human/dist/demo-browser-index.js

5038 lines
1.3 MiB

/*
Human library
homepage: <https://github.com/vladmandic/human>
author: <https://github.com/vladmandic>'
*/
var z4=Object.create,fh=Object.defineProperty,P4=Object.getPrototypeOf,L4=Object.prototype.hasOwnProperty,W4=Object.getOwnPropertyNames,B4=Object.getOwnPropertyDescriptor,Sf=e=>fh(e,"__esModule",{value:!0}),z2=(e,t)=>()=>(t||(t={exports:{}},e(t.exports,t)),t.exports),Nr=(e,t)=>{for(var n in t)fh(e,n,{get:t[n],enumerable:!0})},V4=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of W4(t))!L4.call(e,r)&&r!=="default"&&fh(e,r,{get:()=>t[r],enumerable:!(n=B4(t,r))||n.enumerable});return e},mh=e=>e&&e.__esModule?e:V4(Sf(fh(e!=null?z4(P4(e)):{},"default",{value:e,enumerable:!0})),e),G4=z2(e=>{Sf(e),Nr(e,{MediaPipeFaceMesh:()=>t,load:()=>r});var t=class{constructor(a,s,i,o){this.facePipeline=new j4(a,s,i,o),this.config=o}async estimateFaces(a,s){let i=await this.facePipeline.predict(a,s),o=[];for(let l of i||[]){if(l.isDisposedInternal)continue;let c=l.coords?l.coords.arraySync():null,u=l.rawCoords,h={};if(c&&c.length>0)for(let f of Object.keys(pa))h[f]=pa[f].map(m=>c[m]);let d=s.face.mesh.returnRawData&&l.box?{topLeft:l.box.startPoint,bottomRight:l.box.endPoint}:null,p=l.box?[Math.max(0,l.box.startPoint[0]),Math.max(0,l.box.startPoint[1]),Math.min(a.shape[2],l.box.endPoint[0])-l.box.startPoint[0],Math.min(a.shape[1],l.box.endPoint[1])-l.box.startPoint[1]]:0;o.push({confidence:l.confidence||0,box:p,mesh:c,boxRaw:d,meshRaw:u,annotations:h,image:l.image?Sr(l.image):null}),l.coords&&l.coords.dispose(),l.image&&l.image.dispose()}return o}},n=[null,null,null];async function r(a){n=await Promise.all([!n[0]&&a.face.enabled?U4(a):null,!n[1]&&a.face.mesh.enabled?Jn(a.face.mesh.modelPath,{fromTFHub:a.face.mesh.modelPath.includes("tfhub.dev")}):null,!n[2]&&a.face.iris.enabled?Jn(a.face.iris.modelPath,{fromTFHub:a.face.iris.modelPath.includes("tfhub.dev")}):null]);let s=new t(n[0],n[1],n[2],a);return a.face.mesh.enabled&&Ve(`load model: ${a.face.mesh.modelPath.match(/\/(.*)\./)[1]}`),a.face.iris.enabled&&Ve(`load model: ${a.face.iris.modelPath.match(/\/(.*)\./)[1]}`),s}e.triangulation=H4}),Tf=z2(e=>{Sf(e),Nr(e,{NUM_KEYPOINTS:()=>n,connectedPartIndices:()=>s,partChannels:()=>o,partIds:()=>r,partNames:()=>t,poseChain:()=>i});var t=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],n=e.partNames.length,r=e.partNames.reduce((l,c,u)=>(l[c]=u,l),{}),a=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],s=a.map(([l,c])=>[r[l],r[c]]),i=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]],o=["left_face","right_face","right_upper_leg_front","right_lower_leg_back","right_upper_leg_back","left_lower_leg_front","left_upper_leg_front","left_upper_leg_back","left_lower_leg_back","right_feet","right_lower_leg_front","left_feet","torso_front","torso_back","right_upper_arm_front","right_upper_arm_back","right_lower_arm_back","left_lower_arm_front","left_upper_arm_front","left_upper_arm_back","left_lower_arm_back","right_hand","right_lower_arm_front","left_hand"]});function Ve(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}var P2={};Nr(P2,{Abs:()=>Wi,Acos:()=>Bi,Acosh:()=>Vi,AdadeltaOptimizer:()=>Nd,AdagradOptimizer:()=>Sd,AdamOptimizer:()=>Td,AdamaxOptimizer:()=>Ed,Add:()=>ma,AddN:()=>Za,All:()=>yh,Any:()=>gh,ArgMax:()=>Ja,ArgMin:()=>ru,Asin:()=>Ui,Asinh:()=>Hi,Atan:()=>ji,Atan2:()=>qi,Atanh:()=>Gi,AvgPool:()=>Ya,AvgPool3D:()=>au,AvgPool3DGrad:()=>wh,AvgPoolGrad:()=>xh,BackendWasm:()=>S0,BatchMatMul:()=>Qa,BatchToSpaceND:()=>su,Bincount:()=>_h,BroadcastTo:()=>W2,Callback:()=>W0,CallbackList:()=>M0,Cast:()=>es,Ceil:()=>ts,ClipByValue:()=>Aa,Complex:()=>bh,ComplexAbs:()=>iu,Concat:()=>Xi,Conv2D:()=>ns,Conv2DBackpropFilter:()=>vh,Conv2DBackpropInput:()=>rs,Conv3D:()=>ou,Conv3DBackpropFilterV2:()=>kh,Conv3DBackpropInputV2:()=>Ih,Cos:()=>as,Cosh:()=>Ki,CropAndResize:()=>Zi,Cumsum:()=>ss,CustomCallback:()=>D0,DataStorage:()=>Ah,DenseBincount:()=>Nh,DepthToSpace:()=>Ji,DepthwiseConv2dNative:()=>is,DepthwiseConv2dNativeBackpropFilter:()=>Sh,DepthwiseConv2dNativeBackpropInput:()=>Th,Diag:()=>Eh,Dilation2D:()=>lu,Dilation2DBackpropFilter:()=>Rh,Dilation2DBackpropInput:()=>Ch,ENV:()=>fa,EarlyStopping:()=>B0,Elu:()=>Yi,EluGrad:()=>Fh,Environment:()=>L2,Equal:()=>eo,Erf:()=>Qi,Exp:()=>ls,ExpandDims:()=>to,Expm1:()=>no,FFT:()=>Mh,Fill:()=>uu,FlipLeftRight:()=>ro,Floor:()=>us,FloorDiv:()=>cs,FromPixels:()=>qh,FusedBatchNorm:()=>hs,FusedConv2D:()=>Us,FusedDepthwiseConv2D:()=>Hs,GPGPUContext:()=>ym,GatherNd:()=>so,GatherV2:()=>ao,GraphModel:()=>V0,Greater:()=>io,GreaterEqual:()=>ds,History:()=>$0,IFFT:()=>$h,Identity:()=>ps,Imag:()=>Dh,InputSpec:()=>Ut,IsFinite:()=>oo,IsInf:()=>lo,IsNan:()=>uo,KernelBackend:()=>nu,LRN:()=>du,LRNGrad:()=>zh,LayerVariable:()=>F0,LayersModel:()=>ea,LeakyRelu:()=>fs,Less:()=>co,LessEqual:()=>ho,LinSpace:()=>Oh,Log:()=>ms,Log1p:()=>po,LogSoftmax:()=>B2,LogicalAnd:()=>fo,LogicalNot:()=>cu,LogicalOr:()=>hu,MathBackendCPU:()=>Md,MathBackendWebGL:()=>Vu,Max:()=>As,MaxPool:()=>gs,MaxPool3D:()=>pu,MaxPool3DGrad:()=>Lh,MaxPoolGrad:()=>Ph,MaxPoolWithArgmax:()=>Wh,Maximum:()=>ys,Mean:()=>xs,Min:()=>ws,Minimum:()=>_s,MirrorPad:()=>fu,Mod:()=>mo,MomentumOptimizer:()=>Cd,Multinomial:()=>Bh,Multiply:()=>bs,Neg:()=>Ao,NonMaxSuppressionV3:()=>go,NonMaxSuppressionV4:()=>xo,NonMaxSuppressionV5:()=>wo,NotEqual:()=>yo,OP_SCOPE_SUFFIX:()=>U2,OneHot:()=>vs,OnesLike:()=>_o,Optimizer:()=>Qr,Pack:()=>bo,PadV2:()=>ks,Pool:()=>q4,Pow:()=>Is,Prelu:()=>Ns,Prod:()=>vo,RMSPropOptimizer:()=>Rd,RNN:()=>$r,Range:()=>mu,Rank:()=>Cf,Real:()=>Vh,RealDiv:()=>os,Reciprocal:()=>ko,Reduction:()=>on,Relu:()=>Ss,Relu6:()=>Es,Reshape:()=>Io,ResizeBilinear:()=>Ts,ResizeBilinearGrad:()=>Hh,ResizeNearestNeighbor:()=>Au,ResizeNearestNeighborGrad:()=>Uh,Reverse:()=>Cs,RotateWithOffset:()=>Lo,Round:()=>Rs,Rsqrt:()=>Fs,SGDOptimizer:()=>Bu,ScatterNd:()=>No,Select:()=>So,Selu:()=>To,Sequential:()=>Qo,Sigmoid:()=>$s,Sign:()=>Ro,Sin:()=>Ms,Sinh:()=>Co,Slice:()=>Eo,Softmax:()=>zs,Softplus:()=>Fo,SpaceToBatchND:()=>yu,SparseToDense:()=>jh,SplitV:()=>Mo,Sqrt:()=>Ds,Square:()=>gu,SquaredDifference:()=>Ps,Step:()=>ga,StridedSlice:()=>$o,Sub:()=>Ls,Sum:()=>Os,SymbolicTensor:()=>mr,Tan:()=>Do,Tanh:()=>Ws,Tensor:()=>et,TensorBuffer:()=>$t,Tile:()=>ya,TopK:()=>Oo,Transpose:()=>Bs,Unique:()=>Gh,Unpack:()=>zo,UnsortedSegmentSum:()=>xu,Variable:()=>_u,ZerosLike:()=>Po,_FusedMatMul:()=>Vs,abs:()=>Dt,acos:()=>Df,acosh:()=>Of,add:()=>oe,addN:()=>Qh,all:()=>ed,any:()=>ku,argMax:()=>Iu,argMin:()=>zf,asin:()=>Pf,asinh:()=>Lf,atan:()=>Wf,atan2:()=>Bf,atanh:()=>Vf,avgPool:()=>Nu,avgPool3d:()=>Uf,backend:()=>X2,backend_util:()=>C,basicLSTMCell:()=>u8,batchNorm:()=>js,batchNorm2d:()=>K2,batchNorm3d:()=>Z2,batchNorm4d:()=>J2,batchToSpaceND:()=>Su,bincount:()=>Y2,booleanMaskAsync:()=>R8,broadcastTo:()=>Tu,browser:()=>bu,buffer:()=>We,callbacks:()=>H8,cast:()=>ye,ceil:()=>Hf,clipByValue:()=>fn,clone:()=>Sr,complex:()=>xa,concat:()=>ct,concat1d:()=>Q2,concat2d:()=>td,concat3d:()=>e0,concat4d:()=>t0,constraints:()=>E0,conv1d:()=>nd,conv2d:()=>Zr,conv2dTranspose:()=>rd,conv3d:()=>jf,conv3dTranspose:()=>c8,copyRegisteredKernels:()=>Z4,cos:()=>Eu,cosh:()=>ad,cosineWindow:()=>fm,cumsum:()=>sd,customGrad:()=>Er,data:()=>U0,denseBincount:()=>n0,deprecationWarn:()=>$f,depthToSpace:()=>Gf,depthwiseConv2d:()=>Ho,deregisterOp:()=>G8,device_util:()=>Zh,diag:()=>h8,dilation2d:()=>qf,disableDeprecationWarnings:()=>e8,dispose:()=>Fe,disposeVariables:()=>t8,div:()=>Ne,divNoNan:()=>Xf,dot:()=>r0,dropout:()=>x0,elu:()=>jo,enableDebugMode:()=>Q4,enableProdMode:()=>Y4,enclosingPowerOfTwo:()=>w0,engine:()=>Tr,env:()=>Q,equal:()=>wa,erf:()=>Kf,exp:()=>Ln,expandDims:()=>kn,expm1:()=>Zf,eye:()=>Jf,fft:()=>Lu,fill:()=>Cu,findBackend:()=>q2,findBackendFactory:()=>o8,floor:()=>Go,floorDiv:()=>Yh,forceHalfFloat:()=>N0,fused:()=>ka,gather:()=>Gs,gatherND:()=>g0,gather_util:()=>Ff,getBackend:()=>s8,getGradient:()=>Ef,getKernel:()=>Xh,getKernelsForBackend:()=>wu,gpgpu_util:()=>k0,grad:()=>d8,grads:()=>p8,greater:()=>er,greaterEqual:()=>ba,ifft:()=>Jo,imag:()=>id,image:()=>St,inTopKAsync:()=>M8,initializers:()=>C0,input:()=>O0,io:()=>pn,irfft:()=>_d,isFinite:()=>a0,isInf:()=>s0,isNaN:()=>i0,keep:()=>Vt,kernel_impls:()=>Mr,layers:()=>R0,leakyRelu:()=>Ru,less:()=>od,lessEqual:()=>qs,linalg:()=>_0,linspace:()=>o0,loadGraphModel:()=>Jn,loadLayersModel:()=>V8,localResponseNormalization:()=>Yf,log:()=>In,log1p:()=>ld,logSigmoid:()=>u0,logSoftmax:()=>ud,logSumExp:()=>Qf,logicalAnd:()=>tr,logicalNot:()=>Fu,logicalOr:()=>cd,logicalXor:()=>c0,losses:()=>O8,matMul:()=>qe,math:()=>j2,max:()=>Wn,maxPool:()=>Mu,maxPool3d:()=>em,maxPoolWithArgmax:()=>h0,maximum:()=>Cr,mean:()=>bt,memory:()=>Jh,metrics:()=>z0,min:()=>Xo,minimum:()=>Ko,mirrorPad:()=>tm,mod:()=>nm,model:()=>W8,models:()=>P0,moments:()=>hd,movingAverage:()=>F8,mul:()=>L,multiRNNCell:()=>A8,multinomial:()=>d0,neg:()=>_t,nextFrame:()=>Fd,norm:()=>Id,notEqual:()=>Xs,oneHot:()=>Bo,ones:()=>Rr,onesLike:()=>Nn,op:()=>O,outerProduct:()=>y8,pad:()=>Jr,pad1d:()=>g8,pad2d:()=>x8,pad3d:()=>w8,pad4d:()=>_8,pool:()=>p0,pow:()=>Yr,prelu:()=>Du,print:()=>H2,prod:()=>dd,profile:()=>Vo,rand:()=>b8,randomGamma:()=>v8,randomNormal:()=>f0,randomUniform:()=>Zo,range:()=>pd,ready:()=>a8,real:()=>Ou,reciprocal:()=>rm,registerBackend:()=>vu,registerCallbackConstructor:()=>U8,registerGradient:()=>V2,registerKernel:()=>Wo,registerOp:()=>j8,regularizers:()=>L0,relu:()=>Fr,relu6:()=>fd,removeBackend:()=>i8,reshape:()=>q,reverse:()=>Sn,reverse1d:()=>k8,reverse2d:()=>I8,reverse3d:()=>N8,reverse4d:()=>S8,rfft:()=>Wu,round:()=>am,rsqrt:()=>md,scalar:()=>Se,scatterND:()=>y0,scatter_util:()=>Mf,selu:()=>Ad,separableConv2d:()=>sm,sequential:()=>B8,serialization:()=>re,setBackend:()=>r8,setPlatform:()=>l8,setWasmPath:()=>P8,setWasmPaths:()=>L8,setWebGLContext:()=>Am,setdiff1dAsync:()=>m0,shared:()=>mm,sigmoid:()=>Qn,sign:()=>im,signal:()=>D8,sin:()=>yd,sinh:()=>gd,slice:()=>Me,slice1d:()=>xd,slice2d:()=>om,slice3d:()=>wd,slice4d:()=>zu,slice_util:()=>an,softmax:()=>Pu,softplus:()=>qo,spaceToBatchND:()=>$u,sparseToDense:()=>pm,spectral:()=>$8,split:()=>sn,sqrt:()=>Kt,square:()=>ot,squaredDifference:()=>bd,squeeze:()=>va,stack:()=>Tn,step:()=>Yo,stridedSlice:()=>lm,sub:()=>we,sum:()=>Te,sumOutType:()=>Kh,tan:()=>um,tanh:()=>Uo,tensor:()=>pr,tensor1d:()=>en,tensor2d:()=>fr,tensor3d:()=>Rf,tensor4d:()=>T8,tensor5d:()=>E8,tensor6d:()=>C8,tensor_util:()=>dr,test_util:()=>G2,tidy:()=>U,tile:()=>_a,time:()=>n8,topk:()=>cm,train:()=>Ks,transpose:()=>at,truncatedNormal:()=>vd,unique:()=>kd,unregisterGradient:()=>K4,unregisterKernel:()=>X4,unsortedSegmentSum:()=>hm,unstack:()=>nr,upcastType:()=>Yn,util:()=>k,valueAndGrad:()=>f8,valueAndGrads:()=>m8,variable:()=>A0,variableGrads:()=>l0,version:()=>X8,version_converter:()=>q8,version_core:()=>J4,version_cpu:()=>b0,version_layers:()=>gm,version_wasm:()=>T0,version_webgl:()=>I0,webgl:()=>z8,webgl_util:()=>v0,where:()=>mn,whereAsync:()=>dm,zeros:()=>Ct,zerosLike:()=>He});var K8=Object.create,$d=Object.defineProperty,Z8=Object.getPrototypeOf,J8=Object.prototype.hasOwnProperty,Y8=Object.getOwnPropertyNames,Q8=Object.getOwnPropertyDescriptor,ek=e=>$d(e,"__esModule",{value:!0}),nt=(e,t)=>()=>(t||(t={exports:{}},e(t.exports,t)),t.exports),ze=(e,t)=>{for(var n in t)$d(e,n,{get:t[n],enumerable:!0})},tk=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of Y8(t))!J8.call(e,r)&&r!=="default"&&$d(e,r,{get:()=>t[r],enumerable:!(n=Q8(t,r))||n.enumerable});return e},el=e=>e&&e.__esModule?e:tk(ek($d(e!=null?K8(Z8(e)):{},"default",{value:e,enumerable:!0})),e),nk=nt(()=>{}),rk=nt((e,t)=>{(function(n,r,a){function s(c){var u=this,h=l();u.next=function(){var d=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=d-(u.c=d|0)},u.c=1,u.s0=h(" "),u.s1=h(" "),u.s2=h(" "),u.s0-=h(c),u.s0<0&&(u.s0+=1),u.s1-=h(c),u.s1<0&&(u.s1+=1),u.s2-=h(c),u.s2<0&&(u.s2+=1),h=null}function i(c,u){return u.c=c.c,u.s0=c.s0,u.s1=c.s1,u.s2=c.s2,u}function o(c,u){var h=new s(c),d=u&&u.state,p=h.next;return p.int32=function(){return h.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,d&&(typeof d=="object"&&i(d,h),p.state=function(){return i(h,{})}),p}function l(){var c=4022871197,u=function(h){h=h.toString();for(var d=0;d<h.length;d++){c+=h.charCodeAt(d);var p=.02519603282416938*c;c=p>>>0,p-=c,p*=c,c=p>>>0,p-=c,c+=p*4294967296}return(c>>>0)*23283064365386963e-26};return u}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),ak=nt((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.x=0,c.y=0,c.z=0,c.w=0,c.next=function(){var d=c.x^c.x<<11;return c.x=c.y,c.y=c.z,c.z=c.w,c.w^=c.w>>>19^d^d>>>8},l===(l|0)?c.x=l:u+=l;for(var h=0;h<u.length+64;h++)c.x^=u.charCodeAt(h)|0,c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c}function o(l,c){var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),sk=nt((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.next=function(){var d=c.x^c.x>>>2;return c.x=c.y,c.y=c.z,c.z=c.w,c.w=c.v,(c.d=c.d+362437|0)+(c.v=c.v^c.v<<4^(d^d<<1))|0},c.x=0,c.y=0,c.z=0,c.w=0,c.v=0,l===(l|0)?c.x=l:u+=l;for(var h=0;h<u.length+64;h++)c.x^=u.charCodeAt(h)|0,h==u.length&&(c.d=c.x<<10^c.x>>>4),c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c.v=l.v,c.d=l.d,c}function o(l,c){var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),ik=nt((e,t)=>{(function(n,r,a){function s(l){var c=this;c.next=function(){var h=c.x,d=c.i,p,f,m;return p=h[d],p^=p>>>7,f=p^p<<24,p=h[d+1&7],f^=p^p>>>10,p=h[d+3&7],f^=p^p>>>3,p=h[d+4&7],f^=p^p<<7,p=h[d+7&7],p=p^p<<13,f^=p^p<<9,h[d]=f,c.i=d+1&7,f};function u(h,d){var p,f,m=[];if(d===(d|0))f=m[0]=d;else for(d=""+d,p=0;p<d.length;++p)m[p&7]=m[p&7]<<15^d.charCodeAt(p)+m[p+1&7]<<13;for(;m.length<8;)m.push(0);for(p=0;p<8&&m[p]===0;++p);for(p==8?f=m[7]=-1:f=m[p],h.x=m,h.i=0,p=256;p>0;--p)h.next()}u(c,l)}function i(l,c){return c.x=l.x.slice(),c.i=l.i,c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(h.x&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),ok=nt((e,t)=>{(function(n,r,a){function s(l){var c=this;c.next=function(){var h=c.w,d=c.X,p=c.i,f,m;return c.w=h=h+1640531527|0,m=d[p+34&127],f=d[p=p+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=d[p]=m^f,c.i=p,m+(h^h>>>16)|0};function u(h,d){var p,f,m,A,y,g=[],b=128;for(d===(d|0)?(f=d,d=null):(d=d+"\0",f=0,b=Math.max(b,d.length)),m=0,A=-32;A<b;++A)d&&(f^=d.charCodeAt((A+32)%d.length)),A===0&&(y=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,A>=0&&(y=y+1640531527|0,p=g[A&127]^=f+y,m=p==0?m+1:0);for(m>=128&&(g[(d&&d.length||0)&127]=-1),m=127,A=4*128;A>0;--A)f=g[m+34&127],p=g[m=m+1&127],f^=f<<13,p^=p<<17,f^=f>>>15,p^=p>>>12,g[m]=f^p;h.w=y,h.X=g,h.i=m}u(c,l)}function i(l,c){return c.i=l.i,c.w=l.w,c.X=l.X.slice(),c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(h.X&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),lk=nt((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.next=function(){var d=c.b,p=c.c,f=c.d,m=c.a;return d=d<<25^d>>>7^p,p=p-f|0,f=f<<24^f>>>8^m,m=m-d|0,c.b=d=d<<20^d>>>12^p,c.c=p=p-f|0,c.d=f<<16^p>>>16^m,c.a=m-d|0},c.a=0,c.b=0,c.c=2654435769|0,c.d=1367130551,l===Math.floor(l)?(c.a=l/4294967296|0,c.b=l|0):u+=l;for(var h=0;h<u.length+20;h++)c.b^=u.charCodeAt(h)|0,c.next()}function i(l,c){return c.a=l.a,c.b=l.b,c.c=l.c,c.d=l.d,c}function o(l,c){var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),xm=nt(()=>{}),uk=nt((e,t)=>{(function(n,r){var a=this,s=256,i=6,o=52,l="random",c=r.pow(s,i),u=r.pow(2,o),h=u*2,d=s-1,p;function f(w,_,N){var T=[];_=_==!0?{entropy:!0}:_||{};var E=g(y(_.entropy?[w,x(n)]:w==null?b():w,3),T),M=new m(T),z=function(){for(var P=M.g(i),B=c,G=0;P<u;)P=(P+G)*s,B*=s,G=M.g(1);for(;P>=h;)P/=2,B/=2,G>>>=1;return(P+G)/B};return z.int32=function(){return M.g(4)|0},z.quick=function(){return M.g(4)/4294967296},z.double=z,g(x(M.S),n),(_.pass||N||function(P,B,G,V){return V&&(V.S&&A(V,M),P.state=function(){return A(M,{})}),G?(r[l]=P,B):P})(z,E,"global"in _?_.global:this==r,_.state)}r["seed"+l]=f;function m(w){var _,N=w.length,T=this,E=0,M=T.i=T.j=0,z=T.S=[];for(N||(w=[N++]);E<s;)z[E]=E++;for(E=0;E<s;E++)z[E]=z[M=d&M+w[E%N]+(_=z[E])],z[M]=_;(T.g=function(P){for(var B,G=0,V=T.i,K=T.j,X=T.S;P--;)B=X[V=d&V+1],G=G*s+X[d&(X[V]=X[K=d&K+B])+(X[K]=B)];return T.i=V,T.j=K,G})(s)}function A(w,_){return _.i=w.i,_.j=w.j,_.S=w.S.slice(),_}function y(w,_){var N=[],T=typeof w,E;if(_&&T=="object")for(E in w)try{N.push(y(w[E],_-1))}catch(M){}return N.length?N:T=="string"?w:w+"\0"}function g(w,_){for(var N=w+"",T,E=0;E<N.length;)_[d&E]=d&(T^=_[d&E]*19)+N.charCodeAt(E++);return x(_)}function b(){try{var w;return p&&(w=p.randomBytes)?w=w(s):(w=new Uint8Array(s),(a.crypto||a.msCrypto).getRandomValues(w)),x(w)}catch(T){var _=a.navigator,N=_&&_.plugins;return[+new Date,a,N,a.screen,x(n)]}}function x(w){return String.fromCharCode.apply(0,w)}if(g(r.random(),n),typeof t=="object"&&t.exports){t.exports=f;try{p=xm()}catch(w){}}else typeof define=="function"&&define.amd&&define(function(){return f})})([],Math)}),ck=nt((e,t)=>{var n=rk(),r=ak(),a=sk(),s=ik(),i=ok(),o=lk(),l=uk();l.alea=n,l.xor128=r,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),hk=nt((e,t)=>{(function(n,r,a){function s(c){var u=this,h=l();u.next=function(){var d=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=d-(u.c=d|0)},u.c=1,u.s0=h(" "),u.s1=h(" "),u.s2=h(" "),u.s0-=h(c),u.s0<0&&(u.s0+=1),u.s1-=h(c),u.s1<0&&(u.s1+=1),u.s2-=h(c),u.s2<0&&(u.s2+=1),h=null}function i(c,u){return u.c=c.c,u.s0=c.s0,u.s1=c.s1,u.s2=c.s2,u}function o(c,u){var h=new s(c),d=u&&u.state,p=h.next;return p.int32=function(){return h.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,d&&(typeof d=="object"&&i(d,h),p.state=function(){return i(h,{})}),p}function l(){var c=4022871197,u=function(h){h=h.toString();for(var d=0;d<h.length;d++){c+=h.charCodeAt(d);var p=.02519603282416938*c;c=p>>>0,p-=c,p*=c,c=p>>>0,p-=c,c+=p*4294967296}return(c>>>0)*23283064365386963e-26};return u}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),dk=nt((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.x=0,c.y=0,c.z=0,c.w=0,c.next=function(){var d=c.x^c.x<<11;return c.x=c.y,c.y=c.z,c.z=c.w,c.w^=c.w>>>19^d^d>>>8},l===(l|0)?c.x=l:u+=l;for(var h=0;h<u.length+64;h++)c.x^=u.charCodeAt(h)|0,c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c}function o(l,c){var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),pk=nt((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.next=function(){var d=c.x^c.x>>>2;return c.x=c.y,c.y=c.z,c.z=c.w,c.w=c.v,(c.d=c.d+362437|0)+(c.v=c.v^c.v<<4^(d^d<<1))|0},c.x=0,c.y=0,c.z=0,c.w=0,c.v=0,l===(l|0)?c.x=l:u+=l;for(var h=0;h<u.length+64;h++)c.x^=u.charCodeAt(h)|0,h==u.length&&(c.d=c.x<<10^c.x>>>4),c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c.v=l.v,c.d=l.d,c}function o(l,c){var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),fk=nt((e,t)=>{(function(n,r,a){function s(l){var c=this;c.next=function(){var h=c.x,d=c.i,p,f,m;return p=h[d],p^=p>>>7,f=p^p<<24,p=h[d+1&7],f^=p^p>>>10,p=h[d+3&7],f^=p^p>>>3,p=h[d+4&7],f^=p^p<<7,p=h[d+7&7],p=p^p<<13,f^=p^p<<9,h[d]=f,c.i=d+1&7,f};function u(h,d){var p,f,m=[];if(d===(d|0))f=m[0]=d;else for(d=""+d,p=0;p<d.length;++p)m[p&7]=m[p&7]<<15^d.charCodeAt(p)+m[p+1&7]<<13;for(;m.length<8;)m.push(0);for(p=0;p<8&&m[p]===0;++p);for(p==8?f=m[7]=-1:f=m[p],h.x=m,h.i=0,p=256;p>0;--p)h.next()}u(c,l)}function i(l,c){return c.x=l.x.slice(),c.i=l.i,c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(h.x&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),mk=nt((e,t)=>{(function(n,r,a){function s(l){var c=this;c.next=function(){var h=c.w,d=c.X,p=c.i,f,m;return c.w=h=h+1640531527|0,m=d[p+34&127],f=d[p=p+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=d[p]=m^f,c.i=p,m+(h^h>>>16)|0};function u(h,d){var p,f,m,A,y,g=[],b=128;for(d===(d|0)?(f=d,d=null):(d=d+"\0",f=0,b=Math.max(b,d.length)),m=0,A=-32;A<b;++A)d&&(f^=d.charCodeAt((A+32)%d.length)),A===0&&(y=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,A>=0&&(y=y+1640531527|0,p=g[A&127]^=f+y,m=p==0?m+1:0);for(m>=128&&(g[(d&&d.length||0)&127]=-1),m=127,A=4*128;A>0;--A)f=g[m+34&127],p=g[m=m+1&127],f^=f<<13,p^=p<<17,f^=f>>>15,p^=p>>>12,g[m]=f^p;h.w=y,h.X=g,h.i=m}u(c,l)}function i(l,c){return c.i=l.i,c.w=l.w,c.X=l.X.slice(),c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(h.X&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Ak=nt((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.next=function(){var d=c.b,p=c.c,f=c.d,m=c.a;return d=d<<25^d>>>7^p,p=p-f|0,f=f<<24^f>>>8^m,m=m-d|0,c.b=d=d<<20^d>>>12^p,c.c=p=p-f|0,c.d=f<<16^p>>>16^m,c.a=m-d|0},c.a=0,c.b=0,c.c=2654435769|0,c.d=1367130551,l===Math.floor(l)?(c.a=l/4294967296|0,c.b=l|0):u+=l;for(var h=0;h<u.length+20;h++)c.b^=u.charCodeAt(h)|0,c.next()}function i(l,c){return c.a=l.a,c.b=l.b,c.c=l.c,c.d=l.d,c}function o(l,c){var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),yk=nt((e,t)=>{(function(n,r){var a=this,s=256,i=6,o=52,l="random",c=r.pow(s,i),u=r.pow(2,o),h=u*2,d=s-1,p;function f(w,_,N){var T=[];_=_==!0?{entropy:!0}:_||{};var E=g(y(_.entropy?[w,x(n)]:w==null?b():w,3),T),M=new m(T),z=function(){for(var P=M.g(i),B=c,G=0;P<u;)P=(P+G)*s,B*=s,G=M.g(1);for(;P>=h;)P/=2,B/=2,G>>>=1;return(P+G)/B};return z.int32=function(){return M.g(4)|0},z.quick=function(){return M.g(4)/4294967296},z.double=z,g(x(M.S),n),(_.pass||N||function(P,B,G,V){return V&&(V.S&&A(V,M),P.state=function(){return A(M,{})}),G?(r[l]=P,B):P})(z,E,"global"in _?_.global:this==r,_.state)}r["seed"+l]=f;function m(w){var _,N=w.length,T=this,E=0,M=T.i=T.j=0,z=T.S=[];for(N||(w=[N++]);E<s;)z[E]=E++;for(E=0;E<s;E++)z[E]=z[M=d&M+w[E%N]+(_=z[E])],z[M]=_;(T.g=function(P){for(var B,G=0,V=T.i,K=T.j,X=T.S;P--;)B=X[V=d&V+1],G=G*s+X[d&(X[V]=X[K=d&K+B])+(X[K]=B)];return T.i=V,T.j=K,G})(s)}function A(w,_){return _.i=w.i,_.j=w.j,_.S=w.S.slice(),_}function y(w,_){var N=[],T=typeof w,E;if(_&&T=="object")for(E in w)try{N.push(y(w[E],_-1))}catch(M){}return N.length?N:T=="string"?w:w+"\0"}function g(w,_){for(var N=w+"",T,E=0;E<N.length;)_[d&E]=d&(T^=_[d&E]*19)+N.charCodeAt(E++);return x(_)}function b(){try{var w;return p&&(w=p.randomBytes)?w=w(s):(w=new Uint8Array(s),(a.crypto||a.msCrypto).getRandomValues(w)),x(w)}catch(T){var _=a.navigator,N=_&&_.plugins;return[+new Date,a,N,a.screen,x(n)]}}function x(w){return String.fromCharCode.apply(0,w)}if(g(r.random(),n),typeof t=="object"&&t.exports){t.exports=f;try{p=xm()}catch(w){}}else typeof define=="function"&&define.amd&&define(function(){return f})})([],Math)}),gk=nt((e,t)=>{var n=hk(),r=dk(),a=pk(),s=fk(),i=mk(),o=Ak(),l=yk();l.alea=n,l.xor128=r,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),Uu=nt(()=>{}),xk=nt(()=>{}),wk=nt(()=>{}),_k=nt((e,t)=>{var n=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(a){a=a||{};function s(){return Y.buffer!=Ye&&vn(Y.buffer),_n}function i(){return Y.buffer!=Ye&&vn(Y.buffer),Xt}function o(){return Y.buffer!=Ye&&vn(Y.buffer),dn}function l(){return Y.buffer!=Ye&&vn(Y.buffer),rn}function c(){return Y.buffer!=Ye&&vn(Y.buffer),kr}var u=typeof a!="undefined"?a:{},h={},d;for(d in u)u.hasOwnProperty(d)&&(h[d]=u[d]);var p=[],f="./this.program",m=function(v,S){throw S},A=!1,y=!1,g=!1,b=!1;A=typeof window=="object",y=typeof importScripts=="function",g=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",b=!A&&!g&&!y;var x=u.ENVIRONMENT_IS_PTHREAD||!1;x&&(Ye=u.buffer,Xn=u.DYNAMIC_BASE,hr=u.DYNAMICTOP_PTR);var w="";function _(v){return u.locateFile?u.locateFile(v,w):w+v}var N,T,E,M,z,P;if(g){y?w=Uu().dirname(w)+"/":w=__dirname+"/",N=function(v,S){return z||(z=require("fs")),P||(P=Uu()),v=P.normalize(v),z.readFileSync(v,S?null:"utf8")},E=function(v){var S=N(v,!0);return S.buffer||(S=new Uint8Array(S)),ke(S.buffer),S},process.argv.length>1&&(f=process.argv[1].replace(/\\/g,"/")),p=process.argv.slice(2),process.on("uncaughtException",function(v){if(!(v instanceof D2))throw v}),process.on("unhandledRejection",qr),m=function(v){process.exit(v)},u.inspect=function(){return"[Emscripten Module object]"};var B;try{B=xk()}catch(v){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),v}Worker=B.Worker}else b?(typeof read!="undefined"&&(N=function(v){return read(v)}),E=function(v){var S;return typeof readbuffer=="function"?new Uint8Array(readbuffer(v)):(S=read(v,"binary"),ke(typeof S=="object"),S)},typeof scriptArgs!="undefined"?p=scriptArgs:typeof arguments!="undefined"&&(p=arguments),typeof quit=="function"&&(m=function(v){quit(v)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(A||y)&&(y?w=self.location.href:document.currentScript&&(w=document.currentScript.src),typeof r!="undefined"&&r&&(w=r),w.indexOf("blob:")!==0?w=w.substr(0,w.lastIndexOf("/")+1):w="",g?(N=function(v,S){return z||(z=require("fs")),P||(P=Uu()),v=P.normalize(v),z.readFileSync(v,S?null:"utf8")},E=function(v){var S=N(v,!0);return S.buffer||(S=new Uint8Array(S)),ke(S.buffer),S}):(N=function(v){var S=new XMLHttpRequest;return S.open("GET",v,!1),S.send(null),S.responseText},y&&(E=function(v){var S=new XMLHttpRequest;return S.open("GET",v,!1),S.responseType="arraybuffer",S.send(null),new Uint8Array(S.response)}),T=function(v,S,$){var j=new XMLHttpRequest;j.open("GET",v,!0),j.responseType="arraybuffer",j.onload=function(){if(j.status==200||j.status==0&&j.response){S(j.response);return}$()},j.onerror=$,j.send(null)}),M=function(v){document.title=v});g&&typeof performance=="undefined"&&(performance=wk().performance);var G=u.print||console.log.bind(console),V=u.printErr||console.warn.bind(console);for(d in h)h.hasOwnProperty(d)&&(u[d]=h[d]);h=null,u.arguments&&(p=u.arguments),u.thisProgram&&(f=u.thisProgram),u.quit&&(m=u.quit);var K=Atomics.load,X=Atomics.store,ee=Atomics.compareExchange,J;u.wasmBinary&&(J=u.wasmBinary);var ae;u.noExitRuntime&&(ae=u.noExitRuntime),typeof WebAssembly!="object"&&V("no native wasm support detected");var Y,ue=new WebAssembly.Table({initial:171,maximum:171+0,element:"anyfunc"}),ne,de=0,he=0,me=!1,Ae=0;function ke(v,S){v||qr("Assertion failed: "+S)}function Ee(v){var S=u["_"+v];return ke(S,"Cannot call unknown function "+v+", make sure it is exported"),S}function Ce(v,S,$,j,pe){var ce={string:function(Pn){var da=0;if(Pn!=null&&Pn!==0){var tu=(Pn.length<<2)+1;da=Oi(tu),it(Pn,da,tu)}return da},array:function(Pn){var da=Oi(Pn.length);return lt(Pn,da),da}};function le(Pn){return S==="string"?Ue(Pn):S==="boolean"?Boolean(Pn):Pn}var be=Ee(v),Qe=[],Mt=0;if(j)for(var Qt=0;Qt<j.length;Qt++){var Pi=ce[$[Qt]];Pi?(Mt===0&&(Mt=Yl()),Qe[Qt]=Pi(j[Qt])):Qe[Qt]=j[Qt]}var eu=be.apply(null,Qe);return eu=le(eu),Mt!==0&&zi(Mt),eu}function Oe(v,S,$,j){$=$||[];var pe=$.every(function(le){return le==="number"}),ce=S!=="string";return ce&&pe&&!j?Ee(v):function(){return Ce(v,S,$,arguments,j)}}function Ke(v,S,$){for(var j=S+$,pe="";!(S>=j);){var ce=v[S++];if(!ce)return pe;if(!(ce&128)){pe+=String.fromCharCode(ce);continue}var le=v[S++]&63;if((ce&224)==192){pe+=String.fromCharCode((ce&31)<<6|le);continue}var be=v[S++]&63;if((ce&240)==224?ce=(ce&15)<<12|le<<6|be:ce=(ce&7)<<18|le<<12|be<<6|v[S++]&63,ce<65536)pe+=String.fromCharCode(ce);else{var Qe=ce-65536;pe+=String.fromCharCode(55296|Qe>>10,56320|Qe&1023)}}return pe}function Ue(v,S){return v?Ke(i(),v,S):""}function rt(v,S,$,j){if(!(j>0))return 0;for(var pe=$,ce=$+j-1,le=0;le<v.length;++le){var be=v.charCodeAt(le);if(be>=55296&&be<=57343){var Qe=v.charCodeAt(++le);be=65536+((be&1023)<<10)|Qe&1023}if(be<=127){if($>=ce)break;S[$++]=be}else if(be<=2047){if($+1>=ce)break;S[$++]=192|be>>6,S[$++]=128|be&63}else if(be<=65535){if($+2>=ce)break;S[$++]=224|be>>12,S[$++]=128|be>>6&63,S[$++]=128|be&63}else{if($+3>=ce)break;S[$++]=240|be>>18,S[$++]=128|be>>12&63,S[$++]=128|be>>6&63,S[$++]=128|be&63}}return S[$]=0,$-pe}function it(v,S,$){return rt(v,i(),S,$)}function je(v){for(var S=0,$=0;$<v.length;++$){var j=v.charCodeAt($);j>=55296&&j<=57343&&(j=65536+((j&1023)<<10)|v.charCodeAt(++$)&1023),j<=127?++S:j<=2047?S+=2:j<=65535?S+=3:S+=4}return S}function lt(v,S){s().set(v,S)}var ut=65536;function On(v,S){return v%S>0&&(v+=S-v%S),v}var Ye,_n,Xt,bn,Gn,dn,rn,qn,kr;function vn(v){Ye=v,u.HEAP8=_n=new Int8Array(v),u.HEAP16=bn=new Int16Array(v),u.HEAP32=dn=new Int32Array(v),u.HEAPU8=Xt=new Uint8Array(v),u.HEAPU16=Gn=new Uint16Array(v),u.HEAPU32=rn=new Uint32Array(v),u.HEAPF32=qn=new Float32Array(v),u.HEAPF64=kr=new Float64Array(v)}var Si=5256464,Pl=Si,cr=13584,Xn=5256464,hr=12656,Ti=u.INITIAL_MEMORY||16777216;if(x)Y=u.wasmMemory,Ye=u.buffer;else if(u.wasmMemory)Y=u.wasmMemory;else if(Y=new WebAssembly.Memory({initial:Ti/ut,maximum:2147483648/ut,shared:!0}),!(Y.buffer instanceof SharedArrayBuffer))throw V("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),g&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");Y&&(Ye=Y.buffer),Ti=Ye.byteLength,vn(Ye),x||(o()[hr>>2]=Xn);function Ei(v){for(;v.length>0;){var S=v.shift();if(typeof S=="function"){S(u);continue}var $=S.func;typeof $=="number"?S.arg===void 0?u.dynCall_v($):u.dynCall_vi($,S.arg):$(S.arg===void 0?null:S.arg)}}var Ua=[],Ll=[],y1=[],Wl=[],jc=[],Bl=!1;x&&(Bl=!0);function Kn(){if(!x){if(u.preRun)for(typeof u.preRun=="function"&&(u.preRun=[u.preRun]);u.preRun.length;)w1(u.preRun.shift());Ei(Ua)}}function Gc(){Bl=!0,Ei(Ll)}function g1(){x||Ei(y1)}function x1(){if(!x){if(u.postRun)for(typeof u.postRun=="function"&&(u.postRun=[u.postRun]);u.postRun.length;)Ha(u.postRun.shift());Ei(jc)}}function w1(v){Ua.unshift(v)}function Ha(v){jc.unshift(v)}var Ci=Math.ceil,_1=Math.floor,Gr=0,Vl=null,ja=null;function b1(v){ke(!x,"addRunDependency cannot be used in a pthread worker"),Gr++,u.monitorRunDependencies&&u.monitorRunDependencies(Gr)}function v1(v){if(Gr--,u.monitorRunDependencies&&u.monitorRunDependencies(Gr),Gr==0&&(Vl!==null&&(clearInterval(Vl),Vl=null),ja)){var S=ja;ja=null,S()}}u.preloadedImages={},u.preloadedAudios={};function qr(v){throw u.onAbort&&u.onAbort(v),x&&console.error("Pthread aborting at "+new Error().stack),v+="",G(v),V(v),me=!0,Ae=1,v="abort("+v+"). Build with -s ASSERTIONS=1 for more info.",new WebAssembly.RuntimeError(v)}function Ul(v,S){return String.prototype.startsWith?v.startsWith(S):v.indexOf(S)===0}var k1="data:application/octet-stream;base64,";function qc(v){return Ul(v,k1)}var I1="file://";function Xc(v){return Ul(v,I1)}var Zn="tfjs-backend-wasm-threaded-simd.wasm";qc(Zn)||(Zn=_(Zn));function Kc(){try{if(J)return new Uint8Array(J);if(E)return E(Zn);throw"both async and sync fetching of the wasm failed"}catch(v){qr(v)}}function N1(){return!J&&(A||y)&&typeof fetch=="function"&&!Xc(Zn)?fetch(Zn,{credentials:"same-origin"}).then(function(v){if(!v.ok)throw"failed to load wasm binary file at '"+Zn+"'";return v.arrayBuffer()}).catch(function(){return Kc()}):new Promise(function(v,S){v(Kc())})}function S1(){var v={a:xf};function S(le,be){var Qe=le.exports;if(u.asm=Qe,ne=be,!x){var Mt=fe.unusedWorkers.length;fe.unusedWorkers.forEach(function(Qt){fe.loadWasmModuleToWorker(Qt,function(){--Mt||v1("wasm-instantiate")})})}}x||b1("wasm-instantiate");function $(le){S(le.instance,le.module)}function j(le){return N1().then(function(be){return WebAssembly.instantiate(be,v)}).then(le,function(be){V("failed to asynchronously prepare wasm: "+be),qr(be)})}function pe(){if(!J&&typeof WebAssembly.instantiateStreaming=="function"&&!qc(Zn)&&!Xc(Zn)&&typeof fetch=="function")fetch(Zn,{credentials:"same-origin"}).then(function(le){var be=WebAssembly.instantiateStreaming(le,v);return be.then($,function(Qe){V("wasm streaming compile failed: "+Qe),V("falling back to ArrayBuffer instantiation"),j($)})});else return j($)}if(u.instantiateWasm)try{var ce=u.instantiateWasm(v,S);return ce}catch(le){return V("Module.instantiateWasm callback failed with error: "+le),!1}return pe(),{}}var T1={};function E1(){fe.initRuntime()}x||Ll.push({func:function(){oh()}});var Zc=0,Jc=0,Yc=0;function Ri(v,S,$){v=v|0,S=S|0,$=$|0,Zc=v,Yc=S,Jc=$}u.__register_pthread_ptr=Ri;var Hl={EPERM:63,ENOENT:44,ESRCH:71,EINTR:27,EIO:29,ENXIO:60,E2BIG:1,ENOEXEC:45,EBADF:8,ECHILD:12,EAGAIN:6,EWOULDBLOCK:6,ENOMEM:48,EACCES:2,EFAULT:21,ENOTBLK:105,EBUSY:10,EEXIST:20,EXDEV:75,ENODEV:43,ENOTDIR:54,EISDIR:31,EINVAL:28,ENFILE:41,EMFILE:33,ENOTTY:59,ETXTBSY:74,EFBIG:22,ENOSPC:51,ESPIPE:70,EROFS:69,EMLINK:34,EPIPE:64,EDOM:18,ERANGE:68,ENOMSG:49,EIDRM:24,ECHRNG:106,EL2NSYNC:156,EL3HLT:107,EL3RST:108,ELNRNG:109,EUNATCH:110,ENOCSI:111,EL2HLT:112,EDEADLK:16,ENOLCK:46,EBADE:113,EBADR:114,EXFULL:115,ENOANO:104,EBADRQC:103,EBADSLT:102,EDEADLOCK:16,EBFONT:101,ENOSTR:100,ENODATA:116,ETIME:117,ENOSR:118,ENONET:119,ENOPKG:120,EREMOTE:121,ENOLINK:47,EADV:122,ESRMNT:123,ECOMM:124,EPROTO:65,EMULTIHOP:36,EDOTDOT:125,EBADMSG:9,ENOTUNIQ:126,EBADFD:127,EREMCHG:128,ELIBACC:129,ELIBBAD:130,ELIBSCN:131,ELIBMAX:132,ELIBEXEC:133,ENOSYS:52,ENOTEMPTY:55,ENAMETOOLONG:37,ELOOP:32,EOPNOTSUPP:138,EPFNOSUPPORT:139,ECONNRESET:15,ENOBUFS:42,EAFNOSUPPORT:5,EPROTOTYPE:67,ENOTSOCK:57,ENOPROTOOPT:50,ESHUTDOWN:140,ECONNREFUSED:14,EADDRINUSE:3,ECONNABORTED:13,ENETUNREACH:40,ENETDOWN:38,ETIMEDOUT:73,EHOSTDOWN:142,EHOSTUNREACH:23,EINPROGRESS:26,EALREADY:7,EDESTADDRREQ:17,EMSGSIZE:35,EPROTONOSUPPORT:66,ESOCKTNOSUPPORT:137,EADDRNOTAVAIL:4,ENETRESET:39,EISCONN:30,ENOTCONN:53,ETOOMANYREFS:141,EUSERS:136,EDQUOT:19,ESTALE:72,ENOTSUP:138,ENOMEDIUM:148,EILSEQ:25,EOVERFLOW:61,ECANCELED:11,ENOTRECOVERABLE:56,EOWNERDEAD:62,ESTRPIPE:135},Fi=13568;function Mi(v,S){if(v<=0||v>s().length||v&!0||S<0)return-28;if(S==0)return 0;S>=2147483647&&(S=Infinity);var $=Atomics.load(o(),Fi>>2),j=0;if($==v){var pe=Atomics.compareExchange(o(),Fi>>2,$,0);if(pe==$&&(--S,j=1,S<=0))return 1}var ce=Atomics.notify(o(),v>>2,S);if(ce>=0)return ce+j;throw"Atomics.notify returned an unexpected value "+ce}u._emscripten_futex_wake=Mi;function C1(v){if(x)throw"Internal Error! _kill_thread() can only ever be called from main application thread!";if(!v)throw"Internal Error! Null pthread_ptr in _kill_thread!";o()[v+12>>2]=0;var S=fe.pthreads[v];S.worker.terminate(),fe.freeThreadData(S),fe.runningWorkers.splice(fe.runningWorkers.indexOf(S.worker),1),S.worker.pthread=void 0}function R1(v){if(x)throw"Internal Error! _cancel_thread() can only ever be called from main application thread!";if(!v)throw"Internal Error! Null pthread_ptr in _cancel_thread!";var S=fe.pthreads[v];S.worker.postMessage({cmd:"cancel"})}function F1(v){if(x)throw"Internal Error! _cleanup_thread() can only ever be called from main application thread!";if(!v)throw"Internal Error! Null pthread_ptr in _cleanup_thread!";o()[v+12>>2]=0;var S=fe.pthreads[v];if(S){var $=S.worker;fe.returnWorkerToPool($)}}var fe={MAIN_THREAD_ID:1,mainThreadInfo:{schedPolicy:0,schedPrio:0},unusedWorkers:[],runningWorkers:[],initRuntime:function(){Ri(fe.mainThreadBlock,!y,1),R2(fe.mainThreadBlock)},initMainThreadBlock:function(){for(var v=8,S=0;S<v;++S)fe.allocateUnusedWorker();fe.mainThreadBlock=12816;for(var S=0;S<232/4;++S)l()[fe.mainThreadBlock/4+S]=0;o()[fe.mainThreadBlock+12>>2]=fe.mainThreadBlock;var $=fe.mainThreadBlock+156;o()[$>>2]=$;for(var j=13056,S=0;S<128;++S)l()[j/4+S]=0;Atomics.store(l(),fe.mainThreadBlock+104>>2,j),Atomics.store(l(),fe.mainThreadBlock+40>>2,fe.mainThreadBlock),Atomics.store(l(),fe.mainThreadBlock+44>>2,42)},initWorker:function(){},pthreads:{},exitHandlers:null,setThreadStatus:function(){},runExitHandlers:function(){if(fe.exitHandlers!==null){for(;fe.exitHandlers.length>0;)fe.exitHandlers.pop()();fe.exitHandlers=null}x&&de&&C2()},threadExit:function(v){var S=Ir();S&&(Atomics.store(l(),S+4>>2,v),Atomics.store(l(),S+0>>2,1),Atomics.store(l(),S+60>>2,1),Atomics.store(l(),S+64>>2,0),fe.runExitHandlers(),Mi(S+0,2147483647),Ri(0,0,0),de=0,x&&postMessage({cmd:"exit"}))},threadCancel:function(){fe.runExitHandlers(),Atomics.store(l(),de+4>>2,-1),Atomics.store(l(),de+0>>2,1),Mi(de+0,2147483647),de=he=0,Ri(0,0,0),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var v in fe.pthreads){var S=fe.pthreads[v];S&&S.worker&&fe.returnWorkerToPool(S.worker)}fe.pthreads={};for(var $=0;$<fe.unusedWorkers.length;++$){var j=fe.unusedWorkers[$];j.terminate()}fe.unusedWorkers=[];for(var $=0;$<fe.runningWorkers.length;++$){var j=fe.runningWorkers[$],S=j.pthread;fe.freeThreadData(S),j.terminate()}fe.runningWorkers=[]},freeThreadData:function(v){if(v){if(v.threadInfoStruct){var S=o()[v.threadInfoStruct+104>>2];o()[v.threadInfoStruct+104>>2]=0,Jl(S),Jl(v.threadInfoStruct)}v.threadInfoStruct=0,v.allocatedOwnStack&&v.stackBase&&Jl(v.stackBase),v.stackBase=0,v.worker&&(v.worker.pthread=null)}},returnWorkerToPool:function(v){delete fe.pthreads[v.pthread.thread],fe.unusedWorkers.push(v),fe.runningWorkers.splice(fe.runningWorkers.indexOf(v),1),fe.freeThreadData(v.pthread),v.pthread=void 0},receiveObjectTransfer:function(v){},loadWasmModuleToWorker:function(v,S){v.onmessage=function($){var j=$.data,pe=j.cmd;if(v.pthread&&(fe.currentProxiedOperationCallerThread=v.pthread.threadInfoStruct),j.targetThread&&j.targetThread!=Ir()){var ce=fe.pthreads[j.targetThread];ce?ce.worker.postMessage($.data,j.transferList):console.error('Internal error! Worker sent a message "'+pe+'" to target pthread '+j.targetThread+", but that thread no longer exists!"),fe.currentProxiedOperationCallerThread=void 0;return}if(pe==="processQueuedMainThreadWork")bf();else if(pe==="spawnThread")ah($.data);else if(pe==="cleanupThread")F1(j.thread);else if(pe==="killThread")C1(j.thread);else if(pe==="cancelThread")R1(j.thread);else if(pe==="loaded")v.loaded=!0,S&&S(v),v.runPthread&&(v.runPthread(),delete v.runPthread);else if(pe==="print")G("Thread "+j.threadId+": "+j.text);else if(pe==="printErr")V("Thread "+j.threadId+": "+j.text);else if(pe==="alert")alert("Thread "+j.threadId+": "+j.text);else if(pe==="exit"){var le=v.pthread&&Atomics.load(l(),v.pthread.thread+68>>2);le&&fe.returnWorkerToPool(v)}else pe==="cancelDone"?fe.returnWorkerToPool(v):pe==="objectTransfer"?fe.receiveObjectTransfer($.data):$.data.target==="setimmediate"?v.postMessage($.data):V("worker sent an unknown command "+pe);fe.currentProxiedOperationCallerThread=void 0},v.onerror=function($){V("pthread sent an error! "+$.filename+":"+$.lineno+": "+$.message)},g&&(v.on("message",function($){v.onmessage({data:$})}),v.on("error",function($){v.onerror($)}),v.on("exit",function($){console.log("worker exited - TODO: update the worker queue?")})),v.postMessage({cmd:"load",urlOrBlob:u.mainScriptUrlOrBlob||r,wasmMemory:Y,wasmModule:ne,DYNAMIC_BASE:Xn,DYNAMICTOP_PTR:hr})},allocateUnusedWorker:function(){var v=_("tfjs-backend-wasm-threaded-simd.worker.js");fe.unusedWorkers.push(new Worker(v))},getNewWorker:function(){return fe.unusedWorkers.length==0&&(fe.allocateUnusedWorker(),fe.loadWasmModuleToWorker(fe.unusedWorkers[0])),fe.unusedWorkers.length>0?fe.unusedWorkers.pop():null},busySpinWait:function(v){for(var S=performance.now()+v;performance.now()<S;);}};function M1(v,S){Si=Pl=v,cr=S,zi(v)}u.establishStackSpace=M1;function $1(){return ae}u.getNoExitRuntime=$1;function D1(v,S,$,j){qr("Assertion failed: "+Ue(v)+", at: "+[S?Ue(S):"unknown filename",$,j?Ue(j):"unknown function"])}function O1(v,S){var $=_main(v,S)}var Ga;g?Ga=function(){var v=process.hrtime();return v[0]*1e3+v[1]/1e6}:x?Ga=function(){return performance.now()-u.__performance_now_clock_drift}:typeof dateNow!="undefined"?Ga=dateNow:Ga=function(){return performance.now()};function z1(v){return o()[S2()>>2]=v,v}function P1(v,S){if(x)return ua(1,1,v,S);Wl.unshift({func:v,arg:S})}function L1(v,S){if(v==S)postMessage({cmd:"processQueuedMainThreadWork"});else if(x)postMessage({targetThread:v,cmd:"processThreadQueue"});else{var $=fe.pthreads[v],j=$&&$.worker;if(!j)return;j.postMessage({cmd:"processThreadQueue"})}return 1}function W1(){qr()}function B1(v,S){v=v|0,S=S|0}function V1(v,S,$){if(v<=0||v>s().length||v&!0)return-28;if(y){var j=Atomics.wait(o(),v>>2,S,$);if(j==="timed-out")return-73;if(j==="not-equal")return-6;if(j==="ok")return 0;throw"Atomics.wait returned an unexpected value "+j}else{var pe=Atomics.load(o(),v>>2);if(S!=pe)return-6;var ce=performance.now(),le=ce+$;Atomics.store(o(),Fi>>2,v);for(var be=v;v==be;){if(ce=performance.now(),ce>le)return-73;bf(),v=Atomics.load(o(),Fi>>2)}return 0}}function U1(){return Yc|0}function H1(){return Jc|0}function j1(v,S,$){i().copyWithin(v,S,S+$)}function G1(){return navigator.hardwareConcurrency}function ua(v,S){for(var $=arguments.length-2,j=Yl(),pe=Oi($*8),ce=pe>>3,le=0;le<$;le++)c()[ce+le]=arguments[2+le];var be=M2(v,$,pe,S);return zi(j),be}var qa=[];function $i(v,S){$i.array||($i.array=[]);var $=$i.array;$.length=0;for(var j;j=i()[v++];)j===100||j===102?(S=S+7&~7,$.push(c()[S>>3]),S+=8):(S=S+3&~3,$.push(o()[S>>2]),S+=4);return $}function q1(v,S,$){qa.length=S;for(var j=$>>3,pe=0;pe<S;pe++)qa[pe]=c()[j+pe];var ce=v<0,le=ce?T1[-v-1]:gf[v];if(ce){var be=qa[1],Qe=qa[2],Mt=$i(be,Qe);return le.apply(null,Mt)}return le.apply(null,qa)}function X1(){return i().length}function K1(v){try{return Y.grow(v-Ye.byteLength+65535>>>16),vn(Y.buffer),1}catch(S){}}function Z1(v){v=v>>>0;var S=X1();if(v<=S)return!1;var $=65536,j=2147483648;if(v>j)return!1;for(var pe=16777216,ce=1;ce<=4;ce*=2){var le=S*(1+.2/ce);le=Math.min(le,v+100663296);var be=Math.min(j,On(Math.max(pe,v,le),$)),Qe=K1(be);if(Qe)return!0}return!1}var Le={keyEvent:0,mouseEvent:0,wheelEvent:0,uiEvent:0,focusEvent:0,deviceOrientationEvent:0,deviceMotionEvent:0,fullscreenChangeEvent:0,pointerlockChangeEvent:0,visibilityChangeEvent:0,touchEvent:0,previousFullscreenElement:null,previousScreenX:null,previousScreenY:null,removeEventListenersRegistered:!1,removeAllEventListeners:function(){for(var v=Le.eventHandlers.length-1;v>=0;--v)Le._removeHandler(v);Le.eventHandlers=[],Le.deferredCalls=[]},registerRemoveEventListeners:function(){Le.removeEventListenersRegistered||(Wl.push(Le.removeAllEventListeners),Le.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(v,S,$){function j(le,be){if(le.length!=be.length)return!1;for(var Qe in le)if(le[Qe]!=be[Qe])return!1;return!0}for(var pe in Le.deferredCalls){var ce=Le.deferredCalls[pe];if(ce.targetFunction==v&&j(ce.argsList,$))return}Le.deferredCalls.push({targetFunction:v,precedence:S,argsList:$}),Le.deferredCalls.sort(function(le,be){return le.precedence<be.precedence})},removeDeferredCalls:function(v){for(var S=0;S<Le.deferredCalls.length;++S)Le.deferredCalls[S].targetFunction==v&&(Le.deferredCalls.splice(S,1),--S)},canPerformEventHandlerRequests:function(){return Le.inEventHandler&&Le.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(Le.canPerformEventHandlerRequests())for(var v=0;v<Le.deferredCalls.length;++v){var S=Le.deferredCalls[v];Le.deferredCalls.splice(v,1),--v,S.targetFunction.apply(null,S.argsList)}},inEventHandler:0,currentEventHandler:null,eventHandlers:[],removeAllHandlersOnTarget:function(v,S){for(var $=0;$<Le.eventHandlers.length;++$)Le.eventHandlers[$].target==v&&(!S||S==Le.eventHandlers[$].eventTypeString)&&Le._removeHandler($--)},_removeHandler:function(v){var S=Le.eventHandlers[v];S.target.removeEventListener(S.eventTypeString,S.eventListenerFunc,S.useCapture),Le.eventHandlers.splice(v,1)},registerOrRemoveHandler:function(v){var S=function(j){++Le.inEventHandler,Le.currentEventHandler=v,Le.runDeferredCalls(),v.handlerFunc(j),Le.runDeferredCalls(),--Le.inEventHandler};if(v.callbackfunc)v.eventListenerFunc=S,v.target.addEventListener(v.eventTypeString,S,v.useCapture),Le.eventHandlers.push(v),Le.registerRemoveEventListeners();else for(var $=0;$<Le.eventHandlers.length;++$)Le.eventHandlers[$].target==v.target&&Le.eventHandlers[$].eventTypeString==v.eventTypeString&&Le._removeHandler($--)},queueEventHandlerOnThread_iiii:function(v,S,$,j,pe){var ce=Yl(),le=Oi(12);o()[le>>2]=$,o()[le+4>>2]=j,o()[le+8>>2]=pe,vf(v,637534208,S,j,le),zi(ce)},getTargetThreadForEventCallback:function(v){switch(v){case 1:return 0;case 2:return fe.currentProxiedOperationCallerThread;default:return v}},getNodeNameForTarget:function(v){return v?v==window?"#window":v==screen?"#screen":v&&v.nodeName?v.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function J1(v){var S=je(v)+1,$=Zl(S);return it(v,$,S),$}function Y1(v,S,$,j){var pe=Yl(),ce=Oi(12),le=0;S&&(le=J1(S)),o()[ce>>2]=le,o()[ce+4>>2]=$,o()[ce+8>>2]=j,vf(v,657457152,0,le,ce),zi(pe)}function Q1(v,S,$,j){S=S?Ue(S):"",Y1(v,S,$,j)}function ef(v){return v>2?Ue(v):v}var tf=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function nf(v){v=ef(v);var S=tf[v]||(typeof document!="undefined"?document.querySelector(v):void 0);return S}function jl(v){return nf(v)}function Qc(v,S,$){var j=jl(v);if(!j)return-4;if(j.canvasSharedPtr&&(o()[j.canvasSharedPtr>>2]=S,o()[j.canvasSharedPtr+4>>2]=$),j.offscreenCanvas||!j.controlTransferredOffscreen){j.offscreenCanvas&&(j=j.offscreenCanvas);var pe=!1;if(j.GLctxObject&&j.GLctxObject.GLctx){var ce=j.GLctxObject.GLctx.getParameter(2978);pe=ce[0]===0&&ce[1]===0&&ce[2]===j.width&&ce[3]===j.height}j.width=S,j.height=$,pe&&j.GLctxObject.GLctx.viewport(0,0,S,$)}else if(j.canvasSharedPtr){var le=o()[j.canvasSharedPtr+8>>2];return Q1(le,v,S,$),1}else return-4;return 0}function eh(v,S,$){return x?ua(2,1,v,S,$):Qc(v,S,$)}function rf(v,S,$){var j=jl(v);return j?Qc(v,S,$):eh(v,S,$)}function af(v){v=v|0}function sf(v,S){v=v|0,S=S|0}function of(v){var S=v.getExtension("ANGLE_instanced_arrays");if(S)return v.vertexAttribDivisor=function($,j){S.vertexAttribDivisorANGLE($,j)},v.drawArraysInstanced=function($,j,pe,ce){S.drawArraysInstancedANGLE($,j,pe,ce)},v.drawElementsInstanced=function($,j,pe,ce,le){S.drawElementsInstancedANGLE($,j,pe,ce,le)},1}function lf(v){var S=v.getExtension("OES_vertex_array_object");if(S)return v.createVertexArray=function(){return S.createVertexArrayOES()},v.deleteVertexArray=function($){S.deleteVertexArrayOES($)},v.bindVertexArray=function($){S.bindVertexArrayOES($)},v.isVertexArray=function($){return S.isVertexArrayOES($)},1}function uf(v){var S=v.getExtension("WEBGL_draw_buffers");if(S)return v.drawBuffers=function($,j){S.drawBuffersWEBGL($,j)},1}var Be={counter:1,lastError:0,buffers:[],mappedBuffers:{},programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},currentContext:null,offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,init:function(){for(var v=new Float32Array(Be.MINI_TEMP_BUFFER_SIZE),S=0;S<Be.MINI_TEMP_BUFFER_SIZE;S++)Be.miniTempBufferFloatViews[S]=v.subarray(0,S+1);for(var $=new Int32Array(Be.MINI_TEMP_BUFFER_SIZE),S=0;S<Be.MINI_TEMP_BUFFER_SIZE;S++)Be.miniTempBufferIntViews[S]=$.subarray(0,S+1)},recordError:function(v){Be.lastError||(Be.lastError=v)},getNewId:function(v){for(var S=Be.counter++,$=v.length;$<S;$++)v[$]=null;return S},MINI_TEMP_BUFFER_SIZE:256,miniTempBufferFloatViews:[0],miniTempBufferIntViews:[0],getSource:function(v,S,$,j){for(var pe="",ce=0;ce<S;++ce){var le=j?o()[j+ce*4>>2]:-1;pe+=Ue(o()[$+ce*4>>2],le<0?void 0:le)}return pe},createContext:function(v,S){var $=v.getContext("webgl",S);if(!$)return 0;var j=Be.registerContext($,S);return j},registerContext:function(v,S){var $=Zl(8);o()[$+4>>2]=Ir();var j={handle:$,attributes:S,version:S.majorVersion,GLctx:v};return v.canvas&&(v.canvas.GLctxObject=j),Be.contexts[$]=j,(typeof S.enableExtensionsByDefault=="undefined"||S.enableExtensionsByDefault)&&Be.initExtensions(j),$},makeContextCurrent:function(v){return Be.currentContext=Be.contexts[v],u.ctx=ca=Be.currentContext&&Be.currentContext.GLctx,!(v&&!ca)},getContext:function(v){return Be.contexts[v]},deleteContext:function(v){Be.currentContext===Be.contexts[v]&&(Be.currentContext=null),typeof Le=="object"&&Le.removeAllHandlersOnTarget(Be.contexts[v].GLctx.canvas),Be.contexts[v]&&Be.contexts[v].GLctx.canvas&&(Be.contexts[v].GLctx.canvas.GLctxObject=void 0),Jl(Be.contexts[v].handle),Be.contexts[v]=null},initExtensions:function(v){if(v||(v=Be.currentContext),!v.initExtensionsDone){v.initExtensionsDone=!0;var S=v.GLctx;of(S),lf(S),uf(S),S.disjointTimerQueryExt=S.getExtension("EXT_disjoint_timer_query");var $=["OES_texture_float","OES_texture_half_float","OES_standard_derivatives","OES_vertex_array_object","WEBGL_compressed_texture_s3tc","WEBGL_depth_texture","OES_element_index_uint","EXT_texture_filter_anisotropic","EXT_frag_depth","WEBGL_draw_buffers","ANGLE_instanced_arrays","OES_texture_float_linear","OES_texture_half_float_linear","EXT_blend_minmax","EXT_shader_texture_lod","EXT_texture_norm16","WEBGL_compressed_texture_pvrtc","EXT_color_buffer_half_float","WEBGL_color_buffer_float","EXT_sRGB","WEBGL_compressed_texture_etc1","EXT_disjoint_timer_query","WEBGL_compressed_texture_etc","WEBGL_compressed_texture_astc","EXT_color_buffer_float","WEBGL_compressed_texture_s3tc_srgb","EXT_disjoint_timer_query_webgl2","WEBKIT_WEBGL_compressed_texture_pvrtc"],j=S.getSupportedExtensions()||[];j.forEach(function(pe){$.indexOf(pe)!=-1&&S.getExtension(pe)})}},populateUniformTable:function(v){for(var S=Be.programs[v],$=Be.programInfos[v]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},j=$.uniforms,pe=ca.getProgramParameter(S,35718),ce=0;ce<pe;++ce){var le=ca.getActiveUniform(S,ce),be=le.name;$.maxUniformLength=Math.max($.maxUniformLength,be.length+1),be.slice(-1)=="]"&&(be=be.slice(0,be.lastIndexOf("[")));var Qe=ca.getUniformLocation(S,be);if(Qe){var Mt=Be.getNewId(Be.uniforms);j[be]=[le.size,Mt],Be.uniforms[Mt]=Qe;for(var Qt=1;Qt<le.size;++Qt){var Pi=be+"["+Qt+"]";Qe=ca.getUniformLocation(S,Pi),Mt=Be.getNewId(Be.uniforms),Be.uniforms[Mt]=Qe}}}}},cf=["default","low-power","high-performance"];function hf(v,S){var $={},j=S>>2;$.alpha=!!o()[j+(0>>2)],$.depth=!!o()[j+(4>>2)],$.stencil=!!o()[j+(8>>2)],$.antialias=!!o()[j+(12>>2)],$.premultipliedAlpha=!!o()[j+(16>>2)],$.preserveDrawingBuffer=!!o()[j+(20>>2)];var pe=o()[j+(24>>2)];$.powerPreference=cf[pe],$.failIfMajorPerformanceCaveat=!!o()[j+(28>>2)],$.majorVersion=o()[j+(32>>2)],$.minorVersion=o()[j+(36>>2)],$.enableExtensionsByDefault=o()[j+(40>>2)],$.explicitSwapControl=o()[j+(44>>2)],$.proxyContextToMainThread=o()[j+(48>>2)],$.renderViaOffscreenBackBuffer=o()[j+(52>>2)];var ce=jl(v);if(!ce)return-4;if($.explicitSwapControl)return-1;var le=Be.createContext(ce,$);return le}function df(v,S){return hf(v,S)}var Xa={splitPath:function(v){var S=/^(\/?|)([\s\S]*?)((?:\.{1,2}|[^\/]+?|)(\.[^.\/]*|))(?:[\/]*)$/;return S.exec(v).slice(1)},normalizeArray:function(v,S){for(var $=0,j=v.length-1;j>=0;j--){var pe=v[j];pe==="."?v.splice(j,1):pe===".."?(v.splice(j,1),$++):$&&(v.splice(j,1),$--)}if(S)for(;$;$--)v.unshift("..");return v},normalize:function(v){var S=v.charAt(0)==="/",$=v.substr(-1)==="/";return v=Xa.normalizeArray(v.split("/").filter(function(j){return!!j}),!S).join("/"),!v&&!S&&(v="."),v&&$&&(v+="/"),(S?"/":"")+v},dirname:function(v){var S=Xa.splitPath(v),$=S[0],j=S[1];return!$&&!j?".":(j&&(j=j.substr(0,j.length-1)),$+j)},basename:function(v){if(v==="/")return"/";var S=v.lastIndexOf("/");return S===-1?v:v.substr(S+1)},extname:function(v){return Xa.splitPath(v)[3]},join:function(){var v=Array.prototype.slice.call(arguments,0);return Xa.normalize(v.join("/"))},join2:function(v,S){return Xa.normalize(v+"/"+S)}},Di={mappings:{},buffers:[null,[],[]],printChar:function(v,S){var $=Di.buffers[v];S===0||S===10?((v===1?G:V)(Ke($,0)),$.length=0):$.push(S)},varargs:void 0,get:function(){Di.varargs+=4;var v=o()[Di.varargs-4>>2];return v},getStr:function(v){var S=Ue(v);return S},get64:function(v,S){return v}};function th(v){return x?ua(3,1,v):0}function nh(v,S,$,j,pe){if(x)return ua(4,1,v,S,$,j,pe)}function rh(v,S,$,j){if(x)return ua(5,1,v,S,$,j);for(var pe=0,ce=0;ce<$;ce++){for(var le=o()[S+ce*8>>2],be=o()[S+(ce*8+4)>>2],Qe=0;Qe<be;Qe++)Di.printChar(v,i()[le+Qe]);pe+=be}return o()[j>>2]=pe,0}function pf(v){var S=fe.exitHandlers.pop();v&&S()}function ff(v,S){fe.exitHandlers===null&&(fe.exitHandlers=[]),fe.exitHandlers.push(function(){$2(v,S)})}function ah(v){if(x)throw"Internal Error! _spawn_thread() can only ever be called from main application thread!";var S=fe.getNewWorker();if(S.pthread!==void 0)throw"Internal error!";if(!v.pthread_ptr)throw"Internal error, no pthread ptr!";fe.runningWorkers.push(S);for(var $=Zl(128*4),j=0;j<128;++j)o()[$+j*4>>2]=0;var pe=v.stackBase+v.stackSize,ce=fe.pthreads[v.pthread_ptr]={worker:S,stackBase:v.stackBase,stackSize:v.stackSize,allocatedOwnStack:v.allocatedOwnStack,thread:v.pthread_ptr,threadInfoStruct:v.pthread_ptr},le=ce.threadInfoStruct>>2;Atomics.store(l(),le+(0>>2),0),Atomics.store(l(),le+(4>>2),0),Atomics.store(l(),le+(8>>2),0),Atomics.store(l(),le+(68>>2),v.detached),Atomics.store(l(),le+(104>>2),$),Atomics.store(l(),le+(48>>2),0),Atomics.store(l(),le+(40>>2),ce.threadInfoStruct),Atomics.store(l(),le+(44>>2),42),Atomics.store(l(),le+(108>>2),v.stackSize),Atomics.store(l(),le+(84>>2),v.stackSize),Atomics.store(l(),le+(80>>2),pe),Atomics.store(l(),le+(108+8>>2),pe),Atomics.store(l(),le+(108+12>>2),v.detached),Atomics.store(l(),le+(108+20>>2),v.schedPolicy),Atomics.store(l(),le+(108+24>>2),v.schedPrio);var be=T2(),Qe=be+40;Atomics.store(l(),le+(176>>2),Qe),S.pthread=ce;var Mt={cmd:"run",start_routine:v.startRoutine,arg:v.arg,threadInfoStruct:v.pthread_ptr,selfThreadId:v.pthread_ptr,parentThreadId:v.parent_pthread_ptr,stackBase:v.stackBase,stackSize:v.stackSize};S.runPthread=function(){Mt.time=performance.now(),S.postMessage(Mt,v.transferList)},S.loaded&&(S.runPthread(),delete S.runPthread)}function mf(v,S,$){if(!S&&!$)return Hl.EINVAL;if(!v)return V("pthread_getschedparam called with a null thread pointer!"),Hl.ESRCH;var j=o()[v+12>>2];if(j!==v)return V("pthread_getschedparam attempted on thread "+v+", which does not point to a valid thread, or does not exist anymore!"),Hl.ESRCH;var pe=Atomics.load(l(),v+108+20>>2),ce=Atomics.load(l(),v+108+24>>2);return S&&(o()[S>>2]=pe),$&&(o()[$>>2]=ce),0}function Ir(){return Zc|0}u._pthread_self=Ir;function Af(v,S,$,j){if(typeof SharedArrayBuffer=="undefined")return V("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!v)return V("pthread_create called with a null thread pointer!"),28;var pe=[],ce=0;if(x&&(pe.length===0||ce))return F2(687865856,v,S,$,j);if(ce)return ce;var le=0,be=0,Qe=0,Mt=0,Qt=0;if(S){le=o()[S>>2],le+=81920,be=o()[S+8>>2],Qe=o()[S+12>>2]!==0;var Pi=o()[S+16>>2]===0;if(Pi){var eu=o()[S+20>>2],Pn=o()[S+24>>2],da=fe.currentProxiedOperationCallerThread?fe.currentProxiedOperationCallerThread:Ir();mf(da,S+20,S+24),Mt=o()[S+20>>2],Qt=o()[S+24>>2],o()[S+20>>2]=eu,o()[S+24>>2]=Pn}else Mt=o()[S+20>>2],Qt=o()[S+24>>2]}else le=2097152;var tu=be==0;tu?be=E2(16,le):(be-=le,ke(be>0));for(var Li=Zl(232),If=0;If<232>>2;++If)l()[(Li>>2)+If]=0;o()[v>>2]=Li,o()[Li+12>>2]=Li;var O2=Li+156;o()[O2>>2]=O2;var Nf={stackBase:be,stackSize:le,allocatedOwnStack:tu,schedPolicy:Mt,schedPrio:Qt,detached:Qe,startRoutine:$,pthread_ptr:Li,parent_pthread_ptr:Ir(),arg:j,transferList:pe};return x?(Nf.cmd="spawnThread",postMessage(Nf,pe)):ah(Nf),0}function yf(v){return v=+v,v>=0?+_1(v+.5):+Ci(v-.5)}function sh(v){if(x)return ua(6,1,v);switch(v){case 30:return 16384;case 85:var S=2147483648;return S/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 80:case 81:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:case 79:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return z1(28),-1}x?fe.initWorker():fe.initMainThreadBlock();var ca;Be.init();var gf=[null,P1,eh,th,nh,rh,sh],xf={e:D1,r:O1,w:L1,a:W1,l:B1,d:V1,c:Mi,h:Ga,g:U1,x:H1,q:j1,B:G1,t:q1,A:Z1,u:rf,k:af,s:sf,v:df,m:th,o:nh,i:rh,p:E1,memory:Y||u.wasmMemory,y:pf,z:ff,j:Af,b:Ir,f:yf,n:sh,table:ue},ih=S1();u.asm=ih;var oh=u.___wasm_call_ctors=function(){return(oh=u.___wasm_call_ctors=u.asm.C).apply(null,arguments)},lh=u._init=function(){return(lh=u._init=u.asm.D).apply(null,arguments)},Gl=u._register_tensor=function(){return(Gl=u._register_tensor=u.asm.E).apply(null,arguments)},uh=u._dispose_data=function(){return(uh=u._dispose_data=u.asm.F).apply(null,arguments)},Ka=u._dispose=function(){return(Ka=u._dispose=u.asm.G).apply(null,arguments)},ql=u._Abs=function(){return(ql=u._Abs=u.asm.H).apply(null,arguments)},wf=u._Add=function(){return(wf=u._Add=u.asm.I).apply(null,arguments)},_f=u._AddN=function(){return(_f=u._AddN=u.asm.J).apply(null,arguments)},Xl=u._ArgMax=function(){return(Xl=u._ArgMax=u.asm.K).apply(null,arguments)},ch=u._AvgPool=function(){return(ch=u._AvgPool=u.asm.L).apply(null,arguments)},hh=u._BatchMatMul=function(){return(hh=u._BatchMatMul=u.asm.M).apply(null,arguments)},H=u._Ceil=function(){return(H=u._Ceil=u.asm.N).apply(null,arguments)},te=u._ClipByValue=function(){return(te=u._ClipByValue=u.asm.O).apply(null,arguments)},Ie=u._Conv2D=function(){return(Ie=u._Conv2D=u.asm.P).apply(null,arguments)},Re=u._Conv2DBackpropInput=function(){return(Re=u._Conv2DBackpropInput=u.asm.Q).apply(null,arguments)},tt=u._Cos=function(){return(tt=u._Cos=u.asm.R).apply(null,arguments)},It=u._CropAndResize=function(){return(It=u._CropAndResize=u.asm.S).apply(null,arguments)},Ze=u._Cumsum=function(){return(Ze=u._Cumsum=u.asm.T).apply(null,arguments)},Ge=u._DepthToSpace=function(){return(Ge=u._DepthToSpace=u.asm.U).apply(null,arguments)},Bt=u._DepthwiseConv2dNative=function(){return(Bt=u._DepthwiseConv2dNative=u.asm.V).apply(null,arguments)},Xr=u._Equal=function(){return(Xr=u._Equal=u.asm.W).apply(null,arguments)},Kr=u._Exp=function(){return(Kr=u._Exp=u.asm.X).apply(null,arguments)},dh=u._FlipLeftRight=function(){return(dh=u._FlipLeftRight=u.asm.Y).apply(null,arguments)},Kl=u._Floor=function(){return(Kl=u._Floor=u.asm.Z).apply(null,arguments)},zn=u._FloorDiv=function(){return(zn=u._FloorDiv=u.asm._).apply(null,arguments)},ha=u._FusedBatchNorm=function(){return(ha=u._FusedBatchNorm=u.asm.$).apply(null,arguments)},ph=u._FusedConv2D=function(){return(ph=u._FusedConv2D=u.asm.aa).apply(null,arguments)},vv=u._FusedDepthwiseConv2D=function(){return(vv=u._FusedDepthwiseConv2D=u.asm.ba).apply(null,arguments)},kv=u._Gather=function(){return(kv=u._Gather=u.asm.ca).apply(null,arguments)},Iv=u._GatherNd=function(){return(Iv=u._GatherNd=u.asm.da).apply(null,arguments)},Nv=u._Greater=function(){return(Nv=u._Greater=u.asm.ea).apply(null,arguments)},Sv=u._GreaterEqual=function(){return(Sv=u._GreaterEqual=u.asm.fa).apply(null,arguments)},Tv=u._LeakyRelu=function(){return(Tv=u._LeakyRelu=u.asm.ga).apply(null,arguments)},Ev=u._Less=function(){return(Ev=u._Less=u.asm.ha).apply(null,arguments)},Cv=u._LessEqual=function(){return(Cv=u._LessEqual=u.asm.ia).apply(null,arguments)},Rv=u._Log=function(){return(Rv=u._Log=u.asm.ja).apply(null,arguments)},Fv=u._LogicalAnd=function(){return(Fv=u._LogicalAnd=u.asm.ka).apply(null,arguments)},Mv=u._Max=function(){return(Mv=u._Max=u.asm.la).apply(null,arguments)},$v=u._MaxPool=function(){return($v=u._MaxPool=u.asm.ma).apply(null,arguments)},Dv=u._Maximum=function(){return(Dv=u._Maximum=u.asm.na).apply(null,arguments)},Ov=u._Mean=function(){return(Ov=u._Mean=u.asm.oa).apply(null,arguments)},zv=u._Min=function(){return(zv=u._Min=u.asm.pa).apply(null,arguments)},Pv=u._Minimum=function(){return(Pv=u._Minimum=u.asm.qa).apply(null,arguments)},Lv=u._Multiply=function(){return(Lv=u._Multiply=u.asm.ra).apply(null,arguments)},Wv=u._Neg=function(){return(Wv=u._Neg=u.asm.sa).apply(null,arguments)},Bv=u._NonMaxSuppressionV3=function(){return(Bv=u._NonMaxSuppressionV3=u.asm.ta).apply(null,arguments)},Vv=u._NonMaxSuppressionV4=function(){return(Vv=u._NonMaxSuppressionV4=u.asm.ua).apply(null,arguments)},Uv=u._NonMaxSuppressionV5=function(){return(Uv=u._NonMaxSuppressionV5=u.asm.va).apply(null,arguments)},Hv=u._NotEqual=function(){return(Hv=u._NotEqual=u.asm.wa).apply(null,arguments)},jv=u._OneHot=function(){return(jv=u._OneHot=u.asm.xa).apply(null,arguments)},Gv=u._PadV2=function(){return(Gv=u._PadV2=u.asm.ya).apply(null,arguments)},qv=u._Pow=function(){return(qv=u._Pow=u.asm.za).apply(null,arguments)},Xv=u._Prelu=function(){return(Xv=u._Prelu=u.asm.Aa).apply(null,arguments)},Kv=u._Prod=function(){return(Kv=u._Prod=u.asm.Ba).apply(null,arguments)},Zv=u._RealDiv=function(){return(Zv=u._RealDiv=u.asm.Ca).apply(null,arguments)},Jv=u._Relu=function(){return(Jv=u._Relu=u.asm.Da).apply(null,arguments)},Yv=u._Relu6=function(){return(Yv=u._Relu6=u.asm.Ea).apply(null,arguments)},Qv=u._ResizeBilinear=function(){return(Qv=u._ResizeBilinear=u.asm.Fa).apply(null,arguments)},e4=u._Reverse=function(){return(e4=u._Reverse=u.asm.Ga).apply(null,arguments)},t4=u._RotateWithOffset=function(){return(t4=u._RotateWithOffset=u.asm.Ha).apply(null,arguments)},n4=u._Round=function(){return(n4=u._Round=u.asm.Ia).apply(null,arguments)},r4=u._Rsqrt=function(){return(r4=u._Rsqrt=u.asm.Ja).apply(null,arguments)},a4=u._ScatterNd=function(){return(a4=u._ScatterNd=u.asm.Ka).apply(null,arguments)},s4=u._SelectV2=function(){return(s4=u._SelectV2=u.asm.La).apply(null,arguments)},i4=u._Sigmoid=function(){return(i4=u._Sigmoid=u.asm.Ma).apply(null,arguments)},o4=u._Sin=function(){return(o4=u._Sin=u.asm.Na).apply(null,arguments)},l4=u._Softmax=function(){return(l4=u._Softmax=u.asm.Oa).apply(null,arguments)},u4=u._Sqrt=function(){return(u4=u._Sqrt=u.asm.Pa).apply(null,arguments)},c4=u._Square=function(){return(c4=u._Square=u.asm.Qa).apply(null,arguments)},h4=u._SquaredDifference=function(){return(h4=u._SquaredDifference=u.asm.Ra).apply(null,arguments)},d4=u._Step=function(){return(d4=u._Step=u.asm.Sa).apply(null,arguments)},p4=u._StridedSlice=function(){return(p4=u._StridedSlice=u.asm.Ta).apply(null,arguments)},f4=u._Sub=function(){return(f4=u._Sub=u.asm.Ua).apply(null,arguments)},m4=u._Sum=function(){return(m4=u._Sum=u.asm.Va).apply(null,arguments)},A4=u._Tanh=function(){return(A4=u._Tanh=u.asm.Wa).apply(null,arguments)},y4=u._Tile=function(){return(y4=u._Tile=u.asm.Xa).apply(null,arguments)},g4=u._TopK=function(){return(g4=u._TopK=u.asm.Ya).apply(null,arguments)},x4=u._Transpose=function(){return(x4=u._Transpose=u.asm.Za).apply(null,arguments)},w4=u.__FusedMatMul=function(){return(w4=u.__FusedMatMul=u.asm._a).apply(null,arguments)},Zl=u._malloc=function(){return(Zl=u._malloc=u.asm.$a).apply(null,arguments)},Jl=u._free=function(){return(Jl=u._free=u.asm.ab).apply(null,arguments)},S2=u.___errno_location=function(){return(S2=u.___errno_location=u.asm.bb).apply(null,arguments)},T2=u._emscripten_get_global_libc=function(){return(T2=u._emscripten_get_global_libc=u.asm.cb).apply(null,arguments)},_4=u.___em_js__initPthreadsJS=function(){return(_4=u.___em_js__initPthreadsJS=u.asm.db).apply(null,arguments)},E2=u._memalign=function(){return(E2=u._memalign=u.asm.eb).apply(null,arguments)},C2=u.___pthread_tsd_run_dtors=function(){return(C2=u.___pthread_tsd_run_dtors=u.asm.fb).apply(null,arguments)},bf=u._emscripten_main_thread_process_queued_calls=function(){return(bf=u._emscripten_main_thread_process_queued_calls=u.asm.gb).apply(null,arguments)},b4=u._emscripten_current_thread_process_queued_calls=function(){return(b4=u._emscripten_current_thread_process_queued_calls=u.asm.hb).apply(null,arguments)},R2=u._emscripten_register_main_browser_thread_id=function(){return(R2=u._emscripten_register_main_browser_thread_id=u.asm.ib).apply(null,arguments)},v4=u._emscripten_main_browser_thread_id=function(){return(v4=u._emscripten_main_browser_thread_id=u.asm.jb).apply(null,arguments)},k4=u._emscripten_async_run_in_main_thread=function(){return(k4=u._emscripten_async_run_in_main_thread=u.asm.kb).apply(null,arguments)},I4=u._emscripten_sync_run_in_main_thread=function(){return(I4=u._emscripten_sync_run_in_main_thread=u.asm.lb).apply(null,arguments)},N4=u._emscripten_sync_run_in_main_thread_0=function(){return(N4=u._emscripten_sync_run_in_main_thread_0=u.asm.mb).apply(null,arguments)},S4=u._emscripten_sync_run_in_main_thread_1=function(){return(S4=u._emscripten_sync_run_in_main_thread_1=u.asm.nb).apply(null,arguments)},T4=u._emscripten_sync_run_in_main_thread_2=function(){return(T4=u._emscripten_sync_run_in_main_thread_2=u.asm.ob).apply(null,arguments)},E4=u._emscripten_sync_run_in_main_thread_xprintf_varargs=function(){return(E4=u._emscripten_sync_run_in_main_thread_xprintf_varargs=u.asm.pb).apply(null,arguments)},C4=u._emscripten_sync_run_in_main_thread_3=function(){return(C4=u._emscripten_sync_run_in_main_thread_3=u.asm.qb).apply(null,arguments)},F2=u._emscripten_sync_run_in_main_thread_4=function(){return(F2=u._emscripten_sync_run_in_main_thread_4=u.asm.rb).apply(null,arguments)},R4=u._emscripten_sync_run_in_main_thread_5=function(){return(R4=u._emscripten_sync_run_in_main_thread_5=u.asm.sb).apply(null,arguments)},F4=u._emscripten_sync_run_in_main_thread_6=function(){return(F4=u._emscripten_sync_run_in_main_thread_6=u.asm.tb).apply(null,arguments)},M4=u._emscripten_sync_run_in_main_thread_7=function(){return(M4=u._emscripten_sync_run_in_main_thread_7=u.asm.ub).apply(null,arguments)},M2=u._emscripten_run_in_main_runtime_thread_js=function(){return(M2=u._emscripten_run_in_main_runtime_thread_js=u.asm.vb).apply(null,arguments)},vf=u._emscripten_async_queue_on_thread_=function(){return(vf=u._emscripten_async_queue_on_thread_=u.asm.wb).apply(null,arguments)},$4=u._emscripten_tls_init=function(){return($4=u._emscripten_tls_init=u.asm.xb).apply(null,arguments)},Yl=u.stackSave=function(){return(Yl=u.stackSave=u.asm.yb).apply(null,arguments)},Oi=u.stackAlloc=function(){return(Oi=u.stackAlloc=u.asm.zb).apply(null,arguments)},zi=u.stackRestore=function(){return(zi=u.stackRestore=u.asm.Ab).apply(null,arguments)},$2=u.dynCall_vi=function(){return($2=u.dynCall_vi=u.asm.Bb).apply(null,arguments)},D4=u.dynCall_v=function(){return(D4=u.dynCall_v=u.asm.Cb).apply(null,arguments)},O4=u.dynCall_ii=function(){return(O4=u.dynCall_ii=u.asm.Db).apply(null,arguments)};u.asm=ih,u.cwrap=Oe,u.PThread=fe,u.PThread=fe,u._pthread_self=Ir,u.wasmMemory=Y,u.ExitStatus=D2;var Ql;u.then=function(v){if(Ql)v(u);else{var S=u.onRuntimeInitialized;u.onRuntimeInitialized=function(){S&&S(),v(u)}}return u};function D2(v){this.name="ExitStatus",this.message="Program terminated with exit("+v+")",this.status=v}ja=function v(){Ql||kf(),Ql||(ja=v)};function kf(v){if(v=v||p,Gr>0||(Kn(),Gr>0))return;function S(){Ql||(Ql=!0,u.calledRun=!0,!me&&(Gc(),g1(),u.onRuntimeInitialized&&u.onRuntimeInitialized(),x1()))}u.setStatus?(u.setStatus("Running..."),setTimeout(function(){setTimeout(function(){u.setStatus("")},1),S()},1)):S()}if(u.run=kf,u.preInit)for(typeof u.preInit=="function"&&(u.preInit=[u.preInit]);u.preInit.length>0;)u.preInit.pop()();return x||(ae=!0),x||kf(),a}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}),bk=nt((e,t)=>{var n=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(a){a=a||{};var s=typeof a!="undefined"?a:{},i={},o;for(o in s)s.hasOwnProperty(o)&&(i[o]=s[o]);var l=[],c="./this.program",u=function(H,te){throw te},h=!1,d=!1,p=!1,f=!1;h=typeof window=="object",d=typeof importScripts=="function",p=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",f=!h&&!p&&!d;var m="";function A(H){return s.locateFile?s.locateFile(H,m):m+H}var y,g,b,x,w,_;p?(d?m=Uu().dirname(m)+"/":m=__dirname+"/",y=function(H,te){return w||(w=require("fs")),_||(_=Uu()),H=_.normalize(H),w.readFileSync(H,te?null:"utf8")},b=function(H){var te=y(H,!0);return te.buffer||(te=new Uint8Array(te)),V(te.buffer),te},process.argv.length>1&&(c=process.argv[1].replace(/\\/g,"/")),l=process.argv.slice(2),process.on("uncaughtException",function(H){if(!(H instanceof ql))throw H}),process.on("unhandledRejection",Ua),u=function(H){process.exit(H)},s.inspect=function(){return"[Emscripten Module object]"}):f?(typeof read!="undefined"&&(y=function(H){return read(H)}),b=function(H){var te;return typeof readbuffer=="function"?new Uint8Array(readbuffer(H)):(te=read(H,"binary"),V(typeof te=="object"),te)},typeof scriptArgs!="undefined"?l=scriptArgs:typeof arguments!="undefined"&&(l=arguments),typeof quit=="function"&&(u=function(H){quit(H)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(h||d)&&(d?m=self.location.href:document.currentScript&&(m=document.currentScript.src),r&&(m=r),m.indexOf("blob:")!==0?m=m.substr(0,m.lastIndexOf("/")+1):m="",y=function(H){var te=new XMLHttpRequest;return te.open("GET",H,!1),te.send(null),te.responseText},d&&(b=function(H){var te=new XMLHttpRequest;return te.open("GET",H,!1),te.responseType="arraybuffer",te.send(null),new Uint8Array(te.response)}),g=function(H,te,Ie){var Re=new XMLHttpRequest;Re.open("GET",H,!0),Re.responseType="arraybuffer",Re.onload=function(){if(Re.status==200||Re.status==0&&Re.response){te(Re.response);return}Ie()},Re.onerror=Ie,Re.send(null)},x=function(H){document.title=H});var N=s.print||console.log.bind(console),T=s.printErr||console.warn.bind(console);for(o in i)i.hasOwnProperty(o)&&(s[o]=i[o]);i=null,s.arguments&&(l=s.arguments),s.thisProgram&&(c=s.thisProgram),s.quit&&(u=s.quit);var E;s.wasmBinary&&(E=s.wasmBinary);var M;s.noExitRuntime&&(M=s.noExitRuntime),typeof WebAssembly!="object"&&T("no native wasm support detected");var z,P=new WebAssembly.Table({initial:153,maximum:153+0,element:"anyfunc"}),B=!1,G=0;function V(H,te){H||Ua("Assertion failed: "+te)}function K(H){var te=s["_"+H];return V(te,"Cannot call unknown function "+H+", make sure it is exported"),te}function X(H,te,Ie,Re,tt){var It={string:function(zn){var ha=0;if(zn!=null&&zn!==0){var ph=(zn.length<<2)+1;ha=Gl(ph),ne(zn,ha,ph)}return ha},array:function(zn){var ha=Gl(zn.length);return de(zn,ha),ha}};function Ze(zn){return te==="string"?Y(zn):te==="boolean"?Boolean(zn):zn}var Ge=K(H),Bt=[],Xr=0;if(Re)for(var Kr=0;Kr<Re.length;Kr++){var dh=It[Ie[Kr]];dh?(Xr===0&&(Xr=lh()),Bt[Kr]=dh(Re[Kr])):Bt[Kr]=Re[Kr]}var Kl=Ge.apply(null,Bt);return Kl=Ze(Kl),Xr!==0&&uh(Xr),Kl}function ee(H,te,Ie,Re){Ie=Ie||[];var tt=Ie.every(function(Ze){return Ze==="number"}),It=te!=="string";return It&&tt&&!Re?K(H):function(){return X(H,te,Ie,arguments,Re)}}var J=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function ae(H,te,Ie){for(var Re=te+Ie,tt=te;H[tt]&&!(tt>=Re);)++tt;if(tt-te>16&&H.subarray&&J)return J.decode(H.subarray(te,tt));for(var It="";te<tt;){var Ze=H[te++];if(!(Ze&128)){It+=String.fromCharCode(Ze);continue}var Ge=H[te++]&63;if((Ze&224)==192){It+=String.fromCharCode((Ze&31)<<6|Ge);continue}var Bt=H[te++]&63;if((Ze&240)==224?Ze=(Ze&15)<<12|Ge<<6|Bt:Ze=(Ze&7)<<18|Ge<<12|Bt<<6|H[te++]&63,Ze<65536)It+=String.fromCharCode(Ze);else{var Xr=Ze-65536;It+=String.fromCharCode(55296|Xr>>10,56320|Xr&1023)}}return It}function Y(H,te){return H?ae(Ae,H,te):""}function ue(H,te,Ie,Re){if(!(Re>0))return 0;for(var tt=Ie,It=Ie+Re-1,Ze=0;Ze<H.length;++Ze){var Ge=H.charCodeAt(Ze);if(Ge>=55296&&Ge<=57343){var Bt=H.charCodeAt(++Ze);Ge=65536+((Ge&1023)<<10)|Bt&1023}if(Ge<=127){if(Ie>=It)break;te[Ie++]=Ge}else if(Ge<=2047){if(Ie+1>=It)break;te[Ie++]=192|Ge>>6,te[Ie++]=128|Ge&63}else if(Ge<=65535){if(Ie+2>=It)break;te[Ie++]=224|Ge>>12,te[Ie++]=128|Ge>>6&63,te[Ie++]=128|Ge&63}else{if(Ie+3>=It)break;te[Ie++]=240|Ge>>18,te[Ie++]=128|Ge>>12&63,te[Ie++]=128|Ge>>6&63,te[Ie++]=128|Ge&63}}return te[Ie]=0,Ie-tt}function ne(H,te,Ie){return ue(H,Ae,te,Ie)}function de(H,te){me.set(H,te)}var he,me,Ae,ke,Ee,Ce,Oe,Ke,Ue;function rt(H){he=H,s.HEAP8=me=new Int8Array(H),s.HEAP16=ke=new Int16Array(H),s.HEAP32=Ce=new Int32Array(H),s.HEAPU8=Ae=new Uint8Array(H),s.HEAPU16=Ee=new Uint16Array(H),s.HEAPU32=Oe=new Uint32Array(H),s.HEAPF32=Ke=new Float32Array(H),s.HEAPF64=Ue=new Float64Array(H)}var it=s.INITIAL_MEMORY||16777216;function je(H){for(;H.length>0;){var te=H.shift();if(typeof te=="function"){te(s);continue}var Ie=te.func;typeof Ie=="number"?te.arg===void 0?s.dynCall_v(Ie):s.dynCall_vi(Ie,te.arg):Ie(te.arg===void 0?null:te.arg)}}var lt=[],ut=[],On=[],Ye=[],_n=!1,Xt=!1;function bn(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)kr(s.preRun.shift());je(lt)}function Gn(){_n=!0,je(ut)}function dn(){je(On)}function rn(){Xt=!0}function qn(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)vn(s.postRun.shift());je(Ye)}function kr(H){lt.unshift(H)}function vn(H){Ye.unshift(H)}var Si=Math.ceil,Pl=Math.floor,cr=0,Xn=null,hr=null;function Ti(H){cr++,s.monitorRunDependencies&&s.monitorRunDependencies(cr)}function Ei(H){if(cr--,s.monitorRunDependencies&&s.monitorRunDependencies(cr),cr==0&&(Xn!==null&&(clearInterval(Xn),Xn=null),hr)){var te=hr;hr=null,te()}}s.preloadedImages={},s.preloadedAudios={};function Ua(H){throw s.onAbort&&s.onAbort(H),H+="",N(H),T(H),B=!0,G=1,H="abort("+H+"). Build with -s ASSERTIONS=1 for more info.",new WebAssembly.RuntimeError(H)}function Ll(H,te){return String.prototype.startsWith?H.startsWith(te):H.indexOf(te)===0}var y1="data:application/octet-stream;base64,";function Wl(H){return Ll(H,y1)}var jc="file://";function Bl(H){return Ll(H,jc)}var Kn="tfjs-backend-wasm.wasm";Wl(Kn)||(Kn=A(Kn));function Gc(){try{if(E)return new Uint8Array(E);if(b)return b(Kn);throw"both async and sync fetching of the wasm failed"}catch(H){Ua(H)}}function g1(){return!E&&(h||d)&&typeof fetch=="function"&&!Bl(Kn)?fetch(Kn,{credentials:"same-origin"}).then(function(H){if(!H.ok)throw"failed to load wasm binary file at '"+Kn+"'";return H.arrayBuffer()}).catch(function(){return Gc()}):new Promise(function(H,te){H(Gc())})}function x1(){var H={env:qr,wasi_snapshot_preview1:qr};function te(Ze,Ge){var Bt=Ze.exports;s.asm=Bt,z=Bt.memory,rt(z.buffer),Ei("wasm-instantiate")}Ti("wasm-instantiate");function Ie(Ze){te(Ze.instance)}function Re(Ze){return g1().then(function(Ge){return WebAssembly.instantiate(Ge,H)}).then(Ze,function(Ge){T("failed to asynchronously prepare wasm: "+Ge),Ua(Ge)})}function tt(){if(!E&&typeof WebAssembly.instantiateStreaming=="function"&&!Wl(Kn)&&!Bl(Kn)&&typeof fetch=="function")fetch(Kn,{credentials:"same-origin"}).then(function(Ze){var Ge=WebAssembly.instantiateStreaming(Ze,H);return Ge.then(Ie,function(Bt){T("wasm streaming compile failed: "+Bt),T("falling back to ArrayBuffer instantiation"),Re(Ie)})});else return Re(Ie)}if(s.instantiateWasm)try{var It=s.instantiateWasm(H,te);return It}catch(Ze){return T("Module.instantiateWasm callback failed with error: "+Ze),!1}return tt(),{}}ut.push();function w1(H){rt(z.buffer)}var Ha={splitPath:function(H){var te=/^(\/?|)([\s\S]*?)((?:\.{1,2}|[^\/]+?|)(\.[^.\/]*|))(?:[\/]*)$/;return te.exec(H).slice(1)},normalizeArray:function(H,te){for(var Ie=0,Re=H.length-1;Re>=0;Re--){var tt=H[Re];tt==="."?H.splice(Re,1):tt===".."?(H.splice(Re,1),Ie++):Ie&&(H.splice(Re,1),Ie--)}if(te)for(;Ie;Ie--)H.unshift("..");return H},normalize:function(H){var te=H.charAt(0)==="/",Ie=H.substr(-1)==="/";return H=Ha.normalizeArray(H.split("/").filter(function(Re){return!!Re}),!te).join("/"),!H&&!te&&(H="."),H&&Ie&&(H+="/"),(te?"/":"")+H},dirname:function(H){var te=Ha.splitPath(H),Ie=te[0],Re=te[1];return!Ie&&!Re?".":(Re&&(Re=Re.substr(0,Re.length-1)),Ie+Re)},basename:function(H){if(H==="/")return"/";var te=H.lastIndexOf("/");return te===-1?H:H.substr(te+1)},extname:function(H){return Ha.splitPath(H)[3]},join:function(){var H=Array.prototype.slice.call(arguments,0);return Ha.normalize(H.join("/"))},join2:function(H,te){return Ha.normalize(H+"/"+te)}},Ci={mappings:{},buffers:[null,[],[]],printChar:function(H,te){var Ie=Ci.buffers[H];te===0||te===10?((H===1?N:T)(ae(Ie,0)),Ie.length=0):Ie.push(te)},varargs:void 0,get:function(){Ci.varargs+=4;var H=Ce[Ci.varargs-4>>2];return H},getStr:function(H){var te=Y(H);return te},get64:function(H,te){return H}};function _1(H){return 0}function Gr(H,te,Ie,Re,tt){}function Vl(H,te,Ie,Re){for(var tt=0,It=0;It<Ie;It++){for(var Ze=Ce[te+It*8>>2],Ge=Ce[te+(It*8+4)>>2],Bt=0;Bt<Ge;Bt++)Ci.printChar(H,Ae[Ze+Bt]);tt+=Ge}return Ce[Re>>2]=tt,0}function ja(H){ch(H)}function b1(H){ja(H)}function v1(H){return H=+H,H>=0?+Pl(H+.5):+Si(H-.5)}var qr={emscripten_notify_memory_growth:w1,fd_close:_1,fd_seek:Gr,fd_write:Vl,proc_exit:b1,roundf:v1},Ul=x1();s.asm=Ul;var k1=s._init=function(){return(k1=s._init=s.asm.init).apply(null,arguments)},qc=s._register_tensor=function(){return(qc=s._register_tensor=s.asm.register_tensor).apply(null,arguments)},I1=s._dispose_data=function(){return(I1=s._dispose_data=s.asm.dispose_data).apply(null,arguments)},Xc=s._dispose=function(){return(Xc=s._dispose=s.asm.dispose).apply(null,arguments)},Zn=s._Abs=function(){return(Zn=s._Abs=s.asm.Abs).apply(null,arguments)},Kc=s._Add=function(){return(Kc=s._Add=s.asm.Add).apply(null,arguments)},N1=s._AddN=function(){return(N1=s._AddN=s.asm.AddN).apply(null,arguments)},S1=s._ArgMax=function(){return(S1=s._ArgMax=s.asm.ArgMax).apply(null,arguments)},T1=s._AvgPool=function(){return(T1=s._AvgPool=s.asm.AvgPool).apply(null,arguments)},E1=s._BatchMatMul=function(){return(E1=s._BatchMatMul=s.asm.BatchMatMul).apply(null,arguments)},Zc=s._Ceil=function(){return(Zc=s._Ceil=s.asm.Ceil).apply(null,arguments)},Jc=s._ClipByValue=function(){return(Jc=s._ClipByValue=s.asm.ClipByValue).apply(null,arguments)},Yc=s._Conv2D=function(){return(Yc=s._Conv2D=s.asm.Conv2D).apply(null,arguments)},Ri=s._Conv2DBackpropInput=function(){return(Ri=s._Conv2DBackpropInput=s.asm.Conv2DBackpropInput).apply(null,arguments)},Hl=s._Cos=function(){return(Hl=s._Cos=s.asm.Cos).apply(null,arguments)},Fi=s._CropAndResize=function(){return(Fi=s._CropAndResize=s.asm.CropAndResize).apply(null,arguments)},Mi=s._Cumsum=function(){return(Mi=s._Cumsum=s.asm.Cumsum).apply(null,arguments)},C1=s._DepthToSpace=function(){return(C1=s._DepthToSpace=s.asm.DepthToSpace).apply(null,arguments)},R1=s._DepthwiseConv2dNative=function(){return(R1=s._DepthwiseConv2dNative=s.asm.DepthwiseConv2dNative).apply(null,arguments)},F1=s._Equal=function(){return(F1=s._Equal=s.asm.Equal).apply(null,arguments)},fe=s._Exp=function(){return(fe=s._Exp=s.asm.Exp).apply(null,arguments)},M1=s._FlipLeftRight=function(){return(M1=s._FlipLeftRight=s.asm.FlipLeftRight).apply(null,arguments)},$1=s._Floor=function(){return($1=s._Floor=s.asm.Floor).apply(null,arguments)},D1=s._FloorDiv=function(){return(D1=s._FloorDiv=s.asm.FloorDiv).apply(null,arguments)},O1=s._FusedBatchNorm=function(){return(O1=s._FusedBatchNorm=s.asm.FusedBatchNorm).apply(null,arguments)},Ga=s._FusedConv2D=function(){return(Ga=s._FusedConv2D=s.asm.FusedConv2D).apply(null,arguments)},z1=s._FusedDepthwiseConv2D=function(){return(z1=s._FusedDepthwiseConv2D=s.asm.FusedDepthwiseConv2D).apply(null,arguments)},P1=s._Gather=function(){return(P1=s._Gather=s.asm.Gather).apply(null,arguments)},L1=s._GatherNd=function(){return(L1=s._GatherNd=s.asm.GatherNd).apply(null,arguments)},W1=s._Greater=function(){return(W1=s._Greater=s.asm.Greater).apply(null,arguments)},B1=s._GreaterEqual=function(){return(B1=s._GreaterEqual=s.asm.GreaterEqual).apply(null,arguments)},V1=s._LeakyRelu=function(){return(V1=s._LeakyRelu=s.asm.LeakyRelu).apply(null,arguments)},U1=s._Less=function(){return(U1=s._Less=s.asm.Less).apply(null,arguments)},H1=s._LessEqual=function(){return(H1=s._LessEqual=s.asm.LessEqual).apply(null,arguments)},j1=s._Log=function(){return(j1=s._Log=s.asm.Log).apply(null,arguments)},G1=s._LogicalAnd=function(){return(G1=s._LogicalAnd=s.asm.LogicalAnd).apply(null,arguments)},ua=s._Max=function(){return(ua=s._Max=s.asm.Max).apply(null,arguments)},qa=s._MaxPool=function(){return(qa=s._MaxPool=s.asm.MaxPool).apply(null,arguments)},$i=s._Maximum=function(){return($i=s._Maximum=s.asm.Maximum).apply(null,arguments)},q1=s._Mean=function(){return(q1=s._Mean=s.asm.Mean).apply(null,arguments)},X1=s._Min=function(){return(X1=s._Min=s.asm.Min).apply(null,arguments)},K1=s._Minimum=function(){return(K1=s._Minimum=s.asm.Minimum).apply(null,arguments)},Z1=s._Multiply=function(){return(Z1=s._Multiply=s.asm.Multiply).apply(null,arguments)},Le=s._Neg=function(){return(Le=s._Neg=s.asm.Neg).apply(null,arguments)},J1=s._NonMaxSuppressionV3=function(){return(J1=s._NonMaxSuppressionV3=s.asm.NonMaxSuppressionV3).apply(null,arguments)},Y1=s._NonMaxSuppressionV4=function(){return(Y1=s._NonMaxSuppressionV4=s.asm.NonMaxSuppressionV4).apply(null,arguments)},Q1=s._NonMaxSuppressionV5=function(){return(Q1=s._NonMaxSuppressionV5=s.asm.NonMaxSuppressionV5).apply(null,arguments)},ef=s._NotEqual=function(){return(ef=s._NotEqual=s.asm.NotEqual).apply(null,arguments)},tf=s._OneHot=function(){return(tf=s._OneHot=s.asm.OneHot).apply(null,arguments)},nf=s._PadV2=function(){return(nf=s._PadV2=s.asm.PadV2).apply(null,arguments)},jl=s._Pow=function(){return(jl=s._Pow=s.asm.Pow).apply(null,arguments)},Qc=s._Prelu=function(){return(Qc=s._Prelu=s.asm.Prelu).apply(null,arguments)},eh=s._Prod=function(){return(eh=s._Prod=s.asm.Prod).apply(null,arguments)},rf=s._RealDiv=function(){return(rf=s._RealDiv=s.asm.RealDiv).apply(null,arguments)},af=s._Relu=function(){return(af=s._Relu=s.asm.Relu).apply(null,arguments)},sf=s._Relu6=function(){return(sf=s._Relu6=s.asm.Relu6).apply(null,arguments)},of=s._ResizeBilinear=function(){return(of=s._ResizeBilinear=s.asm.ResizeBilinear).apply(null,arguments)},lf=s._Reverse=function(){return(lf=s._Reverse=s.asm.Reverse).apply(null,arguments)},uf=s._RotateWithOffset=function(){return(uf=s._RotateWithOffset=s.asm.RotateWithOffset).apply(null,arguments)},Be=s._Round=function(){return(Be=s._Round=s.asm.Round).apply(null,arguments)},cf=s._Rsqrt=function(){return(cf=s._Rsqrt=s.asm.Rsqrt).apply(null,arguments)},hf=s._ScatterNd=function(){return(hf=s._ScatterNd=s.asm.ScatterNd).apply(null,arguments)},df=s._SelectV2=function(){return(df=s._SelectV2=s.asm.SelectV2).apply(null,arguments)},Xa=s._Sigmoid=function(){return(Xa=s._Sigmoid=s.asm.Sigmoid).apply(null,arguments)},Di=s._Sin=function(){return(Di=s._Sin=s.asm.Sin).apply(null,arguments)},th=s._Softmax=function(){return(th=s._Softmax=s.asm.Softmax).apply(null,arguments)},nh=s._Sqrt=function(){return(nh=s._Sqrt=s.asm.Sqrt).apply(null,arguments)},rh=s._Square=function(){return(rh=s._Square=s.asm.Square).apply(null,arguments)},pf=s._SquaredDifference=function(){return(pf=s._SquaredDifference=s.asm.SquaredDifference).apply(null,arguments)},ff=s._Step=function(){return(ff=s._Step=s.asm.Step).apply(null,arguments)},ah=s._StridedSlice=function(){return(ah=s._StridedSlice=s.asm.StridedSlice).apply(null,arguments)},mf=s._Sub=function(){return(mf=s._Sub=s.asm.Sub).apply(null,arguments)},Ir=s._Sum=function(){return(Ir=s._Sum=s.asm.Sum).apply(null,arguments)},Af=s._Tanh=function(){return(Af=s._Tanh=s.asm.Tanh).apply(null,arguments)},yf=s._Tile=function(){return(yf=s._Tile=s.asm.Tile).apply(null,arguments)},sh=s._TopK=function(){return(sh=s._TopK=s.asm.TopK).apply(null,arguments)},ca=s._Transpose=function(){return(ca=s._Transpose=s.asm.Transpose).apply(null,arguments)},gf=s.__FusedMatMul=function(){return(gf=s.__FusedMatMul=s.asm._FusedMatMul).apply(null,arguments)},xf=s._malloc=function(){return(xf=s._malloc=s.asm.malloc).apply(null,arguments)},ih=s._free=function(){return(ih=s._free=s.asm.free).apply(null,arguments)},oh=s.__start=function(){return(oh=s.__start=s.asm._start).apply(null,arguments)},lh=s.stackSave=function(){return(lh=s.stackSave=s.asm.stackSave).apply(null,arguments)},Gl=s.stackAlloc=function(){return(Gl=s.stackAlloc=s.asm.stackAlloc).apply(null,arguments)},uh=s.stackRestore=function(){return(uh=s.stackRestore=s.asm.stackRestore).apply(null,arguments)};s.asm=Ul,s.cwrap=ee;var Ka;s.then=function(H){if(Ka)H(s);else{var te=s.onRuntimeInitialized;s.onRuntimeInitialized=function(){te&&te(),H(s)}}return s};function ql(H){this.name="ExitStatus",this.message="Program terminated with exit("+H+")",this.status=H}var wf=!1;hr=function H(){Ka||Xl(),Ka||(hr=H)};function _f(H){var te=s.__start;try{te();var Ie=0;ch(Ie,!0)}catch(tt){if(tt instanceof ql)return;if(tt=="unwind"){M=!0;return}else{var Re=tt;tt&&typeof tt=="object"&&tt.stack&&(Re=[tt,tt.stack]),T("exception thrown: "+Re),u(1,tt)}}finally{wf=!0}}function Xl(H){if(H=H||l,cr>0||(bn(),cr>0))return;function te(){Ka||(Ka=!0,s.calledRun=!0,!B&&(Gn(),dn(),s.onRuntimeInitialized&&s.onRuntimeInitialized(),hh&&_f(H),qn()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),te()},1)):te()}s.run=Xl;function ch(H,te){te&&M&&H===0||(M||(B=!0,G=H,rn(),s.onExit&&s.onExit(H)),u(H,new ql(H)))}if(s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();var hh=!0;return s.noInitialRun&&(hh=!1),M=!0,Xl(),a}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}),vk=nt((e,t)=>{(function(n,r,a){function s(c){var u=this,h=l();u.next=function(){var d=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=d-(u.c=d|0)},u.c=1,u.s0=h(" "),u.s1=h(" "),u.s2=h(" "),u.s0-=h(c),u.s0<0&&(u.s0+=1),u.s1-=h(c),u.s1<0&&(u.s1+=1),u.s2-=h(c),u.s2<0&&(u.s2+=1),h=null}function i(c,u){return u.c=c.c,u.s0=c.s0,u.s1=c.s1,u.s2=c.s2,u}function o(c,u){var h=new s(c),d=u&&u.state,p=h.next;return p.int32=function(){return h.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,d&&(typeof d=="object"&&i(d,h),p.state=function(){return i(h,{})}),p}function l(){var c=4022871197,u=function(h){h=String(h);for(var d=0;d<h.length;d++){c+=h.charCodeAt(d);var p=.02519603282416938*c;c=p>>>0,p-=c,p*=c,c=p>>>0,p-=c,c+=p*4294967296}return(c>>>0)*23283064365386963e-26};return u}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),kk=nt((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.x=0,c.y=0,c.z=0,c.w=0,c.next=function(){var d=c.x^c.x<<11;return c.x=c.y,c.y=c.z,c.z=c.w,c.w^=c.w>>>19^d^d>>>8},l===(l|0)?c.x=l:u+=l;for(var h=0;h<u.length+64;h++)c.x^=u.charCodeAt(h)|0,c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c}function o(l,c){var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Ik=nt((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.next=function(){var d=c.x^c.x>>>2;return c.x=c.y,c.y=c.z,c.z=c.w,c.w=c.v,(c.d=c.d+362437|0)+(c.v=c.v^c.v<<4^(d^d<<1))|0},c.x=0,c.y=0,c.z=0,c.w=0,c.v=0,l===(l|0)?c.x=l:u+=l;for(var h=0;h<u.length+64;h++)c.x^=u.charCodeAt(h)|0,h==u.length&&(c.d=c.x<<10^c.x>>>4),c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c.v=l.v,c.d=l.d,c}function o(l,c){var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Nk=nt((e,t)=>{(function(n,r,a){function s(l){var c=this;c.next=function(){var h=c.x,d=c.i,p,f,m;return p=h[d],p^=p>>>7,f=p^p<<24,p=h[d+1&7],f^=p^p>>>10,p=h[d+3&7],f^=p^p>>>3,p=h[d+4&7],f^=p^p<<7,p=h[d+7&7],p=p^p<<13,f^=p^p<<9,h[d]=f,c.i=d+1&7,f};function u(h,d){var p,f,m=[];if(d===(d|0))f=m[0]=d;else for(d=""+d,p=0;p<d.length;++p)m[p&7]=m[p&7]<<15^d.charCodeAt(p)+m[p+1&7]<<13;for(;m.length<8;)m.push(0);for(p=0;p<8&&m[p]===0;++p);for(p==8?f=m[7]=-1:f=m[p],h.x=m,h.i=0,p=256;p>0;--p)h.next()}u(c,l)}function i(l,c){return c.x=l.x.slice(),c.i=l.i,c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(h.x&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Sk=nt((e,t)=>{(function(n,r,a){function s(l){var c=this;c.next=function(){var h=c.w,d=c.X,p=c.i,f,m;return c.w=h=h+1640531527|0,m=d[p+34&127],f=d[p=p+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=d[p]=m^f,c.i=p,m+(h^h>>>16)|0};function u(h,d){var p,f,m,A,y,g=[],b=128;for(d===(d|0)?(f=d,d=null):(d=d+"\0",f=0,b=Math.max(b,d.length)),m=0,A=-32;A<b;++A)d&&(f^=d.charCodeAt((A+32)%d.length)),A===0&&(y=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,A>=0&&(y=y+1640531527|0,p=g[A&127]^=f+y,m=p==0?m+1:0);for(m>=128&&(g[(d&&d.length||0)&127]=-1),m=127,A=4*128;A>0;--A)f=g[m+34&127],p=g[m=m+1&127],f^=f<<13,p^=p<<17,f^=f>>>15,p^=p>>>12,g[m]=f^p;h.w=y,h.X=g,h.i=m}u(c,l)}function i(l,c){return c.i=l.i,c.w=l.w,c.X=l.X.slice(),c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(h.X&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Tk=nt((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.next=function(){var d=c.b,p=c.c,f=c.d,m=c.a;return d=d<<25^d>>>7^p,p=p-f|0,f=f<<24^f>>>8^m,m=m-d|0,c.b=d=d<<20^d>>>12^p,c.c=p=p-f|0,c.d=f<<16^p>>>16^m,c.a=m-d|0},c.a=0,c.b=0,c.c=2654435769|0,c.d=1367130551,l===Math.floor(l)?(c.a=l/4294967296|0,c.b=l|0):u+=l;for(var h=0;h<u.length+20;h++)c.b^=u.charCodeAt(h)|0,c.next()}function i(l,c){return c.a=l.a,c.b=l.b,c.c=l.c,c.d=l.d,c}function o(l,c){var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Ek=nt((e,t)=>{(function(n,r,a){var s=256,i=6,o=52,l="random",c=a.pow(s,i),u=a.pow(2,o),h=u*2,d=s-1,p;function f(w,_,N){var T=[];_=_==!0?{entropy:!0}:_||{};var E=g(y(_.entropy?[w,x(r)]:w==null?b():w,3),T),M=new m(T),z=function(){for(var P=M.g(i),B=c,G=0;P<u;)P=(P+G)*s,B*=s,G=M.g(1);for(;P>=h;)P/=2,B/=2,G>>>=1;return(P+G)/B};return z.int32=function(){return M.g(4)|0},z.quick=function(){return M.g(4)/4294967296},z.double=z,g(x(M.S),r),(_.pass||N||function(P,B,G,V){return V&&(V.S&&A(V,M),P.state=function(){return A(M,{})}),G?(a[l]=P,B):P})(z,E,"global"in _?_.global:this==a,_.state)}function m(w){var _,N=w.length,T=this,E=0,M=T.i=T.j=0,z=T.S=[];for(N||(w=[N++]);E<s;)z[E]=E++;for(E=0;E<s;E++)z[E]=z[M=d&M+w[E%N]+(_=z[E])],z[M]=_;(T.g=function(P){for(var B,G=0,V=T.i,K=T.j,X=T.S;P--;)B=X[V=d&V+1],G=G*s+X[d&(X[V]=X[K=d&K+B])+(X[K]=B)];return T.i=V,T.j=K,G})(s)}function A(w,_){return _.i=w.i,_.j=w.j,_.S=w.S.slice(),_}function y(w,_){var N=[],T=typeof w,E;if(_&&T=="object")for(E in w)try{N.push(y(w[E],_-1))}catch(M){}return N.length?N:T=="string"?w:w+"\0"}function g(w,_){for(var N=w+"",T,E=0;E<N.length;)_[d&E]=d&(T^=_[d&E]*19)+N.charCodeAt(E++);return x(_)}function b(){try{var w;return p&&(w=p.randomBytes)?w=w(s):(w=new Uint8Array(s),(n.crypto||n.msCrypto).getRandomValues(w)),x(w)}catch(T){var _=n.navigator,N=_&&_.plugins;return[+new Date,n,N,n.screen,x(r)]}}function x(w){return String.fromCharCode.apply(0,w)}if(g(a.random(),r),typeof t=="object"&&t.exports){t.exports=f;try{p=xm()}catch(w){}}else typeof define=="function"&&define.amd?define(function(){return f}):a["seed"+l]=f})(typeof self!="undefined"?self:e,[],Math)}),H0=nt((e,t)=>{var n=vk(),r=kk(),a=Ik(),s=Nk(),i=Sk(),o=Tk(),l=Ek();l.alea=n,l.xor128=r,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),Ck=nt(()=>{}),Rk="3.1.0",Fk="3.1.0",Mk="3.1.0",$k="3.1.0",Dk="3.1.0",Ok=1e-7,zk=1e-4,Ah=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},nu=class{refCount(e){return rr("refCount")}incRef(e){return rr("incRef")}timerAvailable(){return!0}time(e){return rr("time")}read(e){return rr("read")}readSync(e){return rr("readSync")}numDataIds(){return rr("numDataIds")}disposeData(e,t){return rr("disposeData")}write(e,t,n){return rr("write")}move(e,t,n,r,a){return rr("move")}memory(){return rr("memory")}floatPrecision(){return rr("floatPrecision")}epsilon(){return this.floatPrecision()===32?Ok:zk}dispose(){return rr("dispose")}};function rr(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function j0(e){let t=e.length,n=0,r=0;for(;t>0;)r=Math.random()*t|0,t--,n=e[t],e[t]=e[r],e[r]=n}function Pk(e,t){if(e.length!==t.length)throw Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,r,a,s=0;for(;n>0;)s=Math.random()*n|0,n--,r=e[n],a=t[n],e[n]=e[s],t[n]=t[s],e[s]=r,t[s]=a}function Hu(e,t,n){return Math.max(e,Math.min(t,n))}function Lk(e){return e%2==0?e:e+1}function Wk(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function Bk(e,t){let n=Math.random();return t*n+(1-n)*e}function Vk(e,t){let n=0;for(let r=0;r<e.length;r++){let a=Number(e[r])-Number(t[r]);n+=a*a}return n}function F(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function tn(e,t,n=""){F(ta(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function Zs(e){F(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function Js(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||nn(e)&&!n)for(let r=0;r<e.length;++r)Js(e[r],t,n);else t.push(e);return t}function Ot(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function Uk(e){return e.length===0}function ta(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function Ht(e){return e%1==0}function Hk(e){if(Math.tanh!=null)return Math.tanh(e);if(e===Infinity)return 1;if(e===-Infinity)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function jk(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function Gk(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return j0(t),t}function ju(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function qk(e,t=r=>0,n){return new Promise((r,a)=>{let s=0,i=()=>{if(e()){r();return}s++;let o=t(s);if(n!=null&&s>=n){a();return}setTimeout(i,o)};i()})}function Xk(e,t){let n=1,r=-1;for(let s=0;s<e.length;++s)if(e[s]>=0)n*=e[s];else if(e[s]===-1){if(r!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${r} and dim ${s}`);r=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(r===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let a=e.slice();return a[r]=t/n,a}function ar(e,t){let n=t.length;return e=e==null?t.map((r,a)=>a):[].concat(e),F(e.every(r=>r>=-n&&r<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),F(e.every(r=>Ht(r)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(r=>r<0?n+r:r)}function G0(e,t){let n=[],r=[],a=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||a?null:ar(t,e).sort(),i=0;for(let o=0;o<e.length;++o){if(s!=null){if(s[i]===o&&e[o]!==1)throw new Error(`Can't squeeze axis ${o} since its dim '${e[o]}' is not 1`);(s[i]==null||s[i]>o)&&e[o]===1&&(n.push(e[o]),r.push(o)),s[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),r.push(o))}return{newShape:n,keptDims:r}}function q0(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function X0(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function K0(e,t){for(let n=0;n<e.length;n++){let r=e[n];if(isNaN(r)||!isFinite(r))throw Error(`A tensor of type ${t} being uploaded contains ${r}.`)}}function Z0(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function Kk(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function nn(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array}function wm(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function J0(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function Ia(e){return typeof e=="string"||e instanceof String}function Y0(e){return typeof e=="boolean"}function Q0(e){return typeof e=="number"}function Dd(e){return Array.isArray(e)?Dd(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":Q0(e)?"float32":Ia(e)?"string":Y0(e)?"bool":"float32"}function Na(e){return!!(e&&e.constructor&&e.call&&e.apply)}function Od(e,t){for(let n=t;n<e;++n)if(e%n==0)return n;return e}function tl(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let r=t-3;r>=0;--r)n[r]=n[r+1]*e[r+1];return n}function e5(e,t,n){let r=new Array;if(t.length===1){let a=t[0];for(let s=0;s<a;s++)r[s]=n[e+s]}else{let a=t[0],s=t.slice(1),i=s.reduce((o,l)=>o*l);for(let o=0;o<a;o++)r[o]=e5(e+o*i,s,n)}return r}function nl(e,t){if(e.length===0)return t[0];let n=e.reduce((r,a)=>r*a);if(n===0)return[];if(n!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}.`);return e5(0,e,t)}function _m(e,t){let n=zd(e,t);for(let r=0;r<n.length;r++)n[r]=1;return n}function zd(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function Zk(e,t){let n=e.reduce((r,a)=>r*a,1);if(t==null||t==="float32")return nl(e,new Float32Array(n));if(t==="int32")return nl(e,new Int32Array(n));if(t==="bool")return nl(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function bm(e){e.forEach(t=>{F(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function Jk(e,t,n){if(t===0)return 0;if(t===1)return e[0];let r=e[e.length-1];for(let a=0;a<e.length-1;++a)r+=n[a]*e[a];return r}function Yk(e,t,n){if(t===0)return[];if(t===1)return[e];let r=new Array(t);for(let a=0;a<r.length-1;++a)r[a]=Math.floor(e/n[a]),e-=r[a]*n[a];return r[r.length-1]=e,r}function vm(e){return e&&e.then&&typeof e.then=="function"}var t5="tfjsflags",L2=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let r=this.urlFlags[e];console.warn(`Setting feature override from URL ${e}: ${r}.`),this.set(e,r)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(vm(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=Qk(this.global.location.search);t5 in e&&e[t5].split(",").forEach(t=>{let[n,r]=t.split(":");this.urlFlags[n]=e9(n,r)})}};function Qk(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...r)=>(t9(t,r[0],r[1]),r.join("="))),t}function t9(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function e9(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function Q(){return fa}var fa=null;function n9(e){fa=e}var km;function n5(){if(km==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");km=e}return km}function r9(){let e=n5();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function Im(e,t){let n=r9();if(n.has(e))return n.get(e);{let r=t();return n.set(e,r),n.get(e)}}var Wi="Abs",Bi="Acos",Vi="Acosh",ma="Add",Za="AddN",yh="All",gh="Any",Ja="ArgMax",ru="ArgMin",Ui="Asin",Hi="Asinh",ji="Atan",Gi="Atanh",qi="Atan2",Ya="AvgPool",xh="AvgPoolGrad",au="AvgPool3D",wh="AvgPool3DGrad",Qa="BatchMatMul",su="BatchToSpaceND",_h="Bincount",W2="BroadcastTo",es="Cast",ts="Ceil",Aa="ClipByValue",bh="Complex",iu="ComplexAbs",Xi="Concat",ns="Conv2D",vh="Conv2DBackpropFilter",rs="Conv2DBackpropInput",ou="Conv3D",kh="Conv3DBackpropFilterV2",Ih="Conv3DBackpropInputV2",as="Cos",Ki="Cosh",ss="Cumsum",Zi="CropAndResize",Nh="DenseBincount",Ji="DepthToSpace",is="DepthwiseConv2dNative",Sh="DepthwiseConv2dNativeBackpropFilter",Th="DepthwiseConv2dNativeBackpropInput",Eh="Diag",lu="Dilation2D",Ch="Dilation2DBackpropInput",Rh="Dilation2DBackpropFilter",os="RealDiv",Yi="Elu",Fh="EluGrad",Qi="Erf",eo="Equal",ls="Exp",to="ExpandDims",no="Expm1",Mh="FFT",uu="Fill",ro="FlipLeftRight",us="Floor",cs="FloorDiv",hs="FusedBatchNorm",ao="GatherV2",so="GatherNd",io="Greater",ds="GreaterEqual",ps="Identity",$h="IFFT",Dh="Imag",oo="IsFinite",lo="IsInf",uo="IsNan",fs="LeakyRelu",co="Less",ho="LessEqual",Oh="LinSpace",ms="Log",po="Log1p",fo="LogicalAnd",cu="LogicalNot",hu="LogicalOr",B2="LogSoftmax",du="LRN",zh="LRNGrad",As="Max",ys="Maximum",gs="MaxPool",Ph="MaxPoolGrad",pu="MaxPool3D",Lh="MaxPool3DGrad",Wh="MaxPoolWithArgmax",xs="Mean",ws="Min",_s="Minimum",fu="MirrorPad",mo="Mod",Bh="Multinomial",bs="Multiply",Ao="Neg",yo="NotEqual",go="NonMaxSuppressionV3",xo="NonMaxSuppressionV4",wo="NonMaxSuppressionV5",_o="OnesLike",vs="OneHot",bo="Pack",ks="PadV2",q4="Pool",Is="Pow",Ns="Prelu",vo="Prod",mu="Range",Vh="Real",ko="Reciprocal",Ss="Relu",Io="Reshape",Au="ResizeNearestNeighbor",Uh="ResizeNearestNeighborGrad",Ts="ResizeBilinear",Hh="ResizeBilinearGrad",Es="Relu6",Cs="Reverse",Rs="Round",Fs="Rsqrt",No="ScatterNd",So="Select",To="Selu",Eo="Slice",Ms="Sin",Co="Sinh",Ro="Sign",$s="Sigmoid",Fo="Softplus",Ds="Sqrt",Os="Sum",yu="SpaceToBatchND",Mo="SplitV",zs="Softmax",Ps="SquaredDifference",gu="Square",Ls="Sub",jh="SparseToDense",$o="StridedSlice",Do="Tan",Ws="Tanh",ya="Tile",Oo="TopK",Bs="Transpose",Gh="Unique",zo="Unpack",xu="UnsortedSegmentSum",Po="ZerosLike",ga="Step",qh="FromPixels",Lo="RotateWithOffset",Vs="_FusedMatMul",Us="FusedConv2D",Hs="FusedDepthwiseConv2D",rl=Im("kernelRegistry",()=>new Map),Gu=Im("gradRegistry",()=>new Map);function Xh(e,t){let n=Nm(e,t);return rl.get(n)}function Ef(e){return Gu.get(e)}function wu(e){let t=rl.entries(),n=[];for(;;){let{done:r,value:a}=t.next();if(r)break;let[s,i]=a,[o]=s.split("_");o===e&&n.push(i)}return n}function Wo(e){let{kernelName:t,backendName:n}=e,r=Nm(t,n);rl.has(r)&&console.warn(`The kernel '${t}' for backend '${n}' is already registered`),rl.set(r,e)}function V2(e){let{kernelName:t}=e;Gu.has(t)&&Q().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${t}'`),Gu.set(t,e)}function X4(e,t){let n=Nm(e,t);if(!rl.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);rl.delete(n)}function K4(e){if(!Gu.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Gu.delete(e)}function Z4(e,t){wu(e).forEach(n=>{let r=Object.assign({},n,{backendName:t});Wo(r)})}function Nm(e,t){return`${t}_${e}`}var k={};ze(k,{arraysEqual:()=>ta,assert:()=>F,assertNonNegativeIntegerDimensions:()=>bm,assertNonNull:()=>Zs,assertShapesMatch:()=>tn,bytesFromStringArray:()=>J0,bytesPerElement:()=>wm,checkConversionForErrors:()=>K0,clamp:()=>Hu,computeStrides:()=>tl,createScalarValue:()=>a9,createShuffledIndices:()=>Gk,decodeString:()=>Ld,distSquared:()=>Vk,encodeString:()=>Xu,fetch:()=>s9,flatten:()=>Js,getArrayFromDType:()=>X0,getTypedArrayFromDType:()=>q0,hasEncodingLoss:()=>Kk,indexToLoc:()=>Yk,inferDtype:()=>Dd,inferFromImplicitShape:()=>Xk,isBoolean:()=>Y0,isFunction:()=>Na,isInt:()=>Ht,isNumber:()=>Q0,isPromise:()=>vm,isScalarShape:()=>Uk,isString:()=>Ia,isTypedArray:()=>nn,isValidDtype:()=>Z0,locToIndex:()=>Jk,makeOnesTypedArray:()=>_m,makeZerosNestedTypedArray:()=>Zk,makeZerosTypedArray:()=>zd,nearestDivisor:()=>Od,nearestLargerEven:()=>Lk,now:()=>qu,parseAxisParam:()=>ar,randUniform:()=>Bk,repeatedTry:()=>qk,rightPad:()=>ju,shuffle:()=>j0,shuffleCombo:()=>Pk,sizeFromShape:()=>Ot,sizeToSquarishShape:()=>jk,squeezeShape:()=>G0,sum:()=>Wk,tanh:()=>Hk,toNestedArray:()=>nl,toTypedArray:()=>Pd});function a9(e,t){return t==="string"?Xu(e):Pd([e],t)}function i9(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function Pd(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=Js(e)),Q().getBool("DEBUG")&&K0(e,t),i9(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let r=0;r<n.length;++r)Math.round(e[r])!==0&&(n[r]=1);return n}else throw new Error(`Unknown data type ${t}`)}function qu(){return Q().platform.now()}function s9(e,t){return Q().platform.fetch(e,t)}function Xu(e,t="utf-8"){return t=t||"utf-8",Q().platform.encode(e,t)}function Ld(e,t="utf-8"){return t=t||"utf-8",Q().platform.decode(e,t)}var u9=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new l9)}profileKernel(e,t,n){let r,a=()=>{r=n()},s,i=qu();if(this.backendTimer.timerAvailable()?s=this.backendTimer.time(a):(a(),r.map(o=>o.dataSync()),s=Promise.resolve({kernelMs:qu()-i})),Q().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let o=0;o<r.length;o++){let l=r[o];l.data().then(c=>{o9(c,l.dtype,e)})}return{kernelName:e,outputs:r,inputs:t,timeMs:s.then(o=>o.kernelMs),extraInfo:s.then(o=>o.getExtraProfileInfo!=null?o.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:r,inputs:a,extraInfo:s}=e;n.forEach(i=>{Promise.all([i.data(),r,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],a,o[2])})})}};function o9(e,t,n){if(t!=="float32")return!1;for(let r=0;r<e.length;r++){let a=e[r];if(isNaN(a)||!isFinite(a))return console.warn(`Found ${a} in the result of '${n}'`),!0}return!1}var l9=class{logKernelProfile(e,t,n,r,a,s){let i=typeof r=="number"?ju(`${r}ms`,9):r.error,o=ju(e,25),l=t.rank,c=t.size,u=ju(t.shape.toString(),14),h="";for(let d in a){let p=a[d];if(p!=null){let f=p.shape||t.shape,m=f.length;h+=`${d}: ${m}D ${m>0?f:""} `}}console.log(`%c${o} %c${i} %c${l}D ${u} %c${c} %c${h} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function c9(e,t,n){let r={},a={};for(let l=0;l<t.length;l++)r[t[l].id]=!0;for(let l=0;l<e.length;l++){let c=e[l],u=c.inputs;for(let h in u){let d=u[h],p=!1;for(let f=0;f<t.length;f++)if(r[d.id]){c.outputs.forEach(m=>r[m.id]=!0),p=!0,a[c.id]=!0;break}if(p)break}}let s={};s[n.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let c=e[l],u=c.inputs;for(let h=0;h<c.outputs.length;h++)if(s[c.outputs[h].id]){for(let d in u)s[u[d].id]=!0,i[c.id]=!0;break}}let o=[];for(let l=0;l<e.length;l++){let c=e[l];if(a[c.id]&&i[c.id]){let u={};for(let d in c.inputs){let p=c.inputs[d];r[p.id]&&(u[d]=p)}let h=Object.assign({},c);h.inputs=u,h.outputs=c.outputs,o.push(h)}}return o}function h9(e,t,n,r){for(let a=t.length-1;a>=0;a--){let s=t[a],i=[];if(s.outputs.forEach(l=>{let c=e[l.id];c!=null?i.push(c):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let c=n(()=>o[l]());if(c.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${c.dtype}'`);let u=s.inputs[l];if(!ta(c.shape,u.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${c.shape}', which does not match the shape of the input '${u.shape}'`);if(e[u.id]==null)e[u.id]=c;else{let h=e[u.id];e[u.id]=r(h,c),h.dispose()}}}}var r5=20,Ku=3,Sm=7;function p9(e,t,n,r){let a=tl(t),s=d9(e,t,n,a),i=t.length,o=Wd(e,t,n,a,s),l=["Tensor"];return r&&(l.push(` dtype: ${n}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(c=>" "+c).join(`
`)),l.join(`
`)}function d9(e,t,n,r){let a=Ot(t),s=r[r.length-1],i=new Array(s).fill(0),o=t.length,l=n==="complex64"?Ju(e):e;if(o>1)for(let c=0;c<a/s;c++){let u=c*s;for(let h=0;h<s;h++)i[h]=Math.max(i[h],Zu(l[u+h],0,n).length)}return i}function Zu(e,t,n){let r;return Array.isArray(e)?r=`${parseFloat(e[0].toFixed(Sm))} + ${parseFloat(e[1].toFixed(Sm))}j`:Ia(e)?r=`'${e}'`:n==="bool"?r=a5(e):r=parseFloat(e.toFixed(Sm)).toString(),ju(r,t)}function a5(e){return e===0?"false":"true"}function Wd(e,t,n,r,a,s=!0){let i=n==="complex64"?2:1,o=t[0],l=t.length;if(l===0){if(n==="complex64"){let m=Ju(e);return[Zu(m[0],0,n)]}return n==="bool"?[a5(e[0])]:[e[0].toString()]}if(l===1){if(o>r5){let A=Ku*i,y=Array.from(e.slice(0,A)),g=Array.from(e.slice((o-Ku)*i,o*i));return n==="complex64"&&(y=Ju(y),g=Ju(g)),["["+y.map((b,x)=>Zu(b,a[x],n)).join(", ")+", ..., "+g.map((b,x)=>Zu(b,a[o-Ku+x],n)).join(", ")+"]"]}let m=n==="complex64"?Ju(e):Array.from(e);return["["+m.map((A,y)=>Zu(A,a[y],n)).join(", ")+"]"]}let c=t.slice(1),u=r.slice(1),h=r[0]*i,d=[];if(o>r5){for(let m=0;m<Ku;m++){let A=m*h,y=A+h;d.push(...Wd(e.slice(A,y),c,n,u,a,!1))}d.push("...");for(let m=o-Ku;m<o;m++){let A=m*h,y=A+h;d.push(...Wd(e.slice(A,y),c,n,u,a,m===o-1))}}else for(let m=0;m<o;m++){let A=m*h,y=A+h;d.push(...Wd(e.slice(A,y),c,n,u,a,m===o-1))}let p=l===2?",":"";d[0]="["+d[0]+p;for(let m=1;m<d.length-1;m++)d[m]=" "+d[m]+p;let f=`,
`;for(let m=2;m<l;m++)f+=`
`;return d[d.length-1]=" "+d[d.length-1]+"]"+(s?"":f),d}function Ju(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var $t=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=Ot(e),n!=null){let r=n.length;F(r===this.size,()=>`Length of values '${r}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||X0(t,this.size),this.strides=tl(e)}set(e,...t){t.length===0&&(t=[0]),F(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let r of e){if(r<0||r>=this.shape[t]){let a=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(a)}t++}let n=e[e.length-1];for(let r=0;r<e.length-1;++r)n+=this.strides[r]*e[r];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return Dr().makeTensor(this.values,this.shape,this.dtype)}},Dr=null,al=null,f9=null;function m9(e){Dr=e}function A9(e){al=e}function y9(e){f9=e}var et=class{constructor(e,t,n,r){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=Ot(e),this.strides=tl(e),this.dataId=n,this.id=r,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return al.buffer(this.shape,this.dtype,e)}bufferSync(){return al.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return nl(this.shape,e)}arraySync(){return nl(this.shape,this.dataSync())}async data(){this.throwIfDisposed();let e=Dr().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>Ld(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=Dr().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Ld(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Dr().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Dr().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return al.print(this,e)}clone(){return this.throwIfDisposed(),al.clone(this)}toString(e=!1){let t=this.dataSync();return p9(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),al.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Dr().makeVariable(this,e,t,n)}};Object.defineProperty(et,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function Z(){return Im("Tensor",()=>et)}Z();var _u=class extends et{constructor(e,t,n,r){super(e.shape,e.dtype,e.dataId,r);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!ta(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Dr().disposeTensor(this),this.dataId=e.dataId,Dr().incRef(this,null)}dispose(){Dr().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(_u,Symbol.hasInstance,{value:e=>e instanceof et&&e.assign!=null&&e.assign instanceof Function});var dr={};ze(dr,{assertTypesMatch:()=>s5,getTensorsInContainer:()=>Tm,isTensorInList:()=>g9,makeTypesMatch:()=>vt});var Cf;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(Cf||(Cf={}));var Em;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(Em||(Em={}));var Cm;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(Cm||(Cm={}));var Rm;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(Rm||(Rm={}));var Fm;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(Fm||(Fm={}));var x9={float32:Rm,int32:Em,bool:Cm,complex64:Fm};function Yn(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return x9[e][t]}function Kh(e){return Yn(e,"int32")}function vt(e,t){if(e.dtype===t.dtype)return[e,t];let n=Yn(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function s5(e,t){F(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function g9(e,t){return t.some(n=>n.id===e.id)}function Tm(e){let t=[],n=new Set;return i5(e,t,n),t}function i5(e,t,n){if(e==null)return;if(e instanceof et){t.push(e);return}if(!w9(e))return;let r=e;for(let a in r){let s=r[a];n.has(s)||(n.add(s),i5(s,t,n))}}function w9(e){return Array.isArray(e)||typeof e=="object"}function Mm(e){return e.kernelName!=null}var o5=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Yu=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new o5}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(console.warn(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new u9(this.backendInstance),!0}setupRegisteredKernels(){wu(this.backendName).forEach(e=>{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){wu(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof nu)&&typeof n.then=="function"){let r=++this.pendingBackendInitId,a=n.then(s=>r<this.pendingBackendInitId?!1:(this.registry[e]=s,this.pendingBackendInit=null,!0)).catch(s=>(r<this.pendingBackendInitId||(this.pendingBackendInit=null,console.warn(`Initialization of backend ${e} failed`),console.warn(s.stack||s.message)),!1));return this.pendingBackendInit=a,{success:a,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return console.warn(`Initialization of backend ${e} failed`),console.warn(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:r,asyncInit:a}=this.initializeBackend(n);if(a||r)return{name:n,asyncInit:a}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),r=n.backend,a=this.readSync(t),s=r.refCount(t);r.disposeData(t,!0),n.backend=e,e.move(t,a,n.shape,n.dtype,s),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let r;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(r),()=>(r=t(),r instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),r))}scopedRun(e,t,n){e();try{let r=n();return t(),r}catch(r){throw t(),r}}nextTensorId(){return Yu.nextTensorId++}nextVariableId(){return Yu.nextVariableId++}clone(e){let t=D.runKernel(ps,{x:e}),n={x:e},r=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return D.runKernel(es,o,l)}}),a=[];return this.addTapeNode(this.state.activeScope.name,n,[t],r,a,{}),t}runKernel(e,t,n){if(Xh(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let r=this.backend.numDataIds(),a=0;n.forEach(o=>{a+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=r-t-a-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],r=this.isTapeOn(),a=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=Mm(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(Mm(e)){let{kernelName:p,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let A=Xh(p,this.backendName);F(A!=null,()=>`Cannot find registered kernel '${p}' for backend '${this.backendName}'`),i=()=>{let y=this.backend.numDataIds();o=A.kernelFunc({inputs:f,attrs:m,backend:this.backend});let g=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(p,y,g);let b=g.map(x=>{if(x.rank!=null)return x;let{dataId:w,shape:_,dtype:N}=x;return this.makeTensorFromDataId(w,_,N)});if(r){let x=this.getTensorsForGradient(p,f,b);n=this.saveTensorsForBackwardMode(x)}return b}}else{let{forwardFunc:p}=e,f=m=>{!r||(n=m.map(A=>this.keep(this.clone(A))))};i=()=>{let m=this.backend.numDataIds();o=this.tidy(()=>p(this.backend,f));let A=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,m,A),A}}let{inputs:c,attrs:u}=e,h=Mm(e)?null:e.backwardsFunc,d;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(d=this.profiler.profileKernel(l,c,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(d),t=d.outputs)}),r&&this.addTapeNode(l,c,t,h,n,u),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-a,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(c).map(p=>c[p]!=null?c[p].shape:null),outputShapes:t.map(p=>p.shape),kernelTimeMs:d.timeMs,extraInfo:d.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let r=Ef(e);if(r!=null){let a=r.inputsToSave||[],s=r.outputsToSave||[],i;r.saveAllInputs?(F(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=a.map(l=>t[l]);let o=n.filter((l,c)=>s[c]);return i.concat(o)}return[]}makeTensor(e,t,n,r){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",r=r||this.backend;let a=e;n==="string"&&Ia(e[0])&&(a=e.map(o=>Xu(o)));let s=r.write(a,t,n),i=new et(t,n,s,this.nextTensorId());if(this.trackTensor(i,r),n==="string"){let o=this.state.tensorInfo.get(s),l=J0(a);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,r){n=n||"float32";let a=new et(t,n,e,this.nextTensorId());return this.trackTensor(a,r),a}makeVariable(e,t=!0,n,r){n=n||this.nextVariableId().toString(),r!=null&&r!==e.dtype&&(e=e.cast(r));let a=new _u(e,t,n,this.nextTensorId());if(this.state.registeredVariables[a.name]!=null)throw new Error(`Variable with name ${a.name} was already registered`);return this.state.registeredVariables[a.name]=a,this.incRef(a,this.backend),a}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*wm(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof _u||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*wm(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(r=>r.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let r of this.state.activeProfile.kernels)r.kernelTimeMs=await r.kernelTimeMs,r.extraInfo=await r.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,r,a,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:a},o=Ef(e);o!=null&&(r=o.gradFunc),r!=null&&(i.gradient=l=>(l=l.map((c,u)=>{if(c==null){let h=n[u],d=zd(h.size,h.dtype);return this.makeTensor(d,h.shape,h.dtype)}return c}),r(l.length>1?l:l[0],a,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Tm(e),n=new Set(t.map(a=>a.id));for(let a=0;a<this.state.activeScope.track.length;a++){let s=this.state.activeScope.track[a];!s.kept&&!n.has(s.id)&&s.dispose()}let r=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(a=>{!a.kept&&a.scopeId===r.id&&this.track(a)})}gradients(e,t,n,r=!1){if(F(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let a=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));F(a instanceof et,()=>"The result y returned by f() must be a tensor.");let s=c9(this.state.activeTape,t,a);if(!r&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[a.id]=n==null?_9(a.shape):n,h9(i,s,l=>this.tidy(l),b9);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let c of l.saved)c.dispose()}),this.state.activeTape=null),{value:a,grads:o}})}customGrad(e){return F(Na(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{F(t.every(i=>i instanceof et),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,r={};t.forEach((i,o)=>{r[o]=i});let a=(i,o)=>(n=e(...t,o),F(n.value instanceof et,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),F(Na(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let l=n.gradFunc(i,o),c=Array.isArray(l)?l:[l];F(c.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),F(c.every(h=>h instanceof et),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let u={};return c.forEach((h,d)=>{u[d]=()=>h}),u};return this.runKernelFunc({forwardFunc:a,backwardsFunc:s,inputs:r})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=qu(),n=await this.backend.time(e);return n.wallMs=qu()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new o5;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Yu.nextTensorId=0;Yu.nextVariableId=0;function _9(e){let t=_m(Ot(e),"float32");return D.makeTensor(t,e,"float32")}function l5(){let e=n5();if(e._tfengine==null){let t=new L2(e);e._tfengine=new Yu(t)}return n9(e._tfengine.ENV),m9(()=>e._tfengine),e._tfengine}var D=l5();function b9(e,t){let n={a:e,b:t};return D.runKernel(ma,n)}var Zh={};ze(Zh,{isBrowser:()=>u5,isMobile:()=>v9});function k9(){return typeof navigator!="undefined"&&navigator!=null}function v9(){if(k9()){let e=navigator.userAgent||navigator.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(e)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(e.substr(0,4))}return!1}function u5(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Or=Q();Or.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Or.registerFlag("IS_BROWSER",()=>u5());Or.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Or.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Or.registerFlag("PROD",()=>!1);Or.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Or.getBool("DEBUG"));Or.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Or.registerFlag("IS_TEST",()=>!1);Or.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);function zr(e,t){let n=e;if(nn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let r=[];for(;Array.isArray(n)||nn(n)&&t!=="string";)r.push(n.length),n=n[0];return Array.isArray(e)&&Q().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&c5(e,r,[]),r}function c5(e,t,n){if(n=n||[],!Array.isArray(e)&&!nn(e)){F(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}F(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),F(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let r=t.slice(1);for(let a=0;a<e.length;++a)c5(e[a],r,n.concat(a))}function h5(e,t,n,r){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${r}' must be ${e} tensor, but got ${t} tensor`)}}function R(e,t,n,r="numeric"){if(e instanceof et)return h5(r,e.dtype,t,n),e;let a=Dd(e);if(a!=="string"&&["bool","int32","float32"].indexOf(r)>=0&&(a=r),h5(r,a,t,n),e==null||!nn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=zr(e,a);!nn(e)&&!Array.isArray(e)&&(e=[e]);let i=a!=="string"?Pd(e,a):Js(e,[],!0);return D.makeTensor(i,s,a)}function Qu(e,t,n,r="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,s)=>R(a,`${t}[${s}]`,n,r))}var U2="__op";function O(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],r=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+U2;let a=(...s)=>{D.startScope(n);try{let i=r(...s);return vm(i)&&console.error("Cannot return a Promise inside of tidy."),D.endScope(i),i}catch(i){throw D.endScope(null),i}};return Object.defineProperty(a,"name",{value:n,configurable:!0}),a}function I9(e,t){let n=R(e,"real","complex"),r=R(t,"imag","complex");tn(n.shape,r.shape,`real and imag shapes, ${n.shape} and ${r.shape}, must match in call to tf.complex().`);let a={real:n,imag:r};return D.runKernel(bh,a)}var xa=O({complex_:I9});function Sa(e,t,n,r){if(r==null&&(r=Dd(e)),r==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!nn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){bm(t);let a=Ot(t),s=Ot(n);F(a===s,()=>`Based on the provided shape, [${t}], the tensor should have ${a} values but has ${s}`);for(let i=0;i<n.length;++i){let o=n[i],l=i===n.length-1?o!==Ot(t.slice(i)):!0;F(n[i]===t[i]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!nn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=r!=="string"?Pd(e,r):Js(e,[],!0),D.makeTensor(e,t,r)}function pr(e,t,n){let r=zr(e,n);return Sa(e,t,r,n)}var $m={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},Bd=4;async function S9(e,t){let n=[],r=[],a=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i<a.length;++i){let o=a[i],l=Array.isArray(e)?e[i].tensor:e[o];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${o}': ${l.dtype}`);let c={name:o,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let u=new Promise(async h=>{let d=await l.bytes(),p=d.reduce((A,y)=>A+y.length,0)+Bd*d.length,f=new Uint8Array(p),m=0;for(let A=0;A<d.length;A++){let y=d[A],g=new Uint8Array(new Uint32Array([y.length]).buffer);f.set(g,m),m+=Bd,f.set(y,m),m+=y.length}h(f)});r.push(u)}else r.push(l.data());t!=null&&(c.group=t),n.push(c)}let s=await Promise.all(r);return{data:N9(s),specs:n}}function d5(e,t){let n={},r,a=0;for(let s of t){let i=s.name,o=s.dtype,l=s.shape,c=Ot(l),u;if("quantization"in s){let h=s.quantization;if(h.dtype==="uint8"||h.dtype==="uint16"){if(!("min"in h&&"scale"in h))throw new Error(`Weight ${s.name} with quantization ${h.dtype} doesn't have corresponding metadata min and scale.`)}else if(h.dtype==="float16"){if(o!=="float32")throw new Error(`Weight ${s.name} is quantized with ${h.dtype} which only supports weights of type float32 not ${o}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${h.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let d=$m[h.dtype],p=e.slice(a,a+c*d),f=h.dtype==="uint8"?new Uint8Array(p):new Uint16Array(p);if(o==="float32")if(h.dtype==="uint8"||h.dtype==="uint16"){u=new Float32Array(f.length);for(let m=0;m<f.length;m++){let A=f[m];u[m]=A*h.scale+h.min}}else if(h.dtype==="float16")r===void 0&&(r=T9()),u=r(f);else throw new Error(`Unsupported quantization type ${h.dtype} for weight type float32.`);else if(o==="int32"){if(h.dtype!=="uint8"&&h.dtype!=="uint16")throw new Error(`Unsupported quantization type ${h.dtype} for weight type int32.`);u=new Int32Array(f.length);for(let m=0;m<f.length;m++){let A=f[m];u[m]=Math.round(A*h.scale+h.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);a+=c*d}else if(o==="string"){let h=Ot(s.shape);u=[];for(let d=0;d<h;d++){let p=new Uint32Array(e.slice(a,a+Bd))[0];a+=Bd;let f=new Uint8Array(e.slice(a,a+p));u.push(f),a+=p}}else{let h=$m[o],d=e.slice(a,a+c*h);if(o==="float32")u=new Float32Array(d);else if(o==="int32")u=new Int32Array(d);else if(o==="bool")u=new Uint8Array(d);else if(o==="complex64"){u=new Float32Array(d);let p=new Float32Array(u.length/2),f=new Float32Array(u.length/2);for(let y=0;y<p.length;y++)p[y]=u[y*2],f[y]=u[y*2+1];let m=pr(p,l,"float32"),A=pr(f,l,"float32");n[i]=xa(m,A),m.dispose(),A.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);a+=c*h}o!=="complex64"&&(n[i]=pr(u,l,o))}return n}function N9(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(s=>{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let r=new Uint8Array(t),a=0;return n.forEach(s=>{r.set(new Uint8Array(s.buffer),a),a+=s.byteLength}),r.buffer}var Dm=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function p5(e){return Dm?Buffer.byteLength(e):new Blob([e]).size}function E9(e){if(Dm)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let r=0,a=t.length;r<a;r++)n+=String.fromCharCode(t[r]);return btoa(n)}function C9(e){if(Dm){let r=Buffer.from(e,"base64");return r.buffer.slice(r.byteOffset,r.byteOffset+r.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let r=0;r<t.length;++r)n.set([t.charCodeAt(r)],r);return n.buffer}function Om(e){if(e.length===1)return e[0];let t=0;e.forEach(a=>{t+=a.byteLength});let n=new Uint8Array(t),r=0;return e.forEach(a=>{n.set(new Uint8Array(a),r),r+=a.byteLength}),n.buffer}function f5(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function ec(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:p5(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:p5(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function R9(){let e=n=>{let r=n<<13,a=0;for(;(r&8388608)==0;)a-=8388608,r<<=1;return r&=~8388608,a+=947912704,r|a},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function F9(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function M9(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function T9(){let e=R9(),t=F9(),n=M9();return r=>{let a=new ArrayBuffer(4*r.length),s=new Uint32Array(a);for(let i=0;i<r.length;i++){let o=r[i],l=e[n[o>>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(a)}}var Nt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Nt.instance==null&&(Nt.instance=new Nt),Nt.instance}static registerSaveRouter(e){Nt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Nt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Nt.getHandlers(e,"save")}static getLoadHandlers(e,t){return Nt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let r=[];return(t==="load"?Nt.getInstance().loadRouters:Nt.getInstance().saveRouters).forEach(a=>{let s=a(e,n);s!==null&&r.push(s)}),r}},$9=e=>Nt.registerSaveRouter(e),D9=e=>Nt.registerLoadRouter(e),O9=e=>Nt.getSaveHandlers(e),z9=(e,t)=>Nt.getLoadHandlers(e,t),zm="tensorflowjs",Pm=1,Ys="models_store",Ta="model_info_store";function m5(){if(!Q().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function Lm(e){let t=e.result;t.createObjectStore(Ys,{keyPath:"modelPath"}),t.createObjectStore(Ta,{keyPath:"modelPath"})}var Qs=class{constructor(e){if(this.indexedDB=m5(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,r)=>{let a=this.indexedDB.open(zm,Pm);a.onupgradeneeded=()=>Lm(a),a.onsuccess=()=>{let s=a.result;if(t==null){let i=s.transaction(Ys,"readonly"),o=i.objectStore(Ys).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),r(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),r(o.error)),i.oncomplete=()=>s.close()}else{let i=ec(t),o=s.transaction(Ta,"readwrite"),l=o.objectStore(Ta),c=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),u;c.onsuccess=()=>{u=s.transaction(Ys,"readwrite");let h=u.objectStore(Ys).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});h.onsuccess=()=>n({modelArtifactsInfo:i}),h.onerror=d=>{l=o.objectStore(Ta);let p=l.delete(this.modelPath);p.onsuccess=()=>(s.close(),r(h.error)),p.onerror=f=>(s.close(),r(h.error))}},c.onerror=h=>(s.close(),r(c.error)),o.oncomplete=()=>{u==null?s.close():u.oncomplete=()=>s.close()}}},a.onerror=s=>r(a.error)})}};Qs.URL_SCHEME="indexeddb://";var A5=e=>Q().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Qs.URL_SCHEME)?P9(e.slice(Qs.URL_SCHEME.length)):null;Nt.registerSaveRouter(A5);Nt.registerLoadRouter(A5);function P9(e){return new Qs(e)}function L9(e){return e.startsWith(Qs.URL_SCHEME)?e.slice(Qs.URL_SCHEME.length):e}var W9=class{constructor(){this.indexedDB=m5()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(zm,Pm);n.onupgradeneeded=()=>Lm(n),n.onsuccess=()=>{let r=n.result,a=r.transaction(Ta,"readonly"),s=a.objectStore(Ta).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(r.close(),t(s.error)),a.oncomplete=()=>r.close()},n.onerror=r=>t(n.error)})}async removeModel(e){return e=L9(e),new Promise((t,n)=>{let r=this.indexedDB.open(zm,Pm);r.onupgradeneeded=()=>Lm(r),r.onsuccess=()=>{let a=r.result,s=a.transaction(Ta,"readwrite"),i=s.objectStore(Ta),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return a.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let c=i.delete(e),u=()=>{l=a.transaction(Ys,"readwrite");let h=l.objectStore(Ys).delete(e);h.onsuccess=()=>t(o.result.modelArtifactsInfo),h.onerror=d=>n(o.error)};c.onsuccess=u,c.onerror=h=>(u(),a.close(),n(o.error))}},o.onerror=c=>(a.close(),n(o.error)),s.oncomplete=()=>{l==null?a.close():l.oncomplete=()=>a.close()}},r.onerror=a=>n(r.error)})}},na="/",sl="tensorflowjs_models",y5="info",B9="model_topology",V9="weight_specs",U9="weight_data",H9="model_metadata";function g5(e){return{info:[sl,e,y5].join(na),topology:[sl,e,B9].join(na),weightSpecs:[sl,e,V9].join(na),weightData:[sl,e,U9].join(na),modelMetadata:[sl,e,H9].join(na)}}function j9(e){let t=e.split(na);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(na)}function G9(e){return e.startsWith(ei.URL_SCHEME)?e.slice(ei.URL_SCHEME.length):e}var ei=class{constructor(e){if(!Q().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=g5(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),r=ec(e);try{this.LS.setItem(this.keys.info,JSON.stringify(r)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,E9(e.weightData));let a={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(a)),{modelArtifactsInfo:r}}catch(a){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${r.modelTopologyBytes}, weightSpecsBytes=${r.weightSpecsBytes}, weightDataBytes=${r.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let r=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(r==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=r;let a=this.LS.getItem(this.keys.modelMetadata);if(a!=null){let i=JSON.parse(a);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=C9(s),t}};ei.URL_SCHEME="localstorage://";var x5=e=>Q().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ei.URL_SCHEME)?q9(e.slice(ei.URL_SCHEME.length)):null;Nt.registerSaveRouter(x5);Nt.registerLoadRouter(x5);function q9(e){return new ei(e)}var X9=class{constructor(){F(Q().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),F(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=sl+na,n=na+y5;for(let r=0;r<this.LS.length;++r){let a=this.LS.key(r);if(a.startsWith(t)&&a.endsWith(n)){let s=j9(a);e[s]=JSON.parse(this.LS.getItem(a))}}return e}async removeModel(e){e=G9(e);let t=g5(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return this.LS.removeItem(t.info),this.LS.removeItem(t.topology),this.LS.removeItem(t.weightSpecs),this.LS.removeItem(t.weightData),n}},il="://",Bn=class{constructor(){this.managers={}}static getInstance(){return Bn.instance==null&&(Bn.instance=new Bn),Bn.instance}static registerManager(e,t){F(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(il)&&(e=e.slice(0,e.indexOf(il))),F(e.length>0,()=>"scheme must not be an empty string.");let n=Bn.getInstance();F(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function Vd(e){if(e.indexOf(il)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Bn.getSchemes().join(",")}`);return{scheme:e.split(il)[0],path:e.split(il)[1]}}async function w5(e,t,n=!1){F(e!==t,()=>`Old path and new path are the same: '${e}'`);let r=Nt.getLoadHandlers(e);F(r.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),F(r.length<2,()=>`Copying failed because more than one (${r.length}) load handlers for source URL ${e}.`);let a=r[0],s=Nt.getSaveHandlers(t);F(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),F(s.length<2,()=>`Copying failed because more than one (${r.length}) save handlers for destination URL ${t}.`);let i=s[0],o=Vd(e).scheme,l=Vd(e).path,c=o===Vd(e).scheme,u=await a.load();n&&c&&await Bn.getManager(o).removeModel(l);let h=await i.save(u);return n&&!c&&await Bn.getManager(o).removeModel(l),h.modelArtifactsInfo}async function K9(){let e=Bn.getSchemes(),t={};for(let n of e){let r=await Bn.getManager(n).listModels();for(let a in r){let s=n+il+a;t[s]=r[a]}}return t}async function Z9(e){let t=Vd(e);return Bn.getManager(t.scheme).removeModel(t.path)}async function J9(e,t){return w5(e,t,!1)}async function Y9(e,t){return w5(e,t,!0)}var Q9=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(Q().get("IS_BROWSER")){Q().setPlatform("browser",new Q9);try{Bn.registerManager(ei.URL_SCHEME,new X9)}catch(e){}try{Bn.registerManager(Qs.URL_SCHEME,new W9)}catch(e){}}var eI={importFetch:()=>nk()},Wm,tI=class{constructor(){this.util=require("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return Q().global.fetch!=null?Q().global.fetch(e,t):(Wm==null&&(Wm=eI.importFetch()),Wm(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};Q().get("IS_NODE")&&Q().setPlatform("node",new tI);function We(e,t="float32",n){return t=t||"float32",bm(e),new $t(e,t,n)}function nI(e,t){let n=R(e,"x","cast");if(!Z0(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let r={x:n},a={dtype:t};return D.runKernel(es,r,a)}var ye=O({cast_:nI});function rI(e){let t={x:R(e,"x","clone","string_or_numeric")};return D.runKernel(ps,t)}var Sr=O({clone_:rI});function H2(e,t=!1){console.log(e.toString(t))}l5();var aI={buffer:We,cast:ye,clone:Sr,print:H2};A9(aI);var pn={};ze(pn,{browserFiles:()=>sI,browserHTTPRequest:()=>oI,concatenateArrayBuffers:()=>Om,copyModel:()=>J9,decodeWeights:()=>d5,encodeWeights:()=>S9,fromMemory:()=>lI,getLoadHandlers:()=>z9,getModelArtifactsInfoForJSON:()=>ec,getSaveHandlers:()=>O9,http:()=>Vm,isHTTPScheme:()=>Bm,listModels:()=>K9,loadWeights:()=>iI,moveModel:()=>Y9,registerLoadRouter:()=>D9,registerSaveRouter:()=>$9,removeModel:()=>Z9,weightsLoaderFactory:()=>_5,withSaveHandler:()=>uI});var cI="model",hI=".json",dI=".weights.bin";function b5(e){return new Promise(t=>setTimeout(t)).then(e)}var ol=class{constructor(e){if(!Q().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(ol.URL_SCHEME)&&(e=e.slice(ol.URL_SCHEME.length)),(e==null||e.length===0)&&(e=cI),this.modelTopologyFileName=e+hI,this.weightDataFileName=e+dI}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer);let a=window.URL.createObjectURL(new Blob([JSON.stringify(r)],{type:"application/json"})),s=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(s.download=this.modelTopologyFileName,s.href=a,await b5(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await b5(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:ec(e)}}}};ol.URL_SCHEME="downloads://";var pI=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((n,r)=>{let a=new FileReader;a.onload=s=>{let i=JSON.parse(s.target.result),o=i.modelTopology;if(o==null){r(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&n({modelTopology:o});let l=i.weightsManifest;if(l==null){r(new Error(`weightManifest field is missing from file ${e.name}`));return}let c;try{c=this.checkManifestAndWeightFiles(l,t)}catch(p){r(p);return}let u=[],h=[],d=[];l.forEach(p=>{p.paths.forEach(f=>{h.push(f),d.push(null)}),u.push(...p.weights)}),l.forEach(p=>{p.paths.forEach(f=>{let m=new FileReader;m.onload=A=>{let y=A.target.result,g=h.indexOf(f);if(d[g]=y,d.indexOf(null)===-1){let b={modelTopology:o,weightSpecs:u,weightData:Om(d),format:i.format,generatedBy:i.generatedBy,convertedBy:i.convertedBy};i.signature!=null&&(b.signature=i.signature),i.userDefinedMetadata!=null&&(b.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(b.modelInitializer=i.modelInitializer),n(b)}},m.onerror=A=>r(`Failed to weights data from file of path '${f}'.`),m.readAsArrayBuffer(c[f])})})},a.onerror=s=>r(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),a.readAsText(e)})}checkManifestAndWeightFiles(e,t){let n=[],r=t.map(s=>f5(s.name)),a={};for(let s of e)s.paths.forEach(i=>{let o=f5(i);if(n.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(n.push(o),r.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);a[i]=t[r.indexOf(o)]});if(n.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${n.length}) and the number of weight files provided (${t.length}).`);return a}},mI=e=>Q().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ol.URL_SCHEME)?fI(e.slice(ol.URL_SCHEME.length)):null;Nt.registerSaveRouter(mI);function fI(e="model"){return new ol(e)}function sI(e){return new pI(e)}function v5(e,t,n,r){i(e),n=n==null?0:n,r=r==null?1:r,o(n,r);let a=0,s=l=>(l.then(c=>{let u=n+ ++a/e.length*(r-n);return t(u),c}),l);function i(l){F(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,c){F(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),F(c>=0&&c<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${c}`),F(c>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${c}`)}return Promise.all(e.map(s))}async function k5(e,t){t==null&&(t={});let n=t.fetchFunc==null?Q().platform.fetch:t.fetchFunc,r=e.map(c=>n(c,t.requestInit,{isBinary:!0})),a=0,s=.5,i=(t.onProgress==null?await Promise.all(r):await v5(r,t.onProgress,a,s)).map(c=>c.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await v5(i,t.onProgress,o,l)}async function iI(e,t="",n,r){return _5(a=>k5(a,{requestInit:r}))(e,t,n)}function _5(e){return async(t,n="",r)=>{let a=t.map(()=>!1),s={},i=r!=null?r.map(()=>!1):[],o=[];if(t.forEach((p,f)=>{let m=0;p.weights.forEach(A=>{let y="quantization"in A?A.quantization.dtype:A.dtype,g=$m[y]*Ot(A.shape),b=()=>{a[f]=!0,s[f]==null&&(s[f]=[]),s[f].push({manifestEntry:A,groupOffset:m,sizeBytes:g})};r!=null?r.forEach((x,w)=>{x===A.name&&(b(),i[w]=!0)}):b(),o.push(A.name),m+=g})}),!i.every(p=>p)){let p=r.filter((f,m)=>!i[m]);throw new Error(`Could not find weights in manifest with names: ${p.join(", ")}.
Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=a.reduce((p,f,m)=>(f&&p.push(m),p),[]),c=[];l.forEach(p=>{t[p].paths.forEach(f=>{let m=n+(n.endsWith("/")?"":"/")+f;c.push(m)})});let u=await e(c),h={},d=0;return l.forEach(p=>{let f=t[p].paths.length,m=0;for(let b=0;b<f;b++)m+=u[d+b].byteLength;let A=new ArrayBuffer(m),y=new Uint8Array(A),g=0;for(let b=0;b<f;b++){let x=new Uint8Array(u[d+b]);y.set(x,g),g+=x.byteLength}s[p].forEach(b=>{let x=A.slice(b.groupOffset,b.groupOffset+b.sizeBytes),w=d5(x,[b.manifestEntry]);for(let _ in w)h[_]=w[_]}),d+=f}),h}}var AI="application/octet-stream",yI="application/json",Um=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(F(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=Q().platform.fetch,F(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&F(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(r)],{type:yI}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:AI}),"model.weights.bin");let a=await this.fetch(this.path,t);if(a.ok)return{modelArtifactsInfo:ec(e),responses:[a]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${a.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(p){let f=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?f+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":f+=" Please make sure the server is serving valid JSON for this request.",new Error(f)}let n=t.modelTopology,r=t.weightsManifest,a=t.generatedBy,s=t.convertedBy,i=t.format,o=t.signature,l=t.userDefinedMetadata;if(n==null&&r==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let c,u;r!=null&&([c,u]=await this.loadWeights(r));let h={modelTopology:n,weightSpecs:c,weightData:u,generatedBy:a,convertedBy:s,format:i};o!=null&&(h.signature=o),l!=null&&(h.userDefinedMetadata=l);let d=t.modelInitializer;return d&&(h.modelInitializer=d),h}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,r]=gI(t),a=this.weightPathPrefix||n,s=[];for(let c of e)s.push(...c.weights);let i=[],o=[];for(let c of e)for(let u of c.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(u)):i.push(a+u+r);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await k5(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,Om(l)]}};Um.URL_SCHEME_REGEX=/^https?:\/\//;function gI(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),r=e.substring(0,t),a=n>t?e.substring(n):"";return[r+"/",a]}function Bm(e){return e.match(Um.URL_SCHEME_REGEX)!=null}var I5=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(r=>Bm(r)):n=Bm(e),n)return Vm(e,t)}return null};Nt.registerSaveRouter(I5);Nt.registerLoadRouter(I5);function Vm(e,t){return new Um(e,t)}function oI(e,t){return Vm(e,t)}var Hm=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},xI=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function lI(e,t,n,r){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new Hm(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Hm({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Hm({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:r}))}function uI(e){return new xI(e)}var j2={};ze(j2,{confusionMatrix:()=>wI});function _I(e,t,n=!1,r=!1){let a=R(e,"a","matMul"),s=R(t,"b","matMul");[a,s]=vt(a,s);let i={a,b:s},o={transposeA:n,transposeB:r};return D.runKernel(Qa,i,o)}var qe=O({matMul_:_I});function bI(e,t,n=1,r=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:R(e,"indices","oneHot","int32")},s={depth:t,onValue:n,offValue:r};return D.runKernel(vs,a,s)}var Bo=O({oneHot_:bI});function vI(e,t){let n=R(e,"x","transpose");if(t==null&&(t=n.shape.map((s,i)=>i).reverse()),F(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(s=>{F(s>=0&&s<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let r={x:n},a={perm:t};return D.runKernel(Bs,r,a)}var at=O({transpose_:vI});function kI(e,t,n){let r=R(e,"labels","confusionMatrix"),a=R(t,"predictions","confusionMatrix");F(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),F(r.rank===1,()=>`Expected the rank of labels to be 1, but got ${r.rank}`),F(a.rank===1,()=>`Expected the rank of predictions to be 1, but got ${a.rank}`),F(r.shape[0]===a.shape[0],()=>`Mismatch in the number of examples: ${r.shape[0]} vs. ${a.shape[0]}. Labels and predictions should have the same number of elements.`),F(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=Bo(ye(r,"int32"),n),i=Bo(ye(a,"int32"),n),o=at(s),l=qe(o,i);return ye(l,"int32")}var wI=O({confusionMatrix_:kI}),bu={};ze(bu,{fromPixels:()=>NI,toPixels:()=>II});function Rf(e,t,n){if(Zs(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let r=zr(e,n);if(r.length!==3&&r.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Sa(e,t,r,n)}var ll;function SI(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,r=!1,a=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)r=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)a=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(a){let d=2;if(a&&e.readyState<d)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(Xh(qh,D.backendName)!=null){let d={pixels:e},p={numChannels:t};return D.runKernel(qh,d,p)}let[l,c]=a?[e.videoWidth,e.videoHeight]:[e.width,e.height],u;i?u=e.getContext("2d").getImageData(0,0,l,c).data:r||n?u=e.data:(s||a||o)&&(ll==null&&(ll=document.createElement("canvas").getContext("2d")),ll.canvas.width=l,ll.canvas.height=c,ll.drawImage(e,0,0,l,c),u=ll.getImageData(0,0,l,c).data);let h;if(t===4)h=new Int32Array(u);else{let d=l*c;h=new Int32Array(d*t);for(let p=0;p<d;p++)for(let f=0;f<t;++f)h[p*t+f]=u[p*4+f]}return Rf(h,[c,l,t],"int32")}async function II(e,t){let n=R(e,"img","toPixels");if(!(e instanceof et)){let c=n;n=ye(c,"int32"),c.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[r,a]=n.shape.slice(0,2),s=n.rank===2?1:n.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(a*r*4);for(let c=0;c<r*a;++c){let u=[0,0,0,255];for(let d=0;d<s;d++){let p=i[c*s+d];if(n.dtype==="float32"){if(p<0||p>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${p}.`)}else if(n.dtype==="int32"&&(p<0||p>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${p}.`);s===1?(u[0]=p*o,u[1]=p*o,u[2]=p*o):u[d]=p*o}let h=c*4;l[h+0]=Math.round(u[0]),l[h+1]=Math.round(u[1]),l[h+2]=Math.round(u[2]),l[h+3]=Math.round(u[3])}if(t!=null){t.width=a,t.height=r;let c=t.getContext("2d"),u=new ImageData(l,a,r);c.putImageData(u,0,0)}return n!==e&&n.dispose(),l}var NI=O({fromPixels_:SI}),Ff={};ze(Ff,{prepareAndValidate:()=>N5});function N5(e,t){let n=e.shape.length,r=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(r<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${r}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[r-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[r-1]} vs. ${n}`);if(Ot(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let a=t.shape,s=a[a.length-1],i=1;for(let h=0;h<a.length-1;++h)i*=a[h];let o=e.shape,l=a.slice();l.pop();let c=1;for(let h=s;h<n;++h)c*=o[h],l.push(o[h]);let u=[...tl(e.shape).map(h=>h/c),1].slice(0,s);return[l,i,c,u]}var Mf={};ze(Mf,{calculateShapes:()=>S5,validateInput:()=>Gm,validateUpdateShape:()=>jm});function jm(e,t,n){let r=t.rank>1?t.shape[t.rank-1]:1,a=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${r}, and batchDim: ${a}.`;if(n.rank<a)throw new Error(s+` update.rank < ${a}. `);if(e.length<r+(n.rank-a))throw new Error(s+` Output shape length < ${r+(n.rank-a)}`);if(n.rank!==a+e.length-r)throw new Error(s+` update.rank != ${a+e.length-r}`);for(let i=0;i<a;++i)if(n.shape[i]!==t.shape[i])throw new Error(s+` updates.shape[${i}] (${n.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<n.rank-a;++i)if(n.shape[i+a]!==e[i+r])throw new Error(s+` updates.shape[${i+a}] (${n.shape[i+a]}) != shape[${i+a}] (${e[i+a]})`)}function Gm(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}jm(n,t,e)}function S5(e,t,n){let r=t.shape.length,a=r>1?t.shape[r-1]:1,s=n.length,i=1;for(let h=a;h<s;++h)i*=n[h];let o=a<1?1:a,l=Ot(t.shape)/o,c=[...tl(n.slice(0,a)),1],u=Ot(n);return{sliceRank:a,numUpdates:l,sliceSize:i,strides:c,outputSize:u}}var an={};ze(an,{assertParamsValid:()=>TI,computeFlatOffset:()=>CI,computeOutShape:()=>T5,getNormalizedAxes:()=>C5,isSliceContinous:()=>EI,maskToAxes:()=>Ud,parseSliceParams:()=>O5,sliceInfo:()=>RI,startForAxis:()=>$5,startIndicesWithElidedDims:()=>R5,stopForAxis:()=>D5,stopIndicesWithElidedDims:()=>F5,stridesForAxis:()=>M5,stridesWithElidedDims:()=>E5});function TI(e,t,n){let r=e.shape.length;F(r===t.length,()=>`Error in slice${r}D: Length of begin ${t} must match the rank of the array (${r}).`),F(r===n.length,()=>`Error in slice${r}D: Length of size ${n} must match the rank of the array (${r}).`);for(let a=0;a<r;++a)F(t[a]+n[a]<=e.shape[a],()=>`Error in slice${r}D: begin[${a}] + size[${a}] (${t[a]+n[a]}) would overflow input.shape[${a}] (${e.shape[a]})`)}function Ud(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function T5(e,t,n){let r=[];for(let a=0;a<e.length;a++)r[a]=Math.ceil((t[a]-e[a])/n[a]);return r}function E5(e,t,n,r){let a=[...e];for(let s=a.length;s<r.length;s++)a.push(1);for(let s=0;s<n;s++)s===0?a[t]=1:(a.splice(t,0,1),a.pop());return a}function z5(e,t,n){return n<=e?n:n-(t-1)}function P5(e,t){let n=[];for(let r=0;r<e;r++)n.push(t+r);return n}function C5(e,t,n,r,a,s,i,o,l){let c=e.length,u=new Array(c),h=new Array(c),d=new Array(c);if(t.length&&n>0){let p=t[0],f=n+1;u=R5(i,p,f,r,e),h=F5(o,p,f,a,e),d=E5(s,p,f,e)}else for(let p=0;p<c;p++)u[p]=$5(i,r,s,e,p,l),h[p]=D5(o,a,s,e,p,l),d[p]=M5(s,p,l);return{begin:u,end:h,strides:d}}function R5(e,t,n,r,a){let s=[...a],i=P5(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=0;else{let l=z5(t,n,o),c=r[l];e&1<<l&&(c=0),s[o]=c}return s}function F5(e,t,n,r,a){let s=[...a],i=P5(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=z5(t,n,o),c=r[l];e&1<<l&&(c=Number.MAX_SAFE_INTEGER),s[o]=c}for(let o=0;o<s.length;o++){let l=a[o];s[o]<0&&(s[o]+=l),s[o]=Hu(0,s[o],a[o])}return s}function M5(e,t,n){let r=e[t];return(n&1<<t||r==null)&&(r=1),r}function $5(e,t,n,r,a,s){let i=t[a],o=n[a]||1;(e&1<<a||s&1<<a||i==null)&&(o>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=r[a];return i<0&&(i+=l),i=Hu(0,i,l-1),i}function D5(e,t,n,r,a,s){let i=t[a],o=n[a]||1;(e&1<<a||s&1<<a||i==null)&&(o>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=r[a];return i<0&&(i+=l),o>0?i=Hu(0,i,l):i=Hu(-1,i,l-1),i}function EI(e,t,n){let r=n.length;for(let a=0;a<n.length;a++)if(n[a]>1){r=a;break}for(let a=r+1;a<n.length;a++)if(t[a]>0||n[a]!==e[a])return!1;return!0}function CI(e,t){let n=e.length>0?e[e.length-1]:1;for(let r=0;r<e.length-1;r++)n+=e[r]*t[r];return n}function O5(e,t,n){let r,a=e.shape.length;typeof t=="number"?r=[t,...new Array(a-1).fill(0)]:t.length<a?r=t.concat(new Array(a-t.length).fill(0)):r=t.slice(),r.forEach(i=>{F(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(a).fill(-1):typeof n=="number"?s=[n,...new Array(a-1).fill(-1)]:n.length<a?s=n.concat(new Array(a-n.length).fill(-1)):s=n,s=s.map((i,o)=>i>=0?i:(F(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-r[o])),[r,s]}function RI(e,t,n,r,a,s,i,o,l){let c=t.slice(),u=n.slice(),h=r;r==null&&(h=new Array(c.length));let d=Ud(i);if(d.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(i!==0&&o!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(i!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let p=e.length-c.length,f=Ud(o),m=e.slice();f.forEach(_=>{c[_]=0,u[_]=1,m.splice(_,0,1)});let{begin:A,end:y,strides:g}=C5(m,d,p,c,u,h,a,s,i);c=A,u=y,h=g;let b=Ud(l);b.forEach(_=>{u[_]=c[_]+1,h[_]=1});let x=T5(c,u,h),w=x.filter((_,N)=>b.indexOf(N)===-1);return{nonStrided:h.every(_=>_===1),$begin:c,$end:u,$strides:h,size:x,newShape:m,outShape:w}}var re={};ze(re,{Serializable:()=>L5,SerializationMap:()=>ti,registerClass:()=>Ea});var L5=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},ti=class{constructor(){this.classNameMap={}}static getMap(){return ti.instance==null&&(ti.instance=new ti),ti.instance}static register(e){ti.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function Ea(e){F(e.className!=null,()=>"Class being registered does not have the static className property defined."),F(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),F(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),ti.register(e)}var G2={};ze(G2,{TEST_EPSILON_FLOAT16:()=>W5,encodeStrings:()=>B5,expectArrayBuffersEqual:()=>zI,expectArraysClose:()=>FI,expectArraysEqual:()=>$I,expectNumbersClose:()=>DI,expectPromiseToFail:()=>MI,expectValuesInRange:()=>OI,testEpsilon:()=>qm});var PI=.001,W5=.1;function FI(e,t,n){return n==null&&(n=qm()),Xm(e,t,(r,a)=>Km(r,a,n))}function qm(){return D.backend.floatPrecision()===32?PI:W5}function Xm(e,t,n){let r=!0;if((nn(e)||nn(t))&&(r=!1),nn(e)&&nn(t)&&(r=!0),r){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=zr(e),o=zr(t);if(!ta(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let a=nn(e)?e:Js(e),s=nn(t)?t:Js(t);if(a.length!==s.length)throw new Error(`Arrays have different lengths actual: ${a.length} vs expected: ${s.length}.
Actual: ${a}.
Expected: ${s}.`);for(let i=0;i<s.length;++i){let o=a[i],l=s[i];if(!n(o,l))throw new Error(`Arrays differ: actual[${i}] = ${o}, expected[${i}] = ${l}.
Actual: ${a}.
Expected: ${s}.`)}}function MI(e,t){e().then(()=>t.fail(),()=>t())}function $I(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Ia(e)||Ia(e[0])||Ia(t)||Ia(t[0])?Xm(e,n,(r,a)=>r==a):Xm(e,t,(r,a)=>Km(r,a,0))}function DI(e,t,n){if(n==null&&(n=qm()),!Km(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function Km(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function OI(e,t,n){for(let r=0;r<e.length;r++)if(e[r]<t||e[r]>n)throw new Error(`Value out of range:${e[r]} low: ${t}, high: ${n}`)}function zI(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function B5(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?B5(n):e[t]=Xu(n)}return e}var J4="3.1.0";function Y4(){Q().set("PROD",!0)}function Q4(){Q().set("DEBUG",!0)}function e8(){Q().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function $f(e){Q().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}y9($f);function t8(){D.disposeVariables()}function Tr(){return D}function Jh(){return D.memory()}function Vo(e){return D.profile(e)}function U(e,t){return D.tidy(e,t)}function Fe(e){Tm(e).forEach(t=>t.dispose())}function Vt(e){return D.keep(e)}function n8(e){return D.time(e)}function r8(e){return D.setBackend(e)}function a8(){return D.ready()}function s8(){return D.backendName}function i8(e){D.removeBackend(e)}function q2(e){return D.findBackend(e)}function o8(e){return D.findBackendFactory(e)}function vu(e,t,n=1){return D.registerBackend(e,t,n)}function X2(){return D.backend}function l8(e,t){Q().setPlatform(e,t)}function LI(e,t){let n=R(e,"a","add"),r=R(t,"b","add");[n,r]=vt(n,r);let a={a:n,b:r};return D.runKernel(ma,a)}var oe=O({add_:LI});function WI(e,t){let n=R(e,"a","floorDiv"),r=R(t,"b","floorDiv");[n,r]=vt(n,r);let a={a:n,b:r};return D.runKernel(cs,a)}var Yh=O({floorDiv_:WI});function BI(e,t){let n=R(e,"a","div"),r=R(t,"b","div");if([n,r]=vt(n,r),n.dtype==="int32"&&r.dtype==="int32")return Yh(n,r);let a={a:n,b:r},s={};return D.runKernel(os,a,s)}var Ne=O({div_:BI});function VI(e,t){let n=R(e,"a","mul"),r=R(t,"b","mul");[n,r]=vt(n,r);let a={a:n,b:r};return D.runKernel(bs,a)}var L=O({mul_:VI});function UI(e){let t=R(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return D.runKernel(iu,n)}else{let n={x:t};return D.runKernel(Wi,n)}}var Dt=O({abs_:UI});function HI(e){let t={x:R(e,"x","acos")};return D.runKernel(Bi,t)}var Df=O({acos_:HI});function jI(e){let t={x:R(e,"x","acosh")};return D.runKernel(Vi,t)}var Of=O({acosh_:jI});function GI(e){F(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),F(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((a,s)=>R(a,`tensors${s}`,"addN")),n=t[0];t.forEach(a=>{if(a.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(a=>{if(!ta(a.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let r=t;return D.runKernel(Za,r)}var Qh=O({addN_:GI});function qI(e,t=null,n=!1){let r={x:R(e,"x","all","bool")},a={axis:t,keepDims:n};return D.runKernel(yh,r,a)}var ed=O({all_:qI});function XI(e,t=null,n=!1){let r={x:R(e,"x","any","bool")},a={axis:t,keepDims:n};return D.runKernel(gh,r,a)}var ku=O({any_:XI});function KI(e,t=0){let n={x:R(e,"x","argMax")},r={axis:t};return D.runKernel(Ja,n,r)}var Iu=O({argMax_:KI});function ZI(e,t=0){let n={x:R(e,"x","argMin")},r={axis:t};return D.runKernel(ru,n,r)}var zf=O({argMin_:ZI});function JI(e){let t={x:R(e,"x","asin")};return D.runKernel(Ui,t)}var Pf=O({asin_:JI});function YI(e){let t={x:R(e,"x","asinh")};return D.runKernel(Hi,t)}var Lf=O({asinh_:YI});function QI(e){let t={x:R(e,"x","atan")};return D.runKernel(ji,t)}var Wf=O({atan_:QI});function eN(e,t){let n=R(e,"a","atan2"),r=R(t,"b","atan2");[n,r]=vt(n,r);let a={a:n,b:r};return D.runKernel(qi,a)}var Bf=O({atan2_:eN});function tN(e){let t={x:R(e,"x","atanh")};return D.runKernel(Gi,t)}var Vf=O({atanh_:tN});function nN(e,t,n,r,a="NHWC",s){let i=e[3],o=[...t,i],l=V5(a);return tc(e,o,n,s,r,null,null,l)}function U5(e,t,n,r,a,s,i="channelsLast"){let[o,l]=Hd(t),c;if(i==="channelsLast")c=[o,l,e[3],e[3]];else if(i==="channelsFirst")c=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return tc(e,c,n,r,a,s,!1,i)}function rN(e,t,n,r,a,s,i="NDHWC"){let[o,l,c]=Zm(t),u,h;if(i==="NDHWC")h="channelsLast",u=[o,l,c,e[4],e[4]];else if(i==="NCDHW")h="channelsFirst",u=[o,l,c,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return H5(e,u,n,r,a,!1,h,s)}function tc(e,t,n,r,a,s,i=!1,o="channelsLast"){let[l,c,u,h]=[-1,-1,-1,-1];if(o==="channelsLast")[l,c,u,h]=e;else if(o==="channelsFirst")[l,h,c,u]=e;else throw new Error(`Unknown dataFormat ${o}`);let[d,p,,f]=t,[m,A]=Hd(n),[y,g]=Hd(r),b=ul(d,y),x=ul(p,g),{padInfo:w,outHeight:_,outWidth:N}=aN(a,c,u,m,A,b,x,s,o),T=i?f*h:f,E;return o==="channelsFirst"?E=[l,T,_,N]:o==="channelsLast"&&(E=[l,_,N,T]),{batchSize:l,dataFormat:o,inHeight:c,inWidth:u,inChannels:h,outHeight:_,outWidth:N,outChannels:T,padInfo:w,strideHeight:m,strideWidth:A,filterHeight:d,filterWidth:p,effectiveFilterHeight:b,effectiveFilterWidth:x,dilationHeight:y,dilationWidth:g,inShape:e,outShape:E,filterShape:t}}function H5(e,t,n,r,a,s=!1,i="channelsLast",o){let[l,c,u,h,d]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,c,u,h,d]=e;else if(i==="channelsFirst")[l,d,c,u,h]=e;else throw new Error(`Unknown dataFormat ${i}`);let[p,f,m,,A]=t,[y,g,b]=Zm(n),[x,w,_]=Zm(r),N=ul(p,x),T=ul(f,w),E=ul(m,_),{padInfo:M,outDepth:z,outHeight:P,outWidth:B}=sN(a,c,u,h,y,g,b,N,T,E,o),G=s?A*d:A,V;return i==="channelsFirst"?V=[l,G,z,P,B]:i==="channelsLast"&&(V=[l,z,P,B,G]),{batchSize:l,dataFormat:i,inDepth:c,inHeight:u,inWidth:h,inChannels:d,outDepth:z,outHeight:P,outWidth:B,outChannels:G,padInfo:M,strideDepth:y,strideHeight:g,strideWidth:b,filterDepth:p,filterHeight:f,filterWidth:m,effectiveFilterDepth:N,effectiveFilterHeight:T,effectiveFilterWidth:E,dilationDepth:x,dilationHeight:w,dilationWidth:_,inShape:e,outShape:V,filterShape:t}}function iN(e,t,n,r,a){r==null&&(r=Jm(e,t,n));let s=e[0],i=e[1],o=ni((s-t+2*r)/n+1,a),l=ni((i-t+2*r)/n+1,a);return[o,l]}function oN(e,t,n,r,a,s){a==null&&(a=Jm(e,t,r));let i=e[0],o=e[1],l=e[2],c=ni((i-t+2*a)/r+1,s),u=ni((o-t+2*a)/r+1,s),h=ni((l-t+2*a)/r+1,s);return[c,u,h,n]}function Jm(e,t,n,r=1){let a=ul(t,r);return Math.floor((e[0]*(n-1)-n+a)/2)}function Hd(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function Zm(e){return typeof e=="number"?[e,e,e]:e}function ul(e,t){return t<=1?e:e+(e-1)*(t-1)}function aN(e,t,n,r,a,s,i,o,l){let c,u,h;if(typeof e=="number"){c={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let d=iN([t,n],s,r,e,o);u=d[0],h=d[1]}else if(e==="same"){u=Math.ceil(t/r),h=Math.ceil(n/a);let d=Math.max(0,(u-1)*r+s-t),p=Math.max(0,(h-1)*a+i-n),f=Math.floor(d/2),m=d-f,A=Math.floor(p/2),y=p-A;c={top:f,bottom:m,left:A,right:y,type:"SAME"}}else if(e==="valid")c={top:0,bottom:0,left:0,right:0,type:"VALID"},u=Math.ceil((t-s+1)/r),h=Math.ceil((n-i+1)/a);else if(typeof e=="object"){let d=l==="channelsLast"?e[1][0]:e[2][0],p=l==="channelsLast"?e[1][1]:e[2][1],f=l==="channelsLast"?e[2][0]:e[3][0],m=l==="channelsLast"?e[2][1]:e[3][1];c={top:d,bottom:p,left:f,right:m,type:d===0&&p===0&&f===0&&m===0?"VALID":"EXPLICIT"},u=ni((t-s+d+p)/r+1,o),h=ni((n-i+f+m)/a+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:c,outHeight:u,outWidth:h}}function sN(e,t,n,r,a,s,i,o,l,c,u){let h,d,p,f;if(typeof e=="number"){h={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let m=oN([t,n,r,1],o,1,a,e,u);d=m[0],p=m[1],f=m[2]}else if(e==="same"){d=Math.ceil(t/a),p=Math.ceil(n/s),f=Math.ceil(r/i);let m=(d-1)*a+o-t,A=(p-1)*s+l-n,y=(f-1)*i+c-r,g=Math.floor(m/2),b=m-g,x=Math.floor(A/2),w=A-x,_=Math.floor(y/2),N=y-_;h={top:x,bottom:w,left:_,right:N,front:g,back:b,type:"SAME"}}else if(e==="valid")h={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},d=Math.ceil((t-o+1)/a),p=Math.ceil((n-l+1)/s),f=Math.ceil((r-c+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:h,outDepth:d,outHeight:p,outWidth:f}}function ni(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function Ca(e){let[t,n,r]=Hd(e);return t===1&&n===1&&r===1}function Pr(e,t){return Ca(e)||Ca(t)}function V5(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function lN(e,t){let n={x:R(e,"x","reshape","string_or_numeric")},r={shape:t};return D.runKernel(Io,n,r)}var q=O({reshape_:lN});function uN(e,t,n,r,a){let s=R(e,"x","avgPool","float32"),i=1;F(Pr(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=q(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),a!=null&&F(Ht(r),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a},h=D.runKernel(Ya,c,u);return h=ye(h,s.dtype),l?q(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Nu=O({avgPool_:uN});function cN(e,t,n,r,a,s="NDHWC"){let i=R(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=q(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),F(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),a!=null&&F(Ht(r),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a,dataFormat:s},h=D.runKernel(au,c,u);return h=ye(h,o.dtype),l?q(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var Uf=O({avgPool3d_:cN});function hN(e,t=0){F(e.length>=1,()=>"Pass at least one tensor to concat");let n=Qu(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
with dtype ${s.dtype}. `)}),n.length===1)return Sr(n[0]);let r=n,a={axis:t};return D.runKernel(Xi,r,a)}var ct=O({concat_:hN});function dN(e){let t={x:R(e,"x","sigmoid")};return D.runKernel($s,t)}var Qn=O({sigmoid_:dN});function pN(e,t,n){let r=R(e,"x","slice","string_or_numeric");if(r.rank===0)throw new Error("Slicing scalar is not possible");let a={x:r},s={begin:t,size:n};return D.runKernel(Eo,a,s)}var Me=O({slice_:pN});function fN(e){let t={x:R(e,"x","tanh")};return D.runKernel(Ws,t)}var Uo=O({tanh_:fN});function mN(e,t,n,r,a,s){let i=R(e,"forgetBias","basicLSTMCell"),o=R(t,"lstmKernel","basicLSTMCell"),l=R(n,"lstmBias","basicLSTMCell"),c=R(r,"data","basicLSTMCell"),u=R(a,"c","basicLSTMCell"),h=R(s,"h","basicLSTMCell"),d=ct([c,h],1),p=qe(d,o),f=oe(p,l),m=f.shape[0],A=f.shape[1]/4,y=[m,A],g=Me(f,[0,0],y),b=Me(f,[0,A],y),x=Me(f,[0,A*2],y),w=Me(f,[0,A*3],y),_=oe(L(Qn(g),Uo(b)),L(u,Qn(oe(i,x)))),N=L(Uo(_),Qn(w));return[_,N]}var u8=O({basicLSTMCell_:mN});function AN(e,t,n){let r=R(e,"x","batchToSpaceND"),a=t.reduce((o,l)=>o*l);F(r.rank>=1+t.length,()=>`input rank is ${r.rank} but should be > than blockShape.length ${t.length}`),F(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),F(r.shape[0]%a==0,()=>`input tensor batch is ${r.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${a}`);let s={x:r},i={blockShape:t,crops:n};return D.runKernel(su,s,i)}var Su=O({batchToSpaceND_:AN});function yN(e){let t;return e.rank===0||e.rank===1?t=q(e,[1,1,1,e.size]):e.rank===2?t=q(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=q(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function gN(e,t,n,r,a,s){s==null&&(s=.001);let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;a!=null&&(c=R(a,"scale","batchNorm"));let u;r!=null&&(u=R(r,"offset","batchNorm")),F(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),F(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),F(c==null||o.rank===c.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let h={x:yN(i),scale:c,offset:u,mean:o,variance:l},d={varianceEpsilon:s},p=D.runKernel(hs,h,d);return q(p,i.shape)}var js=O({batchNorm_:gN});function xN(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;a!=null&&(c=R(a,"scale","batchNorm"));let u;return r!=null&&(u=R(r,"offset","batchNorm")),F(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),F(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),F(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),c!=null&&F(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${c.rank}.`),u!=null&&F(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${u.rank}.`),js(i,o,l,u,c,s)}var K2=O({batchNorm2d_:xN});function wN(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;a!=null&&(c=R(a,"scale","batchNorm"));let u;return r!=null&&(u=R(r,"offset","batchNorm")),F(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),F(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),F(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),c!=null&&F(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${c.rank}.`),u!=null&&F(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${u.rank}.`),js(i,o,l,u,c,s)}var Z2=O({batchNorm3d_:wN});function _N(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;a!=null&&(c=R(a,"scale","batchNorm"));let u;return r!=null&&(u=R(r,"offset","batchNorm")),F(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),F(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),F(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),c!=null&&F(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${c.rank}.`),u!=null&&F(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${u.rank}.`),js(i,o,l,u,c,s)}var J2=O({batchNorm4d_:_N});function bN(e,t,n){let r=R(e,"x","bincount"),a=R(t,"weights","bincount");F(r.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${r.dtype}`),F(n>=0,()=>`size must be non-negative, but got ${n}.`),F(a.size===r.size||a.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${r.shape}, weights shape: ${a.shape}.`);let s={x:r,weights:a},i={size:n};return D.runKernel(_h,s,i)}var Y2=O({bincount_:bN});function vN(e,t){let n=R(e,"broadcastTo","x"),r=n.shape;if(t.some(l=>!(l>0)||l%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let l=n.shape.slice();for(;l.length<t.length;)l.unshift(1);n=q(n,l)}let a=n.shape,s=Array.from(t);for(let l=t.length-1;l>=0;l--)if(a[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${t}].`);if(s.map((l,c)=>l>1?c:-1).filter(l=>l>=0).length===0)return Sr(n);let i={x:n},o={reps:s};return D.runKernel(ya,i,o)}var Tu=O({broadcastTo_:vN});function kN(e){let t={x:R(e,"x","ceil")};return D.runKernel(ts,t)}var Hf=O({ceil_:kN});function IN(e,t,n){let r=R(e,"x","clipByValue");F(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let a={x:r},s={clipValueMin:t,clipValueMax:n};return D.runKernel(Aa,a,s)}var fn=O({clipByValue_:IN});function NN(e){return ct(e,0)}var Q2=O({concat1d_:NN});function SN(e,t){return ct(e,t)}var td=O({concat2d_:SN});function TN(e,t){return ct(e,t)}var e0=O({concat3d_:TN});function EN(e,t){return ct(e,t)}var t0=O({concat4d_:EN});function CN(e,t,n,r,a="NHWC",s=[1,1],i){let o=R(e,"x","conv2d"),l=R(t,"filter","conv2d"),c=o,u=!1;o.rank===3&&(u=!0,c=q(o,[1,o.shape[0],o.shape[1],o.shape[2]])),F(c.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${c.rank}.`),F(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),i!=null&&F(Ht(r),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h=a==="NHWC"?c.shape[3]:c.shape[1];F(h===l.shape[2],()=>`Error in conv2d: depth of input (${h}) must match input depth for filter ${l.shape[2]}.`),F(Pr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let d={x:c,filter:l},p={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i},f=D.runKernel(ns,d,p);return u?q(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Zr=O({conv2d_:CN});function RN(e,t,n,r,a="NWC",s=1,i){let o=R(e,"x","conv1d"),l=R(t,"filter","conv1d"),c=o,u=!1;o.rank===2&&(u=!0,c=q(o,[1,o.shape[0],o.shape[1]])),F(c.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${c.rank}.`),F(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),i!=null&&F(Ht(r),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`),F(c.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${c.shape[2]}) must match input depth for filter ${l.shape[1]}.`),F(Pr(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),F(a==="NWC",()=>`Error in conv1d: got dataFormat of ${a} but only NWC is currently supported.`);let h=q(l,[1,l.shape[0],l.shape[1],l.shape[2]]),d=q(c,[c.shape[0],1,c.shape[1],c.shape[2]]),p=Zr(d,h,[1,n],r,"NHWC",[1,s],i);return u?q(p,[p.shape[2],p.shape[3]]):q(p,[p.shape[0],p.shape[2],p.shape[3]])}var nd=O({conv1d_:RN});function FN(e,t,n,r,a,s="NHWC",i){F(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,c=!1;t.rank===3&&(c=!0,l=q(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),F(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),F(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),F(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let u=s==="NHWC"?o[3]:o[1],h=s==="NHWC"?l.shape[3]:l.shape[1];F(u===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${u}) must match input depth for filter ${n.shape[2]}.`),F(h===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${h}) must match output depth for filter ${n.shape[3]}.`),i!=null&&F(Ht(a),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let d={dy:l,filter:n},p={strides:r,pad:a,dataFormat:s,dimRoundingMode:i,inputShape:o},f=D.runKernel(rs,d,p);return c?q(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Ym=O({conv2DBackpropInput_:FN});function MN(e,t,n,r,a,s){let i=R(e,"x","conv2dTranspose"),o=R(t,"filter","conv2dTranspose");return Ym(n,i,o,r,a,"NHWC",s)}var rd=O({conv2dTranspose_:MN});function $N(e,t,n,r,a="NDHWC",s=[1,1,1]){let i=R(e,"x","conv3d"),o=R(t,"filter","conv3d"),l=i,c=!1;i.rank===4&&(c=!0,l=q(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),F(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),F(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),F(Pr(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),F(a==="NDHWC",()=>`Error in conv3d: got dataFormat of ${a} but only NDHWC is currently supported.`);let u={x:l,filter:o},h={strides:n,pad:r,dataFormat:a,dilations:s},d=D.runKernel(ou,u,h);return c?q(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var jf=O({conv3d_:$N});function DN(e,t,n,r,a){F(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=q(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],c=i.shape[4];F(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),F(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),F(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),F(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),F(c===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${c}) must match output depth for filter ${n.shape[4]}.`);let u={dy:i,filter:n},h={pad:a,strides:r,inputShape:s},d=D.runKernel(Ih,u,h);return o?q(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var j5=O({conv3DBackpropInput_:DN});function ON(e,t,n,r,a){let s=R(e,"x","conv3dTranspose"),i=R(t,"filter","conv3dTranspose");return j5(n,s,i,r,a)}var c8=O({conv3dTranspose_:ON});function zN(e){let t={x:R(e,"x","cos")};return D.runKernel(as,t)}var Eu=O({cos_:zN});function PN(e){let t={x:R(e,"x","cosh")};return D.runKernel(Ki,t)}var ad=O({cosh_:PN});function LN(e,t=0,n=!1,r=!1){let a={x:R(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:r};return D.runKernel(ss,a,s)}var sd=O({cumsum_:LN});function WN(e,t,n,r=!1){let a=R(e,"x","denseBincount"),s=R(t,"weights","denseBincount");F(a.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${a.dtype}`),F(a.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${a.rank}.`),F(n>=0,()=>`size must be non-negative, but got ${n}.`),F(s.size===a.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${a.shape}, weights shape: ${s.shape}.`);let i={x:a,weights:s},o={size:n,binaryOutput:r};return D.runKernel(Nh,i,o)}var n0=O({denseBincount_:WN});function BN(e,t,n="NHWC"){let r=R(e,"x","depthToSpace"),a=n==="NHWC"?r.shape[1]:r.shape[2],s=n==="NHWC"?r.shape[2]:r.shape[3],i=n==="NHWC"?r.shape[3]:r.shape[1];F(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${a} and ${t} for depthToSpace with input shape
${r.shape}`),F(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${s} and ${t} for depthToSpace with input shape
${r.shape}`),F(i%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${r.shape}`);let o={x:r},l={blockSize:t,dataFormat:n};return D.runKernel(Ji,o,l)}var Gf=O({depthToSpace_:BN});function VN(e,t,n,r,a="NHWC",s=[1,1],i){let o=R(e,"x","depthwiseConv2d"),l=R(t,"filter","depthwiseConv2d"),c=o,u=!1;o.rank===3&&(u=!0,c=q(o,[1,o.shape[0],o.shape[1],o.shape[2]])),F(c.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${c.rank}.`),F(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),F(c.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${c.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),i!=null&&F(Ht(r),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h={x:c,filter:l},d={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i},p=D.runKernel(is,h,d);return u?q(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Ho=O({depthwiseConv2d_:VN});function UN(e){let t={x:R(e,"x","diag")};return D.runKernel(Eh,t)}var h8=O({diag_:UN});function HN(e,t,n,r,a=[1,1],s="NHWC"){let i=R(e,"x","dilation2d"),o=R(t,"filter","dilation2d");F(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),F(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),F(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,c=!1;i.rank===3&&(l=q(i,[1,i.shape[0],i.shape[1],i.shape[2]]),c=!0);let u={x:l,filter:o},h={strides:n,pad:r,dilations:a},d=D.runKernel(lu,u,h);return c?q(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var qf=O({dilation2d_:HN});function jN(e,t){let n=e.length,r=[];for(let a=0;a<n;a++){let s=n-1-a,i=e[s]||1;(t[t.length-1-a]||1)>1&&i===1&&r.unshift(s)}return r}function zt(e,t){let n=[];for(let r=0;r<t.length;r++){let a=e[e.length-r-1],s=t.length-r-1,i=t[s];(a==null||a===1&&i>1)&&n.unshift(s)}return n}function At(e,t){let n=[],r=Math.max(e.length,t.length);for(let a=0;a<r;a++){let s=e[e.length-a-1];s==null&&(s=1);let i=t[t.length-a-1];if(i==null&&(i=1),s===1)n.unshift(i);else if(i===1)n.unshift(s);else if(s!==i){let o=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(o)}else n.unshift(s)}return n}function GN(e,t){let n=R(e,"a","equal"),r=R(t,"b","equal");[n,r]=vt(n,r),At(n.shape,r.shape);let a={a:n,b:r};return D.runKernel(eo,a)}var wa=O({equal_:GN});function qN(e,t,n){let r=R(t,"a","where"),a=R(n,"b","where"),s=R(e,"condition","where","bool"),i=At(r.shape,a.shape),o=Tu(r,i),l=Tu(a,i);s.rank===1&&F(s.shape[0]===r.shape[0],()=>"The first dimension of `a` must match the size of `condition`."),s.rank!==1&&tn(s.shape,l.shape,"Error in where: ");let c={condition:s,t:o,e:l};return D.runKernel(So,c)}var mn=O({where_:qN});function XN(e){let t={x:R(e,"x","zerosLike")};return D.runKernel(Po,t)}var He=O({zerosLike_:XN});function KN(e,t){let n=R(e,"a","div"),r=R(t,"b","div");[n,r]=vt(n,r);let a=Ne(n,r),s=He(a),i=wa(r,s);return mn(i,s,a)}var Xf=O({divNoNan_:KN});function ZN(e,t){let n=R(e,"t1","dot"),r=R(t,"t2","dot");F((n.rank===1||n.rank===2)&&(r.rank===1||r.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${r.rank}.`);let a=n.rank===1?n.size:n.shape[1],s=r.rank===1?r.size:r.shape[0];if(F(a===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${a} and ${s}.`),n.rank===1&&r.rank===1){let i=q(n,[1,-1]),o=q(r,[-1,1]),l=qe(i,o);return q(l,[])}else if(n.rank===1&&r.rank===2){let i=q(n,[1,-1]),o=q(r,[r.shape[0],r.shape[1]]),l=qe(i,o);return q(l,[l.size])}else if(n.rank===2&&r.rank===1){let i=q(r,[-1,1]),o=qe(n,i);return q(o,[o.size])}else{let i=q(r,[r.shape[0],r.shape[1]]);return qe(n,i)}}var r0=O({dot_:ZN});function JN(e){let t={x:R(e,"x","elu")};return D.runKernel(Yi,t)}var jo=O({elu_:JN});function YN(e){let t=R(e,"x","erf");F(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=ye(t,"float32"));let n={x:t};return D.runKernel(Qi,n)}var Kf=O({erf_:YN});function QN(e){let t={x:R(e,"x","exp")};return D.runKernel(ls,t)}var Ln=O({exp_:QN});function eS(e,t=0){let n=R(e,"x","expandDims","string_or_numeric");F(t<=n.rank,()=>"Axis must be <= rank of the tensor");let r={input:n},a={dim:t};return D.runKernel(to,r,a)}var kn=O({expandDims_:eS});function tS(e){let t={x:R(e,"x","expm1")};return D.runKernel(no,t)}var Zf=O({expm1_:tS});function nS(e,t){let n=R(e,"x","tile","string_or_numeric");F(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let r={x:n},a={reps:t};return D.runKernel(ya,r,a)}var _a=O({tile_:nS});function rS(e,t,n,r="float32"){t==null&&(t=e);let a=We([e,t],r),s=e<=t?e:t;for(let o=0;o<s;++o)a.set(1,o,o);let i=q(a.toTensor(),[e,t]);if(n==null)return i;if(n.length===1)return _a(kn(i,0),[n[0],1,1]);if(n.length===2)return _a(kn(kn(i,0),0),[n[0],n[1],1,1]);if(n.length===3)return _a(kn(kn(kn(i,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var Jf=O({eye_:rS});function Cu(e,t,n){let r={shape:e,value:t,dtype:n};return D.runKernel(uu,{},r)}function aS(e){let t={x:R(e,"x","floor")};return D.runKernel(us,t)}var Go=O({floor_:aS});function sS(e,t,n=0,r=0){let a=R(e,"x","gather"),s=R(t,"indices","gather","int32"),i={x:a,indices:s},o={axis:n,batchDims:r};return D.runKernel(ao,i,o)}var Gs=O({gather_:sS});function iS(e,t){let n=R(e,"a","greater"),r=R(t,"b","greater");[n,r]=vt(n,r),At(n.shape,r.shape);let a={a:n,b:r};return D.runKernel(io,a)}var er=O({greater_:iS});function oS(e,t){let n=R(e,"a","greaterEqual"),r=R(t,"b","greaterEqual");[n,r]=vt(n,r),At(n.shape,r.shape);let a={a:n,b:r};return D.runKernel(ds,a)}var ba=O({greaterEqual_:oS});function lS(e){let t={input:R(e,"input","imag")};return D.runKernel(Dh,t)}var id=O({imag_:lS});function uS(e){let t={x:R(e,"x","isFinite")};return D.runKernel(oo,t)}var a0=O({isFinite_:uS});function cS(e){let t={x:R(e,"x","isInf")};return D.runKernel(lo,t)}var s0=O({isInf_:cS});function hS(e){let t={x:R(e,"x","isNaN")};return D.runKernel(uo,t)}var i0=O({isNaN_:hS});function dS(e,t=.2){let n={x:R(e,"x","leakyRelu")},r={alpha:t};return D.runKernel(fs,n,r)}var Ru=O({leakyRelu_:dS});function pS(e,t){let n=R(e,"a","less"),r=R(t,"b","less");[n,r]=vt(n,r),At(n.shape,r.shape);let a={a:n,b:r};return D.runKernel(co,a)}var od=O({less_:pS});function fS(e,t){let n=R(e,"a","lessEqual"),r=R(t,"b","lessEqual");[n,r]=vt(n,r),At(n.shape,r.shape);let a={a:n,b:r};return D.runKernel(ho,a)}var qs=O({lessEqual_:fS});function o0(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let r={start:e,stop:t,num:n};return D.runKernel(Oh,{},r)}function mS(e,t=5,n=1,r=1,a=.5){let s=R(e,"x","localResponseNormalization");F(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
rank ${s.rank}.`),F(Ht(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=q(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},c={depthRadius:t,bias:n,alpha:r,beta:a},u=D.runKernel(du,l,c);return o?q(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var Yf=O({localResponseNormalization_:mS});function AS(e){let t={x:R(e,"x","log")};return D.runKernel(ms,t)}var In=O({log_:AS});function yS(e){let t={x:R(e,"x","log1p")};return D.runKernel(po,t)}var ld=O({log1p_:yS});function d8(e){return F(Na(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let r=R(t,"x","tf.grad","string_or_numeric"),a=n!=null?R(n,"dy","tf.grad"):null;return D.tidy(()=>{let{value:s,grads:i}=D.gradients(()=>e(r),[r],a);return a!=null&&tn(s.shape,a.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),jd(i),i[0]})}}function p8(e){return F(Na(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{F(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let r=Qu(t,"args","tf.grads","string_or_numeric"),a=n!=null?R(n,"dy","tf.grads"):null;return D.tidy(()=>{let{value:s,grads:i}=D.gradients(()=>e(...r),r,a);return a!=null&&tn(s.shape,a.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),jd(i),i})}}function f8(e){return F(Na(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{F(t instanceof et,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),F(n==null||n instanceof et,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:r,value:a}=D.gradients(()=>e(t),[t],n);return jd(r),{grad:r[0],value:a}}}function m8(e){return F(Na(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{F(Array.isArray(t)&&t.every(a=>a instanceof et),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),F(n==null||n instanceof et,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let r=D.gradients(()=>e(...t),t,n);return n!=null&&tn(r.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),jd(r.grads),r}}function l0(e,t){F(Na(e),()=>"The f passed in variableGrads(f) must be a function"),F(t==null||Array.isArray(t)&&t.every(c=>c instanceof _u),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let c in D.registeredVariables)t.push(D.registeredVariables[c])}let r=n?t.filter(c=>!c.trainable):null,a=t.length;t=t.filter(c=>c.trainable),F(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${a} variables is trainable.`);let s=!0,{value:i,grads:o}=D.gradients(e,t,null,s);F(o.some(c=>c!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),F(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((c,u)=>{o[u]!=null&&(l[c.name]=o[u])}),r!=null&&r.forEach(c=>l[c.name]=null),{value:i,grads:l}}function Er(e){return D.customGrad(e)}function jd(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
the f you passed encloses all operations that lead from x to y.`)}function gS(e){let t={x:R(e,"x","neg")};return D.runKernel(Ao,t)}var _t=O({neg_:gS});function xS(e){let t={x:R(e,"x","softplus")};return D.runKernel(Fo,t)}var qo=O({softplus_:xS});function wS(e){let t=R(e,"x","logSigmoid");return Er(n=>({value:_t(qo(_t(n))),gradFunc:r=>L(r,Qn(_t(n)))}))(t)}var u0=O({logSigmoid_:wS});function _S(e,t=null,n=!1){let r={x:R(e,"x","max")},a={reductionIndices:t,keepDims:n};return D.runKernel(As,r,a)}var Wn=O({max_:_S});function bS(e,t){let n=R(e,"a","sub"),r=R(t,"b","sub");[n,r]=vt(n,r);let a={a:n,b:r};return D.runKernel(Ls,a)}var we=O({sub_:bS});function vS(e,t=null,n=!1){let r=R(e,"x","sum");r.dtype==="bool"&&(r=ye(r,"int32"));let a={x:r},s={axis:t,keepDims:n};return D.runKernel(Os,a,s)}var Te=O({sum_:vS});function kS(e,t=-1){let n=R(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return Er((r,a)=>{let s=!0,i=Wn(r,t,!0),o=we(r,i),l=we(ye(o,"float32"),In(Te(Ln(o),t,s)));return a([l]),{value:l,gradFunc:(c,u)=>{let[h]=u,d=!0,p=Ln(h);return we(c,L(Te(c,t,d),p))}}})(n)}var ud=O({logSoftmax_:kS});function Qm(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function G5(e,t,n){let r=e.length+t.length,a=[],s=0,i=0;for(let o=0;o<r;o++)n.indexOf(o)===-1?a.push(e[s++]):a.push(t[i++]);return a}function q5(e,t){let n=[],r=e.length;for(let s=0;s<r;s++)t.indexOf(s)===-1&&n.push(e[s]);let a=t.map(s=>e[s]);return[n,a]}function ri(e,t){let n=t.map(r=>1);return G5(e,n,t)}function IS(e,t,n){F(Qm(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function X5(e,t){if(Qm(e,t))return null;let n=[];for(let r=0;r<t;++r)e.indexOf(r)===-1&&n.push(r);return e.forEach(r=>n.push(r)),n}function eA(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function NS(e,t){let n=[];for(let r=t-e;r<t;++r)n.push(r);return n}function SS(e,t=null,n=!1){let r=R(e,"x","logSumExp"),a=ar(t,r.shape),s=Wn(r,a,!0),i=we(r,s),o=Ln(i),l=Te(o,a),c=In(l),u=oe(q(s,c.shape),c);if(n){let h=ri(u.shape,a);return q(u,h)}return u}var Qf=O({logSumExp_:SS});function TS(e,t){let n=R(e,"a","logicalAnd","bool"),r=R(t,"b","logicalAnd","bool");At(n.shape,r.shape);let a={a:n,b:r};return D.runKernel(fo,a)}var tr=O({logicalAnd_:TS});function ES(e){let t={x:R(e,"x","logicalNot","bool")};return D.runKernel(cu,t)}var Fu=O({logicalNot_:ES});function CS(e,t){let n=R(e,"a","logicalOr","bool"),r=R(t,"b","logicalOr","bool");At(n.shape,r.shape);let a={a:n,b:r};return D.runKernel(hu,a)}var cd=O({logicalOr_:CS});function RS(e,t){let n=R(e,"a","logicalXor","bool"),r=R(t,"b","logicalXor","bool");return At(n.shape,r.shape),tr(cd(e,t),Fu(tr(e,t)))}var c0=O({logicalXor_:RS});function FS(e,t,n,r,a){let s=R(e,"x","maxPool"),i=1,o=s,l=!1;s.rank===3&&(l=!0,o=q(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(o.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),F(Pr(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),a!=null&&F(Ht(r),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a},h=D.runKernel(gs,c,u);return l?q(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Mu=O({maxPool_:FS});function MS(e,t=[1,1,1],n,r,a,s="NDHWC"){let i=R(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=q(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),F(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),a!=null&&F(Ht(r),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a,dataFormat:s},h=D.runKernel(pu,c,u);return l?q(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var em=O({maxPool3d_:MS});function $S(e,t,n,r,a=!1){let s={x:R(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:r,includeBatchInIndex:a},o=D.runKernel(Wh,s,i);return{result:o[0],indexes:o[1]}}var h0=O({maxPoolWithArgmax_:$S});function DS(e,t){let n=R(e,"a","maximum"),r=R(t,"b","maximum");[n,r]=vt(n,r),n.dtype==="bool"&&(n=ye(n,"int32"),r=ye(r,"int32")),At(n.shape,r.shape);let a={a:n,b:r};return D.runKernel(ys,a)}var Cr=O({maximum_:DS});function OS(e,t=null,n=!1){let r={x:R(e,"x","mean")},a={axis:t,keepDims:n};return D.runKernel(xs,r,a)}var bt=O({mean_:OS});function zS(e,t=null,n=!1){let r={x:R(e,"x","min")},a={axis:t,keepDims:n};return D.runKernel(ws,r,a)}var Xo=O({min_:zS});function PS(e,t){let n=R(e,"a","minimum"),r=R(t,"b","minimum");[n,r]=vt(n,r),n.dtype==="bool"&&(n=ye(n,"int32"),r=ye(r,"int32")),At(n.shape,r.shape);let a={a:n,b:r};return D.runKernel(_s,a)}var Ko=O({minimum_:PS});function LS(e,t,n){F(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let r=R(e,"x","mirrorPad");if(r.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");F(t.length===r.rank,()=>`Padding doesn't match input. Must be ${r.rank}. Got ${t.length}.`);let a=n==="reflect"?1:0;for(let o=0;o<r.rank;o++)F(t[o].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),F(t[o][0]>=0&&t[o][0]<=r.shape[o]-a&&t[o][1]>=0&&t[o][1]<=r.shape[o]-a,()=>`Padding in dimension ${o} cannot be greater than or equal to ${r.shape[o]-a} or less than 0 for input of shape ${r.shape}`);let s={paddings:t,mode:n},i={x:r};return D.runKernel(fu,i,s)}var tm=O({mirrorPad_:LS});function WS(e,t){let n=R(e,"a","mod"),r=R(t,"b","mod");[n,r]=vt(n,r);let a={a:n,b:r};return D.runKernel(mo,a)}var nm=O({mod_:WS});function BS(e){let t=R(e,"x","square"),n={};return D.runKernel("Square",{x:t},n)}var ot=O({square_:BS});function VS(e,t=null,n=!1){e=R(e,"x","moments");let r=ar(t,e.shape),a=bt(e,r,n),s=a.shape;n||(s=ri(a.shape,r));let i=ot(we(ye(e,"float32"),q(a,s))),o=bt(i,r,n);return{mean:a,variance:o}}var hd=O({moments_:VS});function US(e,t,n,r){let a=R(t,"data","multiRNNCell"),s=Qu(n,"c","multiRNNCell"),i=Qu(r,"h","multiRNNCell"),o=a,l=[];for(let h=0;h<e.length;h++){let d=e[h](o,s[h],i[h]);l.push(d[0]),l.push(d[1]),o=d[1]}let c=[],u=[];for(let h=0;h<l.length;h+=2)c.push(l[h]),u.push(l[h+1]);return[c,u]}var A8=O({multiRNNCell_:US});function HS(e,t,n,r=!1){let a=R(e,"logits","multinomial"),s=a.size,i=a.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?q(a,[1,-1]):a},l={numSamples:t,seed:n,normalized:r},c=D.runKernel(Bh,o,l);return i===1?q(c,[c.size]):c}var d0=O({multinomial_:HS});function jS(e,t){let n=R(e,"a","notEqual"),r=R(t,"b","notEqual");[n,r]=vt(n,r),At(n.shape,r.shape);let a={a:n,b:r};return D.runKernel(yo,a)}var Xs=O({notEqual_:jS});function Ct(e,t="float32"){if(t==="complex64"){let r=Ct(e,"float32"),a=Ct(e,"float32");return xa(r,a)}let n=zd(Ot(e),t);return D.makeTensor(n,e,t)}function Rr(e,t="float32"){if(t==="complex64"){let r=Rr(e,"float32"),a=Ct(e,"float32");return xa(r,a)}let n=_m(Ot(e),t);return D.makeTensor(n,e,t)}function GS(e){let t={x:R(e,"x","onesLike")};return D.runKernel(_o,t)}var Nn=O({onesLike_:GS});function qS(e,t){let n=R(e,"v1","outerProduct"),r=R(t,"v2","outerProduct");F(n.rank===1&&r.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${r.rank}.`);let a=q(n,[-1,1]),s=q(r,[1,-1]);return qe(a,s)}var y8=O({outerProduct_:qS});function XS(e,t,n=0){let r=R(e,"x","pad");if(r.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let a={paddings:t,constantValue:n},s={x:r};return D.runKernel(ks,s,a)}var Jr=O({pad_:XS});function KS(e,t,n=0){return F(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),Jr(e,[t],n)}var g8=O({pad1d_:KS});function ZS(e,t,n=0){return F(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Jr(e,t,n)}var x8=O({pad2d_:ZS});function JS(e,t,n=0){return F(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Jr(e,t,n)}var w8=O({pad3d_:JS});function YS(e,t,n=0){return F(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Jr(e,t,n)}var _8=O({pad4d_:YS});function QS(e,t,n){let r=R(e,"x","spaceToBatchND");F(r.rank>=1+t.length,()=>`input rank ${r.rank} should be > than [blockShape] ${t.length}`),F(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),F(r.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]==0:i,!0),()=>`input spatial dimensions ${r.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let a={x:r},s={blockShape:t,paddings:n};return D.runKernel(yu,a,s)}var $u=O({spaceToBatchND_:QS});function nT(e,t,n,r,a,s){a==null&&(a=[1,1]),s==null&&(s=1),r===0&&(r="valid");let i=R(e,"x","maxPool"),o=i,l=!1;i.rank===3&&(l=!0,o=q(i,[1,i.shape[0],i.shape[1],i.shape[2]])),F(Pr(s,a),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${a}'`);let c=U5(o.shape,t,s,a,r),u=[c.dilationHeight,c.dilationWidth],h;r==="same"?h=tT([c.filterHeight,c.filterWidth],u):h=[[0,0],[0,0]];let d=u[0]===1&&u[1]===1,[p,f]=eT([c.inHeight,c.inWidth],u,h),m=d?r:"valid",A=d?o:$u(o,u,p),y=(n==="avg"?()=>Nu(A,t,s,m):()=>Mu(A,t,s,m))(),g=d?y:Su(y,u,f);return l?q(g,[g.shape[1],g.shape[2],g.shape[3]]):g}function eT(e,t,n){let r=n.map(u=>u[0]),a=n.map(u=>u[1]),s=e.concat(r,a),i=t.map((u,h)=>(u-s[h]%u)%u),o=a.map((u,h)=>u+i[h]),l=t.map((u,h)=>[r[h],o[h]]),c=t.map((u,h)=>[0,i[h]]);return[l,c]}function tT(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),r=n.map(s=>Math.floor(s/2)),a=n.map((s,i)=>s-r[i]);return n.map((s,i)=>[r[i],a[i]])}var p0=O({pool_:nT});function rT(e,t){let n=R(e,"base","pow"),r=R(t,"exp","pow");[n,r]=vt(n,r);let a={a:n,b:r};return D.runKernel(Is,a)}var Yr=O({pow_:rT});function aT(e,t){let n=R(e,"x","prelu"),r=R(t,"alpha","prelu"),a={x:n,alpha:r};return D.runKernel(Ns,a)}var Du=O({prelu_:aT});function sT(e,t=null,n=!1){let r=R(e,"x","prod");r.dtype==="bool"&&(r=ye(r,"int32"));let a={x:r},s={axis:t,keepDims:n};return D.runKernel(vo,a,s)}var dd=O({prod_:sT});function iT(e,t,n){let r=Ot(e),a=null;if(n==null||n==="float32")a=new Float32Array(r);else if(n==="int32")a=new Int32Array(r);else if(n==="bool")a=new Uint8Array(r);else throw new Error(`Unknown data type ${n}`);for(let s=0;s<r;s++)a[s]=t();return D.makeTensor(a,e,n)}var b8=O({rand_:iT}),tA=el(ck()),nA=class{constructor(e,t,n,r,a){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=r,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let s=a||Math.random();this.random=tA.alea(s.toString())}nextValue(){if(!isNaN(this.nextVal)){let r=this.nextVal;return this.nextVal=NaN,r}let e,t,n=!1;for(;!n;){let r,a,s;do r=2*this.random()-1,a=2*this.random()-1,s=r*r+a*a;while(s>=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*r*i,t=this.mean+this.stdDev*a*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},oT=class{constructor(e,t,n,r){this.alpha=e,this.beta=1/t,this.dtype=n;let a=r||Math.random();this.randu=tA.alea(a.toString()),this.randn=new nA(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,r,a,s;for(;;){do r=this.randn.nextValue(),s=1+this.c*r;while(s<=0);if(s*=s*s,e=r*r,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),a=this.randu(),a<t||Math.log(a)<n)break}return s=1/this.beta*this.d*s,this.alpha<1&&(s*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(s)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},lT=class{constructor(e=0,t=1,n,r){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,r==null&&(r=Math.random()),typeof r=="number"&&(r=r.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=tA.alea(r)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function uT(e,t,n=1,r="float32",a){if(n==null&&(n=1),r==null&&(r="float32"),r!=="float32"&&r!=="int32")throw new Error(`Unsupported data type ${r}`);let s=new oT(t,n,r,a),i=We(e,r);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var v8=O({randomGamma_:uT});function cT(e,t=0,n=1,r,a){if(r!=null&&r==="bool")throw new Error(`Unsupported data type ${r}`);let s=new nA(t,n,r,!1,a),i=We(e,r);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var f0=O({randomNormal_:cT});function hT(e,t=0,n=1,r="float32",a){let s=We(e,r),i=new lT(t,n,null,a);for(let o=0;o<s.values.length;o++)s.values[o]=i.nextValue();return s.toTensor()}var Zo=O({randomUniform_:hT});function pd(e,t,n=1,r="float32"){if(n===0)throw new Error("Cannot have a step of zero");let a={start:e,stop:t,step:n,dtype:r};return D.runKernel(mu,{},a)}function dT(e){let t={input:R(e,"input","real")};return D.runKernel(Vh,t)}var Ou=O({real_:dT});function pT(e){let t={x:R(e,"x","reciprocal")};return D.runKernel(ko,t)}var rm=O({reciprocal_:pT});function fT(e){let t={x:R(e,"x","relu")};return D.runKernel(Ss,t)}var Fr=O({relu_:fT});function mT(e){let t={x:R(e,"x","relu6")};return D.runKernel(Es,t)}var fd=O({relu6_:mT});function AT(e,t){let n={x:R(e,"x","reverse")},r={dims:t};return D.runKernel(Cs,n,r)}var Sn=O({reverse_:AT});function yT(e){let t=R(e,"x","reverse");return F(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Sn(t,0)}var k8=O({reverse1d_:yT});function gT(e,t){let n=R(e,"x","reverse");return F(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),Sn(n,t)}var I8=O({reverse2d_:gT});function xT(e,t){let n=R(e,"x","reverse");return F(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),Sn(n,t)}var N8=O({reverse3d_:xT});function wT(e,t){let n=R(e,"x","reverse");return F(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),Sn(n,t)}var S8=O({reverse4d_:wT});function _T(e){let t={x:R(e,"x","round")};return D.runKernel(Rs,t)}var am=O({round_:_T});function bT(e){let t={x:R(e,"x","rsqrt")};return D.runKernel(Fs,t)}var md=O({rsqrt_:bT});function Se(e,t){if((nn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&nn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Sa(e,[],[],t)}function vT(e){let t={x:R(e,"x","selu")};return D.runKernel(To,t)}var Ad=O({selu_:vT});function kT(e,t,n,r,a,s=[1,1],i="NHWC"){let o=R(e,"x","separableConv2d"),l=R(t,"depthwiseFilter","separableConv2d"),c=R(n,"pointwiseFilter","separableConv2d"),u=o,h=!1;if(o.rank===3&&(h=!0,u=q(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");F(u.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${u.rank}.`),F(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),F(c.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),F(c.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${c.shape[0]}.`),F(c.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${c.shape[1]}.`);let d=l.shape[2],p=l.shape[3];F(c.shape[2]===d*p,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${d*p}, but got ${c.shape[2]}.`);let f=Ho(u,l,r,a,i,s),m=Zr(f,c,1,"valid",i);return h?q(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var sm=O({separableConv2d_:kT});async function IT(e,t){let n=R(e,"x","setdiff1d"),r=R(t,"y","setdiff1d");F(n.dtype===r.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${r.dtype}).`),F(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),F(r.rank===1,()=>`y should be 1D tensor, but got y (${r.shape}).`);let a=await n.data(),s=await r.data(),i=new Set(s),o=0;for(let u=0;u<a.length;u++)i.has(a[u])||o++;let l=new $t([o],n.dtype),c=new $t([o],"int32");for(let u=0,h=0;u<a.length;u++)i.has(a[u])||(l.values[h]=a[u],c.values[h]=u,h++);return[l.toTensor(),c.toTensor()]}var m0=IT;function NT(e){let t={x:R(e,"x","sign")};return D.runKernel(Ro,t)}var im=O({sign_:NT});function ST(e){let t={x:R(e,"x","sin")};return D.runKernel(Ms,t)}var yd=O({sin_:ST});function TT(e){let t={x:R(e,"x","sinh")};return D.runKernel(Co,t)}var gd=O({sinh_:TT});function ET(e,t,n){let r=R(e,"x","slice1d");return F(r.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${r.rank} tensor`),Me(r,[t],[n])}var xd=O({slice1d_:ET});function CT(e,t,n){let r=R(e,"x","slice2d");return F(r.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${r.rank} tensor`),Me(r,t,n)}var om=O({slice2d_:CT});function RT(e,t,n){let r=R(e,"x","slice3d");return F(r.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${r.rank} tensor`),Me(r,t,n)}var wd=O({slice3d_:RT});function FT(e,t,n){let r=R(e,"x","slice4d");return F(r.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${r.rank} tensor`),Me(r,t,n)}var zu=O({slice4d_:FT});function MT(e,t=-1){let n=R(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let r={logits:n},a={dim:t};return D.runKernel(zs,r,a)}var Pu=O({softmax_:MT});function $T(e){F(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return D.runKernel(Mh,t)}var Lu=O({fft_:$T});function DT(e){F(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return D.runKernel($h,t)}var Jo=O({ifft_:DT});function OT(e){let t=e.shape[e.shape.length-1],n=e.size/t,r;if(t<=2){let a=q(e,[n,t]);r=Jo(a)}else{let a=[n,2*(t-1)],s=q(Ou(e),[n,t]),i=q(id(e),[n,t]),o=Sn(Me(s,[0,1],[n,t-2]),1),l=L(Sn(Me(i,[0,1],[n,t-2]),1),Se(-1)),c=ct([s,o],1),u=ct([i,l],1),h=q(xa(c,u),[a[0],a[1]]);r=Jo(h)}if(r=Ou(r),e.rank===3&&e.shape[0]!==0){let a=r,s=e.shape[0];r=q(r,[s,r.shape[0]/s,r.shape[1]]),a.dispose()}return r}var _d=O({irfft_:OT});function zT(e,t,n=0){let r={x:R(e,"x","split")},a={numOrSizeSplits:t,axis:n};return D.runKernel(Mo,r,a)}var sn=O({split_:zT});function PT(e,t){F(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],r=e.size/n,a;if(t!=null&&t<n){let f=e.shape.map(A=>0),m=e.shape.map(A=>A);m[e.shape.length-1]=t,a=Me(e,f,m),n=t}else if(t!=null&&t>n){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-n,a=ct([e,Ct(f)],e.shape.length-1),n=t}else a=e;let s=He(a),i=q(xa(a,s),[r,n]),o=Lu(i),l=Math.floor(n/2)+1,c=Ou(o),u=id(o),h=sn(c,[l,n-l],c.shape.length-1),d=sn(u,[l,n-l],u.shape.length-1),p=a.shape.slice();return p[a.shape.length-1]=l,q(xa(h[0],d[0]),p)}var Wu=O({rfft_:PT});function LT(e){let t={x:R(e,"x","sqrt")};return D.runKernel(Ds,t)}var Kt=O({sqrt_:LT});function WT(e,t){let n=R(e,"a","squaredDifference"),r=R(t,"b","squaredDifference");[n,r]=vt(n,r),At(n.shape,r.shape);let a={a:n,b:r},s={};return D.runKernel(Ps,a,s)}var bd=O({squaredDifference_:WT});function BT(e,t){let n=R(e,"x","squeeze");return q(n,G0(n.shape,t).newShape)}var va=O({squeeze_:BT});function VT(e,t=0){let n=Qu(e,"tensors","stack","string_or_numeric");F(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&F(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let r=n,a={axis:t};return D.runKernel(bo,r,a)}var Tn=O({stack_:VT});function UT(e,t=0){let n={x:R(e,"x","step")},r={alpha:t};return D.runKernel(ga,n,r)}var Yo=O({step_:UT});function HT(e,t,n,r,a=0,s=0,i=0,o=0,l=0){let c={x:R(e,"x","stridedSlice")},u={begin:t,end:n,strides:r,beginMask:a,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return D.runKernel($o,c,u)}var lm=O({stridedSlice_:HT});function jT(e){let t={x:R(e,"x","tan")};return D.runKernel(Do,t)}var um=O({tan_:jT});function en(e,t){Zs(e);let n=zr(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Sa(e,null,n,t)}function fr(e,t,n){if(Zs(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let r=zr(e,n);if(r.length!==2&&r.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Sa(e,t,r,n)}function T8(e,t,n){if(Zs(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let r=zr(e,n);if(r.length!==4&&r.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Sa(e,t,r,n)}function E8(e,t,n){if(Zs(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let r=zr(e,n);if(r.length!==5&&r.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Sa(e,t,r,n)}function C8(e,t,n){if(Zs(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let r=zr(e,n);if(r.length!==6&&r.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||r,Sa(e,t,r,n)}function GT(e,t=1,n=!0){let r=R(e,"x","topk");if(r.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let a=r.shape[r.shape.length-1];if(t>a)throw new Error(`'k' passed to topk() must be <= the last dimension (${a}) but got ${t}`);let s={x:r},i={k:t,sorted:n},[o,l]=D.runKernel(Oo,s,i);return{values:o,indices:l}}var cm=O({topk_:GT});function qT(e,t=0,n=1,r,a){if(r!=null&&r==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new nA(t,n,r,!0,a),i=We(e,r);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var vd=O({truncatedNormal_:qT});function XT(e,t=0){let n=R(e,"x","unique","string_or_numeric");F(n.rank>0,()=>"The input tensor must be at least 1D");let r={x:n},a={axis:t},[s,i]=D.runKernel(Gh,r,a);return{values:s,indices:i}}var kd=O({unique_:XT});function KT(e,t,n){let r=R(e,"x","unsortedSegmentSum"),a=R(t,"segmentIds","unsortedSegmentSum","int32");F(Ht(n),()=>"numSegments must be of dtype int");let s={x:r,segmentIds:a},i={numSegments:n};return D.runKernel(xu,s,i)}var hm=O({unsortedSegmentSum_:KT});function ZT(e,t=0){let n=R(e,"x","unstack","string_or_numeric");F(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let r={value:n},a={axis:t};return D.runKernel(zo,r,a)}var nr=O({unstack_:ZT});function A0(e,t=!0,n,r){return D.makeVariable(e,t,n,r)}function K5(e,t){let n=[];for(let s=0;s<t.length;s++)t[s]&&n.push(s);let r=We(e,"int32"),a=We([n.length,e.length],"int32");for(let s=0;s<n.length;s++){let i=r.indexToLoc(n[s]),o=s*e.length;a.values.set(i,o)}return a.toTensor()}async function JT(e){let t=R(e,"condition","whereAsync","bool"),n=await t.data(),r=K5(t.shape,n);return e!==t&&t.dispose(),r}var dm=JT;async function YT(e,t,n){let r=R(e,"tensor","boolMask"),a=R(t,"mask","boolMask","bool"),s=n==null?0:n,i=a.rank,o=r.shape;F(i>0,()=>"mask cannot be scalar"),tn(o.slice(s,s+i),a.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let m=s;m<s+i;m++)l*=o[m];let c=o.slice(0,s).concat([l],o.slice(s+i)),u=q(r,c),h=q(a,[-1]),d=await dm(h),p=va(d,[1]),f=Gs(u,p,s);return e!==r&&r.dispose(),t!==a&&a.dispose(),p.dispose(),u.dispose(),h.dispose(),d.dispose(),f}var R8=YT;function QT(e,t="euclidean",n=null,r=!1){e=R(e,"x","norm");let a=Z5(e,t,n),s=a.shape;if(r){let i=ar(n,e.shape);s=ri(a.shape,i)}return q(a,s)}function Z5(e,t,n=null){if(e.rank===0)return Dt(e);if(e.rank!==1&&n===null)return Z5(q(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return Te(Dt(e),n);if(t===Infinity)return Wn(Dt(e),n);if(t===-Infinity)return Xo(Dt(e),n);if(t==="euclidean"||t===2)return Kt(Te(Yr(Dt(e),Se(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return Wn(Te(Dt(e),n[0]),n[1]-1);if(t===Infinity)return Wn(Te(Dt(e),n[1]),n[0]);if(t===-Infinity)return Xo(Te(Dt(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return Kt(Te(ot(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var Id=O({norm_:QT});function eE(e,t,n,r,a=!0){let s=R(e,"v","movingAverage"),i=R(t,"x","movingAverage"),o=R(n,"decay","movingAverage");s5(s,i),F(ta(s.shape,i.shape),()=>"Shape mismatch in v and x");let l=Se(1),c=we(l,o),u=L(we(i,s),c);if(a){F(r!=null,()=>"When using zeroDebias: true, step is required.");let h=R(r,"step","movingAverage");u=Ne(u,we(l,Yr(o,h)))}return oe(s,u)}var F8=O({movingAverage_:eE});function tE(e,t,n){let r=R(e,"indices","scatterND","int32"),a=R(t,"updates","scatterND");Gm(a,r,n);let s={indices:r,updates:a},i={shape:n};return D.runKernel(No,s,i)}var y0=O({scatterND_:tE});function nE(e,t,n,r){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let a=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===a))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${a}]`);if(t.dtype!==r.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function rE(e,t,n,r=0){let a=R(e,"sparseIndices","sparseToDense","int32"),s=R(t,"sparseValues","sparseToDense"),i=R(r,"defaultValue","sparseToDense",s.dtype);nE(a,s,n,i);let o={sparseIndices:a,sparseValues:s,defaultValue:i},l={outputShape:n};return D.runKernel(jh,o,l)}var pm=O({sparseToDense_:rE});function aE(e,t){let n=R(t,"indices","gatherND","int32"),r={params:R(e,"x","gatherND"),indices:n};return D.runKernel(so,r)}var g0=O({gatherND_:aE});function sE(e,t){if(t==null)return e.shape.slice();if(ta(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let r=0;r<e.shape.length;r++)t[r]==null&&e.shape[r]!=null?n.push(e.shape[r]):n.push(t[r]);return n}return t}function iE(e,t,n,r){let a=R(e,"x","dropout");if(F(a.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${a.dtype} tensor instead.`),F(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof et?a.clone():a;let s=sE(a,n),i=1-t,o=Ne(Go(oe(Zo(s,0,1,"float32",r),i)),i);return L(a,o)}var x0=O({dropout_:iE});function w0(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function fm(e,t,n){let r=1-e%2,a=new Float32Array(e);for(let s=0;s<e;++s){let i=2*Math.PI*s/(e+r-1);a[s]=t-n*Math.cos(i)}return en(a,"float32")}async function oE(e,t,n=1){let r=R(e,"predictions","inTopK"),a=R(t,"targets","inTopK");F(r.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${r.rank}`),F(r.rank-1===a.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${r.rank} and targets rank ${a.rank}`),tn(r.shape.slice(0,r.shape.length-1),a.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=r.shape[r.shape.length-1];F(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await r.data(),o=await a.data(),[l,c]=[i.length/s,s],u=q0("bool",l);for(let h=0;h<l;h++){let d=h*c,p=i.subarray(d,d+c),f=[];for(let m=0;m<p.length;m++)f.push({value:p[m],index:m});f.sort((m,A)=>A.value-m.value),u[h]=0;for(let m=0;m<n;m++)if(f[m].index===o[h]){u[h]=1;break}}return e!==r&&r.dispose(),t!==a&&a.dispose(),pr(u,a.shape,"bool")}var M8=oE,ka={};ze(ka,{conv2d:()=>lE,depthwiseConv2d:()=>uE,matMul:()=>cE});function hE(e,t,n,r,a,s="NHWC",i){let o=e;e.rank===3&&(o=q(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=q(t,[1,t.shape[0],t.shape[1],t.shape[2]])),F(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),F(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),F(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let c=s==="NHWC"?o.shape[3]:o.shape[1],u=s==="NHWC"?l.shape[3]:l.shape[1];F(c===n[2],()=>`Error in conv2dDerFilter: depth of input ${c}) must match input depth in filter (${n[2]}.`),F(u===n[3],()=>`Error in conv2dDerFilter: depth of dy (${u}) must match output depth for filter (${n[3]}).`),i!=null&&F(Ht(a),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let h={x:o,dy:l},d={strides:r,pad:a,dataFormat:s,dimRoundingMode:i,filterShape:n};return D.runKernel(vh,h,d)}var rA=O({conv2DBackpropFilter_:hE});function Gd(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return L(e,Yo(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function qd(e,t){let n=t,r=zt(e.shape,t.shape);return r.length>0&&(n=Te(n,r)),q(n,e.shape)}function Xd(e,t,n,r){if(t==="linear")return e;if(t==="relu")return Fr(e);if(t==="elu")return jo(e);if(t==="relu6")return fd(e);if(t==="prelu")return Du(e,n);if(t==="leakyrelu")return Ru(e,r);throw new Error(`Unknown fused activation ${t}.`)}var Kd=(e,t)=>!(e>0)||t==="linear";function dE({x:e,filter:t,strides:n,pad:r,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(l=l||"linear",Kd(D.state.gradientDepth,l)===!1){let w=Zr(e,t,n,r,a,s,i);return o!=null&&(w=oe(w,o)),Xd(w,l,c,u)}let h=R(e,"x","conv2d"),d=R(t,"filter","conv2d"),p=h,f=!1;h.rank===3&&(f=!0,p=q(h,[1,h.shape[0],h.shape[1],h.shape[2]])),F(p.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${p.rank}.`),F(d.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${d.rank}.`),i!=null&&F(Ht(r),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`),F(p.shape[3]===d.shape[2],()=>`Error in conv2d: depth of input (${p.shape[3]}) must match input depth for filter ${d.shape[2]}.`),F(Pr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),F(a==="NHWC",()=>`Error in conv2d: got dataFormat of ${a} but only NHWC is currently supported.`);let m=tc(p.shape,d.shape,n,s,r,i),A;o!=null&&(A=R(o,"bias","fused conv2d"),[A]=vt(A,h),At(m.outShape,A.shape));let y;c!=null&&(y=R(c,"prelu weights","fused conv2d"));let g=(w,_)=>{let[N,T,E,M]=_,z=Gd(w,E,l);F(Ca(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let P=Ym(T.shape,z,N,n,r),B=rA(T,z,N.shape,n,r),G=[P,B];if(M!=null){let V=qd(M,z);G.push(V)}return G},b={x:p,filter:d,bias:A,preluActivationWeights:y},x={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:u};return o==null?Er((w,_,N)=>{let T=D.runKernel(Us,b,x);return N([_,w,T]),f&&(T=q(T,[T.shape[1],T.shape[2],T.shape[3]])),{value:T,gradFunc:g}})(p,d):Er((w,_,N,T)=>{let E=D.runKernel(Us,b,x);return T([_,w,E,N]),f&&(E=q(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:g}})(p,d,A)}var lE=O({fusedConv2d_:dE});function pE(e,t,n,r,a,s=[1,1],i){let o=e;e.rank===3&&(o=q(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=q(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={x:o,dy:l},u={strides:r,pad:a,dimRoundingMode:i,dilations:s,filterShape:n};return D.runKernel(Sh,c,u)}var J5=O({depthwiseConv2dNativeBackpropFilter_:pE});function fE(e,t,n,r,a,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=q(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={dy:o,filter:n},u={strides:r,pad:a,dimRoundingMode:i,dilations:s,inputShape:e},h=D.runKernel(Th,c,u);return l?q(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Y5=O({depthwiseConv2dNativeBackpropInput_:fE});function mE({x:e,filter:t,strides:n,pad:r,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(Kd(D.state.gradientDepth,l)===!1){let w=Ho(e,t,n,r,a,s,i);return o!=null&&(w=oe(w,o)),Xd(w,l,c,u)}let h=R(e,"x","depthwiseConv2d"),d=R(t,"filter","depthwiseConv2d"),p=h,f=!1;h.rank===3&&(f=!0,p=q(h,[1,h.shape[0],h.shape[1],h.shape[2]])),F(p.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${p.rank}.`),F(d.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${d.rank}.`),F(p.shape[3]===d.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${p.shape[3]}) must match the inChannels dimension in filter ${d.shape[2]}.`),s==null&&(s=[1,1]),F(Pr(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),i!=null&&F(Ht(r),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${i} but got pad ${r}.`);let m=tc(p.shape,d.shape,n,s,r,i,!0),A;o!=null&&(A=R(o,"bias","fused conv2d"),[A]=vt(A,h),At(m.outShape,A.shape));let y;c!=null&&(y=R(c,"prelu weights","fused depthwiseConv2d"));let g=(w,_)=>{F(Ca(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[N,T,E,M]=_,z=Gd(w,E,l),P=Y5(T.shape,z,N,n,r,s,i),B=J5(T,z,N.shape,n,r,s,i);if(M!=null){let G=qd(A,z);return[P,B,G]}return[P,B]},b={x:p,filter:d,bias:A,preluActivationWeights:y},x={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:u};return o==null?Er((w,_,N)=>{let T=D.runKernel(Hs,b,x);return N([_,w,T]),f&&(T=q(T,[T.shape[1],T.shape[2],T.shape[3]])),{value:T,gradFunc:g}})(p,d):Er((w,_,N,T)=>{let E=D.runKernel(Hs,b,x);return T([_,w,E,N]),f&&(E=q(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:g}})(p,d,A)}var uE=O({fusedDepthwiseConv2d_:mE});function AE({a:e,b:t,transposeA:n=!1,transposeB:r=!1,bias:a,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(Kd(D.state.gradientDepth,s)===!1){let M=qe(e,t,n,r);return a!=null&&(M=oe(M,a)),Xd(M,s,i,o)}let l=R(e,"a","fused matMul"),c=R(t,"b","fused matMul");[l,c]=vt(l,c);let u=n?l.shape[l.rank-2]:l.shape[l.rank-1],h=r?c.shape[c.rank-1]:c.shape[c.rank-2],d=n?l.shape[l.rank-1]:l.shape[l.rank-2],p=r?c.shape[c.rank-2]:c.shape[c.rank-1],f=l.shape.slice(0,-2),m=c.shape.slice(0,-2),A=Ot(f),y=Ot(m);F(l.rank>=2&&c.rank>=2&&l.rank===c.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${c.rank}.`),F(ta(f,m),()=>`Error in fused matMul: outer dimensions (${f}) and (${m}) of Tensors with shapes ${l.shape} and ${c.shape} must match.`),F(u===h,()=>`Error in fused matMul: inner shapes (${u}) and (${h}) of Tensors with shapes ${l.shape} and ${c.shape} and transposeA=${n} and transposeB=${r} must match.`);let g=l.shape.slice(0,-2).concat([d,p]),b=n?q(l,[A,u,d]):q(l,[A,d,u]),x=r?q(c,[y,p,h]):q(c,[y,h,p]),w;a!=null&&(w=R(a,"bias","fused matMul"),[w]=vt(w,l),At(g,w.shape));let _;i!=null&&(_=R(i,"prelu weights","fused matMul"));let N=(M,z)=>{let[P,B,G,V]=z,K=Gd(q(M,G.shape),G,s),X,ee;if(!n&&!r?(X=qe(K,B,!1,!0),ee=qe(P,K,!0,!1)):!n&&r?(X=qe(K,B,!1,!1),ee=qe(K,P,!0,!1)):n&&!r?(X=qe(B,K,!1,!0),ee=qe(P,K,!1,!1)):(X=qe(B,K,!0,!0),ee=qe(K,P,!0,!0)),a!=null){let J=qd(V,K);return[X,ee,J]}else return[X,ee]},T={a:b,b:x,bias:w,preluActivationWeights:_},E={transposeA:n,transposeB:r,activation:s,leakyreluAlpha:o};return a==null?Er((M,z,P)=>{let B=D.runKernel(Vs,T,E);return P([M,z,B]),{value:q(B,g),gradFunc:N}})(b,x):Er((M,z,P,B)=>{let G=D.runKernel(Vs,T,E);return B([M,z,G,P]),{value:q(G,g),gradFunc:N}})(b,x,w)}var cE=O({fusedMatMul_:AE});function yE(e){return fm(e,.54,.46)}var gE=O({hammingWindow_:yE});function xE(e){return fm(e,.5,.5)}var Q5=O({hannWindow_:xE});function wE(e,t,n,r=!1,a=0){let s=0,i=[];for(;s+t<=e.size;)i.push(Me(e,s,t)),s+=n;if(r)for(;s<e.size;){let o=s+t-e.size,l=ct([Me(e,s,t-o),Cu([o],a)]);i.push(l),s+=n}return i.length===0?fr([],[0,t]):q(ct(i),[i.length,t])}var ex=O({frame_:wE});function _E(e,t,n,r,a=Q5){r==null&&(r=w0(t));let s=ex(e,t,n),i=L(s,a(t)),o=[];for(let l=0;l<s.shape[0];l++)o.push(Wu(Me(i,[l,0],[1,t]),r));return ct(o)}var bE=O({stft_:_E});function vE(e,t,n,r,a="bilinear",s=0){let i=R(e,"image","cropAndResize"),o=R(t,"boxes","cropAndResize","float32"),l=R(n,"boxInd","cropAndResize","int32"),c=o.shape[0];F(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),F(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${c},4] but had shape ${o.shape}.`),F(l.rank===1&&l.shape[0]===c,()=>`Error in cropAndResize: boxInd must be have size [${c}] but had shape ${o.shape}.`),F(r.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${r.length}.`),F(r[0]>=1&&r[1]>=1,()=>`cropSize must be atleast [1,1], but was ${r}`),F(a==="bilinear"||a==="nearest",()=>`method must be bilinear or nearest, but was ${a}`);let u={image:i,boxes:o,boxInd:l},h={method:a,extrapolationValue:s,cropSize:r};return D.runKernel(Zi,u,h)}var kE=O({cropAndResize_:vE});function IE(e){let t=R(e,"image","flipLeftRight","float32");F(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return D.runKernel(ro,n,{})}var NE=O({flipLeftRight_:IE});function SE(e,t,n=0,r=.5){let a=R(e,"image","rotateWithOffset","float32");F(a.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${a.rank}.`);let s={image:a},i={radians:t,fillValue:n,center:r};return D.runKernel(Lo,s,i)}var TE=O({rotateWithOffset_:SE});function cl(e,t,n,r,a,s){r==null&&(r=.5),a==null&&(a=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),F(0<=r&&r<=1,()=>`iouThreshold must be in [0, 1], but was '${r}'`),F(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),F(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),F(t.rank===1,()=>"scores must be a 1D tensor"),F(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),F(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:r,scoreThreshold:a,softNmsSigma:s}}function EE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY){let s=R(e,"boxes","nonMaxSuppression"),i=R(t,"scores","nonMaxSuppression"),o=cl(s,i,n,r,a);n=o.maxOutputSize,r=o.iouThreshold,a=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:r,scoreThreshold:a};return D.runKernel(go,{boxes:s,scores:i},l)}var CE=O({nonMaxSuppression_:EE});function FE(e,t,n){let r=RE(e,t,n),a=r<0?-(r+1):r;e.splice(a,0,t)}function RE(e,t,n){return $E(e,t,n||ME)}function ME(e,t){return e>t?1:e<t?-1:0}function $E(e,t,n){let r=0,a=e.length,s=0,i=!1;for(;r<a;){s=r+(a-r>>>1);let o=n(t,e[s]);o>0?r=s+1:(a=s,i=!o)}return i?r:-r-1}function tx(e,t,n,r,a){return aA(e,t,n,r,a,0)}function nx(e,t,n,r,a,s){return aA(e,t,n,r,a,0,!1,s,!0)}function rx(e,t,n,r,a,s){return aA(e,t,n,r,a,s,!0)}function aA(e,t,n,r,a,s,i=!1,o=!1,l=!1){let c=[];for(let A=0;A<t.length;A++)t[A]>a&&c.push({score:t[A],boxIndex:A,suppressBeginIndex:0});c.sort(ax);let u=s>0?-.5/s:0,h=[],d=[];for(;h.length<n&&c.length>0;){let A=c.pop(),{score:y,boxIndex:g,suppressBeginIndex:b}=A;if(y<a)break;let x=!1;for(let w=h.length-1;w>=b;--w){let _=DE(e,g,h[w]);if(_>=r){x=!0;break}if(A.score=A.score*OE(r,u,_),A.score<=a)break}A.suppressBeginIndex=h.length,x||(A.score===y?(h.push(g),d.push(A.score)):A.score>a&&FE(c,A,ax))}let p=h.length,f=n-p;o&&f>0&&(h.push(...new Array(f).fill(0)),d.push(...new Array(f).fill(0)));let m={selectedIndices:h};return i&&(m.selectedScores=d),l&&(m.validOutputs=p),m}function DE(e,t,n){let r=e.subarray(t*4,t*4+4),a=e.subarray(n*4,n*4+4),s=Math.min(r[0],r[2]),i=Math.min(r[1],r[3]),o=Math.max(r[0],r[2]),l=Math.max(r[1],r[3]),c=Math.min(a[0],a[2]),u=Math.min(a[1],a[3]),h=Math.max(a[0],a[2]),d=Math.max(a[1],a[3]),p=(o-s)*(l-i),f=(h-c)*(d-u);if(p<=0||f<=0)return 0;let m=Math.max(s,c),A=Math.max(i,u),y=Math.min(o,h),g=Math.min(l,d),b=Math.max(y-m,0)*Math.max(g-A,0);return b/(p+f-b)}function OE(e,t,n){let r=Math.exp(t*n*n);return n<=e?r:0}function ax(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function zE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY){let s=R(e,"boxes","nonMaxSuppressionAsync"),i=R(t,"scores","nonMaxSuppressionAsync"),o=cl(s,i,n,r,a);n=o.maxOutputSize,r=o.iouThreshold,a=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),c=l[0],u=l[1],{selectedIndices:h}=tx(c,u,n,r,a);return s!==e&&s.dispose(),i!==t&&i.dispose(),en(h,"int32")}var PE=zE;function LE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=R(e,"boxes","nonMaxSuppression"),o=R(t,"scores","nonMaxSuppression"),l=cl(i,o,n,r,a,s);n=l.maxOutputSize,r=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let c={boxes:i,scores:o},u={maxOutputSize:n,iouThreshold:r,scoreThreshold:a,softNmsSigma:s},h=D.runKernel(wo,c,u);return{selectedIndices:h[0],selectedScores:h[1]}}var WE=O({nonMaxSuppressionWithScore_:LE});async function BE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=R(e,"boxes","nonMaxSuppressionAsync"),o=R(t,"scores","nonMaxSuppressionAsync"),l=cl(i,o,n,r,a,s);n=l.maxOutputSize,r=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let c=await Promise.all([i.data(),o.data()]),u=c[0],h=c[1],{selectedIndices:d,selectedScores:p}=rx(u,h,n,r,a,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:en(d,"int32"),selectedScores:en(p)}}var VE=BE;function UE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=R(e,"boxes","nonMaxSuppression"),o=R(t,"scores","nonMaxSuppression"),l=cl(i,o,n,r,a,null),c=l.maxOutputSize,u=l.iouThreshold,h=l.scoreThreshold,d={boxes:i,scores:o},p={maxOutputSize:c,iouThreshold:u,scoreThreshold:h,padToMaxOutputSize:s},f=D.runKernel(xo,d,p);return{selectedIndices:f[0],validOutputs:f[1]}}var HE=O({nonMaxSuppressionPadded_:UE});async function jE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=R(e,"boxes","nonMaxSuppressionAsync"),o=R(t,"scores","nonMaxSuppressionAsync"),l=cl(i,o,n,r,a,null),c=l.maxOutputSize,u=l.iouThreshold,h=l.scoreThreshold,[d,p]=await Promise.all([i.data(),o.data()]),{selectedIndices:f,validOutputs:m}=nx(d,p,c,u,h,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:en(f,"int32"),validOutputs:Se(m,"int32")}}var GE=jE;function qE(e,t,n=!1,r=!1){let a=R(e,"images","resizeBilinear");F(a.rank===3||a.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${a.rank}.`),F(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),F(r===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=q(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:r,size:t},c=D.runKernel(Ts,o,l);return i?q(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var sx=O({resizeBilinear_:qE});function XE(e,t,n=!1,r=!1){let a=R(e,"images","resizeNearestNeighbor");F(a.rank===3||a.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${a.rank}.`),F(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),F(a.dtype==="float32"||a.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),F(r===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=q(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:r,size:t},c=D.runKernel(Au,o,l);return i?q(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var ix=O({resizeNearestNeighbor_:XE});function KE(e,t,n){F(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),F(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let r=R(e,"a","bandPart");F(r.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${r.rank}.`);let a=r.shape,[s,i]=r.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=q(pd(0,s,1,"int32"),[-1,1]),l=pd(0,i,1,"int32"),c=we(o,l),u=tr(qs(c,Se(+t,"int32")),ba(c,Se(-n,"int32"))),h=Ct([s,i],r.dtype);return q(Tn(nr(q(r,[-1,s,i])).map(d=>mn(u,d,h))),a)}var ZE=O({bandPart_:KE});function JE(e){let t;if(Array.isArray(e)){t=!1,F(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let a=e[0].shape[0];for(let s=1;s<e.length;++s)F(e[s].shape[0]===a,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${a})`)}else t=!0,e=sn(e,e.shape[0],0).map(a=>va(a,[0]));F(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],r=e;for(let a=0;a<e.length;++a)n.push(D.tidy(()=>{let s=r[a];if(a>0)for(let i=0;i<a;++i){let o=L(Te(L(n[i],s)),n[i]);s=we(s,o)}return Ne(s,Id(s,"euclidean"))}));return t?Tn(n,0):n}var YE=O({gramSchmidt_:JE});function QE(e,t=!1){if(F(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return ox(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,c)=>l*c),r=nr(q(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),a=[],s=[];r.forEach(l=>{let[c,u]=ox(l,t);a.push(c),s.push(u)});let i=q(Tn(a,0),e.shape),o=q(Tn(s,0),e.shape);return[i,o]}}function ox(e,t=!1){return D.tidy(()=>{F(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],r=e.shape[1],a=Jf(n),s=Sr(e),i=fr([[1]],[1,1]),o=Sr(i),l=n>=r?r:n;for(let c=0;c<l;++c){let u=s,h=o,d=a;[o,s,a]=D.tidy(()=>{let p=Me(s,[c,c],[n-c,1]),f=Id(p),m=Me(s,[c,c],[1,1]),A=mn(er(m,0),fr([[-1]]),fr([[1]])),y=we(m,L(A,f)),g=Ne(p,y);g.shape[0]===1?o=Sr(i):o=ct([i,Me(g,[1,0],[g.shape[0]-1,g.shape[1]])],0);let b=_t(Ne(qe(A,y),f)),x=Me(s,[c,0],[n-c,r]),w=L(b,o),_=at(o);if(c===0)s=we(x,qe(w,qe(_,x)));else{let E=we(x,qe(w,qe(_,x)));s=ct([Me(s,[0,0],[c,r]),E],0)}let N=at(w),T=Me(a,[0,c],[n,a.shape[1]-c]);if(c===0)a=we(T,qe(qe(T,o),N));else{let E=we(T,qe(qe(T,o),N));a=ct([Me(a,[0,0],[n,c]),E],1)}return[o,s,a]}),Fe([u,h,d])}return!t&&n>r&&(a=Me(a,[0,0],[n,r]),s=Me(s,[0,0],[r,r])),[a,s]})}var eC=O({qr_:QE}),on;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(on||(on={}));function tC(e,t,n=on.SUM_BY_NONZERO_WEIGHTS){let r=R(e,"losses","computeWeightedLoss"),a=null;t!=null&&(a=R(t,"weights","computeWeightedLoss"));let s=a==null?r:L(r,a);if(n===on.NONE)return s;if(n===on.SUM)return Te(s);if(n===on.MEAN){if(a==null)return bt(s);{let i=r.size/a.size,o=Ne(Te(s),Te(a));return i>1?Ne(o,Se(i)):o}}if(n===on.SUM_BY_NONZERO_WEIGHTS){if(a==null)return Ne(Te(s),Se(r.size));{let i=L(a,Rr(r.shape)),o=ye(Te(Xs(i,Se(0))),"float32");return Ne(Te(s),o)}}throw Error(`Unknown reduction: ${n}`)}var ra=O({computeWeightedLoss_:tC});function nC(e,t,n,r=on.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","absoluteDifference"),s=R(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=R(n,"weights","absoluteDifference")),tn(a.shape,s.shape,"Error in absoluteDifference: ");let o=Dt(we(a,s));return ra(o,i,r)}var rC=O({absoluteDifference_:nC});function aC(e,t,n,r,a=on.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","cosineDistance"),i=R(t,"predictions","cosineDistance"),o=null;r!=null&&(o=R(r,"weights","cosineDistance")),tn(s.shape,i.shape,"Error in cosineDistance: ");let l=Se(1),c=we(l,Te(L(s,i),n,!0));return ra(c,o,a)}var sC=O({cosineDistance_:aC});function iC(e,t,n,r=on.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","hingeLoss"),s=R(t,"predictions","hingeLoss"),i=null;n!=null&&(i=R(n,"weights","hingeLoss")),tn(a.shape,s.shape,"Error in hingeLoss: ");let o=Se(1);a=we(L(Se(2),a),o);let l=Fr(we(o,L(a,s)));return ra(l,i,r)}var oC=O({hingeLoss_:iC});function lC(e,t,n,r=1,a=on.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","huberLoss"),i=R(t,"predictions","huberLoss"),o=null;n!=null&&(o=R(n,"weights","huberLoss")),tn(s.shape,i.shape,"Error in huberLoss: ");let l=Se(r),c=Dt(we(i,s)),u=Ko(c,l),h=we(c,u),d=oe(L(Se(.5),ot(u)),L(l,h));return ra(d,o,a)}var uC=O({huberLoss_:lC});function cC(e,t,n,r=1e-7,a=on.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","logLoss"),i=R(t,"predictions","logLoss"),o=null;n!=null&&(o=R(n,"weights","logLoss")),tn(s.shape,i.shape,"Error in logLoss: ");let l=Se(1),c=Se(r),u=_t(L(s,In(oe(i,c)))),h=L(we(l,s),In(oe(we(l,i),c))),d=we(u,h);return ra(d,o,a)}var hC=O({logLoss_:cC});function dC(e,t,n,r=on.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","meanSquaredError"),s=R(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=R(n,"weights","meanSquaredError")),tn(a.shape,s.shape,"Error in meanSquaredError: ");let o=bd(a,s);return ra(o,i,r)}var pC=O({meanSquaredError_:dC});function fC(e,t){let n=R(e,"labels","sigmoidCrossEntropyWithLogits"),r=R(t,"logits","sigmoidCrossEntropyWithLogits");tn(n.shape,r.shape,"Error in sigmoidCrossEntropyWithLogits: ");let a=Fr(r),s=L(r,n),i=ld(Ln(_t(Dt(r))));return oe(we(a,s),i)}function mC(e,t,n,r=0,a=on.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"multiClassLabels","sigmoidCrossEntropy"),i=R(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=R(n,"weights","sigmoidCrossEntropy")),tn(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),r>0){let c=Se(r),u=Se(1),h=Se(.5);s=oe(L(s,we(u,c)),L(h,c))}let l=fC(s,i);return ra(l,o,a)}var AC=O({sigmoidCrossEntropy_:mC});function yC(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return Er((r,a,s)=>{let i=Qf(a,[n],!0),o=we(ye(a,"float32"),i);s([r,o]);let l=_t(L(o,r));return{value:Te(l,[n]),gradFunc:(c,u)=>{let[h,d]=u,p=ri(c.shape,[n]);return[L(q(c,p),we(ye(h,"float32"),Ln(d))),L(q(c,p),we(Ln(d),ye(h,"float32")))]}}})(e,t)}function gC(e,t,n,r=0,a=on.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"onehotLabels","softmaxCrossEntropy"),i=R(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=R(n,"weights","softmaxCrossEntropy")),tn(s.shape,i.shape,"Error in softmaxCrossEntropy: "),r>0){let c=Se(r),u=Se(1),h=Se(s.shape[1]);s=oe(L(s,we(u,c)),Ne(c,h))}let l=yC(s,i);return ra(l,o,a)}var xC=O({softmaxCrossEntropy_:gC}),$8={fft:Lu,ifft:Jo,rfft:Wu,irfft:_d},D8={hammingWindow:gE,hannWindow:Q5,frame:ex,stft:bE},St={flipLeftRight:NE,resizeNearestNeighbor:ix,resizeBilinear:sx,rotateWithOffset:TE,cropAndResize:kE,nonMaxSuppression:CE,nonMaxSuppressionAsync:PE,nonMaxSuppressionWithScore:WE,nonMaxSuppressionWithScoreAsync:VE,nonMaxSuppressionPadded:HE,nonMaxSuppressionPaddedAsync:GE},_0={bandPart:ZE,gramSchmidt:YE,qr:eC},O8={absoluteDifference:rC,computeWeightedLoss:ra,cosineDistance:sC,hingeLoss:oC,huberLoss:uC,logLoss:hC,meanSquaredError:pC,sigmoidCrossEntropy:AC,softmaxCrossEntropy:xC},Qr=class extends L5{minimize(e,t=!1,n){let{value:r,grads:a}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:a[i.name]}));this.applyGradients(s)}else this.applyGradients(a);return Fe(a),t?r:(r.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return l0(e,t)}dispose(){this.iterations_!=null&&Fe(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:Se(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Qr,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var Nd=class extends Qr{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=D.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=D.registeredVariables[t],a=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:U(()=>He(r).variable(a))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:U(()=>He(r).variable(a))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;U(()=>{let l=oe(L(i,this.rho),L(ot(s),1-this.rho)),c=L(Ne(Kt(oe(o,this.epsilon)),Kt(oe(i,this.epsilon))),s),u=oe(L(o,this.rho),L(ot(c),1-this.rho));i.assign(l),o.assign(u);let h=oe(L(c,-this.learningRate),r);r.assign(h)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Fe(this.accumulatedGrads.map(e=>e.variable)),Fe(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};Nd.className="Adadelta";Ea(Nd);var Sd=class extends Qr{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=D.registeredVariables[t];if(this.accumulatedGrads[n]==null){let i=!1;this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:U(()=>Cu(r.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let s=this.accumulatedGrads[n].variable;U(()=>{let i=oe(s,ot(a));s.assign(i);let o=oe(L(Ne(a,Kt(oe(i,D.backend.epsilon()))),-this.learningRate),r);r.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Fe(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};Sd.className="Adagrad";Ea(Sd);var Td=class extends Qr{constructor(e,t,n,r=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],U(()=>{this.accBeta1=Se(t).variable(),this.accBeta2=Se(n).variable()}),r==null&&(this.epsilon=D.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);U(()=>{let n=we(1,this.accBeta1),r=we(1,this.accBeta2);t.forEach((a,s)=>{let i=D.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:U(()=>He(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${a}/v`,variable:U(()=>He(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let c=this.accumulatedFirstMoment[s].variable,u=this.accumulatedSecondMoment[s].variable,h=oe(L(c,this.beta1),L(l,1-this.beta1)),d=oe(L(u,this.beta2),L(ot(l),1-this.beta2)),p=Ne(h,n),f=Ne(d,r);c.assign(h),u.assign(d);let m=oe(L(Ne(p,oe(Kt(f),this.epsilon)),-this.learningRate),i);i.assign(m)}),this.accBeta1.assign(L(this.accBeta1,this.beta1)),this.accBeta2.assign(L(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Fe(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Fe(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),U(()=>{this.accBeta1.assign(Yr(this.beta1,this.iterations_+1)),this.accBeta2.assign(Yr(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};Td.className="Adam";Ea(Td);var Ed=class extends Qr{constructor(e,t,n,r=null,a=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.decay=a,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],U(()=>{this.iteration=Se(0).variable(),this.accBeta1=Se(t).variable()}),r==null&&(this.epsilon=D.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);U(()=>{let n=we(1,this.accBeta1),r=Ne(-this.learningRate,oe(L(this.iteration,this.decay),1));t.forEach((a,s)=>{let i=D.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:He(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${a}/v`,variable:He(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let c=this.accumulatedFirstMoment[s].variable,u=this.accumulatedWeightedInfNorm[s].variable,h=oe(L(c,this.beta1),L(l,1-this.beta1)),d=L(u,this.beta2),p=Dt(l),f=Cr(d,p);c.assign(h),u.assign(f);let m=oe(L(Ne(r,n),Ne(h,oe(f,this.epsilon))),i);i.assign(m)}),this.iteration.assign(oe(this.iteration,1)),this.accBeta1.assign(L(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Fe(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Fe(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};Ed.className="Adamax";Ea(Ed);var Bu=class extends Qr{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let a=D.registeredVariables[t];U(()=>{let s=oe(L(this.c,r),a);a.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Vt(Se(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};Bu.className="SGD";Ea(Bu);var Cd=class extends Bu{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=Se(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=D.registeredVariables[t];if(this.accumulations[n]==null){let i=!1;this.accumulations[n]={originalName:`${t}/momentum`,variable:U(()=>He(r).variable(i))}}let a=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&U(()=>{let i,o=oe(L(this.m,a),s);this.useNesterov?i=oe(L(this.c,oe(s,L(o,this.m))),r):i=oe(L(this.c,o),r),a.assign(o),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Fe(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};Cd.className="Momentum";Ea(Cd);var Rd=class extends Qr{constructor(e,t=.9,n=0,r=null,a=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=r,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=a,r==null&&(this.epsilon=D.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=D.registeredVariables[t],a=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:U(()=>He(r).variable(a))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:U(()=>He(r).variable(a))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:U(()=>He(r).variable(a))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;U(()=>{let l=oe(L(i,this.decay),L(ot(s),1-this.decay));if(this.centered){let c=this.accumulatedMeanGrads[n].variable,u=oe(L(c,this.decay),L(s,1-this.decay)),h=Ne(L(s,this.learningRate),Kt(we(l,oe(ot(u),this.epsilon)))),d=oe(L(o,this.momentum),h);i.assign(l),c.assign(u),o.assign(d);let p=we(r,d);r.assign(p)}else{let c=oe(L(i,this.decay),L(ot(s),1-this.decay)),u=oe(L(o,this.momentum),Ne(L(s,this.learningRate),Kt(oe(c,this.epsilon))));i.assign(c),o.assign(u);let h=we(r,u);r.assign(h)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Fe(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Fe(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Fe(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};Rd.className="RMSProp";Ea(Rd);var ai=class{static sgd(e){return new Bu(e)}static momentum(e,t,n=!1){return new Cd(e,t,n)}static rmsprop(e,t=.9,n=0,r=null,a=!1){return new Rd(e,t,n,r,a)}static adam(e=.001,t=.9,n=.999,r=null){return new Td(e,t,n,r)}static adadelta(e=.001,t=.95,n=null){return new Nd(e,t,n)}static adamax(e=.002,t=.9,n=.999,r=null,a=0){return new Ed(e,t,n,r,a)}static adagrad(e,t=.1){return new Sd(e,t)}},Ks={sgd:ai.sgd,momentum:ai.momentum,adadelta:ai.adadelta,adagrad:ai.adagrad,rmsprop:ai.rmsprop,adamax:ai.adamax,adam:ai.adam},wC=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function Fd(){return new Promise(e=>wC(()=>e()))}var C={};ze(C,{ERF_A1:()=>RC,ERF_A2:()=>FC,ERF_A3:()=>MC,ERF_A4:()=>$C,ERF_A5:()=>DC,ERF_P:()=>CC,PARALLELIZE_THRESHOLD:()=>sA,SELU_SCALE:()=>ux,SELU_SCALEALPHA:()=>lx,applyActivation:()=>Xd,assertAndGetBroadcastShape:()=>At,assertAxesAreInnerMostDims:()=>IS,assertParamsConsistent:()=>_C,assignToTypedArray:()=>UC,axesAreInnerMostDims:()=>Qm,calculateShapes:()=>S5,combineLocations:()=>G5,complexWithEvenIndex:()=>WC,complexWithOddIndex:()=>BC,computeConv2DInfo:()=>tc,computeConv3DInfo:()=>H5,computeDefaultPad:()=>Jm,computeDilation2DInfo:()=>nN,computeOptimalWindowSize:()=>vC,computeOutAndReduceShapes:()=>q5,computeOutShape:()=>bC,computePool2DInfo:()=>U5,computePool3DInfo:()=>rN,convertConv2DDataFormat:()=>V5,eitherStridesOrDilationsAreOne:()=>Pr,expandShapeToKeepDim:()=>ri,exponent:()=>jC,exponents:()=>HC,fromStringArrayToUint8:()=>XC,fromUint8ToStringArray:()=>qC,getAxesPermutation:()=>X5,getBroadcastDims:()=>jN,getComplexWithIndex:()=>VC,getFusedBiasGradient:()=>qd,getFusedDyActivation:()=>Gd,getImageCenter:()=>kC,getInnerMostAxes:()=>NS,getPermuted:()=>NC,getReductionAxes:()=>zt,getReshaped:()=>IC,getReshapedPermuted:()=>SC,getSliceBeginCoords:()=>TC,getSliceSize:()=>EC,getUndoAxesPermutation:()=>eA,log:()=>zC,mergeRealAndImagArrays:()=>PC,prepareAndValidate:()=>N5,prepareSplitSize:()=>GC,segment_util:()=>cx,shouldFuse:()=>Kd,slice_util:()=>an,splitRealAndImagArrays:()=>LC,tupleValuesAreOne:()=>Ca,upcastType:()=>Yn,validateInput:()=>Gm,validateUpdateShape:()=>jm,warn:()=>OC});function _C(e,t){let n=e[0].length;e.forEach((a,s)=>{F(a.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),F(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let r=e[0];e.forEach((a,s)=>{for(let i=0;i<n;i++)F(i===t||a[i]===r[i],()=>`Error in concat${n}D: Shape of tensors[${s}] (${a}) does not match the shape of the rest (${r}) along the non-concatenated axis ${s}.`)})}function bC(e,t){let n=e[0].slice();for(let r=1;r<e.length;r++)n[t]+=e[r][t];return n}var sA=30;function vC(e){return e<=sA?e:Od(e,Math.floor(Math.sqrt(e)))}function kC(e,t,n){let r=n*(typeof e=="number"?e:e[0]),a=t*(typeof e=="number"?e:e[1]);return[r,a]}function IC(e,t,n,r=!0){let a=[];if(r)a=a.concat(t.slice(0)),a.push(e[0]/n),a=a.concat(e.slice(1));else{a=a.concat(e[0]);let s=t.length;for(let i=0;i<s;++i)a=a.concat([e[i+1]/t[i],t[i]]);a=a.concat(e.slice(s+1))}return a}function NC(e,t,n=!0){let r=[];if(n){r.push(t);for(let a=t+1;a<e;++a)a<=2*t?(r.push(a),r.push(a-(t+1))):r.push(a)}else{let a=[],s=[];for(let i=1;i<e;++i)i>=t*2+1||i%2==1?s.push(i):a.push(i);r.push(...a),r.push(0),r.push(...s)}return r}function SC(e,t,n,r=!0){let a=[];r?a.push(e[0]/n):a.push(e[0]*n);for(let s=1;s<e.length;++s)s<=t.length?r?a.push(t[s-1]*e[s]):a.push(e[s]/t[s-1]):a.push(e[s]);return a}function TC(e,t){let n=[0];for(let r=0;r<t;++r)n.push(e[r][0]);return n}function EC(e,t,n){let r=e.slice(0,1);for(let a=0;a<n;++a)r.push(e[a+1]-t[a][0]-t[a][1]);return r}var lx=1.7580993408473768,ux=1.0507009873554805,CC=.3275911,RC=.254829592,FC=-.284496736,MC=1.421413741,$C=-1.453152027,DC=1.061405429;function OC(...e){Q().getBool("IS_TEST")||console.warn(...e)}function zC(...e){Q().getBool("IS_TEST")||console.log(...e)}function PC(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let r=0;r<n.length;r+=2)n[r]=e[r/2],n[r+1]=t[r/2];return n}function LC(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let r=0;r<e.length;r+=2)t[r/2]=e[r],n[r/2]=e[r+1];return{real:t,imag:n}}function WC(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),r=new Float32Array(t);for(let a=0;a<e.length;a+=4)n[Math.floor(a/4)]=e[a],r[Math.floor(a/4)]=e[a+1];return{real:n,imag:r}}function BC(e){let t=Math.floor(e.length/4),n=new Float32Array(t),r=new Float32Array(t);for(let a=2;a<e.length;a+=4)n[Math.floor(a/4)]=e[a],r[Math.floor(a/4)]=e[a+1];return{real:n,imag:r}}function VC(e,t){let n=e[t*2],r=e[t*2+1];return{real:n,imag:r}}function UC(e,t,n,r){e[r*2]=t,e[r*2+1]=n}function HC(e,t){let n=new Float32Array(e/2),r=new Float32Array(e/2);for(let a=0;a<Math.ceil(e/2);a++){let s=(t?2:-2)*Math.PI*(a/e);n[a]=Math.cos(s),r[a]=Math.sin(s)}return{real:n,imag:r}}function jC(e,t,n){let r=(n?2:-2)*Math.PI*(e/t),a=Math.cos(r),s=Math.sin(r);return{real:a,imag:s}}function GC(e,t,n=0){let r=[];if(typeof t=="number")F(e.shape[n]%t==0,()=>"Number of splits must evenly divide the axis."),r=new Array(t).fill(e.shape[n]/t);else{let a=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);F(a<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}F(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),r=t}return r}var cx={};ze(cx,{collectGatherOpShapeInfo:()=>JC,computeOutShape:()=>ZC,segOpComputeOptimalWindowSize:()=>KC});function KC(e,t){let n=!1,r;for(e<=sA?(r=e,n=!0):r=Od(e,Math.floor(Math.sqrt(e)));!n;)r>t||r===e?n=!0:r=Od(e,r+1);return r}function ZC(e,t,n){let r=[],a=e.length;for(let s=0;s<a;s++)s!==t?r.push(e[s]):r.push(n);return r}function JC(e,t,n,r){let a=t.shape.length,s=e.shape.length;if(r!==0&&(r<-a||r>a))throw new Error(`Expect batchDims in the range of [-${a}, ${a}], but got ${r}`);if(r<0&&(r+=a),r>s)throw new Error(`batchDims (${r}) must be less than rank(x) (
${s}).`);if(n<r)throw new Error(`batchDims (${r}) must be less than or equal to axis (${n}).`);for(let h=0;h<r;++h)if(e.shape[h]!==t.shape[h])throw new Error(`x.shape[${h}]: ${e.shape[h]} should be equal to indices.shape[${h}]: ${t.shape[h]}.`);let i=e.shape[n],o=[],l=1,c=1,u=1;for(let h=0;h<r;++h)o.push(e.shape[h]),l*=e.shape[h];for(let h=r;h<n;h++)o.push(e.shape[h]),c*=e.shape[h];for(let h=r;h<a;h++)o.push(t.shape[h]);for(let h=n+1;h<s;h++)o.push(e.shape[h]),u*=e.shape[h];return{batchSize:l,sliceSize:u,outerSize:c,dimSize:i,outputShape:o}}function qC(e){try{return e.map(t=>Ld(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function XC(e){return e.map(t=>Xu(t))}var Mr={};ze(Mr,{nonMaxSuppressionV3Impl:()=>tx,nonMaxSuppressionV4Impl:()=>nx,nonMaxSuppressionV5Impl:()=>rx,whereImpl:()=>K5});function ve(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&k.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var YC=Mr.whereImpl,Md=class extends nu{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new Ah(this,Tr())}nextDataId(){return Md.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,Q().get("IS_NODE")&&C.warn(`
============================
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
============================`));let r={id:this.nextDataId()};return this.data.set(r,{values:e,dtype:n,refCount:1}),r}makeTensorInfo(e,t,n){let r;if(t==="string"&&n!=null&&n.length>0&&k.isString(n[0])){let a=n.map(s=>k.encodeString(s));r=this.write(a,e,t)}else r=this.write(n,e,t);return{dataId:r,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,r,a){this.data.set(e,{values:t,dtype:r,refCount:a})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let r=this.readSync(n.real.dataId),a=this.readSync(n.imag.dataId);return C.mergeRealAndImagArrays(r,a)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>k.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,n)}makeOutput(e,t,n){let r=this.write(e,t,n);return Tr().makeTensorFromDataId(r,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=k.now();return e(),{kernelMs:k.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){ve([e],"where");let t=this.readSync(e.dataId);return YC(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};Md.nextDataId=0;var mm={};ze(mm,{addImpl:()=>dx,bincountImpl:()=>iA,bincountReduceImpl:()=>px,ceilImpl:()=>fx,concatImpl:()=>oA,expImpl:()=>mx,expm1Impl:()=>Ax,floorImpl:()=>yx,gatherV2Impl:()=>gx,greaterImpl:()=>xx,lessImpl:()=>wx,linSpaceImpl:()=>_x,logImpl:()=>bx,maxImpl:()=>vx,maximumImpl:()=>kx,minimumImpl:()=>Ix,multiplyImpl:()=>lA,negImpl:()=>Nx,notEqualImpl:()=>Sx,prodImpl:()=>Tx,rangeImpl:()=>cA,rsqrtImpl:()=>Ex,simpleAbsImpl:()=>hx,sliceImpl:()=>Zd,squaredDifferenceImpl:()=>Cx,stridedSliceImpl:()=>Rx,subImpl:()=>Fx,tileImpl:()=>Mx,topKImpl:()=>$x,transposeImpl:()=>uA,uniqueImpl:()=>Dx});function hx(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var QC=e=>{let{x:t}=e.inputs,n=e.backend;ve(t,"abs");let r=new Float32Array(k.sizeFromShape(t.shape)),a=n.data.get(t.dataId).values;return r=hx(a),n.makeOutput(r,t.shape,"float32")},eR={kernelName:Wi,backendName:"cpu",kernelFunc:QC};function Rt(e){return(t,n,r,a,s)=>{let i=C.assertAndGetBroadcastShape(t,n),o=i.length,l=k.computeStrides(i),c=k.sizeFromShape(i),u=k.getTypedArrayFromDType(s,c),h=t.length,d=n.length,p=k.computeStrides(t),f=k.computeStrides(n),m=C.getBroadcastDims(t,i),A=C.getBroadcastDims(n,i);if(m.length+A.length===0)for(let y=0;y<u.length;++y)u[y]=e(r[y%r.length],a[y%a.length]);else for(let y=0;y<u.length;++y){let g=k.indexToLoc(y,o,l),b=g.slice(-h);m.forEach(N=>b[N]=0);let x=k.locToIndex(b,h,p),w=g.slice(-d);A.forEach(N=>w[N]=0);let _=k.locToIndex(w,d,f);u[y]=e(r[x],a[_])}return[u,i]}}function En(e){let{inputs:t,backend:n}=e,{real:r,imag:a}=t,s=n.data.get(r.dataId).values,i=n.data.get(a.dataId).values,o=n.makeTensorInfo(r.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(r.shape,"float32",s),imag:n.makeTensorInfo(a.shape,"float32",i)},o}var tR={kernelName:bh,backendName:"cpu",kernelFunc:En};function Jd(e,t,n="float32"){if(n==="complex64"){let a=Jd(e,t,"float32"),s=Jd(e,t,"float32");return En({inputs:{real:a,imag:s},backend:e})}let r=k.makeZerosTypedArray(k.sizeFromShape(t),n);return e.makeTensorInfo(t,n,r)}function Lr(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var nR={kernelName:ps,backendName:"cpu",kernelFunc:Lr};function si(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.data.get(r.dataId).complexTensorInfos.real,s=n.data.get(a.dataId).values;return n.makeTensorInfo(a.shape,a.dtype,s)}var rR={kernelName:Vh,backendName:"cpu",kernelFunc:si};function Ra(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dtype:s}=r;if(s==="complex64"){if(a.dtype==="complex64")return Lr({inputs:{x:a},backend:n});let i=Jd(n,a.shape,a.dtype),o=Ra({inputs:{x:a},backend:n,attrs:{dtype:"float32"}}),l=En({inputs:{real:o,imag:i},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=si({inputs:{input:a},backend:n}),o=Ra({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!k.hasEncodingLoss(a.dtype,s)){let i=Lr({inputs:{x:a},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=n.data.get(a.dataId).values,o=Int32Array.from(i);return n.makeTensorInfo(a.shape,"int32",o)}if(s==="bool"){let i=n.data.get(a.dataId).values,o=k.toTypedArray([0],a.dtype),[l,c]=Rt((u,h)=>u!==h?1:0)(a.shape,[],i,o,"bool");return n.makeTensorInfo(c,"bool",l)}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var aR={kernelName:es,backendName:"cpu",kernelFunc:Ra};function jt(e,t,n,r){return n==null?({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;ve([i,o],e);let c=l.data.get(i.dataId).values,u=l.data.get(o.dataId).values,h=r||i.dtype,[d,p]=t(i.shape,o.shape,c,u,h);return l.makeTensorInfo(p,h,d)}:({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let c=Ra({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),u=l.data.get(c.dataId),h=u.complexTensorInfos.real,d=u.complexTensorInfos.imag,p=l.data.get(h.dataId).values,f=l.data.get(d.dataId).values,m=Ra({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),A=l.data.get(m.dataId),y=A.complexTensorInfos.real,g=A.complexTensorInfos.imag,b=l.data.get(y.dataId).values,x=l.data.get(g.dataId).values,[w,_,N]=n(i.shape,o.shape,p,f,b,x),T=l.makeTensorInfo(N,"float32",w),E=l.makeTensorInfo(N,"float32",_),M=En({inputs:{real:T,imag:E},backend:l});return l.disposeIntermediateTensorInfo(c),l.disposeIntermediateTensorInfo(m),l.disposeIntermediateTensorInfo(T),l.disposeIntermediateTensorInfo(E),M}else{let c=l.data.get(i.dataId).values,u=l.data.get(o.dataId).values,h=r||i.dtype,[d,p]=t(i.shape,o.shape,c,u,h);return l.makeTensorInfo(p,h,d)}}}function hA(e){return(t,n,r,a,s,i)=>{let o=C.assertAndGetBroadcastShape(t,n),l=k.sizeFromShape(o),c=o.length,u=k.computeStrides(o),h=k.getTypedArrayFromDType("float32",l),d=k.getTypedArrayFromDType("float32",l),p=C.getBroadcastDims(t,o),f=C.getBroadcastDims(n,o),m=C.mergeRealAndImagArrays(r,a),A=C.mergeRealAndImagArrays(s,i),y=t.length,g=k.computeStrides(t),b=n.length,x=k.computeStrides(n);if(p.length+f.length===0)for(let w=0;w<h.length;w++){let _=w%m.length,N=w%A.length,T=e(m[_*2],m[_*2+1],A[N*2],A[N*2+1]);h[w]=T.real,d[w]=T.imag}else for(let w=0;w<h.length;w++){let _=k.indexToLoc(w,c,u),N=_.slice(-y);p.forEach(P=>N[P]=0);let T=k.locToIndex(N,y,g),E=_.slice(-b);f.forEach(P=>E[P]=0);let M=k.locToIndex(E,b,x),z=e(m[T*2],m[T*2+1],A[M*2],A[M*2+1]);h[w]=z.real,d[w]=z.imag}return[h,d,o]}}var dx=Rt((e,t)=>e+t),sR=hA((e,t,n,r)=>({real:e+n,imag:t+r})),nc=jt(ma,dx,sR),iR={kernelName:ma,backendName:"cpu",kernelFunc:nc};function iA(e,t,n,r,a){let s=k.sizeFromShape(r),i=k.makeZerosTypedArray(a,n);for(let o=0;o<e.length;o++){let l=e[o];if(l<0)throw new Error("Input x must be non-negative!");l>=a||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function px(e,t,n,r=!1){let a=e.shape[0],s=e.shape[1],i=We([a,n],t.dtype);for(let o=0;o<a;o++)for(let l=0;l<s;l++){let c=e.get(o,l);if(c<0)throw new Error("Input x must be non-negative!");c>=n||(r?i.set(1,o,c):t.size>0?i.set(i.get(o,c)+t.get(o,l),o,c):i.set(i.get(o,c)+1,o,c))}return i}function hl(e){return(t,n,r)=>{let a=k.getTypedArrayFromDType(n,t.length);for(let s=0;s<t.length;++s)a[s]=e(t[s],r);return a}}function st(e,t,n){return({inputs:r,attrs:a,backend:s})=>{let{x:i}=r;if(ve(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,c=k.sizeFromShape(i.shape),u=n||i.dtype,h=k.getArrayFromDType(u,c);for(let d=0;d<c;++d)h[d]=t(l[d],a);return o.makeTensorInfo(i.shape,u,h)}}function dl(e,t,n){return({inputs:r,attrs:a,backend:s})=>{let{x:i}=r;if(ve(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,c=n||i.dtype,u=t(l,c,a);return o.makeTensorInfo(i.shape,c,u)}}var fx=hl(e=>Math.ceil(e)),oR=dl(ts,fx),lR={kernelName:ts,backendName:"cpu",kernelFunc:oR};function oA(e,t,n,r){let a=k.getArrayFromDType(n,k.sizeFromShape(t));if(r&&n!=="string"){let s=0;e.forEach(i=>{let o=k.sizeFromShape(i.shape);a.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?C.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let c=0;c<i.shape[0];++c){let u=c*t[1]+s;for(let h=0;h<i.shape[1];++h)a[u+h]=o[l++]}s+=i.shape[1]})}return a}var mx=hl(e=>Math.exp(e)),Ox=dl(ls,mx),uR={kernelName:ls,backendName:"cpu",kernelFunc:Ox},Ax=hl(e=>Math.expm1(e)),cR=dl(no,Ax),hR={kernelName:no,backendName:"cpu",kernelFunc:cR},yx=hl(e=>Math.floor(e)),dR=dl(us,yx),pR={kernelName:us,backendName:"cpu",kernelFunc:dR};function gx(e,t,n){let r=We(n,e.dtype);for(let a=0;a<r.size;++a){let s=r.indexToLoc(a).slice(),i=s[0],o=s[2],l=t.locToIndex([i,o]);s[2]=t.values[l];let c=e.locToIndex(s);r.values[a]=e.values[c]}return r}var xx=Rt((e,t)=>e>t?1:0),fR=jt(io,xx,null,"bool"),mR={kernelName:io,backendName:"cpu",kernelFunc:fR},wx=Rt((e,t)=>e<t?1:0),AR=jt(co,wx,null,"bool"),yR={kernelName:co,backendName:"cpu",kernelFunc:AR};function _x(e,t,n){let r=(t-e)/(n-1),a=k.makeZerosTypedArray(n,"float32");a[0]=e;for(let s=1;s<a.length;s++)a[s]=a[s-1]+r;return a}var bx=hl(e=>Math.log(e)),gR=dl(ms,bx),xR={kernelName:ms,backendName:"cpu",kernelFunc:gR};function vx(e,t,n,r){let a=k.getTypedArrayFromDType(r,k.sizeFromShape(n));for(let s=0;s<a.length;++s){let i=s*t,o=e[i];for(let l=0;l<t;++l){let c=e[i+l];c>o&&(o=c)}a[s]=o}return a}var kx=Rt((e,t)=>Math.max(e,t)),wR=jt(ys,kx),_R={kernelName:ys,backendName:"cpu",kernelFunc:wR},Ix=Rt((e,t)=>Math.min(e,t)),bR=jt(_s,Ix),vR={kernelName:_s,backendName:"cpu",kernelFunc:bR},lA=Rt((e,t)=>e*t),kR=hA((e,t,n,r)=>({real:e*n-t*r,imag:e*r+t*n})),dA=jt(bs,lA,kR),IR={kernelName:bs,backendName:"cpu",kernelFunc:dA};function Nx(e,t,n){let r=k.createScalarValue(-1,n);return lA([],t,r,e,n)}function NR(e){let{inputs:t,backend:n}=e,{x:r}=t;ve(r,"neg");let a=n.data.get(r.dataId).values,[s,i]=Nx(a,r.shape,r.dtype);return n.makeTensorInfo(i,r.dtype,s)}var SR={kernelName:Ao,backendName:"cpu",kernelFunc:NR},Sx=Rt((e,t)=>e!==t?1:0),TR=jt(yo,Sx,null,"bool"),ER={kernelName:yo,backendName:"cpu",kernelFunc:TR};function uA(e,t,n,r,a){let s=t.length,i=k.sizeFromShape(t),o=k.computeStrides(t),l=k.computeStrides(a),c=k.getTypedArrayFromDType(n,k.sizeFromShape(a));for(let u=0;u<i;++u){let h=k.indexToLoc(u,s,o),d=new Array(h.length);for(let f=0;f<d.length;f++)d[f]=h[r[f]];let p=k.locToIndex(d,s,l);c[p]=e[u]}return c}function sr(e){let{inputs:t,attrs:n,backend:r}=e,{x:a}=t,{perm:s}=n;ve(a,"transpose");let i=a.shape.length,o=new Array(i);for(let u=0;u<o.length;u++)o[u]=a.shape[s[u]];let l=r.data.get(a.dataId).values,c=uA(l,a.shape,a.dtype,s,o);return{dataId:r.write(c,o,a.dtype),shape:o,dtype:a.dtype}}var CR={kernelName:Bs,backendName:"cpu",kernelFunc:sr};function Tx(e,t,n,r){let[a,s]=C.computeOutAndReduceShapes(e,r),i=Yn(t,"int32"),o=k.makeZerosTypedArray(k.sizeFromShape(a),i),l=k.sizeFromShape(s);for(let c=0;c<o.length;++c){let u=c*l,h=1;for(let d=0;d<l;++d)h*=n[u+d];o[c]=h}return{outVals:o,outShape:a,outDtype:i}}function RR(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;ve(a,"prod");let o=a.shape.length,l=k.parseAxisParam(s,a.shape),c=C.getAxesPermutation(l,o),u=l,h=a,d=[];c!=null&&(h=sr({inputs:{x:a},backend:n,attrs:{perm:c}}),d.push(h),u=C.getInnerMostAxes(u.length,o));let p=n.data.get(h.dataId).values,{outVals:f,outShape:m,outDtype:A}=Tx(h.shape,h.dtype,p,u),y=m;return i&&(y=C.expandShapeToKeepDim(m,l)),d.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(y,A,f)}var FR={kernelName:vo,backendName:"cpu",kernelFunc:RR};function cA(e,t,n,r){let a=e===t,s=e<t&&n<0,i=t<e&&n>1;if(a||s||i)return k.makeZerosTypedArray(0,r);let o=Math.abs(Math.ceil((t-e)/n)),l=k.makeZerosTypedArray(o,r);t<e&&n===1&&(n=-1),l[0]=e;for(let c=1;c<l.length;c++)l[c]=l[c-1]+n;return l}var Ex=hl(e=>1/Math.sqrt(e)),MR=dl(Fs,Ex),$R={kernelName:Fs,backendName:"cpu",kernelFunc:MR};function Zd(e,t,n,r,a){let s=an.isSliceContinous(r,t,n),i=k.sizeFromShape(n),o=k.computeStrides(r);if(s){let h=an.computeFlatOffset(t,o);return a==="string"?e.slice(h,h+i):e.subarray(h,h+i)}let l=a==="string"?C.fromUint8ToStringArray(e):e,c=We(r,a,l),u=We(n,a);for(let h=0;h<u.size;++h){let d=u.indexToLoc(h),p=d.map((f,m)=>f+t[m]);u.set(c.get(...p),...d)}return a==="string"?C.fromStringArrayToUint8(u.values):u.values}function ii(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,size:i}=r;ve(a,"slice");let[o,l]=an.parseSliceParams(a,s,i);an.assertParamsValid(a,o,l);let c=n.data.get(a.dataId).values,u=Zd(c,o,l,a.shape,a.dtype);return n.makeTensorInfo(l,a.dtype,u)}var DR={kernelName:Eo,backendName:"cpu",kernelFunc:ii},Cx=Rt((e,t)=>{let n=e-t;return n*n}),OR=jt(Ps,Cx),zR={kernelName:Ps,backendName:"cpu",kernelFunc:OR};function Rx(e,t,n,r){let a=We(e,t.dtype);for(let s=0;s<a.size;s++){let i=a.indexToLoc(s),o=new Array(i.length);for(let l=0;l<o.length;l++)o[l]=i[l]*n[l]+r[l];a.set(t.get(...o),...i)}return a}var Fx=Rt((e,t)=>e-t),PR=hA((e,t,n,r)=>({real:e-n,imag:t-r})),pA=jt(Ls,Fx,PR),LR={kernelName:Ls,backendName:"cpu",kernelFunc:pA};function Mx(e,t){let n=new Array(e.rank);for(let a=0;a<n.length;a++)n[a]=e.shape[a]*t[a];let r=We(n,e.dtype);for(let a=0;a<r.values.length;++a){let s=r.indexToLoc(a),i=new Array(e.rank);for(let l=0;l<i.length;l++)i[l]=s[l]%e.shape[l];let o=e.locToIndex(i);r.values[a]=e.values[o]}return r}function $x(e,t,n,r,a){let s=t[t.length-1],[i,o]=[e.length/s,s],l=k.getTypedArrayFromDType(n,i*r),c=k.getTypedArrayFromDType("int32",i*r);for(let h=0;h<i;h++){let d=h*o,p=e.subarray(d,d+o),f=[];for(let g=0;g<p.length;g++)f.push({value:p[g],index:g});f.sort((g,b)=>b.value-g.value);let m=h*r,A=l.subarray(m,m+r),y=c.subarray(m,m+r);for(let g=0;g<r;g++)A[g]=f[g].value,y[g]=f[g].index}let u=t.slice();return u[u.length-1]=r,[We(u,n,l),We(u,"int32",c)]}function Dx(e,t,n,r){let a=k.parseAxisParam(t,n)[0],s=[1,n[0],1];for(let f=0;f<a;f++)s[0]*=n[f];s[1]=n[a];for(let f=a+1;f<n.length;f++)s[2]*=n[f];let i={},o=new Int32Array(n[a]),l=new $t(s,r,e),c=[],u=s[0]===1&&s[2]===1;for(let f=0;f<n[a];f++){let m;if(u)m=e[f].toString();else{let A=[];for(let y=0;y<s[0];y++)for(let g=0;g<s[2];g++)A.push(l.get(y,f,g));m=A.join(",")}if(i[m]!==void 0)o[f]=i[m];else{let A=Object.keys(i).length;i[m]=A,o[f]=A,c.push(f)}}let h=s.slice();h[1]=Object.keys(i).length;let d=new $t(h,r);c.forEach((f,m)=>{for(let A=0;A<s[0];A++)for(let y=0;y<s[2];y++)d.set(l.get(A,f,y),A,m,y)});let p=n.slice();return p[a]=h[1],{outputValues:d.values,outputShape:p,indices:o}}var b0="3.1.0";vu("cpu",()=>new Md,1);var zx=st(Yi,e=>e>=0?e:Math.exp(e)-1),WR={kernelName:Yi,backendName:"cpu",kernelFunc:zx};function Px(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{alpha:s}=r;ve([a],"leakyRelu");let i=k.sizeFromShape(a.shape),o=n.data.get(a.dataId).values,l=k.getTypedArrayFromDType("float32",i);for(let c=0;c<o.length;c++)l[c]=o[c]<0?s*o[c]:o[c];return n.makeTensorInfo(a.shape,"float32",l)}var BR={kernelName:fs,backendName:"cpu",kernelFunc:Px},VR=Rt((e,t)=>e<0?t*e:e);function Lx(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t;ve([r,a],"prelu");let s=n.data.get(r.dataId).values,i=n.data.get(a.dataId).values,[o,l]=VR(r.shape,a.shape,s,i,r.dtype);return n.makeTensorInfo(l,r.dtype,o)}var UR={kernelName:Ns,backendName:"cpu",kernelFunc:Lx},Wx=st(Ss,e=>Math.max(0,e)),HR={kernelName:Ss,backendName:"cpu",kernelFunc:Wx},Bx=st(Es,e=>Math.min(Math.max(0,e),6)),jR={kernelName:Es,backendName:"cpu",kernelFunc:Bx};function fA(e,t,n,r,a){if(n==="linear")return Lr({inputs:{x:t},backend:e});if(n==="relu")return Wx({inputs:{x:t},backend:e});if(n==="elu")return zx({inputs:{x:t},backend:e});if(n==="relu6")return Bx({inputs:{x:t},backend:e});if(n==="prelu")return Lx({inputs:{x:t,alpha:r},backend:e});if(n==="leakyrelu")return Px({inputs:{x:t},backend:e,attrs:{alpha:a}});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function yt(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{shape:s}=r,i=k.sizeFromShape(a.shape),o=k.inferFromImplicitShape(s,i),l=k.sizeFromShape(o);k.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${a.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(a.dataId);let c=n.data.get(a.dataId);if(c.complexTensorInfos!=null){let u=c.complexTensorInfos.real,h=c.complexTensorInfos.imag;u.shape=o,h.shape=o}return{dataId:a.dataId,shape:o,dtype:a.dtype}}var GR={kernelName:Io,backendName:"cpu",kernelFunc:yt};function Vx(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;ve([a,s],"matMul");let l=a.shape.length,c=s.shape.length,u=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[c-1]:s.shape[c-2],d=i?a.shape[l-1]:a.shape[l-2],p=o?s.shape[c-2]:s.shape[c-1],f=a.shape.slice(0,-2),m=s.shape.slice(0,-2),A=k.sizeFromShape(f),y=k.sizeFromShape(m),g=A===y||A===1||y===1;k.assert(l>=2&&c>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let b=(A>y?a.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,p]);k.assert(u===h,()=>`Error in matMul: inner shapes (${u}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[A,u,d]:[A,d,u],w=o?[y,p,h]:[y,h,p],_=yt({inputs:{x:a},backend:n,attrs:{shape:x}}),N=yt({inputs:{x:s},backend:n,attrs:{shape:w}}),T=i?_.shape[1]:_.shape[2],E=i?_.shape[2]:_.shape[1],M=o?N.shape[1]:N.shape[2],z=Math.max(A,y),P=n.data.get(_.dataId).values,B=n.data.get(N.dataId).values,G=k.computeStrides(_.shape),V=k.computeStrides(N.shape),[K,X,ee]=i?[G[0],1,G[1]]:[G[0],G[1],1],[J,ae,Y]=o?[1,V[1],V[0]]:[V[1],1,V[0]],ue=E*M,ne=We([z,E,M],_.dtype),de=ne.values,he=n.blockSize;for(let me=0;me<z;me++)for(let Ae=0;Ae<E;Ae+=he)for(let ke=0;ke<M;ke+=he)for(let Ee=0;Ee<T;Ee+=he){let Ce=Math.min(Ae+he,E),Oe=Math.min(ke+he,M),Ke=Math.min(Ee+he,T);for(let Ue=Ae;Ue<Ce;Ue++)for(let rt=ke;rt<Oe;rt++){let it=0;for(let je=Ee;je<Ke;je++){let lt=Math.min(me,A-1)*K,ut=Math.min(me,y-1)*Y,On=P[lt+Ue*X+je*ee],Ye=B[je*J+rt*ae+ut];it+=On*Ye}de[me*ue+(Ue*M+rt)]+=it}}return n.disposeIntermediateTensorInfo(_),n.disposeIntermediateTensorInfo(N),n.makeTensorInfo(b,ne.dtype,ne.values)}var qR={kernelName:Qa,backendName:"cpu",kernelFunc:Vx};function XR(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:h}=r,d,p,f,m=[];d=Vx({inputs:{a,b:s},attrs:{transposeA:l,transposeB:c},backend:n}),i&&(p=nc({inputs:{a:d,b:i},backend:n}),m.push(d),d=p),u&&(f=fA(n,d,u,o,h),m.push(d),d=f);for(let A of m)n.disposeIntermediateTensorInfo(A);return d}var KR={kernelName:Vs,backendName:"cpu",kernelFunc:XR},ZR=st(Bi,e=>Math.acos(e)),JR={kernelName:Bi,backendName:"cpu",kernelFunc:ZR},YR=st(Vi,e=>Math.acosh(e)),QR={kernelName:Vi,backendName:"cpu",kernelFunc:YR};function eF(e){let{inputs:t,backend:n}=e,r=t;ve(t,"addN");let a=r.map(o=>n.data.get(o.dataId).values),s=We(r[0].shape,r[0].dtype),i=s.values;for(let o=0;o<r.length;o++){let l=a[o];for(let c=0;c<i.length;c++)i[c]+=l[c]}return n.makeTensorInfo(s.shape,s.dtype,s.values)}var tF={kernelName:Za,backendName:"cpu",kernelFunc:eF};function nF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;ve(a,"all");let o=k.parseAxisParam(s,a.shape),l=o,c=C.getAxesPermutation(l,a.shape.length),u=a;c!=null&&(u=sr({inputs:{x:a},backend:n,attrs:{perm:c}}),l=C.getInnerMostAxes(l.length,a.shape.length)),C.assertAxesAreInnerMostDims("all",l,u.shape.length);let[h,d]=C.computeOutAndReduceShapes(u.shape,l),p=k.sizeFromShape(d),f=k.makeZerosTypedArray(k.sizeFromShape(h),u.dtype),m=n.data.get(u.dataId).values;for(let y=0;y<f.length;++y){let g=y*p,b=m[g];for(let x=0;x<p;++x){let w=m[g+x];b=b&&w}f[y]=b}c!=null&&n.disposeIntermediateTensorInfo(u);let A=n.makeTensorInfo(h,u.dtype,f);if(i){let y=C.expandShapeToKeepDim(h,o),g=yt({inputs:{x:A},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(A),g}return A}var rF={kernelName:yh,backendName:"cpu",kernelFunc:nF};function aF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;ve(a,"any");let o=k.parseAxisParam(s,a.shape),l=o,c=C.getAxesPermutation(l,a.shape.length),u=a;c!=null&&(u=sr({inputs:{x:a},backend:n,attrs:{perm:c}}),l=C.getInnerMostAxes(l.length,a.shape.length)),C.assertAxesAreInnerMostDims("any",l,u.shape.length);let[h,d]=C.computeOutAndReduceShapes(u.shape,l),p=k.sizeFromShape(d),f=k.makeZerosTypedArray(k.sizeFromShape(h),u.dtype),m=n.data.get(u.dataId).values;for(let y=0;y<f.length;++y){let g=y*p,b=m[g];for(let x=0;x<p;++x){let w=m[g+x];b=b||w}f[y]=b}c!=null&&n.disposeIntermediateTensorInfo(u);let A=n.makeTensorInfo(h,u.dtype,f);if(i){let y=C.expandShapeToKeepDim(h,o),g=yt({inputs:{x:A},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(A),g}return A}var sF={kernelName:gh,backendName:"cpu",kernelFunc:aF};function iF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r;ve(a,"argMax");let i=k.parseAxisParam(s,a.shape),o=C.getAxesPermutation(i,a.shape.length),l=a,c=[];o!=null&&(l=sr({inputs:{x:a},backend:n,attrs:{perm:o}}),c.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],C.assertAxesAreInnerMostDims("argMax",i,l.shape.length);let[u,h]=C.computeOutAndReduceShapes(l.shape,i),d=k.sizeFromShape(u),p=k.makeZerosTypedArray(d,"int32"),f=k.sizeFromShape(h),m=n.data.get(l.dataId).values;for(let A=0;A<p.length;++A){let y=A*f,g=m[y],b=0;for(let x=0;x<f;++x){let w=m[y+x];w>g&&(g=w,b=x)}p[A]=b}return c.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(u,"int32",p)}var oF={kernelName:Ja,backendName:"cpu",kernelFunc:iF};function lF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r;ve(a,"argMin");let i=k.parseAxisParam(s,a.shape),o=C.getAxesPermutation(i,a.shape.length),l=a,c=[];o!=null&&(l=sr({inputs:{x:a},backend:n,attrs:{perm:o}}),c.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],C.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[u,h]=C.computeOutAndReduceShapes(l.shape,i),d=k.sizeFromShape(u),p=k.makeZerosTypedArray(d,"int32"),f=k.sizeFromShape(h),m=n.data.get(l.dataId).values;for(let A=0;A<p.length;++A){let y=A*f,g=m[y],b=0;for(let x=0;x<f;++x){let w=m[y+x];w<g&&(g=w,b=x)}p[A]=b}return c.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(u,"int32",p)}var uF={kernelName:ru,backendName:"cpu",kernelFunc:lF},cF=st(Ui,e=>Math.asin(e)),hF={kernelName:Ui,backendName:"cpu",kernelFunc:cF},dF=st(Hi,e=>Math.asinh(e)),pF={kernelName:Hi,backendName:"cpu",kernelFunc:dF},fF=st(ji,e=>Math.atan(e)),mF={kernelName:ji,backendName:"cpu",kernelFunc:fF},AF=Rt((e,t)=>Math.atan2(e,t)),yF=jt(qi,AF),gF={kernelName:qi,backendName:"cpu",kernelFunc:yF},xF=st(Gi,e=>Math.atanh(e)),wF={kernelName:Gi,backendName:"cpu",kernelFunc:xF};function mA(e,t,n,r,a,s){let i=a.strideHeight,o=a.strideWidth,l=a.dilationHeight,c=a.dilationWidth,u=a.effectiveFilterHeight,h=a.effectiveFilterWidth,d=a.padInfo.top,p=a.padInfo.left,f=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=We(a.outShape,n),A=m.values,y=a.outShape[1]*a.outShape[2]*a.outShape[3],g=a.outShape[2]*a.outShape[3],b=a.outShape[3];for(let x=0;x<a.batchSize;++x){let w=x*y,_=x*r[0];for(let N=0;N<a.inChannels;++N)for(let T=0;T<a.outHeight;++T){let E=T*i-d,M=Math.max(0,E),z=Math.min(a.inHeight,u+E),P=w+T*g;for(let B=0;B<a.outWidth;++B){let G=B*o-p,V=Math.max(0,G),K=Math.min(a.inWidth,h+G),X=f,ee=0,J=0;for(let Y=M;Y<z;Y+=l){let ue=_+Y*r[1];for(let ne=V;ne<K;ne+=c){let de=ue+ne*r[2],he=e[de+N];s==="max"&&he>X?X=he:s==="avg"&&(ee+=he,J++)}if(isNaN(X))break}let ae=P+B*b+N;A[ae]=s==="avg"?ee/J:X}}}return m}function Ux(e,t,n,r,a=!1,s=!1){let i=We(r.outShape,"int32"),o=r.strideHeight,l=r.strideWidth,c=r.dilationHeight,u=r.dilationWidth,h=r.effectiveFilterHeight,d=r.effectiveFilterWidth,p=r.padInfo.top,f=r.padInfo.left,m=We(t,n,e);for(let A=0;A<r.batchSize;++A)for(let y=0;y<r.inChannels;++y)for(let g=0;g<r.outHeight;++g){let b=g*o-p,x=b;for(;x<0;)x+=c;let w=Math.min(r.inHeight,h+b);for(let _=0;_<r.outWidth;++_){let N=_*l-f,T=N;for(;T<0;)T+=u;let E=Math.min(r.inWidth,d+N),M=Number.NEGATIVE_INFINITY,z=-1;for(let P=x;P<w;P+=c){let B=P-b;for(let G=T;G<E;G+=u){let V=G-N,K=m.get(A,P,G,y);K>M&&(M=K,a?z=s?((A*r.inHeight+P)*r.inWidth+G)*r.inChannels+y:(P*r.inWidth+G)*r.inChannels+y:z=B*d+V)}}i.set(z,A,g,_,y)}}return i}function Hx(e,t,n,r,a,s){let i=a.strideDepth,o=a.strideHeight,l=a.strideWidth,c=a.dilationDepth,u=a.dilationHeight,h=a.dilationWidth,d=a.effectiveFilterDepth,p=a.effectiveFilterHeight,f=a.effectiveFilterWidth,m=a.padInfo.front,A=a.padInfo.top,y=a.padInfo.left,g=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,b=We(a.outShape,n),x=b.values,w=a.outShape[1]*a.outShape[2]*a.outShape[3]*a.outShape[4],_=a.outShape[2]*a.outShape[3]*a.outShape[4],N=a.outShape[3]*a.outShape[4],T=a.outShape[4];for(let E=0;E<a.batchSize;++E){let M=E*w,z=E*r[0];for(let P=0;P<a.inChannels;++P)for(let B=0;B<a.outDepth;++B){let G=B*i-m,V=G;for(;V<0;)V+=c;let K=Math.min(a.inDepth,d+G),X=M+B*_;for(let ee=0;ee<a.outHeight;++ee){let J=ee*o-A,ae=J;for(;ae<0;)ae+=u;let Y=Math.min(a.inHeight,p+J),ue=X+ee*N;for(let ne=0;ne<a.outWidth;++ne){let de=ne*l-y,he=de;for(;he<0;)he+=h;let me=Math.min(a.inWidth,f+de),Ae=ue+ne*T,ke=g,Ee=0,Ce=0;for(let Ke=V;Ke<K;Ke+=c){let Ue=z+Ke*r[1];for(let rt=ae;rt<Y;rt+=u){let it=Ue+rt*r[2];for(let je=he;je<me;je+=h){let lt=it+je*r[3],ut=e[lt+P];if(s==="max"&&ut>ke?ke=ut:s==="avg"&&(Ee+=ut,Ce++),isNaN(ke))break}if(isNaN(ke))break}if(isNaN(ke))break}let Oe=Ae+P;x[Oe]=s==="avg"?Ee/Ce:ke}}}}return b}function _F(e,t){let n=We(t.outShape,"int32"),r=t.strideDepth,a=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,c=t.effectiveFilterDepth,u=t.effectiveFilterHeight,h=t.effectiveFilterWidth,d=t.padInfo.front,p=t.padInfo.top,f=t.padInfo.left;for(let m=0;m<t.batchSize;++m)for(let A=0;A<t.inChannels;++A)for(let y=0;y<t.outDepth;++y){let g=y*r-d,b=g;for(;b<0;)b+=i;let x=Math.min(t.inDepth,c+g);for(let w=0;w<t.outHeight;++w){let _=w*a-p,N=_;for(;N<0;)N+=o;let T=Math.min(t.inHeight,u+_);for(let E=0;E<t.outWidth;++E){let M=E*s-f,z=M;for(;z<0;)z+=l;let P=Math.min(t.inWidth,h+M),B=Number.NEGATIVE_INFINITY,G=-1;for(let V=b;V<x;V+=i){let K=V-g;for(let X=N;X<T;X+=o){let ee=X-_;for(let J=z;J<P;J+=l){let ae=J-M,Y=e.get(m,V,X,J,A);Y>=B&&(B=Y,G=K*u*h+ee*u+ae)}}}n.set(G,m,y,w,E,A)}}}return n}function bF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;ve(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,c=1;k.assert(C.eitherStridesOrDilationsAreOne(i,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=C.computePool2DInfo(a.shape,s,i,c,o,l),h;if(u.filterWidth===1&&u.filterHeight===1&&k.arraysEqual(u.inShape,u.outShape))h=Lr({inputs:{x:a},backend:n});else{let d=n.data.get(a.dataId).values,p=k.computeStrides(a.shape),f=mA(d,a.shape,a.dtype,p,u,"avg");h=n.makeTensorInfo(u.outShape,a.dtype,f.values)}return h}var vF={kernelName:Ya,backendName:"cpu",kernelFunc:bF};function kF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=r;ve(a,"avgPool3d");let u=C.computePool3DInfo(a.shape,s,i,1,o,l,c),h=n.data.get(a.dataId).values,d=Hx(h,a.shape,a.dtype,k.computeStrides(a.shape),u,"avg");return n.makeTensorInfo(d.shape,"float32",d.values)}var IF={kernelName:au,backendName:"cpu",kernelFunc:kF};function NF(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=r;ve([a,s],"avgPool3DGrad");let u=C.computePool3DInfo(s.shape,i,o,1,l,c),h=u.strideDepth,d=u.strideHeight,p=u.strideWidth,f=u.filterDepth,m=u.filterHeight,A=u.filterWidth,y=u.dilationDepth,g=u.dilationHeight,b=u.dilationWidth,x=u.effectiveFilterDepth,w=u.effectiveFilterHeight,_=u.effectiveFilterWidth,N=x-1-u.padInfo.front,T=_-1-u.padInfo.left,E=w-1-u.padInfo.top,M=We(s.shape,"float32"),z=1/(f*m*A),P=n.bufferSync(a);for(let B=0;B<u.batchSize;++B)for(let G=0;G<u.inChannels;++G)for(let V=0;V<u.inDepth;++V)for(let K=0;K<u.inHeight;++K)for(let X=0;X<u.inWidth;++X){let ee=V-N,J=K-E,ae=X-T,Y=0;for(let ue=0;ue<x;ue+=y){let ne=(ee+ue)/h;if(!(ne<0||ne>=u.outDepth||Math.floor(ne)!==ne))for(let de=0;de<w;de+=g){let he=(J+de)/d;if(!(he<0||he>=u.outHeight||Math.floor(he)!==he))for(let me=0;me<_;me+=b){let Ae=(ae+me)/p;Ae<0||Ae>=u.outWidth||Math.floor(Ae)!==Ae||(Y+=P.get(B,ne,he,Ae,G))}}}M.set(Y*z,B,V,K,X,G)}return n.makeTensorInfo(M.shape,M.dtype,M.values)}var SF={kernelName:wh,backendName:"cpu",kernelFunc:NF};function TF(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s;ve([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:c}=r,u=C.computePool2DInfo(i.shape,o,l,1,c),h=u.strideHeight,d=u.strideWidth,p=u.filterHeight,f=u.filterWidth,m=u.dilationHeight,A=u.dilationWidth,y=u.effectiveFilterHeight,g=u.effectiveFilterWidth,b=g-1-u.padInfo.left,x=y-1-u.padInfo.top,w=We(i.shape,"float32"),_=1/(p*f),N=n.data.get(a.dataId).values,T=We(a.shape,"float32",N);for(let E=0;E<u.batchSize;++E)for(let M=0;M<u.inChannels;++M)for(let z=0;z<u.inHeight;++z)for(let P=0;P<u.inWidth;++P){let B=z-x,G=P-b,V=0;for(let K=0;K<y;K+=m){let X=(B+K)/h;if(!(X<0||X>=u.outHeight||Math.floor(X)!==X))for(let ee=0;ee<g;ee+=A){let J=(G+ee)/d;J<0||J>=u.outWidth||Math.floor(J)!==J||(V+=T.get(E,X,J,M))}}w.set(V*_,E,z,P,M)}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var EF={kernelName:xh,backendName:"cpu",kernelFunc:TF};function CF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,scale:s,offset:i,mean:o,variance:l}=t;k.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),k.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),k.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),ve([a,o,l,s,i],"batchNorm");let{varianceEpsilon:c}=r;c==null&&(c=.001);let u=n.data.get(a.dataId).values,h=n.data.get(o.dataId).values,d=n.data.get(l.dataId).values,p=s?n.data.get(s.dataId).values:new Float32Array([1]),f=i?n.data.get(i.dataId).values:new Float32Array([0]),m=new Float32Array(u.length),A=f.length,y=p.length,g=d.length,b=h.length,x=0,w=0,_=0,N=0;for(let T=0;T<u.length;++T)m[T]=f[x++]+(u[T]-h[w++])*p[_++]/Math.sqrt(d[N++]+c),x>=A&&(x=0),w>=b&&(w=0),_>=y&&(_=0),N>=g&&(N=0);return n.makeTensorInfo(a.shape,a.dtype,m)}var RF={kernelName:hs,backendName:"cpu",kernelFunc:CF};function FF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,crops:i}=r;ve([a],"batchToSpaceND");let o=s.reduce((y,g)=>y*g),l=C.getReshaped(a.shape,s,o),c=C.getPermuted(l.length,s.length),u=C.getReshapedPermuted(a.shape,s,o),h=C.getSliceBeginCoords(i,s.length),d=C.getSliceSize(u,i,s.length),p=yt({inputs:{x:a},backend:n,attrs:{shape:l}}),f=sr({inputs:{x:p},backend:n,attrs:{perm:c}}),m=yt({inputs:{x:f},backend:n,attrs:{shape:u}}),A=ii({inputs:{x:m},backend:n,attrs:{begin:h,size:d}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),A}var MF={kernelName:su,backendName:"cpu",kernelFunc:FF};function $F(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i}=r,o=n.data.get(a.dataId).values,l=n.data.get(s.dataId).values,c=iA(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}var DF={kernelName:_h,backendName:"cpu",kernelFunc:$F},OF=st(Aa,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),zF={kernelName:Aa,backendName:"cpu",kernelFunc:OF},PF=e=>{let{x:t}=e.inputs,n=e.backend,r=new Float32Array(k.sizeFromShape(t.shape)),a=n.data.get(t.dataId),s=a.complexTensorInfos.real,i=a.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let c=0;c<o.length;c++){let u=o[c],h=l[c];r[c]=Math.hypot(u,h)}return n.makeOutput(r,t.shape,"float32")},LF={kernelName:iu,backendName:"cpu",kernelFunc:PF};function pl(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.data.get(r.dataId).complexTensorInfos.imag,s=n.data.get(a.dataId).values;return n.makeTensorInfo(a.shape,a.dtype,s)}var WF={kernelName:Dh,backendName:"cpu",kernelFunc:pl};function fl(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r,s=k.parseAxisParam(a,t[0].shape)[0],i=C.computeOutShape(t.map(m=>m.shape),s);if(k.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(m=>k.sizeFromShape(m.shape)>0);if(o.length===1)return Lr({inputs:{x:o[0]},backend:n});let l=o.map(m=>m.shape);if(C.assertParamsConsistent(l,s),o[0].dtype==="complex64"){let m=o.map(x=>si({inputs:{input:x},backend:n})),A=o.map(x=>pl({inputs:{input:x},backend:n})),y=fl({inputs:m,backend:n,attrs:{axis:s}}),g=fl({inputs:A,backend:n,attrs:{axis:s}}),b=En({inputs:{real:y,imag:g},backend:n});return m.forEach(x=>n.disposeIntermediateTensorInfo(x)),A.forEach(x=>n.disposeIntermediateTensorInfo(x)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(g),b}let c=o.map(m=>{let A=k.sizeFromShape(m.shape.slice(s));return yt({inputs:{x:m},backend:n,attrs:{shape:[-1,A]}})}),u=c.map(m=>({vals:n.data.get(m.dataId).values,shape:m.shape}));i=C.computeOutShape(c.map(m=>m.shape),1);let h=c[0].shape[0]===1,d=oA(u,i,t[0].dtype,h),p=C.computeOutShape(o.map(m=>m.shape),s),f=n.makeTensorInfo(p,t[0].dtype,d);return c.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var BF={kernelName:Xi,backendName:"cpu",kernelFunc:fl};function jx(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:c,dimRoundingMode:u}=r;ve([a,s],"conv2d");let h=C.convertConv2DDataFormat(l),d=C.computeConv2DInfo(a.shape,s.shape,i,c,o,u,!1,h),p=d.filterHeight,f=d.filterWidth,m=d.dilationHeight,A=d.dilationWidth,y=d.padInfo.left,g=d.padInfo.top,b=d.dataFormat==="channelsLast",x=new $t(d.outShape,a.dtype),w=k.computeStrides(a.shape),_=k.computeStrides(s.shape),N=w[0],T=b?w[1]:w[2],E=b?w[2]:1,M=b?1:w[1],z=x.strides[0],P=b?x.strides[1]:x.strides[2],B=b?x.strides[2]:1,G=b?1:x.strides[1],V=n.data.get(a.dataId).values,K=n.data.get(s.dataId).values,X=x.values;for(let ee=0;ee<d.batchSize;++ee){let J=ee*N,ae=ee*z;for(let Y=0;Y<d.outHeight;++Y){let ue=ae+Y*P,ne=Y*d.strideHeight-g;for(let de=0;de<p;++de){let he=ne+de*m;if(he<0||he>=d.inHeight)continue;let me=de*_[0],Ae=J+he*T;for(let ke=0;ke<d.outWidth;++ke){let Ee=ue+ke*B,Ce=ke*d.strideWidth-y;for(let Oe=0;Oe<f;++Oe){let Ke=Ce+Oe*A;if(Ke<0||Ke>=d.inWidth)continue;let Ue=me+Oe*_[1],rt=Ae+Ke*E,it=Ue;for(let je=0;je<d.inChannels;++je){let lt=V[rt+je*M];for(let ut=0;ut<d.outChannels;++ut)X[Ee+ut*G]+=lt*K[it+ut];it+=d.outChannels}}}}}}return n.makeTensorInfo(x.shape,x.dtype,X)}var VF={kernelName:ns,backendName:"cpu",kernelFunc:jx};function UF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:c,filterShape:u}=r;ve([a,s],"conv2dBackpropFilter");let h=C.convertConv2DDataFormat(l),d=C.computeConv2DInfo(a.shape,u,i,1,o,c,!1,h),{strideHeight:p,strideWidth:f,filterHeight:m,filterWidth:A}=d,y=d.dataFormat==="channelsLast",g=new $t(d.filterShape,"float32"),b=d.padInfo.left,x=d.padInfo.top,w=n.data.get(a.dataId).values,_=n.data.get(s.dataId).values,N=new $t(a.shape,a.dtype,w),T=new $t(s.shape,s.dtype,_);for(let E=0;E<m;++E){let M=Math.max(0,Math.ceil((x-E)/p)),z=Math.min(d.outHeight,(d.inHeight+x-E)/p);for(let P=0;P<A;++P){let B=Math.max(0,Math.ceil((b-P)/f)),G=Math.min(d.outWidth,(d.inWidth+b-P)/f);for(let V=0;V<d.inChannels;++V)for(let K=0;K<d.outChannels;++K){let X=0;for(let ee=0;ee<d.batchSize;++ee)for(let J=M;J<z;++J){let ae=E+J*p-x;for(let Y=B;Y<G;++Y){let ue=P+Y*f-b;y?X+=N.get(ee,ae,ue,V)*T.get(ee,J,Y,K):X+=N.get(ee,V,ae,ue)*T.get(ee,K,J,Y)}}g.set(X,E,P,V,K)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var HF={kernelName:vh,backendName:"cpu",kernelFunc:UF};function jF(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:c,dimRoundingMode:u}=r;ve([a,s],"conv2dBackpropInput");let h=k.computeStrides(s.shape),d=k.computeStrides(a.shape),p=C.convertConv2DDataFormat(c),f=C.computeConv2DInfo(i,s.shape,o,1,l,u,!1,p),m=new $t(f.inShape,"float32"),A=m.values,y=n.data.get(a.dataId).values,g=n.data.get(s.dataId).values,[b,x,w]=h,{batchSize:_,filterHeight:N,filterWidth:T,inChannels:E,inHeight:M,inWidth:z,outChannels:P,outHeight:B,outWidth:G,strideHeight:V,strideWidth:K}=f;p=f.dataFormat;let X=N-1-f.padInfo.top,ee=T-1-f.padInfo.left,J=p==="channelsLast",ae=m.strides[0],Y=J?m.strides[1]:m.strides[2],ue=J?m.strides[2]:1,ne=J?1:m.strides[1],de=d[0],he=J?d[1]:d[2],me=J?d[2]:1,Ae=J?1:d[1];for(let ke=0;ke<_;++ke)for(let Ee=0;Ee<E;++Ee)for(let Ce=0;Ce<M;++Ce){let Oe=Ce-X,Ke=Math.max(0,Math.ceil(Oe/V)),Ue=Math.min(B,(N+Oe)/V);for(let rt=0;rt<z;++rt){let it=rt-ee,je=Math.max(0,Math.ceil(it/K)),lt=Math.min(G,(T+it)/K),ut=0;for(let Ye=Ke;Ye<Ue;++Ye){let _n=Ye*V-Oe;for(let Xt=je;Xt<lt;++Xt){let bn=Xt*K-it,Gn=de*ke+he*Ye+me*Xt,dn=b*(N-1-_n)+x*(T-1-bn)+w*Ee;for(let rn=0;rn<P;++rn){let qn=y[Gn+Ae*rn],kr=g[dn+rn];ut+=qn*kr}}}let On=ae*ke+Y*Ce+ue*rt+ne*Ee;A[On]=ut}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var GF={kernelName:rs,backendName:"cpu",kernelFunc:jF};function qF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r;ve([a,s],"conv3d");let c=C.computeConv3DInfo(a.shape,s.shape,i,l,o),{filterDepth:u,filterHeight:h,filterWidth:d,dilationDepth:p,dilationHeight:f,dilationWidth:m,padInfo:A}=c,y=A.front,g=A.left,b=A.top,x=new $t(c.outShape,a.dtype),w=n.data.get(a.dataId).values,_=n.data.get(s.dataId).values,N=x.values,T=k.computeStrides(a.shape),E=k.computeStrides(s.shape);for(let M=0;M<c.batchSize;++M){let z=M*T[0],P=M*x.strides[0];for(let B=0;B<c.outDepth;++B){let G=P+B*x.strides[1],V=B*c.strideDepth-y;for(let K=0;K<u;++K){let X=V+K*p;if(X<0||X>=c.inDepth)continue;let ee=K*E[0],J=z+X*T[1];for(let ae=0;ae<c.outHeight;++ae){let Y=G+ae*x.strides[2],ue=ae*c.strideHeight-b;for(let ne=0;ne<h;++ne){let de=ue+ne*f;if(de<0||de>=c.inHeight)continue;let he=ee+ne*E[1],me=J+de*T[2];for(let Ae=0;Ae<c.outWidth;++Ae){let ke=Y+Ae*c.outChannels,Ee=Ae*c.strideWidth-g;for(let Ce=0;Ce<d;++Ce){let Oe=Ee+Ce*m;if(Oe<0||Oe>=c.inWidth)continue;let Ke=he+Ce*E[2],Ue=me+Oe*c.inChannels,rt=Ke;for(let it=0;it<c.inChannels;++it){let je=w[Ue+it];for(let lt=0;lt<c.outChannels;++lt)N[ke+lt]+=je*_[rt+lt];rt+=c.outChannels}}}}}}}}return n.makeTensorInfo(x.shape,x.dtype,x.values)}var XF={kernelName:ou,backendName:"cpu",kernelFunc:qF};function KF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,filterShape:l}=r;ve([a,s],"conv3dBackpropFilterV2");let c=k.computeStrides(a.shape),u=k.computeStrides(s.shape),h=C.computeConv3DInfo(a.shape,l,i,1,o),d=h.strideDepth,p=h.strideHeight,f=h.strideWidth,m=h.filterDepth,A=h.filterHeight,y=h.filterWidth,g=new $t(h.filterShape,"float32"),b=g.values,[x,w,_,N]=g.strides,T=n.data.get(s.dataId).values,[E,M,z,P]=u,B=n.data.get(a.dataId).values,[G,V,K,X]=c,ee=h.padInfo.front,J=h.padInfo.left,ae=h.padInfo.top;for(let Y=0;Y<m;++Y){let ue=Math.max(0,Math.ceil((ee-Y)/d)),ne=Math.min(h.outDepth,(h.inDepth+ee-Y)/d),de=Y*x;for(let he=0;he<A;++he){let me=Math.max(0,Math.ceil((ae-he)/p)),Ae=Math.min(h.outHeight,(h.inHeight+ae-he)/p),ke=he*w+de;for(let Ee=0;Ee<y;++Ee){let Ce=Math.max(0,Math.ceil((J-Ee)/f)),Oe=Math.min(h.outWidth,(h.inWidth+J-Ee)/f),Ke=Ee*_+ke;for(let Ue=0;Ue<h.inChannels;++Ue){let rt=Ue*N+Ke;for(let it=0;it<h.outChannels;++it){let je=0;for(let lt=0;lt<h.batchSize;++lt){let ut=lt*G,On=lt*E;for(let Ye=ue;Ye<ne;++Ye){let _n=(Y+Ye*d-ee)*V+ut,Xt=Ye*M+On;for(let bn=me;bn<Ae;++bn){let Gn=(he+bn*p-ae)*K+_n,dn=bn*z+Xt;for(let rn=Ce;rn<Oe;++rn){let qn=(Ee+rn*f-J)*X+Gn,kr=rn*P+dn;je+=B[qn+Ue]*T[kr+it]}}}}b[rt+it]=je}}}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var ZF={kernelName:kh,backendName:"cpu",kernelFunc:KF};function JF(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{pad:i,strides:o,inputShape:l}=r;ve([a],"conv3dBackpropInputV2");let c=k.computeStrides(a.shape),u=k.computeStrides(s.shape),h=C.computeConv3DInfo(l,s.shape,o,1,i),d=new $t(h.inShape,"float32"),p=d.values,[f,m,A,y]=d.strides,g=n.data.get(a.dataId).values,[b,x,w,_]=c,N=n.data.get(s.dataId).values,[T,E,M,z]=u,{batchSize:P,filterDepth:B,filterHeight:G,filterWidth:V,inChannels:K,inDepth:X,inHeight:ee,inWidth:J,outChannels:ae,outDepth:Y,outHeight:ue,outWidth:ne,strideDepth:de,strideHeight:he,strideWidth:me}=h,Ae=B-1-h.padInfo.front,ke=G-1-h.padInfo.top,Ee=V-1-h.padInfo.left;for(let Ce=0;Ce<P;++Ce)for(let Oe=0;Oe<K;++Oe)for(let Ke=0;Ke<X;++Ke){let Ue=Ke-Ae,rt=Math.max(0,Math.ceil(Ue/de)),it=Math.min(Y,(B+Ue)/de);for(let je=0;je<ee;++je){let lt=je-ke,ut=Math.max(0,Math.ceil(lt/he)),On=Math.min(ue,(G+lt)/he);for(let Ye=0;Ye<J;++Ye){let _n=Ye-Ee,Xt=Math.max(0,Math.ceil(_n/me)),bn=Math.min(ne,(V+_n)/me),Gn=0;for(let dn=rt;dn<it;++dn){let rn=dn*de-Ue;for(let qn=ut;qn<On;++qn){let kr=qn*he-lt;for(let vn=Xt;vn<bn;++vn){let Si=vn*me-_n,Pl=b*Ce+x*dn+w*qn+_*vn,cr=T*(B-1-rn)+E*(G-1-kr)+M*(V-1-Si)+z*Oe;for(let Xn=0;Xn<ae;++Xn){let hr=g[Pl+Xn],Ti=N[cr+Xn];Gn+=hr*Ti}}}}p[f*Ce+m*Ke+A*je+y*Ye+Oe]=Gn}}}return n.makeTensorInfo(d.shape,d.dtype,d.values)}var YF={kernelName:Ih,backendName:"cpu",kernelFunc:JF},QF=st(as,e=>Math.cos(e)),eM={kernelName:as,backendName:"cpu",kernelFunc:QF},tM=st(Ki,e=>Math.cosh(e)),nM={kernelName:Ki,backendName:"cpu",kernelFunc:tM};function rM(e){let{inputs:t,backend:n,attrs:r}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:c}=r,[u,h,d,p]=a.shape,f=s.shape[0],[m,A]=o,y=We([f,m,A,p],"float32"),g=n.data.get(s.dataId).values,b=n.data.get(i.dataId).values,x=n.data.get(a.dataId).values,w=k.computeStrides(a.shape),_=k.computeStrides(y.shape);for(let N=0;N<f;N++){let T=N*4,E=g[T],M=g[T+1],z=g[T+2],P=g[T+3],B=b[N];if(B>=u)continue;let G=m>1?(z-E)*(h-1)/(m-1):0,V=A>1?(P-M)*(d-1)/(A-1):0;for(let K=0;K<m;K++){let X=m>1?E*(h-1)+K*G:.5*(E+z)*(h-1);if(X<0||X>h-1){for(let ee=0;ee<A;ee++)for(let J=0;J<p;J++){let ae=J+ee*_[2]+K*_[1]+N*_[0];y.values[ae]=c}continue}if(l==="bilinear"){let ee=Math.floor(X),J=Math.ceil(X),ae=X-ee;for(let Y=0;Y<A;Y++){let ue=A>1?M*(d-1)+Y*V:.5*(M+P)*(d-1);if(ue<0||ue>d-1){for(let me=0;me<p;me++){let Ae=me+Y*_[2]+K*_[1]+N*_[0];y.values[Ae]=c}continue}let ne=Math.floor(ue),de=Math.ceil(ue),he=ue-ne;for(let me=0;me<p;me++){let Ae=me+ne*w[2]+ee*w[1]+B*w[0],ke=x[Ae];Ae=me+de*w[2]+ee*w[1]+B*w[0];let Ee=x[Ae];Ae=me+ne*w[2]+J*w[1]+B*w[0];let Ce=x[Ae];Ae=me+de*w[2]+J*w[1]+B*w[0];let Oe=x[Ae],Ke=ke+(Ee-ke)*he,Ue=Ce+(Oe-Ce)*he;Ae=me+Y*_[2]+K*_[1]+N*_[0],y.values[Ae]=Ke+(Ue-Ke)*ae}}}else for(let ee=0;ee<A;++ee){let J=A>1?M*(d-1)+ee*V:.5*(M+P)*(d-1);if(J<0||J>d-1){for(let ue=0;ue<p;ue++){let ne=ue+ee*_[2]+K*_[1]+N*_[0];y.values[ne]=c}continue}let ae=Math.round(J),Y=Math.round(X);for(let ue=0;ue<p;ue++){let ne=ue+ae*w[2]+Y*w[1]+B*w[0],de=ue+ee*_[2]+K*_[1]+N*_[0];y.values[de]=x[ne]}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var aM={kernelName:Zi,backendName:"cpu",kernelFunc:rM};function sM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=r;ve(a,"cumsum");let l=C.getAxesPermutation([s],a.shape.length),c=a;l!=null&&(c=sr({inputs:{x:a},backend:n,attrs:{perm:l}}));let u=C.getInnerMostAxes(1,a.shape.length)[0];if(u!==c.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${c.shape.length-1} but got axis=${u}`);let h=Yn(c.dtype,"int32"),d=k.makeZerosTypedArray(k.sizeFromShape(c.shape),h),p=n.data.get(c.dataId).values,f=c.shape[c.shape.length-1],m=o?(y,g)=>y+f-g-1:(y,g)=>y+g;for(let y=0;y<p.length;y+=f)for(let g=0;g<f;g++){let b=m(y,g);if(g===0)d[b]=i?0:p[b];else{let x=m(y,g-1);d[b]=i?p[x]+d[x]:p[b]+d[x]}}let A=n.makeTensorInfo(c.shape,h,d);if(l!=null){let y=C.getUndoAxesPermutation(l),g=sr({inputs:{x:A},backend:n,attrs:{perm:y}});return n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(c),g}return A}var iM={kernelName:ss,backendName:"cpu",kernelFunc:sM};function oM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i,binaryOutput:o}=r;if(a.shape.length===1){let l=n.data.get(a.dataId).values,c=n.data.get(s.dataId).values,u=iA(l,c,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}else if(a.shape.length===2){let l=n.bufferSync(a),c=n.bufferSync(s),u=px(l,c,i,o);return n.makeTensorInfo(u.shape,s.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${a.shape.length}.`)}var lM={kernelName:Nh,backendName:"cpu",kernelFunc:oM};function uM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockSize:s,dataFormat:i}=r;k.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`),k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=a.shape[1],c=a.shape[2],u=a.shape[3],h=l*s,d=c*s,p=u/(s*s),f=n.data.get(a.dataId).values,m=new Float32Array(o*h*d*p),A=0;for(let y=0;y<o;++y)for(let g=0;g<h;++g){let b=Math.floor(g/s),x=g%s;for(let w=0;w<d;++w){let _=Math.floor(w/s),N=w%s,T=(x*s+N)*p;for(let E=0;E<p;++E){let M=E+T+u*(_+c*(b+l*y));m[A++]=f[M]}}}return n.makeTensorInfo([o,h,d,p],a.dtype,m)}var cM={kernelName:Ji,backendName:"cpu",kernelFunc:uM};function Gx(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:c}=r;ve([a,s],"depthwiseConv2DNative");let u=k.computeStrides(a.shape),h=k.computeStrides(s.shape),d=l;d==null&&(d=[1,1]),k.assert(C.eitherStridesOrDilationsAreOne(i,d),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let p=C.computeConv2DInfo(a.shape,s.shape,i,d,o,c,!0),{filterHeight:f,filterWidth:m,dilationHeight:A,dilationWidth:y,padInfo:g}=p,b=g.left,x=g.top,w=p.outChannels/p.inChannels,_=new $t(p.outShape,a.dtype),N=n.data.get(a.dataId).values,T=n.data.get(s.dataId).values,E=_.values;for(let M=0;M<p.batchSize;++M){let z=M*u[0],P=M*_.strides[0];for(let B=0;B<p.outHeight;++B){let G=P+B*_.strides[1],V=B*p.strideHeight-b;for(let K=0;K<f;++K){let X=V+K*A;if(X<0||X>=p.inHeight)continue;let ee=K*h[0],J=z+X*u[1];for(let ae=0;ae<p.outWidth;++ae){let Y=G+ae*_.strides[2],ue=ae*p.strideWidth-x;for(let ne=0;ne<m;++ne){let de=ue+ne*y;if(de<0||de>=p.inWidth)continue;let he=ee+ne*h[1],me=J+de*p.inChannels,Ae=Y,ke=he;for(let Ee=0;Ee<p.inChannels;++Ee){let Ce=N[me+Ee];for(let Oe=0;Oe<w;++Oe)E[Ae+Oe]+=Ce*T[ke+Oe];Ae+=w,ke+=w}}}}}}return n.makeTensorInfo(_.shape,_.dtype,_.values)}var hM={kernelName:is,backendName:"cpu",kernelFunc:Gx};function dM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,filterShape:u}=r;ve([a,s],"depthwiseConv2dNativeBackpropFilter");let h=C.computeConv2DInfo(a.shape,u,i,o,l,c,!0),{strideHeight:d,strideWidth:p,filterHeight:f,filterWidth:m}=h,A=new $t(h.filterShape,"float32"),y=h.padInfo.left,g=h.padInfo.top,b=h.outChannels/h.inChannels,x=n.data.get(a.dataId).values,w=new $t(a.shape,a.dtype,x),_=n.data.get(s.dataId).values,N=new $t(s.shape,s.dtype,_);for(let T=0;T<f;++T){let E=Math.max(0,Math.ceil((g-T)/d)),M=Math.min(h.outHeight,(h.inHeight+g-T)/d);for(let z=0;z<m;++z){let P=Math.max(0,Math.ceil((y-z)/p)),B=Math.min(h.outWidth,(h.inWidth+y-z)/p);for(let G=0;G<h.outChannels;++G){let V=Math.trunc(G/b),K=G%b,X=0;for(let ee=0;ee<h.batchSize;++ee)for(let J=E;J<M;++J){let ae=T+J*d-g;for(let Y=P;Y<B;++Y){let ue=z+Y*p-y;X+=w.get(ee,ae,ue,V)*N.get(ee,J,Y,G)}}A.set(X,T,z,V,K)}}}return n.makeTensorInfo(A.shape,A.dtype,A.values)}var pM={kernelName:Sh,backendName:"cpu",kernelFunc:dM};function fM(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,inputShape:u}=r;ve([a,s],"depthwiseConv2DNativeBackpropInput");let h=k.computeStrides(a.shape),d=k.computeStrides(s.shape),p=C.computeConv2DInfo(u,s.shape,i,o,l,c,!0),f=new $t(p.inShape,"float32"),m=f.values,[A,y,g]=f.strides,b=n.data.get(a.dataId).values,[x,w,_]=h,N=n.data.get(s.dataId).values,[T,E,M]=d,{batchSize:z,filterHeight:P,filterWidth:B,inChannels:G,inHeight:V,inWidth:K,outChannels:X,outHeight:ee,outWidth:J,strideHeight:ae,strideWidth:Y}=p,ue=P-1-p.padInfo.top,ne=B-1-p.padInfo.left,de=X/G;for(let he=0;he<z;++he)for(let me=0;me<G;++me)for(let Ae=0;Ae<V;++Ae){let ke=Ae-ue,Ee=Math.max(0,Math.ceil(ke/ae)),Ce=Math.min(ee,(P+ke)/ae);for(let Oe=0;Oe<K;++Oe){let Ke=Oe-ne,Ue=Math.max(0,Math.ceil(Ke/Y)),rt=Math.min(J,(B+Ke)/Y),it=0;for(let je=Ee;je<Ce;++je){let lt=je*ae-ke;for(let ut=Ue;ut<rt;++ut){let On=ut*Y-Ke,Ye=x*he+w*je+_*ut,_n=T*(P-1-lt)+E*(B-1-On)+M*me;for(let Xt=0;Xt<de;++Xt){let bn=me*de+Xt,Gn=b[Ye+bn],dn=N[_n+Xt];it+=Gn*dn}}}m[A*he+y*Ae+g*Oe+me]=it}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var mM={kernelName:Th,backendName:"cpu",kernelFunc:fM};function AM(e){let{inputs:t,backend:n}=e,{x:r}=t,a=k.sizeFromShape(r.shape),s=n.data.get(r.dataId).values,i=We([a,a],r.dtype),o=i.values;for(let c=0;c<s.length;c++)o[c*a+c]=s[c];let l=[...r.shape,...r.shape];return n.makeTensorInfo(l,i.dtype,i.values)}var yM={kernelName:Eh,backendName:"cpu",kernelFunc:AM},gM={kernelName:lu,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a}=e,{strides:s,pad:i,dilations:o}=n,l=t,c=l.data.get(r.dataId).values,u=r.shape.length,h=l.data.get(a.dataId).values,d=a.shape.length,{batchSize:p,inHeight:f,inWidth:m,inChannels:A,outHeight:y,outWidth:g,padInfo:b,strideHeight:x,strideWidth:w,filterHeight:_,filterWidth:N,dilationHeight:T,dilationWidth:E,outShape:M}=C.computeDilation2DInfo(r.shape,a.shape,s,i,"NHWC",o),z=k.sizeFromShape(M),P=M.length,B=k.getArrayFromDType(r.dtype,z);for(let G=0;G<p;++G)for(let V=0;V<y;++V){let K=V*x-b.top;for(let X=0;X<g;++X){let ee=X*w-b.left;for(let J=0;J<A;++J){let ae=Number.MIN_SAFE_INTEGER;for(let ue=0;ue<_;++ue){let ne=K+ue*T;if(ne>=0&&ne<f)for(let de=0;de<N;++de){let he=ee+de*E;if(he>=0&&he<m){let me=k.locToIndex([G,ne,he,J],u,k.computeStrides(r.shape)),Ae=k.locToIndex([ue,de,J],d,k.computeStrides(a.shape)),ke=c[me]+h[Ae];ke>ae&&(ae=ke)}}}let Y=k.locToIndex([G,V,X,J],P,k.computeStrides(M));B[Y]=ae}}}return{dataId:l.write(k.toTypedArray(B,r.dtype),M,r.dtype),shape:M,dtype:r.dtype}}},xM={kernelName:Rh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=n,c=t,u=k.toNestedArray(r.shape,c.data.get(r.dataId).values),h=k.toNestedArray(a.shape,c.data.get(a.dataId).values),{batchSize:d,inHeight:p,inWidth:f,inChannels:m,outHeight:A,outWidth:y,padInfo:g,strideHeight:b,strideWidth:x,filterHeight:w,filterWidth:_,dilationHeight:N,dilationWidth:T,outShape:E}=C.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",l);k.assert(s.rank===E.length,()=>`Error in ${Rh}, dy must have the same rank as output ${E.length}, but got ${s.rank}`);let M=k.toNestedArray(E,c.data.get(s.dataId).values),z=k.makeZerosNestedTypedArray(a.shape,a.dtype);for(let P=0;P<d;++P)for(let B=0;B<A;++B){let G=B*b-g.top;for(let V=0;V<y;++V){let K=V*x-g.left;for(let X=0;X<m;++X){let ee=Number.MIN_SAFE_INTEGER,J=0,ae=0;for(let Y=0;Y<w;++Y){let ue=G+Y*N;if(ue>=0&&ue<p)for(let ne=0;ne<_;++ne){let de=K+ne*T;if(de>=0&&de<f){let he=u[P][ue][de][X]+h[Y][ne][X];he>ee&&(ee=he,J=Y,ae=ne)}}}z[J][ae][X]+=M[P][B][V][X]}}}return{dataId:c.write(k.toTypedArray(z,r.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},wM={kernelName:Ch,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=n,c=t,u=k.toNestedArray(r.shape,c.data.get(r.dataId).values),h=k.toNestedArray(a.shape,c.data.get(a.dataId).values),{batchSize:d,inHeight:p,inWidth:f,inChannels:m,outHeight:A,outWidth:y,padInfo:g,strideHeight:b,strideWidth:x,filterHeight:w,filterWidth:_,dilationHeight:N,dilationWidth:T,outShape:E}=C.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",l);k.assert(s.rank===E.length,()=>`Error in ${Ch}, dy must have the same rank as output ${E.length}, but got ${s.rank}`);let M=k.toNestedArray(E,c.data.get(s.dataId).values),z=k.makeZerosNestedTypedArray(r.shape,r.dtype);for(let P=0;P<d;++P)for(let B=0;B<A;++B){let G=B*b-g.top;for(let V=0;V<y;++V){let K=V*x-g.left;for(let X=0;X<m;++X){let ee=Number.MIN_SAFE_INTEGER,J=G<0?0:G,ae=K<0?0:K;for(let Y=0;Y<w;++Y){let ue=G+Y*N;if(ue>=0&&ue<p)for(let ne=0;ne<_;++ne){let de=K+ne*T;if(de>=0&&de<f){let he=u[P][ue][de][X]+h[Y][ne][X];he>ee&&(ee=he,J=ue,ae=de)}}}z[P][J][ae][X]+=M[P][B][V][X]}}}return{dataId:c.write(k.toTypedArray(z,r.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}};function _M(e){let{inputs:t,backend:n}=e,{dy:r,y:a}=t;ve([r,a],"eluGrad");let s=new Float32Array(k.sizeFromShape(a.shape)),i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values;for(let l=0;l<i.length;++l){let c=i[l];c>=1?s[l]=o[l]:s[l]=o[l]*(c+1)}return n.makeTensorInfo(a.shape,"float32",s)}var bM={kernelName:Fh,backendName:"cpu",kernelFunc:_M},vM=Rt((e,t)=>e===t?1:0),qx=jt(eo,vM,null,"bool"),kM={kernelName:eo,backendName:"cpu",kernelFunc:qx},IM=C.ERF_P,NM=C.ERF_A1,SM=C.ERF_A2,TM=C.ERF_A3,EM=C.ERF_A4,CM=C.ERF_A5,RM=st(Qi,e=>{let t=Math.sign(e),n=Math.abs(e),r=1/(1+IM*n);return t*(1-((((CM*r+EM)*r+TM)*r+SM)*r+NM)*r*Math.exp(-n*n))}),FM={kernelName:Qi,backendName:"cpu",kernelFunc:RM};function Yd(e){let{inputs:t,backend:n,attrs:r}=e,{input:a}=t,{dim:s}=r,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(k.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),yt({inputs:{x:a},backend:n,attrs:{shape:o}})}var MM={kernelName:to,backendName:"cpu",kernelFunc:Yd},$M=Rt((e,t)=>e/t),AA=jt(os,$M),yA={kernelName:os,backendName:"cpu",kernelFunc:AA};function Xx(e,t,n){let r=e.shape,a=r[0],s=r[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,c=[a,s],u=k.sizeFromShape(c),h=k.getTypedArrayFromDType("float32",u),d=k.getTypedArrayFromDType("float32",u);for(let A=0;A<a;A++){let y=ii({inputs:{x:o},backend:n,attrs:{begin:[A,0],size:[1,s]}}),g=ii({inputs:{x:l},backend:n,attrs:{begin:[A,0],size:[1,s]}}),b=En({inputs:{real:y,imag:g},backend:n}),{real:x,imag:w}=DM(b,t,n),_=C.mergeRealAndImagArrays(x,w);for(let N=0;N<s;N++){let T=C.getComplexWithIndex(_,N);h[A*s+N]=T.real,d[A*s+N]=T.imag}n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(b)}let p=n.makeTensorInfo(c,"float32",h),f=n.makeTensorInfo(c,"float32",d),m=En({inputs:{real:p,imag:f},backend:n});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),m}function DM(e,t,n){let r=k.sizeFromShape(e.shape),a=n.data.get(e.dataId),s=n.data.get(a.complexTensorInfos.real.dataId).values,i=n.data.get(a.complexTensorInfos.imag.dataId).values;if(OM(r)){let o=gA(s,i,r,t,n),l=[e.shape[0],e.shape[1]];if(t){let c=n.makeTensorInfo(l,"float32",o.real),u=n.makeTensorInfo(l,"float32",o.imag),h=n.makeTensorInfo([],"float32",k.createScalarValue(r,"float32")),d=Lr({inputs:{x:h},backend:n}),p=yA.kernelFunc({inputs:{a:c,b:h},backend:n}),f=yA.kernelFunc({inputs:{a:u,b:d},backend:n}),m=n.data.get(p.dataId).values,A=n.data.get(f.dataId).values;return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),{real:m,imag:A}}return o}else{let o=C.mergeRealAndImagArrays(s,i),l=zM(o,r,t);return C.splitRealAndImagArrays(l)}}function OM(e){return(e&e-1)==0}function gA(e,t,n,r,a){if(n===1)return{real:e,imag:t};let s=C.mergeRealAndImagArrays(e,t),i=n/2,o=C.complexWithEvenIndex(s),l=o.real,c=o.imag,u=[l.length],h=a.makeTensorInfo(u,"float32",l),d=a.makeTensorInfo(u,"float32",c),p=En({inputs:{real:h,imag:d},backend:a}),f=C.complexWithOddIndex(s),m=f.real,A=f.imag,y=[m.length],g=a.makeTensorInfo(y,"float32",m),b=a.makeTensorInfo(y,"float32",A),x=En({inputs:{real:g,imag:b},backend:a}),w=gA(l,c,i,r,a),_=w.real,N=w.imag,T=[_.length],E=a.makeTensorInfo(T,"float32",_),M=a.makeTensorInfo(T,"float32",N),z=En({inputs:{real:E,imag:M},backend:a}),P=gA(m,A,i,r,a),B=P.real,G=P.imag,V=[B.length],K=a.makeTensorInfo(V,"float32",B),X=a.makeTensorInfo(V,"float32",G),ee=En({inputs:{real:K,imag:X},backend:a}),J=C.exponents(n,r),ae=[J.real.length],Y=a.makeTensorInfo(ae,"float32",J.real),ue=a.makeTensorInfo(ae,"float32",J.imag),ne=En({inputs:{real:Y,imag:ue},backend:a}),de=dA({inputs:{a:ne,b:ee},backend:a}),he=nc({inputs:{a:z,b:de},backend:a}),me=pA({inputs:{a:z,b:de},backend:a}),Ae=si({inputs:{input:he},backend:a}),ke=si({inputs:{input:me},backend:a}),Ee=pl({inputs:{input:he},backend:a}),Ce=pl({inputs:{input:me},backend:a}),Oe=fl({inputs:[Ae,ke],backend:a,attrs:{axis:0}}),Ke=fl({inputs:[Ee,Ce],backend:a,attrs:{axis:0}}),Ue=a.data.get(Oe.dataId).values,rt=a.data.get(Ke.dataId).values;return a.disposeIntermediateTensorInfo(h),a.disposeIntermediateTensorInfo(d),a.disposeIntermediateTensorInfo(p),a.disposeIntermediateTensorInfo(g),a.disposeIntermediateTensorInfo(b),a.disposeIntermediateTensorInfo(x),a.disposeIntermediateTensorInfo(E),a.disposeIntermediateTensorInfo(M),a.disposeIntermediateTensorInfo(z),a.disposeIntermediateTensorInfo(K),a.disposeIntermediateTensorInfo(X),a.disposeIntermediateTensorInfo(ee),a.disposeIntermediateTensorInfo(Y),a.disposeIntermediateTensorInfo(ue),a.disposeIntermediateTensorInfo(ne),a.disposeIntermediateTensorInfo(de),a.disposeIntermediateTensorInfo(he),a.disposeIntermediateTensorInfo(me),a.disposeIntermediateTensorInfo(Ae),a.disposeIntermediateTensorInfo(Ee),a.disposeIntermediateTensorInfo(ke),a.disposeIntermediateTensorInfo(Ce),a.disposeIntermediateTensorInfo(Oe),a.disposeIntermediateTensorInfo(Ke),{real:Ue,imag:rt}}function zM(e,t,n){let r=new Float32Array(t*2);for(let a=0;a<t;a++){let s=0,i=0;for(let o=0;o<t;o++){let l=C.exponent(a*o,t,n),c=C.getComplexWithIndex(e,o);s+=c.real*l.real-c.imag*l.imag,i+=c.real*l.imag+c.imag*l.real}n&&(s/=t,i/=t),C.assignToTypedArray(r,s,i,a)}return r}function PM(e){let{inputs:t,backend:n}=e,{input:r}=t,a=k.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],i=a/s,o=yt({inputs:{x:r},backend:n,attrs:{shape:[i,s]}}),l=Xx(o,!1,n),c=yt({inputs:{x:l},backend:n,attrs:{shape:r.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),c}var LM={kernelName:Mh,backendName:"cpu",kernelFunc:PM};function xA(e){let{backend:t,attrs:n}=e,{shape:r,value:a,dtype:s}=n,i=s||k.inferDtype(a),o=k.getArrayFromDType(i,k.sizeFromShape(r));return WM(o,a,i),t.makeTensorInfo(r,i,o)}var BM={kernelName:uu,backendName:"cpu",kernelFunc:xA};function WM(e,t,n){e.fill(t)}var VM={kernelName:ro,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,a=n,s=k.getTypedArrayFromDType(r.dtype,k.sizeFromShape(r.shape)),[i,o,l,c]=r.shape,u=a.data.get(r.dataId).values;for(let h=0;h<i;h++){let d=h*l*o*c;for(let p=0;p<o;p++){let f=p*(l*c);for(let m=0;m<l;m++){let A=m*c;for(let y=0;y<c;y++){let g=[i,p,m,y][2],b=Math.round(l-g),x=d+f+A+y,w=u[x];if(b>=0&&b<l){let _=b*c,N=d+f+_+y;w=u[N]}s[x]=w}}}}return{dataId:a.write(s,r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},UM=Rt((e,t)=>Math.floor(e/t)),HM=jt(cs,UM,null,"int32"),jM={kernelName:cs,backendName:"cpu",kernelFunc:HM};function GM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=r,m=jx({inputs:{x:a,filter:s},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d}});if(i){let A=m;m=nc({inputs:{a:m,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=m;m=fA(n,m,p,o,f),n.disposeIntermediateTensorInfo(A)}return m}var qM={kernelName:Us,backendName:"cpu",kernelFunc:GM};function XM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=r,m=Gx({inputs:{x:a,filter:s},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d}});if(i){let A=m;m=nc({inputs:{a:m,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=m;m=fA(n,m,p,o,f),n.disposeIntermediateTensorInfo(A)}return m}var KM={kernelName:Hs,backendName:"cpu",kernelFunc:XM};function ZM(e){let{inputs:t,backend:n}=e,{params:r,indices:a}=t,s=k.sizeFromShape(r.shape),i=a.shape,o=i[i.length-1],[l,c,u,h]=C.prepareAndValidate(r,a);if(c===0)return n.makeTensorInfo(l,r.dtype,[]);let d=We([c,u],r.dtype),p=n.data.get(a.dataId).values,f=n.data.get(r.dataId).values;for(let m=0;m<c;m++){let A=[],y=0;for(let g=0;g<o;g++){let b=p[m*o+g];y+=b*h[g],A.push(b)}if(y<0||y>=s/u)throw new Error(`Invalid indices: ${A} does not index into ${r.shape}`);for(let g=0;g<u;g++)d.values[m*u+g]=f[y*u+g]}return n.makeTensorInfo(l,d.dtype,d.values)}var JM={kernelName:so,backendName:"cpu",kernelFunc:ZM};function YM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,indices:s}=t,{axis:i,batchDims:o}=r;ve([a,s],"gatherV2");let l=o;o==null&&(l=0);let c=k.sizeFromShape(s.shape),u=k.parseAxisParam(i,a.shape)[0],h=C.segment_util.collectGatherOpShapeInfo(a,s,u,l),d=yt({inputs:{x:a},backend:n,attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]}}),p=yt({inputs:{x:s},backend:n,attrs:{shape:[h.batchSize,c/h.batchSize]}}),f=[h.batchSize,h.outerSize,c/h.batchSize,h.sliceSize],m=n.bufferSync(p),A=n.bufferSync(d),y=gx(A,m,f);return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.makeTensorInfo(h.outputShape,y.dtype,y.values)}var QM={kernelName:ao,backendName:"cpu",kernelFunc:YM},e$=Rt((e,t)=>e>=t?1:0),t$=jt(ds,e$,null,"bool"),n$={kernelName:ds,backendName:"cpu",kernelFunc:t$};function r$(e){let{inputs:t,backend:n}=e,{input:r}=t,a=k.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],i=a/s,o=yt({inputs:{x:r},backend:n,attrs:{shape:[i,s]}}),l=Xx(o,!0,n),c=yt({inputs:{x:l},backend:n,attrs:{shape:r.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),c}var a$={kernelName:$h,backendName:"cpu",kernelFunc:r$},s$=st(oo,e=>Number.isFinite(e)?1:0,"bool"),i$={kernelName:oo,backendName:"cpu",kernelFunc:s$},o$=st(lo,e=>Math.abs(e)===Infinity?1:0,"bool"),l$={kernelName:lo,backendName:"cpu",kernelFunc:o$},u$=st(uo,e=>Number.isNaN(e)?1:0,"bool"),c$={kernelName:uo,backendName:"cpu",kernelFunc:u$},h$=Rt((e,t)=>e<=t?1:0),d$=jt(ho,h$,null,"bool"),p$={kernelName:ho,backendName:"cpu",kernelFunc:d$};function f$(e){let{backend:t,attrs:n}=e,{start:r,stop:a,num:s}=n,i=_x(r,a,s);return t.makeTensorInfo([i.length],"float32",i)}var m$={kernelName:Oh,backendName:"cpu",kernelFunc:f$},A$=st(po,e=>Math.log1p(e)),y$={kernelName:po,backendName:"cpu",kernelFunc:A$},g$=Rt((e,t)=>e&&t),x$=jt(fo,g$,null,"bool"),w$={kernelName:fo,backendName:"cpu",kernelFunc:x$},_$=st(cu,e=>e?0:1,"bool"),b$={kernelName:cu,backendName:"cpu",kernelFunc:_$},v$=Rt((e,t)=>e||t),k$=jt(hu,v$,null,"bool"),I$={kernelName:hu,backendName:"cpu",kernelFunc:k$};function N$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r;ve(a,"LRN");let c=a.shape[3],u=c-1,h=n.data.get(a.dataId).values,d=k.sizeFromShape(a.shape),p=new Float32Array(d);function f(m){let A=m%c,y=m-A+Math.max(0,A-s),g=m-A+Math.min(A+s,u),b=0;for(;y<=g;y++){let x=h[y];b+=x*x}return b}for(let m=0;m<d;m++){let A=f(m),y=h[m]*Math.pow(i+o*A,-l);p[m]=y}return n.makeTensorInfo(a.shape,a.dtype,p)}var S$={kernelName:du,backendName:"cpu",kernelFunc:N$};function T$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:c,beta:u}=r;ve(i,"LRNGrad");let h=k.sizeFromShape(i.shape),d=i.shape[3],p=n.data.get(i.dataId).values,f=n.data.get(a.dataId).values,m=n.data.get(s.dataId).values,A=new Float32Array(h),y=h;for(let g=0;g<y;g++){let b=g%d,x=g-b+Math.max(0,b-o),w=g-b+Math.min(d,b+o+1),_=0;for(let N=x;N<w;N++)_+=Math.pow(f[N],2);_=c*_+l;for(let N=x;N<w;N++){let T=-2*c*u*f[N]*m[g]/_;g===N&&(T+=Math.pow(_,-u)),T*=p[g],A[N]+=T}}return n.makeTensorInfo(i.shape,a.dtype,A)}var E$={kernelName:zh,backendName:"cpu",kernelFunc:T$};function Kx(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reductionIndices:s,keepDims:i}=r,o=n,l=a.shape,c=l.length,u=k.parseAxisParam(s,l),h=u,d=C.getAxesPermutation(h,c),p=o.data.get(a.dataId).values;if(d!=null){let x=new Array(c);for(let w=0;w<x.length;w++)x[w]=l[d[w]];p=uA(p,l,a.dtype,d,x),h=C.getInnerMostAxes(h.length,c),l=x}ve(a,"max"),C.assertAxesAreInnerMostDims("max",h,c);let[f,m]=C.computeOutAndReduceShapes(l,h),A=k.sizeFromShape(m),y=vx(p,A,f,a.dtype),g=o.write(y,f,a.dtype),b=f;return i&&(b=C.expandShapeToKeepDim(f,u)),{dataId:g,shape:b,dtype:a.dtype}}var C$={kernelName:As,backendName:"cpu",kernelFunc:Kx};function R$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;ve(a,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,c=1;k.assert(C.eitherStridesOrDilationsAreOne(i,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=C.computePool2DInfo(a.shape,s,i,c,o,l),h;if(u.filterWidth===1&&u.filterHeight===1&&k.arraysEqual(u.inShape,u.outShape))h=Lr({inputs:{x:a},backend:n});else{let d=n.data.get(a.dataId).values,p=k.computeStrides(a.shape),f=mA(d,a.shape,a.dtype,p,u,"max");h=n.makeTensorInfo(u.outShape,a.dtype,f.values)}return h}var F$={kernelName:gs,backendName:"cpu",kernelFunc:R$};function M$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=r;ve(a,"maxPool3d");let u=C.computePool3DInfo(a.shape,s,i,1,o,l,c),h=n.data.get(a.dataId).values,d=Hx(h,a.shape,a.dtype,k.computeStrides(a.shape),u,"max");return n.makeTensorInfo(d.shape,"float32",d.values)}var $$={kernelName:pu,backendName:"cpu",kernelFunc:M$};function D$(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=r;ve([a,s],"maxPool3DGrad");let u=C.computePool3DInfo(s.shape,i,o,1,l,c),h=n.bufferSync(s),d=_F(h,u),p=u.strideDepth,f=u.strideHeight,m=u.strideWidth,A=u.dilationDepth,y=u.dilationHeight,g=u.dilationWidth,b=u.effectiveFilterDepth,x=u.effectiveFilterHeight,w=u.effectiveFilterWidth,_=b-1-u.padInfo.front,N=w-1-u.padInfo.left,T=x-1-u.padInfo.top,E=We(s.shape,"float32"),M=n.bufferSync(a);for(let z=0;z<u.batchSize;++z)for(let P=0;P<u.inChannels;++P)for(let B=0;B<u.inDepth;++B)for(let G=0;G<u.inHeight;++G)for(let V=0;V<u.inWidth;++V){let K=B-_,X=G-T,ee=V-N,J=0;for(let ae=0;ae<b;ae+=A){let Y=(K+ae)/p;if(!(Y<0||Y>=u.outDepth||Math.floor(Y)!==Y))for(let ue=0;ue<x;ue+=y){let ne=(X+ue)/f;if(!(ne<0||ne>=u.outHeight||Math.floor(ne)!==ne))for(let de=0;de<w;de+=g){let he=(ee+de)/m;if(he<0||he>=u.outWidth||Math.floor(he)!==he)continue;let me=b*x*w-1-d.get(z,Y,ne,he,P),Ae=ae*x*w+ue*w+de,ke=me===Ae?1:0;ke!==0&&(J+=M.get(z,Y,ne,he,P)*ke)}}}E.set(J,z,B,G,V,P)}return n.makeTensorInfo(E.shape,E.dtype,E.values)}var O$={kernelName:Lh,backendName:"cpu",kernelFunc:D$};function z$(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s,output:i}=t,o=s;ve([s,i],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:h}=r,d=C.computePool2DInfo(o.shape,l,c,1,u,h),p=n.data.get(o.dataId).values,f=We(d.outShape,o.dtype,Ux(p,o.shape,o.dtype,d).values),m=d.strideHeight,A=d.strideWidth,y=d.dilationHeight,g=d.dilationWidth,b=d.effectiveFilterHeight,x=d.effectiveFilterWidth,w=x-1-d.padInfo.left,_=b-1-d.padInfo.top,N=We(o.shape,"float32"),T=n.data.get(a.dataId).values,E=We(a.shape,"float32",T);for(let M=0;M<d.batchSize;++M)for(let z=0;z<d.inChannels;++z)for(let P=0;P<d.inHeight;++P)for(let B=0;B<d.inWidth;++B){let G=P-_,V=B-w,K=0;for(let X=0;X<b;X+=y){let ee=(G+X)/m;if(!(ee<0||ee>=d.outHeight||Math.floor(ee)!==ee))for(let J=0;J<x;J+=g){let ae=(V+J)/A;if(ae<0||ae>=d.outWidth||Math.floor(ae)!==ae)continue;let Y=b*x-1-f.get(M,ee,ae,z),ue=X*x+J,ne=Y===ue?1:0;ne!==0&&(K+=E.get(M,ee,ae,z)*ne)}}N.set(K,M,P,B,z)}return n.makeTensorInfo(N.shape,N.dtype,N.values)}var P$={kernelName:Ph,backendName:"cpu",kernelFunc:z$};function L$(e,t,n,r,a){let s=k.computeStrides(t),i=mA(e,t,n,s,a,"max"),o=Ux(e,t,n,a,!0,r);return[i.values,o.values]}var W$={kernelName:Wh,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;ve(r,"MaxPoolWithArgmax");let c=l.data.get(r.dataId).values,u=C.computePool2DInfo(r.shape,a,s,[1,1],i),[h,d]=L$(c,r.shape,r.dtype,o,u),p=l.write(h,u.outShape,r.dtype),f=l.write(d,u.outShape,r.dtype);return[{dataId:p,shape:u.outShape,dtype:r.dtype},{dataId:f,shape:u.outShape,dtype:"int32"}]}};function Qd(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;ve(a,"sum");let o;a.dtype==="bool"?o=Ra({inputs:{x:a},backend:n,attrs:{dtype:"int32"}}):o=Lr({inputs:{x:a},backend:n});let l=o.shape.length,c=k.parseAxisParam(s,o.shape),u=C.getAxesPermutation(c,l),h=c,d=o;u!=null&&(d=sr({inputs:{x:o},backend:n,attrs:{perm:u}}),h=C.getInnerMostAxes(h.length,l)),C.assertAxesAreInnerMostDims("sum",h,d.shape.length);let[p,f]=C.computeOutAndReduceShapes(d.shape,h),m=C.upcastType(d.dtype,"int32"),A=Jd(n,p,m),y=k.sizeFromShape(f),g=n.data.get(A.dataId).values,b=n.data.get(d.dataId).values;for(let x=0;x<g.length;++x){let w=x*y,_=0;for(let N=0;N<y;++N)_+=b[w+N];g[x]=_}if(i){let x=C.expandShapeToKeepDim(A.shape,c),w=A;A=yt({inputs:{x:A},backend:n,attrs:{shape:x}}),n.disposeIntermediateTensorInfo(w)}return n.disposeIntermediateTensorInfo(o),u!=null&&n.disposeIntermediateTensorInfo(d),A}var B$={kernelName:Os,backendName:"cpu",kernelFunc:Qd};function V$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=k.parseAxisParam(s,a.shape),l=C.computeOutAndReduceShapes(a.shape,o)[1],c=k.sizeFromShape(l),u=[],h=n.makeTensorInfo([],"float32",new Float32Array([c]));u.push(h);let d=Ra({inputs:{x:a},backend:n,attrs:{dtype:"float32"}});u.push(d);let p=AA({inputs:{a:d,b:h},backend:n});u.push(p);let f=Qd({inputs:{x:p},backend:n,attrs:{axis:s,keepDims:i}});return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var U$={kernelName:xs,backendName:"cpu",kernelFunc:V$};function H$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;ve(a,"min");let o=k.parseAxisParam(s,a.shape),l=o,c=C.getAxesPermutation(l,a.shape.length),u=a;c!=null&&(u=sr({inputs:{x:a},backend:n,attrs:{perm:c}}),l=C.getInnerMostAxes(l.length,a.shape.length)),C.assertAxesAreInnerMostDims("min",l,u.shape.length);let[h,d]=C.computeOutAndReduceShapes(u.shape,l),p=k.sizeFromShape(d),f=k.makeZerosTypedArray(k.sizeFromShape(h),u.dtype),m=n.data.get(u.dataId).values;for(let y=0;y<f.length;++y){let g=y*p,b=m[g];for(let x=0;x<p;++x){let w=m[g+x];w<b&&(b=w)}f[y]=b}c!=null&&n.disposeIntermediateTensorInfo(u);let A=n.makeTensorInfo(h,u.dtype,f);if(i){let y=C.expandShapeToKeepDim(h,o),g=yt({inputs:{x:A},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(A),g}return A}var j$={kernelName:ws,backendName:"cpu",kernelFunc:H$};function G$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,mode:i}=r;ve(a,"mirrorPad");let o=s.map((g,b)=>g[0]+a.shape[b]+g[1]),l=s.map(g=>g[0]),c=s.map((g,b)=>g[0]+a.shape[b]),u=i==="reflect"?0:1,h=n.data.get(a.dataId).values,d=a.shape.length,p=k.computeStrides(a.shape),f=k.sizeFromShape(o),m=o.length,A=k.computeStrides(o),y=k.getTypedArrayFromDType(a.dtype,f);for(let g=0;g<f;g++){let b=k.indexToLoc(g,m,A);for(let w=0;w<m;w++)b[w]<l[w]?b[w]=l[w]*2-b[w]-u:b[w]>=c[w]&&(b[w]=(c[w]-1)*2-b[w]+u);b=b.map((w,_)=>w-l[_]);let x=k.locToIndex(b,d,p);y[g]=h[x]}return{dataId:n.write(y,o,a.dtype),shape:o,dtype:a.dtype}}var q$={kernelName:fu,backendName:"cpu",kernelFunc:G$},X$=Rt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),K$=jt(mo,X$),Z$={kernelName:mo,backendName:"cpu",kernelFunc:K$},J$=el(gk());function Zx(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{dim:s}=r,i=a.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=k.parseAxisParam([o],a.shape),c=Kx({inputs:{x:a},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),u=C.expandShapeToKeepDim(c.shape,l),h=yt({inputs:{x:c},backend:n,attrs:{shape:u}}),d=pA({inputs:{a,b:h},backend:n}),p=Ox({inputs:{x:d},backend:n}),f=Qd({inputs:{x:p},backend:n,attrs:{axis:l,keepDims:!1}}),m=yt({inputs:{x:f},backend:n,attrs:{shape:u}}),A=AA({inputs:{a:p,b:m},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),A}var Y$={kernelName:zs,backendName:"cpu",kernelFunc:Zx};function Q$(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=r;ve(a,"multinomial");let l=o?a:Zx({inputs:{logits:a},backend:n,attrs:{dim:-1}}),c=l.shape[0],u=l.shape[1],h=n.data.get(l.dataId).values,d=[c,s],p=k.makeZerosTypedArray(k.sizeFromShape(d),"int32");for(let f=0;f<c;++f){let m=f*u,A=new Float32Array(u-1);A[0]=h[m];for(let b=1;b<A.length;++b)A[b]=A[b-1]+h[m+b];let y=J$.alea(i.toString()),g=f*s;for(let b=0;b<s;++b){let x=y();p[g+b]=A.length;for(let w=0;w<A.length;w++)if(x<A[w]){p[g+b]=w;break}}}return o||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(d,"int32",p)}var eD={kernelName:Bh,backendName:"cpu",kernelFunc:Q$},tD=Mr.nonMaxSuppressionV3Impl;function nD(e){let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=r;ve(a,"NonMaxSuppression");let c=n.data.get(a.dataId).values,u=n.data.get(s.dataId).values,{selectedIndices:h}=tD(c,u,i,o,l);return n.makeTensorInfo([h.length],"int32",new Int32Array(h))}var rD={kernelName:go,backendName:"cpu",kernelFunc:nD},aD=Mr.nonMaxSuppressionV4Impl;function sD(e){let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:c}=r;ve(a,"NonMaxSuppressionPadded");let u=n.data.get(a.dataId).values,h=n.data.get(s.dataId).values,{selectedIndices:d,validOutputs:p}=aD(u,h,i,o,l,c);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([p]))]}var iD={kernelName:xo,backendName:"cpu",kernelFunc:sD},oD=Mr.nonMaxSuppressionV5Impl;function lD(e){let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:c}=r;ve(a,"NonMaxSuppressionWithScore");let u=n.data.get(a.dataId).values,h=n.data.get(s.dataId).values,d=i,p=o,f=l,m=c,{selectedIndices:A,selectedScores:y}=oD(u,h,d,p,f,m);return[n.makeTensorInfo([A.length],"int32",new Int32Array(A)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var uD={kernelName:wo,backendName:"cpu",kernelFunc:lD};function cD(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r;ve(a,"oneHot");let l=k.sizeFromShape(a.shape),c=new Float32Array(l*s);c.fill(o);let u=n.data.get(a.dataId).values;for(let h=0;h<l;++h)u[h]>=0&&u[h]<s&&(c[h*s+u[h]]=i);return n.makeTensorInfo([...a.shape,s],"int32",c)}var hD={kernelName:vs,backendName:"cpu",kernelFunc:cD};function ep(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(r.dtype==="complex64"){let a=si({inputs:{input:r},backend:n}),s=ep({inputs:{x:a},backend:n}),i=pl({inputs:{input:r},backend:n}),o=ep({inputs:{x:i},backend:n}),l=En({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return xA({backend:n,attrs:{shape:r.shape,value:0,dtype:r.dtype}})}var dD={kernelName:Po,backendName:"cpu",kernelFunc:ep};function Jx(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(r.dtype==="complex64"){let a=si({inputs:{input:r},backend:n}),s=Jx({inputs:{x:a},backend:n}),i=pl({inputs:{input:r},backend:n}),o=ep({inputs:{x:i},backend:n}),l=En({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return xA({backend:n,attrs:{shape:r.shape,value:1,dtype:r.dtype}})}var pD={kernelName:_o,backendName:"cpu",kernelFunc:Jx};function Yx(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return Yd({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(u=>{k.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let h=Yd({inputs:{input:u},backend:n,attrs:{dim:a}});return o.push(h),h}),c=fl({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var fD={kernelName:bo,backendName:"cpu",kernelFunc:Yx};function mD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,constantValue:i}=r;ve(a,"pad");let o=s.map((y,g)=>y[0]+a.shape[g]+y[1]),l=s.map(y=>y[0]),c=n.data.get(a.dataId).values,u=k.sizeFromShape(a.shape),h=a.shape.length,d=k.computeStrides(a.shape),p=k.sizeFromShape(o),f=o.length,m=k.computeStrides(o),A=k.getTypedArrayFromDType(a.dtype,p);i!==0&&A.fill(i);for(let y=0;y<u;y++){let g=k.indexToLoc(y,h,d).map((x,w)=>x+l[w]),b=k.locToIndex(g,f,m);A[b]=c[y]}return{dataId:n.write(A,o,a.dtype),shape:o,dtype:a.dtype}}var Qx={kernelName:ks,backendName:"cpu",kernelFunc:mD},AD=Rt((e,t)=>Math.pow(e,t)),yD=jt(Is,AD),gD={kernelName:Is,backendName:"cpu",kernelFunc:yD};function xD(e){let{backend:t,attrs:n}=e,{start:r,stop:a,dtype:s,step:i}=n,o=cA(r,a,i,s);return t.makeTensorInfo([o.length],s,o)}var wD={kernelName:mu,backendName:"cpu",kernelFunc:xD},_D=st(ko,e=>1/e),bD={kernelName:ko,backendName:"cpu",kernelFunc:_D};function vD(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r;ve(a,"resizeBilinear");let l=k.computeStrides(a.shape),[c,u]=o,[h,d,p,f]=a.shape,m=n.data.get(a.dataId).values,A=new Float32Array(k.sizeFromShape([h,c,u,f])),y=[s&&c>1?d-1:d,s&&u>1?p-1:p],g=[s&&c>1?c-1:c,s&&u>1?u-1:u],b=0,x=y[0]/g[0],w=y[1]/g[1];for(let _=0;_<h;_++)for(let N=0;N<c;N++){let T;i?T=x*(N+.5)-.5:T=x*N;let E=Math.max(0,Math.floor(T)),M=T-E,z=Math.min(d-1,Math.ceil(T)),P=_*l[0]+E*l[1],B=_*l[0]+z*l[1];for(let G=0;G<u;G++){let V;i?V=w*(G+.5)-.5:V=w*G;let K=Math.max(0,Math.floor(V)),X=V-K,ee=Math.min(p-1,Math.ceil(V)),J=P+K*l[2],ae=B+K*l[2],Y=P+ee*l[2],ue=B+ee*l[2];for(let ne=0;ne<f;ne++){let de=m[J+ne],he=m[ae+ne],me=m[Y+ne],Ae=m[ue+ne],ke=de+(me-de)*X,Ee=he+(Ae-he)*X,Ce=ke+(Ee-ke)*M;A[b++]=Ce}}}return n.makeTensorInfo([h,c,u,f],"float32",A)}var kD={kernelName:Ts,backendName:"cpu",kernelFunc:vD};function ID(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r;ve([s,a],"resizeBilinearGrad");let o=k.computeStrides(a.shape),[l,c,u,h]=a.shape,[,d,p]=s.shape,f=new Float32Array(l*c*u*h),m=[i&&d>1?c-1:c,i&&p>1?u-1:u],A=[i&&d>1?d-1:d,i&&p>1?p-1:p],y=m[0]/A[0],g=m[1]/A[1],b=n.data.get(s.dataId).values,x=0;for(let w=0;w<l;w++){let _=w*o[0];for(let N=0;N<d;N++){let T=N*y,E=Math.floor(T),M=Math.min(Math.ceil(T),c-1),z=_+E*o[1],P=_+M*o[1],B=T-E,G=1-B;for(let V=0;V<p;V++){let K=V*g,X=Math.floor(K),ee=Math.min(Math.ceil(K),u-1),J=K-X,ae=1-J,Y=z+X*o[2],ue=z+ee*o[2],ne=P+X*o[2],de=P+ee*o[2],he=G*ae,me=G*J,Ae=B*ae,ke=B*J;for(let Ee=0;Ee<h;Ee++){let Ce=b[x++];f[Y+Ee]+=Ce*he,f[ue+Ee]+=Ce*me,f[ne+Ee]+=Ce*Ae,f[de+Ee]+=Ce*ke}}}}return n.makeTensorInfo([l,u,c,h],"float32",f)}var ND={kernelName:Hh,backendName:"cpu",kernelFunc:ID};function SD(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r;ve(a,"resizeNearestNeighbor");let l=k.computeStrides(a.shape),[c,u]=o,[h,d,p,f]=a.shape,m=n.data.get(a.dataId).values,A=new Float32Array(h*c*u*f),y=[s&&c>1?d-1:d,s&&u>1?p-1:p],g=[s&&c>1?c-1:c,s&&u>1?u-1:u],b=y[0]/g[0],x=y[1]/g[1],w=0;for(let _=0;_<h;_++){let N=_*l[0];for(let T=0;T<c;T++){let E=i?b*(T+.5):b*T,M=Math.min(d-1,s?Math.round(E):Math.floor(E));i&&(M=Math.max(0,M));let z=N+M*l[1];for(let P=0;P<u;P++){let B=i?x*(P+.5):x*P,G=Math.min(p-1,s?Math.round(B):Math.floor(B));i&&(G=Math.max(0,G));let V=z+G*l[2];for(let K=0;K<f;K++){let X=m[V+K];A[w++]=X}}}}return n.makeTensorInfo([h,c,u,f],a.dtype,A)}var TD={kernelName:Au,backendName:"cpu",kernelFunc:SD};function ED(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r;ve([s,a],"resizeNearestNeighborGrad");let o=k.computeStrides(a.shape),l=k.computeStrides(s.shape),[c,u,h,d]=a.shape,[,p,f]=s.shape,m=new Float32Array(c*u*h*d),A=n.data.get(s.dataId).values,y=[i&&p>1?u-1:u,i&&f>1?h-1:h],g=[i&&p>1?p-1:p,i&&f>1?f-1:f],b=y[0]/g[0],x=y[1]/g[1],w=1/b,_=1/x,N=Math.ceil(w)*2+2,T=Math.ceil(_)*2+2;for(let E=0;E<c;E++){let M=E*o[0];for(let z=0;z<u;z++){let P=M+z*o[1],B=Math.floor(z*w),G=Math.floor(B-N/2);for(let V=0;V<h;V++){let K=P+V*o[2],X=Math.floor(V*_),ee=Math.floor(X-T/2);for(let J=0;J<d;J++){let ae=0;for(let Y=0;Y<N;Y++){let ue=Y+G;if(ue<0||ue>=p)continue;let ne=M+ue*l[1],de=ue*b,he=Math.min(u-1,i?Math.round(de):Math.floor(de));if(z===he)for(let me=0;me<T;me++){let Ae=me+ee;if(Ae<0||Ae>=f)continue;let ke=ne+Ae*l[2],Ee=Ae*x,Ce=Math.min(h-1,i?Math.round(Ee):Math.floor(Ee));V===Ce&&(ae+=A[ke+J])}}m[K+J]=ae}}}}return n.makeTensorInfo(a.shape,a.dtype,m)}var CD={kernelName:Uh,backendName:"cpu",kernelFunc:ED};function RD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r;ve(a,"reverse");let i=a.shape.length,o=k.parseAxisParam(s,a.shape);if(i===0)return Lr({inputs:{x:a},backend:n});let l=new $t(a.shape,a.dtype),c=n.bufferSync(a);for(let u=0;u<l.size;u++){let h=l.indexToLoc(u),d=h.slice();o.forEach(p=>d[p]=a.shape[p]-1-d[p]),l.set(c.get(...d),...h)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var FD={kernelName:Cs,backendName:"cpu",kernelFunc:RD},MD={kernelName:Lo,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:a,fillValue:s,center:i}=t,o=n,l=k.getTypedArrayFromDType(r.dtype,k.sizeFromShape(r.shape)),[c,u,h,d]=r.shape,[p,f]=C.getImageCenter(i,u,h),m=255,A=Math.sin(a),y=Math.cos(a),g=o.data.get(r.dataId).values;for(let b=0;b<c;b++){let x=b*h*u*d;for(let w=0;w<u;w++){let _=w*(h*d);for(let N=0;N<h;N++){let T=N*d;for(let E=0;E<d;E++){let M=[c,w,N,E],z=M[2],P=M[1],B=(z-p)*y-(P-f)*A,G=(z-p)*A+(P-f)*y;B=Math.round(B+p),G=Math.round(G+f);let V=s;if(typeof s!="number"&&(E===3?V=m:V=s[E]),B>=0&&B<h&&G>=0&&G<u){let X=G*(h*d),ee=B*d,J=x+X+ee+E;V=g[J]}let K=x+_+T+E;l[K]=V}}}}return{dataId:o.write(l,r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},$D=st(Rs,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),DD={kernelName:Rs,backendName:"cpu",kernelFunc:$D};function ew(e,t,n,r,a,s,i,o,l,c){let u=[r/a,a],h=e.values,d=t.values;if(r===0)return We(n,t.dtype);let p=We(u,t.dtype);p.values.fill(l);for(let f=0;f<s;f++){let m=[],A=0;for(let y=0;y<i;y++){let g=h[f*i+y];m.push(g),A+=g*o[y]}if(A<0||A>=r/a)throw new Error(`Invalid indices: ${m} does not index into ${n}`);for(let y=0;y<a;y++)c?p.values[A*a+y]+=d[f*a+y]:p.values[A*a+y]=t.rank===0?d[0]:d[f*a+y]}return p}function OD(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a,updates:s}=t,{shape:i}=r,{sliceRank:o,numUpdates:l,sliceSize:c,strides:u,outputSize:h}=C.calculateShapes(s,a,i),d=!0,p=n.bufferSync(a),f=n.bufferSync(s),m=ew(p,f,i,h,c,l,o,u,0,d);return n.makeTensorInfo(i,m.dtype,m.values)}var zD={kernelName:No,backendName:"cpu",kernelFunc:OD};function PD(e){let{inputs:t,backend:n}=e,{condition:r,t:a,e:s}=t;ve([r,a,s],"select");let i=r.shape.length,o=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,c=n.data.get(s.dataId).values,u=Yn(a.dtype,s.dtype),h=k.makeZerosTypedArray(k.sizeFromShape(a.shape),u),d=0,p=i===0||i>1||a.shape.length===1?1:k.sizeFromShape(a.shape.slice(1));for(let f=0;f<o.length;f++)for(let m=0;m<p;m++)o[f]===1?h[d++]=l[f]:h[d++]=c[f];return n.makeTensorInfo(a.shape,u,h)}var LD={kernelName:So,backendName:"cpu",kernelFunc:PD},WD=C.SELU_SCALEALPHA,BD=C.SELU_SCALE,VD=st(To,e=>e>=0?BD*e:WD*(Math.exp(e)-1)),UD={kernelName:To,backendName:"cpu",kernelFunc:VD},HD=st($s,e=>1/(1+Math.exp(-e))),jD={kernelName:$s,backendName:"cpu",kernelFunc:HD},GD=st(Ro,e=>e<0?-1:e>0?1:0),qD={kernelName:Ro,backendName:"cpu",kernelFunc:GD},XD=st(Ms,e=>Math.sin(e)),KD={kernelName:Ms,backendName:"cpu",kernelFunc:XD},ZD=st(Co,e=>Math.sinh(e)),JD={kernelName:Co,backendName:"cpu",kernelFunc:ZD},YD=11920928955078125e-23,tw=Math.log(YD)+2,QD=st(Fo,e=>{let t=e>-tw,n=e<tw,r=Math.exp(e),a;return n?a=r:t?a=e:a=Math.log(1+r),a}),eO={kernelName:Fo,backendName:"cpu",kernelFunc:QD};function tO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,paddings:i}=r;ve([a],"spaceToBatchND");let o=k.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let A=1+s.length;A<a.shape.length;++A)l.push([0,0]);let c=Qx.kernelFunc({inputs:{x:a},backend:n,attrs:{paddings:l,constantValue:0}}),u=C.getReshaped(c.shape,s,o,!1),h=C.getPermuted(u.length,s.length,!1),d=C.getReshapedPermuted(c.shape,s,o,!1),p=yt({inputs:{x:c},backend:n,attrs:{shape:u}}),f=sr({inputs:{x:p},backend:n,attrs:{perm:h}}),m=yt({inputs:{x:f},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),m}var nO={kernelName:yu,backendName:"cpu",kernelFunc:tO};function rO(e){let{inputs:t,backend:n,attrs:r}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=r,{sliceRank:l,numUpdates:c,sliceSize:u,strides:h,outputSize:d}=C.calculateShapes(s,a,o),p=!1,f=n.bufferSync(a),m=n.bufferSync(s),A=n.data.get(i.dataId).values[0],y=ew(f,m,o,d,u,c,l,h,A,p);return n.makeTensorInfo(o,y.dtype,y.values)}var aO={kernelName:jh,backendName:"cpu",kernelFunc:rO};function sO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=r,o=k.parseAxisParam(i,a.shape)[0],l=C.prepareSplitSize(a,s,o),c=new Array(a.shape.length).fill(0),u=a.shape.slice();return l.map(h=>{let d=[...u];d[o]=h;let p=ii({inputs:{x:a},backend:n,attrs:{begin:c,size:d}});return c[o]+=h,p})}var iO={kernelName:Mo,backendName:"cpu",kernelFunc:sO},oO=st(Ds,e=>Math.sqrt(e)),lO={kernelName:Ds,backendName:"cpu",kernelFunc:oO},uO={kernelName:gu,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,r=t;ve(n,"square");let a=r.data.get(n.dataId).values,s=new Float32Array(a.length);for(let i=0;i<a.length;++i){let o=a[i];s[i]=o*o}return{dataId:r.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},cO=st(ga,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),hO={kernelName:ga,backendName:"cpu",kernelFunc:cO};function dO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:h,shrinkAxisMask:d}=r;ve(a,"stridedSlice");let{nonStrided:p,$begin:f,$strides:m,size:A,newShape:y,outShape:g}=an.sliceInfo(a.shape,s,i,o,l,c,u,h,d),b=yt({inputs:{x:a},backend:n,attrs:{shape:y}}),x;if(p){let _=ii({inputs:{x:b},backend:n,attrs:{begin:f,size:A}});x=yt({inputs:{x:_},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(_)}else if(g.some(_=>_===0))x=n.makeTensorInfo(g,a.dtype,[]);else{let _=n.bufferSync(b),N=Rx(g,_,m,f);x=n.makeTensorInfo(N.shape,N.dtype,N.values)}let w=yt({inputs:{x},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(x),w}var pO={kernelName:$o,backendName:"cpu",kernelFunc:dO},fO=st(Do,e=>Math.tan(e)),mO={kernelName:Do,backendName:"cpu",kernelFunc:fO},AO=st(Ws,e=>Math.tanh(e)),yO={kernelName:Ws,backendName:"cpu",kernelFunc:AO};function gO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reps:s}=r;ve(a,"tile");let i=Mx(n.bufferSync(a),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var xO={kernelName:ya,backendName:"cpu",kernelFunc:gO};function wO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{k:s,sorted:i}=r;ve(a,"topk");let o=n.data.get(a.dataId).values,[l,c]=$x(o,a.shape,a.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(c.shape,c.dtype,c.values)]}var _O={kernelName:Oo,backendName:"cpu",kernelFunc:wO};function bO(e){let{inputs:t,attrs:n,backend:r}=e,{axis:a}=n,{x:s}=t;ve(s,"unique");let i=r.data.get(s.dataId).values,{outputValues:o,outputShape:l,indices:c}=Dx(i,a,s.shape,s.dtype);return[r.makeTensorInfo(l,s.dtype,o),r.makeTensorInfo([c.length],"int32",c)]}var vO={kernelName:Gh,backendName:"cpu",kernelFunc:bO};function kO(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a.shape.length,o=a.shape[s],l=new Array(i-1),c=0;for(let p=0;p<i;p++)p!==s&&(l[c++]=a.shape[p]);let u=new Array(i).fill(0),h=a.shape.slice();h[s]=1;let d=new Array(o);for(let p=0;p<d.length;p++){u[s]=p;let f=ii({inputs:{x:a},backend:n,attrs:{begin:u,size:h}});d[p]=yt({inputs:{x:f},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(f)}return d}var IO={kernelName:zo,backendName:"cpu",kernelFunc:kO};function NO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,segmentIds:s}=t,{numSegments:i}=r;ve(a,"unsortedSegmentSum");let o=a.shape.length,l=s.shape.length,c=[],u=[],h=o-l,d=s;for(let f=0;f<h;++f){let m=Yd({inputs:{input:d},backend:n,attrs:{dim:f+1}});d=m,u.push(m)}for(let f=0;f<i;++f){let m=k.createScalarValue(f,"int32"),A=n.makeTensorInfo([],"int32",m),y=qx({inputs:{a:A,b:d},backend:n}),g=Ra({inputs:{x:y},backend:n,attrs:{dtype:"float32"}}),b=dA({inputs:{a:g,b:a},backend:n}),x=Qd({inputs:{x:b},backend:n,attrs:{axis:0,keepDims:!1}});c.push(x),u.push(A),u.push(y),u.push(g),u.push(b),u.push(x)}let p=Yx({inputs:c,backend:n,attrs:{axis:0}});return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),p}var SO={kernelName:xu,backendName:"cpu",kernelFunc:NO},TO=[KR,eR,JR,QR,iR,tF,rF,sF,oF,uF,hF,pF,mF,gF,wF,vF,IF,SF,EF,qR,RF,MF,DF,aR,lR,zF,tR,LF,BF,HF,GF,VF,ZF,YF,XF,eM,nM,aM,iM,lM,cM,hM,pM,mM,yM,gM,wM,xM,yA,WR,bM,kM,FM,uR,MM,hR,LM,BM,VM,pR,jM,qM,KM,JM,QM,mR,n$,nR,a$,WF,i$,l$,c$,BR,yR,p$,m$,xR,y$,w$,b$,I$,S$,E$,_R,F$,$$,O$,P$,W$,C$,U$,j$,vR,q$,Z$,eD,IR,SR,rD,iD,uD,ER,hD,pD,fD,Qx,gD,UR,FR,wD,rR,bD,HR,jR,GR,kD,ND,TD,CD,FD,MD,DD,$R,zD,LD,UD,jD,qD,KD,JD,DR,Y$,eO,nO,aO,iO,lO,uO,zR,hO,pO,LR,B$,mO,yO,xO,_O,CR,vO,IO,SO,dD];for(let e of TO)Wo(e);var v0={};ze(v0,{assertNotComplex:()=>ml,bindCanvasToFramebuffer:()=>RO,bindColorTextureToFramebuffer:()=>np,bindTextureToProgramUniformSampler:()=>Aw,bindTextureUnit:()=>pw,bindVertexBufferToProgramAttribute:()=>wA,callAndCheck:()=>_e,canBeRepresented:()=>nw,createFragmentShader:()=>sw,createFramebuffer:()=>dw,createProgram:()=>iw,createStaticIndexBuffer:()=>uw,createStaticVertexBuffer:()=>lw,createTexture:()=>cw,createVertexShader:()=>aw,getBatchDim:()=>oi,getExtensionOrThrow:()=>rc,getFramebufferErrorMessage:()=>yw,getMaxTexturesInShader:()=>ww,getNumChannels:()=>EO,getProgramUniformLocation:()=>mw,getProgramUniformLocationOrThrow:()=>fw,getRowsCols:()=>li,getShapeAs3D:()=>rp,getTextureShapeFromLogicalShape:()=>gw,getWebGLDisjointQueryTimerVersion:()=>_w,getWebGLErrorMessage:()=>rw,getWebGLMaxTextureSize:()=>xw,hasExtension:()=>Vn,isCapableOfRenderingToFloatTexture:()=>bw,isDownloadFloatTextureEnabled:()=>vw,isReshapeFree:()=>sc,isWebGLFenceEnabled:()=>kw,isWebGLVersionEnabled:()=>bA,linkProgram:()=>ow,resetMaxTextureSize:()=>FO,resetMaxTexturesInShader:()=>MO,unbindColorTextureFromFramebuffer:()=>_A,unbindTextureUnit:()=>CO,validateFramebuffer:()=>ac,validateProgram:()=>tp,validateTextureSize:()=>hw});var ui={},vA={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function Am(e,t){ui[e]=t}function Wr(e){if(!(e in ui)){let n=$O(e);if(n!==null)ui[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=ui[e];return t.isContextLost()?(delete ui[e],Wr(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),ui[e])}function DO(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function $O(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=DO(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete ui[e]},!1),e===1?t.getContext("webgl",vA)||t.getContext("experimental-webgl",vA):t.getContext("webgl2",vA)}var ic;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(ic||(ic={}));var Un;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(Un||(Un={}));var Zt;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(Zt||(Zt={}));function oc(e,t){return[t,e]}function OO(e,t){return e*t}function lc(e){let t=k.sizeFromShape(e),n=Math.ceil(t/4);return k.sizeToSquarishShape(n)}function Al(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function zO(e,t){let[n,r]=Al(e,t);return n*r*4}function kA(e,t){let n=e,r,a,s,i,o,l,c,u,h,d;return Q().getNumber("WEBGL_VERSION")===2?(r=n.R32F,a=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,c=4,u=1,h=n.HALF_FLOAT,d=n.FLOAT):(r=e.RGBA,a=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,c=4,u=4,h=t!=null?t.HALF_FLOAT_OES:null,d=e.FLOAT),l=e.RGBA,{internalFormatFloat:r,internalFormatHalfFloat:a,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:c,defaultNumChannels:u,textureTypeHalfFloat:h,textureTypeFloat:d}}function _e(e,t){let n=t();return Q().getBool("DEBUG")&&PO(e),n}function PO(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+rw(e,t))}var LO=596e-10,WO=65504;function nw(e){return!!(Q().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||LO<Math.abs(e)&&Math.abs(e)<WO)}function rw(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function rc(e,t){return aa(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function aw(e,t){let n=aa(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(_e(e,()=>e.shaderSource(n,t)),_e(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function sw(e,t){let n=aa(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(_e(e,()=>e.shaderSource(n,t)),_e(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw BO(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var VO=/ERROR: [0-9]+:([0-9]+):/g;function BO(e,t){let n=VO.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let r=+n[1],a=e.split(`
`),s=a.length.toString().length+2,i=a.map((h,d)=>k.rightPad((d+1).toString(),s)+h),o=0;for(let h=0;h<i.length;h++)o=Math.max(i[h].length,o);let l=i.slice(0,r-1),c=i.slice(r-1,r),u=i.slice(r);console.log(l.join(`
`)),console.log(t.split(`
`)[0]),console.log(`%c ${k.rightPad(c[0],o)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(u.join(`
`))}function iw(e){return aa(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function ow(e,t){if(_e(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function tp(e,t){if(_e(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function lw(e,t){let n=aa(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return _e(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),_e(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function uw(e,t){let n=aa(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return _e(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),_e(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function EO(){return Q().getNumber("WEBGL_VERSION")===2?1:4}function cw(e){return aa(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function hw(e,t){let n=Q().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let r=`[${e}x${t}]`;throw new Error("Requested texture size "+r+" is invalid.")}if(e>n||t>n){let r=`[${e}x${t}]`,a=`[${n}x${n}]`;throw new Error("Requested texture size "+r+" greater than WebGL maximum on this browser / GPU "+a+".")}}function dw(e){return aa(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function wA(e,t,n,r,a,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(_e(e,()=>e.bindBuffer(e.ARRAY_BUFFER,r)),_e(e,()=>e.vertexAttribPointer(o,a,e.FLOAT,!1,s,i)),_e(e,()=>e.enableVertexAttribArray(o)),!0)}function pw(e,t,n){Iw(e,n),_e(e,()=>e.activeTexture(e.TEXTURE0+n)),_e(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function CO(e,t){Iw(e,t),_e(e,()=>e.activeTexture(e.TEXTURE0+t)),_e(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function fw(e,t,n){return aa(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function mw(e,t,n){return e.getUniformLocation(t,n)}function Aw(e,t,n,r){_e(e,()=>pw(e,t,r)),_e(e,()=>e.uniform1i(n,r))}function RO(e){_e(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),_e(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),_e(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function np(e,t,n){_e(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),_e(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function _A(e,t){_e(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),_e(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function ac(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+yw(e,t))}function yw(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function aa(e,t,n){let r=_e(e,()=>t());if(r==null)throw new Error(n);return r}function Iw(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,r=t+e.TEXTURE0;if(r<e.TEXTURE0||r>n){let a=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${a}.`)}}function oi(e,t=2){return k.sizeFromShape(e.slice(0,e.length-t))}function li(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function rp(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[oi(e),...li(e)]),t}function gw(e,t=!1){let n=Q().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((a,s)=>s>=e.length-2?k.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=k.squeezeShape(e).newShape);let r=k.sizeFromShape(e);if(e.length<=1&&r<=n)return[1,r];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let a=oi(e),s=2,i=2;return e.length&&([s,i]=li(e)),r=a*(s/2)*(i/2),k.sizeToSquarishShape(r).map(o=>o*2)}return k.sizeToSquarishShape(r)}function ap(e){return e%2==0}function sc(e,t){if(e=e.slice(-2),t=t.slice(-2),k.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],r=t.slice(-1)[0];if(n===r||ap(n)&&ap(r)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&ap(e[0])&&ap(t[0])}var sp,ip;function xw(e){if(sp==null){let t=Wr(e);sp=t.getParameter(t.MAX_TEXTURE_SIZE)}return sp}function FO(){sp=null}function MO(){ip=null}function ww(e){if(ip==null){let t=Wr(e);ip=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,ip)}function _w(e){if(e===0)return 0;let t,n=Wr(e);return Vn(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:Vn(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function Vn(e,t){return e.getExtension(t)!=null}function bA(e){try{if(Wr(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function bw(e){if(e===0)return!1;let t=Wr(e);if(e===1){if(!Vn(t,"OES_texture_float"))return!1}else if(!Vn(t,"EXT_color_buffer_float"))return!1;return IA(t)}function vw(e){if(e===0)return!1;let t=Wr(e);if(e===1){if(!Vn(t,"OES_texture_float")||!Vn(t,"WEBGL_color_buffer_float"))return!1}else{if(Vn(t,"EXT_color_buffer_float"))return IA(t);let n="EXT_color_buffer_half_float";if(Vn(t,n)){let r=t.getExtension(n);return UO(t,r)}return!1}return IA(t)}function IA(e){let t=kA(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,r,a,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function UO(e,t){let n=kA(e,t),r=e.createTexture();e.bindTexture(e.TEXTURE_2D,r);let a=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,a,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,r,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(r),e.deleteFramebuffer(i),o}function kw(e){return e!==2?!1:Wr(e).fenceSync!=null}function ml(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&k.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var $e=Q();$e.registerFlag("HAS_WEBGL",()=>$e.getNumber("WEBGL_VERSION")>0);$e.registerFlag("WEBGL_VERSION",()=>bA(2)?2:bA(1)?1:0);$e.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);$e.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>$e.get("WEBGL_VERSION")===2);$e.registerFlag("WEBGL_CPU_FORWARD",()=>!0);$e.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);$e.registerFlag("WEBGL_PACK",()=>$e.getBool("HAS_WEBGL"));$e.registerFlag("WEBGL_PACK_NORMALIZATION",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_CLIP",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>!1);$e.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_REDUCE",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_LAZILY_UNPACK",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_CONV_IM2COL",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>xw($e.getNumber("WEBGL_VERSION")));$e.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>ww($e.getNumber("WEBGL_VERSION")));$e.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=$e.getNumber("WEBGL_VERSION");return e===0?0:_w(e)});$e.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>$e.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Zh.isMobile());$e.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>bw($e.getNumber("WEBGL_VERSION")));$e.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>$e.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:$e.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));$e.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>vw($e.getNumber("WEBGL_VERSION")));$e.registerFlag("WEBGL_FENCE_API_ENABLED",()=>kw($e.getNumber("WEBGL_VERSION")));$e.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>$e.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);$e.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});function ln(){let e,t,n,r,a,s,i,o,l,c;return Q().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",r="in",a="texture",s="outputColor",i="out vec4 outputColor;",o=`
bool isnan_custom(float val) {
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan_custom(val.x),
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
}
#define isnan(value) isnan_custom(value)
`,l="",c=`
#define round(value) newRound(value)
int newRound(float value) {
return int(floor(value + 0.5));
}
ivec4 newRound(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`):(e="",t="attribute",n="varying",r="varying",a="texture2D",s="gl_FragColor",i="",o=`
#define isnan(value) isnan_custom(value)
bool isnan_custom(float val) {
return (val > 0. || val < 1. || val == 0.) ? false : true;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
}
`,l=`
uniform float INFINITY;
bool isinf(float val) {
return abs(val) == INFINITY;
}
bvec4 isinf(vec4 val) {
return equal(abs(val), vec4(INFINITY));
}
`,c=`
int round(float value) {
return int(floor(value + 0.5));
}
ivec4 round(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`),{version:e,attribute:t,varyingVs:n,varyingFs:r,texture2D:a,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:c}}function ci(e,t,n="index"){let r=k.computeStrides(t);return r.map((a,s)=>{let i=`int ${e[s]} = ${n} / ${a}`,o=s===r.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * ${a}`:`index -= ${e[s]} * ${a}`;return`${i}; ${o};`}).join("")}function NA(e){let t=k.computeStrides(e).map(n=>n.toString());return`
int getFlatIndex(ivec3 coords) {
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
}
`}var Nw=`
const float FLOAT_MAX = 1.70141184e38;
const float FLOAT_MIN = 1.17549435e-38;
lowp vec4 encode_float(highp float v) {
if (isnan(v)) {
return vec4(255, 255, 255, 255);
}
highp float av = abs(v);
if(av < FLOAT_MIN) {
return vec4(0.0, 0.0, 0.0, 0.0);
} else if(v > FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
} else if(v < -FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
}
highp vec4 c = vec4(0,0,0,0);
highp float e = floor(log2(av));
highp float m = exp2(fract(log2(av))) - 1.0;
c[2] = floor(128.0 * m);
m -= c[2] / 128.0;
c[1] = floor(32768.0 * m);
m -= c[1] / 32768.0;
c[0] = floor(8388608.0 * m);
highp float ebias = e + 127.0;
c[3] = floor(ebias / 2.0);
ebias -= c[3] * 2.0;
c[2] += floor(ebias) * 128.0;
c[3] += 128.0 * step(0.0, -v);
return c / 255.0;
}
`,HO=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=ic.DENSE;let t=lc(e),n=ln();this.outputShape=e,this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${ci(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getA(rc.x, rc.y, rc.z);
}
${n.output} = result;
}
`}},jO=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=ic.DENSE;let t=lc(e),n=ln();this.outputShape=e,this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${ci(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
}
${n.output} = result;
}
`}},GO=class{constructor(e){this.variableNames=["A"],this.outTexUsage=Un.DOWNLOAD;let t=ln();this.outputShape=e,this.userCode=`
${Nw}
void main() {
float x = getAAtOutCoords();
${t.output} = encode_float(x);
}
`}},qO=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=Un.DOWNLOAD;let t=ln();this.outputShape=e,this.userCode=`
${Nw}
void main() {
ivec3 coords = getOutputCoords();
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
${t.output} = encode_float(x);
}
`}},XO=class{constructor(e,t,n=!1){this.variableNames=["A"];let r=ln(),[a,s]=t;this.outputShape=e;let i="result";n&&(i="floor(result * 255. + 0.5)"),this.userCode=`
${NA(e)}
void main() {
ivec3 coords = getOutputCoords();
int flatIndex = getFlatIndex(coords);
int offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / ${s};
int c = imod(flatIndex, ${s});
vec2 uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${a}.0);
vec4 values = ${r.texture2D}(A, uv);
float result;
if(offset == 0) {
result = values[0];
} else if(offset == 1) {
result = values[1];
} else if(offset == 2) {
result = values[2];
} else {
result = values[3];
}
${r.output} = vec4(${i}, 0., 0., 0.);
}
`}},KO=class{constructor(e,t,n=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let r=ln(),[a,s]=t;this.outputShape=e;let i="",o="result";n&&(o="floor(result * 255. + 0.5)");for(let l=0;l<=1;l++)for(let c=0;c<=1;c++){let u=l*2+c;i+=`
localCoords = coords;
if(localCoords[2] + ${c} < ${e[2]}) {
localCoords[2] += ${c};
if(localCoords[1] + ${l} < ${e[1]}) {
localCoords[1] += ${l};
flatIndex = getFlatIndex(localCoords);
offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
r = flatIndex / ${s};
c = imod(flatIndex, ${s});
uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${a}.0);
values = ${r.texture2D}(A, uv);
if(offset == 0) {
result[${u}] = values[0];
} else if(offset == 1) {
result[${u}] = values[1];
} else if(offset == 2) {
result[${u}] = values[2];
} else {
result[${u}] = values[3];
}
}
}
`}this.userCode=`
${NA(e)}
void main() {
ivec3 coords = getOutputCoords();
vec4 result = vec4(0.);
int flatIndex, r, c, offset;
ivec3 localCoords;
vec2 uv;
vec4 values;
${i}
${r.output} = ${o};
}
`}},k0={};ze(k0,{bindVertexProgramAttributeStreams:()=>Dw,createBufferFromOutputTexture:()=>Pw,createFloat16MatrixTexture:()=>Rw,createFloat16PackedMatrixTexture:()=>$w,createFloat32MatrixTexture:()=>Cw,createIndexBuffer:()=>Ew,createPackedMatrixTexture:()=>Mw,createUnsignedBytesMatrixTexture:()=>Fw,createVertexBuffer:()=>Tw,createVertexShader:()=>Sw,downloadByteEncodedFloatMatrixFromOutputTexture:()=>Ww,downloadFloat32MatrixFromBuffer:()=>Lw,downloadMatrixFromPackedOutputTexture:()=>Vw,downloadPackedMatrixFromBuffer:()=>Bw,getInternalFormatForFloat16MatrixTexture:()=>TA,getInternalFormatForFloat16PackedMatrixTexture:()=>RA,getInternalFormatForFloat32MatrixTexture:()=>SA,getInternalFormatForPackedMatrixTexture:()=>CA,getInternalFormatForUnsignedBytesMatrixTexture:()=>EA,uploadDenseMatrixToTexture:()=>Ow,uploadPixelDataToTexture:()=>zw});function Sw(e){let t=ln(),n=`${t.version}
precision highp float;
${t.attribute} vec3 clipSpacePos;
${t.attribute} vec2 uv;
${t.varyingVs} vec2 resultUV;
void main() {
gl_Position = vec4(clipSpacePos, 1);
resultUV = uv;
}`;return aw(e,n)}function Tw(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return lw(e,t)}function Ew(e){let t=new Uint16Array([0,1,2,2,1,3]);return uw(e,t)}function uc(e,t,n,r,a,s){hw(t,n);let i=cw(e),o=e.TEXTURE_2D;return _e(e,()=>e.bindTexture(o,i)),_e(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),_e(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),_e(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),_e(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),_e(e,()=>e.texImage2D(o,0,r,t,n,0,a,s,null)),_e(e,()=>e.bindTexture(e.TEXTURE_2D,null)),i}function SA(e){return e.internalFormatFloat}function Cw(e,t,n,r){let[a,s]=oc(t,n);return uc(e,a,s,SA(r),r.textureFormatFloat,e.FLOAT)}function TA(e){return e.internalFormatHalfFloat}function Rw(e,t,n,r){let[a,s]=oc(t,n);return uc(e,a,s,TA(r),r.textureFormatFloat,r.textureTypeHalfFloat)}function EA(e){return e.downloadTextureFormat}function Fw(e,t,n,r){let[a,s]=oc(t,n);return uc(e,a,s,EA(r),e.RGBA,e.UNSIGNED_BYTE)}function CA(e){return e.internalFormatPackedFloat}function Mw(e,t,n,r){let[a,s]=Al(t,n);return uc(e,a,s,CA(r),e.RGBA,e.FLOAT)}function RA(e){return e.internalFormatPackedHalfFloat}function $w(e,t,n,r){let[a,s]=Al(t,n);return uc(e,a,s,RA(r),e.RGBA,r.textureTypeHalfFloat)}function Dw(e,t,n){let r=0,a=3*4,s=3*4+2*4;return _e(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),wA(e,t,"clipSpacePos",n,3,s,r)&&wA(e,t,"uv",n,2,s,a)}function Ow(e,t,n,r,a,s){_e(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;a instanceof Uint8Array?(i=new Uint8Array(n*r*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(n*r*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(a),_e(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,r,0,e.RGBA,o,i)),_e(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function zw(e,t,n){_e(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?_e(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):_e(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),_e(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function Pw(e,t,n,r){let a=e.createBuffer();_e(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,a));let s=4*4*t*n;return _e(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),_e(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),_e(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),a}function Lw(e,t,n){let r=e,a=new Float32Array(n);return r.bindBuffer(r.PIXEL_PACK_BUFFER,t),r.getBufferSubData(r.PIXEL_PACK_BUFFER,0,a),r.bindBuffer(r.PIXEL_PACK_BUFFER,null),a}function Ww(e,t,n,r){let[a,s]=oc(t,n),i=4,o=new Uint8Array(OO(t*n,i));return _e(e,()=>e.readPixels(0,0,a,s,r.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function Bw(e,t,n,r,a,s,i,o){let l=e,c=new Float32Array(zO(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,c),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),c}function Vw(e,t,n){let r=new Float32Array(t*n*4);return _e(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,r)),r}var ym=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=Q().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,Am(t,e)):this.gl=Wr(t);let n="WEBGL_color_buffer_float",r="EXT_color_buffer_half_float";if(Q().getNumber("WEBGL_VERSION")===1){let a="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=rc(this.gl,a),Vn(this.gl,s))this.textureHalfFloatExtension=rc(this.gl,s);else if(Q().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),Vn(this.gl,r))this.colorBufferHalfFloatExtension=rc(this.gl,r);else if(Q().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",Vn(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(Vn(this.gl,r))this.colorBufferHalfFloatExtension=this.gl.getExtension(r);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=Tw(this.gl),this.indexBuffer=Ew(this.gl),this.framebuffer=dw(this.gl),this.textureConfig=kA(this.gl,this.textureHalfFloatExtension)}get debug(){return Q().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;_e(e,()=>e.finish()),_e(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),_e(e,()=>e.deleteFramebuffer(this.framebuffer)),_e(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),_e(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),_e(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),Cw(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),Rw(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),Fw(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),zw(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,r){this.throwIfDisposed(),Ow(this.gl,e,t,n,r,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),$w(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),Mw(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(_A(this.gl,this.framebuffer),this.outputTexture=null),_e(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>Ww(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,r,a,s){return Bw(this.gl,e,t,n,r,a,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return Lw(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let r=Pw(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),r}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(Q().getBool("WEBGL_FENCE_API_ENABLED")){let r=e,a=r.fenceSync(r.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let s=r.clientWaitSync(a,0,0);return s===r.ALREADY_SIGNALED||s===r.CONDITION_SATISFIED},t=a}else Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>Vw(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=sw(t,e),r=Sw(t),a=iw(t);return _e(t,()=>t.attachShader(a,r)),_e(t,()=>t.attachShader(a,n)),ow(t,a),this.debug&&tp(t,a),this.vertexAttrsAreBound||(this.setProgram(a),this.vertexAttrsAreBound=Dw(t,this.program,this.vertexBuffer)),a}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&_e(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&tp(this.gl,this.program),_e(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?fw(this.gl,e,t):mw(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),_e(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),Aw(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[r,a]=Al(t,n);this.setOutputMatrixTextureDriver(e,r,a)}setOutputMatrixWriteRegion(e,t,n,r){this.setOutputMatrixWriteRegionDriver(n,e,r,t)}setOutputPackedMatrixWriteRegion(e,t,n,r){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&tp(this.gl,this.program),ac(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),_e(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),_e(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=rc(this.gl,Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),a=n.createQuery();return n.beginQuery(r.TIME_ELAPSED_EXT,a),a}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await k.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),a=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(r.GPU_DISJOINT_EXT)),a&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),r=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),r&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=ZO(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&k.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),np(this.gl,e,this.framebuffer),this.debug&&ac(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(np(this.gl,this.outputTexture,this.framebuffer),this.debug&&ac(this.gl)):_A(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let r=this.gl;np(r,e,this.framebuffer),this.debug&&ac(r),this.outputTexture=e,_e(r,()=>r.viewport(0,0,t,n)),_e(r,()=>r.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,r){this.throwIfDisposed(),_e(this.gl,()=>this.gl.scissor(e,t,n,r))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function ZO(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{getBroadcastDims:Uw}=C;function sz(e,t,n,r){let a=[];e.forEach(p=>{let f=k.sizeFromShape(p.shapeInfo.logicalShape);p.shapeInfo.isUniform?a.push(`uniform float ${p.name}${f>1?`[${f}]`:""};`):(a.push(`uniform sampler2D ${p.name};`),a.push(`uniform int offset${p.name};`))});let s=a.join(`
`),i=e.map(p=>JO(p,t,r)).join(`
`),o=t.texShape,l=ln(),c=ez(l),u,h,d=rz(l);return t.isPacked?(u=YO(t.logicalShape,o),h=nz(l)):(u=QO(t.logicalShape,o),h=tz(l)),r&&(d+=az),[d,c,h,s,u,i,n].join(`
`)}function yl(e){let t=e.shapeInfo.logicalShape;switch(t.length){case 0:return iz(e);case 1:return oz(e);case 2:return lz(e);case 3:return uz(e);case 4:return cz(e);case 5:return hz(e);case 6:return dz(e);default:throw new Error(`${t.length}-D input sampling is not yet supported`)}}function Hw(e){switch(e.shapeInfo.logicalShape.length){case 0:return pz(e);case 1:return fz(e);case 2:return mz(e);case 3:return Az(e);default:return yz(e)}}function JO(e,t,n=!1){let r="";n?r+=Hw(e):r+=yl(e);let a=e.shapeInfo.logicalShape,s=t.logicalShape;return a.length<=s.length&&(n?r+=gz(e,t):r+=xz(e,t)),r}function YO(e,t){switch(e.length){case 0:return jw();case 1:return wz(e,t);case 2:return vz(e,t);case 3:return _z(e,t);default:return bz(e,t)}}function QO(e,t){switch(e.length){case 0:return jw();case 1:return kz(e,t);case 2:return Ez(e,t);case 3:return Iz(e,t);case 4:return Nz(e,t);case 5:return Sz(e,t);case 6:return Tz(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function ez(e){return`
float sampleTexture(sampler2D textureSampler, vec2 uv) {
return ${e.texture2D}(textureSampler, uv).r;
}
`}function tz(e){return`
void setOutput(float val) {
${e.output} = vec4(val, 0, 0, 0);
}
`}function nz(e){return`
void setOutput(vec4 val) {
${e.output} = val;
}
`}function rz(e){return`${e.version}
precision highp float;
precision highp int;
precision highp sampler2D;
${e.varyingFs} vec2 resultUV;
${e.defineOutput}
const vec2 halfCR = vec2(0.5, 0.5);
struct ivec5
{
int x;
int y;
int z;
int w;
int u;
};
struct ivec6
{
int x;
int y;
int z;
int w;
int u;
int v;
};
uniform float NAN;
${e.defineSpecialNaN}
${e.defineSpecialInf}
${e.defineRound}
int imod(int x, int y) {
return x - y * (x / y);
}
int idiv(int a, int b, float sign) {
int res = a / b;
int mod = imod(a, b);
if (sign < 0. && mod != 0) {
res -= 1;
}
return res;
}
//Based on the work of Dave Hoskins
//https://www.shadertoy.com/view/4djSRW
#define HASHSCALE1 443.8975
float random(float seed){
vec2 p = resultUV * seed;
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
p3 += dot(p3, p3.yzx + 19.19);
return fract((p3.x + p3.y) * p3.z);
}
${Cz}
${Rz}
${Fz}
`}var Cz=`
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
int texelIndex = index / 2;
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,Rz=`
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
int texNumC, int row, int col) {
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,Fz=`
vec2 packedUVfrom3D(int texNumR, int texNumC,
int texelsInBatch, int texelsInLogicalRow, int b,
int row, int col) {
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,az=`
float getChannel(vec4 frag, vec2 innerDims) {
vec2 modCoord = mod(innerDims, 2.);
return modCoord.x == 0. ?
(modCoord.y == 0. ? frag.r : frag.g) :
(modCoord.y == 0. ? frag.b : frag.a);
}
float getChannel(vec4 frag, int dim) {
float modCoord = mod(float(dim), 2.);
return modCoord == 0. ? frag.r : frag.g;
}
`;function jw(){return`
int getOutputCoords() {
return 0;
}
`}function wz(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?`
int getOutputCoords() {
return 2 * int(resultUV.x * ${n[1]}.0);
}
`:n[1]===1?`
int getOutputCoords() {
return 2 * int(resultUV.y * ${n[0]}.0);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
return 2 * (resTexRC.x * ${n[1]} + resTexRC.y);
}
`}function kz(e,t){return t[0]===1?`
int getOutputCoords() {
return int(resultUV.x * ${t[1]}.0);
}
`:t[1]===1?`
int getOutputCoords() {
return int(resultUV.y * ${t[0]}.0);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
return resTexRC.x * ${t[1]} + resTexRC.y;
}
`}function _z(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),a=r*Math.ceil(e[1]/2);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
int index = resTexRC.x * ${n[1]} + resTexRC.y;
int b = index / ${a};
index -= b * ${a};
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec3(b, r, c);
}
`}function Iz(e,t){let n=ci(["r","c","d"],e);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
return ivec3(r, c, d);
}
`}function bz(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),a=r*Math.ceil(e[e.length-2]/2),s=a,i="",o="b, r, c";for(let l=2;l<e.length-1;l++)s*=e[e.length-l-1],i=`
int b${l} = index / ${s};
index -= b${l} * ${s};
`+i,o=`b${l}, `+o;return`
ivec${e.length} getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
int index = resTexRC.x * ${n[1]} + resTexRC.y;
${i}
int b = index / ${a};
index -= b * ${a};
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec${e.length}(${o});
}
`}function Nz(e,t){let n=ci(["r","c","d","d2"],e);return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
return ivec4(r, c, d, d2);
}
`}function Sz(e,t){let n=ci(["r","c","d","d2","d3"],e);return`
ivec5 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec5 outShape = ivec5(r, c, d, d2, d3);
return outShape;
}
`}function Tz(e,t){let n=ci(["r","c","d","d2","d3","d4"],e);return`
ivec6 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec6 result = ivec6(r, c, d, d2, d3, d4);
return result;
}
`}function vz(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(k.arraysEqual(e,t))return`
ivec2 getOutputCoords() {
return 2 * ivec2(resultUV.yx * vec2(${n[0]}, ${n[1]}));
}
`;let r=Math.ceil(e[1]/2);return`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
int index = resTexRC.x * ${n[1]} + resTexRC.y;
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec2(r, c);
}
`}function Ez(e,t){return k.arraysEqual(e,t)?`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
}
`:e[1]===1?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(index, 0);
}
`:e[0]===1?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(0, index);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
int r = index / ${e[1]};
int c = index - r * ${e[1]};
return ivec2(r, c);
}
`}function hi(e){return`offset${e}`}function pz(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),r=ln();return`
vec4 ${n}() {
return ${r.texture2D}(${t}, halfCR);
}
`}function iz(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`float ${n}() {return ${t};}`;let[r,a]=e.shapeInfo.texShape;if(r===1&&a===1)return`
float ${n}() {
return sampleTexture(${t}, halfCR);
}
`;let[s,i]=e.shapeInfo.texShape,o=hi(t);return`
float ${n}() {
vec2 uv = uvFromFlat(${s}, ${i}, ${o});
return sampleTexture(${t}, uv);
}
`}function fz(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),r=e.shapeInfo.texShape,a=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)],s=ln();return`
vec4 ${n}(int index) {
vec2 uv = packedUVfrom1D(
${a[0]}, ${a[1]}, index);
return ${s.texture2D}(${t}, uv);
}
`}function oz(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`
float ${n}(int index) {
${gl(e)}
}
`;let r=e.shapeInfo.texShape,a=r[0],s=r[1];if(s===1&&a===1)return`
float ${n}(int index) {
return sampleTexture(${t}, halfCR);
}
`;let i=hi(t);return s===1?`
float ${n}(int index) {
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / ${a}.0);
return sampleTexture(${t}, uv);
}
`:a===1?`
float ${n}(int index) {
vec2 uv = vec2((float(index + ${i}) + 0.5) / ${s}.0, 0.5);
return sampleTexture(${t}, uv);
}
`:`
float ${n}(int index) {
vec2 uv = uvFromFlat(${a}, ${s}, index + ${i});
return sampleTexture(${t}, uv);
}
`}function mz(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=e.shapeInfo.texShape,s=a[0],i=a[1],o=ln();if(a!=null&&k.arraysEqual(t,a))return`
vec4 ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${i}.0, ${s}.0);
return ${o.texture2D}(${n}, uv);
}
`;let l=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],c=Math.ceil(t[1]/2);return`
vec4 ${r}(int row, int col) {
vec2 uv = packedUVfrom2D(${c}, ${l[0]}, ${l[1]}, row, col);
return ${o.texture2D}(${n}, uv);
}
`}function lz(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=e.shapeInfo.texShape;if(a!=null&&k.arraysEqual(t,a)){let h=a[0],d=a[1];return`
float ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${d}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`}let{newShape:s,keptDims:i}=k.squeezeShape(t),o=s;if(o.length<t.length){let h=xl(e,o),d=["row","col"];return`
${yl(h)}
float ${r}(int row, int col) {
return ${r}(${wl(d,i)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col) {
int index = round(dot(vec2(row, col), vec2(${t[1]}, 1)));
${gl(e)}
}
`;let l=a[0],c=a[1],u=hi(n);return c===1?`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${u}), vec3(${t[1]}, 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / ${l}.0);
return sampleTexture(${n}, uv);
}
`:l===1?`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${u}), vec3(${t[1]}, 1, 1));
vec2 uv = vec2((index + 0.5) / ${c}.0, 0.5);
return sampleTexture(${n}, uv);
}
`:`
float ${r}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${t[1]} + col + ${u};
vec2 uv = uvFromFlat(${l}, ${c}, index);
return sampleTexture(${n}, uv);
}
`}function Az(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=e.shapeInfo.texShape,s=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)];if(t[0]===1){let h=t.slice(1),d=[1,2],p=xl(e,h),f=["b","row","col"];return`
${Hw(p)}
vec4 ${r}(int b, int row, int col) {
return ${r}(${wl(f,d)});
}
`}let i=s[0],o=s[1],l=Math.ceil(t[2]/2),c=l*Math.ceil(t[1]/2),u=ln();return`
vec4 ${r}(int b, int row, int col) {
vec2 uv = packedUVfrom3D(
${i}, ${o}, ${c}, ${l}, b, row, col);
return ${u.texture2D}(${n}, uv);
}
`}function uz(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=t[1]*t[2],s=t[2],{newShape:i,keptDims:o}=k.squeezeShape(t),l=i;if(l.length<t.length){let f=xl(e,l),m=["row","col","depth"];return`
${yl(f)}
float ${r}(int row, int col, int depth) {
return ${r}(${wl(m,o)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth) {
int index = round(dot(vec3(row, col, depth),
vec3(${a}, ${s}, 1)));
${gl(e)}
}
`;let c=e.shapeInfo.texShape,u=c[0],h=c[1],d=e.shapeInfo.flatOffset;if(h===a&&d==null)return`
float ${r}(int row, int col, int depth) {
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(${s}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${u}.0);
return sampleTexture(${n}, uv);
}
`;if(h===s&&d==null)return`
float ${r}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${t[1]}, 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${h}.0, ${u}.0);
return sampleTexture(${n}, uv);
}
`;let p=hi(n);return`
float ${r}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${a} + col * ${s} + depth + ${p};
vec2 uv = uvFromFlat(${u}, ${h}, index);
return sampleTexture(${n}, uv);
}
`}function yz(e){let t=e.shapeInfo.logicalShape,n=t.length,r=e.name,a="get"+r.charAt(0).toUpperCase()+r.slice(1),s=e.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],o=i[0],l=i[1],c=Math.ceil(t[n-1]/2),u=c*Math.ceil(t[n-2]/2),h="int b, int row, int col",d=`b * ${u} + (row / 2) * ${c} + (col / 2)`;for(let f=2;f<n-1;f++)h=`int b${f}, `+h,u*=t[n-f-1],d=`b${f} * ${u} + `+d;let p=ln();return`
vec4 ${a}(${h}) {
int index = ${d};
int texR = index / ${l};
int texC = index - texR * ${l};
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${l}, ${o});
return ${p.texture2D}(${r}, uv);
}
`}function cz(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=t[3],s=t[2]*a,i=t[1]*s,{newShape:o,keptDims:l}=k.squeezeShape(t);if(o.length<t.length){let f=xl(e,o),m=["row","col","depth","depth2"];return`
${yl(f)}
float ${r}(int row, int col, int depth, int depth2) {
return ${r}(${wl(m,l)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth, int depth2) {
int index = round(dot(vec4(row, col, depth, depth2),
vec4(${i}, ${s}, ${a}, 1)));
${gl(e)}
}
`;let c=e.shapeInfo.flatOffset,u=e.shapeInfo.texShape,h=u[0],d=u[1];if(d===i&&c==null)return`
float ${r}(int row, int col, int depth, int depth2) {
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(${s}, ${a}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${d}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;if(d===a&&c==null)return`
float ${r}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${t[1]*t[2]}, ${t[2]}, 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${d}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;let p=hi(n);return`
float ${r}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${i} + col * ${s} +
depth * ${a} + depth2;
vec2 uv = uvFromFlat(${h}, ${d}, index + ${p});
return sampleTexture(${n}, uv);
}
`}function hz(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=t[4],s=t[3]*a,i=t[2]*s,o=t[1]*i,{newShape:l,keptDims:c}=k.squeezeShape(t);if(l.length<t.length){let m=xl(e,l),A=["row","col","depth","depth2","depth3"];return`
${yl(m)}
float ${r}(int row, int col, int depth, int depth2, int depth3) {
return ${r}(${wl(A,c)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth, int depth2, int depth3) {
float index = dot(
vec4(row, col, depth, depth2),
vec4(${o}, ${i}, ${s}, ${a})) +
depth3;
${gl(e)}
}
`;let u=e.shapeInfo.flatOffset,h=e.shapeInfo.texShape,d=h[0],p=h[1];if(p===o&&u==null)return`
float ${r}(int row, int col, int depth, int depth2, int depth3) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${i}, ${s}, ${a}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${p}.0, ${d}.0);
return sampleTexture(${n}, uv);
}
`;if(p===a&&u==null)return`
float ${r}(int row, int col, int depth, int depth2, int depth3) {
float texR = dot(
vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]},
${t[2]*t[3]}, ${t[3]}, 1));
int texC = depth3;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${p}.0, ${d}.0);
return sampleTexture(${n}, uv);
}
`;let f=hi(n);return`
float ${r}(int row, int col, int depth, int depth2, int depth3) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${o} + col * ${i} + depth * ${s} +
depth2 * ${a} + depth3 + ${f};
vec2 uv = uvFromFlat(${d}, ${p}, index);
return sampleTexture(${n}, uv);
}
`}function dz(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:a,keptDims:s}=k.squeezeShape(t);if(a.length<t.length){let A=xl(e,a),y=["row","col","depth","depth2","depth3","depth4"];return`
${yl(A)}
float ${r}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
return ${r}(${wl(y,s)});
}
`}let i=t[5],o=t[4]*i,l=t[3]*o,c=t[2]*l,u=t[1]*c;if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int index = round(dot(
vec4(row, col, depth, depth2),
vec4(${u}, ${c}, ${l}, ${o})) +
dot(
vec2(depth3, depth4),
vec2(${i}, 1)));
${gl(e)}
}
`;let h=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,p=d[0],f=d[1];if(f===u&&h==null)return`
float ${r}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${c}, ${l}, ${o}, ${i})) +
float(depth4);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${p}.0);
return sampleTexture(${n}, uv);
}
`;if(f===i&&h==null)return`
float ${r}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
float texR = dot(vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]*t[4]},
${t[2]*t[3]*t[4]},
${t[3]*t[4]},
${t[4]})) + float(depth3);
int texC = depth4;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${p}.0);
return sampleTexture(${n}, uv);
}
`;let m=hi(n);return`
float ${r}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${u} + col * ${c} + depth * ${l} +
depth2 * ${o} + depth3 * ${i} + depth4 + ${m};
vec2 uv = uvFromFlat(${p}, ${f}, index);
return sampleTexture(${n}, uv);
}
`}function gl(e){let t=e.name,n=k.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
for (int i = 0; i < ${n}; i++) {
if (i == index) {
return ${t}[i];
}
}
`}function gz(e,t){let n=e.name,r=n.charAt(0).toUpperCase()+n.slice(1),a="get"+r+"AtOutCoords",s=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=Uw(e.shapeInfo.logicalShape,t.logicalShape),l=ht(i),c=i-s,u,h=["x","y","z","w","u","v"];s===0?u="":i<2&&o.length>=1?u="coords = 0;":u=o.map(A=>`coords.${h[A+c]} = 0;`).join(`
`);let d="";i<2&&s>0?d="coords":d=e.shapeInfo.logicalShape.map((A,y)=>`coords.${h[y+c]}`).join(", ");let p="return outputValue;",f=k.sizeFromShape(e.shapeInfo.logicalShape)===1,m=k.sizeFromShape(t.logicalShape)===1;if(s===1&&!f&&!m)p=`
return vec4(outputValue.xy, outputValue.xy);
`;else if(f&&!m)i===1?p=`
return vec4(outputValue.x, outputValue.x, 0., 0.);
`:p=`
return vec4(outputValue.x);
`;else if(o.length){let A=s-2,y=s-1;o.indexOf(A)>-1&&o.indexOf(y)>-1?p="return vec4(outputValue.x);":o.indexOf(A)>-1?p="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(y)>-1&&(p="return vec4(outputValue.xx, outputValue.zz);")}return`
vec4 ${a}() {
${l} coords = getOutputCoords();
${u}
vec4 outputValue = get${r}(${d});
${p}
}
`}function xz(e,t){let n=e.name,r=n.charAt(0).toUpperCase()+n.slice(1),a="get"+r+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&k.arraysEqual(i,s))return`
float ${a}() {
return sampleTexture(${n}, resultUV);
}
`;let c=ht(l),u=Uw(e.shapeInfo.logicalShape,t.logicalShape),h=l-o,d,p=["x","y","z","w","u","v"];o===0?d="":l<2&&u.length>=1?d="coords = 0;":d=u.map(m=>`coords.${p[m+h]} = 0;`).join(`
`);let f="";return l<2&&o>0?f="coords":f=e.shapeInfo.logicalShape.map((m,A)=>`coords.${p[A+h]}`).join(", "),`
float ${a}() {
${c} coords = getOutputCoords();
${d}
return get${r}(${f});
}
`}function ht(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function xl(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function wl(e,t){return t.map(n=>e[n]).join(", ")}function Mz(e,t,n,r){let a=t.userCode,s=n.map((p,f)=>{let m={logicalShape:p.shape,texShape:p.isUniform?null:p.texData.texShape,isUniform:p.isUniform,isPacked:p.isUniform?!1:p.texData.isPacked,flatOffset:null};return p.texData!=null&&p.texData.slice!=null&&p.texData.slice.flatOffset>0&&(m.flatOffset=p.texData.slice.flatOffset),{name:t.variableNames[f],shapeInfo:m}}),i=s.map(p=>p.shapeInfo),o={logicalShape:r.shape,texShape:r.texData.texShape,isUniform:!1,isPacked:r.texData.isPacked,flatOffset:null},l=sz(s,o,a,t.packedInputs),c=e.createProgram(l),u=null,h=e.getUniformLocation(c,"NAN",!1);Q().getNumber("WEBGL_VERSION")===1&&(u=e.getUniformLocation(c,"INFINITY",!1));let d={};for(let p=0;p<t.variableNames.length;p++){let f=t.variableNames[p],m=!1;d[f]=e.getUniformLocation(c,f,m),d[`offset${f}`]=e.getUniformLocation(c,`offset${f}`,m)}return{program:t,source:l,webGLProgram:c,uniformLocations:d,inShapeInfos:i,outShapeInfo:o,infLoc:u,nanLoc:h}}function Gw(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,r)=>{let a=n.logicalShape,s=t[r],i=s.shape;if(!k.arraysEqual(a,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${a} and ${i} must match`);if(n.isUniform&&s.isUniform)return;let o=n.texShape,l=s.isUniform?null:s.texData.texShape;if(!k.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function $z(e,t,n,r,a){Gw(t.inShapeInfos,n),Gw([t.outShapeInfo],[r]);let s=r.texData.texture,i=r.texData.texShape;r.texData.isPacked?e.setOutputPackedMatrixTexture(s,i[0],i[1]):e.setOutputMatrixTexture(s,i[0],i[1]),e.setProgram(t.webGLProgram),Q().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,Infinity),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((o,l)=>{let c=t.program.variableNames[l],u=t.uniformLocations[c],h=t.uniformLocations[`offset${c}`];if(u!=null){if(o.isUniform){if(k.sizeFromShape(o.shape)<2)e.gl.uniform1f(u,o.uniformValues[0]);else{let d=o.uniformValues;d instanceof Float32Array||(d=new Float32Array(d)),e.gl.uniform1fv(u,d)}return}o.texData.slice!=null&&h!=null&&e.gl.uniform1i(h,o.texData.slice.flatOffset),e.setInputMatrixTexture(o.texData.texture,u,l)}}),a!=null&&a(e,t.webGLProgram),e.executeProgram()}function Dz(e,t,n){let r="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0,l=i.isUniform?"uniform":i.texData.texShape;r+=`${i.shape}_${l}_${o}`});let a=e.userCode,s=e.constructor.name;return s+="_"+r+"_"+a,s}var{addImpl:Oz,bincountImpl:qw,bincountReduceImpl:zz,ceilImpl:Pz,concatImpl:Lz,expImpl:Wz,expm1Impl:Bz,floorImpl:Vz,gatherV2Impl:Uz,greaterImpl:Hz,lessImpl:jz,linSpaceImpl:Gz,logImpl:qz,maxImpl:Xz,maximumImpl:Kz,minimumImpl:Zz,multiplyImpl:Jz,negImpl:Yz,prodImpl:Qz,rangeImpl:eP,rsqrtImpl:tP,simpleAbsImpl:Xw,sliceImpl:nP,stridedSliceImpl:rP,subImpl:aP,tileImpl:sP,topKImpl:iP,transposeImpl:FA,uniqueImpl:oP}=mm;function Kw(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function un(e,t){return t===1?[e]:Kw(e,t)}function lP(e,t){if(e===1)return"rc";let n="";for(let r=0;r<e;r++)n+=t[r],r<e-1&&(n+=",");return n}var dP=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
void main() {
setOutput(vec4(getA(), 0., 0., 0.));
}
`;else{let n=un("rc",t),r=ht(t),a=uP(t,e,n),s=cP(t,e[e.length-1],e[e.length-2],n),i=hP(e,n);this.userCode=`
void main() {
${r} rc = getOutputCoords();
if(${a}) {
setOutput(vec4(0));
} else {
${s}
setOutput(vec4(${i}));
}
}
`}}};function pP(e,t){let n=[];for(let r=0;r<=1;r++)for(let a=0;a<=1;a++){let s=`${r===0?"r":"rp1"}, ${a===0?"c":"cp1"}`;for(let i=2;i<e;i++)s=`${t[t.length-1-i]},`+s;n.push(s)}return n}function uP(e,t,n){if(e===1)return`rc > ${t[0]}`;let r="";for(let a=e-2;a<e;a++)r+=`${n[a]} >= ${t[a]}`,a<e-1&&(r+="||");return r}function cP(e,t,n,r){if(e===1)return"";let a=r.slice(-2);return`
int r = ${a[0]};
int c = ${a[1]};
int rp1 = r + 1;
int cp1 = c + 1;
bool cEdge = cp1 >= ${t};
bool rEdge = rp1 >= ${n};
`}function hP(e,t){let n=e.length,r=pP(n,t);return n===1?`getA(rc),
rc + 1 >= ${e[0]} ? 0. : getA(rc + 1),
0, 0`:`getA(${r[0]}),
cEdge ? 0. : getA(${r[1]}),
rEdge ? 0. : getA(${r[2]}),
rEdge || cEdge ? 0. : getA(${r[3]})`}var Zw=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let n="";for(let r=0;r<4;r++){let a="thisRC = rc;";r%2==1&&(a+="thisRC.z += 1;"),r>1&&(a+="thisRC.y += 1;"),n+=`
${a}
${r>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
int flatIndex = getFlatIndex(thisRC);
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
result[${r}] =
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
${r>0?"}":""}
`}this.userCode=`
${fP(t)}
${NA(e)}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0.);
ivec3 thisRC;
int rows = ${e[1]};
int cols = ${e[2]};
${n}
setOutput(result);
}
`}};function fP(e){return`
ivec3 inputCoordsFromReshapedOutCoords(int index) {
${ci(["r","c","d"],e)}
return ivec3(r, c, d);
}
`}var mP=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let r=Yw(t,n),a=Qw(e,r,n);a in this.freeTextures||(this.freeTextures[a]=[]),a in this.usedTextures||(this.usedTextures[a]=[]);let s=Jw(e,r,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[a].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[a].shift();return this.usedTextures[a].push(o),o}let i;return r===Zt.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):r===Zt.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):r===Zt.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):r===Zt.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):r===Zt.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[a].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,n,r){if(this.freeTextures==null)return;let a=Yw(n,r),s=Qw(t,a,r);s in this.freeTextures||(this.freeTextures[s]=[]);let i=Jw(t,a,this.gpgpu.gl,this.gpgpu.textureConfig,r),o=Q().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],c=l.indexOf(e);if(c<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(c,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function AP(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F||t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function Jw(e,t,n,r,a){let s=yP(t,r),i;if(a){let[l,c]=Al(e[0],e[1]);i=l*c}else{let[l,c]=oc(e[0],e[1]);i=l*c}let o=AP(n,s);return i*o}function yP(e,t){switch(e){case Zt.PACKED_2X2_FLOAT32:return CA(t);case Zt.PACKED_2X2_FLOAT16:return RA(t);case Zt.UNPACKED_FLOAT32:return SA(t);case Zt.UNPACKED_FLOAT16:return TA(t);case Zt.PACKED_4X1_UNSIGNED_BYTE:return EA(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function gP(e){return Q().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?Zt.PACKED_2X2_FLOAT32:Zt.UNPACKED_FLOAT32:e?Zt.PACKED_2X2_FLOAT16:Zt.UNPACKED_FLOAT16}function Yw(e,t){if(e===Un.UPLOAD)return Zt.PACKED_2X2_FLOAT32;if(e===Un.RENDER||e==null)return gP(t);if(e===Un.DOWNLOAD||e===Un.PIXELS)return Zt.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function Qw(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var Fa=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.userCode=`
float unaryOperation(float x) {
${t}
}
void main() {
float x = getAAtOutCoords();
float y = unaryOperation(x);
setOutput(y);
}
`}},Ar="if (isnan(x)) return x;",xP="return x;",e_="return abs(x);",wP="return (x >= 0.0) ? x : (exp(x) - 1.0);",_P=Ar+`
return (x < 0.0) ? 0.0 : x;
`,bP=Ar+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,op="return x;",vP="return x;",kP=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,IP=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,NP=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,_l=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
vec4 unaryOperation(vec4 x) {
${t}
}
void main() {
vec4 x = getAAtOutCoords();
vec4 y = unaryOperation(x);
setOutput(y);
}
`}},SP=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=un("rc",t),r=ht(t),a=lP(t,n),s=n.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=`
void main() {
${r} rc = getOutputCoords();
vec4 packedInput = getA(${a});
setOutput(getChannel(packedInput, ${i}));
}
`}},TP=Mr.whereImpl,EP=1e-7,CP=1e-4,MA={};function RP(e){return e in MA||(MA[e]={}),MA[e]}var FP=128,MP=600;function $P(){return Q().global.screen==null?1024:Q().global.screen.height*Q().global.screen.width*window.devicePixelRatio*MP/1024/1024}var Vu=class extends nu{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.warnedAboutMemory=!1,this.warnedAboutCPUBackend=!1,this.pendingDeletes=0,this.disposed=!1,!Q().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=Wr(Q().getNumber("WEBGL_VERSION"));this.binaryCache=RP(Q().getNumber("WEBGL_VERSION")),this.gpgpu=new ym(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new mP(this.gpgpu),this.numMBBeforeWarning=$P(),this.texData=new Ah(this,Tr())}nextDataId(){return Vu.nextDataId++}numDataIds(){return this.texData.numDataIds()+(this.cpuBackend?this.cpuBackend.numDataIds():0)-this.pendingDeletes}write(e,t,n){if((Q().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||Q().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let r={id:this.nextDataId()};return this.texData.set(r,{shape:t,dtype:n,values:e,usage:Un.UPLOAD,refCount:1}),r}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,r,a){if(Q().getBool("DEBUG")&&this.checkNumericalProblems(t),r==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:r,values:t,usage:Un.UPLOAD,refCount:a})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:r,complexTensorInfos:a,slice:s,shape:i,isPacked:o}=t;if(s!=null){let h;o?h=new _l(i,op):h=new Fa(i,op);let d=this.runWebGLProgram(h,[{dataId:e,shape:i,dtype:r}],r),p=this.readSync(d.dataId);return this.disposeIntermediateTensorInfo(d),p}if(n!=null)return this.convertAndCacheOnCPU(e);if(r==="string")return n;let l=this.activeTimers!=null,c;l&&(c=k.now());let u;if(r==="complex64"){let h=this.readSync(a.real.dataId),d=this.readSync(a.imag.dataId);u=C.mergeRealAndImagArrays(h,d)}else u=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=k.now()-c),this.convertAndCacheOnCPU(e,u)}async read(e){if(this.pendingRead.has(e)){let p=this.pendingRead.get(e);return new Promise(f=>p.push(f))}let t=this.texData.get(e),{values:n,shape:r,slice:a,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(a!=null){let p;o?p=new _l(r,op):p=new Fa(r,op);let f=this.runWebGLProgram(p,[{dataId:e,shape:r,dtype:s}],s),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(n!=null)return this.convertAndCacheOnCPU(e);if(!Q().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&Q().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,c;if(s!=="complex64"&&Q().get("WEBGL_BUFFER_SUPPORTED")){c=this.decode(e);let p=this.texData.get(c.dataId);l=this.gpgpu.createBufferFromTexture(p.texture,...lc(r))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let u;if(s==="complex64"){let p=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),f=p[0],m=p[1];u=C.mergeRealAndImagArrays(f,m)}else if(l==null)u=this.getValuesFromTexture(e);else{let p=k.sizeFromShape(r);u=this.gpgpu.downloadFloat32MatrixFromBuffer(l,p)}c!=null&&this.disposeIntermediateTensorInfo(c);let h=this.convertAndCacheOnCPU(e,u),d=this.pendingRead.get(e);return this.pendingRead.delete(e),d.forEach(p=>p(h)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&Tr().removeDataId(e,this),this.pendingDeletes--),h}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>k.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!nw(n))throw Q().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:r}=this.texData.get(e),a=k.sizeFromShape(t);if(Q().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let h=this.decode(e),d=this.texData.get(h.dataId),p=this.gpgpu.downloadMatrixFromPackedTexture(d.texture,...lc(t)).subarray(0,a);return this.disposeIntermediateTensorInfo(h),p}let s=Q().getBool("WEBGL_PACK")&&r===!0,i=s?rp(t):t,o=s?new qO(i):new GO(i),l=this.runWebGLProgram(o,[{shape:i,dtype:n,dataId:e}],"float32"),c=this.texData.get(l.dataId),u=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(c.texture,c.texShape[0],c.texShape[1]).subarray(0,a);return this.disposeIntermediateTensorInfo(l),u}timerAvailable(){return Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}async time(e){let t=this.activeTimers,n=[],r=!1;this.programTimersStack==null?(this.programTimersStack=n,r=!0):this.activeTimers.push(n),this.activeTimers=n,e();let a=k.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=k.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,r&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(a);i.kernelMs=k.sum(o),i.getExtraProfileInfo=()=>o.map((l,c)=>({name:s[c],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:k.now(),endMs:null}}endTimer(e){return Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=k.now(),e)}async getQueryTime(e){if(Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:r,usage:a,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(r,n),this.textureManager.releaseTexture(t,r,a,s)));let c=this.texData.get(e);c.texture=null,c.texShape=null,c.isPacked=!1,c.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}getCPUBackend(){return Q().getBool("WEBGL_CPU_FORWARD")?(this.cpuBackend==null&&(this.cpuBackend=Tr().findBackend("cpu")),this.cpuBackend):null}shouldExecuteOnCPU(e,t=FP){let n=this.getCPUBackend();return!Q().getBool("IS_TEST")&&!this.warnedAboutCPUBackend&&n==null&&(console.warn("Your application contains ops that are small enough to be executed on the CPU backend, however the CPU backend cannot be found. Consider importing the CPU backend (@tensorflow/tfjs-backend-cpu) for better performance."),this.warnedAboutCPUBackend=!0),n!=null&&e.every(r=>this.texData.get(r.dataId).texture==null&&k.sizeFromShape(r.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){C.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return TP(e.shape,t)}packedUnaryOp(e,t,n){let r=new _l(e.shape,t),a=this.compileAndRun(r,[e],n);return Tr().makeTensorFromDataId(a.dataId,a.shape,a.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let r=Xw(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,r)}if(Q().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,e_,e.dtype);let t=new Fa(e.shape,e_),n=this.compileAndRun(t,[e]);return Tr().makeTensorFromDataId(n.dataId,n.shape,n.dtype)}makeTensorInfo(e,t,n){let r;if(t==="string"&&n!=null&&n.length>0&&k.isString(n[0])){let a=n.map(s=>k.encodeString(s));r=this.write(a,e,t)}else r=this.write(n,e,t);return this.texData.get(r).usage=null,{dataId:r,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:r}=this.makeTensorInfo(e,t,n);return Tr().makeTensorFromDataId(r,e,t,this)}unpackTensor(e){let t=new SP(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new dP(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[oi(e.shape),...li(e.shape)],r={dtype:e.dtype,shape:n,dataId:e.dataId},a=[oi(t),...li(t)],s=new Zw(a,n),i=!0,o=this.runWebGLProgram(s,[r],e.dtype,null,i);return{dataId:o.dataId,shape:t,dtype:o.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:r,dtype:a}=t,s=rp(r),i;n?i=new jO(s):i=new HO(s);let o=!0,l=this.runWebGLProgram(i,[{shape:s,dtype:a,dataId:e}],a,null,o);return{dtype:a,shape:r,dataId:l.dataId}}runWebGLProgram(e,t,n,r,a=!1){let s=this.makeTensorInfo(e.outputShape,n),i=this.texData.get(s.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===ic.DENSE){let f=lc(e.outputShape);i.texShape=f.map(m=>m*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),k.sizeFromShape(s.shape)===0)return i.values=k.getTypedArrayFromDType(s.dtype,0),s;let o=[],l=t.map(f=>{if(f.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let m=this.texData.get(f.dataId);if(m.texture==null){if(!e.packedInputs&&k.sizeFromShape(f.shape)<=Q().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:f.shape,texData:null,isUniform:!0,uniformValues:m.values};e.packedInputs&&(m.isPacked=!0,m.shape=f.shape)}else if(!!m.isPacked!=!!e.packedInputs)f=m.isPacked?this.unpackTensor(f):this.packTensor(f),o.push(f),m=this.texData.get(f.dataId);else if(m.isPacked&&!sc(m.shape,f.shape)){let A=f,y=f.shape;f.shape=m.shape,f=this.packedReshape(f,y),o.push(f),m=this.texData.get(f.dataId),A.shape=y}return this.uploadToGPU(f.dataId),{shape:f.shape,texData:m,isUniform:!1}});this.uploadToGPU(s.dataId);let c={shape:s.shape,texData:i,isUniform:!1},u=Dz(e,l,c),h=this.getAndSaveBinary(u,()=>Mz(this.gpgpu,e,l,c)),d=this.activeTimers!=null,p;if(d&&(p=this.startTimer()),$z(this.gpgpu,h,l,c,r),o.forEach(f=>this.disposeIntermediateTensorInfo(f)),d&&(p=this.endTimer(p),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(p)})),!Q().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&a===!1){let f=this.unpackTensor(s);return this.disposeIntermediateTensorInfo(s),f}return s}compileAndRun(e,t,n,r,a=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,r,a)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(Q().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=U(()=>{if(!Q().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=Q().getBool("DEBUG");Q().set("DEBUG",!1);let t=this.abs(Se(1e-8)).dataSync()[0];if(Q().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?EP:CP}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:r,values:a,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,c;l&&(c=k.now());let u=t.texShape;if(u==null&&(u=gw(n,o),t.texShape=u),a!=null){let h=rp(n),d,p=u[1],f=u[0],m=a instanceof Uint8Array;o?([p,f]=Al(u[0],u[1]),d=new KO(h,[f,p],m)):d=new XO(h,[f,p],m);let A=this.makeTensorInfo([f,p],r);m?this.texData.get(A.dataId).usage=Un.PIXELS:this.texData.get(A.dataId).usage=Un.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(A.dataId),p,f,a);let y=!0,g=this.runWebGLProgram(d,[A],r,null,y),b=this.texData.get(g.dataId);t.texture=b.texture,t.texShape=b.texShape,t.isPacked=b.isPacked,t.usage=b.usage,this.disposeIntermediateTensorInfo(A),this.texData.delete(g.dataId),t.values=null,l&&(this.uploadWaitMs+=k.now()-c)}else{let h=this.acquireTexture(u,i,r,o);t.texture=h}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:r}=n;return this.releaseGPUData(e),t!=null&&(n.values=DP(t,r)),n.values}acquireTexture(e,t,n,r){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let a=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${a} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,r)}computeBytes(e,t){return e[0]*e[1]*k.bytesPerElement(t)}};Vu.nextDataId=0;function DP(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let r=0;r<n.length;++r)n[r]=Math.round(e[r]);return n}else throw new Error(`Unknown dtype ${t}`)}var I0="3.1.0";function N0(){Q().set("WEBGL_FORCE_F16_TEXTURES",!0)}Zh.isBrowser()&&vu("webgl",()=>new Vu,2);var z8={forceHalfFloat:N0},t_=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,bl=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.userCode=`
float binaryOperation(float a, float b) {
${e}
}
void main() {
float a = getAAtOutCoords();
float b = getBAtOutCoords();
setOutput(binaryOperation(a, b));
}
`}},lp=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`,cc=class{constructor(e,t,n,r=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=C.assertAndGetBroadcastShape(t,n);let a=this.outputShape.length,s="";if(r)if(a===0||k.sizeFromShape(this.outputShape)===1)s=`
result.y = 0.;
result.z = 0.;
result.w = 0.;
`;else if(s=`
${ht(a)} coords = getOutputCoords();
`,a===1)s+=`
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`;else{let i=un("coords",a);s+=`
bool nextRowOutOfBounds =
(${i[a-2]} + 1) >= ${this.outputShape[a-2]};
bool nextColOutOfBounds =
(${i[a-1]} + 1) >= ${this.outputShape[a-1]};
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`}this.userCode=`
vec4 binaryOperation(vec4 a, vec4 b) {
${e}
}
void main() {
vec4 a = getAAtOutCoords();
vec4 b = getBAtOutCoords();
vec4 result = binaryOperation(a, b);
${s}
setOutput(result);
}
`}};function Cn(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var OP={kernelName:ps,backendName:"webgl",kernelFunc:Cn};function Ma(e){let{inputs:t,backend:n}=e,{real:r,imag:a}=t,s=n.makeTensorInfo(r.shape,"complex64"),i=n.texData.get(s.dataId),o=Cn({inputs:{x:r},backend:n}),l=Cn({inputs:{x:a},backend:n});return i.complexTensorInfos={real:o,imag:l},s}var zP={kernelName:bh,backendName:"webgl",kernelFunc:Ma},n_="return (a < 0.) ? b * a : a;",r_=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function PP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{alpha:s}=r,i=n.makeTensorInfo([],"float32",k.createScalarValue(s,"float32")),o=Q().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new cc(r_,a.shape,i.shape):new bl(n_,a.shape,i.shape),l=n.runWebGLProgram(o,[a,i],a.dtype);return n.disposeIntermediateTensorInfo(i),l}var LP={kernelName:fs,backendName:"webgl",kernelFunc:PP},a_="return (a < 0.) ? b * a : a;",s_=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function WP(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t,s=Q().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new cc(s_,r.shape,a.shape):new bl(a_,r.shape,a.shape);return n.runWebGLProgram(s,[r,a],r.dtype)}var BP={kernelName:Ns,backendName:"webgl",kernelFunc:WP},i_="if (isnan(x)) return x;",VP=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,UP=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`;function Je({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:r}){return({inputs:a,backend:s})=>{let{x:i}=a,o=s,l=r||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let h=o.texData.get(i.dataId),d=n(h.values,l);return o.makeTensorInfo(i.shape,l,d)}let c=Q().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,u;return c?u=new _l(i.shape,t):u=new Fa(i.shape,e),o.runWebGLProgram(u,[i],l)}}function Jt({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:r=!1,cpuKernelImpl:a,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:c}=i,u=o;if(r&&l.dtype==="complex64"){let f=u.texData.get(l.dataId),m=u.texData.get(c.dataId),[A,y]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(b=>{let[x,w]=b,_={dataId:x.dataId,dtype:x.dtype,shape:l.shape},N={dataId:w.dataId,dtype:w.dtype,shape:c.shape},T=new bl(e,l.shape,c.shape);return u.runWebGLProgram(T,[_,N],Yn(x.dtype,w.dtype))}),g=Ma({inputs:{real:A,imag:y},backend:u});return u.disposeIntermediateTensorInfo(A),u.disposeIntermediateTensorInfo(y),g}let h=s||Yn(l.dtype,c.dtype);if(u.shouldExecuteOnCPU([l,c])&&a!=null){let f=u.texData.get(l.dataId),m=u.texData.get(c.dataId),[A,y]=a(l.shape,c.shape,f.values,m.values,h),g=u.makeTensorInfo(y,h),b=u.texData.get(g.dataId);return b.values=A,g}let d=Q().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,p;return d?p=new cc(t,l.shape,c.shape,n):p=new bl(e,l.shape,c.shape),u.runWebGLProgram(p,[l,c],h)}}function up(e,t=!1){if(e==="linear")return t?vP:xP;if(e==="relu")return t?IP:_P;if(e==="elu")return t?kP:wP;if(e==="relu6")return t?NP:bP;if(e==="prelu")return t?s_:a_;if(e==="leakyrelu")return t?r_:n_;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var o_=class{constructor(e,t,n,r=!1,a=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n;let c=r?e[1]:e[2],u=Math.ceil(c/2),h=r?"i * 2, rc.y":"rc.y, i * 2",d=a?"rc.z, i * 2":"i * 2, rc.z",p=r?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=a?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",A="";i&&(o?m=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${i}
}`:l?m=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${i}
}`:m=`vec4 activation(vec4 x) {
${i}
}`,A="result = activation(result);");let y=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let g="rc.x",b="rc.x";e[0]<t[0]?g=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(b=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
${m}
const float sharedDimension = ${u}.0;
vec4 dot2x2ARowBCol(ivec3 rc) {
vec4 result = vec4(0);
for (int i = 0; i < ${u}; i++) {
int batchA = ${g};
int batchB = ${b};
vec4 a = getMatrixA(batchA, ${h});
vec4 b = getMatrixB(batchB, ${d});
// These swizzled products need to be separately added.
// See: https://github.com/tensorflow/tfjs/issues/1735
result += (${p[0]} * ${f[0]});
result += (${p[1]} * ${f[1]});
}
return result;
}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = dot2x2ARowBCol(rc);
${y}
${A}
setOutput(result);
}
`}},l_={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},u_=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.userCode=`
float binaryOpComplex(
float areal, float aimag, float breal, float bimag) {
${e}
}
void main() {
float areal = getARealAtOutCoords();
float aimag = getAImagAtOutCoords();
float breal = getBRealAtOutCoords();
float bimag = getBImagAtOutCoords();
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
}
`}},c_="return a * b;";function h_(e){let{inputs:t,backend:n}=e,{a:r,b:a}=t,s=C.upcastType(r.dtype,a.dtype);if(r.dtype==="complex64"){let o=n.texData.get(r.dataId),l=n.texData.get(a.dataId),c=new u_(l_.REAL,r.shape,a.shape),u=new u_(l_.IMAG,r.shape,a.shape),h=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:r.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:r.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:a.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:a.shape}],d=n.runWebGLProgram(c,h,"float32"),p=n.runWebGLProgram(u,h,"float32"),f=Ma({inputs:{real:d,imag:p},backend:n});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),f}if(n.shouldExecuteOnCPU([r,a])){let o=n.texData.get(r.dataId),l=n.texData.get(a.dataId),[c,u]=Jz(r.shape,a.shape,o.values,l.values,s),h=n.makeTensorInfo(u,s),d=n.texData.get(h.dataId);return d.values=c,h}let i;return Q().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new cc(c_,r.shape,a.shape):i=new bl(c_,r.shape,a.shape),n.runWebGLProgram(i,[r,a],s)}var HP={kernelName:bs,backendName:"webgl",kernelFunc:h_};function jP(e,t,n){let r=[oi(e.shape),...li(e.shape)],a={dtype:e.dtype,shape:r,dataId:e.dataId},s=[oi(t),...li(t)],i=new Zw(s,r),o=!0,l=n.runWebGLProgram(i,[a],e.dtype,null,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}function ge(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{shape:s}=r,i=n,o=k.sizeFromShape(a.shape),l=k.inferFromImplicitShape(s,o),c=k.sizeFromShape(l);k.assert(o===c,()=>`The new shape (${l}) has ${c} elements and the old shape (${a.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let u=i.texData.get(a.dataId);return u.isPacked&&!sc(a.shape,l)&&!(u.texture!==null&&sc(u.shape,l))?jP(a,l,i):(i.incRef(a.dataId),{dataId:a.dataId,shape:l,dtype:a.dtype})}var GP={kernelName:Io,backendName:"webgl",kernelFunc:ge},d_=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:a,outSize:s}=e;this.outputShape=[r,s];let i=Math.floor(n/4)*4,o=n%4,l="sumValue += dot(values, ones);";if(t!=null){let u=1/t;l=`sumValue += dot(values * ${k.isInt(u)?u.toPrecision(2):u}, ones);`}let c="";a%n>0&&(c=`
if (inIdx < 0 || inIdx >= ${a}) {
return 0.0;
}
`),this.userCode=`
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${c}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
float sumValue = 0.0;
for (int i = 0; i < ${i}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${l}
}
int inIdx = inOffset + ${i};
if (${o===1}) {
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
${l}
} else if (${o===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1), 0.0, 0.0);
${l}
} else if (${o===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2), 0.0);
${l}
}
setOutput(sumValue);
}
`}},qP=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:a,outSize:s}=e;this.outputShape=[r,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let c=Math.floor(n/4)*4,u=n%4,h=`
if (${t==="sum"}) {
sumValue += dot(values, ones);
} else if (${t==="prod"}) {
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
prodValue *= tmp[0] * tmp[1];
} else {
minMaxValue = ${o}(values, minMaxValue);
}
`,d="vec4";t==="all"?(i="1.0",h=`
bool reducedAllValue = all(values);
float floatedReducedAllValue = float(reducedAllValue);
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
`,d="bvec4"):t==="any"&&(i="0.0",h=`
bool reducedAnyValue = any(values);
float floatedReducedAnyValue = float(reducedAnyValue);
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
`,d="bvec4");let p="";a%n>0&&(p=`
if (inIdx < 0 || inIdx >= ${a}) {
return initializationValue;
}
`),this.userCode=`
const float initializationValue = ${i};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${p}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
vec4 minMaxValue = vec4(${i});
float prodValue = 1.0;
float sumValue = 0.0;
float allValue = 1.0;
float anyValue = 0.0;
for (int i = 0; i < ${c}; i += 4) {
int inIdx = inOffset + i;
${d} values = ${d}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${h}
}
int inIdx = inOffset + ${c};
if (${u===1}) {
${d} values = ${d}(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
${h}
} else if (${u===2}) {
${d} values = ${d}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
${h}
} else if (${u===3}) {
${d} values = ${d}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
${h}
}
setOutput(${l});
}
`}};function XP(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],r=C.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:r,outSize:Math.ceil(n/r)})}return t}function di(e,t,n,r){let a=XP(e.shape),s=e;for(let i=0;i<a.length;i++){let{inSize:o,windowSize:l,outSize:c}=a[i],u,h;n==="mean"?u=i===0?new d_({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:c},o):new d_({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:c}):u=new qP({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:c},n),h=s,s=r.runWebGLProgram(u,[s],t),h.dataId!==e.dataId&&r.disposeIntermediateTensorInfo(h)}return s}var ZP=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.rank=n.length;let r=ht(this.rank),a=KP(t);this.userCode=`
void main() {
${r} resRC = getOutputCoords();
setOutput(getA(${a}));
}
`}};function KP(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],r=new Array(t);for(let a=0;a<e.length;a++)r[e[a]]=n[a];return r.join()}var JP=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let c=0;c<n.length;c++)n[c]=e[t[c]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let r=ht(this.rank),a=Kw("rc",this.rank),s=new Array(this.rank);for(let c=0;c<t.length;c++)s[t[c]]=a[c];let i=`vec2(${s.slice(-2).join()})`,o=`++${a[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${s.join()}), ${i})`;this.userCode=`
void main() {
${r} rc = getOutputCoords();
vec4 result = vec4(0.);
result[0] = ${l};
if(${o}) {
result[1] = ${l};
}
--${a[this.rank-1]};
if(++${a[this.rank-2]} < ${n[this.rank-2]}) {
result[2] = ${l};
if(${o}) {
result[3] = ${l};
}
}
setOutput(result);
}
`}};function cp(e,t,n){let r=Q().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new JP(e.shape,t):new ZP(e.shape,t);return n.runWebGLProgram(r,[e],e.dtype)}function YP(e,t,n,r){let a=t,s=e.shape.length,i=k.parseAxisParam(a,e.shape),o=i,l=C.getAxesPermutation(o,s),c=l!=null,u=e;c&&(u=cp(e,l,r),o=C.getInnerMostAxes(o.length,s)),C.assertAxesAreInnerMostDims("sum",o,s);let[h,d]=C.computeOutAndReduceShapes(u.shape,o),p=h;n&&(p=C.expandShapeToKeepDim(h,i));let f=k.sizeFromShape(d),m=k.sizeFromShape(e.shape)/f,A=ge({inputs:{x:u},attrs:{shape:[m,f]},backend:r}),y=Kh(e.dtype),g=di(A,y,"sum",r),b=ge({inputs:{x:g},attrs:{shape:p},backend:r});return r.disposeIntermediateTensorInfo(A),r.disposeIntermediateTensorInfo(g),c&&r.disposeIntermediateTensorInfo(u),b}function $A(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;return YP(a,s,i,n)}var QP={kernelName:Os,backendName:"webgl",kernelFunc:$A};function An(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{perm:s}=r,i=n,o=a.shape.length,l=new Array(o);for(let u=0;u<l.length;u++)l[u]=a.shape[s[u]];let c;if(i.shouldExecuteOnCPU([a])){let u=i.texData.get(a.dataId).values,h=FA(u,a.shape,a.dtype,s,l);c=i.makeTensorInfo(l,a.dtype);let d=i.texData.get(c.dataId);d.values=h}else c=cp(a,s,i);return c}var eL={kernelName:Bs,backendName:"webgl",kernelFunc:An},p_=1e3;function hp({a:e,b:t,transposeA:n,transposeB:r,backend:a,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:l=null}){let c=e.shape.length,u=t.shape.length,h=n?e.shape[c-2]:e.shape[c-1],d=r?t.shape[u-1]:t.shape[u-2],p=n?e.shape[c-1]:e.shape[c-2],f=r?t.shape[u-2]:t.shape[u-1],m=e.shape.slice(0,-2),A=t.shape.slice(0,-2),y=k.sizeFromShape(m),g=k.sizeFromShape(A),b=y===g||y===1||g===1;k.assert(c>=2&&u>=2&&b,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${A}).`);let x=(y>g?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([p,f]);k.assert(h===d,()=>`Error in matMul: inner shapes (${h}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${r} must match.`);let w=n?[y,h,p]:[y,p,h],_=r?[g,f,d]:[g,d,f],N=ge({inputs:{x:e},backend:a,attrs:{shape:w}}),T=ge({inputs:{x:t},backend:a,attrs:{shape:_}}),E=[N,T],M=Math.max(y,g),z=n?N.shape[1]:N.shape[2],P=s!=null,B=i!=null,G=l==="leakyrelu",V=l!=null?up(l,!0):null,K=P||B||G||V!=null,X;if((p===1||f===1)&&z>p_&&K===!1){let J=N,ae=T;n&&(J=An({inputs:{x:N},backend:a,attrs:{perm:[0,2,1]}}),E.push(J)),r&&(ae=An({inputs:{x:T},backend:a,attrs:{perm:[0,2,1]}}),E.push(ae));let Y=f!==1,ue=f===1,ne=J;Y&&(ne=ge({inputs:{x:J},backend:a,attrs:{shape:[M,z,1]}}),E.push(ne));let de=f===1?2:1,he=ae;ue&&(he=ge({inputs:{x:ae},backend:a,attrs:{shape:[M,1,z]}}),E.push(he));let me=h_({inputs:{a:ne,b:he},backend:a});X=$A({inputs:{x:me},backend:a,attrs:{axis:de,keepDims:!0}}),E.push(me)}else{let J=Yn(e.dtype,t.dtype),ae=new o_(w,_,[M,p,f],n,r,P,V,B,G),Y=[N,T];if(s!=null&&Y.push(s),B&&Y.push(i),G){let ue=a.makeTensorInfo([],"float32",k.createScalarValue(o,"float32"));Y.push(ue),E.push(ue)}X=a.runWebGLProgram(ae,Y,J)}let ee=ge({inputs:{x:X},backend:a,attrs:{shape:x}});E.push(X);for(let J of E)a.disposeIntermediateTensorInfo(J);return ee}function tL(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:h}=r;return hp({a,b:s,transposeA:l,transposeB:c,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:h,activation:u})}var nL={kernelName:Vs,backendName:"webgl",kernelFunc:tL},f_="return abs(x);";function rL(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])&&r.dtype!=="complex64"){let s=n.texData.get(r.dataId),i=Xw(s.values);return n.makeTensorInfo(r.shape,r.dtype,i)}let a;return Q().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new _l(r.shape,f_):a=new Fa(r.shape,f_),n.runWebGLProgram(a,[r],r.dtype)}var aL={kernelName:Wi,backendName:"webgl",kernelFunc:rL},sL=Ar+`
if (abs(x) > 1.) {
return NAN;
}
return acos(x);
`,iL=Je({opSnippet:sL}),oL={kernelName:Bi,backendName:"webgl",kernelFunc:iL},lL=Ar+`
if (x < 1.0) return NAN;
return log(x + sqrt(x * x - 1.0));`,uL=Je({opSnippet:lL}),cL={kernelName:Vi,backendName:"webgl",kernelFunc:uL},m_="return a + b;",hL=Jt({opSnippet:m_,packedOpSnippet:m_,supportsComplex:!0,cpuKernelImpl:Oz}),dL={kernelName:ma,backendName:"webgl",kernelFunc:hL},pL=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let n=[];this.variableNames.forEach(a=>{n.push(`float v${a} = get${a}AtOutCoords();`)});let r=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
float result = ${r};
setOutput(result);
}
`}},fL=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let n=[];this.variableNames.forEach(a=>{n.push(`vec4 v${a} = get${a}AtOutCoords();`)});let r=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
vec4 result = ${r};
setOutput(result);
}
`}};function dp(e){let{inputs:t,backend:n}=e,r=t;if(r.length===1)return Cn({inputs:{x:r[0]},backend:n});if(r.length>Q().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(r.length/2),l=dp({inputs:r.slice(0,o),backend:n}),c=dp({inputs:r.slice(o),backend:n});return dp({inputs:[l,c],backend:n})}let a=r.map(o=>o.dtype).reduce((o,l)=>Yn(o,l)),s=r.map(o=>o.shape),i=Q().getBool("WEBGL_PACK")?new fL(r[0].shape,s):new pL(r[0].shape,s);return n.runWebGLProgram(i,r,a)}var mL={kernelName:Za,backendName:"webgl",kernelFunc:dp};function AL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=k.parseAxisParam(s,a.shape),c=l,u=C.getAxesPermutation(c,o),h=a;u!=null&&(h=An({inputs:{x:a},backend:n,attrs:{perm:u}}),c=C.getInnerMostAxes(c.length,o)),C.assertAxesAreInnerMostDims("all",c,o);let[d,p]=C.computeOutAndReduceShapes(h.shape,c),f=k.sizeFromShape(p),m=ge({inputs:{x:h},backend:n,attrs:{shape:[-1,f]}}),A=di(m,m.dtype,"all",n),y;if(i){let g=C.expandShapeToKeepDim(d,l);y=ge({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=ge({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(A),u!=null&&n.disposeIntermediateTensorInfo(h),y}var yL={kernelName:yh,backendName:"webgl",kernelFunc:AL};function gL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=k.parseAxisParam(s,a.shape),c=l,u=C.getAxesPermutation(c,o),h=a;u!=null&&(h=An({inputs:{x:a},backend:n,attrs:{perm:u}}),c=C.getInnerMostAxes(c.length,o)),C.assertAxesAreInnerMostDims("any",c,o);let[d,p]=C.computeOutAndReduceShapes(h.shape,c),f=k.sizeFromShape(p),m=ge({inputs:{x:h},backend:n,attrs:{shape:[-1,f]}}),A=di(m,m.dtype,"any",n),y;if(i){let g=C.expandShapeToKeepDim(d,l);y=ge({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=ge({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(A),u!=null&&n.disposeIntermediateTensorInfo(h),y}var xL={kernelName:gh,backendName:"webgl",kernelFunc:gL},wL=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:r,batchSize:a,outSize:s}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[a,s];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${r};
int bestIndex = inOffset;
float bestValue = getA(batch, bestIndex);
for (int i = 0; i < ${r}; i++) {
int inIdx = ${o};
float candidate = getA(batch, inIdx);
if (candidate ${i} bestValue) {
bestValue = candidate;
bestIndex = inIdx;
}
}
setOutput(float(bestIndex));
}
`}},_L=class{constructor(e,t,n,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,k.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let a=e[e.length-1],s=Math.ceil(a/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),r||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=ht(o),c=un("coords",o),u,h;if(s===1){h=o+1;let N=ht(h);u=`
${N} sourceLocR = ${N}(${c.join()}, 0);
++${c[o-1]};
${N} sourceLocG = ${N}(${c.join()}, 0);
++${c[o-2]};
${N} sourceLocA = ${N}(${c.join()}, 0);
--${c[o-1]};
${N} sourceLocB = ${N}(${c.join()}, 0);
--${c[o-2]};`}else h=o,u=`
${l} sourceLocR = coords;
++${c[o-1]};
${l} sourceLocG = coords;
++${c[o-2]};
${l} sourceLocA = coords;
--${c[o-1]};
${l} sourceLocB = coords;
--${c[o-2]};`;let d=["x","y","z","w","u","v"].slice(0,h),p="."+d[h-1],f=d.map(N=>"int "+N),m=un("sourceLocR",h-1).concat("inIdx.r"),A=un("sourceLocG",h-1).concat("inIdx.g"),y=un("sourceLocB",h-1).concat("inIdx.b"),g=un("sourceLocA",h-1).concat("inIdx.a"),b=n==="max"?"greaterThan":"lessThan",x=r?"":`
inIdx = round(vec4(getBestIndicesAChannel(${m.join()}),
getBestIndicesAChannel(${A.join()}),
getBestIndicesAChannel(${y.join()}),
getBestIndicesAChannel(${g.join()})));`,w=`vec4(
getAChannel(${m.join()}),
hasNextCol ? getAChannel(${A.join()}) : 0.,
hasNextRow ? getAChannel(${y.join()}) : 0.,
hasNextRow && hasNextCol ? getAChannel(${g.join()}) : 0.)`,_=r?"":`
float getBestIndicesAChannel(${f.join()}) {
return getChannel(getBestIndicesA(${d.join()}),
vec2(${d.slice(-2).join()}));
}`;this.userCode=`
float getAChannel(${f.join()}) {
return getChannel(getA(${d.join()}),
vec2(${d.slice(-2).join()}));
}
${_}
void main() {
${l} coords = getOutputCoords();
bool hasNextCol = ${c[o-1]} < ${i[o-1]-1};
bool hasNextRow = ${c[o-2]} < ${i[o-2]-1};
${u}
ivec4 srcIdx = ivec4(sourceLocR${p}, sourceLocG${p},
sourceLocB${p}, sourceLocA${p}) * ${t};
ivec4 inIdx = srcIdx;
vec4 bestIndex = vec4(inIdx);
vec4 bestValue = ${w};
for (int i = 0; i < ${t}; i++) {
inIdx = srcIdx;
${x}
vec4 candidate = ${w};
bvec4 nan = isnan(candidate);
bvec4 replace = bvec4(
vec4(${b}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
replace.y ? candidate.y : bestValue.y,
replace.z ? candidate.z : bestValue.z,
replace.w ? candidate.w : bestValue.w);
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
srcIdx++;
}
setOutput(bestIndex);
}
`}};function A_(e,t,n,r=null){let a=t.shape[0],s=t.shape[1];r!=null&&(a=r.shape[0],s=r.shape[1]);let i=C.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:a,outSize:Math.ceil(s/i)},l=new wL(o,n,r==null),c=[t];r!=null&&c.push(r);let u=e.runWebGLProgram(l,c,"int32");if(u.shape[1]===1)return u;let h=A_(e,t,n,u);return e.disposeIntermediateTensorInfo(u),h}function y_(e,t,n,r=null){let a=r!=null?r.shape:t.shape,s=a[a.length-1],i=C.computeOptimalWindowSize(s),o=new _L(a,i,n,r==null),l=r==null?[t]:[t,r],c=e.runWebGLProgram(o,l,"int32");if(c.shape.length===t.shape.length){let u=y_(e,t,n,c);return e.disposeIntermediateTensorInfo(c),u}return c}function g_(e,t,n,r){let a=[n];if(C.assertAxesAreInnerMostDims("arg"+r.charAt(0).toUpperCase()+r.slice(1),a,t.shape.length),!Q().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],[i,o]=C.computeOutAndReduceShapes(t.shape,a),l=k.sizeFromShape(o),c=ge({inputs:{x:t},backend:e,attrs:{shape:[-1,l]}});s.push(c);let u=A_(e,c,r);s.push(u);let h=ge({inputs:{x:u},backend:e,attrs:{shape:i}});return s.forEach(d=>e.disposeIntermediateTensorInfo(d)),h}return y_(e,t,r)}function bL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r,i=k.parseAxisParam(s,a.shape),o=C.getAxesPermutation(i,a.shape.length),l=a,c=[];o!=null&&(l=An({inputs:{x:a},backend:n,attrs:{perm:o}}),c.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let u=g_(n,l,i[0],"max");return c.forEach(h=>n.disposeIntermediateTensorInfo(h)),u}var vL={kernelName:Ja,backendName:"webgl",kernelFunc:bL};function kL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r,i=k.parseAxisParam(s,a.shape),o=C.getAxesPermutation(i,a.shape.length),l=a,c=[];o!=null&&(l=An({inputs:{x:a},backend:n,attrs:{perm:o}}),c.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let u=g_(n,l,i[0],"min");return c.forEach(h=>n.disposeIntermediateTensorInfo(h)),u}var IL={kernelName:ru,backendName:"webgl",kernelFunc:kL},NL=Ar+`
if (abs(x) > 1.) {
return NAN;
}
return asin(x);
`,SL=Je({opSnippet:NL}),TL={kernelName:Ui,backendName:"webgl",kernelFunc:SL},EL=Ar+"return log(x + sqrt(x * x + 1.0));",CL=Je({opSnippet:EL}),RL={kernelName:Hi,backendName:"webgl",kernelFunc:CL},FL=Ar+`
return atan(x);
`,ML=Je({opSnippet:FL}),$L={kernelName:ji,backendName:"webgl",kernelFunc:ML},DL=VP+`
return atan(a, b);
`,OL=`
vec4 result = atan(a, b);
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+UP+`
return result;
`,zL=Jt({opSnippet:DL,packedOpSnippet:OL}),PL={kernelName:qi,backendName:"webgl",kernelFunc:zL},LL=Ar+`
if ((x < -1.0) || (x > 1.0)) return NAN;
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,WL=Je({opSnippet:LL}),BL={kernelName:Gi,backendName:"webgl",kernelFunc:WL},hc=class{constructor(e,t,n,r=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterHeight,h=e.effectiveFilterWidth,d=e.padInfo.top,p=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,A=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(f||(y="-1.0 / 1e-20"),n){let N=">=";this.userCode=`
const ivec2 strides = ivec2(${i}, ${o});
const ivec2 pads = ivec2(${d}, ${p});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
float avgValue = 0.0;
for (int wR = 0; wR < ${u};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${h};
wC += ${c}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xR, xC, d);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${N} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${r?a?m:A:`wR * ${h} + wC`};
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let g="max",b=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(b="avgValue / count");let x=Math.floor(s/4)*4,w=s%4,_=`
if (${f}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${g}(values, minMaxValue);
}
`;this.userCode=`
const ivec2 strides = ivec2(${i}, ${o});
const ivec2 pads = ivec2(${d}, ${p});
const float initializationValue = ${y};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xR, int xC, int d) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xR, xC, d);
}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
vec4 minMaxValue = vec4(${y});
float avgValue = 0.0;
count = 0.0;
for (int wR = 0; wR < ${u};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${x}; wC += 4) {
int xC = xCCorner + wC * ${c};
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
getValue(batch, xR, xC + 2 * ${c}, d),
getValue(batch, xR, xC + 3 * ${c}, d)
);
${_}
}
int xC = xCCorner + ${x};
if (${w===1}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
initializationValue,
initializationValue,
initializationValue
);
${_}
} else if (${w===2}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
initializationValue,
initializationValue
);
${_}
} else if (${w===3}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
getValue(batch, xR, xC + 2 * ${c}, d),
initializationValue
);
${_}
}
}
setOutput(${b});
}
`}},DA=class{constructor(e,t,n,r=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,c=e.dilationDepth,u=e.dilationHeight,h=e.dilationWidth,d=e.effectiveFilterDepth,p=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,A=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let g=t==="avg",b="0.0";if(g||(b="-1.0 / 1e-20"),n){let E=">=";this.userCode=`
const ivec3 strides =
ivec3(${i}, ${o}, ${l});
const ivec3 pads = ivec3(${m}, ${A}, ${y});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
for (int wD = 0; wD < ${d};
wD += ${c}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${p};
wR += ${u}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${f};
wC += ${h}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xD, xR, xC, ch);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${E} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${r?a?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${p} * ${f} +
wR * ${f} + wC`};
}
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let x="max",w=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(w="avgValue / count");let _=Math.floor(s/4)*4,N=s%4,T=`
if (${g}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${x}(values, minMaxValue);
}
`;this.userCode=`
const ivec3 strides =
ivec3(${i}, ${o}, ${l});
const ivec3 pads = ivec3(${m}, ${A}, ${y});
const float initializationValue = ${b};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xD, int xR, int xC, int ch) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xD, xR, xC, ch);
}
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
// ? = to be determined
vec4 minMaxValue = vec4(${b});
float avgValue = 0.0;
count = 0.0;
for (int wD = 0; wD < ${d};
wD += ${c}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${p};
wR += ${u}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${_}; wC += 4) {
int xC = xCCorner + wC * ${h};
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${h}, ch),
getValue(batch, xD, xR, xC + 2 * ${h}, ch),
getValue(batch, xD, xR, xC + 3 * ${h}, ch)
);
${T}
}
int xC = xCCorner + ${_};
if (${N===1}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
initializationValue,
initializationValue,
initializationValue
);
${T}
} else if (${N===2}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${h}, ch),
initializationValue,
initializationValue
);
${T}
} else if (${N===3}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${h}, ch),
getValue(batch, xD, xR, xC + 2 * ${h}, ch),
initializationValue
);
${T}
}
}
setOutput(${w});
}
}
`}};function VL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;ml(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,c=1;k.assert(C.eitherStridesOrDilationsAreOne(i,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=C.computePool2DInfo(a.shape,s,i,c,o,l);if(u.filterWidth===1&&u.filterHeight===1&&k.arraysEqual(u.inShape,u.outShape))return Cn({inputs:{x:a},backend:n});let h=new hc(u,"avg",!1);return n.runWebGLProgram(h,[a],"float32")}var UL={kernelName:Ya,backendName:"webgl",kernelFunc:VL};function HL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=r,u=[1,1,1],h=C.computePool3DInfo(a.shape,s,i,u,o,l,c),d=new DA(h,"avg",!1);return n.runWebGLProgram(d,[a],"float32")}var jL={kernelName:au,backendName:"webgl",kernelFunc:HL},GL=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,c=o-1-e.padInfo.top,u=l-1-e.padInfo.left,h=1/(t*n);this.userCode=`
const ivec2 pads = ivec2(${c}, ${u});
const float avgMultiplier = float(${h});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${o};
wR += ${s}) {
float dyR = float(dyRCorner + wR) / ${r}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${l};
wC+= ${i}) {
float dyC = float(dyCCorner + wC) / ${a}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
dotProd += dyValue * avgMultiplier;
}
}
setOutput(dotProd);
}
`}},qL=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterDepth,h=e.effectiveFilterHeight,d=e.effectiveFilterWidth,p=u-1-e.padInfo.front,f=h-1-e.padInfo.top,m=d-1-e.padInfo.left,A=1/(t*n*r);this.userCode=`
const ivec3 pads = ivec3(${p}, ${f}, ${m});
const float avgMultiplier = float(${A});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${u};
wD += ${o}) {
float dyD = float(dyDCorner + wD) / ${a}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${h};
wR += ${l}) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${d};
wC += ${c}) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
dotProd += dyValue * avgMultiplier;
}
}
}
setOutput(dotProd);
}
`}};function XL(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s,{filterSize:o,strides:l,pad:c,dimRoundingMode:u}=r,h=[1,1,1],d=C.computePool3DInfo(i.shape,o,l,h,c,u),p=new qL(d);return n.runWebGLProgram(p,[a],i.dtype)}var KL={kernelName:wh,backendName:"webgl",kernelFunc:XL};function ZL(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s;ml([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:c}=r,u=C.computePool2DInfo(i.shape,o,l,1,c),h=new GL(u);return n.runWebGLProgram(h,[a],i.dtype)}var JL={kernelName:xh,backendName:"webgl",kernelFunc:ZL};function YL(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;return hp({a,b:s,transposeA:i,transposeB:o,backend:n})}var QL={kernelName:Qa,backendName:"webgl",kernelFunc:YL},eW=class{constructor(e,t,n,r,a,s){this.outputShape=[],this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,n);let i="0.0";r!=null&&(C.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";a!=null&&(C.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
float x = getXAtOutCoords();
float mean = getMeanAtOutCoords();
float variance = getVarianceAtOutCoords();
float offset = ${i};
float scale = ${o};
float inv = scale * inversesqrt(variance + float(${s}));
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
}
`}},tW=class{constructor(e,t,n,r,a,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";r!=null&&(C.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";a!=null&&(C.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
vec4 offset = ${i};
vec4 scale = ${o};
vec4 x = getXAtOutCoords();
vec4 mean = getMeanAtOutCoords();
vec4 variance = getVarianceAtOutCoords();
vec4 inv = scale * inversesqrt(variance + vec4(${s}));
setOutput((x - mean) * inv + offset);
}
`}},nW=({inputs:e,backend:t,attrs:n})=>{let{x:r,mean:a,variance:s,offset:i,scale:o}=e;k.assert(a.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),k.assert(i==null||a.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),k.assert(o==null||a.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let c=[r,a,s],u=null;i!=null&&(u=i.shape,c.push(i));let h=null;o!=null&&(h=o.shape,c.push(o));let d=Q().getBool("WEBGL_PACK_NORMALIZATION")?new tW(r.shape,a.shape,s.shape,u,h,l):new eW(r.shape,a.shape,s.shape,u,h,l);return t.runWebGLProgram(d,c,c[0].dtype)},rW={kernelName:hs,backendName:"webgl",kernelFunc:nW},sW=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=ht(this.rank),n=`uniform int start[${this.rank}];`,r=aW(this.rank),a,s=e.map((i,o)=>`sourceLoc.${OA[o]} = start[${o}] + coords.${OA[o]};`);a=`
${t} sourceLoc;
${t} coords = getOutputCoords();
${s.join(`
`)}
`,this.userCode=`
${n}
void main() {
${a}
setOutput(getSource(${r}));
}
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}},OA=["x","y","z","w","u","v"];function aW(e){if(e===1)return"sourceLoc";if(e<=6)return OA.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var iW=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length;let t=ht(this.rank),n=un("coords",this.rank),r=un("sourceLoc",this.rank),a=this.rank===1?"sourceLoc":`vec2(${r.slice(-2).join()})`,s=`getChannel(getSource(${r.join()}), ${a})`,i=`
result.x = ${s};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${r[this.rank-1]};
result.y = ${s};
--${r[this.rank-1]};
}
`,o=this.rank===1?"":`
--${n[this.rank-1]};
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
++${r[this.rank-2]};
result.z = ${s};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${r[this.rank-1]};
result.w = ${s};
}
}
`,l=this.rank<=4?`sourceLoc = coords +
${t}(${e.map((c,u)=>`start[${u}]`).join()});`:e.map((c,u)=>`${r[u]} = ${n[u]} + start[${u}];`).join(`
`);this.userCode=`
uniform int start[${this.rank}];
void main() {
${t} coords = getOutputCoords();
${t} sourceLoc;
${l}
vec4 result = vec4(0.);
${i}
${o}
setOutput(result);
}
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}};function oW(e,t,n,r){let a=r.texData.get(e.dataId),s=r.makeTensorInfo(n,e.dtype),i=r.texData.get(s.dataId);Object.assign(i,a),i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=an.computeFlatOffset(t,k.computeStrides(e.shape));a.slice&&(o+=a.slice.flatOffset),i.slice={flatOffset:o,origDataId:a.slice&&a.slice.origDataId||e.dataId};let l=r.dataRefCount.get(i.slice.origDataId)||1;return r.dataRefCount.set(i.slice.origDataId,l+1),s}function dc(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,size:i}=r,[o,l]=an.parseSliceParams(a,s,i);if(an.assertParamsValid(a,o,l),k.sizeFromShape(l)===0)return n.makeTensorInfo(l,a.dtype,[]);if(n.shouldExecuteOnCPU([a])||a.dtype==="string"){let h=n.texData.get(a.dataId),d=nP(h.values,o,l,a.shape,a.dtype);return n.makeTensorInfo(l,a.dtype,d)}let{isPacked:c}=n.texData.get(a.dataId),u=an.isSliceContinous(a.shape,o,l);if(c||!u){let h=Q().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new iW(l):new sW(l),d=h.getCustomSetupFunc(o);return n.runWebGLProgram(h,[a],a.dtype,d)}return n.uploadToGPU(a.dataId),oW(a,o,l,n)}var lW={kernelName:Eo,backendName:"webgl",kernelFunc:dc},uW=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,crops:i}=r;k.assert(a.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((g,b)=>g*b),l=C.getReshaped(a.shape,s,o),c=C.getPermuted(l.length,s.length),u=C.getReshapedPermuted(a.shape,s,o),h=C.getSliceBeginCoords(i,s.length),d=C.getSliceSize(u,i,s.length),p=[],f=ge({inputs:{x:a},backend:n,attrs:{shape:l}}),m=An({inputs:{x:f},backend:n,attrs:{perm:c}}),A=ge({inputs:{x:m},backend:n,attrs:{shape:u}}),y=dc({inputs:{x:A},backend:n,attrs:{begin:h,size:d}});return p.push(f),p.push(m),p.push(A),p.forEach(g=>n.disposeIntermediateTensorInfo(g)),y},cW={kernelName:su,backendName:"webgl",kernelFunc:uW};function hW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i}=r,o=n.readSync(a.dataId),l=n.readSync(s.dataId),c=qw(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}var dW={kernelName:_h,backendName:"webgl",kernelFunc:hW},pW="return float(a != b);",x_=Jt({opSnippet:pW,dtype:"bool"}),fW={kernelName:yo,backendName:"webgl",kernelFunc:x_};function pc(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.texData.get(r.dataId);return Cn({inputs:{x:a.complexTensorInfos.real},backend:n})}var mW={kernelName:Vh,backendName:"webgl",kernelFunc:pc},AW="return float(int(x));";function yW(e,t){let n=new Fa(e.shape,AW),r=t.runWebGLProgram(n,[e],"int32");return{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}function zA(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dtype:s}=r;if(s==="complex64"){if(a.dtype==="complex64")return Cn({inputs:{x:a},backend:n});let i=Ct(a.shape),o=zA({inputs:{x:a},backend:n,attrs:{dtype:"float32"}}),l=Ma({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=pc({inputs:{input:a},backend:n}),o=zA({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!k.hasEncodingLoss(a.dtype,s)){let i=Cn({inputs:{x:a},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return yW(a,n);if(s==="bool"){let i=n.makeTensorInfo([],"bool",k.getTypedArrayFromDType("bool",1)),o=x_({inputs:{a,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var gW={kernelName:es,backendName:"webgl",kernelFunc:zA},w_="return ceil(x);",xW=Je({opSnippet:w_,packedOpSnippet:w_,cpuKernelImpl:Pz}),wW={kernelName:ts,backendName:"webgl",kernelFunc:xW},_W=class{constructor(e){this.variableNames=["A"],this.outputShape=e,this.userCode=`
uniform float minVal;
uniform float maxVal;
void main() {
float value = getAAtOutCoords();
if (isnan(value)) {
setOutput(value);
return;
}
setOutput(clamp(value, minVal, maxVal));
}
`}getCustomSetupFunc(e,t){return(n,r)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(r,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(r,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}},bW=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
uniform float minVal;
uniform float maxVal;
void main() {
vec4 value = getAAtOutCoords();
if (any(isnan(value))) {
setOutput(value);
return;
}
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
}
`}getCustomSetupFunc(e,t){return(n,r)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(r,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(r,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}};function vW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=r,o;Q().getBool("WEBGL_PACK_CLIP")?o=new bW(a.shape):o=new _W(a.shape);let l=o.getCustomSetupFunc(s,i);return n.runWebGLProgram(o,[a],a.dtype,l)}var kW={kernelName:Aa,backendName:"webgl",kernelFunc:vW},IW=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
void main() {
float re = abs(getRealAtOutCoords());
float im = abs(getImagAtOutCoords());
float mx = max(re, im);
// sadly the length function in glsl is not underflow-safe
// (at least not on Intel GPUs). So the safe solution is
// to ensure underflow-safety in all cases.
setOutput(
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
);
}
`}};function __(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function NW(e){let{inputs:t,backend:n}=e,{x:r}=t,a=n.texData.get(r.dataId),s=new IW(r.shape),i=[__(r,a.complexTensorInfos.real),__(r,a.complexTensorInfos.imag)];return n.runWebGLProgram(s,i,i[0].dtype)}var SW={kernelName:iu,backendName:"webgl",kernelFunc:NW},TW=class{constructor(e){this.outputShape=[],this.outputShape=C.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s<t.length;s++)t[s]=t[s-1]+e[s][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let s=1;s<t.length;s++){let i=t[s-1];n.push(`else if (yC < ${t[s]}) setOutput(getT${s}(yR, yC-${i}));`)}let r=t.length,a=t[t.length-1];n.push(`else setOutput(getT${r}(yR, yC-${a}));`),this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int yR = coords.x;
int yC = coords.y;
${n.join(`
`)}
}
`}},EW=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=C.computeOutShape(e,t);let n=this.outputShape,r=n.length,a=ht(r),s=un("coords",r),i=["x","y","z","w","u","v"].slice(0,r);this.variableNames=e.map((f,m)=>`T${m}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let f=1;f<o.length;f++)o[f]=o[f-1]+e[f][t];let l=i[t],c=i.slice(-2),u=i.join(),h=`if (${l} < ${o[0]}) {
return getChannel(
getT0(${u}), vec2(${c.join()}));
}`;for(let f=1;f<o.length;f++){let m=o[f-1];h+=`
if (${l} < ${o[f]} && ${l} >= ${o[f-1]}) {
return getChannel(
getT${f}(${pp(i,l,m)}),
vec2(${pp(c,l,m)}));
}`}let d=o.length,p=o[o.length-1];h+=`
return getChannel(
getT${d}(${pp(i,l,p)}),
vec2(${pp(c,l,p)}));`,this.userCode=`
float getValue(${i.map(f=>"int "+f)}) {
${h}
}
void main() {
${a} coords = getOutputCoords();
vec4 result = vec4(getValue(${s}), 0., 0., 0.);
${s[r-1]} = ${s[r-1]} + 1;
if (${s[r-1]} < ${n[r-1]}) {
result.g = getValue(${s});
}
${s[r-2]} = ${s[r-2]} + 1;
if (${s[r-2]} < ${n[r-2]}) {
result.a = getValue(${s});
}
${s[r-1]} = ${s[r-1]} - 1;
if (${s[r-2]} < ${n[r-2]} &&
${s[r-1]} < ${n[r-1]}) {
result.b = getValue(${s});
}
setOutput(result);
}
`}};function pp(e,t,n){let r=e.indexOf(t);return e.map((a,s)=>s===r?`${a} - ${n}`:a).join()}function fp(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.texData.get(r.dataId);return Cn({inputs:{x:a.complexTensorInfos.imag},backend:n})}var CW={kernelName:Dh,backendName:"webgl",kernelFunc:fp};function vl(e,t,n){let r=e[0].dtype;if(r==="complex64"){let c=e.map(f=>pc({inputs:{input:f},backend:n})),u=e.map(f=>fp({inputs:{input:f},backend:n})),h=vl(c,t,n),d=vl(u,t,n),p=Ma({inputs:{real:h,imag:d},backend:n});return c.forEach(f=>n.disposeIntermediateTensorInfo(f)),u.forEach(f=>n.disposeIntermediateTensorInfo(f)),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),p}if(r==="string"){let{tensors2D:c,outShape:u}=b_(e,t,n),h=c.map(A=>({vals:n.readSync(A.dataId),shape:A.shape})),d=c[0].shape[0]===1,p=Lz(h,u,r,d),f=C.computeOutShape(e.map(A=>A.shape),t),m=n.makeTensorInfo(f,r,p);return c.forEach(A=>n.disposeIntermediateTensorInfo(A)),m}if(e.length>Q().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let c=Math.floor(e.length/2),u=vl(e.slice(0,c),t,n),h=vl(e.slice(c),t,n),d=vl([u,h],t,n);return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),d}if(Q().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let c=new EW(e.map(u=>u.shape),t);return n.runWebGLProgram(c,e,r)}let{tensors2D:a,outShape:s}=b_(e,t,n),i=new TW(a.map(c=>c.shape)),o=n.runWebGLProgram(i,a,r);a.forEach(c=>n.disposeIntermediateTensorInfo(c));let l=ge({inputs:{x:o},attrs:{shape:s},backend:n});return n.disposeIntermediateTensorInfo(o),l}function b_(e,t,n){let r=C.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>ge({inputs:{x:a},attrs:{shape:[-1,k.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:r}}function v_(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r,s=k.parseAxisParam(a,t[0].shape)[0],i=C.computeOutShape(t.map(c=>c.shape),s);if(k.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(c=>k.sizeFromShape(c.shape)>0);if(o.length===1)return Cn({inputs:{x:o[0]},backend:n});let l=o.map(c=>c.shape);return C.assertParamsConsistent(l,s),vl(o,s,n)}var RW={kernelName:Xi,backendName:"webgl",kernelFunc:v_},k_=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,c=e.dilationHeight,u=e.dilationWidth,h=e.filterHeight,d=e.filterWidth,p=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",A=m?1:2,y=m?2:3,g=m?3:1,b="",x="";n&&(r?b=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:a?b=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:b=`
float activation(float x) {
${n}
}
`,x="result = activation(result);");let w=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${b}
const ivec2 strides = ivec2(${o}, ${l});
const ivec2 pads = ivec2(${s}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d2 = coords[${g}];
ivec2 xRCCorner =
ivec2(coords[${A}], coords[${y}]) * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${h}; wR++) {
int xR = xRCorner + wR * ${c};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${d}; wC++) {
int xC = xCCorner + wC * ${u};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${p}; d1 += 4) {
vec4 wValues = vec4(
getW(wR, wC, d1, d2),
getW(wR, wC, d1 + 1, d2),
getW(wR, wC, d1 + 2, d2),
getW(wR, wC, d1 + 3, d2)
);
if (${m}) {
vec4 xValues = vec4(
getX(batch, xR, xC, d1),
getX(batch, xR, xC, d1 + 1),
getX(batch, xR, xC, d1 + 2),
getX(batch, xR, xC, d1 + 3)
);
dotProd += dot(xValues, wValues);
} else {
vec4 xValues = vec4(
getX(batch, d1, xR, xC),
getX(batch, d1 + 1, xR, xC),
getX(batch, d1 + 2, xR, xC),
getX(batch, d1 + 3, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
if (${f===1}) {
if (${m}) {
dotProd +=
getX(batch, xR, xC, ${p}) *
getW(wR, wC, ${p}, d2);
} else {
dotProd +=
getX(batch, ${p}, xR, xC) *
getW(wR, wC, ${p}, d2);
}
} else if (${f===2}) {
vec2 wValues = vec2(
getW(wR, wC, ${p}, d2),
getW(wR, wC, ${p} + 1, d2)
);
if (${m}) {
vec2 xValues = vec2(
getX(batch, xR, xC, ${p}),
getX(batch, xR, xC, ${p} + 1)
);
dotProd += dot(xValues, wValues);
} else {
vec2 xValues = vec2(
getX(batch, ${p}, xR, xC),
getX(batch, ${p} + 1, xR, xC)
);
dotProd += dot(xValues, wValues);
}
} else if (${f===3}) {
vec3 wValues = vec3(
getW(wR, wC, ${p}, d2),
getW(wR, wC, ${p} + 1, d2),
getW(wR, wC, ${p} + 2, d2)
);
if (${m}) {
vec3 xValues = vec3(
getX(batch, xR, xC, ${p}),
getX(batch, xR, xC, ${p} + 1),
getX(batch, xR, xC, ${p} + 2)
);
dotProd += dot(xValues, wValues);
} else {
vec3 xValues = vec3(
getX(batch, ${p}, xR, xC),
getX(batch, ${p} + 1, xR, xC),
getX(batch, ${p} + 2, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
}
}
float result = dotProd;
${w}
${x}
setOutput(result);
}
`}},FW=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,r=e.padInfo.left,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.filterDepth,h=e.filterHeight,d=e.filterWidth,p=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=`
const ivec3 strides = ivec3(${a}, ${s}, ${i});
const ivec3 pads = ivec3(${t}, ${n}, ${r});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d2 = coords.u;
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xFCorner = xFRCCorner.x;
int xRCorner = xFRCCorner.y;
int xCCorner = xFRCCorner.z;
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
// y(yF, yR, yC, d2). ? = to be determined. : = across all
// values in that axis.
float dotProd = 0.0;
for (int wF = 0; wF < ${u}; wF++) {
int xF = xFCorner + wF * ${o};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${h}; wR++) {
int xR = xRCorner + wR * ${l};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${d}; wC++) {
int xC = xCCorner + wC * ${c};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${p}; d1 += 4) {
vec4 xValues = vec4(
getX(batch, xF, xR, xC, d1),
getX(batch, xF, xR, xC, d1 + 1),
getX(batch, xF, xR, xC, d1 + 2),
getX(batch, xF, xR, xC, d1 + 3)
);
vec4 wValues = vec4(
getW(wF, wR, wC, d1, d2),
getW(wF, wR, wC, d1 + 1, d2),
getW(wF, wR, wC, d1 + 2, d2),
getW(wF, wR, wC, d1 + 3, d2)
);
dotProd += dot(xValues, wValues);
}
if (${f===1}) {
dotProd +=
getX(batch, xF, xR, xC, ${p}) *
getW(wF, wR, wC, ${p}, d2);
} else if (${f===2}) {
vec2 xValues = vec2(
getX(batch, xF, xR, xC, ${p}),
getX(batch, xF, xR, xC, ${p} + 1)
);
vec2 wValues = vec2(
getW(wF, wR, wC, ${p}, d2),
getW(wF, wR, wC, ${p} + 1, d2)
);
dotProd += dot(xValues, wValues);
} else if (${f===3}) {
vec3 xValues = vec3(
getX(batch, xF, xR, xC, ${p}),
getX(batch, xF, xR, xC, ${p} + 1),
getX(batch, xF, xR, xC, ${p} + 2)
);
vec3 wValues = vec3(
getW(wF, wR, wC, ${p}, d2),
getW(wF, wR, wC, ${p} + 1, d2),
getW(wF, wR, wC, ${p} + 2, d2)
);
dotProd += dot(xValues, wValues);
}
}
}
}
setOutput(dotProd);
}
`}},MW=class{constructor(e,t,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:r,inChannels:a,strideWidth:s,strideHeight:i,padInfo:o,outWidth:l,dilationWidth:c,dilationHeight:u,dataFormat:h}=n,{left:d,top:p}=o,f=a*r,m=ln(),A=h==="channelsLast",y=A?0:1,g=A?1:2,b="";for(let x=0;x<=1;x++)for(let w=0;w<=1;w++)b+=`
blockIndex = rc.y + ${w};
pos = rc.x + ${x};
if(blockIndex < ${e[1]} && pos < ${e[0]}) {
offsetY = int(blockIndex / (${l})) * ${i} - ${p};
d0 = offsetY + ${u} * (pos / ${f});
if(d0 < ${t[y]} && d0 >= 0) {
offsetX = int(mod(float(blockIndex), ${l}.) * ${s}. - ${d}.);
d1 = offsetX + ${c} * (int(mod(float(pos), ${f}.) / ${a}.));
if(d1 < ${t[g]} && d1 >= 0) {
ch = int(mod(float(pos), ${a}.));
if (${A}) {
innerDims = vec2(d1, ch);
result[${x*2+w}] = getChannel(
getA(d0, int(innerDims.x),
int(innerDims.y)), innerDims);
} else {
innerDims = vec2(d0, d1);
result[${x*2+w}] = getChannel(
getA(ch, int(innerDims.x),
int(innerDims.y)), innerDims);
}
}
}
}
`;this.userCode=`
void main() {
ivec2 rc = getOutputCoords();
vec4 result = vec4(0);
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
vec2 innerDims;
${b}
${m.output} = result;
}
`}};function I_({x:e,filter:t,convInfo:n,backend:r,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,c=r.texData.get(e.dataId),u=n.inChannels,h=l[0]*l[1]*l[2],d=n.outChannels,p=n.dataFormat==="channelsLast",f=!1,m=!1,A,y=[],g=(h===1||d===1)&&u>p_,b=l[2]%2!=0&&!!c.isPacked;if(g||!Q().getBool("WEBGL_LAZILY_UNPACK")||!Q().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!b){let x=p?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],w=ge({inputs:{x:e},backend:r,attrs:{shape:[1,x,n.inChannels]}}),_=ge({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}}),N=hp({a:w,b:_,transposeA:f,transposeB:m,backend:r,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i});A=ge({inputs:{x:N},backend:r,attrs:{shape:n.outShape}}),y.push(w),y.push(_),y.push(N)}else{let x=p?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),w={dataId:e.dataId,shape:[1,x,n.inChannels],dtype:e.dtype},_=c.shape;c.shape=c.shape.slice(),c.shape[c.shape.length-2]++,k.assert(sc(c.shape,w.shape),()=>`packed reshape ${c.shape} to ${w.shape} isn't free`);let N=ge({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(N);let T=hp({a:w,b:N,backend:r,transposeA:f,transposeB:m,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),E=r.texData.get(T.dataId);k.assert(E.isPacked,()=>"batchMatMul result is expected to be packed"),c.shape=_,E.shape=n.outShape,A=Cn({inputs:{x:T},backend:r}),A.shape=n.outShape,y.push(T)}for(let x of y)r.disposeIntermediateTensorInfo(x);return A}function N_({x:e,filter:t,convInfo:n,backend:r,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:c,inChannels:u,outWidth:h,outHeight:d,dataFormat:p}=n,f=p==="channelsLast",m=l*c*u,A=d*h,y=[m,A],g=!0,b=!1,x=[],w=ge({inputs:{x:e},backend:r,attrs:{shape:e.shape.slice(1)}}),_=ge({inputs:{x:t},backend:r,attrs:{shape:[1,m,k.sizeFromShape(t.shape)/m]}});x.push(w),x.push(_);let N=new MW(y,w.shape,n),T=r.runWebGLProgram(N,[w],"float32"),E=ge({inputs:{x:T},backend:r,attrs:{shape:[1,y[0],y[1]]}});x.push(T),x.push(E);let M=a!=null,z=s!=null,P=o==="leakyrelu",B=o?up(o,!0):null,G=new o_(E.shape,_.shape,[1,A,n.outChannels],g,b,M,B,z,P),V=[E,_];if(a&&V.push(a),z&&V.push(s),P){let J=r.makeTensorInfo([],"float32",k.createScalarValue(i,"float32"));V.push(J),x.push(J)}let K=r.runWebGLProgram(G,V,"float32"),X=f?[1,d,h,n.outChannels]:[1,n.outChannels,d,h],ee=ge({inputs:{x:K},backend:r,attrs:{shape:X}});x.push(K);for(let J of x)r.disposeIntermediateTensorInfo(J);return ee}function $W(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:c,dimRoundingMode:u}=r,h=C.convertConv2DDataFormat(l),d=C.computeConv2DInfo(a.shape,s.shape,i,c,o,u,!1,h),p;if(d.filterHeight===1&&d.filterWidth===1&&d.dilationHeight===1&&d.dilationWidth===1&&d.strideHeight===1&&d.strideWidth===1&&(d.padInfo.type==="SAME"||d.padInfo.type==="VALID"))p=I_({x:a,filter:s,convInfo:d,backend:n});else if(Q().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)p=N_({x:a,filter:s,convInfo:d,backend:n});else{let m=new k_(d);p=n.runWebGLProgram(m,[a,s],"float32")}let f=ge({inputs:{x:p},backend:n,attrs:{shape:d.outShape}});return n.disposeIntermediateTensorInfo(p),f}var DW={kernelName:ns,backendName:"webgl",kernelFunc:$W},OW=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,a=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int d2 = coords.w;
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${r};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${a};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
if (${s}) {
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
} else {
float dyValue = getDy(b, d2, yR, yC);
float xValue = getX(b, d1, xR, xC);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},zW=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,l=s?1:2,c=s?2:3,u=s?3:1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[${u}];
ivec2 dyCorner = ivec2(coords[${l}], coords[${c}]) - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${r}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${a}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
if (${s}) {
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
} else {
float xValue = getDy(batch, d2, idyR, idyC);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}},PW=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,a=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=`
void main() {
ivec5 coords = getOutputCoords();
int wF = coords.x;
int wR = coords.y;
int wC = coords.z;
int d1 = coords.w;
int d2 = coords.u;
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yF = 0; yF < ${e.outDepth}; yF++) {
int xF = wF + yF * ${t} - ${a};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${n} - ${s};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${r} - ${i};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yF, yR, yC, d2);
float xValue = getX(b, xF, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},LW=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=n-1-e.padInfo.top,c=r-1-e.padInfo.left;this.userCode=`
const ivec3 pads = ivec3(${o}, ${l}, ${c});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyFCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
float dotProd = 0.0;
for (int wF = 0; wF < ${t}; wF++) {
float dyF = float(dyFCorner + wF) / ${a}.0;
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
continue;
}
int idyF = int(dyF);
int wFPerm = ${t} - 1 - wF;
for (int wR = 0; wR < ${n}; wR++) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${n} - 1 - wR;
for (int wC = 0; wC < ${r}; wC++) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${r} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
float xValue = getDy(batch, idyF, idyR, idyC, d2);
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}};function WW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:c,filterShape:u}=r,h=C.convertConv2DDataFormat(l),d=C.computeConv2DInfo(a.shape,u,i,1,o,c,!1,h),p=new OW(d);return n.runWebGLProgram(p,[a,s],"float32")}var BW={kernelName:vh,backendName:"webgl",kernelFunc:WW};function VW(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:c,dimRoundingMode:u}=r,h=C.convertConv2DDataFormat(c),d=C.computeConv2DInfo(i,s.shape,o,1,l,u,!1,h),p=new zW(d);return n.runWebGLProgram(p,[a,s],"float32")}var UW={kernelName:rs,backendName:"webgl",kernelFunc:VW};function HW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r,c=C.computeConv3DInfo(a.shape,s.shape,i,l,o),u=new FW(c);return n.runWebGLProgram(u,[a,s],"float32")}var jW={kernelName:ou,backendName:"webgl",kernelFunc:HW};function GW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,filterShape:l}=r,c=C.computeConv3DInfo(a.shape,l,i,1,o),u=new PW(c);return n.runWebGLProgram(u,[a,s],"float32")}var qW={kernelName:kh,backendName:"webgl",kernelFunc:GW};function XW(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{pad:i,strides:o,inputShape:l}=r,c=C.computeConv3DInfo(l,s.shape,o,1,i),u=new LW(c);return n.runWebGLProgram(u,[a,s],"float32")}var KW={kernelName:Ih,backendName:"webgl",kernelFunc:XW},ZW=i_+`
return cos(x);
`,JW=Je({opSnippet:ZW}),YW={kernelName:as,backendName:"webgl",kernelFunc:JW},QW=`
float e2x = exp(-x);
return (e2x + 1.0 / e2x) / 2.0;
`,eB=Je({opSnippet:QW}),tB={kernelName:Ki,backendName:"webgl",kernelFunc:eB},nB=class{constructor(e,t,n,r,a){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[c]=t,[u,h]=n;this.outputShape=[c,u,h,l];let d=r==="bilinear"?1:0,[p,f]=[`${i-1}.0`,`${o-1}.0`],[m,A,y]=u>1?[`${(i-1)/(u-1)}`,"(y2-y1) * height_ratio",`y1*${p} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${p}`],[g,b,x]=h>1?[`${(o-1)/(h-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=`
const float height_ratio = float(${m});
const float width_ratio = float(${g});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int y = coords[1];
int x = coords[2];
int d = coords[3];
// get box vals
float y1 = getBoxes(b,0);
float x1 = getBoxes(b,1);
float y2 = getBoxes(b,2);
float x2 = getBoxes(b,3);
// get image in batch index
int bInd = round(getBoxInd(b));
if(bInd < 0 || bInd >= ${s}) {
return;
}
float height_scale = ${A};
float width_scale = ${b};
float in_y = ${y};
if( in_y < 0.0 || in_y > ${p} ) {
setOutput(float(${a}));
return;
}
float in_x = ${x};
if( in_x < 0.0 || in_x > ${f} ) {
setOutput(float(${a}));
return;
}
vec2 sourceFracIndexCR = vec2(in_x,in_y);
if(${d} == 1) {
// Compute the four integer indices.
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
float top = topLeft + (topRight - topLeft) * fracCR.x;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
float newValue = top + (bottom - top) * fracCR.y;
setOutput(newValue);
} else {
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestCR = ivec2(floor(
sourceFracIndexCR + vec2(0.5,0.5)));
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
setOutput(newValue);
}
}
`}},rB=e=>{let{inputs:t,backend:n,attrs:r}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:c}=r,u=new nB(a.shape,s.shape,o,l,c);return n.runWebGLProgram(u,[a,s,i],"float32")},aB={kernelName:Zi,backendName:"webgl",kernelFunc:rB},E_=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=e;let r=e.length,a=t?"0.0":`getX(${S_(r,"coords")})`,s=e[e.length-1],i="",o="";t?(i=n?`end != ${s-1}`:"end != 0",o=n?"end + 1":"end - 1"):(i=n?`end + pow2 < ${s}`:"end >= pow2",o=n?"end + pow2":"end - pow2"),this.userCode=`
uniform float index;
void main() {
${ht(r)} coords = getOutputCoords();
int end = ${T_(r,"coords")};
float val = ${a};
int pow2 = int(pow(2.0, index));
if (${i}) {
int idx = ${o};
${T_(r,"coords")} = idx;
val += getX(${S_(r,"coords")});
}
setOutput(val);
}
`}getCustomSetupFunc(e){return(t,n)=>{this.index==null&&(this.index=t.getUniformLocation(n,"index")),t.gl.uniform1f(this.index,e)}}};function S_(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function T_(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function sB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=r,l=a.shape.length,c=C.getAxesPermutation([s],l),u=a;c!=null&&(u=An({inputs:{x:a},backend:n,attrs:{perm:c}}));let h=C.getInnerMostAxes(1,l)[0];if(h!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${a.shape.length-1} but got axis=${s}`);let d=u.shape[h],p=Cn({inputs:{x:u},backend:n});for(let f=0;f<=Math.ceil(Math.log2(d))-1;f++){let m=new E_(u.shape,!1,o),A=m.getCustomSetupFunc(f),y=p;p=n.runWebGLProgram(m,[p],p.dtype,A),n.disposeIntermediateTensorInfo(y)}if(i){let f=new E_(u.shape,i,o),m=p;p=n.runWebGLProgram(f,[p],p.dtype),n.disposeIntermediateTensorInfo(m)}if(c!=null){let f=C.getUndoAxesPermutation(c),m=An({inputs:{x:p},backend:n,attrs:{perm:f}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(u),m}return p}var iB={kernelName:ss,backendName:"webgl",kernelFunc:sB};function oB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i,binaryOutput:o}=r;if(a.shape.length===1){let l=n.readSync(a.dataId),c=n.readSync(s.dataId),u=qw(l,c,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}else if(a.shape.length===2){let l=n.bufferSync(a),c=n.bufferSync(s),u=zz(l,c,i,o);return n.makeTensorInfo(u.shape,s.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${a.shape.length}.`)}var lB={kernelName:Nh,backendName:"webgl",kernelFunc:oB},uB=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int h = ${this.getHeightCoordString()};
int w = ${this.getWidthCoordString()};
int d = ${this.getDepthCoordString()};
int in_h = h / ${t};
int offset_h = imod(h, ${t});
int in_w = w / ${t};
int offset_w = imod(w, ${t});
int offset_d = (offset_h * ${t} + offset_w) *
${this.getOutputDepthSize()};
int in_d = d + offset_d;
float result = ${this.getInputSamplingString()};
setOutput(result);
}
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function cB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockSize:s,dataFormat:i}=r;k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],c=i==="NHWC"?a.shape[2]:a.shape[3],u=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,d=c*s,p=u/(s*s),f=i==="NHWC"?[o,h,d,p]:[o,p,h,d],m=new uB(f,s,i);return n.runWebGLProgram(m,[a],a.dtype)}var hB={kernelName:Ji,backendName:"webgl",kernelFunc:cB},C_=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,c=e.strideHeight,u=e.strideWidth,h=e.dilationHeight,d=e.dilationWidth,p=e.filterHeight,f=e.filterWidth,m=e.outChannels/e.inChannels,A="",y="";n&&(r?A=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:a?A=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:A=`
float activation(float x) {
${n}
}
`,y="result = activation(result);");let g=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${A}
const ivec2 strides = ivec2(${c}, ${u});
const ivec2 pads = ivec2(${o}, ${l});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${m};
int q = d2 - d1 * ${m};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
for (int wR = 0; wR < ${p}; wR++) {
int xR = xRCorner + wR * ${h};
if (xR < 0 || xR >= ${s}) {
continue;
}
for (int wC = 0; wC < ${f}; wC++) {
int xC = xCCorner + wC * ${d};
if (xC < 0 || xC >= ${i}) {
continue;
}
float xVal = getX(batch, xR, xC, d1);
float wVal = getW(wR, wC, d1, q);
dotProd += xVal * wVal;
}
}
float result = dotProd;
${g}
${y}
setOutput(result);
}
`}},R_=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,c=e.strideHeight,u=e.strideWidth,h=e.dilationHeight,d=e.dilationWidth,p=e.filterHeight,f=e.filterWidth,m=f,A="int xR; int xC; int xCOffset;";for(let x=0;x<p;x++)for(let w=0;w<f;w++)A+=`
vec4 xTexelR${x}C${w*2} = vec4(0.);
vec4 wR${x}C${w} = vec4(0.);
vec4 xR${x}C${w} = vec4(0.);`;for(let x=0;x<p;x++)for(let w=0;w<m;w++){let _=w*2;if(A+=`
xR = xRCorner + ${x*h};
xC = xCCorner + ${_*d};
`,u===1){if(_<f&&(l%2==1?A+=`
xCOffset = xC + 1;
if(xR >= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${x}C${_} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if(xCOffset + 1 >= ${i}) {
xTexelR${x}C${_}.zw = vec2(0.);
}
} else {
xTexelR${x}C${_} = vec4(0.);
}
xCOffset = xC + 1 - 2;
if(xR >= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) {
vec4 previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if(xCOffset + 1 >= ${i}) {
previous.zw = vec2(0.);
}
xR${x}C${_} = vec4(previous.zw, xTexelR${x}C${_}.xy);
} else {
xR${x}C${_} = vec4(0, 0, xTexelR${x}C${_}.xy);
}
`:A+=`
if(xR >= 0 && xR < ${s} && xC >= 0 && xC < ${i}) {
xTexelR${x}C${_} = getX(batch, xR, xC, d1);
} else {
xTexelR${x}C${_} = vec4(0.);
}
xR${x}C${_} = xTexelR${x}C${_};
`,_+1<f)){let N=l%2==0?k.nearestLargerEven(d):d;d%2==0&&l%2==1||d%2!=0&&l%2!=1?(A+=`
xCOffset = xC + ${l%2} + ${N};
if(xR >= 0 && xR < ${s} &&
xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${x}C${_+2} = getX(batch, xR, xCOffset, d1);
}
`,d>1&&(A+=`
xCOffset -= 2;
if(xR >= 0 && xR < ${s} &&
xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${x}C${_} = getX(batch, xR, xCOffset, d1);
} else {
xTexelR${x}C${_} = vec4(0.);
}
`),A+=`
xR${x}C${_+1} = vec4(
xTexelR${x}C${_}.zw, xTexelR${x}C${_+2}.xy);
`):A+=`
xCOffset = xC + ${N};
if(xR >= 0 && xR < ${s} &&
xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${x}C${_+2} = getX(batch, xR, xCOffset, d1);
}
xR${x}C${_+1} = xTexelR${x}C${_+2};
`}}else _<f&&(A+=`
if(xR >= 0 && xR < ${s}) {
`,l%2==1?(A+=`
xCOffset = xC + 1 - ${u};
if(xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${x}C${_} = getX(batch, xR, xCOffset, d1);
} else {
xTexelR${x}C${_} = vec4(0.);
}
if(xC + 1 >= 0 && xC + 1 < ${i}) {
xTexelR${x}C${_+2} = getX(batch, xR, xC + 1, d1);
} else {
xTexelR${x}C${_+2} = vec4(0.);
}
xR${x}C${_} = vec4(
xTexelR${x}C${_}.zw, xTexelR${x}C${_+2}.zw);
`,_+1<f&&(A+=`
vec4 final = vec4(0.);
xCOffset = xC + 1 + ${u};
if(xCOffset >= 0 && xCOffset < ${i}) {
final = getX(batch, xR, xCOffset, d1);
}
xR${x}C${_+1} = vec4(xTexelR${x}C${_+2}.xy, final.xy);
`)):(A+=`
if(xC >= 0 && xC < ${i}) {
xTexelR${x}C${_} = getX(batch, xR, xC, d1);
} else {
xTexelR${x}C${_} = vec4(0.);
}
xCOffset = xC + ${u};
if(xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${x}C${_+2} = getX(batch, xR, xCOffset, d1);
} else {
xTexelR${x}C${_+2} = vec4(0.);
}
xR${x}C${_} = vec4(
xTexelR${x}C${_}.xy, xTexelR${x}C${_+2}.xy);
`,_+1<f&&(A+=`
xR${x}C${_+1} = vec4(
xTexelR${x}C${_}.zw, xTexelR${x}C${_+2}.zw);
`)),A+="}");_<f&&(A+=`
vec4 wTexelR${x}C${_} = getW(${x}, ${_}, d1, q);
wR${x}C${_} = vec4(wTexelR${x}C${_}.xz, wTexelR${x}C${_}.xz);
`,_+1<f&&(A+=`
vec4 wTexelR${x}C${_+1} = getW(${x}, ${_+1}, d1, q);
wR${x}C${_+1} =
vec4(wTexelR${x}C${_+1}.xz, wTexelR${x}C${_+1}.xz);`))}for(let x=0;x<p;x++)for(let w=0;w<f;w++)A+=`dotProd += xR${x}C${w} * wR${x}C${w};`;let y="",g="";n&&(r?y=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${n}
}`:a?y=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${n}
}`:y=`vec4 activation(vec4 x) {
${n}
}`,g="result = activation(result);");let b=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${y}
const ivec2 strides = ivec2(${c}, ${u});
const ivec2 pads = ivec2(${o}, ${l});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2;
int q = 0;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
vec4 dotProd = vec4(0.);
${A}
vec4 result = dotProd;
${b}
${g}
setOutput(result);
}
`}};function dB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:c}=r,u=l;u==null&&(u=[1,1]),k.assert(C.eitherStridesOrDilationsAreOne(i,u),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let h=C.computeConv2DInfo(a.shape,s.shape,i,u,o,c,!0),d;return Q().getBool("WEBGL_PACK_DEPTHWISECONV")&&h.strideWidth<=2&&h.outChannels/h.inChannels==1?d=new R_(h):d=new C_(h),n.runWebGLProgram(d,[a,s],"float32")}var pB={kernelName:is,backendName:"webgl",kernelFunc:dB},fB=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,a=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int dm = coords.w;
int d2 = d1 * ${s} + dm;
float dotProd = 0.0;
// TO DO: Vec4 over the batch size
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${r};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${a};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
setOutput(dotProd);
}
`}},mB=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=`
const ivec2 pads = ivec2(${s}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[3];
ivec2 dyCorner = coords.yz - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${r}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${a}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
// TO DO: Vec4 over the channelMul
for (int dm = 0; dm < ${o}; dm++) {
int d2 = d1 * ${o} + dm;
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, dm);
dotProd += xValue * wValue;
}
}
}
setOutput(dotProd);
}
`}};function AB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,filterShape:u}=r,h=C.computeConv2DInfo(a.shape,u,i,o,l,c,!0),d=new fB(h);return n.runWebGLProgram(d,[a,s],"float32")}var yB={kernelName:Sh,backendName:"webgl",kernelFunc:AB};function gB(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,inputShape:u}=r,h=C.computeConv2DInfo(u,s.shape,i,o,l,c,!0),d=new mB(h);return n.runWebGLProgram(d,[a,s],"float32")}var xB={kernelName:Th,backendName:"webgl",kernelFunc:gB},wB=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
setOutput(val);
}
`}};function _B(e){let{inputs:t,backend:n}=e,{x:r}=t,a=[...r.shape,...r.shape],s=k.sizeFromShape(r.shape),i=ge({inputs:{x:r},backend:n,attrs:{shape:[s]}}),o=new wB(s),l=n.runWebGLProgram(o,[i],i.dtype),c=ge({inputs:{x:l},backend:n,attrs:{shape:a}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),c}var bB={kernelName:Eh,backendName:"webgl",kernelFunc:_B},vB=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:r,strideHeight:a,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:c}=e,{top:u,left:h}=r;this.userCode=`
const ivec2 strides = ivec2(${a}, ${s});
const ivec2 pads = ivec2(${u}, ${h});
const float neg_infinity = -3.4e38;
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.w;
ivec2 outTopLeftCorner =
coords.yz * strides - pads;
int hBeg = outTopLeftCorner.x;
int wBeg = outTopLeftCorner.y;
float curVal = neg_infinity;
for (int h = 0; h < ${i}; h++) {
int hIn = hBeg + h * ${l};
if (hIn >= 0 && hIn < ${t}) {
for (int w = 0; w < ${o}; w++) {
int wIn = wBeg + w * ${c};
if (wIn >= 0 && wIn < ${n}) {
float xVal = getX(batch, hIn, wIn, d1);
float wVal = getW(h, w, d1);
float val = xVal + wVal;
if (val > curVal) {
curVal = val;
}
}
}
}
}
float result = curVal;
setOutput(result);
}
`}};function kB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r,c=C.computeDilation2DInfo(a.shape,s.shape,i,o,"NHWC",l),u,h=new vB(c);u=n.runWebGLProgram(h,[a,s],"float32");let d=ge({inputs:{x:u},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(u),d}var IB={kernelName:lu,backendName:"webgl",kernelFunc:kB},NB="return (x >= 0.0) ? x : (exp(x) - 1.0);",SB=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,TB=Je({opSnippet:NB,packedOpSnippet:SB}),EB={kernelName:Yi,backendName:"webgl",kernelFunc:TB},CB="return (b >= 1.0) ? a : a * (b + 1.0);",RB=`
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
`,FB=e=>{let{inputs:t,backend:n}=e,{dy:r,y:a}=t,s=Q().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new cc(RB,r.shape,a.shape):new bl(CB,r.shape,a.shape);return n.runWebGLProgram(s,[r,a],r.dtype)},MB={kernelName:Fh,backendName:"webgl",kernelFunc:FB},$B=`
return vec4(equal(a, b));
`,DB="return float(a == b);",OB=Jt({opSnippet:DB,packedOpSnippet:$B,dtype:"bool"}),zB={kernelName:eo,backendName:"webgl",kernelFunc:OB},PB=`
// Error function is calculated approximately with elementary function.
// See "Handbook of Mathematical Functions with Formulas,
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
float p = ${C.ERF_P};
float a1 = ${C.ERF_A1};
float a2 = ${C.ERF_A2};
float a3 = ${C.ERF_A3};
float a4 = ${C.ERF_A4};
float a5 = ${C.ERF_A5};
float sign = sign(x);
x = abs(x);
float t = 1.0 / (1.0 + p * x);
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
`,LB=Je({opSnippet:PB}),WB={kernelName:Qi,backendName:"webgl",kernelFunc:LB},F_="return exp(x);",M_=Je({opSnippet:F_,packedOpSnippet:F_,cpuKernelImpl:Wz}),BB={kernelName:ls,backendName:"webgl",kernelFunc:M_};function PA(e){let{inputs:t,attrs:n,backend:r}=e,{dim:a}=n,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=a;return a<0&&(k.assert(-(i+1)<=a,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+a+1),o.splice(l,0,1),ge({inputs:{x:s},backend:r,attrs:{shape:o}})}var VB={kernelName:to,backendName:"webgl",kernelFunc:PA},$_="return exp(x) - 1.0;",UB=Je({opSnippet:$_,packedOpSnippet:$_,cpuKernelImpl:Bz}),HB={kernelName:no,backendName:"webgl",kernelFunc:UB},D_=class{constructor(e,t,n){this.variableNames=["real","imag"];let r=t[1];this.outputShape=t;let a=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=n?`${r}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
const float exponentMultiplier = ${a};
float unaryOpComplex(float real, float expR, float imag, float expI) {
${i}
}
float mulMatDFT(int batch, int index) {
float indexRatio = float(index) / float(${r});
float exponentMultiplierTimesIndexRatio =
exponentMultiplier * indexRatio;
float result = 0.0;
for (int i = 0; i < ${r}; i++) {
// x = (-2|2 * PI / N) * index * i;
float x = exponentMultiplierTimesIndexRatio * float(i);
float expR = cos(x);
float expI = sin(x);
float real = getReal(batch, i);
float imag = getImag(batch, i);
result +=
unaryOpComplex(real, expR, imag, expI) / ${s};
}
return result;
}
void main() {
ivec2 coords = getOutputCoords();
setOutput(mulMatDFT(coords[0], coords[1]));
}
`}};function O_(e,t,n){let r=n.texData.get(e.dataId),a=k.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=a/s,o=ge({inputs:{x:e},backend:n,attrs:{shape:[i,s]}}),l=o.shape,c=new D_("real",l,t),u=new D_("imag",l,t),h=[{dataId:r.complexTensorInfos.real.dataId,dtype:r.complexTensorInfos.real.dtype,shape:l},{dataId:r.complexTensorInfos.imag.dataId,dtype:r.complexTensorInfos.imag.dtype,shape:l}],d=n.runWebGLProgram(c,h,"float32"),p=n.runWebGLProgram(u,h,"float32"),f=Ma({inputs:{real:d,imag:p},backend:n});n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p);let m=ge({inputs:{x:f},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(f),m}function jB(e){let{inputs:t,backend:n}=e,{input:r}=t;return O_(r,!1,n)}var GB={kernelName:Mh,backendName:"webgl",kernelFunc:jB},qB=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.outputShape=e,this.userCode=`
uniform float value;
void main() {
// Input can be obtained from uniform value.
setOutput(value);
}
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}};function LA(e){let{backend:t,attrs:n}=e,{shape:r,value:a}=n,{dtype:s}=n;if(s=s||k.inferDtype(a),s==="string"){let i=k.getArrayFromDType(s,k.sizeFromShape(r));return i.fill(a),t.makeTensorInfo(r,s,i)}else{let i=new qB(r,a),o=i.getCustomSetupFunc(a);return t.runWebGLProgram(i,[],s,o)}}var XB={kernelName:uu,backendName:"webgl",kernelFunc:LA},KB=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int coordX = ${t} - x;
float outputValue;
if(coordX >= 0 && coordX < ${t}) {
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
} else {
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
}
setOutput(outputValue);
}
`}},ZB={kernelName:ro,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,r=t,a=new KB(n.shape);return r.runWebGLProgram(a,[n],n.dtype)}},z_="return floor(x);",JB=Je({opSnippet:z_,packedOpSnippet:z_,cpuKernelImpl:Vz}),YB={kernelName:us,backendName:"webgl",kernelFunc:JB},QB=`
float s = sign(a) * sign(b);
int ia = round(a);
int ib = round(b);
if (ib != 0) {
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
return float(idiv(ia, ib, s));
} else {
return NAN;
}
`,eV=`
ivec4 ia = round(a);
ivec4 ib = round(b);
bvec4 cond = notEqual(ib, ivec4(0));
ivec4 result = ivec4(0);
vec4 s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
result[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
result[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
result[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
result[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4(result);
`,tV=Jt({opSnippet:QB,packedOpSnippet:eV,dtype:"int32"}),nV={kernelName:cs,backendName:"webgl",kernelFunc:tV},rV=class{constructor(e){this.variableNames=["A"];let t=ln(),[n,r]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${r}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
setOutput(floor(value * 255.0 + 0.5));
}
`}},aV=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=ln(),[n,r]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec4 result = vec4(0.);
for(int row=0; row<=1; row++) {
for(int col=0; col<=1; col++) {
texC = coords[1] + row;
depth = coords[2] + col;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${r}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
result[row * 2 + col] = floor(value * 255.0 + 0.5);
}
}
${t.output} = result;
}
`}},iV={kernelName:qh,backendName:"webgl",kernelFunc:sV},kl;function sV(e){let{inputs:t,backend:n,attrs:r}=e,{pixels:a}=t,{numChannels:s}=r,i=typeof HTMLVideoElement!="undefined"&&a instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&a instanceof HTMLImageElement,l=typeof ImageBitmap!="undefined"&&a instanceof ImageBitmap,[c,u]=i?[a.videoWidth,a.videoHeight]:[a.width,a.height],h=[u,c],d=[u,c,s];(o||i||l)&&(kl==null&&(kl=document.createElement("canvas").getContext("2d")),kl.canvas.width=c,kl.canvas.height=u,kl.drawImage(a,0,0,c,u),a=kl.canvas);let p=n.makeTensorInfo(h,"int32");n.texData.get(p.dataId).usage=Un.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(p.dataId),a);let f=Q().getBool("WEBGL_PACK")?new aV(d):new rV(d),m=n.runWebGLProgram(f,[p],"int32");return n.disposeData(p.dataId),m}function oV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=r,m=C.convertConv2DDataFormat(u),A=C.computeConv2DInfo(a.shape,s.shape,l,h,c,d,!1,m),y,g=[];if(A.filterHeight===1&&A.filterWidth===1&&A.dilationHeight===1&&A.dilationWidth===1&&A.strideHeight===1&&A.strideWidth===1&&(A.padInfo.type==="SAME"||A.padInfo.type==="VALID"))y=I_({x:a,filter:s,convInfo:A,backend:n,bias:i,activation:p,preluActivationWeights:o,leakyreluAlpha:f});else if(Q().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)y=N_({x:a,filter:s,convInfo:A,backend:n,bias:i,activation:p,preluActivationWeights:o,leakyreluAlpha:f});else{let x=i!=null,w=o!=null,_=p==="leakyrelu",N=p?up(p,!1):null,T=new k_(A,x,N,w,_),E=[a,s];if(i&&E.push(i),o&&E.push(o),_){let M=n.makeTensorInfo([],"float32",k.createScalarValue(f,"float32"));E.push(M),g.push(M)}y=n.runWebGLProgram(T,E,"float32")}let b=ge({inputs:{x:y},backend:n,attrs:{shape:A.outShape}});return g.push(y),g.forEach(x=>n.disposeIntermediateTensorInfo(x)),b}var lV={kernelName:Us,backendName:"webgl",kernelFunc:oV};function uV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dimRoundingMode:h,activation:d,leakyreluAlpha:p}=r,f=[],m=u;m==null&&(m=[1,1]),k.assert(C.eitherStridesOrDilationsAreOne(l,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${m}'`);let A=C.computeConv2DInfo(a.shape,s.shape,l,m,c,h,!0),y=Q().getBool("WEBGL_PACK_DEPTHWISECONV")&&A.strideWidth<=2&&A.outChannels/A.inChannels==1,g=d?up(d,y):null,b=[a,s],x=i!=null,w=o!=null,_=d==="leakyrelu";if(x&&b.push(i),w&&b.push(o),_){let E=n.makeTensorInfo([],"float32",k.createScalarValue(p,"float32"));b.push(E),f.push(E)}let N;y?N=new R_(A,x,g,w,_):N=new C_(A,x,g,w,_);let T=n.runWebGLProgram(N,b,"float32");return f.forEach(E=>n.disposeIntermediateTensorInfo(E)),T}var cV={kernelName:Hs,backendName:"webgl",kernelFunc:uV},hV=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let r=ht(t.length),a=ht(n.length),s=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
${r} strides = ${r}(${this.strides});
void main() {
${a} coords = getOutputCoords();
int flattenIndex = 0;
for (int j = 0; j < ${this.sliceDim}; j++) {
int index = round(getIndices(coords[0], j));
flattenIndex += index * ${s};
}
setOutput(getX(flattenIndex, coords[1]));
}
`}};function dV(e){let{inputs:t,backend:n}=e,{params:r,indices:a}=t,s=a.shape,i=s[s.length-1],[o,l,c,u]=C.prepareAndValidate(r,a),h=ge({inputs:{x:a},backend:n,attrs:{shape:[l,i]}}),d=ge({inputs:{x:r},backend:n,attrs:{shape:[k.sizeFromShape(r.shape)/c,c]}}),p=new hV(i,u,[l,c]),f=n.runWebGLProgram(p,[d,h],d.dtype),m=ge({inputs:{x:f},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(f),m}var pV={kernelName:so,backendName:"webgl",kernelFunc:dV},mV=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=ht(this.rank),r=fV(e,2);this.userCode=`
void main() {
${n} resRC = getOutputCoords();
setOutput(getA(${r}));
}
`}};function fV(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[];for(let a=0;a<e.length;a++)a===2?r.push("int(getIndices(resRC.x, resRC.z))"):r.push(`${n[a]}`);return r.join()}function AV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,indices:s}=t,{axis:i,batchDims:o}=r,l=k.parseAxisParam(i,a.shape)[0],c=C.segment_util.collectGatherOpShapeInfo(a,s,l,o),u=k.sizeFromShape(s.shape),h=[],d=ge({inputs:{x:a},backend:n,attrs:{shape:[c.batchSize,c.outerSize,c.dimSize,c.sliceSize]}}),p=ge({inputs:{x:s},backend:n,attrs:{shape:[c.batchSize,u/c.batchSize]}});h.push(d),h.push(p);let f=[c.batchSize,c.outerSize,u/c.batchSize,c.sliceSize];if(n.shouldExecuteOnCPU([a,s])||a.dtype==="string"){let g=n.bufferSync(p),b=n.bufferSync(d),x=Uz(b,g,f);return h.forEach(w=>n.disposeIntermediateTensorInfo(w)),n.makeTensorInfo(c.outputShape,x.dtype,x.values)}let m=new mV(d.shape,f),A=n.runWebGLProgram(m,[d,p],d.dtype);h.push(A);let y=ge({inputs:{x:A},backend:n,attrs:{shape:c.outputShape}});return h.forEach(g=>n.disposeIntermediateTensorInfo(g)),y}var yV={kernelName:ao,backendName:"webgl",kernelFunc:AV},gV="return float(a > b);",xV=`
return vec4(greaterThan(a, b));
`,wV=Jt({opSnippet:gV,packedOpSnippet:xV,cpuKernelImpl:Hz,dtype:"bool"}),_V={kernelName:io,backendName:"webgl",kernelFunc:wV},bV="return float(a >= b);",vV=`
return vec4(greaterThanEqual(a, b));
`,kV=Jt({opSnippet:bV,packedOpSnippet:vV,dtype:"bool"}),IV={kernelName:ds,backendName:"webgl",kernelFunc:kV};function NV(e){let{inputs:t,backend:n}=e,{input:r}=t;return O_(r,!0,n)}var SV={kernelName:$h,backendName:"webgl",kernelFunc:NV},TV="return float(!isnan(x) && !isinf(x));",EV=Je({opSnippet:TV,dtype:"bool"}),CV={kernelName:oo,backendName:"webgl",kernelFunc:EV},RV="return float(isinf(x));",FV=Je({opSnippet:RV,dtype:"bool"}),MV={kernelName:lo,backendName:"webgl",kernelFunc:FV},$V="return float(isnan(x));",DV=Je({opSnippet:$V,dtype:"bool"}),OV={kernelName:uo,backendName:"webgl",kernelFunc:DV},zV="return float(a < b);",PV=`
return vec4(lessThan(a, b));
`,LV=Jt({opSnippet:zV,packedOpSnippet:PV,cpuKernelImpl:jz,dtype:"bool"}),WV={kernelName:co,backendName:"webgl",kernelFunc:LV},BV="return float(a <= b);",VV=`
return vec4(lessThanEqual(a, b));
`,UV=Jt({opSnippet:BV,packedOpSnippet:VV,dtype:"bool"}),HV={kernelName:ho,backendName:"webgl",kernelFunc:UV};function jV(e){let{backend:t,attrs:n}=e,{start:r,stop:a,num:s}=n,i=Gz(r,a,s);return t.makeTensorInfo([i.length],"float32",i)}var GV={kernelName:Oh,backendName:"webgl",kernelFunc:jV},qV=`if (x < 0.0) return NAN;
return log(x);`,XV=`
vec4 result = log(x);
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
result.r = isNaN.r == 1.0 ? NAN : result.r;
result.g = isNaN.g == 1.0 ? NAN : result.g;
result.b = isNaN.b == 1.0 ? NAN : result.b;
result.a = isNaN.a == 1.0 ? NAN : result.a;
return result;
`,KV=Je({opSnippet:qV,packedOpSnippet:XV,cpuKernelImpl:qz}),ZV={kernelName:ms,backendName:"webgl",kernelFunc:KV},JV="return log(1.0 + x);",YV=Je({opSnippet:JV}),QV={kernelName:po,backendName:"webgl",kernelFunc:YV},eU="return float(a >= 1.0 && b >= 1.0);",tU=`
return vec4(
vec4(greaterThanEqual(a, vec4(1.0))) *
vec4(greaterThanEqual(b, vec4(1.0))));
`,nU=Jt({opSnippet:eU,packedOpSnippet:tU,dtype:"bool"}),rU={kernelName:fo,backendName:"webgl",kernelFunc:nU},aU="return float(!(x >= 1.0));",sU=Je({opSnippet:aU}),iU={kernelName:cu,backendName:"webgl",kernelFunc:sU},oU="return float(a >= 1.0 || b >= 1.0);",lU=`
return min(
vec4(greaterThanEqual(a, vec4(1.0))) +
vec4(greaterThanEqual(b, vec4(1.0))),
vec4(1.0));
`,uU=Jt({opSnippet:oU,packedOpSnippet:lU,dtype:"bool"}),cU={kernelName:hu,backendName:"webgl",kernelFunc:uU},hU=class{constructor(e,t,n,r,a){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${r}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
int d = coords[3];
float x = getX(b, r, c, d);
float sum = 0.0;
for (int j = -${s}; j <= ${s}; j++) {
int idx = d + j;
if (idx >= 0 && idx <= ${i}) {
float z = getX(b, r, c, idx);
sum += z * z;
}
}
float val = x * ${o};
setOutput(val);
}
`}},dU=class{constructor(e,t,n,r,a){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${r}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords.x;
int r = coords.y;
int c = coords.z;
int d = coords.w;
bool hasNextCol = d < ${this.outputShape[3]};
bool hasNextRow = c < ${this.outputShape[2]};
vec4 sum = vec4(0.);
vec4 xFragAtOutputCoords = getX(b, r, c, d);
vec4 xAtOutputCoords = vec4(
getChannel(xFragAtOutputCoords, vec2(c, d)),
hasNextCol ?
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
hasNextRow ?
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
(hasNextRow && hasNextCol) ?
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
);
int firstChannel = d - ${s};
vec2 cache = vec2(0.);
if(firstChannel >= 0){
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
if(hasNextRow){
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
}
}
ivec2 depth = ivec2(d, d + 1);
for (int j = - ${s}; j <= ${s}; j++) {
ivec2 idx = depth + j;
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
if(depthInRange || depthPlusOneInRange){
vec4 z = vec4(0.);
vec4 xFragAtCurrentDepth;
z.xz = cache.xy;
if(depthPlusOneInRange && hasNextCol){
xFragAtCurrentDepth = idx.y != d ?
getX(b, r, c, idx.y) : xFragAtOutputCoords;
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
if(hasNextRow){
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
}
}
cache.xy = z.yw;
sum += z * z;
}
}
vec4 result = xAtOutputCoords * ${o};
setOutput(result);
}
`}},pU=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r,c=Q().getBool("WEBGL_PACK_NORMALIZATION")?new dU(a.shape,s,i,o,l):new hU(a.shape,s,i,o,l);return n.runWebGLProgram(c,[a],a.dtype)},fU={kernelName:du,backendName:"webgl",kernelFunc:pU},mU=class{constructor(e,t,n,r,a){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=r,this.beta=a,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
float result = 0.0;
for (int d = 0; d < ${this.depth}; ++d) {
int depthBegin = int(max(0.0, float(d - ${t})));
int depthEnd = int(min(float(${this.depth}),
float(d + ${t} + 1)));
const int MIN_DEPTH_BEGIN = 0;
const int MAX_DEPTH_END = ${this.depth};
float norm = 0.0;
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd) {
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
}
else {
break;
}
}
norm = float(${r}) * norm + float(${n});
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd){
float dyi = -2.0 * float(${r})
* float(${a})
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
/ norm;
if (k == d) {
dyi += pow(norm, -1.0 * ${a});
}
if (k == coords[3]) {
dyi *= getDy(b, r, c, d);
result += dyi;
}
}
else {
break;
}
}
}
setOutput(result);
}
`}},AU=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:c,beta:u}=r,h=new mU(a.shape,o,l,c,u);return n.runWebGLProgram(h,[a,s,i],a.dtype)},yU={kernelName:zh,backendName:"webgl",kernelFunc:AU};function gU(e,t,n,r){let a=k.sizeFromShape(t),s=k.sizeFromShape(e.shape)/a,i=ge({inputs:{x:e},attrs:{shape:[s,a]},backend:r}),o=di(i,e.dtype,"max",r),l=ge({inputs:{x:o},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}function P_(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reductionIndices:s,keepDims:i}=r,o=a.shape.length,l=k.parseAxisParam(s,a.shape),c=l,u=C.getAxesPermutation(c,o),h=u!=null,d=n.shouldExecuteOnCPU([a]),p=a;if(h){if(d){let g=n.texData.get(p.dataId).values,b=new Array(o);for(let _=0;_<b.length;_++)b[_]=a.shape[u[_]];let x=FA(g,a.shape,a.dtype,u,b);p=n.makeTensorInfo(b,a.dtype);let w=n.texData.get(p.dataId);w.values=x}else p=cp(a,u,n);c=C.getInnerMostAxes(c.length,o)}C.assertAxesAreInnerMostDims("max",c,o);let[f,m]=C.computeOutAndReduceShapes(p.shape,c),A=f;i&&(A=C.expandShapeToKeepDim(f,l));let y;if(d){let g=n.texData.get(p.dataId).values,b=Xz(g,k.sizeFromShape(m),A,a.dtype);y=n.makeTensorInfo(A,a.dtype);let x=n.texData.get(y.dataId);x.values=b}else y=gU(p,m,A,n);return h&&n.disposeIntermediateTensorInfo(p),y}var xU={kernelName:As,backendName:"webgl",kernelFunc:P_},wU=t_+`
return max(a, b);
`,_U=`
vec4 result = vec4(max(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+lp+`
return result;
`,bU=Jt({opSnippet:wU,packedOpSnippet:_U,cpuKernelImpl:Kz}),vU={kernelName:ys,backendName:"webgl",kernelFunc:bU};function kU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;ml(a,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,c=1;k.assert(C.eitherStridesOrDilationsAreOne(i,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=C.computePool2DInfo(a.shape,s,i,c,o,l);if(u.filterWidth===1&&u.filterHeight===1&&k.arraysEqual(u.inShape,u.outShape))return Cn({inputs:{x:a},backend:n});let h=new hc(u,"max",!1);return n.runWebGLProgram(h,[a],a.dtype)}var IU={kernelName:gs,backendName:"webgl",kernelFunc:kU};function NU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:c}=r,u=[1,1,1],h=C.computePool3DInfo(a.shape,s,i,u,o,c,l),d=new DA(h,"max",!1);return n.runWebGLProgram(d,[a],a.dtype)}var SU={kernelName:pu,backendName:"webgl",kernelFunc:NU},TU=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,r=e.dilationHeight,a=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=a-1-e.padInfo.top,o=s-1-e.padInfo.left,l=a*s-1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${a};
wR += ${r}) {
float dyR = float(dyRCorner + wR) / ${t}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${s}; wC++) {
float dyC = float(dyCCorner + wC) / ${n}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue = wR * ${s} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
setOutput(dotProd);
}
`}},EU=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,a=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,c=e.effectiveFilterWidth,u=o-1-e.padInfo.front,h=l-1-e.padInfo.top,d=c-1-e.padInfo.left,p=o*l*c-1;this.userCode=`
const ivec3 pads = ivec3(${u}, ${h}, ${d});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${o};
wD += ${a}) {
float dyD = float(dyDCorner + wD) / ${t}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${l};
wR += ${s}) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${c};
wC += ${i}) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
int maxPosValue = ${p} -
int(getMaxPos(batch, idyD, idyR, idyC, ch));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue =
wD * ${l} * ${c} +
wR * ${c} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
}
setOutput(dotProd);
}
`}};function CU(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s,{filterSize:o,strides:l,pad:c,dimRoundingMode:u}=r,h=[1,1,1],d=C.computePool3DInfo(i.shape,o,l,h,c,u),p=new DA(d,"max",!0),f=n.runWebGLProgram(p,[i],i.dtype),m=new EU(d),A=n.runWebGLProgram(m,[a,f],i.dtype);return n.disposeIntermediateTensorInfo(f),A}var RU={kernelName:Lh,backendName:"webgl",kernelFunc:CU};function FU(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s,output:i}=t,o=s;ml([s,i],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:h}=r,d=C.computePool2DInfo(o.shape,l,c,1,u,h),p=!0,f=new hc(d,"max",p),m=n.runWebGLProgram(f,[o],o.dtype),A=new TU(d),y=n.runWebGLProgram(A,[a,m],o.dtype);return n.disposeIntermediateTensorInfo(m),y}var MU={kernelName:Ph,backendName:"webgl",kernelFunc:FU};function $U(e,t,n,r){let a=new hc(n,"max",!1),s=r.runWebGLProgram(a,[e],"float32");a=new hc(n,"max",!0,!0,t);let i=r.runWebGLProgram(a,[e],"float32");return[s,i]}var DU={kernelName:Wh,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;k.assert(r.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${r.shape.length}.`);let c=[1,1];k.assert(C.eitherStridesOrDilationsAreOne(s,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${c}'`);let u=C.computePool2DInfo(r.shape,a,s,c,i),[h,d]=$U(r,o,u,l);return[h,d]}};function OU(e,t,n,r){let a=k.sizeFromShape(t),s=k.sizeFromShape(e.shape)/a,i=ge({inputs:{x:e},attrs:{shape:[s,a]},backend:r}),o=di(i,"float32","mean",r),l=ge({inputs:{x:o},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}var zU={kernelName:xs,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{keepDims:a,axis:s}=t,i=n,o=r.shape.length,l=k.parseAxisParam(s,r.shape),c=l,u=C.getAxesPermutation(c,o),h=u!=null,d=i.shouldExecuteOnCPU([r]),p=[],f=r;if(h){if(d){let b=i.texData.get(f.dataId).values,x=new Array(o);for(let N=0;N<x.length;N++)x[N]=r.shape[u[N]];let w=FA(b,r.shape,r.dtype,u,x);f=i.makeTensorInfo(x,r.dtype);let _=i.texData.get(f.dataId);_.values=w}else f=cp(r,u,i);p.push(f),c=C.getInnerMostAxes(c.length,o)}C.assertAxesAreInnerMostDims("sum",c,o);let[m,A]=C.computeOutAndReduceShapes(f.shape,c),y=m;a&&(y=C.expandShapeToKeepDim(m,l));let g=OU(f,A,y,i);for(let b of p)i.disposeIntermediateTensorInfo(b);return g}};function PU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=k.parseAxisParam(s,a.shape),c=l,u=C.getAxesPermutation(c,o),h=a;u!=null&&(h=An({inputs:{x:a},backend:n,attrs:{perm:u}}),c=C.getInnerMostAxes(c.length,a.shape.length)),C.assertAxesAreInnerMostDims("min",c,o);let[d,p]=C.computeOutAndReduceShapes(h.shape,c),f=k.sizeFromShape(p),m=ge({inputs:{x:h},backend:n,attrs:{shape:[-1,f]}}),A=di(m,m.dtype,"min",n),y;if(i){let g=C.expandShapeToKeepDim(d,l);y=ge({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=ge({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(A),u!=null&&n.disposeIntermediateTensorInfo(h),y}var LU={kernelName:ws,backendName:"webgl",kernelFunc:PU},WU=t_+`
return min(a, b);
`,BU=`
vec4 result = vec4(min(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+lp+`
return result;
`,VU=Jt({opSnippet:WU,packedOpSnippet:BU,cpuKernelImpl:Zz}),UU={kernelName:_s,backendName:"webgl",kernelFunc:VU},HU=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((c,u)=>c[0]+e[u]+c[1]);let r=e.length,a=ht(r),s=t.map(c=>c[0]).join(","),i=t.map((c,u)=>c[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r),l=n==="reflect"?0:1;if(r===1){this.userCode=`
int start = ${s};
int end = ${i};
void main() {
int outC = getOutputCoords();
if (outC < start) {
outC = start * 2 - outC - ${l};
} else if(outC >= end) {
outC = (end - 1) * 2 - outC + ${l};
}
setOutput(getX(outC - start));
}
`;return}this.userCode=`
${a} start = ${a}(${s});
${a} end = ${a}(${i});
void main() {
${a} outC = getOutputCoords();
for (int i = 0; i < ${r}; i++) {
if (outC[i] < start[i]) {
outC[i] = start[i] * 2 - outC[i] - ${l};
} else if(outC[i] >= end[i]) {
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
}
}
${a} coords = outC - start;
setOutput(getX(${o}));
}
`}},jU=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((p,f)=>p[0]+e[f]+p[1]);let r=e.length,a=ht(r),s=t.map(p=>p[0]).join(","),i=t.map((p,f)=>p[0]+e[f]).join(","),o=un("rc",r),l=un("source",r),c=`${o[r-1]} < ${this.outputShape[r-1]}`,u=r===1?"source":`vec2(${l.slice(-2).join()})`,h=n==="reflect"?0:1,d="";if(r===1){let p=`
${a} source = rc;
if (source < start) {
source = start * 2 - source - ${h};
} else if (source >= end) {
source = (end - 1) * 2 - source + ${h};
}
source -= start;
`;d=`
${a} rc = outputLoc;
${p}
result[0] = getChannel(getX(${l.join()}), ${u});
${o[r-1]} += 1;
if(${c}) {
${p}
result[1] = getChannel(getX(${l.join()}), ${u});
}
`}else{let p=`
${a} source = rc;
${a} lt = ${a}(lessThan(source, start));
${a} gte = ${a}(greaterThanEqual(source, end));
${a} orig = 1 - (lt + gte);
source = orig * source +
lt * (start * 2 - source - ${h}) +
gte * ((end - 1) * 2 - source + ${h});
source -= start;
`;d=`
${a} rc = outputLoc;
${p}
result[0] = getChannel(getX(${l.join()}), ${u});
${o[r-1]} += 1;
if(${c}) {
${p}
result[1] = getChannel(getX(${l.join()}), ${u});
}
rc = outputLoc;
${o[r-2]} += 1;
if(${o[r-2]} < ${this.outputShape[r-2]}) {
${p}
result[2] = getChannel(getX(${l.join()}), ${u});
${o[r-1]} += 1;
if(${c}) {
${p}
result[3] = getChannel(getX(${l.join()}), ${u});
}
}
`}this.userCode=`
const ${a} start = ${a}(${s});
const ${a} end = ${a}(${i});
void main() {
${a} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${d}
setOutput(result);
}
`}},GU=({inputs:e,backend:t,attrs:n})=>{let{x:r}=e,{paddings:a,mode:s}=n,i=Q().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new jU(r.shape,a,s):new HU(r.shape,a,s);return t.runWebGLProgram(i,[r],r.dtype)},qU={kernelName:fu,backendName:"webgl",kernelFunc:GU},XU=`if (b == 0.0) return NAN;
return mod(a, b);`,KU=`
vec4 result = mod(a, b);
vec4 isNaN = vec4(equal(b, vec4(0.0)));
`+lp+`
return result;
`,ZU=Jt({opSnippet:XU,packedOpSnippet:KU}),JU={kernelName:mo,backendName:"webgl",kernelFunc:ZU},YU=class{constructor(e,t,n){this.variableNames=["probs"],this.outputShape=[e,n],this.userCode=`
uniform float seed;
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
float r = random(seed);
float cdf = 0.0;
for (int i = 0; i < ${t-1}; i++) {
cdf += getProbs(batch, i);
if (r < cdf) {
setOutput(float(i));
return;
}
}
// If no other event happened, last event happened.
setOutput(float(${t-1}));
}
`}getCustomSetupFunc(e){return(t,n)=>{this.seedLoc==null&&(this.seedLoc=t.getUniformLocation(n,"seed")),t.gl.uniform1f(this.seedLoc,e)}}},QU=`
if (a == b) {
return 1.0;
};
return a / b;`,eH=`
// vec4 one = vec4(equal(a, b));
// return one + (vec4(1.0) - one) * a / b;
vec4 result = a / b;
if(a.x == b.x) {
result.x = 1.;
}
if(a.y == b.y) {
result.y = 1.;
}
if(a.z == b.z) {
result.z = 1.;
}
if(a.w == b.w) {
result.w = 1.;
}
return result;
`,L_=Jt({opSnippet:QU,packedOpSnippet:eH,checkOutOfBounds:!0}),tH={kernelName:os,backendName:"webgl",kernelFunc:L_},W_="return a - b;",B_=Jt({opSnippet:W_,packedOpSnippet:W_,supportsComplex:!0,cpuKernelImpl:aP}),nH={kernelName:Ls,backendName:"webgl",kernelFunc:B_};function V_(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{dim:s}=r,i=k.parseAxisParam([s],a.shape),o=P_({inputs:{x:a},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),l=C.expandShapeToKeepDim(o.shape,i),c=ge({inputs:{x:o},backend:n,attrs:{shape:l}}),u=B_({inputs:{a,b:c},backend:n}),h=M_({inputs:{x:u},backend:n}),d=$A({inputs:{x:h},backend:n,attrs:{axis:i,keepDims:!1}}),p=ge({inputs:{x:d},backend:n,attrs:{shape:l}}),f=L_({inputs:{a:h,b:p},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),f}var rH={kernelName:zs,backendName:"webgl",kernelFunc:V_};function aH(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=r,l=o?a:V_({inputs:{logits:a},backend:n,attrs:{dim:a.shape.length-1}}),c=l.shape[0],u=l.shape[1],h=new YU(c,u,s),d=h.getCustomSetupFunc(i),p=n.runWebGLProgram(h,[l],"int32",d);return o||n.disposeIntermediateTensorInfo(l),p}var sH={kernelName:Bh,backendName:"webgl",kernelFunc:aH},U_="return -x;";function iH(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])){let s=n.texData.get(r.dataId),[i,o]=Yz(s.values,r.shape,r.dtype);return n.makeTensorInfo(o,r.dtype,i)}let a;return Q().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new _l(r.shape,U_):a=new Fa(r.shape,U_),n.runWebGLProgram(a,[r],r.dtype)}var oH={kernelName:Ao,backendName:"webgl",kernelFunc:iH},lH=Mr.nonMaxSuppressionV3Impl;function uH(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=r,c=n.readSync(a.dataId),u=n.readSync(s.dataId),{selectedIndices:h}=lH(c,u,i,o,l);return n.makeTensorInfo([h.length],"int32",new Int32Array(h))}var cH={kernelName:go,backendName:"webgl",kernelFunc:uH},hH=Mr.nonMaxSuppressionV4Impl;function dH(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:c}=r,u=n.readSync(a.dataId),h=n.readSync(s.dataId),{selectedIndices:d,validOutputs:p}=hH(u,h,i,o,l,c);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([p]))]}var pH={kernelName:xo,backendName:"webgl",kernelFunc:dH},fH=Mr.nonMaxSuppressionV5Impl;function mH(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:c}=r,u=n.readSync(a.dataId),h=n.readSync(s.dataId),d=i,p=o,f=l,m=c,{selectedIndices:A,selectedScores:y}=fH(u,h,d,p,f,m);return[n.makeTensorInfo([A.length],"int32",new Int32Array(A)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var AH={kernelName:wo,backendName:"webgl",kernelFunc:mH},yH=class{constructor(e,t,n,r){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int index = round(getIndices(coords.x));
setOutput(mix(float(${r}), float(${n}),
float(index == coords.y)));
}
`}},gH=e=>{let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r,l=k.sizeFromShape(a.shape),c=new yH(l,s,i,o),u=ge({inputs:{x:a},backend:n,attrs:{shape:[l]}}),h=n.runWebGLProgram(c,[u],a.dtype);n.disposeIntermediateTensorInfo(u);let d=[...a.shape,s],p=ge({inputs:{x:h},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(h),p},xH={kernelName:vs,backendName:"webgl",kernelFunc:gH};function mp(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="complex64"){let a=pc({inputs:{input:r},backend:n}),s=mp({inputs:{x:a},backend:n}),i=fp({inputs:{input:r},backend:n}),o=mp({inputs:{x:i},backend:n}),l=Ma({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return LA({attrs:{shape:r.shape,dtype:r.dtype,value:r.dtype==="string"?"":0},backend:n})}var wH={kernelName:Po,backendName:"webgl",kernelFunc:mp};function H_(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(r.dtype==="complex64"){let a=pc({inputs:{input:r},backend:n}),s=H_({inputs:{x:a},backend:n}),i=fp({inputs:{input:r},backend:n}),o=mp({inputs:{x:i},backend:n}),l=Ma({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return LA({attrs:{shape:r.shape,dtype:r.dtype,value:1},backend:n})}var _H={kernelName:_o,backendName:"webgl",kernelFunc:H_};function bH(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return PA({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(u=>{k.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let h=PA({inputs:{input:u},backend:n,attrs:{dim:a}});return o.push(h),h}),c=v_({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var vH={kernelName:bo,backendName:"webgl",kernelFunc:bH},kH=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((l,c)=>l[0]+e[c]+l[1]);let r=e.length,a=ht(r),s=t.map(l=>l[0]).join(","),i=t.map((l,c)=>l[0]+e[c]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r);if(r===1){this.userCode=`
int start = ${s};
int end = ${i};
void main() {
int outC = getOutputCoords();
if (outC < start || outC >= end) {
setOutput(float(${n}));
} else {
setOutput(getX(outC - start));
}
}
`;return}this.userCode=`
${a} start = ${a}(${s});
${a} end = ${a}(${i});
void main() {
${a} outC = getOutputCoords();
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
setOutput(float(${n}));
} else {
${a} coords = outC - start;
setOutput(getX(${o}));
}
}
`}},IH=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let r=e.length,a=ht(r),s=t.map(f=>f[0]).join(","),i=t.map((f,m)=>f[0]+e[m]).join(","),o=un("rc",r),l=un("source",r),c=`${o[r-1]} < ${this.outputShape[r-1]}`,u=r===1?"source":`vec2(${l.slice(-2).join()})`,h=[`${a} rc = outputLoc;`,`${o[r-1]} += 1;
if(${c}) {
`,r===1?"":`}
rc = outputLoc;
${o[r-2]} += 1;
if(${o[r-2]} < ${this.outputShape[r-2]}) {`,r===1?"":` ${o[r-1]} += 1;
if(${c}) {`],d=r===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",p="";for(let f=0,m=r===1?2:4;f<m;f++)p+=`
${h[f]}
if (${d}) {
result[${f}] = float(${n});
} else {
${a} source = rc - start;
result[${f}] = getChannel(getX(${l.join()}), ${u});
}
`;p+=r===1?"} ":"}}",this.userCode=`
const ${a} start = ${a}(${s});
const ${a} end = ${a}(${i});
void main() {
${a} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${p}
setOutput(result);
}
`}},j_=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,constantValue:i}=r,o=Q().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new IH(a.shape,s,i):new kH(a.shape,s,i);return n.runWebGLProgram(o,[a],a.dtype)},NH={kernelName:ks,backendName:"webgl",kernelFunc:j_},SH=`
if(a < 0.0 && floor(b) < b){
return NAN;
}
if (b == 0.0) {
return 1.0;
}
return (round(mod(b, 2.0)) != 1) ?
pow(abs(a), b) : sign(a) * pow(abs(a), b);
`,TH=`
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
vec4 result = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
bvec4 isExpZero = equal(b, vec4(0.0));
result.r = isExpZero.r ? 1.0 : result.r;
result.g = isExpZero.g ? 1.0 : result.g;
result.b = isExpZero.b ? 1.0 : result.b;
result.a = isExpZero.a ? 1.0 : result.a;
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
`+lp+`
return result;
`,EH=Jt({opSnippet:SH,packedOpSnippet:TH}),CH={kernelName:Is,backendName:"webgl",kernelFunc:EH};function RH(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=[],c=k.parseAxisParam(s,a.shape),u=c,h=C.getAxesPermutation(u,o),d=a;h!=null&&(d=An({inputs:{x:a},backend:n,attrs:{perm:h}}),u=C.getInnerMostAxes(u.length,o),l.push(d)),C.assertAxesAreInnerMostDims("prod",u,o);let p;if(n.shouldExecuteOnCPU([d])){let f=n.texData.get(d.dataId).values,{outVals:m,outShape:A,outDtype:y}=Qz(d.shape,d.dtype,f,u);p=n.makeTensorInfo(A,y,m)}else{let[f,m]=C.computeOutAndReduceShapes(d.shape,u),A=k.sizeFromShape(m),y=ge({inputs:{x:d},backend:n,attrs:{shape:[-1,A]}}),g=Kh(a.dtype),b=di(y,g,"prod",n);p=ge({inputs:{x:b},backend:n,attrs:{shape:f}}),l.push(y),l.push(b)}if(i){l.push(p);let f=C.expandShapeToKeepDim(p.shape,c);p=ge({inputs:{x:p},backend:n,attrs:{shape:f}})}return l.forEach(f=>n.disposeIntermediateTensorInfo(f)),p}var FH={kernelName:vo,backendName:"webgl",kernelFunc:RH},G_=e=>{let{backend:t,attrs:n}=e,{start:r,stop:a,step:s,dtype:i}=n,o=eP(r,a,s,i);return t.makeTensorInfo([o.length],i,o)},MH={kernelName:mu,backendName:"webgl",kernelFunc:G_},$H="return 1.0 / x;",DH=Je({opSnippet:$H}),OH={kernelName:ko,backendName:"webgl",kernelFunc:DH},zH=Ar+`
return (x < 0.0) ? 0.0 : x;
`,PH=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,LH=Je({opSnippet:zH,packedOpSnippet:PH}),WH={kernelName:Ss,backendName:"webgl",kernelFunc:LH},BH=Ar+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,VH=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,UH=Je({opSnippet:BH,packedOpSnippet:VH}),HH={kernelName:Es,backendName:"webgl",kernelFunc:UH},jH=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[r&&t>1?i-1:i,r&&n>1?o-1:o],u=[r&&t>1?t-1:t,r&&n>1?n-1:n],h;a?h="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":h="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${c[0]/u[0]},
${c[1]/u[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${h};
// Compute the four integer indices.
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
ivec2 sourceCeilRC = ivec2(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
float top = topLeft + (topRight - topLeft) * fracRC.y;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
float newValue = top + (bottom - top) * fracRC.x;
setOutput(newValue);
}
`}},GH=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[r&&t>1?i-1:i,r&&n>1?o-1:o],u=[r&&t>1?t-1:t,r&&n>1?n-1:n],h;a?h="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":h="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${c[0]/u[0]},
${c[1]/u[1]},
${c[1]/u[1]});
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
${o}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${h};
// Compute the four integer indices.
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
ivec3 sourceCeilRC = ivec3(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${l-1};
bool hasNextRow = coords.z < ${n-1};
// In parallel, construct four corners for all four components in
// packed 2x2 cell.
vec4 topLeft = vec4(
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 bottomLeft = vec4(
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 topRight = vec4(
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec4 bottomRight = vec4(
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
vec4 newValue = mix(top, bottom, fracRC.x);
setOutput(newValue);
}
`}};function qH(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,c]=o,u=Q().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new GH(a.shape,l,c,s,i):new jH(a.shape,l,c,s,i);return n.runWebGLProgram(u,[a],"float32")}var XH={kernelName:Ts,backendName:"webgl",kernelFunc:qH},KH=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,a]=t,[,s,i]=e,o=[n&&s>1?r-1:r,n&&i>1?a-1:a],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],c=o[0]/l[0],u=o[1]/l[1],h=1/c,d=1/u,p=Math.ceil(h)*2+2,f=Math.ceil(d)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${c});
const float widthScale = float(${u});
const float invHeightScale = float(${h});
const float invWidthScale = float(${d});
const int winHeight = int(${p});
const int winWidth = int(${f});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(startRLerp - float(winHeight / 2));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(startCLerp - float(winWidth / 2));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${s}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float dxR = float(dyR) * heightScale;
int topDxRIndex = int(floor(dxR));
int bottomDxRIndex = int(min(ceil(dxR), ${r-1}.0));
float dxRLerp = dxR - float(topDxRIndex);
float inverseDxRLerp = 1.0 - dxRLerp;
float dxC = float(dyC) * widthScale;
int leftDxCIndex = int(floor(dxC));
int rightDxCIndex = int(min(ceil(dxC), ${a-1}.0));
float dxCLerp = dxC - float(leftDxCIndex);
float inverseDxCLerp = 1.0 - dxCLerp;
if (r == topDxRIndex && c == leftDxCIndex) {
// topLeft
accumulator +=
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
}
if (r == topDxRIndex && c == rightDxCIndex) {
// topRight
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
}
if (r == bottomDxRIndex && c == leftDxCIndex) {
// bottomLeft
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
}
if (r == bottomDxRIndex && c == rightDxCIndex) {
// bottomRight
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function ZH(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r,o=new KH(s.shape,a.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var JH={kernelName:Hh,backendName:"webgl",kernelFunc:ZH},YH=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[r&&t>1?i-1:i,r&&n>1?o-1:o],u=[r&&t>1?t-1:t,r&&n>1?n-1:n],h=r?"0.5":"0.0",d;a?d="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${c[0]/u[0]},
${c[1]/u[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${d};
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestRC = ivec2(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${h})));
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutput(newValue);
}
`}};function QH(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,c]=o,u=new YH(a.shape,l,c,s,i);return n.runWebGLProgram(u,[a],a.dtype)}var ej={kernelName:Au,backendName:"webgl",kernelFunc:QH},tj=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,a]=t,[,s,i]=e,o=[n&&s>1?r-1:r,n&&i>1?a-1:a],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],c=o[0]/l[0],u=o[1]/l[1],h=1/c,d=1/u,p=Math.ceil(h)*2+2,f=Math.ceil(d)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${c});
const float widthScale = float(${u});
const float invHeightScale = float(${h});
const float invWidthScale = float(${d});
const int winHeight = int(${p});
const int winWidth = int(${f});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${s}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float sourceFracRow =
float(${o[0]}) *
(float(dyR) / float(${l[0]}));
float sourceFracCol =
float(${o[1]}) *
(float(dyC) / float(${l[1]}));
int sourceNearestRow = int(min(
float(int(${r}) - 1),
${n} ? float(round(sourceFracRow)) :
float(floor(sourceFracRow))));
int sourceNearestCol = int(min(
float(int(${a}) - 1),
${n} ? float(round(sourceFracCol)) :
float(floor(sourceFracCol))));
if (r == sourceNearestRow && c == sourceNearestCol) {
accumulator += getDy(b, dyR, dyC, d);
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function nj(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r,o=new tj(s.shape,a.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var rj={kernelName:Uh,backendName:"webgl",kernelFunc:nj},aj=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
void main() {
int coord = getOutputCoords();
setOutput(getX(${e[0]} - coord - 1));
}
`;return}let r=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,a=e.map((i,o)=>r(o)).join(","),s=ht(n);this.userCode=`
void main() {
${s} coords = getOutputCoords();
setOutput(getX(${a}));
}
`}},sj=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let r=un("rc",n),a=`${r[n-1]} + 1 < ${this.outputShape[n-1]}`,s=`${r[n-2]} + 1 < ${this.outputShape[n-2]}`,i=ht(n);n===1?this.userCode=`
void main(){
int rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = getChannel(getX(${e[0]} - rc - 1),
${e[0]} - rc - 1);
if(${a}){
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
${e[0]} - (rc + 1) - 1);
}
setOutput(result);
}
`:this.userCode=`
void main() {
${i} rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = ${o(r.slice())};
if(${a}){
result.g = ${l(r.slice())};
}
if(${s}) {
result.b = ${c(r.slice())};
if(${a}) {
result.a = ${u(r.slice())};
}
}
setOutput(result);
}
`;function o(p){return h(p)}function l(p){return p[n-1]="("+p[n-1]+" + 1)",h(p)}function c(p){return p[n-2]="("+p[n-2]+" + 1)",h(p)}function u(p){return p[n-1]="("+p[n-1]+" + 1)",p[n-2]="("+p[n-2]+" + 1)",h(p)}function h(p){let f=e.map((y,g)=>d(g,p)),m=f.join(","),A=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${A}))`}function d(p,f){return t.indexOf(p)!==-1&&e[p]!==1?`${e[p]} - ${f[p]} - 1`:`${f[p]}`}}};function ij(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r,i=a.shape.length,o=k.parseAxisParam(s,a.shape);if(i===0)return Cn({inputs:{x:a},backend:n});let l=Q().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new sj(a.shape,o):new aj(a.shape,o);return n.runWebGLProgram(l,[a],a.dtype)}var oj={kernelName:Cs,backendName:"webgl",kernelFunc:ij},lj=class{constructor(e,t,n,r){this.variableNames=["Image"],this.outputShape=[];let a=e[1],s=e[2],i=Math.sin(t).toFixed(3),o=Math.cos(t).toFixed(3);this.outputShape=e;let[l,c]=C.getImageCenter(r,a,s),u=l.toFixed(3),h=c.toFixed(3),d="";typeof n=="number"?d=`float outputValue = ${n.toFixed(2)};`:d=`
vec3 fill = vec3(${n.join(",")});
float outputValue = fill[coords[3]];`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int y = coords[1];
float coordXFloat = (float(x) - ${u}) * ${o} - (float(y) - ${h}) * ${i};
float coordYFloat = (float(x) - ${u}) * ${i} + (float(y) - ${h}) * ${o};
int coordX = int(round(coordXFloat + ${u}));
int coordY = int(round(coordYFloat + ${h}));
${d}
if(coordX >= 0 && coordX < ${s} && coordY >= 0 && coordY < ${a}) {
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
}
setOutput(outputValue);
}
`}},uj={kernelName:Lo,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:a,fillValue:s,center:i}=t,o=n,l=new lj(r.shape,a,s,i);return o.runWebGLProgram(l,[r],r.dtype)}},cj=`
// OpenGL ES does not support round function.
// The algorithm is based on banker's rounding.
float base = floor(x);
if ((x - base) < 0.5) {
return floor(x);
} else if ((x - base) > 0.5) {
return ceil(x);
} else {
if (mod(base, 2.0) == 0.0) {
return base;
} else {
return base + 1.0;
}
}
`,hj=Je({opSnippet:cj}),dj={kernelName:Rs,backendName:"webgl",kernelFunc:hj},pj="return inversesqrt(x);",fj=Je({opSnippet:pj,cpuKernelImpl:tP}),mj={kernelName:Fs,backendName:"webgl",kernelFunc:fj},q_=class{constructor(e,t,n,r,a,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=ht(a.length),l=ht(s.length),c="";n===1?c="i":n===2&&(c="i, j");let u=`getIndices(${c})`,h="";r===1?h="i":r===2&&(h="i, coords[1]");let d=`getUpdates(${h})`,p=t>1?"strides[j]":"strides";this.userCode=`
${o} strides = ${o}(${a});
void main() {
${l} coords = getOutputCoords();
float sum = 0.0;
bool found = false;
for (int i = 0; i < ${e}; i++) {
int flattenedIndex = 0;
for (int j = 0; j < ${t}; j++) {
int index = round(${u});
flattenedIndex += index * ${p};
}
if (flattenedIndex == coords[0]) {
sum += ${d};
found = true;
}
}
setOutput(mix(getDefaultValue(), sum, float(found)));
}
`}};function Aj(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a,updates:s}=t,{shape:i}=r,{sliceRank:o,numUpdates:l,sliceSize:c,strides:u,outputSize:h}=C.calculateShapes(s,a,i),d=[h/c,c];if(h===0)return n.makeTensorInfo(i,a.dtype);let p=ge({inputs:{x:a},backend:n,attrs:{shape:[l,o]}}),f=ge({inputs:{x:s},backend:n,attrs:{shape:[l,c]}}),m=n.makeTensorInfo([],"float32",new Float32Array([0])),A=new q_(l,o,p.shape.length,f.shape.length,u,d),y=n.runWebGLProgram(A,[f,p,m],f.dtype),g=ge({inputs:{x:y},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(m),g}var yj={kernelName:No,backendName:"webgl",kernelFunc:Aj},gj=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let r,a;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)a="resRC",r="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let c=0;c<t.length;c++)l.push(`${i[c]}`),c<e&&o.push(`${i[c]}`);r=o.join(),a=l.join()}let s=ht(n);this.userCode=`
void main() {
${s} resRC = getOutputCoords();
float cVal = getC(${r});
if (cVal >= 1.0) {
setOutput(getA(${a}));
} else {
setOutput(getB(${a}));
}
}
`}};function xj(e){let{inputs:t,backend:n}=e,{condition:r,t:a,e:s}=t,i=new gj(r.shape.length,a.shape,a.shape.length);return n.runWebGLProgram(i,[r,a,s],Yn(a.dtype,s.dtype))}var wj={kernelName:So,backendName:"webgl",kernelFunc:xj},_j=`
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
// see: https://arxiv.org/abs/1706.02515
float scaleAlpha = ${C.SELU_SCALEALPHA};
float scale = ${C.SELU_SCALE};
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
`,bj=Je({opSnippet:_j}),vj={kernelName:To,backendName:"webgl",kernelFunc:bj},kj="return 1.0 / (1.0 + exp(-1.0 * x));",Ij=Je({opSnippet:kj}),Nj={kernelName:$s,backendName:"webgl",kernelFunc:Ij},Sj=`
if (isnan(x)) { return 0.0; }
return sign(x);
`,Tj=Je({opSnippet:Sj}),Ej={kernelName:Ro,backendName:"webgl",kernelFunc:Tj},Cj=i_+`
return sin(x);
`,Rj=Je({opSnippet:Cj}),Fj={kernelName:Ms,backendName:"webgl",kernelFunc:Rj},Mj=`
float e2x = exp(x);
return (e2x - 1.0 / e2x) / 2.0;
`,$j=Je({opSnippet:Mj}),Dj={kernelName:Co,backendName:"webgl",kernelFunc:$j},Oj=`
float epsilon = 1.1920928955078125e-7;
float threshold = log(epsilon) + 2.0;
bool too_large = x > -threshold;
bool too_small = x < threshold;
float result;
float exp_x = exp(x);
if (too_large){
result = x;
}
else if (too_small){
result = exp_x;
}
else{
result = log(exp_x + 1.0);
}
return result;
`,zj=Je({opSnippet:Oj}),Pj={kernelName:Fo,backendName:"webgl",kernelFunc:zj},Lj=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,paddings:i}=r;k.assert(a.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,g)=>y*g),l=[[0,0]];l.push(...i);for(let y=1+s.length;y<a.shape.length;++y)l.push([0,0]);let c=[],u=j_({inputs:{x:a},backend:n,attrs:{paddings:l,constantValue:0}}),h=C.getReshaped(u.shape,s,o,!1),d=C.getPermuted(h.length,s.length,!1),p=C.getReshapedPermuted(u.shape,s,o,!1),f=ge({inputs:{x:u},backend:n,attrs:{shape:h}}),m=An({inputs:{x:f},backend:n,attrs:{perm:d}}),A=ge({inputs:{x:m},backend:n,attrs:{shape:p}});return c.push(u),c.push(f),c.push(m),c.forEach(y=>n.disposeIntermediateTensorInfo(y)),A},Wj={kernelName:yu,backendName:"webgl",kernelFunc:Lj};function Bj(e){let{inputs:t,backend:n,attrs:r}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=r,{sliceRank:l,numUpdates:c,strides:u,outputSize:h}=C.calculateShapes(s,a,o),d=!1,p=new q_(c,l,a.shape.length,s.shape.length,u,[h,1],d),f=n.runWebGLProgram(p,[s,a,i],s.dtype),m=ge({inputs:{x:f},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(f),m}var Vj={kernelName:jh,backendName:"webgl",kernelFunc:Bj};function Uj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=r,o=k.parseAxisParam(i,a.shape)[0],l=C.prepareSplitSize(a,s,o),c=a.shape.length,u=new Array(c).fill(0),h=a.shape.slice();return l.map(d=>{let p=[...h];p[o]=d;let f=dc({inputs:{x:a},backend:n,attrs:{begin:u,size:p}});return u[o]+=d,f})}var Hj={kernelName:Mo,backendName:"webgl",kernelFunc:Uj},jj="return sqrt(x);",Gj=Je({opSnippet:jj}),qj={kernelName:Ds,backendName:"webgl",kernelFunc:Gj},Xj="return x * x;",Kj=Je({opSnippet:Xj}),Zj={kernelName:gu,backendName:"webgl",kernelFunc:Kj},X_="return (a - b) * (a - b);",Jj=Jt({opSnippet:X_,packedOpSnippet:X_}),Yj={kernelName:Ps,backendName:"webgl",kernelFunc:Jj};function Qj({inputs:e,attrs:t,backend:n}){let{x:r}=e,a=Ar+`
return x > 0.0 ? 1.0 : float(${t.alpha});
`,s=new Fa(r.shape,a);return n.runWebGLProgram(s,[r],r.dtype)}var eG={kernelName:ga,backendName:"webgl",kernelFunc:Qj},tG=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let r=n.length,a=ht(n.length),s=ht(n.length),i="";if(r===1)i="coords * strides + begin";else{let o=0;i=n.map((l,c)=>(o++,n.length===1?`coords * strides[${c}] + begin[${c}]`:`coords[${o-1}] * strides[${c}] + begin[${c}]`)).join(",")}this.userCode=`
${a} begin = ${a}(${e});
${a} strides = ${a}(${t});
void main() {
${s} coords = getOutputCoords();
setOutput(getX(${i}));
}
`}};function nG(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:h,shrinkAxisMask:d}=r,{nonStrided:p,$begin:f,$strides:m,size:A,newShape:y,outShape:g}=an.sliceInfo(a.shape,s,i,o,l,c,u,h,d),b=ge({inputs:{x:a},backend:n,attrs:{shape:y}}),x;if(p){let _=dc({inputs:{x:b},backend:n,attrs:{begin:f,size:A}});x=ge({inputs:{x:_},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(_)}else if(g.some(_=>_===0))x=n.makeTensorInfo(g,a.dtype,[]);else if(n.shouldExecuteOnCPU([b])){let _=n.texData.get(b.dataId).values,N=We(b.shape,b.dtype,_),T=rP(g,N,m,f);x=n.makeTensorInfo(g,b.dtype,T.values)}else{let _=new tG(f,m,g);x=n.runWebGLProgram(_,[b],b.dtype)}let w=ge({inputs:{x},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(x),w}var rG={kernelName:$o,backendName:"webgl",kernelFunc:nG},aG="return tan(x);",sG=Je({opSnippet:aG}),iG={kernelName:Do,backendName:"webgl",kernelFunc:sG},oG=`
float e2x = exp(-2.0 * abs(x));
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
`,lG=Je({opSnippet:oG}),uG={kernelName:Ws,backendName:"webgl",kernelFunc:lG},hG=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.rank=n.length;let r=ht(this.rank),a=cG(e);this.userCode=`
void main() {
${r} resRC = getOutputCoords();
setOutput(getA(${a}));
}
`}};function cG(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],r=[];for(let a=0;a<e.length;a++)r.push(`imod(${n[a]}, ${e[a]})`);return r.join()}function K_(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reps:s}=r;if(a.dtype==="string"){let o=n.readSync(a.dataId).map(u=>k.decodeString(u)),l=We(a.shape,a.dtype,o),c=sP(l,s);return n.makeTensorInfo(c.shape,c.dtype,c.values)}let i=new hG(a.shape,s);return n.runWebGLProgram(i,[a],a.dtype)}var dG={kernelName:ya,backendName:"webgl",kernelFunc:K_};function pG(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{k:s,sorted:i}=r,o=n.readSync(a.dataId),[l,c]=iP(o,a.shape,a.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(c.shape,c.dtype,c.values)]}var fG={kernelName:Oo,backendName:"webgl",kernelFunc:pG};function mG(e){let{inputs:t,attrs:n,backend:r}=e,{axis:a}=n,{x:s}=t;ml(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=r.readSync(s.dataId),{outputValues:o,outputShape:l,indices:c}=oP(i,a,s.shape,s.dtype);return[r.makeTensorInfo(l,s.dtype,o),r.makeTensorInfo([c.length],"int32",c)]}var AG={kernelName:Gh,backendName:"webgl",kernelFunc:mG};function yG(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a,o=i.shape.length,l=a.shape[s],c=new Array(o-1),u=0;for(let m=0;m<o;m++)m!==s&&(c[u++]=i.shape[m]);let h=[],d=new Array(o).fill(0),p=i.shape.slice();p[s]=1;let f=new Array(l);for(let m=0;m<f.length;m++){d[s]=m;let A=dc({inputs:{x:i},backend:n,attrs:{begin:d,size:p}}),y=ge({inputs:{x:A},backend:n,attrs:{shape:c}});f[m]=y,h.push(A)}return h.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var gG={kernelName:zo,backendName:"webgl",kernelFunc:yG},xG=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,r=e.batchSize,a=e.inSize,s=e.numSegments,i=s*Math.ceil(a/n);this.outputShape=[r,i];let o="0.0",l="sumValue",c=Math.floor(n/4)*4,u=n%4,h=`
sumValue += dot(values, segFilter);
`,d="";a%n>0&&(d=`
if (inIdx < 0 || inIdx >= ${a}) {
return initializationValue;
}
`);let p="";a%n>0&&(p=`
if (inIdx < 0 || inIdx >= ${a}) {
return -1.0;
}
`),this.userCode=`
const float initializationValue = ${o};
float getValue(int batch, int inIdx) {
${d}
return getX(batch, inIdx);
}
float getSegmentIdAtIndex(int inIdx) {
${p}
return getSegmentIds(inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = int(floor(float(outIdx) / float(
${s})) * float(${n}));
int currentSeg = int(mod(float(outIdx), float(${s})));
float sumValue = 0.0;
for (int i = 0; i < ${c}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
);
${h}
}
int inIdx = inOffset + ${c};
if (${u===1}) {
vec4 values = vec4(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
0,
0,
0
);
${h}
} else if (${u===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
0,
0
);
${h}
} else if (${u===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
0
);
${h}
}
setOutput(${l});
}
`}};function wG(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,segmentIds:s}=t,{numSegments:i}=r,o=a.shape.length,l=[],c=0,u=C.getAxesPermutation([c],o),h=a;u!=null&&(h=An({inputs:{x:a},backend:n,attrs:{perm:u}}),l.push(h),c=C.getInnerMostAxes(1,o)[0]);let d=C.segment_util.computeOutShape(h.shape,c,i),p=k.sizeFromShape([h.shape[c]]),f=ge({inputs:{x:h},backend:n,attrs:{shape:[-1,p]}});l.push(f);let m=Kh(a.dtype),A=(x,w,_,N,T)=>{let E=x.shape[0],M=x.shape[1],z=C.segment_util.segOpComputeOptimalWindowSize(M,T),P={windowSize:z,inSize:M,batchSize:E,numSegments:T},B=new xG(P,w),G=n.compileAndRun(B,[x,_],N);if(l.push(G),G.shape[1]===T)return G;let V=G_({backend:n,attrs:{start:0,stop:T,step:1,dtype:"float32"}}),K=K_({inputs:{x:V},backend:n,attrs:{reps:[M/z]}});return l.push(V),l.push(K),A(G,w,K,N,T)},y=A(f,"unsortedSegmentSum",s,m,i),g=ge({inputs:{x:y},backend:n,attrs:{shape:d}}),b=g;if(u!=null){l.push(g);let x=C.getUndoAxesPermutation(u);b=An({inputs:{x:b},backend:n,attrs:{perm:x}})}return l.forEach(x=>n.disposeIntermediateTensorInfo(x)),b}var _G={kernelName:xu,backendName:"webgl",kernelFunc:wG},bG=[fU,yU,nL,aL,oL,cL,dL,mL,yL,xL,vL,IL,TL,RL,PL,$L,BL,jL,UL,KL,JL,QL,rW,cW,dW,gW,wW,kW,SW,zP,RW,BW,UW,DW,qW,KW,jW,YW,tB,aB,iB,lB,hB,yB,xB,pB,bB,IB,EB,MB,zB,WB,BB,VB,HB,GB,XB,ZB,YB,nV,iV,lV,cV,pV,yV,_V,IV,OP,SV,CW,CV,MV,OV,LP,WV,HV,GV,QV,ZV,rU,iU,cU,xU,SU,IU,RU,MU,DU,vU,zU,LU,UU,qU,JU,sH,HP,oH,cH,pH,AH,fW,xH,_H,vH,NH,CH,BP,FH,MH,mW,tH,OH,HH,WH,GP,XH,JH,ej,rj,oj,uj,dj,mj,yj,wj,vj,Nj,Ej,Fj,Dj,lW,rH,Pj,Wj,Vj,Hj,qj,Zj,Yj,eG,rG,nH,QP,iG,uG,dG,fG,eL,AG,gG,_G,wH];for(let e of bG)Wo(e);var Rn;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Rn||(Rn={}));var fc;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu"})(fc||(fc={}));var Z_;function vG(e){Z_=e.wasm.cwrap(Vs,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function kG(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:h}=r,d=n.dataIdMap.get(a.dataId).id,p=n.dataIdMap.get(s.dataId).id,f=0;if(i!=null){let T=n.dataIdMap.get(i.dataId);if(T.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${T.shape.length}.`);f=T.id}let m=o==null?0:n.dataIdMap.get(o.dataId).id,A=fc[u];if(A==null)throw new Error(`${u} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?a.shape[2]:a.shape[1],g=c?s.shape[1]:s.shape[2],b=a.shape[0],x=n.makeOutput([b,y,g],a.dtype),w=n.dataIdMap.get(x.dataId).id,_=new Uint8Array(new Int32Array(a.shape).buffer),N=new Uint8Array(new Int32Array(s.shape).buffer);return Z_(d,_,a.shape.length,p,N,s.shape.length,l,c,A,f,m,h||0,w),x}var IG={kernelName:Vs,backendName:"wasm",setupFunc:vG,kernelFunc:kG};function yn(e){let t;function n(a){t=a.wasm.cwrap(e,null,["number","number"])}function r(a){let{backend:s,inputs:{x:i}}=a,o=s.dataIdMap.get(i.dataId).id,l=s.makeOutput(i.shape,i.dtype),c=s.dataIdMap.get(l.dataId).id;return k.sizeFromShape(l.shape)===0||t(o,c),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:r}}var NG=yn(Wi);function cn(e,t,n){let r;function a(i){r=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:c,b:u}=l,h=o.dataIdMap.get(c.dataId).id,d=o.dataIdMap.get(u.dataId).id,p=n!=null?n:c.dtype,f=C.assertAndGetBroadcastShape(c.shape,u.shape),m=o.makeOutput(f,p);if(k.sizeFromShape(f)===0)return m;let A=new Uint8Array(new Int32Array(c.shape).buffer),y=new Uint8Array(new Int32Array(u.shape).buffer),g=o.dataIdMap.get(m.dataId).id,b=()=>r(h,A,c.shape.length,d,y,u.shape.length,Rn[c.dtype],g);if(t&&c.dtype==="float32")return b(),m;let x=C.getBroadcastDims(c.shape,f),w=C.getBroadcastDims(u.shape,f),_=x.every((T,E)=>T===E),N=w.every((T,E)=>T===E);if(_&&N)return b(),m;throw new Error(`Broadcasting along outer dims is not yet supported for ${c.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:a,kernelFunc:s}}var SG=!0,TG=cn(ma,SG),J_;function EG(e){J_=e.wasm.cwrap(Za,null,["array","number","number","number"])}function CG(e){let{inputs:t,backend:n}=e,r=n.makeOutput(t[0].shape,t[0].dtype);if(k.sizeFromShape(r.shape)===0)return r;let a=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(a).buffer),i=n.dataIdMap.get(r.dataId).id;return J_(s,a.length,Rn[r.dtype],i),r}var RG={kernelName:Za,backendName:"wasm",setupFunc:EG,kernelFunc:CG};function Ap(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype),a=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(r).set(a),r}var FG={kernelName:ps,backendName:"wasm",kernelFunc:Ap},Y_;function MG(e){Y_=e.wasm.cwrap(Bs,null,["number","array","number","number","number","array","number"])}function yp(e){let{inputs:t,backend:n,attrs:r}=e,[a,s]=DG(t.x.shape,r.perm),i=!0;for(let f=0;f<s.length;f++)s[f]!==f&&(i=!1);let o=$G(t.x.shape,r.perm),l={dataId:t.x.dataId,shape:a,dtype:t.x.dtype};if(i){let f=Ap({inputs:t,backend:n});return f.shape=o,f}let c=n.makeOutput(o,l.dtype),u=n.dataIdMap.get(l.dataId).id,h=n.dataIdMap.get(c.dataId).id,d=new Uint8Array(new Int32Array(s).buffer),p=new Uint8Array(new Int32Array(l.shape).buffer);return Y_(u,p,l.shape.length,Rn[l.dtype],h,d,s.length),c}function $G(e,t){let n=new Array(e.length);for(let r=0;r<n.length;r++)n[r]=e[t[r]];return n}function DG(e,t){let n=[],r=[];for(let a=0;a<e.length;++a)e[a]!==1&&n.push(e[a]),e[t[a]]!==1&&r.push(t[a]);for(let a=0;a<r.length;++a){let s=-1;for(let i=0;i<r.length;++i)r[i]>=a&&(s===-1||r[s]>r[i])&&(s=i);r[s]=a}return[n,r]}var OG={kernelName:Bs,backendName:"wasm",kernelFunc:yp,setupFunc:MG};function Il(e,t,n){let r=e.shape,a=e.shape.length,s=k.parseAxisParam(t,r),i=s,o=C.getAxesPermutation(i,a),l=null,c=!1;if(o!=null){let u=new Array(a);for(let d=0;d<u.length;d++)u[d]=r[o[d]];i=C.getInnerMostAxes(i.length,a),l=yp({inputs:{x:e},attrs:{perm:o},backend:n});let h=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==h&&(c=!0)}return{transposed:l,originalAxes:s,axes:i,inputWasTransposed:c}}var Q_;function zG(e){Q_=e.wasm.cwrap(Ja,null,["number","number","number","number","number"])}function PG(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a}=r,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=i,l=s,{transposed:c,axes:u,inputWasTransposed:h}=Il(s,a,t);if(h){let y=t.dataIdMap.get(c.dataId).id;y!==i&&(l=c,o=y)}let d=l.shape.slice(0,-1),p=t.makeOutput(d,"int32"),f=t.dataIdMap.get(p.dataId).id,m=k.sizeFromShape(p.shape),A=l.shape[u[0]];return Q_(o,Rn[l.dtype],m,A,f),h&&t.disposeData(c.dataId),p}var LG={kernelName:Ja,backendName:"wasm",kernelFunc:PG,setupFunc:zG},eb;function WG(e){eb=e.wasm.cwrap(Ya,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function BG(e){let{inputs:t,attrs:n,backend:r}=e,a=t.x,s=r.dataIdMap.get(a.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=n,u=C.computePool2DInfo(a.shape,i,o,1,l,c),h=u.filterHeight,d=u.filterWidth,p=u.padInfo.top,f=u.padInfo.right,m=u.padInfo.bottom,A=u.padInfo.left,y=u.strideHeight,g=u.strideWidth,b=u.inChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);if(u.dilationWidth!==1||u.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${u.dilationHeight}, ${u.dilationWidth}].`);let x=r.makeOutput(u.outShape,"float32"),w=r.dataIdMap.get(x.dataId).id;return eb(s,a.shape[0],a.shape[1],a.shape[2],h,d,p,f,m,A,y,g,b,w),x}var VG={kernelName:Ya,backendName:"wasm",setupFunc:WG,kernelFunc:BG};function yr(e){let{inputs:t,attrs:n}=e,{x:r}=t,{shape:a}=n,s=k.sizeFromShape(r.shape),i=k.inferFromImplicitShape(a,s);return k.assert(s===k.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${r.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(r.dataId),{dataId:r.dataId,shape:i,dtype:r.dtype}}var UG={kernelName:Io,backendName:"wasm",kernelFunc:yr},tb;function HG(e){tb=e.wasm.cwrap(Qa,null,["number","array","number","number","array","number","number","number","number"])}function jG(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=a.shape.length,c=s.shape.length,u=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[c-1]:s.shape[c-2],d=i?a.shape[l-1]:a.shape[l-2],p=o?s.shape[c-2]:s.shape[c-1],f=a.shape.slice(0,-2),m=s.shape.slice(0,-2),A=k.sizeFromShape(f),y=k.sizeFromShape(m),g=A===y||A===1||y===1;k.assert(l>=2&&c>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let b=(A>y?a.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,p]);k.assert(u===h,()=>`Error in matMul: inner shapes (${u}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[A,u,d]:[A,d,u],w=o?[y,p,h]:[y,h,p],_=yr({inputs:{x:a},backend:n,attrs:{shape:x}}),N=yr({inputs:{x:s},backend:n,attrs:{shape:w}}),T=n.dataIdMap.get(_.dataId).id,E=n.dataIdMap.get(N.dataId).id,M=i?_.shape[2]:_.shape[1],z=o?N.shape[1]:N.shape[2],P=Math.max(A,y),B=n.makeOutput([P,M,z],_.dtype),G=n.dataIdMap.get(B.dataId).id,V=new Uint8Array(new Int32Array(_.shape).buffer),K=new Uint8Array(new Int32Array(N.shape).buffer);return tb(T,V,_.shape.length,E,K,N.shape.length,i,o,G),n.disposeData(_.dataId),n.disposeData(N.dataId),B.shape=b,B}var GG={kernelName:Qa,backendName:"wasm",setupFunc:HG,kernelFunc:jG};function gp(e){let{inputs:{x:t},attrs:{dtype:n},backend:r}=e,a=r.makeOutput(t.shape,n),s=r.typedArrayFromHeap(t);return r.typedArrayFromHeap(a).set(s),a}var qG={kernelName:es,backendName:"wasm",kernelFunc:gp},XG=yn(ts),nb;function KG(e){nb=e.wasm.cwrap(Aa,null,["number","number","number","number"])}function ZG(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=r,o=n.dataIdMap.get(a.dataId).id,l=n.makeOutput(a.shape,a.dtype),c=n.dataIdMap.get(l.dataId).id;return nb(o,s,i,c),l}var JG={kernelName:Aa,backendName:"wasm",setupFunc:KG,kernelFunc:ZG};function rb(e){let{inputs:t,backend:n}=e,r=k.parseAxisParam(e.attrs.axis,t[0].shape)[0],a=C.computeOutShape(t.map(p=>p.shape),r),s=t.filter(p=>k.sizeFromShape(p.shape)>0);if(s.length===1)return Ap({inputs:{x:s[0]},backend:n});let i=n.makeOutput(a,t[0].dtype);if(k.sizeFromShape(a)===0)return i;let o=s.map(p=>p.shape);if(C.assertParamsConsistent(o,r),s[0].dtype==="string"){let p=s.map(b=>{let x=k.sizeFromShape(b.shape.slice(r));return yr({inputs:{x:b},backend:n,attrs:{shape:[-1,x]}})}),f=p.map(b=>({vals:n.readSync(b.dataId),shape:b.shape}));a=C.computeOutShape(p.map(b=>b.shape),1);let m=p[0].shape[0]===1,A=oA(f,a,t[0].dtype,m),y=C.computeOutShape(s.map(b=>b.shape),r);i.shape=y;let g=n.dataIdMap.get(i.dataId);return g.stringBytes=C.fromStringArrayToUint8(A),i}let l=k.sizeFromShape(s[0].shape.slice(0,r)),c=0,u=s.map(p=>{let f=k.sizeFromShape(p.shape.slice(r));return c+=f,f}),h=s.map(p=>n.typedArrayFromHeap(p)),d=n.typedArrayFromHeap(i);for(let p=0;p<l;p++){let f=p*c;for(let m=0;m<h.length;m++){let A=u[m],y=p*A,g=h[m].subarray(y,y+A);d.set(g,f),f+=A}}return i}var YG={kernelName:Xi,backendName:"wasm",kernelFunc:rb},ab;function QG(e){ab=e.wasm.cwrap(ns,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function eq(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s}=t,i=r.dataIdMap.get(a.dataId).id,o=r.dataIdMap.get(s.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:h,dataFormat:d}=n,p=C.convertConv2DDataFormat(d),f=C.computeConv2DInfo(a.shape,s.shape,l,c,u,h,!1,p),m=f.filterHeight,A=f.filterWidth,y=f.padInfo.top,g=f.padInfo.right,b=f.padInfo.bottom,x=f.padInfo.left,w=f.dilationHeight,_=f.dilationWidth,N=f.strideHeight,T=f.strideWidth,E=f.inChannels,M=f.outChannels,z=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let P=r.makeOutput(f.outShape,"float32"),B=r.dataIdMap.get(P.dataId).id;return ab(i,a.shape[0],a.shape[1],a.shape[2],o,m,A,y,g,b,x,z,w,_,N,T,E,M,B),P}var tq={kernelName:ns,backendName:"wasm",setupFunc:QG,kernelFunc:eq},sb;function nq(e){sb=e.wasm.cwrap(rs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function rq(e){let{backend:t,inputs:n,attrs:r}=e,{dy:a,filter:s}=n,{strides:i,pad:o,dataFormat:l,dimRoundingMode:c,inputShape:u}=r,h=1,d=C.convertConv2DDataFormat(l),p=C.computeConv2DInfo(u,s.shape,i,h,o,c,!1,d),{batchSize:f,filterHeight:m,filterWidth:A,inChannels:y,inHeight:g,inWidth:b,outChannels:x,outHeight:w,outWidth:_,strideHeight:N,strideWidth:T}=p,E=m-1-p.padInfo.top,M=A-1-p.padInfo.left,z=p.dataFormat==="channelsLast",P=k.computeStrides(p.inShape),B=k.computeStrides(a.shape),[G,V,K]=k.computeStrides(s.shape),X=P[0],ee=z?P[1]:P[2],J=z?P[2]:1,ae=z?1:P[1],Y=B[0],ue=z?B[1]:B[2],ne=z?B[2]:1,de=z?1:B[1],he=t.makeOutput(p.inShape,"float32"),me=t.dataIdMap.get(he.dataId).id,Ae=t.dataIdMap.get(a.dataId).id,ke=t.dataIdMap.get(s.dataId).id;return sb(Ae,ke,f,m,A,g,b,y,w,_,x,N,T,E,M,G,V,K,X,ee,J,ae,Y,ue,ne,de,me),he}var aq={kernelName:rs,backendName:"wasm",setupFunc:nq,kernelFunc:rq},sq=yn(as),WA;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(WA||(WA={}));var ib;function iq(e){ib=e.wasm.cwrap(Zi,null,["number","number","number","number","array","number","number","number","number","number"])}function oq(e){let{backend:t,inputs:n,attrs:r}=e,{method:a,extrapolationValue:s,cropSize:i}=r,{image:o,boxes:l,boxInd:c}=n,u=l.shape[0],[h,d]=i,p=[u,h,d,o.shape[3]],f=t.dataIdMap.get(o.dataId),m;o.dtype!=="float32"&&(m=gp({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(m.dataId));let A=f.id,y=t.dataIdMap.get(l.dataId).id,g=t.dataIdMap.get(c.dataId).id,b=t.makeOutput(p,"float32"),x=t.dataIdMap.get(b.dataId).id,w=new Uint8Array(new Int32Array(o.shape).buffer);return ib(A,y,g,u,w,h,d,WA[a],s,x),m!=null&&t.disposeData(m.dataId),b}var lq={kernelName:Zi,backendName:"wasm",setupFunc:iq,kernelFunc:oq},ob;function uq(e){ob=e.wasm.cwrap(ss,null,["number","number","number","number","number","number"])}function cq(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=r,l=a.shape.length;k.assert(a.dtype==="float32"||a.dtype==="int32",()=>`cumsum does not support ${a.dtype} tensors in the WASM backend`);let c=C.getAxesPermutation([s],l),u=a;c!==null&&(u=yp({inputs:{x:a},attrs:{perm:c},backend:n}));let h=C.getInnerMostAxes(1,l)[0];C.assertAxesAreInnerMostDims("cumsum",[h],l);let d=n.makeOutput(u.shape,u.dtype),p=u.shape[h],f=n.dataIdMap.get(u.dataId).id,m=n.dataIdMap.get(d.dataId).id;ob(f,i?1:0,o?1:0,p,m,Rn[a.dtype]);let A=d;if(c!==null){let y=C.getUndoAxesPermutation(c);A=yp({inputs:{x:d},attrs:{perm:y},backend:n}),n.disposeData(u.dataId),n.disposeData(d.dataId)}return A}var hq={kernelName:ss,backendName:"wasm",setupFunc:uq,kernelFunc:cq},lb;function dq(e){lb=e.wasm.cwrap(Ji,null,["number","number","number","array","number","array","array","number","number"])}function pq(e){let{backend:t,inputs:n,attrs:r}=e,{x:a}=n,{blockSize:s,dataFormat:i}=r;k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],c=i==="NHWC"?a.shape[2]:a.shape[3],u=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,d=c*s,p=u/(s*s),f=i==="NHWC"?[o,h,d,p]:[o,p,h,d],m=t.makeOutput(f,"float32"),A=t.dataIdMap.get(a.dataId).id,y=new Uint8Array(new Int32Array(k.computeStrides(a.shape)).buffer),g=new Uint8Array(new Int32Array(f).buffer),b=new Uint8Array(new Int32Array(k.computeStrides(f)).buffer),x=t.dataIdMap.get(m.dataId).id;return lb(A,s,i==="NHWC"?1:0,y,a.shape.length-1,g,b,f.length,x),m}var fq={kernelName:Ji,backendName:"wasm",setupFunc:dq,kernelFunc:pq},ub;function mq(e){ub=e.wasm.cwrap(is,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Aq(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s}=t,i=r.dataIdMap.get(a.dataId).id,o=r.dataIdMap.get(s.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:h}=n,d=c==null?[1,1]:c,p=C.computeConv2DInfo(a.shape,s.shape,l,d,u,h,!0),f=p.filterHeight,m=p.filterWidth,A=p.padInfo.top,y=p.padInfo.right,g=p.padInfo.bottom,b=p.padInfo.left,x=p.dilationHeight,w=p.dilationWidth,_=p.strideHeight,N=p.strideWidth,T=p.inChannels,E=p.outChannels,M=p.padInfo.type==="SAME"?1:0;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);let z=r.makeOutput(p.outShape,"float32"),P=r.dataIdMap.get(z.dataId).id;return ub(i,a.shape[0],a.shape[1],a.shape[2],o,f,m,A,y,g,b,M,x,w,_,N,T,E,P),z}var yq={kernelName:is,backendName:"wasm",setupFunc:mq,kernelFunc:Aq},gq=!1,xq=cn(eo,gq,"bool"),wq=yn(ls);function BA(e){let{inputs:t,attrs:n,backend:r}=e,{input:a}=t,{dim:s}=n,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(k.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),yr({inputs:{x:a},backend:r,attrs:{shape:o}})}var _q={kernelName:to,backendName:"wasm",kernelFunc:BA};function bq(e){let{attrs:{shape:t,value:n,dtype:r},backend:a}=e,s=a.makeOutput(t,r);return a.typedArrayFromHeap(s).fill(n),s}var vq={kernelName:uu,backendName:"wasm",kernelFunc:bq},cb;function kq(e){cb=e.wasm.cwrap(ro,null,["number","number","number","number","number","number"])}function Iq(e){let{inputs:t,backend:n}=e,{image:r}=t,a=n.makeOutput(r.shape,r.dtype),s=n.dataIdMap.get(r.dataId).id,i=n.dataIdMap.get(a.dataId).id,[o,l,c,u]=r.shape;return cb(s,o,l,c,u,i),a}var Nq={kernelName:ro,backendName:"wasm",kernelFunc:Iq,setupFunc:kq},Sq=yn(us),Tq=!1,Eq=cn(cs,Tq),hb;function Cq(e){hb=e.wasm.cwrap(hs,null,["number","number","number","number","number","number","number"])}function Rq(e){let{backend:t,inputs:n,attrs:r}=e,{varianceEpsilon:a}=r,{x:s,mean:i,variance:o,offset:l,scale:c}=n,u=t.dataIdMap.get(s.dataId).id,h=t.dataIdMap.get(i.dataId).id,d=t.dataIdMap.get(o.dataId).id,p=l!=null?t.dataIdMap.get(l.dataId).id:0,f=c!=null?t.dataIdMap.get(c.dataId).id:0,m=t.makeOutput(s.shape,s.dtype);if(k.sizeFromShape(s.shape)===0)return m;let A=t.dataIdMap.get(m.dataId).id;return hb(u,h,d,p,f,a,A),m}var Fq={kernelName:hs,backendName:"wasm",setupFunc:Cq,kernelFunc:Rq},db;function Mq(e){db=e.wasm.cwrap(Us,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function $q(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dataFormat:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=n,m=C.computeConv2DInfo(a.shape,s.shape,l,u,c,d),A=fc[p];if(A==null)throw new Error(`${p} activation not yet supported for FusedConv2D in the wasm backend.`);let y=r.dataIdMap.get(a.dataId).id,g=r.dataIdMap.get(s.dataId).id,b=m.outChannels,x=0;if(i!=null){let ne=r.dataIdMap.get(i.dataId);if(ne.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${ne.shape.length}.`);if(ne.shape[0]!==b)throw new Error(`FusedConv2D bias shape (${ne.shape}) does not match the number of output channels (${b})`);x=ne.id}let w=m.filterHeight,_=m.filterWidth,N=m.padInfo.top,T=m.padInfo.right,E=m.padInfo.bottom,M=m.padInfo.left,z=m.dilationHeight,P=m.dilationWidth,B=m.strideHeight,G=m.strideWidth,V=m.inChannels,K=m.padInfo.type==="SAME"?1:0,X=m.batchSize,ee=m.inHeight,J=m.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let ae=r.makeOutput(m.outShape,"float32"),Y=r.dataIdMap.get(ae.dataId).id,ue=o==null?0:r.dataIdMap.get(o.dataId).id;return db(y,X,ee,J,g,w,_,x,N,T,E,M,K,z,P,B,G,V,b,A,ue,f||0,Y),ae}var Dq={kernelName:Us,backendName:"wasm",setupFunc:Mq,kernelFunc:$q},pb;function Oq(e){pb=e.wasm.cwrap(Hs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function zq(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dataFormat:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=n,m=C.computeConv2DInfo(a.shape,s.shape,l,u,c,d,!0),A=fc[p];if(A==null)throw new Error(`${p} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=r.dataIdMap.get(a.dataId).id,g=r.dataIdMap.get(s.dataId).id,b=m.outChannels,x=0;if(i!=null){let ne=r.dataIdMap.get(i.dataId);if(ne.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${ne.shape.length}.`);if(ne.shape[0]!==b)throw new Error(`FusedDepthwiseConv2D bias shape (${ne.shape}) does not match the number of output channels (${b})`);x=ne.id}let w=m.filterHeight,_=m.filterWidth,N=m.padInfo.top,T=m.padInfo.right,E=m.padInfo.bottom,M=m.padInfo.left,z=m.dilationHeight,P=m.dilationWidth,B=m.strideHeight,G=m.strideWidth,V=m.inChannels,K=m.padInfo.type==="SAME"?1:0,X=m.batchSize,ee=m.inHeight,J=m.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let ae=r.makeOutput(m.outShape,"float32"),Y=r.dataIdMap.get(ae.dataId).id,ue=o==null?0:r.dataIdMap.get(o.dataId).id;return pb(y,X,ee,J,g,w,_,x,N,T,E,M,K,z,P,B,G,V,b,A,ue,f||0,Y),ae}var Pq={kernelName:Hs,backendName:"wasm",setupFunc:Oq,kernelFunc:zq},fb;function Lq(e){fb=e.wasm.cwrap(so,null,["number","number","number","number","number","number","array","number"])}function Wq(e){let{backend:t,inputs:n}=e,{params:r,indices:a}=n,[s,i,o,l]=Ff.prepareAndValidate(r,a),c=t.makeOutput(s,r.dtype);if(i===0)return c;let u=a.shape,h=u[u.length-1],d=t.dataIdMap.get(r.dataId).id,p=t.dataIdMap.get(a.dataId).id,f=new Uint8Array(new Int32Array(l).buffer),m=t.dataIdMap.get(c.dataId).id;return fb(d,Rn[r.dtype],p,i,h,o,f,m),c}var Bq={kernelName:so,backendName:"wasm",setupFunc:Lq,kernelFunc:Wq},mb;function Vq(e){mb=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function Uq(e){let{backend:t,inputs:n,attrs:r}=e,{x:a,indices:s}=n,{axis:i,batchDims:o}=r,l=k.parseAxisParam(i,a.shape)[0],c=C.segment_util.collectGatherOpShapeInfo(a,s,l,o),u=yr({inputs:{x:a},attrs:{shape:[c.batchSize,c.outerSize,c.dimSize,c.sliceSize]},backend:t}),h=k.sizeFromShape(s.shape),d=yr({inputs:{x:s},attrs:{shape:[c.batchSize,h/c.batchSize]},backend:t}),p=[c.batchSize,c.outerSize,h/c.batchSize,c.sliceSize],f=t.makeOutput(p,a.dtype);if(k.sizeFromShape(a.shape)===0)return f;let m=u.shape.length-1,A=t.dataIdMap.get(u.dataId).id,y=t.dataIdMap.get(d.dataId).id,g=t.dataIdMap.get(f.dataId).id,b=new Uint8Array(new Int32Array(k.computeStrides(u.shape)).buffer),x=new Uint8Array(new Int32Array(k.computeStrides(p)).buffer);return mb(A,Rn[a.dtype],b,m,y,c.batchSize,x,g),t.disposeData(u.dataId),t.disposeData(d.dataId),f.shape=c.outputShape,f}var Hq={kernelName:ao,backendName:"wasm",setupFunc:Vq,kernelFunc:Uq},jq=!1,Gq=cn(io,jq,"bool"),qq=!1,Xq=cn(ds,qq,"bool"),Ab;function Kq(e){Ab=e.wasm.cwrap(fs,null,["number","number","number"])}function Zq(e){let{inputs:{x:t},attrs:{alpha:n},backend:r}=e,a=r.dataIdMap.get(t.dataId).id,s=r.makeOutput(t.shape,t.dtype);if(k.sizeFromShape(t.shape)!==0){let i=r.dataIdMap.get(s.dataId).id;Ab(a,n,i)}return s}var Jq={kernelName:fs,backendName:"wasm",setupFunc:Kq,kernelFunc:Zq},Yq=!1,Qq=cn(co,Yq,"bool"),eX=!1,tX=cn(ho,eX,"bool"),nX=yn(ms),rX=!1,aX=cn(fo,rX,"bool"),yb;function sX(e){yb=e.wasm.cwrap(As,null,["number, number, number"])}function iX(e){let{backend:t,inputs:n,attrs:r}=e,{reductionIndices:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:u,originalAxes:h,inputWasTransposed:d}=Il(i,a,t);if(d){let g=t.dataIdMap.get(c.dataId).id;l=c,o=g}let p=l.shape.length;C.assertAxesAreInnerMostDims("max",u,p);let[f,m]=C.computeOutAndReduceShapes(l.shape,u),A=k.sizeFromShape(m),y=t.makeOutput(f,i.dtype);if(k.sizeFromShape(l.shape)!==0){let g=t.dataIdMap.get(y.dataId).id;yb(o,A,g)}if(d&&t.disposeData(c.dataId),s){let g=C.expandShapeToKeepDim(y.shape,h);y.shape=g}return y}var oX={kernelName:As,backendName:"wasm",setupFunc:sX,kernelFunc:iX},lX=!1,uX=cn(ys,lX),gb;function cX(e){gb=e.wasm.cwrap(gs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function hX(e){let{inputs:t,attrs:n,backend:r}=e,a=t.x,s=r.dataIdMap.get(a.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=n,u=C.computePool2DInfo(a.shape,i,o,1,l,c),h=u.filterHeight,d=u.filterWidth,p=u.padInfo.top,f=u.padInfo.right,m=u.padInfo.bottom,A=u.padInfo.left,y=u.dilationHeight,g=u.dilationWidth,b=u.strideHeight,x=u.strideWidth,w=u.inChannels,_=u.outChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);let N=r.makeOutput(u.outShape,"float32"),T=r.dataIdMap.get(N.dataId).id;return gb(s,a.shape[0],a.shape[1],a.shape[2],h,d,p,f,m,A,y,g,b,x,w,_,T),N}var dX={kernelName:gs,backendName:"wasm",setupFunc:cX,kernelFunc:hX},xb;function pX(e){xb=e.wasm.cwrap(xs,null,["number, number, number"])}function fX(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=Il(i,a,t),f=h;if(p){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(c=u,l=x,f=C.getInnerMostAxes(f.length,c.shape.length))}C.assertAxesAreInnerMostDims("mean",f,c.shape.length);let[m,A]=C.computeOutAndReduceShapes(c.shape,f),y=k.sizeFromShape(A),g=c;c.dtype!=="float32"&&(g=gp({backend:t,inputs:{x:c},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(g.dataId).id);let b=t.makeOutput(m,"float32");if(k.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(b.dataId).id;xb(l,y,x)}if(p&&t.disposeData(u.dataId),s){let x=C.expandShapeToKeepDim(b.shape,d);b.shape=x}return c.dtype!=="float32"&&t.disposeData(g.dataId),b}var mX={kernelName:xs,backendName:"wasm",setupFunc:pX,kernelFunc:fX},wb;function AX(e){wb=e.wasm.cwrap(ws,null,["number, number, number"])}function yX(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=Il(i,a,t);if(p){let b=t.dataIdMap.get(u.dataId).id;b!==o&&(c=u,l=b)}let f=c.shape.length;C.assertAxesAreInnerMostDims("min",h,f);let[m,A]=C.computeOutAndReduceShapes(c.shape,h),y=k.sizeFromShape(A),g=t.makeOutput(m,c.dtype);if(k.sizeFromShape(c.shape)!==0){let b=t.dataIdMap.get(g.dataId).id;wb(l,y,b)}if(p&&t.disposeData(u.dataId),s){let b=C.expandShapeToKeepDim(g.shape,d);g.shape=b}return g}var gX={kernelName:ws,backendName:"wasm",setupFunc:AX,kernelFunc:yX},xX=!1,wX=cn(_s,xX),_X=!0,bX=cn(bs,_X),vX=yn(Ao);function VA(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),r=n[0],a=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:r,selectedSize:a,pSelectedScores:s,pValidOutputs:i}}var _b;function kX(e){_b=e.wasm.cwrap(go,"number",["number","number","number","number","number"])}function IX(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i}=r,{boxes:o,scores:l}=n,c=t.dataIdMap.get(o.dataId).id,u=t.dataIdMap.get(l.dataId).id,h=_b(c,u,s,a,i),{pSelectedIndices:d,selectedSize:p,pSelectedScores:f,pValidOutputs:m}=VA(t,h);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([p],"int32",d)}var NX={kernelName:go,backendName:"wasm",setupFunc:kX,kernelFunc:IX},bb;function SX(e){bb=e.wasm.cwrap(xo,"number",["number","number","number","number","number","bool"])}function TX(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=r,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(c.dataId).id,d=bb(u,h,s,a,i,o),{pSelectedIndices:p,selectedSize:f,pSelectedScores:m,pValidOutputs:A}=VA(t,d);t.wasm._free(m);let y=t.makeOutput([f],"int32",p),g=t.makeOutput([],"int32",A);return[y,g]}var EX={kernelName:xo,backendName:"wasm",setupFunc:SX,kernelFunc:TX},vb;function CX(e){vb=e.wasm.cwrap(wo,"number",["number","number","number","number","number","number"])}function RX(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=r,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(c.dataId).id,d=vb(u,h,s,a,i,o),{pSelectedIndices:p,selectedSize:f,pSelectedScores:m,pValidOutputs:A}=VA(t,d);t.wasm._free(A);let y=t.makeOutput([f],"int32",p),g=t.makeOutput([f],"float32",m);return[y,g]}var FX={kernelName:wo,backendName:"wasm",setupFunc:CX,kernelFunc:RX},MX=!1,$X=cn(yo,MX,"bool"),kb;function DX(e){kb=e.wasm.cwrap(vs,null,["number","number","number","number","number"])}function OX(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r,l=n.makeOutput([...a.shape,s],"int32"),c=n.dataIdMap.get(l.dataId).id,u=n.dataIdMap.get(a.dataId).id;return kb(u,s,i,o,c),l}var zX={kernelName:vs,backendName:"wasm",setupFunc:DX,kernelFunc:OX};function PX(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(1),r}var LX={kernelName:_o,backendName:"wasm",kernelFunc:PX};function WX(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return BA({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(l=>{k.assertShapesMatch(s,l.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===l.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=t.map(l=>BA({inputs:{input:l},backend:n,attrs:{dim:a}}));return rb({inputs:o,backend:n,attrs:{axis:a}})}var BX={kernelName:bo,backendName:"wasm",kernelFunc:WX},Ib;function VX(e){Ib=e.wasm.cwrap(ks,null,["number","array","number","number","array","array","number","number"])}function UX(e){let{inputs:{x:t},backend:n,attrs:{paddings:r,constantValue:a}}=e,s=r.map((f,m)=>f[0]+t.shape[m]+f[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),u=r.map(f=>f[0]),h=r.map(f=>f[1]),d=new Uint8Array(new Int32Array(u).buffer),p=new Uint8Array(new Int32Array(h).buffer);return Ib(i,c,t.shape.length,Rn[t.dtype],d,p,a,l),o}var HX={kernelName:ks,backendName:"wasm",kernelFunc:UX,setupFunc:VX},jX=!1,GX=cn(Is,jX),Nb;function qX(e){Nb=e.wasm.cwrap(Ns,null,["number","number","number"])}function XX(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t,s=n.dataIdMap.get(r.dataId).id,i=n.dataIdMap.get(a.dataId).id,o=n.makeOutput(r.shape,"float32"),l=n.dataIdMap.get(o.dataId).id;return Nb(s,i,l),o}var KX={kernelName:Ns,backendName:"wasm",setupFunc:qX,kernelFunc:XX},Sb;function ZX(e){Sb=e.wasm.cwrap(vo,null,["number","number","number","number"])}function JX(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=Il(i,a,t),f=h;if(p){let b=t.dataIdMap.get(u.dataId).id;b!==o&&(c=u,l=b,f=C.getInnerMostAxes(f.length,c.shape.length))}C.assertAxesAreInnerMostDims("prod",f,c.shape.length);let[m,A]=C.computeOutAndReduceShapes(c.shape,f),y=k.sizeFromShape(A),g=t.makeOutput(m,c.dtype);if(k.sizeFromShape(c.shape)!==0){let b=t.dataIdMap.get(g.dataId).id;Sb(l,y,Rn[g.dtype],b)}if(p&&t.disposeData(u.dataId),s){let b=C.expandShapeToKeepDim(g.shape,d);g.shape=b}return g}var YX={kernelName:vo,backendName:"wasm",setupFunc:ZX,kernelFunc:JX},QX=e=>{let{backend:t,attrs:n}=e,{start:r,stop:a,step:s,dtype:i}=n,o=cA(r,a,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},eK={kernelName:mu,backendName:"wasm",kernelFunc:QX},tK=!0,nK=cn(os,tK),rK=yn(Ss),aK=yn(Es),Tb;function sK(e){Tb=e.wasm.cwrap(Ts,null,["number","number","number","number","number","number","number","number","number","number"])}function iK(e){let{backend:t,inputs:n,attrs:r}=e,{images:a}=n,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,c]=o,[u,h,d,p]=a.shape,f=[u,l,c,p],m=t.dataIdMap.get(a.dataId),A;m.dtype!=="float32"&&(A=gp({backend:t,inputs:{x:a},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(A.dataId));let y=m.id,g=t.makeOutput(f,"float32");if(k.sizeFromShape(a.shape)===0)return g;let b=t.dataIdMap.get(g.dataId).id;return Tb(y,u,h,d,p,l,c,s?1:0,i?1:0,b),A!=null&&t.disposeData(A.dataId),g}var oK={kernelName:Ts,backendName:"wasm",setupFunc:sK,kernelFunc:iK},Eb;function lK(e){Eb=e.wasm.cwrap(Cs,null,["number","array","number","array","number","number"])}function uK(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r,i=k.parseAxisParam(s,a.shape);if(a.shape.length===0)return Ap({inputs:{x:a},backend:n});let o=n.makeOutput(a.shape,a.dtype),l=n.dataIdMap.get(a.dataId).id,c=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(i).buffer),h=new Uint8Array(new Int32Array(a.shape).buffer);Eb(l,u,i.length,h,a.shape.length,c);let d=yr({inputs:{x:o},attrs:{shape:a.shape},backend:n});return n.disposeData(o.dataId),d}var cK={kernelName:Cs,backendName:"wasm",kernelFunc:uK,setupFunc:lK},Cb;function hK(e){Cb=e.wasm.cwrap(Lo,null,["number","number","number","number","number","number","number","number","array","number","number"])}function dK(e){let{inputs:t,backend:n,attrs:r}=e,{image:a}=t,{radians:s,fillValue:i,center:o}=r,l=n.makeOutput(a.shape,a.dtype),c=n.dataIdMap.get(a.dataId).id,u=n.dataIdMap.get(l.dataId).id,[h,d,p,f]=a.shape,[m,A]=C.getImageCenter(o,d,p),y=i===0,g=255,b=typeof i=="number"?[i,i,i,y?0:g]:[...i,g],x=new Uint8Array(new Int32Array(b).buffer);return Cb(c,h,d,p,f,s,m,A,x,b.length,u),l}var pK={kernelName:Lo,backendName:"wasm",kernelFunc:dK,setupFunc:hK},fK=yn(Rs),mK=yn(Fs),Rb;function AK(e){Rb=e.wasm.cwrap(No,null,["number","number","number","number","number","number","array","number","number"])}function yK(e){let{backend:t,inputs:n,attrs:r}=e,{indices:a,updates:s}=n,{shape:i}=r,o=t.makeOutput(i,s.dtype);if(k.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:c,sliceSize:u,strides:h,outputSize:d}=Mf.calculateShapes(s,a,i),p=t.dataIdMap.get(a.dataId).id,f=t.dataIdMap.get(s.dataId).id,m=new Uint8Array(new Int32Array(h).buffer),A=t.dataIdMap.get(o.dataId).id;return Rb(p,f,Rn[s.dtype],l,c,u,m,d,A),o}var gK={kernelName:No,backendName:"wasm",setupFunc:AK,kernelFunc:yK},Fb;function xK(e){Fb=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function wK(e){let{inputs:t,backend:n}=e,{condition:r,t:a,e:s}=t,i=n.dataIdMap.get(r.dataId).id,o=n.dataIdMap.get(a.dataId).id,l=n.dataIdMap.get(s.dataId).id,c=n.makeOutput(a.shape,a.dtype),u=n.dataIdMap.get(c.dataId).id,h=r.shape.length,d=a.shape.length,p=h===0||h>1||d===1?1:k.sizeFromShape(a.shape.slice(1));return Fb(i,o,l,p,u),c}var _K={kernelName:So,backendName:"wasm",kernelFunc:wK,setupFunc:xK},Mb;function bK(e){Mb=e.wasm.cwrap($s,null,["number","number"])}function vK(e){let{backend:t,inputs:{x:n}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(a.dataId).id;return k.sizeFromShape(a.shape)===0||Mb(r,s),a}var kK={kernelName:"Sigmoid",backendName:"wasm",setupFunc:bK,kernelFunc:vK},IK=yn(Ms);function xp(e){let{inputs:{x:t},attrs:{begin:n,size:r},backend:a}=e,[s,i]=an.parseSliceParams(t,n,r),o=an.isSliceContinous(t.shape,s,i),l=a.readSync(t.dataId),c=a.makeOutput(i,t.dtype),u=k.computeStrides(t.shape),h=a.dataIdMap.get(c.dataId);if(o){let f=an.computeFlatOffset(s,u);return t.dtype==="string"?h.stringBytes=l.slice(f,f+k.sizeFromShape(i)):a.typedArrayFromHeap(c).set(l.subarray(f,f+k.sizeFromShape(i))),c}if(t.dtype==="string"){let f=Zd(l,s,i,t.shape,t.dtype);return h.stringBytes=f,c}let d=a.typedArrayFromHeap(c),p=t.shape.length;if(p===2)NK(l,u[0],d,s,i);else if(p===3)SK(l,u[0],u[1],d,s,i);else if(p===4)TK(l,u[0],u[1],u[2],d,s,i);else{let f=Zd(l,s,i,t.shape,t.dtype);d.set(f)}return c}function NK(e,t,n,r,a){let s=0,i=r[0],o=r[1],l=i+a[0];for(let c=i;c<l;c++){let u=c*t+o;n.set(e.subarray(u,u+a[1]),s),s+=a[1]}}function SK(e,t,n,r,a,s){let i=0,o=a[0],l=a[1],c=a[2],u=o+s[0],h=l+s[1];for(let d=o;d<u;d++)for(let p=l;p<h;p++){let f=d*t+p*n+c;r.set(e.subarray(f,f+s[2]),i),i+=s[2]}}function TK(e,t,n,r,a,s,i){let o=0,l=s[0],c=s[1],u=s[2],h=l+i[0],d=c+i[1],p=u+i[2],f=s[3];for(let m=l;m<h;m++)for(let A=c;A<d;A++)for(let y=u;y<p;y++){let g=m*t+A*n+y*r+f;a.set(e.subarray(g,g+i[3]),o),o+=i[3]}}var EK={kernelName:Eo,backendName:"wasm",kernelFunc:xp},$b;function CK(e){$b=e.wasm.cwrap(zs,null,["number","number","number","number"])}function RK(e){let{backend:t,inputs:{logits:n},attrs:{dim:r}}=e,a=t.dataIdMap.get(n.dataId).id,s=t.makeOutput(n.shape,n.dtype),i=t.dataIdMap.get(s.dataId).id,o=n.shape[r],l=k.sizeFromShape(n.shape)/o;return k.sizeFromShape(s.shape)===0||$b(a,i,o,l),s}var FK={kernelName:zs,backendName:"wasm",setupFunc:CK,kernelFunc:RK};function MK(e){let{inputs:t,attrs:n,backend:r}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=n,o=k.parseAxisParam(i,a.shape)[0],l=C.prepareSplitSize(a,s,o),c=new Array(a.shape.length).fill(0),u=a.shape.slice();return l.map(h=>{let d=[...u];d[o]=h;let p=xp({inputs:{x:a},attrs:{begin:c,size:d},backend:r});return c[o]+=h,p})}var $K={kernelName:Mo,backendName:"wasm",kernelFunc:MK},DK=yn(Ds),OK=yn(gu),zK=!0,PK=cn(Ps,zK),Db;function LK(e){Db=e.wasm.cwrap(ga,null,["number","number","number"])}function WK(e){let{backend:t,inputs:n,attrs:r}=e,{alpha:a}=r,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return Db(i,a,l),o}var BK={kernelName:ga,backendName:"wasm",setupFunc:LK,kernelFunc:WK},Ob;function VK(e){Ob=e.wasm.cwrap($o,null,["number","array","number","array","array","array","array","array","number","number"])}function UK(e){let{backend:t,inputs:n,attrs:r}=e,{x:a}=n,{begin:s,end:i,strides:o}=r;o==null&&(o=new Array(s.length));let{beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:h,shrinkAxisMask:d}=r,p=C.slice_util.maskToAxes(u);if(p.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(u!==0&&h!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(u!==0&&d!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let f=a.shape.length-s.length,m=C.slice_util.maskToAxes(h),A=a.shape.slice();m.forEach(M=>{s[M]=0,i[M]=1,A.splice(M,0,1)});let y=yr({inputs:{x:a},attrs:{shape:A},backend:t}),{begin:g,end:b,strides:x}=C.slice_util.getNormalizedAxes(y.shape,p,f,s,i,o,l,c,u);s=g,i=b,o=x;let w=C.slice_util.maskToAxes(d);w.forEach(M=>{i[M]=s[M]+1,o[M]=1});let _=C.slice_util.computeOutShape(s,i,o),N=_.filter((M,z)=>w.indexOf(z)===-1);if(o.every(M=>M===1)){let M=xp({inputs:{x:a},attrs:{begin:s,size:_},backend:t});t.disposeData(y.dataId);let z=yr({inputs:{x:M},attrs:{shape:N},backend:t});return t.disposeData(M.dataId),z}let T=t.makeOutput(N,"float32");if(!N.some(M=>M===0)){let M=t.dataIdMap.get(y.dataId).id,z=new Uint8Array(new Int32Array(k.computeStrides(y.shape)).buffer),P=new Uint8Array(new Int32Array(s).buffer),B=new Uint8Array(new Int32Array(i).buffer),G=new Uint8Array(new Int32Array(o).buffer),V=new Uint8Array(new Int32Array(N).buffer),K=new Uint8Array(new Int32Array(k.computeStrides(N)).buffer),X=t.dataIdMap.get(T.dataId).id;Ob(M,z,y.shape.length,P,B,G,V,K,N.length,X)}t.disposeData(y.dataId);let E=yr({inputs:{x:T},attrs:{shape:N},backend:t});return t.disposeData(T.dataId),E}var HK={kernelName:$o,backendName:"wasm",setupFunc:VK,kernelFunc:UK},jK=!0,GK=cn(Ls,jK),zb;function qK(e){zb=e.wasm.cwrap(Os,null,["number, number, number"])}function XK(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=Il(i,a,t),f=h;if(p){let b=t.dataIdMap.get(u.dataId).id;b!==o&&(c=u,l=b,f=C.getInnerMostAxes(f.length,c.shape.length))}C.assertAxesAreInnerMostDims("sum",f,c.shape.length);let[m,A]=C.computeOutAndReduceShapes(c.shape,f),y=k.sizeFromShape(A),g=t.makeOutput(m,c.dtype);if(k.sizeFromShape(c.shape)!==0){let b=t.dataIdMap.get(g.dataId).id;zb(l,y,b)}if(p&&t.disposeData(u.dataId),s){let b=C.expandShapeToKeepDim(g.shape,d);g.shape=b}return g}var KK={kernelName:Os,backendName:"wasm",setupFunc:qK,kernelFunc:XK},ZK=yn(Ws),Pb;function JK(e){Pb=e.wasm.cwrap(ya,null,["number","array","number","array","number","number"])}function YK(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,s=n.dataIdMap.get(a.dataId).id,{reps:i}=r,o=new Array(a.shape.length);for(let d=0;d<o.length;d++)o[d]=a.shape[d]*i[d];let l=new Uint8Array(new Int32Array(a.shape).buffer),c=new Uint8Array(new Int32Array(o).buffer),u=n.makeOutput(o,a.dtype),h=n.dataIdMap.get(u.dataId).id;return Pb(s,l,a.shape.length,c,o.length,Rn[u.dtype],h),u}var QK={kernelName:ya,backendName:"wasm",setupFunc:JK,kernelFunc:YK},Lb;function eZ(e){Lb=e.wasm.cwrap(Oo,null,["number","array","number","number","number","bool","number","number"])}var tZ=({inputs:e,backend:t,attrs:n})=>{let{x:r}=e,{k:a,sorted:s}=n,i=t.dataIdMap.get(r.dataId).id,o=new Uint8Array(new Int32Array(r.shape).buffer),l=r.shape.slice();l[l.length-1]=a;let c=t.makeOutput(l,r.dtype),u=t.dataIdMap.get(c.dataId).id,h=t.makeOutput(l,"int32"),d=t.dataIdMap.get(h.dataId).id;return Lb(i,o,r.shape.length,Rn[r.dtype],a,s,u,d),[c,h]},nZ={kernelName:Oo,backendName:"wasm",setupFunc:eZ,kernelFunc:tZ};function rZ(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a.shape[s],o=a.shape.length,l=new Array(o-1),c=0;for(let p=0;p<o;p++)p!==s&&(l[c++]=a.shape[p]);let u=new Array(i),h=new Array(o).fill(0),d=a.shape.slice();d[s]=1;for(let p=0;p<u.length;p++)h[s]=p,u[p]=xp({inputs:{x:a},attrs:{begin:h,size:d},backend:n});return u.map(({dataId:p,dtype:f})=>({dataId:p,dtype:f,shape:l}))}var aZ={kernelName:zo,backendName:"wasm",kernelFunc:rZ};function sZ(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(0),r}var iZ={kernelName:Po,backendName:"wasm",kernelFunc:sZ},oZ=[NG,TG,RG,LG,VG,GG,qG,XG,JG,YG,tq,aq,sq,lq,hq,fq,yq,xq,wq,_q,vq,Nq,Sq,Eq,IG,Fq,Dq,Pq,Bq,Hq,Gq,Xq,FG,Jq,Qq,tX,nX,aX,oX,uX,dX,mX,gX,wX,bX,vX,NX,EX,FX,$X,zX,LX,BX,HX,GX,KX,YX,eK,nK,rK,aK,UG,oK,cK,pK,mK,fK,gK,_K,kK,IK,EK,FK,$K,DK,OK,PK,BK,HK,GK,KK,ZK,QK,nZ,OG,aZ,iZ];for(let e of oZ)Wo(e);var UA=Q();UA.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));UA.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(UA.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var Wb=el(_k()),lZ='var threadInfoStruct=0;var selfThreadId=0;var parentThreadId=0;var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:selfThreadId})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["DYNAMIC_BASE"]=e.data.DYNAMIC_BASE;Module["DYNAMICTOP_PTR"]=e.data.DYNAMICTOP_PTR;Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}Module=WasmBackendModuleThreadedSimd(Module);postMessage({"cmd":"loaded"})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;threadInfoStruct=e.data.threadInfoStruct;Module["__register_pthread_ptr"](threadInfoStruct,0,0);selfThreadId=e.data.selfThreadId;parentThreadId=e.data.parentThreadId;var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["dynCall_ii"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){Atomics.store(Module["HEAPU32"],threadInfoStruct+4>>2,ex instanceof Module["ExitStatus"]?ex.status:-2);Atomics.store(Module["HEAPU32"],threadInfoStruct+0>>2,1);Module["_emscripten_futex_wake"](threadInfoStruct+0,2147483647);if(!(ex instanceof Module["ExitStatus"]))throw ex}}}else if(e.data.cmd==="cancel"){if(threadInfoStruct){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(threadInfoStruct){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',uZ=el(bk()),S0=class extends nu{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new Ah(this,Tr())}write(e,t,n){let r={id:this.dataIdNextNumber++};return this.move(r,e,t,n,1),r}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=k.now();return e(),{kernelMs:k.now()-t}}move(e,t,n,r,a){let s=this.dataIdNextNumber++;if(r==="string"){let c=t;this.dataIdMap.set(e,{id:s,stringBytes:c,shape:n,dtype:r,memoryOffset:null,refCount:a});return}let i=k.sizeFromShape(n),o=i*k.bytesPerElement(r),l=this.wasm._malloc(o);this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:n,dtype:r,refCount:a}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:r,stringBytes:a}=this.dataIdMap.get(e);if(n==="string")return a;let s=this.wasm.HEAPU8.slice(t,t+k.sizeFromShape(r)*k.bytesPerElement(n));return cZ(s.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let r;if(n==null)r=this.write(null,e,t);else{let a=this.dataIdNextNumber++;r={id:a},this.dataIdMap.set(r,{id:a,memoryOffset:n,shape:e,dtype:t,refCount:1});let s=k.sizeFromShape(e);this.wasm.tfjs.registerTensor(a,s,n)}return{dataId:r,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let r=this.wasm.HEAPU8.buffer,{memoryOffset:a}=this.dataIdMap.get(n),s=k.sizeFromShape(e);switch(t){case"float32":return new Float32Array(r,a,s);case"int32":return new Int32Array(r,a,s);case"bool":return new Uint8Array(r,a,s);default:throw new Error(`Unknown dtype ${t}`)}}};function hZ(e){return(t,n)=>(k.fetch(e,{credentials:"same-origin"}).then(r=>{r.ok||t.env.a(`failed to load wasm binary file at '${e}'`),r.arrayBuffer().then(a=>{WebAssembly.instantiate(a,t).then(s=>{n(s.instance)})})}),{})}function Bb(e,t,n){if(wp!=null)return wp;let r="tfjs-backend-wasm.wasm";return e&&t?r="tfjs-backend-wasm-threaded-simd.wasm":e&&(r="tfjs-backend-wasm-simd.wasm"),mc!=null&&mc[r]!=null?mc[r]:n+r}async function dZ(){let[e,t]=await Promise.all([Q().getAsync("WASM_HAS_SIMD_SUPPORT"),Q().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,r)=>{let a={};a.locateFile=(l,c)=>{if(l.endsWith(".worker.js")){let u=lZ,h=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(h)}return l.endsWith(".wasm")?Bb(e,t,Ac!=null?Ac:c):c+l},HA&&(a.instantiateWasm=hZ(Bb(e,t,Ac!=null?Ac:"")));let s;t&&e&&wp==null?(s=Wb.default(a),s.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+Wb.default.toString()],{type:"text/javascript"})):s=uZ.default(a);let i=null;s.tfjs={init:s.cwrap("init",null,[]),registerTensor:s.cwrap("register_tensor",null,["number","number","number"]),disposeData:s.cwrap("dispose_data",i,["number"]),dispose:s.cwrap("dispose",i,[])};let o=!1;s.onRuntimeInitialized=()=>{o=!0,yc=!1,n({wasm:s})},s.onAbort=()=>{o||yc||(yc=!0,r({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))}})}function cZ(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var pZ=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],wp=null,Ac=null,mc={},yc=!1,HA=!1;function P8(e,t=!1){if($f("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),yc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");wp=e,HA=t}function L8(e,t=!1){if(yc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")Ac=e;else{mc=e;let n=pZ.filter(r=>mc[r]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}HA=t}var T0="3.1.0",fZ=2;vu("wasm",async()=>{let{wasm:e}=await dZ();return new S0(e)},fZ);Z().prototype.abs=function(){return this.throwIfDisposed(),Dt(this)};Z().prototype.acos=function(){return this.throwIfDisposed(),Df(this)};Z().prototype.acosh=function(){return this.throwIfDisposed(),Of(this)};Z().prototype.add=function(e){return this.throwIfDisposed(),oe(this,e)};Z().prototype.all=function(e,t){return this.throwIfDisposed(),ed(this,e,t)};Z().prototype.any=function(e,t){return this.throwIfDisposed(),ku(this,e,t)};Z().prototype.argMax=function(e){return this.throwIfDisposed(),Iu(this,e)};Z().prototype.argMin=function(e){return this.throwIfDisposed(),zf(this,e)};Z().prototype.asScalar=function(){return this.throwIfDisposed(),F(this.size===1,()=>"The array must have only 1 element."),q(this,[])};Z().prototype.asType=function(e){return this.throwIfDisposed(),ye(this,e)};Z().prototype.as1D=function(){return this.throwIfDisposed(),q(this,[this.size])};Z().prototype.as2D=function(e,t){return this.throwIfDisposed(),q(this,[e,t])};Z().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),q(this,[e,t,n])};Z().prototype.as4D=function(e,t,n,r){return this.throwIfDisposed(),q(this,[e,t,n,r])};Z().prototype.as5D=function(e,t,n,r,a){return this.throwIfDisposed(),q(this,[e,t,n,r,a])};Z().prototype.asin=function(){return this.throwIfDisposed(),Pf(this)};Z().prototype.asinh=function(){return this.throwIfDisposed(),Lf(this)};Z().prototype.atan=function(){return this.throwIfDisposed(),Wf(this)};Z().prototype.atan2=function(e){return this.throwIfDisposed(),Bf(this,e)};Z().prototype.atanh=function(){return this.throwIfDisposed(),Vf(this)};Z().prototype.avgPool=function(e,t,n,r){return this.throwIfDisposed(),Nu(this,e,t,n,r)};Z().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),Su(this,e,t)};Z().prototype.batchNorm=function(e,t,n,r,a){return this.throwIfDisposed(),js(this,e,t,n,r,a)};Z().prototype.broadcastTo=function(e){return this.throwIfDisposed(),Tu(this,e)};Z().prototype.cast=function(e){return this.throwIfDisposed(),ye(this,e)};Z().prototype.ceil=function(){return this.throwIfDisposed(),Hf(this)};Z().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),fn(this,e,t)};Z().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof et&&(e=[e]),ct([this,...e],t)};Z().prototype.conv1d=function(e,t,n,r,a,s){return this.throwIfDisposed(),nd(this,e,t,n,r,a,s)};Z().prototype.conv2dTranspose=function(e,t,n,r,a){return this.throwIfDisposed(),rd(this,e,t,n,r,a)};Z().prototype.conv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),Zr(this,e,t,n,r,a,s)};Z().prototype.cos=function(){return this.throwIfDisposed(),Eu(this)};Z().prototype.cosh=function(){return this.throwIfDisposed(),ad(this)};Z().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),sd(this,e,t,n)};Z().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),Gf(this,e,t)};Z().prototype.depthwiseConv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),Ho(this,e,t,n,r,a,s)};Z().prototype.dilation2d=function(e,t,n,r,a){return this.throwIfDisposed(),qf(this,e,t,n,r,a)};Z().prototype.divNoNan=function(e){return this.throwIfDisposed(),Xf(this,e)};Z().prototype.div=function(e){return this.throwIfDisposed(),Ne(this,e)};Z().prototype.dot=function(e){return this.throwIfDisposed(),r0(this,e)};Z().prototype.elu=function(){return this.throwIfDisposed(),jo(this)};Z().prototype.equal=function(e){return this.throwIfDisposed(),wa(this,e)};Z().prototype.erf=function(){return this.throwIfDisposed(),Kf(this)};Z().prototype.exp=function(){return this.throwIfDisposed(),Ln(this)};Z().prototype.expandDims=function(e){return this.throwIfDisposed(),kn(this,e)};Z().prototype.expm1=function(){return this.throwIfDisposed(),Zf(this)};Z().prototype.fft=function(){return this.throwIfDisposed(),Lu(this)};Z().prototype.flatten=function(){return this.throwIfDisposed(),q(this,[this.size])};Z().prototype.floor=function(){return this.throwIfDisposed(),Go(this)};Z().prototype.floorDiv=function(e){return this.throwIfDisposed(),Yh(this,e)};Z().prototype.gather=function(e,t){return this.throwIfDisposed(),Gs(this,e,t)};Z().prototype.greaterEqual=function(e){return this.throwIfDisposed(),ba(this,e)};Z().prototype.greater=function(e){return this.throwIfDisposed(),er(this,e)};Z().prototype.ifft=function(){return this.throwIfDisposed(),Jo(this)};Z().prototype.irfft=function(){return this.throwIfDisposed(),_d(this)};Z().prototype.isFinite=function(){return this.throwIfDisposed(),a0(this)};Z().prototype.isInf=function(){return this.throwIfDisposed(),s0(this)};Z().prototype.isNaN=function(){return this.throwIfDisposed(),i0(this)};Z().prototype.leakyRelu=function(e){return this.throwIfDisposed(),Ru(this,e)};Z().prototype.lessEqual=function(e){return this.throwIfDisposed(),qs(this,e)};Z().prototype.less=function(e){return this.throwIfDisposed(),od(this,e)};Z().prototype.localResponseNormalization=function(e,t,n,r){return this.throwIfDisposed(),Yf(this,e,t,n,r)};Z().prototype.logSigmoid=function(){return this.throwIfDisposed(),u0(this)};Z().prototype.logSoftmax=function(e){return this.throwIfDisposed(),ud(this,e)};Z().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),Qf(this,e,t)};Z().prototype.log=function(){return this.throwIfDisposed(),In(this)};Z().prototype.log1p=function(){return this.throwIfDisposed(),ld(this)};Z().prototype.logicalAnd=function(e){return this.throwIfDisposed(),tr(this,e)};Z().prototype.logicalNot=function(){return this.throwIfDisposed(),Fu(this)};Z().prototype.logicalOr=function(e){return this.throwIfDisposed(),cd(this,e)};Z().prototype.logicalXor=function(e){return this.throwIfDisposed(),c0(this,e)};Z().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),qe(this,e,t,n)};Z().prototype.maxPool=function(e,t,n,r){return this.throwIfDisposed(),Mu(this,e,t,n,r)};Z().prototype.max=function(e,t){return this.throwIfDisposed(),Wn(this,e,t)};Z().prototype.maximum=function(e){return this.throwIfDisposed(),Cr(this,e)};Z().prototype.mean=function(e,t){return this.throwIfDisposed(),bt(this,e,t)};Z().prototype.min=function(e,t){return this.throwIfDisposed(),Xo(this,e,t)};Z().prototype.minimum=function(e){return this.throwIfDisposed(),Ko(this,e)};Z().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),tm(this,e,t)};Z().prototype.mod=function(e){return this.throwIfDisposed(),nm(this,e)};Z().prototype.mul=function(e){return this.throwIfDisposed(),L(this,e)};Z().prototype.neg=function(){return this.throwIfDisposed(),_t(this)};Z().prototype.norm=function(e,t,n){return this.throwIfDisposed(),Id(this,e,t,n)};Z().prototype.notEqual=function(e){return this.throwIfDisposed(),Xs(this,e)};Z().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),Bo(this,e,t,n)};Z().prototype.onesLike=function(){return this.throwIfDisposed(),Nn(this)};Z().prototype.pad=function(e,t){return this.throwIfDisposed(),Jr(this,e,t)};Z().prototype.pool=function(e,t,n,r,a){return this.throwIfDisposed(),p0(this,e,t,n,r,a)};Z().prototype.pow=function(e){return this.throwIfDisposed(),Yr(this,e)};Z().prototype.prelu=function(e){return this.throwIfDisposed(),Du(this,e)};Z().prototype.prod=function(e,t){return this.throwIfDisposed(),dd(this,e,t)};Z().prototype.reciprocal=function(){return this.throwIfDisposed(),rm(this)};Z().prototype.relu=function(){return this.throwIfDisposed(),Fr(this)};Z().prototype.relu6=function(){return this.throwIfDisposed(),fd(this)};Z().prototype.reshapeAs=function(e){return this.throwIfDisposed(),q(this,e.shape)};Z().prototype.reshape=function(e){return this.throwIfDisposed(),q(this,e)};Z().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),sx(this,e,t,n)};Z().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),ix(this,e,t,n)};Z().prototype.reverse=function(e){return this.throwIfDisposed(),Sn(this,e)};Z().prototype.rfft=function(){return this.throwIfDisposed(),Wu(this)};Z().prototype.round=function(){return this.throwIfDisposed(),am(this)};Z().prototype.rsqrt=function(){return this.throwIfDisposed(),md(this)};Z().prototype.selu=function(){return this.throwIfDisposed(),Ad(this)};Z().prototype.separableConv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),sm(this,e,t,n,r,a,s)};Z().prototype.sigmoid=function(){return this.throwIfDisposed(),Qn(this)};Z().prototype.sign=function(){return this.throwIfDisposed(),im(this)};Z().prototype.sin=function(){return this.throwIfDisposed(),yd(this)};Z().prototype.sinh=function(){return this.throwIfDisposed(),gd(this)};Z().prototype.slice=function(e,t){return this.throwIfDisposed(),Me(this,e,t)};Z().prototype.softmax=function(e){return this.throwIfDisposed(),Pu(this,e)};Z().prototype.softplus=function(){return this.throwIfDisposed(),qo(this)};Z().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),$u(this,e,t)};Z().prototype.split=function(e,t){return this.throwIfDisposed(),sn(this,e,t)};Z().prototype.sqrt=function(){return this.throwIfDisposed(),Kt(this)};Z().prototype.square=function(){return this.throwIfDisposed(),ot(this)};Z().prototype.squaredDifference=function(e){return this.throwIfDisposed(),bd(this,e)};Z().prototype.squeeze=function(e){return this.throwIfDisposed(),va(this,e)};Z().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof et?[this,e]:[this,...e];return Tn(n,t)};Z().prototype.step=function(e){return this.throwIfDisposed(),Yo(this,e)};Z().prototype.stridedSlice=function(e,t,n,r,a,s,i,o){return this.throwIfDisposed(),lm(this,e,t,n,r,a,s,i,o)};Z().prototype.sub=function(e){return this.throwIfDisposed(),we(this,e)};Z().prototype.sum=function(e,t){return this.throwIfDisposed(),Te(this,e,t)};Z().prototype.tan=function(){return this.throwIfDisposed(),um(this)};Z().prototype.tanh=function(){return this.throwIfDisposed(),Uo(this)};Z().prototype.tile=function(e){return this.throwIfDisposed(),_a(this,e)};Z().prototype.toBool=function(){return this.throwIfDisposed(),ye(this,"bool")};Z().prototype.toFloat=function(){return this.throwIfDisposed(),ye(this,"float32")};Z().prototype.toInt=function(){return this.throwIfDisposed(),ye(this,"int32")};Z().prototype.topk=function(e,t){return this.throwIfDisposed(),cm(this,e,t)};Z().prototype.transpose=function(e){return this.throwIfDisposed(),at(this,e)};Z().prototype.unique=function(e){return this.throwIfDisposed(),kd(this,e)};Z().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),hm(this,e,t)};Z().prototype.unstack=function(e){return this.throwIfDisposed(),nr(this,e)};Z().prototype.where=function(e,t){return this.throwIfDisposed(),mn(e,this,t)};Z().prototype.zerosLike=function(){return this.throwIfDisposed(),He(this)};var Vb={kernelName:Wi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,Yo(ye(n,"float32"),-1))}}},mZ={kernelName:Bi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=ot(ye(n,"float32")),a=Kt(we(Se(1),r));return _t(Ne(e,a))}}}},AZ={kernelName:Vi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=Kt(we(ot(ye(n,"float32")),1));return Ne(e,r)}}}},yZ={kernelName:ma,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=At(n.shape,r.shape);return{a:()=>{let s=e,i=zt(n.shape,a);return i.length>0&&(s=Te(s,i)),q(s,n.shape)},b:()=>{let s=e,i=zt(r.shape,a);return i.length>0&&(s=Te(s,i)),q(s,r.shape)}}}},gZ={kernelName:Za,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((r,a)=>{n[a]=()=>e.clone()}),n}},xZ={kernelName:Ja,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>He(n)}}},wZ={kernelName:ru,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>He(n)}}},_Z={kernelName:Ui,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ne(e,Kt(we(Se(1),ot(ye(n,"float32")))))}}},bZ={kernelName:Hi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=Kt(oe(Se(1),ot(ye(n,"float32"))));return Ne(e,r)}}}},vZ={kernelName:qi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=At(n.shape,r.shape);return{a:()=>{let s=oe(ot(n),ot(r)),i=L(e,Ne(r,s)),o=zt(n.shape,a);return o.length>0&&(i=Te(i,o)),q(i,n.shape)},b:()=>{let s=oe(ot(n),ot(r)),i=_t(L(e,Ne(n,s))),o=zt(r.shape,a);return o.length>0&&(i=Te(i,o)),q(i,r.shape)}}}},kZ={kernelName:ji,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ne(e,oe(ot(ye(n,"float32")),1))}}},IZ={kernelName:Gi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ne(e,we(Se(1),ot(ye(n,"float32"))))}}};function NZ(e,t,n,r,a,s){let i=R(e,"dy","avgPool3dGrad"),o=R(t,"input","avgPool3dGrad"),l=i,c=o,u=!1;o.rank===4&&(u=!0,l=q(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),c=q(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),F(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),F(c.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${c.rank}.`),s!=null&&F(Ht(a),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${s} but got pad ${a}.`);let h={dy:l,input:c},d={filterSize:n,strides:r,pad:a,dimRoundingMode:s},p=D.runKernel(wh,h,d);return u?q(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var SZ=O({avgPool3dGrad_:NZ}),TZ={kernelName:au,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:a,strides:s,pad:i,dimRoundingMode:o}=n;return{x:()=>SZ(e,r,a,s,i,o)}}};function EZ(e,t,n,r,a){let s=R(e,"dy","avgPoolGrad"),i=R(t,"input","avgPoolGrad");F(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,c=!1;i.rank===3&&(c=!0,o=q(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=q(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),F(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let u={dy:l,input:o},h={filterSize:n,strides:r,pad:a},d=D.runKernel(xh,u,h);return c?q(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var CZ=O({avgPoolGrad_:EZ}),RZ={kernelName:Ya,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:a,strides:s,pad:i}=n;return{x:()=>CZ(e,r,a,s,i)}}},FZ={kernelName:Qa,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[r,a]=t,{transposeA:s,transposeB:i}=n;return!s&&!i?{a:()=>qe(e,a,!1,!0),b:()=>qe(r,e,!0,!1)}:!s&&i?{a:()=>qe(e,a,!1,!1),b:()=>qe(e,r,!0,!1)}:s&&!i?{a:()=>qe(a,e,!1,!0),b:()=>qe(r,e,!1,!1)}:{a:()=>qe(a,e,!0,!0),b:()=>qe(e,r,!0,!0)}}},MZ={kernelName:su,gradFunc:(e,t,n)=>{let{blockShape:r,crops:a}=n;return{x:()=>$u(e,r,a)}}},$Z={kernelName:W2,gradFunc:(e,t,n)=>{let r=n,a=r.inputShape,s=r.shape,i=Array.from(s);for(let l=a.length-1;l>=0;l--)if(a[l]===s[l])i[l]=1;else if(a[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l<i.length;l++)i[l]>1&&o.push(l);return{x:()=>Te(e,o,!0)}}},DZ={kernelName:es,gradFunc:e=>({x:()=>e.clone()})},OZ={kernelName:ts,gradFunc:e=>({x:()=>He(e)})},zZ={kernelName:Aa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{clipValueMin:a,clipValueMax:s}=n;return{x:()=>mn(tr(ba(r,a),qs(r,s)),e,He(e))}}},PZ={kernelName:iu,inputsToSave:["x"],gradFunc:Vb.gradFunc},LZ={kernelName:Xi,saveAllInputs:!0,gradFunc:(e,t,n)=>{let r=t.map(o=>o.shape),{axis:a}=n,s=ar(a,t[0].shape)[0],i=r.map(o=>o[s]);return sn(e,i,s).map(o=>()=>o)}},WZ={kernelName:ns,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=n;return F(Ca(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>Ym(r.shape,e,a,i,o,l),filter:()=>rA(r,e,a.shape,i,o,l)}}},BZ={kernelName:rs,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=n;return{dy:()=>Zr(e,a,s,i,o,1,l),filter:()=>rA(e,r,a.shape,s,i,o,l)}}};function VZ(e,t,n,r,a){let s=e;e.rank===4&&(s=q(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=q(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),F(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),F(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),F(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),F(s.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${n[3]}.`),F(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:s,dy:i},l={strides:r,pad:a,filterShape:n};return D.runKernel(kh,o,l)}var UZ=O({conv3DBackpropFilter_:VZ}),HZ={kernelName:ou,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:a,pad:s}=n;F(Ca(r),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${r}'`);let[i,o]=t;return{x:()=>j5(i.shape,e,o,a,s),filter:()=>UZ(i,e,o.shape,a,s)}}},jZ={kernelName:as,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(_t(yd(ye(n,"float32"))),e)}}},GZ={kernelName:Ki,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(gd(ye(n,"float32")),e)}}},qZ={kernelName:ss,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:a,exclusive:s,reverse:i}=n;return{x:()=>{let o=X5([a],r.rank),l=sd(e,a,s,!i);return o!=null&&(l=at(l,o)),l}}}},XZ={kernelName:is,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:a,pad:s,dimRoundingMode:i}=n,o=r==null?[1,1]:r;F(Ca(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,c]=t;return F(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),F(c.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${c.rank}.`),F(l.shape[3]===c.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),F(Pr(a,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${o}'.`),i!=null&&F(Ht(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`),{x:()=>Y5(l.shape,e,c,a,s,r,i),filter:()=>J5(l,e,c.shape,a,s,r,i)}}},KZ={kernelName:lu,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,s={x:r,filter:a,dy:e},i={x:r,filter:a,dy:e};return{x:()=>D.runKernel(Ch,s,n),filter:()=>D.runKernel(Rh,i,n)}}},ZZ={kernelName:Yi,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,r={dy:e,y:n};return{x:()=>D.runKernel(Fh,r)}}},JZ={kernelName:Qi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=L(Ln(_t(ot(n))),2/Math.sqrt(Math.PI));return{x:()=>L(e,r)}}},YZ={kernelName:ls,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,n)}}},QZ={kernelName:to,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>q(e,n.shape)}}},eJ={kernelName:no,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,Ln(n))}}},tJ={kernelName:us,gradFunc:e=>({x:()=>He(e)})},nJ={kernelName:cs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=At(n.shape,r.shape);return{a:()=>{let s=Ne(e,ye(r,"float32")),i=zt(n.shape,a);return i.length>0?q(Te(s,i),n.shape):s},b:()=>{let s=L(e,ye(n,"float32")),i=zt(r.shape,a);i.length>0&&(s=q(Te(s,i),r.shape));let o=ot(r);return _t(Ne(s,ye(o,"float32")))}}}},rJ={kernelName:hs,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:r}=n,[a,s,i,o]=t,l=o==null?Se(1):o,c=zt(s.shape,a.shape),u=[];if(s.rank===1){for(let m=0;m<a.shape.length-1;++m)u.push(a.shape[m]);u.push(1)}let h=we(a,s),d=L(e,l),p=md(oe(i,Se(r))),f=L(L(L(p,p),p),Se(-.5));return{x:()=>s.rank===1?q(L(L(e,_a(q(p,[1,1,1,s.shape[0]]),u)),l),a.shape):q(L(L(e,p),l),a.shape),mean:()=>{let m=L(L(p,Se(-1)),d);return s.rank===1&&(m=Te(m,c)),q(m,s.shape)},variance:()=>{let m=L(L(f,h),d);return s.rank===1&&(m=Te(m,c)),q(m,s.shape)},scale:()=>{let m=L(h,p),A=L(e,m);return s.rank===1&&(A=Te(A,c)),q(A,s.shape)},offset:()=>{let m=e;return s.rank===1&&(m=Te(m,c)),q(m,s.shape)}}}},aJ={kernelName:ao,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[r,a]=t,{axis:s}=n,i=ar(s,r.shape)[0];return{x:()=>{let o=r.shape,l=a.size,c=o.slice(0,i),u=c.length,h=o.slice(s,o.length).slice(1),d=h.length,p=Ub(0,u),f=Ub(u+1,u+1+d),m=Hb([c,[l],h]),A=q(e,m),y=q(a,[l]),g=Hb([[u],p,f]),b=at(A,g),x=hm(b,y,r.shape[i]),w=eA(g);return x=at(x,w),x},indices:()=>a}}};function Ub(e,t){let n=[];for(let r=e;r<t;++r)n.push(r);return n}function Hb(e){let t=[];for(let n=0;n<e.length;++n)for(let r=0;r<e[n].length;++r)t.push(e[n][r]);return t}var sJ={kernelName:ds,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>He(n),b:()=>He(r)}}},iJ={kernelName:ps,gradFunc:e=>({x:()=>ye(e,"float32")})},oJ={kernelName:oo,gradFunc:e=>({x:()=>He(e)})},lJ={kernelName:lo,gradFunc:e=>({x:()=>He(e)})},uJ={kernelName:uo,gradFunc:e=>({x:()=>He(e)})},cJ={kernelName:fs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{alpha:a}=n,s=er(r,0);return{x:()=>mn(s,e,L(e,a))}}},hJ={kernelName:po,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ne(e,oe(n,1))}}},dJ={kernelName:ms,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ne(e,ye(n,"float32"))}}},pJ={kernelName:B2,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{axis:a}=n;return{logits:()=>{let s=!0,i=Ln(r);return we(e,L(Te(e,a,s),i))}}}};function fJ(e,t,n,r=5,a=1,s=1,i=.5){let o={x:e,y:t,dy:n},l={depthRadius:r,bias:a,alpha:s,beta:i};return D.runKernel(zh,o,l)}var mJ=O({localResponseNormalizationBackprop_:fJ}),AJ={kernelName:du,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;return{x:()=>mJ(r,a,e,s,i,o,l)}}};function jb(e,t,n,r){return t.rank<n.rank&&(t=q(t,ri(t.shape,r))),e.rank<n.rank&&(e=q(e,ri(e.shape,r))),{x:()=>L(e,ye(wa(n,t),e.dtype))}}var Gb={kernelName:As,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{reductionIndices:a}=r,s=t[0],i=t[1],o=ar(a,s.shape),l=jb(e,i,s,o);return{x:()=>l.x()}}},yJ={kernelName:ys,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>L(e,ye(ba(n,r),"float32")),b:()=>L(e,ye(od(n,r),"float32"))}}};function gJ(e,t,n,r,a,s,i){let o=R(e,"dy","maxPool3dGrad"),l=R(t,"input","maxPool3dGrad"),c=R(n,"output","maxPool3dGrad"),u=o,h=l,d=c,p=!1;l.rank===4&&(p=!0,u=q(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),h=q(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),d=q(c,[1,c.shape[0],c.shape[1],c.shape[2],c.shape[3]])),F(u.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${u.rank}.`),F(h.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${h.rank}.`),F(d.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${d.rank}.`),i!=null&&F(Ht(s),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let f={dy:u,input:h,output:d},m={filterSize:r,strides:a,pad:s,dimRoundingMode:i},A=D.runKernel(Lh,f,m);return p?q(A,[A.shape[1],A.shape[2],A.shape[3],A.shape[4]]):A}var xJ=O({maxPool3dGrad_:gJ}),wJ={kernelName:pu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n;return{x:()=>xJ(e,r,a,s,i,o,l)}}};function _J(e,t,n,r,a,s,i){let o=R(e,"dy","maxPoolGrad"),l=R(t,"input","maxPoolGrad"),c=R(n,"output","maxPoolGrad");F(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),F(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),F(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),i!=null&&F(Ht(s),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let u={dy:o,input:l,output:c},h={filterSize:r,strides:a,pad:s,dimRoundingMode:i};return D.runKernel(Ph,u,h)}var bJ=O({maxPoolGrad_:_J}),vJ={kernelName:gs,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{filterSize:s,strides:i,pad:o}=n;return{x:()=>bJ(e,r,a,s,i,o)}}},kJ={kernelName:xs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:a}=n,s=ar(a,r.shape),i=q5(r.shape,s)[1],o=Ot(i);return{x:()=>{let l=r.shape.slice();s.forEach(u=>{l[u]=1});let c=q(e,l);return Ne(L(c,Rr(r.shape,"float32")),o)}}}},IJ={kernelName:ws,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{axis:a}=r,[s,i]=t,o=ar(a,s.shape),l=jb(e,i,s,o);return{x:()=>l.x()}}},NJ={kernelName:_s,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>L(e,ye(qs(n,r),"float32")),b:()=>L(e,ye(er(n,r),"float32"))}}},SJ={kernelName:fu,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:a}=n,s=a.map(i=>i[0]);return{x:()=>Me(e,s,r.shape)}}},TJ={kernelName:mo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=At(n.shape,r.shape);return{a:()=>{let s=zt(n.shape,a);return s.length>0?q(Te(e,s),n.shape):e},b:()=>{let s=L(e,_t(Go(Ne(n,r)))),i=zt(r.shape,a);return i.length>0?q(Te(s,i),r.shape):s}}}},EJ={kernelName:bs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=At(n.shape,r.shape);return{a:()=>{let s=L(e,ye(r,"float32")),i=zt(n.shape,a);return i.length>0?q(Te(s,i),n.shape):s},b:()=>{let s=L(e,ye(n,"float32")),i=zt(r.shape,a);return i.length>0?q(Te(s,i),r.shape):s}}}},CJ={kernelName:Ao,gradFunc:e=>({x:()=>_t(e)})},RJ={kernelName:vs,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Ct(n.shape,"float32")}}},FJ={kernelName:_o,gradFunc:e=>({x:()=>He(e)})},MJ={kernelName:bo,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:r}=n;return nr(e,r).map(a=>()=>a)}},qb={kernelName:ks,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:a}=n,s=a.map(i=>i[0]);return{x:()=>Me(e,s,r.shape)}}},$J={kernelName:Is,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,r,a]=t,s=n,i=r,o=At(s.shape,i.shape);return{a:()=>{let l=ye(i,"float32"),c=L(e,L(l,Yr(s,we(l,Se(1))))),u=zt(s.shape,o);return u.length>0&&(c=Te(c,u)),q(c,s.shape)},b:()=>{let l=er(s,0),c=mn(l,In(s),He(s)),u=L(e,L(a,c)),h=zt(i.shape,o);return h.length>0&&(u=Te(u,h)),q(u,i.shape)}}}},DJ={kernelName:Ns,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,r]=t,a=er(n,0);return{x:()=>mn(a,e,L(e,r)),alpha:()=>{let s=mn(a,He(e),L(e,n)),i=zt(r.shape,e.shape);return i.length>0&&(s=Te(s,i)),q(s,r.shape)}}}},OJ={kernelName:os,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=At(n.shape,r.shape);return{a:()=>{let s=Ne(e,ye(r,"float32")),i=zt(n.shape,a);return i.length>0?q(Te(s,i),n.shape):s},b:()=>{let s=L(e,ye(n,"float32")),i=zt(r.shape,a);i.length>0&&(s=q(Te(s,i),r.shape));let o=ot(r);return _t(Ne(s,ye(o,"float32")))}}}},zJ={kernelName:ko,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ne(e,_t(ot(n)))}}},PJ={kernelName:Es,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=L(qs(n,6),Yo(n));return{x:()=>L(e,ye(r,"float32"))}}},LJ={kernelName:Ss,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,ye(Yo(n),"float32"))}}},WJ={kernelName:Io,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>q(e,n.shape)}}},BJ={kernelName:Ts,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,a={dy:e,images:r};return{images:()=>D.runKernel(Hh,a,n)}}},VJ={kernelName:Au,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,a={dy:e,images:r};return{images:()=>D.runKernel(Uh,a,n)}}},UJ={kernelName:Cs,gradFunc:(e,t,n)=>{let{dims:r}=n,a=ar(r,e.shape);return{x:()=>Sn(e,a)}}},HJ={kernelName:Rs,gradFunc:e=>({x:()=>He(e)})},jJ={kernelName:Fs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_t(Ne(e,L(Yr(n,1.5),2)))}}},GJ={kernelName:So,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>ye(He(n),"float32"),t:()=>L(e,ye(n,e.dtype)),e:()=>L(e,ye(Fu(n),e.dtype))}}},qJ={kernelName:To,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=er(n,Se(0)),a=Se(lx),s=Se(ux),i=L(e,s),o=L(L(e,a),Ln(ye(n,"float32")));return mn(r,i,o)}}}},XJ={kernelName:$s,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,L(n,we(Se(1),n)))}}},KJ={kernelName:Ro,gradFunc:e=>({x:()=>He(e)})},ZJ={kernelName:Ms,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(Eu(ye(n,"float32")),e)}}},JJ={kernelName:Co,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(ad(ye(n,"float32")),e)}}},YJ={kernelName:Eo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{begin:a,size:s}=n,i=r.shape,[o,l]=O5(r,a,s),c=[];for(let u=0;u<e.rank;u++)c.push([o[u],i[u]-o[u]-l[u]]);return{x:()=>Jr(e,c)}}},QJ={kernelName:zs,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{dim:a}=n,s=!0,i=L(e,r);return{logits:()=>we(i,L(Te(i,[a],s),r))}}},eY={kernelName:Fo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,Qn(n))}}},Xb={kernelName:yu,gradFunc:(e,t,n)=>{let{blockShape:r,paddings:a}=n;return{x:()=>Su(e,r,a)}}},Kb={kernelName:Mo,gradFunc:(e,t,n)=>{let{axis:r}=n;return{x:()=>ct(e,r)}}},tY={kernelName:Ds,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ne(e,L(Kt(ye(n,"float32")),2))}}},nY={kernelName:gu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,L(ye(n,"float32"),2))}}},rY={kernelName:Ps,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=Se(2);return{a:()=>L(e,L(a,we(n,r))),b:()=>L(e,L(a,we(r,n)))}}},aY={kernelName:ga,gradFunc:e=>({x:()=>He(e)})},sY={kernelName:Ls,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=At(n.shape,r.shape);return{a:()=>{let s=e,i=zt(n.shape,a);return i.length>0&&(s=Te(s,i)),q(s,n.shape)},b:()=>{let s=e,i=zt(r.shape,a);return i.length>0&&(s=Te(s,i)),q(_t(s),r.shape)}}}},iY={kernelName:Os,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,a=r.shape.slice(),{axis:s}=n;ar(s,r.shape).forEach(l=>{a[l]=1});let i=q(e,a),o=L(i,Rr(r.shape,"float32"));return{x:()=>o}}},oY={kernelName:Do,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ne(e,ot(Eu(n)))}}},lY={kernelName:Ws,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(we(Se(1),ot(n)),e)}}},uY={kernelName:ya,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{reps:a}=n;return{x:()=>{let s=He(r);if(r.rank===1)for(let i=0;i<a[0];++i)s=oe(s,Me(e,[i*r.shape[0]],[r.shape[0]]));else if(r.rank===2)for(let i=0;i<a[0];++i)for(let o=0;o<a[1];++o)s=oe(s,Me(e,[i*r.shape[0],o*r.shape[1]],[r.shape[0],r.shape[1]]));else if(r.rank===3)for(let i=0;i<a[0];++i)for(let o=0;o<a[1];++o)for(let l=0;l<a[2];++l)s=oe(s,Me(e,[i*r.shape[0],o*r.shape[1],l*r.shape[2]],[r.shape[0],r.shape[1],r.shape[2]]));else if(r.rank===4)for(let i=0;i<a[0];++i)for(let o=0;o<a[1];++o)for(let l=0;l<a[2];++l)for(let c=0;c<a[3];++c)s=oe(s,Me(e,[i*r.shape[0],o*r.shape[1],l*r.shape[2],c*r.shape[3]],[r.shape[0],r.shape[1],r.shape[2],r.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${r.rank} tensors yet.`);return s}}}},cY={kernelName:Bs,gradFunc:(e,t,n)=>{let r=n,{perm:a}=r,s=eA(a);return{x:()=>at(e,s)}}},hY={kernelName:zo,gradFunc:(e,t,n)=>{let r=n,{axis:a}=r;return{value:()=>Tn(e,a)}}},pY={kernelName:xu,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>dY(e,n)}}};function dY(e,t){let n=Cr(t,He(t)),r=Gs(e,n),a=ba(t,Se(0,"int32")),s=r.rank-a.rank;for(let o=0;o<s;++o)a=kn(a,o+1);a=tr(a,Rr(r.shape,"bool"));let i=He(r);return mn(a,r,i)}var fY={kernelName:Po,gradFunc:e=>({x:()=>He(e)})},mY=[Vb,mZ,AZ,yZ,gZ,xZ,wZ,_Z,bZ,vZ,kZ,IZ,TZ,RZ,FZ,MZ,$Z,DZ,OZ,zZ,PZ,LZ,BZ,WZ,HZ,jZ,GZ,qZ,XZ,KZ,OJ,ZZ,JZ,YZ,QZ,eJ,nJ,tJ,rJ,aJ,sJ,iJ,oJ,lJ,uJ,cJ,hJ,dJ,pJ,AJ,Gb,Gb,yJ,wJ,vJ,kJ,IJ,NJ,SJ,TJ,EJ,CJ,RJ,FJ,MJ,qb,qb,$J,DJ,zJ,PJ,LJ,WJ,BJ,VJ,UJ,HJ,jJ,GJ,qJ,XJ,KJ,ZJ,JJ,YJ,QJ,eY,Xb,Xb,Kb,Kb,tY,rY,nY,aY,sY,iY,oY,lY,uY,cY,hY,pY,fY];for(let e of mY)V2(e);var E0={};ze(E0,{maxNorm:()=>AY,minMaxNorm:()=>xY,nonNeg:()=>gY,unitNorm:()=>yY});var jA;function Pt(){return jA==null&&(jA=X2().epsilon()),jA}function gr(){return"channelsLast"}var sa=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,sa.prototype)}},xr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,xr.prototype)}},W=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,W.prototype)}},De=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,De.prototype)}},Zb=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Zb.prototype)}};function pi(e,t){if(Array.isArray(e)){let n=[];for(let r=0;r<t;r++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function Br(e,t){if(!e)throw new Zb(t)}function Jb(e,t){let n=0;for(let r of e)r===t&&n++;return n}function gn(e){return e.length===1?e[0]:e}function mt(e){return Array.isArray(e)?e:[e]}function ia(e){let t=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function fi(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var ir={};function GA(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function qA(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>qA(t));else{let t=Object.keys(e);for(let n of t){let r=e[n];r!=null&&typeof r=="object"&&(!Array.isArray(r)&&r.type==="ndarray"&&typeof r.value=="number"?e[n]=r.value:qA(r))}}}function gc(e,t={},n={},r="object",a=!1){if(typeof e=="string"){let s=e,i;if(s in n)i=n[s];else if(s in ir)i=ir[s];else if(i=t[s],i==null)throw new W(`Unknown ${r}: ${e}. This may be due to one of the following reasons:
1. The ${r} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new W(`${r}: Improper config format: ${JSON.stringify(s)}.
'className' and 'config' must set.`);let i=s.className,o,l;if(i in n?[o,l]=n[i]:i in ir?[o,l]=ir.className:i in t&&([o,l]=t[i]),o==null)throw new W(`Unknown ${r}: ${i}. This may be due to one of the following reasons:
1. The ${r} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let c={};for(let p of Object.keys(ir))c[p]=ir[p];for(let p of Object.keys(n))c[p]=n[p];let u=s.config;u.customObjects=c;let h=Object.assign({},ir);for(let p of Object.keys(n))ir[p]=n[p];qA(s.config);let d=l(o,s.config,n,a);return ir=Object.assign({},h),d}else{let c=Object.assign({},ir);for(let h of Object.keys(n))ir[h]=n[h];let u=new o(s.config);return ir=Object.assign({},c),u}}}function wY(e,t){return e<t?-1:e>t?1:0}function _p(e,t){return-1*wY(e,t)}function $a(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function _Y(e){if(e==null)throw new W(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function mi(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new W(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function XA(e,t,n=0,r=Infinity){return Br(n>=0),Br(r>=n),Array.isArray(e)&&e.length>=n&&e.length<=r&&e.every(a=>typeof a===t)}function Gt(e,t){Array.isArray(e)?(k.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,r)=>Gt(n,`element ${r+1} of ${t}`))):k.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${Yb(e)}.`)}function Yb(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>Yb(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function bY(e,t){let n=k.now(),r;return(...a)=>{let s=k.now();return s-n<t||(n=s,r=e(...a)),r}}function Qb(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function KA(e,t){return U(()=>Kt(Te(L(e,e),t,!0)))}var xc=class extends re.Serializable{getConfig(){return{}}},ZA=class extends xc{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return U(()=>{let t=KA(e,this.axis),n=fn(t,0,this.maxValue);return L(e,Ne(n,oe(Pt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};ZA.className="MaxNorm";re.registerClass(ZA);var JA=class extends xc{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return U(()=>Ne(e,oe(Pt(),KA(e,this.axis))))}getConfig(){return{axis:this.axis}}};JA.className="UnitNorm";re.registerClass(JA);var YA=class extends xc{apply(e){return Fr(e)}};YA.className="NonNeg";re.registerClass(YA);var QA=class extends xc{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return U(()=>{let t=KA(e,this.axis),n=oe(L(this.rate,fn(t,this.minValue,this.maxValue)),L(1-this.rate,t));return L(e,Ne(n,oe(Pt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};QA.className="MinMaxNorm";re.registerClass(QA);var e3={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Lt(e){return GA(e)}function t3(e,t={}){return gc(e,re.SerializationMap.getMap().classNameMap,t,"constraint")}function Wt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in e3?e3[e]:e,config:{}};return t3(t)}else return e instanceof xc?e:t3(e)}function AY(e){return new ZA(e)}function yY(e){return new JA(e)}function gY(){return new YA}function xY(e){return new QA(e)}var C0={};ze(C0,{constant:()=>IY,glorotNormal:()=>FY,glorotUniform:()=>RY,heNormal:()=>MY,heUniform:()=>$Y,identity:()=>EY,leCunNormal:()=>DY,leCunUniform:()=>OY,ones:()=>kY,orthogonal:()=>zY,randomNormal:()=>SY,randomUniform:()=>NY,truncatedNormal:()=>TY,varianceScaling:()=>CY,zeros:()=>vY});var PY=["channelsFirst","channelsLast"],LY=["nearest","bilinear"],WY=["valid","same","causal"],BY=["max","avg"],VY=["sum","mul","concat","ave"],Nl=new Map;function Tt(e){mi(PY,"DataFormat",e)}function UY(e){mi(LY,"InterpolationFormat",e)}function Hn(e){mi(WY,"PaddingMode",e)}function n3(e){mi(BY,"PoolMode",e)}var wc=[],r3="/";function Ai(e,t){wc.push(e);try{let n=t();return wc.pop(),n}catch(n){throw wc.pop(),n}}function HY(){return wc.length===0?"":wc.join(r3)+r3}function s3(e){if(!a3(e))throw new Error("Not a valid tensor name: '"+e+"'");return HY()+e}function i3(e){if(!a3(e))throw new Error("Not a valid tensor name: '"+e+"'");Nl.has(e)||Nl.set(e,0);let t=Nl.get(e);if(Nl.set(e,Nl.get(e)+1),t>0){let n=`${e}_${t}`;return Nl.set(n,1),n}else return e}var jY=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function a3(e){return!!e.match(jY)}function GY(e){return e===parseInt(e.toString(),10)}function Da(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let r=1;for(let a=t;a<n;++a)r*=e[a];return r}function o3(e){return e=Array.isArray(e)?new Float32Array(e):e,en(e)}function Sl(e){return Xo(o3(e)).dataSync()[0]}function Oa(e){return Wn(o3(e)).dataSync()[0]}function wr(e,t){if(t<e)throw new W(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let r=e;r<t;++r)n.push(r);return n}function _c(e,t){return e.asType(t)}function bc(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),e.reshape(n)}function qY(e,t){return U(()=>{if(e.shape.length!==2)throw new W(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=bc(e,1);return ey(n,[1,t,1])})}function XY(e){let t=[Da(e.shape)];return e.reshape(t)}function KY(e){if(e.rank<=1)throw new W(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],Da(e.shape,1)];return e.reshape(t)}function yi(e,t,n){return U(()=>{switch(e.rank){case 1:return xd(e,t,n);case 2:return om(e,[t,0],[n,e.shape[1]]);case 3:return wd(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return zu(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Me(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Me(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new W(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function ty(e,t,n){return U(()=>{switch(e.rank){case 1:return xd(e,t,n);case 2:return om(e,[0,t],[e.shape[0],n]);case 3:return wd(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return zu(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new W(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function bp(e,t,n,r){return U(()=>{switch(e.rank){case 1:return xd(e,t,n);case 2:switch(r){case 1:return yi(e,t,n);case 2:return ty(e,t,n);default:throw new W(`The axis is not within the rank of the tensor ${r}`)}case 3:switch(r){case 1:return yi(e,t,n);case 2:return wd(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return ty(e,t,n);default:throw new W(`The axis is not within the rank of the tensor ${r}`)}case 4:switch(r){case 1:return yi(e,t,n);case 2:return zu(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return zu(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return ty(e,t,n);default:throw new W(`The axis is not within the rank of the tensor ${r}`)}default:throw new W(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function ny(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),ct(e,t)}function l3(e,t){switch(e.rank){case 1:return Q2([e,t]);case 2:return td([e,t],0);case 3:return e0([e,t],0);case 4:return t0([e,t],0);default:throw new W(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function ey(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new W(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return _a(e,t)}function vp(e,t=0,n=1,r,a){return f0(e,t,n,r,a)}function Vr(e,t,n,r){if(e.rank<2||t.rank<2)throw new De(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let a=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(a!==s)throw new De(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let a=!1,s=!1;return ka.matMul({a:e,b:t,transposeA:a,transposeB:s,bias:r?ry(e.rank,r,gr()):null,activation:n})}else{let a=e.shape.slice(),s=a.pop();e=e.reshape([-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),c=[...i,o],u=Array.from({length:t.rank},(f,m)=>m===0?t.rank-2:m<=t.rank-2?m-1:m);t=t.transpose(u).reshape([l,-1]);let h=[...a,...c],d=!1,p=!1;return ka.matMul({a:e,b:t,transposeA:d,transposeB:p,bias:r?ry(e.rank,r,gr()):null,activation:n}).reshape(h)}}function u3(e,t,n){return U(()=>(Array.isArray(t)?t=en(t,"int32"):t=t.toInt(),Gs(e,t,n)))}function vc(e){return L(e,e)}function ry(e,t,n){let r=t.shape;if(t.rank!==1&&t.rank!==e)throw new W(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1,1,1]):t.reshape([1,r[3],r[0],r[1],r[2]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,1,1,r[0]]):t.reshape([1].concat(r))}else if(e===4){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1,1]):t.reshape([1,r[2],r[0],r[1]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,1,r[0]]):t.reshape([1].concat(r))}else if(e===3){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1]):t.reshape([1,r[1],r[0]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,r[0]]):t.reshape([1].concat(r))}else if(e<3)return t;throw new W(`Unsupported input rank by biasAdd: ${t.rank}`)}function Ur(e,t,n){return U(()=>(n==null&&(n=gr()),Tt(n),e.add(ry(e.rank,t,n))))}function ZY(e,t=1){if(t!==1)throw new De(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return jo(e)}function JY(e){return U(()=>Ne(e,Dt(e).add(1)))}function c3(e,t,n,r){return U(()=>x0(e,t,n,r))}function YY(e){return U(()=>{let t=oe(.5,L(.2,e));return fn(t,0,1)})}function kc(e,t,n=!1){return n?e():t()}var QY=["fanIn","fanOut","fanAvg"],eQ=["normal","uniform","truncatedNormal"];function tQ(e){mi(QY,"FanMode",e)}function nQ(e){mi(eQ,"Distribution",e)}var or=class extends re.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},ay=class extends or{apply(e,t){return Ct(e,t)}};ay.className="Zeros";re.registerClass(ay);var kp=class extends or{apply(e,t){return Rr(e,t)}};kp.className="Ones";re.registerClass(kp);var sy=class extends or{constructor(e){super();if(typeof e!="object")throw new W(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new W(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return U(()=>L(Se(this.value),Rr(e,t)))}getConfig(){return{value:this.value}}};sy.className="Constant";re.registerClass(sy);var iy=class extends or{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Zo(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};iy.className="RandomUniform";re.registerClass(iy);var oy=class extends or{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new De(`randomNormal does not support dType ${t}.`);return vp(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};oy.className="RandomNormal";re.registerClass(oy);var ly=class extends or{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new De(`truncatedNormal does not support dType ${t}.`);return vd(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};ly.className="TruncatedNormal";re.registerClass(ly);var uy=class extends or{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return U(()=>{if(e.length!==2||e[0]!==e[1])throw new W("Identity matrix initializer can only be used for 2D square matrices.");return L(this.gain,Jf(e[0]))})}getConfig(){return{gain:this.gain}}};uy.className="Identity";re.registerClass(uy);function rQ(e,t="channelsLast"){let n,r;if(Tt(t),e.length===2)n=e[0],r=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let a=Da(e,2);n=e[1]*a,r=e[0]*a}else if(t==="channelsLast"){let a=Da(e,0,e.length-2);n=e[e.length-2]*a,r=e[e.length-1]*a}}else{let a=Da(e);n=Math.sqrt(a),r=Math.sqrt(a)}return[n,r]}var xn=class extends or{constructor(e){super();if(e.scale<0)throw new W(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,tQ(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,nQ(this.distribution),this.seed=e.seed}apply(e,t){let n=rQ(e),r=n[0],a=n[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,r):this.mode==="fanOut"?s/=Math.max(1,a):s/=Math.max(1,(r+a)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new De(`${this.getClassName()} does not support dType ${t}.`);return vd(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return Zo(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};xn.className="VarianceScaling";re.registerClass(xn);var Ip=class extends xn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return xn.className}};Ip.className="GlorotUniform";re.registerClass(Ip);var Np=class extends xn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return xn.className}};Np.className="GlorotNormal";re.registerClass(Np);var Sp=class extends xn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return xn.className}};Sp.className="HeNormal";re.registerClass(Sp);var Tp=class extends xn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return xn.className}};Tp.className="HeUniform";re.registerClass(Tp);var Ep=class extends xn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return xn.className}};Ep.className="LeCunNormal";re.registerClass(Ep);var Cp=class extends xn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return xn.className}};Cp.className="LeCunNormal";re.registerClass(Cp);var cy=class extends or{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new De("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return U(()=>{if(e.length<2)throw new De("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,r=vp(n,0,1,"float32"),a=_0.gramSchmidt(r);return e[0]>e[1]&&(a=a.transpose()),L(this.gain,a)})}getConfig(){return{gain:this.gain,seed:this.seed}}};cy.className="Orthogonal";re.registerClass(cy);var h3={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function d3(e,t={}){return gc(e,re.SerializationMap.getMap().classNameMap,t,"initializer")}function kt(e){return GA(e)}function gt(e){if(typeof e=="string"){let t=e in h3?h3[e]:e;if(t==="GlorotNormal")return new Np;if(t==="GlorotUniform")return new Ip;if(t==="HeNormal")return new Sp;if(t==="HeUniform")return new Tp;if(t==="LeCunNormal")return new Ep;if(t==="LeCunUniform")return new Cp;{let n={};return n.className=t,n.config={},d3(n)}}else return e instanceof or?e:d3(e)}function vY(){return new ay}function kY(){return new kp}function IY(e){return new sy(e)}function NY(e){return new iy(e)}function SY(e){return new oy(e)}function TY(e){return new ly(e)}function EY(e){return new uy(e)}function CY(e){return new xn(e)}function RY(e){return new Ip(e)}function FY(e){return new Np(e)}function MY(e){return new Sp(e)}function $Y(e){return new Tp(e)}function DY(e){return new Ep(e)}function OY(e){return new Cp(e)}function zY(e){return new cy(e)}var R0={};ze(R0,{Layer:()=>Xe,RNN:()=>$r,RNNCell:()=>Ic,activation:()=>xQ,add:()=>TQ,alphaDropout:()=>hee,average:()=>EQ,averagePooling1d:()=>hy,averagePooling2d:()=>dy,averagePooling3d:()=>py,avgPool1d:()=>PQ,avgPool2d:()=>WQ,avgPool3d:()=>VQ,avgPooling1d:()=>LQ,avgPooling2d:()=>BQ,avgPooling3d:()=>UQ,batchNormalization:()=>DQ,bidirectional:()=>ree,concatenate:()=>CQ,conv1d:()=>hQ,conv2d:()=>dQ,conv2dTranspose:()=>pQ,conv3d:()=>fQ,convLstm2d:()=>QQ,convLstm2dCell:()=>eee,cropping2D:()=>AQ,dense:()=>wQ,depthwiseConv2d:()=>gQ,dot:()=>$Q,dropout:()=>_Q,elu:()=>sQ,embedding:()=>SQ,flatten:()=>vQ,gaussianDropout:()=>cee,gaussianNoise:()=>uee,globalAveragePooling1d:()=>HQ,globalAveragePooling2d:()=>jQ,globalMaxPool1d:()=>see,globalMaxPool2d:()=>iee,globalMaxPooling1d:()=>p3,globalMaxPooling2d:()=>f3,gru:()=>qQ,gruCell:()=>XQ,input:()=>O0,inputLayer:()=>aQ,layerNormalization:()=>OQ,leakyReLU:()=>oQ,lstm:()=>KQ,lstmCell:()=>ZQ,masking:()=>dee,maxPool1d:()=>oee,maxPool2d:()=>lee,maxPooling1d:()=>m3,maxPooling2d:()=>A3,maxPooling3d:()=>GQ,maximum:()=>RQ,minimum:()=>FQ,multiply:()=>MQ,permute:()=>NQ,prelu:()=>lQ,reLU:()=>iQ,repeatVector:()=>kQ,reshape:()=>IQ,rnn:()=>tee,separableConv2d:()=>mQ,simpleRNN:()=>JQ,simpleRNNCell:()=>YQ,softmax:()=>uQ,spatialDropout1d:()=>bQ,stackedRNNCells:()=>nee,thresholdedReLU:()=>cQ,timeDistributed:()=>aee,upSampling2d:()=>yQ,zeroPadding2d:()=>zQ});var pee=0;function y3(){return pee++}var Rp={};function Fp(e=""){return e in Rp||(Rp[e]=0),Rp[e]+=1,e+Rp[e].toString()}function fy(e){return Array.isArray(e)&&Array.isArray(e[0])}function Mp(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Pe(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new W(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function dt(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new W(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function $p(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((r,a)=>r*a);return t}var g3="Variable",F0=class{constructor(e,t="float32",n=g3,r=!0,a=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=y3(),n=n==null?g3:n,this.originalName=s3(n),this.name=i3(this.originalName),this.trainable_=r,this.constraint=a,this.val=A0(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),fee(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function fee(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function my(e){return e.map(t=>t.read())}function Ay(e){e.forEach(t=>{t[0].write(t[1])})}var Ut=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},mr=class{constructor(e,t,n,r,a,s,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=r,this.callArgs=a,this.outputTensorIndex=i,this.id=y3(),s!=null&&(this.originalName=s3(s),this.name=i3(this.originalName)),this.rank=t.length}},mee=0,Dp=class{constructor(e,t){this.callArgs=t,this.id=mee++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},Aee=0,Xe=class extends re.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=Aee++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=ia(n)+"_"+Fp(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let a=null;e.batchSize!=null&&(a=e.batchSize),n=[a].concat(e.inputShape)}this.batchInputShape=n;let r=e.dtype;r==null&&(r=e.inputDType),r==null&&(r="float32"),this.dtype=r}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new xr(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new W(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return gn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return gn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new sa(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new sa(`Layer ${this.name} is not connected, no input to return.`);return gn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new sa(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new sa(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return gn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=mt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=mt(this.inputSpec);if(e.length!==t.length)throw new W(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let r=e[n],a=t[n];if(a==null)continue;let s=r.rank;if(a.ndim!=null&&s!==a.ndim)throw new W(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${a.ndim}, found ndim=${s}`);if(a.maxNDim!=null&&s>a.maxNDim)throw new W(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${a.maxNDim}, found ndim=${s}`);if(a.minNDim!=null&&s<a.minNDim)throw new W(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${a.minNDim}, found ndim=${s}.`);if(a.dtype!=null&&r.dtype!==a.dtype)throw new W(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${a.dtype}, found dtype=${r.dtype}.`);if(a.axes){let i=r.shape;for(let o in a.axes){let l=Number(o),c=a.axes[o],u=l>=0?i[l]:i[i.length+l];if(c!=null&&[c,null].indexOf(u)===-1)throw new W(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${c} but got shape ${i}.`)}}if(a.shape!=null)for(let i=0;i<a.shape.length;++i){let o=a.shape[i],l=r.shape[i];if(o!=null&&l!=null&&o!==l)throw new W(`Input ${n} is incompatible with layer ${this.name}: expected shape=${a.shape}, found shape=${r.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=mt(e),r=!0;for(let s of n)if(!(s instanceof mr)){r=!1;break}let a=!0;for(let s of n)if(s instanceof mr){a=!1;break}if(r===a)throw new W("Arguments to apply() must be all SymbolicTensors or all Tensors");return Ai(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of mt(e))s.push(i.shape);this.build(gn(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&a&&(this._refCount=1)}if(this.assertInputCompatibility(e),a){let s=this.call(e,t),i=mt(s),o=[];for(let l of i)n.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=gn(o),this.activityRegularizer!=null)throw new De("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=yee(e),i=this.computeOutputShape(s),o,l=gee(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((c,u)=>new mr(l,c,this,mt(e),t,this.name,u)):o=new mr(l,i,this,mt(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new De("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,r)=>{n!=null&&e[r]!=null&&e[r]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new sa(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new sa(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new xr(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return $p(this.weights)}build(e){this.built=!0}getWeights(e=!1){return my(e?this.trainableWeights:this.weights)}setWeights(e){U(()=>{let t=this.weights;if(t.length!==e.length)throw new W(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],r=my(t);for(let a=0;a<r.length;++a){let s=r[a],i=t[a],o=e[a];if(!k.arraysEqual(s.shape,o.shape))throw new W(`Layer weight shape ${s.shape} not compatible with provided weight shape ${o.shape}`);n.push([i,o])}Ay(n)})}addWeight(e,t,n,r,a,s,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new W(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(r=gt("zeros"));let o=r.apply(t,n),l=new F0(o,n,e,s,i);return o.dispose(),a!=null&&this.addLoss(()=>a.apply(l.read())),s==null&&(s=!0),s?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=mt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,r,a,s,i=null){let o=mt(e);t=mt(t),n=mt(n),r=mt(r),a=Mp(a),s=Mp(s);let l=[],c=[],u=[];for(let h of o)l.push(h.sourceLayer),c.push(h.nodeIndex),u.push(h.tensorIndex);new Dp({outboundLayer:this,inboundLayers:l,nodeIndices:c,tensorIndices:u,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:r,inputShapes:a,outputShapes:s},i);for(let h=0;h<t.length;h++)t[h].sourceLayer=this,t[h].nodeIndex=this.inboundNodes.length-1,t[h].tensorIndex=h}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function yee(e){e=mt(e);let t=[];for(let n of e)t.push(n.shape);return gn(t)}function gee(e){return"float32"}function x3(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let r=t.inboundNodes[n];if(r.inboundLayers.length===0)return r.inputTensors;{let a=[];for(let s=0;s<r.inboundLayers.length;s++){let i=r.inputTensors[s],o=r.inboundLayers[s],l=r.nodeIndices[s],c=x3(i,o,l);for(let u of c)a.indexOf(u)===-1&&a.push(u)}return a}}}var Tl=class extends Xe{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:Fp("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new W("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new W("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new W("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let r=new mr(this.dtype,this.batchInputShape,this,[],{},this.name);r.nodeIndex=0,r.tensorIndex=0,new Dp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[r],outputTensors:[r],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new W(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};Tl.className="InputLayer";re.registerClass(Tl);function w3(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new W("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new Tl({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}async function za(e){if(e==null)return;let t=[],n=[],r=[];for(let a in e){let s=e[a];if(typeof s!="number"){let i=s;t.push(i.data()),n.push(a),r.push(i)}}if(t.length>0){let a=await Promise.all(t);for(let s=0;s<a.length;++s)e[n[s]]=a[s][0];Fe(r)}}function _3(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var b3;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(b3||(b3={}));var xee=125,El=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},M0=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},wee=class extends El{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let r in t){let a=t[r];if(typeof a=="number")this.totals.hasOwnProperty(r)||(this.totals[r]=0),this.totals[r]=this.totals[r]+a*n;else{let s;r in this.totals?s=this.totals[r]:this.totals[r]=0;let i=U(()=>oe(this.totals[r],L(a,n)));this.totals[r]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:U(()=>{let r=L(Ne(1,this.seen),this.totals[n]);t[n]=r,this.totals[n].dispose(),Vt(t[n])}))}},$0=class extends El{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let a in this.history){let s=this.history[a];for(let i=0;i<s.length;++i)if(typeof s[i]!="number"){let o=s[i];e.push(o.data()),t.push(a),n.push(i)}}let r=await Promise.all(e);for(let a=0;a<r.length;++a)this.history[t[a]][n[a]].dispose(),this.history[t[a]][n[a]]=r[a][0]}},D0=class extends El{constructor(e,t){super();if(this.currentEpoch=0,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=xee),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");k.isNumber(this.yieldEvery)&&(this.maybeWait=bY(this.maybeWait.bind(this),this.yieldEvery)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let r=[];this.yield!=null&&(await za(n),r.push(this.yield(e,t,n))),r.push(Fd()),await Promise.all(r)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await za(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await za(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(Fd()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await za(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await za(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(Fd()):k.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await za(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await za(e),await this.trainEnd(e))}};function v3(e,t){return e==null&&(e={}),e instanceof El?[e]:Array.isArray(e)&&e[0]instanceof El?e:mt(e).map(n=>new D0(n,t))}var lr=class{constructor(){}static registerCallbackConstructor(e,t){k.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),lr.checkForDuplicate(t),lr.constructors[e]==null&&(lr.constructors[e]=[]),lr.constructors[e].push(t)}static checkForDuplicate(e){for(let t in lr.constructors)lr.constructors[+t].forEach(n=>{if(n===e)throw new W("Duplicate callback constructor.")})}static clear(){lr.constructors={}}static createCallbacks(e){let t=[];for(let n in lr.constructors){let r=+n;e>=r&&t.push(...lr.constructors[r])}return t.map(n=>new n)}};lr.constructors={};function k3(e,t,n,r,a,s,i,o,l){let c=new $0,u=[new wee,...lr.createCallbacks(t)];e!=null&&u.push(...e),u.push(c);let h=new M0(u);return h.setParams({epochs:n,initialEpoch:r,samples:a,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:h,history:c}}function _r(e,t={},n=!1){return gc(e,re.SerializationMap.getMap().classNameMap,t,"layer",n)}function Op(e,t){return U(()=>{e.dtype!=="float32"&&(e=e.asType("float32"));let n=Te(vc(e),t,!0),r=Cu(n.shape,Pt()),a=Kt(Cr(n,r));return Ne(e,a)})}function gi(e,t){return U(()=>bt(vc(we(t,e)),-1))}function zp(e,t){return U(()=>bt(Dt(we(t,e)),-1))}function Cl(e,t){return U(()=>{let n=we(e,t),r=fn(Dt(e),Pt(),Number.MAX_VALUE),a=Dt(Ne(n,r));return L(100,bt(a,-1))})}function _ee(e,t){return U(()=>{let n=fn(t,Pt(),Number.MAX_VALUE),r=In(oe(1,n)),a=fn(e,Pt(),Number.MAX_VALUE),s=In(oe(1,a));return bt(vc(we(r,s)),-1)})}function bee(e,t){return U(()=>{let n=Cr(0,we(1,L(e,t)));return bt(vc(n),-1)})}function vee(e,t){return U(()=>{let n=Cr(0,we(1,L(e,t)));return bt(n,-1)})}function kee(e,t){return U(()=>{let n=Te(L(e,t),-1),r=Wn(L(we(1,e),t),-1);return Cr(0,oe(1,we(r,n)))})}function Iee(e,t){return U(()=>{let n=Math.log(2),r=we(t,e),a=we(oe(r,qo(L(-2,r))),n);return bt(a,-1)})}function Nc(e,t,n=!1){return U(()=>{if(n)t=Pu(t);else{let r=Te(t,t.shape.length-1,!0);t=Ne(t,r)}return t=fn(t,Pt(),1-Pt()),_t(Te(L(e.toFloat(),In(t)),t.shape.length-1))})}function Pp(e,t,n=!1){return U(()=>{let r=Go(XY(e)).toInt();t=fn(t,Pt(),1-Pt());let a=t.shape,s=Bo(r,a[a.length-1]).reshape(a);return Nc(s,t,n)})}function Nee(e,t){if(!k.arraysEqual(e.shape,t.shape))throw new W(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return U(()=>{let n=t.relu(),r=t.abs().neg();return n.sub(t.mul(e)).add(r.exp().log1p())})}function Lp(e,t){return U(()=>{let n;return n=fn(t,Pt(),1-Pt()),n=In(Ne(n,we(1,n))),bt(Nee(e,n),-1)})}function See(e,t){return U(()=>{let n=fn(e,Pt(),1),r=fn(t,Pt(),1);return Te(L(e,In(Ne(n,r))),-1)})}function Tee(e,t){return U(()=>{let n=In(oe(Pt(),t));return bt(we(t,L(e,n)),-1)})}function yy(e,t){return U(()=>{let n=Op(e,-1),r=Op(t,-1),a=L(n,r);return _t(Te(a,-1))})}var Wp={meanSquaredError:gi,meanAbsoluteError:zp,meanAbsolutePercentageError:Cl,meanSquaredLogarithmicError:_ee,squaredHinge:bee,hinge:vee,categoricalHinge:kee,logcosh:Iee,categoricalCrossentropy:Nc,sparseCategoricalCrossentropy:Pp,binaryCrossentropy:Lp,kullbackLeiblerDivergence:See,poisson:Tee,cosineProximity:yy};function gy(e){if(typeof e=="string"){if(e in Wp)return Wp[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new W(t)}else return e}function xy(e,t){return U(()=>{let n=L(.5,Nn(t)),r=_c(er(t,n),e.dtype);return bt(wa(e,r),-1)})}function wy(e,t){return U(()=>_c(wa(Iu(e,-1),Iu(t,-1)),"float32"))}function I3(e,t){return U(()=>tr(e.equal(1),t.equal(1)).sum().cast("float32"))}function Eee(e,t){return U(()=>tr(e.equal(1),t.equal(0)).sum().cast("float32"))}function Cee(e,t){return U(()=>tr(e.equal(0),t.equal(1)).sum().cast("float32"))}function N3(e,t){return U(()=>{let n=I3(e,t),r=Cee(e,t),a=n.add(r);return mn(er(a,0),n.div(a),0).cast("float32")})}function Ree(e,t){return U(()=>{let n=I3(e,t),r=Eee(e,t),a=n.add(r);return mn(er(a,0),n.div(a),0).cast("float32")})}function S3(e,t){return Lp(e,t)}function T3(e,t){return e.rank===t.rank&&(e=e.squeeze([e.rank-1])),t=t.argMax(-1),t.dtype!==e.dtype&&(t=t.asType(e.dtype)),wa(e,t).asType("float32")}var Fee=gi,Mee=gi,$ee=zp,Dee=zp,Oee=Cl,zee=Cl,_y=Nc,Pee=yy,E3=Pp,Bp={binaryAccuracy:xy,categoricalAccuracy:wy,precision:N3,categoricalCrossentropy:_y,sparseCategoricalCrossentropy:E3,mse:Fee,MSE:Mee,mae:$ee,MAE:Dee,mape:Oee,MAPE:zee,cosine:Pee};function Lee(e){if(typeof e=="string"&&e in Bp)return Bp[e];if(typeof e!="string"&&e!=null)return e;throw new W(`Unknown metric ${e}`)}function Vp(e){if(Br(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(Wp))if(Wp[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(Bp))if(Bp[n]===e){t=n;break}return t!==void 0?t:e.name}}function Wee(e){let t={Adagrad:()=>Ks.adagrad(.01),Adadelta:()=>Ks.adadelta(1,.95,Pt()),Adam:()=>Ks.adam(.001,.9,.999,Pt()),Adamax:()=>Ks.adamax(.002,.9,.999,Pt(),0),RMSProp:()=>Ks.rmsprop(.001,.9,0,Pt()),SGD:()=>Ks.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new W(`Unknown Optimizer ${e}`)}var C3=1*1024*1024;function R3(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!by(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let r=JSON.stringify(e);r.length>C3&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${r.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${C3}.`)}}function by(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!by(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!by(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function jee(e,t,n,r=console.log){let a=Vee(e),s=["Layer (type)","Output shape","Param #"];a?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(u=>Math.floor(t*u)));let i;if(!a){s.push("Receives inputs"),i=[];for(let u in e.nodesByDepth)i.push(...e.nodesByDepth[u])}r("_".repeat(t)),Up(s,n,r),r("=".repeat(t));let o=e.layers;for(let u=0;u<o.length;++u)a?Uee(o[u],n,r):Hee(o[u],n,i,r),r((u===o.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=Bee(e),c=$p(e.nonTrainableWeights);r(`Total params: ${l+c}`),r(`Trainable params: ${l}`),r(`Non-trainable params: ${c}`),r("_".repeat(t))}function Bee(e){let t;return e.collectedTrainableWeights!=null?t=$p(e.collectedTrainableWeights):t=$p(e.trainableWeights),t}function Vee(e){let t=!0,n=[],r=[];for(let a in e.nodesByDepth)n.push(e.nodesByDepth[a]);for(let a of n){if(a.length>1||a.length===1&&a[0].inboundLayers.length>1){t=!1;break}r.push(...a)}if(t)for(let a of e.layers){let s=!1;for(let i of a.inboundNodes)if(r.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function Up(e,t,n=console.log){let r="";for(let a=0;a<e.length;++a)a>0&&(r=r.slice(0,r.length-1)+" "),r+=e[a],r=r.slice(0,t[a]),r+=" ".repeat(t[a]-r.length);n(r)}function Uee(e,t,n){let r;try{r=JSON.stringify(e.outputShape)}catch(o){r="multiple"}let a=e.name,s=e.getClassName(),i=[`${a} (${s})`,r,e.countParams().toString()];Up(i,t,n)}function Hee(e,t,n,r){let a;try{a=JSON.stringify(e.outputShape)}catch(u){a="multiple"}let s=[];for(let u of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(u)===-1))for(let h=0;h<u.inboundLayers.length;++h){let d=u.inboundLayers[h].name,p=u.nodeIndices[h],f=u.tensorIndices[h];s.push(`${d}[${p}][${f}]`)}let i=e.name,o=e.getClassName(),l=s.length===0?"":s[0],c=[`${i} (${o})`,a,e.countParams().toString(),l];Up(c,t,r);for(let u=1;u<s.length;++u)Up(["","","",s[u]],t,r)}function F3(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function Sc(e,t){if(e===null)return null;if(typeof e=="string")return fi(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],r=e.length;for(let a=0;a<r;++a){let s=e[a];F3(t,a,s)?n.push(s):n.push(Sc(s,t))}return n}else{let n={};for(let r of Object.keys(e)){let a=e[r];if(r==="name"&&typeof a=="string")n[r]=a;else{let s=fi(r);n[s]=Sc(a,s)}}return n}}function vy(e,t){if(e==null)return null;if(typeof e=="string")return ia(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],r=e.length;for(let a=0;a<r;++a){let s=e[a];F3(t,a,s)?n.push(s):n.push(vy(s,t))}return n}else{let n={};for(let r of Object.keys(e)){let a=e[r],s=ia(r);(r==="name"||r==="className")&&typeof a=="string"?n[s]=a:n[s]=vy(a,r)}return n}}var gm="3.1.0";function Gee(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return ye(t,e.dtype)}catch(n){throw new W(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var xi=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof xi)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=Gee(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new W(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof mr){if(this.id2Value[e.id]==null)throw new W(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new W(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof mr){if(this.id2Value[e.id]==null)throw new W(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new W(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&Fe(this.id2Mask)}},ky={},M3={};function Tc(e,t,n,r){let a=n==null?!1:n.training,s=Array.isArray(e),i=s?e:[e],o=i.map(f=>f.name),l=[],c=t.names();for(let f of o)c.indexOf(f)!==-1?l.push(t.getValue(f)):l.push(null);r!=null&&(r.maxNumTensors=-Infinity,r.minNumTensors=Infinity);let u=o.join(",")+"|"+t.names().join(","),h,d;if(ky[u]==null){let f=qee(i,t);h=f.sorted,d=f.recipientCounts,ky[u]=h,M3[u]=d}h=ky[u],d={},a||Object.assign(d,M3[u]);let p=new xi(t);for(let f=0;f<h.length;++f){if(r!=null){let E=Jh().numTensors;E>r.maxNumTensors&&(r.maxNumTensors=E),E<r.minNumTensors&&(r.minNumTensors=E)}let m=h[f],A=m.sourceLayer;if(A instanceof Tl)continue;let y=[],g=[],b=[],x=!1;for(let E of m.inputs){let M=p.getValue(E),z=p.getMask(E);y.push(M),g.push(z),z!=null&&(x=!0),a||(d[E.name]--,d[E.name]===0&&!t.hasKey(E)&&o.indexOf(E.name)===-1&&!M.isDisposed&&E.sourceLayer.stateful!==!0&&b.push(M))}x&&(n=n||{},n.mask=g[0]);let w=mt(A.apply(y,n)),_=null;A.supportsMasking&&(_=A.computeMask(y,g));let N=Xee(m),T=Array.isArray(N)?N:[N];for(let E=0;E<T.length;++E){p.hasKey(T[E])||p.add(T[E],w[E],Array.isArray(_)?_[0]:_);let M=o.indexOf(T[E].name);M!==-1&&(l[M]=w[E])}a||Fe(b)}return p.disposeMasks(),s?l:l[0]}function qee(e,t){k.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],r={};if(e.length===1){let a=$3(e[0],t);n=a.sorted,r=a.recipientMap}else{let a=new Set;for(let s of e){let{sorted:i,recipientMap:o}=$3(s,t);for(let l of i)a.has(l.name)||(n.push(l),a.add(l.name));for(let l in o)r[l]==null&&(r[l]=new Set),o[l].forEach(c=>r[l].add(c))}}return{sorted:n,recipientCounts:Kee(r)}}function Kee(e){let t={};for(let n in e)t[n]=e[n].size;return t}function $3(e,t){let n=new Set,r=[],a={};for(let o of t.names())n.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(n.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),r.push(o),n.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let c of o.inputs)a[c.name]==null&&(a[c.name]=new Set),a[c.name].add(o.name),!n.has(c.name)&&s.push(c)}}return{sorted:r,recipientMap:a}}function Xee(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let r=0;r<e.sourceLayer.inboundNodes.length;++r)for(let a of e.sourceLayer.inboundNodes[r].outputTensors)if(a.id===e.id){n=r;break}t=e.sourceLayer.getOutputAt(n)}return t}var Hr=class extends Xe{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let y=this.getClassName().toLowerCase();this.name=Fp(y)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],$a(this.inputs).length!==this.inputs.length)throw new W(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(y=>y.name)}`);$a(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let g=y.sourceLayer,b=y.nodeIndex,x=y.tensorIndex;this.outputLayers.push(g),this.outputLayersNodeIndices.push(b),this.outputLayersTensorIndices.push(x)}for(let y of this.inputs){let g=y.sourceLayer,b=y.nodeIndex,x=y.tensorIndex;Br(b===0,"input layer has >1 nodes"),Br(x===0,"input layer has >1 tensors"),this.inputLayers.push(g),this.inputLayersNodeIndices.push(b),this.inputLayersTensorIndices.push(x)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;y<this.inputLayers.length;y++){let g=this.inputLayers[y];if(!(g instanceof Tl))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${y} (0-based) originates from layer type ${g.getClassName()}.`);this.inputNames.push(g.name),this.feedInputShapes.push(g.batchInputShape),this.feedInputNames.push(g.name)}for(let y of this.outputLayers)this.outputNames.push(y.name);this.internalInputShapes=this.inputs.map(y=>y.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},r={},a={},s={},i=[],o=(y,g,b,x,w,_)=>{(x==null||w==null||_==null)&&(x=y.sourceLayer,w=y.nodeIndex,_=y.tensorIndex);let N=x.inboundNodes[w];if(b.indexOf(N)!==-1)throw new xr(`The tensor ${y.name} at layer "${x.name}" is part of a cycle.`);if(g.indexOf(N)!==-1)return;this.containerNodes.add(Hr.nodeKey(x,w)),x.id in s||(s[x.id]=Object.keys(s).length),b.indexOf(N)===-1&&b.push(N);let T=N.inboundLayers.length;for(let E=0;E<T;E++){let M=N.inputTensors[E],z=N.inboundLayers[E],P=N.nodeIndices[E],B=N.tensorIndices[E];o(M,g,b,z,P,B)}for(g.push(N);b.indexOf(N)>=0;)b.splice(b.indexOf(N),1);i.push(N)},l=[],c=[];for(let y of this.outputs)o(y,l,c);let u=i.slice().reverse();for(let y of u){n[y.id]=y,y.id in t||(t[y.id]=0);let g=t[y.id],b=r[y.outboundLayer.id]==null?0:r[y.outboundLayer.id];g=Math.max(g,b),r[y.outboundLayer.id]=g,a[y.outboundLayer.id]=y.outboundLayer,t[y.id]=g;for(let x=0;x<y.inboundLayers.length;x++){let w=y.inboundLayers[x],_=y.nodeIndices[x],N=w.inboundNodes[_],T=t[N.id]==null?0:t[N.id];t[N.id]=Math.max(g+1,T),n[N.id]=N}}let h={};for(let y in t){let g=t[y];g in h||(h[g]=[]),h[g].push(n[y])}let d={};for(let y in r){let g=r[y];g in d||(d[g]=[]),d[g].push(a[y])}let p=Object.keys(d).map(y=>parseInt(y,10)).sort(_p);this.layers=[];for(let y of p){let g=d[y];g.sort((b,x)=>{let w=s[b.id],_=s[x.id];return w<_?-1:w>_?1:0});for(let b of g)b instanceof Hr&&this.internalContainerRefs.push(b),this.layers.push(b)}this.layersByDepth=d,p=Object.keys(h).map(y=>parseInt(y,10)).sort(_p);let f=this.inputs.slice(),m=[];for(let y of p)for(let g of h[y]){let b=g.outboundLayer;if(b!=null){for(let x of g.inputTensors)if(f.indexOf(x)===-1)throw new xr(`Graph disconnected: cannot obtain value for tensor ${x} at layer "${b.name}". The following previous layers were accessed without issue: ${m}`);for(let x of g.outputTensors)f.push(x);m.push(b.name)}}this.nodesByDepth=h;let A=this.layers.map(y=>y.name);for(let y of A){let g=A.filter(b=>b===y).length;if(g!==1)throw new xr(`The name "${y}" is used ${g} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(A))}this.outboundNodes=[],this.inboundNodes=[],new Dp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new W("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},r=0;for(let s of this.layers)for(let i of s.weights){if(n[i.originalName]!=null)throw new W(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,r++}let a=[];for(let s in e){let i=s;if(n[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)a.push([n[i],e[s]]);else if(t)throw new W(`Provided weight data has no target variable: ${s}`);delete n[i]}if(t){let s=[];for(let i in n)s.push(i);if(s.length>0)throw new W(`${s.length} of ${r} weights are not set: ${s}`)}Ay(a)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${gm}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=vy(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return U(()=>{e=mt(e);let n=new xi;for(let r=0;r<this.inputs.length;++r)n.add(this.inputs[r],e[r]);return Tc(this.outputs,n,t)})}computeMask(e,t){return U(()=>{e=mt(e);let n;return t==null?n=pi(null,e.length):n=mt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Mp(e);if(t.length!==this.inputLayers.length)throw new W(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;i<t.length;i++){let o=this.inputLayers[i],l=t[i],c=o.name+"_0_0";n[c]=l}let r=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(_p);if(r.length>1)for(let i of r){let o=this.nodesByDepth[i];for(let l of o){let c=l.outboundLayer;if(this.inputLayers.map(f=>f.id).indexOf(c.id)!==-1)continue;let u=[];for(let f=0;f<l.inboundLayers.length;f++){let m=l.inboundLayers[f],A=l.nodeIndices[f],y=l.tensorIndices[f],g=`${m.name}_${A}_${y}`,b=n[g];u.push(b)}let h=c.computeOutputShape(gn(u)),d=Mp(h),p=c.inboundNodes.indexOf(l);for(let f=0;f<d.length;f++){let m=`${c.name}_${p}_${f}`;n[m]=d[f]}}}let a=[],s=[];for(let i=0;i<this.outputLayers.length;i++){let o=this.outputLayers[i],l=this.outputLayersNodeIndices[i],c=this.outputLayersTensorIndices[i],u=`${o.name}_${l}_${c}`;s.push(u)}for(let i=0;i<s.length;i++){let o=s[i];Br(o in n),a.push(n[o])}return gn(a)}runInternalGraph(e,t){t==null&&(t=pi(null,e.length));let n={};for(let o=0;o<this.inputs.length;++o){let l=this.inputs[o],c=e[o],u=t[o];n[l.id]=[c,u]}let r=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(_p);for(let o of r){let l=this.nodesByDepth[o];for(let c of l){let u=c.outboundLayer,h=c.inputTensors,d=c.outputTensors,p=new Array;for(let f of h)f.id in n&&p.push(n[f.id]);if(p.length===h.length){let f={},m,A,y,g;if(c.callArgs!=null&&(f=c.callArgs),p.length===1){let[b,x]=p[0];f.mask==null&&(f.mask=x),y=mt(u.call(b,f)),g=mt(u.computeMask(b,x)),m=[b],A=[x]}else m=p.map(b=>b[0]),A=p.map(b=>b[1]),f.mask==null&&(f.mask=A),y=mt(u.call(m,f)),g=mt(u.computeMask(m,A));if(u.activityRegularizer)throw new De("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let b=0;b<d.length;++b){let x=d[b],w=y[b],_=g[b];n[x.id]=[w,_]}}}}let a=[],s=[],i=[];for(let o of this.outputs){Br(o.id in n,`Could not compute output ${o.name} : ${o.id}`);let[l,c]=n[o.id];i.push(l.shape),a.push(l),s.push(c)}return[a,s,i]}buildNodeConversionMap(e){let t={},n;for(let r of this.layers){n=r instanceof Hr?1:0;for(let a=0;a<r.inboundNodes.length;a++){let s=Hr.nodeKey(r,a);this.containerNodes.has(s)&&(t[s]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new W(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new W("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new W(`No such layer: ${e}`)}calculateLosses(){return U(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let r=Hr.nodeKey(t,n);this.containerNodes.has(r)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let s of this.layers){let i=s.getClassName(),o=s.getConfig(),l=[];for(let u=0;u<s.inboundNodes.length;u++){let h=s.inboundNodes[u],d=Hr.nodeKey(s,u),p={};if(this.containerNodes.has(d)){if(h.callArgs)try{JSON.stringify(h.callArgs),p=h.callArgs}catch(f){console.warn(`Layer ${s.name} was passed non-serializable keyword arguments: ${h.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),p={}}if(h.inboundLayers.length>0){let f=[];for(let m=0;m<h.inboundLayers.length;m++){let A=h.inboundLayers[m],y=h.nodeIndices[m],g=h.tensorIndices[m],b=Hr.nodeKey(A,y),x=t[b];x==null&&(x=0),f.push([A.name,x,g,p])}l.push(f)}}}let c={};c.name=s.name,c.className=i,c.config=o,c.inboundNodes=l,n.push(c)}e.layers=n;let r=[];for(let s=0;s<this.inputLayers.length;s++){let i=this.inputLayers[s],o=this.inputLayersNodeIndices[s],l=Hr.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let c=t[l];c==null&&(c=0);let u=this.inputLayersTensorIndices[s];r.push([i.name,c,u])}e.inputLayers=r;let a=[];for(let s=0;s<this.outputLayers.length;s++){let i=this.outputLayers[s],o=this.outputLayersNodeIndices[s],l=Hr.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let c=t[l];c==null&&(c=0);let u=this.outputLayersTensorIndices[s];a.push([i.name,c,u])}return e.outputLayers=a,e}static fromConfig(e,t,n={},r=!1){let a={},s={};function i(m,A){m.name in s?s[m.name].push(A):s[m.name]=[A]}function o(m,A){let y=[],g;for(let b of A){let x=b[0],w=b[1],_=b[2];if(g=b[3]==null?{}:b[3],!(x in a)){i(m,A);return}let N=a[x];if(N.inboundNodes.length<=w){i(m,A);return}let T=N.inboundNodes[w];y.push(T.outputTensors[_])}y.length>0&&m.apply(gn(y),g)}function l(m){let A=m.name,y=_r(m,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(r),a[A]=y,m.inboundNodes.forEach(g=>{if(!(g instanceof Array))throw new W(`Corrupted configuration, expected array for nodeData: ${g}`);i(y,g)})}let c=t.name,u=t.layers;for(let m of u)l(m);for(;!_Y(s);)for(let m of u){let A=a[m.name];if(A.name in s){let y=s[A.name];delete s[A.name];for(let g of y)o(A,g)}}let h=[],d=[],p=t.inputLayers;for(let m of p){let A=m[0],y=m[1],g=m[2];Br(A in a);let b=a[A].inboundNodes[y].outputTensors;h.push(b[g])}let f=t.outputLayers;for(let m of f){let A=m[0],y=m[1],g=m[2];Br(A in a);let b=a[A].inboundNodes[y].outputTensors;d.push(b[g])}return new e({inputs:h,outputs:d,name:c})}get stateful(){if(this._stateful)throw new W("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){U(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function Zee(e,t,n){let r=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>null);if(r===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==r)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${r} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let a=[];return t.forEach(s=>{s in e?a.push(e[s]):a.push(null)}),a}else throw new Error(`The model has multiple (${r}) outputs, so ${n} must be either an array with ${r} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function D3(e,t){return Zee(e,t,"classWeight")}async function O3(e,t,n,r){if(t!=null||r!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let a=U(()=>{if(e.shape.length===1)return e.clone();if(e.shape.length===2)if(e.shape[1]>1){let o=1;return e.argMax(o)}else{if(e.shape[1]===1)return e.reshape([e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await a.data());Fe(a);let i=[];return s.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),en(i,"float32")}else return null}function Jee(e,t){return L(e,t)}var Yee=32;function P3(e,t){let n,r,a=t;n=a.xs,r=a.ys,k.assert(n!=null&&r!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=z3("input",e.inputNames,n),i=z3("output",e.outputNames,r),o=s[0].shape[0];k.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),k.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<s.length;l++)k.assert(s[l].shape[0]===o,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l<i.length;l++)k.assert(i[l].shape[0]===o,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function z3(e,t,n){if(n instanceof et)return[n];if(Array.isArray(n))return k.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let r=[];for(let a of t){if(n[a]==null)throw new W(`The feature data generated by the dataset lacks the required ${e} key '${a}'.`);r.push(n[a])}return r}}function Qee(e){if(e.length===3)throw new De("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function tte(e,t,n){let r=n.batchesPerEpoch!=null;if(k.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),k.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),k.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),k.assert(!r||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),k.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let a=n.validationData!=null,s,i;if(a)if(L3(n.validationData))k.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let A=Qee(n.validationData);s=A.xs,i=A.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),c;a?c=l.slice().concat(l.map(A=>"val_"+A)):c=l.slice();let u=v3(n.callbacks,n.yieldEvery),h=n.verbose==null?1:n.verbose,{callbackList:d,history:p}=k3(u,h,n.epochs,null,null,ete(t,n),null,a,c);d.setModel(e),e.history=p,await d.onTrainBegin(),e.stopTraining_=!1;let f=n.initialEpoch==null?0:n.initialEpoch,m=await t.iterator();for(;f<n.epochs;){let A={};await d.onEpochBegin(f);let y=0,g=0;for(r||(m=await t.iterator());r?y<n.batchesPerEpoch:!0;){let b=await m.next();if(r&&b.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${y} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(b.value!=null){let{xs:x,ys:w}=P3(e,b.value),_={};_.batch=g,_.size=x[0].shape[0],await d.onBatchBegin(g,_);let N=[];if(n.classWeight!=null){let M=D3(n.classWeight,e.outputNames);for(let z=0;z<M.length;++z)N.push(await O3(w[z],null,M[z]))}let T=x.concat(w).concat(N),E=o(T);Fe(T);for(let M=0;M<l.length;++M){let z=l[M],P=E[M];_[z]=P,Vt(P)}await d.onBatchEnd(g,_),_3(_),g++,y++}if(r?y>=n.batchesPerEpoch:b.done){if(a){let x;L3(n.validationData)?x=mt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):x=mt(e.evaluate(s,i,{batchSize:n.validationBatchSize==null?Yee:n.validationBatchSize,verbose:0}));for(let w=0;w<e.metricsNames.length;++w)A[`val_${e.metricsNames[w]}`]=x[w]}break}if(e.stopTraining_)break}if(await d.onEpochEnd(f,A),f++,e.stopTraining_)break}return await d.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function ete(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function L3(e){return typeof e.iterator=="function"}function nte(e){return typeof e.next=="function"}async function rte(e,t,n){n=n||{};let r=n.batches!=null,a=e.testFunction,s=[];if(n.verbose>0)throw new De("Verbose mode is not implemented yet.");k.assert(!r||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=nte(t)?t:await t.iterator(),o=0,l=0;for(;r?l<n.batches:!0;){let c=await i.next();if(s=U(()=>{if(c.value){let{xs:u,ys:h}=P3(e,c.value),d=u.concat(h),p=U(()=>a(d));if(Fe(d),l===0)for(let m=0;m<p.length;++m)s.push(Se(0));let f=d[0].shape[0];for(let m=0;m<p.length;++m){let A=p[m],y=s[m];s[m]=U(()=>oe(s[m],L(f,A))),l>0&&Fe(y)}Fe(p),o+=f,++l}return s}),c.done){r&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let c=0;c<s.length;++c){let u=s[c];s[c]=Ne(s[c],o),Fe(u)}return gn(s)}function Iy(e){k.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Ec(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(r=>yi(r,t,n-t)):yi(e,t,n-t)}function Ny(e,t){return U(()=>e==null?null:Array.isArray(e)?e.map(n=>Ny(n,t)):u3(e,t.dtype==="int32"?t:t.toInt()))}function Sy(e,t){let n=[],r=0,a=null;for(;r<e;)a=r+t,a>=e&&(a=e),n.push([r,a]),r=a;return n}async function ate(e,t,n,r,a,s,i,o,l,c,u,h,d,p,f){a==null&&(a=32),s==null&&(s=1),u==null&&(u=!0),d==null&&(d=0);let m=!1;if(l!=null&&c!=null&&(m=!0),f!=null&&(m=!0,p==null))throw new W("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let A=e.checkNumSamples(n,a,p,"steps_per_epoch"),y;A!=null&&(y=wr(0,A)),i==null&&(i=1);let{callbackList:g,history:b}=k3(o,i,s,d,A,p,a,m,h);g.setModel(e),e.history=b,await g.onTrainBegin(),e.stopTraining_=!1;for(let x=d;x<s;++x){await g.onEpochBegin(x);let w={};if(p!=null)throw new De("stepsPerEpoch mode is not implemented yet.");{if(u==="batch")throw new De("batch shuffling is not implemneted yet");u&&k.shuffle(y);let _=en(y),N=Sy(A,a);for(let T=0;T<N.length;++T){let E={};if(await g.onBatchBegin(T,E),U(()=>{let M=N[T][0],z=N[T][1],P=yi(_,M,z-M);E.batch=T,E.size=z-M;let B=Ny(n,P),G=t(B);for(let V=0;V<r.length;++V){let K=r[V],X=G[V];E[K]=X,Vt(X)}if(T===N.length-1&&m){let V=e.testLoop(l,c,a);for(let K=0;K<r.length;++K){let X=r[K],ee=V[K];Vt(ee),w["val_"+X]=ee}}}),await g.onBatchEnd(T,E),_3(E),e.stopTraining_)break}_.dispose()}if(await g.onEpochEnd(x,w),e.stopTraining_)break}return await g.onTrainEnd(),await e.history.syncData(),e.history}async function ste(e,t,n,r={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let a,s,i,o,l,c,u;try{let h=r.batchSize==null?32:r.batchSize;Iy(h);let d=!1,p=await e.standardizeUserData(t,n,r.sampleWeight,r.classWeight,d,h);a=p[0],s=p[1],u=p[2];let f=!1,m;if(r.validationData!=null&&r.validationData.length>0){if(f=!0,r.validationData.length===2)i=r.validationData[0],o=r.validationData[1];else throw r.validationData.length===3?new De("validationData including sample weights is not supported yet."):new W(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${r.validationData} is invalid.`);let _=!0,N=await e.standardizeUserData(i,o,null,null,_,h);l=N[0],c=N[1],m=l.concat(c)}else if(r.validationSplit!=null&&r.validationSplit>0&&r.validationSplit<1){f=!0;let _=Math.floor(a[0].shape[0]*(1-r.validationSplit)),N=a[0].shape[0];l=Ec(a,_,N),a=Ec(a,0,_),c=Ec(s,_,N),s=Ec(s,0,_),m=l.concat(c)}else r.validationSteps!=null&&(f=!0);let A=a.concat(s).concat(u);e.checkTrainableWeightsConsistency();let y=e.makeTrainFunction(),g=e.getDedupedMetricsNames(),b,x;f?(e.makeTestFunction(),b=e.testFunction,x=g.slice().concat(g.map(_=>"val_"+_))):(b=null,m=[],x=g.slice());let w=v3(r.callbacks,r.yieldEvery);return await ate(e,y,A,g,h,r.epochs,r.verbose,w,b,m,r.shuffle,x,r.initialEpoch,null,null)}finally{e.isTraining=!1,wi(a,t),wi(s,n),wi(l,i),wi(c,o),u!=null&&Fe(u)}}function W3(e){let t=[];e instanceof et&&(e=[e]);for(let n=0;n<e.length;++n){let r=e[n];if(r.rank===1)t.push(bc(r,1));else{if(r.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(r)}}return t}function wi(e,t){if(e==null)return;let n=[];if(t instanceof et)n.push(t.id);else if(Array.isArray(t))t.forEach(a=>n.push(a.id));else if(t!=null)for(let a in t){let s=t[a];n.push(s.id)}let r=[];if(e instanceof et)n.indexOf(e.id)===-1&&r.push(e);else if(Array.isArray(e))e.forEach(a=>{n.indexOf(a.id)===-1&&r.push(a)});else if(e!=null)for(let a in e){let s=e[a];n.indexOf(s.id)===-1&&r.push(s)}r.forEach(a=>{a.isDisposed||a.dispose()})}function ite(e){return e instanceof et}function Ty(e){return Array.isArray(e)}function B3(e){return!ite(e)&&!Ty(e)}function V3(e,t,n,r=!0,a=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(Ty(e)&&e.length>0)i=!0;else if(B3(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new W(`Error when checking model ${a} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(B3(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new W(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(Ty(e)){if(e=e,e.length!==t.length)throw new W(`Error when checking model ${a}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new W(`The model ${a} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=W3(s),n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new W(`Error when checking ${a}: expected ${t[i]} to have ${n[i].length} dimension(s). but got array with shape ${o.shape}`);for(let l=0;l<n[i].length;++l){if(l===0&&!r)continue;let c=o.shape[l],u=n[i][l];if(u!=null&&u>=0&&c!==u)throw new W(`Error when checking ${a}: expected ${t[i]} to have shape [${n[i]}], but got array with shape [${o.shape}].`)}}return s}function ote(e,t,n){let r=$a(e.map(s=>s.shape[0]));r.sort();let a=$a(t.map(s=>s.shape[0]));if(a.sort(),r.length>1)throw new W(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(a.length>1)throw new W(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(r.length>0&&a.length>0&&!k.arraysEqual(r,a))throw new W(`Input Tensors should have the same number of samples as target Tensors. Found ${r[0]} input sample(s) and ${a[0]} target sample(s).`)}function lte(e,t,n){let r=[gi,Lp,Nc];for(let a=0;a<e.length;++a){let s=e[a],i=t[a],o=n[a];if(i!=null){if(i===Nc&&s.shape[s.shape.length-1]===1)throw new W(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(r.indexOf(i)!==-1){let l=s.shape.slice(1),c=o.slice(1);for(let u=0;u<l.length;++u){let h=l[u],d=c[u];if(d!=null&&h!==d)throw new W(`A target Tensor with shape ${s.shape} was passed for an output of shape ${o}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function U3(e,t,n,r=!0,a=""){let s;if(Array.isArray(e)){if(e.length!==t.length)throw new W(`Error when checking model ${a}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);s=e}else{if(t.length>1)throw new W(`The model expects ${t.length} ${a} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new W(`Error when checking ${a}: expected ${t[i]} to have ${n[i].length} dimension(s), but got array with shape ${JSON.stringify(o.shape)}`);for(let l=0;l<n[i].length;++l){if(l===0&&!r)continue;let c=o.shape[l],u=n[i][l];if(u!=null&&u!==c)throw new W(`Error when checking ${a}: expected ${t[i]} to have shape ${JSON.stringify(n[i])} but got array with shape ${JSON.stringify(o.shape)}.`)}}}function ute(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(r=>n);{let r=[];for(let a of t){let s=n.hasOwnProperty(a)?n[a]:[];Array.isArray(s)||(s=[s]),r.push(s)}return r}}var cte="layers-model",ea=class extends Hr{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new W("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");jee(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=Wee(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof Qr))throw new W("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new W(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(gy(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new W(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>gy(s))}else{let s=gy(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s<this.outputs.length;++s){let i=this.internalOutputShapes[s],o=this.outputNames[s];this.feedOutputNames.push(o),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[s])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],Ai("loss",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=this.lossFunctions[s];this.outputs.length>1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let r=ute(e.metrics,this.outputNames),a=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};Ai("metric",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=r[s];(o=>{let l="",c,u,h;for(let d of o){if(typeof d=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(d)!==-1){let f=this.internalOutputShapes[s];f[f.length-1]===1||this.lossFunctions[s]===Lp?["accuracy","acc"].indexOf(d)!==-1?u=xy:["crossentropy","ce"].indexOf(d)!==-1&&(u=S3):this.lossFunctions[s]===Pp?["accuracy","acc"].indexOf(d)!==-1?u=T3:["crossentropy","ce"].indexOf(d)!==-1&&(u=E3):["accuracy","acc"].indexOf(d)!==-1?u=wy:["crossentropy","ce"].indexOf(d)!==-1&&(u=_y);let m;["accuracy","acc"].indexOf(d)!==-1?m="acc":["crossentropy","ce"].indexOf(d)!==-1&&(m="ce"),h=u,c=l+m}else h=Lee(d),c=l+Vp(d);let p;Ai(c,()=>{p=h}),a(s,c,p)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let r=n.batchSize==null?32:n.batchSize;Iy(r);let a=!0,s=this.standardizeUserDataXY(e,t,a,r);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,r,n.verbose,n.steps);return gn(l)}finally{wi(s[0],e),wi(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),rte(this,e,t)}checkNumSamples(e,t,n,r="steps"){let a;if(n!=null){if(a=null,t!=null)throw new W(`If ${r} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?a=e[0].shape[0]:a=e.shape[0];else throw new W(`Either the input data should have a defined shape, or ${r} shoud be specified.`);return a}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new W("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),r=n?t:[t],a=this.retrieveSymbolicTensors(r),s=new xi;if(e instanceof et&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new W(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;o<this.inputs.length;++o)s.add(this.inputs[o],e[o])}else for(let o of this.inputs){let l=e[o.name];if(l==null)throw new W(`No value is provided for the model's input ${o.name}`);s.add(o,l)}let i=Tc(a,s);return n?i:i[0]}retrieveSymbolicTensors(e){let t=pi(null,e.length),n=e.length;for(let r of this.layers){let a=Array.isArray(r.output)?r.output:[r.output],s=a.map(i=>i.name);for(let i=0;i<e.length;++i){let o=s.indexOf(e[i]);if(o!==-1&&(t[i]=a[o],n--),n===0)break}if(n===0)break}if(n>0){let r=[];throw t.forEach((a,s)=>{a==null&&r.push(e[s])}),new W(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(r)}`)}return t}predictLoop(e,t=32,n=!1){return U(()=>{let r=this.checkNumSamples(e);if(n)throw new De("Verbose predictLoop() is not implemented yet.");let a=Sy(r,t),s=this.outputs.map(i=>[]);for(let i=0;i<a.length;++i)U(()=>{let o=a[i][0],l=a[i][1],c=Ec(e,o,l),u=[];if(Array.isArray(c))for(let d=0;d<c.length;++d)u.push({key:this.inputs[d],value:c[d]});else u.push({key:this.inputs[0],value:c});let h=new xi(u);return Tc(this.outputs,h)}).forEach((o,l)=>s[l].push(o));return gn(s.map(i=>ct(i,0)))})}predict(e,t={}){let n=W3(e);U3(n,this.inputNames,this.feedInputShapes,!1);try{let r=t.batchSize==null?32:t.batchSize;return Iy(r),this.predictLoop(n,r)}finally{wi(n,e)}}predictOnBatch(e){U3(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,r){if(this.optimizer_==null)throw new xr("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let a=[];for(let s=0;s<this.feedOutputShapes.length;++s){let i=this.feedOutputShapes[s];this.feedLossFns[s]===Pp?a.push(i.slice(0,i.length-1).concat([1])):a.push(i)}if(e=V3(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=V3(t,this.feedOutputNames,a,!1,"target"),ote(e,t,null),lte(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&r!=null&&r>0&&e[0].shape[0]%r!=0)throw new W(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${r}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,r,a=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,a,s);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(r!=null){let c=D3(r,this.outputNames);l=[];for(let u=0;u<c.length;++u)l.push(await O3(o[u],null,c[u]))}return[i,o,l]}testLoop(e,t,n,r=0,a){return U(()=>{let s=this.checkNumSamples(t,n,a,"steps"),i=[];if(r>0)throw new De("Verbose mode is not implemented yet.");if(a!=null)throw new De("steps mode in testLoop() is not implemented yet");{let o=Sy(s,n),l=en(wr(0,s));for(let c=0;c<o.length;++c){let u=o[c][0],h=o[c][1],d=yi(l,u,h-u),p=Ny(t,d),f=e(p);if(c===0)for(let m=0;m<f.length;++m)i.push(Se(0));for(let m=0;m<f.length;++m){let A=f[m];i[m]=oe(i[m],L(h-u,A))}}for(let c=0;c<i.length;++c)i[c]=Ne(i[c],s)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let r=e[n],a=r;Jb(e,r)>1&&(a+=`_${Jb(e.slice(0,n),r)}`),t.push(a)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let c=[];for(let p=0;p<this.inputs.length;++p)c.push({key:this.inputs[p],value:n[p]});let u=new xi(c),h=Tc(this.outputs,u,{training:!0}),d;for(let p=0;p<this.lossFunctions.length;++p){let f=this.lossFunctions[p](r[p],h[p]);a[p]!=null&&(f=Jee(f,a[p]));let m=bt(f);t.push(m),p===0?d=f:d=oe(d,f)}for(let p=0;p<this.metricsTensors.length;++p){let f;if(this.outputs.length>1&&p<this.outputs.length)f=t[p];else{let m=this.metricsTensors[p][0],A=this.metricsTensors[p][1];f=bt(m(r[A],h[A]))}Vt(f),s.push(f)}return d=bt(d),this.calculateLosses().forEach(p=>{d=oe(d,p)}),d},o=this.collectedTrainableWeights.map(c=>c.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>U(()=>{let t=[],n,r=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;l<this.inputs.length;++l)s.push({key:this.inputs[l],value:r[l]});let i=new xi(s),o=Tc(this.outputs,i);for(let l=0;l<this.lossFunctions.length;++l){let c=this.lossFunctions[l],u=bt(c(a[l],o[l]));l===0?n=u:n=oe(n,u),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let c=this.metricsTensors[l][0],u=this.metricsTensors[l][1],h=bt(c(a[u],o[u]));t.push(h)}return t})}async fit(e,t,n={}){return ste(this,e,t,n)}async fitDataset(e,t){return tte(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),r=n[0],a=n[1],s=this.makeTrainFunction()(r.concat(a)),i=[];for(let o of s){let l=await o.data();i.push(l[0])}return Fe(s),gn(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,r=n?this.trainableWeights:this.weights,a=this.getWeights(n);for(let s=0;s<r.length;++s)n&&!r[s].trainable||t.push({name:r[s].originalName,tensor:a[s]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=Jh().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-Jh().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=ia(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>ia(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let r of t)if(typeof n[r]=="string")e[r]=ia(n[r]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[ia(Vp(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>ia(Vp(e)));{let e={};for(let t in this.metrics)e[t]=ia(Vp(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Sc(e.optimizer_config),n=_r(t),r;if(typeof e.loss=="string")r=fi(e.loss);else if(Array.isArray(e.loss))r=e.loss.map(s=>fi(s));else if(e.loss!=null){r={};for(let s in e.loss)r[s]=fi(e.loss[s])}let a;if(Array.isArray(e.metrics))a=e.metrics.map(s=>fi(s));else if(e.metrics!=null){a={};for(let s in e.metrics)a[s]=fi(e.metrics[s])}this.compile({loss:r,metrics:a,optimizer:n})}async save(e,t){if(typeof e=="string"){let i=pn.getSaveHandlers(e);if(i.length===0)throw new W(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new W(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new W("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await pn.encodeWeights(this.getNamedWeights(t)),r=!1,a=null,s={modelTopology:this.toJSON(a,r),format:cte,generatedBy:`TensorFlow.js tfjs-layers v${gm}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await pn.encodeWeights(await this.optimizer.getWeights(),i);n.specs.push(...l),n.data=pn.concatenateArrayBuffers([n.data,o])}if(this.userDefinedMetadata!=null){let i=!0;R3(this.userDefinedMetadata,this.name,i),s.userDefinedMetadata=this.userDefinedMetadata}return s.weightData=n.data,s.weightSpecs=n.specs,e.save(s)}setUserDefinedMetadata(e){R3(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};ea.className="Model";re.registerClass(ea);var H3=class extends ea{};H3.className="Functional";re.registerClass(H3);async function hte(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let r=Sc(n),a=_r(r,t);if(e.weightsManifest!=null){let s=await pn.loadWeights(e.weightsManifest,e.pathPrefix,a.weights.map(o=>o.originalName)),i={};for(let o of a.weights)i[o.originalName]=s[o.originalName];a.loadWeights(i),Fe(s)}return a}async function pte(e,t){if(t==null&&(t={}),typeof e=="string"){let n=pn.getLoadHandlers(e,t);if(n.length===0)n.push(pn.browserHTTPRequest(e,t));else if(n.length>1)throw new W(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return dte(e,void 0,t)}async function dte(e,t,n){if(n==null&&(n={}),e.load==null)throw new W("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let r=await e.load(),a=r.modelTopology;a.model_config!=null&&(a=a.model_config);let s=n.strict==null?!0:n.strict,i=r.weightData!=null&&r.weightSpecs!=null&&s,o=_r(Sc(a),t,i),l=r.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),r.userDefinedMetadata!=null&&o.setUserDefinedMetadata(r.userDefinedMetadata),r.weightData!=null){if(r.weightSpecs==null)throw new W("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:c,optimizerWeights:u}=fte(r.weightData,r.weightSpecs);o.loadWeights(c,s),o.optimizer!=null&&u.length>0&&await o.optimizer.setWeights(u),Fe(c),Fe(u.map(h=>h.tensor))}return o}function fte(e,t){let n=pn.decodeWeights(e,t),r={},a=[];return t.forEach(s=>{s.group==="optimizer"?a.push({name:s.name,tensor:n[s.name]}):r[s.name]=n[s.name]}),{modelWeights:r,optimizerWeights:a}}var Qo=class extends ea{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:Fp("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new W(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Qo||e instanceof ea,n;if(t){if(n=e,n.outputs.length!==1)throw new W("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new W("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new W("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let r=w3({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(r)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new W(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new W("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=x3(this.outputs[0])}this.inboundNodes=[],new Dp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:pi(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(r=>r.shape),outputShapes:this.outputs[0].shape})}else{let r=e.apply(this.outputs[0]);if(Array.isArray(r))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[r],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(dt(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new ea({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new xr("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new xr("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new xr("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new xr("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},r=!1){let a,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new W("Legacy serialization format not supported yet.");a=t}else k.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),a=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof Qo))throw new De(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of a){let l=_r(o,void 0,r);r&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new W("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new W("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};Qo.className="Sequential";re.registerClass(Qo);function W8(e){return new ea(e)}function B8(e){return new Qo(e)}function V8(e,t){return t==null&&(t={}),pte(e,t)}function O0(e){return w3(e)}function U8(e,t){lr.registerCallbackConstructor(e,t)}var Fn=class extends re.Serializable{getConfig(){return{}}},j3=class extends Fn{apply(e,t=1){return ZY(e,t)}};j3.className="elu";re.registerClass(j3);var G3=class extends Fn{apply(e){return Ad(e)}};G3.className="selu";re.registerClass(G3);var q3=class extends Fn{apply(e){return Fr(e)}};q3.className="relu";re.registerClass(q3);var X3=class extends Fn{apply(e){return U(()=>Ko(6,Fr(e)))}};X3.className="relu6";re.registerClass(X3);var K3=class extends Fn{apply(e){return e}};K3.className="linear";re.registerClass(K3);var Z3=class extends Fn{apply(e){return Qn(e)}};Z3.className="sigmoid";re.registerClass(Z3);var J3=class extends Fn{apply(e){return YY(e)}};J3.className="hardSigmoid";re.registerClass(J3);var Y3=class extends Fn{apply(e){return qo(e)}};Y3.className="softplus";re.registerClass(Y3);var Q3=class extends Fn{apply(e){return JY(e)}};Q3.className="softsign";re.registerClass(Q3);var e7=class extends Fn{apply(e){return Uo(e)}};e7.className="tanh";re.registerClass(e7);var Ey=class extends Fn{apply(e,t=-1){return Pu(e,t)}};Ey.className="softmax";re.registerClass(Ey);var t7=class extends Fn{apply(e,t=-1){return ud(e,t)}};t7.className="logSoftmax";re.registerClass(t7);var n7=class extends Fn{apply(e,t=1){return U(()=>Qn(e.mul(t)).mul(e))}};n7.className="swish";re.registerClass(n7);function Pa(e){return e.getClassName()}function Cy(e,t={}){return gc(e,re.SerializationMap.getMap().classNameMap,t,"activation")}function La(e){if(e==null){let t={};return t.className="linear",t.config={},Cy(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},Cy(t)}else return e instanceof Fn?e:Cy(e)}function Ry(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var r7=class extends re.Serializable{},Cc=class extends r7{constructor(e){super();Ry(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return U(()=>{let t=Ct([1]);return this.hasL1&&(t=oe(t,Te(L(this.l1,Dt(e))))),this.hasL2&&(t=oe(t,Te(L(this.l2,vc(e))))),t.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Cc.className="L1L2";re.registerClass(Cc);function mte(e){return Ry(e),new Cc({l1:e!=null?e.l1:null,l2:0})}function Ate(e){return Ry(e),new Cc({l2:e!=null?e.l2:null,l1:0})}var a7={l1l2:"L1L2"};function pt(e){return GA(e)}function s7(e,t={}){return gc(e,re.SerializationMap.getMap().classNameMap,t,"regularizer")}function xt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in a7?a7[e]:e,config:{}};return s7(t)}else return e instanceof r7?e:s7(e)}var Fy=class extends Xe{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Pe(e);let n=Fr(e);return this.maxValue!=null&&(n=fn(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};Fy.className="ReLU";re.registerClass(Fy);var My=class extends Xe{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Pe(e);return Ru(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};My.className="LeakyReLU";re.registerClass(My);var $y=class extends Xe{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=gt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=xt(e.alphaRegularizer),this.alphaConstraint=Wt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new W(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=dt(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let r of this.sharedAxes)t[r-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let r=1;r<e.length;++r)n[r]=e[r];this.inputSpec=[new Ut({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=Pe(e),Du(e,this.alpha.read())}getConfig(){let e={alphaInitializer:kt(this.alphaInitializer),alphaRegularizer:pt(this.alphaRegularizer),alphaConstraint:Lt(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};$y.className="PReLU";re.registerClass($y);var Dy=class extends Xe{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new De(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Pe(e);return jo(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};Dy.className="ELU";re.registerClass(Dy);var Oy=class extends Xe{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=Pe(e);return n.mul(_c(n.greater(this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};Oy.className="ThresholdedReLU";re.registerClass(Oy);var zy=class extends Xe{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new Ey().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=Pe(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};zy.className="Softmax";re.registerClass(zy);function Rl(e,t,n){if(typeof e=="number")return pi(e,t);if(e.length!==t)throw new W(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let r=0;r<t;++r){let a=e[r];if(!GY(a))throw new W(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${a}`)}return e}function br(e,t,n,r,a=1){if(e==null)return e;let s=t+(t-1)*(a-1),i;return n==="same"?i=e:i=e-s+1,Math.floor((i+r-1)/r)}function Hp(e,t,n,r){if(e==null)return null;if(r==="valid")e=e*t+Oa([n-t,0]);else if(r==="same")e=e*t;else throw new W(`Unsupport padding mode: ${r}.`);return e}function Py(e,t){return U(()=>(Tt(t),t==="channelsFirst"?at(e,[0,2,3,1]):e))}function i7(e,t){return U(()=>(Tt(t),t==="channelsFirst"?at(e,[0,2,3,4,1]):e))}function yte(e,t,n,r=1,a="valid",s,i=1){return U(()=>{if(s==null&&(s=gr()),Tt(s),e.shape.length!==3)throw new W(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new W(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new W(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=at(e,[0,2,1])),a==="causal")throw new De("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=nd(e,t,r,a==="same"?"same":"valid","NWC",i);return n!=null&&(o=Ur(o,n)),o})}function o7(e,t,n,r=[1,1],a="valid",s,i,o=null){return U(()=>{if(s==null&&(s=gr()),Tt(s),e.rank!==3&&e.rank!==4)throw new W(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new W(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=Py(e,s);if(a==="causal")throw new De("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=ka.conv2d({x:l,filter:t,strides:r,pad:a==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),s==="channelsFirst"&&(l=at(l,[0,3,1,2])),l})}function gte(e,t,n,r=[1,1,1],a="valid",s,i){return U(()=>{if(s==null&&(s=gr()),Tt(s),e.rank!==4&&e.rank!==5)throw new W(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new W(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=i7(e,s);if(a==="causal")throw new De("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=jf(o,t,r,a==="same"?"same":"valid","NDHWC",i),n!=null&&(o=Ur(o,n)),s==="channelsFirst"&&(o=at(o,[0,4,1,2,3])),o})}var Ly=class extends Xe{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",Ly.verifyArgs(t),this.rank=e,Gt(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new De(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Rl(t.kernelSize,e,"kernelSize"),this.strides=Rl(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,Hn(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Tt(this.dataFormat),this.activation=La(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=gt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Wt(t.biasConstraint),this.biasRegularizer=xt(t.biasRegularizer),this.activityRegularizer=xt(t.activityRegularizer),this.dilationRate=Rl(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new W(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new W(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new W(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Br("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!XA(e.kernelSize,"number",1,3))throw new W(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:Pa(this.activation),useBias:this.useBias,biasInitializer:kt(this.biasInitializer),biasRegularizer:pt(this.biasRegularizer),activityRegularizer:pt(this.activityRegularizer),biasConstraint:Lt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Rc=class extends Ly{constructor(e,t){super(e,t);this.kernel=null,Rc.verifyArgs(t),this.filters=t.filters,Gt(this.filters,"filters"),this.kernelInitializer=gt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Wt(t.kernelConstraint),this.kernelRegularizer=xt(t.kernelRegularizer)}build(e){e=dt(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new W(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],r=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",r,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return U(()=>{e=Pe(e);let n,r=this.bias==null?null:this.bias.read(),a=Qb(this.activation.getClassName());if(a!=null&&this.rank===2)n=o7(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate,a);else{if(this.rank===1)n=yte(e,this.kernel.read(),r,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=o7(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=gte(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new De("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=dt(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let a=0;a<n.length;++a){let s=br(n[a],this.kernelSize[a],this.padding,this.strides[a],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[a]);t.push(s)}let r=[e[0]];return this.dataFormat==="channelsLast"?(r=r.concat(t),r.push(this.filters)):(r.push(this.filters),r=r.concat(t)),r}getConfig(){let e={filters:this.filters,kernelInitializer:kt(this.kernelInitializer),kernelRegularizer:pt(this.kernelRegularizer),kernelConstraint:Lt(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new W(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},Fc=class extends Rc{constructor(e){super(2,e);Fc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!XA(e.kernelSize,"number",1,2))throw new W(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};Fc.className="Conv2D";re.registerClass(Fc);var jp=class extends Rc{constructor(e){super(3,e);jp.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new W(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};jp.className="Conv3D";re.registerClass(jp);var Wy=class extends Fc{constructor(e){super(e);if(this.inputSpec=[new Ut({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new W(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=dt(e),e.length!==4)throw new W("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new W("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],r=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",r,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Ut({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return U(()=>{let n=Pe(e);if(n.shape.length!==4)throw new W(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let r=n.shape,a=r[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=r[s],l=r[i],c=this.kernelSize[0],u=this.kernelSize[1],h=this.strides[0],d=this.strides[1],p=Hp(o,h,c,this.padding),f=Hp(l,d,u,this.padding),m=[a,p,f,this.filters];this.dataFormat!=="channelsLast"&&(n=at(n,[0,2,3,1]));let A=rd(n,this.kernel.read(),m,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(A=at(A,[0,3,1,2])),this.bias!=null&&(A=Ur(A,this.bias.read(),this.dataFormat)),this.activation!=null&&(A=this.activation.apply(A)),A})}computeOutputShape(e){e=dt(e);let t=e.slice(),n,r,a;this.dataFormat==="channelsFirst"?(n=1,r=2,a=3):(n=3,r=1,a=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[r]=Hp(t[r],o,s,this.padding),t[a]=Hp(t[a],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Wy.className="Conv2DTranspose";re.registerClass(Wy);var l7=class extends Rc{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new W("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new W("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new W(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=gt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=xt(t.depthwiseRegularizer),this.depthwiseConstraint=Wt(t.depthwiseConstraint),this.pointwiseInitializer=gt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=xt(t.pointwiseRegularizer),this.pointwiseConstraint=Wt(t.pointwiseConstraint)}build(e){if(e=dt(e),e.length<this.rank+2)throw new W(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new W(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],r=this.kernelSize.concat([n,this.depthMultiplier]),a=[];for(let i=0;i<this.rank;++i)a.push(1);a.push(n*this.depthMultiplier,this.filters);let s=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",r,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,s,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",a,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,s,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,s,this.biasConstraint):this.bias=null,this.inputSpec=[new Ut({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return U(()=>{e=Pe(e);let n;if(this.rank===1)throw new De("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=at(e,[0,2,3,1])),n=sm(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Ur(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=at(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=kt(this.depthwiseInitializer),e.pointwiseInitializer=kt(this.pointwiseInitializer),e.depthwiseRegularizer=pt(this.depthwiseRegularizer),e.pointwiseRegularizer=pt(this.pointwiseRegularizer),e.depthwiseConstraint=Lt(this.depthwiseConstraint),e.pointwiseConstraint=Lt(this.pointwiseConstraint),e}};l7.className="SeparableConv";var By=class extends l7{constructor(e){super(2,e)}};By.className="SeparableConv2D";re.registerClass(By);var Gp=class extends Rc{constructor(e){super(1,e);Gp.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!XA(e.kernelSize,"number",1,1))throw new W(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};Gp.className="Conv1D";re.registerClass(Gp);var Vy=class extends Xe{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return U(()=>{if(e=Pe(e),this.dataFormat==="channelsLast"){let n=bp(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return bp(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=bp(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return bp(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Vy.className="Cropping2D";re.registerClass(Vy);var Uy=class extends Xe{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Tt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,UY(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return U(()=>{let n=Pe(e),r=n.shape;if(this.dataFormat==="channelsFirst"){n=at(n,[0,2,3,1]);let a=this.size[0]*r[2],s=this.size[1]*r[3],i=this.interpolation==="nearest"?n.resizeNearestNeighbor([a,s]):n.resizeBilinear([a,s]);return at(i,[0,3,1,2])}else{let a=this.size[0]*r[1],s=this.size[1]*r[2];return this.interpolation==="nearest"?n.resizeNearestNeighbor([a,s]):n.resizeBilinear([a,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Uy.className="UpSampling2D";re.registerClass(Uy);function xte(e,t,n=[1,1],r="valid",a,s){return U(()=>{a==null&&(a=gr()),Tt(a);let i=Py(e,a);if(e.rank!==4)throw new W(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new W(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=Ho(i,t,n,r==="same"?"same":"valid","NHWC",s),a==="channelsFirst"&&(i=at(i,[0,3,1,2])),i})}var Hy=class extends Ly{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=gt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Wt(e.depthwiseConstraint),this.depthwiseRegularizer=xt(e.depthwiseRegularizer)}build(e){if(e=dt(e),e.length<4)throw new W(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new W(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],r=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",r,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return U(()=>{e=Pe(e);let n=xte(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Ur(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=dt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,a=br(t,this.kernelSize[0],this.padding,this.strides[0]),s=br(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],r,a,s]:[e[0],a,s,r]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=kt(this.depthwiseInitializer),e.depthwiseRegularizer=pt(this.depthwiseRegularizer),e.depthwiseConstraint=Lt(this.depthwiseRegularizer),e}};Hy.className="DepthwiseConv2D";re.registerClass(Hy);function u7(e,t,n,r){if(Array.isArray(e)){if(t!=null||n!=null)throw new W("When inputs is an array, neither initialState or constants should be provided");r!=null&&(n=e.slice(e.length-r,e.length),e=e.slice(0,e.length-r)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function a(s){return s==null||Array.isArray(s)?s:[s]}return t=a(t),n=a(n),{inputs:e,initialState:t,constants:n}}function c7(e,t,n,r=!1,a,s,i=!1,o=!1){return U(()=>{let l=t.shape.length;if(l<3)throw new W(`Input should be at least 3D, but is ${l}D.`);let c=[1,0].concat(wr(2,l));if(t=at(t,c),s!=null)throw new De("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),a!=null&&(a=a.asType("bool").asType("float32"),a.rank===l-1&&(a=kn(a,-1)),a=at(a,c)),r&&(t=Sn(t,0),a!=null&&(a=Sn(a,0)));let u=[],h,d=n,p=t.shape[0],f=nr(t),m;a!=null&&(m=nr(a));for(let y=0;y<p;++y){let g=f[y],b=U(()=>e(g,d));if(a==null)h=b[0],d=b[1];else{let x=U(()=>{let w=m[y],_=Nn(w).sub(w),N=b[0].mul(w).add(d[0].mul(_)),T=d.map((E,M)=>b[1][M].mul(w).add(E.mul(_)));return{output:N,newStates:T}});h=x.output,d=x.newStates}o&&u.push(h)}let A;return o&&(A=Tn(u,1)),[h,A,d]})}var $r=class extends Xe{constructor(e){super(e);let t;if(e.cell==null)throw new W("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new qp({cells:e.cell}):t=e.cell,t.stateSize==null)throw new W("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Ut({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return wr(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){fy(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],r;if(this.returnSequences?r=[e[0],e[1],n]:r=[e[0],n],this.returnState){let a=[];for(let s of t)a.push([e[0],s]);return[r].concat(a)}else return r}computeMask(e,t){return U(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let r=this.states.map(a=>null);return[n].concat(r)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new De("Constants support is not implemented in RNN yet.");fy(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,r=e.slice(2);this.inputSpec[0]=new Ut({shape:[n,null,...r]});let a=[e[0]].concat(e.slice(2));if(t!=null)throw new De("Constants support is not implemented in RNN yet.");this.cell.build(a);let s;if(Array.isArray(this.cell.stateSize)?s=this.cell.stateSize:s=[this.cell.stateSize],this.stateSpec!=null){if(!k.arraysEqual(this.stateSpec.map(i=>i.shape[i.shape.length-1]),s))throw new W(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=s.map(i=>new Ut({shape:[null,i]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){U(()=>{if(!this.stateful)throw new sa("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new W("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>Ct([n,r])):this.states_=[Ct([n,this.cell.stateSize])];else if(e==null)Fe(this.states_),this.keptStates!=null&&(Fe(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>Ct([n,r])):this.states_[0]=Ct([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new W(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Fe(this.states_);for(let r=0;r<this.states_.length;++r){let a=e[r],s=Array.isArray(this.cell.stateSize)?this.cell.stateSize[r]:this.cell.stateSize,i=[n,s];if(!k.arraysEqual(a.shape,i))throw new W(`State ${r} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${a.shape}`);this.states_[r]=a}}this.states_=this.states_.map(r=>Vt(r.clone()))})}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let a=u7(e,n,r,this.numConstants);e=a.inputs,n=a.initialState,r=a.constants;let s=[],i=[];if(n!=null){t.initialState=n,s=s.concat(n),this.stateSpec=[];for(let o of n)this.stateSpec.push(new Ut({shape:o.shape}));i=i.concat(this.stateSpec)}if(r!=null&&(t.constants=r,s=s.concat(r),this.numConstants=r.length),s[0]instanceof mr){let o=[e].concat(s),l=this.inputSpec.concat(i),c=this.inputSpec;this.inputSpec=l;let u=super.apply(o,t);return this.inputSpec=c,u}else return super.apply(e,t)}call(e,t){return U(()=>{let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;e=Pe(e),a==null&&(this.stateful?a=this.states_:a=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(a.length!==s)throw new W(`RNN Layer has ${s} state(s) but was passed ${a.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:r},o=c7((d,p)=>{let f=this.cell.call([d].concat(p),i);return[f[0],f.slice(1)]},e,a,this.goBackwards,n,null,this.unroll,this.returnSequences),l=o[0],c=o[1],u=o[2];this.stateful&&this.resetStates(u,r);let h=this.returnSequences?c:l;return this.returnState?[h].concat(u):h})}getInitialState(e){return U(()=>{let t=Ct(e.shape);return t=Te(t,[1,2]),t=bc(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?ey(t,[1,n]):t):this.cell.stateSize>1?[ey(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===$r.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let r=t.cell,a=_r(r,n);return new e(Object.assign(t,{cell:a}))}};$r.className="RNN";re.registerClass($r);var Ic=class extends Xe{},Xp=class extends Ic{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Gt(this.units,"units"),this.activation=La(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=gt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=gt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=gt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=xt(e.kernelRegularizer),this.recurrentRegularizer=xt(e.recurrentRegularizer),this.biasRegularizer=xt(e.biasRegularizer),this.kernelConstraint=Wt(e.kernelConstraint),this.recurrentConstraint=Wt(e.recurrentConstraint),this.biasConstraint=Wt(e.biasConstraint),this.dropout=Sl([1,Oa([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Sl([1,Oa([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=dt(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return U(()=>{if(e=e,e.length!==2)throw new W(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let r=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Wa({ones:()=>Nn(e),rate:this.dropout,training:r})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Wa({ones:()=>Nn(n),rate:this.recurrentDropout,training:r}));let a,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?a=Vr(L(e,s),this.kernel.read()):a=Vr(e,this.kernel.read()),this.bias!=null&&(a=Ur(a,this.bias.read())),i!=null&&(n=L(n,i));let o=oe(a,Vr(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Pa(this.activation),useBias:this.useBias,kernelInitializer:kt(this.kernelInitializer),recurrentInitializer:kt(this.recurrentInitializer),biasInitializer:kt(this.biasInitializer),kernelRegularizer:pt(this.kernelRegularizer),recurrentRegularizer:pt(this.recurrentRegularizer),biasRegularizer:pt(this.biasRegularizer),activityRegularizer:pt(this.activityRegularizer),kernelConstraint:Lt(this.kernelConstraint),recurrentConstraint:Lt(this.recurrentConstraint),biasConstraint:Lt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};Xp.className="SimpleRNNCell";re.registerClass(Xp);var jy=class extends $r{constructor(e){e.cell=new Xp(e),super(e)}call(e,t){return U(()=>{this.cell.dropoutMask!=null&&(Fe(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Fe(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return new e(t)}};jy.className="SimpleRNN";re.registerClass(jy);var Kp=class extends Ic{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new W("GRUCell does not support reset_after parameter set to true.");this.units=e.units,Gt(this.units,"units"),this.activation=La(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=La(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=gt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=gt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=gt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=xt(e.kernelRegularizer),this.recurrentRegularizer=xt(e.recurrentRegularizer),this.biasRegularizer=xt(e.biasRegularizer),this.kernelConstraint=Wt(e.kernelConstraint),this.recurrentConstraint=Wt(e.recurrentConstraint),this.biasConstraint=Wt(e.biasConstraint),this.dropout=Sl([1,Oa([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Sl([1,Oa([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=dt(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return U(()=>{if(e=e,e.length!==2)throw new W(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,r=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Wa({ones:()=>Nn(e),rate:this.dropout,training:n,count:3})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Wa({ones:()=>Nn(r),rate:this.recurrentDropout,training:n,count:3}));let a=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0<this.dropout&&this.dropout<1&&(e=L(e,a[0]));let c=Vr(e,this.kernel.read());this.useBias&&(c=Ur(c,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(r=L(r,s[0]));let u=this.recurrentKernel.read(),[h,d]=sn(u,[2*this.units,this.units],u.rank-1),p=Vr(r,h),[f,m,A]=sn(c,3,c.rank-1),[y,g]=sn(p,2,p.rank-1);i=this.recurrentActivation.apply(oe(f,y)),o=this.recurrentActivation.apply(oe(m,g));let b=Vr(L(o,r),d);l=this.activation.apply(oe(A,b));let x=oe(L(i,r),L(oe(1,_t(i)),l));return[x,x]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Pa(this.activation),recurrentActivation:Pa(this.recurrentActivation),useBias:this.useBias,kernelInitializer:kt(this.kernelInitializer),recurrentInitializer:kt(this.recurrentInitializer),biasInitializer:kt(this.biasInitializer),kernelRegularizer:pt(this.kernelRegularizer),recurrentRegularizer:pt(this.recurrentRegularizer),biasRegularizer:pt(this.biasRegularizer),activityRegularizer:pt(this.activityRegularizer),kernelConstraint:Lt(this.kernelConstraint),recurrentConstraint:Lt(this.recurrentConstraint),biasConstraint:Lt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};Kp.className="GRUCell";re.registerClass(Kp);var Gy=class extends $r{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Kp(e),super(e)}call(e,t){return U(()=>{this.cell.dropoutMask!=null&&(Fe(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Fe(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Gy.className="GRU";re.registerClass(Gy);var Mc=class extends Ic{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Gt(this.units,"units"),this.activation=La(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=La(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=gt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=gt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=gt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=xt(e.kernelRegularizer),this.recurrentRegularizer=xt(e.recurrentRegularizer),this.biasRegularizer=xt(e.biasRegularizer),this.kernelConstraint=Wt(e.kernelConstraint),this.recurrentConstraint=Wt(e.recurrentConstraint),this.biasConstraint=Wt(e.biasConstraint),this.dropout=Sl([1,Oa([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Sl([1,Oa([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=dt(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let r;if(this.useBias){if(this.unitForgetBias){let a=this.biasInitializer,s=this.units;r=new(t=class extends or{apply(i,o){let l=a.apply([s]),c=new kp().apply([s]),u=a.apply([s*2]);return l3(l3(l,c),u)}},t.className="CustomInit",t)}else r=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,r,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return U(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new W(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let r=e[1],a=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Wa({ones:()=>Nn(e),rate:this.dropout,training:n,count:4})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Wa({ones:()=>Nn(r),rate:this.recurrentDropout,training:n,count:4}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,c,u;0<this.dropout&&this.dropout<1&&(e=L(e,s[0]));let h=Vr(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(r=L(r,i[0])),h=oe(h,Vr(r,this.recurrentKernel.read())),this.useBias&&(h=Ur(h,this.bias.read()));let[d,p,f,m]=sn(h,4,h.rank-1);o=this.recurrentActivation.apply(d),l=this.recurrentActivation.apply(p),c=oe(L(l,a),L(o,this.activation.apply(f))),u=this.recurrentActivation.apply(m);let A=L(u,this.activation.apply(c));return[A,A,c]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Pa(this.activation),recurrentActivation:Pa(this.recurrentActivation),useBias:this.useBias,kernelInitializer:kt(this.kernelInitializer),recurrentInitializer:kt(this.recurrentInitializer),biasInitializer:kt(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:pt(this.kernelRegularizer),recurrentRegularizer:pt(this.recurrentRegularizer),biasRegularizer:pt(this.biasRegularizer),activityRegularizer:pt(this.activityRegularizer),kernelConstraint:Lt(this.kernelConstraint),recurrentConstraint:Lt(this.recurrentConstraint),biasConstraint:Lt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};Mc.className="LSTMCell";re.registerClass(Mc);var qy=class extends $r{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Mc(e),super(e)}call(e,t){return U(()=>{this.cell.dropoutMask!=null&&(Fe(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Fe(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};qy.className="LSTM";re.registerClass(qy);var qp=class extends Ic{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return U(()=>{e=e;let n=e.slice(1),r=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?r.push(n.splice(0,i.stateSize.length)):r.push(n.splice(0,1));r.reverse();let a=[],s;for(let i=0;i<this.cells.length;++i){let o=this.cells[i];n=r[i],i===0?s=[e[0]].concat(n):s=[s[0]].concat(n),s=o.call(s,t),a.push(s.slice(1))}n=[];for(let i of a.slice().reverse())n.push(...i);return[s[0]].concat(n)})}build(e){fy(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,r)=>{Ai(`RNNCell_${r}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),n={cells:this.cells.map(t)};return Object.assign({},e,n)}static fromConfig(e,t,n={}){let r=[];for(let a of t.cells)r.push(_r(a,n));return new e({cells:r})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return my(e)}setWeights(e){let t=[];for(let n of this.cells){let r=n.weights.length,a=e.splice(r);for(let s=0;s<n.weights.length;++s)t.push([n.weights[s],a[s]])}Ay(t)}};qp.className="StackedRNNCells";re.registerClass(qp);function Wa(e){let{ones:t,rate:n,training:r=!1,count:a=1}=e,s=()=>c3(t(),n),i=()=>kc(s,t,r);return!a||a<=1?Vt(i().clone()):Array(a).fill(void 0).map(i).map(o=>Vt(o.clone()))}var wte=function(e,t){var n={};for(var r in e)Object.prototype.hasOwnProperty.call(e,r)&&t.indexOf(r)<0&&(n[r]=e[r]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var a=0,r=Object.getOwnPropertySymbols(e);a<r.length;a++)t.indexOf(r[a])<0&&Object.prototype.propertyIsEnumerable.call(e,r[a])&&(n[r[a]]=e[r[a]]);return n},h7=class extends $r{constructor(e){if(e.unroll)throw new De("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new De("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new Ut({ndim:5})]}call(e,t){return U(()=>{if(this.cell.dropoutMask!=null&&(Fe(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Fe(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new W("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return U(()=>{let{stateSize:t}=this.cell,n=e.shape,r=this.computeSingleOutputShape(n),a=[r[0],...r.slice(2)],s=Ct(a);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){U(()=>{if(!this.stateful)throw new sa("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,r=this.computeSingleOutputShape(n),a=[r[0],...r.slice(2)];if(n[0]==null)throw new W("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Ct(a)):this.states_=[Ct(a)];else if(e==null)Fe(this.states_),this.keptStates!=null&&(Fe(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Ct(a)):this.states_[0]=Ct(a);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new W(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Fe(this.states_);for(let s=0;s<this.states_.length;++s){let i=e[s],o=a;if(!k.arraysEqual(i.shape,o))throw new W(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${i.shape}`);this.states_[s]=i}}this.states_=this.states_.map(s=>Vt(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:r,padding:a,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],c=e[o?4:3],u=br(l,r[0],a,s[0],i[0]),h=br(c,r[1],a,s[1],i[1]);return[...e.slice(0,2),...o?[n,u,h]:[u,h,n]]}};h7.className="ConvRNN2D";var Zp=class extends Mc{constructor(e){let{filters:t,kernelSize:n,strides:r,padding:a,dataFormat:s,dilationRate:i}=e;super(Object.assign({},e,{units:t}));this.filters=t,Gt(this.filters,"filters"),this.kernelSize=Rl(n,2,"kernelSize"),this.kernelSize.forEach(o=>Gt(o,"kernelSize")),this.strides=Rl(r||1,2,"strides"),this.strides.forEach(o=>Gt(o,"strides")),this.padding=a||"valid",Hn(this.padding),this.dataFormat=s||"channelsLast",Tt(this.dataFormat),this.dilationRate=Rl(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>Gt(o,"dilationRate"))}build(e){var t;e=dt(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new W(`The channel dimension of the input should be defined. Found ${e[n]}`);let r=e[n],a=4,s=this.kernelSize.concat([r,this.filters*a]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*a]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,c=this.filters;o=new(t=class extends or{apply(u,h){let d=l.apply([c]),p=Rr([c]),f=l.apply([c*2]);return ny([d,p,f])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*a],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return U(()=>{if(e.length!==3)throw new W(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,r=e[0],a=e[1],s=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Wa({ones:()=>Nn(r),rate:this.dropout,training:n,count:i}));let o=this.dropoutMask,l=(J,ae,Y)=>!ae||!ae[Y]?J:L(ae[Y],J),c=l(r,o,0),u=l(r,o,1),h=l(r,o,2),d=l(r,o,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Wa({ones:()=>Nn(a),rate:this.recurrentDropout,training:n,count:i}));let p=this.recurrentDropoutMask,f=l(a,p,0),m=l(a,p,1),A=l(a,p,2),y=l(a,p,3),g=3,[b,x,w,_]=sn(this.kernel.read(),i,g),[N,T,E,M]=this.useBias?sn(this.bias.read(),i):[null,null,null,null];c=this.inputConv(c,b,N,this.padding),u=this.inputConv(u,x,T,this.padding),h=this.inputConv(h,w,E,this.padding),d=this.inputConv(d,_,M,this.padding);let[z,P,B,G]=sn(this.recurrentKernel.read(),i,g);f=this.recurrentConv(f,z),m=this.recurrentConv(m,P),A=this.recurrentConv(A,B),y=this.recurrentConv(y,G);let V=this.recurrentActivation.apply(oe(c,f)),K=this.recurrentActivation.apply(oe(u,m)),X=oe(L(K,s),L(V,this.activation.apply(oe(h,A)))),ee=L(this.recurrentActivation.apply(oe(d,y)),this.activation.apply(X));return[ee,ee,X]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=wte(e,["units"]),r={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,r)}inputConv(e,t,n,r){let a=Zr(e,t,this.strides,r||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Ur(a,n,this.dataFormat):a}recurrentConv(e,t){return Zr(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Zp.className="ConvLSTM2DCell";re.registerClass(Zp);var Xy=class extends h7{constructor(e){let t=new Zp(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};Xy.className="ConvLSTM2D";re.registerClass(Xy);var Jp=class extends Xe{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let r=0;r<this.noiseShape.length;++r)n.push(this.noiseShape[r]==null?t[r]:this.noiseShape[r]);return n}call(e,t){return U(()=>{this.invokeCallHook(e,t);let n=Pe(e);if(0<this.rate&&this.rate<1){let r=t.training==null?!1:t.training,a=this.getNoiseShape(n);return kc(()=>c3(n,this.rate,a,this.seed),()=>n,r)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};Jp.className="Dropout";re.registerClass(Jp);var Ky=class extends Jp{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};Ky.className="SpatialDropout1D";re.registerClass(Ky);var Zy=class extends Xe{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,Gt(this.units,"units"),this.activation=La(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=gt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=gt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Wt(e.kernelConstraint),this.biasConstraint=Wt(e.biasConstraint),this.kernelRegularizer=xt(e.kernelRegularizer),this.biasRegularizer=xt(e.biasRegularizer),this.activityRegularizer=xt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=dt(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=dt(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return U(()=>{this.invokeCallHook(e,t);let n=Pe(e),r=Qb(this.activation.getClassName()),a;return r!=null?a=Vr(n,this.kernel.read(),r,this.bias?this.bias.read():null):(a=Vr(n,this.kernel.read()),this.bias!=null&&(a=Ur(a,this.bias.read())),this.activation!=null&&(a=this.activation.apply(a))),a})}getConfig(){let e={units:this.units,activation:Pa(this.activation),useBias:this.useBias,kernelInitializer:kt(this.kernelInitializer),biasInitializer:kt(this.biasInitializer),kernelRegularizer:pt(this.kernelRegularizer),biasRegularizer:pt(this.biasRegularizer),activityRegularizer:pt(this.activityRegularizer),kernelConstraint:Lt(this.kernelConstraint),biasConstraint:Lt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Zy.className="Dense";re.registerClass(Zy);var Jy=class extends Xe{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=dt(e);for(let t of e.slice(1))if(t==null)throw new W(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Da(e,1)]}call(e,t){return U(()=>{this.invokeCallHook(e,t);let n=Pe(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let r=[0];for(let a=2;a<n.rank;++a)r.push(a);r.push(1),n=n.transpose(r)}return KY(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};Jy.className="Flatten";re.registerClass(Jy);var Yy=class extends Xe{constructor(e){super(e);this.supportsMasking=!0,this.activation=La(e.activation)}call(e,t){return U(()=>{this.invokeCallHook(e,t);let n=Pe(e);return this.activation.apply(n)})}getConfig(){let e={activation:Pa(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};Yy.className="Activation";re.registerClass(Yy);var Qy=class extends Xe{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return U(()=>(e=Pe(e),qY(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};Qy.className="RepeatVector";re.registerClass(Qy);var eg=class extends Xe{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",r=t.slice(),a=1,s=null;for(let o=0;o<r.length;++o){let l=r[o];if(this.isUnknown(l))if(s===null)s=o;else throw new W("Can only specifiy one unknown dimension.");else a*=l}let i=Da(e);if(s!==null){if(a===0||i%a!=0)throw new W(n);r[s]=i/a}else if(i!==a)throw new W(n);return r}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return U(()=>{this.invokeCallHook(e,t);let n=Pe(e),r=n.shape,a=r.slice(0,1).concat(this.fixUnknownDimension(r.slice(1),this.targetShape));return n.reshape(a)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};eg.className="Reshape";re.registerClass(eg);var tg=class extends Xe{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=wr(1,e.dims.length+1);if(!k.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Ut({ndim:this.dims.length+1})]}computeOutputShape(e){e=dt(e);let t=e.slice();return this.dims.forEach((n,r)=>{t[r+1]=e[n]}),t}call(e,t){return at(Pe(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};tg.className="Permute";re.registerClass(tg);var ng=class extends Xe{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Pe(e),r=-1;return ku(Xs(n,this.maskValue),r)}call(e,t){return U(()=>{this.invokeCallHook(e,t);let n=Pe(e),r=-1,a=!0,s=ku(Xs(n,this.maskValue),r,a);return n.mul(s.asType(n.dtype))})}};ng.className="Masking";re.registerClass(ng);var rg=class extends Xe{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(mt(e.inputLength))}this.inputDim=e.inputDim,Gt(this.inputDim,"inputDim"),this.outputDim=e.outputDim,Gt(this.outputDim,"outputDim"),this.embeddingsInitializer=gt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=xt(e.embeddingsRegularizer),this.activityRegularizer=xt(e.activityRegularizer),this.embeddingsConstraint=Wt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return U(()=>this.maskZero?(e=Pe(e),Xs(e,He(e))):null)}computeOutputShape(e){if(e=dt(e),this.inputLength==null)return[...e,this.outputDim];let t=mt(this.inputLength);if(t.length!==e.length-1)throw new W(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let r=0;r<t.length;++r){let a=t[r],s=e[r+1];if(a!=null&&s!=null&&a!==s)throw new W(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);a==null&&(t[n]=s),n++}}return[e[0],...t,this.outputDim]}call(e,t){return U(()=>{this.invokeCallHook(e,t);let n=Pe(e);return n.dtype!=="int32"&&(n=_c(n,"int32")),u3(this.embeddings.read(),n.as1D()).reshape(dt(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:kt(this.embeddingsInitializer),embeddingsRegularizer:pt(this.embeddingsRegularizer),activityRegularizer:pt(this.activityRegularizer),embeddingsConstraint:Lt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};rg.className="Embedding";re.registerClass(rg);var _i=class extends Xe{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new De}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let r=0;r<t.length;++r){let a=e[e.length-t.length+r],s=t[r];if(a==null||s==null||a<0||s<0)n.push(null);else if(a===1)n.push(s);else if(s===1)n.push(a);else{if(a!==s)throw new W("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(a)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[dt(e)]),e=e,e.length<2)throw new W(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let a of e)a!=null&&a[0]!==null&&t.push(a[0]);if(t=$a(t),t.length>1)throw new W(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let a=1;a<e.length;++a){let s=e[a]==null?null:e[a].slice(1);n=this.computeElementwiseOpOutputShape(n,s)}let r=e.map(a=>a.length);e.indexOf(null)===-1&&$a(r).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return U(()=>{if(e=e,this.reshapeRequired){let n=[],r=e.map(a=>a.rank);if(r.indexOf(null)===-1){let a=Oa(r);for(let s of e){let i=s.rank;for(let o=0;o<a-i;++o)s=bc(s,1);n.push(s)}return this.mergeFunction(n)}else{let a=!1;for(let o of e){let l=o.rank;if(l==null){let c=o.shape,u=c[0],h=c.slice(1).concat([u]),d=o.reshape([u].concat(Da(c.slice(1))));d=at(d,[1,0]),d=d.reshape(h),n.push(d),a=!0}else if(l>1){let c=wr(1,l).concat([0]);n.push(at(o,c)),a=!0}else n.push(o)}let s=this.mergeFunction(n),i=s.rank;if(a){if(i==null){let o=s.shape,l=o.length,c=o[l-1],u=[c].concat(o.slice(0,o.length-1));s=at(s.reshape([-1,c]),[1,0]).reshape(u)}else if(i>1){let o=[i-1].concat(wr(0,i-1));s=at(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let r=1;r<e.length;++r){let a=e[r]==null?null:e[r].slice(1);t=this.computeElementwiseOpOutputShape(t,a)}let n=[];for(let r of e)r!=null&&r[0]!==null&&n.push(r[0]);return n=$a(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return U(()=>{if(t==null)return null;if(!Array.isArray(t))throw new W("`mask` should be an Array");if(!Array.isArray(e))throw new W("`inputs` should be an Array");if(t.length!==e.length)throw new W(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(r=>r==null))return null;t=t.map(r=>r==null?r:kn(r,0));let n=t[0];for(let r=1;r<t.length-1;++r)n=tr(n,t[r]);return n})}},ag=class extends _i{constructor(e){super(e)}mergeFunction(e){return U(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=oe(t,e[n]);return t})}};ag.className="Add";re.registerClass(ag);var sg=class extends _i{constructor(e){super(e)}mergeFunction(e){return U(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=L(t,e[n]);return t})}};sg.className="Multiply";re.registerClass(sg);var ig=class extends _i{constructor(e){super(e)}mergeFunction(e){return U(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=oe(t,e[n]);return L(1/e.length,t)})}};ig.className="Average";re.registerClass(ig);var og=class extends _i{constructor(e){super(e)}mergeFunction(e){return U(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Cr(t,e[n]);return t})}};og.className="Maximum";re.registerClass(og);var lg=class extends _i{constructor(e){super(e)}mergeFunction(e){return U(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Ko(t,e[n]);return t})}};lg.className="Minimum";re.registerClass(lg);var ug=class extends _i{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new W("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let r of e)if(r!=null){t=!1;break}if(t)return;let n=[];for(let r=0;r<e.length;++r){let a=e[r].slice();a.splice(this.axis,1);let s=!1;for(let i of n)if(k.arraysEqual(i,a)){s=!0;break}s||n.push(a)}if(n.length>1)throw new W("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return U(()=>ny(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new W("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),r=this.axis<0?n.length+this.axis:this.axis;for(let a of t.slice(1)){if(n[r]==null||a[r]==null){n[r]=null;break}n[r]+=a[r]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new W("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new W("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new W(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return U(()=>{let n=!0;if(t.forEach(s=>{if(s!=null){n=!1;return}}),n)return null;let r=[];for(let s=0;s<e.length;++s)t[s]==null?r.push(Nn(e[s]).asType("bool")):t[s].rank<e[s].rank?r.push(kn(t[s],-1)):r.push(t[s]);let a=ct(r,this.axis);return ed(a,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};ug.className="Concatenate";re.registerClass(ug);function $c(e,t){for(;e<0;)e+=t;return e}function _te(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new De("batchDot is not implemented for tensors of 4D or higher rank yet");if(k.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),k.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new De("batchDot is not implemented for complex64-type Tensors yet.");let r=e.shape.length,a=t.shape.length;n==null&&(n=[r-1,a-2]);let s=n;return U(()=>{let i;if(r>a){i=r-a;let l=[];for(let c=0;c<i;++c)l.push(1);t=t.reshape(t.shape.concat(l))}else if(a>r){i=a-r;let l=[];for(let c=0;c<i;++c)l.push(1);e=e.reshape(e.shape.concat(l))}else i=0;let o;if(e.shape.length===2&&t.shape.length===2)s[0]===s[1]?o=e.mul(t).sum(s[0]):o=e.transpose([1,0]).mul(t).sum(s[1]);else{let l=s[0]!==e.shape.length-1,c=s[1]===t.shape.length-1;o=e.matMul(t,l,c)}if(i>0){let l;r>a?l=r+a-3:l=r-1;let c=[];for(let u=l;u<l+i;++u)c.push(u);o=o.squeeze(c)}return o.shape.length===1&&(o=o.expandDims(1)),o})}var cg=class extends _i{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){k.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new De("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);if(t[r[0]]!==n[r[1]])throw new W(`Dimension incompatibility: ${t[r[0]]} !== ${n[r[1]]}`)}mergeFunction(e){if(e.length!==2)throw new W(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],r;return Array.isArray(this.axes)?r=this.axes.map((a,s)=>$c(a,e[s].shape.length)):r=[$c(this.axes,t.shape.length),$c(this.axes,n.shape.length)],this.normalize&&(t=Op(t,r[0]),n=Op(n,r[1])),_te(t,n,r)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[$c(this.axes,e.length),$c(this.axes,t.length)],n}computeOutputShape(e){k.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new De("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);t.splice(r[0],1),n.splice(r[1],1),n.splice(0,1);let a=t.concat(n);return a.length===1&&a.push(1),a}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};cg.className="Dot";re.registerClass(cg);var hg=class extends Xe{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return U(()=>{this.invokeCallHook(e,t);let n=Pe(e);return kc(()=>vp(n.shape,0,this.stddev).add(n),()=>n,t.training||!1)})}};hg.className="GaussianNoise";re.registerClass(hg);var dg=class extends Xe{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return U(()=>{this.invokeCallHook(e,t);let n=Pe(e);return this.rate>0&&this.rate<1?kc(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return n.mul(vp(n.shape,1,r))},()=>n,t.training||!1):n})}};dg.className="GaussianDropout";re.registerClass(dg);var pg=class extends Xe{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Pe(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return U(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return kc(()=>{let r=Pe(e),a=1.6732632423543772,s=1.0507009873554805,i=-a*s,o=ba(Zo(n),this.rate);o=_c(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,c=-l*i*this.rate;return r.mul(o).add(o.add(-1).mul(i)).mul(l).add(c)},()=>Pe(e),t.training||!1)}return e})}};pg.className="AlphaDropout";re.registerClass(pg);function Dc(e,t,n,r,a,s=.001){let i;if(e.rank===2)i=K2(e,t,n,r,a,s);else if(e.rank===3)i=Z2(e,t,n,r,a,s);else if(e.rank===4)i=J2(e,t,n,r,a,s);else throw new De(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function bte(e,t,n,r,a=.001){return U(()=>{let s=hd(e,r),i=s.mean,o=s.variance;return[Dc(e,i,o,n,t,a),i,o]})}function vte(e,t,n,r,a=.001){return U(()=>{let s=hd(e,r),i=s.mean,o=s.variance,l=[];for(let p of wr(0,e.rank))r.indexOf(p)!==-1?l.push(1):l.push(e.shape[p]);let c=i.reshape(l),u=o.reshape(l),h=t==null?null:t.reshape(l),d=n==null?null:n.reshape(l);return[Dc(e,c,u,d,h,a),i,o]})}function kte(e,t,n,r,a=.001){return k.arraysEqual(r.slice().sort(),wr(0,e.rank-1))?bte(e,t,n,r,a):vte(e,t,n,r,a)}var fg=class extends Xe{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=gt(e.betaInitializer||"zeros"),this.gammaInitializer=gt(e.gammaInitializer||"ones"),this.movingMeanInitializer=gt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=gt(e.movingVarianceInitializer||"ones"),this.betaConstraint=Wt(e.betaConstraint),this.gammaConstraint=Wt(e.gammaConstraint),this.betaRegularizer=xt(e.betaRegularizer),this.gammaRegularizer=xt(e.gammaRegularizer)}build(e){e=dt(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new W(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Ut({ndim:e.length,axes:{[t]:n}})];let r=[n];this.scale&&(this.gamma=this.addWeight("gamma",r,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",r,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",r,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",r,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return U(()=>{let n=t.training==null?!1:t.training,r=Pe(e),a=r.shape,s=a.length,i=wr(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=pi(1,s);l[o]=a[o];let c=i.slice();c.sort();let u=!k.arraysEqual(c,wr(0,s).slice(0,s-1)),h=()=>{if(u){let A=this.movingMean.read().reshape(l),y=this.movingVariance.read().reshape(l),g=this.center?this.beta.read().reshape(l):null,b=this.scale?this.gamma.read().reshape(l):null;return Dc(r,A,y,g,b,this.epsilon)}else return Dc(r,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return h();let[d,p,f]=kte(r,this.gamma.read(),this.beta.read(),i,this.epsilon),m=(A,y,g)=>{U(()=>{let b=1-g,x=A.read(),w=x.sub(y).mul(b);A.write(x.sub(w))})};return(()=>{m(this.movingMean,p,this.momentum),m(this.movingVariance,f,this.momentum)})(),d})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:kt(this.betaInitializer),gammaInitializer:kt(this.gammaInitializer),movingMeanInitializer:kt(this.movingMeanInitializer),movingVarianceInitializer:kt(this.movingVarianceInitializer),betaRegularizer:pt(this.betaRegularizer),gammaRegularizer:pt(this.gammaRegularizer),betaConstraint:Lt(this.betaConstraint),gammaConstraint:Lt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};fg.className="BatchNormalization";re.registerClass(fg);var mg=class extends Xe{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=gt(e.betaInitializer||"zeros"),this.gammaInitializer=gt(e.gammaInitializer||"ones"),this.betaRegularizer=xt(e.betaRegularizer),this.gammaRegularizer=xt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=dt(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let a=0;a<this.axis.length;++a)this.axis[a]<0&&(this.axis[a]+=t);for(let a of this.axis)if(a<0||a>=t)throw new Error(`Invalid axis: ${a}`);if(this.axis.length!==$a(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(a=>e[a]),r=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,r):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,r):this.beta=null,this.built=!0}call(e,t){let n=Pe(e),r=n.shape,a=r.length;return U(()=>{let s=!0,{mean:i,variance:o}=hd(n,this.axis,s),l=pi(1,a);for(let f of this.axis)l[f]=r[f];let c=f=>f!=null&&f.shape.length!==a&&this.axis!==[a-1]?f.reshape(l):f,u=c(this.gamma.read()),h=c(this.beta.read()),d=[],p=[];for(let f=0;f<a;++f)this.axis.indexOf(f)!==-1?(d.push(r[f]),p.push(1)):(d.push(1),p.push(r[f]));return i=i.tile(d),o=o.tile(d),u=u.tile(p),h=h.tile(p),Dc(n,i,o,h,u,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:kt(this.betaInitializer),gammaInitializer:kt(this.gammaInitializer),betaRegularizer:pt(this.betaRegularizer),gammaRegularizer:pt(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};mg.className="LayerNormalization";re.registerClass(mg);function Ite(e,t,n){return U(()=>{if(e.rank!==4)throw new W(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new W("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=gr()),n!=="channelsLast"&&n!=="channelsFirst")throw new W(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let r;return n==="channelsFirst"?r=[[0,0],[0,0],t[0],t[1]]:r=[[0,0],t[0],t[1],[0,0]],Jr(e,r)})}var Ag=class extends Xe{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?gr():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new W(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new W(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new W(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Ut({ndim:4})]}computeOutputShape(e){e=dt(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return U(()=>Ite(Pe(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Ag.className="ZeroPadding2D";re.registerClass(Ag);function Yp(e,t,n,r,a,s){return U(()=>{Tt(a),n3(s),Hn(r),n==null&&(n=[1,1]),r==null&&(r="valid"),a==null&&(a=gr()),s==null&&(s="max"),e=Py(e,a);let i,o=r==="same"?"same":"valid";return s==="max"?i=Mu(e,t,n,o):i=Nu(e,t,n,o),a==="channelsFirst"&&(i=at(i,[0,3,1,2])),i})}function d7(e,t,n,r,a,s){return U(()=>{Tt(a),n3(s),Hn(r),n==null&&(n=[1,1,1]),r==null&&(r="valid"),a==null&&(a=gr()),s==null&&(s="max"),e=i7(e,a);let i,o=r==="same"?"same":"valid";return s==="max"?i=em(e,t,n,o):i=Uf(e,t,n,o),a==="channelsFirst"&&(i=at(i,[0,4,1,2,3])),i})}var p7=class extends Xe{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new W(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(Gt(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new W(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);Gt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,Hn(this.padding),this.inputSpec=[new Ut({ndim:3})]}computeOutputShape(e){e=dt(e);let t=br(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return U(()=>{this.invokeCallHook(e,t),e=bc(Pe(e),2);let n=this.poolingFunction(Pe(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return va(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},yg=class extends p7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Tt(a),Hn(r),Yp(e,t,n,r,a,"max")}};yg.className="MaxPooling1D";re.registerClass(yg);var gg=class extends p7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Tt(a),Hn(r),Yp(e,t,n,r,a,"avg")}};gg.className="AveragePooling1D";re.registerClass(gg);var f7=class extends Xe{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new W(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];Gt(this.poolSize,"poolSize"),Gt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Tt(this.dataFormat),Hn(this.padding),this.inputSpec=[new Ut({ndim:4})]}computeOutputShape(e){e=dt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=br(t,this.poolSize[0],this.padding,this.strides[0]),n=br(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return U(()=>(this.invokeCallHook(e,t),this.poolingFunction(Pe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},xg=class extends f7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Tt(a),Hn(r),Yp(e,t,n,r,a,"max")}};xg.className="MaxPooling2D";re.registerClass(xg);var wg=class extends f7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Tt(a),Hn(r),Yp(e,t,n,r,a,"avg")}};wg.className="AveragePooling2D";re.registerClass(wg);var m7=class extends Xe{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new W(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];Gt(this.poolSize,"poolSize"),Gt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Tt(this.dataFormat),Hn(this.padding),this.inputSpec=[new Ut({ndim:5})]}computeOutputShape(e){e=dt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=br(t,this.poolSize[0],this.padding,this.strides[0]),n=br(n,this.poolSize[1],this.padding,this.strides[1]),r=br(r,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,r]:[e[0],t,n,r,e[4]]}call(e,t){return U(()=>(this.invokeCallHook(e,t),this.poolingFunction(Pe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},_g=class extends m7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Tt(a),Hn(r),d7(e,t,n,r,a,"max")}};_g.className="MaxPooling3D";re.registerClass(_g);var bg=class extends m7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Tt(a),Hn(r),d7(e,t,n,r,a,"avg")}};bg.className="AveragePooling3D";re.registerClass(bg);var A7=class extends Xe{constructor(e){super(e);this.inputSpec=[new Ut({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new De}},vg=class extends A7{constructor(e){super(e||{})}call(e,t){return U(()=>{let n=Pe(e);return bt(n,1)})}};vg.className="GlobalAveragePooling1D";re.registerClass(vg);var kg=class extends A7{constructor(e){super(e||{})}call(e,t){return U(()=>{let n=Pe(e);return Wn(n,1)})}};kg.className="GlobalMaxPooling1D";re.registerClass(kg);var y7=class extends Xe{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Tt(this.dataFormat),this.inputSpec=[new Ut({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new De}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Ig=class extends y7{call(e,t){return U(()=>{let n=Pe(e);return this.dataFormat==="channelsLast"?bt(n,[1,2]):bt(n,[2,3])})}};Ig.className="GlobalAveragePooling2D";re.registerClass(Ig);var Ng=class extends y7{call(e,t){return U(()=>{let n=Pe(e);return this.dataFormat==="channelsLast"?Wn(n,[1,2]):Wn(n,[2,3])})}};Ng.className="GlobalMaxPooling2D";re.registerClass(Ng);var g7=class extends Xe{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let r=t.layer,a=_r(r,n);delete t.layer;let s={layer:a};return Object.assign(s,t),new e(s)}},Sg=class extends g7{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=dt(e),e.length<3)throw new W(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=dt(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),r=e[1];return[n[0],r].concat(n.slice(1))}call(e,t){return U(()=>(e=Pe(e),c7((n,r)=>[Pe(this.layer.call(n,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};Sg.className="TimeDistributed";re.registerClass(Sg);function Nte(e){mi(VY,"BidirectionalMergeMode",e)}var Ste="concat",Tg=class extends g7{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=_r(n),t.goBackwards=t.goBackwards!==!0;let r={};if(r.className=e.layer.getClassName(),r.config=t,this.backwardLayer=_r(r),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?Ste:e.mergeMode,Nte(this.mergeMode),e.weights)throw new De("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,r,a;return this.returnState&&(a=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,r=[n]):this.mergeMode==null?r=[n,n.slice()]:r=[n],this.returnState?this.mergeMode==null?r.concat(a).concat(a.slice()):[n].concat(a).concat(a.slice()):gn(r)}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let a=u7(e,n,r,this.numConstants);if(e=a.inputs,n=a.initialState,r=a.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&r==null)return super.apply(e,t);let s=[],i=[];if(n!=null){let l=n.length;if(l%2>0)throw new W("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,s.push(...n);let c=n.map(u=>new Ut({shape:u.shape}));this.forwardLayer.stateSpec=c.slice(0,l/2),this.backwardLayer.stateSpec=c.slice(l/2),i.push(...c)}if(r!=null)throw new De("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof mr;for(let l of s)if(l instanceof mr!==o)throw new W("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),c=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=c;let h=super.apply(l,t);return this.inputSpec=u,h}else return super.apply(e,t)}call(e,t){return U(()=>{let n=t.initialState,r,a;if(n==null)r=this.forwardLayer.call(e,t),a=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),l=n.slice(n.length/2);r=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),a=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(r)&&(s=r.slice(1).concat(a.slice(1))),r=r[0],a=a[0]),this.returnSequences&&(a=Sn(a,1));let i;return this.mergeMode==="concat"?i=ny([r,a]):this.mergeMode==="sum"?i=oe(r,a):this.mergeMode==="ave"?i=L(.5,oe(r,a)):this.mergeMode==="mul"?i=L(r,a):this.mergeMode==null&&(i=[r,a]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Ai(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Ai(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=_r(t.layer);if(delete t.layer,t.numConstants!=null)throw new De("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let r=t;return r.layer=n,new e(r)}};Tg.className="Bidirectional";re.registerClass(Tg);function aQ(e){return new Tl(e)}function sQ(e){return new Dy(e)}function iQ(e){return new Fy(e)}function oQ(e){return new My(e)}function lQ(e){return new $y(e)}function uQ(e){return new zy(e)}function cQ(e){return new Oy(e)}function hQ(e){return new Gp(e)}function dQ(e){return new Fc(e)}function pQ(e){return new Wy(e)}function fQ(e){return new jp(e)}function mQ(e){return new By(e)}function AQ(e){return new Vy(e)}function yQ(e){return new Uy(e)}function gQ(e){return new Hy(e)}function xQ(e){return new Yy(e)}function wQ(e){return new Zy(e)}function _Q(e){return new Jp(e)}function bQ(e){return new Ky(e)}function vQ(e){return new Jy(e)}function kQ(e){return new Qy(e)}function IQ(e){return new eg(e)}function NQ(e){return new tg(e)}function SQ(e){return new rg(e)}function TQ(e){return new ag(e)}function EQ(e){return new ig(e)}function CQ(e){return new ug(e)}function RQ(e){return new og(e)}function FQ(e){return new lg(e)}function MQ(e){return new sg(e)}function $Q(e){return new cg(e)}function DQ(e){return new fg(e)}function OQ(e){return new mg(e)}function zQ(e){return new Ag(e)}function hy(e){return new gg(e)}function PQ(e){return hy(e)}function LQ(e){return hy(e)}function dy(e){return new wg(e)}function WQ(e){return dy(e)}function BQ(e){return dy(e)}function py(e){return new bg(e)}function VQ(e){return py(e)}function UQ(e){return py(e)}function HQ(e){return new vg(e)}function jQ(e){return new Ig(e)}function p3(e){return new kg(e)}function f3(e){return new Ng(e)}function m3(e){return new yg(e)}function A3(e){return new xg(e)}function GQ(e){return new _g(e)}function qQ(e){return new Gy(e)}function XQ(e){return new Kp(e)}function KQ(e){return new qy(e)}function ZQ(e){return new Mc(e)}function JQ(e){return new jy(e)}function YQ(e){return new Xp(e)}function QQ(e){return new Xy(e)}function eee(e){return new Zp(e)}function tee(e){return new $r(e)}function nee(e){return new qp(e)}function ree(e){return new Tg(e)}function aee(e){return new Sg(e)}var see=p3,iee=f3,oee=m3,lee=A3;function uee(e){return new hg(e)}function cee(e){return new dg(e)}function hee(e){return new pg(e)}function dee(e){return new ng(e)}var z0={};ze(z0,{MAPE:()=>Pte,MSE:()=>Bte,binaryAccuracy:()=>Tte,binaryCrossentropy:()=>Ete,categoricalAccuracy:()=>Rte,categoricalCrossentropy:()=>Fte,cosineProximity:()=>Dte,mape:()=>Lte,meanAbsoluteError:()=>Ote,meanAbsolutePercentageError:()=>zte,meanSquaredError:()=>Wte,mse:()=>Vte,precision:()=>Mte,recall:()=>$te,sparseCategoricalAccuracy:()=>Cte});function Tte(e,t){return xy(e,t)}function Ete(e,t){return S3(e,t)}function Cte(e,t){return T3(e,t)}function Rte(e,t){return wy(e,t)}function Fte(e,t){return _y(e,t)}function Mte(e,t){return N3(e,t)}function $te(e,t){return Ree(e,t)}function Dte(e,t){return yy(e,t)}function Ote(e,t){return zp(e,t)}function zte(e,t){return Cl(e,t)}function Pte(e,t){return Cl(e,t)}function Lte(e,t){return Cl(e,t)}function Wte(e,t){return gi(e,t)}function Bte(e,t){return gi(e,t)}function Vte(e,t){return gi(e,t)}var P0={};ze(P0,{modelFromJSON:()=>hte});var L0={};ze(L0,{l1:()=>Hte,l1l2:()=>Ute,l2:()=>jte});function Ute(e){return new Cc(e)}function Hte(e){return mte(e)}function jte(e){return Ate(e)}var W0=class extends El{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof ea))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function Qp(e,t){return e<t}function x7(e,t){return e>t}var B0=class extends W0{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new De("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=Qp:this.mode==="max"?this.monitorFunc=x7:this.monitor.indexOf("acc")!==-1?this.monitorFunc=x7:this.monitorFunc=Qp,this.monitorFunc===Qp&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Qp?Infinity:-Infinity}async onEpochEnd(e,t){await za(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function Gte(e){return new B0(e)}var H8={earlyStopping:Gte},vr;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(vr||(vr={}));var w7;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(w7||(w7={}));var Eg={};function j8(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};Eg[e]=n}function _7(e){return Eg[e]}function G8(e){delete Eg[e]}function I(e,t,n,r,a){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return wn(t.inputNames[s.inputIndexStart],n,r,a);if(s.type==="tensors")return t.inputNames.slice(o,l).map(h=>wn(h,n,r,a));let c=wn(t.inputNames.slice(o)[0],n,r,a),u=c.dataSync();return s.type==="number"?u[0]:k.toNestedArray(c.shape,u)}let i=t.attrParams[e];return i&&i.value}function wn(e,t,n,r){let[a,s]=Mn(e);if(r!=null){let o=r.getHashTableHandleByName(a);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[e1(a,o)]);return i!==void 0?t[e1(a,i)][s]:void 0}function qte(e,t,n){return t[e1(e,n.currentContextId)]}function oa(e,t){let[n,r]=Mn(e);return[e1(n,t&&t.currentContextId),r]}function e1(e,t){return t?`${e}-${t}`:e}function Mn(e){let t=e.split(":");return t.length===1?[e,0]:[t[0],Number(t[t.length-1])]}function t1(e,t,n){let r=I("pad",e,t,n);if(r==="explicit"){r=I("explicitPaddings",e,t,n);let a=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)a[s][0]=r[s*2],a[s][1]=r[s*2+1];return a}return r}function la(e){return e.kept?e:Sr(e)}var b7={};ze(b7,{json:()=>Xte});var Xte=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],v7={};ze(v7,{json:()=>Kte});var Kte=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],k7={};ze(k7,{json:()=>Zte});var Zte=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],I7={};ze(I7,{json:()=>Jte});var Jte=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],N7={};ze(N7,{json:()=>Yte});var Yte=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],S7={};ze(S7,{json:()=>Qte});var Qte=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],T7={};ze(T7,{json:()=>ene});var ene=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],E7={};ze(E7,{json:()=>tne});var tne=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],C7={};ze(C7,{json:()=>nne});var nne=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]}],R7={};ze(R7,{json:()=>rne});var rne=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],F7={};ze(F7,{json:()=>ane});var ane=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],M7={};ze(M7,{json:()=>sne});var sne=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],$7={};ze($7,{json:()=>ine});var ine=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],D7={};ze(D7,{json:()=>one});var one=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],O7={};ze(O7,{json:()=>lne});var lne=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],z7={};ze(z7,{json:()=>une});var une=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],P7={};ze(P7,{json:()=>cne});var cne=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}],W7=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[b7,v7,k7,I7,N7,S7,T7,F7,R7,E7,M7,$7,D7,O7,z7,P7,C7],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,r)=>(n[r.tfOpName]=r,n),{})}transformGraph(e,t={}){let n=e.node,r=[],a=[],s=[],i=n.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?r.push(f[m.name]):m.op==="Const"?a.push(f[m.name]):(m.input==null||m.input.length===0)&&s.push(f[m.name]),f),{}),o=[],l=[],c={},u={};t!=null&&(c=this.mapSignatureEntries(t.inputs),u=this.mapSignatureEntries(t.outputs));let h=Object.keys(i);h.forEach(f=>{let m=i[f];m.inputNames.forEach(A=>{let[y]=oa(A);m.inputs.push(i[y]),i[y].children.push(m)})}),Object.keys(u).length===0?h.forEach(f=>{let m=i[f];m.children.length===0&&l.push(m)}):Object.keys(u).forEach(f=>{let[m]=oa(f),A=i[m];A!=null&&(A.signatureKey=u[f],l.push(A))}),Object.keys(c).length>0?Object.keys(c).forEach(f=>{let[m]=oa(f),A=i[m];A&&(A.signatureKey=c[f],o.push(A))}):o=r;let d={};e.library!=null&&e.library.function!=null&&(d=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let p={nodes:i,inputs:o,outputs:l,weights:a,placeholders:r,signature:t,functions:d};return s.length>0&&(p.initNodes=s),p}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=_7(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(r=>r.startsWith("^")?r.substr(1):r),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((r,a)=>(r[a.name]={type:a.type,inputIndexStart:a.start,inputIndexEnd:a.end},r),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((r,a)=>{let s=a.type,i;switch(a.type){case"string":i=Cg(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Cg(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"string[]":i=Pg(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Pg(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number":i=Fg(e.attr,a.tfName,a.defaultValue||0),i===void 0&&!!a.tfDeprecatedName&&(i=Fg(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number[]":i=zg(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=zg(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool":i=Rg(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Rg(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool[]":i=Wg(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Wg(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape":i=Og(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Og(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape[]":i=Lg(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Lg(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype":i=$g(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=$g(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype[]":i=Dg(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Dg(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"func":i=L7(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=L7(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${a.type} for op: ${e.op}`)}return r[a.name]={value:i,type:s},r},{})),n}mapFunction(e){let t=e.nodeDef,n=[],r=[],a={};t!=null&&(a=t.reduce((c,u)=>(c[u.name]=this.mapNode(u),u.op==="Const"&&r.push(c[u.name]),c),{}));let s=[],i=[];e.signature.inputArg.forEach(c=>{let[u]=oa(c.name),h={name:u,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:Mg(c.type),type:"dtype"}},children:[]};h.signatureKey=c.name,s.push(h),a[u]=h}),Object.keys(a).forEach(c=>{let u=a[c];u.inputNames.forEach(h=>{let[d]=oa(h);u.inputs.push(a[d]),a[d].children.push(u)})});let o=e.ret;e.signature.outputArg.forEach(c=>{let[u,h]=oa(o[c.name]),d=a[u];d!=null&&(d.defaultOutput=h,i.push(d))});let l=this.mapArgsToSignature(e);return{nodes:a,inputs:s,outputs:i,weights:r,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function hne(e){let t=Q().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function B7(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):hne(e);return t?n:n.toLowerCase()}function Cg(e,t,n,r=!1){let a=e[t];return a!=null?B7(a.s,r):n}function Rg(e,t,n){let r=e[t];return r?r.b:n}function Fg(e,t,n){let r=e[t]||{},a=r.i!=null?r.i:r.f!=null?r.f:n;return typeof a=="number"?a:parseInt(a,10)}function Mg(e){switch(typeof e=="string"&&(e=vr[e]),e){case vr.DT_FLOAT:return"float32";case vr.DT_INT32:case vr.DT_INT64:case vr.DT_INT8:case vr.DT_UINT8:return"int32";case vr.DT_BOOL:return"bool";case vr.DT_DOUBLE:return"float32";case vr.DT_STRING:return"string";default:return null}}function L7(e,t,n){let r=e[t];return r&&r.func?r.func.name:n}function $g(e,t,n){let r=e[t];return r&&r.type?Mg(r.type):n}function Dg(e,t,n){let r=e[t];return r&&r.list&&r.list.type?r.list.type.map(a=>Mg(a)):n}function V7(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function Og(e,t,n){let r=e[t];return r&&r.shape?V7(r.shape):n}function zg(e,t,n){let r=e[t];return r?((r.list.f&&r.list.f.length?r.list.f:r.list.i)||[]).map(a=>typeof a=="number"?a:parseInt(a,10)):n}function Pg(e,t,n,r=!1){let a=e[t];return a&&a.list&&a.list.s?a.list.s.map(s=>B7(s,r)):n}function Lg(e,t,n){let r=e[t];return r&&r.list&&r.list.shape?r.list.shape.map(a=>V7(a)):n}function Wg(e,t,n){let r=e[t];return r&&r.list&&r.list.b?r.list.b:n}var dne=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(r=>this.getInput(r)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((r,a)=>(r[a]=this.getAttr(a),r),{}))}getInput(e){return wn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return wn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return Fg(this.node.rawAttrs,e,t);if(n.s!=null)return Cg(this.node.rawAttrs,e,t);if(n.b!=null)return Rg(this.node.rawAttrs,e,t);if(n.shape!=null)return Og(this.node.rawAttrs,e,t);if(n.type!=null)return $g(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return zg(this.node.rawAttrs,e,t);if(n.list.s!=null)return Pg(this.node.rawAttrs,e,t);if(n.list.shape!=null)return Lg(this.node.rawAttrs,e,t);if(n.list.b!=null)return Wg(this.node.rawAttrs,e,t);if(n.list.type!=null)return Dg(this.node.rawAttrs,e,t)}return t}},pne=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[oe(I("a",e,t,n),I("b",e,t,n))];case"AddN":return[Qh(I("tensors",e,t,n))];case"FloorMod":case"Mod":return[nm(I("a",e,t,n),I("b",e,t,n))];case"Mul":return[L(I("a",e,t,n),I("b",e,t,n))];case"RealDiv":case"Div":return[Ne(I("a",e,t,n),I("b",e,t,n))];case"DivNoNan":return[Xf(I("a",e,t,n),I("b",e,t,n))];case"FloorDiv":return[Yh(I("a",e,t,n),I("b",e,t,n))];case"Sub":return[we(I("a",e,t,n),I("b",e,t,n))];case"Minimum":return[Ko(I("a",e,t,n),I("b",e,t,n))];case"Maximum":return[Cr(I("a",e,t,n),I("b",e,t,n))];case"Pow":return[Yr(I("a",e,t,n),I("b",e,t,n))];case"SquaredDifference":return[bd(I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},fne=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[Dt(I("x",e,t,n))];case"Acos":return[Df(I("x",e,t,n))];case"Acosh":return[Of(I("x",e,t,n))];case"Asin":return[Pf(I("x",e,t,n))];case"Asinh":return[Lf(I("x",e,t,n))];case"Atan":return[Wf(I("x",e,t,n))];case"Atan2":return[Bf(I("x",e,t,n),I("y",e,t,n))];case"Atanh":return[Vf(I("x",e,t,n))];case"Ceil":return[Hf(I("x",e,t,n))];case"Complex":return[xa(I("real",e,t,n),I("imag",e,t,n))];case"Cos":return[Eu(I("x",e,t,n))];case"Cosh":return[ad(I("x",e,t,n))];case"Elu":return[jo(I("x",e,t,n))];case"Erf":return[Kf(I("x",e,t,n))];case"Exp":return[Ln(I("x",e,t,n))];case"Expm1":return[Zf(I("x",e,t,n))];case"Floor":return[Go(I("x",e,t,n))];case"Log":return[In(I("x",e,t,n))];case"Log1p":return[ld(I("x",e,t,n))];case"Imag":return[id(I("x",e,t,n))];case"Neg":return[_t(I("x",e,t,n))];case"Reciprocal":return[rm(I("x",e,t,n))];case"Real":return[Ou(I("x",e,t,n))];case"Relu":return[Fr(I("x",e,t,n))];case"Round":return[am(I("x",e,t,n))];case"Selu":return[Ad(I("x",e,t,n))];case"Sigmoid":return[Qn(I("x",e,t,n))];case"Sin":return[yd(I("x",e,t,n))];case"Sign":return[im(I("x",e,t,n))];case"Sinh":return[gd(I("x",e,t,n))];case"Softplus":return[qo(I("x",e,t,n))];case"Sqrt":return[Kt(I("x",e,t,n))];case"Square":return[ot(I("x",e,t,n))];case"Tanh":return[Uo(I("x",e,t,n))];case"Tan":return[um(I("x",e,t,n))];case"ClipByValue":return[fn(I("x",e,t,n),I("clipValueMin",e,t,n),I("clipValueMax",e,t,n))];case"Relu6":return[fd(I("x",e,t,n))];case"Rsqrt":return[md(wn(e.inputNames[0],t,n))];case"Prod":return[dd(I("x",e,t,n),I("axes",e,t,n))];case"LeakyRelu":return[Ru(I("x",e,t,n),I("alpha",e,t,n))];case"Prelu":return[Du(I("x",e,t,n),I("alpha",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function ur(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){k.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let r=0;r<e.length;r++){let a=e[r],s=t[r];k.assert(a<0||s<0||a===s,()=>n+` Shapes ${e} and ${t} must match`)}}}function U7(e){return!(typeof e=="number"||e.some(t=>t<0))}function Oc(e,t,n){let r=Bg(e,n),a=!U7(r);if(a&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${r}`);if(a&&t.forEach(s=>{r=Bg(s.shape,r)}),!U7(r))throw new Error(`Non-fully-defined elementShape: ${r}`);return r}function Bg(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let r=0;r<e.length;++r){let a=e[r],s=t[r];if(a>=0&&s>=0&&a!==s)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[r]=a>=0?a:s}return n}var mne=class{constructor(e,t,n,r,a,s,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=r,this.identicalElementShapes=a,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=Se(0),Vt(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),ur(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Vt(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,r)=>this.write(n,t[r]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let r=0;r<this.size();r++)e.push(r)}if(e.length===0)return pr([],[0].concat(this.elementShape));let n=this.readMany(e);return ur(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),Tn(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return pr([],[0].concat(this.elementShape));let t=[];for(let r=0;r<this.size();r++)t.push(r);let n=this.readMany(t);return ur(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),ct(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,nr(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,r=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let a=n===0?0:t.size/n,s=[];U(()=>{t=q(t,[1,n,a]);for(let o=0;o<e.length;++o){let l=o===0?0:r[o-1],c=[0,l,0],u=[1,e[o],a];s[o]=q(Me(t,c,u),this.elementShape)}return s});let i=[];for(let o=0;o<e.length;o++)i[o]=o;this.writeMany(i,s)}},zc=class{constructor(e,t,n,r=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(a=>{if(n!==a.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${a.dtype}`);ur(t,a.shape,"TensorList shape mismatch: "),Vt(a)}),this.idTensor=Se(0),this.maxNumElements=r,Vt(this.idTensor)}get id(){return this.idTensor.id}copy(){return new zc([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);ur(e,this.elementShape,"TensorList shape mismatch: ");let r=Oc(this.elementShape,this.tensors,e);return U(()=>{let a=this.tensors.map(s=>q(s,r));return Tn(a,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Oc(this.elementShape,this.tensors,e),r=this.tensors.pop();return ur(r.shape,e,"TensorList shape mismatch: "),q(r,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(ur(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Vt(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);ur(this.tensors[e].shape,t,"TensorList shape mismatch: ");let r=Oc(this.elementShape,this.tensors,t);return q(this.tensors[e],r)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);ur(this.elementShape,t.shape,"TensorList shape mismatch: "),Vt(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);ur(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let r=Oc(this.elementShape,this.tensors,n);return e.length===0?pr([],[0].concat(r)):U(()=>{let a=e.map(s=>q(this.tensors[s],r));return Tn(a,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);ur(this.elementShape,t,"TensorList shape mismatch: ");let n=Oc(this.elementShape,this.tensors,t);return this.size()===0?pr([],[0].concat(n)):U(()=>{let r=this.tensors.map(a=>q(a,n));return ct(r,0)})}};function Ane(e,t,n){let r=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let a=e.shape.slice(1);ur(a,t,"TensorList shape mismatch: ");let s=nr(e);return new zc(s,t,r)}function yne(e,t,n){return new zc([],e,t,n)}function gne(e,t,n,r){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let a=Math.max(...t);if(r!=null&&r!==-1&&a>=r)throw new Error(`Max index must be < array size (${a} vs. ${r})`);let s=new zc([],n,e.dtype,r),i=nr(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function xne(e,t,n){let r=0,a=t.map(u=>(r+=u,r));if(r!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${r}, and tensor's shape is: ${e.shape}`);let s=e.shape.slice(1),i=Bg(s,n),o=r===0?0:e.size/r,l=U(()=>{let u=[];e=q(e,[1,r,o]);for(let h=0;h<t.length;++h){let d=h===0?0:a[h-1],p=[0,d,0],f=[1,t[h],o];u[h]=q(Me(e,p,f),i)}return e.dispose(),u}),c=new zc([],n,e.dtype,t.length);for(let u=0;u<l.length;u++)c.setItem(u,l[u]);return c}var wne=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let r=I("thenBranch",e,t,n),a=I("elseBranch",e,t,n),s=I("cond",e,t,n),i=I("args",e,t,n);return(await s.data())[0]?n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[a].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let r=I("body",e,t,n),a=I("cond",e,t,n),s=I("args",e,t,n),i=await n.functionMap[a].executeFunctionAsync(s,n.tensorArrayMap,n.tensorListMap),o=s.map(u=>u.id),l=await i[0].data();i.forEach(u=>{!u.kept&&o.indexOf(u.id)===-1&&u.dispose()});let c=s;for(;l[0];){let u=c;c=await n.functionMap[r].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);let h=c.map(p=>p.id);u.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&h.indexOf(p.id)===-1&&p.dispose()});let d=await n.functionMap[a].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);l=await d[0].data(),d.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&h.indexOf(p.id)===-1&&p.dispose()})}return c}case"LoopCond":{let r=I("pred",e,t,n);return[la(r)]}case"Switch":{let r=I("pred",e,t,n),a=I("data",e,t,n);return a.kept||(a=la(a)),(await r.data())[0]?[void 0,a]:[a,void 0]}case"Merge":{let r=e.inputNames.find(a=>wn(a,t,n)!==void 0);if(r){let a=wn(r,t,n);return[la(a)]}return}case"Enter":{let r=I("frameName",e,t,n),a=I("tensor",e,t,n);return n.enterFrame(r),[la(a)]}case"Exit":{let r=I("tensor",e,t,n);return n.exitFrame(),[la(r)]}case"NextIteration":{let r=I("tensor",e,t,n);return n.nextIteration(),[la(r)]}case"TensorArrayV3":{let r=I("size",e,t,n),a=I("dtype",e,t,n),s=I("elementShape",e,t,n),i=I("dynamicSize",e,t,n),o=I("clearAfterRead",e,t,n),l=I("identicalElementShapes",e,t,n),c=I("name",e,t,n),u=new mne(c,a,r,s,l,i,o);return n.addTensorArray(u),[u.idTensor,Se(1)]}case"TensorArrayWriteV3":{let r=I("tensorArrayId",e,t,n),a=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(r.id);return i.write(a,s),[i.idTensor]}case"TensorArrayReadV3":{let r=I("tensorArrayId",e,t,n),a=I("index",e,t,n);return[n.getTensorArray(r.id).read(a)]}case"TensorArrayGatherV3":{let r=I("tensorArrayId",e,t,n),a=I("indices",e,t,n),s=I("dtype",e,t,n);return[n.getTensorArray(r.id).gather(a,s)]}case"TensorArrayScatterV3":{let r=I("tensorArrayId",e,t,n),a=I("indices",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(r.id);return i.scatter(a,s),[i.idTensor]}case"TensorArrayConcatV3":{let r=I("tensorArrayId",e,t,n),a=n.getTensorArray(r.id),s=I("dtype",e,t,n);return[a.concat(s)]}case"TensorArraySplitV3":{let r=I("tensorArrayId",e,t,n),a=I("tensor",e,t,n),s=I("lengths",e,t,n),i=n.getTensorArray(r.id);return i.split(s,a),[i.idTensor]}case"TensorArraySizeV3":{let r=I("tensorArrayId",e,t,n),a=n.getTensorArray(r.id);return[Se(a.size(),"int32")]}case"TensorArrayCloseV3":{let r=I("tensorArrayId",e,t,n),a=n.getTensorArray(r.id);return a.clearAndClose(),[a.idTensor]}case"TensorListSetItem":{let r=I("tensorListId",e,t,n),a=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorList(r.id);return i.setItem(a,s),[i.idTensor]}case"TensorListGetItem":{let r=I("tensorListId",e,t,n),a=I("index",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(r.id).getItem(a,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let r=I("indices",e,t,n),a=I("tensor",e,t,n),s=I("elementShape",e,t,n),i=I("numElements",e,t,n),o=gne(a,r,s,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let r=I("elementShape",e,t,n),a=I("elementDType",e,t,n),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=I(s,e,t,n),o=yne(r,a,i);return n.addTensorList(o),[o.idTensor]}case"TensorListGather":{let r=I("tensorListId",e,t,n),a=I("indices",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(r.id).gather(a,i,s)]}case"TensorListStack":{let r=I("tensorListId",e,t,n),a=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=I("numElements",e,t,n);return[n.getTensorList(r.id).stack(a,s,i)]}case"TensorListFromTensor":{let r=I("tensor",e,t,n),a=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=Ane(r,a,s);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":{let r=I("tensorListId",e,t,n),a=n.getTensorList(r.id),s=I("dtype",e,t,n),i=I("elementShape",e,t,n);return[a.concat(s,i)]}case"TensorListPushBack":{let r=I("tensorListId",e,t,n),a=I("tensor",e,t,n),s=n.getTensorList(r.id);return s.pushBack(a),[s.idTensor]}case"TensorListPopBack":{let r=I("tensorListId",e,t,n),a=I("elementShape",e,t,n),s=I("elementDType",e,t,n);return[n.getTensorList(r.id).popBack(a,s)]}case"TensorListSplit":{let r=I("tensor",e,t,n),a=I("elementShape",e,t,n),s=I("lengths",e,t,n),i=xne(r,s,a);return n.addTensorList(i),[i.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function H7(e,t,n){let[r,a]=I("fusedOps",e,t,n),s=r==="biasadd",i=a==="prelu",o=r==="fusedbatchnorm",l=I("numArgs",e,t,n);if(s){if(i&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(o)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported.");let c=I("strides",e,t,n),u=t1(e,t,n),h=I("dataFormat",e,t,n).toUpperCase(),d=I("dilations",e,t,n),[p,f]=I("args",e,t,n),m=I("leakyreluAlpha",e,t,n);return{stride:c,pad:u,dataFormat:h,dilations:d,biasArg:p,preluArg:f,activationFunc:a,leakyreluAlpha:m}}var _ne=(e,t,n)=>{switch(e.op){case"Conv1D":{let r=I("stride",e,t,n),a=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilation",e,t,n);return[nd(I("x",e,t,n),I("filter",e,t,n),r,a,s,i)]}case"Conv2D":{let r=I("strides",e,t,n),a=t1(e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[Zr(I("x",e,t,n),I("filter",e,t,n),[r[1],r[2]],a,s,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:r,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:c,leakyreluAlpha:u}=H7(e,t,n);return[ka.conv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"FusedDepthwiseConv2dNative":{let{stride:r,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:c,leakyreluAlpha:u}=H7(e,t,n);return[ka.depthwiseConv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let r=I("outputShape",e,t,n),a=I("strides",e,t,n),s=t1(e,t,n);return[rd(I("x",e,t,n),I("filter",e,t,n),r,[a[1],a[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let r=I("strides",e,t,n),a=t1(e,t,n),s=I("dilations",e,t,n),i=I("dataFormat",e,t,n).toUpperCase();return[Ho(I("input",e,t,n),I("filter",e,t,n),[r[1],r[2]],a,i,[s[1],s[2]])]}case"Conv3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[jf(I("x",e,t,n),I("filter",e,t,n),[r[1],r[2],r[3]],a,s,[i[1],i[2],i[3]])]}case"AvgPool":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Nu(I("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a)]}case"MaxPool":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Mu(I("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a)]}case"MaxPoolWithArgmax":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n),i=I("includeBatchInIndex",e,t,n),{result:o,indexes:l}=h0(I("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a,i);return[o,l]}case"AvgPool3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Uf(I("x",e,t,n),[s[1],s[2],s[3]],[r[1],r[2],r[3]],a)]}case"MaxPool3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[em(I("x",e,t,n),[s[1],s[2],s[3]],[r[1],r[2],r[3]],a)]}case"Dilation2D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("dilations",e,t,n),i=r[1],o=r[2],l=s[1],c=s[2];return[qf(I("x",e,t,n),I("filter",e,t,n),[i,o],a,[l,c],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},bne=(e,t,n)=>{switch(e.op){case"Fill":{let r=I("shape",e,t,n),a=I("dtype",e,t,n),s=I("value",e,t,n);return[Cu(r,s,a)]}case"LinSpace":{let r=I("start",e,t,n),a=I("stop",e,t,n),s=I("num",e,t,n);return[o0(r,a,s)]}case"Multinomial":{let r=I("logits",e,t,n),a=I("numSamples",e,t,n),s=I("seed",e,t,n);return[d0(r,a,s)]}case"OneHot":{let r=I("indices",e,t,n),a=I("depth",e,t,n),s=I("onValue",e,t,n),i=I("offValue",e,t,n);return[Bo(r,a,s,i)]}case"Ones":return[Rr(I("shape",e,t,n),I("dtype",e,t,n))];case"OnesLike":return[Nn(I("x",e,t,n))];case"RandomUniform":return[Zo(I("shape",e,t,n),I("minval",e,t,n),I("maxval",e,t,n),I("dtype",e,t,n))];case"Range":{let r=I("start",e,t,n),a=I("stop",e,t,n),s=I("step",e,t,n);return[pd(r,a,s,I("dtype",e,t,n))]}case"TruncatedNormal":{let r=I("shape",e,t,n),a=I("mean",e,t,n),s=I("stdDev",e,t,n),i=I("seed",e,t,n);return[vd(r,a,s,I("dtype",e,t,n),i)]}case"Zeros":return[Ct(I("shape",e,t,n),I("dtype",e,t,n))];case"ZerosLike":return[He(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Vg(e,t,n){let r=I("boxes",e,t,n),a=I("scores",e,t,n),s=I("maxOutputSize",e,t,n),i=I("iouThreshold",e,t,n),o=I("scoreThreshold",e,t,n),l=I("softNmsSigma",e,t,n);return{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var vne=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}=Vg(e,t,n),c=await St.nonMaxSuppressionWithScoreAsync(r,a,s,i,o,l);return[c.selectedIndices,c.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=Vg(e,t,n),l=I("padToMaxOutputSize",e,t,n),c=await St.nonMaxSuppressionPaddedAsync(r,a,s,i,o,l);return[c.selectedIndices,c.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=Vg(e,t,n);return[await St.nonMaxSuppressionAsync(r,a,s,i,o)]}case"Where":{let r=ye(I("condition",e,t,n),"bool"),a=[await dm(r)];return r.dispose(),a}case"ListDiff":return m0(I("x",e,t,n),I("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},kne=(e,t,n)=>{switch(e.op){case"TopKV2":{let r=I("x",e,t,n),a=I("k",e,t,n),s=I("sorted",e,t,n),i=cm(r,a,s);return[i.values,i.indices]}case"Unique":{let r=I("x",e,t,n),a=kd(r);return[a.values,a.indices]}case"UniqueV2":{let r=I("x",e,t,n),a=I("axis",e,t,n),s=kd(r,a);return[s.values,s.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ine=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let r=I("default",e,t,n);return[wn(e.name,t,n)||r];case"Placeholder":return[wn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let c=I("x",e,t,n);return[la(c)]}case"IdentityN":return I("x",e,t,n).map(c=>la(c));case"Snapshot":let a=I("x",e,t,n);return[la(a)];case"Shape":return[en(I("x",e,t,n).shape,"int32")];case"ShapeN":return I("x",e,t,n).map(c=>en(c.shape));case"Size":return[Se(I("x",e,t,n).size,"int32")];case"Rank":return[Se(I("x",e,t,n).rank,"int32")];case"NoOp":return[Se(1)];case"Print":let s=I("x",e,t,n),i=I("data",e,t,n),o=I("message",e,t,n),l=I("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(o);for(let c=0;c<i.length;c++)console.log(Array.prototype.slice.call(i[c].dataSync()).slice(0,l));return[s];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Nne=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=Se(0),this.tensorMap=new Map,Vt(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(r=>r.dispose()),this.tensorMap.clear(),U(()=>{let r=nr(t),a=n.length,s=r.length;k.assert(a===s,()=>`The number of elements doesn't match, keys has ${a} elements, the values has ${s} elements.`);for(let i=0;i<a;i++){let o=n[i],l=r[i];Vt(l),this.tensorMap.set(o,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return U(()=>{let r=[];for(let a=0;a<n.length;a++){let s=n[a],i=this.findWithDefault(s,t);r.push(i)}return Tn(r)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},Sne=async(e,t,n,r)=>{switch(e.op){case"HashTable":case"HashTableV2":{let a=I("keyDType",e,t,n),s=I("valueDType",e,t,n),i=new Nne(a,s);return r.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let a=I("tableHandle",e,t,n,r),s=I("keys",e,t,n),i=I("values",e,t,n);return[await r.getHashTableById(a.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let a=I("tableHandle",e,t,n,r),s=I("keys",e,t,n),i=I("defaultValue",e,t,n);return[await r.getHashTableById(a.id).find(s,i)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Tne=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let r=I("images",e,t,n),a=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[St.resizeBilinear(r,[a[0],a[1]],s,i)]}case"ResizeNearestNeighbor":{let r=I("images",e,t,n),a=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[St.resizeNearestNeighbor(r,[a[0],a[1]],s,i)]}case"CropAndResize":{let r=I("image",e,t,n),a=I("boxes",e,t,n),s=I("boxInd",e,t,n),i=I("cropSize",e,t,n),o=I("method",e,t,n),l=I("extrapolationValue",e,t,n);return[St.cropAndResize(r,a,s,i,o,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ene=(e,t,n)=>{switch(e.op){case"Equal":return[wa(I("a",e,t,n),I("b",e,t,n))];case"NotEqual":return[Xs(I("a",e,t,n),I("b",e,t,n))];case"Greater":return[er(I("a",e,t,n),I("b",e,t,n))];case"GreaterEqual":return[ba(I("a",e,t,n),I("b",e,t,n))];case"Less":return[od(I("a",e,t,n),I("b",e,t,n))];case"LessEqual":return[qs(I("a",e,t,n),I("b",e,t,n))];case"LogicalAnd":return[tr(I("a",e,t,n),I("b",e,t,n))];case"LogicalNot":return[Fu(I("a",e,t,n))];case"LogicalOr":return[cd(I("a",e,t,n),I("b",e,t,n))];case"Select":case"SelectV2":return[mn(I("condition",e,t,n),I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Cne=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[qe(I("a",e,t,n),I("b",e,t,n),I("transposeA",e,t,n),I("transposeB",e,t,n))];case"Transpose":return[at(I("x",e,t,n),I("perm",e,t,n))];case"_FusedMatMul":let[r,a]=I("fusedOps",e,t,n),s=r==="biasadd",i=a==="prelu",o=I("numArgs",e,t,n),l=I("leakyreluAlpha",e,t,n);if(s){if(i&&o!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&o!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[c,u]=I("args",e,t,n);return[ka.matMul({a:I("a",e,t,n),b:I("b",e,t,n),transposeA:I("transposeA",e,t,n),transposeB:I("transposeB",e,t,n),bias:c,activation:a,preluActivationWeights:u,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Rne=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[js(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"FusedBatchNormV3":return[js(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"LRN":return[Yf(I("x",e,t,n),I("radius",e,t,n),I("bias",e,t,n),I("alpha",e,t,n),I("beta",e,t,n))];case"Softmax":return[Pu(I("x",e,t,n))];case"LogSoftmax":return[ud(I("x",e,t,n))];case"SparseToDense":return[pm(I("sparseIndices",e,t,n),I("outputShape",e,t,n),I("sparseValues",e,t,n),I("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Fne=(e,t,n)=>{switch(e.op){case"Max":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Wn(I("x",e,t,n),i,o)]}case"Mean":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[bt(I("x",e,t,n),i,o)]}case"Min":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Xo(I("x",e,t,n),i,o)]}case"Sum":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Te(I("x",e,t,n),i,o)]}case"All":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[ed(I("x",e,t,n),i,o)]}case"Any":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[ku(I("x",e,t,n),i,o)]}case"ArgMax":{let i=I("axis",e,t,n);return[Iu(I("x",e,t,n),i)]}case"ArgMin":{let i=I("axis",e,t,n);return[zf(I("x",e,t,n),i)]}case"Prod":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[dd(I("x",e,t,n),i,o)]}case"Cumsum":{let i=I("axis",e,t,n),o=I("exclusive",e,t,n),l=I("reverse",e,t,n);return[sd(I("x",e,t,n),i,o,l)]}case"Bincount":let r=I("x",e,t,n),a=I("weights",e,t,n),s=I("size",e,t,n);return[Y2(r,a,s)];case"DenseBincount":{let i=I("x",e,t,n),o=I("weights",e,t,n),l=I("size",e,t,n),c=I("binaryOutput",e,t,n);return[n0(i,o,l,c)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Mne=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let r=I("n",e,t,n),a=I("axis",e,t,n),s=I("tensors",e,t,n);return s=s.slice(0,r),[ct(s,a)]}case"Gather":{let r=I("x",e,t,n),a=I("indices",e,t,n);return[Gs(r,ye(a,"int32"),0)]}case"GatherV2":{let r=I("axis",e,t,n),a=I("batchDims",e,t,n),s=I("x",e,t,n),i=I("indices",e,t,n);return[Gs(s,ye(i,"int32"),r,a)]}case"Reverse":{let r=I("dims",e,t,n),a=[];for(let i=0;i<r.length;i++)r[i]&&a.push(i);let s=I("x",e,t,n);return[Sn(s,a)]}case"ReverseV2":{let r=I("axis",e,t,n),a=I("x",e,t,n);return[Sn(a,r)]}case"Slice":{let r=I("begin",e,t,n),a=I("size",e,t,n);return[Me(I("x",e,t,n),r,a)]}case"StridedSlice":{let r=I("begin",e,t,n),a=I("end",e,t,n),s=I("strides",e,t,n),i=I("beginMask",e,t,n),o=I("endMask",e,t,n),l=I("ellipsisMask",e,t,n),c=I("newAxisMask",e,t,n),u=I("shrinkAxisMask",e,t,n),h=I("x",e,t,n);return[lm(h,r,a,s,i,o,l,c,u)]}case"Pack":return U(()=>{let r=I("axis",e,t,n),a=I("tensors",e,t,n),s=a[0].shape,i=va(a[0]).shape,o=a.map(l=>{let c=k.arraysEqual(l.shape,s);if(!c&&!k.arraysEqual(va(l).shape,i))throw new Error("the input tensors shape does not match");return c?l:q(l,s)});return[Tn(o,r)]});case"Unpack":{let r=I("axis",e,t,n),a=I("tensor",e,t,n);return nr(a,r)}case"Tile":{let r=I("reps",e,t,n);return[_a(I("x",e,t,n),r)]}case"Split":case"SplitV":{let r=I("axis",e,t,n),a=I("numOrSizeSplits",e,t,n),s=I("x",e,t,n);return sn(s,a,r)}case"ScatterNd":{let r=I("indices",e,t,n),a=I("values",e,t,n),s=I("shape",e,t,n);return[y0(r,a,s)]}case"GatherNd":{let r=I("x",e,t,n),a=I("indices",e,t,n);return[g0(r,a)]}case"SparseToDense":{let r=I("sparseIndices",e,t,n),a=I("outputShape",e,t,n),s=I("sparseValues",e,t,n),i=I("defaultValue",e,t,n);return[pm(r,s,a,s.dtype===i.dtype?i:ye(i,s.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},$ne=(e,t,n)=>{switch(e.op){case"FFT":return[Lu(I("x",e,t,n))];case"IFFT":return[Jo(I("x",e,t,n))];case"RFFT":return[Wu(I("x",e,t,n))];case"IRFFT":return[_d(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Dne=(e,t,n)=>{switch(e.op){case"Cast":return[ye(I("x",e,t,n),I("dtype",e,t,n))];case"ExpandDims":{let r=I("axis",e,t,n);return[kn(I("x",e,t,n),r)]}case"Squeeze":{let r=I("axis",e,t,n);return[va(I("x",e,t,n),r)]}case"Reshape":return[q(I("x",e,t,n),I("shape",e,t,n))];case"MirrorPad":return[tm(I("x",e,t,n),I("padding",e,t,n),I("mode",e,t,n))];case"PadV2":case"Pad":return[Jr(I("x",e,t,n),I("padding",e,t,n),I("constantValue",e,t,n))];case"SpaceToBatchND":{let r=I("blockShape",e,t,n),a=I("paddings",e,t,n);return[$u(I("x",e,t,n),r,a)]}case"BatchToSpaceND":{let r=I("blockShape",e,t,n),a=I("crops",e,t,n);return[Su(I("x",e,t,n),r,a)]}case"DepthToSpace":{let r=I("blockSize",e,t,n),a=I("dataFormat",e,t,n).toUpperCase();return[Gf(I("x",e,t,n),r,a)]}case"BroadcastTo":return[Tu(I("x",e,t,n),I("shape",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function j7(e,t,n,r){let a=((s,i,o)=>{switch(s.category){case"arithmetic":return U(()=>pne(s,i,o));case"basic_math":return U(()=>fne(s,i,o));case"control":return wne(s,i,o);case"convolution":return U(()=>_ne(s,i,o));case"creation":return U(()=>bne(s,i,o));case"dynamic":return vne(s,i,o);case"evaluation":return U(()=>kne(s,i,o));case"image":return U(()=>Tne(s,i,o));case"graph":return U(()=>Ine(s,i,o));case"logical":return U(()=>Ene(s,i,o));case"matrices":return U(()=>Cne(s,i,o));case"normalization":return U(()=>Rne(s,i,o));case"reduction":return U(()=>Fne(s,i,o));case"slice_join":return U(()=>Mne(s,i,o));case"spectral":return U(()=>$ne(s,i,o));case"transformation":return U(()=>Dne(s,i,o));case"hash_table":return Sne(s,i,o,r);case"custom":let l=_7(s.op);if(l&&l.customExecutor)return l.customExecutor(new dne(s,i,o));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return k.isPromise(a)?a.then(s=>[].concat(s)):[].concat(a)}var G7=class{constructor(e={},t={},n={},r={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=r,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function X7(e,t,n,r){let a=new Set,s=[],i=null,o=null,l=new Set,c=Object.keys(e).map(d=>Mn(d)[0]),u=[];r!=null&&(u=r.map(d=>Mn(d.name)[0]));let h=[...t];for(;h.length>0;){let d=h.pop();if((q7(d)||One(d)||zne(d))&&i==null&&(i=d,o=i.children.map(p=>p.name).filter(p=>a.has(p))),a.add(d.name),n[d.name]==null&&c.indexOf(d.name)===-1&&u.indexOf(d.name)===-1){if(d.inputs.length===0){s.push(d.name);continue}d.inputs.forEach(p=>{l.has(p.name)||(l.add(p.name),h.push(p))})}}return{inputs:e,outputs:t,usedNodes:a,missingInputs:s,dynamicNode:i,syncInputs:o}}function Pne(e,t,n){let{usedNodes:r,inputs:a}=n,s=[],i=Object.keys(a).map(u=>Mn(u)[0]).map(u=>e.nodes[u]),o=e.initNodes;i.forEach(u=>{r.has(u.name)&&s.push(u)}),e.weights.forEach(u=>{r.has(u.name)&&s.push(u)}),o!=null&&o.forEach(u=>{r.has(u.name)&&s.push(u)});let l=new Set,c=[];for(;s.length>0;){let u=s.pop();l.add(u.name),t[u.name]||c.push(u),u.children.forEach(h=>{!l.has(h.name)&&r.has(h.name)&&h.inputs.every(d=>l.has(d.name))&&s.push(h)})}return c}var Lne=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],Wne=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],Bne=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2"];function q7(e){return Lne.indexOf(e.op)>=0}function One(e){return Wne.indexOf(e.op)>=0}function zne(e){return Bne.indexOf(e.op)>=0}var Ug=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new Ug(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(r=>r.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(a=>a.name).sort(),r=t.map(a=>a.name).sort();return n.join(this.SEPERATOR)+"--"+r.join(this.SEPERATOR)}compile(e,t){let n=X7(e,t,this.weightMap,this._initNodes),{missingInputs:r,dynamicNode:a,syncInputs:s}=n;if(a!=null)throw new Error(`This execution contains the node '${a.name}', which has the dynamic op '${a.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(r.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${r}]`)}return Pne(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let r=n.map(u=>this.graph.nodes[Mn(u)[0]]),a=t.map(u=>Mn(u)[0]),s=a.map(u=>this.graph.nodes[u]);s.length===0&&(s=this._outputs);let i=this.getCompilationKey(r,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let l={},c={};return U(()=>{let u=new G7(this.weightMap,l,c,this.functionExecutorMap),h=Object.assign({},this.weightMap);Object.keys(e).forEach(f=>{let[m,A]=Mn(f),y=[];y[A]=e[f],h[m]=y});let d=this.getFrozenTensorIds(h),p={};for(let f=0;f<o.length;f++){let m=o[f];if(!h[m.name]){let A=j7(m,h,u,this._resourceManager);if(k.isPromise(A))throw new Error(`The execution of the op '${m.op}' returned a promise. Please use model.executeAsync() instead.`);h[m.name]=A,this.checkTensorForDisposal(m.name,m,h,u,d,a,p)}}return this.parent==null&&u.dispose(d),t.map(f=>wn(f,h,u))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(r=>r.id)));return new Set(t)}checkTensorForDisposal(e,t,n,r,a,s,i){t.category==="control"||s.indexOf(e)!==-1||(n[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=qte(o.name,n,r);l!=null&&l.forEach(c=>{if(c&&!a.has(c.id)){let u=i[c.id];u===1?(c.dispose(),delete i[c.id]):u!=null&&i[c.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,r={},a={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let s=new G7(this.weightMap,r,a,this.functionExecutorMap),i=await this.executeWithControlFlow(e,s,t,n),o=t.map(h=>wn(h,i,s)),l=o.map(h=>h.id),c=Object.keys(e).map(h=>e[h].id),u=new Set([...l,...c,...this.weightIds]);return Object.keys(i).forEach(h=>{i[h].forEach(d=>{d&&!d.isDisposed&&!u.has(d.id)&&d.dispose()})}),this.parent==null&&s.dispose(u),o}async executeFunctionAsync(e,t,n){let r=e.reduce((a,s,i)=>(a[this.inputs[i].name]=s,a),{});return this._executeAsync(r,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,r){let a=Object.keys(e),s=a.map(g=>this.graph.nodes[Mn(g)[0]]),i=n.map(g=>Mn(g)[0]),o=i.map(g=>this.graph.nodes[g]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:c,dynamicNode:u,syncInputs:h}=X7(e,o,this.weightMap,this._initNodes),d=[...s,...this.graph.weights,...this._initNodes||[]].map(g=>({node:g,contexts:t.currentContext})),p=Object.assign({},this.weightMap);Object.keys(e).forEach(g=>{let[b,x]=Mn(g),w=[];w[x]=e[g],p[b]=w});let f={},m=this.getFrozenTensorIds(p),A={};for(;d.length>0;){let g=this.processStack(s,d,t,p,A,m,i,f,l);await Promise.all(g)}u==null&&!r&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=o.filter(g=>!q7(g)&&!wn(g.name,p,t)).map(g=>g.name);if(y.length>0){let g="";throw u!=null&&(g=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${h}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${a}]. Consider providing the following inputs: [${c}]. ${g}`)}return p}processStack(e,t,n,r,a,s,i,o,l){let c=[];for(;t.length>0;){let u=t.pop();n.currentContext=u.contexts;let h="";if(u.node.op==="Enter"&&I("isConstant",u.node,r,n)&&([h]=oa(u.node.name,n)),r[u.node.name]==null){let d=j7(u.node,r,n,this._resourceManager);h||([h]=oa(u.node.name,n));let p=n.currentContext;k.isPromise(d)?c.push(d.then(f=>(r[h]=f,n.currentContext=p,this.checkTensorForDisposal(h,u.node,r,n,s,i,o),this.processChildNodes(u.node,t,n,r,a,l),f))):(r[h]=d,this.checkTensorForDisposal(h,u.node,r,n,s,i,o),this.processChildNodes(u.node,t,n,r,a,l))}else this.processChildNodes(u.node,t,n,r,a,l)}return c}processChildNodes(e,t,n,r,a,s){e.children.forEach(i=>{let[o]=oa(i.name,n);a[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!wn(l,r,n))&&(a[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(l=>!!wn(l,r,n))&&(a[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[r]=Mn(t),a=this.graph.nodes[r];if(a.attrParams.shape&&a.attrParams.shape.value){let s=a.attrParams.shape.value,i=s.length===n.shape.length&&n.shape.every((o,l)=>s[l]===-1||s[l]===o);k.assert(i,()=>`The shape of dict['${a.name}'] provided in model.execute(dict) must be [${s}], but was [${n.shape}]`)}a.attrParams.dtype&&a.attrParams.dtype.value&&k.assert(n.dtype===a.attrParams.dtype.value,()=>`The dtype of dict['${a.name}'] provided in model.execute(dict) must be ${a.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let r=this._signature.inputs[n];t[r.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[r]=Mn(n);return this.graph.nodes[r]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=Mn(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},Vne=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},Une="?tfjs-format=file",Hne="model.json",V0=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new Vne}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=pn.browserHTTPRequest(e,this.loadOptions);else{let t=pn.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(pn.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let r=pn.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new Ug(W7.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(r),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let a=W7.Instance.transformGraph(e.modelInitializer);this.initializer=new Ug(a),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=pn.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof et)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,r)=>(t[n]=e[r],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function Jn(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${Hne}${Une}`);let n=new V0(e,t);return await n.load(),n}var q8="3.1.0",U0={};ze(U0,{CSVDataset:()=>Z7,Dataset:()=>Fl,FileDataSource:()=>J7,TextLineDataset:()=>K7,URLDataSource:()=>Y7,array:()=>jne,csv:()=>qne,func:()=>Xne,generator:()=>Kne,microphone:()=>Jne,version_data:()=>Yne,webcam:()=>Zne,zip:()=>Gne});var Qne=el(H0()),ere=el(H0());function tre(e,t){return n1(e,t)}function n1(e,t,n=new Map,r=new Set){if(e==null)return null;if(r.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(a.recurse)if(Ml(e)){let s=Array.isArray(e)?[]:{};r.add(e);for(let i in e){let o=e[i],l=n1(o,t,n,r);s[i]=l}return r.delete(e),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,a.value),a.value}function nre(e,t=e6){return Q7(e,t)}function Q7(e,t,n=new Set){let r=e[0];if(n.has(r))throw new Error("Circular references are not supported.");let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(a.recurse)if(Ml(r)){let s=Array.isArray(r)?[]:{};n.add(r);for(let i in r){let o=e.map(c=>c[i]),l=Q7(o,t,n);s[i]=l}return n.delete(r),s}else throw new Error(`Can't recurse into non-iterable type: ${r}`);else return a.value}function e6(e){return e===null?null:Ml(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function t6(e,t){let n=new Map;n1(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(k.isPromise(a)){let s=await a;n.set(r,s)}}return n1(e,t,n)}function Ml(e){return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof et))}function are(e){return e==null||rre(e)||Array.isArray(e)||typeof e=="object"&&e instanceof et||k.isTypedArray(e)}function rre(e){return e===null||typeof e!="object"&&typeof e!="function"}function ire(e){return tre(e,sre)}function sre(e){return e instanceof et?{value:e.clone(),recurse:!1}:Ml(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var n6=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},Hg=class extends n6{constructor(){super(Hg.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let r=0;r<n;r++)t[r]=this.get(this.wrap(this.begin+r));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};Hg.INITIAL_CAPACITY=32;function r6(e){return new ore(e)}function jg(e){return new lre(e)}function ure(e,t){return new a6(e,t)}function hre(e,t=Ba.FAIL){return new cre(e,t)}var qt=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new gre(this,e)}filter(e){return new Are(this,e)}map(e){return new yre(this,e)}mapAsync(e){return new s6(this,e)}serialMapAsync(e){return new s6(this,e).serial()}flatmap(e){return new xre(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new mre(this,e,t)}columnMajorBatch(e,t=!0,n=e6){return this.rowMajorBatch(e,t).map(r=>nre(r,n))}concatenate(e,t){return new a6(r6([this,e]),t)}take(e){return e<0||e==null?this:new fre(this,e)}skip(e){return e<0||e==null?this:new pre(this,e)}prefetch(e){return new i6(this,e)}shuffle(e,t){return new wre(this,e,t)}serial(){return new dre(this)}},ore=class extends qt{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:ire(e),done:!1}}},lre=class extends qt{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},dre=class extends qt{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},pre=class extends qt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;Fe(e.value)}return this.upstream.next()}},fre=class extends qt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},mre=class extends qt{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},Are=class extends qt{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Fe(e.value)}}},yre=class extends qt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=dr.getTensorsInContainer(e.value),n=this.transform(e.value),r=dr.getTensorsInContainer(n);for(let a of t)dr.isTensorInList(a,r)||a.dispose();return{value:n,done:!1}}},gre=class extends qt{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},s6=class extends qt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=dr.getTensorsInContainer(e.value),n=await this.transform(e.value),r=dr.getTensorsInContainer(n);for(let a of t)dr.isTensorInList(a,r)||a.dispose();return{value:n,done:!1}}},Gg=class extends qt{constructor(){super();this.outputQueue=new Hg,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},xre=class extends Gg{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=dr.getTensorsInContainer(e.value),n=this.transform(e.value),r=dr.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let a of t)dr.isTensorInList(a,r)||a.dispose();return!0}},a6=class extends qt{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},Ba;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(Ba||(Ba={}));var cre=class extends qt{constructor(e,t=Ba.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function r(s){return s instanceof qt?{value:s.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let a=await t6(this.iterators,r);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case Ba.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case Ba.SHORTEST:return{value:null,done:!0};case Ba.LONGEST:default:}return this.count++,{value:a,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},i6=class extends qt{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new n6(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},wre=class extends i6{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=ere.alea(n||k.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Fl=class{constructor(){this.size=null}batch(e,t=!0){let n=this;k.assert(e>0,()=>`batchSize needs to be positive, but it is
${e}`);let r;return this.size===Infinity||this.size==null?r=this.size:t?r=Math.ceil(this.size/e):r=Math.floor(this.size/e),$n(async()=>(await n.iterator()).columnMajorBatch(e,t,_re),r)}concatenate(e){let t=this,n;return this.size===Infinity||e.size===Infinity?n=Infinity:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,$n(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===Infinity?n=Infinity:n=null,$n(async()=>(await t.iterator()).filter(r=>U(()=>e(r))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return $n(async()=>(await t.iterator()).map(n=>U(()=>e(n))),this.size)}mapAsync(e){let t=this;return $n(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return $n(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=Infinity:n=null,$n(async()=>{let r=jg(async()=>({value:await t.iterator(),done:!1}));return ure(r.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,$n(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let r=this,a=Qne.alea(t||k.now().toString());return $n(async()=>{let s=a.int32();return n&&(s+=a.int32()),(await r.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,$n(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Fl.MAX_BUFFER_SIZE=1e4;function $n(e,t=null){return new class extends Fl{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function jne(e){return $n(async()=>r6(e),e.length)}function Gne(e){if(!Ml(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return $n(async()=>{let n=await t6(e,r=>{if(r instanceof Fl)return{value:r.iterator(),recurse:!1};if(Ml(r))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return hre(n,Ba.SHORTEST)},t)}function _re(e){if(e===null)return null;let t=e[0];return are(t)?{value:bre(e),recurse:!1}:{value:null,recurse:!0}}function bre(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof et?Tn(e):pr(e)}var K7=class extends Fl{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
`).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},r1='"',Pc=Symbol("out"),o6=Symbol("field"),a1=Symbol("quote"),qg=Symbol("quoteafterquote"),l6=Symbol("quoteinquote"),Z7=class extends Fl{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new K7(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(k.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&k.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((r,a)=>(r[a]=r[a]+1||1,r),{}),n=Object.keys(t).filter(r=>t[r]>1);if(k.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let r of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(r)===-1)throw new Error('The key "'+r+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},r={};for(let a=0;a<this.fullColumnNames.length;a++){let s=this.fullColumnNames[a],i=this.columnConfigs?this.columnConfigs[s]:null;if(!(this.configuredColumnsOnly&&!i)){let o=t[a],l=null;if(o==="")if(i&&i.default!==void 0)l=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${s} is empty in this line: ${e}`);l=void 0}else{let c=Number(o);if(isNaN(c))i&&i.dtype==="bool"?l=this.getBoolean(o):l=o;else if(!i||!i.dtype)l=c;else switch(i.dtype){case"float32":l=c;break;case"int32":l=Math.floor(c);break;case"bool":l=this.getBoolean(o);break;default:l=c}}i&&i.isLabel?r[s]=l:n[s]=l}}return Object.keys(r).length===0?n:{xs:n,ys:r}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],r=0,a=e.length,s=Pc;for(let i=0;i<a;i++)switch(s){case Pc:switch(e.charAt(i)){case r1:r=i+1,s=a1;break;case this.delimiter:if(r=i+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),s=Pc;break;default:s=o6,r=i;break}break;case o6:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(r,i)),s=Pc,r=i+1;break;default:}break;case a1:switch(e.charAt(i)){case r1:s=qg;break;default:}break;case qg:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(r,i-1)),s=Pc,r=i+1;break;case r1:s=a1;break;default:s=l6;break}break;case l6:switch(e.charAt(i)){case r1:s=a1;break;default:}break;default:}if(s===qg?n.push(e.substring(r,a-1)):n.push(e.substring(r)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},u6=class extends qt{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(Q().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new u6(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let r=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(r,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let r=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(r,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(r=>{let a=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&r({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(a),r({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((r,a)=>n.set(r,a*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(k.sizeFromShape(t));return n.set(e,n.length-e.length),pr(n,t)}},c6=class extends qt{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=en([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,r=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,a=(1-n)/2,s=(1-r)/2,i=a+n,o=r+s;this.cropBox=fr([s,a,o,i],[1,4])}else this.cropBox=fr([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(Q().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new c6(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&k.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=bu.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return U(()=>{let t=kn(ye(e,"float32"),0),n;n=St.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let r=n.shape;return q(n,r.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},h6=class{},d6=class extends qt{split(e){return new vre(this,e)}},vre=class extends d6{constructor(e,t){super();this.upstream=e,this.impl=new kre(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},kre=class extends Gg{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},Nre=class extends qt{decodeUTF8(){return new Ire(this)}},Ire=class extends d6{constructor(e){super();this.upstream=e,this.impl=new Sre(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},Sre=class extends Gg{constructor(e){super();if(this.upstream=e,Q().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=Ck();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return Q().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},p6=class extends Nre{constructor(e,t={}){super();this.file=e,this.options=t,k.assert(e instanceof Uint8Array||(Q().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,n)));else{let r=new FileReader;r.onload=s=>{let i=r.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},r.onabort=s=>t(new Error("Aborted")),r.onerror=s=>t(new Error(s.type));let a=this.file.slice(this.offset,n);r.readAsArrayBuffer(a)}this.offset=n}),done:!1}}};async function Ere(e,t={}){let n,r;typeof e=="string"?n=e:(n=e.url,r=Tre(e));let a=await k.fetch(n,r);if(a.ok){let s=new Uint8Array(await a.arrayBuffer());return new p6(s,t)}else throw new Error(a.statusText)}var Tre=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function f6(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var J7=class extends h6{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(f6(this.input)&&Q().get("IS_NODE")){let e=require("fs");this.input=e.readFileSync(this.input.substr(7))}return new p6(this.input,this.options)}},Y7=class extends h6{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return f6(this.url)?new J7(this.url,this.fileOptions).iterator():Ere(this.url,this.fileOptions)}};function qne(e,t={}){return new Z7(new Y7(e),t)}function Xne(e){let t=jg(e);return $n(async()=>t)}function Kne(e){return $n(async()=>{let t=await e();return jg(()=>t.next())})}async function Zne(e,t){return c6.create(e,t)}async function Jne(e){return u6.create(e)}var Yne="3.1.0",X8={tfjs:Rk,"tfjs-core":Fk,"tfjs-data":Mk,"tfjs-layers":$k,"tfjs-converter":Dk,"tfjs-backend-cpu":b0,"tfjs-backend-webgl":I0,"tfjs-backend-wasm":T0},hn={name:"humangl",priority:99,canvas:null,gl:null,width:1024,height:1024,webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function Cre(){if(!q2(hn.name)){Ve("backend registration:",hn.name);try{hn.canvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(hn.width,hn.height):document.createElement("canvas")}catch(e){Ve("error: cannot create canvas:",e);return}try{hn.gl=hn.canvas.getContext("webgl2",hn.webGLattr)}catch(e){Ve("error: cannot get WebGL2 context:",e);return}try{Am(2,hn.gl)}catch(e){Ve("error: cannot set WebGL2 context:",e);return}try{let e=new ym(hn.gl);vu(hn.name,()=>new Vu(e),hn.priority)}catch(e){Ve("error: cannot register WebGL backend:",e);return}try{wu("webgl").forEach(e=>{let t={...e,backendName:hn.name};Wo(t)})}catch(e){Ve("error: cannot update WebGL backend registration:",e);return}try{fa.set("WEBGL_VERSION",2),fa.set("WEBGL_MAX_TEXTURE_SIZE",hn.gl.getParameter(hn.gl.MAX_TEXTURE_SIZE)),fa.set("WEBGL_FORCE_F16_TEXTURES",!0),fa.set("WEBGL_PACK_DEPTHWISECONV",!0)}catch(e){Ve("error: cannot set WebGL backend flags:",e);return}Ve("backend registered:",hn.name)}}var m6=6;function Rre(e){let t={strides:[e/16,e/8],anchors:[2,6]},n=[];for(let r=0;r<t.strides.length;r++){let a=t.strides[r],s=Math.floor((e+a-1)/a),i=Math.floor((e+a-1)/a),o=t.anchors[r];for(let l=0;l<s;l++){let c=a*(l+.5);for(let u=0;u<i;u++){let h=a*(u+.5);for(let d=0;d<o;d++)n.push([h,c])}}}return n}var Fre=e=>({startEndTensor:e,startPoint:Me(e,[0,0],[-1,2]),endPoint:Me(e,[0,2],[-1,2])});function Mre(e,t,n){let r=Me(e,[0,1],[-1,2]),a=oe(r,t),s=Me(e,[0,3],[-1,2]),i=Ne(s,n),o=Ne(a,n),l=Ne(i,2),c=we(o,l),u=oe(o,l),h=L(c,n),d=L(u,n);return td([h,d],1)}var $re=class{constructor(e,t){this.blazeFaceModel=e,this.width=t.face.detector.inputSize,this.height=t.face.detector.inputSize,this.anchorsData=Rre(t.face.detector.inputSize),this.anchors=fr(this.anchorsData),this.inputSize=en([this.width,this.height]),this.config=t,this.scaleFaces=.8}async getBoundingBoxes(e){if(!e||e.isDisposedInternal||e.shape.length!==4||e.shape[1]<1||e.shape[2]<1)return null;let[t,n,r]=U(()=>{let c=e.resizeBilinear([this.width,this.height]),u=we(c.div(127.5),1),h=this.blazeFaceModel.predict(u),d;if(Array.isArray(h)){let A=h.sort((b,x)=>b.size-x.size),y=ct([A[0],A[2]],2),g=ct([A[1],A[3]],2);d=ct([g,y],1).squeeze(0)}else d=h.squeeze();let p=Mre(d,this.anchors,this.inputSize),f=Me(d,[0,0],[-1,1]),m=Qn(f).squeeze();return[d,p,m]}),a=await St.nonMaxSuppressionAsync(n,r,this.config.face.detector.maxFaces,this.config.face.detector.iouThreshold,this.config.face.detector.scoreThreshold),s=a.arraySync();a.dispose();let i=s.map(c=>Me(n,[c,0],[1,-1])).map(c=>{let u=c.arraySync();return c.dispose(),u}),o=r.dataSync(),l=[];for(let c=0;c<i.length;c++){let u=s[c],h=o[u];if(h>this.config.face.detector.minConfidence){let d=Fre(i[c]),p=this.anchorsData[u],f=U(()=>Me(t,[u,m6-1],[1,-1]).squeeze().reshape([m6,-1]));l.push({box:d,landmarks:f,anchor:p,confidence:h})}}return t.dispose(),n.dispose(),r.dispose(),t.dispose(),{boxes:l,scaleFactor:[e.shape[2]/this.width,e.shape[1]/this.height]}}};async function U4(e){let t=await Jn(e.face.detector.modelPath,{fromTFHub:e.face.detector.modelPath.includes("tfhub.dev")}),n=new $re(t,e);return Ve(`load model: ${e.face.detector.modelPath.match(/\/(.*)\./)[1]}`),n}function Dre(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],r=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:r}}function s1(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function i1(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function A6(e,t,n){let r=t.shape[1],a=t.shape[2],s=[[e.startPoint[1]/r,e.startPoint[0]/a,e.endPoint[1]/r,e.endPoint[0]/a]];return St.cropAndResize(t,s,[0],n)}function Xg(e,t=1.5){let n=i1(e),r=s1(e),a=[t*r[0]/2,t*r[1]/2],s=[n[0]-a[0],n[1]-a[1]],i=[n[0]+a[0],n[1]+a[1]];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}function Kg(e){let t=i1(e),n=s1(e),r=Math.max(...n)/2,a=[t[0]-r,t[1]-r],s=[t[0]+r,t[1]+r];return{startPoint:a,endPoint:s,landmarks:e.landmarks}}var Zg=[[1,0,0],[0,1,0],[0,0,1]];function Ore(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function zre(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Ore(n)}function y6(e,t){return[[1,0,e],[0,1,t],[0,0,1]]}function bi(e,t){let n=0;for(let r=0;r<e.length;r++)n+=e[r]*t[r];return n}function Pre(e,t){let n=[];for(let r=0;r<e.length;r++)n.push(e[r][t]);return n}function g6(e,t){let n=[],r=e.length;for(let a=0;a<r;a++){n.push([]);for(let s=0;s<r;s++)n[a].push(bi(e[a],Pre(t,s)))}return n}function x6(e,t){let n=Math.cos(e),r=Math.sin(e),a=[[n,-r,0],[r,n,0],[0,0,1]],s=y6(t[0],t[1]),i=g6(s,a),o=y6(-t[0],-t[1]);return g6(i,o)}function Lre(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],r=[-bi(t[0],n),-bi(t[1],n)];return[t[0].concat(r[0]),t[1].concat(r[1]),[0,0,1]]}function Wre(e,t){return[bi(e,t[0]),bi(e,t[1])]}var pa={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},w6=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]}],Jg=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],H4=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255],Bre=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],Vre=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],Ure=[33,133,362,263,1,78,308],cse=Bre.map(e=>Jg[e]),hse=Vre.map(e=>Jg[e]),dse=Ure.map(e=>Jg[e]),Hre=468,jre=13,Gre=[jre,pa.midwayBetweenEyes[0]],qre=3,Xre=2,Kre=[qre,Xre],Yg=pa.leftEyeLower0,Qg=[Yg[0],Yg[Yg.length-1]],e2=pa.rightEyeLower0,t2=[e2[0],e2[e2.length-1]],Zre=3,Jre=4,Yre=71,n2=76;function o1(e,t,n,r=null){for(let a=0;a<w6.length;a++){let{key:s,indices:i}=w6[a],o=pa[`${n}${s}`];if(!r||r.includes(s))for(let l=0;l<i.length;l++){let c=i[l];e[o[l]]=[t[c][0],t[c][1],(t[c][2]+e[o[l]][2])/2]}}}var j4=class{constructor(e,t,n,r){this.storedBoxes=[],this.runsWithoutFaceDetector=0,this.boundingBoxDetector=e,this.meshDetector=t,this.irisModel=n,this.meshWidth=r.face.mesh.inputSize,this.meshHeight=r.face.mesh.inputSize,this.irisSize=r.face.iris.inputSize,this.irisEnlarge=2.3,this.skipped=0,this.detectedFaces=0}transformRawCoords(e,t,n,r){let a=s1({startPoint:t.startPoint,endPoint:t.endPoint}),s=[a[0]/this.meshWidth,a[1]/this.meshHeight],i=e.map(h=>[s[0]*(h[0]-this.meshWidth/2),s[1]*(h[1]-this.meshHeight/2),h[2]]),o=n!==0?x6(n,[0,0]):Zg,l=n!==0?i.map(h=>[...Wre(h,o),h[2]]):i,c=n!==0?Lre(r):Zg,u=[...i1({startPoint:t.startPoint,endPoint:t.endPoint}),1];return l.map(h=>[h[0]+bi(u,c[0]),h[1]+bi(u,c[1]),h[2]])}getLeftToRightEyeDepthDifference(e){let t=e[Qg[0]][2],n=e[t2[0]][2];return t-n}getEyeBox(e,t,n,r,a=!1){let s=Kg(Xg(this.calculateLandmarksBoundingBox([e[n],e[r]]),this.irisEnlarge)),i=s1(s),o=St.cropAndResize(t,[[s.startPoint[1]/this.meshHeight,s.startPoint[0]/this.meshWidth,s.endPoint[1]/this.meshHeight,s.endPoint[0]/this.meshWidth]],[0],[this.irisSize,this.irisSize]);return a&&(o=St.flipLeftRight(o)),{box:s,boxSize:i,crop:o}}getEyeCoords(e,t,n,r=!1){let a=[];for(let s=0;s<n2;s++){let i=e[s*3],o=e[s*3+1],l=e[s*3+2];a.push([(r?1-i/this.irisSize:i/this.irisSize)*n[0]+t.startPoint[0],o/this.irisSize*n[1]+t.startPoint[1],l])}return{rawCoords:a,iris:a.slice(Yre)}}getAdjustedIrisCoords(e,t,n){let r=e[pa[`${n}EyeUpper0`][Zre]][2],a=e[pa[`${n}EyeLower0`][Jre]][2],s=(r+a)/2;return t.map((i,o)=>{let l=s;return o===2?l=r:o===4&&(l=a),[i[0],i[1],l]})}async predict(e,t){let n=!1,r;if((this.skipped===0||this.skipped>t.face.detector.skipFrames||!t.face.mesh.enabled||!t.videoOptimized)&&(r=await this.boundingBoxDetector.getBoundingBoxes(e),this.skipped=0),t.videoOptimized&&this.skipped++,r&&r.boxes&&(!t.face.mesh.enabled||r.boxes.length!==this.detectedFaces&&this.detectedFaces!==t.face.detector.maxFaces)){this.storedBoxes=[],this.detectedFaces=0;for(let s of r.boxes)this.storedBoxes.push({startPoint:s.box.startPoint.dataSync(),endPoint:s.box.endPoint.dataSync(),landmarks:s.landmarks,confidence:s.confidence});this.storedBoxes.length>0&&(n=!0)}if(n){if(!r||!r.boxes||r.boxes.length===0)return this.storedBoxes=[],this.detectedFaces=0,null;for(let s=0;s<this.storedBoxes.length;s++){let i=Dre({startPoint:this.storedBoxes[s].startPoint,endPoint:this.storedBoxes[s].endPoint},r.scaleFactor),o=Xg(i),l=Kg(o),c=this.storedBoxes[s].landmarks.arraySync(),u=this.storedBoxes[s].confidence;this.storedBoxes[s]={...l,confidence:u,landmarks:c}}this.runsWithoutFaceDetector=0}r&&r.boxes&&r.boxes.forEach(s=>{s.box.startPoint.dispose(),s.box.endPoint.dispose(),s.landmarks.dispose()});let a=U(()=>this.storedBoxes.map((s,i)=>{let o,l=0,c;if(t.face.detector.rotation){let[b,x]=s.landmarks.length>=Hre?Gre:Kre;l=zre(s.landmarks[b],s.landmarks[x]);let w=i1({startPoint:s.startPoint,endPoint:s.endPoint}),_=[w[0]/e.shape[2],w[1]/e.shape[1]],N=St.rotateWithOffset(e,l,0,_);c=x6(-l,w),o=A6({startPoint:s.startPoint,endPoint:s.endPoint},N,[this.meshHeight,this.meshWidth]).div(255)}else{c=Zg;let b=e.clone();o=A6({startPoint:s.startPoint,endPoint:s.endPoint},b,[this.meshHeight,this.meshWidth]).div(255)}if(!t.face.mesh.enabled)return{coords:null,box:s,faceConfidence:null,confidence:s.confidence,image:o};let[,u,h]=this.meshDetector.predict(o),d=u.dataSync()[0];if(d<t.face.detector.minConfidence)return null;let p=q(h,[-1,3]).arraySync();if(t.face.iris.enabled){let{box:b,boxSize:x,crop:w}=this.getEyeBox(p,o,Qg[0],Qg[1],!0),{box:_,boxSize:N,crop:T}=this.getEyeBox(p,o,t2[0],t2[1]),E=this.irisModel.predict(ct([w,T])).dataSync(),M=E.slice(0,n2*3),{rawCoords:z,iris:P}=this.getEyeCoords(M,b,x,!0),B=E.slice(n2*3),{rawCoords:G,iris:V}=this.getEyeCoords(B,_,N),K=this.getLeftToRightEyeDepthDifference(p);Math.abs(K)<30?(o1(p,z,"left"),o1(p,G,"right")):K<1?o1(p,z,"left",["EyeUpper0","EyeLower0"]):o1(p,G,"right",["EyeUpper0","EyeLower0"]);let X=this.getAdjustedIrisCoords(p,P,"left"),ee=this.getAdjustedIrisCoords(p,V,"right");p=p.concat(X).concat(ee)}let f=this.transformRawCoords(p,s,l,c),m=Xg(this.calculateLandmarksBoundingBox(f)),A=Kg(m),y=fr(f),g={coords:y,box:m,faceConfidence:d,confidence:s.confidence,image:o,rawCoords:p};return t.face.mesh.returnRawData||delete g.rawCoords,this.storedBoxes[i]={...A,landmarks:y.arraySync(),confidence:s.confidence,faceConfidence:d},g}));return a=a.filter(s=>s!==null),this.detectedFaces=a.length,a}calculateLandmarksBoundingBox(e){let t=e.map(s=>s[0]),n=e.map(s=>s[1]),r=[Math.min(...t),Math.min(...n)],a=[Math.max(...t),Math.max(...n)];return{startPoint:r,endPoint:a,landmarks:e}}},_6=mh(G4()),b6={};Nr(b6,{FaceBoxes:()=>v6,load:()=>Qre});var k6={};function Lc(e,t){if(!t||!t.kernels)return;let n=5,r=t.kernels.filter(o=>o.kernelTimeMs>0).reduce((o,l)=>o+=l.kernelTimeMs,0),a=t.kernels.map((o,l)=>(o.id=l,o)).filter(o=>o.kernelTimeMs>0).sort((o,l)=>l.kernelTimeMs-o.kernelTimeMs),s=t.kernels.map((o,l)=>(o.id=l,o)).filter(o=>o.totalBytesSnapshot>0).sort((o,l)=>l.totalBytesSnapshot-o.totalBytesSnapshot);a.length>n&&(a.length=n),s.length>n&&(s.length=n);let i={newBytes:t.newBytes,newTensors:t.newTensors,peakBytes:t.peakBytes,numKernelOps:t.kernels.length,timeKernelOps:r,slowestKernelOps:a,largestKernelOps:s};k6[e]=i,Ve("Human profiler",e,i)}var v6=class{constructor(e,t){this.enlarge=1.1,this.model=e,this.config=t}async estimateFaces(e,t){t&&(this.config=t);let n=[],r=St.resizeBilinear(e,[this.config.face.detector.inputSize,this.config.face.detector.inputSize]),a=r.toInt(),s,i;if(t.profile){let o=await Vo(()=>this.model.executeAsync(a));s=o.result[0].dataSync(),i=o.result[1].squeeze().arraySync(),o.result.forEach(l=>l.dispose()),Lc("faceboxes",o)}else{let[o,l,c]=await this.model.executeAsync(a);s=o.dataSync();let u=l.squeeze();i=u.arraySync(),o.dispose(),l.dispose(),u.dispose(),c.dispose()}a.dispose(),r.dispose();for(let o in i)if(s[o]&&s[o]>this.config.face.detector.minConfidence){let l=[i[o][0]/this.enlarge,i[o][1]/this.enlarge,i[o][2]*this.enlarge,i[o][3]*this.enlarge],c=[l[1],l[0],l[3]-l[1],l[2]-l[0]],u=[parseInt((c[0]*e.shape[2]).toString()),parseInt((c[1]*e.shape[1]).toString()),parseInt((c[2]*e.shape[2]).toString()),parseInt((c[3]*e.shape[1]).toString())],h=St.cropAndResize(e,[l],[0],[this.config.face.detector.inputSize,this.config.face.detector.inputSize]),d=h.div([255]);h.dispose(),n.push({confidence:s[o],box:u,boxRaw:this.config.face.mesh.returnRawData?c:null,image:d})}return n}};async function Qre(e){let t=await Jn(e.face.detector.modelPath);Ve(`load model: ${e.face.detector.modelPath.match(/\/(.*)\./)[1]}`);let n=new v6(t,e);return e.face.mesh.enabled&&Ve(`load model: ${e.face.mesh.modelPath.match(/\/(.*)\./)[1]}`),e.face.iris.enabled&&Ve(`load model: ${e.face.iris.modelPath.match(/\/(.*)\./)[1]}`),n}var I6={};Nr(I6,{load:()=>r2,predict:()=>a2});var $l,l1={age:0},u1=Number.MAX_SAFE_INTEGER;async function r2(e){return $l||($l=await Jn(e.face.age.modelPath),Ve(`load model: ${e.face.age.modelPath.match(/\/(.*)\./)[1]}`)),$l}async function a2(e,t){return $l?u1<t.face.age.skipFrames&&t.videoOptimized&&l1.age&&l1.age>0?(u1++,l1):(t.videoOptimized?u1=0:u1=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=St.resizeBilinear(e,[t.face.age.inputSize,t.face.age.inputSize],!1),a=L(r,[255]);Fe(r);let s,i={age:0};if(!t.profile)t.face.age.enabled&&(s=await $l.predict(a));else{let o=t.face.age.enabled?await Vo(()=>$l.predict(a)):{};s=o.result.clone(),o.result.dispose(),Lc("age",o)}if(a.dispose(),s){let o=s.dataSync();i.age=Math.trunc(10*o[0])/10}s.dispose(),l1=i,n(i)})):null}var N6={};Nr(N6,{load:()=>s2,predict:()=>i2});var vi,o2={gender:""},c1=Number.MAX_SAFE_INTEGER,l2=!1,u2=[.2989,.587,.114];async function s2(e){return vi||(vi=await Jn(e.face.gender.modelPath),l2=vi.inputs[0].shape[3]===1,Ve(`load model: ${e.face.gender.modelPath.match(/\/(.*)\./)[1]}`)),vi}async function i2(e,t){return vi?c1<t.face.gender.skipFrames&&t.videoOptimized&&o2.gender!==""?(c1++,o2):(t.videoOptimized?c1=0:c1=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=St.resizeBilinear(e,[t.face.gender.inputSize,t.face.gender.inputSize],!1),a;l2?a=U(()=>{let[o,l,c]=sn(r,3,3),u=L(o,u2[0]),h=L(l,u2[1]),d=L(c,u2[2]);return Qh([u,h,d]).sub(.5).mul(2)}):a=L(r,[255]),Fe(r);let s,i={gender:"",confidence:0};if(!t.profile)t.face.gender.enabled&&(s=await vi.predict(a));else{let o=t.face.gender.enabled?await Vo(()=>vi.predict(a)):{};s=o.result.clone(),o.result.dispose(),Lc("gender",o)}if(a.dispose(),s){let o=s.dataSync();if(l2){let l=Math.trunc(100*Math.abs(o[0]-o[1]))/100;l>t.face.gender.minConfidence&&(i.gender=o[0]>o[1]?"female":"male",i.confidence=l)}else{let l=Math.trunc(200*Math.abs(o[0]-.5))/100;l>t.face.gender.minConfidence&&(i.gender=o[0]<=.5?"female":"male",i.confidence=Math.min(.99,l))}}s.dispose(),o2=i,n(i)})):null}var S6={};Nr(S6,{load:()=>c2,predict:()=>h2});var eae=["angry","disgust","fear","happy","sad","surprise","neutral"],Dl,d2=[],h1=Number.MAX_SAFE_INTEGER,p2=[.2989,.587,.114],T6=1;async function c2(e){return Dl||(Dl=await Jn(e.face.emotion.modelPath),Ve(`load model: ${e.face.emotion.modelPath.match(/\/(.*)\./)[1]}`)),Dl}async function h2(e,t){return Dl?h1<t.face.emotion.skipFrames&&t.videoOptimized&&d2.length>0?(h1++,d2):(t.videoOptimized?h1=0:h1=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=St.resizeBilinear(e,[t.face.emotion.inputSize,t.face.emotion.inputSize],!1),[a,s,i]=sn(r,3,3);r.dispose();let o=L(a,p2[0]),l=L(s,p2[1]),c=L(i,p2[2]);a.dispose(),s.dispose(),i.dispose();let u=Qh([o,l,c]);o.dispose(),l.dispose(),c.dispose();let h=U(()=>u.sub(.5).mul(2));u.dispose();let d=[];if(t.face.emotion.enabled){let p;if(t.profile){let f=await Vo(()=>Dl.predict(h));p=f.result.dataSync(),f.result.dispose(),Lc("emotion",f)}else{let f=await Dl.predict(h);p=f.dataSync(),Fe(f)}for(let f=0;f<p.length;f++)T6*p[f]>t.face.emotion.minConfidence&&d.push({score:Math.min(.99,Math.trunc(100*T6*p[f])/100),emotion:eae[f]});d.sort((f,m)=>m.score-f.score)}h.dispose(),d2=d,n(d)})):null}var Ol;async function E6(e){return Ol||(Ol=await Jn(e.face.embedding.modelPath),Ve(`load model: ${e.face.embedding.modelPath.match(/\/(.*)\./)[1]}`)),Ol}function tae(e,t){if(!e||!t||(e==null?void 0:e.length)===0||(t==null?void 0:t.length)===0||(e==null?void 0:e.length)!==(t==null?void 0:t.length))return 0;let n=2,r=10*e.map((a,s)=>a-t[s]).reduce((a,s)=>a+s**n,0)**(1/n);return Math.trunc(1e3*(1-r))/1e3}async function C6(e,t){return Ol?new Promise(async n=>{let r=St.resizeBilinear(e,[t.face.embedding.inputSize,t.face.embedding.inputSize],!1),a=[];if(t.face.embedding.enabled)if(t.profile){let s=await Vo(()=>Ol.predict({img_inputs:r}));a=[...s.result.dataSync()],s.result.dispose(),Lc("emotion",s)}else{let s=await Ol.predict({img_inputs:r});a=[...s.dataSync()],Fe(s)}r.dispose(),n(a)}):null}var R6={};Nr(R6,{PoseNet:()=>F6,load:()=>f2});var nae=[-123.15,-115.9,-103.06];function rae(e){let[t,n,r,a]=e;return{offsets:t,heatmap:n,displacementFwd:r,displacementBwd:a}}function aae(e){let[t,n,r,a]=e;return{offsets:r,heatmap:a,displacementFwd:t,displacementBwd:n}}var sae=class{constructor(e){this.model=e}predict(e,t){return U(()=>{let n=(t.body.modelType==="ResNet"?e.toFloat().add(nae):e.toFloat().div(127.5).sub(1)).expandDims(0),r=this.model.predict(n).map(s=>s.squeeze([0])),a=t.body.modelType==="ResNet"?aae(r):rae(r);return{heatmapScores:a.heatmap.sigmoid(),offsets:a.offsets,displacementFwd:a.displacementFwd,displacementBwd:a.displacementBwd}})}dispose(){this.model.dispose()}};function m2(e){return Math.floor(e/2)}var iae=class{constructor(e,t){this.priorityQueue=new Array(e),this.numberOfElements=-1,this.getElementValue=t}enqueue(e){this.priorityQueue[++this.numberOfElements]=e,this.swim(this.numberOfElements)}dequeue(){let e=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,e}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(e){for(;e>0&&this.less(m2(e),e);)this.exchange(e,m2(e)),e=m2(e)}sink(e){for(;2*e<=this.numberOfElements;){let t=2*e;if(t<this.numberOfElements&&this.less(t,t+1)&&t++,!this.less(e,t))break;this.exchange(e,t),e=t}}getValueAt(e){return this.getElementValue(this.priorityQueue[e])}less(e,t){return this.getValueAt(e)<this.getValueAt(t)}exchange(e,t){let n=this.priorityQueue[e];this.priorityQueue[e]=this.priorityQueue[t],this.priorityQueue[t]=n}};function oae(e,t,n,r,a,s){let[i,o]=s.shape,l=!0,c=Math.max(n-a,0),u=Math.min(n+a+1,i);for(let h=c;h<u;++h){let d=Math.max(r-a,0),p=Math.min(r+a+1,o);for(let f=d;f<p;++f)if(s.get(h,f,e)>t){l=!1;break}if(!l)break}return l}function lae(e,t,n){let[r,a,s]=n.shape,i=new iae(r*a*s,({score:o})=>o);for(let o=0;o<r;++o)for(let l=0;l<a;++l)for(let c=0;c<s;++c){let u=n.get(o,l,c);u<e||oae(c,u,o,l,t,n)&&i.enqueue({score:u,part:{heatmapY:o,heatmapX:l,id:c}})}return i}var zl=mh(Tf()),uae=mh(Tf());function M6(e,t,n,r){return{y:r.get(e,t,n),x:r.get(e,t,n+uae.NUM_KEYPOINTS)}}function $6(e,t,n){let{heatmapY:r,heatmapX:a,id:s}=e,{y:i,x:o}=M6(r,a,s,n);return{x:e.heatmapX*t+o,y:e.heatmapY*t+i}}function D6(e,t,n){return e<t?t:e>n?n:e}function cae(e,t,n,r){let a=n-e,s=r-t;return a*a+s*s}function O6(e,t){return{x:e.x+t.x,y:e.y+t.y}}var A2=mh(Tf());function hae(e,t){let n=t.shape[0],r=new Float32Array(n);for(let a=0;a<n;a++){let s=t.get(a,0),i=t.get(a,1);r[a]=e.get(s,i,a)}return r}function dae(e,t,n,r){return{y:r.get(e,t,n),x:r.get(e,t,n+A2.NUM_KEYPOINTS)}}function pae(e,t){let n=[];for(let r=0;r<A2.NUM_KEYPOINTS;r++){let a=e.get(r,0).valueOf(),s=e.get(r,1).valueOf(),{x:i,y:o}=dae(a,s,r,t);n.push(o),n.push(i)}return fr(n,[A2.NUM_KEYPOINTS,2])}function fae(e,t,n){return U(()=>e.toTensor().mul(Se(t,"int32")).toFloat().add(pae(e,n)))}function mae(e,t){return U(()=>{let n=e.div(Se(t,"int32"));return e.sub(n.mul(Se(t,"int32")))})}function Aae(e){let[t,n,r]=e.shape;return U(()=>{let a=e.reshape([t*n,r]).argMax(0),s=a.div(Se(n,"int32")).expandDims(1),i=mae(a,n).expandDims(1);return ct([s,i],1)})}var z6=zl.poseChain.map(([e,t])=>[zl.partIds[e],zl.partIds[t]]),y2=z6.map(([,e])=>e),P6=z6.map(([e])=>e);function yae(e,t,n){let r=n.shape[2]/2;return{y:n.get(t.y,t.x,e),x:n.get(t.y,t.x,r+e)}}function g2(e,t,n,r){return{y:D6(Math.round(e.y/t),0,n-1),x:D6(Math.round(e.x/t),0,r-1)}}function L6(e,t,n,r,a,s,i,o=2){let[l,c]=r.shape,u=g2(t.position,s,l,c),h=yae(e,u,i),d=O6(t.position,h);for(let m=0;m<o;m++){let A=g2(d,s,l,c),y=M6(A.y,A.x,n,a);d=O6({x:A.x*s,y:A.y*s},{x:y.x,y:y.y})}let p=g2(d,s,l,c),f=r.get(p.y,p.x,n);return{position:d,part:zl.partNames[n],score:f}}function gae(e,t,n,r,a,s){let i=t.shape[2],o=y2.length,l=new Array(i),{part:c,score:u}=e,h=$6(c,r,n);l[c.id]={score:u,part:zl.partNames[c.id],position:h};for(let d=o-1;d>=0;--d){let p=y2[d],f=P6[d];l[p]&&!l[f]&&(l[f]=L6(d,l[p],f,t,n,r,s))}for(let d=0;d<o;++d){let p=P6[d],f=y2[d];l[p]&&!l[f]&&(l[f]=L6(d,l[p],f,t,n,r,a))}return l}async function xae(e,t,n){let r=0,a=Aae(e),s=await Promise.all([e.buffer(),t.buffer(),a.buffer()]),i=s[0],o=s[1],l=s[2],c=fae(l,n.body.outputStride,o),u=await c.buffer(),h=Array.from(hae(i,l)).map((p,f)=>(r+=p,{position:{y:u.get(f,0),x:u.get(f,1)},part:zl.partNames[f],score:p})),d=h.filter(p=>p.score>n.body.scoreThreshold);return a.dispose(),c.dispose(),{keypoints:d,score:r/h.length}}var wae=1;function W6(e,t,{x:n,y:r},a){return e.some(({keypoints:s})=>{let i=s[a].position;return cae(r,n,i.y,i.x)<=t})}function _ae(e,t,n){return n.reduce((r,{position:a,score:s},i)=>(W6(e,t,a,i)||(r+=s),r),0)/n.length}function bae(e,t,n,r,a){let s=[],i=lae(a.body.scoreThreshold,wae,e),o=a.body.nmsRadius^2;for(;s.length<a.body.maxDetections&&!i.empty();){let l=i.dequeue(),c=$6(l.part,a.body.outputStride,t);if(W6(s,o,c,l.part.id))continue;let u=gae(l,e,t,a.body.outputStride,n,r),h=_ae(s,o,u);h>a.body.scoreThreshold&&s.push({keypoints:u,score:h})}return s}async function vae(e){return Promise.all(e.map(t=>t.buffer()))}function kae(e,t,n){return{score:e.score,keypoints:e.keypoints.map(({score:r,part:a,position:s})=>({score:r,part:a,position:{x:s.x*n,y:s.y*t}}))}}function Iae(e,[t,n]){let r=e.squeeze(0),a=r.resizeBilinear([t,n]);return r.dispose(),a}function B6(e,[t,n],[r,a]){return e.map(s=>kae(s,t/r,n/a))}async function Nae(e,t,n){return new Promise(async r=>{let a=e.shape[1],s=e.shape[2],i=await vae([t.heatmapScores,t.offsets,t.displacementFwd,t.displacementBwd]),o=i[0],l=i[1],c=i[2],u=i[3],h=await bae(o,l,c,u,n),d=B6(h,[a,s],[n.body.inputSize,n.body.inputSize]);r(d)})}async function Sae(e,t,n){return new Promise(async r=>{let a=e.shape[1],s=e.shape[2],i=[await xae(t.heatmapScores,t.offsets,n)],o=B6(i,[a,s],[n.body.inputSize,n.body.inputSize]);r(o)})}var F6=class{constructor(e){this.baseModel=e}async estimatePoses(e,t){let n=Iae(e,[t.body.inputSize,t.body.inputSize]),r=this.baseModel.predict(n,t),a=t.body.maxDetections<2?await Sae(e,r,t):await Nae(e,r,t);return r.heatmapScores.dispose(),r.offsets.dispose(),r.displacementFwd.dispose(),r.displacementBwd.dispose(),n.dispose(),a}dispose(){this.baseModel.dispose()}};async function f2(e){let t=await Jn(e.body.modelPath),n=new sae(t);return Ve(`load model: ${e.body.modelPath.match(/\/(.*)\./)[1]}`),new F6(n)}var V6={};Nr(V6,{HandPose:()=>U6,load:()=>x2});function w2(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function d1(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function Tae(e,t,n){let r=t.shape[1],a=t.shape[2],s=[[e.startPoint[1]/r,e.startPoint[0]/a,e.endPoint[1]/r,e.endPoint[0]/a]];return St.cropAndResize(t,s,[0],n)}function Eae(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],r=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],a=e.palmLandmarks.map(s=>[s[0]*t[0],s[1]*t[1]]);return{startPoint:n,endPoint:r,palmLandmarks:a,confidence:e.confidence}}function _2(e,t=1.5){let n=d1(e),r=w2(e),a=[t*r[0]/2,t*r[1]/2],s=[n[0]-a[0],n[1]-a[1]],i=[n[0]+a[0],n[1]+a[1]];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}function b2(e){let t=d1(e),n=w2(e),r=Math.max(...n)/2,a=[t[0]-r,t[1]-r],s=[t[0]+r,t[1]+r];return{startPoint:a,endPoint:s,palmLandmarks:e.palmLandmarks}}var Cae=class{constructor(e,t,n){this.model=e,this.anchors=n.map(r=>[r.x_center,r.y_center]),this.anchorsTensor=fr(this.anchors),this.inputSizeTensor=en([t,t]),this.doubleInputSizeTensor=en([t*2,t*2])}normalizeBoxes(e){return U(()=>{let t=Me(e,[0,0],[-1,2]),n=Me(e,[0,2],[-1,2]),r=oe(Ne(t,this.inputSizeTensor),this.anchorsTensor),a=Ne(n,this.doubleInputSizeTensor),s=L(we(r,a),this.inputSizeTensor),i=L(oe(r,a),this.inputSizeTensor);return td([s,i],1)})}normalizeLandmarks(e,t){return U(()=>{let n=oe(Ne(e.reshape([-1,7,2]),this.inputSizeTensor),this.anchors[t]);return L(n,this.inputSizeTensor)})}async getBoxes(e,t){let n=this.model.predict(e),r=n.squeeze();n.dispose();let a=U(()=>Qn(Me(r,[0,0],[-1,1])).squeeze()),s=a.dataSync(),i=Me(r,[0,1],[-1,4]),o=this.normalizeBoxes(i);i.dispose();let l=await St.nonMaxSuppressionAsync(o,s,t.hand.maxHands,t.hand.iouThreshold,t.hand.scoreThreshold),c=l.arraySync();a.dispose(),l.dispose();let u=[];for(let h of c)if(s[h]>=t.hand.minConfidence){let d=Me(o,[h,0],[1,-1]),p=Me(r,[h,5],[1,14]),f=U(()=>this.normalizeLandmarks(p,h).reshape([-1,2]));p.dispose(),u.push({box:d,palmLandmarks:f,confidence:s[h]})}return r.dispose(),o.dispose(),u}async estimateHandBounds(e,t){let n=e.shape[1],r=e.shape[2],a=U(()=>e.resizeBilinear([t.hand.inputSize,t.hand.inputSize]).div(127.5).sub(1)),s=await this.getBoxes(a,t);a.dispose();let i=[];if(!s||s.length===0)return i;for(let o of s){let l=o.box.dataSync(),c=l.slice(0,2),u=l.slice(2,4),h=o.palmLandmarks.arraySync();o.box.dispose(),o.palmLandmarks.dispose(),i.push(Eae({startPoint:c,endPoint:u,palmLandmarks:h,confidence:o.confidence},[r/t.hand.inputSize,n/t.hand.inputSize]))}return i}};function Rae(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function Fae(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Rae(n)}var H6=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function ki(e,t){let n=0;for(let r=0;r<e.length;r++)n+=e[r]*t[r];return n}function Mae(e,t){let n=[];for(let r=0;r<e.length;r++)n.push(e[r][t]);return n}function j6(e,t){let n=[],r=e.length;for(let a=0;a<r;a++){n.push([]);for(let s=0;s<r;s++)n[a].push(ki(e[a],Mae(t,s)))}return n}function G6(e,t){let n=Math.cos(e),r=Math.sin(e),a=[[n,-r,0],[r,n,0],[0,0,1]],s=H6(t[0],t[1]),i=j6(s,a),o=H6(-t[0],-t[1]);return j6(i,o)}function $ae(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],r=[-ki(t[0],n),-ki(t[1],n)];return[t[0].concat(r[0]),t[1].concat(r[1]),[0,0,1]]}function q6(e,t){return[ki(e,t[0]),ki(e,t[1])]}var Dae=5,X6=1.65,K6=[0,5,9,13,17,1,2],Oae=0,zae=2,Pae=class{constructor(e,t,n){this.handDetector=e,this.landmarkDetector=t,this.inputSize=n,this.storedBoxes=[],this.skipped=0,this.detectedHands=0}getBoxForPalmLandmarks(e,t){let n=e.map(a=>q6([...a,1],t)),r=this.calculateLandmarksBoundingBox(n);return _2(b2(r),Dae)}getBoxForHandLandmarks(e){let t=this.calculateLandmarksBoundingBox(e),n=_2(b2(t),X6);n.palmLandmarks=[];for(let r=0;r<K6.length;r++)n.palmLandmarks.push(e[K6[r]].slice(0,2));return n}transformRawCoords(e,t,n,r){let a=w2(t),s=[a[0]/this.inputSize,a[1]/this.inputSize,(a[0]+a[1])/this.inputSize/2],i=e.map(d=>[s[0]*(d[0]-this.inputSize/2),s[1]*(d[1]-this.inputSize/2),s[2]*d[2]]),o=G6(n,[0,0]),l=i.map(d=>[...q6(d,o),d[2]]),c=$ae(r),u=[...d1(t),1],h=[ki(u,c[0]),ki(u,c[1])];return l.map(d=>[d[0]+h[0],d[1]+h[1],d[2]])}async estimateHands(e,t){let n=!1,r;(this.skipped===0||this.skipped>t.hand.skipFrames||!t.hand.landmarks||!t.videoOptimized)&&(r=await this.handDetector.estimateHandBounds(e,t),this.skipped=0),t.videoOptimized&&this.skipped++,r&&r.length>0&&(r.length!==this.detectedHands&&this.detectedHands!==t.hand.maxHands||!t.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...r],this.storedBoxes.length>0&&(n=!0));let a=[];for(let s=0;s<this.storedBoxes.length;s++){let i=this.storedBoxes[s];if(i)if(t.hand.landmarks){let o=t.hand.rotation?Fae(i.palmLandmarks[Oae],i.palmLandmarks[zae]):0,l=d1(i),c=[l[0]/e.shape[2],l[1]/e.shape[1]],u=t.hand.rotation?St.rotateWithOffset(e,o,0,c):e.clone(),h=G6(-o,l),d=n?this.getBoxForPalmLandmarks(i.palmLandmarks,h):i,p=Tae(d,u,[this.inputSize,this.inputSize]),f=p.div(255);p.dispose(),u.dispose();let[m,A]=await this.landmarkDetector.predict(f);f.dispose();let y=m.dataSync()[0];if(m.dispose(),y>=t.hand.minConfidence){let g=q(A,[-1,3]),b=g.arraySync();A.dispose(),g.dispose();let x=this.transformRawCoords(b,d,o,h),w=this.getBoxForHandLandmarks(x);this.storedBoxes[s]=w;let _={landmarks:x,confidence:y,box:{topLeft:w.startPoint,bottomRight:w.endPoint}};a.push(_)}else this.storedBoxes[s]=null;A.dispose()}else{let o=_2(b2(i),X6),l={confidence:i.confidence,box:{topLeft:o.startPoint,bottomRight:o.endPoint}};a.push(l)}}return this.storedBoxes=this.storedBoxes.filter(s=>s!==null),this.detectedHands=a.length,a}calculateLandmarksBoundingBox(e){let t=e.map(s=>s[0]),n=e.map(s=>s[1]),r=[Math.min(...t),Math.min(...n)],a=[Math.max(...t),Math.max(...n)];return{startPoint:r,endPoint:a}}},Lae=[{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375}],v2={thumb:[1,2,3,4],indexFinger:[5,6,7,8],middleFinger:[9,10,11,12],ringFinger:[13,14,15,16],pinky:[17,18,19,20],palmBase:[0]},U6=class{constructor(e){this.handPipeline=e}static getAnnotations(){return v2}async estimateHands(e,t){let n=await this.handPipeline.estimateHands(e,t);if(!n)return[];let r=[];for(let a of n){let s={};if(a.landmarks)for(let o of Object.keys(v2))s[o]=v2[o].map(l=>a.landmarks[l]);let i=a.box?[Math.max(0,a.box.topLeft[0]),Math.max(0,a.box.topLeft[1]),Math.min(e.shape[2],a.box.bottomRight[0])-a.box.topLeft[0],Math.min(e.shape[1],a.box.bottomRight[1])-a.box.topLeft[1]]:0;r.push({confidence:a.confidence,box:i,landmarks:a.landmarks,annotations:s})}return r}};async function x2(e){let[t,n]=await Promise.all([e.hand.enabled?Jn(e.hand.detector.modelPath,{fromTFHub:e.hand.detector.modelPath.includes("tfhub.dev")}):null,e.hand.landmarks?Jn(e.hand.skeleton.modelPath,{fromTFHub:e.hand.skeleton.modelPath.includes("tfhub.dev")}):null]),r=new Cae(t,e.hand.inputSize,Lae),a=new Pae(r,n,e.hand.inputSize),s=new U6(a);return e.hand.enabled&&Ve(`load model: ${e.hand.detector.modelPath.match(/\/(.*)\./)[1]}`),e.hand.landmarks&&Ve(`load model: ${e.hand.skeleton.modelPath.match(/\/(.*)\./)[1]}`),s}var Wae=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let r=e[n].keypoints.find(l=>l.part==="leftWrist"),a=e[n].keypoints.find(l=>l.part==="rightWrist"),s=e[n].keypoints.find(l=>l.part==="nose");s&&r&&a&&r.position.y<s.position.y&&a.position.y<s.position.y?t.push({body:n,gesture:"i give up"}):s&&r&&r.position.y<s.position.y?t.push({body:n,gesture:"raise left hand"}):s&&a&&a.position.y<s.position.y&&t.push({body:n,gesture:"raise right hand"});let i=e[n].keypoints.find(l=>l.part==="leftShoulder"),o=e[n].keypoints.find(l=>l.part==="rightShoulder");i&&o&&t.push({body:n,gesture:`leaning ${i.position.y>o.position.y?"left":"right"}`})}return t},Bae=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++)if(e[n].mesh&&e[n].mesh.length>0){let r=e[n].mesh[35][2]-e[n].mesh[263][2];Math.abs(r)<10?t.push({face:n,gesture:"facing camera"}):t.push({face:n,gesture:`facing ${r<0?"right":"left"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let a=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));a>10&&t.push({face:n,gesture:`mouth ${Math.trunc(a)}% open`});let s=e[n].mesh[152][2];Math.abs(s)>10&&t.push({face:n,gesture:`head ${s<0?"up":"down"}`})}return t},Vae=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){if(!e[n].annotations||!e[n].annotations.leftEyeIris||!e[n].annotations.rightEyeIris)continue;let r=e[n].annotations.leftEyeIris[3][0]-e[n].annotations.leftEyeIris[1][0],a=e[n].annotations.leftEyeIris[4][1]-e[n].annotations.leftEyeIris[2][1],s=Math.abs(r*a),i=e[n].annotations.rightEyeIris[3][0]-e[n].annotations.rightEyeIris[1][0],o=e[n].annotations.rightEyeIris[4][1]-e[n].annotations.rightEyeIris[2][1],l=Math.abs(i*o);Math.abs(s-l)/Math.max(s,l)<.25&&t.push({iris:n,gesture:"looking at camera"})}return t},Uae=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let r=[];for(let[a,s]of Object.entries(e[n].annotations))a!=="palmBase"&&r.push({name:a.toLowerCase(),position:s[0]});if(r&&r.length>0){let a=r.reduce((i,o)=>i.position[2]<o.position[2]?i:o),s=r.reduce((i,o)=>i.position[1]<o.position[1]?i:o);t.push({hand:n,gesture:`${a.name} forward ${s.name} up`})}}return t};function Hae(e,t,n){let r=function(o,l,c){let u=new RegExp("\\b"+l+" \\w+ (\\w+)","ig");o.replace(u,(h,d)=>(c[d]=0,h))},a=function(o,l){let c=e.createShader(l);if(e.shaderSource(c,o),e.compileShader(c),!e.getShaderParameter(c,e.COMPILE_STATUS))throw new Error("Filter: GL compile failed",e.getShaderInfoLog(c));return c};this.uniform={},this.attribute={};let s=a(t,e.VERTEX_SHADER),i=a(n,e.FRAGMENT_SHADER);if(this.id=e.createProgram(),e.attachShader(this.id,s),e.attachShader(this.id,i),e.linkProgram(this.id),!e.getProgramParameter(this.id,e.LINK_STATUS))throw new Error("Filter: GL link failed",e.getProgramInfoLog(this.id));e.useProgram(this.id),r(t,"attribute",this.attribute);for(let o in this.attribute)this.attribute[o]=e.getAttribLocation(this.id,o);r(t,"uniform",this.uniform),r(n,"uniform",this.uniform);for(let o in this.uniform)this.uniform[o]=e.getUniformLocation(this.id,o)}function jae(e){e||(e={});let t=0,n=null,r=!1,a=-1,s=[null,null],i=[],o=-1,l=-1,c=null,u=null,h={},d=e.canvas||document.createElement("canvas"),p={},f={INTERMEDIATE:1},m=d.getContext("webgl");if(!m)throw new Error("Filter: getContext() failed");this.addFilter=function(w){let _=Array.prototype.slice.call(arguments,1),N=h[w];i.push({func:N,args:_})},this.reset=function(){i=[]};let A=function(w,_){if(!(w===o&&_===l)){if(d.width=w,o=w,d.height=_,l=_,!c){let N=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);c=m.createBuffer(),m.bindBuffer(m.ARRAY_BUFFER,c),m.bufferData(m.ARRAY_BUFFER,N,m.STATIC_DRAW),m.pixelStorei(m.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}m.viewport(0,0,o,l),s=[null,null]}},y=function(w,_){let N=m.createFramebuffer();m.bindFramebuffer(m.FRAMEBUFFER,N);let T=m.createRenderbuffer();m.bindRenderbuffer(m.RENDERBUFFER,T);let E=m.createTexture();return m.bindTexture(m.TEXTURE_2D,E),m.texImage2D(m.TEXTURE_2D,0,m.RGBA,w,_,0,m.RGBA,m.UNSIGNED_BYTE,null),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MAG_FILTER,m.LINEAR),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MIN_FILTER,m.LINEAR),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_S,m.CLAMP_TO_EDGE),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_T,m.CLAMP_TO_EDGE),m.framebufferTexture2D(m.FRAMEBUFFER,m.COLOR_ATTACHMENT0,m.TEXTURE_2D,E,0),m.bindTexture(m.TEXTURE_2D,null),m.bindFramebuffer(m.FRAMEBUFFER,null),{fbo:N,texture:E}},g=function(w){return s[w]=s[w]||y(o,l),s[w]},b=function(w=null){var _,N;let T=null,E=null,M=!1;t===0?T=n:T=(_=g(a))==null?void 0:_.texture,t++,r&&!(w&f.INTERMEDIATE)?(E=null,M=t%2==0):(a=(a+1)%2,E=(N=g(a))==null?void 0:N.fbo),m.bindTexture(m.TEXTURE_2D,T),m.bindFramebuffer(m.FRAMEBUFFER,E),m.uniform1f(u.uniform.flipY,M?-1:1),m.drawArrays(m.TRIANGLES,0,6)};this.apply=function(w){if(A(w.width,w.height),t=0,n||(n=m.createTexture()),m.bindTexture(m.TEXTURE_2D,n),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_S,m.CLAMP_TO_EDGE),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_T,m.CLAMP_TO_EDGE),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MIN_FILTER,m.NEAREST),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MAG_FILTER,m.NEAREST),m.texImage2D(m.TEXTURE_2D,0,m.RGBA,m.RGBA,m.UNSIGNED_BYTE,w),i.length===0)return b(),d;for(let _=0;_<i.length;_++){r=_===i.length-1;let N=i[_];N.func.apply(this,N.args||[])}return d};let x=function(w){if(p[w])return u=p[w],m.useProgram(u.id),u;let _={};_.VERTEX_IDENTITY=["precision highp float;","attribute vec2 pos;","attribute vec2 uv;","varying vec2 vUv;","uniform float flipY;","void main(void) {","vUv = uv;","gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);","}"].join(`
`),_.FRAGMENT_IDENTITY=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","void main(void) {","gl_FragColor = texture2D(texture, vUv);","}"].join(`
`),u=new Hae(m,_.VERTEX_IDENTITY,w);let N=Float32Array.BYTES_PER_ELEMENT,T=4*N;return m.enableVertexAttribArray(u.attribute.pos),m.vertexAttribPointer(u.attribute.pos,2,m.FLOAT,!1,T,0*N),m.enableVertexAttribArray(u.attribute.uv),m.vertexAttribPointer(u.attribute.uv,2,m.FLOAT,!1,T,2*N),p[w]=u,u};h.colorMatrix=function(w){let _=new Float32Array(w);_[4]/=255,_[9]/=255,_[14]/=255,_[19]/=255;let N=_[18]===1&&_[3]===0&&_[8]===0&&_[13]===0&&_[15]===0&&_[16]===0&&_[17]===0&&_[19]===0?h.colorMatrix.SHADER.WITHOUT_ALPHA:h.colorMatrix.SHADER.WITH_ALPHA,T=x(N);m.uniform1fv(T.uniform.m,_),b()},h.colorMatrix.SHADER={},h.colorMatrix.SHADER.WITH_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];","gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];","}"].join(`
`),h.colorMatrix.SHADER.WITHOUT_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];","gl_FragColor.a = c.a;","}"].join(`
`),h.brightness=function(w){let _=(w||0)+1;h.colorMatrix([_,0,0,0,0,0,_,0,0,0,0,0,_,0,0,0,0,0,1,0])},h.saturation=function(w){let _=(w||0)*2/3+1,N=(_-1)*-.5;h.colorMatrix([_,N,N,0,0,N,_,N,0,0,N,N,_,0,0,0,0,0,1,0])},h.desaturate=function(){h.saturation(-1)},h.contrast=function(w){let _=(w||0)+1,N=-128*(_-1);h.colorMatrix([_,0,0,0,N,0,_,0,0,N,0,0,_,0,N,0,0,0,1,0])},h.negative=function(){h.contrast(-2)},h.hue=function(w){w=(w||0)/180*Math.PI;let _=Math.cos(w),N=Math.sin(w),T=.213,E=.715,M=.072;h.colorMatrix([T+_*(1-T)+N*-T,E+_*-E+N*-E,M+_*-M+N*(1-M),0,0,T+_*-T+N*.143,E+_*(1-E)+N*.14,M+_*-M+N*-.283,0,0,T+_*-T+N*-(1-T),E+_*-E+N*E,M+_*(1-M)+N*M,0,0,0,0,0,1,0])},h.desaturateLuminance=function(){h.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},h.sepia=function(){h.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},h.brownie=function(){h.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},h.vintagePinhole=function(){h.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},h.kodachrome=function(){h.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},h.technicolor=function(){h.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},h.polaroid=function(){h.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},h.shiftToBGR=function(){h.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},h.convolution=function(w){let _=new Float32Array(w),N=1/o,T=1/l,E=x(h.convolution.SHADER);m.uniform1fv(E.uniform.m,_),m.uniform2f(E.uniform.px,N,T),b()},h.convolution.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","uniform float m[9];","void main(void) {","vec4 c11 = texture2D(texture, vUv - px);","vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y));","vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y));","vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) );","vec4 c22 = texture2D(texture, vUv);","vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) );","vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) );","vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) );","vec4 c33 = texture2D(texture, vUv + px );","gl_FragColor = ","c11 * m[0] + c12 * m[1] + c22 * m[2] +","c21 * m[3] + c22 * m[4] + c23 * m[5] +","c31 * m[6] + c32 * m[7] + c33 * m[8];","gl_FragColor.a = c22.a;","}"].join(`
`),h.detectEdges=function(){h.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},h.sobelX=function(){h.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},h.sobelY=function(){h.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},h.sharpen=function(w){let _=w||1;h.convolution.call(this,[0,-1*_,0,-1*_,1+4*_,-1*_,0,-1*_,0])},h.emboss=function(w){let _=w||1;h.convolution.call(this,[-2*_,-1*_,0,-1*_,1,1*_,0,1*_,2*_])},h.blur=function(w){let _=w/7/o,N=w/7/l,T=x(h.blur.SHADER);m.uniform2f(T.uniform.px,0,N),b(f.INTERMEDIATE),m.uniform2f(T.uniform.px,_,0),b()},h.blur.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","void main(void) {","gl_FragColor = vec4(0.0);","gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;","gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv )*0.159576912161;","gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;","}"].join(`
`),h.pixelate=function(w){let _=w/o,N=w/l,T=x(h.pixelate.SHADER);m.uniform2f(T.uniform.size,_,N),b()},h.pixelate.SHADER=["precision highp float;","varying vec2 vUv;","uniform vec2 size;","uniform sampler2D texture;","vec2 pixelate(vec2 coord, vec2 size) {","return floor( coord / size ) * size;","}","void main(void) {","gl_FragColor = vec4(0.0);","vec2 coord = pixelate(vUv, size);","gl_FragColor += texture2D(texture, coord);","}"].join(`
`)}var Et=null,Yt=null,Ft=null;function Gae(e,t){let n;if(e instanceof et)n=Sr(e);else{let r=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,a=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0,s=r,i=a;if(t.filter.width>0?s=t.filter.width:t.filter.height>0&&(s=r*(t.filter.height/a)),t.filter.height>0?i=t.filter.height:t.filter.width>0&&(i=a*(t.filter.width/r)),!s||!i)return Ve("Human: invalid input",e),null;(!Et||Et.width!==s||Et.height!==i)&&(Et=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(s,i):document.createElement("canvas"),Et.width!==s&&(Et.width=s),Et.height!==i&&(Et.height=i));let o=Et.getContext("2d");if(e instanceof ImageData?o.putImageData(e,0,0):o.drawImage(e,0,0,r,a,0,0,Et.width,Et.height),t.filter.enabled){if((!Ft||!Yt||Et.width!==Yt.width||Et.height!==Yt.height)&&(Yt=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Et.width,Et.height):document.createElement("canvas"),Yt.width!==Et.width&&(Yt.width=Et.width),Yt.height!==Et.height&&(Yt.height=Et.height),Ve("created FX filter"),Ft=fa.flags.IS_BROWSER?new jae({canvas:Yt}):null),!Ft)return Et;Ft.reset(),Ft.addFilter("brightness",t.filter.brightness),t.filter.contrast!==0&&Ft.addFilter("contrast",t.filter.contrast),t.filter.sharpness!==0&&Ft.addFilter("sharpen",t.filter.sharpness),t.filter.blur!==0&&Ft.addFilter("blur",t.filter.blur),t.filter.saturation!==0&&Ft.addFilter("saturation",t.filter.saturation),t.filter.hue!==0&&Ft.addFilter("hue",t.filter.hue),t.filter.negative&&Ft.addFilter("negative"),t.filter.sepia&&Ft.addFilter("sepia"),t.filter.vintage&&Ft.addFilter("brownie"),t.filter.sepia&&Ft.addFilter("sepia"),t.filter.kodachrome&&Ft.addFilter("kodachrome"),t.filter.technicolor&&Ft.addFilter("technicolor"),t.filter.polaroid&&Ft.addFilter("polaroid"),t.filter.pixelate!==0&&Ft.addFilter("pixelate",t.filter.pixelate),Ft.apply(Et)}else Yt=Et,Ft&&(Ft=null);let l;if(Yt.data){let u=[Yt.height,Yt.width,3];l=Rf(Yt.data,u,"int32")}else if(t.backend==="webgl"||Yt instanceof ImageData)l=bu.fromPixels(Yt);else{let u=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(s,i):document.createElement("canvas");u.width=s,u.height=i;let h=u.getContext("2d");h==null||h.drawImage(Yt,0,0);let d=h==null?void 0:h.getImageData(0,0,s,i);l=bu.fromPixels(d)}let c=l.toFloat();n=c.expandDims(0),l.dispose(),c.dispose()}return{tensor:n,canvas:t.filter.return?Yt:null}}var qae={backend:"webgl",wasmPath:"../assets/",async:!0,profile:!1,deallocate:!1,scoped:!1,videoOptimized:!0,warmup:"face",filter:{enabled:!0,width:0,height:0,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"../models/blazeface-back.json",inputSize:256,rotation:!1,maxFaces:10,skipFrames:11,minConfidence:.5,iouThreshold:.2,scoreThreshold:.5},mesh:{enabled:!0,modelPath:"../models/facemesh.json",inputSize:192,returnRawData:!1},iris:{enabled:!0,modelPath:"../models/iris.json",inputSize:64},age:{enabled:!0,modelPath:"../models/age-ssrnet-imdb.json",inputSize:64,skipFrames:31},gender:{enabled:!0,minConfidence:.1,modelPath:"../models/gender-ssrnet-imdb.json",inputSize:64,skipFrames:41},emotion:{enabled:!0,inputSize:64,minConfidence:.2,skipFrames:21,modelPath:"../models/emotion-large.json"},embedding:{enabled:!1,inputSize:112,modelPath:"../models/mobilefacenet.json"}},body:{enabled:!0,modelPath:"../models/posenet.json",inputSize:257,maxDetections:10,scoreThreshold:.5,nmsRadius:20,outputStride:16,modelType:"MobileNet"},hand:{enabled:!0,rotation:!1,inputSize:256,skipFrames:12,minConfidence:.1,iouThreshold:.1,scoreThreshold:.5,maxHands:1,landmarks:!0,detector:{modelPath:"../models/handdetect.json"},skeleton:{modelPath:"../models/handskeleton.json"}}},k2=`
/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA
AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu
bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob
IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E
AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE
EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH
SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1
tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB
AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET
IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla
Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG
x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML
Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF
PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/
AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z
5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9
zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO
tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6
8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W
wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk
EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6
GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT
A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep
rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb
LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ
ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K
KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l
pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x
UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4
HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr
xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS
NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD
1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX
+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3
GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K
q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0
nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm
uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH
ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV
wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8
87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P
FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD
YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv
JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ
QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el
UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681
ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly
CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc
UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF
63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x
XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2
ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk
Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK
cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef
eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4
/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5
rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru
/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A
zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO
I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1
jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ
GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG
cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb
WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis
ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH
ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi
lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO
xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK
JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX
PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c
W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t
C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk
4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn
xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW
vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi
qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV
hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F
j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6
wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm
oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ
k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg
nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP
1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1
H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ
1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx
zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt
fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp
Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj
VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy
rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe
5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D
d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69
MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ
Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ
MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP
ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn
0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU
yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is
pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz
TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu
uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem
gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk
HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy
s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu
m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb
0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz
9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN
DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n
R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk
nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu
6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd
9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb
Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S
MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz
FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8
VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx
Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ
mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+
5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh
05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd
ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ
5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR
Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8
1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4
B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag
Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA
3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn
3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx
1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU
tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6
f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA
bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ
zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup
6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM
350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0
/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a
YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ
agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO
mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl
mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR
nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo
EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt
4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ
ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p
iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj
PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l
c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1
8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3
ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY
euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,I2=`
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk
JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF
RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA
AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA
AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA
AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA
AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj
+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt
Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR
PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl
mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp
+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa
zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D
h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2
ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67
d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y
Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP
Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC
vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi
eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/
Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+
r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO
O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s
tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN
TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc
0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj
q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w
+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s
d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t
cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4
Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe
bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi
KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6
rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ
9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf
Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V
bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q
Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM
lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/
/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme
E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv
fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6
jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN
+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk
Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK
cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop
yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn
E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX
12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW
iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS
RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf
0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx
DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL
G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK
xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ
a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4
ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6
tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+
fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE
erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR
Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9
lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD
j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV
5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt
Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/
+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c
vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p
jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0
77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP
Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8
5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe
Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R
Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV
rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU
z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8
to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X
y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt
stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/
w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT
DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l
XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t
ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS
34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX
e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn
26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf
3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q
6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P
NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO
yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN
3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8
2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h
dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx
kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t
DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb
eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc
1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka
c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE
xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu
s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK
0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9
dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt
PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T
Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T
adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b
SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt
pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm
vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr
EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N
vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh
ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I
tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW
d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe
N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218
8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG
PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY
V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw
w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT
Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1
axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/
tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I
mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe
XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1
izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2
crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4
OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2
r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx
zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz
+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v
Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu
ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095
YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE
9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8
mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O
uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O
fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6
Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT
uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3
6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1
Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF
feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq
xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v
ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ
mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz
mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP
B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0
5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1
mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt
mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO
1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq
ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q
ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7
ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK
GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i
tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T
+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+
O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO
esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es
vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz
XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1
+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY
36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL
q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY
3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz
p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr
1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV
xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt
pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS
fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH
mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z
1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+
n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d
MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df
zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl
J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs
zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH
DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ
dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR
tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j
admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC
b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X
qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh
ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O
8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L
T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0
Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr
vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer
rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL
oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq
j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh
odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8
8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1
lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+
oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL
knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK
EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N
mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm
9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N
IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W
MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2
+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql
o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37
O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE
TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1
L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4
izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt
1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb
V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum
L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12
CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE
ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo
Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu
L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh
5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3
6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9
XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM
feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj
SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF
XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr
79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h
yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT
OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223
2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt
adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y
cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX
DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p
7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso
S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l
bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe
vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG
H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7
x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz
5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY
q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn
vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2
IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK
z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ
YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON
ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW
ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf
cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c
biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO
CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw
y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi
QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E
bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r
tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t
LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP
RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm
s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el
XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1
vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq
qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v
VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0
ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q
mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm
6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG
f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo
dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22
gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M
MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb
c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX
6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn
1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK
fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ
EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u
7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT
qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa
S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf
Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU
IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O
8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c
vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx
5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V
KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm
2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu
j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB
TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9
RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL
CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA
AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8
cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj
qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF
0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK
ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK
66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu
XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9
XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN
M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv
VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK
7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI
3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m
XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m
1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A
JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC
EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9
8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL
OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H
M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA
TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8
elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp
BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS
CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r
rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY
jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW
UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB
KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb
Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL
+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v
T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM
sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj
FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl
5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q
7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv
6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa
0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/
AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM
d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5
6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP
bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu
LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy
wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX
0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK
3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0
vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t
zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps
uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi
Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2
O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z
aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz
0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb
T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l
qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t
trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn
mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa
eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe
PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of
TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O
1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG
f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi
0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY
5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc
V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L
/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM
t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd
VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD
KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R
fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3
Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ
DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ
3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv
x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD
weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI
6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew
PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk
j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm
OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/
AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez
N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ
92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp
+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue
V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv
avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0
vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP
8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt
n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw
nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3
7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P
0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U
x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG
0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L
faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ
QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA
BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A
tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv
9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr
jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm
b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB
ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk
dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1
rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+
x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA
AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr
YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4
5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V
kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg
BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA
AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g
Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx
OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2
H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF
+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V
h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA
EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu
ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml
HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl
n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN
3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi
/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00
+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC
UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2
M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp
5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn
N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS
OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL
/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo
stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3
GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA
AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4
qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy
WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a
fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI
rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2
rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc
3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3
Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA
AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx
skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F
o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx
NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h
2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te
pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7
cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7
mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA
AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA
hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J
qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI
XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy
RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX
qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX
kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P
ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC
ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA
lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA
AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o
b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP
y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae
kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu
9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ
k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1
8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp
DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh
nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ
AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA
AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO
yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5
PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii
IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r
O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE
yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX
6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2
JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS
AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA
AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx
Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI
6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5
K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7
Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id
PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ
2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4
eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7
piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR
ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ
JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i
UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61
rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq
ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2
f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO
IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts
bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA
AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA
BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2
SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T
lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/
2Q==`,Z6={};Nr(Z6,{author:()=>av,browser:()=>nv,bugs:()=>sv,default:()=>Xae,dependencies:()=>cv,description:()=>Y6,devDependencies:()=>dv,engines:()=>lv,homepage:()=>iv,keywords:()=>fv,license:()=>ov,main:()=>ev,module:()=>tv,name:()=>J6,peerDependencies:()=>hv,repository:()=>uv,scripts:()=>pv,sideEffects:()=>Q6,types:()=>rv,version:()=>N2});var J6="@vladmandic/human",N2="0.20.9",Y6="Human: AI-powered 3D Face Detection, Face Embedding & Recognition, Body Pose Tracking, Hand & Finger Tracking, Iris Analysis, Age & Gender & Emotion Prediction & Gesture Recognition",Q6=!1,ev="dist/human.node.js",tv="dist/human.esm.js",nv="dist/human.esm.js",rv="types/human.d.ts",av="Vladimir Mandic <mandic00@live.com>",sv={url:"https://github.com/vladmandic/human/issues"},iv="https://github.com/vladmandic/human#readme",ov="MIT",lv={node:">=12.0.0"},uv={type:"git",url:"git+https://github.com/vladmandic/human.git"},cv={},hv={},dv={"@tensorflow/tfjs":"^3.1.0","@tensorflow/tfjs-backend-cpu":"^3.1.0","@tensorflow/tfjs-backend-wasm":"^3.1.0","@tensorflow/tfjs-backend-webgl":"^3.1.0","@tensorflow/tfjs-converter":"^3.1.0","@tensorflow/tfjs-core":"^3.1.0","@tensorflow/tfjs-data":"^3.1.0","@tensorflow/tfjs-layers":"^3.1.0","@tensorflow/tfjs-node":"^3.1.0","@tensorflow/tfjs-node-gpu":"^3.1.0","@types/node":"^14.14.31","@typescript-eslint/eslint-plugin":"^4.15.1","@typescript-eslint/parser":"^4.15.1","@vladmandic/pilogger":"^0.2.14",chokidar:"^3.5.1",dayjs:"^1.10.4",esbuild:"^0.8.50",eslint:"^7.20.0","eslint-config-airbnb-base":"^14.2.1","eslint-plugin-import":"^2.22.1","eslint-plugin-json":"^2.1.2","eslint-plugin-node":"^11.1.0","eslint-plugin-promise":"^4.3.1",rimraf:"^3.0.2",seedrandom:"^3.0.5","simple-git":"^2.35.1",tslib:"^2.1.0",typescript:"^4.3.0-dev.20210221"},pv={start:"node --trace-warnings --unhandled-rejections=strict --trace-uncaught --no-deprecation src/node.js",lint:"eslint src demo server",dev:"npm install && node server/serve.js",build:"rimraf dist/* && rimraf types/* && node server/build.js && node server/changelog.js",update:"npm update --depth 20 --force && npm dedupe && npm prune && npm audit"},fv=["tensorflowjs","face-detection","face-geometry","face-embedding","face-recognition","body-tracking","hand-tracking","iris-tracking","age-estimation","emotion-detection","gender-prediction","gesture-recognition"],Xae={name:J6,version:N2,description:Y6,sideEffects:Q6,main:ev,module:tv,browser:nv,types:rv,author:av,bugs:sv,homepage:iv,license:ov,engines:lv,repository:uv,dependencies:cv,peerDependencies:hv,devDependencies:dv,scripts:pv,keywords:fv},ft=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function Wc(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,r)=>(Object.keys(r||{}).forEach(a=>{let s=n[a],i=r[a];Array.isArray(s)&&Array.isArray(i)?n[a]=s.concat(...i):t(s)&&t(i)?n[a]=Wc(s,i):n[a]=i}),n),{})}var mv=class{constructor(e={}){this.tf=P2,this.package=Z6,this.version=N2,this.config=Wc(qae,e),this.fx=null,this.state="idle",this.numTensors=0,this.analyzeMemoryLeaks=!1,this.checkSanity=!1,this.firstRun=!0,this.perf={},this.models={facemesh:null,posenet:null,handpose:null,iris:null,age:null,gender:null,emotion:null},this.facemesh=_6,this.age=I6,this.gender=N6,this.emotion=S6,this.body=R6,this.hand=V6}profile(){return this.config.profile?k6:{}}analyze(...e){if(!this.analyzeMemoryLeaks)return;let t=this.tf.engine().state.numTensors,n=this.numTensors;this.numTensors=t;let r=t-n;r!==0&&Ve(...e,r)}sanity(e){if(!this.checkSanity)return null;if(!e)return"input is not defined";if(this.tf.ENV.flags.IS_NODE&&!(e instanceof this.tf.Tensor))return"input must be a tensor";try{this.tf.getBackend()}catch(t){return"backend not loaded"}return null}simmilarity(e,t){return this.config.face.embedding.enabled?tae(e,t):0}async load(e=null){this.state="load";let t=ft();e&&(this.config=Wc(this.config,e)),this.firstRun&&(Ve(`version: ${this.version} TensorFlow/JS version: ${this.tf.version_core}`),await this.checkBackend(!0),this.tf.ENV.flags.IS_BROWSER&&(Ve("configuration:",this.config),Ve("tf flags:",this.tf.ENV.flags)));let n=this.config.face.detector.modelPath.includes("faceboxes")?b6:_6;this.config.async?[this.models.face,this.models.age,this.models.gender,this.models.emotion,this.models.embedding,this.models.posenet,this.models.handpose]=await Promise.all([this.models.face||(this.config.face.enabled?n.load(this.config):null),this.models.age||(this.config.face.enabled&&this.config.face.age.enabled?r2(this.config):null),this.models.gender||(this.config.face.enabled&&this.config.face.gender.enabled?s2(this.config):null),this.models.emotion||(this.config.face.enabled&&this.config.face.emotion.enabled?c2(this.config):null),this.models.embedding||(this.config.face.enabled&&this.config.face.embedding.enabled?E6(this.config):null),this.models.posenet||(this.config.body.enabled?f2(this.config):null),this.models.handpose||(this.config.hand.enabled?x2(this.config):null)]):(this.config.face.enabled&&!this.models.face&&(this.models.face=await n.load(this.config)),this.config.face.enabled&&this.config.face.age.enabled&&!this.models.age&&(this.models.age=await r2(this.config)),this.config.face.enabled&&this.config.face.gender.enabled&&!this.models.gender&&(this.models.gender=await s2(this.config)),this.config.face.enabled&&this.config.face.emotion.enabled&&!this.models.emotion&&(this.models.emotion=await c2(this.config)),this.config.face.enabled&&this.config.face.embedding.enabled&&!this.models.embedding&&(this.models.embedding=await E6(this.config)),this.config.body.enabled&&!this.models.posenet&&(this.models.posenet=await f2(this.config)),this.config.hand.enabled&&!this.models.handpose&&(this.models.handpose=await x2(this.config))),this.firstRun&&(Ve("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),this.firstRun=!1);let r=Math.trunc(ft()-t);r>(this.perf.load||0)&&(this.perf.load=r)}async checkBackend(e=!1){if(this.config.backend&&this.config.backend!==""&&e||this.tf.getBackend()!==this.config.backend){let t=ft();this.state="backend",Ve("setting backend:",this.config.backend),this.config.backend==="wasm"&&(Ve("settings wasm path:",this.config.wasmPath),this.tf.setWasmPaths(this.config.wasmPath),await this.tf.env().getAsync("WASM_HAS_SIMD_SUPPORT")||Ve("warning: wasm simd support is not enabled")),this.config.backend==="humangl"&&Cre();try{await this.tf.setBackend(this.config.backend)}catch(n){Ve("error: cannot set backend:",this.config.backend,n)}if(this.tf.enableProdMode(),this.tf.getBackend()==="webgl"){this.config.deallocate&&(Ve("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",this.config.deallocate),this.tf.ENV.set("WEBGL_DELETE_TEXTURE_THRESHOLD",this.config.deallocate?0:-1)),this.tf.ENV.set("WEBGL_FORCE_F16_TEXTURES",!0),this.tf.ENV.set("WEBGL_PACK_DEPTHWISECONV",!0);let n=await this.tf.backend().getGPGPUContext().gl;Ve(`gl version:${n.getParameter(n.VERSION)} renderer:${n.getParameter(n.RENDERER)}`)}await this.tf.ready(),this.perf.backend=Math.trunc(ft()-t)}}async detectFace(e){var t,n,r,a,s,i;let o,l,c,u,h,d=[];this.state="run:face",o=ft();let p=await((t=this.models.face)==null?void 0:t.estimateFaces(e,this.config));this.perf.face=Math.trunc(ft()-o);for(let f of p){if(this.analyze("Get Face"),!f.image||f.image.isDisposedInternal){Ve("Face object is disposed:",f.image);continue}this.analyze("Start Age:"),this.config.async?l=this.config.face.age.enabled?a2(f.image,this.config):{}:(this.state="run:age",o=ft(),l=this.config.face.age.enabled?await a2(f.image,this.config):{},this.perf.age=Math.trunc(ft()-o)),this.analyze("Start Gender:"),this.config.async?c=this.config.face.gender.enabled?i2(f.image,this.config):{}:(this.state="run:gender",o=ft(),c=this.config.face.gender.enabled?await i2(f.image,this.config):{},this.perf.gender=Math.trunc(ft()-o)),this.analyze("Start Emotion:"),this.config.async?u=this.config.face.emotion.enabled?h2(f.image,this.config):{}:(this.state="run:emotion",o=ft(),u=this.config.face.emotion.enabled?await h2(f.image,this.config):{},this.perf.emotion=Math.trunc(ft()-o)),this.analyze("End Emotion:"),this.analyze("Start Embedding:"),this.config.async?h=this.config.face.embedding.enabled?C6(f.image,this.config):[]:(this.state="run:embedding",o=ft(),h=this.config.face.embedding.enabled?await C6(f.image,this.config):[],this.perf.embedding=Math.trunc(ft()-o)),this.analyze("End Emotion:"),this.config.async&&([l,c,u,h]=await Promise.all([l,c,u,h])),this.analyze("Finish Face:"),!this.config.face.iris.enabled&&((n=f==null?void 0:f.annotations)==null?void 0:n.leftEyeIris)&&((r=f==null?void 0:f.annotations)==null?void 0:r.rightEyeIris)&&(delete f.annotations.leftEyeIris,delete f.annotations.rightEyeIris);let m=((a=f.annotations)==null?void 0:a.leftEyeIris)&&((s=f.annotations)==null?void 0:s.rightEyeIris)?11.7*Math.max(Math.abs(f.annotations.leftEyeIris[3][0]-f.annotations.leftEyeIris[1][0]),Math.abs(f.annotations.rightEyeIris[4][1]-f.annotations.rightEyeIris[2][1])):0;d.push({confidence:f.confidence,box:f.box,mesh:f.mesh,boxRaw:f.boxRaw,meshRaw:f.meshRaw,annotations:f.annotations,age:l.age,gender:c.gender,genderConfidence:c.confidence,emotion:u,embedding:h,iris:m!==0?Math.trunc(m)/100:0}),(i=f.image)==null||i.dispose(),this.analyze("End Face")}return this.analyze("End FaceMesh:"),this.config.async&&(this.perf.face&&delete this.perf.face,this.perf.age&&delete this.perf.age,this.perf.gender&&delete this.perf.gender,this.perf.emotion&&delete this.perf.emotion),d}async detect(e,t={}){return new Promise(async n=>{var r,a,s,i;this.state="config";let o;this.config=Wc(this.config,t),this.state="check";let l=this.sanity(e);l&&(Ve(l,e),n({error:l}));let c,u,h,d=ft();await this.checkBackend(),await this.load(),this.config.scoped&&this.tf.engine().startScope(),this.analyze("Start Scope:"),o=ft();let p=Gae(e,this.config);if(!p||!p.tensor){Ve("could not convert input to tensor"),n({error:"could not convert input to tensor"});return}this.perf.image=Math.trunc(ft()-o),this.analyze("Get Image:"),this.config.async?(h=this.config.face.enabled?this.detectFace(p.tensor):[],this.perf.face&&delete this.perf.face):(this.state="run:face",o=ft(),h=this.config.face.enabled?await this.detectFace(p.tensor):[],this.perf.face=Math.trunc(ft()-o)),this.analyze("Start Body:"),this.config.async?(c=this.config.body.enabled?(r=this.models.posenet)==null?void 0:r.estimatePoses(p.tensor,this.config):[],this.perf.body&&delete this.perf.body):(this.state="run:body",o=ft(),c=this.config.body.enabled?await((a=this.models.posenet)==null?void 0:a.estimatePoses(p.tensor,this.config)):[],this.perf.body=Math.trunc(ft()-o)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.config.async?(u=this.config.hand.enabled?(s=this.models.handpose)==null?void 0:s.estimateHands(p.tensor,this.config):[],this.perf.hand&&delete this.perf.hand):(this.state="run:hand",o=ft(),u=this.config.hand.enabled?await((i=this.models.handpose)==null?void 0:i.estimateHands(p.tensor,this.config)):[],this.perf.hand=Math.trunc(ft()-o)),this.analyze("End Hand:"),this.config.async&&([h,c,u]=await Promise.all([h,c,u])),p.tensor.dispose(),this.config.scoped&&this.tf.engine().endScope(),this.analyze("End Scope:");let f=[];this.config.gesture.enabled&&(o=ft(),f=[...Bae(h),...Wae(c),...Uae(u),...Vae(h)],this.config.async?this.perf.gesture&&delete this.perf.gesture:this.perf.gesture=Math.trunc(ft()-o)),this.perf.total=Math.trunc(ft()-d),this.state="idle",n({face:h,body:c,hand:u,gesture:f,performance:this.perf,canvas:p.canvas})})}async warmupBitmap(){let e=(r,a="application/octet-stream")=>fetch(`data:${a};base64,${r}`).then(s=>s.blob()),t,n;switch(this.config.warmup){case"face":t=await e(k2);break;case"full":t=await e(I2);break;default:t=null}if(t){let r=await createImageBitmap(t);n=await this.detect(r,this.config),r.close()}return n}async warmupCanvas(){return new Promise(e=>{let t,n=0;switch(this.config.warmup){case"face":n=256,t="data:image/jpeg;base64,"+k2;break;case"full":n=1200,t="data:image/jpeg;base64,"+I2;break;default:t=null}let r=new Image(n,n);r.onload=()=>{let a=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(n,n):document.createElement("canvas");a.width=n,a.height=n;let s=a.getContext("2d");s==null||s.drawImage(r,0,0);let i=s==null?void 0:s.getImageData(0,0,n,n);this.detect(i,this.config).then(o=>e(o))},t?r.src=t:e(null)})}async warmupNode(){let e=s=>Buffer.from(s,"base64"),t=this.config.warmup==="face"?e(k2):e(I2),n=(void 0).decodeJpeg(t),r=n.expandDims(0);this.tf.dispose(n);let a=await this.detect(r,this.config);return this.tf.dispose(r),a}async warmup(e){let t=ft();e&&(this.config=Wc(this.config,e));let n=this.config.videoOptimized;this.config.videoOptimized=!1;let r;typeof createImageBitmap=="function"?r=await this.warmupBitmap():typeof Image!="undefined"?r=await this.warmupCanvas():r=await this.warmupNode(),this.config.videoOptimized=n;let a=ft();return Ve("Warmup",this.config.warmup,Math.round(a-t),"ms",r),r}};async function Kae(e,t,n){if(!e)return;let r=t.getContext("2d");r.font=n.baseFont,r.fillStyle=n.baseLabel;let a=1;for(let s=0;s<e.length;s++){let[i,o]=Object.entries(e[s]);if(o.length>1&&o[1].length>0){let l=i[1]>0?`#${i[1]}`:"",c=`${i[0]} ${l}: ${o[1]}`;r.fillStyle="black",r.fillText(c,8,2+a*n.baseLineHeight),r.fillStyle=n.baseLabel,r.fillText(c,6,0+a*n.baseLineHeight),a+=1}}}async function Zae(e,t,n,r){if(!e)return;let a=t.getContext("2d");for(let s of e){a.font=n.baseFont,a.strokeStyle=n.baseColor,a.fillStyle=n.baseColor,a.lineWidth=n.baseLineWidth,a.beginPath(),n.drawBoxes&&a.rect(s.box[0],s.box[1],s.box[2],s.box[3]);let i=[];if(s.genderConfidence&&i.push(`${s.gender||""} ${Math.trunc(100*s.genderConfidence)}% confident`),s.age&&i.push(`age: ${s.age||""}`),s.iris&&i.push(`iris distance: ${s.iris}`),s.emotion&&s.emotion.length>0){let o=s.emotion.map(l=>`${Math.trunc(100*l.score)}% ${l.emotion}`);i.push(o.join(" "))}i.length===0&&i.push("face"),a.fillStyle=n.baseLabel;for(let o=0;o<i.length;o++)a.fillStyle="black",a.fillText(i[o],s.box[0]+1,s.box[1]-(i.length-o)*n.baseLineHeight+6),a.fillStyle=n.baseLabel,a.fillText(i[o],s.box[0]+0,s.box[1]-(i.length-o)*n.baseLineHeight+5);if(a.fillStyle=n.baseColor,a.stroke(),a.lineWidth=1,s.mesh){if(n.drawPoints)for(let o of s.mesh)a.fillStyle=n.useDepth?`rgba(${127.5+2*o[2]}, ${127.5-2*o[2]}, 255, 0.5)`:n.baseColor,a.beginPath(),a.arc(o[0],o[1],2,0,2*Math.PI),a.fill();if(n.drawPolygons){for(let o=0;o<r.length/3;o++){let l=[r[o*3+0],r[o*3+1],r[o*3+2]].map(u=>s.mesh[u]),c=new Path2D;c.moveTo(l[0][0],l[0][1]);for(let u of l)c.lineTo(u[0],u[1]);c.closePath(),a.strokeStyle=n.useDepth?`rgba(${127.5+2*l[0][2]}, ${127.5-2*l[0][2]}, 255, 0.3)`:n.baseColor,a.stroke(c),n.fillPolygons&&(a.fillStyle=n.useDepth?`rgba(${127.5+2*l[0][2]}, ${127.5-2*l[0][2]}, 255, 0.3)`:n.baseColor,a.fill(c))}if(s.annotations&&s.annotations.leftEyeIris){a.strokeStyle=n.useDepth?"rgba(255, 200, 255, 0.3)":n.baseColor,a.beginPath();let o=Math.abs(s.annotations.leftEyeIris[3][0]-s.annotations.leftEyeIris[1][0])/2,l=Math.abs(s.annotations.leftEyeIris[4][1]-s.annotations.leftEyeIris[2][1])/2;a.ellipse(s.annotations.leftEyeIris[0][0],s.annotations.leftEyeIris[0][1],o,l,0,0,2*Math.PI),a.stroke(),n.fillPolygons&&(a.fillStyle=n.useDepth?"rgba(255, 255, 200, 0.3)":n.baseColor,a.fill())}if(s.annotations&&s.annotations.rightEyeIris){a.strokeStyle=n.useDepth?"rgba(255, 200, 255, 0.3)":n.baseColor,a.beginPath();let o=Math.abs(s.annotations.rightEyeIris[3][0]-s.annotations.rightEyeIris[1][0])/2,l=Math.abs(s.annotations.rightEyeIris[4][1]-s.annotations.rightEyeIris[2][1])/2;a.ellipse(s.annotations.rightEyeIris[0][0],s.annotations.rightEyeIris[0][1],o,l,0,0,2*Math.PI),a.stroke(),n.fillPolygons&&(a.fillStyle=n.useDepth?"rgba(255, 255, 200, 0.3)":n.baseColor,a.fill())}}}}}var Va=[];async function Jae(e,t,n){if(!e)return;let r=t.getContext("2d");r.lineJoin="round";for(let a=0;a<e.length;a++){if(!Va[a]&&n.buffered&&(Va[a]={...e[a]}),r.fillStyle=n.baseColor,r.strokeStyle=n.baseColor,r.font=n.baseFont,r.lineWidth=n.baseLineWidth,n.drawPoints)for(let s=0;s<e[a].keypoints.length;s++)r.beginPath(),n.buffered?(Va[a].keypoints[s].position.x=(Va[a].keypoints[s].position.x+e[a].keypoints[s].position.x)/2,Va[a].keypoints[s].position.y=(Va[a].keypoints[s].position.y+e[a].keypoints[s].position.y)/2,r.arc(Va[a].keypoints[s].position.x,Va[a].keypoints[s].position.y,2,0,2*Math.PI)):r.arc(e[a].keypoints[s].position.x,e[a].keypoints[s].position.y,2,0,2*Math.PI),r.fill();if(n.drawPolygons){let s=new Path2D,i,o;i=e[a].keypoints.find(l=>l.part==="leftShoulder"),i&&(s.moveTo(i.position.x,i.position.y),o=e[a].keypoints.find(l=>l.part==="rightShoulder"),o&&s.lineTo(o.position.x,o.position.y),o=e[a].keypoints.find(l=>l.part==="rightHip"),o&&s.lineTo(o.position.x,o.position.y),o=e[a].keypoints.find(l=>l.part==="leftHip"),o&&s.lineTo(o.position.x,o.position.y),o=e[a].keypoints.find(l=>l.part==="leftShoulder"),o&&s.lineTo(o.position.x,o.position.y)),i=e[a].keypoints.find(l=>l.part==="leftHip"),i&&(s.moveTo(i.position.x,i.position.y),o=e[a].keypoints.find(l=>l.part==="leftKnee"),o&&s.lineTo(o.position.x,o.position.y),o=e[a].keypoints.find(l=>l.part==="leftAnkle"),o&&s.lineTo(o.position.x,o.position.y)),i=e[a].keypoints.find(l=>l.part==="rightHip"),i&&(s.moveTo(i.position.x,i.position.y),o=e[a].keypoints.find(l=>l.part==="rightKnee"),o&&s.lineTo(o.position.x,o.position.y),o=e[a].keypoints.find(l=>l.part==="rightAnkle"),o&&s.lineTo(o.position.x,o.position.y)),i=e[a].keypoints.find(l=>l.part==="leftShoulder"),i&&(s.moveTo(i.position.x,i.position.y),o=e[a].keypoints.find(l=>l.part==="leftElbow"),o&&s.lineTo(o.position.x,o.position.y),o=e[a].keypoints.find(l=>l.part==="leftWrist"),o&&s.lineTo(o.position.x,o.position.y)),i=e[a].keypoints.find(l=>l.part==="rightShoulder"),i&&(s.moveTo(i.position.x,i.position.y),o=e[a].keypoints.find(l=>l.part==="rightElbow"),o&&s.lineTo(o.position.x,o.position.y),o=e[a].keypoints.find(l=>l.part==="rightWrist"),o&&s.lineTo(o.position.x,o.position.y)),r.stroke(s)}}}async function Yae(e,t,n){if(!e)return;let r=t.getContext("2d");r.lineJoin="round";for(let a of e){if(r.font=n.baseFont,r.lineWidth=n.baseLineWidth,n.drawBoxes&&(r.lineWidth=n.baseLineWidth,r.beginPath(),r.strokeStyle=n.baseColor,r.fillStyle=n.baseColor,r.rect(a.box[0],a.box[1],a.box[2],a.box[3]),r.fillStyle="black",r.fillText("hand",a.box[0]+3,1+a.box[1]+n.baseLineHeight,a.box[2]),r.fillStyle=n.baseLabel,r.fillText("hand",a.box[0]+2,0+a.box[1]+n.baseLineHeight,a.box[2]),r.stroke()),n.drawPoints&&a.landmarks&&a.landmarks.length>0)for(let s of a.landmarks)r.fillStyle=n.useDepth?`rgba(${127.5+2*s[2]}, ${127.5-2*s[2]}, 255, 0.5)`:n.baseColor,r.beginPath(),r.arc(s[0],s[1],2,0,2*Math.PI),r.fill();if(n.drawPolygons){let s=i=>{if(!!i)for(let o=0;o<i.length;o++)r.lineWidth=n.baseLineWidth,r.beginPath(),r.strokeStyle=n.useDepth?`rgba(${127.5+2*i[o][2]}, ${127.5-2*i[o][2]}, 255, 0.5)`:n.baseColor,r.moveTo(i[o>0?o-1:0][0],i[o>0?o-1:0][1]),r.lineTo(i[o][0],i[o][1]),r.stroke()};s(a.annotations.indexFinger),s(a.annotations.middleFinger),s(a.annotations.ringFinger),s(a.annotations.pinky),s(a.annotations.thumb)}}}var Bc={face:Zae,body:Jae,hand:Yae,gesture:Kae};var Vc=0,Av=!1,wt={background:"darkslategray",hover:"lightgray",itemBackground:"black",itemColor:"white",buttonBackground:"lightblue",buttonHover:"lightgreen",checkboxOn:"lightgreen",checkboxOff:"lightcoral",rangeBackground:"lightblue",rangeLabel:"white",chartColor:"lightblue"};function Qae(){if(Av)return;let e=`
:root { --rounded: 0.2rem; }
.menu { position: absolute; top: 0rem; right: 0; width: max-content; padding: 0 0.2rem 0 0.2rem; line-height: 1.8rem; z-index: 10;
box-shadow: 0 0 8px dimgrey; background: ${wt.background}; border-radius: var(--rounded); border-color: black; border-style: solid; border-width: thin; }
.menu:hover { box-shadow: 0 0 8px ${wt.hover}; }
.menu-container { display: block; max-height: 100vh; }
.menu-container-fadeout { max-height: 0; overflow: hidden; transition: max-height, 0.5s ease; }
.menu-container-fadein { max-height: 100vh; overflow: hidden; transition: max-height, 0.5s ease; }
.menu-item { display: flex; white-space: nowrap; padding: 0.2rem; cursor: default; width: 100%; }
.menu-title { cursor: pointer; }
.menu-hr { margin: 0.2rem; border: 1px solid rgba(0, 0, 0, 0.5) }
.menu-label { padding: 0; font-weight: 800; }
.menu-list { margin-right: 0.8rem; }
select:focus { outline: none; }
.menu-list-item { background: ${wt.itemBackground}; color: ${wt.itemColor}; border: none; padding: 0.2rem; font-family: inherit;
font-variant: inherit; border-radius: var(--rounded); font-weight: 800; }
.menu-chart-title { padding: 0; font-size: 0.8rem; font-weight: 800; align-items: center}
.menu-chart-canvas { background: transparent; margin: 0.2rem 0 0.2rem 0.6rem; }
.menu-button { border: 0; background: ${wt.buttonBackground}; width: -webkit-fill-available; padding: 8px; margin: 8px; cursor: pointer; box-shadow: 4px 4px 4px 0 dimgrey;
border-radius: var(--rounded); justify-content: center; font-family: inherit; font-variant: inherit; font-size: 1rem; font-weight: 800; }
.menu-button:hover { background: ${wt.buttonHover}; box-shadow: 4px 4px 4px 0 black; }
.menu-button:focus { outline: none; }
.menu-checkbox { width: 2.8rem; height: 1rem; background: ${wt.itemBackground}; margin: 0.5rem 0.5rem 0 0; position: relative; border-radius: var(--rounded); }
.menu-checkbox:after { content: 'OFF'; color: ${wt.checkboxOff}; position: absolute; right: 0.2rem; top: -0.4rem; font-weight: 800; font-size: 0.5rem; }
.menu-checkbox:before { content: 'ON'; color: ${wt.checkboxOn}; position: absolute; left: 0.3rem; top: -0.4rem; font-weight: 800; font-size: 0.5rem; }
.menu-checkbox-label { width: 1.3rem; height: 0.8rem; cursor: pointer; position: absolute; top: 0.1rem; left: 0.1rem; z-index: 1; background: ${wt.checkboxOff};
border-radius: var(--rounded); transition: left 0.6s ease; }
input[type=checkbox] { visibility: hidden; }
input[type=checkbox]:checked + label { left: 1.4rem; background: ${wt.checkboxOn}; }
.menu-range { margin: 0.2rem 0.5rem 0 0; width: 3.5rem; background: transparent; color: ${wt.rangeBackground}; }
.menu-range:before { color: ${wt.rangeLabel}; margin: 0 0.4rem 0 0; font-weight: 800; font-size: 0.6rem; position: relative; top: 0.3rem; content: attr(value); }
input[type=range] { -webkit-appearance: none; }
input[type=range]::-webkit-slider-runnable-track { width: 100%; height: 1rem; cursor: pointer; background: ${wt.itemBackground}; border-radius: var(--rounded); border: 1px; }
input[type=range]::-moz-range-track { width: 100%; height: 1rem; cursor: pointer; background: ${wt.itemBackground}; border-radius: var(--rounded); border: 1px; }
input[type=range]::-webkit-slider-thumb { border: 1px solid #000000; margin-top: 0.05rem; height: 0.9rem; width: 1rem; border-radius: var(--rounded); background: ${wt.rangeBackground}; cursor: pointer; -webkit-appearance: none; }
input[type=range]::-moz-range-thumb { border: 1px solid #000000; margin-top: 0.05rem; height: 0.9rem; width: 1rem; border-radius: var(--rounded); background: ${wt.rangeBackground}; cursor: pointer; -webkit-appearance: none; }
.svg-background { fill:darkslategrey; cursor:pointer; opacity: 0.6; }
.svg-foreground { fill:white; cursor:pointer; opacity: 0.8; }
`,t=document.createElement("style");t.innerHTML=e,document.getElementsByTagName("head")[0].appendChild(t),Av=!0}var yv=class{constructor(t,n,r,a){a&&(wt={...wt,...a}),Qae(),this.createMenu(t,n,r),this.id=0,this.instance=Vc,Vc++,this._maxFPS=0,this.hidden=0}createMenu(t,n="",r={top:null,left:null,bottom:null,right:null}){this.menu=document.createElement("div"),this.menu.id=`menu-${Vc}`,this.menu.className="menu",r&&(r.top&&(this.menu.style.top=r.top),r.bottom&&(this.menu.style.bottom=r.bottom),r.left&&(this.menu.style.left=r.left),r.right&&(this.menu.style.right=r.right)),this.container=document.createElement("div"),this.container.id=`menu-container-${Vc}`,this.container.className="menu-container menu-container-fadein";let a=document.createElement("div");a.className="menu-title",a.id=`menu-title-${Vc}`;let s=`<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" style="width: 2rem; height: 2rem; vertical-align: top;">
<path d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h352a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48zm-51.37 182.31L232.06 348.16a10.38 10.38 0 0 1-16.12 0L99.37 214.31C92.17 206 97.28 192 107.43 192h233.14c10.15 0 15.26 14 8.06 22.31z" class="svg-background"/>
<path d="M348.63 214.31L232.06 348.16a10.38 10.38 0 0 1-16.12 0L99.37 214.31C92.17 206 97.28 192 107.43 192h233.14c10.15 0 15.26 14 8.06 22.31z" class="svg-foreground"/>
</svg>`;n&&(a.innerHTML=`${n}${s}`),this.menu.appendChild(a),a.addEventListener("click",()=>{this.container.classList.toggle("menu-container-fadeout"),this.container.classList.toggle("menu-container-fadein"),this.menu.style.borderStyle=this.container.classList.contains("menu-container-fadeout")?"none":"solid"}),this.menu.appendChild(this.container),typeof t=="object"?t.appendChild(this.menu):document.getElementById(t).appendChild(this.menu)}get newID(){return this.id++,`menu-${this.instance}-${this.id}`}get ID(){return`menu-${this.instance}-${this.id}`}get width(){return this.menu.offsetWidth}get height(){return this.menu.offsetHeight}hide(){this.container.classList.contains("menu-container-fadein")&&(this.container.classList.toggle("menu-container-fadeout"),this.container.classList.toggle("menu-container-fadein"))}visible(){return this.container.classList.contains("menu-container-fadein")}toggle(t){if(this.container.classList.toggle("menu-container-fadeout"),this.container.classList.toggle("menu-container-fadein"),this.container.classList.contains("menu-container-fadein")&&t){let n=t.x||(t.touches&&t.touches[0]?t.touches[0].pageX:null);n&&(this.menu.style.left=`${n-this.menu.offsetWidth/2}px`),this.menu.offsetLeft<0&&(this.menu.style.left=0),this.menu.offsetLeft+this.menu.offsetWidth>window.innerWidth&&(this.menu.style.left=null,this.menu.style.right=0),this.menu.style.borderStyle="solid"}else this.menu.style.borderStyle="none"}addTitle(t){let n=document.createElement("div");return n.className="menu-title",n.id=this.newID,n.innerHTML=t,this.menu.appendChild(n),n.addEventListener("click",()=>{this.hidden=!this.hidden;let r=document.getElementsByClassName("menu");for(let a of r)a.style.display=this.hidden?"none":"block"}),n}addLabel(t){let n=document.createElement("div");return n.className="menu-item menu-label",n.id=this.newID,n.innerHTML=t,this.container.appendChild(n),n}addBool(t,n,r,a){let s=document.createElement("div");return s.className="menu-item",s.innerHTML=`<div class="menu-checkbox"><input class="menu-checkbox" type="checkbox" id="${this.newID}" ${n[r]?"checked":""}/><label class="menu-checkbox-label" for="${this.ID}"></label></div>${t}`,this.container.appendChild(s),s.addEventListener("change",i=>{n[r]=i.target.checked,a&&a(i.target.checked)}),s}async addList(t,n,r,a){let s=document.createElement("div");s.className="menu-item";let i="";for(let o of n)i+=`<option value="${o}" ${o===r?"selected":""}>${o}</option>`;return s.innerHTML=`<div class="menu-list"><select name="${this.ID}" class="menu-list-item">${i}</select><label for="${this.ID}"></label></div>${t}`,s.style.fontFamily=document.body.style.fontFamily,s.style.fontSize=document.body.style.fontSize,s.style.fontVariant=document.body.style.fontVariant,this.container.appendChild(s),s.addEventListener("change",o=>{a&&a(n[o.target.selectedIndex])}),s}addRange(t,n,r,a,s,i,o){let l=document.createElement("div");return l.className="menu-item",l.innerHTML=`<input class="menu-range" type="range" id="${this.newID}" min="${a}" max="${s}" step="${i}" value="${n[r]}">${t}`,this.container.appendChild(l),l.addEventListener("change",c=>{n[r]=parseInt(c.target.value)===parseFloat(c.target.value)?parseInt(c.target.value):parseFloat(c.target.value),c.target.setAttribute("value",c.target.value),o&&o(c.target.value)}),l.input=l.children[0],l}addHTML(t){let n=document.createElement("div");return n.className="menu-item",n.id=this.newID,t&&(n.innerHTML=t),this.container.appendChild(n),n}addButton(t,n,r){let a=document.createElement("button");return a.className="menu-item menu-button",a.style.fontFamily=document.body.style.fontFamily,a.style.fontSize=document.body.style.fontSize,a.style.fontVariant=document.body.style.fontVariant,a.type="button",a.id=this.newID,a.innerText=t,this.container.appendChild(a),a.addEventListener("click",()=>{a.innerText===t?a.innerText=n:a.innerText=t,r&&r(a.innerText!==t)}),a}addValue(t,n,r=""){let a=document.createElement("div");return a.className="menu-item",a.id=`menu-val-${t}`,a.innerText=`${t}: ${n}${r}`,this.container.appendChild(a),a}updateValue(t,n,r=""){let a=document.getElementById(`menu-val-${t}`);a?a.innerText=`${t}: ${n}${r}`:this.addValue(t,n)}addChart(t,n,r=150,a=40,s){s&&(wt.chartColor=s);let i=document.createElement("div");return i.className="menu-item menu-chart-title",i.id=this.newID,i.innerHTML=`<font color=${wt.chartColor}>${t}</font><canvas id="menu-canvas-${n}" class="menu-chart-canvas" width="${r}px" height="${a}px"></canvas>`,this.container.appendChild(i),i}async updateChart(t,n){if(!n||n.length===0)return;let r=document.getElementById(`menu-canvas-${t}`);if(!r)return;let a=r.getContext("2d");a.fillStyle=wt.background,a.fillRect(0,0,r.width,r.height);let s=r.width/n.length,i=1+Math.max(...n),o=r.height/i;for(let l=0;l<n.length;l++){let c=a.createLinearGradient(0,(i-n[l])*o,0,0);c.addColorStop(.1,wt.chartColor),c.addColorStop(.4,wt.background),a.fillStyle=c,a.fillRect(l*s,0,s-4,r.height),a.fillStyle=wt.background,a.font=`${s/1.5}px "Segoe UI"`,a.fillText(Math.round(n[l]),l*s+1,r.height-1,s-1)}}},Uc=yv;var ese=`
#gl-bench { position: absolute; right: 1rem; bottom: 1rem; z-index:1000; -webkit-user-select: none; -moz-user-select: none; user-select: none; }
#gl-bench div { position: relative; display: block; margin: 4px; padding: 0 7px 0 10px; background: darkslategray; border-radius: 0.2rem; cursor: pointer; opacity: 0.9; }
#gl-bench svg { height: 60px; margin: 0 0px 0px 4px; }
#gl-bench text { font-size: 16px; font-family: 'Lato', 'Segoe UI'; dominant-baseline: middle; text-anchor: middle; }
#gl-bench .gl-mem { font-size: 12px; fill: white; }
#gl-bench .gl-fps { font-size: 13px; fill: white; }
#gl-bench line { stroke-width: 5; stroke: white; stroke-linecap: round; }
#gl-bench polyline { fill: none; stroke: white; stroke-linecap: round; stroke-linejoin: round; stroke-width: 3.5; }
#gl-bench rect { fill: black; }
#gl-bench .opacity { stroke: black; }
`,tse=`
<div class="gl-box">
<svg viewBox="0 0 55 60">
<text x="27" y="56" class="gl-fps">00 FPS</text>
<text x="30" y="8" class="gl-mem"></text>
<rect x="0" y="14" rx="4" ry="4" width="55" height="32"></rect>
<polyline class="gl-chart"></polyline>
</svg>
<svg viewBox="0 0 14 60" class="gl-cpu-svg">
<line x1="7" y1="38" x2="7" y2="11" class="opacity"/>
<line x1="7" y1="38" x2="7" y2="11" class="gl-cpu" stroke-dasharray="0 27"/>
<path d="M5.35 43c-.464 0-.812.377-.812.812v1.16c-.783.1972-1.421.812-1.595 1.624h-1.16c-.435 0-.812.348-.812.812s.348.812.812.812h1.102v1.653H1.812c-.464 0-.812.377-.812.812 0 .464.377.812.812.812h1.131c.1943.783.812 1.392 1.595 1.595v1.131c0 .464.377.812.812.812.464 0 .812-.377.812-.812V53.15h1.653v1.073c0 .464.377.812.812.812.464 0 .812-.377.812-.812v-1.131c.783-.1943 1.392-.812 1.595-1.595h1.131c.464 0 .812-.377.812-.812 0-.464-.377-.812-.812-.812h-1.073V48.22h1.102c.435 0 .812-.348.812-.812s-.348-.812-.812-.812h-1.16c-.1885-.783-.812-1.421-1.595-1.624v-1.131c0-.464-.377-.812-.812-.812-.464 0-.812.377-.812.812v1.073H6.162v-1.073c0-.464-.377-.812-.812-.812zm.58 3.48h2.088c.754 0 1.363.609 1.363 1.363v2.088c0 .754-.609 1.363-1.363 1.363H5.93c-.754 0-1.363-.609-1.363-1.363v-2.088c0-.754.609-1.363 1.363-1.363z" style="fill: grey"></path>
</svg>
<svg viewBox="0 0 14 60" class="gl-gpu-svg">
<line x1="7" y1="38" x2="7" y2="11" class="opacity"/>
<line x1="7" y1="38" x2="7" y2="11" class="gl-gpu" stroke-dasharray="0 27"/>
<path d="M1.94775 43.3772a.736.736 0 10-.00416 1.472c.58535.00231.56465.1288.6348.3197.07015.18975.04933.43585.04933.43585l-.00653.05405v8.671a.736.736 0 101.472 0v-1.4145c.253.09522.52785.1495.81765.1495h5.267c1.2535 0 2.254-.9752 2.254-2.185v-3.105c0-1.2075-1.00625-2.185-2.254-2.185h-5.267c-.28865 0-.5635.05405-.8165.1495.01806-.16445.04209-.598-.1357-1.0787-.22425-.6072-.9499-1.2765-2.0125-1.2765zm2.9095 3.6455c.42435 0 .7659.36225.7659.8119v2.9785c0 .44965-.34155.8119-.7659.8119s-.7659-.36225-.7659-.8119v-2.9785c0-.44965.34155-.8119.7659-.8119zm4.117 0a2.3 2.3 0 012.3 2.3 2.3 2.3 0 01-2.3 2.3 2.3 2.3 0 01-2.3-2.3 2.3 2.3 0 012.3-2.3z" style="fill: grey"></path>
</svg>
</div>
`,gv=class{constructor(t,n={}){this.css=ese,this.svg=tse,this.paramLogger=()=>{},this.chartLogger=()=>{},this.chartLen=20,this.chartHz=20,this.names=[],this.cpuAccums=[],this.gpuAccums=[],this.activeAccums=[],this.chart=new Array(this.chartLen),this.now=()=>performance&&performance.now?performance.now():Date.now(),this.updateUI=()=>{[].forEach.call(this.nodes["gl-gpu-svg"],o=>o.style.display=this.trackGPU?"inline":"none")},Object.assign(this,n),this.detected=0,this.finished=[],this.isFramebuffer=0,this.frameId=0;let r,a=0,s,i=o=>{++a<20?r=requestAnimationFrame(i):(this.detected=Math.ceil(1e3*a/(o-s)/70),cancelAnimationFrame(r)),s||(s=o)};if(requestAnimationFrame(i),t){let o=async(u,h)=>Promise.resolve(setTimeout(()=>{t.getError();let d=this.now()-u;h.forEach((p,f)=>{p&&(this.gpuAccums[f]+=d)})},0)),l=(u,h,d)=>{let p=h.now();u.apply(d,arguments),h.trackGPU&&h.finished.push(o(p,h.activeAccums.slice(0)))},c="drawElements";t[c]?t[c]=l(t[c],this,t):console.log("bench: cannot attach to webgl function")}if(!this.withoutUI){this.dom||(this.dom=document.body);let o=document.createElement("div");o.id="gl-bench",this.dom.appendChild(o),this.dom.insertAdjacentHTML("afterbegin",'<style id="gl-bench-style">'+this.css+"</style>"),this.dom=o,this.dom.addEventListener("click",()=>{this.trackGPU=!this.trackGPU,this.updateUI()}),this.paramLogger=((l,c,u)=>{let h=["gl-cpu","gl-gpu","gl-mem","gl-fps","gl-gpu-svg","gl-chart"],d={...h};return h.forEach(p=>d[p]=c.getElementsByClassName(p)),this.nodes=d,(p,f,m,A,y,g,b)=>{d["gl-cpu"][p].style.strokeDasharray=(f*.27).toFixed(0)+" 100",d["gl-gpu"][p].style.strokeDasharray=(m*.27).toFixed(0)+" 100",d["gl-mem"][p].innerHTML=u[p]?u[p]:A?"mem: "+A.toFixed(0)+"mb":"",d["gl-fps"][p].innerHTML="FPS: "+y.toFixed(1),l(u[p],f,m,A,y,g,b)}})(this.paramLogger,this.dom,this.names),this.chartLogger=((l,c)=>{let u={"gl-chart":c.getElementsByClassName("gl-chart")};return(h,d,p)=>{let f="",m=d.length;for(let A=0;A<m;A++){let y=(p+A+1)%m;d[y]!==void 0&&(f=f+" "+(55*A/(m-1)).toFixed(1)+","+(45-d[y]*22/60/this.detected).toFixed(1))}u["gl-chart"][h].setAttribute("points",f),l(this.names[h],d,p)}})(this.chartLogger,this.dom)}}addUI(t){this.names.indexOf(t)===-1&&(this.names.push(t),this.dom&&(this.dom.insertAdjacentHTML("beforeend",this.svg),this.updateUI()),this.cpuAccums.push(0),this.gpuAccums.push(0),this.activeAccums.push(!1))}nextFrame(t){this.frameId++;let n=t||this.now();if(this.frameId<=1)this.paramFrame=this.frameId,this.paramTime=n;else{let r=n-this.paramTime;if(r>=1e3){let a=this.frameId-this.paramFrame,s=a/r*1e3;for(let i=0;i<this.names.length;i++){let o=this.cpuAccums[i]/r*100,l=this.gpuAccums[i]/r*100,c=performance&&performance.memory?performance.memory.usedJSHeapSize/(1<<20):0;this.paramLogger(i,o,l,c,s,r,a),this.cpuAccums[i]=0,Promise.all(this.finished).then(()=>{this.gpuAccums[i]=0,this.finished=[]})}this.paramFrame=this.frameId,this.paramTime=n}}if(!this.detected||!this.chartFrame)this.chartFrame=this.frameId,this.chartTime=n,this.circularId=0;else{let r=n-this.chartTime,a=this.chartHz*r/1e3;for(;--a>0&&this.detected;){let i=(this.frameId-this.chartFrame)/r*1e3;this.chart[this.circularId%this.chartLen]=i;for(let o=0;o<this.names.length;o++)this.chartLogger(o,this.chart,this.circularId);this.circularId++,this.chartFrame=this.frameId,this.chartTime=n}}}begin(t){this.updateAccums(t)}end(t){this.updateAccums(t)}updateAccums(t){let n=this.names.indexOf(t);n===-1&&(n=this.names.length,this.addUI(t));let r=this.now(),a=r-this.t0;for(let s=0;s<n+1;s++)this.activeAccums[s]&&(this.cpuAccums[s]+=a);this.activeAccums[n]=!this.activeAccums[n],this.t0=r}},xv=gv;var jr={},se=new mv(jr),ie={baseColor:"rgba(173, 216, 230, 0.3)",baseBackground:"rgba(50, 50, 50, 1)",baseLabel:"rgba(173, 216, 230, 1)",baseFontProto:'small-caps {size} "Segoe UI"',baseLineWidth:12,crop:!0,columns:2,busy:!1,facing:!0,useWorker:!1,worker:"worker.js",samples:["../assets/sample6.jpg","../assets/sample1.jpg","../assets/sample4.jpg","../assets/sample5.jpg","../assets/sample3.jpg","../assets/sample2.jpg"],compare:"../assets/sample-me.jpg",drawBoxes:!0,drawPoints:!1,drawPolygons:!0,fillPolygons:!1,useDepth:!0,console:!0,maxFPSframes:10,modelsPreload:!0,menuWidth:0,menuHeight:0,camera:{},detectFPS:[],drawFPS:[],buffered:!1,drawThread:null,detectThread:null,framesDraw:0,framesDetect:0,bench:!1},xe={},p1,Ii,f1={};function nse(...e){if(!Array.isArray(e))return e;let t="";for(let n of e)typeof n=="object"?t+=JSON.stringify(n).replace(/{|}|"|\[|\]/g,"").replace(/,/g,", "):t+=n;return t}function Dn(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;ie.console&&console.log(n,...e)}function jn(e){document.getElementById("status").innerText=e}var Ni;async function rse(e){var n,r,a,s;if(document.getElementById("compare-container").style.display=se.config.face.embedding.enabled?"block":"none",!se.config.face.embedding.enabled||((n=e==null?void 0:e.face)==null?void 0:n.length)>0&&((r=e==null?void 0:e.face[0].embedding)==null?void 0:r.length)!==192)return;Ni||(Ni=e,document.getElementById("compare-canvas").getContext("2d").drawImage(Ni.canvas,0,0,200,200));let t=se.simmilarity((a=Ni==null?void 0:Ni.face[0])==null?void 0:a.embedding,(s=e==null?void 0:e.face[0])==null?void 0:s.embedding);document.getElementById("simmilarity").innerText=`simmilarity: ${Math.trunc(1e3*t)/10}%`}var wv=performance.now();async function m1(e){let t=f1,n=document.getElementById("canvas");ie.drawFPS.push(1e3/(performance.now()-wv)),ie.drawFPS.length>ie.maxFPSframes&&ie.drawFPS.shift(),wv=performance.now(),await xe.process.updateChart("FPS",ie.detectFPS),(ie.buffered||!t.canvas)&&(t.canvas=await se.image(e,jr));let r=n.getContext("2d");r.fillStyle=ie.baseBackground,r.fillRect(0,0,n.width,n.height),t.canvas?(t.canvas.width!==n.width&&(n.width=t.canvas.width),t.canvas.height!==n.height&&(n.height=t.canvas.height),r.drawImage(t.canvas,0,0,t.canvas.width,t.canvas.height,0,0,t.canvas.width,t.canvas.height)):r.drawImage(e,0,0,e.width,e.height,0,0,n.width,n.height),await Bc.face(t.face,n,ie,se.facemesh.triangulation),await Bc.body(t.body,n,ie),await Bc.hand(t.hand,n,ie),await Bc.gesture(t.gesture,n,ie),await rse(t);let a=se.tf.engine(),s=a.backendInstance?`gpu: ${(a.backendInstance.numBytesInGPU?a.backendInstance.numBytesInGPU:0).toLocaleString()} bytes`:"",i=`system: ${a.state.numBytes.toLocaleString()} bytes ${s} | tensors: ${a.state.numTensors.toLocaleString()}`,o=t.canvas?`processing: ${t.canvas.width} x ${t.canvas.height}`:"",l=Math.trunc(10*ie.detectFPS.reduce((h,d)=>h+d,0)/ie.detectFPS.length)/10,c=Math.trunc(10*ie.drawFPS.reduce((h,d)=>h+d,0)/ie.drawFPS.length)/10,u=ie.detectFPS.length>5&&l<5?'<font color="lightcoral">warning: your performance is low: try switching to higher performance backend, lowering resolution or disabling some models</font>':"";document.getElementById("log").innerHTML=`
video: ${ie.camera.name} | facing: ${ie.camera.facing} | screen: ${window.innerWidth} x ${window.innerHeight} camera: ${ie.camera.width} x ${ie.camera.height} ${o}<br>
backend: ${se.tf.getBackend()} | ${i}<br>
performance: ${nse(t.performance)}ms FPS process:${l} refresh:${c}<br>
${u}<br>
`,ie.framesDraw++,ie.lastFrame=performance.now(),ie.buffered?ie.drawThread=requestAnimationFrame(()=>m1(e,n)):!ie.buffered&&ie.drawThread&&(Dn("stopping buffered refresh"),cancelAnimationFrame(ie.drawThread),ie.drawThread=null)}async function A1(){var c;if(ie.busy)return null;ie.busy=!0;let e=document.getElementById("video"),t=document.getElementById("canvas"),n=document.getElementById("log"),r=e.srcObject?e.srcObject.getVideoTracks()[0].readyState==="live"&&e.readyState>2&&!e.paused:!1,a="";if(jn("setting up camera"),!navigator.mediaDevices)return a="camera access not supported",n.innerText+=`
${a}`,Dn(a),jn(a),ie.busy=!1,a;let s,i={audio:!1,video:{facingMode:ie.facing?"user":"environment",resizeMode:ie.crop?"crop-and-scale":"none"}};window.innerWidth>window.innerHeight?i.video.width={ideal:window.innerWidth}:i.video.height={ideal:window.innerHeight-document.getElementById("menubar").offsetHeight};try{s=await navigator.mediaDevices.getUserMedia(i)}catch(u){return u.name==="PermissionDeniedError"||u.name==="NotAllowedError"?a="camera permission denied":u.name==="SourceUnavailableError"?a="camera not available":a=`camera error: ${u.message||u}`,n.innerText+=`
${a}`,jn(a),Dn("camera error:",u),ie.busy=!1,a}if(s)e.srcObject=s;else return ie.busy=!1,"camera stream empty";let o=s.getVideoTracks()[0],l=o.getSettings();return ie.camera={name:(c=o.label)==null?void 0:c.toLowerCase(),width:l.width,height:l.height,facing:l.facingMode==="user"?"front":"back"},new Promise(u=>{e.onloadeddata=async()=>{e.width=e.videoWidth,e.height=e.videoHeight,t.width=e.width,t.height=e.height,t.style.width=t.width>t.height?"100vw":"",t.style.height=t.width>t.height?"":"100vh",ie.menuWidth.input.setAttribute("value",e.width),ie.menuHeight.input.setAttribute("value",e.height);let h=Math.trunc(window.devicePixelRatio*(8+4*t.width/window.innerWidth));ie.baseFont=ie.baseFontProto.replace(/{size}/,`${h}px`),ie.baseLineHeight=h+2,r&&e.play(),r&&!ie.detectThread&&Hc(e,t),ie.busy=!1,jn(""),u()}})}function _v(){if(!Ii){let e=null;Ii=new xv(e,{trackGPU:!1,chartHz:20,chartLen:20}),Ii.begin()}}function ase(e,t,n,r){p1||(Dn("creating worker thread"),p1=new Worker(ie.worker,{type:"module"}),p1.addEventListener("message",a=>{a.data.result.performance&&a.data.result.performance.total&&ie.detectFPS.push(1e3/a.data.result.performance.total),ie.detectFPS.length>ie.maxFPSframes&&ie.detectFPS.shift(),ie.bench&&(Ii||_v(),Ii.nextFrame(r)),document.getElementById("gl-bench")&&(document.getElementById("gl-bench").style.display=ie.bench?"block":"none"),f1=a.data.result,ie.framesDetect++,ie.drawThread||m1(e),ie.detectThread=requestAnimationFrame(s=>Hc(e,n,s))})),p1.postMessage({image:t.data.buffer,width:n.width,height:n.height,userConfig:jr},[t.data.buffer])}function Hc(e,t,n){var a;if(!(e.srcObject&&e.srcObject.getVideoTracks()[0].readyState==="live"&&e.readyState>2&&!e.paused)&&e.srcObject){ie.drawThread&&cancelAnimationFrame(ie.drawThread),ie.detectThread&&cancelAnimationFrame(ie.detectThread),ie.drawThread=null,ie.detectThread=null,e.paused?Dn("camera paused"):e.srcObject.getVideoTracks()[0].readyState==="live"&&e.readyState<=2?setTimeout(()=>Hc(e,t),500):Dn(`camera not ready: track state: ${(a=e.srcObject)==null?void 0:a.getVideoTracks()[0].readyState} stream state: ${e.readyState}`),clearTimeout(ie.drawThread),ie.drawThread=null,Dn("frame statistics: process:",ie.framesDetect,"refresh:",ie.framesDraw),Dn("memory",se.tf.engine().memory());return}if(jn(""),ie.useWorker){let s=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(t.width,t.height):document.createElement("canvas");s.width=t.width,s.height=t.height;let i=s.getContext("2d");i.drawImage(e,0,0,e.width,e.height,0,0,t.width,t.height);let o=i.getImageData(0,0,t.width,t.height);ase(e,o,t,jr,n)}else se.detect(e,jr).then(s=>{s.performance&&s.performance.total&&ie.detectFPS.push(1e3/s.performance.total),ie.detectFPS.length>ie.maxFPSframes&&ie.detectFPS.shift(),ie.bench&&(Ii||_v(),Ii.nextFrame(n)),document.getElementById("gl-bench")&&(document.getElementById("gl-bench").style.display=ie.bench?"block":"none"),s.error?(Dn(s.error),document.getElementById("log").innerText+=`
Human error: ${s.error}`):(f1=s,ie.drawThread||m1(e),ie.framesDetect++,ie.detectThread=requestAnimationFrame(i=>Hc(e,t,i)))})}async function sse(e){return new Promise(t=>{let n=new Image;n.onload=async()=>{Dn("Processing image:",n.src);let r=document.getElementById("canvas");n.width=n.naturalWidth,n.height=n.naturalHeight,r.width=se.config.filter.width&&se.config.filter.width>0?se.config.filter.width:n.naturalWidth,r.height=se.config.filter.height&&se.config.filter.height>0?se.config.filter.height:n.naturalHeight,f1=await se.detect(n,jr),await m1(n);let s=document.createElement("canvas");s.className="thumbnail",s.width=window.innerWidth/(ie.columns+.1),s.height=r.height/(window.innerWidth/s.width),s.getContext("2d").drawImage(r,0,0,r.width,r.height,0,0,s.width,s.height),document.getElementById("samples-container").appendChild(s),n.src="",t(!0)},n.src=e})}async function bv(){jr.videoOptimized=!0,document.getElementById("samples-container").style.display="none",document.getElementById("canvas").style.display="block";let e=document.getElementById("video"),t=document.getElementById("canvas");if(e.srcObject!==null&&!e.paused)document.getElementById("play").style.display="block",document.getElementById("btnStart").className="button button-start",document.getElementById("btnStart").innerHTML="start<br>video",jn("paused"),e.pause();else{let n=await A1();if(n)jn(n);else{document.getElementById("play").style.display="none";for(let r of Object.values(xe))r.hide();jn(""),document.getElementById("btnStart").className="button button-stop",document.getElementById("btnStart").innerHTML="pause<br>video",await e.play(),ie.detectThread||Hc(e,t)}}}async function ise(){document.getElementById("play").style.display="none",jr.videoOptimized=!1;let e=Math.trunc(window.devicePixelRatio*(8+4*ie.columns));ie.baseFont=ie.baseFontProto.replace(/{size}/,`${e}px`),ie.baseLineHeight=e+2,document.getElementById("canvas").style.display="none",document.getElementById("samples-container").style.display="block",Dn("Running detection of sample images"),jn("processing images"),document.getElementById("samples-container").innerHTML="";for(let t of ie.samples)await sse(t);jn("")}function ose(){let e=[];window.innerWidth>800?e=[`${document.getElementById("btnDisplay").offsetLeft-50}px`,`${document.getElementById("btnImage").offsetLeft-50}px`,`${document.getElementById("btnProcess").offsetLeft-50}px`,`${document.getElementById("btnModel").offsetLeft-50}px`]:e=["0rem","11rem","21.1rem","33rem"],xe.display=new Uc(document.body,"",{top:`${document.getElementById("menubar").offsetHeight}px`,left:e[0]}),xe.display.addBool("perf monitor",ie,"bench",t=>ie.bench=t),xe.display.addBool("buffered output",ie,"buffered",t=>ie.buffered=t),xe.display.addBool("crop & scale",ie,"crop",t=>{ie.crop=t,A1()}),xe.display.addBool("camera facing",ie,"facing",t=>{ie.facing=t,A1()}),xe.display.addHTML('<hr style="border-style: inset; border-color: dimgray">'),xe.display.addBool("use 3D depth",ie,"useDepth"),xe.display.addBool("draw boxes",ie,"drawBoxes"),xe.display.addBool("draw polygons",ie,"drawPolygons"),xe.display.addBool("Fill Polygons",ie,"fillPolygons"),xe.display.addBool("draw points",ie,"drawPoints"),xe.image=new Uc(document.body,"",{top:`${document.getElementById("menubar").offsetHeight}px`,left:e[1]}),xe.image.addBool("enabled",se.config.filter,"enabled",t=>se.config.filter.enabled=t),ie.menuWidth=xe.image.addRange("image width",se.config.filter,"width",0,3840,10,t=>se.config.filter.width=parseInt(t)),ie.menuHeight=xe.image.addRange("image height",se.config.filter,"height",0,2160,10,t=>se.config.filter.height=parseInt(t)),xe.image.addHTML('<hr style="border-style: inset; border-color: dimgray">'),xe.image.addRange("brightness",se.config.filter,"brightness",-1,1,.05,t=>se.config.filter.brightness=parseFloat(t)),xe.image.addRange("contrast",se.config.filter,"contrast",-1,1,.05,t=>se.config.filter.contrast=parseFloat(t)),xe.image.addRange("sharpness",se.config.filter,"sharpness",0,1,.05,t=>se.config.filter.sharpness=parseFloat(t)),xe.image.addRange("blur",se.config.filter,"blur",0,20,1,t=>se.config.filter.blur=parseInt(t)),xe.image.addRange("saturation",se.config.filter,"saturation",-1,1,.05,t=>se.config.filter.saturation=parseFloat(t)),xe.image.addRange("hue",se.config.filter,"hue",0,360,5,t=>se.config.filter.hue=parseInt(t)),xe.image.addRange("pixelate",se.config.filter,"pixelate",0,32,1,t=>se.config.filter.pixelate=parseInt(t)),xe.image.addHTML('<hr style="border-style: inset; border-color: dimgray">'),xe.image.addBool("negative",se.config.filter,"negative",t=>se.config.filter.negative=t),xe.image.addBool("sepia",se.config.filter,"sepia",t=>se.config.filter.sepia=t),xe.image.addBool("vintage",se.config.filter,"vintage",t=>se.config.filter.vintage=t),xe.image.addBool("kodachrome",se.config.filter,"kodachrome",t=>se.config.filter.kodachrome=t),xe.image.addBool("technicolor",se.config.filter,"technicolor",t=>se.config.filter.technicolor=t),xe.image.addBool("polaroid",se.config.filter,"polaroid",t=>se.config.filter.polaroid=t),xe.process=new Uc(document.body,"",{top:`${document.getElementById("menubar").offsetHeight}px`,left:e[2]}),xe.process.addList("backend",["cpu","webgl","wasm","humangl"],se.config.backend,t=>se.config.backend=t),xe.process.addBool("async operations",se.config,"async",t=>se.config.async=t),xe.process.addBool("enable profiler",se.config,"profile",t=>se.config.profile=t),xe.process.addBool("memory shield",se.config,"deallocate",t=>se.config.deallocate=t),xe.process.addBool("use web worker",ie,"useWorker"),xe.process.addHTML('<hr style="border-style: inset; border-color: dimgray">'),xe.process.addLabel("model parameters"),xe.process.addRange("max objects",se.config.face.detector,"maxFaces",1,50,1,t=>{se.config.face.detector.maxFaces=parseInt(t),se.config.body.maxDetections=parseInt(t),se.config.hand.maxHands=parseInt(t)}),xe.process.addRange("skip frames",se.config.face.detector,"skipFrames",0,50,1,t=>{se.config.face.detector.skipFrames=parseInt(t),se.config.face.emotion.skipFrames=parseInt(t),se.config.face.age.skipFrames=parseInt(t),se.config.hand.skipFrames=parseInt(t)}),xe.process.addRange("min confidence",se.config.face.detector,"minConfidence",0,1,.05,t=>{se.config.face.detector.minConfidence=parseFloat(t),se.config.face.gender.minConfidence=parseFloat(t),se.config.face.emotion.minConfidence=parseFloat(t),se.config.hand.minConfidence=parseFloat(t)}),xe.process.addRange("score threshold",se.config.face.detector,"scoreThreshold",.1,1,.05,t=>{se.config.face.detector.scoreThreshold=parseFloat(t),se.config.hand.scoreThreshold=parseFloat(t),se.config.body.scoreThreshold=parseFloat(t)}),xe.process.addRange("overlap",se.config.face.detector,"iouThreshold",.1,1,.05,t=>{se.config.face.detector.iouThreshold=parseFloat(t),se.config.hand.iouThreshold=parseFloat(t)}),xe.process.addBool("detection rotation",se.config.face.detector,"rotation",t=>{se.config.face.detector.rotation=t,se.config.hand.rotation=t}),xe.process.addHTML('<hr style="border-style: inset; border-color: dimgray">'),xe.process.addButton("process sample images","process images",()=>ise()),xe.process.addHTML('<hr style="border-style: inset; border-color: dimgray">'),xe.process.addChart("FPS","FPS"),xe.models=new Uc(document.body,"",{top:`${document.getElementById("menubar").offsetHeight}px`,left:e[3]}),xe.models.addBool("face detect",se.config.face,"enabled",t=>se.config.face.enabled=t),xe.models.addBool("face mesh",se.config.face.mesh,"enabled",t=>se.config.face.mesh.enabled=t),xe.models.addBool("face iris",se.config.face.iris,"enabled",t=>se.config.face.iris.enabled=t),xe.models.addBool("face age",se.config.face.age,"enabled",t=>se.config.face.age.enabled=t),xe.models.addBool("face gender",se.config.face.gender,"enabled",t=>se.config.face.gender.enabled=t),xe.models.addBool("face emotion",se.config.face.emotion,"enabled",t=>se.config.face.emotion.enabled=t),xe.models.addHTML('<hr style="border-style: inset; border-color: dimgray">'),xe.models.addBool("body pose",se.config.body,"enabled",t=>se.config.body.enabled=t),xe.models.addBool("hand pose",se.config.hand,"enabled",t=>se.config.hand.enabled=t),xe.models.addHTML('<hr style="border-style: inset; border-color: dimgray">'),xe.models.addBool("gestures",se.config.gesture,"enabled",t=>se.config.gesture.enabled=t),xe.models.addHTML('<hr style="border-style: inset; border-color: dimgray">'),xe.models.addBool("face compare",se.config.face.embedding,"enabled",t=>{se.config.face.embedding.enabled=t,Ni=null}),document.getElementById("btnDisplay").addEventListener("click",t=>xe.display.toggle(t)),document.getElementById("btnImage").addEventListener("click",t=>xe.image.toggle(t)),document.getElementById("btnProcess").addEventListener("click",t=>xe.process.toggle(t)),document.getElementById("btnModel").addEventListener("click",t=>xe.models.toggle(t)),document.getElementById("btnStart").addEventListener("click",()=>bv()),document.getElementById("play").addEventListener("click",()=>bv())}async function lse(){Dn("Demo starting ..."),Dn("Browser:",navigator==null?void 0:navigator.userAgent),ose(),document.getElementById("log").innerText=`Human: version ${se.version}`,ie.modelsPreload&&!ie.useWorker&&(jn("loading"),await se.load(jr)),ie.useWorker||(jn("initializing"),await se.warmup(jr)),jn("human: ready"),document.getElementById("loader").style.display="none",document.getElementById("play").style.display="block",Dn("Demo ready...")}window.onload=lse;window.onresize=A1;
/**
* @license
* Copyright 2017 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the License);
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2021 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/** @license See the LICENSE file. */
//# sourceMappingURL=demo-browser-index.js.map