZ"):a.push(`${t[n]}`);return a.join()}function U8(e){let{inputs:t,backend:a,attrs:n}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=n,l=v.parseAxisParam(i,r.shape)[0],u=T.segment_util.collectGatherOpShapeInfo(r,s,l,o),p=v.sizeFromShape(s.shape),c=[],d=Ie({inputs:{x:r},backend:a,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),h=Ie({inputs:{x:s},backend:a,attrs:{shape:[u.batchSize,p/u.batchSize]}});c.push(d),c.push(h);let f=[u.batchSize,u.outerSize,p/u.batchSize,u.sliceSize];if(a.shouldExecuteOnCPU([r,s])){let y=a.tensorMap.get(h.dataId).values,A=_e(h.shape,h.dtype,y),b=a.tensorMap.get(d.dataId).values,k=_e(d.shape,d.dtype,b),S=qse(k,A,f);return c.forEach(C=>a.disposeData(C.dataId)),a.makeTensorInfo(u.outputShape,S.dtype,S.values)}let m=new Yle(d.shape,f),g=a.runWebGPUProgram(m,[d,h],d.dtype);c.push(g);let x=Ie({inputs:{x:g},backend:a,attrs:{shape:u.outputShape}});return c.forEach(y=>a.disposeData(y.dataId)),x}var Qle={kernelName:Fl,backendName:"webgpu",kernelFunc:U8},eue=Jt({opType:Pe.GREATER,cpuKernelImpl:Kse,dtype:"bool"}),tue={kernelName:vi,backendName:"webgpu",kernelFunc:eue},aue=Jt({opType:Pe.GREATER_EQUAL,dtype:"bool",cpuKernelImpl:Xse}),nue={kernelName:ki,backendName:"webgpu",kernelFunc:aue};function rue(e){let{inputs:t,backend:a}=e,{input:n}=t;return V8(n,!0,a)}var sue={kernelName:Pd,backendName:"webgpu",kernelFunc:rue},iue=et({opType:le.IS_FINITE,dtype:"bool"}),oue={kernelName:Ol,backendName:"webgpu",kernelFunc:iue},lue=et({opType:le.IS_INF,dtype:"bool"}),uue={kernelName:Dl,backendName:"webgpu",kernelFunc:lue},due=et({opType:le.IS_NAN,dtype:"bool"}),pue={kernelName:Ii,backendName:"webgpu",kernelFunc:due};function cue(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{alpha:s}=n,i=[{type:"float32",data:[s]}],o=new yu(r.shape,le.LEAKYRELU,"alpha : f32,");return a.runWebGPUProgram(o,[r],"float32",i)}var hue={kernelName:Si,backendName:"webgpu",kernelFunc:cue},fue=Jt({opType:Pe.LESS,dtype:"bool",cpuKernelImpl:Yse}),mue={kernelName:Ti,backendName:"webgpu",kernelFunc:fue},gue=Jt({opType:Pe.LESS_EQUAL,dtype:"bool",cpuKernelImpl:Zse}),xue={kernelName:Ci,backendName:"webgpu",kernelFunc:gue},yue=class{constructor(e){this.variableNames=[],this.outputShape=[],this.uniforms="start : f32, step : f32,",this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=[e],this.dispatchLayout=$e(this.outputShape),this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey="linSpace"}getUserCode(){return`
|
|
${ke("index")} {
|
|
if (index < uniforms.size) {
|
|
setOutputAtIndex(index, uniforms.start + f32(index) * uniforms.step);
|
|
}
|
|
}
|
|
`}};function Aue(e){let{backend:t,attrs:a}=e,{start:n,stop:r,num:s}=a,i=(r-n)/(s-1),o=new yue(s),l=[{type:"float32",data:[n]},{type:"float32",data:[i]}];return t.runWebGPUProgram(o,[],"float32",l)}var bue={kernelName:Od,backendName:"webgpu",kernelFunc:Aue},vue=et({opType:le.LOG,cpuKernelImpl:Jse}),kue={kernelName:Ni,backendName:"webgpu",kernelFunc:vue},wue=et({opType:le.LOG1P}),Iue={kernelName:zl,backendName:"webgpu",kernelFunc:wue},Sue=Jt({opType:Pe.LOGICAL_AND,dtype:"bool"}),Tue={kernelName:Ei,backendName:"webgpu",kernelFunc:Sue},Cue=et({opType:le.LOGICAL_NOT}),Nue={kernelName:Ri,backendName:"webgpu",kernelFunc:Cue},Eue=Jt({opType:Pe.LOGICAL_OR}),Rue={kernelName:Mi,backendName:"webgpu",kernelFunc:Eue},G8=`
|
|
var powValue = 0.0;
|
|
let basis = uniforms.bias + uniforms.alpha * sum;
|
|
if (uniforms.beta == 0.5) {
|
|
powValue = inverseSqrt(basis);
|
|
} else if (uniforms.beta == 1.0) {
|
|
powValue = 1.0 / basis;
|
|
} else {
|
|
powValue = exp(log(basis) * (-uniforms.beta));
|
|
}
|
|
`,Mue=class{constructor(e){this.outputShape=[],this.variableNames=["x"],this.uniforms="radius : i32, bias : f32, alpha : f32, beta : f32,",this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=$e(this.outputShape),this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey="lrn"}getUserCode(){return`
|
|
${ke("index")} {
|
|
if (index < uniforms.size) {
|
|
let coords = getOutputCoords();
|
|
let b = coords[0];
|
|
let r = coords[1];
|
|
let c = coords[2];
|
|
let d = coords[3];
|
|
|
|
let x = getX(b, r, c, d);
|
|
var sum = 0.0;
|
|
for (var i = -uniforms.radius; i <= uniforms.radius; i = i + 1) {
|
|
let idx = d + i;
|
|
if (idx >= 0 && idx < uniforms.xShape[3]) {
|
|
let z = getX(b, r, c, idx);
|
|
sum = sum + z * z;
|
|
}
|
|
}
|
|
${G8}
|
|
|
|
setOutputAtIndex(index, x * powValue);
|
|
}
|
|
}
|
|
`}},$ue=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.uniforms="radius : i32, bias : f32, alpha : f32, beta : f32,",this.workgroupSize=[256,1,1],this.maxAllowRadius=16,v.assert(t<=this.maxAllowRadius,()=>`Radius must be less than or equal to ${this.maxAllowRadius}, current radius is ${t}`),this.outputShape=e,this.elementsPerWorkgroup=this.workgroupSize[0]-2*this.maxAllowRadius,this.dispatchLayout={x:[3],y:[2],z:[0,1]},this.dispatch=we(this.dispatchLayout,this.outputShape,[this.elementsPerWorkgroup,this.workgroupSize[1],this.workgroupSize[2]]),this.shaderKey="lrn_shared"}getUserCode(){return`
|
|
var <workgroup>lrnSub: array<f32, ${this.workgroupSize[0]}>;
|
|
const elementsPerWorkgroup = ${this.elementsPerWorkgroup};
|
|
const maxAllowRadius = ${this.maxAllowRadius};
|
|
|
|
${ke()} {
|
|
let localDepth = i32(localId.x);
|
|
let workgroupDepth = i32(workgroupId.x) * elementsPerWorkgroup;
|
|
let xDepth = workgroupDepth + localDepth - maxAllowRadius;
|
|
let b = i32(globalId.z) / uniforms.xShape[1];
|
|
let r = i32(globalId.z) - b * uniforms.xShape[1];
|
|
let c = i32(globalId.y);
|
|
let d = workgroupDepth + localDepth;
|
|
|
|
var x = 0.0;
|
|
if (xDepth >= 0 && xDepth < uniforms.xShape[3]) {
|
|
x = getX(b, r, c, xDepth);
|
|
}
|
|
lrnSub[localDepth] = x;
|
|
workgroupBarrier();
|
|
|
|
if (localDepth < elementsPerWorkgroup && d < uniforms.outShape[3]) {
|
|
var sum = 0.0;
|
|
let index = localDepth + maxAllowRadius;
|
|
for (var i = -uniforms.radius; i <= uniforms.radius; i = i + 1) {
|
|
let z = lrnSub[index + i];
|
|
sum = sum + z * z;
|
|
}
|
|
${G8}
|
|
|
|
setOutputAtCoords(b, r, c, d, lrnSub[index] * powValue);
|
|
}
|
|
} `}};function _ue(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n,u;s>16?u=new Mue(r.shape):u=new $ue(r.shape,s);let p=[{type:"int32",data:[s]},{type:"float32",data:[i]},{type:"float32",data:[o]},{type:"float32",data:[l]}];return a.runWebGPUProgram(u,[r],r.dtype,p)}var Pue={kernelName:Dd,backendName:"webgpu",kernelFunc:_ue},Fue=Jt({opType:Pe.MAX,cpuKernelImpl:eie}),Oue={kernelName:_i,backendName:"webgpu",kernelFunc:Fue};function Due(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n,u=1,p=T.computePool2DInfo(r.shape,s,i,u,o,l);return $8(r,p,"max",a)}var zue={kernelName:Pi,backendName:"webgpu",kernelFunc:Due};function Lue(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s,keepDims:i}=n;return Io(r,s,i,"min",a)}var Bue={kernelName:Oi,backendName:"webgpu",kernelFunc:Lue},Wue=Jt({opType:Pe.MIN,cpuKernelImpl:tie}),Vue={kernelName:Di,backendName:"webgpu",kernelFunc:Wue},Uue=class{constructor(e,t,a){this.uniforms="",this.variableNames=["x"],this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=t.map((n,r)=>n[0]+e[r]+n[1]),this.dispatchLayout=$e(this.outputShape),this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize),this.xShape=e,t.map((n,r)=>{this.uniforms+=` pad${r} : vec2<i32>,`}),this.offset=a==="reflect"?0:1,this.shaderKey=`mirrorPad_${a}`}getUserCode(){let e=this.xShape.length,t=this.xShape.map((l,u)=>`uniforms.pad${u}[0]`).join(","),a=this.xShape.map((l,u)=>`uniforms.pad${u}[0] + uniforms.xShape${e>1?`[${u}]`:""}`).join(","),n=e===1?"start":"start[i]",r=e===1?"end":"end[i]",s=e===1?"outC":"outC[i]",i=ia(e),o=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return`
|
|
${ke("index")} {
|
|
if (index < uniforms.size) {
|
|
let start = ${i}(${t});
|
|
let end = ${i}(${a});
|
|
var outC = getCoordsFromIndex(index);
|
|
for (var i = 0; i < ${e}; i = i + 1) {
|
|
if (${s} < ${n}) {
|
|
${s} = ${n} * 2 - ${s} - ${this.offset};
|
|
} else if(${s} >= ${r}) {
|
|
${s} = (${r} - 1) * 2 - ${s} + ${this.offset};
|
|
}
|
|
}
|
|
let coords = outC - start;
|
|
setOutputAtIndex(index, getX(${o}));
|
|
}
|
|
}
|
|
`}},Gue={kernelName:zi,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:a})=>{let{x:n}=e,{paddings:r,mode:s}=t,i=a,o=r.map(u=>({type:"int32",data:[u[0],u[1]]})),l=new Uue(n.shape,r,s);return i.runWebGPUProgram(l,[n],n.dtype,o)}},Hue=Jt({opType:Pe.MOD}),jue={kernelName:Ll,backendName:"webgpu",kernelFunc:Hue};function que(e){let{inputs:t,backend:a}=e,{x:n}=t;if(a.shouldExecuteOnCPU([n])){let s=a.tensorMap.get(n.dataId),[i,o]=nie(s.values,n.shape,n.dtype);return a.makeTensorInfo(o,n.dtype,i)}let r=new yu(n.shape,le.NEG);return a.runWebGPUProgram(r,[n],n.dtype)}var Xue={kernelName:Bl,backendName:"webgpu",kernelFunc:que};function Kue(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:a,attrs:n}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=n,u=a.readSync(r.dataId),p=a.readSync(s.dataId),{selectedIndices:c}=Tn.nonMaxSuppressionV3Impl(u,p,i,o,l);return a.makeTensorInfo([c.length],"int32",new Int32Array(c))}var Zue={kernelName:Wi,backendName:"webgpu",kernelFunc:Kue};function Yue(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:a,attrs:n}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=n,p=a.readSync(r.dataId),c=a.readSync(s.dataId),d=i,h=o,f=l,m=u,{selectedIndices:g,selectedScores:x}=Tn.nonMaxSuppressionV5Impl(p,c,d,h,f,m);return[a.makeTensorInfo([g.length],"int32",new Int32Array(g)),a.makeTensorInfo([x.length],"float32",new Float32Array(x))]}var Jue={kernelName:Vi,backendName:"webgpu",kernelFunc:Yue},Que=class{constructor(e,t){this.variableNames=["x"],this.uniforms="onValue : f32, offValue : f32,",this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=[e,t],this.dispatchLayout=$e(this.outputShape),this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey="onehot"}getUserCode(){return`
|
|
${ke("index")} {
|
|
if(index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
setOutputAtIndex(index, mix(uniforms.offValue, uniforms.onValue,
|
|
f32(i32(round(getX(coords.x))) == coords.y)));
|
|
}
|
|
}
|
|
`}};function ede(e){let{inputs:t,backend:a,attrs:n}=e,{indices:r}=t,{dtype:s,depth:i,onValue:o,offValue:l}=n,u=v.sizeFromShape(r.shape),p=new Que(u,i),c=Ie({inputs:{x:r},backend:a,attrs:{shape:[u]}}),d=[{type:"float32",data:[o]},{type:"float32",data:[l]}],h=a.runWebGPUProgram(p,[c],s,d);a.disposeData(c.dataId);let f=[...r.shape,i],m=Ie({inputs:{x:h},backend:a,attrs:{shape:f}});return a.disposeData(h.dataId),m}var tde={kernelName:Ui,backendName:"webgpu",kernelFunc:ede};function Hc(e){let{inputs:t,backend:a}=e,{x:n}=t;if(n.dtype==="complex64"){let r=yp({inputs:{input:n},backend:a}),s=Hc({inputs:{x:r},backend:a}),i=Vh({inputs:{input:n},backend:a}),o=Hc({inputs:{x:i},backend:a}),l=wo({inputs:{real:s,imag:o},backend:a});return a.disposeData(r.dataId),a.disposeData(s.dataId),a.disposeData(i.dataId),a.disposeData(o.dataId),l}else return Cr({attrs:{shape:n.shape,dtype:n.dtype,value:n.dtype==="string"?"":0},backend:a})}var ade={kernelName:nu,backendName:"webgpu",kernelFunc:Hc};function H8(e){let{inputs:t,backend:a}=e,{x:n}=t;if(n.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(n.dtype==="complex64"){let r=yp({inputs:{input:n},backend:a}),s=H8({inputs:{x:r},backend:a}),i=Vh({inputs:{input:n},backend:a}),o=Hc({inputs:{x:i},backend:a}),l=wo({inputs:{real:s,imag:o},backend:a});return a.disposeData(r.dataId),a.disposeData(s.dataId),a.disposeData(i.dataId),a.disposeData(o.dataId),l}else return Cr({attrs:{shape:n.shape,dtype:n.dtype,value:1},backend:a})}var nde={kernelName:Vl,backendName:"webgpu",kernelFunc:H8};function rde(e){let{inputs:t,backend:a,attrs:n}=e,{axis:r}=n;if(t.length===1)return P2({inputs:{input:t[0]},backend:a,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(p=>{v.assertShapesMatch(s,p.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===p.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(p=>{let c=P2({inputs:{input:p},backend:a,attrs:{dim:r}});return o.push(c),c}),u=F8({inputs:l,backend:a,attrs:{axis:r}});return o.forEach(p=>a.disposeData(p.dataId)),u}var sde={kernelName:Ul,backendName:"webgpu",kernelFunc:rde},ide=class{constructor(e,t){this.variableNames=["x"],this.uniforms="constantValue : f32,",this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=t.map((a,n)=>a[0]+e[n]+a[1]),this.dispatchLayout=$e(this.outputShape),this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize),t.map((a,n)=>{this.uniforms+=` pad${n} : vec2<i32>,`}),this.xShape=e,this.shaderKey="pad"}getUserCode(){let e=this.xShape.length,t=ia(e),a=this.xShape.map((u,p)=>`uniforms.pad${p}[0]`).join(","),n=this.xShape.map((u,p)=>`uniforms.pad${p}[0] + uniforms.xShape${e>1?`[${p}]`:""}`).join(","),r=e>1?`${t}(${a})`:`${a}`,s=e>1?`${t}(${n})`:`${n}`,i=e>1?"any(outC < start)":"outC < start",o=e>1?"any(outC >= end)":"outC >= end",l=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return`
|
|
${ke("index")} {
|
|
if (index < uniforms.size) {
|
|
let start = ${r};
|
|
let end = ${s};
|
|
let outC = getCoordsFromIndex(index);
|
|
|
|
if (${i} || ${o}) {
|
|
setOutputAtIndex(index, uniforms.constantValue);
|
|
} else {
|
|
let coords = outC - start;
|
|
setOutputAtIndex(index, getX(${l}));
|
|
}
|
|
}
|
|
}
|
|
`}},j8=e=>{let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{paddings:s,constantValue:i}=n;if(s.every(u=>v.arraysEqual(u,[0,0])))return Ya({inputs:{x:r},backend:a});if(v.sizeFromShape(r.shape)===0){let u=s.map((p,c)=>p[0]+r.shape[c]+p[1]);return Cr({backend:a,attrs:{shape:u,value:i,dtype:r.dtype}})}let o=[{type:"float32",data:[i]}];s.map(u=>o.push({type:"int32",data:[u[0],u[1]]}));let l=new ide(r.shape,s);return a.runWebGPUProgram(l,[r],r.dtype,o)},ode={kernelName:Gi,backendName:"webgpu",kernelFunc:j8},lde=Jt({opType:Pe.POW}),ude={kernelName:Hi,backendName:"webgpu",kernelFunc:lde};function dde(e){let{inputs:t,backend:a}=e,{x:n,alpha:r}=t,s=new M2(Pe.PRELU,n.shape,r.shape);return a.runWebGPUProgram(s,[n,r],"float32")}var pde={kernelName:ji,backendName:"webgpu",kernelFunc:dde};function cde(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{axis:s,keepDims:i}=n;return Io(r,s,i,"prod",a)}var hde={kernelName:qi,backendName:"webgpu",kernelFunc:cde},fde=e=>{let{backend:t,attrs:a}=e,{start:n,stop:r,step:s,dtype:i}=a,o=iie(n,r,s,i);return t.makeTensorInfo([o.length],i,o)},mde={kernelName:Gl,backendName:"webgpu",kernelFunc:fde},q8=Jt({opType:Pe.DIV}),gde={kernelName:ci,backendName:"webgpu",kernelFunc:q8},xde=et({opType:le.RECIPROCAL}),yde={kernelName:Xi,backendName:"webgpu",kernelFunc:xde},Ade=et({opType:le.RELU}),bde={kernelName:Ki,backendName:"webgpu",kernelFunc:Ade},vde=et({opType:le.RELU6}),kde={kernelName:Ji,backendName:"webgpu",kernelFunc:vde},wde=class{constructor(e,t,a){this.variableNames=["x"],this.uniforms="adjustHeightWidth : vec2<f32>, halfPixelCenters : f32,",this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=[e[0],t,a,e[3]],this.dispatchLayout=$e(this.outputShape),this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey="resizeBilinear"}getUserCode(){return`
|
|
${ke("index")} {
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let b = coords[0];
|
|
let d = coords[3];
|
|
let rc = coords.yz;
|
|
|
|
let effectiveInSize = vec2<f32>(
|
|
f32(uniforms.xShape.y) - uniforms.adjustHeightWidth[0],
|
|
f32(uniforms.xShape.z) - uniforms.adjustHeightWidth[1]);
|
|
|
|
let effectiveOutSize = vec2<f32>(
|
|
f32(uniforms.outShape.y) - uniforms.adjustHeightWidth[0],
|
|
f32(uniforms.outShape.z) - uniforms.adjustHeightWidth[1]);
|
|
|
|
let effectiveInputOverOutputRatioRC =
|
|
effectiveInSize / effectiveOutSize;
|
|
|
|
// Fractional source index
|
|
let sourceFracIndexRC =
|
|
(vec2<f32>(rc) + vec2<f32>(uniforms.halfPixelCenters)) *
|
|
effectiveInputOverOutputRatioRC - vec2<f32>(uniforms.halfPixelCenters);
|
|
|
|
// Compute the four integer indices.
|
|
let sourceFloorRC = vec2<i32>(sourceFracIndexRC);
|
|
let sourceCeilRC = vec2<i32>(
|
|
min(vec2<f32>(uniforms.xShape.yz) - vec2<f32>(1.0), ceil(sourceFracIndexRC)));
|
|
|
|
let topLeft = getX(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
let bottomLeft = getX(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
let topRight = getX(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
let bottomRight = getX(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
let fracRC = sourceFracIndexRC - vec2<f32>(sourceFloorRC);
|
|
|
|
let top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
let bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
let newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutputAtIndex(index, newValue);
|
|
}
|
|
}
|
|
`}};function Ide(e){let{inputs:t,backend:a,attrs:n}=e,{images:r}=t,{alignCorners:s,size:i,halfPixelCenters:o}=n,[l,u]=i,p=s&&l>1?1:0,c=s&&u>1?1:0,d=[{type:"float32",data:[p,c]},{type:"float32",data:[o?.5:0]}],h=new wde(r.shape,l,u);return a.runWebGPUProgram(h,[r],"float32",d)}var Sde={kernelName:Yi,backendName:"webgpu",kernelFunc:Ide},Tde=class{constructor(e,t,a,n){this.variableNames=["x"],this.uniforms="adjustHeightWidth : vec2<f32>, roundBase : f32,",this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=[e[0],t,a,e[3]],this.dispatchLayout=$e(this.outputShape),this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize),this.halfPixelCenters=n,this.shaderKey=`resizeNearest_${n}`}getUserCode(){let e;return this.halfPixelCenters?e="max((vec2<f32>(rc) + vec2<f32>(0.5)) * effectiveInputOverOutputRatioRC, vec2<f32>(0.0))":e="vec2<f32>(rc) * effectiveInputOverOutputRatioRC",`
|
|
${ke("index")} {
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let b = coords[0];
|
|
let d = coords[3];
|
|
let rc = coords.yz;
|
|
|
|
let effectiveInSize = vec2<f32>(
|
|
f32(uniforms.xShape.y) - uniforms.adjustHeightWidth[0],
|
|
f32(uniforms.xShape.z) - uniforms.adjustHeightWidth[1]);
|
|
|
|
let effectiveOutSize = vec2<f32>(
|
|
f32(uniforms.outShape.y) - uniforms.adjustHeightWidth[0],
|
|
f32(uniforms.outShape.z) - uniforms.adjustHeightWidth[1]);
|
|
|
|
let effectiveInputOverOutputRatioRC =
|
|
effectiveInSize / effectiveOutSize;
|
|
|
|
// Fractional source index
|
|
let sourceFracIndexRC = ${e};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
let inputShapeRC = vec2<f32>(f32(uniforms.xShape.y), f32(uniforms.xShape.z));
|
|
let sourceNearestRC = vec2<i32>(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + uniforms.roundBase)));
|
|
let newValue = getX(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutputAtIndex(index, newValue);
|
|
}
|
|
}
|
|
`}};function Cde(e){let{inputs:t,backend:a,attrs:n}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=n,[l,u]=o,p=s&&l>1?1:0,c=s&&u>1?1:0,d=[{type:"float32",data:[p,c]},{type:"float32",data:[s?.5:0]}],h=new Tde(r.shape,l,u,i);return a.runWebGPUProgram(h,[r],r.dtype,d)}var Nde={kernelName:Zi,backendName:"webgpu",kernelFunc:Cde},Ede=class{constructor(e){this.variableNames=["x"],this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=$e(this.outputShape),this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize),this.uniforms=" axis : vec4<i32>,",this.shaderKey="reverse"}getUserCode(){return`
|
|
|
|
// Using uniform variables as judging conditions, so the function has
|
|
// coherent execution within all threads.
|
|
fn getReverseCoords(coords : vec4<i32>) -> vec4<i32> {
|
|
var reverseCoords = coords;
|
|
if (uniforms.axis[0] == 1) {
|
|
reverseCoords[0] = uniforms.xShape[0] - coords[0] - 1;
|
|
}
|
|
if (uniforms.axis[1] == 1) {
|
|
reverseCoords[1] = uniforms.xShape[1] - coords[1] - 1;
|
|
}
|
|
if (uniforms.axis[2] == 1) {
|
|
reverseCoords[2] = uniforms.xShape[2] - coords[2] - 1;
|
|
}
|
|
if (uniforms.axis[3] == 1) {
|
|
reverseCoords[3] = uniforms.xShape[3] - coords[3] - 1;
|
|
}
|
|
|
|
return reverseCoords;
|
|
}
|
|
|
|
${ke("index")} {
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let reverseCoords = getReverseCoords(coords);
|
|
setOutputAtIndex(index, getX(reverseCoords[0],
|
|
reverseCoords[1], reverseCoords[2], reverseCoords[3]));
|
|
}
|
|
}
|
|
`}};function Rde(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{dims:s}=n,i=r.shape.length;if(i===0)return Ya({inputs:{x:r},backend:a});let o=r.shape,l=[1,1,1,1];o.forEach((g,x)=>{let y=x+4-i;l[y]=g});let u=v.parseAxisParam(s,r.shape),p=[0,0,0,0];u.forEach(g=>{let x=g+4-i;p[x]=1});let c=[{type:"int32",data:p}],d=Ie({inputs:{x:r},backend:a,attrs:{shape:l}}),h=new Ede(l),f=a.runWebGPUProgram(h,[d],d.dtype,c);a.disposeData(d.dataId);let m=Ie({inputs:{x:f},backend:a,attrs:{shape:o}});return a.disposeData(f.dataId),m}var Mde={kernelName:Qi,backendName:"webgpu",kernelFunc:Rde},$de=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=$e(this.outputShape),this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize),this.uniforms=`centerX : f32, centerY : f32, sinRadians : f32,
|
|
cosRadians : f32,`,this.shaderKey="rotate",this.outputShape=e,typeof t=="number"?(this.uniforms+=" fillValue : f32,",this.fillSnippet="var outputValue = uniforms.fillValue;",this.shaderKey+="_float"):(this.uniforms+=" fillValue : vec3<f32>,",this.fillSnippet="var outputValue = uniforms.fillValue[coords[3]];",this.shaderKey+="_vec3")}getUserCode(){return`
|
|
${ke("index")} {
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let coordXFloat = (f32(coords[2]) - uniforms.centerX) *
|
|
uniforms.cosRadians - (f32(coords[1]) - uniforms.centerY) *
|
|
uniforms.sinRadians;
|
|
let coordYFloat = (f32(coords[2]) - uniforms.centerX) *
|
|
uniforms.sinRadians + (f32(coords[1]) - uniforms.centerY) *
|
|
uniforms.cosRadians;
|
|
let coordX = i32(round(coordXFloat + uniforms.centerX));
|
|
let coordY = i32(round(coordYFloat + uniforms.centerY));
|
|
${this.fillSnippet}
|
|
if(coordX >= 0 && coordX < uniforms.xShape[2] && coordY >= 0 &&
|
|
coordY < uniforms.xShape[1]) {
|
|
outputValue = getX(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutputAtIndex(index, outputValue);
|
|
}
|
|
}
|
|
`}},_de={kernelName:go,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:a})=>{let{image:n}=e,{radians:r,fillValue:s,center:i}=t,o=a,l=new $de(n.shape,s),[u,p]=T.getImageCenter(i,n.shape[1],n.shape[2]),c=[{type:"float32",data:[u]},{type:"float32",data:[p]},{type:"float32",data:[Math.sin(r)]},{type:"float32",data:[Math.cos(r)]}];return typeof s=="number"?c.push({type:"float32",data:[Number.parseFloat(s.toFixed(2))]}):c.push({type:"float32",data:s}),o.runWebGPUProgram(l,[n],n.dtype,c)}},Pde=et({opType:le.ROUND}),Fde={kernelName:eo,backendName:"webgpu",kernelFunc:Pde},Ode=et({opType:le.RSQRT,cpuKernelImpl:oie}),Dde={kernelName:to,backendName:"webgpu",kernelFunc:Ode},Sc=class{constructor(e,t,a,n,r,s,i,o=!0){this.variableNames=["updates","indices"],this.workgroupSize=[64,1,1],this.atomic=!0,this.outputShape=s,this.type=i,this.sumDupeIndices=o,this.dispatchLayout=$e(e),this.dispatch=we(this.dispatchLayout,e,this.workgroupSize),this.sliceDimGreaterThanOne=t>1,this.shaderKey=`scatter_${a}_${n}_${this.sliceDimGreaterThanOne}_${i}_${o}`;let l=ia(r.length);this.uniforms=`sliceDim : i32, strides: ${l}, updatesSize: i32,`,this.updatesRank=n,this.indicesRank=a}getUserCode(){let e="";this.indicesRank===1?e="coords[0]":this.indicesRank===2&&(e="coords[0], j");let t=`getIndices(${e})`,a=this.sliceDimGreaterThanOne?"uniforms.strides[j]":"uniforms.strides",n="",r="";this.dispatchLayout.x.length===1?(n="flattenedIndex",r=`
|
|
fn getUpdatesCoordsFromFlatIndex(index : i32) -> i32 {
|
|
return index;
|
|
}
|
|
`):this.dispatchLayout.x.length===2&&(n="vec2<i32>(flattenedIndex, coords[1])",r=`
|
|
fn getUpdatesCoordsFromFlatIndex(index : i32) -> vec2<i32> {
|
|
// N.B. |updates| could be a scalar tensor, conceptually representing a
|
|
// 2D tensor with all values equal to that. By design, its size must be
|
|
// the same as |outShape[1]| in one dimension, and |indicesShape[0]|
|
|
// gives the other.
|
|
let sliceSize = uniforms.outShape[1];
|
|
let d0 = index / sliceSize;
|
|
let d1 = index - d0 * sliceSize;
|
|
return vec2<i32>(d0, d1);
|
|
}
|
|
`);let s=`getUpdates(${Array.from({length:this.updatesRank},(i,o)=>`coords[${o}]`).join(", ")})`;return`
|
|
${r}
|
|
${ke("index")} {
|
|
if (index < uniforms.updatesSize) {
|
|
let coords = getUpdatesCoordsFromFlatIndex(index);
|
|
var flattenedIndex = 0;
|
|
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
|
|
let indexInside = i32(round(${t}));
|
|
flattenedIndex = flattenedIndex + indexInside * ${a};
|
|
}
|
|
let updateValue =
|
|
${ad(this.type,!1)}(${s});
|
|
let flatIndex = getOutputIndexFromCoords(${n});
|
|
|
|
${this.sumDupeIndices?O3("&result[flatIndex]","updateValue",this.type):"atomicStore(&result[flatIndex], bitcast<i32>(updateValue));"}
|
|
}
|
|
}`}};function zde(e){let{inputs:t,backend:a,attrs:n}=e,{indices:r,updates:s}=t,{shape:i}=n,{sliceRank:o,numUpdates:l,sliceSize:u,strides:p,outputSize:c}=T.calculateShapes(s,r,i),d=[c/u,u];if(c===0)return a.makeTensorInfo(i,r.dtype);let h=Ie({inputs:{x:r},backend:a,attrs:{shape:[l,o]}}),f=Ie({inputs:{x:s},backend:a,attrs:{shape:[l,u]}}),m=f.dtype,g=Cr({backend:a,attrs:{shape:d,value:0,dtype:m}}),x=v.sizeFromShape(f.shape),y=[{type:"int32",data:[o]},{type:"int32",data:p},{type:"int32",data:[x]}],A=new Sc(f.shape,o,h.shape.length,f.shape.length,p,d,m),b=a.runWebGPUProgram(A,[f,h],m,y,g),k=Ie({inputs:{x:b},backend:a,attrs:{shape:i}});return a.disposeData(h.dataId),a.disposeData(f.dataId),a.disposeData(b.dataId),k}var Lde={kernelName:ao,backendName:"webgpu",kernelFunc:zde},Bde=class{constructor(e,t){this.outputShape=[],this.variableNames=["sortedSequence","values"],this.uniforms="numInputs : i32,",this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=$e(this.outputShape),this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize),this.side=t,this.shaderKey=`search_sorted_${t}`}getUserCode(){return`
|
|
fn findBound(batch: i32, value: f32) -> i32 {
|
|
var left = i32(0);
|
|
var right = uniforms.numInputs;
|
|
while (left < right) {
|
|
var mid = (left + right) / 2;
|
|
if (getSortedSequence(batch, mid) ${this.side==="left"?"<":"<="} value) {
|
|
left = mid + 1;
|
|
} else {
|
|
right = mid;
|
|
}
|
|
}
|
|
return right;
|
|
}
|
|
|
|
${ke("index")} {
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let value = getValuesByOutputIndex(index);
|
|
setOutputAtIndexI32(index, findBound(coords[0], value));
|
|
}
|
|
}
|
|
`}};function Wde(e){let{inputs:t,backend:a,attrs:n}=e,{sortedSequence:r,values:s}=t,{side:i}=n,o=new Bde([s.shape[0],s.shape[1]],i),l=[{type:"int32",data:[r.shape[1]]}];return a.runWebGPUProgram(o,[r,s],"int32",l)}var Vde={kernelName:Ld,backendName:"webgpu",kernelFunc:Wde},Ude=class{constructor(e,t,a){this.variableNames=["c","a","b"],this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.dispatchLayout=$e(this.outputShape),this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize),this.cRank=e,this.rank=a,this.shaderKey="select"}getUserCode(){let e,t;if(this.rank>4)throw Error(`Where for rank ${this.rank} is not yet supported`);if(this.rank===1)t="resRC",e="resRC";else{let a=["resRC.x","resRC.y","resRC.z","resRC.w"],n=[],r=[];for(let s=0;s<this.outputShape.length;s++)r.push(`${a[s]}`),s<this.cRank&&n.push(`${a[s]}`);e=n.join(),t=r.join()}return`
|
|
${ke("index")} {
|
|
if (index < uniforms.size) {
|
|
let resRC = getCoordsFromIndex(index);
|
|
let cVal = getC(${e});
|
|
if (cVal >= 1.0) {
|
|
setOutputAtIndex(index, getA(${t}));
|
|
} else {
|
|
setOutputAtIndex(index, getB(${t}));
|
|
}
|
|
}
|
|
}
|
|
`}};function Gde(e){let{inputs:t,backend:a}=e,{condition:n,t:r,e:s}=t,i=new Ude(n.shape.length,r.shape,r.shape.length);return a.runWebGPUProgram(i,[n,r,s],ha(r.dtype,s.dtype))}var Hde={kernelName:jl,backendName:"webgpu",kernelFunc:Gde},jde=et({opType:le.SELU}),qde={kernelName:ql,backendName:"webgpu",kernelFunc:jde},Xde=et({opType:le.SIGMOID}),Kde={kernelName:ro,backendName:"webgpu",kernelFunc:Xde},Zde=et({opType:le.SIGN}),Yde={kernelName:Zl,backendName:"webgpu",kernelFunc:Zde},Jde=et({opType:le.SIN}),Qde={kernelName:no,backendName:"webgpu",kernelFunc:Jde},epe=et({opType:le.SINH}),tpe={kernelName:Kl,backendName:"webgpu",kernelFunc:epe},X8=Jt({opType:Pe.SUB,cpuKernelImpl:hie,supportsComplex:!0}),ape={kernelName:po,backendName:"webgpu",kernelFunc:X8};function npe(e){let{inputs:t,backend:a,attrs:n}=e,{logits:r}=t,{dim:s}=n,i=v.parseAxisParam([s],r.shape),o=V3({inputs:{x:r},backend:a,attrs:{reductionIndices:i,keepDims:!1}}),l=T.expandShapeToKeepDim(o.shape,i),u=Ie({inputs:{x:o},backend:a,attrs:{shape:l}}),p=X8({inputs:{a:r,b:u},backend:a}),c=W8({inputs:{x:p},backend:a}),d=U3({inputs:{x:c},backend:a,attrs:{axis:i,keepDims:!1}}),h=Ie({inputs:{x:d},backend:a,attrs:{shape:l}}),f=q8({inputs:{a:c,b:h},backend:a});return a.disposeData(o.dataId),a.disposeData(u.dataId),a.disposeData(p.dataId),a.disposeData(c.dataId),a.disposeData(d.dataId),a.disposeData(h.dataId),f}var rpe={kernelName:oo,backendName:"webgpu",kernelFunc:npe},spe=et({opType:le.SOFTPLUS}),ipe={kernelName:Yl,backendName:"webgpu",kernelFunc:spe},ope=e=>{let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{blockShape:s,paddings:i}=n;v.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGPU backend not implemented yet");let o=s.reduce((x,y)=>x*y),l=[[0,0]];l.push(...i);for(let x=1+s.length;x<r.shape.length;++x)l.push([0,0]);let u=[],p=j8({inputs:{x:r},backend:a,attrs:{paddings:l,constantValue:0}}),c=T.getReshaped(p.shape,s,o,!1),d=T.getPermuted(c.length,s.length,!1),h=T.getReshapedPermuted(p.shape,s,o,!1),f=Ie({inputs:{x:p},backend:a,attrs:{shape:c}}),m=vr({inputs:{x:f},backend:a,attrs:{perm:d}}),g=Ie({inputs:{x:m},backend:a,attrs:{shape:h}});return u.push(p),u.push(f),u.push(m),u.forEach(x=>a.disposeData(x.dataId)),g},lpe={kernelName:Jl,backendName:"webgpu",kernelFunc:ope},upe=class{constructor(e,t){this.variableNames=["A"],this.workgroupSize=[64,1,1],this.size=!0;let a=new Array(e.length);for(let n=0;n<a.length;n++)a[n]=e[n]*t[n];this.outputShape=a,this.dispatchLayout=$e(this.outputShape),this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize),this.rank=this.outputShape.length,this.shaderKey="tile"}getUserCode(){let e=dpe(this.rank,"uniforms.");return`
|
|
${ke("index")} {
|
|
if (index < uniforms.size) {
|
|
let resRC = getCoordsFromIndex(index);
|
|
setOutputAtIndex(index, getA(${e}));
|
|
}
|
|
}
|
|
`}};function dpe(e,t=""){if(e>=5)throw Error(`Tile for rank ${e} is not yet supported`);if(e===1)return`(resRC % ${t}aShape)`;let a=["resRC.x","resRC.y","resRC.z","resRC.w"],n=[];for(let r=0;r<e;r++)n.push(`(${a[r]} % ${t}aShape[${r}])`);return n.join()}function K8(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{reps:s}=n;if(a.shouldExecuteOnCPU([r])||r.dtype==="string"||r.shape.length>=5){let o=a.readSync(r.dataId),l=r.dtype==="string"?o.map(c=>v.decodeString(c)):o,u=_e(r.shape,r.dtype,l),p=fie(u,s);return a.makeTensorInfo(p.shape,p.dtype,p.values)}let i=new upe(r.shape,s);return a.runWebGPUProgram(i,[r],r.dtype)}var ppe={kernelName:rs,backendName:"webgpu",kernelFunc:K8};function cpe(e){let{inputs:t,backend:a,attrs:n}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=n,{sliceRank:l,numUpdates:u,sliceSize:p,strides:c,outputSize:d}=T.calculateShapes(s,r,o),h=!1;if(s.dtype==="string"){let E=a.bufferSync(r),_=a.bufferSync(s),$=v.decodeString(a.readSync(i.dataId)[0]),M=lie(E,_,o,d,p,u,l,c,$,h);return a.makeTensorInfo(o,M.dtype,M.values)}let f=[d/p,p],m=Ie({inputs:{x:r},backend:a,attrs:{shape:[u,l]}}),g=s.shape.length?Ie({inputs:{x:s},backend:a,attrs:{shape:[u,p]}}):Ya({inputs:{x:s},backend:a}),x=g.dtype,y=a.makeTensorInfo([],x,v.makeZerosTypedArray(1,x)),A=Ie({inputs:{x:i},backend:a,attrs:{shape:Array(f.length).fill(1)}}),b=K8({inputs:{x:A},backend:a,attrs:{reps:f}}),k=v.sizeFromShape([u,p]),S=[{type:"int32",data:[l]},{type:"int32",data:c},{type:"int32",data:[k]}];switch(u){case 0:break;case 1:{let E=new Sc([u,p],l,m.shape.length,g.shape.length,c,f,x,h);a.runWebGPUProgram(E,[g,m],x,S,b)}break;default:{let E=new Sc([u,p],l,m.shape.length,y.shape.length,c,f,x,h);a.runWebGPUProgram(E,[y,m],x,S,b)}{let E=new Sc([u,p],l,m.shape.length,g.shape.length,c,f,x);a.runWebGPUProgram(E,[g,m],x,S,b)}}let C=Ie({inputs:{x:b},backend:a,attrs:{shape:o}});return a.disposeData(m.dataId),a.disposeData(g.dataId),a.disposeData(A.dataId),a.disposeData(y.dataId),a.disposeData(b.dataId),C}var hpe={kernelName:Ud,backendName:"webgpu",kernelFunc:cpe};function fpe(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=n,o=v.parseAxisParam(i,r.shape)[0],l=T.prepareSplitSize(r,s,o),u=r.shape.length,p=new Array(u).fill(0),c=r.shape.slice();return l.map(d=>{let h=[...c];h[o]=d;let f=Au({inputs:{x:r},backend:a,attrs:{begin:p,size:h}});return p[o]+=d,f})}var mpe={kernelName:Ql,backendName:"webgpu",kernelFunc:fpe},gpe=et({opType:le.SQRT}),xpe={kernelName:so,backendName:"webgpu",kernelFunc:gpe},ype={kernelName:Gd,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{x:a}=e,n=t,r=new yu(a.shape,le.SQUARE);return n.runWebGPUProgram(r,[a],a.dtype)}},Ape=Jt({opType:Pe.SQUARED_DIFFERENCE}),bpe={kernelName:lo,backendName:"webgpu",kernelFunc:Ape};function vpe({inputs:e,attrs:t,backend:a}){let{x:n}=e,r=new yu(n.shape,le.STEP,"stepAlpha : f32,"),s=[{type:"float32",data:[t.alpha]}];return a.runWebGPUProgram(r,[n],n.dtype,s)}var kpe={kernelName:ss,backendName:"webgpu",kernelFunc:vpe},wpe=class{constructor(e){this.variableNames=["x"],this.workPerThread=1,this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=$e(this.outputShape),this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize,[this.workPerThread,1,1]);let t=ia(this.outputShape.length);this.uniforms=`begin : ${t}, strides : ${t}, `,this.shaderKey="stridedSlice"}getUserCode(){let e=this.outputShape.length,t="";if(e===1)t="coords * uniforms.strides + uniforms.begin";else{let a=0;t=this.outputShape.map((n,r)=>(a++,this.outputShape.length===1?`coords * uniforms.strides[${r}] + uniforms.begin[${r}]`:`coords[${a-1}] * uniforms.strides[${r}] + uniforms.begin[${r}]`)).join(",")}return`
|
|
${ke("index")} {
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
setOutputAtIndex(index, getX(${t}));
|
|
}
|
|
}
|
|
`}};function Ipe(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:p,newAxisMask:c,shrinkAxisMask:d}=n,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:x,begin:y,end:A,strides:b}=St.sliceInfo(r.shape,s,i,o,l,u,p,c,d),k;if(m)k=Ie({inputs:{x:r},backend:a,attrs:{shape:f}});else if(g||x){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let S=St.computeOutShape(y,A,b),C=Au({inputs:{x:r},backend:a,attrs:{begin:y,size:S}});k=Ie({inputs:{x:C},backend:a,attrs:{shape:f}}),a.disposeData(C.dataId)}else if(a.shouldExecuteOnCPU([r])){let S=a.readSync(r.dataId),C=_e(r.shape,r.dtype,S),E=pie(h,C,b,y);k=a.makeTensorInfo(f,r.dtype,E.values)}else{let S=new wpe(h),C=[{type:"int32",data:y},{type:"int32",data:b}],E=a.runWebGPUProgram(S,[r],r.dtype,C);k=Ie({inputs:{x:E},backend:a,attrs:{shape:f}}),a.disposeData(E.dataId)}return k}var Spe={kernelName:uo,backendName:"webgpu",kernelFunc:Ipe};function Tpe(e){let{inputs:t,backend:a,attrs:n}=e,{separator:r,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=n,{data:p,dataSplits:c}=t,d=a.readSync(p.dataId),h=a.readSync(c.dataId),[f,m]=cie(d,h,r,s,i,o,l,u);return[a.makeTensorInfo([f.length],"string",f),a.makeTensorInfo(c.shape,"int32",m)]}var Cpe={kernelName:tu,backendName:"webgpu",kernelFunc:Tpe},Npe=et({opType:le.TAN}),Epe={kernelName:co,backendName:"webgpu",kernelFunc:Npe},Rpe=et({opType:le.TANH}),Mpe={kernelName:ho,backendName:"webgpu",kernelFunc:Rpe},$pe=class{constructor(e){this.variableNames=["x","indices"],this.workgroupSize=[256,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=$e(this.outputShape),this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize),this.uniforms=`inputSize : i32, firstPass : i32, negativeInf : f32,
|
|
dir : i32, inc : i32,`,this.shaderKey="swap"}getUserCode(){return`
|
|
${ke("index")} {
|
|
if (index < uniforms.size) {
|
|
let outC = getCoordsFromIndex(index);
|
|
let batch = outC[0];
|
|
let elemIdx = outC[1];
|
|
// We compare elements pair-wise within a group of size 2 * inc.
|
|
// The comparing rule for each group alternates between ascending
|
|
// and descending. Within each group, we compare each pair at
|
|
// positions i and i+inc. To decide whether an element at position i
|
|
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
|
|
// inc, it is in the first half of the group, we denote it as x0,
|
|
// otherwise we denote it as x1.
|
|
// For example, as shown in the Bitonic top K paper referenced
|
|
// above, Figure5(a) shows that element[1] is in the second half of
|
|
// the group when group size is 2, but it is in the first half of
|
|
// the group when group size is 4.
|
|
let isFirstInPair = elemIdx % (2 * uniforms.inc) < uniforms.inc;
|
|
var i = 0;
|
|
if (isFirstInPair) {
|
|
i = elemIdx;
|
|
} else {
|
|
i = elemIdx - uniforms.inc;
|
|
}
|
|
|
|
var i0 = 0;
|
|
if (uniforms.firstPass == 1) {
|
|
i0 = i;
|
|
} else {
|
|
i0 = i32(getIndices(batch, i));
|
|
}
|
|
|
|
var i1 = 0;
|
|
if (uniforms.firstPass == 1) {
|
|
i1 = i + uniforms.inc;
|
|
} else {
|
|
i1 = i32(getIndices(batch, i + uniforms.inc));
|
|
}
|
|
|
|
var x0 = f32(0.0);
|
|
var x1 = f32(0.0);
|
|
if (i0 < uniforms.inputSize) {
|
|
x0 = getX(batch, i0);
|
|
} else {
|
|
x0 = uniforms.negativeInf;
|
|
}
|
|
if (i1 < uniforms.inputSize) {
|
|
x1 = getX(batch, i1);
|
|
} else {
|
|
x1 = uniforms.negativeInf;
|
|
}
|
|
|
|
let reverse = elemIdx % (2 * uniforms.dir) >= uniforms.dir;
|
|
let isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
|
|
if (reverse == isGreater) {
|
|
// Elements in opposite order of direction
|
|
let iTemp = i0;
|
|
i0 = i1;
|
|
i1 = iTemp;
|
|
}
|
|
if (isFirstInPair) {
|
|
setOutputAtIndex(index, f32(i0));
|
|
} else {
|
|
setOutputAtIndex(index, f32(i1));
|
|
}
|
|
}
|
|
}
|
|
`}},_pe=class{constructor(e){this.variableNames=["x","indices"],this.workgroupSize=[256,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=$e(this.outputShape),this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize),this.uniforms="inputSize : i32, firstPass : i32, k : i32,",this.shaderKey="merge"}getUserCode(){return`
|
|
${ke("index")} {
|
|
if (index < uniforms.size) {
|
|
let outC = getCoordsFromIndex(index);
|
|
let batch = outC[0];
|
|
let elemIdx = outC[1];
|
|
// The output size is half of the previous size.
|
|
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _
|
|
// (k=4), we only need to output the indices at positions |, the
|
|
// indices at positions _ can be thrown away, see Figure5(b) After
|
|
// Phase 2 (Merge phase) in the Bitonic Top K paper referenced
|
|
// above.
|
|
// For example, the paper shows we only need to output the orange
|
|
// bars. The output sequence should look like this | | | | | | | |.
|
|
// Because the sequence is halved, to map the output index back to
|
|
// the previous sequence to find the corresponding value, we need
|
|
// to double the index. When we double the index, we basically
|
|
// interpolate a position, so 2i looks like
|
|
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k
|
|
// position of each 2k positions by - elemIdx % k. E.g. for output
|
|
// at index 4,5,6,7, we want to get the corresponding element at
|
|
// original index 8,9,10,11, for output at index 8,9,10,11,
|
|
// we want to get the corresponding element at original index
|
|
// 16,17,18,19, so on and so forth.
|
|
|
|
var i = 0;
|
|
if (elemIdx < uniforms.k) {
|
|
i = elemIdx;
|
|
} else {
|
|
i = elemIdx * 2 - elemIdx % uniforms.k;
|
|
}
|
|
var i0 = 0;
|
|
if (uniforms.firstPass == 1) {
|
|
i0 = i;
|
|
} else {
|
|
i0 = i32(getIndices(batch, i));
|
|
}
|
|
var i1 = 0;
|
|
if (uniforms.firstPass == 1) {
|
|
i1 = i + uniforms.k;
|
|
} else {
|
|
i1 = i32(getIndices(batch, i + uniforms.k));
|
|
}
|
|
|
|
let x0 = getX(batch, i0);
|
|
var x1 = f32(0.0);
|
|
if (i1 < uniforms.inputSize) {
|
|
x1 = getX(batch, i1);
|
|
} else {
|
|
x1 = x0;
|
|
}
|
|
|
|
if (x0 >= x1) {
|
|
setOutputAtIndex(index, f32(i0));
|
|
} else {
|
|
setOutputAtIndex(index, f32(i1));
|
|
}
|
|
}
|
|
}
|
|
`}};function Yo(e,t){t!==null&&e.disposeData(t.dataId)}function Zx(e){let t=1;for(;t<e;)t*=2;return t}function Ppe(e){let{inputs:t,backend:a,attrs:n}=e,{x:r}=t,{k:s,sorted:i}=n,o=r.shape,l=o[o.length-1];if(a.shouldExecuteOnCPU([r])){let b=a.readSync(r.dataId),[k,S]=mie(b,o,r.dtype,s,i);return[a.makeTensorInfo(k.shape,k.dtype,k.values),a.makeTensorInfo(S.shape,S.dtype,S.values)]}if(s===0)return o[o.length-1]=0,[a.makeTensorInfo(o,r.dtype,[]),a.makeTensorInfo(o,"int32",[])];if(l===1)return[r,Cr({attrs:{shape:o,dtype:"int32",value:0},backend:a})];let u=v.sizeFromShape(o)/l,p=Ie({inputs:{x:r},attrs:{shape:[u,l]},backend:a}),c=Zx(s),d=Zx(l),h=null,f=()=>h===null?[p,p]:[p,h],m=(b,k,S)=>{let C=f(),E=new $pe(S),_=[{type:"int32",data:[l]},{type:"int32",data:[h===null?1:0]},{type:"float32",data:[Number.NEGATIVE_INFINITY]},{type:"int32",data:[b]},{type:"int32",data:[k]}],$=h;h=a.runWebGPUProgram(E,C,"int32",_),Yo(a,$)};for(let b=1;b<c;b*=2){let k=b*2;for(let S=b;S>=1;S/=2)m(k,S,[u,d])}for(let b=d;b>c;b/=2){let k=f(),S=new _pe([u,b/2]),C=[{type:"int32",data:[l]},{type:"int32",data:[h===null?1:0]},{type:"int32",data:[c]}],E=h;h=a.runWebGPUProgram(S,k,"int32",C),Yo(a,E);let _=c/2,$=_*2;for(let M=_;M>=1;M/=2)m($,M,h.shape)}let g=h;h=Au({inputs:{x:h},backend:a,attrs:{begin:0,size:[u,s]}}),Yo(a,g);let x=U8({inputs:{x:p,indices:h},backend:a,attrs:{axis:1,batchDims:1}});Yo(a,p);let y=o.slice(0,-1);y.push(s),g=h,h=Ie({inputs:{x:h},attrs:{shape:y},backend:a}),Yo(a,g);let A=x;return x=Ie({inputs:{x},attrs:{shape:y},backend:a}),Yo(a,A),[x,h]}var Fpe={kernelName:fo,backendName:"webgpu",kernelFunc:Ppe},Ope=class{constructor(e){this.variableNames=["Image","Transforms"],this.uniforms="interpolationModeId : i32, fillModeId : i32, fillValue : f32,",this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=$e(this.outputShape),this.dispatch=we(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey="transform"}getUserCode(){return`
|
|
fn mapCoord(outCoord : f32, len : f32) -> f32{
|
|
var inCoord = outCoord;
|
|
if(uniforms.fillModeId == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * f32(i32(f32(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
if (inCoord < -len) {
|
|
inCoord = inCoord + sz2;
|
|
} else {
|
|
inCoord = -inCoord - 1.0;
|
|
}
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz2 = 2.0 * len;
|
|
inCoord = inCoord - sz2 * f32(i32(f32(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (uniforms.fillModeId == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz = len - 1.0;
|
|
inCoord = inCoord + len * (f32(i32(f32(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz = len - 1.0;
|
|
inCoord = inCoord - len * f32(i32(f32(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (uniforms.fillModeId == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
}
|
|
return outCoord;
|
|
}
|
|
fn readWithFillValue(batch : i32, coordY : i32, coordX : i32,
|
|
channel : i32) -> f32 {
|
|
var outputValue : f32;
|
|
if (0 <= coordY && coordY < uniforms.imageShape[1] && 0 <= coordX && coordX < uniforms.imageShape[2]) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = uniforms.fillValue;
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
${ke("index")} {
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
var outputValue : f32;
|
|
let batch = coords[0];
|
|
let x = coords[2];
|
|
let y = coords[1];
|
|
let channel = coords[3];
|
|
let xf = f32(x);
|
|
let yf = f32(y);
|
|
let a1 = getTransforms(batch, 0);
|
|
let a2 = getTransforms(batch, 1);
|
|
let a3 = getTransforms(batch, 2);
|
|
let b1 = getTransforms(batch, 3);
|
|
let b2 = getTransforms(batch, 4);
|
|
let b3 = getTransforms(batch, 5);
|
|
let c1 = getTransforms(batch, 6);
|
|
let c2 = getTransforms(batch, 7);
|
|
let projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = uniforms.fillValue;
|
|
} else {
|
|
let inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
let inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
let mapX = mapCoord(inX, f32(uniforms.imageShape[2]));
|
|
let mapY = mapCoord(inY, f32(uniforms.imageShape[1]));
|
|
|
|
if (uniforms.interpolationModeId == 1) {
|
|
let coordY = i32(round(mapY));
|
|
let coordX = i32(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
let yFloor = floor(mapY);
|
|
let xFloor = floor(mapX);
|
|
let yCeil = yFloor + 1.0;
|
|
let xCeil = xFloor + 1.0;
|
|
let valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, i32(yFloor), i32(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, i32(yFloor), i32(xCeil), channel);
|
|
let valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, i32(yCeil), i32(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, i32(yCeil), i32(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutputAtIndex(index, outputValue);
|
|
}
|
|
}
|
|
`}};function Dpe(e){let{inputs:t,backend:a,attrs:n}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=n,[p,c,d,h]=r.shape,[f,m]=u!=null?u:[c,d],g=[p,f,m,h],x=new Ope(g),y=i==="nearest"?1:2,A;switch(o){case"constant":A=1;break;case"reflect":A=2;break;case"wrap":A=3;break;case"nearest":A=4;break;default:A=1;break}let b=[{type:"int32",data:[y]},{type:"int32",data:[A]},{type:"float32",data:[l]}];return a.runWebGPUProgram(x,[r,s],"float32",b)}var zpe={kernelName:mo,backendName:"webgpu",kernelFunc:Dpe};function Lpe(e){let{inputs:t,backend:a,attrs:n}=e,{value:r}=t,{axis:s}=n;s<0&&(s+=r.shape.length);let i=r,o=i.shape.length,l=r.shape[s],u=new Array(o-1),p=0;for(let m=0;m<o;m++)m!==s&&(u[p++]=i.shape[m]);let c=[],d=new Array(o).fill(0),h=i.shape.slice();h[s]=1;let f=new Array(l);for(let m=0;m<f.length;m++){d[s]=m;let g=Au({inputs:{x:i},backend:a,attrs:{begin:d,size:h}}),x=Ie({inputs:{x:g},backend:a,attrs:{shape:u}});f[m]=x,c.push(g)}return c.forEach(m=>a.disposeData(m.dataId)),f}var Bpe={kernelName:au,backendName:"webgpu",kernelFunc:Lpe},Wpe=[Fse,yie,bie,kie,Iie,Cie,Pie,Oie,zie,Bie,Vie,Gie,jie,Xie,Zie,toe,roe,ioe,poe,moe,Aoe,voe,Soe,Dse,Eoe,Doe,Woe,Hoe,qoe,Koe,Joe,ele,ale,rle,ole,dle,hle,gle,ble,kle,Ile,Tle,Cle,Nle,Rle,$le,$se,Ple,Ble,Ole,zle,Ule,Hle,qle,Zle,Qle,tue,nue,Ose,sue,Coe,oue,uue,pue,hue,mue,xue,bue,Iue,kue,Tue,Nue,Rue,Pue,Jie,Oue,zue,Qie,Bue,Vue,Gue,jue,xle,Xue,Zue,Jue,goe,tde,nde,sde,ode,ude,pde,hde,mde,xoe,gde,yde,bde,kde,_se,Sde,Nde,Mde,_de,Fde,Dde,Lde,Vde,Hde,qde,Kde,Yde,Qde,tpe,uoe,kpe,Spe,Cpe,rpe,ipe,lpe,hpe,mpe,xpe,ype,bpe,ape,yle,Epe,Mpe,ppe,Fpe,zpe,Mie,Bpe,ade];for(let e of Wpe)mn(e);var Yx="4.2.0",Vpe="4.2.0",Upe="4.2.0",Gpe="4.2.0",Hpe="4.2.0",jpe="0.0.1-alpha.17",Ap={tfjs:Yx,"tfjs-core":Yx,"tfjs-converter":Vpe,"tfjs-backend-cpu":Upe,"tfjs-backend-webgl":Gpe,"tfjs-backend-wasm":Hpe,"tfjs-backend-webgpu":jpe};function X(...e){let t=new Date,a=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(a,"Human:",...e)}function Z8(e,t){let a=e.endsWith("/")?"":"/",r=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${a}${t}`;if(!r.toLocaleLowerCase().includes(".json"))throw new Error(`modelpath error: expecting json file: ${r}`);return r}var te=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function G3(e,t,a="config",n=[]){for(let r of Object.keys(t))if(typeof t[r]=="object")G3(e[r],t[r],r,n);else{let s=e&&typeof e[r]!="undefined";s||n.push({reason:"unknown property",where:`${a}.${r} = ${t[r]}`});let i=e&&typeof e[r]==typeof t[r];s&&!i&&n.push({reason:"property type mismatch",where:`${a}.${r} = ${t[r]}`,expected:typeof e[r]})}return t.debug&&a==="config"&&n.length>0&&X("invalid configuration",n),n}function Nt(...e){let t=a=>a&&typeof a=="object";return e.reduce((a,n)=>(Object.keys(n||{}).forEach(r=>{let s=a[r],i=n[r];Array.isArray(s)&&Array.isArray(i)?a[r]=s.concat(...i):t(s)&&t(i)?a[r]=Nt(s,i):a[r]=i}),a),{})}var So={backend:"",modelBasePath:"",cacheModels:!0,validateModels:!0,wasmPath:"",wasmPlatformFetch:!1,debug:!1,async:!0,warmup:"full",cacheSensitivity:.7,skipAllowed:!1,deallocate:!1,flags:{},softwareKernels:!1,filter:{enabled:!0,equalization:!1,width:0,height:0,flip:!1,return:!0,autoBrightness:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!1,maxDetected:1,skipFrames:99,skipTime:2500,minConfidence:.2,iouThreshold:.1,mask:!1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json",keepInvalid:!1},attention:{enabled:!1,modelPath:"facemesh-attention.json"},iris:{enabled:!0,modelPath:"iris.json"},emotion:{enabled:!0,minConfidence:.1,skipFrames:99,skipTime:1500,modelPath:"emotion.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:99,skipTime:3e3,minConfidence:.1},antispoof:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"antispoof.json"},liveness:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"liveness.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",maxDetected:-1,minConfidence:.3,skipFrames:1,skipTime:200},hand:{enabled:!0,rotation:!0,skipFrames:99,skipTime:1e3,minConfidence:.5,iouThreshold:.2,maxDetected:-1,landmarks:!0,detector:{modelPath:"handtrack.json"},skeleton:{modelPath:"handlandmark-lite.json"}},object:{enabled:!1,modelPath:"centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:99,skipTime:2e3},segmentation:{enabled:!1,modelPath:"rvm.json",ratio:.5,mode:"default"}};var Y8=`
|
|
precision highp float;
|
|
attribute vec2 pos;
|
|
attribute vec2 uv;
|
|
varying vec2 vUv;
|
|
uniform float flipY;
|
|
void main(void) {
|
|
vUv = uv;
|
|
gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);
|
|
}
|
|
`;var J8=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform float m[20];
|
|
void main(void) {
|
|
vec4 c = texture2D(texture, vUv);
|
|
gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];
|
|
gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];
|
|
gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];
|
|
gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];
|
|
}
|
|
`,Q8=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform float m[20];
|
|
void main(void) {
|
|
vec4 c = texture2D(texture, vUv);
|
|
gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];
|
|
gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];
|
|
gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];
|
|
gl_FragColor.a = c.a;
|
|
}
|
|
`,e9=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform vec2 size;
|
|
uniform sampler2D texture;
|
|
vec2 pixelate(vec2 coord, vec2 size) {
|
|
return floor( coord / size ) * size;
|
|
}
|
|
void main(void) {
|
|
gl_FragColor = vec4(0.0);
|
|
vec2 coord = pixelate(vUv, size);
|
|
gl_FragColor += texture2D(texture, coord);
|
|
}
|
|
`,t9=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform vec2 px;
|
|
void main(void) {
|
|
gl_FragColor = vec4(0.0);
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;
|
|
gl_FragColor += texture2D(texture, vUv )*0.159576912161;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;
|
|
}
|
|
`,a9=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform vec2 px;
|
|
uniform float m[9];
|
|
void main(void) {
|
|
vec4 c11 = texture2D(texture, vUv - px); // top left
|
|
vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y)); // top center
|
|
vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y)); // top right
|
|
vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) ); // mid left
|
|
vec4 c22 = texture2D(texture, vUv); // mid center
|
|
vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) ); // mid right
|
|
vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) ); // bottom left
|
|
vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) ); // bottom center
|
|
vec4 c33 = texture2D(texture, vUv + px ); // bottom right
|
|
gl_FragColor =
|
|
c11 * m[0] + c12 * m[1] + c22 * m[2] +
|
|
c21 * m[3] + c22 * m[4] + c23 * m[5] +
|
|
c31 * m[6] + c32 * m[7] + c33 * m[8];
|
|
gl_FragColor.a = c22.a;
|
|
}
|
|
`;var H3=(e,t,a)=>{let n=new RegExp("\\b"+t+" \\w+ (\\w+)","ig");e.replace(n,(r,s)=>(a[s]=0,r))},j3=class{constructor(t,a,n){de(this,"uniform",{});de(this,"attribute",{});de(this,"gl");de(this,"id");de(this,"compile",(t,a)=>{let n=this.gl.createShader(a);return n?(this.gl.shaderSource(n,t),this.gl.compileShader(n),this.gl.getShaderParameter(n,this.gl.COMPILE_STATUS)?n:(X(`filter: gl compile failed: ${this.gl.getShaderInfoLog(n)||"unknown"}`),null)):(X("filter: could not create shader"),null)});this.gl=t;let r=this.compile(a,this.gl.VERTEX_SHADER),s=this.compile(n,this.gl.FRAGMENT_SHADER);if(this.id=this.gl.createProgram(),!(!r||!s)){if(!this.id){X("filter: could not create webgl program");return}if(this.gl.attachShader(this.id,r),this.gl.attachShader(this.id,s),this.gl.linkProgram(this.id),!this.gl.getProgramParameter(this.id,this.gl.LINK_STATUS)){X(`filter: gl link failed: ${this.gl.getProgramInfoLog(this.id)||"unknown"}`);return}this.gl.useProgram(this.id),H3(a,"attribute",this.attribute);for(let i in this.attribute)this.attribute[i]=this.gl.getAttribLocation(this.id,i);H3(a,"uniform",this.uniform),H3(n,"uniform",this.uniform);for(let i in this.uniform)this.uniform[i]=this.gl.getUniformLocation(this.id,i)}}};function n9(){let e=0,t=null,a=!1,n=-1,r=[null,null],s=[],i=null,o=null,l=Nn(100,100),u={},p={INTERMEDIATE:1},c=l.getContext("webgl");if(!c){X("filter: cannot get webgl context");return}this.gl=c;function d(y,A){if(!(y===l.width&&A===l.height)){if(l.width=y,l.height=A,!i){let b=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);i=c.createBuffer(),c.bindBuffer(c.ARRAY_BUFFER,i),c.bufferData(c.ARRAY_BUFFER,b,c.STATIC_DRAW),c.pixelStorei(c.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}c.viewport(0,0,l.width,l.height),r=[null,null]}}function h(y,A){let b=c.createFramebuffer();c.bindFramebuffer(c.FRAMEBUFFER,b);let k=c.createRenderbuffer();c.bindRenderbuffer(c.RENDERBUFFER,k);let S=c.createTexture();return c.bindTexture(c.TEXTURE_2D,S),c.texImage2D(c.TEXTURE_2D,0,c.RGBA,y,A,0,c.RGBA,c.UNSIGNED_BYTE,null),c.texParameteri(c.TEXTURE_2D,c.TEXTURE_MAG_FILTER,c.LINEAR),c.texParameteri(c.TEXTURE_2D,c.TEXTURE_MIN_FILTER,c.LINEAR),c.texParameteri(c.TEXTURE_2D,c.TEXTURE_WRAP_S,c.CLAMP_TO_EDGE),c.texParameteri(c.TEXTURE_2D,c.TEXTURE_WRAP_T,c.CLAMP_TO_EDGE),c.framebufferTexture2D(c.FRAMEBUFFER,c.COLOR_ATTACHMENT0,c.TEXTURE_2D,S,0),c.bindTexture(c.TEXTURE_2D,null),c.bindFramebuffer(c.FRAMEBUFFER,null),{fbo:b,texture:S}}function f(y){return r[y]=r[y]||h(l.width,l.height),r[y]}function m(y=0){if(!o)return;let A=null,b=null,k=!1;e===0?A=t:A=f(n).texture||null,e++,a&&!(y&p.INTERMEDIATE)?(b=null,k=e%2===0):(n=(n+1)%2,b=f(n).fbo||null),c.bindTexture(c.TEXTURE_2D,A),c.bindFramebuffer(c.FRAMEBUFFER,b),c.uniform1f(o.uniform.flipY,k?-1:1),c.drawArrays(c.TRIANGLES,0,6)}function g(y){if(u[y])return o=u[y],c.useProgram((o?o.id:null)||null),o;if(o=new j3(c,Y8,y),!o)return X("filter: could not get webgl program"),null;let A=Float32Array.BYTES_PER_ELEMENT,b=4*A;return c.enableVertexAttribArray(o.attribute.pos),c.vertexAttribPointer(o.attribute.pos,2,c.FLOAT,!1,b,0*A),c.enableVertexAttribArray(o.attribute.uv),c.vertexAttribPointer(o.attribute.uv,2,c.FLOAT,!1,b,2*A),u[y]=o,o}let x={colorMatrix:y=>{let A=new Float32Array(y);A[4]/=255,A[9]/=255,A[14]/=255,A[19]/=255;let b=A[18]===1&&A[3]===0&&A[8]===0&&A[13]===0&&A[15]===0&&A[16]===0&&A[17]===0&&A[19]===0?Q8:J8,k=g(b);k&&(c.uniform1fv(k.uniform.m,A),m())},brightness:y=>{let A=(y||0)+1;x.colorMatrix([A,0,0,0,0,0,A,0,0,0,0,0,A,0,0,0,0,0,1,0])},saturation:y=>{let A=(y||0)*2/3+1,b=(A-1)*-.5;x.colorMatrix([A,b,b,0,0,b,A,b,0,0,b,b,A,0,0,0,0,0,1,0])},desaturate:()=>{x.saturation(-1)},contrast:y=>{let A=(y||0)+1,b=-128*(A-1);x.colorMatrix([A,0,0,0,b,0,A,0,0,b,0,0,A,0,b,0,0,0,1,0])},negative:()=>{x.contrast(-2)},hue:y=>{y=(y||0)/180*Math.PI;let A=Math.cos(y),b=Math.sin(y),k=.213,S=.715,C=.072;x.colorMatrix([k+A*(1-k)+b*-k,S+A*-S+b*-S,C+A*-C+b*(1-C),0,0,k+A*-k+b*.143,S+A*(1-S)+b*.14,C+A*-C+b*-.283,0,0,k+A*-k+b*-(1-k),S+A*-S+b*S,C+A*(1-C)+b*C,0,0,0,0,0,1,0])},desaturateLuminance:()=>{x.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},sepia:()=>{x.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},brownie:()=>{x.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},vintagePinhole:()=>{x.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},kodachrome:()=>{x.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},technicolor:()=>{x.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},polaroid:()=>{x.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},shiftToBGR:()=>{x.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},convolution:y=>{let A=new Float32Array(y),b=1/l.width,k=1/l.height,S=g(a9);S&&(c.uniform1fv(S.uniform.m,A),c.uniform2f(S.uniform.px,b,k),m())},detectEdges:()=>{x.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},sobelX:()=>{x.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},sobelY:()=>{x.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},sharpen:y=>{let A=y||1;x.convolution.call(this,[0,-1*A,0,-1*A,1+4*A,-1*A,0,-1*A,0])},emboss:y=>{let A=y||1;x.convolution.call(this,[-2*A,-1*A,0,-1*A,1,1*A,0,1*A,2*A])},blur:y=>{let A=y/7/l.width,b=y/7/l.height,k=g(t9);k&&(c.uniform2f(k.uniform.px,0,b),m(p.INTERMEDIATE),c.uniform2f(k.uniform.px,A,0),m())},pixelate:y=>{let A=y/l.width,b=y/l.height,k=g(e9);k&&(c.uniform2f(k.uniform.size,A,b),m())}};this.add=function(y){let A=Array.prototype.slice.call(arguments,1),b=x[y];s.push({func:b,args:A})},this.reset=function(){s=[]},this.get=function(){return s},this.apply=function(y){d(y.width,y.height),e=0,t||(t=c.createTexture()),c.bindTexture(c.TEXTURE_2D,t),c.texParameteri(c.TEXTURE_2D,c.TEXTURE_WRAP_S,c.CLAMP_TO_EDGE),c.texParameteri(c.TEXTURE_2D,c.TEXTURE_WRAP_T,c.CLAMP_TO_EDGE),c.texParameteri(c.TEXTURE_2D,c.TEXTURE_MIN_FILTER,c.NEAREST),c.texParameteri(c.TEXTURE_2D,c.TEXTURE_MAG_FILTER,c.NEAREST),c.texImage2D(c.TEXTURE_2D,0,c.RGBA,c.RGBA,c.UNSIGNED_BYTE,y);for(let A=0;A<s.length;A++){a=A===s.length-1;let b=s[A];b.func.apply(this,b.args||[])}return l},this.draw=function(y){return this.add("brightness",0),this.apply(y)}}async function Uh(e){let t=e.shape.length===4?Oe(e):e,a=wa(t,3,2),n=[Zr(a[0]),Zr(a[1]),Zr(a[2])],r=[ca(a[0]),ca(a[1]),ca(a[2])],s=await Promise.all(r.map(p=>p.data())),i=Math.max(s[0][0],s[1][0],s[2][0]),l=(i>1?255:1)/i,u;if(l>1){let p=[he(a[0],n[0]),he(a[1],n[1]),he(a[2],n[2])],c=[he(r[0],n[0]),he(r[1],n[1]),he(r[2],n[2])],d=[ae(p[0],l),ae(p[1],l),ae(p[2],l)],h=oa([d[0],d[1],d[2]],2);u=J(h,[1,t.shape[0]||0,t.shape[1]||0,3]),Y([...p,...c,...d])}else u=Gt(t,0);return Y([...a,...n,...r,a,t,e]),u}var Gh=3840,Qt=null,ea=null,bu=null,xt,gn={inputSum:0,cacheDiff:1,sumMethod:0,inputTensor:void 0};function q3(){gn.inputSum=0,gn.cacheDiff=1,gn.sumMethod=0,gn.inputTensor=void 0}function Nn(e,t){let a;if(ne.browser)if(ne.worker){if(typeof OffscreenCanvas=="undefined")throw new Error("canvas error: attempted to run in web worker but OffscreenCanvas is not supported");a=new OffscreenCanvas(e,t)}else{if(typeof document=="undefined")throw new Error("canvas error: attempted to run in browser but DOM is not defined");a=document.createElement("canvas"),a.width=e,a.height=t}else typeof ne.Canvas!="undefined"?a=new ne.Canvas(e,t):typeof globalThis.Canvas!="undefined"&&(a=new globalThis.Canvas(e,t));return a}function Hh(e,t){let a=t||Nn(e.width,e.height);return a.getContext("2d").drawImage(e,0,0),a}async function jh(e,t,a=!0){var d,h,f;if(!e)return t.debug&&X("input error: input is missing"),{tensor:null,canvas:null};if(!(e instanceof pt)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof globalThis.Canvas!="undefined"&&e instanceof globalThis.Canvas)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("input error: type not recognized");if(e instanceof pt){let m=null;if(e.isDisposedInternal)throw new Error("input error: attempted to use tensor but it is disposed");if(!e.shape)throw new Error("input error: attempted to use tensor without a shape");if(e.shape.length===3){if(e.shape[2]===3)m=Gt(e,0);else if(e.shape[2]===4){let g=up(e,[0,0,0],[-1,-1,3]);m=Gt(g,0),Y(g)}}else e.shape.length===4&&(e.shape[3]===3?m=ka(e):e.shape[3]===4&&(m=xh(e,[0,0,0,0],[-1,-1,-1,3])));if(m==null||m.shape.length!==4||m.shape[0]!==1||m.shape[3]!==3)throw new Error(`input error: attempted to use tensor with unrecognized shape: ${e.shape.toString()}`);if(m.dtype==="int32"){let g=qe(m,"float32");Y(m),m=g}return{tensor:m,canvas:t.filter.return?ea:null}}if(typeof e.readyState!="undefined"&&e.readyState<=2)return t.debug&&X("input stream is not ready"),{tensor:null,canvas:Qt};let n=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,r=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0;if(!n||!r)return t.debug&&X("cannot determine input dimensions"),{tensor:null,canvas:Qt};let s=n,i=r;if(s>Gh&&(s=Gh,i=Math.trunc(s*r/n)),i>Gh&&(i=Gh,s=Math.trunc(i*n/r)),(((d=t.filter)==null?void 0:d.width)||0)>0?s=t.filter.width:(((h=t.filter)==null?void 0:h.height)||0)>0&&(s=n*((t.filter.height||0)/r)),(t.filter.height||0)>0?i=t.filter.height:(t.filter.width||0)>0&&(i=r*((t.filter.width||0)/n)),!s||!i)throw new Error("input error: cannot determine dimension");(!Qt||Qt.width!==s||Qt.height!==i)&&(Qt=Nn(s,i));let o=Qt.getContext("2d");if(typeof ImageData!="undefined"&&e instanceof ImageData?o.putImageData(e,0,0):t.filter.flip&&typeof o.translate!="undefined"?(o.translate(n,0),o.scale(-1,1),o.drawImage(e,0,0,n,r,0,0,Qt.width,Qt.height),o.setTransform(1,0,0,1,0,0)):o.drawImage(e,0,0,n,r,0,0,Qt.width,Qt.height),(!ea||Qt.width!==ea.width||Qt.height!==ea.height)&&(ea=Nn(Qt.width,Qt.height)),t.filter.enabled&&ne.webgl.supported?(xt||(xt=ne.browser?new n9:null),ne.filter=!!xt,xt!=null&&xt.add?(xt.reset(),t.filter.brightness!==0&&xt.add("brightness",t.filter.brightness),t.filter.contrast!==0&&xt.add("contrast",t.filter.contrast),t.filter.sharpness!==0&&xt.add("sharpen",t.filter.sharpness),t.filter.blur!==0&&xt.add("blur",t.filter.blur),t.filter.saturation!==0&&xt.add("saturation",t.filter.saturation),t.filter.hue!==0&&xt.add("hue",t.filter.hue),t.filter.negative&&xt.add("negative"),t.filter.sepia&&xt.add("sepia"),t.filter.vintage&&xt.add("brownie"),t.filter.sepia&&xt.add("sepia"),t.filter.kodachrome&&xt.add("kodachrome"),t.filter.technicolor&&xt.add("technicolor"),t.filter.polaroid&&xt.add("polaroid"),t.filter.pixelate!==0&&xt.add("pixelate",t.filter.pixelate),((f=xt.get())==null?void 0:f.length)>1?ea=xt.apply(Qt):ea=xt.draw(Qt)):(t.debug&&X("input process error: cannot initialize filters"),ne.webgl.supported=!1,t.filter.enabled=!1,Hh(Qt,ea))):(Hh(Qt,ea),xt&&(xt=null),ne.filter=!!xt),!a)return{tensor:null,canvas:ea};if(!ea)throw new Error("canvas error: cannot create output");let l,u=3;if(typeof ImageData!="undefined"&&e instanceof ImageData||e.data&&e.width&&e.height)if(ne.browser&&Ir)l=Ir?Ir.fromPixels(e):null;else{u=e.data.length/e.height/e.width;let m=new Uint8Array(e.data.buffer);l=Ve(m,[e.height,e.width,u],"int32")}else if((!bu||ea.width!==bu.width||ea.height!==bu.height)&&(bu=Nn(ea.width,ea.height)),Ir&&ne.browser)t.backend==="webgl"||t.backend==="humangl"||t.backend==="webgpu"?l=Ir.fromPixels(ea):(bu=Hh(ea),l=Ir.fromPixels(bu));else{let x=Hh(ea).getContext("2d").getImageData(0,0,s,i);u=x.data.length/s/i;let y=new Uint8Array(x.data.buffer);l=Ve(y,[s,i,u])}if(u===4){let m=up(l,[0,0,0],[-1,-1,3]);Y(l),l=m}if(!l)throw new Error("input error: cannot create tensor");let p=qe(l,"float32"),c=t.filter.equalization?await Uh(p):Gt(p,0);if(Y([l,p]),t.filter.autoBrightness){let m=ca(c),g=await m.data();t.filter.brightness=g[0]>1?1-g[0]/255:1-g[0],Y(m)}return{tensor:c,canvas:t.filter.return?ea:null}}async function r9(e,t){let a=!1;if(e.cacheSensitivity===0||!t.shape||t.shape.length!==4||t.shape[1]>3840||t.shape[2]>2160)return a;if(!gn.inputTensor)gn.inputTensor=ka(t);else if(gn.inputTensor.shape[1]!==t.shape[1]||gn.inputTensor.shape[2]!==t.shape[2])Y(gn.inputTensor),gn.inputTensor=ka(t);else{let n={};n.diff=he(t,gn.inputTensor),n.squared=ae(n.diff,n.diff),n.sum=nt(n.squared);let s=(await n.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;Y([gn.inputTensor,n.diff,n.squared,n.sum]),gn.inputTensor=ka(t),a=s<=(e.cacheSensitivity||0)}return a}async function s9(e,t,a){let n={};if(!t||!a||t.shape.length!==4||t.shape.length!==a.shape.length)return e.debug||X("invalid input tensor or tensor shapes do not match:",t.shape,a.shape),0;if(t.shape[0]!==1||a.shape[0]!==1||t.shape[3]!==3||a.shape[3]!==3)return e.debug||X("input tensors must be of shape [1, height, width, 3]:",t.shape,a.shape),0;n.input1=ka(t),n.input2=t.shape[1]!==a.shape[1]||t.shape[2]!==a.shape[2]?ge.resizeBilinear(a,[t.shape[1],t.shape[2]]):ka(a),n.diff=he(n.input1,n.input2),n.squared=ae(n.diff,n.diff),n.sum=nt(n.squared);let s=(await n.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;return Y([n.input1,n.input2,n.diff,n.squared,n.sum]),s}var vp,kp,wp,bp=class{constructor(){de(this,"browser");de(this,"node");de(this,"worker");de(this,"platform","");de(this,"agent","");de(this,"backends",[]);de(this,"initial");de(this,"filter");de(this,"tfjs");de(this,"offscreen");de(this,"perfadd",!1);de(this,"tensorflow",{version:void 0,gpu:void 0});de(this,"wasm",{supported:void 0,backend:void 0,simd:void 0,multithread:void 0});de(this,"webgl",{supported:void 0,backend:void 0,version:void 0,renderer:void 0,shader:void 0,vendor:void 0});de(this,"webgpu",{supported:void 0,backend:void 0,adapter:void 0});de(this,"cpu",{model:void 0,flags:[]});de(this,"kernels",[]);Gn(this,vp,void 0);Gn(this,kp,void 0);Gn(this,wp,void 0);if(this.browser=typeof navigator!="undefined",this.node=typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined",this.tfjs={version:Ap["tfjs-core"]},this.offscreen=typeof OffscreenCanvas!="undefined",this.initial=!0,this.worker=this.browser&&this.offscreen?typeof WorkerGlobalScope!="undefined":void 0,typeof navigator!="undefined"&&typeof navigator.userAgent!="undefined"){let t=navigator.userAgent||"",a=t.match(/\(([^()]+)\)/g);if(a!=null&&a[0]){let n=a[0].match(/\(([^()]+)\)/g);this.platform=n!=null&&n[0]?n[0].replace(/\(|\)/g,""):"",this.agent=t.replace(a[0],""),this.platform[1]&&(this.agent=this.agent.replace(a[1],"")),this.agent=this.agent.replace(/ /g," ")}}else typeof process!="undefined"&&(this.platform=`${process.platform} ${process.arch}`,this.agent=`NodeJS ${process.version}`)}get Canvas(){return Ga(this,vp)}set Canvas(t){fr(this,vp,t),globalThis.Canvas=t}get Image(){return Ga(this,kp)}set Image(t){fr(this,kp,t),globalThis.Image=t}get ImageData(){return Ga(this,wp)}set ImageData(t){fr(this,wp,t),globalThis.ImageData=t}async updateBackend(){this.backends=Object.keys(vt().registryFactory);try{this.tensorflow={version:tr().binding?tr().binding.TF_Version:void 0,gpu:tr().binding?tr().binding.isUsingGpuDevice():void 0}}catch(n){}this.wasm.supported=typeof WebAssembly!="undefined",this.wasm.backend=this.backends.includes("wasm"),this.wasm.supported&&this.wasm.backend&&(this.wasm.simd=await B().getAsync("WASM_HAS_SIMD_SUPPORT"),this.wasm.multithread=await B().getAsync("WASM_HAS_MULTITHREAD_SUPPORT"));let t=Nn(100,100),a=t?t.getContext("webgl2"):void 0;this.webgl.supported=typeof a!="undefined",this.webgl.backend=this.backends.includes("webgl"),this.webgl.supported&&this.webgl.backend&&a&&(this.webgl.version=a.getParameter(a.VERSION),this.webgl.vendor=a.getParameter(a.VENDOR),this.webgl.renderer=a.getParameter(a.RENDERER),this.webgl.shader=a.getParameter(a.SHADING_LANGUAGE_VERSION)),this.webgpu.supported=this.browser&&typeof navigator!="undefined"&&typeof navigator.gpu!="undefined",this.webgpu.backend=this.backends.includes("webgpu");try{if(this.webgpu.supported){let n=await navigator.gpu.requestAdapter();this.webgpu.adapter=await(n==null?void 0:n.requestAdapterInfo())}}catch(n){this.webgpu.supported=!1}try{this.kernels=Zn(la()).map(n=>n.kernelName.toLowerCase())}catch(n){}}updateCPU(){let t={model:"",flags:[]};this.node&&this.platform.startsWith("linux"),this.cpu?this.cpu=t:Object.defineProperty(this,"cpu",{value:t})}};vp=new WeakMap,kp=new WeakMap,wp=new WeakMap;var ne=new bp;var Xh=class{constructor(){de(this,"config");de(this,"element");de(this,"stream");de(this,"devices",[]);de(this,"enumerate",async()=>{try{let t=await navigator.mediaDevices.enumerateDevices();this.devices=t.filter(a=>a.kind==="videoinput")}catch(t){this.devices=[]}return this.devices});de(this,"start",async t=>{var r,s;if(t!=null&&t.debug&&(this.config.debug=t==null?void 0:t.debug),t!=null&&t.crop&&(this.config.crop=t==null?void 0:t.crop),t!=null&&t.mode&&(this.config.mode=t==null?void 0:t.mode),t!=null&&t.width&&(this.config.width=t==null?void 0:t.width),t!=null&&t.height&&(this.config.height=t==null?void 0:t.height),t!=null&&t.id&&(this.config.id=t==null?void 0:t.id),t!=null&&t.element)if(typeof t.element=="string"){let i=document.getElementById(t.element);if(i&&i instanceof HTMLVideoElement)this.element=i;else{this.config.debug&&X("webcam","cannot get dom element",t.element);return}}else if(t.element instanceof HTMLVideoElement)this.element=t.element;else{this.config.debug&&X("webcam","unknown dom element",t.element);return}else this.element=document.createElement("video");let a={audio:!1,video:{facingMode:this.config.mode==="front"?"user":"environment",resizeMode:this.config.crop?"crop-and-scale":"none"}};if(((r=this.config)==null?void 0:r.width)>0&&(a.video.width={ideal:this.config.width}),((s=this.config)==null?void 0:s.height)>0&&(a.video.height={ideal:this.config.height}),this.config.id&&(a.video.deviceId=this.config.id),this.element.addEventListener("play",()=>{this.config.debug&&X("webcam","play")}),this.element.addEventListener("pause",()=>{this.config.debug&&X("webcam","pause")}),this.element.addEventListener("click",async()=>{!this.element||!this.stream||(this.element.paused?await this.element.play():this.element.pause())}),!(navigator!=null&&navigator.mediaDevices)){this.config.debug&&X("webcam","no devices");return}try{this.stream=await navigator.mediaDevices.getUserMedia(a)}catch(i){X("webcam",i);return}if(!this.stream){this.config.debug&&X("webcam","no stream");return}this.element.srcObject=this.stream,await new Promise(i=>{this.element?this.element.onloadeddata=()=>i(!0):i(!1)}),await this.element.play(),this.config.debug&&X("webcam",{width:this.width,height:this.height,label:this.label,stream:this.stream,track:this.track,settings:this.settings,constraints:this.constraints,capabilities:this.capabilities})});de(this,"pause",()=>{this.element&&this.element.pause()});de(this,"play",async()=>{this.element&&await this.element.play()});de(this,"stop",()=>{this.config.debug&&X("webcam","stop"),this.track&&this.track.stop()});this.config={element:void 0,debug:!0,mode:"front",crop:!1,width:0,height:0}}get track(){if(this.stream)return this.stream.getVideoTracks()[0]}get capabilities(){if(this.track)return this.track.getCapabilities?this.track.getCapabilities():void 0}get constraints(){if(this.track)return this.track.getConstraints?this.track.getConstraints():void 0}get settings(){if(!this.stream)return;let t=this.stream.getVideoTracks()[0];return t.getSettings?t.getSettings():void 0}get label(){return this.track?this.track.label:""}get paused(){var t;return((t=this.element)==null?void 0:t.paused)||!1}get width(){var t;return((t=this.element)==null?void 0:t.videoWidth)||0}get height(){var t;return((t=this.element)==null?void 0:t.videoHeight)||0}};var X3={};hr(X3,{age:()=>lce,"anti-spoofing":()=>zce,antispoof:()=>Zpe,blazeface:()=>Ype,"blazeface-back":()=>uce,"blazeface-front":()=>dce,"blazepose-detector":()=>pce,"blazepose-full":()=>cce,"blazepose-heavy":()=>hce,"blazepose-lite":()=>fce,centernet:()=>Jpe,default:()=>Yce,efficientpose:()=>mce,"efficientpose-i-lite":()=>Lce,"efficientpose-ii-lite":()=>Bce,"efficientpose-iv":()=>Wce,emotion:()=>Qpe,faceboxes:()=>gce,facemesh:()=>ece,"facemesh-attention":()=>yce,"facemesh-attention-pinto":()=>xce,"facemesh-detection-full":()=>Ace,"facemesh-detection-short":()=>bce,faceres:()=>tce,"faceres-deep":()=>vce,gear:()=>kce,gender:()=>Ice,"gender-ssrnet-imdb":()=>wce,handdetect:()=>Sce,"handlandmark-full":()=>Tce,"handlandmark-lite":()=>ace,"handlandmark-sparse":()=>Cce,handskeleton:()=>Nce,handtrack:()=>nce,"insightface-efficientnet-b0":()=>Vce,"insightface-ghostnet-strides1":()=>Uce,"insightface-ghostnet-strides2":()=>Gce,"insightface-mobilenet-emore":()=>Hce,"insightface-mobilenet-swish":()=>jce,iris:()=>rce,liveness:()=>sce,meet:()=>Ece,mobileface:()=>Rce,mobilefacenet:()=>Mce,models:()=>ice,"movenet-lightning":()=>oce,"movenet-multipose":()=>$ce,"movenet-thunder":()=>_ce,nanodet:()=>Pce,"nanodet-e":()=>qce,"nanodet-g":()=>Xce,"nanodet-m":()=>Kce,"nanodet-t":()=>Zce,posenet:()=>Fce,rvm:()=>Oce,selfie:()=>Dce});var Zpe=853098,Ype=538928,Jpe=4030290,Qpe=820516,ece=1477958,tce=6978814,ace=2023432,nce=2964837,rce=2599092,sce=592976,ice=0,oce=4650216,lce=161240,uce=538928,dce=402048,pce=5928856,cce=6339202,hce=27502466,fce=2726402,mce=5651240,gce=2013002,xce=2387598,yce=2382414,Ace=1026192,bce=201268,vce=13957620,kce=1498916,wce=161236,Ice=201808,Sce=3515612,Tce=5431368,Cce=5286322,Nce=5502280,Ece=372228,Rce=2183192,Mce=5171976,$ce=9448838,_ce=12477112,Pce=7574558,Fce=5032780,Oce=3739355,Dce=212886,zce=853098,Lce=2269064,Bce=5651240,Wce=25643252,Vce=13013224,Uce=8093408,Gce=8049584,Hce=6938536,jce=12168584,qce=12319156,Xce=7574558,Kce=1887474,Zce=5294216,Yce={antispoof:Zpe,blazeface:Ype,centernet:Jpe,emotion:Qpe,facemesh:ece,faceres:tce,"handlandmark-lite":ace,handtrack:nce,iris:rce,liveness:sce,models:ice,"movenet-lightning":oce,age:lce,"blazeface-back":uce,"blazeface-front":dce,"blazepose-detector":pce,"blazepose-full":cce,"blazepose-heavy":hce,"blazepose-lite":fce,efficientpose:mce,faceboxes:gce,"facemesh-attention-pinto":xce,"facemesh-attention":yce,"facemesh-detection-full":Ace,"facemesh-detection-short":bce,"faceres-deep":vce,gear:kce,"gender-ssrnet-imdb":wce,gender:Ice,handdetect:Sce,"handlandmark-full":Tce,"handlandmark-sparse":Cce,handskeleton:Nce,meet:Ece,mobileface:Rce,mobilefacenet:Mce,"movenet-multipose":$ce,"movenet-thunder":_ce,nanodet:Pce,posenet:Fce,rvm:Oce,selfie:Dce,"anti-spoofing":zce,"efficientpose-i-lite":Lce,"efficientpose-ii-lite":Bce,"efficientpose-iv":Wce,"insightface-efficientnet-b0":Vce,"insightface-ghostnet-strides1":Uce,"insightface-ghostnet-strides2":Gce,"insightface-mobilenet-emore":Hce,"insightface-mobilenet-swish":jce,"nanodet-e":qce,"nanodet-g":Xce,"nanodet-m":Kce,"nanodet-t":Zce};var Ea={cacheModels:!0,cacheSupported:!0,verbose:!0,debug:!1,modelBasePath:""},fa={};async function Jce(e,t){return Ea.debug&&X("load model fetch:",e,t),fetch(e,t)}function i9(e){Ea.cacheModels=e.cacheModels,Ea.verbose=e.debug,Ea.modelBasePath=e.modelBasePath}async function Me(e){var u,p,c,d;let t=Z8(Ea.modelBasePath,e||"");t.toLowerCase().endsWith(".json")||(t+=".json");let a=t.includes("/")?t.split("/"):t.split("\\"),n=a[a.length-1].replace(".json",""),r="indexeddb://"+n;fa[n]={name:n,sizeFromManifest:0,sizeLoadedWeights:0,sizeDesired:X3[n],inCache:!1,url:""},Ea.cacheSupported=typeof indexedDB!="undefined";let s={};try{s=Ea.cacheSupported&&Ea.cacheModels?await jn.listModels():{}}catch(h){Ea.cacheSupported=!1}fa[n].inCache=Ea.cacheSupported&&Ea.cacheModels&&Object.keys(s).includes(r),fa[n].url=fa[n].inCache?r:t;let i=typeof fetch=="undefined"?{}:{fetchFunc:(h,f)=>Jce(h,f)},o=new dp(fa[n].url,i),l=!1;try{o.findIOHandler(),Ea.debug&&X("model load handler:",o.handler)}catch(h){X("error finding model i/o handler:",t,h)}try{let h=await((u=o.handler)==null?void 0:u.load())||null;fa[n].sizeFromManifest=((p=h==null?void 0:h.weightData)==null?void 0:p.byteLength)||0,h?o.loadSync(h):o=await s3(fa[n].inCache?r:t,i),fa[n].sizeLoadedWeights=((d=(c=o.artifacts)==null?void 0:c.weightData)==null?void 0:d.byteLength)||0,Ea.verbose&&X("load:",{model:n,url:o.modelUrl,bytes:fa[n].sizeLoadedWeights}),l=!0}catch(h){X("error loading model:",t,h)}if(l&&Ea.cacheModels&&Ea.cacheSupported&&!fa[n].inCache)try{let h=await o.save(r);Ea.debug&&X("model saved:",r,h)}catch(h){X("error saving model:",t,h)}return o}var K3="3.0.3";var kt={name:"humangl",priority:999,canvas:null,gl:null,extensions:[],webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function the(){let e=kt.gl;e&&(kt.extensions=e.getSupportedExtensions())}function o9(e){var t;if(e.config.backend==="humangl"&&(kt.name in vt().registry&&!((t=kt==null?void 0:kt.gl)!=null&&t.getParameter(kt.gl.VERSION))&&(X("humangl error: backend invalid context"),e.models.reset()),!a1(kt.name))){try{kt.canvas=Nn(100,100)}catch(r){X("humangl error: cannot create canvas:",r);return}try{if(kt.gl=kt.canvas.getContext("webgl2",kt.webGLattr),!kt.gl){X("humangl error: cannot get webgl context");return}if(!kt.gl.getParameter(kt.gl.VERSION).includes("2.0")){X("backend override: using fallback webgl backend as webgl 2.0 is not detected"),e.config.backend="webgl";return}kt.canvas&&(kt.canvas.addEventListener("webglcontextlost",s=>{throw X("humangl error:",s.type),X("possible browser memory leak using webgl or conflict with multiple backend registrations"),e.emit("error"),new Error("backend error: webgl context lost")}),kt.canvas.addEventListener("webglcontextrestored",s=>{X("humangl error: context restored:",s)}),kt.canvas.addEventListener("webglcontextcreationerror",s=>{X("humangl error: context create:",s)}))}catch(r){X("humangl error: cannot get webgl context:",r);return}try{Rh(2,kt.gl)}catch(r){X("humangl error: cannot set webgl context:",r);return}try{let r=new sl(kt.gl);xo(kt.name,()=>new fu(r),kt.priority)}catch(r){X("humangl error: cannot register webgl backend:",r);return}try{Zn("webgl").forEach(s=>{let i={...s,backendName:kt.name};mn(i)})}catch(r){X("humangl error: cannot update webgl backend registration:",r);return}try{B().flagRegistry.WEBGL_VERSION&&B().set("WEBGL_VERSION",2)}catch(r){X("humangl error: cannot set WebGL backend flags:",r);return}the();let a=tr(),n=typeof a.gpgpu!="undefined"?a.getGPGPUContext().gl:null;n?e.config.debug&&X("humangl backend registered:",{webgl:n.getParameter(n.VERSION),renderer:n.getParameter(n.RENDERER)}):X("humangl error: no current gl context:",n,kt.gl)}}var Le={tf255:255,tf1:1,tf2:2,tf05:.5,tf127:127.5,rgb:[.2989,.587,.114]};function l9(){Le.tf255=ze(255,"float32"),Le.tf1=ze(1,"float32"),Le.tf2=ze(2,"float32"),Le.tf05=ze(.5,"float32"),Le.tf127=ze(127.5,"float32"),Le.rgb=Ht([.2989,.587,.114],"float32")}async function rhe(){var e;return await ne.updateBackend(),(e=ne.tensorflow)!=null&&e.version?"tensorflow":ne.webgpu.supported&&ne.webgpu.backend?"webgpu":ne.webgl.supported&&ne.webgl.backend?"webgl":ne.wasm.supported&&ne.wasm.backend?"wasm":"cpu"}function she(e){let t=[];if(!ne.kernels.includes("mod")){let a={kernelName:"Mod",backendName:la(),kernelFunc:n=>Fe(()=>he(n.inputs.a,ae(me(n.inputs.a,n.inputs.b),n.inputs.b)))};mn(a),ne.kernels.push("mod"),t.push("mod")}if(!ne.kernels.includes("floormod")){let a={kernelName:"FloorMod",backendName:la(),kernelFunc:n=>Fe(()=>be(ae(ep(n.inputs.a,n.inputs.b),n.inputs.b),su(n.inputs.a,n.inputs.b)))};mn(a),ne.kernels.push("floormod"),t.push("floormod")}if(!ne.kernels.includes("rotatewithoffset")&&e.softwareKernels){let a={kernelName:"RotateWithOffset",backendName:la(),kernelFunc:n=>Fe(()=>{let r=la();Jd("cpu");let s=ge.rotateWithOffset(n.inputs.image,n.attrs.radians,n.attrs.fillValue,n.attrs.center);return Jd(r),s})};mn(a),ne.kernels.push("rotatewithoffset"),t.push("rotatewithoffset")}t.length>0&&e.debug&&X("registered kernels:",t)}var u9={};async function Ip(e,t=!1){var a;if(e.state="backend",((a=e.config.backend)==null?void 0:a.length)===0&&(e.config.backend=await rhe()),t||ne.initial||e.config.backend&&e.config.backend.length>0&&la()!==e.config.backend){let n=te();if(e.config.backend&&e.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&e.config.debug&&e.config.debug&&X("running inside web worker"),ne.browser&&e.config.backend==="tensorflow"&&(e.config.debug&&X("override: backend set to tensorflow while running in browser"),e.config.backend="webgl"),ne.node&&(e.config.backend==="webgl"||e.config.backend==="humangl")&&(e.config.debug&&X(`override: backend set to ${e.config.backend} while running in nodejs`),e.config.backend="tensorflow"),ne.browser&&e.config.backend==="webgpu")if(typeof navigator=="undefined"||typeof navigator.gpu=="undefined")X("override: backend set to webgpu but browser does not support webgpu"),e.config.backend="webgl";else{let s=await navigator.gpu.requestAdapter();if(e.config.debug&&X("enumerated webgpu adapter:",s),!s)X("override: backend set to webgpu but browser reports no available gpu"),e.config.backend="webgl";else{let i="requestAdapterInfo"in s?await s.requestAdapterInfo():void 0;X("webgpu adapter info:",i)}}let r=Object.keys(vt().registryFactory);if(e.config.backend==="humangl"&&!r.includes("humangl")&&(o9(e),r=Object.keys(vt().registryFactory)),e.config.debug&&X("available backends:",r),r.includes(e.config.backend)||(X(`error: backend ${e.config.backend} not found in registry`),e.config.backend=ne.node?"tensorflow":"webgl",e.config.debug&&X(`override: setting backend ${e.config.backend}`)),e.config.debug&&X("setting backend:",[e.config.backend]),e.config.backend==="wasm"){if(B().flagRegistry.CANVAS2D_WILL_READ_FREQUENTLY&&B().set("CANVAS2D_WILL_READ_FREQUENTLY",!0),e.config.debug&&X("wasm path:",e.config.wasmPath),typeof Oh!="undefined")Oh(e.config.wasmPath,e.config.wasmPlatformFetch);else throw new Error("backend error: attempting to use wasm backend but wasm path is not set");let s=!1,i=!1;try{s=await B().getAsync("WASM_HAS_MULTITHREAD_SUPPORT"),i=await B().getAsync("WASM_HAS_SIMD_SUPPORT"),e.config.debug&&X(`wasm execution: ${i?"simd":"no simd"} ${s?"multithreaded":"singlethreaded"}`),e.config.debug&&!i&&X("warning: wasm simd support is not enabled")}catch(o){X("wasm detection failed")}}try{await Jd(e.config.backend),await Qd()}catch(s){return X("error: cannot set backend:",e.config.backend,s),!1}e.config.debug&&(u9=JSON.parse(JSON.stringify(B().flags)))}if((la()==="humangl"||la()==="webgl")&&(B().flagRegistry.WEBGL_USE_SHAPES_UNIFORMS&&B().set("WEBGL_USE_SHAPES_UNIFORMS",!0),B().flagRegistry.WEBGL_EXP_CONV&&B().set("WEBGL_EXP_CONV",!0),e.config.debug&&typeof e.config.deallocate!="undefined"&&e.config.deallocate&&(X("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),B().set("WEBGL_DELETE_TEXTURE_THRESHOLD",0))),la(),e.config.debug){let r=B().flags,s={};for(let i of Object.keys(r))u9[i]!==r[i]&&(s[i]=r[i]);e.config.debug&&Object.keys(s).length>0&&X("backend:",la(),"flags:",s)}if(e.config.flags&&Object.keys(e.config.flags).length>0){e.config.debug&&X("flags:",e.config.flags);for(let[r,s]of Object.entries(e.config.flags))B().set(r,s)}e1(),l9(),e.performance.initBackend=Math.trunc(te()-n),e.config.backend=la(),await ne.updateBackend(),she(e.config),ne.initial=!1}return!0}function Kh(e,t){for(let a of e){let n={kernelName:a,backendName:t.backend,kernelFunc:r=>{var s;return t.debug&&X("kernelFunc",a,t.backend,r),(s=r==null?void 0:r.inputs)==null?void 0:s.info}};mn(n)}ne.kernels=Zn(la()).map(a=>a.kernelName.toLowerCase())}var t0={};hr(t0,{all:()=>Ohe,body:()=>Yh,canvas:()=>Fhe,face:()=>Zh,gesture:()=>e0,hand:()=>Jh,init:()=>ag,object:()=>Qh,options:()=>_t,person:()=>Phe});var xn=e=>{if(!e)X("draw error: invalid canvas");else if(!e.getContext)X("draw error: canvas context not defined");else{let t=e.getContext("2d");if(!t)X("draw error: cannot get canvas context");else return t}return null},To=e=>Math.round(e*180/Math.PI),ct=(e,t,a)=>e.replace(t,typeof a=="number"?a.toFixed(1):a),Co=(e,t)=>{if(!t.useDepth||typeof e=="undefined")return t.color;let a=Uint8ClampedArray.from([127+2*e,127-2*e,255]);return`rgba(${a[0]}, ${a[1]}, ${a[2]}, ${t.alpha})`};function En(e,t,a,n,r){let s=t.replace(/\[.*\]/g,"").split(`
|
|
`).map(o=>o.trim()),i=Math.max(0,a);for(let o=s.length-1;o>=0;o--){let l=o*r.lineHeight+n;r.shadowColor&&r.shadowColor!==""&&(e.fillStyle=r.shadowColor,e.fillText(s[o],i+5,l+16)),e.fillStyle=r.labelColor,e.fillText(s[o],i+4,l+15)}}function Nr(e,t,a,n,r){e.fillStyle=Co(n,r),e.beginPath(),e.arc(t,a,r.pointSize,0,2*Math.PI),e.fill()}function sr(e,t,a,n,r,s){if(e.beginPath(),e.lineWidth=s.lineWidth,s.useCurves){let i=(t+t+n)/2,o=(a+a+r)/2;e.ellipse(i,o,n/2,r/2,0,0,2*Math.PI)}else e.moveTo(t+s.roundRect,a),e.lineTo(t+n-s.roundRect,a),e.quadraticCurveTo(t+n,a,t+n,a+s.roundRect),e.lineTo(t+n,a+r-s.roundRect),e.quadraticCurveTo(t+n,a+r,t+n-s.roundRect,a+r),e.lineTo(t+s.roundRect,a+r),e.quadraticCurveTo(t,a+r,t,a+r-s.roundRect),e.lineTo(t,a+s.roundRect),e.quadraticCurveTo(t,a,t+s.roundRect,a),e.closePath();e.stroke()}function Z3(e,t,a){if(!(t.length<2)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let n of t)e.strokeStyle=Co(n[2]||0,a),e.lineTo(Math.trunc(n[0]),Math.trunc(n[1]));e.stroke(),a.fillPolygons&&(e.closePath(),e.fill())}}function p9(e,t,a){if(!(t.length<2)){if(e.lineWidth=a.lineWidth,!a.useCurves||t.length<=2){Z3(e,t,a);return}e.moveTo(t[0][0],t[0][1]);for(let n=0;n<t.length-2;n++){let r=(t[n][0]+t[n+1][0])/2,s=(t[n][1]+t[n+1][1])/2;e.quadraticCurveTo(t[n][0],t[n][1],r,s)}e.quadraticCurveTo(t[t.length-2][0],t[t.length-2][1],t[t.length-1][0],t[t.length-1][1]),e.stroke(),a.fillPolygons&&(e.closePath(),e.fill())}}function Y3(e,t,a,n=5){let r,s,i;e.beginPath(),e.moveTo(t[0],t[1]),e.lineTo(a[0],a[1]),r=Math.atan2(a[1]-t[1],a[0]-t[0]),s=n*Math.cos(r)+a[0],i=n*Math.sin(r)+a[1],e.moveTo(s,i),r+=1/3*(2*Math.PI),s=n*Math.cos(r)+a[0],i=n*Math.sin(r)+a[1],e.lineTo(s,i),r+=1/3*(2*Math.PI),s=n*Math.cos(r)+a[0],i=n*Math.sin(r)+a[1],e.lineTo(s,i),e.closePath(),e.stroke(),e.fill()}var _t={color:"rgba(173, 216, 230, 0.6)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",alpha:.5,font:'small-caps 16px "Segoe UI"',lineHeight:18,lineWidth:4,pointSize:2,roundRect:8,drawPoints:!1,drawLabels:!0,drawBoxes:!0,drawAttention:!0,drawGestures:!0,drawPolygons:!0,drawGaze:!0,fillPolygons:!1,useDepth:!0,useCurves:!1,faceLabels:"",bodyLabels:"",bodyPartLabels:"",objectLabels:"",handLabels:"",fingerLabels:"",gestureLabels:""};var Rn={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[185,40,39,37,0,267,269,270,409],lipsLowerOuter:[61,146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[191,80,81,82,13,312,311,310,415],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],lipsLowerSemiOuter:[76,77,90,180,85,16,315,404,320,307,306],lipsUpperSemiOuter:[184,74,73,72,11,302,303,304,408],lipsLowerSemiInner:[62,96,89,179,86,15,316,403,319,325,292],lipsUpperSemiInner:[183,42,41,38,12,268,271,272,407],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},J3={count:468,mouth:13,symmetryLine:[13,Rn.midwayBetweenEyes[0]]},No={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},Q3=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]},{key:"EyebrowUpper",indices:[63,64,65,66,67,68,69,70]},{key:"EyebrowLower",indices:[48,49,50,51,52,53]}],Sp=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],Eo=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var ihe=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],ohe=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],lhe=[33,133,362,263,1,78,308],b3e=ihe.map(e=>Sp[e]),v3e=ohe.map(e=>Sp[e]),k3e=lhe.map(e=>Sp[e]);function ps(e){let t=e.map(a=>a[0]);return t.push(e[e.length-1][1]),t}var uhe=[[61,146],[146,91],[91,181],[181,84],[84,17],[17,314],[314,405],[405,321],[321,375],[375,291],[61,185],[185,40],[40,39],[39,37],[37,0],[0,267],[267,269],[269,270],[270,409],[409,291],[78,95],[95,88],[88,178],[178,87],[87,14],[14,317],[317,402],[402,318],[318,324],[324,308],[78,191],[191,80],[80,81],[81,82],[82,13],[13,312],[312,311],[311,310],[310,415],[415,308]],dhe=[[263,249],[249,390],[390,373],[373,374],[374,380],[380,381],[381,382],[382,362],[263,466],[466,388],[388,387],[387,386],[386,385],[385,384],[384,398],[398,362]],phe=[[276,283],[283,282],[282,295],[295,285],[300,293],[293,334],[334,296],[296,336]],che=[[474,475],[475,476],[476,477],[477,474]],hhe=[[33,7],[7,163],[163,144],[144,145],[145,153],[153,154],[154,155],[155,133],[33,246],[246,161],[161,160],[160,159],[159,158],[158,157],[157,173],[173,133]],fhe=[[46,53],[53,52],[52,65],[65,55],[70,63],[63,105],[105,66],[66,107]],mhe=[[469,470],[470,471],[471,472],[472,469]],ghe=[[10,338],[338,297],[297,332],[332,284],[284,251],[251,389],[389,356],[356,454],[454,323],[323,361],[361,288],[288,397],[397,365],[365,379],[379,378],[378,400],[400,377],[377,152],[152,148],[148,176],[176,149],[149,150],[150,136],[136,172],[172,58],[58,132],[132,93],[93,234],[234,127],[127,162],[162,21],[21,54],[54,103],[103,67],[67,109],[109,10]],w3e={lips:ps(uhe),leftEye:ps(dhe),leftEyebrow:ps(phe),leftIris:ps(che),rightEye:ps(hhe),rightEyebrow:ps(fhe),rightIris:ps(mhe),faceOval:ps(ghe)};var xhe=[[61,146],[146,91],[91,181],[181,84],[84,17],[17,314],[314,405],[405,321],[321,375],[375,291],[61,185],[185,40],[40,39],[39,37],[37,0],[0,267],[267,269],[269,270],[270,409],[409,291],[78,95],[95,88],[88,178],[178,87],[87,14],[14,317],[317,402],[402,318],[318,324],[324,308],[78,191],[191,80],[80,81],[81,82],[82,13],[13,312],[312,311],[311,310],[310,415],[415,308]],yhe=[[263,249],[249,390],[390,373],[373,374],[374,380],[380,381],[381,382],[382,362],[263,466],[466,388],[388,387],[387,386],[386,385],[385,384],[384,398],[398,362]],Ahe=[[276,283],[283,282],[282,295],[295,285],[300,293],[293,334],[334,296],[296,336]],bhe=[[474,475],[475,476],[476,477],[477,474]],vhe=[[33,7],[7,163],[163,144],[144,145],[145,153],[153,154],[154,155],[155,133],[33,246],[246,161],[161,160],[160,159],[159,158],[158,157],[157,173],[173,133]],khe=[[46,53],[53,52],[52,65],[65,55],[70,63],[63,105],[105,66],[66,107]],whe=[[469,470],[470,471],[471,472],[472,469]],Ihe=[[10,338],[338,297],[297,332],[332,284],[284,251],[251,389],[389,356],[356,454],[454,323],[323,361],[361,288],[288,397],[397,365],[365,379],[379,378],[378,400],[400,377],[377,152],[152,148],[148,176],[176,149],[149,150],[150,136],[136,172],[172,58],[58,132],[132,93],[93,234],[234,127],[127,162],[162,21],[21,54],[54,103],[103,67],[67,109],[109,10]];function cs(e){let t=e.map(a=>a[0]);return t.push(e[e.length-1][1]),t}var She={lips:cs(xhe),leftEye:cs(yhe),leftEyebrow:cs(Ahe),leftIris:cs(bhe),rightEye:cs(vhe),rightEyebrow:cs(khe),rightIris:cs(whe),faceOval:cs(Ihe)},The=Object.entries(She).map(([e,t])=>t.map(a=>[a,e])).flat(),I3e=new Map(The),Tp=[61,146,91,181,84,17,314,405,321,375,291,185,40,39,37,0,267,269,270,409,78,95,88,178,87,14,317,402,318,324,308,191,80,81,82,13,312,311,310,415,76,77,90,180,85,16,315,404,320,307,306,184,74,73,72,11,302,303,304,408,62,96,89,179,86,15,316,403,319,325,292,183,42,41,38,12,268,271,272,407],Ro=[33,7,163,144,145,153,154,155,133,246,161,160,159,158,157,173,130,25,110,24,23,22,26,112,243,247,30,29,27,28,56,190,226,31,228,229,230,231,232,233,244,113,225,224,223,222,221,189,35,124,46,53,52,65,143,111,117,118,119,120,121,128,245,156,70,63,105,66,107,55,193],Mo=[263,249,390,373,374,380,381,382,362,466,388,387,386,385,384,398,359,255,339,254,253,252,256,341,463,467,260,259,257,258,286,414,446,261,448,449,450,451,452,453,464,342,445,444,443,442,441,413,265,353,276,283,282,295,372,340,346,347,348,349,350,357,465,383,300,293,334,296,336,285,417];var lt;function Che(e,t){var n,r,s,i,o,l,u,p,c;if(!lt.drawLabels||((n=lt.faceLabels)==null?void 0:n.length)===0)return;let a=lt.faceLabels.slice();if(e.score&&(a=ct(a,"[score]",100*e.score)),e.gender&&(a=ct(a,"[gender]",e.gender)),e.genderScore&&(a=ct(a,"[genderScore]",100*e.genderScore)),e.age&&(a=ct(a,"[age]",e.age)),e.distance&&(a=ct(a,"[distance]",100*e.distance)),e.real&&(a=ct(a,"[real]",100*e.real)),e.live&&(a=ct(a,"[live]",100*e.live)),e.emotion&&e.emotion.length>0){let d=e.emotion.map(h=>`${Math.trunc(100*h.score)}% ${h.emotion}`);d.length>3&&(d.length=3),a=ct(a,"[emotions]",d.join(" "))}(s=(r=e.rotation)==null?void 0:r.angle)!=null&&s.roll&&(a=ct(a,"[roll]",To(e.rotation.angle.roll))),(o=(i=e.rotation)==null?void 0:i.angle)!=null&&o.yaw&&(a=ct(a,"[yaw]",To(e.rotation.angle.yaw))),(u=(l=e.rotation)==null?void 0:l.angle)!=null&&u.pitch&&(a=ct(a,"[pitch]",To(e.rotation.angle.pitch))),(c=(p=e.rotation)==null?void 0:p.gaze)!=null&&c.bearing&&(a=ct(a,"[gaze]",To(e.rotation.gaze.bearing))),En(t,a,e.box[0],e.box[1],lt)}function Nhe(e,t){var a,n,r,s;if((a=e.annotations)!=null&&a.leftEyeIris&&((n=e.annotations)!=null&&n.leftEyeIris[0])){t.strokeStyle=lt.useDepth?"rgba(255, 200, 255, 0.3)":lt.color,t.beginPath();let i=Math.abs(e.annotations.leftEyeIris[3][0]-e.annotations.leftEyeIris[1][0])/2,o=Math.abs(e.annotations.leftEyeIris[4][1]-e.annotations.leftEyeIris[2][1])/2;t.ellipse(e.annotations.leftEyeIris[0][0],e.annotations.leftEyeIris[0][1],i,o,0,0,2*Math.PI),t.stroke(),lt.fillPolygons&&(t.fillStyle=lt.useDepth?"rgba(255, 255, 200, 0.3)":lt.color,t.fill())}if((r=e.annotations)!=null&&r.rightEyeIris&&((s=e.annotations)!=null&&s.rightEyeIris[0])){t.strokeStyle=lt.useDepth?"rgba(255, 200, 255, 0.3)":lt.color,t.beginPath();let i=Math.abs(e.annotations.rightEyeIris[3][0]-e.annotations.rightEyeIris[1][0])/2,o=Math.abs(e.annotations.rightEyeIris[4][1]-e.annotations.rightEyeIris[2][1])/2;t.ellipse(e.annotations.rightEyeIris[0][0],e.annotations.rightEyeIris[0][1],i,o,0,0,2*Math.PI),t.stroke(),lt.fillPolygons&&(t.fillStyle=lt.useDepth?"rgba(255, 255, 200, 0.3)":lt.color,t.fill())}}function Ehe(e,t){var a;if(lt.drawGaze&&((a=e.rotation)!=null&&a.angle)&&typeof Path2D!="undefined"){t.strokeStyle="pink";let n=e.box[0]+e.box[2]/2-e.box[3]*To(e.rotation.angle.yaw)/90,r=e.box[1]+e.box[3]/2+e.box[2]*To(e.rotation.angle.pitch)/90,s=new Path2D(`
|
|
M ${e.box[0]+e.box[2]/2} ${e.box[1]}
|
|
C
|
|
${n} ${e.box[1]},
|
|
${n} ${e.box[1]+e.box[3]},
|
|
${e.box[0]+e.box[2]/2} ${e.box[1]+e.box[3]}
|
|
`),i=new Path2D(`
|
|
M ${e.box[0]} ${e.box[1]+e.box[3]/2}
|
|
C
|
|
${e.box[0]} ${r},
|
|
${e.box[0]+e.box[2]} ${r},
|
|
${e.box[0]+e.box[2]} ${e.box[1]+e.box[3]/2}
|
|
`);t.stroke(i),t.stroke(s)}}function Rhe(e,t){var a;if(lt.drawGaze&&((a=e.rotation)!=null&&a.gaze.strength)&&e.rotation.gaze.bearing&&e.annotations.leftEyeIris&&e.annotations.rightEyeIris&&e.annotations.leftEyeIris[0]&&e.annotations.rightEyeIris[0]){t.strokeStyle="pink",t.fillStyle="pink";let n=[e.annotations.leftEyeIris[0][0]+Math.sin(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[3],e.annotations.leftEyeIris[0][1]+Math.cos(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[2]];Y3(t,[e.annotations.leftEyeIris[0][0],e.annotations.leftEyeIris[0][1]],[n[0],n[1]],4);let r=[e.annotations.rightEyeIris[0][0]+Math.sin(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[3],e.annotations.rightEyeIris[0][1]+Math.cos(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[2]];Y3(t,[e.annotations.rightEyeIris[0][0],e.annotations.rightEyeIris[0][1]],[r[0],r[1]],4)}}function Mhe(e,t){if(lt.drawPolygons&&e.mesh.length>=468){t.lineWidth=1;for(let a=0;a<Eo.length/3;a++){let n=[Eo[a*3+0],Eo[a*3+1],Eo[a*3+2]].map(r=>e.mesh[r]);Z3(t,n,lt)}Nhe(e,t)}}function $he(e,t){if(lt.drawPoints&&e.mesh.length>=468)for(let a=0;a<e.mesh.length;a++)Nr(t,e.mesh[a][0],e.mesh[a][1],e.mesh[a][2],lt),lt.drawAttention&&(Tp.includes(a)&&Nr(t,e.mesh[a][0],e.mesh[a][1],e.mesh[a][2]+127,lt),Ro.includes(a)&&Nr(t,e.mesh[a][0],e.mesh[a][1],e.mesh[a][2]-127,lt),Mo.includes(a)&&Nr(t,e.mesh[a][0],e.mesh[a][1],e.mesh[a][2]-127,lt))}function _he(e,t){lt.drawBoxes&&sr(t,e.box[0],e.box[1],e.box[2],e.box[3],lt)}function Zh(e,t,a){if(lt=Nt(_t,a),!t||!e)return;let n=xn(e);if(n){n.font=lt.font,n.strokeStyle=lt.color,n.fillStyle=lt.color;for(let r of t)_he(r,n),Che(r,n),r.mesh&&r.mesh.length>0&&($he(r,n),Mhe(r,n),Ehe(r,n),Rhe(r,n))}}function Yh(e,t,a){var s,i;let n=Nt(_t,a);if(!t||!e)return;let r=xn(e);if(r){r.lineJoin="round";for(let o=0;o<t.length;o++){if(r.strokeStyle=n.color,r.fillStyle=n.color,r.lineWidth=n.lineWidth,r.font=n.font,n.drawBoxes&&t[o].box&&t[o].box.length===4&&(sr(r,t[o].box[0],t[o].box[1],t[o].box[2],t[o].box[3],n),n.drawLabels&&((s=n.bodyLabels)==null?void 0:s.length)>0)){let l=n.bodyLabels.slice();l=ct(l,"[score]",100*t[o].score),En(r,l,t[o].box[0],t[o].box[1],n)}if(n.drawPoints&&t[o].keypoints)for(let l=0;l<t[o].keypoints.length;l++)!t[o].keypoints[l].score||t[o].keypoints[l].score===0||(r.fillStyle=Co(t[o].keypoints[l].position[2],n),Nr(r,t[o].keypoints[l].position[0],t[o].keypoints[l].position[1],0,n));if(n.drawLabels&&((i=n.bodyPartLabels)==null?void 0:i.length)>0&&t[o].keypoints){r.font=n.font;for(let l of t[o].keypoints){if(!l.score||l.score===0)continue;let u=n.bodyPartLabels.slice();u=ct(u,"[label]",l.part),u=ct(u,"[score]",100*l.score),En(r,u,l.position[0],l.position[1],n)}}if(n.drawPolygons&&t[o].keypoints&&t[o].annotations)for(let l of Object.values(t[o].annotations))for(let u of l)p9(r,u,n)}}}function Jh(e,t,a){var s,i;let n=Nt(_t,a);if(!t||!e)return;let r=xn(e);if(r){r.lineJoin="round",r.font=n.font;for(let o of t){if(n.drawBoxes){if(r.strokeStyle=n.color,r.fillStyle=n.color,sr(r,o.box[0],o.box[1],o.box[2],o.box[3],n),n.drawLabels&&((s=n.handLabels)==null?void 0:s.length)>0){let l=n.handLabels.slice();l=ct(l,"[label]",o.label),l=ct(l,"[score]",100*o.score),En(r,l,o.box[0],o.box[1],n)}r.stroke()}if(n.drawPoints&&o.keypoints&&o.keypoints.length>0)for(let l of o.keypoints)r.fillStyle=Co(l[2],n),Nr(r,l[0],l[1],0,n);if(n.drawLabels&&o.annotations&&((i=n.fingerLabels)==null?void 0:i.length)>0)for(let[l,u]of Object.entries(o.annotations)){let p=n.fingerLabels.slice();p=ct(p,"[label]",l),En(r,p,u[u.length-1][0],u[u.length-1][1],n)}if(n.drawPolygons&&o.annotations){let l=u=>{if(!(!u||u.length===0||!u[0]))for(let p=0;p<u.length;p++){r.beginPath();let c=u[p][2]||0;r.strokeStyle=Co(p*c,n),r.moveTo(u[p>0?p-1:0][0],u[p>0?p-1:0][1]),r.lineTo(u[p][0],u[p][1]),r.stroke()}};r.lineWidth=n.lineWidth,l(o.annotations.index),l(o.annotations.middle),l(o.annotations.ring),l(o.annotations.pinky),l(o.annotations.thumb)}}}}function Qh(e,t,a){var s;let n=Nt(_t,a);if(!t||!e)return;let r=xn(e);if(r){r.lineJoin="round",r.font=n.font;for(let i of t)if(n.drawBoxes){if(r.strokeStyle=n.color,r.fillStyle=n.color,sr(r,i.box[0],i.box[1],i.box[2],i.box[3],n),n.drawLabels&&((s=n.objectLabels)==null?void 0:s.length)>0){let o=n.objectLabels.slice();o=ct(o,"[label]",i.label),o=ct(o,"[score]",100*i.score),En(r,o,i.box[0],i.box[1],n)}r.stroke()}}}function e0(e,t,a){var r;let n=Nt(_t,a);if(!(!t||!e)&&n.drawGestures&&((r=n.gestureLabels)==null?void 0:r.length)>0){let s=xn(e);if(!s)return;s.font=n.font,s.fillStyle=n.color;let i=1;for(let o=0;o<t.length;o++){let[l,u]=Object.entries(t[o]);if(u.length>1&&u[1].length>0){let p=l[1]>0?`#${l[1]}`:"",c=n.gestureLabels.slice();c=ct(c,"[where]",l[0]),c=ct(c,"[who]",p),c=ct(c,"[what]",u[1]),En(s,c,8,2+i*n.lineHeight,n),i+=1}}}}var hs={face:`face
|
|
confidence: [score]%
|
|
[gender] [genderScore]%
|
|
age: [age] years
|
|
distance: [distance]cm
|
|
real: [real]%
|
|
live: [live]%
|
|
[emotions]
|
|
roll: [roll]\xB0 yaw:[yaw]\xB0 pitch:[pitch]\xB0
|
|
gaze: [gaze]\xB0`,body:"body [score]%",bodyPart:"[label] [score]%",object:"[label] [score]%",hand:"[label] [score]%",finger:"[label]",gesture:"[where] [who]: [what]"};var tg=0;function Phe(e,t,a){let n=Nt(_t,a);if(!t||!e)return;let r=xn(e);if(r){r.lineJoin="round",r.font=n.font;for(let s=0;s<t.length;s++)if(n.drawBoxes){if(r.strokeStyle=n.color,r.fillStyle=n.color,sr(r,t[s].box[0],t[s].box[1],t[s].box[2],t[s].box[3],n),n.drawLabels){let i=`person #${s}`;n.shadowColor&&n.shadowColor!==""&&(r.fillStyle=n.shadowColor,r.fillText(i,t[s].box[0]+3,1+t[s].box[1]+n.lineHeight,t[s].box[2])),r.fillStyle=n.labelColor,r.fillText(i,t[s].box[0]+2,0+t[s].box[1]+n.lineHeight,t[s].box[2])}r.stroke()}}}function Fhe(e,t){if(!e||!t)return;let a=xn(t);a&&a.drawImage(e,0,0)}async function Ohe(e,t,a){if(!(t!=null&&t.performance)||!e)return null;let n=te(),r=Nt(_t,a),s=Promise.all([Zh(e,t.face,r),Yh(e,t.body,r),Jh(e,t.hand,r),Qh(e,t.object,r),e0(e,t.gesture,r)]);return tg=ne.perfadd?tg+Math.round(te()-n):Math.round(te()-n),t.performance.draw=tg,s}function ag(){_t.faceLabels=hs.face,_t.bodyLabels=hs.body,_t.bodyPartLabels=hs.bodyPart,_t.handLabels=hs.hand,_t.fingerLabels=hs.finger,_t.objectLabels=hs.object,_t.gestureLabels=hs.gesture}var a0={};hr(a0,{connected:()=>rg,kpt:()=>ng});var ng=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPinky","rightPinky","leftIndex","rightIndex","leftThumb","rightThumb","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","bodyCenter","bodyTop","leftPalm","leftHand","rightPalm","rightHand"],rg={shoulders:["leftShoulder","rightShoulder"],hips:["rightHip","leftHip"],mouth:["leftMouth","rightMouth"],leftLegUpper:["leftHip","leftKnee"],leftLegLower:["leftKnee","leftAnkle"],leftFoot:["leftAnkle","leftHeel","leftFoot"],leftTorso:["leftShoulder","leftHip"],leftArmUpper:["leftShoulder","leftElbow"],leftArmLower:["leftElbow","leftWrist"],leftHand:["leftWrist","leftPalm"],leftHandPinky:["leftPalm","leftPinky"],leftHandIndex:["leftPalm","leftIndex"],leftHandThumb:["leftPalm","leftThumb"],leftEyeOutline:["leftEyeInside","leftEyeOutside"],rightLegUpper:["rightHip","rightKnee"],rightLegLower:["rightKnee","rightAnkle"],rightFoot:["rightAnkle","rightHeel","rightFoot"],rightTorso:["rightShoulder","rightHip"],rightArmUpper:["rightShoulder","rightElbow"],rightArmLower:["rightElbow","rightWrist"],rightHand:["rightWrist","rightPalm"],rightHandPinky:["rightPalm","rightPinky"],rightHandIndex:["rightPalm","rightIndex"],rightHandThumb:["rightPalm","rightThumb"],rightEyeOutline:["rightEyeInside","rightEyeOutside"]};var yn,$o=224,f9,Dhe=5,n0=[8,16,32,32,32];function zhe(){let e=[],t=0;for(;t<Dhe;){let a=0,n=t;for(;n<n0.length&&n0[n]===n0[t];)a+=2,n++;let r=n0[t],s=Math.ceil($o/r),i=Math.ceil($o/r);for(let o=0;o<s;++o)for(let l=0;l<i;++l)for(let u=0;u<a;++u)e.push({x:(l+.5)/i,y:(o+.5)/s});t=n}f9={x:Ht(e.map(a=>a.x)),y:Ht(e.map(a=>a.y))}}async function m9(e){if(ne.initial&&(yn=null),!yn&&e.body.detector&&e.body.detector.modelPath){yn=await Me(e.body.detector.modelPath);let t=yn!=null&&yn.executor?Object.values(yn.modelSignature.inputs):void 0;$o=Array.isArray(t)?parseInt(t[0].tensorShape.dim[1].size):0}else e.debug&&yn&&X("cached model:",yn.modelUrl);return zhe(),yn}var h9=[5,5];function Lhe(e,t){return Fe(()=>{let a=wa(e,12,1),n=Oe(a[0]),r=Oe(a[1]),s=Oe(a[2]),i=Oe(a[3]);n=be(me(n,$o),t.x),r=be(me(r,$o),t.y),s=ae(me(s,$o),h9[0]),i=ae(me(i,$o),h9[1]);let o=he(n,me(s,2)),l=he(r,me(i,2)),u=be(o,s),p=be(l,i);return oa([o,l,u,p],1)})}async function Bhe(e,t,a,n){var u,p;let r=[],s={};s.boxes=Lhe(e,f9),s.scores=Da(t),s.nms=await ge.nonMaxSuppressionAsync(s.boxes,s.scores,1,((u=a.body.detector)==null?void 0:u.minConfidence)||.1,((p=a.body.detector)==null?void 0:p.iouThreshold)||.1);let i=await s.nms.data(),o=await s.scores.data(),l=await s.boxes.array();for(let c of Array.from(i)){let d=o[c],h=l[c],f=[Math.round(h[0]*n[0]),Math.round(h[1]*n[1]),Math.round(h[2]*n[0]),Math.round(h[3]*n[1])],m={score:d,boxRaw:h,box:f};r.push(m)}return Object.keys(s).forEach(c=>Y(s[c])),r}async function g9(e,t,a){let n={};n.res=yn==null?void 0:yn.execute(e,["Identity"]),n.logitsRaw=De(n.res,[0,0,0],[1,-1,1]),n.boxesRaw=De(n.res,[0,0,1],[1,-1,-1]),n.logits=Oe(n.logitsRaw),n.boxes=Oe(n.boxesRaw);let r=await Bhe(n.boxes,n.logits,t,a);return Object.keys(n).forEach(s=>Y(n[s])),r}function Er(e,t=[1,1]){let a=[e.map(o=>o[0]),e.map(o=>o[1])],n=[Math.min(...a[0]),Math.min(...a[1])],r=[Math.max(...a[0]),Math.max(...a[1])],s=[n[0],n[1],r[0]-n[0],r[1]-n[1]],i=[s[0]/t[0],s[1]/t[1],s[2]/t[0],s[3]/t[1]];return{box:s,boxRaw:i}}function x9(e,t=[1,1]){let a=[e.map(u=>u[0]),e.map(u=>u[1])],n=[Math.min(...a[0]),Math.min(...a[1])],r=[Math.max(...a[0]),Math.max(...a[1])],s=[(n[0]+r[0])/2,(n[1]+r[1])/2],i=Math.max(s[0]-n[0],s[1]-n[1],-s[0]+r[0],-s[1]+r[1]),o=[Math.trunc(s[0]-i),Math.trunc(s[1]-i),Math.trunc(2*i),Math.trunc(2*i)],l=[o[0]/t[0],o[1]/t[1],o[2]/t[0],o[3]/t[1]];return{box:o,boxRaw:l}}function r0(e,t){let a=[e[2]*t,e[3]*t];return[e[0]-(a[0]-e[2])/2,e[1]-(a[1]-e[3])/2,a[0],a[1]]}var Ba,ig=256,sg=Number.MAX_SAFE_INTEGER,Whe={landmarks:["ld_3d","activation_segmentation","activation_heatmap","world_3d","output_poseflag"],detector:[]},i0=[],fs=[[0,0],[0,0],[0,0],[0,0]],y9=0,A9=e=>1-1/(1+Math.exp(e)),v9=e=>m9(e);async function k9(e){if(ne.initial&&(Ba=null),Ba)e.debug&&X("cached model:",Ba.modelUrl);else{Ba=await Me(e.body.modelPath);let t=Ba!=null&&Ba.executor?Object.values(Ba.modelSignature.inputs):void 0;ig=Array.isArray(t)?parseInt(t[0].tensorShape.dim[1].size):0}return Ba}function b9(e,t,a){var s,i;let n={};if(!((s=e==null?void 0:e.shape)!=null&&s[1])||!((i=e==null?void 0:e.shape)!=null&&i[2]))return e;let r;if(a&&(n.cropped=ge.cropAndResize(e,[a],[0],[e.shape[1],e.shape[2]])),e.shape[1]!==e.shape[2]){let o=[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],l=[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0];fs=[[0,0],o,l,[0,0]],n.pad=rr(n.cropped||e,fs),n.resize=ge.resizeBilinear(n.pad,[t,t]),r=me(n.resize,Le.tf255)}else e.shape[1]!==t?(n.resize=ge.resizeBilinear(n.cropped||e,[t,t]),r=me(n.resize,Le.tf255)):r=me(n.cropped||e,Le.tf255);return Object.keys(n).forEach(o=>Y(n[o])),r}function Vhe(e,t,a){for(let n of e)n.position=[Math.trunc(n.position[0]*(t[0]+fs[2][0]+fs[2][1])/t[0]-fs[2][0]),Math.trunc(n.position[1]*(t[1]+fs[1][0]+fs[1][1])/t[1]-fs[1][0]),n.position[2]],n.positionRaw=[n.position[0]/t[0],n.position[1]/t[1],2*n.position[2]/(t[0]+t[1])];if(a){let n=a[2]-a[0],r=a[3]-a[1];for(let s of e)s.positionRaw=[s.positionRaw[0]/r+a[1],s.positionRaw[1]/n+a[0],s.positionRaw[2]],s.position=[Math.trunc(s.positionRaw[0]*t[0]),Math.trunc(s.positionRaw[1]*t[1]),s.positionRaw[2]]}return e}function Uhe(e){let t=e.find(o=>o.part==="leftPalm"),a=e.find(o=>o.part==="leftWrist"),n=e.find(o=>o.part==="leftIndex");t.position[2]=((a.position[2]||0)+(n.position[2]||0))/2;let r=e.find(o=>o.part==="rightPalm"),s=e.find(o=>o.part==="rightWrist"),i=e.find(o=>o.part==="rightIndex");r.position[2]=((s.position[2]||0)+(i.position[2]||0))/2}async function Ghe(e,t,a){if(!(Ba!=null&&Ba.executor))return null;let n={};[n.ld,n.segmentation,n.heatmap,n.world,n.poseflag]=Ba==null?void 0:Ba.execute(e,Whe.landmarks);let r=(await n.poseflag.data())[0],s=await n.ld.data(),i=await n.world.data();Object.keys(n).forEach(f=>Y(n[f]));let o=[],l=5;for(let f=0;f<s.length/l;f++){let m=A9(s[l*f+3]),g=A9(s[l*f+4]),x=Math.trunc(100*m*g*r)/100,y=[s[l*f+0]/ig,s[l*f+1]/ig,s[l*f+2]+0],A=[Math.trunc(a[0]*y[0]),Math.trunc(a[1]*y[1]),y[2]],b=[i[l*f+0],i[l*f+1],i[l*f+2]+0];o.push({part:ng[f],positionRaw:y,position:A,distance:b,score:x})}if(r<(t.body.minConfidence||0))return null;Uhe(o);let u=Vhe(o,a),p=u.map(f=>f.position),c=Er(p,[a[0],a[1]]),d={};for(let[f,m]of Object.entries(rg)){let g=[];for(let x=0;x<m.length-1;x++){let y=u.find(b=>b.part===m[x]),A=u.find(b=>b.part===m[x+1]);y&&A&&g.push([y.position,A.position])}d[f]=g}return{id:0,score:Math.trunc(100*r)/100,box:c.box,boxRaw:c.boxRaw,keypoints:u,annotations:d}}async function og(e,t){var s,i,o;let a=[e.shape[2]||0,e.shape[1]||0],n=(t.body.skipTime||0)>te()-y9,r=sg<(t.body.skipFrames||0);if(t.skipAllowed&&n&&r&&i0!==null)sg++;else{let l=[];if((i=(s=t.body)==null?void 0:s.detector)!=null&&i.enabled){let u=b9(e,224);l=await g9(u,t,a),Y(u)}else l=[{box:[0,0,0,0],boxRaw:[0,0,1,1],score:0}];for(let u=0;u<l.length;u++){let p=b9(e,256,(o=l[u])==null?void 0:o.boxRaw);i0.length=0;let c=await Ghe(p,t,a);Y(p),c&&(c.id=u,i0.push(c))}y9=te(),sg=0}return i0}var vu=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var Wa,_o=0,lg=[],I9=0,ug=Number.MAX_SAFE_INTEGER;async function S9(e){if(ne.initial&&(Wa=null),Wa)e.debug&&X("cached model:",Wa.modelUrl);else{Wa=await Me(e.object.modelPath);let t=Wa!=null&&Wa.executor?Object.values(Wa.modelSignature.inputs):void 0;_o=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0}return Wa}async function Hhe(e,t,a){if(!e)return[];let n={},r=[],s=await e.array();n.squeeze=Oe(e);let i=wa(n.squeeze,6,1);n.stack=oa([i[1],i[0],i[3],i[2]],1),n.boxes=Oe(n.stack),n.scores=Oe(i[4]),n.classes=Oe(i[5]),Y([e,...i]),n.nms=await ge.nonMaxSuppressionAsync(n.boxes,n.scores,a.object.maxDetected||0,a.object.iouThreshold,a.object.minConfidence||0);let o=await n.nms.data(),l=0;for(let u of Array.from(o)){let p=Math.trunc(100*s[0][u][4])/100,c=s[0][u][5];if(Number.isNaN(c))continue;let d=vu[c].label,[h,f]=[s[0][u][0]/_o,s[0][u][1]/_o],m=[h,f,s[0][u][2]/_o-h,s[0][u][3]/_o-f],g=[Math.trunc(m[0]*t[0]),Math.trunc(m[1]*t[1]),Math.trunc(m[2]*t[0]),Math.trunc(m[3]*t[1])];r.push({id:l++,score:p,class:c,label:d,box:g,boxRaw:m})}return Object.keys(n).forEach(u=>Y(n[u])),r}async function dg(e,t){if(!(Wa!=null&&Wa.executor))return[];let a=(t.object.skipTime||0)>te()-I9,n=ug<(t.object.skipFrames||0);return t.skipAllowed&&a&&n&&lg.length>0?(ug++,lg):(ug=0,new Promise(async r=>{let s=[e.shape[2]||0,e.shape[1]||0],i=ge.resizeBilinear(e,[_o,_o]),o=t.object.enabled?Wa==null?void 0:Wa.execute(i,["tower_0/detections"]):null;I9=te(),Y(i);let l=await Hhe(o,s,t);lg=l,r(l)}))}var o0={};hr(o0,{connected:()=>cg,kpt:()=>pg});var pg=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","bodyCenter","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"],cg={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var Et,C9=0,Ra={id:0,keypoints:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,annotations:{}},hg=Number.MAX_SAFE_INTEGER;async function N9(e){return ne.initial&&(Et=null),Et?e.debug&&X("cached model:",Et.modelUrl):Et=await Me(e.body.modelPath),Et}async function jhe(e,t){let[a,n]=e.shape,r=J(e,[n*a]),s=ca(r,0),i=(await s.data())[0];if(i>t){let o=ar(r,0),l=su(o,a),u=(await l.data())[0],p=me(o,a),c=(await p.data())[0];return Y([r,s,o,l,p]),[u,c,i]}return Y([r,s]),[0,0,i]}async function fg(e,t){if(!(Et!=null&&Et.executor)||!(Et!=null&&Et.inputs[0].shape))return[];let a=(t.body.skipTime||0)>te()-C9,n=hg<(t.body.skipFrames||0);return t.skipAllowed&&a&&n&&Object.keys(Ra.keypoints).length>0?(hg++,[Ra]):(hg=0,new Promise(async r=>{let s=Fe(()=>{var f,m;let c=ge.resizeBilinear(e,[((f=Et==null?void 0:Et.inputs[0].shape)==null?void 0:f[2])||0,((m=Et==null?void 0:Et.inputs[0].shape)==null?void 0:m[1])||0],!1),d=ae(c,Le.tf2);return he(d,Le.tf1)}),i;if(t.body.enabled&&(i=Et==null?void 0:Et.execute(s)),C9=te(),Y(s),i){Ra.keypoints.length=0;let c=Oe(i);Y(i);let d=Ta(c,2);Y(c);for(let h=0;h<d.length;h++){let[f,m,g]=await jhe(d[h],t.body.minConfidence);g>(t.body.minConfidence||0)&&Ra.keypoints.push({score:Math.round(100*g)/100,part:pg[h],positionRaw:[f/Et.inputs[0].shape[2],m/Et.inputs[0].shape[1]],position:[Math.round(e.shape[2]*f/Et.inputs[0].shape[2]),Math.round(e.shape[1]*m/Et.inputs[0].shape[1])]})}d.forEach(h=>Y(h))}Ra.score=Ra.keypoints.reduce((c,d)=>d.score>c?d.score:c,0);let o=Ra.keypoints.map(c=>c.position[0]),l=Ra.keypoints.map(c=>c.position[1]);Ra.box=[Math.min(...o),Math.min(...l),Math.max(...o)-Math.min(...o),Math.max(...l)-Math.min(...l)];let u=Ra.keypoints.map(c=>c.positionRaw[0]),p=Ra.keypoints.map(c=>c.positionRaw[1]);Ra.boxRaw=[Math.min(...u),Math.min(...p),Math.max(...u)-Math.min(...u),Math.max(...p)-Math.min(...p)];for(let[c,d]of Object.entries(cg)){let h=[];for(let f=0;f<d.length-1;f++){let m=Ra.keypoints.find(x=>x.part===d[f]),g=Ra.keypoints.find(x=>x.part===d[f+1]);m&&g&&m.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&h.push([m.position,g.position])}Ra.annotations[c]=h}r([Ra])}))}var ku=e=>[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])],l0=e=>[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2,1],u0=(e,t)=>e?[Math.trunc(Math.max(0,e.startPoint[0])),Math.trunc(Math.max(0,e.startPoint[1])),Math.trunc(Math.min(t.shape[2]||0,e.endPoint[0])-Math.max(0,e.startPoint[0])),Math.trunc(Math.min(t.shape[1]||0,e.endPoint[1])-Math.max(0,e.startPoint[1]))]:[0,0,0,0],d0=(e,t)=>e?[e.startPoint[0]/(t.shape[2]||0),e.startPoint[1]/(t.shape[1]||0),(e.endPoint[0]-e.startPoint[0])/(t.shape[2]||0),(e.endPoint[1]-e.startPoint[1])/(t.shape[1]||0)]:[0,0,0,0],$9=(e,t)=>{let a=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],n=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:a,endPoint:n,landmarks:e.landmarks,confidence:e.confidence}},mg=(e,t,a)=>{let n=t.shape[1],r=t.shape[2],s=[e.startPoint[1]/n,e.startPoint[0]/r,e.endPoint[1]/n,e.endPoint[0]/r],i=ge.cropAndResize(t,[s],[0],a),o=me(i,Le.tf255);return Y(i),o},p0=(e,t)=>{let a=l0(e),n=ku(e),r=[t*n[0]/2,t*n[1]/2];return{startPoint:[a[0]-r[0],a[1]-r[1]],endPoint:[a[0]+r[0],a[1]+r[1]],landmarks:e.landmarks,confidence:e.confidence}},c0=e=>{let t=l0(e),a=ku(e),n=Math.max(...a)/2;return{startPoint:[Math.round(t[0]-n),Math.round(t[1]-n)],endPoint:[Math.round(t[0]+n),Math.round(t[1]+n)],landmarks:e.landmarks,confidence:e.confidence}},_9=e=>{let t=e.map(n=>n[0]),a=e.map(n=>n[1]);return{startPoint:[Math.min(...t),Math.min(...a)],endPoint:[Math.max(...t),Math.max(...a)],landmarks:e}},gg=[[1,0,0],[0,1,0],[0,0,1]],qhe=e=>e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI)),Xhe=(e,t)=>qhe(Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]));var R9=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]],Po=(e,t)=>{let a=0;for(let n=0;n<e.length;n++)a+=e[n]*t[n];return a},Khe=(e,t)=>{let a=[];for(let n=0;n<e.length;n++)a.push(e[n][t]);return a},M9=(e,t)=>{let a=[],n=e.length;for(let r=0;r<n;r++){a.push([]);for(let s=0;s<n;s++)a[r].push(Po(e[r],Khe(t,s)))}return a},P9=(e,t)=>{let a=Math.cos(e),n=Math.sin(e),r=[[a,-n,0],[n,a,0],[0,0,1]],s=R9(t[0],t[1]),i=M9(s,r),o=R9(-t[0],-t[1]);return M9(i,o)},Zhe=e=>{let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],a=[e[0][2],e[1][2]],n=[-Po(t[0],a),-Po(t[1],a)];return[t[0].concat(n[0]),t[1].concat(n[1]),[0,0,1]]},Yhe=(e,t)=>[Po(e,t[0]),Po(e,t[1])];function F9(e){let t=e===192?{strides:[4],anchors:[1]}:{strides:[e/16,e/8],anchors:[2,6]},a=[];for(let n=0;n<t.strides.length;n++){let r=t.strides[n],s=Math.floor((e+r-1)/r),i=Math.floor((e+r-1)/r),o=t.anchors[n];for(let l=0;l<s;l++){let u=r*(l+.5);for(let p=0;p<i;p++){let c=r*(p+.5);for(let d=0;d<o;d++)a.push([c,u])}}}return a}function O9(e,t,a,n,r){let s=ku(t),i=e.map(h=>[s[0]/r*(h[0]-r/2),s[1]/r*(h[1]-r/2),h[2]||0]),o=a&&a!==0&&Math.abs(a)>.2,l=o?P9(a,[0,0]):gg,u=o?i.map(h=>[...Yhe(h,l),h[2]]):i,p=o?Zhe(n):gg,c=l0(t),d=[Po(c,p[0]),Po(c,p[1])];return u.map(h=>[Math.trunc(h[0]+d[0]),Math.trunc(h[1]+d[1]),Math.trunc(h[2]||0)])}function D9(e,t,a,n){let r=t.landmarks.length>=J3.count?J3.symmetryLine:No.symmetryLine,s=0,i=gg,o;if(e&&ne.kernels.includes("rotatewithoffset"))if(s=Xhe(t.landmarks[r[0]],t.landmarks[r[1]]),s&&s!==0&&Math.abs(s)>.2){let u=l0(t),p=[u[0]/a.shape[2],u[1]/a.shape[1]],c=ge.rotateWithOffset(a,s,0,[p[0],p[1]]);i=P9(-s,u),o=mg(t,c,[n,n]),Y(c)}else o=mg(t,a,[n,n]);else o=mg(t,a,[n,n]);return[s,i,o]}var Jhe=e=>{let t=e.map(n=>n[0]),a=e.map(n=>n[1]);return[Math.min(...t)+(Math.max(...t)-Math.min(...t))/2,Math.min(...a)+(Math.max(...a)-Math.min(...a))/2]},z9=(e,t)=>{let a=Jhe(e),n=ku(t);return{startPoint:[a[0]-n[0]/2,a[1]-n[1]/2],endPoint:[a[0]+n[0]/2,a[1]+n[1]/2]}};var L9=6,Qhe=1.4,Ln,yg=null,ms=0,wu=null,Iu=()=>ms;async function B9(e){var t;return ne.initial&&(Ln=null),Ln?e.debug&&X("cached model:",Ln.modelUrl):Ln=await Me((t=e.face.detector)==null?void 0:t.modelPath),ms=Ln.executor&&Ln.inputs[0].shape?Ln.inputs[0].shape[2]:256,wu=ze(ms,"int32"),yg=Kn(F9(ms)),Ln}function e0e(e){if(!yg||!wu)return fn([0,0]);let t={};t.boxStarts=De(e,[0,1],[-1,2]),t.centers=be(t.boxStarts,yg),t.boxSizes=De(e,[0,3],[-1,2]),t.boxSizesNormalized=me(t.boxSizes,wu),t.centersNormalized=me(t.centers,wu),t.halfBoxSize=me(t.boxSizesNormalized,Le.tf2),t.starts=he(t.centersNormalized,t.halfBoxSize),t.ends=be(t.centersNormalized,t.halfBoxSize),t.startNormalized=ae(t.starts,wu),t.endNormalized=ae(t.ends,wu);let a=ru([t.startNormalized,t.endNormalized],1);return Object.keys(t).forEach(n=>Y(t[n])),a}async function W9(e,t){var o,l,u,p;if(!e||e.isDisposedInternal||e.shape.length!==4||e.shape[1]<1||e.shape[2]<1)return[];let a={};a.resized=ge.resizeBilinear(e,[ms,ms]),a.div=me(a.resized,Le.tf127),a.normalized=he(a.div,Le.tf05);let n=Ln==null?void 0:Ln.execute(a.normalized);if(Array.isArray(n)&&n.length>2){let c=n.sort((d,h)=>d.size-h.size);a.concat384=rt([c[0],c[2]],2),a.concat512=rt([c[1],c[3]],2),a.concat=rt([a.concat512,a.concat384],1),a.batch=Oe(a.concat,[0])}else Array.isArray(n)?a.batch=Oe(n[0]):a.batch=Oe(n);Y(n),a.boxes=e0e(a.batch),a.logits=De(a.batch,[0,0],[-1,1]),a.sigmoid=Da(a.logits),a.scores=Oe(a.sigmoid),a.nms=await ge.nonMaxSuppressionAsync(a.boxes,a.scores,((o=t.face.detector)==null?void 0:o.maxDetected)||0,((l=t.face.detector)==null?void 0:l.iouThreshold)||0,((u=t.face.detector)==null?void 0:u.minConfidence)||0);let r=await a.nms.array(),s=[],i=await a.scores.data();for(let c=0;c<r.length;c++){let d=i[r[c]];if(d>(((p=t.face.detector)==null?void 0:p.minConfidence)||0)){let h={};h.bbox=De(a.boxes,[r[c],0],[1,-1]),h.slice=De(a.batch,[r[c],L9-1],[1,-1]),h.squeeze=Oe(h.slice),h.landmarks=J(h.squeeze,[L9,-1]);let f=await h.bbox.data(),m={startPoint:[f[0],f[1]],endPoint:[f[2],f[3]],landmarks:await h.landmarks.array(),confidence:d},g=$9(m,[(e.shape[2]||0)/ms,(e.shape[1]||0)/ms]),x=p0(g,t.face.scale||Qhe),y=c0(x);s.push(y),Object.keys(h).forEach(A=>Y(h[A]))}}return Object.keys(a).forEach(c=>Y(a[c])),s}var Qa,gs=0,t0e=2.3,Ag=Rn.leftEyeLower0,bg=Rn.rightEyeLower0,Su={leftBounds:[Ag[0],Ag[Ag.length-1]],rightBounds:[bg[0],bg[bg.length-1]]},Tu={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};async function j9(e){var t,a;return ne.initial&&(Qa=null),Qa?e.debug&&X("cached model:",Qa.modelUrl):Qa=await Me((t=e.face.iris)==null?void 0:t.modelPath),gs=Qa!=null&&Qa.executor&&((a=Qa.inputs)!=null&&a[0].shape)?Qa.inputs[0].shape[2]:0,gs===-1&&(gs=64),Qa}function h0(e,t,a,n){for(let r=0;r<Q3.length;r++){let{key:s,indices:i}=Q3[r],o=Rn[`${a}${s}`];if(!n||n.includes(s))for(let l=0;l<i.length;l++){let u=i[l];e[o[l]]=[t[u][0],t[u][1],(t[u][2]+e[o[l]][2])/2]}}}var a0e=e=>{let t=e[Su.leftBounds[0]][2],a=e[Su.rightBounds[0]][2];return t-a},U9=(e,t,a,n,r,s=!1)=>{let i=c0(p0(_9([e[a],e[n]]),t0e)),o=ku(i),l=ge.cropAndResize(t,[[i.startPoint[1]/r,i.startPoint[0]/r,i.endPoint[1]/r,i.endPoint[0]/r]],[0],[gs,gs]);if(s&&ne.kernels.includes("flipleftright")){let u=ge.flipLeftRight(l);Y(l),l=u}return{box:i,boxSize:o,crop:l}},G9=(e,t,a,n=!1)=>{let r=[];for(let s=0;s<Tu.numCoordinates;s++){let i=e[s*3],o=e[s*3+1],l=e[s*3+2];r.push([(n?1-i/gs:i/gs)*a[0]+t.startPoint[0],o/gs*a[1]+t.startPoint[1],l])}return{rawCoords:r,iris:r.slice(Tu.index)}},H9=(e,t,a)=>{let n=e[Rn[`${a}EyeUpper0`][Tu.upperCenter]][2],r=e[Rn[`${a}EyeLower0`][Tu.lowerCenter]][2],s=(n+r)/2;return t.map((i,o)=>{let l=s;return o===2?l=n:o===4&&(l=r),[i[0],i[1],l]})};async function q9(e,t,a){if(!(Qa!=null&&Qa.executor))return e;let{box:n,boxSize:r,crop:s}=U9(e,t,Su.leftBounds[0],Su.leftBounds[1],a,!0),{box:i,boxSize:o,crop:l}=U9(e,t,Su.rightBounds[0],Su.rightBounds[1],a,!0),u=rt([s,l]);Y(s),Y(l);let p=Qa.execute(u);Y(u);let c=await p.data();Y(p);let d=c.slice(0,Tu.numCoordinates*3),{rawCoords:h,iris:f}=G9(d,n,r,!0),m=c.slice(Tu.numCoordinates*3),{rawCoords:g,iris:x}=G9(m,i,o,!1),y=a0e(e);Math.abs(y)<30?(h0(e,h,"left",null),h0(e,g,"right",null)):y<1?h0(e,h,"left",["EyeUpper0","EyeLower0"]):h0(e,g,"right",["EyeUpper0","EyeLower0"]);let A=H9(e,f,"left"),b=H9(e,x,"right");return e.concat(A).concat(b)}async function K9(e,t){var s,i,o,l,u,p,c,d,h,f;let a={lips:await((i=(s=t.filter(m=>m.size===160))==null?void 0:s[0])==null?void 0:i.data()),irisL:await((l=(o=t.filter(m=>m.size===10))==null?void 0:o[0])==null?void 0:l.data()),eyeL:await((p=(u=t.filter(m=>m.size===142))==null?void 0:u[0])==null?void 0:p.data()),irisR:await((d=(c=t.filter(m=>m.size===10))==null?void 0:c[1])==null?void 0:d.data()),eyeR:await((f=(h=t.filter(m=>m.size===142))==null?void 0:h[1])==null?void 0:f.data())};for(let m of Object.values(a))if(!m)return e;let n=Ro.reduce((m,g)=>m+=e[g][2],0)/Ro.length;for(let m=0;m<a.irisL.length/2;m++)e.push([a.irisL[2*m+0],a.irisL[2*m+1],n]);let r=Mo.reduce((m,g)=>m+=e[g][2],0)/Mo.length;for(let m=0;m<a.irisR.length/2;m++)e.push([a.irisR[2*m+0],a.irisR[2*m+1],r]);for(let m=0;m<a.eyeL.length/2;m++)e[Ro[m]]=[a.eyeL[2*m+0],a.eyeL[2*m+1],e[Ro[m]][2]];for(let m=0;m<a.eyeR.length/2;m++)e[Mo[m]]=[a.eyeR[2*m+0],a.eyeR[2*m+1],e[Mo[m]][2]];for(let m=0;m<a.lips.length/2;m++)e[Tp[m]]=[a.lips[2*m+0],a.lips[2*m+1],e[Tp[m]][2]];return e}var ir={boxes:[],skipped:Number.MAX_SAFE_INTEGER,timestamp:0},wt=null,Cp=0;async function Z9(e,t){var l,u,p,c,d,h,f,m,g,x;let a=(((l=t.face.detector)==null?void 0:l.skipTime)||0)>te()-ir.timestamp,n=ir.skipped<(((u=t.face.detector)==null?void 0:u.skipFrames)||0);!t.skipAllowed||!a||!n||ir.boxes.length===0?(ir.boxes=await W9(e,t),ir.timestamp=te(),ir.skipped=0):ir.skipped++;let r=[],s=[],i=0,o=Cp;for(let y=0;y<ir.boxes.length;y++){let A=ir.boxes[y],b=0,k,S={id:i++,mesh:[],meshRaw:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,boxScore:0,faceScore:0,annotations:{}};if([b,k,S.tensor]=D9((p=t.face.detector)==null?void 0:p.rotation,A,e,(c=t.face.mesh)!=null&&c.enabled?Cp:Iu()),t.filter.equalization){let C=S.tensor?await Uh(S.tensor):void 0;Y(S.tensor),C&&(S.tensor=C)}if(S.boxScore=Math.round(100*A.confidence)/100,!((d=t.face.mesh)!=null&&d.enabled)||!(wt!=null&&wt.executor)){S.box=u0(A,e),S.boxRaw=d0(A,e),S.score=S.boxScore,S.mesh=A.landmarks.map(C=>[(A.startPoint[0]+A.endPoint[0])/2+(A.endPoint[0]+A.startPoint[0])*C[0]/Iu(),(A.startPoint[1]+A.endPoint[1])/2+(A.endPoint[1]+A.startPoint[1])*C[1]/Iu()]),S.meshRaw=S.mesh.map(C=>[C[0]/(e.shape[2]||0),C[1]/(e.shape[1]||0),(C[2]||0)/o]);for(let C of Object.keys(No))S.annotations[C]=[S.mesh[No[C]]]}else if(!wt)t.debug&&X("face mesh detection requested, but model is not loaded");else{if((h=t.face.attention)!=null&&h.enabled&&!ne.kernels.includes("atan2"))return t.face.attention.enabled=!1,Y(S.tensor),r;let C=wt.execute(S.tensor),_=await C.find($=>$.shape[$.shape.length-1]===1).data();if(S.faceScore=Math.round(100*_[0])/100,S.faceScore<(((f=t.face.detector)==null?void 0:f.minConfidence)||1)){if(A.confidence=S.faceScore,t.face.mesh.keepInvalid){S.box=u0(A,e),S.boxRaw=d0(A,e),S.score=S.boxScore,S.mesh=A.landmarks.map($=>[(A.startPoint[0]+A.endPoint[0])/2+(A.endPoint[0]+A.startPoint[0])*$[0]/Iu(),(A.startPoint[1]+A.endPoint[1])/2+(A.endPoint[1]+A.startPoint[1])*$[1]/Iu()]),S.meshRaw=S.mesh.map($=>[$[0]/(e.shape[2]||1),$[1]/(e.shape[1]||1),($[2]||0)/o]);for(let $ of Object.keys(No))S.annotations[$]=[S.mesh[No[$]]]}}else{let $=C.find(O=>O.shape[O.shape.length-1]===1404),M=J($,[-1,3]),I=await M.array();Y(M),(m=t.face.attention)!=null&&m.enabled?I=await K9(I,C):(g=t.face.iris)!=null&&g.enabled&&(I=await q9(I,S.tensor,Cp)),S.mesh=O9(I,A,b,k,Cp),S.meshRaw=S.mesh.map(O=>[O[0]/(e.shape[2]||0),O[1]/(e.shape[1]||0),(O[2]||0)/o]);for(let O of Object.keys(Rn))S.annotations[O]=Rn[O].map(L=>S.mesh[L]);S.score=S.faceScore;let N={...z9(S.mesh,A),confidence:A.confidence,landmarks:A.landmarks};S.box=u0(N,e),S.boxRaw=d0(N,e),s.push(N)}Y(C)}S.score>(((x=t.face.detector)==null?void 0:x.minConfidence)||1)?r.push(S):Y(S.tensor)}return ir.boxes=s,r}async function Y9(e){var t,a,n,r,s,i;return ne.initial&&(wt=null),(t=e.face.attention)!=null&&t.enabled&&(wt!=null&&wt.signature)&&Object.keys(((a=wt==null?void 0:wt.signature)==null?void 0:a.outputs)||{}).length<6&&(wt=null),wt?e.debug&&X("cached model:",wt.modelUrl):(n=e.face.attention)!=null&&n.enabled?wt=await Me(e.face.attention.modelPath):wt=await Me((r=e.face.mesh)==null?void 0:r.modelPath),Cp=wt.executor&&((s=wt==null?void 0:wt.inputs)!=null&&s[0].shape)?(i=wt==null?void 0:wt.inputs)==null?void 0:i[0].shape[2]:256,wt}var J9=Eo,Q9=Sp;var r0e=["angry","disgust","fear","happy","sad","surprise","neutral"],An,f0=[],ek=0,tk=0,kg=Number.MAX_SAFE_INTEGER;async function ak(e){var t;return ne.initial&&(An=null),An?e.debug&&X("cached model:",An.modelUrl):An=await Me((t=e.face.emotion)==null?void 0:t.modelPath),An}async function wg(e,t,a,n){var i,o;if(!An)return[];let r=kg<(((i=t.face.emotion)==null?void 0:i.skipFrames)||0),s=(((o=t.face.emotion)==null?void 0:o.skipTime)||0)>te()-tk;return t.skipAllowed&&s&&r&&ek===n&&f0[a]&&f0[a].length>0?(kg++,f0[a]):(kg=0,new Promise(async l=>{var p;let u=[];if((p=t.face.emotion)!=null&&p.enabled){let c={},d=An!=null&&An.inputs[0].shape?An.inputs[0].shape[2]:0;c.resize=ge.resizeBilinear(e,[d,d],!1),c.channels=ae(c.resize,Le.rgb),c.grayscale=nt(c.channels,3,!0),c.grayscaleSub=he(c.grayscale,Le.tf05),c.grayscaleMul=ae(c.grayscaleSub,Le.tf2),c.emotion=An==null?void 0:An.execute(c.grayscaleMul),tk=te();let h=await c.emotion.data();for(let f=0;f<h.length;f++)h[f]>(t.face.emotion.minConfidence||0)&&u.push({score:Math.min(.99,Math.trunc(100*h[f])/100),emotion:r0e[f]});u.sort((f,m)=>m.score-f.score),Object.keys(c).forEach(f=>Y(c[f]))}f0[a]=u,ek=n,l(u)}))}var ma,xs=[],rk=0,sk=0,Ig=Number.MAX_SAFE_INTEGER;async function ik(e){var t;return ne.initial&&(ma=null),ma?e.debug&&X("cached model:",ma.modelUrl):ma=await Me((t=e.face.description)==null?void 0:t.modelPath),ma}function s0e(e){let t=e.image||e.tensor||e;if(!(ma!=null&&ma.inputs[0].shape))return t;let a=ge.resizeBilinear(t,[ma.inputs[0].shape[2],ma.inputs[0].shape[1]],!1),n=ae(a,Le.tf255);return Y(a),n}async function Sg(e,t,a,n){var o,l,u,p;let r={age:0,gender:"unknown",genderScore:0,descriptor:[]};if(!(ma!=null&&ma.executor))return r;let s=Ig<(((o=t.face.description)==null?void 0:o.skipFrames)||0),i=(((l=t.face.description)==null?void 0:l.skipTime)||0)>te()-rk;return t.skipAllowed&&s&&i&&sk===n&&((u=xs==null?void 0:xs[a])==null?void 0:u.age)>0&&((p=xs==null?void 0:xs[a])==null?void 0:p.genderScore)>0?(Ig++,xs[a]):(Ig=0,new Promise(async c=>{var d;if((d=t.face.description)!=null&&d.enabled){let h=s0e(e),f=ma==null?void 0:ma.execute(h);rk=te(),Y(h);let g=await f.find(E=>E.shape[1]===1).data(),x=Math.trunc(200*Math.abs(g[0]-.5))/100;x>(t.face.description.minConfidence||0)&&(r.gender=g[0]<=.5?"female":"male",r.genderScore=Math.min(.99,x));let y=ar(f.find(E=>E.shape[1]===100),1),A=(await y.data())[0];Y(y);let k=await f.find(E=>E.shape[1]===100).data();r.age=Math.round(k[A-1]>k[A+1]?10*A-100*k[A-1]:10*A+100*k[A+1])/10,(Number.isNaN(g[0])||Number.isNaN(k[0]))&&X("faceres error:",{model:ma,result:f});let S=f.find(E=>E.shape[1]===1024),C=S?await S.data():[];r.descriptor=Array.from(C),f.forEach(E=>Y(E))}xs[a]=r,sk=n,c(r)}))}var Cu=.1,Tg=.5;function i0e(e,t,a){let n=!1,r=a.length-1;for(let s=0;s<a.length;r=s++)a[s].y>t!=a[r].y>t&&e<(a[r].x-a[s].x)*(t-a[s].y)/(a[r].y-a[s].y)+a[s].x&&(n=!n);return n}async function lk(e){if(!e.tensor||!e.mesh||e.mesh.length<100)return e.tensor;let t=e.tensor.shape[2]||0,a=e.tensor.shape[1]||0,n=await e.tensor.buffer(),r=[];for(let i of Rn.silhouette)r.push({x:(e.mesh[i][0]-e.box[0])/e.box[2],y:(e.mesh[i][1]-e.box[1])/e.box[3]});Cu&&Cu>0&&(r=r.map(i=>({x:i.x>.5?i.x+Cu:i.x-Cu,y:i.y>.5?i.y+Cu:i.y-Cu})));for(let i=0;i<t;i++)for(let o=0;o<a;o++)i0e(i/t,o/t,r)||(n.set(Tg*n.get(0,o,i,0),0,o,i,0),n.set(Tg*n.get(0,o,i,1),0,o,i,1),n.set(Tg*n.get(0,o,i,2),0,o,i,2));return n.toTensor()}var ta,m0=[],Cg=Number.MAX_SAFE_INTEGER,uk=0,dk=0;async function pk(e){var t;return ne.initial&&(ta=null),ta?e.debug&&X("cached model:",ta.modelUrl):ta=await Me((t=e.face.antispoof)==null?void 0:t.modelPath),ta}async function Ng(e,t,a,n){var i,o;if(!(ta!=null&&ta.executor))return 0;let r=(((i=t.face.antispoof)==null?void 0:i.skipTime)||0)>te()-dk,s=Cg<(((o=t.face.antispoof)==null?void 0:o.skipFrames)||0);return t.skipAllowed&&r&&s&&uk===n&&m0[a]?(Cg++,m0[a]):(Cg=0,new Promise(async l=>{let u=ge.resizeBilinear(e,[ta!=null&&ta.inputs[0].shape?ta.inputs[0].shape[2]:0,ta!=null&&ta.inputs[0].shape?ta.inputs[0].shape[1]:0],!1),p=ta==null?void 0:ta.execute(u),c=(await p.data())[0];m0[a]=Math.round(100*c)/100,uk=n,dk=te(),Y([u,p]),l(m0[a])}))}var aa,g0=[],Eg=Number.MAX_SAFE_INTEGER,hk=0,fk=0;async function mk(e){var t;return ne.initial&&(aa=null),aa?e.debug&&X("cached model:",aa.modelUrl):aa=await Me((t=e.face.liveness)==null?void 0:t.modelPath),aa}async function Rg(e,t,a,n){var i,o;if(!(aa!=null&&aa.executor))return 0;let r=(((i=t.face.liveness)==null?void 0:i.skipTime)||0)>te()-fk,s=Eg<(((o=t.face.liveness)==null?void 0:o.skipFrames)||0);return t.skipAllowed&&r&&s&&hk===n&&g0[a]?(Eg++,g0[a]):(Eg=0,new Promise(async l=>{let u=ge.resizeBilinear(e,[aa!=null&&aa.inputs[0].shape?aa.inputs[0].shape[2]:0,aa!=null&&aa.inputs[0].shape?aa.inputs[0].shape[1]:0],!1),p=aa==null?void 0:aa.execute(u),c=(await p.data())[0];g0[a]=Math.round(100*c)/100,hk=n,fk=te(),Y([u,p]),l(g0[a])}))}var Mn,Mg=[],l0e=["white","black","asian","indian","other"],u0e=[15,23,28,35.5,45.5,55.5,65],xk=0,yk=0,$g=Number.MAX_SAFE_INTEGER;async function Ak(e){var t;return ne.initial&&(Mn=null),Mn?e.debug&&X("cached model:",Mn.modelUrl):Mn=await Me((t=e.face.gear)==null?void 0:t.modelPath),Mn}async function _g(e,t,a,n){var i,o;if(!Mn)return{age:0,gender:"unknown",genderScore:0,race:[]};let r=$g<(((i=t.face.gear)==null?void 0:i.skipFrames)||0),s=(((o=t.face.gear)==null?void 0:o.skipTime)||0)>te()-yk;return t.skipAllowed&&s&&r&&xk===n&&Mg[a]?($g++,Mg[a]):($g=0,new Promise(async l=>{var x,y;if(!(Mn!=null&&Mn.inputs[0].shape))return;let u={},p=[[0,.1,.9,.9]];u.resize=ge.cropAndResize(e,p,[0],[Mn.inputs[0].shape[2],Mn.inputs[0].shape[1]]);let c={age:0,gender:"unknown",genderScore:0,race:[]};(x=t.face.gear)!=null&&x.enabled&&([u.age,u.gender,u.race]=Mn.execute(u.resize,["age_output","gender_output","race_output"]));let d=await u.gender.data();c.gender=d[0]>d[1]?"male":"female",c.genderScore=Math.round(100*(d[0]>d[1]?d[0]:d[1]))/100;let h=await u.race.data();for(let A=0;A<h.length;A++)h[A]>(((y=t.face.gear)==null?void 0:y.minConfidence)||.2)&&c.race.push({score:Math.round(100*h[A])/100,race:l0e[A]});c.race.sort((A,b)=>b.score-A.score);let m=Array.from(await u.age.data()).map((A,b)=>[u0e[b],A]).sort((A,b)=>b[1]-A[1]),g=m[0][0];for(let A=1;A<m.length;A++)g+=m[A][1]*(m[A][0]-g);c.age=Math.round(10*g)/10,Object.keys(u).forEach(A=>Y(u[A])),Mg[a]=c,xk=n,yk=te(),l(c)}))}var en,x0=[],vk=0,kk=0,Pg=Number.MAX_SAFE_INTEGER;async function wk(e){return ne.initial&&(en=null),en?e.debug&&X("cached model:",en.modelUrl):en=await Me(e.face.ssrnet.modelPathAge),en}async function Fg(e,t,a,n){var i,o,l,u;if(!en)return{age:0};let r=Pg<(((i=t.face.ssrnet)==null?void 0:i.skipFrames)||0),s=(((o=t.face.ssrnet)==null?void 0:o.skipTime)||0)>te()-kk;return t.skipAllowed&&r&&s&&vk===n&&((l=x0[a])!=null&&l.age)&&((u=x0[a])==null?void 0:u.age)>0?(Pg++,x0[a]):(Pg=0,new Promise(async p=>{var h;if(!(en!=null&&en.inputs)||!en.inputs[0]||!en.inputs[0].shape)return;let c={};c.resize=ge.resizeBilinear(e,[en.inputs[0].shape[2],en.inputs[0].shape[1]],!1),c.enhance=ae(c.resize,Le.tf255);let d={age:0};if((h=t.face.ssrnet)!=null&&h.enabled&&(c.age=en.execute(c.enhance)),c.age){let f=await c.age.data();d.age=Math.trunc(10*f[0])/10}Object.keys(c).forEach(f=>Y(c[f])),x0[a]=d,vk=n,kk=te(),p(d)}))}var $n,y0=[],Sk=0,Tk=0,Og=Number.MAX_SAFE_INTEGER,Dg=[.2989,.587,.114];async function Ck(e){var t;return ne.initial&&($n=null),$n?e.debug&&X("cached model:",$n.modelUrl):$n=await Me((t=e.face.ssrnet)==null?void 0:t.modelPathGender),$n}async function zg(e,t,a,n){var i,o,l,u;if(!$n)return{gender:"unknown",genderScore:0};let r=Og<(((i=t.face.ssrnet)==null?void 0:i.skipFrames)||0),s=(((o=t.face.ssrnet)==null?void 0:o.skipTime)||0)>te()-Tk;return t.skipAllowed&&r&&s&&Sk===n&&((l=y0[a])!=null&&l.gender)&&((u=y0[a])==null?void 0:u.genderScore)>0?(Og++,y0[a]):(Og=0,new Promise(async p=>{var f;if(!($n!=null&&$n.inputs[0].shape))return;let c={};c.resize=ge.resizeBilinear(e,[$n.inputs[0].shape[2],$n.inputs[0].shape[1]],!1),c.enhance=Fe(()=>{let[m,g,x]=wa(c.resize,3,3),y=ae(m,Dg[0]),A=ae(g,Dg[1]),b=ae(x,Dg[2]),k=ch([y,A,b]);return ae(he(k,Le.tf05),2)});let d={gender:"unknown",genderScore:0};(f=t.face.ssrnet)!=null&&f.enabled&&(c.gender=$n.execute(c.enhance));let h=await c.gender.data();d.gender=h[0]>h[1]?"female":"male",d.genderScore=h[0]>h[1]?Math.trunc(100*h[0])/100:Math.trunc(100*h[1])/100,Object.keys(c).forEach(m=>Y(c[m])),y0[a]=d,Sk=n,Tk=te(),p(d)}))}var tn,Lg=[],Ek=0,Rk=0,Mk=Number.MAX_SAFE_INTEGER;async function $k(e){var t;return ne.initial&&(tn=null),tn?e.debug&&X("cached model:",tn.modelUrl):tn=await Me((t=e.face.mobilefacenet)==null?void 0:t.modelPath),tn}async function Bg(e,t,a,n){var i,o;if(!(tn!=null&&tn.executor))return[];let r=Mk<(((i=t.face.mobilefacenet)==null?void 0:i.skipFrames)||0),s=(((o=t.face.mobilefacenet)==null?void 0:o.skipTime)||0)>te()-Rk;return t.skipAllowed&&s&&r&&Ek===n&&Lg[a]?(Mk++,Lg[a]):new Promise(async l=>{var p;let u=[];if((p=t.face.mobilefacenet)!=null&&p.enabled&&(tn!=null&&tn.inputs[0].shape)){let c={};c.crop=ge.resizeBilinear(e,[tn.inputs[0].shape[2],tn.inputs[0].shape[1]],!1),c.data=tn.execute(c.crop);let d=await c.data.data();u=Array.from(d),Object.keys(c).forEach(h=>Y(c[h]))}Lg[a]=u,Ek=n,Rk=te(),l(u)})}var an,Wg=[],Pk=0,Fk=0,Ok=Number.MAX_SAFE_INTEGER;async function Dk(e){return ne.initial&&(an=null),an?e.debug&&X("cached model:",an.modelUrl):an=await Me(e.face.insightface.modelPath),an}async function Vg(e,t,a,n){var i,o;if(!(an!=null&&an.executor))return[];let r=Ok<(((i=t.face.insightface)==null?void 0:i.skipFrames)||0),s=(((o=t.face.insightface)==null?void 0:o.skipTime)||0)>te()-Fk;return t.skipAllowed&&s&&r&&Pk===n&&Wg[a]?(Ok++,Wg[a]):new Promise(async l=>{var p;let u=[];if((p=t.face.insightface)!=null&&p.enabled&&(an!=null&&an.inputs[0].shape)){let c={};c.crop=ge.resizeBilinear(e,[an.inputs[0].shape[2],an.inputs[0].shape[1]],!1),c.data=an.execute(c.crop);let d=await c.data.data();u=Array.from(d),Object.keys(c).forEach(h=>Y(c[h]))}Wg[a]=u,Pk=n,Fk=te(),l(u)})}var d0e=e=>{let t=(c,d)=>Math.atan2(c[1]-d[1],c[0]-d[0]);if(!e.annotations.rightEyeIris||!e.annotations.leftEyeIris)return{bearing:0,strength:0};let a=[0,-.1],n=1,r=(e.mesh[33][2]||0)>(e.mesh[263][2]||0),s=r?e.mesh[473]:e.mesh[468],i=r?[(e.mesh[133][0]+e.mesh[33][0])/2,(e.mesh[133][1]+e.mesh[33][1])/2]:[(e.mesh[263][0]+e.mesh[362][0])/2,(e.mesh[263][1]+e.mesh[362][1])/2],o=r?[e.mesh[133][0]-e.mesh[33][0],e.mesh[23][1]-e.mesh[27][1]]:[e.mesh[263][0]-e.mesh[362][0],e.mesh[253][1]-e.mesh[257][1]],l=[(i[0]-s[0])/o[0]-a[0],n*(s[1]-i[1])/o[1]-a[1]],u=Math.sqrt(l[0]*l[0]+l[1]*l[1]);return u=Math.min(u,e.boxRaw[2]/2,e.boxRaw[3]/2),{bearing:(t([0,0],l)+Math.PI/2)%Math.PI,strength:u}},Lk=(e,t)=>{let a=m=>{let g=Math.sqrt(m[0]*m[0]+m[1]*m[1]+m[2]*m[2]);return m[0]/=g,m[1]/=g,m[2]/=g,m},n=(m,g)=>{let x=m[0]-g[0],y=m[1]-g[1],A=m[2]-g[2];return[x,y,A]},r=(m,g)=>{let x=m[1]*g[2]-m[2]*g[1],y=m[2]*g[0]-m[0]*g[2],A=m[0]*g[1]-m[1]*g[0];return[x,y,A]},s=m=>{let[g,x,y,A,b,k,S,C,E]=m,_,$,M;return A<1?A>-1?(M=Math.asin(A),$=Math.atan2(-S,g),_=Math.atan2(-k,b)):(M=-Math.PI/2,$=-Math.atan2(C,E),_=0):(M=Math.PI/2,$=Math.atan2(C,E),_=0),Number.isNaN(_)&&(_=0),Number.isNaN($)&&($=0),Number.isNaN(M)&&(M=0),{pitch:2*-_,yaw:2*-$,roll:2*-M}},i=e.meshRaw;if(!i||i.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let o=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,l=[i[10],i[152],i[234],i[454]].map(m=>[m[0]*t[0]/o,m[1]*t[1]/o,m[2]]),u=a(n(l[1],l[0])),p=a(n(l[3],l[2])),c=a(r(p,u));p=r(u,c);let d=[p[0],p[1],p[2],u[0],u[1],u[2],c[0],c[1],c[2]],h=s(d),f=i.length===478?d0e(e):{bearing:0,strength:0};return{angle:h,matrix:d,gaze:f}};function Bk(e,t){let a=e==null?void 0:e.annotations;if(!a)return 0;let n=Math.max(Math.abs(a.leftEyeIris[3][0]-a.leftEyeIris[1][0]),Math.abs(a.rightEyeIris[3][0]-a.rightEyeIris[1][0]))/t;return Math.round(1.17/n)/100}var Ug=async(e,t)=>{var f,m,g,x,y,A,b,k,S,C,E,_,$,M,I,N,O,L,W,G,H,U,j;let a=te(),n,r,s,i,o,l,u,p,c,d=[];e.state="run:face";let h=await Z9(t,e.config);if(e.performance.face=ne.perfadd?(e.performance.face||0)+Math.trunc(te()-a):Math.trunc(te()-a),!t.shape||t.shape.length!==4)return[];if(!h)return[];for(let V=0;V<h.length;V++){if(e.analyze("Get Face"),!h[V].tensor||h[V].tensor.isDisposedInternal){X("Face object is disposed:",h[V].tensor);continue}if((f=e.config.face.detector)!=null&&f.mask){let fe=await lk(h[V]);Y(h[V].tensor),fe&&(h[V].tensor=fe)}let Q=h[V].mesh&&h[V].mesh.length>200?Lk(h[V],[t.shape[2],t.shape[1]]):null;e.analyze("Start Emotion:"),e.config.async?i=(m=e.config.face.emotion)!=null&&m.enabled?wg(h[V].tensor||Ve([]),e.config,V,h.length):[]:(e.state="run:emotion",a=te(),i=(g=e.config.face.emotion)!=null&&g.enabled?await wg(h[V].tensor||Ve([]),e.config,V,h.length):[],e.performance.emotion=ne.perfadd?(e.performance.emotion||0)+Math.trunc(te()-a):Math.trunc(te()-a)),e.analyze("End Emotion:"),e.analyze("Start AntiSpoof:"),e.config.async?u=(x=e.config.face.antispoof)!=null&&x.enabled?Ng(h[V].tensor||Ve([]),e.config,V,h.length):0:(e.state="run:antispoof",a=te(),u=(y=e.config.face.antispoof)!=null&&y.enabled?await Ng(h[V].tensor||Ve([]),e.config,V,h.length):0,e.performance.antispoof=ne.perfadd?(e.performance.antispoof||0)+Math.trunc(te()-a):Math.trunc(te()-a)),e.analyze("End AntiSpoof:"),e.analyze("Start Liveness:"),e.config.async?p=(A=e.config.face.liveness)!=null&&A.enabled?Rg(h[V].tensor||Ve([]),e.config,V,h.length):0:(e.state="run:liveness",a=te(),p=(b=e.config.face.liveness)!=null&&b.enabled?await Rg(h[V].tensor||Ve([]),e.config,V,h.length):0,e.performance.liveness=ne.perfadd?(e.performance.antispoof||0)+Math.trunc(te()-a):Math.trunc(te()-a)),e.analyze("End Liveness:"),e.analyze("Start GEAR:"),e.config.async?r=(k=e.config.face.gear)!=null&&k.enabled?_g(h[V].tensor||Ve([]),e.config,V,h.length):null:(e.state="run:gear",a=te(),r=(S=e.config.face.gear)!=null&&S.enabled?await _g(h[V].tensor||Ve([]),e.config,V,h.length):null,e.performance.gear=Math.trunc(te()-a)),e.analyze("End GEAR:"),e.analyze("Start SSRNet:"),e.config.async?(n=(C=e.config.face.ssrnet)!=null&&C.enabled?Fg(h[V].tensor||Ve([]),e.config,V,h.length):null,s=(E=e.config.face.ssrnet)!=null&&E.enabled?zg(h[V].tensor||Ve([]),e.config,V,h.length):null):(e.state="run:ssrnet",a=te(),n=(_=e.config.face.ssrnet)!=null&&_.enabled?await Fg(h[V].tensor||Ve([]),e.config,V,h.length):null,s=($=e.config.face.ssrnet)!=null&&$.enabled?await zg(h[V].tensor||Ve([]),e.config,V,h.length):null,e.performance.ssrnet=Math.trunc(te()-a)),e.analyze("End SSRNet:"),e.analyze("Start MobileFaceNet:"),e.config.async?o=(M=e.config.face.mobilefacenet)!=null&&M.enabled?Bg(h[V].tensor||Ve([]),e.config,V,h.length):null:(e.state="run:mobilefacenet",a=te(),o=(I=e.config.face.mobilefacenet)!=null&&I.enabled?await Bg(h[V].tensor||Ve([]),e.config,V,h.length):null,e.performance.mobilefacenet=Math.trunc(te()-a)),e.analyze("End MobileFaceNet:"),e.analyze("Start InsightFace:"),e.config.async?l=(N=e.config.face.insightface)!=null&&N.enabled?Vg(h[V].tensor||Ve([]),e.config,V,h.length):null:(e.state="run:mobilefacenet",a=te(),l=(O=e.config.face.insightface)!=null&&O.enabled?await Vg(h[V].tensor||Ve([]),e.config,V,h.length):null,e.performance.mobilefacenet=Math.trunc(te()-a)),e.analyze("End InsightFace:"),e.analyze("Start Description:"),e.config.async?c=Sg(h[V].tensor||Ve([]),e.config,V,h.length):(e.state="run:description",a=te(),c=await Sg(h[V].tensor||Ve([]),e.config,V,h.length),e.performance.description=ne.perfadd?(e.performance.description||0)+Math.trunc(te()-a):Math.trunc(te()-a)),e.analyze("End Description:"),e.config.async&&([n,s,i,o,l,c,r,u,p]=await Promise.all([n,s,i,o,l,c,r,u,p])),e.analyze("Finish Face:"),(L=e.config.face.ssrnet)!=null&&L.enabled&&n&&s&&(c={...c,age:n.age,gender:s.gender,genderScore:s.genderScore}),(W=e.config.face.gear)!=null&&W.enabled&&r&&(c={...c,age:r.age,gender:r.gender,genderScore:r.genderScore,race:r.race}),(G=e.config.face.mobilefacenet)!=null&&G.enabled&&o&&(c.descriptor=o),(H=e.config.face.insightface)!=null&&H.enabled&&l&&(c.descriptor=l);let Z=(U=e.config.face.iris)!=null&&U.enabled?Bk(h[V],t.shape[2]):0,re=(j=e.config.face.detector)!=null&&j.return?Oe(h[V].tensor):null;Y(h[V].tensor),h[V].tensor&&delete h[V].tensor;let ee={...h[V],id:V};c.age&&(ee.age=c.age),c.gender&&(ee.gender=c.gender),c.genderScore&&(ee.genderScore=c.genderScore),c.descriptor&&(ee.embedding=c.descriptor),c.race&&(ee.race=c.race),i&&(ee.emotion=i),u&&(ee.real=u),p&&(ee.live=p),Z>0&&(ee.distance=Z),Q&&(ee.rotation=Q),re&&(ee.tensor=re),d.push(ee),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.performance.face&&delete e.performance.face,e.performance.age&&delete e.performance.age,e.performance.gender&&delete e.performance.gender,e.performance.emotion&&delete e.performance.emotion),d};var Ma={thumb:0,index:1,middle:2,ring:3,pinky:4,all:[0,1,2,3,4],nameMapping:{0:"thumb",1:"index",2:"middle",3:"ring",4:"pinky"},pointsMapping:{0:[[0,1],[1,2],[2,3],[3,4]],1:[[0,5],[5,6],[6,7],[7,8]],2:[[0,9],[9,10],[10,11],[11,12]],3:[[0,13],[13,14],[14,15],[15,16]],4:[[0,17],[17,18],[18,19],[19,20]]},getName:e=>Ma.nameMapping[e],getPoints:e=>Ma.pointsMapping[e]},As={none:0,half:1,full:2,nameMapping:{0:"none",1:"half",2:"full"},getName:e=>As.nameMapping[e]},Rt={verticalUp:0,verticalDown:1,horizontalLeft:2,horizontalRight:3,diagonalUpRight:4,diagonalUpLeft:5,diagonalDownRight:6,diagonalDownLeft:7,nameMapping:{0:"verticalUp",1:"verticalDown",2:"horizontalLeft",3:"horizontalRight",4:"diagonalUpRight",5:"diagonalUpLeft",6:"diagonalDownRight",7:"diagonalDownLeft"},getName:e=>Rt.nameMapping[e]},ys=class{constructor(t){de(this,"name");de(this,"curls");de(this,"directions");de(this,"weights");de(this,"weightsRelative");this.name=t,this.curls={},this.directions={},this.weights=[1,1,1,1,1],this.weightsRelative=[1,1,1,1,1]}curl(t,a,n){typeof this.curls[t]=="undefined"&&(this.curls[t]=[]),this.curls[t].push([a,n])}direction(t,a,n){this.directions[t]||(this.directions[t]=[]),this.directions[t].push([a,n])}weight(t,a){this.weights[t]=a;let n=this.weights.reduce((r,s)=>r+s,0);this.weightsRelative=this.weights.map(r=>r*5/n)}matchAgainst(t,a){let n=0;for(let r in t){let s=t[r],i=this.curls[r];if(typeof i=="undefined"){n+=this.weightsRelative[r];continue}for(let[o,l]of i)if(s===o){n+=l*this.weightsRelative[r];break}}for(let r in a){let s=a[r],i=this.directions[r];if(typeof i=="undefined"){n+=this.weightsRelative[r];continue}for(let[o,l]of i)if(s===o){n+=l*this.weightsRelative[r];break}}return n/10}};var{thumb:Bn,index:Rr,middle:Mr,ring:Fo,pinky:Oo}=Ma,{none:Wn,half:c0e,full:Vn}=As,{verticalUp:Nu,verticalDown:N5e,horizontalLeft:Gg,horizontalRight:h0e,diagonalUpRight:f0e,diagonalUpLeft:Eu,diagonalDownRight:E5e,diagonalDownLeft:R5e}=Rt,bs=new ys("thumbs up");bs.curl(Bn,Wn,1);bs.direction(Bn,Nu,1);bs.direction(Bn,Eu,.25);bs.direction(Bn,f0e,.25);for(let e of[Ma.index,Ma.middle,Ma.ring,Ma.pinky])bs.curl(e,Vn,1),bs.direction(e,Gg,1),bs.direction(e,h0e,1);var Wt=new ys("victory");Wt.curl(Bn,c0e,.5);Wt.curl(Bn,Wn,.5);Wt.direction(Bn,Nu,1);Wt.direction(Bn,Eu,1);Wt.curl(Rr,Wn,1);Wt.direction(Rr,Nu,.75);Wt.direction(Rr,Eu,1);Wt.curl(Mr,Wn,1);Wt.direction(Mr,Nu,1);Wt.direction(Mr,Eu,.75);Wt.curl(Fo,Vn,1);Wt.direction(Fo,Nu,.2);Wt.direction(Fo,Eu,1);Wt.direction(Fo,Gg,.2);Wt.curl(Oo,Vn,1);Wt.direction(Oo,Nu,.2);Wt.direction(Oo,Eu,1);Wt.direction(Oo,Gg,.2);Wt.weight(Rr,2);Wt.weight(Mr,2);var vs=new ys("point");vs.curl(Bn,Vn,1);vs.curl(Rr,Wn,.5);vs.curl(Mr,Vn,.5);vs.curl(Fo,Vn,.5);vs.curl(Oo,Vn,.5);vs.weight(Rr,2);vs.weight(Mr,2);var ks=new ys("middle finger");ks.curl(Bn,Wn,1);ks.curl(Rr,Vn,.5);ks.curl(Mr,Vn,.5);ks.curl(Fo,Vn,.5);ks.curl(Oo,Vn,.5);ks.weight(Rr,2);ks.weight(Mr,2);var Ru=new ys("open palm");Ru.curl(Bn,Wn,.75);Ru.curl(Rr,Wn,.75);Ru.curl(Mr,Wn,.75);Ru.curl(Fo,Wn,.75);Ru.curl(Oo,Wn,.75);var Wk=[bs,Wt,vs,ks,Ru];var m0e=.7,Do={HALF_CURL_START_LIMIT:60,NO_CURL_START_LIMIT:130,DISTANCE_VOTE_POWER:1.1,SINGLE_ANGLE_VOTE_POWER:.9,TOTAL_ANGLE_VOTE_POWER:1.6};function Vk(e,t,a,n){let r=(t-n)/(e-a),s=Math.atan(r)*180/Math.PI;return s<=0?s=-s:s>0&&(s=180-s),s}function Gk(e,t){if(!e||!t)return[0,0];let a=Vk(e[0],e[1],t[0],t[1]);if(e.length===2)return a;let n=Vk(e[1],e[2],t[1],t[2]);return[a,n]}function Uk(e,t=1){let a=0,n=0,r=0;return e>=75&&e<=105?a=1*t:e>=25&&e<=155?n=1*t:r=1*t,[a,n,r]}function g0e(e,t,a){let n=e[0]-t[0],r=e[0]-a[0],s=t[0]-a[0],i=e[1]-t[1],o=e[1]-a[1],l=t[1]-a[1],u=e[2]-t[2],p=e[2]-a[2],c=t[2]-a[2],d=Math.sqrt(n*n+i*i+u*u),h=Math.sqrt(r*r+o*o+p*p),f=Math.sqrt(s*s+l*l+c*c),m=(f*f+d*d-h*h)/(2*f*d);m>1?m=1:m<-1&&(m=-1);let g=Math.acos(m);g=57.2958*g%180;let x;return g>Do.NO_CURL_START_LIMIT?x=As.none:g>Do.HALF_CURL_START_LIMIT?x=As.half:x=As.full,x}function Hk(e,t,a,n){let r;return n===Math.abs(e)?e>0?r=Rt.horizontalLeft:r=Rt.horizontalRight:n===Math.abs(t)?t>0?r=Rt.horizontalLeft:r=Rt.horizontalRight:a>0?r=Rt.horizontalLeft:r=Rt.horizontalRight,r}function jk(e,t,a,n){let r;return n===Math.abs(e)?e<0?r=Rt.verticalDown:r=Rt.verticalUp:n===Math.abs(t)?t<0?r=Rt.verticalDown:r=Rt.verticalUp:a<0?r=Rt.verticalDown:r=Rt.verticalUp,r}function x0e(e,t,a,n,r,s,i,o){let l,u=jk(e,t,a,n),p=Hk(r,s,i,o);return u===Rt.verticalUp?p===Rt.horizontalLeft?l=Rt.diagonalUpLeft:l=Rt.diagonalUpRight:p===Rt.horizontalLeft?l=Rt.diagonalDownLeft:l=Rt.diagonalDownRight,l}function y0e(e,t,a,n){let r=e[0]-t[0],s=e[0]-a[0],i=t[0]-a[0],o=e[1]-t[1],l=e[1]-a[1],u=t[1]-a[1],p=Math.max(Math.abs(r),Math.abs(s),Math.abs(i)),c=Math.max(Math.abs(o),Math.abs(l),Math.abs(u)),d=0,h=0,f=0,m=c/(p+1e-5);m>1.5?d+=Do.DISTANCE_VOTE_POWER:m>.66?h+=Do.DISTANCE_VOTE_POWER:f+=Do.DISTANCE_VOTE_POWER;let g=Math.sqrt(r*r+o*o),x=Math.sqrt(s*s+l*l),y=Math.sqrt(i*i+u*u),A=Math.max(g,x,y),b=e[0],k=e[1],S=a[0],C=a[1];A===g?(S=a[0],C=a[1]):A===y&&(b=t[0],k=t[1]);let $=Gk([b,k],[S,C]),M=Uk($,Do.TOTAL_ANGLE_VOTE_POWER);d+=M[0],h+=M[1],f+=M[2];for(let N of n){let O=Uk(N,Do.SINGLE_ANGLE_VOTE_POWER);d+=O[0],h+=O[1],f+=O[2]}let I;return d===Math.max(d,h,f)?I=jk(l,o,u,c):f===Math.max(h,f)?I=Hk(s,r,i,p):I=x0e(l,o,u,c,s,r,i,p),I}function qk(e){let t=[],a=[],n=[],r=[];if(!e)return{curls:n,directions:r};for(let s of Ma.all){let i=Ma.getPoints(s),o=[],l=[];for(let u of i){let p=e[u[0]],c=e[u[1]],d=Gk(p,c),h=d[0],f=d[1];o.push(h),l.push(f)}t.push(o),a.push(l)}for(let s of Ma.all){let i=s===Ma.thumb?1:0,o=Ma.getPoints(s),l=e[o[i][0]],u=e[o[i+1][1]],p=e[o[3][1]],c=g0e(l,u,p),d=y0e(l,u,p,t[s].slice(i));n[s]=c,r[s]=d}return{curls:n,directions:r}}function A0(e){if(!e||e.length===0)return null;let t=qk(e),a={};for(let n of Ma.all)a[Ma.getName(n)]={curl:As.getName(t.curls[n]),direction:Rt.getName(t.directions[n])};return a}function Xk(e){let t=[];if(!e||e.length===0)return t;let a=qk(e);for(let n of Wk){let r=n.matchAgainst(a.curls,a.directions);r>=m0e&&t.push({name:n.name,confidence:r})}return t}var Kk=e=>{if(!e)return[];let t=[];for(let a=0;a<e.length;a++){let n=e[a].keypoints.find(l=>l.part==="leftWrist"),r=e[a].keypoints.find(l=>l.part==="rightWrist"),s=e[a].keypoints.find(l=>l.part==="nose");s&&n&&r&&n.position[1]<s.position[1]&&r.position[1]<s.position[1]?t.push({body:a,gesture:"i give up"}):s&&n&&n.position[1]<s.position[1]?t.push({body:a,gesture:"raise left hand"}):s&&r&&r.position[1]<s.position[1]&&t.push({body:a,gesture:"raise right hand"});let i=e[a].keypoints.find(l=>l.part==="leftShoulder"),o=e[a].keypoints.find(l=>l.part==="rightShoulder");i&&o&&Math.abs(i.positionRaw[1]-o.positionRaw[1])>.1&&t.push({body:a,gesture:`leaning ${i.position[1]>o.position[1]?"left":"right"}`})}return t},Zk=e=>{if(!e)return[];let t=[];for(let a=0;a<e.length;a++)if(e[a].mesh&&e[a].mesh.length>450){let n=(e[a].mesh[33][2]||0)-(e[a].mesh[263][2]||0),r=e[a].mesh[33][0]-e[a].mesh[263][0];Math.abs(n/r)<=.15?t.push({face:a,gesture:"facing center"}):t.push({face:a,gesture:`facing ${n<0?"left":"right"}`}),Math.abs(e[a].mesh[374][1]-e[a].mesh[386][1])/Math.abs(e[a].mesh[443][1]-e[a].mesh[450][1])<.2&&t.push({face:a,gesture:"blink left eye"}),Math.abs(e[a].mesh[145][1]-e[a].mesh[159][1])/Math.abs(e[a].mesh[223][1]-e[a].mesh[230][1])<.2&&t.push({face:a,gesture:"blink right eye"});let o=Math.min(100,500*Math.abs(e[a].mesh[13][1]-e[a].mesh[14][1])/Math.abs(e[a].mesh[10][1]-e[a].mesh[152][1]));o>10&&t.push({face:a,gesture:`mouth ${Math.trunc(o)}% open`});let l=e[a].mesh[152][2]||0;Math.abs(l)>10&&t.push({face:a,gesture:`head ${l<0?"up":"down"}`})}return t},Yk=e=>{var a,n,r,s;if(!e)return[];let t=[];for(let i=0;i<e.length;i++){if(!((n=(a=e[i].annotations)==null?void 0:a.leftEyeIris)!=null&&n[0])||!((s=(r=e[i].annotations)==null?void 0:r.rightEyeIris)!=null&&s[0]))continue;let o=e[i].annotations.leftEyeIris[3][0]-e[i].annotations.leftEyeIris[1][0],l=e[i].annotations.leftEyeIris[4][1]-e[i].annotations.leftEyeIris[2][1],u=Math.abs(o*l),p=e[i].annotations.rightEyeIris[3][0]-e[i].annotations.rightEyeIris[1][0],c=e[i].annotations.rightEyeIris[4][1]-e[i].annotations.rightEyeIris[2][1],d=Math.abs(p*c),h=!1;Math.abs(u-d)/Math.max(u,d)<.25&&(h=!0,t.push({iris:i,gesture:"facing center"}));let m=Math.abs(e[i].mesh[263][0]-e[i].annotations.leftEyeIris[0][0])/e[i].box[2],g=Math.abs(e[i].mesh[33][0]-e[i].annotations.rightEyeIris[0][0])/e[i].box[2];(m>.06||g>.06)&&(h=!1),m>g?m>.05&&t.push({iris:i,gesture:"looking right"}):g>.05&&t.push({iris:i,gesture:"looking left"});let x=Math.abs(e[i].mesh[145][1]-e[i].annotations.rightEyeIris[0][1])/e[i].box[3],y=Math.abs(e[i].mesh[374][1]-e[i].annotations.leftEyeIris[0][1])/e[i].box[3];(y<.01||x<.01||y>.022||x>.022)&&(h=!1),(y<.01||x<.01)&&t.push({iris:i,gesture:"looking down"}),(y>.022||x>.022)&&t.push({iris:i,gesture:"looking up"}),h&&t.push({iris:i,gesture:"looking center"})}return t},Jk=e=>{if(!e)return[];let t=[];for(let a=0;a<e.length;a++){let n=[];if(e[a].annotations)for(let[r,s]of Object.entries(e[a].annotations))r!=="palmBase"&&Array.isArray(s)&&s[0]&&n.push({name:r.toLowerCase(),position:s[0]});if(n&&n.length>0){let r=n.reduce((i,o)=>(i.position[2]||0)<(o.position[2]||0)?i:o);t.push({hand:a,gesture:`${r.name} forward`});let s=n.reduce((i,o)=>i.position[1]<o.position[1]?i:o);t.push({hand:a,gesture:`${s.name} up`})}if(e[a].keypoints){let r=Xk(e[a].keypoints);for(let s of r)t.push({hand:a,gesture:s.name})}}return t};function b0(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function Np(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function tw(e,t,a){let n=t.shape[1],r=t.shape[2],s=[[e.startPoint[1]/n,e.startPoint[0]/r,e.endPoint[1]/n,e.endPoint[0]/r]];return ge.cropAndResize(t,s,[0],a)}function aw(e,t){let a=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],n=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],r=e.palmLandmarks.map(s=>[s[0]*t[0],s[1]*t[1]]);return{startPoint:a,endPoint:n,palmLandmarks:r,confidence:e.confidence}}function v0(e,t=1.5){let a=Np(e),n=b0(e),r=[t*n[0]/2,t*n[1]/2],s=[a[0]-r[0],a[1]-r[1]],i=[a[0]+r[0],a[1]+r[1]];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}function k0(e){let t=Np(e),a=b0(e),r=Math.max(...a)/2,s=[t[0]-r,t[1]-r],i=[t[0]+r,t[1]+r];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}function b0e(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function nw(e,t){let a=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return b0e(a)}var Qk=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function ws(e,t){let a=0;for(let n=0;n<e.length;n++)a+=e[n]*t[n];return a}function v0e(e,t){let a=[];for(let n=0;n<e.length;n++)a.push(e[n][t]);return a}function ew(e,t){let a=[],n=e.length;for(let r=0;r<n;r++){a.push([]);for(let s=0;s<n;s++)a[r].push(ws(e[r],v0e(t,s)))}return a}function jg(e,t){let a=Math.cos(e),n=Math.sin(e),r=[[a,-n,0],[n,a,0],[0,0,1]],s=Qk(t[0],t[1]),i=ew(s,r),o=Qk(-t[0],-t[1]);return ew(i,o)}function rw(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],a=[e[0][2],e[1][2]],n=[-ws(t[0],a),-ws(t[1],a)];return[t[0].concat(n[0]),t[1].concat(n[1]),[0,0,1]]}function qg(e,t){return[ws(e,t[0]),ws(e,t[1])]}var iw=[{x:.015625,y:.015625},{x:.015625,y:.015625},{x:.046875,y:.015625},{x:.046875,y:.015625},{x:.078125,y:.015625},{x:.078125,y:.015625},{x:.109375,y:.015625},{x:.109375,y:.015625},{x:.140625,y:.015625},{x:.140625,y:.015625},{x:.171875,y:.015625},{x:.171875,y:.015625},{x:.203125,y:.015625},{x:.203125,y:.015625},{x:.234375,y:.015625},{x:.234375,y:.015625},{x:.265625,y:.015625},{x:.265625,y:.015625},{x:.296875,y:.015625},{x:.296875,y:.015625},{x:.328125,y:.015625},{x:.328125,y:.015625},{x:.359375,y:.015625},{x:.359375,y:.015625},{x:.390625,y:.015625},{x:.390625,y:.015625},{x:.421875,y:.015625},{x:.421875,y:.015625},{x:.453125,y:.015625},{x:.453125,y:.015625},{x:.484375,y:.015625},{x:.484375,y:.015625},{x:.515625,y:.015625},{x:.515625,y:.015625},{x:.546875,y:.015625},{x:.546875,y:.015625},{x:.578125,y:.015625},{x:.578125,y:.015625},{x:.609375,y:.015625},{x:.609375,y:.015625},{x:.640625,y:.015625},{x:.640625,y:.015625},{x:.671875,y:.015625},{x:.671875,y:.015625},{x:.703125,y:.015625},{x:.703125,y:.015625},{x:.734375,y:.015625},{x:.734375,y:.015625},{x:.765625,y:.015625},{x:.765625,y:.015625},{x:.796875,y:.015625},{x:.796875,y:.015625},{x:.828125,y:.015625},{x:.828125,y:.015625},{x:.859375,y:.015625},{x:.859375,y:.015625},{x:.890625,y:.015625},{x:.890625,y:.015625},{x:.921875,y:.015625},{x:.921875,y:.015625},{x:.953125,y:.015625},{x:.953125,y:.015625},{x:.984375,y:.015625},{x:.984375,y:.015625},{x:.015625,y:.046875},{x:.015625,y:.046875},{x:.046875,y:.046875},{x:.046875,y:.046875},{x:.078125,y:.046875},{x:.078125,y:.046875},{x:.109375,y:.046875},{x:.109375,y:.046875},{x:.140625,y:.046875},{x:.140625,y:.046875},{x:.171875,y:.046875},{x:.171875,y:.046875},{x:.203125,y:.046875},{x:.203125,y:.046875},{x:.234375,y:.046875},{x:.234375,y:.046875},{x:.265625,y:.046875},{x:.265625,y:.046875},{x:.296875,y:.046875},{x:.296875,y:.046875},{x:.328125,y:.046875},{x:.328125,y:.046875},{x:.359375,y:.046875},{x:.359375,y:.046875},{x:.390625,y:.046875},{x:.390625,y:.046875},{x:.421875,y:.046875},{x:.421875,y:.046875},{x:.453125,y:.046875},{x:.453125,y:.046875},{x:.484375,y:.046875},{x:.484375,y:.046875},{x:.515625,y:.046875},{x:.515625,y:.046875},{x:.546875,y:.046875},{x:.546875,y:.046875},{x:.578125,y:.046875},{x:.578125,y:.046875},{x:.609375,y:.046875},{x:.609375,y:.046875},{x:.640625,y:.046875},{x:.640625,y:.046875},{x:.671875,y:.046875},{x:.671875,y:.046875},{x:.703125,y:.046875},{x:.703125,y:.046875},{x:.734375,y:.046875},{x:.734375,y:.046875},{x:.765625,y:.046875},{x:.765625,y:.046875},{x:.796875,y:.046875},{x:.796875,y:.046875},{x:.828125,y:.046875},{x:.828125,y:.046875},{x:.859375,y:.046875},{x:.859375,y:.046875},{x:.890625,y:.046875},{x:.890625,y:.046875},{x:.921875,y:.046875},{x:.921875,y:.046875},{x:.953125,y:.046875},{x:.953125,y:.046875},{x:.984375,y:.046875},{x:.984375,y:.046875},{x:.015625,y:.078125},{x:.015625,y:.078125},{x:.046875,y:.078125},{x:.046875,y:.078125},{x:.078125,y:.078125},{x:.078125,y:.078125},{x:.109375,y:.078125},{x:.109375,y:.078125},{x:.140625,y:.078125},{x:.140625,y:.078125},{x:.171875,y:.078125},{x:.171875,y:.078125},{x:.203125,y:.078125},{x:.203125,y:.078125},{x:.234375,y:.078125},{x:.234375,y:.078125},{x:.265625,y:.078125},{x:.265625,y:.078125},{x:.296875,y:.078125},{x:.296875,y:.078125},{x:.328125,y:.078125},{x:.328125,y:.078125},{x:.359375,y:.078125},{x:.359375,y:.078125},{x:.390625,y:.078125},{x:.390625,y:.078125},{x:.421875,y:.078125},{x:.421875,y:.078125},{x:.453125,y:.078125},{x:.453125,y:.078125},{x:.484375,y:.078125},{x:.484375,y:.078125},{x:.515625,y:.078125},{x:.515625,y:.078125},{x:.546875,y:.078125},{x:.546875,y:.078125},{x:.578125,y:.078125},{x:.578125,y:.078125},{x:.609375,y:.078125},{x:.609375,y:.078125},{x:.640625,y:.078125},{x:.640625,y:.078125},{x:.671875,y:.078125},{x:.671875,y:.078125},{x:.703125,y:.078125},{x:.703125,y:.078125},{x:.734375,y:.078125},{x:.734375,y:.078125},{x:.765625,y:.078125},{x:.765625,y:.078125},{x:.796875,y:.078125},{x:.796875,y:.078125},{x:.828125,y:.078125},{x:.828125,y:.078125},{x:.859375,y:.078125},{x:.859375,y:.078125},{x:.890625,y:.078125},{x:.890625,y:.078125},{x:.921875,y:.078125},{x:.921875,y:.078125},{x:.953125,y:.078125},{x:.953125,y:.078125},{x:.984375,y:.078125},{x:.984375,y:.078125},{x:.015625,y:.109375},{x:.015625,y:.109375},{x:.046875,y:.109375},{x:.046875,y:.109375},{x:.078125,y:.109375},{x:.078125,y:.109375},{x:.109375,y:.109375},{x:.109375,y:.109375},{x:.140625,y:.109375},{x:.140625,y:.109375},{x:.171875,y:.109375},{x:.171875,y:.109375},{x:.203125,y:.109375},{x:.203125,y:.109375},{x:.234375,y:.109375},{x:.234375,y:.109375},{x:.265625,y:.109375},{x:.265625,y:.109375},{x:.296875,y:.109375},{x:.296875,y:.109375},{x:.328125,y:.109375},{x:.328125,y:.109375},{x:.359375,y:.109375},{x:.359375,y:.109375},{x:.390625,y:.109375},{x:.390625,y:.109375},{x:.421875,y:.109375},{x:.421875,y:.109375},{x:.453125,y:.109375},{x:.453125,y:.109375},{x:.484375,y:.109375},{x:.484375,y:.109375},{x:.515625,y:.109375},{x:.515625,y:.109375},{x:.546875,y:.109375},{x:.546875,y:.109375},{x:.578125,y:.109375},{x:.578125,y:.109375},{x:.609375,y:.109375},{x:.609375,y:.109375},{x:.640625,y:.109375},{x:.640625,y:.109375},{x:.671875,y:.109375},{x:.671875,y:.109375},{x:.703125,y:.109375},{x:.703125,y:.109375},{x:.734375,y:.109375},{x:.734375,y:.109375},{x:.765625,y:.109375},{x:.765625,y:.109375},{x:.796875,y:.109375},{x:.796875,y:.109375},{x:.828125,y:.109375},{x:.828125,y:.109375},{x:.859375,y:.109375},{x:.859375,y:.109375},{x:.890625,y:.109375},{x:.890625,y:.109375},{x:.921875,y:.109375},{x:.921875,y:.109375},{x:.953125,y:.109375},{x:.953125,y:.109375},{x:.984375,y:.109375},{x:.984375,y:.109375},{x:.015625,y:.140625},{x:.015625,y:.140625},{x:.046875,y:.140625},{x:.046875,y:.140625},{x:.078125,y:.140625},{x:.078125,y:.140625},{x:.109375,y:.140625},{x:.109375,y:.140625},{x:.140625,y:.140625},{x:.140625,y:.140625},{x:.171875,y:.140625},{x:.171875,y:.140625},{x:.203125,y:.140625},{x:.203125,y:.140625},{x:.234375,y:.140625},{x:.234375,y:.140625},{x:.265625,y:.140625},{x:.265625,y:.140625},{x:.296875,y:.140625},{x:.296875,y:.140625},{x:.328125,y:.140625},{x:.328125,y:.140625},{x:.359375,y:.140625},{x:.359375,y:.140625},{x:.390625,y:.140625},{x:.390625,y:.140625},{x:.421875,y:.140625},{x:.421875,y:.140625},{x:.453125,y:.140625},{x:.453125,y:.140625},{x:.484375,y:.140625},{x:.484375,y:.140625},{x:.515625,y:.140625},{x:.515625,y:.140625},{x:.546875,y:.140625},{x:.546875,y:.140625},{x:.578125,y:.140625},{x:.578125,y:.140625},{x:.609375,y:.140625},{x:.609375,y:.140625},{x:.640625,y:.140625},{x:.640625,y:.140625},{x:.671875,y:.140625},{x:.671875,y:.140625},{x:.703125,y:.140625},{x:.703125,y:.140625},{x:.734375,y:.140625},{x:.734375,y:.140625},{x:.765625,y:.140625},{x:.765625,y:.140625},{x:.796875,y:.140625},{x:.796875,y:.140625},{x:.828125,y:.140625},{x:.828125,y:.140625},{x:.859375,y:.140625},{x:.859375,y:.140625},{x:.890625,y:.140625},{x:.890625,y:.140625},{x:.921875,y:.140625},{x:.921875,y:.140625},{x:.953125,y:.140625},{x:.953125,y:.140625},{x:.984375,y:.140625},{x:.984375,y:.140625},{x:.015625,y:.171875},{x:.015625,y:.171875},{x:.046875,y:.171875},{x:.046875,y:.171875},{x:.078125,y:.171875},{x:.078125,y:.171875},{x:.109375,y:.171875},{x:.109375,y:.171875},{x:.140625,y:.171875},{x:.140625,y:.171875},{x:.171875,y:.171875},{x:.171875,y:.171875},{x:.203125,y:.171875},{x:.203125,y:.171875},{x:.234375,y:.171875},{x:.234375,y:.171875},{x:.265625,y:.171875},{x:.265625,y:.171875},{x:.296875,y:.171875},{x:.296875,y:.171875},{x:.328125,y:.171875},{x:.328125,y:.171875},{x:.359375,y:.171875},{x:.359375,y:.171875},{x:.390625,y:.171875},{x:.390625,y:.171875},{x:.421875,y:.171875},{x:.421875,y:.171875},{x:.453125,y:.171875},{x:.453125,y:.171875},{x:.484375,y:.171875},{x:.484375,y:.171875},{x:.515625,y:.171875},{x:.515625,y:.171875},{x:.546875,y:.171875},{x:.546875,y:.171875},{x:.578125,y:.171875},{x:.578125,y:.171875},{x:.609375,y:.171875},{x:.609375,y:.171875},{x:.640625,y:.171875},{x:.640625,y:.171875},{x:.671875,y:.171875},{x:.671875,y:.171875},{x:.703125,y:.171875},{x:.703125,y:.171875},{x:.734375,y:.171875},{x:.734375,y:.171875},{x:.765625,y:.171875},{x:.765625,y:.171875},{x:.796875,y:.171875},{x:.796875,y:.171875},{x:.828125,y:.171875},{x:.828125,y:.171875},{x:.859375,y:.171875},{x:.859375,y:.171875},{x:.890625,y:.171875},{x:.890625,y:.171875},{x:.921875,y:.171875},{x:.921875,y:.171875},{x:.953125,y:.171875},{x:.953125,y:.171875},{x:.984375,y:.171875},{x:.984375,y:.171875},{x:.015625,y:.203125},{x:.015625,y:.203125},{x:.046875,y:.203125},{x:.046875,y:.203125},{x:.078125,y:.203125},{x:.078125,y:.203125},{x:.109375,y:.203125},{x:.109375,y:.203125},{x:.140625,y:.203125},{x:.140625,y:.203125},{x:.171875,y:.203125},{x:.171875,y:.203125},{x:.203125,y:.203125},{x:.203125,y:.203125},{x:.234375,y:.203125},{x:.234375,y:.203125},{x:.265625,y:.203125},{x:.265625,y:.203125},{x:.296875,y:.203125},{x:.296875,y:.203125},{x:.328125,y:.203125},{x:.328125,y:.203125},{x:.359375,y:.203125},{x:.359375,y:.203125},{x:.390625,y:.203125},{x:.390625,y:.203125},{x:.421875,y:.203125},{x:.421875,y:.203125},{x:.453125,y:.203125},{x:.453125,y:.203125},{x:.484375,y:.203125},{x:.484375,y:.203125},{x:.515625,y:.203125},{x:.515625,y:.203125},{x:.546875,y:.203125},{x:.546875,y:.203125},{x:.578125,y:.203125},{x:.578125,y:.203125},{x:.609375,y:.203125},{x:.609375,y:.203125},{x:.640625,y:.203125},{x:.640625,y:.203125},{x:.671875,y:.203125},{x:.671875,y:.203125},{x:.703125,y:.203125},{x:.703125,y:.203125},{x:.734375,y:.203125},{x:.734375,y:.203125},{x:.765625,y:.203125},{x:.765625,y:.203125},{x:.796875,y:.203125},{x:.796875,y:.203125},{x:.828125,y:.203125},{x:.828125,y:.203125},{x:.859375,y:.203125},{x:.859375,y:.203125},{x:.890625,y:.203125},{x:.890625,y:.203125},{x:.921875,y:.203125},{x:.921875,y:.203125},{x:.953125,y:.203125},{x:.953125,y:.203125},{x:.984375,y:.203125},{x:.984375,y:.203125},{x:.015625,y:.234375},{x:.015625,y:.234375},{x:.046875,y:.234375},{x:.046875,y:.234375},{x:.078125,y:.234375},{x:.078125,y:.234375},{x:.109375,y:.234375},{x:.109375,y:.234375},{x:.140625,y:.234375},{x:.140625,y:.234375},{x:.171875,y:.234375},{x:.171875,y:.234375},{x:.203125,y:.234375},{x:.203125,y:.234375},{x:.234375,y:.234375},{x:.234375,y:.234375},{x:.265625,y:.234375},{x:.265625,y:.234375},{x:.296875,y:.234375},{x:.296875,y:.234375},{x:.328125,y:.234375},{x:.328125,y:.234375},{x:.359375,y:.234375},{x:.359375,y:.234375},{x:.390625,y:.234375},{x:.390625,y:.234375},{x:.421875,y:.234375},{x:.421875,y:.234375},{x:.453125,y:.234375},{x:.453125,y:.234375},{x:.484375,y:.234375},{x:.484375,y:.234375},{x:.515625,y:.234375},{x:.515625,y:.234375},{x:.546875,y:.234375},{x:.546875,y:.234375},{x:.578125,y:.234375},{x:.578125,y:.234375},{x:.609375,y:.234375},{x:.609375,y:.234375},{x:.640625,y:.234375},{x:.640625,y:.234375},{x:.671875,y:.234375},{x:.671875,y:.234375},{x:.703125,y:.234375},{x:.703125,y:.234375},{x:.734375,y:.234375},{x:.734375,y:.234375},{x:.765625,y:.234375},{x:.765625,y:.234375},{x:.796875,y:.234375},{x:.796875,y:.234375},{x:.828125,y:.234375},{x:.828125,y:.234375},{x:.859375,y:.234375},{x:.859375,y:.234375},{x:.890625,y:.234375},{x:.890625,y:.234375},{x:.921875,y:.234375},{x:.921875,y:.234375},{x:.953125,y:.234375},{x:.953125,y:.234375},{x:.984375,y:.234375},{x:.984375,y:.234375},{x:.015625,y:.265625},{x:.015625,y:.265625},{x:.046875,y:.265625},{x:.046875,y:.265625},{x:.078125,y:.265625},{x:.078125,y:.265625},{x:.109375,y:.265625},{x:.109375,y:.265625},{x:.140625,y:.265625},{x:.140625,y:.265625},{x:.171875,y:.265625},{x:.171875,y:.265625},{x:.203125,y:.265625},{x:.203125,y:.265625},{x:.234375,y:.265625},{x:.234375,y:.265625},{x:.265625,y:.265625},{x:.265625,y:.265625},{x:.296875,y:.265625},{x:.296875,y:.265625},{x:.328125,y:.265625},{x:.328125,y:.265625},{x:.359375,y:.265625},{x:.359375,y:.265625},{x:.390625,y:.265625},{x:.390625,y:.265625},{x:.421875,y:.265625},{x:.421875,y:.265625},{x:.453125,y:.265625},{x:.453125,y:.265625},{x:.484375,y:.265625},{x:.484375,y:.265625},{x:.515625,y:.265625},{x:.515625,y:.265625},{x:.546875,y:.265625},{x:.546875,y:.265625},{x:.578125,y:.265625},{x:.578125,y:.265625},{x:.609375,y:.265625},{x:.609375,y:.265625},{x:.640625,y:.265625},{x:.640625,y:.265625},{x:.671875,y:.265625},{x:.671875,y:.265625},{x:.703125,y:.265625},{x:.703125,y:.265625},{x:.734375,y:.265625},{x:.734375,y:.265625},{x:.765625,y:.265625},{x:.765625,y:.265625},{x:.796875,y:.265625},{x:.796875,y:.265625},{x:.828125,y:.265625},{x:.828125,y:.265625},{x:.859375,y:.265625},{x:.859375,y:.265625},{x:.890625,y:.265625},{x:.890625,y:.265625},{x:.921875,y:.265625},{x:.921875,y:.265625},{x:.953125,y:.265625},{x:.953125,y:.265625},{x:.984375,y:.265625},{x:.984375,y:.265625},{x:.015625,y:.296875},{x:.015625,y:.296875},{x:.046875,y:.296875},{x:.046875,y:.296875},{x:.078125,y:.296875},{x:.078125,y:.296875},{x:.109375,y:.296875},{x:.109375,y:.296875},{x:.140625,y:.296875},{x:.140625,y:.296875},{x:.171875,y:.296875},{x:.171875,y:.296875},{x:.203125,y:.296875},{x:.203125,y:.296875},{x:.234375,y:.296875},{x:.234375,y:.296875},{x:.265625,y:.296875},{x:.265625,y:.296875},{x:.296875,y:.296875},{x:.296875,y:.296875},{x:.328125,y:.296875},{x:.328125,y:.296875},{x:.359375,y:.296875},{x:.359375,y:.296875},{x:.390625,y:.296875},{x:.390625,y:.296875},{x:.421875,y:.296875},{x:.421875,y:.296875},{x:.453125,y:.296875},{x:.453125,y:.296875},{x:.484375,y:.296875},{x:.484375,y:.296875},{x:.515625,y:.296875},{x:.515625,y:.296875},{x:.546875,y:.296875},{x:.546875,y:.296875},{x:.578125,y:.296875},{x:.578125,y:.296875},{x:.609375,y:.296875},{x:.609375,y:.296875},{x:.640625,y:.296875},{x:.640625,y:.296875},{x:.671875,y:.296875},{x:.671875,y:.296875},{x:.703125,y:.296875},{x:.703125,y:.296875},{x:.734375,y:.296875},{x:.734375,y:.296875},{x:.765625,y:.296875},{x:.765625,y:.296875},{x:.796875,y:.296875},{x:.796875,y:.296875},{x:.828125,y:.296875},{x:.828125,y:.296875},{x:.859375,y:.296875},{x:.859375,y:.296875},{x:.890625,y:.296875},{x:.890625,y:.296875},{x:.921875,y:.296875},{x:.921875,y:.296875},{x:.953125,y:.296875},{x:.953125,y:.296875},{x:.984375,y:.296875},{x:.984375,y:.296875},{x:.015625,y:.328125},{x:.015625,y:.328125},{x:.046875,y:.328125},{x:.046875,y:.328125},{x:.078125,y:.328125},{x:.078125,y:.328125},{x:.109375,y:.328125},{x:.109375,y:.328125},{x:.140625,y:.328125},{x:.140625,y:.328125},{x:.171875,y:.328125},{x:.171875,y:.328125},{x:.203125,y:.328125},{x:.203125,y:.328125},{x:.234375,y:.328125},{x:.234375,y:.328125},{x:.265625,y:.328125},{x:.265625,y:.328125},{x:.296875,y:.328125},{x:.296875,y:.328125},{x:.328125,y:.328125},{x:.328125,y:.328125},{x:.359375,y:.328125},{x:.359375,y:.328125},{x:.390625,y:.328125},{x:.390625,y:.328125},{x:.421875,y:.328125},{x:.421875,y:.328125},{x:.453125,y:.328125},{x:.453125,y:.328125},{x:.484375,y:.328125},{x:.484375,y:.328125},{x:.515625,y:.328125},{x:.515625,y:.328125},{x:.546875,y:.328125},{x:.546875,y:.328125},{x:.578125,y:.328125},{x:.578125,y:.328125},{x:.609375,y:.328125},{x:.609375,y:.328125},{x:.640625,y:.328125},{x:.640625,y:.328125},{x:.671875,y:.328125},{x:.671875,y:.328125},{x:.703125,y:.328125},{x:.703125,y:.328125},{x:.734375,y:.328125},{x:.734375,y:.328125},{x:.765625,y:.328125},{x:.765625,y:.328125},{x:.796875,y:.328125},{x:.796875,y:.328125},{x:.828125,y:.328125},{x:.828125,y:.328125},{x:.859375,y:.328125},{x:.859375,y:.328125},{x:.890625,y:.328125},{x:.890625,y:.328125},{x:.921875,y:.328125},{x:.921875,y:.328125},{x:.953125,y:.328125},{x:.953125,y:.328125},{x:.984375,y:.328125},{x:.984375,y:.328125},{x:.015625,y:.359375},{x:.015625,y:.359375},{x:.046875,y:.359375},{x:.046875,y:.359375},{x:.078125,y:.359375},{x:.078125,y:.359375},{x:.109375,y:.359375},{x:.109375,y:.359375},{x:.140625,y:.359375},{x:.140625,y:.359375},{x:.171875,y:.359375},{x:.171875,y:.359375},{x:.203125,y:.359375},{x:.203125,y:.359375},{x:.234375,y:.359375},{x:.234375,y:.359375},{x:.265625,y:.359375},{x:.265625,y:.359375},{x:.296875,y:.359375},{x:.296875,y:.359375},{x:.328125,y:.359375},{x:.328125,y:.359375},{x:.359375,y:.359375},{x:.359375,y:.359375},{x:.390625,y:.359375},{x:.390625,y:.359375},{x:.421875,y:.359375},{x:.421875,y:.359375},{x:.453125,y:.359375},{x:.453125,y:.359375},{x:.484375,y:.359375},{x:.484375,y:.359375},{x:.515625,y:.359375},{x:.515625,y:.359375},{x:.546875,y:.359375},{x:.546875,y:.359375},{x:.578125,y:.359375},{x:.578125,y:.359375},{x:.609375,y:.359375},{x:.609375,y:.359375},{x:.640625,y:.359375},{x:.640625,y:.359375},{x:.671875,y:.359375},{x:.671875,y:.359375},{x:.703125,y:.359375},{x:.703125,y:.359375},{x:.734375,y:.359375},{x:.734375,y:.359375},{x:.765625,y:.359375},{x:.765625,y:.359375},{x:.796875,y:.359375},{x:.796875,y:.359375},{x:.828125,y:.359375},{x:.828125,y:.359375},{x:.859375,y:.359375},{x:.859375,y:.359375},{x:.890625,y:.359375},{x:.890625,y:.359375},{x:.921875,y:.359375},{x:.921875,y:.359375},{x:.953125,y:.359375},{x:.953125,y:.359375},{x:.984375,y:.359375},{x:.984375,y:.359375},{x:.015625,y:.390625},{x:.015625,y:.390625},{x:.046875,y:.390625},{x:.046875,y:.390625},{x:.078125,y:.390625},{x:.078125,y:.390625},{x:.109375,y:.390625},{x:.109375,y:.390625},{x:.140625,y:.390625},{x:.140625,y:.390625},{x:.171875,y:.390625},{x:.171875,y:.390625},{x:.203125,y:.390625},{x:.203125,y:.390625},{x:.234375,y:.390625},{x:.234375,y:.390625},{x:.265625,y:.390625},{x:.265625,y:.390625},{x:.296875,y:.390625},{x:.296875,y:.390625},{x:.328125,y:.390625},{x:.328125,y:.390625},{x:.359375,y:.390625},{x:.359375,y:.390625},{x:.390625,y:.390625},{x:.390625,y:.390625},{x:.421875,y:.390625},{x:.421875,y:.390625},{x:.453125,y:.390625},{x:.453125,y:.390625},{x:.484375,y:.390625},{x:.484375,y:.390625},{x:.515625,y:.390625},{x:.515625,y:.390625},{x:.546875,y:.390625},{x:.546875,y:.390625},{x:.578125,y:.390625},{x:.578125,y:.390625},{x:.609375,y:.390625},{x:.609375,y:.390625},{x:.640625,y:.390625},{x:.640625,y:.390625},{x:.671875,y:.390625},{x:.671875,y:.390625},{x:.703125,y:.390625},{x:.703125,y:.390625},{x:.734375,y:.390625},{x:.734375,y:.390625},{x:.765625,y:.390625},{x:.765625,y:.390625},{x:.796875,y:.390625},{x:.796875,y:.390625},{x:.828125,y:.390625},{x:.828125,y:.390625},{x:.859375,y:.390625},{x:.859375,y:.390625},{x:.890625,y:.390625},{x:.890625,y:.390625},{x:.921875,y:.390625},{x:.921875,y:.390625},{x:.953125,y:.390625},{x:.953125,y:.390625},{x:.984375,y:.390625},{x:.984375,y:.390625},{x:.015625,y:.421875},{x:.015625,y:.421875},{x:.046875,y:.421875},{x:.046875,y:.421875},{x:.078125,y:.421875},{x:.078125,y:.421875},{x:.109375,y:.421875},{x:.109375,y:.421875},{x:.140625,y:.421875},{x:.140625,y:.421875},{x:.171875,y:.421875},{x:.171875,y:.421875},{x:.203125,y:.421875},{x:.203125,y:.421875},{x:.234375,y:.421875},{x:.234375,y:.421875},{x:.265625,y:.421875},{x:.265625,y:.421875},{x:.296875,y:.421875},{x:.296875,y:.421875},{x:.328125,y:.421875},{x:.328125,y:.421875},{x:.359375,y:.421875},{x:.359375,y:.421875},{x:.390625,y:.421875},{x:.390625,y:.421875},{x:.421875,y:.421875},{x:.421875,y:.421875},{x:.453125,y:.421875},{x:.453125,y:.421875},{x:.484375,y:.421875},{x:.484375,y:.421875},{x:.515625,y:.421875},{x:.515625,y:.421875},{x:.546875,y:.421875},{x:.546875,y:.421875},{x:.578125,y:.421875},{x:.578125,y:.421875},{x:.609375,y:.421875},{x:.609375,y:.421875},{x:.640625,y:.421875},{x:.640625,y:.421875},{x:.671875,y:.421875},{x:.671875,y:.421875},{x:.703125,y:.421875},{x:.703125,y:.421875},{x:.734375,y:.421875},{x:.734375,y:.421875},{x:.765625,y:.421875},{x:.765625,y:.421875},{x:.796875,y:.421875},{x:.796875,y:.421875},{x:.828125,y:.421875},{x:.828125,y:.421875},{x:.859375,y:.421875},{x:.859375,y:.421875},{x:.890625,y:.421875},{x:.890625,y:.421875},{x:.921875,y:.421875},{x:.921875,y:.421875},{x:.953125,y:.421875},{x:.953125,y:.421875},{x:.984375,y:.421875},{x:.984375,y:.421875},{x:.015625,y:.453125},{x:.015625,y:.453125},{x:.046875,y:.453125},{x:.046875,y:.453125},{x:.078125,y:.453125},{x:.078125,y:.453125},{x:.109375,y:.453125},{x:.109375,y:.453125},{x:.140625,y:.453125},{x:.140625,y:.453125},{x:.171875,y:.453125},{x:.171875,y:.453125},{x:.203125,y:.453125},{x:.203125,y:.453125},{x:.234375,y:.453125},{x:.234375,y:.453125},{x:.265625,y:.453125},{x:.265625,y:.453125},{x:.296875,y:.453125},{x:.296875,y:.453125},{x:.328125,y:.453125},{x:.328125,y:.453125},{x:.359375,y:.453125},{x:.359375,y:.453125},{x:.390625,y:.453125},{x:.390625,y:.453125},{x:.421875,y:.453125},{x:.421875,y:.453125},{x:.453125,y:.453125},{x:.453125,y:.453125},{x:.484375,y:.453125},{x:.484375,y:.453125},{x:.515625,y:.453125},{x:.515625,y:.453125},{x:.546875,y:.453125},{x:.546875,y:.453125},{x:.578125,y:.453125},{x:.578125,y:.453125},{x:.609375,y:.453125},{x:.609375,y:.453125},{x:.640625,y:.453125},{x:.640625,y:.453125},{x:.671875,y:.453125},{x:.671875,y:.453125},{x:.703125,y:.453125},{x:.703125,y:.453125},{x:.734375,y:.453125},{x:.734375,y:.453125},{x:.765625,y:.453125},{x:.765625,y:.453125},{x:.796875,y:.453125},{x:.796875,y:.453125},{x:.828125,y:.453125},{x:.828125,y:.453125},{x:.859375,y:.453125},{x:.859375,y:.453125},{x:.890625,y:.453125},{x:.890625,y:.453125},{x:.921875,y:.453125},{x:.921875,y:.453125},{x:.953125,y:.453125},{x:.953125,y:.453125},{x:.984375,y:.453125},{x:.984375,y:.453125},{x:.015625,y:.484375},{x:.015625,y:.484375},{x:.046875,y:.484375},{x:.046875,y:.484375},{x:.078125,y:.484375},{x:.078125,y:.484375},{x:.109375,y:.484375},{x:.109375,y:.484375},{x:.140625,y:.484375},{x:.140625,y:.484375},{x:.171875,y:.484375},{x:.171875,y:.484375},{x:.203125,y:.484375},{x:.203125,y:.484375},{x:.234375,y:.484375},{x:.234375,y:.484375},{x:.265625,y:.484375},{x:.265625,y:.484375},{x:.296875,y:.484375},{x:.296875,y:.484375},{x:.328125,y:.484375},{x:.328125,y:.484375},{x:.359375,y:.484375},{x:.359375,y:.484375},{x:.390625,y:.484375},{x:.390625,y:.484375},{x:.421875,y:.484375},{x:.421875,y:.484375},{x:.453125,y:.484375},{x:.453125,y:.484375},{x:.484375,y:.484375},{x:.484375,y:.484375},{x:.515625,y:.484375},{x:.515625,y:.484375},{x:.546875,y:.484375},{x:.546875,y:.484375},{x:.578125,y:.484375},{x:.578125,y:.484375},{x:.609375,y:.484375},{x:.609375,y:.484375},{x:.640625,y:.484375},{x:.640625,y:.484375},{x:.671875,y:.484375},{x:.671875,y:.484375},{x:.703125,y:.484375},{x:.703125,y:.484375},{x:.734375,y:.484375},{x:.734375,y:.484375},{x:.765625,y:.484375},{x:.765625,y:.484375},{x:.796875,y:.484375},{x:.796875,y:.484375},{x:.828125,y:.484375},{x:.828125,y:.484375},{x:.859375,y:.484375},{x:.859375,y:.484375},{x:.890625,y:.484375},{x:.890625,y:.484375},{x:.921875,y:.484375},{x:.921875,y:.484375},{x:.953125,y:.484375},{x:.953125,y:.484375},{x:.984375,y:.484375},{x:.984375,y:.484375},{x:.015625,y:.515625},{x:.015625,y:.515625},{x:.046875,y:.515625},{x:.046875,y:.515625},{x:.078125,y:.515625},{x:.078125,y:.515625},{x:.109375,y:.515625},{x:.109375,y:.515625},{x:.140625,y:.515625},{x:.140625,y:.515625},{x:.171875,y:.515625},{x:.171875,y:.515625},{x:.203125,y:.515625},{x:.203125,y:.515625},{x:.234375,y:.515625},{x:.234375,y:.515625},{x:.265625,y:.515625},{x:.265625,y:.515625},{x:.296875,y:.515625},{x:.296875,y:.515625},{x:.328125,y:.515625},{x:.328125,y:.515625},{x:.359375,y:.515625},{x:.359375,y:.515625},{x:.390625,y:.515625},{x:.390625,y:.515625},{x:.421875,y:.515625},{x:.421875,y:.515625},{x:.453125,y:.515625},{x:.453125,y:.515625},{x:.484375,y:.515625},{x:.484375,y:.515625},{x:.515625,y:.515625},{x:.515625,y:.515625},{x:.546875,y:.515625},{x:.546875,y:.515625},{x:.578125,y:.515625},{x:.578125,y:.515625},{x:.609375,y:.515625},{x:.609375,y:.515625},{x:.640625,y:.515625},{x:.640625,y:.515625},{x:.671875,y:.515625},{x:.671875,y:.515625},{x:.703125,y:.515625},{x:.703125,y:.515625},{x:.734375,y:.515625},{x:.734375,y:.515625},{x:.765625,y:.515625},{x:.765625,y:.515625},{x:.796875,y:.515625},{x:.796875,y:.515625},{x:.828125,y:.515625},{x:.828125,y:.515625},{x:.859375,y:.515625},{x:.859375,y:.515625},{x:.890625,y:.515625},{x:.890625,y:.515625},{x:.921875,y:.515625},{x:.921875,y:.515625},{x:.953125,y:.515625},{x:.953125,y:.515625},{x:.984375,y:.515625},{x:.984375,y:.515625},{x:.015625,y:.546875},{x:.015625,y:.546875},{x:.046875,y:.546875},{x:.046875,y:.546875},{x:.078125,y:.546875},{x:.078125,y:.546875},{x:.109375,y:.546875},{x:.109375,y:.546875},{x:.140625,y:.546875},{x:.140625,y:.546875},{x:.171875,y:.546875},{x:.171875,y:.546875},{x:.203125,y:.546875},{x:.203125,y:.546875},{x:.234375,y:.546875},{x:.234375,y:.546875},{x:.265625,y:.546875},{x:.265625,y:.546875},{x:.296875,y:.546875},{x:.296875,y:.546875},{x:.328125,y:.546875},{x:.328125,y:.546875},{x:.359375,y:.546875},{x:.359375,y:.546875},{x:.390625,y:.546875},{x:.390625,y:.546875},{x:.421875,y:.546875},{x:.421875,y:.546875},{x:.453125,y:.546875},{x:.453125,y:.546875},{x:.484375,y:.546875},{x:.484375,y:.546875},{x:.515625,y:.546875},{x:.515625,y:.546875},{x:.546875,y:.546875},{x:.546875,y:.546875},{x:.578125,y:.546875},{x:.578125,y:.546875},{x:.609375,y:.546875},{x:.609375,y:.546875},{x:.640625,y:.546875},{x:.640625,y:.546875},{x:.671875,y:.546875},{x:.671875,y:.546875},{x:.703125,y:.546875},{x:.703125,y:.546875},{x:.734375,y:.546875},{x:.734375,y:.546875},{x:.765625,y:.546875},{x:.765625,y:.546875},{x:.796875,y:.546875},{x:.796875,y:.546875},{x:.828125,y:.546875},{x:.828125,y:.546875},{x:.859375,y:.546875},{x:.859375,y:.546875},{x:.890625,y:.546875},{x:.890625,y:.546875},{x:.921875,y:.546875},{x:.921875,y:.546875},{x:.953125,y:.546875},{x:.953125,y:.546875},{x:.984375,y:.546875},{x:.984375,y:.546875},{x:.015625,y:.578125},{x:.015625,y:.578125},{x:.046875,y:.578125},{x:.046875,y:.578125},{x:.078125,y:.578125},{x:.078125,y:.578125},{x:.109375,y:.578125},{x:.109375,y:.578125},{x:.140625,y:.578125},{x:.140625,y:.578125},{x:.171875,y:.578125},{x:.171875,y:.578125},{x:.203125,y:.578125},{x:.203125,y:.578125},{x:.234375,y:.578125},{x:.234375,y:.578125},{x:.265625,y:.578125},{x:.265625,y:.578125},{x:.296875,y:.578125},{x:.296875,y:.578125},{x:.328125,y:.578125},{x:.328125,y:.578125},{x:.359375,y:.578125},{x:.359375,y:.578125},{x:.390625,y:.578125},{x:.390625,y:.578125},{x:.421875,y:.578125},{x:.421875,y:.578125},{x:.453125,y:.578125},{x:.453125,y:.578125},{x:.484375,y:.578125},{x:.484375,y:.578125},{x:.515625,y:.578125},{x:.515625,y:.578125},{x:.546875,y:.578125},{x:.546875,y:.578125},{x:.578125,y:.578125},{x:.578125,y:.578125},{x:.609375,y:.578125},{x:.609375,y:.578125},{x:.640625,y:.578125},{x:.640625,y:.578125},{x:.671875,y:.578125},{x:.671875,y:.578125},{x:.703125,y:.578125},{x:.703125,y:.578125},{x:.734375,y:.578125},{x:.734375,y:.578125},{x:.765625,y:.578125},{x:.765625,y:.578125},{x:.796875,y:.578125},{x:.796875,y:.578125},{x:.828125,y:.578125},{x:.828125,y:.578125},{x:.859375,y:.578125},{x:.859375,y:.578125},{x:.890625,y:.578125},{x:.890625,y:.578125},{x:.921875,y:.578125},{x:.921875,y:.578125},{x:.953125,y:.578125},{x:.953125,y:.578125},{x:.984375,y:.578125},{x:.984375,y:.578125},{x:.015625,y:.609375},{x:.015625,y:.609375},{x:.046875,y:.609375},{x:.046875,y:.609375},{x:.078125,y:.609375},{x:.078125,y:.609375},{x:.109375,y:.609375},{x:.109375,y:.609375},{x:.140625,y:.609375},{x:.140625,y:.609375},{x:.171875,y:.609375},{x:.171875,y:.609375},{x:.203125,y:.609375},{x:.203125,y:.609375},{x:.234375,y:.609375},{x:.234375,y:.609375},{x:.265625,y:.609375},{x:.265625,y:.609375},{x:.296875,y:.609375},{x:.296875,y:.609375},{x:.328125,y:.609375},{x:.328125,y:.609375},{x:.359375,y:.609375},{x:.359375,y:.609375},{x:.390625,y:.609375},{x:.390625,y:.609375},{x:.421875,y:.609375},{x:.421875,y:.609375},{x:.453125,y:.609375},{x:.453125,y:.609375},{x:.484375,y:.609375},{x:.484375,y:.609375},{x:.515625,y:.609375},{x:.515625,y:.609375},{x:.546875,y:.609375},{x:.546875,y:.609375},{x:.578125,y:.609375},{x:.578125,y:.609375},{x:.609375,y:.609375},{x:.609375,y:.609375},{x:.640625,y:.609375},{x:.640625,y:.609375},{x:.671875,y:.609375},{x:.671875,y:.609375},{x:.703125,y:.609375},{x:.703125,y:.609375},{x:.734375,y:.609375},{x:.734375,y:.609375},{x:.765625,y:.609375},{x:.765625,y:.609375},{x:.796875,y:.609375},{x:.796875,y:.609375},{x:.828125,y:.609375},{x:.828125,y:.609375},{x:.859375,y:.609375},{x:.859375,y:.609375},{x:.890625,y:.609375},{x:.890625,y:.609375},{x:.921875,y:.609375},{x:.921875,y:.609375},{x:.953125,y:.609375},{x:.953125,y:.609375},{x:.984375,y:.609375},{x:.984375,y:.609375},{x:.015625,y:.640625},{x:.015625,y:.640625},{x:.046875,y:.640625},{x:.046875,y:.640625},{x:.078125,y:.640625},{x:.078125,y:.640625},{x:.109375,y:.640625},{x:.109375,y:.640625},{x:.140625,y:.640625},{x:.140625,y:.640625},{x:.171875,y:.640625},{x:.171875,y:.640625},{x:.203125,y:.640625},{x:.203125,y:.640625},{x:.234375,y:.640625},{x:.234375,y:.640625},{x:.265625,y:.640625},{x:.265625,y:.640625},{x:.296875,y:.640625},{x:.296875,y:.640625},{x:.328125,y:.640625},{x:.328125,y:.640625},{x:.359375,y:.640625},{x:.359375,y:.640625},{x:.390625,y:.640625},{x:.390625,y:.640625},{x:.421875,y:.640625},{x:.421875,y:.640625},{x:.453125,y:.640625},{x:.453125,y:.640625},{x:.484375,y:.640625},{x:.484375,y:.640625},{x:.515625,y:.640625},{x:.515625,y:.640625},{x:.546875,y:.640625},{x:.546875,y:.640625},{x:.578125,y:.640625},{x:.578125,y:.640625},{x:.609375,y:.640625},{x:.609375,y:.640625},{x:.640625,y:.640625},{x:.640625,y:.640625},{x:.671875,y:.640625},{x:.671875,y:.640625},{x:.703125,y:.640625},{x:.703125,y:.640625},{x:.734375,y:.640625},{x:.734375,y:.640625},{x:.765625,y:.640625},{x:.765625,y:.640625},{x:.796875,y:.640625},{x:.796875,y:.640625},{x:.828125,y:.640625},{x:.828125,y:.640625},{x:.859375,y:.640625},{x:.859375,y:.640625},{x:.890625,y:.640625},{x:.890625,y:.640625},{x:.921875,y:.640625},{x:.921875,y:.640625},{x:.953125,y:.640625},{x:.953125,y:.640625},{x:.984375,y:.640625},{x:.984375,y:.640625},{x:.015625,y:.671875},{x:.015625,y:.671875},{x:.046875,y:.671875},{x:.046875,y:.671875},{x:.078125,y:.671875},{x:.078125,y:.671875},{x:.109375,y:.671875},{x:.109375,y:.671875},{x:.140625,y:.671875},{x:.140625,y:.671875},{x:.171875,y:.671875},{x:.171875,y:.671875},{x:.203125,y:.671875},{x:.203125,y:.671875},{x:.234375,y:.671875},{x:.234375,y:.671875},{x:.265625,y:.671875},{x:.265625,y:.671875},{x:.296875,y:.671875},{x:.296875,y:.671875},{x:.328125,y:.671875},{x:.328125,y:.671875},{x:.359375,y:.671875},{x:.359375,y:.671875},{x:.390625,y:.671875},{x:.390625,y:.671875},{x:.421875,y:.671875},{x:.421875,y:.671875},{x:.453125,y:.671875},{x:.453125,y:.671875},{x:.484375,y:.671875},{x:.484375,y:.671875},{x:.515625,y:.671875},{x:.515625,y:.671875},{x:.546875,y:.671875},{x:.546875,y:.671875},{x:.578125,y:.671875},{x:.578125,y:.671875},{x:.609375,y:.671875},{x:.609375,y:.671875},{x:.640625,y:.671875},{x:.640625,y:.671875},{x:.671875,y:.671875},{x:.671875,y:.671875},{x:.703125,y:.671875},{x:.703125,y:.671875},{x:.734375,y:.671875},{x:.734375,y:.671875},{x:.765625,y:.671875},{x:.765625,y:.671875},{x:.796875,y:.671875},{x:.796875,y:.671875},{x:.828125,y:.671875},{x:.828125,y:.671875},{x:.859375,y:.671875},{x:.859375,y:.671875},{x:.890625,y:.671875},{x:.890625,y:.671875},{x:.921875,y:.671875},{x:.921875,y:.671875},{x:.953125,y:.671875},{x:.953125,y:.671875},{x:.984375,y:.671875},{x:.984375,y:.671875},{x:.015625,y:.703125},{x:.015625,y:.703125},{x:.046875,y:.703125},{x:.046875,y:.703125},{x:.078125,y:.703125},{x:.078125,y:.703125},{x:.109375,y:.703125},{x:.109375,y:.703125},{x:.140625,y:.703125},{x:.140625,y:.703125},{x:.171875,y:.703125},{x:.171875,y:.703125},{x:.203125,y:.703125},{x:.203125,y:.703125},{x:.234375,y:.703125},{x:.234375,y:.703125},{x:.265625,y:.703125},{x:.265625,y:.703125},{x:.296875,y:.703125},{x:.296875,y:.703125},{x:.328125,y:.703125},{x:.328125,y:.703125},{x:.359375,y:.703125},{x:.359375,y:.703125},{x:.390625,y:.703125},{x:.390625,y:.703125},{x:.421875,y:.703125},{x:.421875,y:.703125},{x:.453125,y:.703125},{x:.453125,y:.703125},{x:.484375,y:.703125},{x:.484375,y:.703125},{x:.515625,y:.703125},{x:.515625,y:.703125},{x:.546875,y:.703125},{x:.546875,y:.703125},{x:.578125,y:.703125},{x:.578125,y:.703125},{x:.609375,y:.703125},{x:.609375,y:.703125},{x:.640625,y:.703125},{x:.640625,y:.703125},{x:.671875,y:.703125},{x:.671875,y:.703125},{x:.703125,y:.703125},{x:.703125,y:.703125},{x:.734375,y:.703125},{x:.734375,y:.703125},{x:.765625,y:.703125},{x:.765625,y:.703125},{x:.796875,y:.703125},{x:.796875,y:.703125},{x:.828125,y:.703125},{x:.828125,y:.703125},{x:.859375,y:.703125},{x:.859375,y:.703125},{x:.890625,y:.703125},{x:.890625,y:.703125},{x:.921875,y:.703125},{x:.921875,y:.703125},{x:.953125,y:.703125},{x:.953125,y:.703125},{x:.984375,y:.703125},{x:.984375,y:.703125},{x:.015625,y:.734375},{x:.015625,y:.734375},{x:.046875,y:.734375},{x:.046875,y:.734375},{x:.078125,y:.734375},{x:.078125,y:.734375},{x:.109375,y:.734375},{x:.109375,y:.734375},{x:.140625,y:.734375},{x:.140625,y:.734375},{x:.171875,y:.734375},{x:.171875,y:.734375},{x:.203125,y:.734375},{x:.203125,y:.734375},{x:.234375,y:.734375},{x:.234375,y:.734375},{x:.265625,y:.734375},{x:.265625,y:.734375},{x:.296875,y:.734375},{x:.296875,y:.734375},{x:.328125,y:.734375},{x:.328125,y:.734375},{x:.359375,y:.734375},{x:.359375,y:.734375},{x:.390625,y:.734375},{x:.390625,y:.734375},{x:.421875,y:.734375},{x:.421875,y:.734375},{x:.453125,y:.734375},{x:.453125,y:.734375},{x:.484375,y:.734375},{x:.484375,y:.734375},{x:.515625,y:.734375},{x:.515625,y:.734375},{x:.546875,y:.734375},{x:.546875,y:.734375},{x:.578125,y:.734375},{x:.578125,y:.734375},{x:.609375,y:.734375},{x:.609375,y:.734375},{x:.640625,y:.734375},{x:.640625,y:.734375},{x:.671875,y:.734375},{x:.671875,y:.734375},{x:.703125,y:.734375},{x:.703125,y:.734375},{x:.734375,y:.734375},{x:.734375,y:.734375},{x:.765625,y:.734375},{x:.765625,y:.734375},{x:.796875,y:.734375},{x:.796875,y:.734375},{x:.828125,y:.734375},{x:.828125,y:.734375},{x:.859375,y:.734375},{x:.859375,y:.734375},{x:.890625,y:.734375},{x:.890625,y:.734375},{x:.921875,y:.734375},{x:.921875,y:.734375},{x:.953125,y:.734375},{x:.953125,y:.734375},{x:.984375,y:.734375},{x:.984375,y:.734375},{x:.015625,y:.765625},{x:.015625,y:.765625},{x:.046875,y:.765625},{x:.046875,y:.765625},{x:.078125,y:.765625},{x:.078125,y:.765625},{x:.109375,y:.765625},{x:.109375,y:.765625},{x:.140625,y:.765625},{x:.140625,y:.765625},{x:.171875,y:.765625},{x:.171875,y:.765625},{x:.203125,y:.765625},{x:.203125,y:.765625},{x:.234375,y:.765625},{x:.234375,y:.765625},{x:.265625,y:.765625},{x:.265625,y:.765625},{x:.296875,y:.765625},{x:.296875,y:.765625},{x:.328125,y:.765625},{x:.328125,y:.765625},{x:.359375,y:.765625},{x:.359375,y:.765625},{x:.390625,y:.765625},{x:.390625,y:.765625},{x:.421875,y:.765625},{x:.421875,y:.765625},{x:.453125,y:.765625},{x:.453125,y:.765625},{x:.484375,y:.765625},{x:.484375,y:.765625},{x:.515625,y:.765625},{x:.515625,y:.765625},{x:.546875,y:.765625},{x:.546875,y:.765625},{x:.578125,y:.765625},{x:.578125,y:.765625},{x:.609375,y:.765625},{x:.609375,y:.765625},{x:.640625,y:.765625},{x:.640625,y:.765625},{x:.671875,y:.765625},{x:.671875,y:.765625},{x:.703125,y:.765625},{x:.703125,y:.765625},{x:.734375,y:.765625},{x:.734375,y:.765625},{x:.765625,y:.765625},{x:.765625,y:.765625},{x:.796875,y:.765625},{x:.796875,y:.765625},{x:.828125,y:.765625},{x:.828125,y:.765625},{x:.859375,y:.765625},{x:.859375,y:.765625},{x:.890625,y:.765625},{x:.890625,y:.765625},{x:.921875,y:.765625},{x:.921875,y:.765625},{x:.953125,y:.765625},{x:.953125,y:.765625},{x:.984375,y:.765625},{x:.984375,y:.765625},{x:.015625,y:.796875},{x:.015625,y:.796875},{x:.046875,y:.796875},{x:.046875,y:.796875},{x:.078125,y:.796875},{x:.078125,y:.796875},{x:.109375,y:.796875},{x:.109375,y:.796875},{x:.140625,y:.796875},{x:.140625,y:.796875},{x:.171875,y:.796875},{x:.171875,y:.796875},{x:.203125,y:.796875},{x:.203125,y:.796875},{x:.234375,y:.796875},{x:.234375,y:.796875},{x:.265625,y:.796875},{x:.265625,y:.796875},{x:.296875,y:.796875},{x:.296875,y:.796875},{x:.328125,y:.796875},{x:.328125,y:.796875},{x:.359375,y:.796875},{x:.359375,y:.796875},{x:.390625,y:.796875},{x:.390625,y:.796875},{x:.421875,y:.796875},{x:.421875,y:.796875},{x:.453125,y:.796875},{x:.453125,y:.796875},{x:.484375,y:.796875},{x:.484375,y:.796875},{x:.515625,y:.796875},{x:.515625,y:.796875},{x:.546875,y:.796875},{x:.546875,y:.796875},{x:.578125,y:.796875},{x:.578125,y:.796875},{x:.609375,y:.796875},{x:.609375,y:.796875},{x:.640625,y:.796875},{x:.640625,y:.796875},{x:.671875,y:.796875},{x:.671875,y:.796875},{x:.703125,y:.796875},{x:.703125,y:.796875},{x:.734375,y:.796875},{x:.734375,y:.796875},{x:.765625,y:.796875},{x:.765625,y:.796875},{x:.796875,y:.796875},{x:.796875,y:.796875},{x:.828125,y:.796875},{x:.828125,y:.796875},{x:.859375,y:.796875},{x:.859375,y:.796875},{x:.890625,y:.796875},{x:.890625,y:.796875},{x:.921875,y:.796875},{x:.921875,y:.796875},{x:.953125,y:.796875},{x:.953125,y:.796875},{x:.984375,y:.796875},{x:.984375,y:.796875},{x:.015625,y:.828125},{x:.015625,y:.828125},{x:.046875,y:.828125},{x:.046875,y:.828125},{x:.078125,y:.828125},{x:.078125,y:.828125},{x:.109375,y:.828125},{x:.109375,y:.828125},{x:.140625,y:.828125},{x:.140625,y:.828125},{x:.171875,y:.828125},{x:.171875,y:.828125},{x:.203125,y:.828125},{x:.203125,y:.828125},{x:.234375,y:.828125},{x:.234375,y:.828125},{x:.265625,y:.828125},{x:.265625,y:.828125},{x:.296875,y:.828125},{x:.296875,y:.828125},{x:.328125,y:.828125},{x:.328125,y:.828125},{x:.359375,y:.828125},{x:.359375,y:.828125},{x:.390625,y:.828125},{x:.390625,y:.828125},{x:.421875,y:.828125},{x:.421875,y:.828125},{x:.453125,y:.828125},{x:.453125,y:.828125},{x:.484375,y:.828125},{x:.484375,y:.828125},{x:.515625,y:.828125},{x:.515625,y:.828125},{x:.546875,y:.828125},{x:.546875,y:.828125},{x:.578125,y:.828125},{x:.578125,y:.828125},{x:.609375,y:.828125},{x:.609375,y:.828125},{x:.640625,y:.828125},{x:.640625,y:.828125},{x:.671875,y:.828125},{x:.671875,y:.828125},{x:.703125,y:.828125},{x:.703125,y:.828125},{x:.734375,y:.828125},{x:.734375,y:.828125},{x:.765625,y:.828125},{x:.765625,y:.828125},{x:.796875,y:.828125},{x:.796875,y:.828125},{x:.828125,y:.828125},{x:.828125,y:.828125},{x:.859375,y:.828125},{x:.859375,y:.828125},{x:.890625,y:.828125},{x:.890625,y:.828125},{x:.921875,y:.828125},{x:.921875,y:.828125},{x:.953125,y:.828125},{x:.953125,y:.828125},{x:.984375,y:.828125},{x:.984375,y:.828125},{x:.015625,y:.859375},{x:.015625,y:.859375},{x:.046875,y:.859375},{x:.046875,y:.859375},{x:.078125,y:.859375},{x:.078125,y:.859375},{x:.109375,y:.859375},{x:.109375,y:.859375},{x:.140625,y:.859375},{x:.140625,y:.859375},{x:.171875,y:.859375},{x:.171875,y:.859375},{x:.203125,y:.859375},{x:.203125,y:.859375},{x:.234375,y:.859375},{x:.234375,y:.859375},{x:.265625,y:.859375},{x:.265625,y:.859375},{x:.296875,y:.859375},{x:.296875,y:.859375},{x:.328125,y:.859375},{x:.328125,y:.859375},{x:.359375,y:.859375},{x:.359375,y:.859375},{x:.390625,y:.859375},{x:.390625,y:.859375},{x:.421875,y:.859375},{x:.421875,y:.859375},{x:.453125,y:.859375},{x:.453125,y:.859375},{x:.484375,y:.859375},{x:.484375,y:.859375},{x:.515625,y:.859375},{x:.515625,y:.859375},{x:.546875,y:.859375},{x:.546875,y:.859375},{x:.578125,y:.859375},{x:.578125,y:.859375},{x:.609375,y:.859375},{x:.609375,y:.859375},{x:.640625,y:.859375},{x:.640625,y:.859375},{x:.671875,y:.859375},{x:.671875,y:.859375},{x:.703125,y:.859375},{x:.703125,y:.859375},{x:.734375,y:.859375},{x:.734375,y:.859375},{x:.765625,y:.859375},{x:.765625,y:.859375},{x:.796875,y:.859375},{x:.796875,y:.859375},{x:.828125,y:.859375},{x:.828125,y:.859375},{x:.859375,y:.859375},{x:.859375,y:.859375},{x:.890625,y:.859375},{x:.890625,y:.859375},{x:.921875,y:.859375},{x:.921875,y:.859375},{x:.953125,y:.859375},{x:.953125,y:.859375},{x:.984375,y:.859375},{x:.984375,y:.859375},{x:.015625,y:.890625},{x:.015625,y:.890625},{x:.046875,y:.890625},{x:.046875,y:.890625},{x:.078125,y:.890625},{x:.078125,y:.890625},{x:.109375,y:.890625},{x:.109375,y:.890625},{x:.140625,y:.890625},{x:.140625,y:.890625},{x:.171875,y:.890625},{x:.171875,y:.890625},{x:.203125,y:.890625},{x:.203125,y:.890625},{x:.234375,y:.890625},{x:.234375,y:.890625},{x:.265625,y:.890625},{x:.265625,y:.890625},{x:.296875,y:.890625},{x:.296875,y:.890625},{x:.328125,y:.890625},{x:.328125,y:.890625},{x:.359375,y:.890625},{x:.359375,y:.890625},{x:.390625,y:.890625},{x:.390625,y:.890625},{x:.421875,y:.890625},{x:.421875,y:.890625},{x:.453125,y:.890625},{x:.453125,y:.890625},{x:.484375,y:.890625},{x:.484375,y:.890625},{x:.515625,y:.890625},{x:.515625,y:.890625},{x:.546875,y:.890625},{x:.546875,y:.890625},{x:.578125,y:.890625},{x:.578125,y:.890625},{x:.609375,y:.890625},{x:.609375,y:.890625},{x:.640625,y:.890625},{x:.640625,y:.890625},{x:.671875,y:.890625},{x:.671875,y:.890625},{x:.703125,y:.890625},{x:.703125,y:.890625},{x:.734375,y:.890625},{x:.734375,y:.890625},{x:.765625,y:.890625},{x:.765625,y:.890625},{x:.796875,y:.890625},{x:.796875,y:.890625},{x:.828125,y:.890625},{x:.828125,y:.890625},{x:.859375,y:.890625},{x:.859375,y:.890625},{x:.890625,y:.890625},{x:.890625,y:.890625},{x:.921875,y:.890625},{x:.921875,y:.890625},{x:.953125,y:.890625},{x:.953125,y:.890625},{x:.984375,y:.890625},{x:.984375,y:.890625},{x:.015625,y:.921875},{x:.015625,y:.921875},{x:.046875,y:.921875},{x:.046875,y:.921875},{x:.078125,y:.921875},{x:.078125,y:.921875},{x:.109375,y:.921875},{x:.109375,y:.921875},{x:.140625,y:.921875},{x:.140625,y:.921875},{x:.171875,y:.921875},{x:.171875,y:.921875},{x:.203125,y:.921875},{x:.203125,y:.921875},{x:.234375,y:.921875},{x:.234375,y:.921875},{x:.265625,y:.921875},{x:.265625,y:.921875},{x:.296875,y:.921875},{x:.296875,y:.921875},{x:.328125,y:.921875},{x:.328125,y:.921875},{x:.359375,y:.921875},{x:.359375,y:.921875},{x:.390625,y:.921875},{x:.390625,y:.921875},{x:.421875,y:.921875},{x:.421875,y:.921875},{x:.453125,y:.921875},{x:.453125,y:.921875},{x:.484375,y:.921875},{x:.484375,y:.921875},{x:.515625,y:.921875},{x:.515625,y:.921875},{x:.546875,y:.921875},{x:.546875,y:.921875},{x:.578125,y:.921875},{x:.578125,y:.921875},{x:.609375,y:.921875},{x:.609375,y:.921875},{x:.640625,y:.921875},{x:.640625,y:.921875},{x:.671875,y:.921875},{x:.671875,y:.921875},{x:.703125,y:.921875},{x:.703125,y:.921875},{x:.734375,y:.921875},{x:.734375,y:.921875},{x:.765625,y:.921875},{x:.765625,y:.921875},{x:.796875,y:.921875},{x:.796875,y:.921875},{x:.828125,y:.921875},{x:.828125,y:.921875},{x:.859375,y:.921875},{x:.859375,y:.921875},{x:.890625,y:.921875},{x:.890625,y:.921875},{x:.921875,y:.921875},{x:.921875,y:.921875},{x:.953125,y:.921875},{x:.953125,y:.921875},{x:.984375,y:.921875},{x:.984375,y:.921875},{x:.015625,y:.953125},{x:.015625,y:.953125},{x:.046875,y:.953125},{x:.046875,y:.953125},{x:.078125,y:.953125},{x:.078125,y:.953125},{x:.109375,y:.953125},{x:.109375,y:.953125},{x:.140625,y:.953125},{x:.140625,y:.953125},{x:.171875,y:.953125},{x:.171875,y:.953125},{x:.203125,y:.953125},{x:.203125,y:.953125},{x:.234375,y:.953125},{x:.234375,y:.953125},{x:.265625,y:.953125},{x:.265625,y:.953125},{x:.296875,y:.953125},{x:.296875,y:.953125},{x:.328125,y:.953125},{x:.328125,y:.953125},{x:.359375,y:.953125},{x:.359375,y:.953125},{x:.390625,y:.953125},{x:.390625,y:.953125},{x:.421875,y:.953125},{x:.421875,y:.953125},{x:.453125,y:.953125},{x:.453125,y:.953125},{x:.484375,y:.953125},{x:.484375,y:.953125},{x:.515625,y:.953125},{x:.515625,y:.953125},{x:.546875,y:.953125},{x:.546875,y:.953125},{x:.578125,y:.953125},{x:.578125,y:.953125},{x:.609375,y:.953125},{x:.609375,y:.953125},{x:.640625,y:.953125},{x:.640625,y:.953125},{x:.671875,y:.953125},{x:.671875,y:.953125},{x:.703125,y:.953125},{x:.703125,y:.953125},{x:.734375,y:.953125},{x:.734375,y:.953125},{x:.765625,y:.953125},{x:.765625,y:.953125},{x:.796875,y:.953125},{x:.796875,y:.953125},{x:.828125,y:.953125},{x:.828125,y:.953125},{x:.859375,y:.953125},{x:.859375,y:.953125},{x:.890625,y:.953125},{x:.890625,y:.953125},{x:.921875,y:.953125},{x:.921875,y:.953125},{x:.953125,y:.953125},{x:.953125,y:.953125},{x:.984375,y:.953125},{x:.984375,y:.953125},{x:.015625,y:.984375},{x:.015625,y:.984375},{x:.046875,y:.984375},{x:.046875,y:.984375},{x:.078125,y:.984375},{x:.078125,y:.984375},{x:.109375,y:.984375},{x:.109375,y:.984375},{x:.140625,y:.984375},{x:.140625,y:.984375},{x:.171875,y:.984375},{x:.171875,y:.984375},{x:.203125,y:.984375},{x:.203125,y:.984375},{x:.234375,y:.984375},{x:.234375,y:.984375},{x:.265625,y:.984375},{x:.265625,y:.984375},{x:.296875,y:.984375},{x:.296875,y:.984375},{x:.328125,y:.984375},{x:.328125,y:.984375},{x:.359375,y:.984375},{x:.359375,y:.984375},{x:.390625,y:.984375},{x:.390625,y:.984375},{x:.421875,y:.984375},{x:.421875,y:.984375},{x:.453125,y:.984375},{x:.453125,y:.984375},{x:.484375,y:.984375},{x:.484375,y:.984375},{x:.515625,y:.984375},{x:.515625,y:.984375},{x:.546875,y:.984375},{x:.546875,y:.984375},{x:.578125,y:.984375},{x:.578125,y:.984375},{x:.609375,y:.984375},{x:.609375,y:.984375},{x:.640625,y:.984375},{x:.640625,y:.984375},{x:.671875,y:.984375},{x:.671875,y:.984375},{x:.703125,y:.984375},{x:.703125,y:.984375},{x:.734375,y:.984375},{x:.734375,y:.984375},{x:.765625,y:.984375},{x:.765625,y:.984375},{x:.796875,y:.984375},{x:.796875,y:.984375},{x:.828125,y:.984375},{x:.828125,y:.984375},{x:.859375,y:.984375},{x:.859375,y:.984375},{x:.890625,y:.984375},{x:.890625,y:.984375},{x:.921875,y:.984375},{x:.921875,y:.984375},{x:.953125,y:.984375},{x:.953125,y:.984375},{x:.984375,y:.984375},{x:.984375,y:.984375},{x:.03125,y:.03125},{x:.03125,y:.03125},{x:.09375,y:.03125},{x:.09375,y:.03125},{x:.15625,y:.03125},{x:.15625,y:.03125},{x:.21875,y:.03125},{x:.21875,y:.03125},{x:.28125,y:.03125},{x:.28125,y:.03125},{x:.34375,y:.03125},{x:.34375,y:.03125},{x:.40625,y:.03125},{x:.40625,y:.03125},{x:.46875,y:.03125},{x:.46875,y:.03125},{x:.53125,y:.03125},{x:.53125,y:.03125},{x:.59375,y:.03125},{x:.59375,y:.03125},{x:.65625,y:.03125},{x:.65625,y:.03125},{x:.71875,y:.03125},{x:.71875,y:.03125},{x:.78125,y:.03125},{x:.78125,y:.03125},{x:.84375,y:.03125},{x:.84375,y:.03125},{x:.90625,y:.03125},{x:.90625,y:.03125},{x:.96875,y:.03125},{x:.96875,y:.03125},{x:.03125,y:.09375},{x:.03125,y:.09375},{x:.09375,y:.09375},{x:.09375,y:.09375},{x:.15625,y:.09375},{x:.15625,y:.09375},{x:.21875,y:.09375},{x:.21875,y:.09375},{x:.28125,y:.09375},{x:.28125,y:.09375},{x:.34375,y:.09375},{x:.34375,y:.09375},{x:.40625,y:.09375},{x:.40625,y:.09375},{x:.46875,y:.09375},{x:.46875,y:.09375},{x:.53125,y:.09375},{x:.53125,y:.09375},{x:.59375,y:.09375},{x:.59375,y:.09375},{x:.65625,y:.09375},{x:.65625,y:.09375},{x:.71875,y:.09375},{x:.71875,y:.09375},{x:.78125,y:.09375},{x:.78125,y:.09375},{x:.84375,y:.09375},{x:.84375,y:.09375},{x:.90625,y:.09375},{x:.90625,y:.09375},{x:.96875,y:.09375},{x:.96875,y:.09375},{x:.03125,y:.15625},{x:.03125,y:.15625},{x:.09375,y:.15625},{x:.09375,y:.15625},{x:.15625,y:.15625},{x:.15625,y:.15625},{x:.21875,y:.15625},{x:.21875,y:.15625},{x:.28125,y:.15625},{x:.28125,y:.15625},{x:.34375,y:.15625},{x:.34375,y:.15625},{x:.40625,y:.15625},{x:.40625,y:.15625},{x:.46875,y:.15625},{x:.46875,y:.15625},{x:.53125,y:.15625},{x:.53125,y:.15625},{x:.59375,y:.15625},{x:.59375,y:.15625},{x:.65625,y:.15625},{x:.65625,y:.15625},{x:.71875,y:.15625},{x:.71875,y:.15625},{x:.78125,y:.15625},{x:.78125,y:.15625},{x:.84375,y:.15625},{x:.84375,y:.15625},{x:.90625,y:.15625},{x:.90625,y:.15625},{x:.96875,y:.15625},{x:.96875,y:.15625},{x:.03125,y:.21875},{x:.03125,y:.21875},{x:.09375,y:.21875},{x:.09375,y:.21875},{x:.15625,y:.21875},{x:.15625,y:.21875},{x:.21875,y:.21875},{x:.21875,y:.21875},{x:.28125,y:.21875},{x:.28125,y:.21875},{x:.34375,y:.21875},{x:.34375,y:.21875},{x:.40625,y:.21875},{x:.40625,y:.21875},{x:.46875,y:.21875},{x:.46875,y:.21875},{x:.53125,y:.21875},{x:.53125,y:.21875},{x:.59375,y:.21875},{x:.59375,y:.21875},{x:.65625,y:.21875},{x:.65625,y:.21875},{x:.71875,y:.21875},{x:.71875,y:.21875},{x:.78125,y:.21875},{x:.78125,y:.21875},{x:.84375,y:.21875},{x:.84375,y:.21875},{x:.90625,y:.21875},{x:.90625,y:.21875},{x:.96875,y:.21875},{x:.96875,y:.21875},{x:.03125,y:.28125},{x:.03125,y:.28125},{x:.09375,y:.28125},{x:.09375,y:.28125},{x:.15625,y:.28125},{x:.15625,y:.28125},{x:.21875,y:.28125},{x:.21875,y:.28125},{x:.28125,y:.28125},{x:.28125,y:.28125},{x:.34375,y:.28125},{x:.34375,y:.28125},{x:.40625,y:.28125},{x:.40625,y:.28125},{x:.46875,y:.28125},{x:.46875,y:.28125},{x:.53125,y:.28125},{x:.53125,y:.28125},{x:.59375,y:.28125},{x:.59375,y:.28125},{x:.65625,y:.28125},{x:.65625,y:.28125},{x:.71875,y:.28125},{x:.71875,y:.28125},{x:.78125,y:.28125},{x:.78125,y:.28125},{x:.84375,y:.28125},{x:.84375,y:.28125},{x:.90625,y:.28125},{x:.90625,y:.28125},{x:.96875,y:.28125},{x:.96875,y:.28125},{x:.03125,y:.34375},{x:.03125,y:.34375},{x:.09375,y:.34375},{x:.09375,y:.34375},{x:.15625,y:.34375},{x:.15625,y:.34375},{x:.21875,y:.34375},{x:.21875,y:.34375},{x:.28125,y:.34375},{x:.28125,y:.34375},{x:.34375,y:.34375},{x:.34375,y:.34375},{x:.40625,y:.34375},{x:.40625,y:.34375},{x:.46875,y:.34375},{x:.46875,y:.34375},{x:.53125,y:.34375},{x:.53125,y:.34375},{x:.59375,y:.34375},{x:.59375,y:.34375},{x:.65625,y:.34375},{x:.65625,y:.34375},{x:.71875,y:.34375},{x:.71875,y:.34375},{x:.78125,y:.34375},{x:.78125,y:.34375},{x:.84375,y:.34375},{x:.84375,y:.34375},{x:.90625,y:.34375},{x:.90625,y:.34375},{x:.96875,y:.34375},{x:.96875,y:.34375},{x:.03125,y:.40625},{x:.03125,y:.40625},{x:.09375,y:.40625},{x:.09375,y:.40625},{x:.15625,y:.40625},{x:.15625,y:.40625},{x:.21875,y:.40625},{x:.21875,y:.40625},{x:.28125,y:.40625},{x:.28125,y:.40625},{x:.34375,y:.40625},{x:.34375,y:.40625},{x:.40625,y:.40625},{x:.40625,y:.40625},{x:.46875,y:.40625},{x:.46875,y:.40625},{x:.53125,y:.40625},{x:.53125,y:.40625},{x:.59375,y:.40625},{x:.59375,y:.40625},{x:.65625,y:.40625},{x:.65625,y:.40625},{x:.71875,y:.40625},{x:.71875,y:.40625},{x:.78125,y:.40625},{x:.78125,y:.40625},{x:.84375,y:.40625},{x:.84375,y:.40625},{x:.90625,y:.40625},{x:.90625,y:.40625},{x:.96875,y:.40625},{x:.96875,y:.40625},{x:.03125,y:.46875},{x:.03125,y:.46875},{x:.09375,y:.46875},{x:.09375,y:.46875},{x:.15625,y:.46875},{x:.15625,y:.46875},{x:.21875,y:.46875},{x:.21875,y:.46875},{x:.28125,y:.46875},{x:.28125,y:.46875},{x:.34375,y:.46875},{x:.34375,y:.46875},{x:.40625,y:.46875},{x:.40625,y:.46875},{x:.46875,y:.46875},{x:.46875,y:.46875},{x:.53125,y:.46875},{x:.53125,y:.46875},{x:.59375,y:.46875},{x:.59375,y:.46875},{x:.65625,y:.46875},{x:.65625,y:.46875},{x:.71875,y:.46875},{x:.71875,y:.46875},{x:.78125,y:.46875},{x:.78125,y:.46875},{x:.84375,y:.46875},{x:.84375,y:.46875},{x:.90625,y:.46875},{x:.90625,y:.46875},{x:.96875,y:.46875},{x:.96875,y:.46875},{x:.03125,y:.53125},{x:.03125,y:.53125},{x:.09375,y:.53125},{x:.09375,y:.53125},{x:.15625,y:.53125},{x:.15625,y:.53125},{x:.21875,y:.53125},{x:.21875,y:.53125},{x:.28125,y:.53125},{x:.28125,y:.53125},{x:.34375,y:.53125},{x:.34375,y:.53125},{x:.40625,y:.53125},{x:.40625,y:.53125},{x:.46875,y:.53125},{x:.46875,y:.53125},{x:.53125,y:.53125},{x:.53125,y:.53125},{x:.59375,y:.53125},{x:.59375,y:.53125},{x:.65625,y:.53125},{x:.65625,y:.53125},{x:.71875,y:.53125},{x:.71875,y:.53125},{x:.78125,y:.53125},{x:.78125,y:.53125},{x:.84375,y:.53125},{x:.84375,y:.53125},{x:.90625,y:.53125},{x:.90625,y:.53125},{x:.96875,y:.53125},{x:.96875,y:.53125},{x:.03125,y:.59375},{x:.03125,y:.59375},{x:.09375,y:.59375},{x:.09375,y:.59375},{x:.15625,y:.59375},{x:.15625,y:.59375},{x:.21875,y:.59375},{x:.21875,y:.59375},{x:.28125,y:.59375},{x:.28125,y:.59375},{x:.34375,y:.59375},{x:.34375,y:.59375},{x:.40625,y:.59375},{x:.40625,y:.59375},{x:.46875,y:.59375},{x:.46875,y:.59375},{x:.53125,y:.59375},{x:.53125,y:.59375},{x:.59375,y:.59375},{x:.59375,y:.59375},{x:.65625,y:.59375},{x:.65625,y:.59375},{x:.71875,y:.59375},{x:.71875,y:.59375},{x:.78125,y:.59375},{x:.78125,y:.59375},{x:.84375,y:.59375},{x:.84375,y:.59375},{x:.90625,y:.59375},{x:.90625,y:.59375},{x:.96875,y:.59375},{x:.96875,y:.59375},{x:.03125,y:.65625},{x:.03125,y:.65625},{x:.09375,y:.65625},{x:.09375,y:.65625},{x:.15625,y:.65625},{x:.15625,y:.65625},{x:.21875,y:.65625},{x:.21875,y:.65625},{x:.28125,y:.65625},{x:.28125,y:.65625},{x:.34375,y:.65625},{x:.34375,y:.65625},{x:.40625,y:.65625},{x:.40625,y:.65625},{x:.46875,y:.65625},{x:.46875,y:.65625},{x:.53125,y:.65625},{x:.53125,y:.65625},{x:.59375,y:.65625},{x:.59375,y:.65625},{x:.65625,y:.65625},{x:.65625,y:.65625},{x:.71875,y:.65625},{x:.71875,y:.65625},{x:.78125,y:.65625},{x:.78125,y:.65625},{x:.84375,y:.65625},{x:.84375,y:.65625},{x:.90625,y:.65625},{x:.90625,y:.65625},{x:.96875,y:.65625},{x:.96875,y:.65625},{x:.03125,y:.71875},{x:.03125,y:.71875},{x:.09375,y:.71875},{x:.09375,y:.71875},{x:.15625,y:.71875},{x:.15625,y:.71875},{x:.21875,y:.71875},{x:.21875,y:.71875},{x:.28125,y:.71875},{x:.28125,y:.71875},{x:.34375,y:.71875},{x:.34375,y:.71875},{x:.40625,y:.71875},{x:.40625,y:.71875},{x:.46875,y:.71875},{x:.46875,y:.71875},{x:.53125,y:.71875},{x:.53125,y:.71875},{x:.59375,y:.71875},{x:.59375,y:.71875},{x:.65625,y:.71875},{x:.65625,y:.71875},{x:.71875,y:.71875},{x:.71875,y:.71875},{x:.78125,y:.71875},{x:.78125,y:.71875},{x:.84375,y:.71875},{x:.84375,y:.71875},{x:.90625,y:.71875},{x:.90625,y:.71875},{x:.96875,y:.71875},{x:.96875,y:.71875},{x:.03125,y:.78125},{x:.03125,y:.78125},{x:.09375,y:.78125},{x:.09375,y:.78125},{x:.15625,y:.78125},{x:.15625,y:.78125},{x:.21875,y:.78125},{x:.21875,y:.78125},{x:.28125,y:.78125},{x:.28125,y:.78125},{x:.34375,y:.78125},{x:.34375,y:.78125},{x:.40625,y:.78125},{x:.40625,y:.78125},{x:.46875,y:.78125},{x:.46875,y:.78125},{x:.53125,y:.78125},{x:.53125,y:.78125},{x:.59375,y:.78125},{x:.59375,y:.78125},{x:.65625,y:.78125},{x:.65625,y:.78125},{x:.71875,y:.78125},{x:.71875,y:.78125},{x:.78125,y:.78125},{x:.78125,y:.78125},{x:.84375,y:.78125},{x:.84375,y:.78125},{x:.90625,y:.78125},{x:.90625,y:.78125},{x:.96875,y:.78125},{x:.96875,y:.78125},{x:.03125,y:.84375},{x:.03125,y:.84375},{x:.09375,y:.84375},{x:.09375,y:.84375},{x:.15625,y:.84375},{x:.15625,y:.84375},{x:.21875,y:.84375},{x:.21875,y:.84375},{x:.28125,y:.84375},{x:.28125,y:.84375},{x:.34375,y:.84375},{x:.34375,y:.84375},{x:.40625,y:.84375},{x:.40625,y:.84375},{x:.46875,y:.84375},{x:.46875,y:.84375},{x:.53125,y:.84375},{x:.53125,y:.84375},{x:.59375,y:.84375},{x:.59375,y:.84375},{x:.65625,y:.84375},{x:.65625,y:.84375},{x:.71875,y:.84375},{x:.71875,y:.84375},{x:.78125,y:.84375},{x:.78125,y:.84375},{x:.84375,y:.84375},{x:.84375,y:.84375},{x:.90625,y:.84375},{x:.90625,y:.84375},{x:.96875,y:.84375},{x:.96875,y:.84375},{x:.03125,y:.90625},{x:.03125,y:.90625},{x:.09375,y:.90625},{x:.09375,y:.90625},{x:.15625,y:.90625},{x:.15625,y:.90625},{x:.21875,y:.90625},{x:.21875,y:.90625},{x:.28125,y:.90625},{x:.28125,y:.90625},{x:.34375,y:.90625},{x:.34375,y:.90625},{x:.40625,y:.90625},{x:.40625,y:.90625},{x:.46875,y:.90625},{x:.46875,y:.90625},{x:.53125,y:.90625},{x:.53125,y:.90625},{x:.59375,y:.90625},{x:.59375,y:.90625},{x:.65625,y:.90625},{x:.65625,y:.90625},{x:.71875,y:.90625},{x:.71875,y:.90625},{x:.78125,y:.90625},{x:.78125,y:.90625},{x:.84375,y:.90625},{x:.84375,y:.90625},{x:.90625,y:.90625},{x:.90625,y:.90625},{x:.96875,y:.90625},{x:.96875,y:.90625},{x:.03125,y:.96875},{x:.03125,y:.96875},{x:.09375,y:.96875},{x:.09375,y:.96875},{x:.15625,y:.96875},{x:.15625,y:.96875},{x:.21875,y:.96875},{x:.21875,y:.96875},{x:.28125,y:.96875},{x:.28125,y:.96875},{x:.34375,y:.96875},{x:.34375,y:.96875},{x:.40625,y:.96875},{x:.40625,y:.96875},{x:.46875,y:.96875},{x:.46875,y:.96875},{x:.53125,y:.96875},{x:.53125,y:.96875},{x:.59375,y:.96875},{x:.59375,y:.96875},{x:.65625,y:.96875},{x:.65625,y:.96875},{x:.71875,y:.96875},{x:.71875,y:.96875},{x:.78125,y:.96875},{x:.78125,y:.96875},{x:.84375,y:.96875},{x:.84375,y:.96875},{x:.90625,y:.96875},{x:.90625,y:.96875},{x:.96875,y:.96875},{x:.96875,y:.96875},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375}];var w0=class{constructor(t){de(this,"model");de(this,"anchors");de(this,"anchorsTensor");de(this,"inputSize");de(this,"inputSizeTensor");de(this,"doubleInputSizeTensor");var a,n,r,s;this.model=t,this.anchors=iw.map(i=>[i.x,i.y]),this.anchorsTensor=Kn(this.anchors),this.inputSize=((s=(r=(n=(a=this==null?void 0:this.model)==null?void 0:a.inputs)==null?void 0:n[0])==null?void 0:r.shape)==null?void 0:s[2])||0,this.inputSizeTensor=Ht([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=Ht([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){let a={};a.boxOffsets=De(t,[0,0],[-1,2]),a.boxSizes=De(t,[0,2],[-1,2]),a.div=me(a.boxOffsets,this.inputSizeTensor),a.boxCenterPoints=be(a.div,this.anchorsTensor),a.halfBoxSizes=me(a.boxSizes,this.doubleInputSizeTensor),a.sub=he(a.boxCenterPoints,a.halfBoxSizes),a.startPoints=ae(a.sub,this.inputSizeTensor),a.add=be(a.boxCenterPoints,a.halfBoxSizes),a.endPoints=ae(a.add,this.inputSizeTensor);let n=ru([a.startPoints,a.endPoints],1);return Object.keys(a).forEach(r=>Y(a[r])),n}normalizeLandmarks(t,a){let n={};n.reshape=J(t,[-1,7,2]),n.div=me(n.reshape,this.inputSizeTensor),n.landmarks=be(n.div,this.anchors[a]?this.anchors[a]:0);let r=ae(n.landmarks,this.inputSizeTensor);return Object.keys(n).forEach(s=>Y(n[s])),r}async predict(t,a){var o;let n={};n.resize=ge.resizeBilinear(t,[this.inputSize,this.inputSize]),n.div=me(n.resize,Le.tf127),n.image=he(n.div,Le.tf1),n.batched=this.model.execute(n.image),n.predictions=Oe(n.batched),n.slice=De(n.predictions,[0,0],[-1,1]),n.sigmoid=Da(n.slice),n.scores=Oe(n.sigmoid);let r=await n.scores.data();n.boxes=De(n.predictions,[0,1],[-1,4]),n.norm=this.normalizeBoxes(n.boxes),n.nms=await ge.nonMaxSuppressionAsync(n.norm,n.scores,3*(((o=a.hand)==null?void 0:o.maxDetected)||1),a.hand.iouThreshold,a.hand.minConfidence);let s=await n.nms.array(),i=[];for(let l of s){let u={};u.box=De(n.norm,[l,0],[1,-1]),u.slice=De(n.predictions,[l,5],[1,14]),u.norm=this.normalizeLandmarks(u.slice,l),u.palmLandmarks=J(u.norm,[-1,2]);let p=await u.box.data(),c=p.slice(0,2),d=p.slice(2,4),h=await u.palmLandmarks.array(),f={startPoint:c,endPoint:d,palmLandmarks:h,confidence:r[l]},m=aw(f,[(t.shape[2]||1)/this.inputSize,(t.shape[1]||0)/this.inputSize]);i.push(m),Object.keys(u).forEach(g=>Y(u[g]))}return Object.keys(n).forEach(l=>Y(n[l])),i}};var I0e=5,ow=1.65,lw=[0,5,9,13,17,1,2],S0e=0,T0e=2,uw=0,I0=class{constructor(t,a){de(this,"handDetector");de(this,"handPoseModel");de(this,"inputSize");de(this,"storedBoxes");de(this,"skipped");de(this,"detectedHands");var n,r,s;this.handDetector=t,this.handPoseModel=a,this.inputSize=((s=(r=(n=this.handPoseModel)==null?void 0:n.inputs)==null?void 0:r[0].shape)==null?void 0:s[2])||0,this.storedBoxes=[],this.skipped=Number.MAX_SAFE_INTEGER,this.detectedHands=0}calculateLandmarksBoundingBox(t){let a=t.map(i=>i[0]),n=t.map(i=>i[1]),r=[Math.min(...a),Math.min(...n)],s=[Math.max(...a),Math.max(...n)];return{startPoint:r,endPoint:s}}getBoxForPalmLandmarks(t,a){let n=t.map(s=>qg([...s,1],a)),r=this.calculateLandmarksBoundingBox(n);return v0(k0(r),I0e)}getBoxForHandLandmarks(t){let a=this.calculateLandmarksBoundingBox(t),n=v0(k0(a),ow);n.palmLandmarks=[];for(let r=0;r<lw.length;r++)n.palmLandmarks.push(t[lw[r]].slice(0,2));return n}transformRawCoords(t,a,n,r){let s=b0(a),i=[s[0]/this.inputSize,s[1]/this.inputSize,(s[0]+s[1])/this.inputSize/2],o=t.map(h=>[i[0]*(h[0]-this.inputSize/2),i[1]*(h[1]-this.inputSize/2),i[2]*h[2]]),l=jg(n,[0,0]),u=o.map(h=>[...qg(h,l),h[2]]),p=rw(r),c=[...Np(a),1],d=[ws(c,p[0]),ws(c,p[1])];return u.map(h=>[Math.trunc(h[0]+d[0]),Math.trunc(h[1]+d[1]),Math.trunc(h[2])])}async estimateHands(t,a){let n=!1,r,s=(a.hand.skipTime||0)>te()-uw,i=this.skipped<(a.hand.skipFrames||0);a.skipAllowed&&s&&i&&(r=await this.handDetector.predict(t,a),this.skipped=0),a.skipAllowed&&this.skipped++,r&&r.length>0&&(r.length!==this.detectedHands&&this.detectedHands!==a.hand.maxDetected||!a.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...r],this.storedBoxes.length>0&&(n=!0));let o=[];for(let l=0;l<this.storedBoxes.length;l++){let u=this.storedBoxes[l];if(u)if(a.hand.landmarks){let p=a.hand.rotation?nw(u.palmLandmarks[S0e],u.palmLandmarks[T0e]):0,c=Np(u),d=[c[0]/t.shape[2],c[1]/t.shape[1]],h=a.hand.rotation&&ne.kernels.includes("rotatewithoffset")?ge.rotateWithOffset(t,p,0,d):t.clone(),f=jg(-p,c),m=n?this.getBoxForPalmLandmarks(u.palmLandmarks,f):u,g=tw(m,h,[this.inputSize,this.inputSize]),x=me(g,Le.tf255);Y(g),Y(h);let[y,A]=this.handPoseModel.execute(x);uw=te(),Y(x);let b=(await y.data())[0];if(Y(y),b>=a.hand.minConfidence/4){let k=J(A,[-1,3]),S=await k.array();Y(A),Y(k);let C=this.transformRawCoords(S,m,p,f),E=this.getBoxForHandLandmarks(C);this.storedBoxes[l]={...E,confidence:b};let _={landmarks:C,confidence:b,boxConfidence:u.confidence,fingerConfidence:b,box:{topLeft:E.startPoint,bottomRight:E.endPoint}};o.push(_)}else this.storedBoxes[l]=null;Y(A)}else{let p=v0(k0(u),ow),c={confidence:u.confidence,boxConfidence:u.confidence,fingerConfidence:0,box:{topLeft:p.startPoint,bottomRight:p.endPoint},landmarks:[]};o.push(c)}}return this.storedBoxes=this.storedBoxes.filter(l=>l!==null),this.detectedHands=o.length,o.length>a.hand.maxDetected&&(o.length=a.hand.maxDetected),o}};var dw={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]},zo,Lo,pw;async function Xg(e,t){let a=await pw.estimateHands(e,t);if(!a)return[];let n=[];for(let r=0;r<a.length;r++){let s={};if(a[r].landmarks)for(let p of Object.keys(dw))s[p]=dw[p].map(c=>a[r].landmarks[c]);let i=a[r].landmarks,o=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],l=[0,0,0,0];if(i&&i.length>0){for(let p of i)p[0]<o[0]&&(o[0]=p[0]),p[1]<o[1]&&(o[1]=p[1]),p[0]>o[2]&&(o[2]=p[0]),p[1]>o[3]&&(o[3]=p[1]);o[2]-=o[0],o[3]-=o[1],l=[o[0]/(e.shape[2]||0),o[1]/(e.shape[1]||0),o[2]/(e.shape[2]||0),o[3]/(e.shape[1]||0)]}else o=a[r].box?[Math.trunc(Math.max(0,a[r].box.topLeft[0])),Math.trunc(Math.max(0,a[r].box.topLeft[1])),Math.trunc(Math.min(e.shape[2]||0,a[r].box.bottomRight[0])-Math.max(0,a[r].box.topLeft[0])),Math.trunc(Math.min(e.shape[1]||0,a[r].box.bottomRight[1])-Math.max(0,a[r].box.topLeft[1]))]:[0,0,0,0],l=[a[r].box.topLeft[0]/(e.shape[2]||0),a[r].box.topLeft[1]/(e.shape[1]||0),(a[r].box.bottomRight[0]-a[r].box.topLeft[0])/(e.shape[2]||0),(a[r].box.bottomRight[1]-a[r].box.topLeft[1])/(e.shape[1]||0)];let u=A0(i);n.push({id:r,score:Math.round(100*a[r].confidence)/100,boxScore:Math.round(100*a[r].boxConfidence)/100,fingerScore:Math.round(100*a[r].fingerConfidence)/100,label:"hand",box:o,boxRaw:l,keypoints:i,annotations:s,landmarks:u})}return n}async function cw(e){var a,n;ne.initial&&(zo=null,Lo=null),!zo||!Lo?[zo,Lo]=await Promise.all([e.hand.enabled?Me((a=e.hand.detector)==null?void 0:a.modelPath):null,e.hand.landmarks?Me((n=e.hand.skeleton)==null?void 0:n.modelPath):null]):(e.debug&&X("cached model:",zo.modelUrl),e.debug&&X("cached model:",Lo.modelUrl));let t=zo?new w0(zo):void 0;return t&&Lo&&(pw=new I0(t,Lo)),[zo,Lo]}var Ft=[null,null],N0e=["StatefulPartitionedCall/Postprocessor/Slice","StatefulPartitionedCall/Postprocessor/ExpandDims_1"],Is=[[0,0],[0,0]],E0e=["hand","fist","pinch","point","face","tip","pinchtip"],fw=4,mw=1.6,R0e=512,M0e=1.4,S0=Number.MAX_SAFE_INTEGER,Kg=0,$r=[0,0],Pt={boxes:[],hands:[]},gw={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],base:[0],palm:[0,17,13,9,5,1,0]};async function xw(e){var t;if(ne.initial&&(Ft[0]=null),Ft[0])e.debug&&X("cached model:",Ft[0].modelUrl);else{Kh(["tensorlistreserve","enter","tensorlistfromtensor","merge","loopcond","switch","exit","tensorliststack","nextiteration","tensorlistsetitem","tensorlistgetitem","reciprocal","shape","split","where"],e),Ft[0]=await Me((t=e.hand.detector)==null?void 0:t.modelPath);let a=Ft[0].executor?Object.values(Ft[0].modelSignature.inputs):void 0;Is[0][0]=Array.isArray(a)?parseInt(a[0].tensorShape.dim[1].size):0,Is[0][1]=Array.isArray(a)?parseInt(a[0].tensorShape.dim[2].size):0}return Ft[0]}async function yw(e){var t;if(ne.initial&&(Ft[1]=null),Ft[1])e.debug&&X("cached model:",Ft[1].modelUrl);else{Ft[1]=await Me((t=e.hand.skeleton)==null?void 0:t.modelPath);let a=Ft[1].executor?Object.values(Ft[1].modelSignature.inputs):void 0;Is[1][0]=Array.isArray(a)?parseInt(a[0].tensorShape.dim[1].size):0,Is[1][1]=Array.isArray(a)?parseInt(a[0].tensorShape.dim[2].size):0}return Ft[1]}async function $0e(e,t){let a=[];if(!e||!Ft[0])return a;let n={},r=(e.shape[2]||1)/(e.shape[1]||1),s=Math.min(Math.round((e.shape[1]||0)/8)*8,R0e),i=Math.round(s*r/8)*8;n.resize=ge.resizeBilinear(e,[s,i]),n.cast=qe(n.resize,"int32"),[n.rawScores,n.rawBoxes]=await Ft[0].executeAsync(n.cast,N0e),n.boxes=Oe(n.rawBoxes,[0,2]),n.scores=Oe(n.rawScores,[0]);let o=Ta(n.scores,1);Y(o[fw]),o.splice(fw,1),n.filtered=oa(o,1),Y(o),n.max=ca(n.filtered,1),n.argmax=ar(n.filtered,1);let l=0;n.nms=await ge.nonMaxSuppressionAsync(n.boxes,n.max,(t.hand.maxDetected||0)+1,t.hand.iouThreshold||0,t.hand.minConfidence||1);let u=await n.nms.data(),p=await n.max.data(),c=await n.argmax.data();for(let d of Array.from(u)){let h=De(n.boxes,d,1),f=await h.data();Y(h);let m=[f[1],f[0],f[3]-f[1],f[2]-f[0]],g=r0(m,M0e),x=[Math.trunc(m[0]*$r[0]),Math.trunc(m[1]*$r[1]),Math.trunc(m[2]*$r[0]),Math.trunc(m[3]*$r[1])],y=p[d],A=E0e[c[d]],b={id:l++,score:y,box:x,boxRaw:g,label:A};a.push(b)}return Object.keys(n).forEach(d=>Y(n[d])),a.sort((d,h)=>h.score-d.score),a.length>(t.hand.maxDetected||1)&&(a.length=t.hand.maxDetected||1),a}async function Zg(e,t,a){let n={id:t.id,score:Math.round(100*t.score)/100,boxScore:Math.round(100*t.score)/100,fingerScore:0,box:t.box,boxRaw:t.boxRaw,label:t.label,keypoints:[],landmarks:{},annotations:{}};if(e&&Ft[1]&&a.hand.landmarks&&t.score>(a.hand.minConfidence||0)){let r={},s=[t.boxRaw[1],t.boxRaw[0],t.boxRaw[3]+t.boxRaw[1],t.boxRaw[2]+t.boxRaw[0]];r.crop=ge.cropAndResize(e,[s],[0],[Is[1][0],Is[1][1]],"bilinear"),r.div=me(r.crop,Le.tf255),[r.score,r.keypoints]=Ft[1].execute(r.div,["Identity_1","Identity"]);let i=(await r.score.data())[0],o=(100-Math.trunc(100/(1+Math.exp(i))))/100;if(o>=(a.hand.minConfidence||0)){n.fingerScore=o,r.reshaped=J(r.keypoints,[-1,3]);let p=(await r.reshaped.array()).map(c=>[c[0]/Is[1][1],c[1]/Is[1][0],c[2]||0]).map(c=>[c[0]*t.boxRaw[2],c[1]*t.boxRaw[3],c[2]||0]);n.keypoints=p.map(c=>[$r[0]*(c[0]+t.boxRaw[0]),$r[1]*(c[1]+t.boxRaw[1]),c[2]||0]),n.landmarks=A0(n.keypoints);for(let c of Object.keys(gw))n.annotations[c]=gw[c].map(d=>n.landmarks&&n.keypoints[d]?n.keypoints[d]:null)}Object.keys(r).forEach(l=>Y(r[l]))}return n}async function Yg(e,t){var r,s;if(!((r=Ft[0])!=null&&r.executor)||!((s=Ft[1])!=null&&s.executor)||!Ft[0].inputs[0].shape||!Ft[1].inputs[0].shape)return[];$r=[e.shape[2]||0,e.shape[1]||0],S0++;let a=(t.hand.skipTime||0)>te()-Kg,n=S0<(t.hand.skipFrames||0);return t.skipAllowed&&a&&n?Pt.hands:new Promise(async i=>{let o=3*(t.hand.skipTime||0)>te()-Kg,l=S0<3*(t.hand.skipFrames||0);t.skipAllowed&&Pt.hands.length===t.hand.maxDetected?Pt.hands=await Promise.all(Pt.boxes.map(p=>Zg(e,p,t))):t.skipAllowed&&o&&l&&Pt.hands.length>0?Pt.hands=await Promise.all(Pt.boxes.map(p=>Zg(e,p,t))):(Pt.boxes=await $0e(e,t),Kg=te(),Pt.hands=await Promise.all(Pt.boxes.map(p=>Zg(e,p,t))),S0=0);let u=[...Pt.boxes];if(Pt.boxes.length=0,t.cacheSensitivity>0)for(let p=0;p<Pt.hands.length;p++){let c=x9(Pt.hands[p].keypoints,$r);if(c.box[2]/(e.shape[2]||1)>.05&&c.box[3]/(e.shape[1]||1)>.05&&Pt.hands[p].fingerScore&&Pt.hands[p].fingerScore>(t.hand.minConfidence||0)){let d=r0(c.box,mw),h=r0(c.boxRaw,mw);Pt.boxes.push({...u[p],box:d,boxRaw:h})}}for(let p=0;p<Pt.hands.length;p++){let c=Er(Pt.hands[p].keypoints,$r);Pt.hands[p].box=c.box,Pt.hands[p].boxRaw=c.boxRaw}i(Pt.hands)})}var or=(e=null)=>({face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0,width:0,height:0,error:e});var Ep={};hr(Ep,{connected:()=>C0,horizontal:()=>Jg,kpt:()=>T0,relative:()=>e5,vertical:()=>Qg});var T0=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],Jg=[["leftEye","rightEye"],["leftEar","rightEar"],["leftShoulder","rightShoulder"],["leftElbow","rightElbow"],["leftWrist","rightWrist"],["leftHip","rightHip"],["leftKnee","rightKnee"],["leftAnkle","rightAnkle"]],Qg=[["leftKnee","leftShoulder"],["rightKnee","rightShoulder"],["leftAnkle","leftKnee"],["rightAnkle","rightKnee"]],e5=[[["leftHip","rightHip"],["leftShoulder","rightShoulder"]],[["leftElbow","rightElbow"],["leftShoulder","rightShoulder"]]],C0={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var xe=or(),t5=0;function bw(e,t){var i,o,l,u,p,c,d,h,f,m,g,x,y,A,b,k,S,C,E,_,$,M,I;let a=te();if(!e)return or();let n=Date.now()-e.timestamp,r=n<1e3?8-Math.log(n+1):1;if(e.canvas&&(xe.canvas=e.canvas),e.error&&(xe.error=e.error),!xe.body||e.body.length!==xe.body.length)xe.body=JSON.parse(JSON.stringify(e.body));else for(let N=0;N<e.body.length;N++){let O=e.body[N].box.map((U,j)=>((r-1)*xe.body[N].box[j]+U)/r),L=e.body[N].boxRaw.map((U,j)=>((r-1)*xe.body[N].boxRaw[j]+U)/r),W=e.body[N].keypoints.map((U,j)=>{var V,Q,Z,re,ee,fe,ie,ye,Se;return{score:U.score,part:U.part,position:[xe.body[N].keypoints[j]?((r-1)*(xe.body[N].keypoints[j].position[0]||0)+(U.position[0]||0))/r:U.position[0],xe.body[N].keypoints[j]?((r-1)*(xe.body[N].keypoints[j].position[1]||0)+(U.position[1]||0))/r:U.position[1],xe.body[N].keypoints[j]?((r-1)*(xe.body[N].keypoints[j].position[2]||0)+(U.position[2]||0))/r:U.position[2]],positionRaw:[xe.body[N].keypoints[j]?((r-1)*(xe.body[N].keypoints[j].positionRaw[0]||0)+(U.positionRaw[0]||0))/r:U.positionRaw[0],xe.body[N].keypoints[j]?((r-1)*(xe.body[N].keypoints[j].positionRaw[1]||0)+(U.positionRaw[1]||0))/r:U.positionRaw[1],xe.body[N].keypoints[j]?((r-1)*(xe.body[N].keypoints[j].positionRaw[2]||0)+(U.positionRaw[2]||0))/r:U.positionRaw[2]],distance:[xe.body[N].keypoints[j]?((r-1)*(((V=xe.body[N].keypoints[j].distance)==null?void 0:V[0])||0)+(((Q=U.distance)==null?void 0:Q[0])||0))/r:(Z=U.distance)==null?void 0:Z[0],xe.body[N].keypoints[j]?((r-1)*(((re=xe.body[N].keypoints[j].distance)==null?void 0:re[1])||0)+(((ee=U.distance)==null?void 0:ee[1])||0))/r:(fe=U.distance)==null?void 0:fe[1],xe.body[N].keypoints[j]?((r-1)*(((ie=xe.body[N].keypoints[j].distance)==null?void 0:ie[2])||0)+(((ye=U.distance)==null?void 0:ye[2])||0))/r:(Se=U.distance)==null?void 0:Se[2]]}}),G={},H={connected:{}};(i=t.body.modelPath)!=null&&i.includes("efficientpose")?H=o0:(o=t.body.modelPath)!=null&&o.includes("blazepose")?H=a0:(l=t.body.modelPath)!=null&&l.includes("movenet")&&(H=Ep);for(let[U,j]of Object.entries(H.connected)){let V=[];for(let Q=0;Q<j.length-1;Q++){let Z=W.find(ee=>ee.part===j[Q]),re=W.find(ee=>ee.part===j[Q+1]);Z&&re&&V.push([Z.position,re.position])}G[U]=V}xe.body[N]={...e.body[N],box:O,boxRaw:L,keypoints:W,annotations:G}}if(!xe.hand||e.hand.length!==xe.hand.length)xe.hand=JSON.parse(JSON.stringify(e.hand));else for(let N=0;N<e.hand.length;N++){let O=e.hand[N].box.map((H,U)=>((r-1)*xe.hand[N].box[U]+H)/r),L=e.hand[N].boxRaw.map((H,U)=>((r-1)*xe.hand[N].boxRaw[U]+H)/r);xe.hand[N].keypoints.length!==e.hand[N].keypoints.length&&(xe.hand[N].keypoints=e.hand[N].keypoints);let W=e.hand[N].keypoints&&e.hand[N].keypoints.length>0?e.hand[N].keypoints.map((H,U)=>H.map((j,V)=>((r-1)*(xe.hand[N].keypoints[U][V]||1)+(j||0))/r)):[],G={};if(Object.keys(xe.hand[N].annotations).length!==Object.keys(e.hand[N].annotations).length)xe.hand[N].annotations=e.hand[N].annotations,G=xe.hand[N].annotations;else if(e.hand[N].annotations)for(let H of Object.keys(e.hand[N].annotations))G[H]=(c=(p=(u=e.hand[N])==null?void 0:u.annotations)==null?void 0:p[H])!=null&&c[0]?e.hand[N].annotations[H].map((U,j)=>U.map((V,Q)=>((r-1)*xe.hand[N].annotations[H][j][Q]+V)/r)):null;xe.hand[N]={...e.hand[N],box:O,boxRaw:L,keypoints:W,annotations:G}}if(!xe.face||e.face.length!==xe.face.length)xe.face=JSON.parse(JSON.stringify(e.face));else for(let N=0;N<e.face.length;N++){let O=e.face[N].box.map((W,G)=>((r-1)*xe.face[N].box[G]+W)/r),L=e.face[N].boxRaw.map((W,G)=>((r-1)*xe.face[N].boxRaw[G]+W)/r);if(e.face[N].rotation){let W={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};W.matrix=(d=e.face[N].rotation)==null?void 0:d.matrix,W.angle={roll:((r-1)*(((f=(h=xe.face[N].rotation)==null?void 0:h.angle)==null?void 0:f.roll)||0)+(((g=(m=e.face[N].rotation)==null?void 0:m.angle)==null?void 0:g.roll)||0))/r,yaw:((r-1)*(((y=(x=xe.face[N].rotation)==null?void 0:x.angle)==null?void 0:y.yaw)||0)+(((b=(A=e.face[N].rotation)==null?void 0:A.angle)==null?void 0:b.yaw)||0))/r,pitch:((r-1)*(((S=(k=xe.face[N].rotation)==null?void 0:k.angle)==null?void 0:S.pitch)||0)+(((E=(C=e.face[N].rotation)==null?void 0:C.angle)==null?void 0:E.pitch)||0))/r},W.gaze={bearing:((r-1)*(((_=xe.face[N].rotation)==null?void 0:_.gaze.bearing)||0)+((($=e.face[N].rotation)==null?void 0:$.gaze.bearing)||0))/r,strength:((r-1)*(((M=xe.face[N].rotation)==null?void 0:M.gaze.strength)||0)+(((I=e.face[N].rotation)==null?void 0:I.gaze.strength)||0))/r},xe.face[N]={...e.face[N],rotation:W,box:O,boxRaw:L}}else xe.face[N]={...e.face[N],box:O,boxRaw:L}}if(!xe.object||e.object.length!==xe.object.length)xe.object=JSON.parse(JSON.stringify(e.object));else for(let N=0;N<e.object.length;N++){let O=e.object[N].box.map((W,G)=>((r-1)*xe.object[N].box[G]+W)/r),L=e.object[N].boxRaw.map((W,G)=>((r-1)*xe.object[N].boxRaw[G]+W)/r);xe.object[N]={...e.object[N],box:O,boxRaw:L}}if(e.persons){let N=e.persons;if(!xe.persons||N.length!==xe.persons.length)xe.persons=JSON.parse(JSON.stringify(N));else for(let O=0;O<N.length;O++)xe.persons[O].box=N[O].box.map((L,W)=>((r-1)*xe.persons[O].box[W]+L)/r)}e.gesture&&(xe.gesture=e.gesture),xe.width=e.width,xe.height=e.height;let s=te();return t5=ne.perfadd?t5+Math.round(s-a):Math.round(s-a),e.performance&&(xe.performance={...e.performance,interpolate:t5}),xe}var ga;async function a5(e){return!ga||ne.initial?ga=await Me(e.segmentation.modelPath):e.debug&&X("cached model:",ga.modelUrl),ga}async function vw(e,t){var r;if(ga||(ga=await a5(t)),!(ga!=null&&ga.executor)||!((r=ga==null?void 0:ga.inputs)!=null&&r[0].shape))return null;let a={};a.resize=ge.resizeBilinear(e,[ga.inputs[0].shape?ga.inputs[0].shape[1]:0,ga.inputs[0].shape?ga.inputs[0].shape[2]:0],!1),a.norm=me(a.resize,Le.tf255),a.res=ga.execute(a.norm),a.squeeze=Oe(a.res,[0]),[a.bgRaw,a.fgRaw]=Ta(a.squeeze,2),a.fg=yh(a.fgRaw),a.mul=ae(a.fg,Le.tf255),a.expand=Gt(a.mul,2),a.output=ge.resizeBilinear(a.expand,[e.shape[1]||0,e.shape[2]||0]);let n;switch(t.segmentation.mode||"default"){case"default":a.input=Oe(e),a.concat=rt([a.input,a.output],-1),n=qe(a.concat,"int32");break;case"alpha":n=qe(a.output,"int32");break;default:n=Ve(0)}return Object.keys(a).forEach(s=>Y(a[s])),n}var N0={};hr(N0,{distance:()=>n5,find:()=>F0e,similarity:()=>P0e});function n5(e,t,a={order:2,multiplier:25}){if(!e||!e)return Number.MAX_SAFE_INTEGER;let n=0;for(let r=0;r<e.length;r++){let s=!a.order||a.order===2?e[r]-t[r]:Math.abs(e[r]-t[r]);n+=!a.order||a.order===2?s*s:s**a.order}return(a.multiplier||20)*n}var ww=(e,t,a,n)=>{if(e===0)return 1;let s=(1-(t===2?Math.sqrt(e):e**(1/t))/100-a)/(n-a);return Math.max(Math.min(s,1),0)};function P0e(e,t,a={order:2,multiplier:25,min:.2,max:.8}){let n=n5(e,t,a);return ww(n,a.order||2,a.min||0,a.max||1)}function F0e(e,t,a={order:2,multiplier:25,threshold:0,min:.2,max:.8}){if(!Array.isArray(e)||!Array.isArray(t)||e.length<64||t.length===0)return{index:-1,distance:Number.POSITIVE_INFINITY,similarity:0};let n=Number.MAX_SAFE_INTEGER,r=-1;for(let i=0;i<t.length;i++){let o=t[i].length===e.length?n5(e,t[i],a):Number.MAX_SAFE_INTEGER;if(o<n&&(n=o,r=i),n<(a.threshold||0))break}let s=ww(n,a.order||2,a.min||0,a.max||1);return{index:r,distance:n,similarity:s}}var y5={};hr(y5,{Models:()=>$p,validateModel:()=>F0});var Iw=.005,nn={keypoints:[],padding:[[0,0],[0,0],[0,0],[0,0]]};function r5(e){for(let t of Jg){let a=e.keypoints.findIndex(r=>r.part===t[0]),n=e.keypoints.findIndex(r=>r.part===t[1]);if(e.keypoints[a]&&e.keypoints[n]&&e.keypoints[a].position[0]<e.keypoints[n].position[0]){let r=e.keypoints[a];e.keypoints[a]=e.keypoints[n],e.keypoints[n]=r}}for(let t of Qg){let a=e.keypoints.findIndex(r=>r&&r.part===t[0]),n=e.keypoints.findIndex(r=>r&&r.part===t[1]);e.keypoints[a]&&e.keypoints[n]&&e.keypoints[a].position[1]<e.keypoints[n].position[1]&&e.keypoints.splice(a,1)}for(let[t,a]of e5){let n=e.keypoints.findIndex(u=>u&&u.part===t[0]),r=e.keypoints.findIndex(u=>u&&u.part===t[1]),s=e.keypoints.findIndex(u=>u&&u.part===a[0]),i=e.keypoints.findIndex(u=>u&&u.part===a[1]);if(!e.keypoints[s]||!e.keypoints[i])continue;let o=e.keypoints[n]?[Math.abs(e.keypoints[s].position[0]-e.keypoints[n].position[0]),Math.abs(e.keypoints[i].position[0]-e.keypoints[n].position[0])]:[0,0],l=e.keypoints[r]?[Math.abs(e.keypoints[i].position[0]-e.keypoints[r].position[0]),Math.abs(e.keypoints[s].position[0]-e.keypoints[r].position[0])]:[0,0];if(o[0]>o[1]||l[0]>l[1]){let u=e.keypoints[n];e.keypoints[n]=e.keypoints[r],e.keypoints[r]=u}}}function Sw(e){for(let t=0;t<e.length;t++)if(e[t]&&nn.keypoints[t]){let a=[Math.abs(e[t].positionRaw[0]-nn.keypoints[t].positionRaw[0]),Math.abs(e[t].positionRaw[1]-nn.keypoints[t].positionRaw[1])];a[0]<Iw&&a[1]<Iw?e[t]=nn.keypoints[t]:nn.keypoints[t]=e[t]}else nn.keypoints[t]=e[t];return e}function Tw(e,t){var r,s;let a={};if(!((r=e==null?void 0:e.shape)!=null&&r[1])||!((s=e==null?void 0:e.shape)!=null&&s[2]))return e;nn.padding=[[0,0],[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0],[0,0]],a.pad=rr(e,nn.padding),a.resize=ge.resizeBilinear(a.pad,[t,t]);let n=qe(a.resize,"int32");return Object.keys(a).forEach(i=>Y(a[i])),n}function Cw(e,t){e.keypoints=e.keypoints.filter(n=>n==null?void 0:n.position);for(let n of e.keypoints)n.position=[n.position[0]*(t[0]+nn.padding[2][0]+nn.padding[2][1])/t[0]-nn.padding[2][0],n.position[1]*(t[1]+nn.padding[1][0]+nn.padding[1][1])/t[1]-nn.padding[1][0]],n.positionRaw=[n.position[0]/t[0],n.position[1]/t[1]];let a=Er(e.keypoints.map(n=>n.position),t);return e.box=a.box,e.boxRaw=a.boxRaw,e}var Vt,E0=0,s5=Number.MAX_SAFE_INTEGER,Bo={boxes:[],bodies:[],last:0};async function Nw(e){var t;return ne.initial&&(Vt=null),Vt?e.debug&&X("cached model:",Vt.modelUrl):(Kh(["size"],e),Vt=await Me(e.body.modelPath)),E0=Vt!=null&&Vt.executor&&((t=Vt==null?void 0:Vt.inputs)!=null&&t[0].shape)?Vt.inputs[0].shape[2]:0,E0<64&&(E0=256),Vt}function D0e(e,t,a){let n=e[0][0],r=[],s=0;for(let p=0;p<n.length;p++)if(s=n[p][2],s>t.body.minConfidence){let c=[n[p][1],n[p][0]];r.push({score:Math.round(100*s)/100,part:T0[p],positionRaw:c,position:[Math.round((a.shape[2]||0)*c[0]),Math.round((a.shape[1]||0)*c[1])]})}s=r.reduce((p,c)=>c.score>p?c.score:p,0);let i=[],o=Er(r.map(p=>p.position),[a.shape[2],a.shape[1]]),l={};for(let[p,c]of Object.entries(C0)){let d=[];for(let h=0;h<c.length-1;h++){let f=r.find(g=>g.part===c[h]),m=r.find(g=>g.part===c[h+1]);f&&m&&f.score>(t.body.minConfidence||0)&&m.score>(t.body.minConfidence||0)&&d.push([f.position,m.position])}l[p]=d}let u={id:0,score:s,box:o.box,boxRaw:o.boxRaw,keypoints:r,annotations:l};return r5(u),i.push(u),i}function z0e(e,t,a){let n=[];for(let r=0;r<e[0].length;r++){let s=e[0][r],i=Math.round(100*s[51+4])/100;if(i>t.body.minConfidence){let o=[];for(let c=0;c<17;c++){let d=s[3*c+2];if(d>t.body.minConfidence){let h=[s[3*c+1],s[3*c+0]];o.push({part:T0[c],score:Math.round(100*d)/100,positionRaw:h,position:[Math.round((a.shape[2]||0)*h[0]),Math.round((a.shape[1]||0)*h[1])]})}}let l=Er(o.map(c=>c.position),[a.shape[2],a.shape[1]]),u={};for(let[c,d]of Object.entries(C0)){let h=[];for(let f=0;f<d.length-1;f++){let m=o.find(x=>x.part===d[f]),g=o.find(x=>x.part===d[f+1]);m&&g&&m.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&h.push([m.position,g.position])}u[c]=h}let p={id:r,score:i,box:l.box,boxRaw:l.boxRaw,keypoints:[...o],annotations:u};r5(p),n.push(p)}}return n.sort((r,s)=>s.score-r.score),n.length>t.body.maxDetected&&(n.length=t.body.maxDetected),n}async function i5(e,t){var r;if(!(Vt!=null&&Vt.executor)||!((r=Vt==null?void 0:Vt.inputs)!=null&&r[0].shape))return[];t.skipAllowed||(Bo.boxes.length=0),s5++;let a=(t.body.skipTime||0)>te()-Bo.last,n=s5<(t.body.skipFrames||0);return t.skipAllowed&&a&&n?Bo.bodies:new Promise(async s=>{let i={};s5=0,i.input=Tw(e,E0),i.res=Vt==null?void 0:Vt.execute(i.input),Bo.last=te();let o=await i.res.array();Bo.bodies=i.res.shape[2]===17?D0e(o,t,e):z0e(o,t,e);for(let l of Bo.bodies)Cw(l,[e.shape[2]||1,e.shape[1]||1]),Sw(l.keypoints);Object.keys(i).forEach(l=>Y(i[l])),s(Bo.bodies)})}var _n,R0=[],Rw=0,o5=Number.MAX_SAFE_INTEGER,$0=0,M0=2.5;async function Mw(e){if(!_n||ne.initial){_n=await Me(e.object.modelPath);let t=_n!=null&&_n.executor?Object.values(_n.modelSignature.inputs):void 0;$0=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):416}else e.debug&&X("cached model:",_n.modelUrl);return _n}async function L0e(e,t,a){var u,p;let n=0,r=[],s=$0;for(let c of[1,2,4]){let d=c*13,h=Oe(e.find(A=>A.shape[1]===d**2&&(A.shape[2]||0)===vu.length)),f=await h.array(),m=Oe(e.find(A=>A.shape[1]===d**2&&(A.shape[2]||0)<vu.length)),g=J(m,[-1,4,(((u=m.shape)==null?void 0:u[1])||0)/4]),x=ar(g,2),y=await x.array();for(let A=0;A<h.shape[0];A++)for(let b=0;b<(((p=h.shape)==null?void 0:p[1])||0);b++){let k=f[A][b];if(k>(a.object.minConfidence||0)&&b!==61){let S=(.5+Math.trunc(A%d))/d,C=(.5+Math.trunc(A/d))/d,E=y[A].map(W=>W*(d/c/s)),[_,$]=[S-M0/c*E[0],C-M0/c*E[1]],[M,I]=[S+M0/c*E[2]-_,C+M0/c*E[3]-$],N=[_,$,M,I];N=N.map(W=>Math.max(0,Math.min(W,1)));let O=[N[0]*t[0],N[1]*t[1],N[2]*t[0],N[3]*t[1]],L={id:n++,score:Math.round(100*k)/100,class:b+1,label:vu[b].label,box:O.map(W=>Math.trunc(W)),boxRaw:N};r.push(L)}}Y([h,m,g,x])}let i=r.map(c=>[c.boxRaw[1],c.boxRaw[0],c.boxRaw[3],c.boxRaw[2]]),o=r.map(c=>c.score),l=[];if(i&&i.length>0){let c=await ge.nonMaxSuppressionAsync(i,o,a.object.maxDetected||0,a.object.iouThreshold,a.object.minConfidence);l=Array.from(await c.data()),Y(c)}return r=r.filter((c,d)=>l.includes(d)).sort((c,d)=>d.score-c.score),r}async function l5(e,t){if(!(_n!=null&&_n.executor))return[];let a=(t.object.skipTime||0)>te()-Rw,n=o5<(t.object.skipFrames||0);return t.skipAllowed&&a&&n&&R0.length>0?(o5++,R0):(o5=0,!ne.kernels.includes("mod")||!ne.kernels.includes("sparsetodense")?R0:new Promise(async r=>{let s=[e.shape[2]||0,e.shape[1]||0],i=ge.resizeBilinear(e,[$0,$0],!1),o=me(i,Le.tf255),l=Vs(o,[0,3,1,2]),u;t.object.enabled&&(u=_n.execute(l)),Rw=te();let p=await L0e(u,s,t);R0=p,Y([i,o,l,...u]),r(p)}))}var Mp=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],B0e=Mp.length,Rp=Mp.reduce((e,t,a)=>(e[t]=a,e),{}),W0e=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],vxe=W0e.map(([e,t])=>[Rp[e],Rp[t]]),_w=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function Pw(e){let t=e.reduce(({maxX:a,maxY:n,minX:r,minY:s},{position:{x:i,y:o}})=>({maxX:Math.max(a,i),maxY:Math.max(n,o),minX:Math.min(r,i),minY:Math.min(s,o)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function Fw(e,[t,a],[n,r]){let s=t/n,i=a/r,o=(u,p)=>({id:p,score:u.score,boxRaw:[u.box[0]/r,u.box[1]/n,u.box[2]/r,u.box[3]/n],box:[Math.trunc(u.box[0]*i),Math.trunc(u.box[1]*s),Math.trunc(u.box[2]*i),Math.trunc(u.box[3]*s)],keypoints:u.keypoints.map(({score:c,part:d,position:h})=>({score:c,part:d,position:[Math.trunc(h.x*i),Math.trunc(h.y*s)],positionRaw:[h.x/n,h.y/n]})),annotations:{}});return e.map((u,p)=>o(u,p))}var _0=class{constructor(t,a){de(this,"priorityQueue");de(this,"numberOfElements");de(this,"getElementValue");this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=a}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let a=2*t;if(a<this.numberOfElements&&this.less(a,a+1)&&a++,!this.less(t,a))break;this.exchange(t,a),t=a}}getValueAt(t){return this.getElementValue(this.priorityQueue[t])}less(t,a){return this.getValueAt(t)<this.getValueAt(a)}exchange(t,a){let n=this.priorityQueue[t];this.priorityQueue[t]=this.priorityQueue[a],this.priorityQueue[a]=n}};function u5(e,t,a,n){return{y:n.get(e,t,a),x:n.get(e,t,a+B0e)}}function d5(e,t,a){let{heatmapY:n,heatmapX:r,id:s}=e,{y:i,x:o}=u5(n,r,s,a);return{x:e.heatmapX*t+o,y:e.heatmapY*t+i}}function p5(e,t,a){return e<t?t:e>a?a:e}function Ow(e,t,a,n){let r=a-e,s=n-t;return r*r+s*s}function c5(e,t){return{x:e.x+t.x,y:e.y+t.y}}var rn,U0e=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"],P0=1,Mu=16,G0e=50**2;function Dw(e,t,a,n,r,s,i=2){let o=x=>({y:s.get(x.y,x.x,e),x:s.get(x.y,x.x,s.shape[2]/2+e)}),l=(x,y,A)=>({y:p5(Math.round(x.y/Mu),0,y-1),x:p5(Math.round(x.x/Mu),0,A-1)}),[u,p]=n.shape,c=l(t.position,u,p),d=o(c),f=c5(t.position,d);for(let x=0;x<i;x++){let y=l(f,u,p),A=u5(y.y,y.x,a,r);f=c5({x:y.x*Mu,y:y.y*Mu},{x:A.x,y:A.y})}let m=l(f,u,p),g=n.get(m.y,m.x,a);return{position:f,part:Mp[a],score:g}}function H0e(e,t,a,n,r){let s=_w.map(([d,h])=>[Rp[d],Rp[h]]),i=s.map(([,d])=>d),o=s.map(([d])=>d),l=t.shape[2],u=i.length,p=new Array(l),c=d5(e.part,Mu,a);p[e.part.id]={score:e.score,part:Mp[e.part.id],position:c};for(let d=u-1;d>=0;--d){let h=i[d],f=o[d];p[h]&&!p[f]&&(p[f]=Dw(d,p[h],f,t,a,r))}for(let d=0;d<u;++d){let h=o[d],f=i[d];p[h]&&!p[f]&&(p[f]=Dw(d,p[h],f,t,a,n))}return p}function j0e(e,t,a,n,r){let[s,i]=r.shape,o=!0,l=Math.max(a-P0,0),u=Math.min(a+P0+1,s);for(let p=l;p<u;++p){let c=Math.max(n-P0,0),d=Math.min(n+P0+1,i);for(let h=c;h<d;++h)if(r.get(p,h,e)>t){o=!1;break}if(!o)break}return o}function q0e(e,t){let[a,n,r]=t.shape,s=new _0(a*n*r,({score:i})=>i);for(let i=0;i<a;++i)for(let o=0;o<n;++o)for(let l=0;l<r;++l){let u=t.get(i,o,l);u<e||j0e(l,u,i,o,t)&&s.enqueue({score:u,part:{heatmapY:i,heatmapX:o,id:l}})}return s}function zw(e,{x:t,y:a},n){return e.some(({keypoints:r})=>{var i;let s=(i=r[n])==null?void 0:i.position;return s?Ow(a,t,s.y,s.x)<=G0e:!1})}function X0e(e,t){return t.reduce((n,{position:r,score:s},i)=>(zw(e,r,i)||(n+=s),n),0)/t.length}function K0e(e,t,a,n,r,s){let i=[],o=q0e(s,t);for(;i.length<r&&!o.empty();){let l=o.dequeue(),u=d5(l.part,Mu,e);if(zw(i,u,l.part.id))continue;let p=H0e(l,t,e,a,n);p=p.filter(h=>h.score>s);let c=X0e(i,p),d=Pw(p);c>s&&i.push({keypoints:p,box:d,score:Math.round(100*c)/100})}return i}async function h5(e,t){if(!(rn!=null&&rn.executor))return[];let a=Fe(()=>{if(!rn.inputs[0].shape)return[];let i=ge.resizeBilinear(e,[rn.inputs[0].shape[2],rn.inputs[0].shape[1]]),o=he(me(qe(i,"float32"),127.5),1),u=rn.execute(o,U0e).map(p=>Oe(p,[0]));return u[1]=Da(u[1]),u}),n=await Promise.all(a.map(i=>i.buffer()));for(let i of a)Y(i);let r=K0e(n[0],n[1],n[2],n[3],t.body.maxDetected,t.body.minConfidence);return rn.inputs[0].shape?Fw(r,[e.shape[1],e.shape[2]],[rn.inputs[0].shape[2],rn.inputs[0].shape[1]]):[]}async function Lw(e){return!rn||ne.initial?rn=await Me(e.body.modelPath):e.debug&&X("cached model:",rn.modelUrl),rn}var lr,Z0e=["fgr","pha","r1o","r2o","r3o","r4o"],Ut={},m5=0;function Vw(e){Y([Ut.r1i,Ut.r2i,Ut.r3i,Ut.r4i,Ut.downsample_ratio]),Ut.r1i=Ve(0),Ut.r2i=Ve(0),Ut.r3i=Ve(0),Ut.r4i=Ve(0),m5=e.segmentation.ratio||.5,Ut.downsample_ratio=Ve(m5)}async function g5(e){return!lr||ne.initial?lr=await Me(e.segmentation.modelPath):e.debug&&X("cached model:",lr.modelUrl),Vw(e),lr}var Ww=e=>Fe(()=>{let t=Oe(e,[0]),a=ae(t,Le.tf255);return qe(a,"int32")});function f5(e,t){let a=e?Ww(e):nr([t.shape[1]||0,t.shape[2]||0,3],255,"int32"),n=t?Ww(t):nr([e.shape[1]||0,e.shape[2]||0,1],255,"int32"),r=rt([a,n],-1);return Y([a,n]),r}function Y0e(e){return Fe(()=>{let t={};return t.unstack=Ta(e,-1),t.concat=rt(t.unstack,1),t.split=wa(t.concat,4,1),t.stack=rt(t.split,2),t.squeeze=Oe(t.stack,[0]),t.expand=Gt(t.squeeze,-1),t.add=be(t.expand,1),t.mul=ae(t.add,127.5),t.cast=qe(t.mul,"int32"),t.tile=Gr(t.cast,[1,1,3]),t.alpha=nr([t.tile.shape[0]||0,t.tile.shape[1]||0,1],255,"int32"),rt([t.tile,t.alpha],-1)})}async function Uw(e,t){if(lr||(lr=await g5(t)),!(lr!=null&&lr.executor))return null;Ut.src=me(e,255),m5!==t.segmentation.ratio&&Vw(t);let[a,n,r,s,i,o]=await lr.executeAsync(Ut,Z0e),l;switch(t.segmentation.mode||"default"){case"default":l=f5(a,n);break;case"alpha":l=f5(null,n);break;case"foreground":l=f5(a,null);break;case"state":l=Y0e(r);break;default:l=Ve(0)}return Y([Ut.src,a,n,Ut.r1i,Ut.r2i,Ut.r3i,Ut.r4i]),[Ut.r1i,Ut.r2i,Ut.r3i,Ut.r4i]=[r,s,i,o],l}var xa;async function x5(e){return!xa||ne.initial?xa=await Me(e.segmentation.modelPath):e.debug&&X("cached model:",xa.modelUrl),xa}async function Hw(e,t){var r;if(xa||(xa=await x5(t)),!(xa!=null&&xa.executor)||!((r=xa==null?void 0:xa.inputs)!=null&&r[0].shape))return null;let a={};a.resize=ge.resizeBilinear(e,[xa.inputs[0].shape?xa.inputs[0].shape[1]:0,xa.inputs[0].shape?xa.inputs[0].shape[2]:0],!1),a.norm=me(a.resize,Le.tf255),a.res=xa.execute(a.norm),a.squeeze=Oe(a.res,[0]),a.alpha=ge.resizeBilinear(a.squeeze,[e.shape[1]||0,e.shape[2]||0]),a.mul=ae(a.alpha,Le.tf255);let n;switch(t.segmentation.mode||"default"){case"default":a.input=Oe(e),a.concat=rt([a.input,a.mul],-1),n=qe(a.concat,"int32");break;case"alpha":n=qe(a.mul,"int32");break;default:n=Ve(0)}return Object.keys(a).forEach(s=>Y(a[s])),n}function F0(e,t,a){var u,p;if(!t||!((u=e==null?void 0:e.config)!=null&&u.validateModels))return null;let n=["const","placeholder","noop","pad","squeeze","add","sub","mul","div"],r=["biasadd","fusedbatchnormv3","matmul","switch","shape","merge","split","broadcastto"],s=[],i=[],o=t.modelUrl,l=t.executor;if((p=l==null?void 0:l.graph)!=null&&p.nodes)for(let c of Object.values(l.graph.nodes)){let d=c.op.toLowerCase();s.includes(d)||s.push(d)}else!l&&e.config.debug&&X("model not loaded",a);for(let c of s)!n.includes(c)&&!r.includes(c)&&!e.env.kernels.includes(c)&&!e.env.kernels.includes(c.replace("_",""))&&!e.env.kernels.includes(c.replace("native",""))&&!e.env.kernels.includes(c.replace("v2",""))&&i.push(c);return e.config.debug&&i.length>0&&X("model validation failed:",a,i),i.length>0?{name:a,missing:i,ops:s,url:o}:null}var $p=class{constructor(t){de(this,"instance");de(this,"models",{});this.models={},this.instance=t}stats(){let t=0,a=0,n=0;for(let s of Object.values(fa))t+=s.sizeFromManifest,a+=s.sizeLoadedWeights,n+=s.sizeDesired;let r=n>0?a/n:0;return{numLoadedModels:Object.values(fa).length,numDefinedModels:Object.keys(this.models).length,percentageLoaded:r,totalSizeFromManifest:t,totalSizeWeights:a,totalSizeLoading:n,modelStats:Object.values(fa)}}reset(){for(let t of Object.keys(this.models))this.models[t]=null}async load(t){var n,r,s,i,o,l,u,p,c,d,h,f,m,g,x,y,A,b,k,S,C,E,_,$,M,I,N;ne.initial&&this.reset(),t&&(this.instance=t);let a={};a.blazeface=this.instance.config.face.enabled&&!this.models.blazeface?B9(this.instance.config):null,a.antispoof=this.instance.config.face.enabled&&((n=this.instance.config.face.antispoof)!=null&&n.enabled)&&!this.models.antispoof?pk(this.instance.config):null,a.liveness=this.instance.config.face.enabled&&((r=this.instance.config.face.liveness)!=null&&r.enabled)&&!this.models.liveness?mk(this.instance.config):null,a.faceres=this.instance.config.face.enabled&&((s=this.instance.config.face.description)!=null&&s.enabled)&&!this.models.faceres?ik(this.instance.config):null,a.emotion=this.instance.config.face.enabled&&((i=this.instance.config.face.emotion)!=null&&i.enabled)&&!this.models.emotion?ak(this.instance.config):null,a.iris=this.instance.config.face.enabled&&((o=this.instance.config.face.iris)!=null&&o.enabled)&&!((l=this.instance.config.face.attention)!=null&&l.enabled)&&!this.models.iris?j9(this.instance.config):null,a.facemesh=this.instance.config.face.enabled&&((u=this.instance.config.face.mesh)!=null&&u.enabled)&&!this.models.facemesh?Y9(this.instance.config):null,a.gear=this.instance.config.face.enabled&&((p=this.instance.config.face.gear)!=null&&p.enabled)&&!this.models.gear?Ak(this.instance.config):null,a.ssrnetage=this.instance.config.face.enabled&&((c=this.instance.config.face.ssrnet)!=null&&c.enabled)&&!this.models.ssrnetage?wk(this.instance.config):null,a.ssrnetgender=this.instance.config.face.enabled&&((d=this.instance.config.face.ssrnet)!=null&&d.enabled)&&!this.models.ssrnetgender?Ck(this.instance.config):null,a.mobilefacenet=this.instance.config.face.enabled&&((h=this.instance.config.face.mobilefacenet)!=null&&h.enabled)&&!this.models.mobilefacenet?$k(this.instance.config):null,a.insightface=this.instance.config.face.enabled&&((f=this.instance.config.face.insightface)!=null&&f.enabled)&&!this.models.insightface?Dk(this.instance.config):null,a.blazepose=this.instance.config.body.enabled&&!this.models.blazepose&&((m=this.instance.config.body.modelPath)!=null&&m.includes("blazepose"))?k9(this.instance.config):null,a.blazeposedetect=this.instance.config.body.enabled&&!this.models.blazeposedetect&&this.instance.config.body.detector&&this.instance.config.body.detector.modelPath?v9(this.instance.config):null,a.efficientpose=this.instance.config.body.enabled&&!this.models.efficientpose&&((g=this.instance.config.body.modelPath)!=null&&g.includes("efficientpose"))?N9(this.instance.config):null,a.movenet=this.instance.config.body.enabled&&!this.models.movenet&&((x=this.instance.config.body.modelPath)!=null&&x.includes("movenet"))?Nw(this.instance.config):null,a.posenet=this.instance.config.body.enabled&&!this.models.posenet&&((y=this.instance.config.body.modelPath)!=null&&y.includes("posenet"))?Lw(this.instance.config):null,a.handtrack=this.instance.config.hand.enabled&&!this.models.handtrack&&((b=(A=this.instance.config.hand.detector)==null?void 0:A.modelPath)!=null&&b.includes("handtrack"))?xw(this.instance.config):null,a.handskeleton=this.instance.config.hand.enabled&&this.instance.config.hand.landmarks&&!this.models.handskeleton&&((S=(k=this.instance.config.hand.detector)==null?void 0:k.modelPath)!=null&&S.includes("handtrack"))?yw(this.instance.config):null,(E=(C=this.instance.config.hand.detector)==null?void 0:C.modelPath)!=null&&E.includes("handdetect")&&([a.handpose,a.handskeleton]=this.models.handpose?[null,null]:await cw(this.instance.config)),a.centernet=this.instance.config.object.enabled&&!this.models.centernet&&((_=this.instance.config.object.modelPath)!=null&&_.includes("centernet"))?S9(this.instance.config):null,a.nanodet=this.instance.config.object.enabled&&!this.models.nanodet&&(($=this.instance.config.object.modelPath)!=null&&$.includes("nanodet"))?Mw(this.instance.config):null,a.selfie=this.instance.config.segmentation.enabled&&!this.models.selfie&&((M=this.instance.config.segmentation.modelPath)!=null&&M.includes("selfie"))?x5(this.instance.config):null,a.meet=this.instance.config.segmentation.enabled&&!this.models.meet&&((I=this.instance.config.segmentation.modelPath)!=null&&I.includes("meet"))?a5(this.instance.config):null,a.rvm=this.instance.config.segmentation.enabled&&!this.models.rvm&&((N=this.instance.config.segmentation.modelPath)!=null&&N.includes("rvm"))?g5(this.instance.config):null;for(let[O,L]of Object.entries(a))L!=null&&L.then&&L.then(W=>this.models[O]=W);await Promise.all(Object.values(a))}list(){let t=Object.keys(this.models).map(a=>{var n;return{name:a,loaded:this.models[a]!==null,size:0,url:this.models[a]?(n=this.models[a])==null?void 0:n.modelUrl:null}});for(let a of t){let n=Object.keys(fa).find(r=>r.startsWith(a.name));n&&(a.size=fa[n].sizeLoadedWeights,a.url=fa[n].url)}return t}loaded(){return this.list().filter(n=>n.loaded).map(n=>n.name)}validate(){let t=[];for(let a of Object.keys(this.models)){let n=this.models[a];if(!n)continue;let r=F0(this.instance,n,a);r&&t.push(r)}return t}};function qw(e,t,a,n,r){var o,l,u,p,c,d;let s=0,i=[];for(let h of e){let f={id:s++,face:h,body:null,hands:{left:null,right:null},gestures:[],box:[0,0,0,0]};for(let b of t)h.box[0]>b.box[0]&&h.box[0]<b.box[0]+b.box[2]&&h.box[1]+h.box[3]>b.box[1]&&h.box[1]+h.box[3]<b.box[1]+b.box[3]&&(f.body=b);if(f.body)for(let b of a)b.box[0]+b.box[2]>f.body.box[0]&&b.box[0]+b.box[2]<f.body.box[0]+f.body.box[2]&&b.box[1]+b.box[3]>f.body.box[1]&&b.box[1]+b.box[3]<f.body.box[1]+f.body.box[3]&&f.hands&&(f.hands.left=b),b.box[0]<f.body.box[0]+f.body.box[2]&&b.box[0]>f.body.box[0]&&b.box[1]+b.box[3]>f.body.box[1]&&b.box[1]+b.box[3]<f.body.box[1]+f.body.box[3]&&f.hands&&(f.hands.right=b);for(let b of n)(b.face!==void 0&&b.face===h.id||b.iris!==void 0&&b.iris===h.id||b.body!==void 0&&b.body===((o=f.body)==null?void 0:o.id)||b.hand!==void 0&&b.hand===((l=f.hands.left)==null?void 0:l.id)||b.hand!==void 0&&b.hand===((u=f.hands.right)==null?void 0:u.id))&&f.gestures.push(b);let m=[],g=[],x=b=>{b&&b.length===4&&(m.push(b[0],b[0]+b[2]),g.push(b[1],b[1]+b[3]))};x(f.face.box),x((p=f.body)==null?void 0:p.box),x((c=f.hands.left)==null?void 0:c.box),x((d=f.hands.right)==null?void 0:d.box);let y=Math.min(...m),A=Math.min(...g);f.box=[y,A,Math.max(...m)-y,Math.max(...g)-A],r!=null&&r[1]&&(r!=null&&r[2])&&(f.boxRaw=[f.box[0]/r[2],f.box[1]/r[1],f.box[2]/r[2],f.box[3]/r[1]]),i.push(f)}return i}var O0=`
|
|
/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA
|
|
AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu
|
|
bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob
|
|
IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo
|
|
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E
|
|
AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE
|
|
EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH
|
|
SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1
|
|
tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB
|
|
AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET
|
|
IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla
|
|
Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG
|
|
x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML
|
|
Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF
|
|
PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/
|
|
AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z
|
|
5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9
|
|
zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO
|
|
tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6
|
|
8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W
|
|
wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk
|
|
EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6
|
|
GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT
|
|
A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep
|
|
rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb
|
|
LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ
|
|
ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K
|
|
KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l
|
|
pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x
|
|
UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4
|
|
HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr
|
|
xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS
|
|
NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD
|
|
1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX
|
|
+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3
|
|
GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K
|
|
q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0
|
|
nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm
|
|
uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH
|
|
ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV
|
|
wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8
|
|
87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P
|
|
FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD
|
|
YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv
|
|
JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ
|
|
QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el
|
|
UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681
|
|
ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly
|
|
CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc
|
|
UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF
|
|
63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x
|
|
XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2
|
|
ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk
|
|
Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK
|
|
cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef
|
|
eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4
|
|
/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5
|
|
rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru
|
|
/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A
|
|
zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO
|
|
I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1
|
|
jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ
|
|
GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG
|
|
cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb
|
|
WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis
|
|
ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH
|
|
ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi
|
|
lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO
|
|
xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK
|
|
JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX
|
|
PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c
|
|
W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t
|
|
C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk
|
|
4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn
|
|
xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW
|
|
vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi
|
|
qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV
|
|
hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F
|
|
j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6
|
|
wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm
|
|
oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ
|
|
k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg
|
|
nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP
|
|
1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1
|
|
H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ
|
|
1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx
|
|
zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt
|
|
fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp
|
|
Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj
|
|
VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy
|
|
rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe
|
|
5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D
|
|
d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69
|
|
MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ
|
|
Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ
|
|
MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP
|
|
ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn
|
|
0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU
|
|
yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is
|
|
pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz
|
|
TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu
|
|
uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem
|
|
gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk
|
|
HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy
|
|
s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu
|
|
m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb
|
|
0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz
|
|
9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN
|
|
DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n
|
|
R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk
|
|
nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu
|
|
6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd
|
|
9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb
|
|
Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S
|
|
MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz
|
|
FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8
|
|
VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx
|
|
Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ
|
|
mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+
|
|
5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh
|
|
05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd
|
|
ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ
|
|
5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR
|
|
Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8
|
|
1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4
|
|
B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag
|
|
Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA
|
|
3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn
|
|
3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx
|
|
1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU
|
|
tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6
|
|
f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA
|
|
bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ
|
|
zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup
|
|
6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM
|
|
350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0
|
|
/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a
|
|
YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ
|
|
agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO
|
|
mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl
|
|
mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR
|
|
nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo
|
|
EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt
|
|
4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ
|
|
ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p
|
|
iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj
|
|
PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l
|
|
c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1
|
|
8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3
|
|
ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY
|
|
euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,D0=`
|
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk
|
|
JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF
|
|
RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA
|
|
AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA
|
|
AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA
|
|
AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA
|
|
AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj
|
|
+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt
|
|
Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR
|
|
PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl
|
|
mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp
|
|
+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa
|
|
zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D
|
|
h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2
|
|
ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67
|
|
d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y
|
|
Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP
|
|
Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC
|
|
vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi
|
|
eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/
|
|
Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+
|
|
r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO
|
|
O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s
|
|
tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN
|
|
TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc
|
|
0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj
|
|
q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w
|
|
+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s
|
|
d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t
|
|
cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4
|
|
Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe
|
|
bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi
|
|
KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6
|
|
rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ
|
|
9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf
|
|
Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V
|
|
bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q
|
|
Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM
|
|
lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/
|
|
/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme
|
|
E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv
|
|
fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6
|
|
jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN
|
|
+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk
|
|
Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK
|
|
cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop
|
|
yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn
|
|
E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX
|
|
12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW
|
|
iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS
|
|
RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf
|
|
0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx
|
|
DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL
|
|
G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK
|
|
xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ
|
|
a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4
|
|
ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6
|
|
tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+
|
|
fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE
|
|
erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR
|
|
Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9
|
|
lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD
|
|
j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV
|
|
5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt
|
|
Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/
|
|
+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c
|
|
vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p
|
|
jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0
|
|
77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP
|
|
Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8
|
|
5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe
|
|
Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R
|
|
Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV
|
|
rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU
|
|
z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8
|
|
to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X
|
|
y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt
|
|
stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/
|
|
w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT
|
|
DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l
|
|
XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t
|
|
ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS
|
|
34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX
|
|
e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn
|
|
26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf
|
|
3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q
|
|
6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P
|
|
NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO
|
|
yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN
|
|
3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8
|
|
2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h
|
|
dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx
|
|
kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t
|
|
DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb
|
|
eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc
|
|
1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka
|
|
c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE
|
|
xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu
|
|
s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK
|
|
0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9
|
|
dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt
|
|
PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T
|
|
Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T
|
|
adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b
|
|
SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt
|
|
pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm
|
|
vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr
|
|
EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N
|
|
vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh
|
|
ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I
|
|
tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW
|
|
d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe
|
|
N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218
|
|
8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG
|
|
PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY
|
|
V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw
|
|
w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT
|
|
Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1
|
|
axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/
|
|
tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I
|
|
mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe
|
|
XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1
|
|
izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2
|
|
crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4
|
|
OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2
|
|
r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx
|
|
zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz
|
|
+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v
|
|
Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu
|
|
ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095
|
|
YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE
|
|
9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8
|
|
mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O
|
|
uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O
|
|
fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6
|
|
Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT
|
|
uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3
|
|
6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1
|
|
Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF
|
|
feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq
|
|
xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v
|
|
ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ
|
|
mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz
|
|
mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP
|
|
B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0
|
|
5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1
|
|
mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt
|
|
mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO
|
|
1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq
|
|
ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q
|
|
ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7
|
|
ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK
|
|
GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i
|
|
tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T
|
|
+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+
|
|
O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO
|
|
esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es
|
|
vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz
|
|
XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1
|
|
+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY
|
|
36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL
|
|
q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY
|
|
3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz
|
|
p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr
|
|
1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV
|
|
xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt
|
|
pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS
|
|
fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH
|
|
mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z
|
|
1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+
|
|
n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d
|
|
MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df
|
|
zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl
|
|
J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs
|
|
zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH
|
|
DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ
|
|
dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR
|
|
tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j
|
|
admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC
|
|
b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X
|
|
qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh
|
|
ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O
|
|
8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L
|
|
T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0
|
|
Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr
|
|
vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer
|
|
rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL
|
|
oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq
|
|
j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh
|
|
odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8
|
|
8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1
|
|
lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+
|
|
oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL
|
|
knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK
|
|
EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N
|
|
mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm
|
|
9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N
|
|
IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W
|
|
MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2
|
|
+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql
|
|
o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37
|
|
O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE
|
|
TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1
|
|
L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4
|
|
izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt
|
|
1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb
|
|
V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum
|
|
L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12
|
|
CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE
|
|
ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo
|
|
Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu
|
|
L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh
|
|
5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3
|
|
6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9
|
|
XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM
|
|
feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj
|
|
SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF
|
|
XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr
|
|
79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h
|
|
yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT
|
|
OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223
|
|
2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt
|
|
adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y
|
|
cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX
|
|
DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p
|
|
7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso
|
|
S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l
|
|
bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe
|
|
vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG
|
|
H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7
|
|
x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz
|
|
5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY
|
|
q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn
|
|
vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2
|
|
IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK
|
|
z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ
|
|
YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON
|
|
ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW
|
|
ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf
|
|
cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c
|
|
biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO
|
|
CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw
|
|
y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi
|
|
QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E
|
|
bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r
|
|
tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t
|
|
LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP
|
|
RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm
|
|
s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el
|
|
XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1
|
|
vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq
|
|
qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v
|
|
VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0
|
|
ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q
|
|
mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm
|
|
6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG
|
|
f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo
|
|
dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22
|
|
gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M
|
|
MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb
|
|
c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX
|
|
6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn
|
|
1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK
|
|
fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ
|
|
EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u
|
|
7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT
|
|
qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa
|
|
S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf
|
|
Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU
|
|
IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O
|
|
8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c
|
|
vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx
|
|
5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V
|
|
KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm
|
|
2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu
|
|
j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB
|
|
TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9
|
|
RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL
|
|
CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA
|
|
AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8
|
|
cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj
|
|
qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF
|
|
0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK
|
|
ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK
|
|
66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu
|
|
XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9
|
|
XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN
|
|
M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv
|
|
VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK
|
|
7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI
|
|
3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m
|
|
XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m
|
|
1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A
|
|
JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC
|
|
EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9
|
|
8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL
|
|
OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H
|
|
M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA
|
|
TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8
|
|
elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp
|
|
BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS
|
|
CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r
|
|
rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY
|
|
jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW
|
|
UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB
|
|
KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb
|
|
Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL
|
|
+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v
|
|
T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM
|
|
sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj
|
|
FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl
|
|
5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q
|
|
7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv
|
|
6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa
|
|
0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/
|
|
AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM
|
|
d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5
|
|
6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP
|
|
bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu
|
|
LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy
|
|
wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX
|
|
0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK
|
|
3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn
|
|
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0
|
|
vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t
|
|
zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps
|
|
uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi
|
|
Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2
|
|
O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z
|
|
aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz
|
|
0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb
|
|
T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l
|
|
qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t
|
|
trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn
|
|
mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa
|
|
eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe
|
|
PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of
|
|
TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O
|
|
1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG
|
|
f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi
|
|
0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY
|
|
5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc
|
|
V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L
|
|
/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM
|
|
t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd
|
|
VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD
|
|
KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R
|
|
fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3
|
|
Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ
|
|
DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ
|
|
3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv
|
|
x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD
|
|
weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI
|
|
6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew
|
|
PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk
|
|
j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm
|
|
OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/
|
|
AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez
|
|
N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ
|
|
92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp
|
|
+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue
|
|
V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv
|
|
avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0
|
|
vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP
|
|
8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt
|
|
n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw
|
|
nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3
|
|
7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P
|
|
0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U
|
|
x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG
|
|
0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L
|
|
faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ
|
|
QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA
|
|
BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A
|
|
tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv
|
|
9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr
|
|
jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm
|
|
b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB
|
|
ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk
|
|
dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1
|
|
rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+
|
|
x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA
|
|
AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr
|
|
YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4
|
|
5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V
|
|
kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg
|
|
BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA
|
|
AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g
|
|
Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx
|
|
OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2
|
|
H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF
|
|
+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V
|
|
h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA
|
|
EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu
|
|
ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml
|
|
HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl
|
|
n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN
|
|
3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi
|
|
/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00
|
|
+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC
|
|
UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2
|
|
M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp
|
|
5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn
|
|
N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS
|
|
OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL
|
|
/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo
|
|
stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3
|
|
GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA
|
|
AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4
|
|
qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy
|
|
WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a
|
|
fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI
|
|
rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2
|
|
rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc
|
|
3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3
|
|
Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA
|
|
AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx
|
|
skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F
|
|
o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx
|
|
NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h
|
|
2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te
|
|
pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7
|
|
cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7
|
|
mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA
|
|
AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA
|
|
hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J
|
|
qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI
|
|
XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy
|
|
RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX
|
|
qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX
|
|
kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P
|
|
ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC
|
|
ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA
|
|
lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA
|
|
AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o
|
|
b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP
|
|
y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae
|
|
kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu
|
|
9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ
|
|
k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1
|
|
8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp
|
|
DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh
|
|
nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ
|
|
AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA
|
|
AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO
|
|
yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5
|
|
PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii
|
|
IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r
|
|
O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE
|
|
yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX
|
|
6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2
|
|
JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS
|
|
AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA
|
|
AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx
|
|
Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI
|
|
6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5
|
|
K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7
|
|
Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id
|
|
PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ
|
|
2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4
|
|
eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7
|
|
piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR
|
|
ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ
|
|
JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i
|
|
UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61
|
|
rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq
|
|
ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2
|
|
f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO
|
|
IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts
|
|
bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA
|
|
AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA
|
|
BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2
|
|
SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T
|
|
lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/
|
|
2Q==`;async function efe(e){let t=(r,s="application/octet-stream")=>fetch(`data:${s};base64,${r}`).then(i=>i.blob()),a,n;switch(e.config.warmup){case"face":a=await t(O0);break;case"body":case"full":a=await t(D0);break;default:a=null}if(a){let r=await createImageBitmap(a);n=await e.detect(r,e.config),r.close()}return n}async function tfe(e){return new Promise(t=>{let a;switch(e.config.warmup){case"face":a="data:image/jpeg;base64,"+O0;break;case"full":case"body":a="data:image/jpeg;base64,"+D0;break;default:a=""}let n;if(typeof Image!="undefined")n=new Image;else if(ne.Image)n=new ne.Image;else{t(void 0);return}n.onload=async()=>{let r=Nn(n.naturalWidth,n.naturalHeight);if(!r)X("Warmup: Canvas not found"),t(void 0);else{let s=r.getContext("2d");s&&s.drawImage(n,0,0);let i=await e.image(r,!0),o=i.tensor?await e.detect(i.tensor,e.config):void 0;t(o)}},a?n.src=a:t(void 0)})}async function afe(e){let t=r=>Buffer.from(r,"base64"),a;e.config.warmup==="face"?a=t(O0):a=t(D0);let n;if("node"in He&&la()==="tensorflow"){let r=(void 0).decodeJpeg(a),s=Gt(r,0);e.tf.dispose(r),n=await e.detect(s,e.config),e.tf.dispose(s)}else e.config.debug&&X("Warmup tfjs-node not loaded");return n}async function nfe(e){let t;return typeof createImageBitmap=="function"?t=await efe(e):typeof Image!="undefined"||ne.Canvas!==void 0?t=await tfe(e):t=await afe(e),t}async function rfe(e){var o,l,u,p;if(!B().flagRegistry.ENGINE_COMPILE_ONLY)return;let t=la(),a=tr();if(t!=="webgl"&&t!=="humangl"||!(a!=null&&a.checkCompileCompletion))return;B().set("ENGINE_COMPILE_ONLY",!0);let n=vt().state.numTensors,r=[];for(let[c,d]of Object.entries(e.models.models)){if(!d)continue;let h=d!=null&&d.modelSignature&&((l=(o=d==null?void 0:d.inputs)==null?void 0:o[0])!=null&&l.shape)?[...d.inputs[0].shape]:[1,64,64,3],f=d!=null&&d.modelSignature&&((p=(u=d==null?void 0:d.inputs)==null?void 0:u[0])!=null&&p.dtype)?d.inputs[0].dtype:"float32";for(let g=0;g<h.length;g++)h[g]===-1&&(h[g]=g===0?1:64);let m=fn(h,f);try{let g=d.execute(m);r.push(c),Array.isArray(g)?g.forEach(x=>Y(x)):Y(g)}catch(g){e.config.debug&&X("compile fail model:",c)}Y(m)}let s=await a.checkCompileCompletionAsync();a.getUniformLocations(),e.config.debug&&X("compile pass:",{models:r,kernels:s.length}),B().set("ENGINE_COMPILE_ONLY",!1);let i=vt().state.numTensors;i-n>0&&X("tensor leak:",i-n)}async function Xw(e,t){await Ip(e,!1);let a=te();return e.state="warmup",t&&(e.config=Nt(e.config,t)),!e.config.warmup||e.config.warmup.length===0||e.config.warmup==="none"?or():new Promise(async n=>{await e.models.load(),await rfe(e);let r=await nfe(e),s=te();e.config.debug&&X("warmup",e.config.warmup,Math.round(s-a),"ms"),e.emit("warmup"),n(r)})}var $u,_p,Pp,z0,Ss,A5=class{constructor(t){de(this,"version");de(this,"config");de(this,"result");de(this,"state");de(this,"process");de(this,"tf");de(this,"env",ne);de(this,"draw",t0);de(this,"match",N0);de(this,"models");de(this,"events");de(this,"faceTriangulation");de(this,"faceUVMap");de(this,"performance");Gn(this,$u,void 0);Gn(this,_p,void 0);Gn(this,Pp,void 0);de(this,"analyze",(...t)=>{if(!Ga(this,_p))return;let a=this.tf.engine().state.numTensors,n=Ga(this,$u);fr(this,$u,a);let r=a-n;r!==0&&X(...t,r)});Gn(this,z0,t=>{if(!Ga(this,Pp))return null;if(!t)return"input is not defined";if(this.env.node&&!(t instanceof pt))return"input must be a tensor";try{this.tf.getBackend()}catch(a){return"backend not loaded"}return null});de(this,"webcam",new Xh);de(this,"emit",t=>{var a;(a=this.events)!=null&&a.dispatchEvent&&this.events.dispatchEvent(new Event(t))});Gn(this,Ss,{});let a=(Ap.tfjs||t3).replace(/-(.*)/,"");So.wasmPath=`https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${a}/dist/`,So.modelBasePath=ne.browser?"../models/":"file://models/",this.version=K3,Object.defineProperty(this,"version",{value:K3}),this.config=JSON.parse(JSON.stringify(So)),Object.seal(this.config),this.config.cacheModels=typeof indexedDB!="undefined",t&&(this.config=Nt(this.config,t)),i9(this.config),this.tf=He,this.state="idle",fr(this,$u,0),fr(this,_p,!1),fr(this,Pp,!1),this.performance={},this.events=typeof EventTarget!="undefined"?new EventTarget:void 0,this.models=new $p(this),ag(),this.result=or(),this.process={tensor:null,canvas:null},this.faceTriangulation=J9,this.faceUVMap=Q9,F0(this,null,""),this.emit("create"),(this.config.debug||this.env.browser)&&X(`version: ${this.version}`),this.config.debug&&X(`tfjs version: ${this.tf.version["tfjs-core"]}`);let n=JSON.parse(JSON.stringify(this.env));delete n.kernels,delete n.initial,delete n.perfadd,this.config.debug&&X("environment:",n)}reset(){let t=this.config.backend;this.config=JSON.parse(JSON.stringify(So)),this.config.backend=t,q3(),ne.initial=!0}validate(t){let a=G3(So,t||this.config);return a.length===0&&(this.config=Nt(this.config,t)),a}now(){return te()}image(t,a=!1){return jh(t,this.config,a)}async segmentation(t,a){var s,i,o;if(a&&(this.config=Nt(this.config,a)),!this.config.segmentation.enabled)return null;let n=await jh(t,this.config);if(!n.tensor)return null;let r=null;return(s=this.config.segmentation.modelPath)!=null&&s.includes("rvm")&&(r=await Uw(n.tensor,this.config)),(i=this.config.segmentation.modelPath)!=null&&i.includes("meet")&&(r=await vw(n.tensor,this.config)),(o=this.config.segmentation.modelPath)!=null&&o.includes("selfie")&&(r=await Hw(n.tensor,this.config)),Y(n.tensor),r}compare(t,a){return s9(this.config,t,a)}async init(){await Ip(this,!0),await this.tf.ready(),q3()}async load(t){this.state="load";let a=te(),n=Object.values(this.models.models).filter(i=>i).length;t&&(this.config=Nt(this.config,t)),this.env.initial&&(await Ip(this,!1)||X("error: backend check failed"),await Qd(),this.env.browser&&(this.config.debug&&X("configuration:",this.config),this.config.debug&&X("tf flags:",this.tf.ENV.flags))),await this.models.load(this),this.env.initial&&this.config.debug&&X("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),this.env.initial=!1,Object.values(this.models.models).filter(i=>i).length!==n&&(this.models.validate(),this.emit("load"));let s=Math.trunc(te()-a);s>(this.performance.loadModels||0)&&(this.performance.loadModels=this.env.perfadd?(this.performance.loadModels||0)+s:s)}next(t=this.result){return bw(t,this.config)}async warmup(t){let a=te(),n=await Xw(this,t),r=te();return this.performance.warmup=Math.trunc(r-a),n}async profile(t,a){let n=await this.tf.profile(()=>this.detect(t,a)),r={},s=0;for(let o of n.kernels){let l=Number(o.kernelTimeMs)||0;r[o.name]?r[o.name]+=l:r[o.name]=l,s+=l}let i=[];Object.entries(r).forEach(o=>i.push({kernel:o[0],time:o[1],perc:0}));for(let o of i)o.perc=Math.round(1e3*o.time/s)/1e3,o.time=Math.round(1e3*o.time)/1e3;return i.sort((o,l)=>l.time-o.time),i.length=20,i}async detect(t,a){return this.state="detect",new Promise(async n=>{var g,x,y,A,b,k,S,C,E,_,$,M,I,N,O,L,W,G,H,U,j;this.state="config";let r;this.config=Nt(this.config,a),this.state="check";let s=Ga(this,z0).call(this,t);s&&(X(s,t),this.emit("error"),n(or(s)));let i=te();await this.load(),r=te(),this.state="image";let o=await jh(t,this.config);if(this.process=o,this.performance.inputProcess=this.env.perfadd?(this.performance.inputProcess||0)+Math.trunc(te()-r):Math.trunc(te()-r),this.analyze("Get Image:"),!o.tensor){this.config.debug&&X("could not convert input to tensor"),this.emit("error"),n(or("could not convert input to tensor"));return}this.emit("image"),r=te(),this.config.skipAllowed=await r9(this.config,o.tensor),this.config.filter.autoBrightness=(this.config.filter.autoBrightness||!1)&&this.config.skipAllowed,this.performance.totalFrames||(this.performance.totalFrames=0),this.performance.cachedFrames||(this.performance.cachedFrames=0),this.performance.totalFrames++,this.config.skipAllowed&&this.performance.cachedFrames++,this.performance.cacheCheck=this.env.perfadd?(this.performance.cacheCheck||0)+Math.trunc(te()-r):Math.trunc(te()-r),this.analyze("Check Changed:");let l=[],u=[],p=[],c=[];this.state="detect:face",this.config.async?(l=this.config.face.enabled?Ug(this,o.tensor):[],this.performance.face&&delete this.performance.face):(r=te(),l=this.config.face.enabled?await Ug(this,o.tensor):[],this.performance.face=this.env.perfadd?(this.performance.face||0)+Math.trunc(te()-r):Math.trunc(te()-r)),this.config.async&&(this.config.body.maxDetected===-1||this.config.hand.maxDetected===-1)&&(l=await l),this.analyze("Start Body:"),this.state="detect:body";let d=this.config.body.maxDetected===-1?Nt(this.config,{body:{maxDetected:this.config.face.enabled?1*l.length:1}}):this.config;this.config.async?((g=this.config.body.modelPath)!=null&&g.includes("posenet")?u=this.config.body.enabled?h5(o.tensor,d):[]:(x=this.config.body.modelPath)!=null&&x.includes("blazepose")?u=this.config.body.enabled?og(o.tensor,d):[]:(y=this.config.body.modelPath)!=null&&y.includes("efficientpose")?u=this.config.body.enabled?fg(o.tensor,d):[]:(A=this.config.body.modelPath)!=null&&A.includes("movenet")&&(u=this.config.body.enabled?i5(o.tensor,d):[]),this.performance.body&&delete this.performance.body):(r=te(),(b=this.config.body.modelPath)!=null&&b.includes("posenet")?u=this.config.body.enabled?await h5(o.tensor,d):[]:(k=this.config.body.modelPath)!=null&&k.includes("blazepose")?u=this.config.body.enabled?await og(o.tensor,d):[]:(S=this.config.body.modelPath)!=null&&S.includes("efficientpose")?u=this.config.body.enabled?await fg(o.tensor,d):[]:(C=this.config.body.modelPath)!=null&&C.includes("movenet")&&(u=this.config.body.enabled?await i5(o.tensor,d):[]),this.performance.body=this.env.perfadd?(this.performance.body||0)+Math.trunc(te()-r):Math.trunc(te()-r)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.state="detect:hand";let h=this.config.hand.maxDetected===-1?Nt(this.config,{hand:{maxDetected:this.config.face.enabled?2*l.length:1}}):this.config;this.config.async?((_=(E=this.config.hand.detector)==null?void 0:E.modelPath)!=null&&_.includes("handdetect")?p=this.config.hand.enabled?Xg(o.tensor,h):[]:(M=($=this.config.hand.detector)==null?void 0:$.modelPath)!=null&&M.includes("handtrack")&&(p=this.config.hand.enabled?Yg(o.tensor,h):[]),this.performance.hand&&delete this.performance.hand):(r=te(),(N=(I=this.config.hand.detector)==null?void 0:I.modelPath)!=null&&N.includes("handdetect")?p=this.config.hand.enabled?await Xg(o.tensor,h):[]:(L=(O=this.config.hand.detector)==null?void 0:O.modelPath)!=null&&L.includes("handtrack")&&(p=this.config.hand.enabled?await Yg(o.tensor,h):[]),this.performance.hand=this.env.perfadd?(this.performance.hand||0)+Math.trunc(te()-r):Math.trunc(te()-r)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.state="detect:object",this.config.async?((W=this.config.object.modelPath)!=null&&W.includes("nanodet")?c=this.config.object.enabled?l5(o.tensor,this.config):[]:(G=this.config.object.modelPath)!=null&&G.includes("centernet")&&(c=this.config.object.enabled?dg(o.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(r=te(),(H=this.config.object.modelPath)!=null&&H.includes("nanodet")?c=this.config.object.enabled?await l5(o.tensor,this.config):[]:(U=this.config.object.modelPath)!=null&&U.includes("centernet")&&(c=this.config.object.enabled?await dg(o.tensor,this.config):[]),this.performance.object=this.env.perfadd?(this.performance.object||0)+Math.trunc(te()-r):Math.trunc(te()-r)),this.analyze("End Object:"),this.state="detect:await",this.config.async&&([l,u,p,c]=await Promise.all([l,u,p,c])),this.state="detect:gesture";let f=[];this.config.gesture.enabled&&(r=te(),f=[...Zk(l),...Kk(u),...Jk(p),...Yk(l)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=this.env.perfadd?(this.performance.gesture||0)+Math.trunc(te()-r):Math.trunc(te()-r)),this.performance.total=this.env.perfadd?(this.performance.total||0)+Math.trunc(te()-i):Math.trunc(te()-i);let m=((j=this.process.tensor)==null?void 0:j.shape)||[0,0,0,0];this.result={face:l,body:u,hand:p,gesture:f,object:c,performance:this.performance,canvas:this.process.canvas,timestamp:Date.now(),error:null,width:m[2],height:m[1],get persons(){return qw(l,u,p,f,m)}},Y(o.tensor),this.emit("detect"),this.state="idle",n(this.result)})}async sleep(t){return new Promise(a=>{setTimeout(a,t)})}async video(t,a=!0,n=0){a?(Ga(this,Ss)[t.id]||(this.config.debug&&X("video start",t.id),Ga(this,Ss)[t.id]=!0),!t.paused&&Ga(this,Ss)[t.id]&&t.readyState>=2&&await this.detect(t),n>0&&await this.sleep(n),Ga(this,Ss)[t.id]&&requestAnimationFrame(()=>this.video(t,a,n))):(this.config.debug&&X("video stop",t.id),Ga(this,Ss)[t.id]=!1)}};$u=new WeakMap,_p=new WeakMap,Pp=new WeakMap,z0=new WeakMap,Ss=new WeakMap;return _I(ife);})();
|