mirror of https://github.com/vladmandic/human
8054 lines
1.6 MiB
8054 lines
1.6 MiB
/*
|
|
Human
|
|
homepage: <https://github.com/vladmandic/human>
|
|
author: <https://github.com/vladmandic>'
|
|
*/
|
|
|
|
var Human=(()=>{var Vc=Object.defineProperty;var $E=Object.getOwnPropertyDescriptor;var PE=Object.getOwnPropertyNames;var _E=Object.prototype.hasOwnProperty;var zE=(e,t,r)=>t in e?Vc(e,t,{enumerable:!0,configurable:!0,writable:!0,value:r}):e[t]=r;var xs=(e,t)=>{for(var r in t)Vc(e,r,{get:t[r],enumerable:!0})},OE=(e,t,r,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let a of PE(t))!_E.call(e,a)&&a!==r&&Vc(e,a,{get:()=>t[a],enumerable:!(n=$E(t,a))||n.enumerable});return e};var DE=e=>OE(Vc({},"__esModule",{value:!0}),e);var fe=(e,t,r)=>(zE(e,typeof t!="symbol"?t+"":t,r),r),N3=(e,t,r)=>{if(!t.has(e))throw TypeError("Cannot "+r)};var pp=(e,t,r)=>(N3(e,t,"read from private field"),r?r.call(e):t.get(e)),hp=(e,t,r)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,r)},cp=(e,t,r,n)=>(N3(e,t,"write to private field"),n?n.call(e,r):t.set(e,r),r);var zAe={};xs(zAe,{Human:()=>s3,default:()=>s3,defaults:()=>bs,draw:()=>J5,env:()=>he,match:()=>a3,models:()=>lg});function ie(...e){let t=new Date,r=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(r,"Human:",...e)}function C3(e,t){let r=e.endsWith("/")?"":"/",a=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${r}${t}`;if(!a.toLocaleLowerCase().includes(".json"))throw new Error(`modelpath error: expecting json file: ${a}`);return a}var oe=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function G1(e,t,r="config",n=[]){for(let a of Object.keys(t))if(typeof t[a]=="object")G1(e[a],t[a],a,n);else{let s=e&&typeof e[a]!="undefined";s||n.push({reason:"unknown property",where:`${r}.${a} = ${t[a]}`});let i=e&&typeof e[a]==typeof t[a];s&&!i&&n.push({reason:"property type mismatch",where:`${r}.${a} = ${t[a]}`,expected:typeof e[a]})}return t.debug&&r==="config"&&n.length>0&&ie("invalid configuration",n),n}function Ut(...e){let t=r=>r&&typeof r=="object";return e.reduce((r,n)=>(Object.keys(n||{}).forEach(a=>{let s=r[a],i=n[a];Array.isArray(s)&&Array.isArray(i)?r[a]=s.concat(...i):t(s)&&t(i)?r[a]=Ut(s,i):r[a]=i}),r),{})}var bs={backend:"",modelBasePath:"",cacheModels:!0,wasmPath:"",wasmPlatformFetch:!1,debug:!0,async:!0,warmup:"full",cacheSensitivity:.7,skipAllowed:!1,deallocate:!1,filter:{enabled:!0,equalization:!1,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:1,skipFrames:99,skipTime:2500,minConfidence:.2,iouThreshold:.1,mask:!1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},attention:{enabled:!1,modelPath:"facemesh-attention.json"},iris:{enabled:!0,modelPath:"iris.json"},emotion:{enabled:!0,minConfidence:.1,skipFrames:99,skipTime:1500,modelPath:"emotion.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:99,skipTime:3e3,minConfidence:.1},antispoof:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"antispoof.json"},liveness:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"liveness.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",maxDetected:-1,minConfidence:.3,skipFrames:1,skipTime:200},hand:{enabled:!0,rotation:!0,skipFrames:99,skipTime:1e3,minConfidence:.5,iouThreshold:.2,maxDetected:-1,landmarks:!0,detector:{modelPath:"handtrack.json"},skeleton:{modelPath:"handlandmark-full.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:99,skipTime:2e3},segmentation:{enabled:!1,modelPath:"selfie.json",blur:8}};var Ue={};xs(Ue,{Abs:()=>Lo,Acos:()=>Pu,Acosh:()=>_u,AdadeltaOptimizer:()=>Dm,AdagradOptimizer:()=>Lm,AdamOptimizer:()=>Bm,AdamaxOptimizer:()=>Wm,Add:()=>Ya,AddN:()=>qs,All:()=>zu,Any:()=>Ou,ArgMax:()=>Ks,ArgMin:()=>Du,Asin:()=>Lu,Asinh:()=>Bu,Atan:()=>Wu,Atan2:()=>Uu,Atanh:()=>Vu,AvgPool:()=>Xs,AvgPool3D:()=>Kp,AvgPool3DGrad:()=>Hf,AvgPoolGrad:()=>jf,BackendWasm:()=>nN,BatchMatMul:()=>Zs,BatchToSpaceND:()=>Bo,Bincount:()=>qf,BroadcastArgs:()=>Kf,BroadcastTo:()=>Nw,Callback:()=>t6,CallbackList:()=>t4,Cast:()=>Ys,Ceil:()=>Js,ClipByValue:()=>Ja,Complex:()=>Xp,ComplexAbs:()=>Zp,Concat:()=>Wo,Conv2D:()=>Qs,Conv2DBackpropFilter:()=>Xf,Conv2DBackpropInput:()=>ei,Conv3D:()=>Yp,Conv3DBackpropFilterV2:()=>Zf,Conv3DBackpropInputV2:()=>Yf,Cos:()=>ti,Cosh:()=>ri,CropAndResize:()=>Uo,Cumprod:()=>Gu,Cumsum:()=>Vo,CustomCallback:()=>n4,DataStorage:()=>qp,DenseBincount:()=>Jf,DepthToSpace:()=>Go,DepthwiseConv2dNative:()=>ni,DepthwiseConv2dNativeBackpropFilter:()=>Qf,DepthwiseConv2dNativeBackpropInput:()=>em,Diag:()=>tm,Dilation2D:()=>Jp,Dilation2DBackpropFilter:()=>gf,Dilation2DBackpropInput:()=>mf,ENV:()=>Aa,EarlyStopping:()=>r6,Einsum:()=>Qp,Elu:()=>si,EluGrad:()=>rm,Environment:()=>Sw,Equal:()=>jo,Erf:()=>ju,Exp:()=>ii,ExpandDims:()=>Ho,Expm1:()=>qo,FFT:()=>nm,Fill:()=>Hu,FlipLeftRight:()=>Ko,Floor:()=>oi,FloorDiv:()=>li,FromPixels:()=>Pp,FusedBatchNorm:()=>ui,FusedConv2D:()=>Fs,FusedDepthwiseConv2D:()=>$s,GPGPUContext:()=>yu,GatherNd:()=>Zo,GatherV2:()=>Xo,GraphModel:()=>h0,Greater:()=>Yo,GreaterEqual:()=>di,History:()=>r4,IFFT:()=>am,Identity:()=>pi,Imag:()=>eh,InputSpec:()=>Kt,IsFinite:()=>qu,IsInf:()=>Ku,IsNan:()=>Xu,KernelBackend:()=>Fu,LRN:()=>rh,LRNGrad:()=>im,LayerVariable:()=>Y7,LayersModel:()=>Xa,LeakyRelu:()=>hi,Less:()=>Jo,LessEqual:()=>Qo,LinSpace:()=>sm,Log:()=>ci,Log1p:()=>Zu,LogSoftmax:()=>Cw,LogicalAnd:()=>el,LogicalNot:()=>Yu,LogicalOr:()=>th,MathBackendCPU:()=>jx,MathBackendWebGL:()=>Oh,Max:()=>fi,MaxPool:()=>gi,MaxPool3D:()=>nh,MaxPool3DGrad:()=>lm,MaxPoolGrad:()=>om,MaxPoolWithArgmax:()=>um,Maximum:()=>mi,Mean:()=>yi,Min:()=>Ai,Minimum:()=>xi,MirrorPad:()=>bi,Mod:()=>Ju,MomentumOptimizer:()=>Vm,Multinomial:()=>dm,Multiply:()=>vi,Neg:()=>tl,NonMaxSuppressionV3:()=>nl,NonMaxSuppressionV4:()=>Qu,NonMaxSuppressionV5:()=>al,NotEqual:()=>rl,OP_SCOPE_SUFFIX:()=>Uw,OneHot:()=>il,OnesLike:()=>sl,Optimizer:()=>rs,OptimizerConstructors:()=>ws,Pack:()=>ol,PadV2:()=>wi,Pool:()=>ER,Pow:()=>ki,Prelu:()=>Ii,Prod:()=>ll,RMSPropOptimizer:()=>Um,RNN:()=>ns,Range:()=>ed,Rank:()=>$w,Real:()=>ah,RealDiv:()=>ai,Reciprocal:()=>td,Reduction:()=>M7,Relu:()=>Si,Relu6:()=>Ni,Reshape:()=>ul,ResizeBilinear:()=>Ti,ResizeBilinearGrad:()=>hm,ResizeNearestNeighbor:()=>rd,ResizeNearestNeighborGrad:()=>pm,Reverse:()=>dl,RotateWithOffset:()=>Il,Round:()=>pl,Rsqrt:()=>Ci,SGDOptimizer:()=>kh,ScatterNd:()=>hl,Select:()=>cl,Selu:()=>nd,Sequential:()=>n0,Sigmoid:()=>Ri,Sign:()=>ad,Sin:()=>Ei,Sinh:()=>ml,Slice:()=>fl,Softmax:()=>$i,Softplus:()=>sd,SpaceToBatchND:()=>gl,SparseFillEmptyRows:()=>sh,SparseReshape:()=>id,SparseSegmentMean:()=>ih,SparseSegmentSum:()=>oh,SparseToDense:()=>lh,SplitV:()=>yl,Sqrt:()=>Mi,Square:()=>od,SquaredDifference:()=>Pi,Step:()=>Di,StridedSlice:()=>Al,StringNGrams:()=>uh,StringSplit:()=>cm,StringToHashBucketFast:()=>fm,Sub:()=>_i,Sum:()=>Fi,SymbolicTensor:()=>ua,Tan:()=>xl,Tanh:()=>zi,Tensor:()=>rt,TensorBuffer:()=>ar,Tile:()=>Qa,TopK:()=>bl,Transform:()=>vl,Transpose:()=>Oi,Unique:()=>mm,Unpack:()=>wl,UnsortedSegmentSum:()=>dh,Variable:()=>Op,ZerosLike:()=>kl,_FusedMatMul:()=>Ms,abs:()=>rr,acos:()=>wk,acosh:()=>kk,add:()=>le,addN:()=>ym,all:()=>M2,any:()=>wf,argMax:()=>Cn,argMin:()=>Ik,asin:()=>Sk,asinh:()=>Tk,atan:()=>Nk,atan2:()=>Ck,atanh:()=>Ek,avgPool:()=>Am,avgPool3d:()=>$2,backend:()=>jn,backend_util:()=>N,basicLSTMCell:()=>g$,batchNorm:()=>vu,batchNorm2d:()=>$k,batchNorm3d:()=>Pk,batchNorm4d:()=>_k,batchToSpaceND:()=>xm,bincount:()=>P2,booleanMaskAsync:()=>Ez,broadcastArgs:()=>zk,broadcastTo:()=>Ep,broadcast_util:()=>Sl,browser:()=>Pn,buffer:()=>We,callbacks:()=>rj,cast:()=>me,ceil:()=>Ok,clipByValue:()=>cn,clone:()=>Br,complex:()=>Ps,concat:()=>kt,concat1d:()=>Dk,concat2d:()=>ud,concat3d:()=>Lk,concat4d:()=>Bk,constraints:()=>D7,conv1d:()=>_2,conv2d:()=>zs,conv2dTranspose:()=>O2,conv3d:()=>D2,conv3dTranspose:()=>Vk,copyRegisteredKernels:()=>$R,cos:()=>bm,cosh:()=>L2,cosineWindow:()=>uA,cumprod:()=>Uk,cumsum:()=>B2,customGrad:()=>Fa,data:()=>N6,denseBincount:()=>Gk,deprecationWarn:()=>C2,depthToSpace:()=>jk,depthwiseConv2d:()=>Ah,deregisterOp:()=>sj,device_util:()=>fh,diag:()=>q$,dilation2d:()=>Hk,disableDeprecationWarnings:()=>FF,dispose:()=>re,disposeVariables:()=>$F,div:()=>pe,divNoNan:()=>qk,dot:()=>eP,dropout:()=>w7,einsum:()=>Kk,elu:()=>xh,enableDebugMode:()=>MF,enableProdMode:()=>N2,enclosingPowerOfTwo:()=>k7,engine:()=>br,env:()=>Y,equal:()=>En,erf:()=>Xk,exp:()=>Rn,expandDims:()=>qt,expm1:()=>Zk,eye:()=>W2,fft:()=>Mm,fill:()=>dd,findBackend:()=>R2,findBackendFactory:()=>OF,floor:()=>bh,floorDiv:()=>gh,forceHalfFloat:()=>XS,fused:()=>Ls,gather:()=>wu,gatherND:()=>v7,gather_util:()=>b2,getBackend:()=>sn,getGradient:()=>oy,getKernel:()=>yf,getKernelsForBackend:()=>Ra,getThreadsCount:()=>n2e,gpgpu_util:()=>TS,grad:()=>SP,grads:()=>TP,greater:()=>fn,greaterEqual:()=>Nl,ifft:()=>Wp,imag:()=>vm,image:()=>Ie,inTopKAsync:()=>Bz,initializers:()=>V7,input:()=>y4,io:()=>Tr,irfft:()=>aA,isFinite:()=>mP,isInf:()=>yP,isNaN:()=>Yk,keep:()=>cr,kernel_impls:()=>qn,layers:()=>X7,leakyRelu:()=>wm,less:()=>V2,lessEqual:()=>Cl,linalg:()=>F7,linspace:()=>Jk,loadGraphModel:()=>lH,loadLayersModel:()=>cU,localResponseNormalization:()=>Qk,log:()=>Mn,log1p:()=>km,logSigmoid:()=>FP,logSoftmax:()=>U2,logSumExp:()=>a7,logicalAnd:()=>fa,logicalNot:()=>Sm,logicalOr:()=>H2,logicalXor:()=>GP,losses:()=>ID,matMul:()=>Je,math:()=>nk,max:()=>mr,maxPool:()=>Tm,maxPool3d:()=>q2,maxPoolWithArgmax:()=>s7,maximum:()=>es,mean:()=>Bt,memory:()=>vf,meshgrid:()=>ZP,metrics:()=>J4,min:()=>Os,minimum:()=>vh,mirrorPad:()=>i7,mod:()=>hd,model:()=>pU,models:()=>Q4,moments:()=>Nm,movingAverage:()=>Fz,mul:()=>L,multiRNNCell:()=>a_,multinomial:()=>o7,neg:()=>zt,nextFrame:()=>hA,norm:()=>oA,notEqual:()=>ku,oneHot:()=>Lp,ones:()=>hn,onesLike:()=>Fn,op:()=>W,outerProduct:()=>u_,pad:()=>Hn,pad1d:()=>h_,pad2d:()=>f_,pad3d:()=>g_,pad4d:()=>A_,pool:()=>k_,pow:()=>Ds,prelu:()=>Em,print:()=>Qw,prod:()=>K2,profile:()=>PF,rand:()=>C_,randomGamma:()=>F_,randomNormal:()=>l7,randomUniform:()=>cd,range:()=>Iu,ready:()=>ld,real:()=>Bp,reciprocal:()=>u7,registerBackend:()=>Tl,registerCallbackConstructor:()=>fU,registerGradient:()=>Ew,registerKernel:()=>Gn,registerOp:()=>aj,regularizers:()=>e6,relu:()=>_a,relu6:()=>Y2,removeBackend:()=>zF,reshape:()=>G,reverse:()=>$n,reverse1d:()=>W_,reverse2d:()=>U_,reverse3d:()=>j_,reverse4d:()=>q_,rfft:()=>Fm,round:()=>J2,rsqrt:()=>Q2,scalar:()=>Se,scatterND:()=>b7,scatter_util:()=>v2,selu:()=>eA,separableConv2d:()=>d7,sequential:()=>hU,serialization:()=>ue,setBackend:()=>E2,setPlatform:()=>DF,setThreadsCount:()=>r2e,setWasmPath:()=>t2e,setWasmPaths:()=>Nb,setWebGLContext:()=>m0,setdiff1dAsync:()=>p7,shared:()=>c0,sigmoid:()=>Nr,sign:()=>h7,signal:()=>kD,sin:()=>tA,sinh:()=>rA,slice:()=>Pe,slice1d:()=>Rm,slice2d:()=>nA,slice3d:()=>El,slice4d:()=>Ro,slice_util:()=>_t,softmax:()=>fd,softplus:()=>pd,spaceToBatchND:()=>Cm,sparse:()=>bp,sparseToDense:()=>lA,spectral:()=>wD,split:()=>Xt,sqrt:()=>Er,square:()=>At,squaredDifference:()=>sA,squeeze:()=>et,stack:()=>or,step:()=>wh,stridedSlice:()=>c7,string:()=>rf,sub:()=>ce,sum:()=>ke,sumOutType:()=>ch,tan:()=>f7,tanh:()=>bu,tensor:()=>ct,tensor1d:()=>St,tensor2d:()=>pa,tensor3d:()=>sk,tensor4d:()=>xz,tensor5d:()=>bz,tensor6d:()=>vz,tensor_util:()=>da,test_util:()=>xk,tidy:()=>K,tile:()=>Bn,time:()=>_F,topk:()=>m7,train:()=>co,transpose:()=>nt,truncatedNormal:()=>$m,unique:()=>by,unregisterGradient:()=>FR,unregisterKernel:()=>MR,unsortedSegmentSum:()=>g7,unstack:()=>tn,upcastType:()=>Cr,util:()=>w,valueAndGrad:()=>NP,valueAndGrads:()=>CP,variable:()=>y7,variableGrads:()=>e7,version:()=>Hh,version_converter:()=>uH,version_core:()=>T2,version_cpu:()=>Xq,version_layers:()=>_A,version_wasm:()=>a2e,version_webgl:()=>xte,webgl:()=>bte,webgl_util:()=>ZI,webgpu:()=>J8,where:()=>Wr,whereAsync:()=>iA,zeros:()=>Wt,zerosLike:()=>at});var LE=Object.create,Wf=Object.defineProperty,BE=Object.getOwnPropertyDescriptor,cw=Object.getOwnPropertyNames,WE=Object.getPrototypeOf,VE=Object.prototype.hasOwnProperty,UE=e=>Wf(e,"__esModule",{value:!0}),lr=(e,t)=>function(){return t||(0,e[cw(e)[0]])((t={exports:{}}).exports,t),t.exports},Le=(e,t)=>{for(var r in t)Wf(e,r,{get:t[r],enumerable:!0})},GE=(e,t,r,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let a of cw(t))!VE.call(e,a)&&(r||a!=="default")&&Wf(e,a,{get:()=>t[a],enumerable:!(n=BE(t,a))||n.enumerable});return e},Oo=(e,t)=>GE(UE(Wf(e!=null?LE(WE(e)):{},"default",!t&&e&&e.__esModule?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),jE=lr({"src/node_modules/long/src/long.js"(e,t){t.exports=n;var r=null;try{r=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(I){}function n(I,z,O){this.low=I|0,this.high=z|0,this.unsigned=!!O}n.prototype.__isLong__,Object.defineProperty(n.prototype,"__isLong__",{value:!0});function a(I){return(I&&I.__isLong__)===!0}n.isLong=a;var s={},i={};function o(I,z){var O,j,X;return z?(I>>>=0,(X=0<=I&&I<256)&&(j=i[I],j)?j:(O=u(I,(I|0)<0?-1:0,!0),X&&(i[I]=O),O)):(I|=0,(X=-128<=I&&I<128)&&(j=s[I],j)?j:(O=u(I,I<0?-1:0,!1),X&&(s[I]=O),O))}n.fromInt=o;function l(I,z){if(isNaN(I))return z?b:x;if(z){if(I<0)return b;if(I>=g)return R}else{if(I<=-y)return _;if(I+1>=y)return E}return I<0?l(-I,z).neg():u(I%m|0,I/m|0,z)}n.fromNumber=l;function u(I,z,O){return new n(I,z,O)}n.fromBits=u;var d=Math.pow;function h(I,z,O){if(I.length===0)throw Error("empty string");if(I==="NaN"||I==="Infinity"||I==="+Infinity"||I==="-Infinity")return x;if(typeof z=="number"?(O=z,z=!1):z=!!z,O=O||10,O<2||36<O)throw RangeError("radix");var j;if((j=I.indexOf("-"))>0)throw Error("interior hyphen");if(j===0)return h(I.substring(1),z,O).neg();for(var X=l(d(O,8)),D=x,Q=0;Q<I.length;Q+=8){var V=Math.min(8,I.length-Q),ee=parseInt(I.substring(Q,Q+V),O);if(V<8){var J=l(d(O,V));D=D.mul(J).add(l(ee))}else D=D.mul(X),D=D.add(l(ee))}return D.unsigned=z,D}n.fromString=h;function p(I,z){return typeof I=="number"?l(I,z):typeof I=="string"?h(I,z):u(I.low,I.high,typeof z=="boolean"?z:I.unsigned)}n.fromValue=p;var c=1<<16,f=1<<24,m=c*c,g=m*m,y=g/2,A=o(f),x=o(0);n.ZERO=x;var b=o(0,!0);n.UZERO=b;var v=o(1);n.ONE=v;var S=o(1,!0);n.UONE=S;var T=o(-1);n.NEG_ONE=T;var E=u(-1,2147483647,!1);n.MAX_VALUE=E;var R=u(-1,-1,!0);n.MAX_UNSIGNED_VALUE=R;var _=u(0,-2147483648,!1);n.MIN_VALUE=_;var M=n.prototype;M.toInt=function(){return this.unsigned?this.low>>>0:this.low},M.toNumber=function(){return this.unsigned?(this.high>>>0)*m+(this.low>>>0):this.high*m+(this.low>>>0)},M.toString=function(I){if(I=I||10,I<2||36<I)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(_)){var z=l(I),O=this.div(z),j=O.mul(z).sub(this);return O.toString(I)+j.toInt().toString(I)}else return"-"+this.neg().toString(I);for(var X=l(d(I,6),this.unsigned),D=this,Q="";;){var V=D.div(X),ee=D.sub(V.mul(X)).toInt()>>>0,J=ee.toString(I);if(D=V,D.isZero())return J+Q;for(;J.length<6;)J="0"+J;Q=""+J+Q}},M.getHighBits=function(){return this.high},M.getHighBitsUnsigned=function(){return this.high>>>0},M.getLowBits=function(){return this.low},M.getLowBitsUnsigned=function(){return this.low>>>0},M.getNumBitsAbs=function(){if(this.isNegative())return this.eq(_)?64:this.neg().getNumBitsAbs();for(var I=this.high!=0?this.high:this.low,z=31;z>0&&(I&1<<z)==0;z--);return this.high!=0?z+33:z+1},M.isZero=function(){return this.high===0&&this.low===0},M.eqz=M.isZero,M.isNegative=function(){return!this.unsigned&&this.high<0},M.isPositive=function(){return this.unsigned||this.high>=0},M.isOdd=function(){return(this.low&1)===1},M.isEven=function(){return(this.low&1)===0},M.equals=function(I){return a(I)||(I=p(I)),this.unsigned!==I.unsigned&&this.high>>>31===1&&I.high>>>31===1?!1:this.high===I.high&&this.low===I.low},M.eq=M.equals,M.notEquals=function(I){return!this.eq(I)},M.neq=M.notEquals,M.ne=M.notEquals,M.lessThan=function(I){return this.comp(I)<0},M.lt=M.lessThan,M.lessThanOrEqual=function(I){return this.comp(I)<=0},M.lte=M.lessThanOrEqual,M.le=M.lessThanOrEqual,M.greaterThan=function(I){return this.comp(I)>0},M.gt=M.greaterThan,M.greaterThanOrEqual=function(I){return this.comp(I)>=0},M.gte=M.greaterThanOrEqual,M.ge=M.greaterThanOrEqual,M.compare=function(I){if(a(I)||(I=p(I)),this.eq(I))return 0;var z=this.isNegative(),O=I.isNegative();return z&&!O?-1:!z&&O?1:this.unsigned?I.high>>>0>this.high>>>0||I.high===this.high&&I.low>>>0>this.low>>>0?-1:1:this.sub(I).isNegative()?-1:1},M.comp=M.compare,M.negate=function(){return!this.unsigned&&this.eq(_)?_:this.not().add(v)},M.neg=M.negate,M.add=function(I){a(I)||(I=p(I));var z=this.high>>>16,O=this.high&65535,j=this.low>>>16,X=this.low&65535,D=I.high>>>16,Q=I.high&65535,V=I.low>>>16,ee=I.low&65535,J=0,se=0,Z=0,ae=0;return ae+=X+ee,Z+=ae>>>16,ae&=65535,Z+=j+V,se+=Z>>>16,Z&=65535,se+=O+Q,J+=se>>>16,se&=65535,J+=z+D,J&=65535,u(Z<<16|ae,J<<16|se,this.unsigned)},M.subtract=function(I){return a(I)||(I=p(I)),this.add(I.neg())},M.sub=M.subtract,M.multiply=function(I){if(this.isZero())return x;if(a(I)||(I=p(I)),r){var z=r.mul(this.low,this.high,I.low,I.high);return u(z,r.get_high(),this.unsigned)}if(I.isZero())return x;if(this.eq(_))return I.isOdd()?_:x;if(I.eq(_))return this.isOdd()?_:x;if(this.isNegative())return I.isNegative()?this.neg().mul(I.neg()):this.neg().mul(I).neg();if(I.isNegative())return this.mul(I.neg()).neg();if(this.lt(A)&&I.lt(A))return l(this.toNumber()*I.toNumber(),this.unsigned);var O=this.high>>>16,j=this.high&65535,X=this.low>>>16,D=this.low&65535,Q=I.high>>>16,V=I.high&65535,ee=I.low>>>16,J=I.low&65535,se=0,Z=0,ae=0,de=0;return de+=D*J,ae+=de>>>16,de&=65535,ae+=X*J,Z+=ae>>>16,ae&=65535,ae+=D*ee,Z+=ae>>>16,ae&=65535,Z+=j*J,se+=Z>>>16,Z&=65535,Z+=X*ee,se+=Z>>>16,Z&=65535,Z+=D*V,se+=Z>>>16,Z&=65535,se+=O*J+j*ee+X*V+D*Q,se&=65535,u(ae<<16|de,se<<16|Z,this.unsigned)},M.mul=M.multiply,M.divide=function(I){if(a(I)||(I=p(I)),I.isZero())throw Error("division by zero");if(r){if(!this.unsigned&&this.high===-2147483648&&I.low===-1&&I.high===-1)return this;var z=(this.unsigned?r.div_u:r.div_s)(this.low,this.high,I.low,I.high);return u(z,r.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?b:x;var O,j,X;if(this.unsigned){if(I.unsigned||(I=I.toUnsigned()),I.gt(this))return b;if(I.gt(this.shru(1)))return S;X=b}else{if(this.eq(_)){if(I.eq(v)||I.eq(T))return _;if(I.eq(_))return v;var D=this.shr(1);return O=D.div(I).shl(1),O.eq(x)?I.isNegative()?v:T:(j=this.sub(I.mul(O)),X=O.add(j.div(I)),X)}else if(I.eq(_))return this.unsigned?b:x;if(this.isNegative())return I.isNegative()?this.neg().div(I.neg()):this.neg().div(I).neg();if(I.isNegative())return this.div(I.neg()).neg();X=x}for(j=this;j.gte(I);){O=Math.max(1,Math.floor(j.toNumber()/I.toNumber()));for(var Q=Math.ceil(Math.log(O)/Math.LN2),V=Q<=48?1:d(2,Q-48),ee=l(O),J=ee.mul(I);J.isNegative()||J.gt(j);)O-=V,ee=l(O,this.unsigned),J=ee.mul(I);ee.isZero()&&(ee=v),X=X.add(ee),j=j.sub(J)}return X},M.div=M.divide,M.modulo=function(I){if(a(I)||(I=p(I)),r){var z=(this.unsigned?r.rem_u:r.rem_s)(this.low,this.high,I.low,I.high);return u(z,r.get_high(),this.unsigned)}return this.sub(this.div(I).mul(I))},M.mod=M.modulo,M.rem=M.modulo,M.not=function(){return u(~this.low,~this.high,this.unsigned)},M.and=function(I){return a(I)||(I=p(I)),u(this.low&I.low,this.high&I.high,this.unsigned)},M.or=function(I){return a(I)||(I=p(I)),u(this.low|I.low,this.high|I.high,this.unsigned)},M.xor=function(I){return a(I)||(I=p(I)),u(this.low^I.low,this.high^I.high,this.unsigned)},M.shiftLeft=function(I){return a(I)&&(I=I.toInt()),(I&=63)===0?this:I<32?u(this.low<<I,this.high<<I|this.low>>>32-I,this.unsigned):u(0,this.low<<I-32,this.unsigned)},M.shl=M.shiftLeft,M.shiftRight=function(I){return a(I)&&(I=I.toInt()),(I&=63)===0?this:I<32?u(this.low>>>I|this.high<<32-I,this.high>>I,this.unsigned):u(this.high>>I-32,this.high>=0?0:-1,this.unsigned)},M.shr=M.shiftRight,M.shiftRightUnsigned=function(I){if(a(I)&&(I=I.toInt()),I&=63,I===0)return this;var z=this.high;if(I<32){var O=this.low;return u(O>>>I|z<<32-I,z>>>I,this.unsigned)}else return I===32?u(z,0,this.unsigned):u(z>>>I-32,0,this.unsigned)},M.shru=M.shiftRightUnsigned,M.shr_u=M.shiftRightUnsigned,M.toSigned=function(){return this.unsigned?u(this.low,this.high,!1):this},M.toUnsigned=function(){return this.unsigned?this:u(this.low,this.high,!0)},M.toBytes=function(I){return I?this.toBytesLE():this.toBytesBE()},M.toBytesLE=function(){var I=this.high,z=this.low;return[z&255,z>>>8&255,z>>>16&255,z>>>24,I&255,I>>>8&255,I>>>16&255,I>>>24]},M.toBytesBE=function(){var I=this.high,z=this.low;return[I>>>24,I>>>16&255,I>>>8&255,I&255,z>>>24,z>>>16&255,z>>>8&255,z&255]},n.fromBytes=function(I,z,O){return O?n.fromBytesLE(I,z):n.fromBytesBE(I,z)},n.fromBytesLE=function(I,z){return new n(I[0]|I[1]<<8|I[2]<<16|I[3]<<24,I[4]|I[5]<<8|I[6]<<16|I[7]<<24,z)},n.fromBytesBE=function(I,z){return new n(I[4]<<24|I[5]<<16|I[6]<<8|I[7],I[0]<<24|I[1]<<16|I[2]<<8|I[3],z)}}}),HE=lr({"(disabled):src/node_modules/node-fetch/browser.js"(){}}),qE=lr({"(disabled):util"(){}}),KE=lr({"src/node_modules/seedrandom/lib/alea.js"(e,t){(function(r,n,a){function s(u){var d=this,h=l();d.next=function(){var p=2091639*d.s0+d.c*23283064365386963e-26;return d.s0=d.s1,d.s1=d.s2,d.s2=p-(d.c=p|0)},d.c=1,d.s0=h(" "),d.s1=h(" "),d.s2=h(" "),d.s0-=h(u),d.s0<0&&(d.s0+=1),d.s1-=h(u),d.s1<0&&(d.s1+=1),d.s2-=h(u),d.s2<0&&(d.s2+=1),h=null}function i(u,d){return d.c=u.c,d.s0=u.s0,d.s1=u.s1,d.s2=u.s2,d}function o(u,d){var h=new s(u),p=d&&d.state,c=h.next;return c.int32=function(){return h.next()*4294967296|0},c.double=function(){return c()+(c()*2097152|0)*11102230246251565e-32},c.quick=c,p&&(typeof p=="object"&&i(p,h),c.state=function(){return i(h,{})}),c}function l(){var u=4022871197,d=function(h){h=String(h);for(var p=0;p<h.length;p++){u+=h.charCodeAt(p);var c=.02519603282416938*u;u=c>>>0,c-=u,c*=u,u=c>>>0,c-=u,u+=c*4294967296}return(u>>>0)*23283064365386963e-26};return d}n&&n.exports?n.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),XE=lr({"src/node_modules/seedrandom/lib/xor128.js"(e,t){(function(r,n,a){function s(l){var u=this,d="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var p=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^p^p>>>8},l===(l|0)?u.x=l:d+=l;for(var h=0;h<d.length+64;h++)u.x^=d.charCodeAt(h)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var d=new s(l),h=u&&u.state,p=function(){return(d.next()>>>0)/4294967296};return p.double=function(){do var c=d.next()>>>11,f=(d.next()>>>0)/4294967296,m=(c+f)/(1<<21);while(m===0);return m},p.int32=d.next,p.quick=p,h&&(typeof h=="object"&&i(h,d),p.state=function(){return i(d,{})}),p}n&&n.exports?n.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),ZE=lr({"src/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(r,n,a){function s(l){var u=this,d="";u.next=function(){var p=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(p^p<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:d+=l;for(var h=0;h<d.length+64;h++)u.x^=d.charCodeAt(h)|0,h==d.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var d=new s(l),h=u&&u.state,p=function(){return(d.next()>>>0)/4294967296};return p.double=function(){do var c=d.next()>>>11,f=(d.next()>>>0)/4294967296,m=(c+f)/(1<<21);while(m===0);return m},p.int32=d.next,p.quick=p,h&&(typeof h=="object"&&i(h,d),p.state=function(){return i(d,{})}),p}n&&n.exports?n.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),YE=lr({"src/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(r,n,a){function s(l){var u=this;u.next=function(){var h=u.x,p=u.i,c,f,m;return c=h[p],c^=c>>>7,f=c^c<<24,c=h[p+1&7],f^=c^c>>>10,c=h[p+3&7],f^=c^c>>>3,c=h[p+4&7],f^=c^c<<7,c=h[p+7&7],c=c^c<<13,f^=c^c<<9,h[p]=f,u.i=p+1&7,f};function d(h,p){var c,f,m=[];if(p===(p|0))f=m[0]=p;else for(p=""+p,c=0;c<p.length;++c)m[c&7]=m[c&7]<<15^p.charCodeAt(c)+m[c+1&7]<<13;for(;m.length<8;)m.push(0);for(c=0;c<8&&m[c]===0;++c);for(c==8?f=m[7]=-1:f=m[c],h.x=m,h.i=0,c=256;c>0;--c)h.next()}d(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var d=new s(l),h=u&&u.state,p=function(){return(d.next()>>>0)/4294967296};return p.double=function(){do var c=d.next()>>>11,f=(d.next()>>>0)/4294967296,m=(c+f)/(1<<21);while(m===0);return m},p.int32=d.next,p.quick=p,h&&(h.x&&i(h,d),p.state=function(){return i(d,{})}),p}n&&n.exports?n.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),JE=lr({"src/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(r,n,a){function s(l){var u=this;u.next=function(){var h=u.w,p=u.X,c=u.i,f,m;return u.w=h=h+1640531527|0,m=p[c+34&127],f=p[c=c+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=p[c]=m^f,u.i=c,m+(h^h>>>16)|0};function d(h,p){var c,f,m,g,y,A=[],x=128;for(p===(p|0)?(f=p,p=null):(p=p+"\0",f=0,x=Math.max(x,p.length)),m=0,g=-32;g<x;++g)p&&(f^=p.charCodeAt((g+32)%p.length)),g===0&&(y=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,g>=0&&(y=y+1640531527|0,c=A[g&127]^=f+y,m=c==0?m+1:0);for(m>=128&&(A[(p&&p.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=A[m+34&127],c=A[m=m+1&127],f^=f<<13,c^=c<<17,f^=f>>>15,c^=c>>>12,A[m]=f^c;h.w=y,h.X=A,h.i=m}d(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var d=new s(l),h=u&&u.state,p=function(){return(d.next()>>>0)/4294967296};return p.double=function(){do var c=d.next()>>>11,f=(d.next()>>>0)/4294967296,m=(c+f)/(1<<21);while(m===0);return m},p.int32=d.next,p.quick=p,h&&(h.X&&i(h,d),p.state=function(){return i(d,{})}),p}n&&n.exports?n.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),QE=lr({"src/node_modules/seedrandom/lib/tychei.js"(e,t){(function(r,n,a){function s(l){var u=this,d="";u.next=function(){var p=u.b,c=u.c,f=u.d,m=u.a;return p=p<<25^p>>>7^c,c=c-f|0,f=f<<24^f>>>8^m,m=m-p|0,u.b=p=p<<20^p>>>12^c,u.c=c=c-f|0,u.d=f<<16^c>>>16^m,u.a=m-p|0},u.a=0,u.b=0,u.c=-1640531527,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):d+=l;for(var h=0;h<d.length+20;h++)u.b^=d.charCodeAt(h)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var d=new s(l),h=u&&u.state,p=function(){return(d.next()>>>0)/4294967296};return p.double=function(){do var c=d.next()>>>11,f=(d.next()>>>0)/4294967296,m=(c+f)/(1<<21);while(m===0);return m},p.int32=d.next,p.quick=p,h&&(typeof h=="object"&&i(h,d),p.state=function(){return i(d,{})}),p}n&&n.exports?n.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),eR=lr({"(disabled):crypto"(){}}),tR=lr({"src/node_modules/seedrandom/seedrandom.js"(e,t){(function(r,n,a){var s=256,i=6,o=52,l="random",u=a.pow(s,i),d=a.pow(2,o),h=d*2,p=s-1,c;function f(v,S,T){var E=[];S=S==!0?{entropy:!0}:S||{};var R=A(y(S.entropy?[v,b(n)]:v==null?x():v,3),E),_=new m(E),M=function(){for(var I=_.g(i),z=u,O=0;I<d;)I=(I+O)*s,z*=s,O=_.g(1);for(;I>=h;)I/=2,z/=2,O>>>=1;return(I+O)/z};return M.int32=function(){return _.g(4)|0},M.quick=function(){return _.g(4)/4294967296},M.double=M,A(b(_.S),n),(S.pass||T||function(I,z,O,j){return j&&(j.S&&g(j,_),I.state=function(){return g(_,{})}),O?(a[l]=I,z):I})(M,R,"global"in S?S.global:this==a,S.state)}function m(v){var S,T=v.length,E=this,R=0,_=E.i=E.j=0,M=E.S=[];for(T||(v=[T++]);R<s;)M[R]=R++;for(R=0;R<s;R++)M[R]=M[_=p&_+v[R%T]+(S=M[R])],M[_]=S;(E.g=function(I){for(var z,O=0,j=E.i,X=E.j,D=E.S;I--;)z=D[j=p&j+1],O=O*s+D[p&(D[j]=D[X=p&X+z])+(D[X]=z)];return E.i=j,E.j=X,O})(s)}function g(v,S){return S.i=v.i,S.j=v.j,S.S=v.S.slice(),S}function y(v,S){var T=[],E=typeof v,R;if(S&&E=="object")for(R in v)try{T.push(y(v[R],S-1))}catch(_){}return T.length?T:E=="string"?v:v+"\0"}function A(v,S){for(var T=v+"",E,R=0;R<T.length;)S[p&R]=p&(E^=S[p&R]*19)+T.charCodeAt(R++);return b(S)}function x(){try{var v;return c&&(v=c.randomBytes)?v=v(s):(v=new Uint8Array(s),(r.crypto||r.msCrypto).getRandomValues(v)),b(v)}catch(E){var S=r.navigator,T=S&&S.plugins;return[+new Date,r,T,r.screen,b(n)]}}function b(v){return String.fromCharCode.apply(0,v)}if(A(a.random(),n),typeof t=="object"&&t.exports){t.exports=f;try{c=eR()}catch(v){}}else typeof define=="function"&&define.amd?define(function(){return f}):a["seed"+l]=f})(typeof self!="undefined"?self:e,[],Math)}}),Vf=lr({"src/node_modules/seedrandom/index.js"(e,t){var r=KE(),n=XE(),a=ZE(),s=YE(),i=JE(),o=QE(),l=tR();l.alea=r,l.xor128=n,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}}),fw=lr({"(disabled):src/node_modules/string_decoder/index.js"(){}}),o2=lr({"(disabled):fs"(){}}),hf=lr({"(disabled):path"(){}}),rR=lr({"(disabled):worker_threads"(){}}),nR=lr({"(disabled):perf_hooks"(){}}),aR=lr({"(disabled):os"(){}}),sR=lr({"src/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.js"(e,t){var r=(()=>{var n=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(n=n||__filename),function(a){a=a||{};function s(){return $e.buffer!=Pr&&ea($e.buffer),oc}function i(){return $e.buffer!=Pr&&ea($e.buffer),lc}function o(){return $e.buffer!=Pr&&ea($e.buffer),ep}function l(){return $e.buffer!=Pr&&ea($e.buffer),uc}function u(){return $e.buffer!=Pr&&ea($e.buffer),dc}function d(){return $e.buffer!=Pr&&ea($e.buffer),pc}function h(){return $e.buffer!=Pr&&ea($e.buffer),hc}var p=typeof a!="undefined"?a:{},c,f;p.ready=new Promise(function(C,$){c=C,f=$});var m;typeof process!="undefined"&&process.listeners&&(m={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var g=Object.assign({},p),y=[],A="./this.program",x=(C,$)=>{throw $},b=typeof window=="object",v=typeof importScripts=="function",S=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",T=p.ENVIRONMENT_IS_PTHREAD||!1,E="";function R(C){return p.locateFile?p.locateFile(C,E):E+C}var _,M,I,z;function O(C){C instanceof up||J("exiting due to exception: "+C)}var j,X,D;if(S){v?E=hf().dirname(E)+"/":E=__dirname+"/",D=()=>{X||(j=o2(),X=hf())},_=function($,U){return D(),$=X.normalize($),j.readFileSync($,U?void 0:"utf8")},I=$=>{var U=_($,!0);return U.buffer||(U=new Uint8Array(U)),U},M=($,U,te)=>{D(),$=X.normalize($),j.readFile($,function(ge,xe){ge?te(ge):U(xe.buffer)})},process.argv.length>1&&(A=process.argv[1].replace(/\\/g,"/")),y=process.argv.slice(2),process.on("uncaughtException",function($){if(!($ instanceof up))throw $}),process.on("unhandledRejection",function($){throw $}),x=($,U)=>{if(ao())throw process.exitCode=$,U;O(U),process.exit($)},p.inspect=function(){return"[Emscripten Module object]"};let C;try{C=rR()}catch($){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),$}global.Worker=C.Worker}else(b||v)&&(v?E=self.location.href:typeof document!="undefined"&&document.currentScript&&(E=document.currentScript.src),typeof n!="undefined"&&n&&(E=n),E.indexOf("blob:")!==0?E=E.substr(0,E.replace(/[?#].*/,"").lastIndexOf("/")+1):E="",S||(_=C=>{var $=new XMLHttpRequest;return $.open("GET",C,!1),$.send(null),$.responseText},v&&(I=C=>{var $=new XMLHttpRequest;return $.open("GET",C,!1),$.responseType="arraybuffer",$.send(null),new Uint8Array($.response)}),M=(C,$,U)=>{var te=new XMLHttpRequest;te.open("GET",C,!0),te.responseType="arraybuffer",te.onload=()=>{if(te.status==200||te.status==0&&te.response){$(te.response);return}U()},te.onerror=U,te.send(null)}),z=C=>document.title=C);S&&typeof performance=="undefined"&&(global.performance=nR().performance);var Q=console.log.bind(console),V=console.warn.bind(console);S&&(D(),Q=C=>j.writeSync(1,C+`
|
|
`),V=C=>j.writeSync(2,C+`
|
|
`));var ee=p.print||Q,J=p.printErr||V;Object.assign(p,g),g=null,p.arguments&&(y=p.arguments),p.thisProgram&&(A=p.thisProgram),p.quit&&(x=p.quit);var se=4;function Z(C){Z.shown||(Z.shown={}),Z.shown[C]||(Z.shown[C]=1,J(C))}function ae(C,$){if(typeof WebAssembly.Function=="function"){for(var U={i:"i32",j:"i64",f:"f32",d:"f64"},te={parameters:[],results:$[0]=="v"?[]:[U[$[0]]]},ge=1;ge<$.length;++ge)te.parameters.push(U[$[ge]]);return new WebAssembly.Function(te,C)}var xe=[1,0,1,96],Ne=$.slice(0,1),_e=$.slice(1),$t={i:127,j:126,f:125,d:124};xe.push(_e.length);for(var ge=0;ge<_e.length;++ge)xe.push($t[_e[ge]]);Ne=="v"?xe.push(0):xe=xe.concat([1,$t[Ne]]),xe[1]=xe.length-2;var aa=new Uint8Array([0,97,115,109,1,0,0,0].concat(xe,[2,7,1,1,101,1,102,0,0,7,5,1,1,102,0,0])),sa=new WebAssembly.Module(aa),Wc=new WebAssembly.Instance(sa,{e:{f:C}}),dp=Wc.exports.f;return dp}var de=[],Ae;function be(){if(de.length)return de.pop();try{kn.grow(1)}catch(C){throw C instanceof RangeError?"Unable to grow wasm table. Set ALLOW_TABLE_GROWTH.":C}return kn.length-1}function Ee(C,$){for(var U=C;U<C+$;U++){var te=Yl(U);te&&Ae.set(te,U)}}var Me=0,De=C=>{Me=C},Be=Atomics.load,Ze=Atomics.store,ot=Atomics.compareExchange,dt;p.wasmBinary&&(dt=p.wasmBinary);var pt=p.noExitRuntime||!0;typeof WebAssembly!="object"&&Kl("no native wasm support detected");var $e,vt,yt=!1,$r;function dr(C,$){C||Kl($)}function Zr(C){var $=p["_"+C];return $}function er(C,$,U,te,ge){var xe={string:function(In){var au=0;if(In!=null&&In!==0){var T3=(In.length<<2)+1;au=nu(T3),ro(In,au,T3)}return au},array:function(In){var au=nu(In.length);return Ua(In,au),au}};function Ne(In){return $==="string"?wn(In):$==="boolean"?Boolean(In):In}var _e=Zr(C),$t=[],aa=0;if(te)for(var sa=0;sa<te.length;sa++){var Wc=xe[U[sa]];Wc?(aa===0&&(aa=V1()),$t[sa]=Wc(te[sa])):$t[sa]=te[sa]}var dp=_e.apply(null,$t);function FE(In){return aa!==0&&Oc(aa),Ne(In)}return dp=FE(dp),dp}function pr(C,$,U,te){U=U||[];var ge=U.every(function(Ne){return Ne==="number"}),xe=$!=="string";return xe&&ge&&!te?Zr(C):function(){return er(C,$,U,arguments,te)}}var Qn=1;function Yr(C){var $=new TextDecoder(C);this.decode=U=>(U.buffer instanceof SharedArrayBuffer&&(U=new Uint8Array(U)),$.decode.call($,U))}var tr=typeof TextDecoder!="undefined"?new Yr("utf8"):void 0;function vn(C,$,U){for(var te=$+U,ge=$;C[ge]&&!(ge>=te);)++ge;if(ge-$>16&&C.subarray&&tr)return tr.decode(C.subarray($,ge));for(var xe="";$<ge;){var Ne=C[$++];if(!(Ne&128)){xe+=String.fromCharCode(Ne);continue}var _e=C[$++]&63;if((Ne&224)==192){xe+=String.fromCharCode((Ne&31)<<6|_e);continue}var $t=C[$++]&63;if((Ne&240)==224?Ne=(Ne&15)<<12|_e<<6|$t:Ne=(Ne&7)<<18|_e<<12|$t<<6|C[$++]&63,Ne<65536)xe+=String.fromCharCode(Ne);else{var aa=Ne-65536;xe+=String.fromCharCode(55296|aa>>10,56320|aa&1023)}}return xe}function wn(C,$){return C?vn(i(),C,$):""}function fs(C,$,U,te){if(!(te>0))return 0;for(var ge=U,xe=U+te-1,Ne=0;Ne<C.length;++Ne){var _e=C.charCodeAt(Ne);if(_e>=55296&&_e<=57343){var $t=C.charCodeAt(++Ne);_e=65536+((_e&1023)<<10)|$t&1023}if(_e<=127){if(U>=xe)break;$[U++]=_e}else if(_e<=2047){if(U+1>=xe)break;$[U++]=192|_e>>6,$[U++]=128|_e&63}else if(_e<=65535){if(U+2>=xe)break;$[U++]=224|_e>>12,$[U++]=128|_e>>6&63,$[U++]=128|_e&63}else{if(U+3>=xe)break;$[U++]=240|_e>>18,$[U++]=128|_e>>12&63,$[U++]=128|_e>>6&63,$[U++]=128|_e&63}}return $[U]=0,U-ge}function ro(C,$,U){return fs(C,i(),$,U)}function ic(C){for(var $=0,U=0;U<C.length;++U){var te=C.charCodeAt(U);te>=55296&&te<=57343&&(te=65536+((te&1023)<<10)|C.charCodeAt(++U)&1023),te<=127?++$:te<=2047?$+=2:te<=65535?$+=3:$+=4}return $}var ms=typeof TextDecoder!="undefined"?new Yr("utf-16le"):void 0;function Ua(C,$){s().set(C,$)}function Qd(C,$,U){for(var te=0;te<C.length;++te)s()[$++>>0]=C.charCodeAt(te);U||(s()[$>>0]=0)}function Hl(C,$){return C%$>0&&(C+=$-C%$),C}var Pr,oc,lc,ep,uc,dc,i3,pc,hc;T&&(Pr=p.buffer);function ea(C){Pr=C,p.HEAP8=oc=new Int8Array(C),p.HEAP16=ep=new Int16Array(C),p.HEAP32=dc=new Int32Array(C),p.HEAPU8=lc=new Uint8Array(C),p.HEAPU16=uc=new Uint16Array(C),p.HEAPU32=i3=new Uint32Array(C),p.HEAPF32=pc=new Float32Array(C),p.HEAPF64=hc=new Float64Array(C)}var cc=p.INITIAL_MEMORY||16777216;if(T)$e=p.wasmMemory,Pr=p.buffer;else if(p.wasmMemory)$e=p.wasmMemory;else if($e=new WebAssembly.Memory({initial:cc/65536,maximum:32768,shared:!0}),!($e.buffer instanceof SharedArrayBuffer))throw J("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),S&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");$e&&(Pr=$e.buffer),cc=Pr.byteLength,ea(Pr);var kn,ql=[],gs=[],cg=[],fc=[],no=!1,fg=!1,mc=0;function ao(){return pt||mc>0}function _r(){if(p.preRun)for(typeof p.preRun=="function"&&(p.preRun=[p.preRun]);p.preRun.length;)o3(p.preRun.shift());bc(ql)}function tp(){no=!0,!T&&bc(gs)}function mg(){T||(ze.terminateAllThreads(),fg=!0)}function gg(){if(!T){if(p.postRun)for(typeof p.postRun=="function"&&(p.postRun=[p.postRun]);p.postRun.length;)rp(p.postRun.shift());bc(fc)}}function o3(C){ql.unshift(C)}function l3(C){gs.unshift(C)}function rp(C){fc.unshift(C)}var ys=0,gc=null,ta=null;function np(C){ys++,p.monitorRunDependencies&&p.monitorRunDependencies(ys)}function u3(C){if(ys--,p.monitorRunDependencies&&p.monitorRunDependencies(ys),ys==0&&(gc!==null&&(clearInterval(gc),gc=null),ta)){var $=ta;ta=null,$()}}p.preloadedImages={},p.preloadedAudios={};function Kl(C){T?postMessage({cmd:"onAbort",arg:C}):p.onAbort&&p.onAbort(C),C="Aborted("+C+")",J(C),yt=!0,$r=1,C+=". Build with -s ASSERTIONS=1 for more info.";var $=new WebAssembly.RuntimeError(C);throw f($),$}var yg="data:application/octet-stream;base64,";function yc(C){return C.startsWith(yg)}function Ac(C){return C.startsWith("file://")}var zr;zr="tfjs-backend-wasm-threaded-simd.wasm",yc(zr)||(zr=R(zr));function xc(C){try{if(C==zr&&dt)return new Uint8Array(dt);if(I)return I(C);throw"both async and sync fetching of the wasm failed"}catch($){Kl($)}}function Xl(){if(!dt&&(b||v)){if(typeof fetch=="function"&&!Ac(zr))return fetch(zr,{credentials:"same-origin"}).then(function(C){if(!C.ok)throw"failed to load wasm binary file at '"+zr+"'";return C.arrayBuffer()}).catch(function(){return xc(zr)});if(M)return new Promise(function(C,$){M(zr,function(U){C(new Uint8Array(U))},$)})}return Promise.resolve().then(function(){return xc(zr)})}function Ag(){var C={env:Fc,wasi_snapshot_preview1:Fc};function $(Ne,_e){var $t=Ne.exports;if(p.asm=$t,Sg(p.asm.emscripten_tls_init),kn=p.asm.__indirect_function_table,l3(p.asm.__wasm_call_ctors),vt=_e,!T){var aa=ze.unusedWorkers.length;ze.unusedWorkers.forEach(function(sa){ze.loadWasmModuleToWorker(sa,function(){--aa||u3("wasm-instantiate")})})}}T||np("wasm-instantiate");function U(Ne){$(Ne.instance,Ne.module)}function te(Ne){return Xl().then(function(_e){return WebAssembly.instantiate(_e,C)}).then(function(_e){return _e}).then(Ne,function(_e){J("failed to asynchronously prepare wasm: "+_e),Kl(_e)})}function ge(){return!dt&&typeof WebAssembly.instantiateStreaming=="function"&&!yc(zr)&&!Ac(zr)&&typeof fetch=="function"?fetch(zr,{credentials:"same-origin"}).then(function(Ne){var _e=WebAssembly.instantiateStreaming(Ne,C);return _e.then(U,function($t){return J("wasm streaming compile failed: "+$t),J("falling back to ArrayBuffer instantiation"),te(U)})}):te(U)}if(p.instantiateWasm)try{var xe=p.instantiateWasm(C,$);return xe}catch(Ne){return J("Module.instantiateWasm callback failed with error: "+Ne),!1}return ge().catch(f),{}}var d3,p3,xg={};function bc(C){for(;C.length>0;){var $=C.shift();if(typeof $=="function"){$(p);continue}var U=$.func;typeof U=="number"?$.arg===void 0?Yl(U)():Yl(U)($.arg):U($.arg===void 0?null:$.arg)}}function Zl(C){var $=V1(),U=C();return Oc($),U}function B9(C){return C}function h3(C){var $=/\b_Z[\w\d_]+/g;return C.replace($,function(U){var te=U;return U===te?U:te+" ["+U+"]"})}function bg(C){u()[C>>2]=0;var $=ze.pthreads[C];delete ze.pthreads[C],$.worker.terminate(),W1(C),ze.runningWorkers.splice(ze.runningWorkers.indexOf($.worker),1),$.worker.pthread=void 0}function vg(C){var $=ze.pthreads[C];$.worker.postMessage({cmd:"cancel"})}function vc(C){var $=ze.pthreads[C];if($){u()[C>>2]=0;var U=$.worker;ze.returnWorkerToPool(U)}}function wc(C){EE(C)}function wg(C){if(C instanceof up||C=="unwind")return $r;x(1,C)}var ze={unusedWorkers:[],runningWorkers:[],tlsInitFunctions:[],init:function(){T?ze.initWorker():ze.initMainThread()},initMainThread:function(){for(var C=8,$=0;$<C;++$)ze.allocateUnusedWorker()},initWorker:function(){pt=!1},pthreads:{},setExitStatus:function(C){$r=C},terminateAllThreads:function(){for(var C in ze.pthreads){var $=ze.pthreads[C];$&&$.worker&&ze.returnWorkerToPool($.worker)}for(var U=0;U<ze.unusedWorkers.length;++U){var te=ze.unusedWorkers[U];te.terminate()}ze.unusedWorkers=[]},returnWorkerToPool:function(C){ze.runWithoutMainThreadQueuedCalls(function(){delete ze.pthreads[C.pthread.threadInfoStruct],ze.unusedWorkers.push(C),ze.runningWorkers.splice(ze.runningWorkers.indexOf(C),1),W1(C.pthread.threadInfoStruct),C.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(C){u()[S3>>2]=0;try{C()}finally{u()[S3>>2]=1}},receiveObjectTransfer:function(C){},threadInit:function(){for(var C in ze.tlsInitFunctions)ze.tlsInitFunctions[C]()},loadWasmModuleToWorker:function(C,$){C.onmessage=U=>{var te=U.data,ge=te.cmd;if(C.pthread&&(ze.currentProxiedOperationCallerThread=C.pthread.threadInfoStruct),te.targetThread&&te.targetThread!=zc()){var xe=ze.pthreads[te.targetThread];xe?xe.worker.postMessage(te,te.transferList):J('Internal error! Worker sent a message "'+ge+'" to target pthread '+te.targetThread+", but that thread no longer exists!"),ze.currentProxiedOperationCallerThread=void 0;return}ge==="processQueuedMainThreadWork"?b3():ge==="spawnThread"?Ic(te):ge==="cleanupThread"?vc(te.thread):ge==="killThread"?bg(te.thread):ge==="cancelThread"?vg(te.thread):ge==="loaded"?(C.loaded=!0,$&&$(C),C.runPthread&&(C.runPthread(),delete C.runPthread)):ge==="print"?ee("Thread "+te.threadId+": "+te.text):ge==="printErr"?J("Thread "+te.threadId+": "+te.text):ge==="alert"?alert("Thread "+te.threadId+": "+te.text):te.target==="setimmediate"?C.postMessage(te):ge==="onAbort"?p.onAbort&&p.onAbort(te.arg):J("worker sent an unknown command "+ge),ze.currentProxiedOperationCallerThread=void 0},C.onerror=U=>{var te="worker sent an error!";throw J(te+" "+U.filename+":"+U.lineno+": "+U.message),U},S&&(C.on("message",function(U){C.onmessage({data:U})}),C.on("error",function(U){C.onerror(U)}),C.on("detachedExit",function(){})),C.postMessage({cmd:"load",urlOrBlob:p.mainScriptUrlOrBlob||n,wasmMemory:$e,wasmModule:vt})},allocateUnusedWorker:function(){var C=R("tfjs-backend-wasm-threaded-simd.worker.js");ze.unusedWorkers.push(new Worker(C))},getNewWorker:function(){return ze.unusedWorkers.length==0&&(ze.allocateUnusedWorker(),ze.loadWasmModuleToWorker(ze.unusedWorkers[0])),ze.unusedWorkers.pop()}};function kg(){var C=zc(),$=u()[C+44>>2],U=u()[C+48>>2],te=$-U;I3($,te),Oc($)}p.establishStackSpace=kg;function kc(C){if(T)return oo(1,0,C);try{wc(C)}catch($){wg($)}}var so=[];function Yl(C){var $=so[C];return $||(C>=so.length&&(so.length=C+1),so[C]=$=kn.get(C)),$}function Ig(C,$){return Yl(C)($)}p.invokeEntryPoint=Ig;function c3(){var C=new Error;if(!C.stack){try{throw new Error}catch($){C=$}if(!C.stack)return"(no stack trace available)"}return C.stack.toString()}function Sg(C,$,U){ze.tlsInitFunctions.push(C)}function f3(C,$){kn.set(C,$),so[C]=$}var io;S?io=()=>{var C=process.hrtime();return C[0]*1e3+C[1]/1e6}:T?io=()=>performance.now()-p.__performance_now_clock_drift:io=()=>performance.now();var Tg=!0;function Ng(C){return u()[x3()>>2]=C,C}function Cg(C,$){var U;if(C===0)U=Date.now();else if((C===1||C===4)&&Tg)U=io();else return Ng(28),-1;return u()[$>>2]=U/1e3|0,u()[$+4>>2]=U%1e3*1e3*1e3|0,0}function Eg(C,$){return Cg(C,$)}function Rg(C){v3(C,!v,1,!b),ze.threadInit()}function Mg(C){T?postMessage({cmd:"cleanupThread",thread:C}):vc(C)}function Ic(C){var $=ze.getNewWorker();if(!$)return 6;ze.runningWorkers.push($);var U=ze.pthreads[C.pthread_ptr]={worker:$,threadInfoStruct:C.pthread_ptr};$.pthread=U;var te={cmd:"run",start_routine:C.startRoutine,arg:C.arg,threadInfoStruct:C.pthread_ptr};return $.runPthread=()=>{te.time=performance.now(),$.postMessage(te,C.transferList)},$.loaded&&($.runPthread(),delete $.runPthread),0}function Fg(C,$,U,te){if(typeof SharedArrayBuffer=="undefined")return J("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;var ge=[],xe=0;if(T&&(ge.length===0||xe))return w3(687865856,C,$,U,te);if(xe)return xe;var Ne={startRoutine:U,pthread_ptr:C,arg:te,transferList:ge};return T?(Ne.cmd="spawnThread",postMessage(Ne,ge),0):Ic(Ne)}function $g(){return 2097152}function Pg(C,$){if(C==$)postMessage({cmd:"processQueuedMainThreadWork"});else if(T)postMessage({targetThread:C,cmd:"processThreadQueue"});else{var U=ze.pthreads[C],te=U&&U.worker;if(!te)return;te.postMessage({cmd:"processThreadQueue"})}return 1}function _g(){Kl("")}function zg(){S||v||Z("Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread")}function Sc(){return 2147483648}function Og(C,$,U){i().copyWithin(C,$,$+U)}function Dg(){return S?aR().cpus().length:navigator.hardwareConcurrency}function oo(C,$){var U=arguments.length-2,te=arguments;return Zl(function(){for(var ge=U,xe=nu(ge*8),Ne=xe>>3,_e=0;_e<U;_e++){var $t=te[2+_e];h()[Ne+_e]=$t}return k3(C,ge,xe,$)})}var ap=[];function Lg(C,$,U){ap.length=$;for(var te=U>>3,ge=0;ge<$;ge++)ap[ge]=h()[te+ge];var xe=C<0,Ne=xe?xg[-C-1]:a1[C];return Ne.apply(null,ap)}function Bg(C){try{return $e.grow(C-Pr.byteLength+65535>>>16),ea($e.buffer),1}catch($){}}function Wg(C){var $=i().length;if(C=C>>>0,C<=$)return!1;var U=Sc();if(C>U)return!1;for(var te=1;te<=4;te*=2){var ge=$*(1+.2/te);ge=Math.min(ge,C+100663296);var xe=Math.min(U,Hl(Math.max(C,ge),65536)),Ne=Bg(xe);if(Ne)return!0}return!1}var Ke={inEventHandler:0,removeAllEventListeners:function(){for(var C=Ke.eventHandlers.length-1;C>=0;--C)Ke._removeHandler(C);Ke.eventHandlers=[],Ke.deferredCalls=[]},registerRemoveEventListeners:function(){Ke.removeEventListenersRegistered||(cg.push(Ke.removeAllEventListeners),Ke.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(C,$,U){function te(Ne,_e){if(Ne.length!=_e.length)return!1;for(var $t in Ne)if(Ne[$t]!=_e[$t])return!1;return!0}for(var ge in Ke.deferredCalls){var xe=Ke.deferredCalls[ge];if(xe.targetFunction==C&&te(xe.argsList,U))return}Ke.deferredCalls.push({targetFunction:C,precedence:$,argsList:U}),Ke.deferredCalls.sort(function(Ne,_e){return Ne.precedence<_e.precedence})},removeDeferredCalls:function(C){for(var $=0;$<Ke.deferredCalls.length;++$)Ke.deferredCalls[$].targetFunction==C&&(Ke.deferredCalls.splice($,1),--$)},canPerformEventHandlerRequests:function(){return Ke.inEventHandler&&Ke.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(Ke.canPerformEventHandlerRequests())for(var C=0;C<Ke.deferredCalls.length;++C){var $=Ke.deferredCalls[C];Ke.deferredCalls.splice(C,1),--C,$.targetFunction.apply(null,$.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(C,$){for(var U=0;U<Ke.eventHandlers.length;++U)Ke.eventHandlers[U].target==C&&(!$||$==Ke.eventHandlers[U].eventTypeString)&&Ke._removeHandler(U--)},_removeHandler:function(C){var $=Ke.eventHandlers[C];$.target.removeEventListener($.eventTypeString,$.eventListenerFunc,$.useCapture),Ke.eventHandlers.splice(C,1)},registerOrRemoveHandler:function(C){var $=function(te){++Ke.inEventHandler,Ke.currentEventHandler=C,Ke.runDeferredCalls(),C.handlerFunc(te),Ke.runDeferredCalls(),--Ke.inEventHandler};if(C.callbackfunc)C.eventListenerFunc=$,C.target.addEventListener(C.eventTypeString,$,C.useCapture),Ke.eventHandlers.push(C),Ke.registerRemoveEventListeners();else for(var U=0;U<Ke.eventHandlers.length;++U)Ke.eventHandlers[U].target==C.target&&Ke.eventHandlers[U].eventTypeString==C.eventTypeString&&Ke._removeHandler(U--)},queueEventHandlerOnThread_iiii:function(C,$,U,te,ge){Zl(function(){var xe=nu(12);u()[xe>>2]=U,u()[xe+4>>2]=te,u()[xe+8>>2]=ge,B1(C,637534208,$,te,xe)})},getTargetThreadForEventCallback:function(C){switch(C){case 1:return 0;case 2:return ze.currentProxiedOperationCallerThread;default:return C}},getNodeNameForTarget:function(C){return C?C==window?"#window":C==screen?"#screen":C&&C.nodeName?C.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function Vg(C){var $=ic(C)+1,U=L1($);return ro(C,U,$),U}function Ug(C,$,U,te){Zl(function(){var ge=nu(12),xe=0;$&&(xe=Vg($)),u()[ge>>2]=xe,u()[ge+4>>2]=U,u()[ge+8>>2]=te,B1(C,657457152,0,xe,ge)})}function Gg(C,$,U,te){$=$?wn($):"",Ug(C,$,U,te)}function jg(C){return C>2?wn(C):C}var Hg=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function qg(C){C=jg(C);var $=Hg[C]||(typeof document!="undefined"?document.querySelector(C):void 0);return $}function sp(C){return qg(C)}function Tc(C,$,U){var te=sp(C);if(!te)return-4;if(te.canvasSharedPtr&&(u()[te.canvasSharedPtr>>2]=$,u()[te.canvasSharedPtr+4>>2]=U),te.offscreenCanvas||!te.controlTransferredOffscreen){te.offscreenCanvas&&(te=te.offscreenCanvas);var ge=!1;if(te.GLctxObject&&te.GLctxObject.GLctx){var xe=te.GLctxObject.GLctx.getParameter(2978);ge=xe[0]===0&&xe[1]===0&&xe[2]===te.width&&xe[3]===te.height}te.width=$,te.height=U,ge&&te.GLctxObject.GLctx.viewport(0,0,$,U)}else if(te.canvasSharedPtr){var Ne=u()[te.canvasSharedPtr+8>>2];return Gg(Ne,C,$,U),1}else return-4;return 0}function Nc(C,$,U){return T?oo(2,1,C,$,U):Tc(C,$,U)}function Kg(C,$,U){var te=sp(C);return te?Tc(C,$,U):Nc(C,$,U)}function Xg(){throw"unwind"}function Zg(C){var $=C.getExtension("ANGLE_instanced_arrays");if($)return C.vertexAttribDivisor=function(U,te){$.vertexAttribDivisorANGLE(U,te)},C.drawArraysInstanced=function(U,te,ge,xe){$.drawArraysInstancedANGLE(U,te,ge,xe)},C.drawElementsInstanced=function(U,te,ge,xe,Ne){$.drawElementsInstancedANGLE(U,te,ge,xe,Ne)},1}function Yg(C){var $=C.getExtension("OES_vertex_array_object");if($)return C.createVertexArray=function(){return $.createVertexArrayOES()},C.deleteVertexArray=function(U){$.deleteVertexArrayOES(U)},C.bindVertexArray=function(U){$.bindVertexArrayOES(U)},C.isVertexArray=function(U){return $.isVertexArrayOES(U)},1}function Jg(C){var $=C.getExtension("WEBGL_draw_buffers");if($)return C.drawBuffers=function(U,te){$.drawBuffersWEBGL(U,te)},1}function Qg(C){return!!(C.multiDrawWebgl=C.getExtension("WEBGL_multi_draw"))}var Ft={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},queries:[],stringCache:{},unpackAlignment:4,recordError:function(C){Ft.lastError||(Ft.lastError=C)},getNewId:function(C){for(var $=Ft.counter++,U=C.length;U<$;U++)C[U]=null;return $},getSource:function(C,$,U,te){for(var ge="",xe=0;xe<$;++xe){var Ne=te?u()[te+xe*4>>2]:-1;ge+=wn(u()[U+xe*4>>2],Ne<0?void 0:Ne)}return ge},createContext:function(C,$){C.getContextSafariWebGL2Fixed||(C.getContextSafariWebGL2Fixed=C.getContext,C.getContext=function(ge,xe){var Ne=C.getContextSafariWebGL2Fixed(ge,xe);return ge=="webgl"==Ne instanceof WebGLRenderingContext?Ne:null});var U=C.getContext("webgl",$);if(!U)return 0;var te=Ft.registerContext(U,$);return te},registerContext:function(C,$){var U=L1(8);u()[U+4>>2]=zc();var te={handle:U,attributes:$,version:$.majorVersion,GLctx:C};return C.canvas&&(C.canvas.GLctxObject=te),Ft.contexts[U]=te,(typeof $.enableExtensionsByDefault=="undefined"||$.enableExtensionsByDefault)&&Ft.initExtensions(te),U},makeContextCurrent:function(C){return Ft.currentContext=Ft.contexts[C],p.ctx=Mc=Ft.currentContext&&Ft.currentContext.GLctx,!(C&&!Mc)},getContext:function(C){return Ft.contexts[C]},deleteContext:function(C){Ft.currentContext===Ft.contexts[C]&&(Ft.currentContext=null),typeof Ke=="object"&&Ke.removeAllHandlersOnTarget(Ft.contexts[C].GLctx.canvas),Ft.contexts[C]&&Ft.contexts[C].GLctx.canvas&&(Ft.contexts[C].GLctx.canvas.GLctxObject=void 0),A3(Ft.contexts[C].handle),Ft.contexts[C]=null},initExtensions:function(C){if(C||(C=Ft.currentContext),!C.initExtensionsDone){C.initExtensionsDone=!0;var $=C.GLctx;Zg($),Yg($),Jg($),$.disjointTimerQueryExt=$.getExtension("EXT_disjoint_timer_query"),Qg($);var U=$.getSupportedExtensions()||[];U.forEach(function(te){!te.includes("lose_context")&&!te.includes("debug")&&$.getExtension(te)})}}},e1=["default","low-power","high-performance"];function t1(C,$){var U=$>>2,te=u()[U+6],ge={alpha:!!u()[U+0],depth:!!u()[U+1],stencil:!!u()[U+2],antialias:!!u()[U+3],premultipliedAlpha:!!u()[U+4],preserveDrawingBuffer:!!u()[U+5],powerPreference:e1[te],failIfMajorPerformanceCaveat:!!u()[U+7],majorVersion:u()[U+8],minorVersion:u()[U+9],enableExtensionsByDefault:u()[U+10],explicitSwapControl:u()[U+11],proxyContextToMainThread:u()[U+12],renderViaOffscreenBackBuffer:u()[U+13]},xe=sp(C);if(!xe||ge.explicitSwapControl)return 0;var Ne=Ft.createContext(xe,ge);return Ne}function r1(C,$){return t1(C,$)}var Jl={mappings:{},buffers:[null,[],[]],printChar:function(C,$){var U=Jl.buffers[C];$===0||$===10?((C===1?ee:J)(vn(U,0)),U.length=0):U.push($)},varargs:void 0,get:function(){Jl.varargs+=4;var C=u()[Jl.varargs-4>>2];return C},getStr:function(C){var $=wn(C);return $},get64:function(C,$){return C}};function Cc(C){return T?oo(3,1,C):0}function Ec(C,$,U,te,ge){if(T)return oo(4,1,C,$,U,te,ge)}function Rc(C,$,U,te){if(T)return oo(5,1,C,$,U,te);for(var ge=0,xe=0;xe<U;xe++){var Ne=u()[$>>2],_e=u()[$+4>>2];$+=8;for(var $t=0;$t<_e;$t++)Jl.printChar(C,i()[Ne+$t]);ge+=_e}return u()[te>>2]=ge,0}function n1(C){De(C)}ze.init();var Mc,a1=[null,kc,Nc,Cc,Ec,Rc],m3=!1,Fc={__clock_gettime:Eg,__emscripten_init_main_thread_js:Rg,__emscripten_thread_cleanup:Mg,__pthread_create_js:Fg,_emscripten_default_pthread_stack_size:$g,_emscripten_notify_thread_queue:Pg,abort:_g,emscripten_check_blocking_allowed:zg,emscripten_get_heap_max:Sc,emscripten_get_now:io,emscripten_memcpy_big:Og,emscripten_num_logical_cores:Dg,emscripten_receive_on_main_thread_js:Lg,emscripten_resize_heap:Wg,emscripten_set_canvas_element_size:Kg,emscripten_unwind_to_js_event_loop:Xg,emscripten_webgl_create_context:r1,exit:wc,fd_close:Cc,fd_seek:Ec,fd_write:Rc,memory:$e||p.wasmMemory,setTempRet0:n1},g3=Ag(),s1=p.___wasm_call_ctors=function(){return(s1=p.___wasm_call_ctors=p.asm.__wasm_call_ctors).apply(null,arguments)},i1=p._init=function(){return(i1=p._init=p.asm.init).apply(null,arguments)},o1=p._init_with_threads_count=function(){return(o1=p._init_with_threads_count=p.asm.init_with_threads_count).apply(null,arguments)},l1=p._get_threads_count=function(){return(l1=p._get_threads_count=p.asm.get_threads_count).apply(null,arguments)},u1=p._register_tensor=function(){return(u1=p._register_tensor=p.asm.register_tensor).apply(null,arguments)},d1=p._dispose_data=function(){return(d1=p._dispose_data=p.asm.dispose_data).apply(null,arguments)},p1=p._dispose=function(){return(p1=p._dispose=p.asm.dispose).apply(null,arguments)},h1=p._Abs=function(){return(h1=p._Abs=p.asm.Abs).apply(null,arguments)},c1=p._Add=function(){return(c1=p._Add=p.asm.Add).apply(null,arguments)},f1=p._AddN=function(){return(f1=p._AddN=p.asm.AddN).apply(null,arguments)},m1=p._All=function(){return(m1=p._All=p.asm.All).apply(null,arguments)},g1=p._Any=function(){return(g1=p._Any=p.asm.Any).apply(null,arguments)},y1=p._ArgMax=function(){return(y1=p._ArgMax=p.asm.ArgMax).apply(null,arguments)},A1=p._AvgPool=function(){return(A1=p._AvgPool=p.asm.AvgPool).apply(null,arguments)},x1=p._BatchMatMul=function(){return(x1=p._BatchMatMul=p.asm.BatchMatMul).apply(null,arguments)},b1=p._Ceil=function(){return(b1=p._Ceil=p.asm.Ceil).apply(null,arguments)},v1=p._ClipByValue=function(){return(v1=p._ClipByValue=p.asm.ClipByValue).apply(null,arguments)},w1=p._Conv2D=function(){return(w1=p._Conv2D=p.asm.Conv2D).apply(null,arguments)},k1=p._Conv2DBackpropInput=function(){return(k1=p._Conv2DBackpropInput=p.asm.Conv2DBackpropInput).apply(null,arguments)},I1=p._Cos=function(){return(I1=p._Cos=p.asm.Cos).apply(null,arguments)},S1=p._Cosh=function(){return(S1=p._Cosh=p.asm.Cosh).apply(null,arguments)},T1=p._CropAndResize=function(){return(T1=p._CropAndResize=p.asm.CropAndResize).apply(null,arguments)},N1=p._Cumprod=function(){return(N1=p._Cumprod=p.asm.Cumprod).apply(null,arguments)},C1=p._Cumsum=function(){return(C1=p._Cumsum=p.asm.Cumsum).apply(null,arguments)},E1=p._DepthToSpace=function(){return(E1=p._DepthToSpace=p.asm.DepthToSpace).apply(null,arguments)},R1=p._DepthwiseConv2dNative=function(){return(R1=p._DepthwiseConv2dNative=p.asm.DepthwiseConv2dNative).apply(null,arguments)},M1=p._Elu=function(){return(M1=p._Elu=p.asm.Elu).apply(null,arguments)},F1=p._Equal=function(){return(F1=p._Equal=p.asm.Equal).apply(null,arguments)},$1=p._Exp=function(){return($1=p._Exp=p.asm.Exp).apply(null,arguments)},P1=p._FlipLeftRight=function(){return(P1=p._FlipLeftRight=p.asm.FlipLeftRight).apply(null,arguments)},$c=p._Floor=function(){return($c=p._Floor=p.asm.Floor).apply(null,arguments)},Pc=p._FloorDiv=function(){return(Pc=p._FloorDiv=p.asm.FloorDiv).apply(null,arguments)},ip=p._FusedBatchNorm=function(){return(ip=p._FusedBatchNorm=p.asm.FusedBatchNorm).apply(null,arguments)},_1=p._FusedConv2D=function(){return(_1=p._FusedConv2D=p.asm.FusedConv2D).apply(null,arguments)},z1=p._FusedDepthwiseConv2D=function(){return(z1=p._FusedDepthwiseConv2D=p.asm.FusedDepthwiseConv2D).apply(null,arguments)},Ql=p._Gather=function(){return(Ql=p._Gather=p.asm.Gather).apply(null,arguments)},op=p._GatherNd=function(){return(op=p._GatherNd=p.asm.GatherNd).apply(null,arguments)},lp=p._Greater=function(){return(lp=p._Greater=p.asm.Greater).apply(null,arguments)},y3=p._GreaterEqual=function(){return(y3=p._GreaterEqual=p.asm.GreaterEqual).apply(null,arguments)},eu=p._LeakyRelu=function(){return(eu=p._LeakyRelu=p.asm.LeakyRelu).apply(null,arguments)},tu=p._Less=function(){return(tu=p._Less=p.asm.Less).apply(null,arguments)},O1=p._LessEqual=function(){return(O1=p._LessEqual=p.asm.LessEqual).apply(null,arguments)},H=p._Log=function(){return(H=p._Log=p.asm.Log).apply(null,arguments)},ne=p._LogicalAnd=function(){return(ne=p._LogicalAnd=p.asm.LogicalAnd).apply(null,arguments)},ye=p._Max=function(){return(ye=p._Max=p.asm.Max).apply(null,arguments)},Re=p._MaxPool=function(){return(Re=p._MaxPool=p.asm.MaxPool).apply(null,arguments)},lt=p._Maximum=function(){return(lt=p._Maximum=p.asm.Maximum).apply(null,arguments)},ht=p._Mean=function(){return(ht=p._Mean=p.asm.Mean).apply(null,arguments)},Ye=p._Min=function(){return(Ye=p._Min=p.asm.Min).apply(null,arguments)},He=p._Minimum=function(){return(He=p._Minimum=p.asm.Minimum).apply(null,arguments)},Ht=p._MirrorPad=function(){return(Ht=p._MirrorPad=p.asm.MirrorPad).apply(null,arguments)},ra=p._Multiply=function(){return(ra=p._Multiply=p.asm.Multiply).apply(null,arguments)},na=p._Neg=function(){return(na=p._Neg=p.asm.Neg).apply(null,arguments)},ru=p._NonMaxSuppressionV3=function(){return(ru=p._NonMaxSuppressionV3=p.asm.NonMaxSuppressionV3).apply(null,arguments)},lo=p._NonMaxSuppressionV4=function(){return(lo=p._NonMaxSuppressionV4=p.asm.NonMaxSuppressionV4).apply(null,arguments)},D1=p._NonMaxSuppressionV5=function(){return(D1=p._NonMaxSuppressionV5=p.asm.NonMaxSuppressionV5).apply(null,arguments)},Jr=p._NotEqual=function(){return(Jr=p._NotEqual=p.asm.NotEqual).apply(null,arguments)},As=p._OneHot=function(){return(As=p._OneHot=p.asm.OneHot).apply(null,arguments)},_c=p._PadV2=function(){return(_c=p._PadV2=p.asm.PadV2).apply(null,arguments)},W9=p._Pow=function(){return(W9=p._Pow=p.asm.Pow).apply(null,arguments)},V9=p._Prelu=function(){return(V9=p._Prelu=p.asm.Prelu).apply(null,arguments)},U9=p._Prod=function(){return(U9=p._Prod=p.asm.Prod).apply(null,arguments)},G9=p._RealDiv=function(){return(G9=p._RealDiv=p.asm.RealDiv).apply(null,arguments)},j9=p._Relu=function(){return(j9=p._Relu=p.asm.Relu).apply(null,arguments)},H9=p._Relu6=function(){return(H9=p._Relu6=p.asm.Relu6).apply(null,arguments)},q9=p._ResizeBilinear=function(){return(q9=p._ResizeBilinear=p.asm.ResizeBilinear).apply(null,arguments)},K9=p._Reverse=function(){return(K9=p._Reverse=p.asm.Reverse).apply(null,arguments)},X9=p._RotateWithOffset=function(){return(X9=p._RotateWithOffset=p.asm.RotateWithOffset).apply(null,arguments)},Z9=p._Round=function(){return(Z9=p._Round=p.asm.Round).apply(null,arguments)},Y9=p._Rsqrt=function(){return(Y9=p._Rsqrt=p.asm.Rsqrt).apply(null,arguments)},J9=p._ScatterNd=function(){return(J9=p._ScatterNd=p.asm.ScatterNd).apply(null,arguments)},Q9=p._SelectV2=function(){return(Q9=p._SelectV2=p.asm.SelectV2).apply(null,arguments)},eE=p._Sigmoid=function(){return(eE=p._Sigmoid=p.asm.Sigmoid).apply(null,arguments)},tE=p._Sin=function(){return(tE=p._Sin=p.asm.Sin).apply(null,arguments)},rE=p._Softmax=function(){return(rE=p._Softmax=p.asm.Softmax).apply(null,arguments)},nE=p._SparseFillEmptyRows=function(){return(nE=p._SparseFillEmptyRows=p.asm.SparseFillEmptyRows).apply(null,arguments)},aE=p._SparseReshape=function(){return(aE=p._SparseReshape=p.asm.SparseReshape).apply(null,arguments)},sE=p._SparseSegmentReduction=function(){return(sE=p._SparseSegmentReduction=p.asm.SparseSegmentReduction).apply(null,arguments)},iE=p._Sqrt=function(){return(iE=p._Sqrt=p.asm.Sqrt).apply(null,arguments)},oE=p._Square=function(){return(oE=p._Square=p.asm.Square).apply(null,arguments)},lE=p._SquaredDifference=function(){return(lE=p._SquaredDifference=p.asm.SquaredDifference).apply(null,arguments)},uE=p._Step=function(){return(uE=p._Step=p.asm.Step).apply(null,arguments)},dE=p._StridedSlice=function(){return(dE=p._StridedSlice=p.asm.StridedSlice).apply(null,arguments)},pE=p._Sub=function(){return(pE=p._Sub=p.asm.Sub).apply(null,arguments)},hE=p._Sum=function(){return(hE=p._Sum=p.asm.Sum).apply(null,arguments)},cE=p._Tan=function(){return(cE=p._Tan=p.asm.Tan).apply(null,arguments)},fE=p._Tanh=function(){return(fE=p._Tanh=p.asm.Tanh).apply(null,arguments)},mE=p._Tile=function(){return(mE=p._Tile=p.asm.Tile).apply(null,arguments)},gE=p._TopK=function(){return(gE=p._TopK=p.asm.TopK).apply(null,arguments)},yE=p._Transform=function(){return(yE=p._Transform=p.asm.Transform).apply(null,arguments)},AE=p._Transpose=function(){return(AE=p._Transpose=p.asm.Transpose).apply(null,arguments)},xE=p.__FusedMatMul=function(){return(xE=p.__FusedMatMul=p.asm._FusedMatMul).apply(null,arguments)},L1=p._malloc=function(){return(L1=p._malloc=p.asm.malloc).apply(null,arguments)},A3=p._free=function(){return(A3=p._free=p.asm.free).apply(null,arguments)},bE=p._emscripten_tls_init=function(){return(bE=p._emscripten_tls_init=p.asm.emscripten_tls_init).apply(null,arguments)},x3=p.___errno_location=function(){return(x3=p.___errno_location=p.asm.__errno_location).apply(null,arguments)},zc=p._pthread_self=function(){return(zc=p._pthread_self=p.asm.pthread_self).apply(null,arguments)},b3=p._emscripten_main_thread_process_queued_calls=function(){return(b3=p._emscripten_main_thread_process_queued_calls=p.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},vE=p.__emscripten_thread_crashed=function(){return(vE=p.__emscripten_thread_crashed=p.asm._emscripten_thread_crashed).apply(null,arguments)},v3=p.__emscripten_thread_init=function(){return(v3=p.__emscripten_thread_init=p.asm._emscripten_thread_init).apply(null,arguments)},wE=p._emscripten_current_thread_process_queued_calls=function(){return(wE=p._emscripten_current_thread_process_queued_calls=p.asm.emscripten_current_thread_process_queued_calls).apply(null,arguments)},kE=p._emscripten_main_browser_thread_id=function(){return(kE=p._emscripten_main_browser_thread_id=p.asm.emscripten_main_browser_thread_id).apply(null,arguments)},IE=p._emscripten_sync_run_in_main_thread_2=function(){return(IE=p._emscripten_sync_run_in_main_thread_2=p.asm.emscripten_sync_run_in_main_thread_2).apply(null,arguments)},w3=p._emscripten_sync_run_in_main_thread_4=function(){return(w3=p._emscripten_sync_run_in_main_thread_4=p.asm.emscripten_sync_run_in_main_thread_4).apply(null,arguments)},k3=p._emscripten_run_in_main_runtime_thread_js=function(){return(k3=p._emscripten_run_in_main_runtime_thread_js=p.asm.emscripten_run_in_main_runtime_thread_js).apply(null,arguments)},B1=p._emscripten_dispatch_to_thread_=function(){return(B1=p._emscripten_dispatch_to_thread_=p.asm.emscripten_dispatch_to_thread_).apply(null,arguments)},W1=p.__emscripten_thread_free_data=function(){return(W1=p.__emscripten_thread_free_data=p.asm._emscripten_thread_free_data).apply(null,arguments)},SE=p.__emscripten_thread_exit=function(){return(SE=p.__emscripten_thread_exit=p.asm._emscripten_thread_exit).apply(null,arguments)},TE=p._memalign=function(){return(TE=p._memalign=p.asm.memalign).apply(null,arguments)},I3=p._emscripten_stack_set_limits=function(){return(I3=p._emscripten_stack_set_limits=p.asm.emscripten_stack_set_limits).apply(null,arguments)},V1=p.stackSave=function(){return(V1=p.stackSave=p.asm.stackSave).apply(null,arguments)},Oc=p.stackRestore=function(){return(Oc=p.stackRestore=p.asm.stackRestore).apply(null,arguments)},nu=p.stackAlloc=function(){return(nu=p.stackAlloc=p.asm.stackAlloc).apply(null,arguments)},NE=p.dynCall_iijjiiii=function(){return(NE=p.dynCall_iijjiiii=p.asm.dynCall_iijjiiii).apply(null,arguments)},CE=p.dynCall_jiji=function(){return(CE=p.dynCall_jiji=p.asm.dynCall_jiji).apply(null,arguments)},S3=p.__emscripten_allow_main_runtime_queued_calls=21456;p.cwrap=pr,p.keepRuntimeAlive=ao,p.PThread=ze,p.PThread=ze,p.wasmMemory=$e,p.ExitStatus=up;var Dc;function up(C){this.name="ExitStatus",this.message="Program terminated with exit("+C+")",this.status=C}ta=function C(){Dc||U1(),Dc||(ta=C)};function U1(C){if(C=C||y,ys>0)return;if(T){c(p),tp(),postMessage({cmd:"loaded"});return}if(_r(),ys>0)return;function $(){Dc||(Dc=!0,p.calledRun=!0,!yt&&(tp(),c(p),p.onRuntimeInitialized&&p.onRuntimeInitialized(),gg()))}p.setStatus?(p.setStatus("Running..."),setTimeout(function(){setTimeout(function(){p.setStatus("")},1),$()},1)):$()}p.run=U1;function EE(C,$){if($r=C,!$&&T)throw kc(C),"unwind";ao()||mg(),RE(C)}function RE(C){$r=C,ao()||(ze.terminateAllThreads(),p.onExit&&p.onExit(C),yt=!0),x(C,new up(C))}if(p.preInit)for(typeof p.preInit=="function"&&(p.preInit=[p.preInit]);p.preInit.length>0;)p.preInit.pop()();U1();var Lc;m&&(Lc={uncaughtException:process.listeners("uncaughtException").filter(function(C){return!m.uncaughtException.indexOf(C)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(C){return!m.unhandledRejection.indexOf(C)>-1})});var Bc;if(typeof WasmBackendModule!="undefined")Bc=WasmBackendModule;else if(typeof a!="undefined")Bc=a;else throw new Error("Could not find wasm module in post.js");if(Lc){var ME=Bc._dispose;Bc._dispose=function(){ME(),Lc.uncaughtException.forEach(function(C){process.removeListener("uncaughtException",C)}),Lc.unhandledRejection.forEach(function(C){process.removeListener("unhandledRejection",C)})}}return a.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=r:typeof define=="function"&&define.amd?define([],function(){return r}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=r)}}),iR=lr({"src/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js"(e,t){var r=(()=>{var n=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(n=n||__filename),function(a){a=a||{};var s=typeof a!="undefined"?a:{},i,o;s.ready=new Promise(function(H,ne){i=H,o=ne});var l;typeof process!="undefined"&&process.listeners&&(l={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var u=Object.assign({},s),d=[],h="./this.program",p=(H,ne)=>{throw ne},c=typeof window=="object",f=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g="";function y(H){return s.locateFile?s.locateFile(H,g):g+H}var A,x,b,v;function S(H){H instanceof op||M("exiting due to exception: "+H)}var T,E,R;m?(f?g=hf().dirname(g)+"/":g=__dirname+"/",R=()=>{E||(T=o2(),E=hf())},A=function(H,ne){return R(),H=E.normalize(H),T.readFileSync(H,ne?void 0:"utf8")},b=H=>{var ne=A(H,!0);return ne.buffer||(ne=new Uint8Array(ne)),ne},x=(H,ne,ye)=>{R(),H=E.normalize(H),T.readFile(H,function(Re,lt){Re?ye(Re):ne(lt.buffer)})},process.argv.length>1&&(h=process.argv[1].replace(/\\/g,"/")),d=process.argv.slice(2),process.on("uncaughtException",function(H){if(!(H instanceof op))throw H}),process.on("unhandledRejection",function(H){throw H}),p=(H,ne)=>{if(ep())throw process.exitCode=H,ne;S(ne),process.exit(H)},s.inspect=function(){return"[Emscripten Module object]"}):(c||f)&&(f?g=self.location.href:typeof document!="undefined"&&document.currentScript&&(g=document.currentScript.src),n&&(g=n),g.indexOf("blob:")!==0?g=g.substr(0,g.replace(/[?#].*/,"").lastIndexOf("/")+1):g="",A=H=>{var ne=new XMLHttpRequest;return ne.open("GET",H,!1),ne.send(null),ne.responseText},f&&(b=H=>{var ne=new XMLHttpRequest;return ne.open("GET",H,!1),ne.responseType="arraybuffer",ne.send(null),new Uint8Array(ne.response)}),x=(H,ne,ye)=>{var Re=new XMLHttpRequest;Re.open("GET",H,!0),Re.responseType="arraybuffer",Re.onload=()=>{if(Re.status==200||Re.status==0&&Re.response){ne(Re.response);return}ye()},Re.onerror=ye,Re.send(null)},v=H=>document.title=H);var _=s.print||console.log.bind(console),M=s.printErr||console.warn.bind(console);Object.assign(s,u),u=null,s.arguments&&(d=s.arguments),s.thisProgram&&(h=s.thisProgram),s.quit&&(p=s.quit);var I=4;function z(H){z.shown||(z.shown={}),z.shown[H]||(z.shown[H]=1,M(H))}function O(H,ne){if(typeof WebAssembly.Function=="function"){for(var ye={i:"i32",j:"i64",f:"f32",d:"f64"},Re={parameters:[],results:ne[0]=="v"?[]:[ye[ne[0]]]},lt=1;lt<ne.length;++lt)Re.parameters.push(ye[ne[lt]]);return new WebAssembly.Function(Re,H)}var ht=[1,0,1,96],Ye=ne.slice(0,1),He=ne.slice(1),Ht={i:127,j:126,f:125,d:124};ht.push(He.length);for(var lt=0;lt<He.length;++lt)ht.push(Ht[He[lt]]);Ye=="v"?ht.push(0):ht=ht.concat([1,Ht[Ye]]),ht[1]=ht.length-2;var ra=new Uint8Array([0,97,115,109,1,0,0,0].concat(ht,[2,7,1,1,101,1,102,0,0,7,5,1,1,102,0,0])),na=new WebAssembly.Module(ra),ru=new WebAssembly.Instance(na,{e:{f:H}}),lo=ru.exports.f;return lo}var j=[],X;function D(){if(j.length)return j.pop();try{ms.grow(1)}catch(H){throw H instanceof RangeError?"Unable to grow wasm table. Set ALLOW_TABLE_GROWTH.":H}return ms.length-1}function Q(H,ne){for(var ye=H;ye<H+ne;ye++){var Re=np(ye);Re&&X.set(Re,ye)}}var V=0,ee=H=>{V=H},J;s.wasmBinary&&(J=s.wasmBinary);var se=s.noExitRuntime||!0;typeof WebAssembly!="object"&&no("no native wasm support detected");var Z,ae=!1,de;function Ae(H,ne){H||no(ne)}function be(H){var ne=s["_"+H];return ne}function Ee(H,ne,ye,Re,lt){var ht={string:function(Jr){var As=0;if(Jr!=null&&Jr!==0){var _c=(Jr.length<<2)+1;As=ip(_c),pt(Jr,As,_c)}return As},array:function(Jr){var As=ip(Jr.length);return yt(Jr,As),As}};function Ye(Jr){return ne==="string"?ot(Jr):ne==="boolean"?Boolean(Jr):Jr}var He=be(H),Ht=[],ra=0;if(Re)for(var na=0;na<Re.length;na++){var ru=ht[ye[na]];ru?(ra===0&&(ra=$c()),Ht[na]=ru(Re[na])):Ht[na]=Re[na]}var lo=He.apply(null,Ht);function D1(Jr){return ra!==0&&Pc(ra),Ye(Jr)}return lo=D1(lo),lo}function Me(H,ne,ye,Re){ye=ye||[];var lt=ye.every(function(Ye){return Ye==="number"}),ht=ne!=="string";return ht&<&&!Re?be(H):function(){return Ee(H,ne,ye,arguments,Re)}}var De=1,Be=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function Ze(H,ne,ye){for(var Re=ne+ye,lt=ne;H[lt]&&!(lt>=Re);)++lt;if(lt-ne>16&&H.subarray&&Be)return Be.decode(H.subarray(ne,lt));for(var ht="";ne<lt;){var Ye=H[ne++];if(!(Ye&128)){ht+=String.fromCharCode(Ye);continue}var He=H[ne++]&63;if((Ye&224)==192){ht+=String.fromCharCode((Ye&31)<<6|He);continue}var Ht=H[ne++]&63;if((Ye&240)==224?Ye=(Ye&15)<<12|He<<6|Ht:Ye=(Ye&7)<<18|He<<12|Ht<<6|H[ne++]&63,Ye<65536)ht+=String.fromCharCode(Ye);else{var ra=Ye-65536;ht+=String.fromCharCode(55296|ra>>10,56320|ra&1023)}}return ht}function ot(H,ne){return H?Ze(pr,H,ne):""}function dt(H,ne,ye,Re){if(!(Re>0))return 0;for(var lt=ye,ht=ye+Re-1,Ye=0;Ye<H.length;++Ye){var He=H.charCodeAt(Ye);if(He>=55296&&He<=57343){var Ht=H.charCodeAt(++Ye);He=65536+((He&1023)<<10)|Ht&1023}if(He<=127){if(ye>=ht)break;ne[ye++]=He}else if(He<=2047){if(ye+1>=ht)break;ne[ye++]=192|He>>6,ne[ye++]=128|He&63}else if(He<=65535){if(ye+2>=ht)break;ne[ye++]=224|He>>12,ne[ye++]=128|He>>6&63,ne[ye++]=128|He&63}else{if(ye+3>=ht)break;ne[ye++]=240|He>>18,ne[ye++]=128|He>>12&63,ne[ye++]=128|He>>6&63,ne[ye++]=128|He&63}}return ne[ye]=0,ye-lt}function pt(H,ne,ye){return dt(H,pr,ne,ye)}function $e(H){for(var ne=0,ye=0;ye<H.length;++ye){var Re=H.charCodeAt(ye);Re>=55296&&Re<=57343&&(Re=65536+((Re&1023)<<10)|H.charCodeAt(++ye)&1023),Re<=127?++ne:Re<=2047?ne+=2:Re<=65535?ne+=3:ne+=4}return ne}var vt=typeof TextDecoder!="undefined"?new TextDecoder("utf-16le"):void 0;function yt(H,ne){er.set(H,ne)}function $r(H,ne,ye){for(var Re=0;Re<H.length;++Re)er[ne++>>0]=H.charCodeAt(Re);ye||(er[ne>>0]=0)}function dr(H,ne){return H%ne>0&&(H+=ne-H%ne),H}var Zr,er,pr,Qn,Yr,tr,vn,wn,fs;function ro(H){Zr=H,s.HEAP8=er=new Int8Array(H),s.HEAP16=Qn=new Int16Array(H),s.HEAP32=tr=new Int32Array(H),s.HEAPU8=pr=new Uint8Array(H),s.HEAPU16=Yr=new Uint16Array(H),s.HEAPU32=vn=new Uint32Array(H),s.HEAPF32=wn=new Float32Array(H),s.HEAPF64=fs=new Float64Array(H)}var ic=s.INITIAL_MEMORY||16777216,ms,Ua=[],Qd=[],Hl=[],Pr=!1,oc=!1,lc=0;function ep(){return se||lc>0}function uc(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)hc(s.preRun.shift());rp(Ua)}function dc(){Pr=!0,rp(Qd)}function i3(){oc=!0}function pc(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)cc(s.postRun.shift());rp(Hl)}function hc(H){Ua.unshift(H)}function ea(H){Qd.unshift(H)}function cc(H){Hl.unshift(H)}var kn=0,ql=null,gs=null;function cg(H){kn++,s.monitorRunDependencies&&s.monitorRunDependencies(kn)}function fc(H){if(kn--,s.monitorRunDependencies&&s.monitorRunDependencies(kn),kn==0&&(ql!==null&&(clearInterval(ql),ql=null),gs)){var ne=gs;gs=null,ne()}}s.preloadedImages={},s.preloadedAudios={};function no(H){s.onAbort&&s.onAbort(H),H="Aborted("+H+")",M(H),ae=!0,de=1,H+=". Build with -s ASSERTIONS=1 for more info.";var ne=new WebAssembly.RuntimeError(H);throw o(ne),ne}var fg="data:application/octet-stream;base64,";function mc(H){return H.startsWith(fg)}function ao(H){return H.startsWith("file://")}var _r;_r="tfjs-backend-wasm.wasm",mc(_r)||(_r=y(_r));function tp(H){try{if(H==_r&&J)return new Uint8Array(J);if(b)return b(H);throw"both async and sync fetching of the wasm failed"}catch(ne){no(ne)}}function mg(){if(!J&&(c||f)){if(typeof fetch=="function"&&!ao(_r))return fetch(_r,{credentials:"same-origin"}).then(function(H){if(!H.ok)throw"failed to load wasm binary file at '"+_r+"'";return H.arrayBuffer()}).catch(function(){return tp(_r)});if(x)return new Promise(function(H,ne){x(_r,function(ye){H(new Uint8Array(ye))},ne)})}return Promise.resolve().then(function(){return tp(_r)})}function gg(){var H={env:Zl,wasi_snapshot_preview1:Zl};function ne(Ye,He){var Ht=Ye.exports;s.asm=Ht,Z=s.asm.memory,ro(Z.buffer),ms=s.asm.__indirect_function_table,ea(s.asm.__wasm_call_ctors),fc("wasm-instantiate")}cg("wasm-instantiate");function ye(Ye){ne(Ye.instance)}function Re(Ye){return mg().then(function(He){return WebAssembly.instantiate(He,H)}).then(function(He){return He}).then(Ye,function(He){M("failed to asynchronously prepare wasm: "+He),no(He)})}function lt(){return!J&&typeof WebAssembly.instantiateStreaming=="function"&&!mc(_r)&&!ao(_r)&&typeof fetch=="function"?fetch(_r,{credentials:"same-origin"}).then(function(Ye){var He=WebAssembly.instantiateStreaming(Ye,H);return He.then(ye,function(Ht){return M("wasm streaming compile failed: "+Ht),M("falling back to ArrayBuffer instantiation"),Re(ye)})}):Re(ye)}if(s.instantiateWasm)try{var ht=s.instantiateWasm(H,ne);return ht}catch(Ye){return M("Module.instantiateWasm callback failed with error: "+Ye),!1}return lt().catch(o),{}}var o3,l3;function rp(H){for(;H.length>0;){var ne=H.shift();if(typeof ne=="function"){ne(s);continue}var ye=ne.func;typeof ye=="number"?ne.arg===void 0?np(ye)():np(ye)(ne.arg):ye(ne.arg===void 0?null:ne.arg)}}function ys(H){return H}function gc(H){var ne=/\b_Z[\w\d_]+/g;return H.replace(ne,function(ye){var Re=ye;return ye===Re?ye:Re+" ["+ye+"]"})}var ta=[];function np(H){var ne=ta[H];return ne||(H>=ta.length&&(ta.length=H+1),ta[H]=ne=ms.get(H)),ne}function u3(){var H=new Error;if(!H.stack){try{throw new Error}catch(ne){H=ne}if(!H.stack)return"(no stack trace available)"}return H.stack.toString()}function Kl(H,ne){ms.set(H,ne),ta[H]=ne}function yg(){no("")}function yc(H,ne,ye){pr.copyWithin(H,ne,ne+ye)}function Ac(){return 2147483648}function zr(H){try{return Z.grow(H-Zr.byteLength+65535>>>16),ro(Z.buffer),1}catch(ne){}}function xc(H){var ne=pr.length;H=H>>>0;var ye=Ac();if(H>ye)return!1;for(var Re=1;Re<=4;Re*=2){var lt=ne*(1+.2/Re);lt=Math.min(lt,H+100663296);var ht=Math.min(ye,dr(Math.max(H,lt),65536)),Ye=zr(ht);if(Ye)return!0}return!1}var Xl={mappings:{},buffers:[null,[],[]],printChar:function(H,ne){var ye=Xl.buffers[H];ne===0||ne===10?((H===1?_:M)(Ze(ye,0)),ye.length=0):ye.push(ne)},varargs:void 0,get:function(){Xl.varargs+=4;var H=tr[Xl.varargs-4>>2];return H},getStr:function(H){var ne=ot(H);return ne},get64:function(H,ne){return H}};function Ag(H){return 0}function d3(H,ne,ye,Re,lt){}function p3(H,ne,ye,Re){for(var lt=0,ht=0;ht<ye;ht++){var Ye=tr[ne>>2],He=tr[ne+4>>2];ne+=8;for(var Ht=0;Ht<He;Ht++)Xl.printChar(H,pr[Ye+Ht]);lt+=He}return tr[Re>>2]=lt,0}function xg(H){ee(H)}var bc=!1,Zl={abort:yg,emscripten_memcpy_big:yc,emscripten_resize_heap:xc,fd_close:Ag,fd_seek:d3,fd_write:p3,setTempRet0:xg},B9=gg(),h3=s.___wasm_call_ctors=function(){return(h3=s.___wasm_call_ctors=s.asm.__wasm_call_ctors).apply(null,arguments)},bg=s._init=function(){return(bg=s._init=s.asm.init).apply(null,arguments)},vg=s._init_with_threads_count=function(){return(vg=s._init_with_threads_count=s.asm.init_with_threads_count).apply(null,arguments)},vc=s._get_threads_count=function(){return(vc=s._get_threads_count=s.asm.get_threads_count).apply(null,arguments)},wc=s._register_tensor=function(){return(wc=s._register_tensor=s.asm.register_tensor).apply(null,arguments)},wg=s._dispose_data=function(){return(wg=s._dispose_data=s.asm.dispose_data).apply(null,arguments)},ze=s._dispose=function(){return(ze=s._dispose=s.asm.dispose).apply(null,arguments)},kg=s._Abs=function(){return(kg=s._Abs=s.asm.Abs).apply(null,arguments)},kc=s._Add=function(){return(kc=s._Add=s.asm.Add).apply(null,arguments)},so=s._AddN=function(){return(so=s._AddN=s.asm.AddN).apply(null,arguments)},Yl=s._All=function(){return(Yl=s._All=s.asm.All).apply(null,arguments)},Ig=s._Any=function(){return(Ig=s._Any=s.asm.Any).apply(null,arguments)},c3=s._ArgMax=function(){return(c3=s._ArgMax=s.asm.ArgMax).apply(null,arguments)},Sg=s._AvgPool=function(){return(Sg=s._AvgPool=s.asm.AvgPool).apply(null,arguments)},f3=s._BatchMatMul=function(){return(f3=s._BatchMatMul=s.asm.BatchMatMul).apply(null,arguments)},io=s._Ceil=function(){return(io=s._Ceil=s.asm.Ceil).apply(null,arguments)},Tg=s._ClipByValue=function(){return(Tg=s._ClipByValue=s.asm.ClipByValue).apply(null,arguments)},Ng=s._Conv2D=function(){return(Ng=s._Conv2D=s.asm.Conv2D).apply(null,arguments)},Cg=s._Conv2DBackpropInput=function(){return(Cg=s._Conv2DBackpropInput=s.asm.Conv2DBackpropInput).apply(null,arguments)},Eg=s._Cos=function(){return(Eg=s._Cos=s.asm.Cos).apply(null,arguments)},Rg=s._Cosh=function(){return(Rg=s._Cosh=s.asm.Cosh).apply(null,arguments)},Mg=s._CropAndResize=function(){return(Mg=s._CropAndResize=s.asm.CropAndResize).apply(null,arguments)},Ic=s._Cumprod=function(){return(Ic=s._Cumprod=s.asm.Cumprod).apply(null,arguments)},Fg=s._Cumsum=function(){return(Fg=s._Cumsum=s.asm.Cumsum).apply(null,arguments)},$g=s._DepthToSpace=function(){return($g=s._DepthToSpace=s.asm.DepthToSpace).apply(null,arguments)},Pg=s._DepthwiseConv2dNative=function(){return(Pg=s._DepthwiseConv2dNative=s.asm.DepthwiseConv2dNative).apply(null,arguments)},_g=s._Elu=function(){return(_g=s._Elu=s.asm.Elu).apply(null,arguments)},zg=s._Equal=function(){return(zg=s._Equal=s.asm.Equal).apply(null,arguments)},Sc=s._Exp=function(){return(Sc=s._Exp=s.asm.Exp).apply(null,arguments)},Og=s._FlipLeftRight=function(){return(Og=s._FlipLeftRight=s.asm.FlipLeftRight).apply(null,arguments)},Dg=s._Floor=function(){return(Dg=s._Floor=s.asm.Floor).apply(null,arguments)},oo=s._FloorDiv=function(){return(oo=s._FloorDiv=s.asm.FloorDiv).apply(null,arguments)},ap=s._FusedBatchNorm=function(){return(ap=s._FusedBatchNorm=s.asm.FusedBatchNorm).apply(null,arguments)},Lg=s._FusedConv2D=function(){return(Lg=s._FusedConv2D=s.asm.FusedConv2D).apply(null,arguments)},Bg=s._FusedDepthwiseConv2D=function(){return(Bg=s._FusedDepthwiseConv2D=s.asm.FusedDepthwiseConv2D).apply(null,arguments)},Wg=s._Gather=function(){return(Wg=s._Gather=s.asm.Gather).apply(null,arguments)},Ke=s._GatherNd=function(){return(Ke=s._GatherNd=s.asm.GatherNd).apply(null,arguments)},Vg=s._Greater=function(){return(Vg=s._Greater=s.asm.Greater).apply(null,arguments)},Ug=s._GreaterEqual=function(){return(Ug=s._GreaterEqual=s.asm.GreaterEqual).apply(null,arguments)},Gg=s._LeakyRelu=function(){return(Gg=s._LeakyRelu=s.asm.LeakyRelu).apply(null,arguments)},jg=s._Less=function(){return(jg=s._Less=s.asm.Less).apply(null,arguments)},Hg=s._LessEqual=function(){return(Hg=s._LessEqual=s.asm.LessEqual).apply(null,arguments)},qg=s._Log=function(){return(qg=s._Log=s.asm.Log).apply(null,arguments)},sp=s._LogicalAnd=function(){return(sp=s._LogicalAnd=s.asm.LogicalAnd).apply(null,arguments)},Tc=s._Max=function(){return(Tc=s._Max=s.asm.Max).apply(null,arguments)},Nc=s._MaxPool=function(){return(Nc=s._MaxPool=s.asm.MaxPool).apply(null,arguments)},Kg=s._Maximum=function(){return(Kg=s._Maximum=s.asm.Maximum).apply(null,arguments)},Xg=s._Mean=function(){return(Xg=s._Mean=s.asm.Mean).apply(null,arguments)},Zg=s._Min=function(){return(Zg=s._Min=s.asm.Min).apply(null,arguments)},Yg=s._Minimum=function(){return(Yg=s._Minimum=s.asm.Minimum).apply(null,arguments)},Jg=s._MirrorPad=function(){return(Jg=s._MirrorPad=s.asm.MirrorPad).apply(null,arguments)},Qg=s._Multiply=function(){return(Qg=s._Multiply=s.asm.Multiply).apply(null,arguments)},Ft=s._Neg=function(){return(Ft=s._Neg=s.asm.Neg).apply(null,arguments)},e1=s._NonMaxSuppressionV3=function(){return(e1=s._NonMaxSuppressionV3=s.asm.NonMaxSuppressionV3).apply(null,arguments)},t1=s._NonMaxSuppressionV4=function(){return(t1=s._NonMaxSuppressionV4=s.asm.NonMaxSuppressionV4).apply(null,arguments)},r1=s._NonMaxSuppressionV5=function(){return(r1=s._NonMaxSuppressionV5=s.asm.NonMaxSuppressionV5).apply(null,arguments)},Jl=s._NotEqual=function(){return(Jl=s._NotEqual=s.asm.NotEqual).apply(null,arguments)},Cc=s._OneHot=function(){return(Cc=s._OneHot=s.asm.OneHot).apply(null,arguments)},Ec=s._PadV2=function(){return(Ec=s._PadV2=s.asm.PadV2).apply(null,arguments)},Rc=s._Pow=function(){return(Rc=s._Pow=s.asm.Pow).apply(null,arguments)},n1=s._Prelu=function(){return(n1=s._Prelu=s.asm.Prelu).apply(null,arguments)},Mc=s._Prod=function(){return(Mc=s._Prod=s.asm.Prod).apply(null,arguments)},a1=s._RealDiv=function(){return(a1=s._RealDiv=s.asm.RealDiv).apply(null,arguments)},m3=s._Relu=function(){return(m3=s._Relu=s.asm.Relu).apply(null,arguments)},Fc=s._Relu6=function(){return(Fc=s._Relu6=s.asm.Relu6).apply(null,arguments)},g3=s._ResizeBilinear=function(){return(g3=s._ResizeBilinear=s.asm.ResizeBilinear).apply(null,arguments)},s1=s._Reverse=function(){return(s1=s._Reverse=s.asm.Reverse).apply(null,arguments)},i1=s._RotateWithOffset=function(){return(i1=s._RotateWithOffset=s.asm.RotateWithOffset).apply(null,arguments)},o1=s._Round=function(){return(o1=s._Round=s.asm.Round).apply(null,arguments)},l1=s._Rsqrt=function(){return(l1=s._Rsqrt=s.asm.Rsqrt).apply(null,arguments)},u1=s._ScatterNd=function(){return(u1=s._ScatterNd=s.asm.ScatterNd).apply(null,arguments)},d1=s._SelectV2=function(){return(d1=s._SelectV2=s.asm.SelectV2).apply(null,arguments)},p1=s._Sigmoid=function(){return(p1=s._Sigmoid=s.asm.Sigmoid).apply(null,arguments)},h1=s._Sin=function(){return(h1=s._Sin=s.asm.Sin).apply(null,arguments)},c1=s._Softmax=function(){return(c1=s._Softmax=s.asm.Softmax).apply(null,arguments)},f1=s._SparseFillEmptyRows=function(){return(f1=s._SparseFillEmptyRows=s.asm.SparseFillEmptyRows).apply(null,arguments)},m1=s._SparseReshape=function(){return(m1=s._SparseReshape=s.asm.SparseReshape).apply(null,arguments)},g1=s._SparseSegmentReduction=function(){return(g1=s._SparseSegmentReduction=s.asm.SparseSegmentReduction).apply(null,arguments)},y1=s._Sqrt=function(){return(y1=s._Sqrt=s.asm.Sqrt).apply(null,arguments)},A1=s._Square=function(){return(A1=s._Square=s.asm.Square).apply(null,arguments)},x1=s._SquaredDifference=function(){return(x1=s._SquaredDifference=s.asm.SquaredDifference).apply(null,arguments)},b1=s._Step=function(){return(b1=s._Step=s.asm.Step).apply(null,arguments)},v1=s._StridedSlice=function(){return(v1=s._StridedSlice=s.asm.StridedSlice).apply(null,arguments)},w1=s._Sub=function(){return(w1=s._Sub=s.asm.Sub).apply(null,arguments)},k1=s._Sum=function(){return(k1=s._Sum=s.asm.Sum).apply(null,arguments)},I1=s._Tan=function(){return(I1=s._Tan=s.asm.Tan).apply(null,arguments)},S1=s._Tanh=function(){return(S1=s._Tanh=s.asm.Tanh).apply(null,arguments)},T1=s._Tile=function(){return(T1=s._Tile=s.asm.Tile).apply(null,arguments)},N1=s._TopK=function(){return(N1=s._TopK=s.asm.TopK).apply(null,arguments)},C1=s._Transform=function(){return(C1=s._Transform=s.asm.Transform).apply(null,arguments)},E1=s._Transpose=function(){return(E1=s._Transpose=s.asm.Transpose).apply(null,arguments)},R1=s.__FusedMatMul=function(){return(R1=s.__FusedMatMul=s.asm._FusedMatMul).apply(null,arguments)},M1=s._malloc=function(){return(M1=s._malloc=s.asm.malloc).apply(null,arguments)},F1=s._free=function(){return(F1=s._free=s.asm.free).apply(null,arguments)},$1=s.___errno_location=function(){return($1=s.___errno_location=s.asm.__errno_location).apply(null,arguments)},P1=s._emscripten_main_thread_process_queued_calls=function(){return(P1=s._emscripten_main_thread_process_queued_calls=s.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},$c=s.stackSave=function(){return($c=s.stackSave=s.asm.stackSave).apply(null,arguments)},Pc=s.stackRestore=function(){return(Pc=s.stackRestore=s.asm.stackRestore).apply(null,arguments)},ip=s.stackAlloc=function(){return(ip=s.stackAlloc=s.asm.stackAlloc).apply(null,arguments)},_1=s.dynCall_iijjiiii=function(){return(_1=s.dynCall_iijjiiii=s.asm.dynCall_iijjiiii).apply(null,arguments)},z1=s.dynCall_jiji=function(){return(z1=s.dynCall_jiji=s.asm.dynCall_jiji).apply(null,arguments)};s.cwrap=Me;var Ql;function op(H){this.name="ExitStatus",this.message="Program terminated with exit("+H+")",this.status=H}gs=function H(){Ql||lp(),Ql||(gs=H)};function lp(H){if(H=H||d,kn>0||(uc(),kn>0))return;function ne(){Ql||(Ql=!0,s.calledRun=!0,!ae&&(dc(),i(s),s.onRuntimeInitialized&&s.onRuntimeInitialized(),pc()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),ne()},1)):ne()}s.run=lp;function y3(H){de=H,ep()||(s.onExit&&s.onExit(H),ae=!0),p(H,new op(H))}if(s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();lp();var eu;l&&(eu={uncaughtException:process.listeners("uncaughtException").filter(function(H){return!l.uncaughtException.indexOf(H)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(H){return!l.unhandledRejection.indexOf(H)>-1})});var tu;if(typeof a!="undefined")tu=a;else if(typeof WasmBackendModuleThreadedSimd!="undefined")tu=WasmBackendModuleThreadedSimd;else throw new Error("Could not find wasm module in post.js");if(eu){var O1=tu._dispose;tu._dispose=function(){O1(),eu.uncaughtException.forEach(function(H){process.removeListener("uncaughtException",H)}),eu.unhandledRejection.forEach(function(H){process.removeListener("unhandledRejection",H)})}}return a.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=r:typeof define=="function"&&define.amd?define([],function(){return r}):typeof e=="object"&&(e.WasmBackendModule=r)}}),oR=1e-7,lR=1e-4,qp=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},Fu=class{refCount(e){return Sn("refCount")}incRef(e){return Sn("incRef")}timerAvailable(){return!0}time(e){return Sn("time")}read(e){return Sn("read")}readSync(e){return Sn("readSync")}readToGPU(e,t){return Sn("readToGPU")}numDataIds(){return Sn("numDataIds")}disposeData(e,t){return Sn("disposeData")}write(e,t,r){return Sn("write")}move(e,t,r,n,a){return Sn("move")}memory(){return Sn("memory")}floatPrecision(){return Sn("floatPrecision")}epsilon(){return this.floatPrecision()===32?oR:lR}dispose(){return Sn("dispose")}};function Sn(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function mw(e){let t=e.length,r=0;for(;t>0;)r=Math.random()*t|0,t--,cf(e,t,r)}function uR(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let r=e.length,n=0;for(;r>0;)n=Math.random()*r|0,r--,cf(e,r,n),cf(t,r,n)}function $p(e,t,r){return Math.max(e,Math.min(t,r))}function dR(e){return e%2===0?e:e+1}function cf(e,t,r){let n=e[t];e[t]=e[r],e[r]=n}function pR(e){let t=0;for(let r=0;r<e.length;r++)t+=e[r];return t}function hR(e,t){let r=Math.random();return t*r+(1-r)*e}function cR(e,t){let r=0;for(let n=0;n<e.length;n++){let a=Number(e[n])-Number(t[n]);r+=a*a}return r}function P(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function Vr(e,t,r=""){P(Hs(e,t),()=>r+` Shapes ${e} and ${t} must match`)}function Do(e){P(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function To(e,t=[],r=!1){if(t==null&&(t=[]),Array.isArray(e)||Sr(e)&&!r)for(let n=0;n<e.length;++n)To(e[n],t,r);else t.push(e);return t}function Tt(e){if(e.length===0)return 1;let t=e[0];for(let r=1;r<e.length;r++)t*=e[r];return t}function fR(e){return e.length===0}function Hs(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let r=0;r<e.length;r++)if(e[r]!==t[r])return!1;return!0}function Au(e){return e%1===0}function mR(e){if(Math.tanh!=null)return Math.tanh(e);if(e===1/0)return 1;if(e===-1/0)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function gR(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function yR(e){let t=new Uint32Array(e);for(let r=0;r<e;++r)t[r]=r;return mw(t),t}function Cp(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function AR(e,t=n=>0,r){return new Promise((n,a)=>{let s=0,i=()=>{if(e()){n();return}s++;let o=t(s);if(r!=null&&s>=r){a();return}setTimeout(i,o)};i()})}function xR(e,t){let r=1,n=-1;for(let s=0;s<e.length;++s)if(e[s]>=0)r*=e[s];else if(e[s]===-1){if(n!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${n} and dim ${s}`);n=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(n===-1){if(t>0&&t!==r)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(r===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%r!==0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${r}`);let a=e.slice();return a[n]=t/r,a}function Un(e,t){let r=t.length;return e=e==null?t.map((n,a)=>a):[].concat(e),P(e.every(n=>n>=-r&&n<r),()=>`All values in axis param must be in range [-${r}, ${r}) but got axis ${e}`),P(e.every(n=>Au(n)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(n=>n<0?r+n:n)}function gw(e,t){let r=[],n=[],a=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||a?null:Un(t,e).sort(),i=0;for(let o=0;o<e.length;++o){if(s!=null){if(s[i]===o&&e[o]!==1)throw new Error(`Can't squeeze axis ${o} since its dim '${e[o]}' is not 1`);(s[i]==null||s[i]>o)&&e[o]===1&&(r.push(e[o]),n.push(o)),s[i]<=o&&i++}e[o]!==1&&(r.push(e[o]),n.push(o))}return{newShape:r,keptDims:n}}function yw(e,t){let r=null;if(e==null||e==="float32")r=new Float32Array(t);else if(e==="int32")r=new Int32Array(t);else if(e==="bool")r=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return r}function Aw(e,t){let r=null;if(e==null||e==="float32")r=new Float32Array(t);else if(e==="int32")r=new Int32Array(t);else if(e==="bool")r=new Uint8Array(t);else if(e==="string")r=new Array(t);else throw new Error(`Unknown data type ${e}`);return r}function xw(e,t){for(let r=0;r<e.length;r++){let n=e[r];if(isNaN(n)||!isFinite(n))throw Error(`A tensor of type ${t} being uploaded contains ${n}.`)}}function bw(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function bR(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function Sr(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray}function iy(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function vw(e){if(e==null)return 0;let t=0;return e.forEach(r=>t+=r.length),t}function Ss(e){return typeof e=="string"||e instanceof String}function ww(e){return typeof e=="boolean"}function kw(e){return typeof e=="number"}function Uf(e){return Array.isArray(e)?Uf(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray?"int32":kw(e)?"float32":Ss(e)?"string":ww(e)?"bool":"float32"}function Rs(e){return!!(e&&e.constructor&&e.call&&e.apply)}function ff(e,t){for(let r=t;r<e;++r)if(e%r===0)return r;return e}function $u(e){let t=e.length;if(t<2)return[];let r=new Array(t-1);r[t-2]=e[t-1];for(let n=t-3;n>=0;--n)r[n]=r[n+1]*e[n+1];return r}function Iw(e,t,r,n=!1){let a=new Array;if(t.length===1){let s=t[0]*(n?2:1);for(let i=0;i<s;i++)a[i]=r[e+i]}else{let s=t[0],i=t.slice(1),o=i.reduce((l,u)=>l*u)*(n?2:1);for(let l=0;l<s;l++)a[l]=Iw(e+l*o,i,r,n)}return a}function cu(e,t,r=!1){if(e.length===0)return t[0];let n=e.reduce((a,s)=>a*s)*(r?2:1);if(n===0)return[];if(n!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${r?" for a complex tensor":""}.`);return Iw(0,e,t,r)}function l2(e,t){let r=Gf(e,t);for(let n=0;n<r.length;n++)r[n]=1;return r}function Gf(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function vR(e,t){let r=e.reduce((n,a)=>n*a,1);if(t==null||t==="float32")return cu(e,new Float32Array(r));if(t==="int32")return cu(e,new Int32Array(r));if(t==="bool")return cu(e,new Uint8Array(r));throw new Error(`Unknown data type ${t}`)}function u2(e){e.forEach(t=>{P(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function wR(e,t,r){if(t===0)return 0;if(t===1)return e[0];let n=e[e.length-1];for(let a=0;a<e.length-1;++a)n+=r[a]*e[a];return n}function kR(e,t,r){if(t===0)return[];if(t===1)return[e];let n=new Array(t);for(let a=0;a<n.length-1;++a)n[a]=Math.floor(e/r[a]),e-=n[a]*r[a];return n[n.length-1]=e,n}function d2(e){return e&&e.then&&typeof e.then=="function"}var E3="tfjsflags",Sw=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=IR,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&(Y().getBool("IS_TEST")||Y().getBool("PROD")||console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${e}.`)),this.platformName=e,this.platform=t}registerFlag(e,t,r){if(this.flagRegistry[e]={evaluationFn:t,setHook:r},this.urlFlags[e]!=null){let n=this.urlFlags[e];Y().getBool("IS_TEST")||Y().getBool("PROD")||console.warn(`Setting feature override from URL ${e}: ${n}.`),this.set(e,n)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(d2(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);E3 in e&&e[E3].split(",").forEach(t=>{let[r,n]=t.split(":");this.urlFlags[r]=TR(r,n)})}};function IR(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(r,...n)=>(SR(t,n[0],n[1]),n.join("="))),t}function SR(e,t,r){e[decodeURIComponent(t)]=decodeURIComponent(r||"")}function TR(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function Y(){return Aa}var Aa=null;function NR(e){Aa=e}var j1;function Tw(){if(j1==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");j1=e}return j1}function CR(){let e=Tw();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function p2(e,t){let r=CR();if(r.has(e))return r.get(e);{let n=t();return r.set(e,n),r.get(e)}}var Lo="Abs",Pu="Acos",_u="Acosh",Ya="Add",qs="AddN",zu="All",Ou="Any",Ks="ArgMax",Du="ArgMin",Lu="Asin",Bu="Asinh",Wu="Atan",Vu="Atanh",Uu="Atan2",Xs="AvgPool",jf="AvgPoolGrad",Kp="AvgPool3D",Hf="AvgPool3DGrad",Zs="BatchMatMul",Bo="BatchToSpaceND",qf="Bincount",Nw="BroadcastTo",Kf="BroadcastArgs",Ys="Cast",Js="Ceil",Ja="ClipByValue",Xp="Complex",Zp="ComplexAbs",Wo="Concat",Qs="Conv2D",Xf="Conv2DBackpropFilter",ei="Conv2DBackpropInput",Yp="Conv3D",Zf="Conv3DBackpropFilterV2",Yf="Conv3DBackpropInputV2",ti="Cos",ri="Cosh",Gu="Cumprod",Vo="Cumsum",Uo="CropAndResize",Jf="DenseBincount",Go="DepthToSpace",ni="DepthwiseConv2dNative",Qf="DepthwiseConv2dNativeBackpropFilter",em="DepthwiseConv2dNativeBackpropInput",tm="Diag",Jp="Dilation2D",mf="Dilation2DBackpropInput",gf="Dilation2DBackpropFilter",ai="RealDiv",Qp="Einsum",si="Elu",rm="EluGrad",ju="Erf",jo="Equal",ii="Exp",Ho="ExpandDims",qo="Expm1",nm="FFT",Hu="Fill",Ko="FlipLeftRight",oi="Floor",li="FloorDiv",ui="FusedBatchNorm",Xo="GatherV2",Zo="GatherNd",Yo="Greater",di="GreaterEqual",pi="Identity",am="IFFT",eh="Imag",qu="IsFinite",Ku="IsInf",Xu="IsNan",hi="LeakyRelu",Jo="Less",Qo="LessEqual",sm="LinSpace",ci="Log",Zu="Log1p",el="LogicalAnd",Yu="LogicalNot",th="LogicalOr",Cw="LogSoftmax",rh="LRN",im="LRNGrad",fi="Max",mi="Maximum",gi="MaxPool",om="MaxPoolGrad",nh="MaxPool3D",lm="MaxPool3DGrad",um="MaxPoolWithArgmax",yi="Mean",Ai="Min",xi="Minimum",bi="MirrorPad",Ju="Mod",dm="Multinomial",vi="Multiply",tl="Neg",rl="NotEqual",nl="NonMaxSuppressionV3",Qu="NonMaxSuppressionV4",al="NonMaxSuppressionV5",sl="OnesLike",il="OneHot",ol="Pack",wi="PadV2",ER="Pool",ki="Pow",Ii="Prelu",ll="Prod",ed="Range",ah="Real",td="Reciprocal",Si="Relu",ul="Reshape",rd="ResizeNearestNeighbor",pm="ResizeNearestNeighborGrad",Ti="ResizeBilinear",hm="ResizeBilinearGrad",Ni="Relu6",dl="Reverse",pl="Round",Ci="Rsqrt",hl="ScatterNd",cl="Select",nd="Selu",fl="Slice",Ei="Sin",ml="Sinh",ad="Sign",Ri="Sigmoid",sd="Softplus",Mi="Sqrt",Fi="Sum",gl="SpaceToBatchND",yl="SplitV",$i="Softmax",sh="SparseFillEmptyRows",id="SparseReshape",ih="SparseSegmentMean",oh="SparseSegmentSum",lh="SparseToDense",Pi="SquaredDifference",od="Square",Al="StridedSlice",uh="StringNGrams",cm="StringSplit",fm="StringToHashBucketFast",_i="Sub",xl="Tan",zi="Tanh",Qa="Tile",bl="TopK",vl="Transform",Oi="Transpose",mm="Unique",wl="Unpack",dh="UnsortedSegmentSum",kl="ZerosLike",Di="Step",Pp="FromPixels",Il="RotateWithOffset",Ms="_FusedMatMul",Fs="FusedConv2D",$s="FusedDepthwiseConv2D";function Is(...e){Y().getBool("IS_TEST")||Y().getBool("PROD")||console.warn(...e)}function RR(...e){Y().getBool("IS_TEST")||Y().getBool("PROD")||console.log(...e)}var xu=p2("kernelRegistry",()=>new Map),_p=p2("gradRegistry",()=>new Map);function yf(e,t){let r=h2(e,t);return xu.get(r)}function oy(e){return _p.get(e)}function Ra(e){let t=xu.entries(),r=[];for(;;){let{done:n,value:a}=t.next();if(n)break;let[s,i]=a,[o]=s.split("_");o===e&&r.push(i)}return r}function Gn(e){let{kernelName:t,backendName:r}=e,n=h2(t,r);xu.has(n)&&Is(`The kernel '${t}' for backend '${r}' is already registered`),xu.set(n,e)}function Ew(e){let{kernelName:t}=e;_p.has(t)&&Y().getBool("DEBUG")&&Is(`Overriding the gradient for '${t}'`),_p.set(t,e)}function MR(e,t){let r=h2(e,t);if(!xu.has(r))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);xu.delete(r)}function FR(e){if(!_p.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);_p.delete(e)}function $R(e,t){Ra(e).forEach(r=>{let n=Object.assign({},r,{backendName:t});Gn(n)})}function h2(e,t){return`${t}_${e}`}var w={};Le(w,{arraysEqual:()=>Hs,assert:()=>P,assertNonNegativeIntegerDimensions:()=>u2,assertNonNull:()=>Do,assertShapesMatch:()=>Vr,bytesFromStringArray:()=>vw,bytesPerElement:()=>iy,checkConversionForErrors:()=>xw,clamp:()=>$p,computeStrides:()=>$u,createScalarValue:()=>LR,createShuffledIndices:()=>yR,decodeString:()=>Af,distSquared:()=>cR,encodeString:()=>hh,fetch:()=>WR,fingerPrint64:()=>DR,flatten:()=>To,getArrayFromDType:()=>Aw,getTypedArrayFromDType:()=>yw,hasEncodingLoss:()=>bR,hexToLong:()=>ph,indexToLoc:()=>kR,inferDtype:()=>Uf,inferFromImplicitShape:()=>xR,isBoolean:()=>ww,isFunction:()=>Rs,isInt:()=>Au,isNumber:()=>kw,isPromise:()=>d2,isScalarShape:()=>fR,isString:()=>Ss,isTypedArray:()=>Sr,isValidDtype:()=>bw,locToIndex:()=>wR,makeOnesTypedArray:()=>l2,makeZerosNestedTypedArray:()=>vR,makeZerosTypedArray:()=>Gf,nearestDivisor:()=>ff,nearestLargerEven:()=>dR,now:()=>zp,parseAxisParam:()=>Un,randUniform:()=>hR,repeatedTry:()=>AR,rightPad:()=>Cp,shuffle:()=>mw,shuffleCombo:()=>uR,sizeFromShape:()=>Tt,sizeToSquarishShape:()=>gR,squeezeShape:()=>gw,sum:()=>pR,swap:()=>cf,tanh:()=>mR,toNestedArray:()=>cu,toTypedArray:()=>gm});var R3=Oo(jE()),mo=R3.default||R3;function ph(e){return mo.fromString(e,!0,16)}var Rw=ph("c3a5c85c97cb3127"),ho=ph("b492b66fbe98f273"),Or=ph("9ae16a3b2f90404f");function ly(e){return e.xor(e.shru(47))}function Mw(e,t,r){let n=e.slice(t,t+r);return mo.fromBytes(Array.from(n),!0,!0)}function wt(e,t){return Mw(e,t,8)}function M3(e,t){return Mw(e,t,4)}function hr(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function Ns(e,t,r=ph("9ddfea08eb382d69")){let n=e.xor(t).mul(r);n=n.xor(n.shru(47));let a=t.xor(n).mul(r);return a=a.xor(a.shru(47)),a=a.mul(r),a}function PR(e,t,r,n,a,s){a=a.add(e),s=hr(s.add(a).add(n),21);let i=a;return a=a.add(t),a=a.add(r),s=s.add(hr(a,44)),[a.add(n),s.add(i)]}function Uc(e,t,r,n){return PR(wt(e,t),wt(e,t+8),wt(e,t+16),wt(e,t+24),r,n)}function _R(e,t=e.length){if(t>=8){let r=Or.add(t*2),n=wt(e,0).add(Or),a=wt(e,t-8),s=hr(a,37).mul(r).add(n),i=hr(n,25).add(a).mul(r);return Ns(s,i,r)}if(t>=4){let r=Or.add(t*2),n=M3(e,0);return Ns(n.shl(3).add(t),M3(e,t-4),r)}if(t>0){let r=e[0],n=e[t>>1],a=e[t-1],s=r+(n<<8),i=t+(a<<2);return ly(Or.mul(s).xor(Rw.mul(i))).mul(Or)}return Or}function zR(e,t=e.length){let r=Or.add(t*2),n=wt(e,0).mul(ho),a=wt(e,8),s=wt(e,t-8).mul(r),i=wt(e,t-16).mul(Or);return Ns(hr(n.add(a),43).add(hr(s,30)).add(i),n.add(hr(a.add(Or),18)).add(s),r)}function OR(e,t=e.length){let r=Or.add(t*2),n=wt(e,0).mul(Or),a=wt(e,8),s=wt(e,t-8).mul(r),i=wt(e,t-16).mul(Or),o=hr(n.add(a),43).add(hr(s,30)).add(i),l=Ns(o,n.add(hr(a.add(Or),18)).add(s),r),u=wt(e,16).mul(r),d=wt(e,24),h=o.add(wt(e,t-32)).mul(r),p=l.add(wt(e,t-24)).mul(r);return Ns(hr(u.add(d),43).add(hr(h,30)).add(p),u.add(hr(d.add(n),18)).add(h),r)}function DR(e,t=e.length){let r=mo.fromNumber(81,!0);if(t<=32)return t<=16?_R(e,t):zR(e,t);if(t<=64)return OR(e,t);let n=r,a=r.mul(ho).add(113),s=ly(a.mul(Or).add(113)).mul(Or),i=[mo.UZERO,mo.UZERO],o=[mo.UZERO,mo.UZERO];n=n.mul(Or).add(wt(e,0));let l=0,u=(t-1>>6)*64,d=u+(t-1&63)-63;do n=hr(n.add(a).add(i[0]).add(wt(e,l+8)),37).mul(ho),a=hr(a.add(i[1]).add(wt(e,l+48)),42).mul(ho),n=n.xor(o[1]),a=a.add(i[0]).add(wt(e,l+40)),s=hr(s.add(o[0]),33).mul(ho),i=Uc(e,l,i[1].mul(ho),n.add(o[0])),o=Uc(e,l+32,s.add(o[1]),a.add(wt(e,l+16))),[s,n]=[n,s],l+=64;while(l!==u);let h=ho.add(s.and(255).shl(1));return l=d,o[0]=o[0].add(t-1&63),i[0]=i[0].add(o[0]),o[0]=o[0].add(i[0]),n=hr(n.add(a).add(i[0]).add(wt(e,l+8)),37).mul(h),a=hr(a.add(i[1]).add(wt(e,l+48)),42).mul(h),n=n.xor(o[1].mul(9)),a=a.add(i[0].mul(9).add(wt(e,l+40))),s=hr(s.add(o[0]),33).mul(h),i=Uc(e,l,i[1].mul(h),n.add(o[0])),o=Uc(e,l+32,s.add(o[1]),a.add(wt(e,l+16))),[s,n]=[n,s],Ns(Ns(i[0],o[0],h).add(ly(a).mul(Rw)).add(s),Ns(i[1],o[1],h).add(n),h)}function LR(e,t){return t==="string"?hh(e):gm([e],t)}function BR(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function gm(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=To(e)),Y().getBool("DEBUG")&&xw(e,t),BR(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let r=new Uint8Array(e.length);for(let n=0;n<r.length;++n)Math.round(e[n])!==0&&(r[n]=1);return r}else throw new Error(`Unknown data type ${t}`)}function zp(){return Y().platform.now()}function WR(e,t){return Y().platform.fetch(e,t)}function hh(e,t="utf-8"){return t=t||"utf-8",Y().platform.encode(e,t)}function Af(e,t="utf-8"){return t=t||"utf-8",Y().platform.decode(e,t)}var VR=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new GR)}profileKernel(e,t,r){let n,a=()=>{n=r()},s,i=zp();if(this.backendTimer.timerAvailable())s=this.backendTimer.time(a);else{a();for(let o of n)o.dataSync();s=Promise.resolve({kernelMs:zp()-i})}if(Y().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let o=0;o<n.length;o++){let l=n[o];l.data().then(u=>{UR(u,l.dtype,e)})}return{kernelName:e,outputs:n,inputs:t,timeMs:s.then(o=>o.kernelMs),extraInfo:s.then(o=>o.getExtraProfileInfo!=null?o.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:r,timeMs:n,inputs:a,extraInfo:s}=e;r.forEach(i=>{Promise.all([i.data(),n,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],a,o[2])})})}};function UR(e,t,r){if(t!=="float32")return!1;for(let n=0;n<e.length;n++){let a=e[n];if(isNaN(a)||!isFinite(a))return console.warn(`Found ${a} in the result of '${r}'`),!0}return!1}var GR=class{logKernelProfile(e,t,r,n,a,s){let i=typeof n=="number"?Cp(`${n}ms`,9):n.error,o=Cp(e,25),l=t.rank,u=t.size,d=Cp(t.shape.toString(),14),h="";for(let p in a){let c=a[p];if(c!=null){let f=c.shape||t.shape,m=f.length;h+=`${p}: ${m}D ${m>0?f:""} `}}console.log(`%c${o} %c${i} %c${l}D ${d} %c${u} %c${h} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function jR(e,t,r){let n={},a={};for(let l=0;l<t.length;l++)n[t[l].id]=!0;for(let l=0;l<e.length;l++){let u=e[l],d=u.inputs;for(let h in d){let p=d[h],c=!1;for(let f=0;f<t.length;f++)if(n[p.id]){u.outputs.forEach(m=>n[m.id]=!0),c=!0,a[u.id]=!0;break}if(c)break}}let s={};s[r.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let u=e[l],d=u.inputs;for(let h=0;h<u.outputs.length;h++)if(s[u.outputs[h].id]){for(let p in d)s[d[p].id]=!0,i[u.id]=!0;break}}let o=[];for(let l=0;l<e.length;l++){let u=e[l];if(a[u.id]&&i[u.id]){let d={};for(let p in u.inputs){let c=u.inputs[p];n[c.id]&&(d[p]=c)}let h=Object.assign({},u);h.inputs=d,h.outputs=u.outputs,o.push(h)}}return o}function HR(e,t,r,n){for(let a=t.length-1;a>=0;a--){let s=t[a],i=[];if(s.outputs.forEach(l=>{let u=e[l.id];u!=null?i.push(u):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let u=r(()=>o[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let d=s.inputs[l];if(!Hs(u.shape,d.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${d.shape}'`);if(e[d.id]==null)e[d.id]=u;else{let h=e[d.id];e[d.id]=n(h,u),h.dispose()}}}}var F3=20,fp=3,H1=7;function qR(e,t,r,n){let a=$u(t),s=KR(e,t,r,a),i=t.length,o=ef(e,t,r,a,s),l=["Tensor"];return n&&(l.push(` dtype: ${r}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(u=>" "+u).join(`
|
|
`)),l.join(`
|
|
`)}function KR(e,t,r,n){let a=Tt(t),s=n[n.length-1],i=new Array(s).fill(0),o=t.length,l=r==="complex64"?xp(e):e;if(o>1)for(let u=0;u<a/s;u++){let d=u*s;for(let h=0;h<s;h++)i[h]=Math.max(i[h],Ap(l[d+h],0,r).length)}return i}function Ap(e,t,r){let n;return Array.isArray(e)?n=`${parseFloat(e[0].toFixed(H1))} + ${parseFloat(e[1].toFixed(H1))}j`:Ss(e)?n=`'${e}'`:r==="bool"?n=Fw(e):n=parseFloat(e.toFixed(H1)).toString(),Cp(n,t)}function Fw(e){return e===0?"false":"true"}function ef(e,t,r,n,a,s=!0){let i=r==="complex64"?2:1,o=t[0],l=t.length;if(l===0){if(r==="complex64"){let m=xp(e);return[Ap(m[0],0,r)]}return r==="bool"?[Fw(e[0])]:[e[0].toString()]}if(l===1){if(o>F3){let g=fp*i,y=Array.from(e.slice(0,g)),A=Array.from(e.slice((o-fp)*i,o*i));return r==="complex64"&&(y=xp(y),A=xp(A)),["["+y.map((x,b)=>Ap(x,a[b],r)).join(", ")+", ..., "+A.map((x,b)=>Ap(x,a[o-fp+b],r)).join(", ")+"]"]}let m=r==="complex64"?xp(e):Array.from(e);return["["+m.map((g,y)=>Ap(g,a[y],r)).join(", ")+"]"]}let u=t.slice(1),d=n.slice(1),h=n[0]*i,p=[];if(o>F3){for(let m=0;m<fp;m++){let g=m*h,y=g+h;p.push(...ef(e.slice(g,y),u,r,d,a,!1))}p.push("...");for(let m=o-fp;m<o;m++){let g=m*h,y=g+h;p.push(...ef(e.slice(g,y),u,r,d,a,m===o-1))}}else for(let m=0;m<o;m++){let g=m*h,y=g+h;p.push(...ef(e.slice(g,y),u,r,d,a,m===o-1))}let c=l===2?",":"";p[0]="["+p[0]+c;for(let m=1;m<p.length-1;m++)p[m]=" "+p[m]+c;let f=`,
|
|
`;for(let m=2;m<l;m++)f+=`
|
|
`;return p[p.length-1]=" "+p[p.length-1]+"]"+(s?"":f),p}function xp(e){let t=[];for(let r=0;r<e.length;r+=2)t.push([e[r],e[r+1]]);return t}var ar=class{constructor(e,t,r){if(this.dtype=t,this.shape=e.slice(),this.size=Tt(e),r!=null){let n=r.length;P(n===this.size,()=>`Length of values '${n}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=r||Aw(t,this.size),this.strides=$u(e)}set(e,...t){t.length===0&&(t=[0]),P(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let r=this.locToIndex(t);this.values[r]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let n of e){if(n<0||n>=this.shape[t]){let a=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(a)}t++}let r=e[e.length-1];for(let n=0;n<e.length-1;++n)r+=this.strides[n]*e[n];return this.values[r]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let r=0;r<e.length-1;++r)t+=this.strides[r]*e[r];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let r=0;r<t.length-1;++r)t[r]=Math.floor(e/this.strides[r]),e-=t[r]*this.strides[r];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return ia().makeTensor(this.values,this.shape,this.dtype)}},ia=null,du=null,XR=null;function ZR(e){ia=e}function YR(e){du=e}function JR(e){XR=e}var rt=class{constructor(e,t,r,n){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=Tt(e),this.strides=$u(e),this.dataId=r,this.id=n,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return du.buffer(this.shape,this.dtype,e)}bufferSync(){return du.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return cu(this.shape,e,this.dtype==="complex64")}arraySync(){return cu(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=ia().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(r=>Af(r))}catch(r){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataToGPU(e){return this.throwIfDisposed(),ia().readToGPU(this.dataId,e)}dataSync(){this.throwIfDisposed();let e=ia().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Af(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await ia().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(ia().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return du.print(this,e)}clone(){return this.throwIfDisposed(),du.clone(this)}toString(e=!1){let t=this.dataSync();return qR(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),du.cast(this,e)}variable(e=!0,t,r){return this.throwIfDisposed(),ia().makeVariable(this,e,t,r)}};Object.defineProperty(rt,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function QR(){return p2("Tensor",()=>rt)}QR();var Op=class extends rt{constructor(e,t,r,n){super(e.shape,e.dtype,e.dataId,n),this.trainable=t,this.name=r}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!Hs(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);ia().disposeTensor(this),this.dataId=e.dataId,ia().incRef(this,null)}dispose(){ia().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(Op,Symbol.hasInstance,{value:e=>e instanceof rt&&e.assign!=null&&e.assign instanceof Function});var da={};Le(da,{assertTypesMatch:()=>Dw,getTensorsInContainer:()=>c2,isTensorInList:()=>tM,makeTypesMatch:()=>Ot});var $w=(e=>(e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6",e))($w||{}),Pw=(e=>(e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64",e))(Pw||{}),_w=(e=>(e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64",e))(_w||{}),zw=(e=>(e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64",e))(zw||{}),Ow=(e=>(e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64",e))(Ow||{}),eM={float32:zw,int32:Pw,bool:_w,complex64:Ow};function Cr(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return eM[e][t]}function ch(e){return Cr(e,"int32")}function Ot(e,t){if(e.dtype===t.dtype)return[e,t];let r=Cr(e.dtype,t.dtype);return[e.cast(r),t.cast(r)]}function Dw(e,t){P(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function tM(e,t){return t.some(r=>r.id===e.id)}function c2(e){let t=[];return Lw(e,t,new Set),t}function Lw(e,t,r){if(e==null)return;if(e instanceof rt){t.push(e);return}if(!rM(e))return;let n=e;for(let a in n){let s=n[a];r.has(s)||(r.add(s),Lw(s,t,r))}}function rM(e){return Array.isArray(e)||typeof e=="object"}function q1(e){return e.kernelName!=null}var $3=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},uy=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new $3}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let r=e[t];if(await this.initializeBackend(r).success){await this.setBackend(r);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,r=1){return e in this.registryFactory?(Is(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:r},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:r}=this.initializeBackend(e);if(!(r?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new VR(this.backendInstance),!0}setupRegisteredKernels(){Ra(this.backendName).forEach(e=>{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){Ra(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let r=t.factory();if(r&&!(r instanceof Fu)&&typeof r.then=="function"){let n=++this.pendingBackendInitId,a=r.then(s=>n<this.pendingBackendInitId?!1:(this.registry[e]=s,this.pendingBackendInit=null,!0)).catch(s=>(n<this.pendingBackendInitId||(this.pendingBackendInit=null,Is(`Initialization of backend ${e} failed`),Is(s.stack||s.message)),!1));return this.pendingBackendInit=a,{success:a,asyncInit:!0}}else return this.registry[e]=r,{success:!0,asyncInit:!1}}catch(r){return Is(`Initialization of backend ${e} failed`),Is(r.stack||r.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let r=e[t],{success:n,asyncInit:a}=this.initializeBackend(r);if(a||n)return{name:r,asyncInit:a}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let r=this.state.tensorInfo.get(t),n=r.backend,a=this.readSync(t),s=n.refCount(t);n.disposeData(t,!0),r.backend=e,e.move(t,a,r.shape,r.dtype,s),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let r=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");r=e}let n;return this.scopedRun(()=>this.startScope(r),()=>this.endScope(n),()=>(n=t(),n instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),n))}scopedRun(e,t,r){e();try{let n=r();return t(),n}catch(n){throw t(),n}}nextTensorId(){return uy.nextTensorId++}nextVariableId(){return uy.nextVariableId++}clone(e){let t=B.runKernel(pi,{x:e}),r={x:e},n=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return B.runKernel(Ys,o,l)}}),a=[];return this.addTapeNode(this.state.activeScope.name,r,[t],n,a,{}),t}runKernel(e,t,r){if(this.backendName==null&&this.backend,yf(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:r})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,r){let n=this.backend.numDataIds(),a=0;r.forEach(o=>{a+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=n-t-a-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,r=[],n=this.isTapeOn(),a=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=q1(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(q1(e)){let{kernelName:c,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let g=yf(c,this.backendName);P(g!=null,()=>`Cannot find registered kernel '${c}' for backend '${this.backendName}'`),i=()=>{let y=this.backend.numDataIds();o=g.kernelFunc({inputs:f,attrs:m,backend:this.backend});let A=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(c,y,A);let x=A.map(b=>{if(b.rank!=null)return b;let{dataId:v,shape:S,dtype:T}=b;return this.makeTensorFromDataId(v,S,T)});if(n){let b=this.getTensorsForGradient(c,f,x);r=this.saveTensorsForBackwardMode(b)}return x}}else{let{forwardFunc:c}=e,f=m=>{!n||(r=m.map(g=>this.keep(this.clone(g))))};i=()=>{let m=this.backend.numDataIds();o=this.tidy(()=>c(this.backend,f));let g=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,m,g),g}}let{inputs:u,attrs:d}=e,h=q1(e)?null:e.backwardsFunc,p;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(p=this.profiler.profileKernel(l,u,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(p),t=p.outputs)}),n&&this.addTapeNode(l,u,t,h,r,d),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-a,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(c=>u[c]!=null?u[c].shape:null),outputShapes:t.map(c=>c.shape),kernelTimeMs:p.timeMs,extraInfo:p.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,r){let n=oy(e);if(n!=null){let a=n.inputsToSave||[],s=n.outputsToSave||[],i;n.saveAllInputs?(P(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=a.map(l=>t[l]);let o=r.filter((l,u)=>s[u]);return i.concat(o)}return[]}makeTensor(e,t,r,n){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");r=r||"float32",n=n||this.backend;let a=e;r==="string"&&Ss(e[0])&&(a=e.map(o=>hh(o)));let s=n.write(a,t,r),i=new rt(t,r,s,this.nextTensorId());if(this.trackTensor(i,n),r==="string"){let o=this.state.tensorInfo.get(s),l=vw(a);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,r,n){r=r||"float32";let a=new rt(t,r,e,this.nextTensorId());return this.trackTensor(a,n),a}makeVariable(e,t=!0,r,n){r=r||this.nextVariableId().toString(),n!=null&&n!==e.dtype&&(e=e.cast(n));let a=new Op(e,t,r,this.nextTensorId());if(this.state.registeredVariables[a.name]!=null)throw new Error(`Variable with name ${a.name} was already registered`);return this.state.registeredVariables[a.name]=a,this.incRef(a,this.backend),a}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let r=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(r=e.size*iy(e.dtype)),this.state.numBytes+=r,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:r})),e instanceof Op||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let r=e.size*iy(e.dtype);this.state.numBytes-=r}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,r=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(n=>n.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-r;for(let n of this.state.activeProfile.kernels)n.kernelTimeMs=await n.kernelTimeMs,n.extraInfo=await n.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,r,n,a,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:r,saved:a},o=oy(e);o!=null&&(n=o.gradFunc),n!=null&&(i.gradient=l=>(l=l.map((u,d)=>{if(u==null){let h=r[d],p=Gf(h.size,h.dtype);return this.makeTensor(p,h.shape,h.dtype)}return u}),n(l.length>1?l:l[0],a,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=c2(e),r=new Set(t.map(a=>a.id));for(let a=0;a<this.state.activeScope.track.length;a++){let s=this.state.activeScope.track[a];!s.kept&&!r.has(s.id)&&s.dispose()}let n=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(a=>{!a.kept&&a.scopeId===n.id&&this.track(a)})}gradients(e,t,r,n=!1){if(P(t.length>0,()=>"gradients() received an empty list of xs."),r!=null&&r.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${r.dtype}'`);let a=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));P(a instanceof rt,()=>"The result y returned by f() must be a tensor.");let s=jR(this.state.activeTape,t,a);if(!n&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[a.id]=r==null?nM(a.shape):r,HR(i,s,l=>this.tidy(l),aM);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:a,grads:o}})}customGrad(e){return P(Rs(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{P(t.every(i=>i instanceof rt),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let r,n={};t.forEach((i,o)=>{n[o]=i});let a=(i,o)=>(r=e(...t,o),P(r.value instanceof rt,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),P(Rs(r.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),r.value),s=(i,o)=>{let l=r.gradFunc(i,o),u=Array.isArray(l)?l:[l];P(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),P(u.every(h=>h instanceof rt),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let d={};return u.forEach((h,p)=>{d[p]=()=>h}),d};return this.runKernelFunc({forwardFunc:a,backwardsFunc:s,inputs:n})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}readToGPU(e,t){return this.state.tensorInfo.get(e).backend.readToGPU(e,t)}async time(e){let t=zp(),r=await this.backend.time(e);return r.wallMs=zp()-t,r}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new $3;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}},f2=uy;f2.nextTensorId=0;f2.nextVariableId=0;function nM(e){let t=l2(Tt(e),"float32");return B.makeTensor(t,e,"float32")}function Bw(){let e=Tw();if(e._tfengine==null){let t=new Sw(e);e._tfengine=new f2(t)}return NR(e._tfengine.ENV),ZR(()=>e._tfengine),e._tfengine}var B=Bw();function aM(e,t){let r={a:e,b:t};return B.runKernel(Ya,r)}var fh={};Le(fh,{isBrowser:()=>Ww,isMobile:()=>oM,mockIsMobile:()=>iM});function sM(){return typeof navigator!="undefined"&&navigator!=null}var dy;function iM(e){dy=e}function oM(e){if(dy!==void 0)return dy;if(e||sM()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let r=e;return r.userAgentData&&r.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function Ww(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Wn=Y();Wn.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Wn.registerFlag("IS_BROWSER",()=>Ww());Wn.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Wn.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Wn.registerFlag("PROD",()=>!1);Wn.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Wn.getBool("DEBUG"));Wn.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Wn.registerFlag("IS_TEST",()=>!1);Wn.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);Wn.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);Wn.registerFlag("ENGINE_COMPILE_ONLY",()=>!1);function Ma(e,t){let r=e;if(Sr(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let n=[];for(;Array.isArray(r)||Sr(r)&&t!=="string";)n.push(r.length),r=r[0];return Array.isArray(e)&&Y().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&Vw(e,n,[]),n}function Vw(e,t,r){if(r=r||[],!Array.isArray(e)&&!Sr(e)){P(t.length===0,()=>`Element arr[${r.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}P(t.length>0,()=>`Element arr[${r.join("][")}] should be a primitive, but is an array of ${e.length} elements`),P(e.length===t[0],()=>`Element arr[${r.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let n=t.slice(1);for(let a=0;a<e.length;++a)Vw(e[a],n,r.concat(a))}function P3(e,t,r,n){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${r}' passed to '${n}' must be ${e} tensor, but got ${t} tensor`)}}function F(e,t,r,n="numeric"){if(e instanceof rt)return P3(n,e.dtype,t,r),e;let a=Uf(e);if(a!=="string"&&["bool","int32","float32"].indexOf(n)>=0&&(a=n),P3(n,a,t,r),e==null||!Sr(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${r}' must be a Tensor or TensorLike, but got '${o}'`)}let s=Ma(e,a);!Sr(e)&&!Array.isArray(e)&&(e=[e]);let i=a!=="string"?gm(e,a):To(e,[],!0);return B.makeTensor(i,s,a)}function Dp(e,t,r,n="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${r} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,s)=>F(a,`${t}[${s}]`,r,n))}var Uw="__op";function W(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let r=t[0],n=e[r];r.endsWith("_")&&(r=r.substring(0,r.length-1)),r=r+Uw;let a=(...s)=>{B.startScope(r);try{let i=n(...s);return d2(i)&&console.error("Cannot return a Promise inside of tidy."),B.endScope(i),i}catch(i){throw B.endScope(null),i}};return Object.defineProperty(a,"name",{value:r,configurable:!0}),a}function lM(e,t){let r=F(e,"real","complex"),n=F(t,"imag","complex");Vr(r.shape,n.shape,`real and imag shapes, ${r.shape} and ${n.shape}, must match in call to tf.complex().`);let a={real:r,imag:n};return B.runKernel(Xp,a)}var Ps=W({complex_:lM});function Li(e,t,r,n){if(n==null&&(n=Uf(e)),n==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!Sr(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){u2(t);let a=Tt(t),s=Tt(r);P(a===s,()=>`Based on the provided shape, [${t}], the tensor should have ${a} values but has ${s}`);for(let i=0;i<r.length;++i){let o=r[i],l=i===r.length-1?o!==Tt(t.slice(i)):!0;P(r[i]===t[i]||!l,()=>`Error creating a new Tensor. Inferred shape (${r}) does not match the provided shape (${t}). `)}}return!Sr(e)&&!Array.isArray(e)&&(e=[e]),t=t||r,e=n!=="string"?gm(e,n):To(e,[],!0),B.makeTensor(e,t,n)}function ct(e,t,r){let n=Ma(e,r);return Li(e,t,n,r)}var py={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},xf=4;async function uM(e,t){let r=[],n=[],a=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i<a.length;++i){let o=a[i],l=Array.isArray(e)?e[i].tensor:e[o];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${o}': ${l.dtype}`);let u={name:o,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let d=new Promise(async h=>{let p=await l.bytes(),c=p.reduce((g,y)=>g+y.length,0)+xf*p.length,f=new Uint8Array(c),m=0;for(let g=0;g<p.length;g++){let y=p[g],A=new Uint8Array(new Uint32Array([y.length]).buffer);f.set(A,m),m+=xf,f.set(y,m),m+=y.length}h(f)});n.push(d)}else n.push(l.data());t!=null&&(u.group=t),r.push(u)}let s=await Promise.all(n);return{data:dM(s),specs:r}}function Gw(e,t){let r={},n,a=0;for(let s of t){let i=s.name,o=s.dtype,l=s.shape,u=Tt(l),d;if("quantization"in s){let h=s.quantization;if(h.dtype==="uint8"||h.dtype==="uint16"){if(!("min"in h&&"scale"in h))throw new Error(`Weight ${s.name} with quantization ${h.dtype} doesn't have corresponding metadata min and scale.`)}else if(h.dtype==="float16"){if(o!=="float32")throw new Error(`Weight ${s.name} is quantized with ${h.dtype} which only supports weights of type float32 not ${o}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${h.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let p=py[h.dtype],c=e.slice(a,a+u*p),f=h.dtype==="uint8"?new Uint8Array(c):new Uint16Array(c);if(o==="float32")if(h.dtype==="uint8"||h.dtype==="uint16"){d=new Float32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];d[m]=g*h.scale+h.min}}else if(h.dtype==="float16")n===void 0&&(n=gM()),d=n(f);else throw new Error(`Unsupported quantization type ${h.dtype} for weight type float32.`);else if(o==="int32"){if(h.dtype!=="uint8"&&h.dtype!=="uint16")throw new Error(`Unsupported quantization type ${h.dtype} for weight type int32.`);d=new Int32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];d[m]=Math.round(g*h.scale+h.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);a+=u*p}else if(o==="string"){let h=Tt(s.shape);d=[];for(let p=0;p<h;p++){let c=new Uint32Array(e.slice(a,a+xf))[0];a+=xf;let f=new Uint8Array(e.slice(a,a+c));d.push(f),a+=c}}else{let h=py[o],p=e.slice(a,a+u*h);if(o==="float32")d=new Float32Array(p);else if(o==="int32")d=new Int32Array(p);else if(o==="bool")d=new Uint8Array(p);else if(o==="complex64"){d=new Float32Array(p);let c=new Float32Array(d.length/2),f=new Float32Array(d.length/2);for(let y=0;y<c.length;y++)c[y]=d[y*2],f[y]=d[y*2+1];let m=ct(c,l,"float32"),g=ct(f,l,"float32");r[i]=Ps(m,g),m.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);a+=u*h}o!=="complex64"&&(r[i]=ct(d,l,o))}return r}function dM(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,r=[];e.forEach(s=>{if(t+=s.byteLength,r.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let n=new Uint8Array(t),a=0;return r.forEach(s=>{n.set(new Uint8Array(s.buffer),a),a+=s.byteLength}),n.buffer}var m2=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function _3(e){return m2?Buffer.byteLength(e):new Blob([e]).size}function pM(e){if(m2)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),r="";for(let n=0,a=t.length;n<a;n++)r+=String.fromCharCode(t[n]);return btoa(r)}function hM(e){if(m2){let n=Buffer.from(e,"base64");return n.buffer.slice(n.byteOffset,n.byteOffset+n.byteLength)}let t=atob(e),r=new Uint8Array(t.length);for(let n=0;n<t.length;++n)r.set([t.charCodeAt(n)],n);return r.buffer}function g2(e){if(e.length===1)return e[0];let t=0;e.forEach(a=>{t+=a.byteLength});let r=new Uint8Array(t),n=0;return e.forEach(a=>{r.set(new Uint8Array(a),n),n+=a.byteLength}),r.buffer}function z3(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let r=e.split(t);return r[r.length-1]}function jw(e,t){let r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),e.trainingConfig!=null&&(r.trainingConfig=e.trainingConfig),r}async function y2(e,t){let r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(r.trainingConfig=e.trainingConfig),e.weightsManifest!=null){let[n,a]=await t(e.weightsManifest);r.weightSpecs=n,r.weightData=a}return e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),r}function mh(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:_3(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:_3(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function cM(){let e=r=>{let n=r<<13,a=0;for(;(n&8388608)===0;)a-=8388608,n<<=1;return n&=-8388609,a+=947912704,n|a},t=new Uint32Array(2048);t[0]=0;for(let r=1;r<1024;r++)t[r]=e(r);for(let r=1024;r<2048;r++)t[r]=939524096+(r-1024<<13);return t}function fM(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function mM(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function gM(){let e=cM(),t=fM(),r=mM();return n=>{let a=new ArrayBuffer(4*n.length),s=new Uint32Array(a);for(let i=0;i<n.length;i++){let o=n[i],l=e[r[o>>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(a)}}var Lt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Lt.instance==null&&(Lt.instance=new Lt),Lt.instance}static registerSaveRouter(e){Lt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Lt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Lt.getHandlers(e,"save")}static getLoadHandlers(e,t){return Lt.getHandlers(e,"load",t)}static getHandlers(e,t,r){let n=[];return(t==="load"?Lt.getInstance().loadRouters:Lt.getInstance().saveRouters).forEach(a=>{let s=a(e,r);s!==null&&n.push(s)}),n}},yM=e=>Lt.registerSaveRouter(e),AM=e=>Lt.registerLoadRouter(e),xM=e=>Lt.getSaveHandlers(e),bM=(e,t)=>Lt.getLoadHandlers(e,t),hy="tensorflowjs",cy=1,xo="models_store",Ts="model_info_store";function Hw(){if(!Y().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function fy(e){let t=e.result;t.createObjectStore(xo,{keyPath:"modelPath"}),t.createObjectStore(Ts,{keyPath:"modelPath"})}var No=class{constructor(e){if(this.indexedDB=Hw(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((r,n)=>{let a=this.indexedDB.open(hy,cy);a.onupgradeneeded=()=>fy(a),a.onsuccess=()=>{let s=a.result;if(t==null){let i=s.transaction(xo,"readonly"),o=i.objectStore(xo).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),n(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));r(o.result.modelArtifacts)},o.onerror=l=>(s.close(),n(o.error)),i.oncomplete=()=>s.close()}else{let i=mh(t),o=s.transaction(Ts,"readwrite"),l=o.objectStore(Ts),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),d;u.onsuccess=()=>{d=s.transaction(xo,"readwrite");let h=d.objectStore(xo).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});h.onsuccess=()=>r({modelArtifactsInfo:i}),h.onerror=p=>{l=o.objectStore(Ts);let c=l.delete(this.modelPath);c.onsuccess=()=>(s.close(),n(h.error)),c.onerror=f=>(s.close(),n(h.error))}},u.onerror=h=>(s.close(),n(u.error)),o.oncomplete=()=>{d==null?s.close():d.oncomplete=()=>s.close()}}},a.onerror=s=>n(a.error)})}};No.URL_SCHEME="indexeddb://";var qw=e=>Y().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(No.URL_SCHEME)?vM(e.slice(No.URL_SCHEME.length)):null;Lt.registerSaveRouter(qw);Lt.registerLoadRouter(qw);function vM(e){return new No(e)}function wM(e){return e.startsWith(No.URL_SCHEME)?e.slice(No.URL_SCHEME.length):e}var kM=class{constructor(){this.indexedDB=Hw()}async listModels(){return new Promise((e,t)=>{let r=this.indexedDB.open(hy,cy);r.onupgradeneeded=()=>fy(r),r.onsuccess=()=>{let n=r.result,a=n.transaction(Ts,"readonly"),s=a.objectStore(Ts).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(n.close(),t(s.error)),a.oncomplete=()=>n.close()},r.onerror=n=>t(r.error)})}async removeModel(e){return e=wM(e),new Promise((t,r)=>{let n=this.indexedDB.open(hy,cy);n.onupgradeneeded=()=>fy(n),n.onsuccess=()=>{let a=n.result,s=a.transaction(Ts,"readwrite"),i=s.objectStore(Ts),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return a.close(),r(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=i.delete(e),d=()=>{l=a.transaction(xo,"readwrite");let h=l.objectStore(xo).delete(e);h.onsuccess=()=>t(o.result.modelArtifactsInfo),h.onerror=p=>r(o.error)};u.onsuccess=d,u.onerror=h=>(d(),a.close(),r(o.error))}},o.onerror=u=>(a.close(),r(o.error)),s.oncomplete=()=>{l==null?a.close():l.oncomplete=()=>a.close()}},n.onerror=a=>r(n.error)})}},qa="/",pu="tensorflowjs_models",Kw="info",IM="model_topology",SM="weight_specs",TM="weight_data",NM="model_metadata";function Xw(e){return{info:[pu,e,Kw].join(qa),topology:[pu,e,IM].join(qa),weightSpecs:[pu,e,SM].join(qa),weightData:[pu,e,TM].join(qa),modelMetadata:[pu,e,NM].join(qa)}}function Zw(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function CM(e){let t=e.split(qa);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(qa)}function EM(e){return e.startsWith(Co.URL_SCHEME)?e.slice(Co.URL_SCHEME.length):e}var Co=class{constructor(e){if(!Y().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=Xw(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),r=JSON.stringify(e.weightSpecs),n=mh(e);try{this.LS.setItem(this.keys.info,JSON.stringify(n)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,r),this.LS.setItem(this.keys.weightData,pM(e.weightData));let a={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(a)),{modelArtifactsInfo:n}}catch(a){throw Zw(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${n.modelTopologyBytes}, weightSpecsBytes=${n.weightSpecsBytes}, weightDataBytes=${n.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},r=JSON.parse(this.LS.getItem(this.keys.topology));if(r==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=r;let n=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(n==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=n;let a=this.LS.getItem(this.keys.modelMetadata);if(a!=null){let i=JSON.parse(a);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer),i.trainingConfig!=null&&(t.trainingConfig=i.trainingConfig)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=hM(s),t}};Co.URL_SCHEME="localstorage://";var Yw=e=>Y().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Co.URL_SCHEME)?RM(e.slice(Co.URL_SCHEME.length)):null;Lt.registerSaveRouter(Yw);Lt.registerLoadRouter(Yw);function RM(e){return new Co(e)}var MM=class{constructor(){P(Y().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),P(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=pu+qa,r=qa+Kw;for(let n=0;n<this.LS.length;++n){let a=this.LS.key(n);if(a.startsWith(t)&&a.endsWith(r)){let s=CM(a);e[s]=JSON.parse(this.LS.getItem(a))}}return e}async removeModel(e){e=EM(e);let t=Xw(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let r=JSON.parse(this.LS.getItem(t.info));return Zw(t),r}},fu="://",Tn=class{constructor(){this.managers={}}static getInstance(){return Tn.instance==null&&(Tn.instance=new Tn),Tn.instance}static registerManager(e,t){P(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(fu)&&(e=e.slice(0,e.indexOf(fu))),P(e.length>0,()=>"scheme must not be an empty string.");let r=Tn.getInstance();P(r.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),r.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function tf(e){if(e.indexOf(fu)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Tn.getSchemes().join(",")}`);return{scheme:e.split(fu)[0],path:e.split(fu)[1]}}async function Jw(e,t,r=!1){P(e!==t,()=>`Old path and new path are the same: '${e}'`);let n=Lt.getLoadHandlers(e);P(n.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),P(n.length<2,()=>`Copying failed because more than one (${n.length}) load handlers for source URL ${e}.`);let a=n[0],s=Lt.getSaveHandlers(t);P(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),P(s.length<2,()=>`Copying failed because more than one (${n.length}) save handlers for destination URL ${t}.`);let i=s[0],o=tf(e).scheme,l=tf(e).path,u=o===tf(e).scheme,d=await a.load();r&&u&&await Tn.getManager(o).removeModel(l);let h=await i.save(d);return r&&!u&&await Tn.getManager(o).removeModel(l),h.modelArtifactsInfo}async function FM(){let e=Tn.getSchemes(),t={};for(let r of e){let n=await Tn.getManager(r).listModels();for(let a in n){let s=r+fu+a;t[s]=n[a]}}return t}async function $M(e){let t=tf(e);return Tn.getManager(t.scheme).removeModel(t.path)}async function PM(e,t){return Jw(e,t,!1)}async function _M(e,t){return Jw(e,t,!0)}var zM=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(Y().get("IS_BROWSER")){Y().setPlatform("browser",new zM);try{Tn.registerManager(Co.URL_SCHEME,new MM)}catch(e){}try{Tn.registerManager(No.URL_SCHEME,new kM)}catch(e){}}var OM={importFetch:()=>HE()},K1,DM=class{constructor(){this.util=qE(),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return Y().global.fetch!=null?Y().global.fetch(e,t):(K1==null&&(K1=OM.importFetch()),K1(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};Y().get("IS_NODE")&&!Y().get("IS_BROWSER")&&Y().setPlatform("node",new DM);function We(e,t="float32",r){return t=t||"float32",u2(e),new ar(e,t,r)}function LM(e,t){let r=F(e,"x","cast");if(!bw(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&r.dtype!=="string"||t!=="string"&&r.dtype==="string")throw new Error("Only strings can be casted to strings");let n={x:r},a={dtype:t};return B.runKernel(Ys,n,a)}var me=W({cast_:LM});function BM(e){let t={x:F(e,"x","clone","string_or_numeric")};return B.runKernel(pi,t)}var Br=W({clone_:BM});function Qw(e,t=!1){console.log(e.toString(t))}Bw();var WM={buffer:We,cast:me,clone:Br,print:Qw};YR(WM);var Tr={};Le(Tr,{browserFiles:()=>KM,browserHTTPRequest:()=>QM,concatenateArrayBuffers:()=>g2,copyModel:()=>PM,decodeWeights:()=>Gw,encodeWeights:()=>uM,fromMemory:()=>tF,getLoadHandlers:()=>bM,getModelArtifactsForJSON:()=>y2,getModelArtifactsInfoForJSON:()=>mh,getSaveHandlers:()=>xM,http:()=>x2,isHTTPScheme:()=>gy,listModels:()=>FM,loadWeights:()=>XM,moveModel:()=>_M,registerLoadRouter:()=>AM,registerSaveRouter:()=>yM,removeModel:()=>$M,weightsLoaderFactory:()=>tk,withSaveHandler:()=>rF});var VM="model",UM=".json",GM=".weights.bin";function O3(e){return new Promise(t=>setTimeout(t)).then(e)}var my=class{constructor(e){if(!Y().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(my.URL_SCHEME)&&(e=e.slice(my.URL_SCHEME.length)),(e==null||e.length===0)&&(e=VM),this.modelJsonFileName=e+UM,this.weightDataFileName=e+GM}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let r=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],n=jw(e,r),a=window.URL.createObjectURL(new Blob([JSON.stringify(n)],{type:"application/json"})),s=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(s.download=this.modelJsonFileName,s.href=a,await O3(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await O3(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:mh(e)}}}},bf=my;bf.URL_SCHEME="downloads://";var jM=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let r=new FileReader;r.onload=n=>{let a=JSON.parse(n.target.result),s=a.modelTopology;if(s==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(a.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:s});return}let i=y2(a,o=>this.loadWeights(o));e(i)},r.onerror=n=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),r.readAsText(this.jsonFile)})}loadWeights(e){let t=[],r=[];for(let s of e)t.push(...s.weights),r.push(...s.paths);let n=this.checkManifestAndWeightFiles(e),a=r.map(s=>this.loadWeightsFile(s,n[s]));return Promise.all(a).then(s=>[t,g2(s)])}loadWeightsFile(e,t){return new Promise((r,n)=>{let a=new FileReader;a.onload=s=>{let i=s.target.result;r(i)},a.onerror=s=>n(`Failed to weights data from file of path '${e}'.`),a.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],r=this.weightsFiles.map(a=>z3(a.name)),n={};for(let a of e)a.paths.forEach(s=>{let i=z3(s);if(t.indexOf(i)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${i}'`);if(t.push(i),r.indexOf(i)===-1)throw new Error(`Weight file with basename '${i}' is not provided.`);n[s]=this.weightsFiles[r.indexOf(i)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return n}},HM=e=>Y().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(bf.URL_SCHEME)?qM(e.slice(bf.URL_SCHEME.length)):null;Lt.registerSaveRouter(HM);function qM(e="model"){return new bf(e)}function KM(e){return new jM(e)}function D3(e,t,r,n){i(e),r=r==null?0:r,n=n==null?1:n,o(r,n);let a=0,s=l=>(l.then(u=>{let d=r+ ++a/e.length*(n-r);return t(d),u}),l);function i(l){P(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,u){P(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),P(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),P(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(s))}async function ek(e,t){t==null&&(t={});let r=t.fetchFunc==null?Y().platform.fetch:t.fetchFunc,n=e.map(u=>r(u,t.requestInit,{isBinary:!0})),a=0,s=.5,i=(t.onProgress==null?await Promise.all(n):await D3(n,t.onProgress,a,s)).map(u=>u.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await D3(i,t.onProgress,o,l)}async function XM(e,t="",r,n){return tk(a=>ek(a,{requestInit:n}))(e,t,r)}function tk(e){return async(t,r="",n)=>{let a=t.map(()=>!1),s={},i=n!=null?n.map(()=>!1):[],o=[];if(t.forEach((c,f)=>{let m=0;c.weights.forEach(g=>{let y="quantization"in g?g.quantization.dtype:g.dtype,A=py[y]*Tt(g.shape),x=()=>{a[f]=!0,s[f]==null&&(s[f]=[]),s[f].push({manifestEntry:g,groupOffset:m,sizeBytes:A})};n!=null?n.forEach((b,v)=>{b===g.name&&(x(),i[v]=!0)}):x(),o.push(g.name),m+=A})}),!i.every(c=>c)){let c=n.filter((f,m)=>!i[m]);throw new Error(`Could not find weights in manifest with names: ${c.join(", ")}.
|
|
Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=a.reduce((c,f,m)=>(f&&c.push(m),c),[]),u=[];l.forEach(c=>{t[c].paths.forEach(f=>{let m=r+(r.endsWith("/")?"":"/")+f;u.push(m)})});let d=await e(u),h={},p=0;return l.forEach(c=>{let f=t[c].paths.length,m=0;for(let x=0;x<f;x++)m+=d[p+x].byteLength;let g=new ArrayBuffer(m),y=new Uint8Array(g),A=0;for(let x=0;x<f;x++){let b=new Uint8Array(d[p+x]);y.set(b,A),A+=b.byteLength}s[c].forEach(x=>{let b=g.slice(x.groupOffset,x.groupOffset+x.sizeBytes),v=Gw(b,[x.manifestEntry]);for(let S in v)h[S]=v[S]}),p+=f}),h}}var ZM="application/octet-stream",YM="application/json",A2=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(P(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=Y().platform.fetch,P(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&P(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let r=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],n=jw(e,r);t.body.append("model.json",new Blob([JSON.stringify(n)],{type:YM}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:ZM}),"model.weights.bin");let a=await this.fetch(this.path,t);if(a.ok)return{modelArtifactsInfo:mh(e),responses:[a]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${a.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(a){let s=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?s+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":s+=" Please make sure the server is serving valid JSON for this request.",new Error(s)}let r=t.modelTopology,n=t.weightsManifest;if(r==null&&n==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return y2(t,a=>this.loadWeights(a))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[r,n]=JM(t),a=this.weightPathPrefix||r,s=[];for(let u of e)s.push(...u.weights);let i=[],o=[];for(let u of e)for(let d of u.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(d)):i.push(a+d+n);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await ek(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,g2(l)]}};A2.URL_SCHEME_REGEX=/^https?:\/\//;function JM(e){let t=e.lastIndexOf("/"),r=e.lastIndexOf("?"),n=e.substring(0,t),a=r>t?e.substring(r):"";return[n+"/",a]}function gy(e){return e.match(A2.URL_SCHEME_REGEX)!=null}var rk=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let r=!0;if(Array.isArray(e)?r=e.every(n=>gy(n)):r=gy(e),r)return x2(e,t)}return null};Lt.registerSaveRouter(rk);Lt.registerLoadRouter(rk);function x2(e,t){return new A2(e,t)}function QM(e,t){return x2(e,t)}var X1=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},eF=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function tF(e,t,r,n){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new X1(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new X1({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new X1({modelTopology:e,weightSpecs:t,weightData:r,trainingConfig:n}))}function rF(e){return new eF(e)}var nk={};Le(nk,{confusionMatrix:()=>oF});function nF(e,t,r=!1,n=!1){let a=F(e,"a","matMul"),s=F(t,"b","matMul");[a,s]=Ot(a,s);let i={a,b:s},o={transposeA:r,transposeB:n};return B.runKernel(Zs,i,o)}var Je=W({matMul_:nF});function aF(e,t,r=1,n=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:F(e,"indices","oneHot","int32")},s={depth:t,onValue:r,offValue:n};return B.runKernel(il,a,s)}var Lp=W({oneHot_:aF});function sF(e,t){let r=F(e,"x","transpose");if(t==null&&(t=r.shape.map((s,i)=>i).reverse()),P(r.rank===t.length,()=>`Error in transpose: rank of input ${r.rank} must match length of perm ${t}.`),t.forEach(s=>{P(s>=0&&s<r.rank,()=>`All entries in 'perm' must be between 0 and ${r.rank-1} but got ${t}`)}),r.rank<=1)return r.clone();let n={x:r},a={perm:t};return B.runKernel(Oi,n,a)}var nt=W({transpose_:sF});function iF(e,t,r){let n=F(e,"labels","confusionMatrix"),a=F(t,"predictions","confusionMatrix");P(r==null||r>0&&Number.isInteger(r),()=>`If provided, numClasses must be a positive integer, but got ${r}`),P(n.rank===1,()=>`Expected the rank of labels to be 1, but got ${n.rank}`),P(a.rank===1,()=>`Expected the rank of predictions to be 1, but got ${a.rank}`),P(n.shape[0]===a.shape[0],()=>`Mismatch in the number of examples: ${n.shape[0]} vs. ${a.shape[0]}. Labels and predictions should have the same number of elements.`),P(r>0&&Number.isInteger(r),()=>`numClasses is required to be a positive integer, but got ${r}`);let s=Lp(me(n,"int32"),r),i=Lp(me(a,"int32"),r),o=nt(s),l=Je(o,i);return me(l,"int32")}var oF=W({confusionMatrix_:iF}),Sl={};Le(Sl,{assertAndGetBroadcastShape:()=>bt,getBroadcastDims:()=>ak,getReductionAxes:()=>Zt});function ak(e,t){let r=e.length,n=[];for(let a=0;a<r;a++){let s=r-1-a,i=e[s]||1;(t[t.length-1-a]||1)>1&&i===1&&n.unshift(s)}return n}function Zt(e,t){let r=[];for(let n=0;n<t.length;n++){let a=e[e.length-n-1],s=t.length-n-1,i=t[s];(a==null||a===1&&i>1)&&r.unshift(s)}return r}function bt(e,t){let r=[],n=Math.max(e.length,t.length);for(let a=0;a<n;a++){let s=e[e.length-a-1];s==null&&(s=1);let i=t[t.length-a-1];if(i==null&&(i=1),s===1)r.unshift(i);else if(i===1)r.unshift(s);else if(s!==i){let o=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(o)}else r.unshift(s)}return r}var Pn={};Le(Pn,{fromPixels:()=>fF,fromPixelsAsync:()=>hF,toPixels:()=>cF});function sk(e,t,r){if(Do(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let n=Ma(e,r);if(n.length!==3&&n.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Li(e,t,n,r)}var uo;function ik(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let r=!1,n=!1,a=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)r=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)n=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)a=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(a&&a&&e.readyState<2)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.");if(yf(Pp,B.backendName)!=null){let p={pixels:e},c={numChannels:t};return B.runKernel(Pp,p,c)}let[l,u]=a?[e.videoWidth,e.videoHeight]:[e.width,e.height],d;if(i)d=e.getContext("2d").getImageData(0,0,l,u).data;else if(n||r)d=e.data;else if(s||a||o){if(uo==null)if(typeof document=="undefined")if(typeof OffscreenCanvas!="undefined"&&typeof OffscreenCanvasRenderingContext2D!="undefined")uo=new OffscreenCanvas(1,1).getContext("2d");else throw new Error("Cannot parse input in current context. Reason: OffscreenCanvas Context2D rendering is not supported.");else uo=document.createElement("canvas").getContext("2d");uo.canvas.width=l,uo.canvas.height=u,uo.drawImage(e,0,0,l,u),d=uo.getImageData(0,0,l,u).data}let h;if(t===4)h=new Int32Array(d);else{let p=l*u;h=new Int32Array(p*t);for(let c=0;c<p;c++)for(let f=0;f<t;++f)h[c*t+f]=d[c*4+f]}return sk(h,[u,l,t],"int32")}function lF(e){return e!=null&&e.data instanceof Uint8Array}function uF(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function dF(e){return e!=null&&e.width!==0&&e.height!==0}function pF(e){return uF()&&!(e instanceof ImageBitmap)&&dF(e)&&!lF(e)}async function hF(e,t=3){let r=null;if(Y().getBool("WRAP_TO_IMAGEBITMAP")&&pF(e)){let n;try{n=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(a){n=null}n!=null&&n.width===e.width&&n.height===e.height?r=n:r=e}else r=e;return ik(r,t)}async function cF(e,t){let r=F(e,"img","toPixels");if(!(e instanceof rt)){let u=r;r=me(u,"int32"),u.dispose()}if(r.rank!==2&&r.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${r.rank}.`);let[n,a]=r.shape.slice(0,2),s=r.rank===2?1:r.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(r.dtype!=="float32"&&r.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${r.dtype}. Please use float32 or int32 tensors.`);let i=await r.data(),o=r.dtype==="float32"?255:1,l=new Uint8ClampedArray(a*n*4);for(let u=0;u<n*a;++u){let d=[0,0,0,255];for(let p=0;p<s;p++){let c=i[u*s+p];if(r.dtype==="float32"){if(c<0||c>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${c}.`)}else if(r.dtype==="int32"&&(c<0||c>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${c}.`);s===1?(d[0]=c*o,d[1]=c*o,d[2]=c*o):d[p]=c*o}let h=u*4;l[h+0]=Math.round(d[0]),l[h+1]=Math.round(d[1]),l[h+2]=Math.round(d[2]),l[h+3]=Math.round(d[3])}if(t!=null){t.width=a,t.height=n;let u=t.getContext("2d"),d=new ImageData(l,a,n);u.putImageData(d,0,0)}return r!==e&&r.dispose(),l}var fF=W({fromPixels_:ik}),b2={};Le(b2,{prepareAndValidate:()=>ok});function ok(e,t){let r=e.shape.length,n=t.shape.length;if(r<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${r}.`);if(n<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${n}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[n-1]>r)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[n-1]} vs. ${r}`);if(Tt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let a=t.shape,s=a[a.length-1],i=1;for(let h=0;h<a.length-1;++h)i*=a[h];let o=e.shape,l=a.slice();l.pop();let u=1;for(let h=s;h<r;++h)u*=o[h],l.push(o[h]);let d=[...$u(e.shape).map(h=>h/u),1].slice(0,s);return[l,i,u,d]}var v2={};Le(v2,{calculateShapes:()=>lk,validateInput:()=>k2,validateUpdateShape:()=>w2});function w2(e,t,r){let n=t.rank>1?t.shape[t.rank-1]:1,a=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${r.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${n}, and batchDim: ${a}.`;if(r.rank<a)throw new Error(s+` update.rank < ${a}. `);if(e.length<n+(r.rank-a))throw new Error(s+` Output shape length < ${n+(r.rank-a)}`);if(r.rank!==a+e.length-n)throw new Error(s+` update.rank != ${a+e.length-n}`);for(let i=0;i<a;++i)if(r.shape[i]!==t.shape[i])throw new Error(s+` updates.shape[${i}] (${r.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<r.rank-a;++i)if(r.shape[i+a]!==e[i+n])throw new Error(s+` updates.shape[${i+a}] (${r.shape[i+a]}) != shape[${i+a}] (${e[i+a]})`)}function k2(e,t,r){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(r.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${r}`);if(r.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}w2(r,t,e)}function lk(e,t,r){let n=t.shape.length,a=n>1?t.shape[n-1]:1,s=r.length,i=1;for(let h=a;h<s;++h)i*=r[h];let o=a<1?1:a,l=Tt(t.shape)/o,u=[...$u(r.slice(0,a)),1],d=Tt(r);return{sliceRank:a,numUpdates:l,sliceSize:i,strides:u,outputSize:d}}var _t={};Le(_t,{assertParamsValid:()=>gF,computeFlatOffset:()=>vF,computeOutShape:()=>AF,getNormalizedAxes:()=>xF,isSliceContinous:()=>bF,maskToAxes:()=>yF,parseSliceParams:()=>yk,sliceInfo:()=>wF,startForAxis:()=>mk,startIndicesWithElidedDims:()=>hk,stopForAxis:()=>gk,stopIndicesWithElidedDims:()=>ck,stridesForAxis:()=>fk,stridesWithElidedDims:()=>uk});var yy=-2,mF=-1;function gF(e,t,r){let n=e.shape.length;P(n===t.length,()=>`Error in slice${n}D: Length of begin ${t} must match the rank of the array (${n}).`),P(n===r.length,()=>`Error in slice${n}D: Length of size ${r} must match the rank of the array (${n}).`);for(let a=0;a<n;++a)P(t[a]+r[a]<=e.shape[a],()=>`Error in slice${n}D: begin[${a}] + size[${a}] (${t[a]+r[a]}) would overflow input.shape[${a}] (${e.shape[a]})`)}function yF(e){let t=[],r=0;for(;e>0;)e&1&&t.push(r),e/=2,r++;return t}function AF(e,t,r){let n=[];for(let a=0;a<e.length;a++)n[a]=Math.ceil((t[a]-e[a])/r[a]);return n}function uk(e,t,r,n){let a=[...e];for(let s=a.length;s<n.length;s++)a.push(1);for(let s=0;s<r;s++)s===0?a[t]=1:(a.splice(t,0,1),a.pop());return a}function dk(e,t,r){return r<=e?r:r-(t-1)}function pk(e,t){let r=[];for(let n=0;n<e;n++)r.push(t+n);return r}function xF(e,t,r,n,a,s,i,o,l){let u=e.length,d=new Array(u),h=new Array(u),p=new Array(u);if(t.length&&r>0){let c=t[0],f=r+1;d=hk(i,c,f,n,e),h=ck(o,c,f,a,e),p=uk(s,c,f,e)}else for(let c=0;c<u;c++)d[c]=mk(i,n,s,e,c,l),h[c]=gk(o,a,s,e,c,l),p[c]=fk(s,c,l);return{begin:d,end:h,strides:p}}function hk(e,t,r,n,a){let s=[...a],i=pk(r,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=0;else{let l=dk(t,r,o),u=n[l];e&1<<l&&(u=0),s[o]=u}return s}function ck(e,t,r,n,a){let s=[...a],i=pk(r,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=dk(t,r,o),u=n[l];e&1<<l&&(u=Number.MAX_SAFE_INTEGER),s[o]=u}for(let o=0;o<s.length;o++){let l=a[o];s[o]<0&&(s[o]+=l),s[o]=$p(0,s[o],a[o])}return s}function fk(e,t,r){let n=e[t];return(r&1<<t||n==null)&&(n=1),n}function mk(e,t,r,n,a,s){let i=t[a],o=r[a]||1;(e&1<<a||s&1<<a||i==null)&&(o>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=n[a];return i<0&&(i+=l),i=$p(0,i,l-1),i}function gk(e,t,r,n,a,s){let i=t[a],o=r[a]||1;(e&1<<a||s&1<<a||i==null)&&(o>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=n[a];return i<0&&(i+=l),o>0?i=$p(0,i,l):i=$p(-1,i,l-1),i}function bF(e,t,r){let n=r.length;for(let a=0;a<r.length;a++)if(r[a]>1){n=a;break}for(let a=n+1;a<r.length;a++)if(t[a]>0||r[a]!==e[a])return!1;return!0}function vF(e,t){let r=e.length>0?e[e.length-1]:1;for(let n=0;n<e.length-1;n++)r+=e[n]*t[n];return r}function yk(e,t,r){let n,a=e.shape.length;typeof t=="number"?n=[t,...new Array(a-1).fill(0)]:t.length<a?n=t.concat(new Array(a-t.length).fill(0)):n=t.slice(),n.forEach(i=>{P(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return r==null?s=new Array(a).fill(-1):typeof r=="number"?s=[r,...new Array(a-1).fill(-1)]:r.length<a?s=r.concat(new Array(a-r.length).fill(-1)):s=r,s=s.map((i,o)=>i>=0?i:(P(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-n[o])),[n,s]}function wF(e,t,r,n,a,s,i,o,l){let u;if(n==null?(u=new Array(t.length),u.fill(1)):u=n,i!=null&&(i&i-1)!==0)throw new Error("Multiple ellipses in slice is not allowed.");let d=!1,h={dims:u.length,numAddAxisAfterEllipsis:0,begin:t.slice(),end:r.slice(),strides:u.slice(),beginMask:a,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};for(let A=0;A<h.dims;A++)d&&(1<<A&o)!==0&&h.numAddAxisAfterEllipsis++,1<<A&i&&(d=!0);d||(h.ellipsisMask|=1<<h.dims,h.dims++);let p={dims:e.length,beginMask:0,endMask:0,beginValid:!1,endValid:!1};kF(h,p);let c=!0,f=!0,m=!0,g=[],y=[];for(let A=0;A<e.length;++A){if(p.strides[A]===0)throw Error(`strides[${A}] must be non-zero`);let x=!!(p.shrinkAxisMask&1<<A),b=e[A];if(b===-1){g.push(x?1:-1);continue}let v=[p.beginMask&1<<A,p.endMask&1<<A],S=[p.strides[A]>0?0:-1,p.strides[A]>0?b:b-1];if(x&&p.strides[A]<=0)throw Error("only stride 1 allowed on non-range indexing.");m=m&&p.strides[A]===1;let T=!!(p.beginMask&1<<A&&p.endMask&1<<A);if(p.beginValid&&p.endValid){if(x){let M=p.begin[A]<0?b+p.begin[A]:p.begin[A];if(p.begin[A]=M,p.end[A]=p.begin[A]+1,M<0||M>=b)throw Error(`slice index ${p.begin[A]} of dimension ${A} out of bounds.`)}else p.begin[A]=L3(p.begin[A],0,p.strides[A],b,v,S),p.end[A]=L3(p.end[A],1,p.strides[A],b,v,S);let _=p.strides[A]===1&&p.begin[A]===0&&p.end[A]===b;c=c&&_,f=f&&(A===0&&p.strides[A]===1||_)}else c=c&&p.strides[A]===1&&T,f=f&&(A===0&&p.strides[A]===1||T);let E,R=!1;if(p.beginValid&&p.endValid?(E=p.end[A]-p.begin[A],R=!0):x?(E=1,R=!0):T&&b>=0&&(p.strides[A]<0?E=-b:E=b,R=!0),R){let _;E===0||E<0!=p.strides[A]<0?_=0:_=Math.trunc(E/p.strides[A])+(E%p.strides[A]!==0?1:0),g.push(_)}else g.push(-1)}for(let A=0;A<p.finalShapeGatherIndices.length;++A){let x=p.finalShapeGatherIndices[A];x>=0?y.push(g[x]):x===yy&&y.push(1)}return{finalShapeSparse:y.filter((A,x)=>p.finalShapeGatherIndices[x]!==yy),finalShape:y,isIdentity:c,sliceDim0:f,isSimpleSlice:m,begin:p.begin,end:p.end,strides:p.strides}}function kF(e,t){t.beginMask=0,t.endMask=0,t.shrinkAxisMask=0;let r=0;t.beginValid=e.begin!=null,t.endValid=e.end!=null,t.begin=new Array(t.dims),t.end=new Array(t.dims),t.strides=new Array(t.dims),t.finalShapeGatherIndices=[],t.finalShapeGatherIndicesSparse=[],t.inputShapeGatherIndicesSparse=new Array(t.dims);for(let n=0;n<e.dims;n++)if(1<<n&e.ellipsisMask){let a=Math.min(t.dims-(e.dims-n)+1+e.numAddAxisAfterEllipsis,t.dims);for(;r<a;r++)t.begin[r]=0,t.end[r]=0,t.strides[r]=1,t.beginMask|=1<<r,t.endMask|=1<<r,t.finalShapeGatherIndices.push(r),t.finalShapeGatherIndicesSparse.push(-1),t.inputShapeGatherIndicesSparse[r]=n}else if(1<<n&e.newAxisMask)t.finalShapeGatherIndices.push(yy),t.finalShapeGatherIndicesSparse.push(-1);else{if(r===t.begin.length)throw Error(`Index out of range using input dim ${r}; input has only ${t.dims} dims, ${t.begin.length}.`);e.begin!=null&&(t.begin[r]=e.begin[n]),e.end!=null&&(t.end[r]=e.end[n]),t.strides[r]=e.strides[n],e.beginMask&1<<n&&(t.beginMask|=1<<r),e.endMask&1<<n&&(t.endMask|=1<<r),e.shrinkAxisMask&1<<n?(t.finalShapeGatherIndices.push(mF),t.finalShapeGatherIndicesSparse.push(-1),t.shrinkAxisMask|=1<<r):(t.finalShapeGatherIndices.push(r),t.finalShapeGatherIndicesSparse.push(n)),t.inputShapeGatherIndicesSparse[r]=n,r++}}function L3(e,t,r,n,a,s){if(a[t])return r>0?s[t]:s[t+1&1];{let i=e<0?n+e:e;return i<s[0]?s[0]:i>s[1]?s[1]:i}}var ue={};Le(ue,{Serializable:()=>Ak,SerializationMap:()=>go,registerClass:()=>Bi});var Ak=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},go=class{constructor(){this.classNameMap={}}static getMap(){return go.instance==null&&(go.instance=new go),go.instance}static register(e){go.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function Bi(e){P(e.className!=null,()=>"Class being registered does not have the static className property defined."),P(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),P(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),go.register(e)}var xk={};Le(xk,{TEST_EPSILON_FLOAT16:()=>bk,encodeStrings:()=>vk,expectArrayBuffersEqual:()=>RF,expectArraysClose:()=>SF,expectArraysEqual:()=>NF,expectNumbersClose:()=>CF,expectPromiseToFail:()=>TF,expectValuesInRange:()=>EF,testEpsilon:()=>I2});var IF=.001,bk=.1;function SF(e,t,r){return r==null&&(r=I2()),Ay(e,t,(n,a)=>S2(n,a,r))}function I2(){return B.backend.floatPrecision()===32?IF:bk}function Ay(e,t,r){let n=!0;if((Sr(e)||Sr(t))&&(n=!1),Sr(e)&&Sr(t)&&(n=!0),n){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=Ma(e),o=Ma(t);if(!Hs(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let a=Sr(e)?e:To(e),s=Sr(t)?t:To(t);if(a.length!==s.length)throw new Error(`Arrays have different lengths actual: ${a.length} vs expected: ${s.length}.
|
|
Actual: ${a}.
|
|
Expected: ${s}.`);for(let i=0;i<s.length;++i){let o=a[i],l=s[i];if(!r(o,l))throw new Error(`Arrays differ: actual[${i}] = ${o}, expected[${i}] = ${l}.
|
|
Actual: ${a}.
|
|
Expected: ${s}.`)}}function TF(e,t){e().then(()=>t.fail(),()=>t())}function NF(e,t){let r=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Ss(e)||Ss(e[0])||Ss(t)||Ss(t[0])?Ay(e,r,(n,a)=>n==a):Ay(e,t,(n,a)=>S2(n,a,0))}function CF(e,t,r){if(r==null&&(r=I2()),!S2(e,t,r))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function S2(e,t,r){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>r)}function EF(e,t,r){for(let n=0;n<e.length;n++)if(e[n]<t||e[n]>r)throw new Error(`Value out of range:${e[n]} low: ${t}, high: ${r}`)}function RF(e,t){let r=new Float32Array(e),n=new Float32Array(t);if(r.length!==n.length)throw new Error(`Expected ArrayBuffer to be of length ${n.length}, but it was ${r.length}`);for(let a=0;a<n.length;a++)if(r[a]!==n[a])throw new Error(`Expected ArrayBuffer value at ${a} to be ${n[a]} but got ${r[a]} instead`)}function vk(e){for(let t=0;t<e.length;t++){let r=e[t];Array.isArray(r)?vk(r):e[t]=hh(r)}return e}var T2="0.0.0";function N2(){Y().set("PROD",!0)}function MF(){Y().set("DEBUG",!0)}function FF(){Y().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function C2(e){Y().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}JR(C2);function $F(){B.disposeVariables()}function br(){return B}function vf(){return B.memory()}function PF(e){return B.profile(e)}function K(e,t){return B.tidy(e,t)}function re(e){c2(e).forEach(t=>t.dispose())}function cr(e){return B.keep(e)}function _F(e){return B.time(e)}function E2(e){return B.setBackend(e)}function ld(){return B.ready()}function sn(){return B.backendName}function zF(e){B.removeBackend(e)}function R2(e){return B.findBackend(e)}function OF(e){return B.findBackendFactory(e)}function Tl(e,t,r=1){return B.registerBackend(e,t,r)}function jn(){return B.backend}function DF(e,t){Y().setPlatform(e,t)}function LF(e,t){let r=F(e,"a","add"),n=F(t,"b","add");[r,n]=Ot(r,n);let a={a:r,b:n};return B.runKernel(Ya,a)}var le=W({add_:LF});function BF(e,t){let r=F(e,"a","floorDiv"),n=F(t,"b","floorDiv");[r,n]=Ot(r,n);let a={a:r,b:n};return B.runKernel(li,a)}var gh=W({floorDiv_:BF});function WF(e,t){let r=F(e,"a","div"),n=F(t,"b","div");if([r,n]=Ot(r,n),r.dtype==="int32"&&n.dtype==="int32")return gh(r,n);let a={a:r,b:n},s={};return B.runKernel(ai,a,s)}var pe=W({div_:WF});function VF(e,t){let r=F(e,"a","mul"),n=F(t,"b","mul");[r,n]=Ot(r,n);let a={a:r,b:n};return B.runKernel(vi,a)}var L=W({mul_:VF});function UF(e){let t=F(e,"x","abs");if(t.dtype==="complex64"){let r={x:t};return B.runKernel(Zp,r)}else{let r={x:t};return B.runKernel(Lo,r)}}var rr=W({abs_:UF});function GF(e){let t={x:F(e,"x","acos")};return B.runKernel(Pu,t)}var wk=W({acos_:GF});function jF(e){let t={x:F(e,"x","acosh")};return B.runKernel(_u,t)}var kk=W({acosh_:jF});function HF(e){P(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),P(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((a,s)=>F(a,`tensors${s}`,"addN")),r=t[0];t.forEach(a=>{if(a.dtype!==r.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(a=>{if(!Hs(a.shape,r.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let n=t;return B.runKernel(qs,n)}var ym=W({addN_:HF});function qF(e,t=null,r=!1){let n={x:F(e,"x","all","bool")},a={axis:t,keepDims:r};return B.runKernel(zu,n,a)}var M2=W({all_:qF});function KF(e,t=null,r=!1){let n={x:F(e,"x","any","bool")},a={axis:t,keepDims:r};return B.runKernel(Ou,n,a)}var wf=W({any_:KF});function XF(e,t=0){let r={x:F(e,"x","argMax")},n={axis:t};return B.runKernel(Ks,r,n)}var Cn=W({argMax_:XF});function ZF(e,t=0){let r={x:F(e,"x","argMin")},n={axis:t};return B.runKernel(Du,r,n)}var Ik=W({argMin_:ZF});function YF(e){let t={x:F(e,"x","asin")};return B.runKernel(Lu,t)}var Sk=W({asin_:YF});function JF(e){let t={x:F(e,"x","asinh")};return B.runKernel(Bu,t)}var Tk=W({asinh_:JF});function QF(e){let t={x:F(e,"x","atan")};return B.runKernel(Wu,t)}var Nk=W({atan_:QF});function e$(e,t){let r=F(e,"a","atan2"),n=F(t,"b","atan2");[r,n]=Ot(r,n);let a={a:r,b:n};return B.runKernel(Uu,a)}var Ck=W({atan2_:e$});function t$(e){let t={x:F(e,"x","atanh")};return B.runKernel(Vu,t)}var Ek=W({atanh_:t$});function r$(e,t,r,n,a="NHWC",s){let i=e[3],o=[...t,i],l=Fk(a);return yh(e,o,r,s,n,null,null,l)}function Rk(e,t,r,n,a,s,i="channelsLast"){let[o,l]=kf(t),u;if(i==="channelsLast")u=[o,l,e[3],e[3]];else if(i==="channelsFirst")u=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return yh(e,u,r,n,a,s,!1,i)}function n$(e,t,r,n,a,s,i="NDHWC"){let[o,l,u]=xy(t),d,h;if(i==="NDHWC")h="channelsLast",d=[o,l,u,e[4],e[4]];else if(i==="NCDHW")h="channelsFirst",d=[o,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Mk(e,d,r,n,a,!1,h,s)}function yh(e,t,r,n,a,s,i=!1,o="channelsLast"){let[l,u,d,h]=[-1,-1,-1,-1];if(o==="channelsLast")[l,u,d,h]=e;else if(o==="channelsFirst")[l,h,u,d]=e;else throw new Error(`Unknown dataFormat ${o}`);let[p,c,,f]=t,[m,g]=kf(r),[y,A]=kf(n),x=mu(p,y),b=mu(c,A),{padInfo:v,outHeight:S,outWidth:T}=i$(a,u,d,m,g,x,b,s,o),E=i?f*h:f,R;return o==="channelsFirst"?R=[l,E,S,T]:o==="channelsLast"&&(R=[l,S,T,E]),{batchSize:l,dataFormat:o,inHeight:u,inWidth:d,inChannels:h,outHeight:S,outWidth:T,outChannels:E,padInfo:v,strideHeight:m,strideWidth:g,filterHeight:p,filterWidth:c,effectiveFilterHeight:x,effectiveFilterWidth:b,dilationHeight:y,dilationWidth:A,inShape:e,outShape:R,filterShape:t}}function Mk(e,t,r,n,a,s=!1,i="channelsLast",o){let[l,u,d,h,p]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,u,d,h,p]=e;else if(i==="channelsFirst")[l,p,u,d,h]=e;else throw new Error(`Unknown dataFormat ${i}`);let[c,f,m,,g]=t,[y,A,x]=xy(r),[b,v,S]=xy(n),T=mu(c,b),E=mu(f,v),R=mu(m,S),{padInfo:_,outDepth:M,outHeight:I,outWidth:z}=o$(a,u,d,h,y,A,x,T,E,R,o),O=s?g*p:g,j;return i==="channelsFirst"?j=[l,O,M,I,z]:i==="channelsLast"&&(j=[l,M,I,z,O]),{batchSize:l,dataFormat:i,inDepth:u,inHeight:d,inWidth:h,inChannels:p,outDepth:M,outHeight:I,outWidth:z,outChannels:O,padInfo:_,strideDepth:y,strideHeight:A,strideWidth:x,filterDepth:c,filterHeight:f,filterWidth:m,effectiveFilterDepth:T,effectiveFilterHeight:E,effectiveFilterWidth:R,dilationDepth:b,dilationHeight:v,dilationWidth:S,inShape:e,outShape:j,filterShape:t}}function a$(e,t,r,n,a){n==null&&(n=F2(e,t,r));let s=e[0],i=e[1],o=wo((s-t+2*n)/r+1,a),l=wo((i-t+2*n)/r+1,a);return[o,l]}function s$(e,t,r,n,a,s){a==null&&(a=F2(e,t,n));let i=e[0],o=e[1],l=e[2],u=wo((i-t+2*a)/n+1,s),d=wo((o-t+2*a)/n+1,s),h=wo((l-t+2*a)/n+1,s);return[u,d,h,r]}function F2(e,t,r,n=1){let a=mu(t,n);return Math.floor((e[0]*(r-1)-r+a)/2)}function kf(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function xy(e){return typeof e=="number"?[e,e,e]:e}function mu(e,t){return t<=1?e:e+(e-1)*(t-1)}function i$(e,t,r,n,a,s,i,o,l){let u,d,h;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let p=a$([t,r],s,n,e,o);d=p[0],h=p[1]}else if(e==="same"){d=Math.ceil(t/n),h=Math.ceil(r/a);let p=Math.max(0,(d-1)*n+s-t),c=Math.max(0,(h-1)*a+i-r),f=Math.floor(p/2),m=p-f,g=Math.floor(c/2),y=c-g;u={top:f,bottom:m,left:g,right:y,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},d=Math.ceil((t-s+1)/n),h=Math.ceil((r-i+1)/a);else if(typeof e=="object"){let p=l==="channelsLast"?e[1][0]:e[2][0],c=l==="channelsLast"?e[1][1]:e[2][1],f=l==="channelsLast"?e[2][0]:e[3][0],m=l==="channelsLast"?e[2][1]:e[3][1];u={top:p,bottom:c,left:f,right:m,type:p===0&&c===0&&f===0&&m===0?"VALID":"EXPLICIT"},d=wo((t-s+p+c)/n+1,o),h=wo((r-i+f+m)/a+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:d,outWidth:h}}function o$(e,t,r,n,a,s,i,o,l,u,d){let h,p,c,f;if(typeof e=="number"){h={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let m=s$([t,r,n,1],o,1,a,e,d);p=m[0],c=m[1],f=m[2]}else if(e==="same"){p=Math.ceil(t/a),c=Math.ceil(r/s),f=Math.ceil(n/i);let m=(p-1)*a+o-t,g=(c-1)*s+l-r,y=(f-1)*i+u-n,A=Math.floor(m/2),x=m-A,b=Math.floor(g/2),v=g-b,S=Math.floor(y/2),T=y-S;h={top:b,bottom:v,left:S,right:T,front:A,back:x,type:"SAME"}}else if(e==="valid")h={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},p=Math.ceil((t-o+1)/a),c=Math.ceil((r-l+1)/s),f=Math.ceil((n-u+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:h,outDepth:p,outHeight:c,outWidth:f}}function wo(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function _s(e){let[t,r,n]=kf(e);return t===1&&r===1&&n===1}function Pa(e,t){return _s(e)||_s(t)}function Fk(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function Ur(e,t,r){if(r!=null){if(typeof t=="string")throw Error(`Error in ${e}: pad must be an integer when using dimRoundingMode ${r} but got pad ${t}.`);if(typeof t=="number")P(Au(t),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${r} but got pad ${t}.`);else if(typeof t=="object")t.forEach(n=>{n.forEach(a=>{P(Au(a),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${r} but got pad ${a}.`)})});else throw Error(`Error in ${e}: Unknown padding parameter: ${t}`)}}function l$(e,t){let r={x:F(e,"x","reshape","string_or_numeric")},n={shape:t};return B.runKernel(ul,r,n)}var G=W({reshape_:l$});function u$(e,t,r,n,a){let s=F(e,"x","avgPool","float32"),i=1;P(Pa(r,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${r} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=G(s,[1,s.shape[0],s.shape[1],s.shape[2]])),P(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),Ur("avgPool",n,a);let u={x:o},d={filterSize:t,strides:r,pad:n,dimRoundingMode:a},h=B.runKernel(Xs,u,d);return h=me(h,s.dtype),l?G(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Am=W({avgPool_:u$});function d$(e,t,r,n,a,s="NDHWC"){let i=F(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=G(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),P(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),P(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),Ur("avgPool3d",n,a);let u={x:o},d={filterSize:t,strides:r,pad:n,dimRoundingMode:a,dataFormat:s},h=B.runKernel(Kp,u,d);return h=me(h,o.dtype),l?G(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var $2=W({avgPool3d_:d$});function p$(e,t=0){P(e.length>=1,()=>"Pass at least one tensor to concat");let r=Dp(e,"tensors","concat","string_or_numeric");if(r[0].dtype==="complex64"&&r.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${s.dtype}. `)}),r.length===1)return Br(r[0]);let n=r,a={axis:t};return B.runKernel(Wo,n,a)}var kt=W({concat_:p$});function h$(e){let t={x:F(e,"x","sigmoid","float32")};return B.runKernel(Ri,t)}var Nr=W({sigmoid_:h$});function c$(e,t,r){let n=F(e,"x","slice","string_or_numeric");if(n.rank===0)throw new Error("Slicing scalar is not possible");let a={x:n},s={begin:t,size:r};return B.runKernel(fl,a,s)}var Pe=W({slice_:c$});function f$(e){let t={x:F(e,"x","tanh","float32")};return B.runKernel(zi,t)}var bu=W({tanh_:f$});function m$(e,t,r,n,a,s){let i=F(e,"forgetBias","basicLSTMCell"),o=F(t,"lstmKernel","basicLSTMCell"),l=F(r,"lstmBias","basicLSTMCell"),u=F(n,"data","basicLSTMCell"),d=F(a,"c","basicLSTMCell"),h=F(s,"h","basicLSTMCell"),p=kt([u,h],1),c=Je(p,o),f=le(c,l),m=f.shape[0],g=f.shape[1]/4,y=[m,g],A=Pe(f,[0,0],y),x=Pe(f,[0,g],y),b=Pe(f,[0,g*2],y),v=Pe(f,[0,g*3],y),S=le(L(Nr(A),bu(x)),L(d,Nr(le(i,b)))),T=L(bu(S),Nr(v));return[S,T]}var g$=W({basicLSTMCell_:m$});function y$(e,t,r){let n=F(e,"x","batchToSpaceND"),a=t.reduce((o,l)=>o*l);P(n.rank>=1+t.length,()=>`input rank is ${n.rank} but should be > than blockShape.length ${t.length}`),P(r.length===t.length,()=>`crops.length is ${r.length} but should be equal to blockShape.length ${t.length}`),P(n.shape[0]%a===0,()=>`input tensor batch is ${n.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${a}`);let s={x:n},i={blockShape:t,crops:r};return B.runKernel(Bo,s,i)}var xm=W({batchToSpaceND_:y$});function A$(e){let t;return e.rank===0||e.rank===1?t=G(e,[1,1,1,e.size]):e.rank===2?t=G(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=G(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function x$(e,t,r,n,a,s){s==null&&(s=.001);let i=F(e,"x","batchNorm"),o=F(t,"mean","batchNorm"),l=F(r,"variance","batchNorm"),u;a!=null&&(u=F(a,"scale","batchNorm"));let d;n!=null&&(d=F(n,"offset","batchNorm")),P(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),P(d==null||o.rank===d.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),P(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let h={x:A$(i),scale:u,offset:d,mean:o,variance:l},p={varianceEpsilon:s},c=B.runKernel(ui,h,p);return G(c,i.shape)}var vu=W({batchNorm_:x$});function b$(e,t,r,n,a,s){let i=F(e,"x","batchNorm"),o=F(t,"mean","batchNorm"),l=F(r,"variance","batchNorm"),u;a!=null&&(u=F(a,"scale","batchNorm"));let d;return n!=null&&(d=F(n,"offset","batchNorm")),P(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),P(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),P(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&P(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),d!=null&&P(d.rank===2||d.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${d.rank}.`),vu(i,o,l,d,u,s)}var $k=W({batchNorm2d_:b$});function v$(e,t,r,n,a,s){let i=F(e,"x","batchNorm"),o=F(t,"mean","batchNorm"),l=F(r,"variance","batchNorm"),u;a!=null&&(u=F(a,"scale","batchNorm"));let d;return n!=null&&(d=F(n,"offset","batchNorm")),P(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),P(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),P(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&P(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),d!=null&&P(d.rank===3||d.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${d.rank}.`),vu(i,o,l,d,u,s)}var Pk=W({batchNorm3d_:v$});function w$(e,t,r,n,a,s){let i=F(e,"x","batchNorm"),o=F(t,"mean","batchNorm"),l=F(r,"variance","batchNorm"),u;a!=null&&(u=F(a,"scale","batchNorm"));let d;return n!=null&&(d=F(n,"offset","batchNorm")),P(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),P(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),P(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&P(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),d!=null&&P(d.rank===4||d.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${d.rank}.`),vu(i,o,l,d,u,s)}var _k=W({batchNorm4d_:w$});function k$(e,t,r){let n=F(e,"x","bincount"),a=F(t,"weights","bincount");P(n.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${n.dtype}`),P(r>=0,()=>`size must be non-negative, but got ${r}.`),P(a.size===n.size||a.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${n.shape}, weights shape: ${a.shape}.`);let s={x:n,weights:a},i={size:r};return B.runKernel(qf,s,i)}var P2=W({bincount_:k$});function I$(e,t){let r=F(e,"s0","broadcastArgs","int32"),n=F(t,"s1","broadcastArgs","int32");if(r.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${r.rank}`);if(n.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${n.rank}`);let a={s0:r,s1:n};return B.runKernel(Kf,a)}var zk=W({broadcastArgs_:I$});function S$(e,t){let r=F(e,"broadcastTo","x"),n=r.shape;if(t.some(l=>!(l>0)||l%1!==0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<r.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${r.rank}.`);if(t.length>r.rank){let l=r.shape.slice();for(;l.length<t.length;)l.unshift(1);r=G(r,l)}let a=r.shape,s=Array.from(t);for(let l=t.length-1;l>=0;l--)if(a[l]===t[l])s[l]=1;else if(r.shape[l]!==1)throw new Error(`broadcastTo(): [${n}] cannot be broadcast to [${t}].`);if(s.map((l,u)=>l>1?u:-1).filter(l=>l>=0).length===0)return Br(r);let i={x:r},o={reps:s};return B.runKernel(Qa,i,o)}var Ep=W({broadcastTo_:S$});function T$(e){let t={x:F(e,"x","ceil","float32")};return B.runKernel(Js,t)}var Ok=W({ceil_:T$});function N$(e,t,r){let n=F(e,"x","clipByValue");P(t<=r,()=>`Error in clip: min (${t}) must be less than or equal to max (${r}).`);let a={x:n},s={clipValueMin:t,clipValueMax:r};return B.runKernel(Ja,a,s)}var cn=W({clipByValue_:N$});function C$(e){return kt(e,0)}var Dk=W({concat1d_:C$});function E$(e,t){return kt(e,t)}var ud=W({concat2d_:E$});function R$(e,t){return kt(e,t)}var Lk=W({concat3d_:R$});function M$(e,t){return kt(e,t)}var Bk=W({concat4d_:M$});function F$(e,t,r,n,a="NHWC",s=[1,1],i){let o=F(e,"x","conv2d","float32"),l=F(t,"filter","conv2d","float32"),u=o,d=!1;o.rank===3&&(d=!0,u=G(o,[1,o.shape[0],o.shape[1],o.shape[2]])),P(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),P(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),Ur("conv2d",n,i);let h=a==="NHWC"?u.shape[3]:u.shape[1];P(h===l.shape[2],()=>`Error in conv2d: depth of input (${h}) must match input depth for filter ${l.shape[2]}.`),P(Pa(r,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${r} and dilations '${s}'`);let p={x:u,filter:l},c={strides:r,pad:n,dataFormat:a,dilations:s,dimRoundingMode:i},f=B.runKernel(Qs,p,c);return d?G(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var zs=W({conv2d_:F$});function $$(e,t,r,n,a="NWC",s=1,i){let o=F(e,"x","conv1d"),l=F(t,"filter","conv1d"),u=o,d=!1;o.rank===2&&(d=!0,u=G(o,[1,o.shape[0],o.shape[1]])),P(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),P(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),Ur("conv1d",n,i),P(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),P(Pa(r,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${r} and dilation '${s}'`),P(a==="NWC",()=>`Error in conv1d: got dataFormat of ${a} but only NWC is currently supported.`);let h=G(l,[1,l.shape[0],l.shape[1],l.shape[2]]),p=G(u,[u.shape[0],1,u.shape[1],u.shape[2]]),c=zs(p,h,[1,r],n,"NHWC",[1,s],i);return d?G(c,[c.shape[2],c.shape[3]]):G(c,[c.shape[0],c.shape[2],c.shape[3]])}var _2=W({conv1d_:$$});function P$(e,t,r,n,a,s="NHWC",i){P(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,u=!1;t.rank===3&&(u=!0,l=G(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),P(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),P(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),P(r.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${r.rank}`);let d=s==="NHWC"?o[3]:o[1],h=s==="NHWC"?l.shape[3]:l.shape[1];P(d===r.shape[2],()=>`Error in conv2dDerInput: depth of input (${d}) must match input depth for filter ${r.shape[2]}.`),P(h===r.shape[3],()=>`Error in conv2dDerInput: depth of output (${h}) must match output depth for filter ${r.shape[3]}.`),Ur("conv2dDerInput",a,i);let p={dy:l,filter:r},c={strides:n,pad:a,dataFormat:s,dimRoundingMode:i,inputShape:o},f=B.runKernel(ei,p,c);return u?G(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var z2=W({conv2DBackpropInput_:P$});function _$(e,t,r,n,a,s){let i=F(e,"x","conv2dTranspose"),o=F(t,"filter","conv2dTranspose");return z2(r,i,o,n,a,"NHWC",s)}var O2=W({conv2dTranspose_:_$});function z$(e,t,r,n,a="NDHWC",s=[1,1,1]){let i=F(e,"x","conv3d"),o=F(t,"filter","conv3d"),l=i,u=!1;i.rank===4&&(u=!0,l=G(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),P(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),P(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),P(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),P(Pa(r,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${r} and dilations '${s}'`),P(a==="NDHWC",()=>`Error in conv3d: got dataFormat of ${a} but only NDHWC is currently supported.`);let d={x:l,filter:o},h={strides:r,pad:n,dataFormat:a,dilations:s},p=B.runKernel(Yp,d,h);return u?G(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var D2=W({conv3d_:z$});function O$(e,t,r,n,a){P(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=G(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],u=i.shape[4];P(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),P(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),P(r.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${r.rank}`),P(l===r.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${r.shape[3]}.`),P(u===r.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${r.shape[4]}.`);let d={dy:i,filter:r},h={pad:a,strides:n,inputShape:s},p=B.runKernel(Yf,d,h);return o?G(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var Wk=W({conv3DBackpropInput_:O$});function D$(e,t,r,n,a){let s=F(e,"x","conv3dTranspose"),i=F(t,"filter","conv3dTranspose");return Wk(r,s,i,n,a)}var Vk=W({conv3dTranspose_:D$});function L$(e){let t={x:F(e,"x","cos","float32")};return B.runKernel(ti,t)}var bm=W({cos_:L$});function B$(e){let t={x:F(e,"x","cosh","float32")};return B.runKernel(ri,t)}var L2=W({cosh_:B$});function W$(e,t=0,r=!1,n=!1){let a={x:F(e,"x","cumprod")},s={axis:t,exclusive:r,reverse:n};return B.runKernel(Gu,a,s)}var Uk=W({cumprod_:W$});function V$(e,t=0,r=!1,n=!1){let a={x:F(e,"x","cumsum")},s={axis:t,exclusive:r,reverse:n};return B.runKernel(Vo,a,s)}var B2=W({cumsum_:V$});function U$(e,t,r,n=!1){let a=F(e,"x","denseBincount"),s=F(t,"weights","denseBincount");P(a.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${a.dtype}`),P(a.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${a.rank}.`),P(r>=0,()=>`size must be non-negative, but got ${r}.`),P(s.size===a.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${a.shape}, weights shape: ${s.shape}.`);let i={x:a,weights:s},o={size:r,binaryOutput:n};return B.runKernel(Jf,i,o)}var Gk=W({denseBincount_:U$});function G$(e,t,r="NHWC"){let n=F(e,"x","depthToSpace","float32"),a=r==="NHWC"?n.shape[1]:n.shape[2],s=r==="NHWC"?n.shape[2]:n.shape[3],i=r==="NHWC"?n.shape[3]:n.shape[1];P(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`),P(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${a} and ${t} for depthToSpace with input shape
|
|
${n.shape}`),P(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${s} and ${t} for depthToSpace with input shape
|
|
${n.shape}`),P(i%(t*t)===0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${n.shape}`);let o={x:n},l={blockSize:t,dataFormat:r};return B.runKernel(Go,o,l)}var jk=W({depthToSpace_:G$});function j$(e,t,r,n,a="NHWC",s=[1,1],i){let o=F(e,"x","depthwiseConv2d","float32"),l=F(t,"filter","depthwiseConv2d","float32"),u=o,d=!1;o.rank===3&&(d=!0,u=G(o,[1,o.shape[0],o.shape[1],o.shape[2]])),P(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),P(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),P(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),Ur("depthwiseConv2d",n,i);let h={x:u,filter:l},p={strides:r,pad:n,dataFormat:a,dilations:s,dimRoundingMode:i},c=B.runKernel(ni,h,p);return d?G(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Ah=W({depthwiseConv2d_:j$});function H$(e){let t={x:F(e,"x","diag")};return B.runKernel(tm,t)}var q$=W({diag_:H$});function K$(e,t,r,n,a=[1,1],s="NHWC"){let i=F(e,"x","dilation2d"),o=F(t,"filter","dilation2d");P(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),P(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),P(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,u=!1;i.rank===3&&(l=G(i,[1,i.shape[0],i.shape[1],i.shape[2]]),u=!0);let d={x:l,filter:o},h={strides:r,pad:n,dilations:a},p=B.runKernel(Jp,d,h);return u?G(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Hk=W({dilation2d_:K$});function X$(e,t){let r=F(e,"a","equal","string_or_numeric"),n=F(t,"b","equal","string_or_numeric");[r,n]=Ot(r,n),bt(r.shape,n.shape);let a={a:r,b:n};return B.runKernel(jo,a)}var En=W({equal_:X$});function Z$(e,t,r){let n=F(t,"a","where"),a=F(r,"b","where"),s=F(e,"condition","where","bool"),i=bt(bt(s.shape,n.shape),a.shape),o=Ep(s,i),l=Ep(n,i),u=Ep(a,i),d={condition:o,t:l,e:u};return B.runKernel(cl,d)}var Wr=W({where_:Z$});function Y$(e){let t={x:F(e,"x","zerosLike")};return B.runKernel(kl,t)}var at=W({zerosLike_:Y$});function J$(e,t){let r=F(e,"a","div"),n=F(t,"b","div");[r,n]=Ot(r,n);let a=pe(r,n),s=at(a),i=En(n,s);return Wr(i,s,a)}var qk=W({divNoNan_:J$});function Q$(e,t){let r=F(e,"t1","dot"),n=F(t,"t2","dot");P((r.rank===1||r.rank===2)&&(n.rank===1||n.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${r.rank} and ${n.rank}.`);let a=r.rank===1?r.size:r.shape[1],s=n.rank===1?n.size:n.shape[0];if(P(a===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${a} and ${s}.`),r.rank===1&&n.rank===1){let i=G(r,[1,-1]),o=G(n,[-1,1]),l=Je(i,o);return G(l,[])}else if(r.rank===1&&n.rank===2){let i=G(r,[1,-1]),o=G(n,[n.shape[0],n.shape[1]]),l=Je(i,o);return G(l,[l.size])}else if(r.rank===2&&n.rank===1){let i=G(n,[-1,1]),o=Je(r,i);return G(o,[o.size])}else{let i=G(n,[n.shape[0],n.shape[1]]);return Je(r,i)}}var eP=W({dot_:Q$});function tP(e,...t){let r=t.map((a,s)=>F(a,`tensors${s}`,"einsum")),n={equation:e};return B.runKernel(Qp,r,n)}var Kk=W({einsum_:tP});function rP(e){let t={x:F(e,"x","elu","float32")};return B.runKernel(si,t)}var xh=W({elu_:rP});function nP(e){let t=F(e,"x","erf");P(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=me(t,"float32"));let r={x:t};return B.runKernel(ju,r)}var Xk=W({erf_:nP});function aP(e){let t={x:F(e,"x","exp")};return B.runKernel(ii,t)}var Rn=W({exp_:aP});function sP(e,t=0){let r=F(e,"x","expandDims","string_or_numeric");P(t<=r.rank,()=>"Axis must be <= rank of the tensor");let n={input:r},a={dim:t};return B.runKernel(Ho,n,a)}var qt=W({expandDims_:sP});function iP(e){let t={x:F(e,"x","expm1")};return B.runKernel(qo,t)}var Zk=W({expm1_:iP});function oP(e,t){let r=F(e,"x","tile","string_or_numeric");P(r.rank===t.length,()=>`Error in transpose: rank of input ${r.rank} must match length of reps ${t}.`);let n={x:r},a={reps:t};return B.runKernel(Qa,n,a)}var Bn=W({tile_:oP});function lP(e,t,r,n="float32"){t==null&&(t=e);let a=We([e,t],n),s=e<=t?e:t;for(let o=0;o<s;++o)a.set(1,o,o);let i=G(a.toTensor(),[e,t]);if(r==null)return i;if(r.length===1)return Bn(qt(i,0),[r[0],1,1]);if(r.length===2)return Bn(qt(qt(i,0),0),[r[0],r[1],1,1]);if(r.length===3)return Bn(qt(qt(qt(i,0),0),0),[r[0],r[1],r[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${r.length}D.`)}var W2=W({eye_:lP});function dd(e,t,r){let n={shape:e,value:t,dtype:r};return B.runKernel(Hu,{},n)}function uP(e){let t={x:F(e,"x","floor","float32")};return B.runKernel(oi,t)}var bh=W({floor_:uP});function dP(e,t,r=0,n=0){let a=F(e,"x","gather"),s=F(t,"indices","gather","int32"),i={x:a,indices:s},o={axis:r,batchDims:n};return B.runKernel(Xo,i,o)}var wu=W({gather_:dP});function pP(e,t){let r=F(e,"a","greater","string_or_numeric"),n=F(t,"b","greater","string_or_numeric");[r,n]=Ot(r,n),bt(r.shape,n.shape);let a={a:r,b:n};return B.runKernel(Yo,a)}var fn=W({greater_:pP});function hP(e,t){let r=F(e,"a","greaterEqual","string_or_numeric"),n=F(t,"b","greaterEqual","string_or_numeric");[r,n]=Ot(r,n),bt(r.shape,n.shape);let a={a:r,b:n};return B.runKernel(di,a)}var Nl=W({greaterEqual_:hP});function cP(e){let t={input:F(e,"input","imag")};return B.runKernel(eh,t)}var vm=W({imag_:cP});function fP(e){let t={x:F(e,"x","isFinite")};return B.runKernel(qu,t)}var mP=W({isFinite_:fP});function gP(e){let t={x:F(e,"x","isInf")};return B.runKernel(Ku,t)}var yP=W({isInf_:gP});function AP(e){let t={x:F(e,"x","isNaN")};return B.runKernel(Xu,t)}var Yk=W({isNaN_:AP});function xP(e,t=.2){let r={x:F(e,"x","leakyRelu")},n={alpha:t};return B.runKernel(hi,r,n)}var wm=W({leakyRelu_:xP});function bP(e,t){let r=F(e,"a","less","string_or_numeric"),n=F(t,"b","less","string_or_numeric");[r,n]=Ot(r,n),bt(r.shape,n.shape);let a={a:r,b:n};return B.runKernel(Jo,a)}var V2=W({less_:bP});function vP(e,t){let r=F(e,"a","lessEqual","string_or_numeric"),n=F(t,"b","lessEqual","string_or_numeric");[r,n]=Ot(r,n),bt(r.shape,n.shape);let a={a:r,b:n};return B.runKernel(Qo,a)}var Cl=W({lessEqual_:vP});function Jk(e,t,r){if(r<=0)throw new Error("The number of values should be positive.");let n={start:e,stop:t,num:r};return B.runKernel(sm,{},n)}function wP(e,t=5,r=1,n=1,a=.5){let s=F(e,"x","localResponseNormalization");P(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
|
|
rank ${s.rank}.`),P(Au(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=G(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},u={depthRadius:t,bias:r,alpha:n,beta:a},d=B.runKernel(rh,l,u);return o?G(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Qk=W({localResponseNormalization_:wP});function kP(e){let t={x:F(e,"x","log","float32")};return B.runKernel(ci,t)}var Mn=W({log_:kP});function IP(e){let t={x:F(e,"x","log1p")};return B.runKernel(Zu,t)}var km=W({log1p_:IP});function SP(e){return P(Rs(e),()=>"The f passed in grad(f) must be a function"),(t,r)=>{let n=F(t,"x","tf.grad","string_or_numeric"),a=r!=null?F(r,"dy","tf.grad"):null;return B.tidy(()=>{let{value:s,grads:i}=B.gradients(()=>e(n),[n],a);return a!=null&&Vr(s.shape,a.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Im(i),i[0]})}}function TP(e){return P(Rs(e),()=>"The f passed in grads(f) must be a function"),(t,r)=>{P(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let n=Dp(t,"args","tf.grads","string_or_numeric"),a=r!=null?F(r,"dy","tf.grads"):null;return B.tidy(()=>{let{value:s,grads:i}=B.gradients(()=>e(...n),n,a);return a!=null&&Vr(s.shape,a.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Im(i),i})}}function NP(e){return P(Rs(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,r)=>{P(t instanceof rt,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),P(r==null||r instanceof rt,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:n,value:a}=B.gradients(()=>e(t),[t],r);return Im(n),{grad:n[0],value:a}}}function CP(e){return P(Rs(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,r)=>{P(Array.isArray(t)&&t.every(a=>a instanceof rt),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),P(r==null||r instanceof rt,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let n=B.gradients(()=>e(...t),t,r);return r!=null&&Vr(n.value.shape,r.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Im(n.grads),n}}function e7(e,t){P(Rs(e),()=>"The f passed in variableGrads(f) must be a function"),P(t==null||Array.isArray(t)&&t.every(u=>u instanceof Op),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let r=t!=null;if(!r){t=[];for(let u in B.registeredVariables)t.push(B.registeredVariables[u])}let n=r?t.filter(u=>!u.trainable):null,a=t.length;t=t.filter(u=>u.trainable),P(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${a} variables is trainable.`);let s=!0,{value:i,grads:o}=B.gradients(e,t,null,s);P(o.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),P(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((u,d)=>{o[d]!=null&&(l[u.name]=o[d])}),n!=null&&n.forEach(u=>l[u.name]=null),{value:i,grads:l}}function Fa(e){return B.customGrad(e)}function Im(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
|
|
the f you passed encloses all operations that lead from x to y.`)}function EP(e){let t={x:F(e,"x","neg")};return B.runKernel(tl,t)}var zt=W({neg_:EP});function RP(e){let t={x:F(e,"x","softplus")};return B.runKernel(sd,t)}var pd=W({softplus_:RP});function MP(e){let t=F(e,"x","logSigmoid");return Fa(r=>({value:zt(pd(zt(r))),gradFunc:n=>L(n,Nr(zt(r)))}))(t)}var FP=W({logSigmoid_:MP});function $P(e,t=null,r=!1){let n={x:F(e,"x","max")},a={reductionIndices:t,keepDims:r};return B.runKernel(fi,n,a)}var mr=W({max_:$P});function PP(e,t){let r=F(e,"a","sub"),n=F(t,"b","sub");[r,n]=Ot(r,n);let a={a:r,b:n};return B.runKernel(_i,a)}var ce=W({sub_:PP});function _P(e,t=null,r=!1){let n=F(e,"x","sum");n.dtype==="bool"&&(n=me(n,"int32"));let a={x:n},s={axis:t,keepDims:r};return B.runKernel(Fi,a,s)}var ke=W({sum_:_P});function zP(e,t=-1){let r=F(e,"logits","logSoftmax");if(t===-1&&(t=r.rank-1),t!==r.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${r.rank} and axis was ${t}`);return Fa((n,a)=>{let s=mr(n,t,!0),i=ce(n,s),o=ce(me(i,"float32"),Mn(ke(Rn(i),t,!0)));return a([o]),{value:o,gradFunc:(l,u)=>{let[d]=u,h=!0,p=Rn(d);return ce(l,L(ke(l,t,h),p))}}})(r)}var U2=W({logSoftmax_:zP});function G2(e,t){for(let r=0;r<e.length;++r)if(e[e.length-r-1]!==t-1-r)return!1;return!0}function t7(e,t,r){let n=e.length+t.length,a=[],s=0,i=0;for(let o=0;o<n;o++)r.indexOf(o)===-1?a.push(e[s++]):a.push(t[i++]);return a}function r7(e,t){let r=[],n=e.length;for(let s=0;s<n;s++)t.indexOf(s)===-1&&r.push(e[s]);let a=t.map(s=>e[s]);return[r,a]}function Eo(e,t){let r=t.map(n=>1);return t7(e,r,t)}function OP(e,t,r){P(G2(t,r),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${r} input.`)}function n7(e,t){if(G2(e,t))return null;let r=[];for(let n=0;n<t;++n)e.indexOf(n)===-1&&r.push(n);return e.forEach(n=>r.push(n)),r}function j2(e){return e.map((t,r)=>[r,t]).sort((t,r)=>t[1]-r[1]).map(t=>t[0])}function DP(e,t){let r=[];for(let n=t-e;n<t;++n)r.push(n);return r}function LP(e,t=null,r=!1){let n=F(e,"x","logSumExp"),a=Un(t,n.shape),s=mr(n,a,!0),i=ce(n,s),o=Rn(i),l=ke(o,a),u=Mn(l),d=le(G(s,u.shape),u);if(r){let h=Eo(d.shape,a);return G(d,h)}return d}var a7=W({logSumExp_:LP});function BP(e,t){let r=F(e,"a","logicalAnd","bool"),n=F(t,"b","logicalAnd","bool");bt(r.shape,n.shape);let a={a:r,b:n};return B.runKernel(el,a)}var fa=W({logicalAnd_:BP});function WP(e){let t={x:F(e,"x","logicalNot","bool")};return B.runKernel(Yu,t)}var Sm=W({logicalNot_:WP});function VP(e,t){let r=F(e,"a","logicalOr","bool"),n=F(t,"b","logicalOr","bool");bt(r.shape,n.shape);let a={a:r,b:n};return B.runKernel(th,a)}var H2=W({logicalOr_:VP});function UP(e,t){let r=F(e,"a","logicalXor","bool"),n=F(t,"b","logicalXor","bool");return bt(r.shape,n.shape),fa(H2(e,t),Sm(fa(e,t)))}var GP=W({logicalXor_:UP});function jP(e,t,r,n,a){let s=F(e,"x","maxPool"),i=1,o=s,l=!1;s.rank===3&&(l=!0,o=G(s,[1,s.shape[0],s.shape[1],s.shape[2]])),P(o.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),P(Pa(r,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${r} and dilations '${i}'`),Ur("maxPool",n,a);let u={x:o},d={filterSize:t,strides:r,pad:n,dimRoundingMode:a},h=B.runKernel(gi,u,d);return l?G(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Tm=W({maxPool_:jP});function HP(e,t=[1,1,1],r,n,a,s="NDHWC"){let i=F(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=G(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),P(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),P(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),Ur("maxPool3d",n,a);let u={x:o},d={filterSize:t,strides:r,pad:n,dimRoundingMode:a,dataFormat:s},h=B.runKernel(nh,u,d);return l?G(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var q2=W({maxPool3d_:HP});function qP(e,t,r,n,a=!1){let s={x:F(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:r,pad:n,includeBatchInIndex:a},o=B.runKernel(um,s,i);return{result:o[0],indexes:o[1]}}var s7=W({maxPoolWithArgmax_:qP});function KP(e,t){let r=F(e,"a","maximum"),n=F(t,"b","maximum");[r,n]=Ot(r,n),r.dtype==="bool"&&(r=me(r,"int32"),n=me(n,"int32")),bt(r.shape,n.shape);let a={a:r,b:n};return B.runKernel(mi,a)}var es=W({maximum_:KP});function XP(e,t=null,r=!1){let n={x:F(e,"x","mean")},a={axis:t,keepDims:r};return B.runKernel(yi,n,a)}var Bt=W({mean_:XP});function Wt(e,t="float32"){if(t==="complex64"){let n=Wt(e,"float32"),a=Wt(e,"float32");return Ps(n,a)}let r=Gf(Tt(e),t);return B.makeTensor(r,e,t)}function hn(e,t="float32"){if(t==="complex64"){let n=hn(e,"float32"),a=Wt(e,"float32");return Ps(n,a)}let r=l2(Tt(e),t);return B.makeTensor(r,e,t)}function ZP(e,t,{indexing:r="xy"}={}){if(r!=="xy"&&r!=="ij")throw new TypeError(`${r} is not a valid third argument to meshgrid`);if(e===void 0)return[];let n=F(e,"x","meshgrid",e instanceof rt?e.dtype:"float32");if(t===void 0)return[n];let a=F(t,"y","meshgrid",t instanceof rt?t.dtype:"float32"),s=Tt(n.shape),i=Tt(a.shape);return r==="xy"?(n=G(n,[1,-1]),a=G(a,[-1,1]),[Je(hn([i,1],n.dtype),n),Je(a,hn([1,s],a.dtype))]):(n=G(n,[-1,1]),a=G(a,[1,-1]),[Je(n,hn([1,i],n.dtype)),Je(hn([s,1],a.dtype),a)])}function YP(e,t=null,r=!1){let n={x:F(e,"x","min")},a={axis:t,keepDims:r};return B.runKernel(Ai,n,a)}var Os=W({min_:YP});function JP(e,t){let r=F(e,"a","minimum"),n=F(t,"b","minimum");[r,n]=Ot(r,n),r.dtype==="bool"&&(r=me(r,"int32"),n=me(n,"int32")),bt(r.shape,n.shape);let a={a:r,b:n};return B.runKernel(xi,a)}var vh=W({minimum_:JP});function QP(e,t,r){P(r==="reflect"||r==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${r}.`);let n=F(e,"x","mirrorPad");if(n.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");P(t.length===n.rank,()=>`Padding doesn't match input. Must be ${n.rank}. Got ${t.length}.`);let a=r==="reflect"?1:0;for(let o=0;o<n.rank;o++)P(t[o].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),P(t[o][0]>=0&&t[o][0]<=n.shape[o]-a&&t[o][1]>=0&&t[o][1]<=n.shape[o]-a,()=>`Padding in dimension ${o} cannot be greater than or equal to ${n.shape[o]-a} or less than 0 for input of shape ${n.shape}`);let s={paddings:t,mode:r},i={x:n};return B.runKernel(bi,i,s)}var i7=W({mirrorPad_:QP});function e_(e,t){let r=F(e,"a","mod"),n=F(t,"b","mod");[r,n]=Ot(r,n);let a={a:r,b:n};return B.runKernel(Ju,a)}var hd=W({mod_:e_});function t_(e){let t=F(e,"x","square"),r={};return B.runKernel("Square",{x:t},r)}var At=W({square_:t_});function r_(e,t=null,r=!1){e=F(e,"x","moments");let n=Un(t,e.shape),a=Bt(e,n,r),s=a.shape;r||(s=Eo(a.shape,n));let i=At(ce(me(e,"float32"),G(a,s))),o=Bt(i,n,r);return{mean:a,variance:o}}var Nm=W({moments_:r_});function n_(e,t,r,n){let a=F(t,"data","multiRNNCell"),s=Dp(r,"c","multiRNNCell"),i=Dp(n,"h","multiRNNCell"),o=a,l=[];for(let h=0;h<e.length;h++){let p=e[h](o,s[h],i[h]);l.push(p[0]),l.push(p[1]),o=p[1]}let u=[],d=[];for(let h=0;h<l.length;h+=2)u.push(l[h]),d.push(l[h+1]);return[u,d]}var a_=W({multiRNNCell_:n_});function s_(e,t,r,n=!1){let a=F(e,"logits","multinomial"),s=a.size,i=a.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);r=r||Math.random();let o={logits:i===1?G(a,[1,-1]):a},l={numSamples:t,seed:r,normalized:n},u=B.runKernel(dm,o,l);return i===1?G(u,[u.size]):u}var o7=W({multinomial_:s_});function i_(e,t){let r=F(e,"a","notEqual","string_or_numeric"),n=F(t,"b","notEqual","string_or_numeric");[r,n]=Ot(r,n),bt(r.shape,n.shape);let a={a:r,b:n};return B.runKernel(rl,a)}var ku=W({notEqual_:i_});function o_(e){let t={x:F(e,"x","onesLike")};return B.runKernel(sl,t)}var Fn=W({onesLike_:o_});function l_(e,t){let r=F(e,"v1","outerProduct"),n=F(t,"v2","outerProduct");P(r.rank===1&&n.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${r.rank} and ${n.rank}.`);let a=G(r,[-1,1]),s=G(n,[1,-1]);return Je(a,s)}var u_=W({outerProduct_:l_});function d_(e,t,r=0){let n=F(e,"x","pad");if(n.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let a={paddings:t,constantValue:r},s={x:n};return B.runKernel(wi,s,a)}var Hn=W({pad_:d_});function p_(e,t,r=0){return P(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),Hn(e,[t],r)}var h_=W({pad1d_:p_});function c_(e,t,r=0){return P(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Hn(e,t,r)}var f_=W({pad2d_:c_});function m_(e,t,r=0){return P(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Hn(e,t,r)}var g_=W({pad3d_:m_});function y_(e,t,r=0){return P(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Hn(e,t,r)}var A_=W({pad4d_:y_});function x_(e,t,r){let n=F(e,"x","spaceToBatchND");P(n.rank>=1+t.length,()=>`input rank ${n.rank} should be > than [blockShape] ${t.length}`),P(r.length===t.length,()=>`paddings.shape[0] ${r.length} must be equal to [blockShape] ${t.length}`),P(n.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+r[l-1][0]+r[l-1][1])%t[l-1]===0:i,!0),()=>`input spatial dimensions ${n.shape.slice(1)} with paddings ${r.toString()} must be divisible by blockShapes ${t.toString()}`);let a={x:n},s={blockShape:t,paddings:r};return B.runKernel(gl,a,s)}var Cm=W({spaceToBatchND_:x_});function b_(e,t,r,n,a,s,i){a==null&&(a=[1,1]),s==null&&(s=1),n===0&&(n="valid");let o=F(e,"x","maxPool"),l=o,u=!1;o.rank===3&&(u=!0,l=G(o,[1,o.shape[0],o.shape[1],o.shape[2]])),P(Pa(s,a),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${a}'`);let d=Rk(l.shape,t,s,a,n),h=[d.dilationHeight,d.dilationWidth],p;n==="same"?p=w_([d.filterHeight,d.filterWidth],h):p=[[0,0],[0,0]];let c=h[0]===1&&h[1]===1,[f,m]=v_([d.inHeight,d.inWidth],h,p),g=c?n:"valid",y=c?l:Cm(l,h,f),A=(r==="avg"?()=>Am(y,t,s,g,i):()=>Tm(y,t,s,g,i))(),x=c?A:xm(A,h,m);return u?G(x,[x.shape[1],x.shape[2],x.shape[3]]):x}function v_(e,t,r){let n=r.map(d=>d[0]),a=r.map(d=>d[1]),s=e.concat(n,a),i=t.map((d,h)=>(d-s[h]%d)%d),o=a.map((d,h)=>d+i[h]),l=t.map((d,h)=>[n[h],o[h]]),u=t.map((d,h)=>[0,i[h]]);return[l,u]}function w_(e,t){let r=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),n=r.map(s=>Math.floor(s/2)),a=r.map((s,i)=>s-n[i]);return r.map((s,i)=>[n[i],a[i]])}var k_=W({pool_:b_});function I_(e,t){let r=F(e,"base","pow"),n=F(t,"exp","pow");[r,n]=Ot(r,n);let a={a:r,b:n};return B.runKernel(ki,a)}var Ds=W({pow_:I_});function S_(e,t){let r=F(e,"x","prelu"),n=F(t,"alpha","prelu"),a={x:r,alpha:n};return B.runKernel(Ii,a)}var Em=W({prelu_:S_});function T_(e,t=null,r=!1){let n=F(e,"x","prod");n.dtype==="bool"&&(n=me(n,"int32"));let a={x:n},s={axis:t,keepDims:r};return B.runKernel(ll,a,s)}var K2=W({prod_:T_});function N_(e,t,r){let n=Tt(e),a=null;if(r==null||r==="float32")a=new Float32Array(n);else if(r==="int32")a=new Int32Array(n);else if(r==="bool")a=new Uint8Array(n);else throw new Error(`Unknown data type ${r}`);for(let s=0;s<n;s++)a[s]=t();return B.makeTensor(a,e,r)}var C_=W({rand_:N_}),X2=Oo(Vf()),Z2=class{constructor(e,t,r,n,a){this.mean=e,this.stdDev=t,this.dtype=r,this.nextVal=NaN,this.truncated=n,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let s=a||Math.random();this.random=X2.alea(s.toString())}nextValue(){if(!isNaN(this.nextVal)){let n=this.nextVal;return this.nextVal=NaN,n}let e,t,r=!1;for(;!r;){let n,a,s;do n=2*this.random()-1,a=2*this.random()-1,s=n*n+a*a;while(s>=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*n*i,t=this.mean+this.stdDev*a*i,(!this.truncated||this.isValidTruncated(e))&&(r=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},E_=class{constructor(e,t,r,n){this.alpha=e,this.beta=1/t,this.dtype=r;let a=n||Math.random();this.randu=X2.alea(a.toString()),this.randn=new Z2(0,1,r,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,r,n,a,s;for(;;){do n=this.randn.nextValue(),s=1+this.c*n;while(s<=0);if(s*=s*s,e=n*n,t=1-.331*e*e,r=.5*e+this.d*(1-s+Math.log(s)),a=this.randu(),a<t||Math.log(a)<r)break}return s=1/this.beta*this.d*s,this.alpha<1&&(s*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(s)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},R_=class{constructor(e=0,t=1,r,n){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=r,n==null&&(n=Math.random()),typeof n=="number"&&(n=n.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=X2.alea(n)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function M_(e,t,r=1,n="float32",a){if(r==null&&(r=1),n==null&&(n="float32"),n!=="float32"&&n!=="int32")throw new Error(`Unsupported data type ${n}`);let s=new E_(t,r,n,a),i=We(e,n);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var F_=W({randomGamma_:M_});function $_(e,t=0,r=1,n,a){if(n!=null&&n==="bool")throw new Error(`Unsupported data type ${n}`);let s=new Z2(t,r,n,!1,a),i=We(e,n);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var l7=W({randomNormal_:$_});function P_(e,t=0,r=1,n="float32",a){let s=We(e,n),i=new R_(t,r,null,a);for(let o=0;o<s.values.length;o++)s.values[o]=i.nextValue();return s.toTensor()}var cd=W({randomUniform_:P_});function Iu(e,t,r=1,n="float32"){if(r===0)throw new Error("Cannot have a step of zero");let a={start:e,stop:t,step:r,dtype:n};return B.runKernel(ed,{},a)}function __(e){let t={input:F(e,"input","real")};return B.runKernel(ah,t)}var Bp=W({real_:__});function z_(e){let t={x:F(e,"x","reciprocal")};return B.runKernel(td,t)}var u7=W({reciprocal_:z_});function O_(e){let t={x:F(e,"x","relu")};return B.runKernel(Si,t)}var _a=W({relu_:O_});function D_(e){let t={x:F(e,"x","relu6")};return B.runKernel(Ni,t)}var Y2=W({relu6_:D_});function L_(e,t){let r={x:F(e,"x","reverse")},n={dims:t};return B.runKernel(dl,r,n)}var $n=W({reverse_:L_});function B_(e){let t=F(e,"x","reverse");return P(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),$n(t,0)}var W_=W({reverse1d_:B_});function V_(e,t){let r=F(e,"x","reverse");return P(r.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${r.rank}.`),$n(r,t)}var U_=W({reverse2d_:V_});function G_(e,t){let r=F(e,"x","reverse");return P(r.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${r.rank}.`),$n(r,t)}var j_=W({reverse3d_:G_});function H_(e,t){let r=F(e,"x","reverse");return P(r.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${r.rank}.`),$n(r,t)}var q_=W({reverse4d_:H_});function K_(e){let t={x:F(e,"x","round")};return B.runKernel(pl,t)}var J2=W({round_:K_});function X_(e){let t={x:F(e,"x","rsqrt","float32")};return B.runKernel(Ci,t)}var Q2=W({rsqrt_:X_});function Se(e,t){if((Sr(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&Sr(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Li(e,[],[],t)}function Z_(e){let t={x:F(e,"x","selu")};return B.runKernel(nd,t)}var eA=W({selu_:Z_});function Y_(e,t,r,n,a,s=[1,1],i="NHWC"){let o=F(e,"x","separableConv2d"),l=F(t,"depthwiseFilter","separableConv2d"),u=F(r,"pointwiseFilter","separableConv2d"),d=o,h=!1;if(o.rank===3&&(h=!0,d=G(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");P(d.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${d.rank}.`),P(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),P(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),P(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),P(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let p=l.shape[2],c=l.shape[3];P(u.shape[2]===p*c,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${p*c}, but got ${u.shape[2]}.`);let f=Ah(d,l,n,a,i,s),m=zs(f,u,1,"valid",i);return h?G(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var d7=W({separableConv2d_:Y_});async function J_(e,t){let r=F(e,"x","setdiff1d"),n=F(t,"y","setdiff1d");P(r.dtype===n.dtype,()=>`x and y should have the same dtype, but got x (${r.dtype}) and y (${n.dtype}).`),P(r.rank===1,()=>`x should be 1D tensor, but got x (${r.shape}).`),P(n.rank===1,()=>`y should be 1D tensor, but got y (${n.shape}).`);let a=await r.data(),s=await n.data(),i=new Set(s),o=0;for(let d=0;d<a.length;d++)i.has(a[d])||o++;let l=new ar([o],r.dtype),u=new ar([o],"int32");for(let d=0,h=0;d<a.length;d++)i.has(a[d])||(l.values[h]=a[d],u.values[h]=d,h++);return[l.toTensor(),u.toTensor()]}var p7=J_;function Q_(e){let t={x:F(e,"x","sign")};return B.runKernel(ad,t)}var h7=W({sign_:Q_});function ez(e){let t={x:F(e,"x","sin","float32")};return B.runKernel(Ei,t)}var tA=W({sin_:ez});function tz(e){let t={x:F(e,"x","sinh")};return B.runKernel(ml,t)}var rA=W({sinh_:tz});function rz(e,t,r){let n=F(e,"x","slice1d");return P(n.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${n.rank} tensor`),Pe(n,[t],[r])}var Rm=W({slice1d_:rz});function nz(e,t,r){let n=F(e,"x","slice2d");return P(n.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${n.rank} tensor`),Pe(n,t,r)}var nA=W({slice2d_:nz});function az(e,t,r){let n=F(e,"x","slice3d");return P(n.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${n.rank} tensor`),Pe(n,t,r)}var El=W({slice3d_:az});function sz(e,t,r){let n=F(e,"x","slice4d");return P(n.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${n.rank} tensor`),Pe(n,t,r)}var Ro=W({slice4d_:sz});function iz(e,t=-1){let r=F(e,"logits","softmax","float32");if(t===-1&&(t=r.rank-1),t!==r.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${r.rank} and dim was ${t}`);let n={logits:r},a={dim:t};return B.runKernel($i,n,a)}var fd=W({softmax_:iz});function oz(e){P(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return B.runKernel(nm,t)}var Mm=W({fft_:oz});function lz(e){P(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return B.runKernel(am,t)}var Wp=W({ifft_:lz});function uz(e){let t=e.shape[e.shape.length-1],r=e.size/t,n;if(t<=2){let a=G(e,[r,t]);n=Wp(a)}else{let a=[r,2*(t-1)],s=G(Bp(e),[r,t]),i=G(vm(e),[r,t]),o=$n(Pe(s,[0,1],[r,t-2]),1),l=L($n(Pe(i,[0,1],[r,t-2]),1),Se(-1)),u=kt([s,o],1),d=kt([i,l],1),h=G(Ps(u,d),[a[0],a[1]]);n=Wp(h)}if(n=Bp(n),e.rank===3&&e.shape[0]!==0){let a=n,s=e.shape[0];n=G(n,[s,n.shape[0]/s,n.shape[1]]),a.dispose()}return n}var aA=W({irfft_:uz});function dz(e,t,r=0){let n={x:F(e,"x","split")},a={numOrSizeSplits:t,axis:r};return B.runKernel(yl,n,a)}var Xt=W({split_:dz});function pz(e,t){P(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let r=e.shape[e.shape.length-1],n=e.size/r,a;if(t!=null&&t<r){let f=e.shape.map(g=>0),m=e.shape.map(g=>g);m[e.shape.length-1]=t,a=Pe(e,f,m),r=t}else if(t!=null&&t>r){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-r,a=kt([e,Wt(f)],e.shape.length-1),r=t}else a=e;let s=at(a),i=G(Ps(a,s),[n,r]),o=Mm(i),l=Math.floor(r/2)+1,u=Bp(o),d=vm(o),h=Xt(u,[l,r-l],u.shape.length-1),p=Xt(d,[l,r-l],d.shape.length-1),c=a.shape.slice();return c[a.shape.length-1]=l,G(Ps(h[0],p[0]),c)}var Fm=W({rfft_:pz});function hz(e){let t={x:F(e,"x","sqrt","float32")};return B.runKernel(Mi,t)}var Er=W({sqrt_:hz});function cz(e,t){let r=F(e,"a","squaredDifference"),n=F(t,"b","squaredDifference");[r,n]=Ot(r,n),bt(r.shape,n.shape);let a={a:r,b:n},s={};return B.runKernel(Pi,a,s)}var sA=W({squaredDifference_:cz});function fz(e,t){let r=F(e,"x","squeeze");return G(r,gw(r.shape,t).newShape)}var et=W({squeeze_:fz});function mz(e,t=0){let r=Dp(e,"tensors","stack","string_or_numeric");P(r.length>=1,()=>"Pass at least one tensor to tf.stack"),r.length>0&&P(t<=r[0].rank,()=>"Axis must be <= rank of the tensor");let n=r,a={axis:t};return B.runKernel(ol,n,a)}var or=W({stack_:mz});function gz(e,t=0){let r={x:F(e,"x","step")},n={alpha:t};return B.runKernel(Di,r,n)}var wh=W({step_:gz});function yz(e,t,r,n,a=0,s=0,i=0,o=0,l=0){let u={x:F(e,"x","stridedSlice","string_or_numeric")},d={begin:t,end:r,strides:n,beginMask:a,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return B.runKernel(Al,u,d)}var c7=W({stridedSlice_:yz});function Az(e){let t={x:F(e,"x","tan","float32")};return B.runKernel(xl,t)}var f7=W({tan_:Az});function St(e,t){Do(e);let r=Ma(e,t);if(r.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Li(e,null,r,t)}function pa(e,t,r){if(Do(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let n=Ma(e,r);if(n.length!==2&&n.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Li(e,t,n,r)}function xz(e,t,r){if(Do(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let n=Ma(e,r);if(n.length!==4&&n.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Li(e,t,n,r)}function bz(e,t,r){if(Do(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let n=Ma(e,r);if(n.length!==5&&n.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Li(e,t,n,r)}function vz(e,t,r){if(Do(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let n=Ma(e,r);if(n.length!==6&&n.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||n,Li(e,t,n,r)}function wz(e,t=1,r=!0){let n=F(e,"x","topk");if(n.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let a=n.shape[n.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>a)throw new Error(`'k' passed to topk() must be <= the last dimension (${a}) but got ${t}`);let s={x:n},i={k:t,sorted:r},[o,l]=B.runKernel(bl,s,i);return{values:o,indices:l}}var m7=W({topk_:wz});function kz(e,t=0,r=1,n,a){if(n!=null&&n==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new Z2(t,r,n,!0,a),i=We(e,n);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var $m=W({truncatedNormal_:kz});function Iz(e,t=0){let r=F(e,"x","unique","string_or_numeric");P(r.rank>0,()=>"The input tensor must be at least 1D");let n={x:r},a={axis:t},[s,i]=B.runKernel(mm,n,a);return{values:s,indices:i}}var by=W({unique_:Iz});function Sz(e,t,r){let n=F(e,"x","unsortedSegmentSum"),a=F(t,"segmentIds","unsortedSegmentSum","int32");P(Au(r),()=>"numSegments must be of dtype int");let s={x:n,segmentIds:a},i={numSegments:r};return B.runKernel(dh,s,i)}var g7=W({unsortedSegmentSum_:Sz});function Tz(e,t=0){let r=F(e,"x","unstack","string_or_numeric");P(t>=-r.shape.length&&t<r.shape.length,()=>`Axis = ${t} is not in [-${r.shape.length}, ${r.shape.length})`);let n={value:r},a={axis:t};return B.runKernel(wl,n,a)}var tn=W({unstack_:Tz});function y7(e,t=!0,r,n){return B.makeVariable(e,t,r,n)}function A7(e,t){let r=[];for(let s=0;s<t.length;s++)t[s]&&r.push(s);let n=We(e,"int32"),a=We([r.length,e.length],"int32");for(let s=0;s<r.length;s++){let i=n.indexToLoc(r[s]),o=s*e.length;a.values.set(i,o)}return a.toTensor()}async function Nz(e){let t=F(e,"condition","whereAsync","bool"),r=await t.data(),n=A7(t.shape,r);return e!==t&&t.dispose(),n}var iA=Nz;async function Cz(e,t,r){let n=F(e,"tensor","boolMask"),a=F(t,"mask","boolMask","bool"),s=r==null?0:r,i=a.rank,o=n.shape;P(i>0,()=>"mask cannot be scalar"),Vr(o.slice(s,s+i),a.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let m=s;m<s+i;m++)l*=o[m];let u=o.slice(0,s).concat([l],o.slice(s+i)),d=G(n,u),h=G(a,[-1]),p=await iA(h),c=et(p,[1]),f=wu(d,c,s);return e!==n&&n.dispose(),t!==a&&a.dispose(),c.dispose(),d.dispose(),h.dispose(),p.dispose(),f}var Ez=Cz;function Rz(e,t="euclidean",r=null,n=!1){e=F(e,"x","norm");let a=x7(e,t,r),s=a.shape;if(n){let i=Un(r,e.shape);s=Eo(a.shape,i)}return G(a,s)}function x7(e,t,r=null){if(e.rank===0)return rr(e);if(e.rank!==1&&r===null)return x7(G(e,[-1]),t,r);if(e.rank===1||typeof r=="number"||Array.isArray(r)&&r.length===1){if(t===1)return ke(rr(e),r);if(t===1/0)return mr(rr(e),r);if(t===-1/0)return Os(rr(e),r);if(t==="euclidean"||t===2)return Er(ke(Ds(rr(e),Se(2,"int32")),r));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(r)&&r.length===2){if(t===1)return mr(ke(rr(e),r[0]),r[1]-1);if(t===1/0)return mr(ke(rr(e),r[1]),r[0]);if(t===-1/0)return Os(ke(rr(e),r[1]),r[0]);if(t==="fro"||t==="euclidean")return Er(ke(At(e),r));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${r}`)}var oA=W({norm_:Rz});function Mz(e,t,r,n,a=!0){let s=F(e,"v","movingAverage"),i=F(t,"x","movingAverage"),o=F(r,"decay","movingAverage");Dw(s,i),P(Hs(s.shape,i.shape),()=>"Shape mismatch in v and x");let l=Se(1),u=ce(l,o),d=L(ce(i,s),u);if(a){P(n!=null,()=>"When using zeroDebias: true, step is required.");let h=F(n,"step","movingAverage");d=pe(d,ce(l,Ds(o,h)))}return le(s,d)}var Fz=W({movingAverage_:Mz});function $z(e,t,r){let n=F(e,"indices","scatterND","int32"),a=F(t,"updates","scatterND");k2(a,n,r);let s={indices:n,updates:a},i={shape:r};return B.runKernel(hl,s,i)}var b7=W({scatterND_:$z});function Pz(e,t,r,n){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let a=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(r.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${r.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===a))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${a}]`);if(t.dtype!==n.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function _z(e,t,r,n=0){let a=F(e,"sparseIndices","sparseToDense","int32"),s=F(t,"sparseValues","sparseToDense"),i=F(n,"defaultValue","sparseToDense",s.dtype);Pz(a,s,r,i);let o={sparseIndices:a,sparseValues:s,defaultValue:i},l={outputShape:r};return B.runKernel(lh,o,l)}var lA=W({sparseToDense_:_z});function zz(e,t){let r=F(t,"indices","gatherND","int32"),n={params:F(e,"x","gatherND","string_or_numeric"),indices:r};return B.runKernel(Zo,n)}var v7=W({gatherND_:zz});function Oz(e,t){if(t==null)return e.shape.slice();if(Hs(e.shape,t))return t;if(e.shape.length===t.length){let r=[];for(let n=0;n<e.shape.length;n++)t[n]==null&&e.shape[n]!=null?r.push(e.shape[n]):r.push(t[n]);return r}return t}function Dz(e,t,r,n){let a=F(e,"x","dropout");if(P(a.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${a.dtype} tensor instead.`),P(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof rt?a.clone():a;let s=Oz(a,r),i=1-t,o=pe(bh(le(cd(s,0,1,"float32",n),i)),i);return L(a,o)}var w7=W({dropout_:Dz});function k7(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function uA(e,t,r){let n=1-e%2,a=new Float32Array(e);for(let s=0;s<e;++s){let i=2*Math.PI*s/(e+n-1);a[s]=t-r*Math.cos(i)}return St(a,"float32")}async function Lz(e,t,r=1){let n=F(e,"predictions","inTopK"),a=F(t,"targets","inTopK");P(n.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${n.rank}`),P(n.rank-1===a.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${n.rank} and targets rank ${a.rank}`),Vr(n.shape.slice(0,n.shape.length-1),a.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=n.shape[n.shape.length-1];P(r>0&&r<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${r}`);let i=await n.data(),o=await a.data(),[l,u]=[i.length/s,s],d=yw("bool",l);for(let h=0;h<l;h++){let p=h*u,c=i.subarray(p,p+u),f=[];for(let m=0;m<c.length;m++)f.push({value:c[m],index:m});f.sort((m,g)=>g.value-m.value),d[h]=0;for(let m=0;m<r;m++)if(f[m].index===o[h]){d[h]=1;break}}return e!==n&&n.dispose(),t!==a&&a.dispose(),ct(d,a.shape,"bool")}var Bz=Lz,Ls={};Le(Ls,{conv2d:()=>Uz,depthwiseConv2d:()=>qz,matMul:()=>Xz});function Wz(e,t,r,n,a,s="NHWC",i){let o=e;e.rank===3&&(o=G(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=G(t,[1,t.shape[0],t.shape[1],t.shape[2]])),P(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),P(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),P(r.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${r}.`);let u=s==="NHWC"?o.shape[3]:o.shape[1],d=s==="NHWC"?l.shape[3]:l.shape[1];P(u===r[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${r[2]}.`),P(d===r[3],()=>`Error in conv2dDerFilter: depth of dy (${d}) must match output depth for filter (${r[3]}).`),Ur("conv2dDerFilter",a,i);let h={x:o,dy:l},p={strides:n,pad:a,dataFormat:s,dimRoundingMode:i,filterShape:r};return B.runKernel(Xf,h,p)}var dA=W({conv2DBackpropFilter_:Wz});function Pm(e,t,r){if(r==null||r==="linear")return e;if(r==="relu")return L(e,wh(t));throw new Error(`Cannot compute gradient for fused activation ${r}.`)}function _m(e,t){let r=t,n=Zt(e.shape,t.shape);return n.length>0&&(r=ke(r,n)),G(r,e.shape)}function zm(e,t,r,n){if(t==="linear")return e;if(t==="relu")return _a(e);if(t==="elu")return xh(e);if(t==="relu6")return Y2(e);if(t==="prelu")return Em(e,r);if(t==="leakyrelu")return wm(e,n);if(t==="sigmoid")return Nr(e);throw new Error(`Unknown fused activation ${t}.`)}var Om=(e,t)=>!(e>0)||t==="linear";function Vz({x:e,filter:t,strides:r,pad:n,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:d}){if(l=l||"linear",Om(B.state.gradientDepth,l)===!1){let v=zs(e,t,r,n,a,s,i);return o!=null&&(v=le(v,o)),zm(v,l,u,d)}let h=F(e,"x","conv2d","float32"),p=F(t,"filter","conv2d","float32"),c=h,f=!1;h.rank===3&&(f=!0,c=G(h,[1,h.shape[0],h.shape[1],h.shape[2]])),P(c.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${c.rank}.`),P(p.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${p.rank}.`),Ur("fused conv2d",n,i),P(c.shape[3]===p.shape[2],()=>`Error in conv2d: depth of input (${c.shape[3]}) must match input depth for filter ${p.shape[2]}.`),P(Pa(r,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${r} and dilations '${s}'`),P(a==="NHWC",()=>`Error in conv2d: got dataFormat of ${a} but only NHWC is currently supported.`);let m=yh(c.shape,p.shape,r,s,n,i),g;o!=null&&(g=F(o,"bias","fused conv2d"),[g]=Ot(g,h),bt(m.outShape,g.shape));let y;u!=null&&(y=F(u,"prelu weights","fused conv2d"));let A=(v,S)=>{let[T,E,R,_]=S,M=Pm(v,R,l);P(_s(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let I=z2(E.shape,M,T,r,n),z=dA(E,M,T.shape,r,n),O=[I,z];if(_!=null){let j=_m(_,M);O.push(j)}return O},x={x:c,filter:p,bias:g,preluActivationWeights:y},b={strides:r,pad:n,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:d};return o==null?Fa((v,S,T)=>{let E=B.runKernel(Fs,x,b);return T([S,v,E]),f&&(E=G(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:A}})(c,p):Fa((v,S,T,E)=>{let R=B.runKernel(Fs,x,b);return E([S,v,R,T]),f&&(R=G(R,[R.shape[1],R.shape[2],R.shape[3]])),{value:R,gradFunc:A}})(c,p,g)}var Uz=W({fusedConv2d_:Vz});function Gz(e,t,r,n,a,s=[1,1],i){let o=e;e.rank===3&&(o=G(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=G(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:o,dy:l},d={strides:n,pad:a,dimRoundingMode:i,dilations:s,filterShape:r};return B.runKernel(Qf,u,d)}var I7=W({depthwiseConv2dNativeBackpropFilter_:Gz});function jz(e,t,r,n,a,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=G(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:o,filter:r},d={strides:n,pad:a,dimRoundingMode:i,dilations:s,inputShape:e},h=B.runKernel(em,u,d);return l?G(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var S7=W({depthwiseConv2dNativeBackpropInput_:jz});function Hz({x:e,filter:t,strides:r,pad:n,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:d}){if(Om(B.state.gradientDepth,l)===!1){let v=Ah(e,t,r,n,a,s,i);return o!=null&&(v=le(v,o)),zm(v,l,u,d)}let h=F(e,"x","depthwiseConv2d","float32"),p=F(t,"filter","depthwiseConv2d","float32"),c=h,f=!1;h.rank===3&&(f=!0,c=G(h,[1,h.shape[0],h.shape[1],h.shape[2]])),P(c.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${c.rank}.`),P(p.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${p.rank}.`),P(c.shape[3]===p.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${c.shape[3]}) must match the inChannels dimension in filter ${p.shape[2]}.`),s==null&&(s=[1,1]),P(Pa(r,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${s}'`),Ur("fused depthwiseConv2d",n,i);let m=yh(c.shape,p.shape,r,s,n,i,!0),g;o!=null&&(g=F(o,"bias","fused conv2d"),[g]=Ot(g,h),bt(m.outShape,g.shape));let y;u!=null&&(y=F(u,"prelu weights","fused depthwiseConv2d"));let A=(v,S)=>{P(_s(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[T,E,R,_]=S,M=Pm(v,R,l),I=S7(E.shape,M,T,r,n,s,i),z=I7(E,M,T.shape,r,n,s,i);if(_!=null){let O=_m(g,M);return[I,z,O]}return[I,z]},x={x:c,filter:p,bias:g,preluActivationWeights:y},b={strides:r,pad:n,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:d};return o==null?Fa((v,S,T)=>{let E=B.runKernel($s,x,b);return T([S,v,E]),f&&(E=G(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:A}})(c,p):Fa((v,S,T,E)=>{let R=B.runKernel($s,x,b);return E([S,v,R,T]),f&&(R=G(R,[R.shape[1],R.shape[2],R.shape[3]])),{value:R,gradFunc:A}})(c,p,g)}var qz=W({fusedDepthwiseConv2d_:Hz});function Kz({a:e,b:t,transposeA:r=!1,transposeB:n=!1,bias:a,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(Om(B.state.gradientDepth,s)===!1){let _=Je(e,t,r,n);return a!=null&&(_=le(_,a)),zm(_,s,i,o)}let l=F(e,"a","fused matMul"),u=F(t,"b","fused matMul");[l,u]=Ot(l,u);let d=r?l.shape[l.rank-2]:l.shape[l.rank-1],h=n?u.shape[u.rank-1]:u.shape[u.rank-2],p=r?l.shape[l.rank-1]:l.shape[l.rank-2],c=n?u.shape[u.rank-2]:u.shape[u.rank-1],f=l.shape.slice(0,-2),m=u.shape.slice(0,-2),g=Tt(f),y=Tt(m);P(d===h,()=>`Error in fused matMul: inner shapes (${d}) and (${h}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${r} and transposeB=${n} must match.`);let A=bt(l.shape.slice(0,-2),u.shape.slice(0,-2)).concat([p,c]),x=r?G(l,[g,d,p]):G(l,[g,p,d]),b=n?G(u,[y,c,h]):G(u,[y,h,c]),v;a!=null&&(v=F(a,"bias","fused matMul"),[v]=Ot(v,l),bt(A,v.shape));let S;i!=null&&(S=F(i,"prelu weights","fused matMul"));let T=(_,M)=>{let[I,z,O,j]=M,X=Pm(G(_,O.shape),O,s),D,Q;if(!r&&!n?(D=Je(X,z,!1,!0),Q=Je(I,X,!0,!1)):!r&&n?(D=Je(X,z,!1,!1),Q=Je(X,I,!0,!1)):r&&!n?(D=Je(z,X,!1,!0),Q=Je(I,X,!1,!1)):(D=Je(z,X,!0,!0),Q=Je(X,I,!0,!0)),a!=null){let V=_m(j,X);return[D,Q,V]}else return[D,Q]},E={a:x,b,bias:v,preluActivationWeights:S},R={transposeA:r,transposeB:n,activation:s,leakyreluAlpha:o};return a==null?Fa((_,M,I)=>{let z=B.runKernel(Ms,E,R);return I([_,M,z]),{value:G(z,A),gradFunc:T}})(x,b):Fa((_,M,I,z)=>{let O=B.runKernel(Ms,E,R);return z([_,M,O,I]),{value:G(O,A),gradFunc:T}})(x,b,v)}var Xz=W({fusedMatMul_:Kz});function Zz(e){return uA(e,.54,.46)}var Yz=W({hammingWindow_:Zz});function Jz(e){return uA(e,.5,.5)}var T7=W({hannWindow_:Jz});function Qz(e,t,r,n=!1,a=0){let s=0,i=[];for(;s+t<=e.size;)i.push(Pe(e,s,t)),s+=r;if(n)for(;s<e.size;){let o=s+t-e.size,l=kt([Pe(e,s,t-o),dd([o],a)]);i.push(l),s+=r}return i.length===0?pa([],[0,t]):G(kt(i),[i.length,t])}var N7=W({frame_:Qz});function eO(e,t,r,n,a=T7){n==null&&(n=k7(t));let s=N7(e,t,r),i=L(s,a(t));return Fm(i,n)}var tO=W({stft_:eO});function rO(e,t,r,n,a="bilinear",s=0){let i=F(e,"image","cropAndResize"),o=F(t,"boxes","cropAndResize","float32"),l=F(r,"boxInd","cropAndResize","int32"),u=o.shape[0];P(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),P(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${o.shape}.`),P(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${o.shape}.`),P(n.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${n.length}.`),P(n[0]>=1&&n[1]>=1,()=>`cropSize must be atleast [1,1], but was ${n}`),P(a==="bilinear"||a==="nearest",()=>`method must be bilinear or nearest, but was ${a}`);let d={image:i,boxes:o,boxInd:l},h={method:a,extrapolationValue:s,cropSize:n};return B.runKernel(Uo,d,h)}var nO=W({cropAndResize_:rO});function aO(e){let t=F(e,"image","flipLeftRight","float32");P(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let r={image:t};return B.runKernel(Ko,r,{})}var sO=W({flipLeftRight_:aO});function iO(e){let t=F(e,"image","grayscaleToRGB"),r=t.rank-1,n=t.shape[r];P(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),P(n===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${n}.`);let a=new Array(t.rank);return a.fill(1,0,r),a[r]=3,Bn(t,a)}var oO=W({grayscaleToRGB_:iO});function lO(e,t,r=0,n=.5){let a=F(e,"image","rotateWithOffset","float32");P(a.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${a.rank}.`);let s={image:a},i={radians:t,fillValue:r,center:n};return B.runKernel(Il,s,i)}var uO=W({rotateWithOffset_:lO});function md(e,t,r,n,a,s){n==null&&(n=.5),a==null&&(a=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return r=Math.min(r,i),P(0<=n&&n<=1,()=>`iouThreshold must be in [0, 1], but was '${n}'`),P(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),P(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),P(t.rank===1,()=>"scores must be a 1D tensor"),P(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),P(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:r,iouThreshold:n,scoreThreshold:a,softNmsSigma:s}}function dO(e,t,r,n=.5,a=Number.NEGATIVE_INFINITY){let s=F(e,"boxes","nonMaxSuppression","float32"),i=F(t,"scores","nonMaxSuppression","float32"),o=md(s,i,r,n,a);r=o.maxOutputSize,n=o.iouThreshold,a=o.scoreThreshold;let l={maxOutputSize:r,iouThreshold:n,scoreThreshold:a};return B.runKernel(nl,{boxes:s,scores:i},l)}var pO=W({nonMaxSuppression_:dO});function hO(e,t,r){let n=cO(e,t,r),a=n<0?-(n+1):n;e.splice(a,0,t)}function cO(e,t,r){return mO(e,t,r||fO)}function fO(e,t){return e>t?1:e<t?-1:0}function mO(e,t,r){let n=0,a=e.length,s=0,i=!1;for(;n<a;){s=n+(a-n>>>1);let o=r(t,e[s]);o>0?n=s+1:(a=s,i=!o)}return i?n:-n-1}function C7(e,t,r,n,a){return pA(e,t,r,n,a,0)}function E7(e,t,r,n,a,s){return pA(e,t,r,n,a,0,!1,s,!0)}function R7(e,t,r,n,a,s){return pA(e,t,r,n,a,s,!0)}function pA(e,t,r,n,a,s,i=!1,o=!1,l=!1){let u=[];for(let g=0;g<t.length;g++)t[g]>a&&u.push({score:t[g],boxIndex:g,suppressBeginIndex:0});u.sort(B3);let d=s>0?-.5/s:0,h=[],p=[];for(;h.length<r&&u.length>0;){let g=u.pop(),{score:y,boxIndex:A,suppressBeginIndex:x}=g;if(y<a)break;let b=!1;for(let v=h.length-1;v>=x;--v){let S=gO(e,A,h[v]);if(S>=n){b=!0;break}if(g.score=g.score*yO(n,d,S),g.score<=a)break}g.suppressBeginIndex=h.length,b||(g.score===y?(h.push(A),p.push(g.score)):g.score>a&&hO(u,g,B3))}let c=h.length,f=r-c;o&&f>0&&(h.push(...new Array(f).fill(0)),p.push(...new Array(f).fill(0)));let m={selectedIndices:h};return i&&(m.selectedScores=p),l&&(m.validOutputs=c),m}function gO(e,t,r){let n=e.subarray(t*4,t*4+4),a=e.subarray(r*4,r*4+4),s=Math.min(n[0],n[2]),i=Math.min(n[1],n[3]),o=Math.max(n[0],n[2]),l=Math.max(n[1],n[3]),u=Math.min(a[0],a[2]),d=Math.min(a[1],a[3]),h=Math.max(a[0],a[2]),p=Math.max(a[1],a[3]),c=(o-s)*(l-i),f=(h-u)*(p-d);if(c<=0||f<=0)return 0;let m=Math.max(s,u),g=Math.max(i,d),y=Math.min(o,h),A=Math.min(l,p),x=Math.max(y-m,0)*Math.max(A-g,0);return x/(c+f-x)}function yO(e,t,r){let n=Math.exp(t*r*r);return r<=e?n:0}function B3(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function AO(e,t,r,n=.5,a=Number.NEGATIVE_INFINITY){let s=F(e,"boxes","nonMaxSuppressionAsync"),i=F(t,"scores","nonMaxSuppressionAsync"),o=md(s,i,r,n,a);r=o.maxOutputSize,n=o.iouThreshold,a=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),u=l[0],d=l[1],{selectedIndices:h}=C7(u,d,r,n,a);return s!==e&&s.dispose(),i!==t&&i.dispose(),St(h,"int32")}var xO=AO;function bO(e,t,r,n=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=F(e,"boxes","nonMaxSuppression"),o=F(t,"scores","nonMaxSuppression"),l=md(i,o,r,n,a,s);r=l.maxOutputSize,n=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let u={boxes:i,scores:o},d={maxOutputSize:r,iouThreshold:n,scoreThreshold:a,softNmsSigma:s},h=B.runKernel(al,u,d);return{selectedIndices:h[0],selectedScores:h[1]}}var vO=W({nonMaxSuppressionWithScore_:bO});async function wO(e,t,r,n=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=F(e,"boxes","nonMaxSuppressionAsync"),o=F(t,"scores","nonMaxSuppressionAsync"),l=md(i,o,r,n,a,s);r=l.maxOutputSize,n=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let u=await Promise.all([i.data(),o.data()]),d=u[0],h=u[1],{selectedIndices:p,selectedScores:c}=R7(d,h,r,n,a,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:St(p,"int32"),selectedScores:St(c)}}var kO=wO;function IO(e,t,r,n=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=F(e,"boxes","nonMaxSuppression"),o=F(t,"scores","nonMaxSuppression"),l=md(i,o,r,n,a,null),u=l.maxOutputSize,d=l.iouThreshold,h=l.scoreThreshold,p={boxes:i,scores:o},c={maxOutputSize:u,iouThreshold:d,scoreThreshold:h,padToMaxOutputSize:s},f=B.runKernel(Qu,p,c);return{selectedIndices:f[0],validOutputs:f[1]}}var SO=W({nonMaxSuppressionPadded_:IO});async function TO(e,t,r,n=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=F(e,"boxes","nonMaxSuppressionAsync"),o=F(t,"scores","nonMaxSuppressionAsync"),l=md(i,o,r,n,a,null),u=l.maxOutputSize,d=l.iouThreshold,h=l.scoreThreshold,[p,c]=await Promise.all([i.data(),o.data()]),{selectedIndices:f,validOutputs:m}=E7(p,c,u,d,h,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:St(f,"int32"),validOutputs:Se(m,"int32")}}var NO=TO;function CO(e,t,r=!1,n=!1){let a=F(e,"images","resizeBilinear");P(a.rank===3||a.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${a.rank}.`),P(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),P(n===!1||r===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=G(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:r,halfPixelCenters:n,size:t},u=B.runKernel(Ti,o,l);return i?G(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var EO=W({resizeBilinear_:CO});function RO(e,t,r=!1,n=!1){let a=F(e,"images","resizeNearestNeighbor");P(a.rank===3||a.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${a.rank}.`),P(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),P(a.dtype==="float32"||a.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),P(n===!1||r===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=G(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:r,halfPixelCenters:n,size:t},u=B.runKernel(rd,o,l);return i?G(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var MO=W({resizeNearestNeighbor_:RO});function FO(e,t="binary",r=!1,n=.5){let a=F(e,"image","threshold"),s=.2989,i=.587,o=.114,l=a.shape[0]*a.shape[1],u=L(St([n]),255),d,h,p,c;if(P(a.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${a.rank}.`),P(a.shape[2]===3||a.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${a.shape[2]}.`),P(a.dtype==="int32"||a.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${a.dtype}.`),P(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),a.shape[2]===3){[d,h,p]=Xt(a,[1,1,1],-1);let m=L(d,s),g=L(h,i),y=L(p,o);c=le(le(m,g),y)}else c=e;if(t==="otsu"){let m=P2(me(J2(c),"int32"),ct([]),256);u=$O(m,l)}let f=r?Cl(c,u):fn(c,u);return me(L(f,255),"int32")}function $O(e,t){let r=St([-1]),n=St([0]),a=St([0]),s,i,o,l,u,d;for(let h=0;h<e.size-1;h++){s=Pe(e,0,h+1),i=Pe(e,h+1),u=pe(ke(s),t),d=pe(ke(i),t);let p=ke(L(s,Iu(0,s.size)));o=pe(p,ke(s));let c=dd(i.shape,s.size),f=le(Iu(0,i.size),c),m=L(i,f);l=pe(ke(m),ke(i));let g=ce(o,l),y=ce(o,l),A=L(u,d);a=L(L(A,g),y);let x=fn(a,n);n=Wr(x,a,n),r=Wr(x,St([h]),r)}return r}var PO=W({threshold_:FO});function _O(e,t,r="nearest",n="constant",a=0,s){let i=F(e,"image","transform","float32"),o=F(t,"transforms","transform","float32");P(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),P(o.rank===2&&(o.shape[0]===i.shape[0]||o.shape[0]===1)&&o.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),P(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let l={image:i,transforms:o},u={interpolation:r,fillMode:n,fillValue:a,outputShape:s};return B.runKernel(vl,l,u)}var zO=W({transform_:_O});function OO(e,t,r){P(t%1===0,()=>`bandPart(): numLower must be an integer, got ${t}.`),P(r%1===0,()=>`bandPart(): numUpper must be an integer, got ${r}.`);let n=F(e,"a","bandPart");P(n.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${n.rank}.`);let a=n.shape,[s,i]=n.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(r<=i))throw new Error(`bandPart(): numUpper (${r}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),r<0&&(r=i);let o=G(Iu(0,s,1,"int32"),[-1,1]),l=Iu(0,i,1,"int32"),u=ce(o,l),d=fa(Cl(u,Se(+t,"int32")),Nl(u,Se(-r,"int32"))),h=Wt([s,i],n.dtype);return G(or(tn(G(n,[-1,s,i])).map(p=>Wr(d,p,h))),a)}var DO=W({bandPart_:OO});function LO(e){let t;if(Array.isArray(e)){t=!1,P(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let a=e[0].shape[0];for(let s=1;s<e.length;++s)P(e[s].shape[0]===a,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${a})`)}else t=!0,e=Xt(e,e.shape[0],0).map(a=>et(a,[0]));P(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let r=[],n=e;for(let a=0;a<e.length;++a)r.push(B.tidy(()=>{let s=n[a];if(a>0)for(let i=0;i<a;++i){let o=L(ke(L(r[i],s)),r[i]);s=ce(s,o)}return pe(s,oA(s,"euclidean"))}));return t?or(r,0):r}var BO=W({gramSchmidt_:LO});function WO(e,t=!1){if(P(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return W3(e,t);{let r=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),n=tn(G(e,[r,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),a=[],s=[];n.forEach(l=>{let[u,d]=W3(l,t);a.push(u),s.push(d)});let i=G(or(a,0),e.shape),o=G(or(s,0),e.shape);return[i,o]}}function W3(e,t=!1){return B.tidy(()=>{P(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let r=e.shape[0],n=e.shape[1],a=W2(r),s=Br(e),i=pa([[1]],[1,1]),o=Br(i),l=r>=n?n:r;for(let u=0;u<l;++u){let d=s,h=o,p=a;[o,s,a]=B.tidy(()=>{let c=Pe(s,[u,u],[r-u,1]),f=oA(c),m=Pe(s,[u,u],[1,1]),g=Wr(fn(m,0),pa([[-1]]),pa([[1]])),y=ce(m,L(g,f)),A=pe(c,y);A.shape[0]===1?o=Br(i):o=kt([i,Pe(A,[1,0],[A.shape[0]-1,A.shape[1]])],0);let x=zt(pe(Je(g,y),f)),b=Pe(s,[u,0],[r-u,n]),v=L(x,o),S=nt(o);if(u===0)s=ce(b,Je(v,Je(S,b)));else{let R=ce(b,Je(v,Je(S,b)));s=kt([Pe(s,[0,0],[u,n]),R],0)}let T=nt(v),E=Pe(a,[0,u],[r,a.shape[1]-u]);if(u===0)a=ce(E,Je(Je(E,o),T));else{let R=ce(E,Je(Je(E,o),T));a=kt([Pe(a,[0,0],[r,u]),R],1)}return[o,s,a]}),re([d,h,p])}return!t&&r>n&&(a=Pe(a,[0,0],[r,n]),s=Pe(s,[0,0],[n,n])),[a,s]})}var VO=W({qr_:WO}),M7=(e=>(e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS",e))(M7||{});function UO(e,t,r=3){let n=F(e,"losses","computeWeightedLoss"),a=null;t!=null&&(a=F(t,"weights","computeWeightedLoss"));let s=a==null?n:L(n,a);if(r===0)return s;if(r===2)return ke(s);if(r===1){if(a==null)return Bt(s);{let i=n.size/a.size,o=pe(ke(s),ke(a));return i>1?pe(o,Se(i)):o}}if(r===3){if(a==null)return pe(ke(s),Se(n.size));{let i=L(a,hn(n.shape)),o=me(ke(ku(i,Se(0))),"float32");return pe(ke(s),o)}}throw Error(`Unknown reduction: ${r}`)}var ts=W({computeWeightedLoss_:UO});function GO(e,t,r,n=3){let a=F(e,"labels","absoluteDifference"),s=F(t,"predictions","absoluteDifference"),i=null;r!=null&&(i=F(r,"weights","absoluteDifference")),Vr(a.shape,s.shape,"Error in absoluteDifference: ");let o=rr(ce(a,s));return ts(o,i,n)}var jO=W({absoluteDifference_:GO});function HO(e,t,r,n,a=3){let s=F(e,"labels","cosineDistance"),i=F(t,"predictions","cosineDistance"),o=null;n!=null&&(o=F(n,"weights","cosineDistance")),Vr(s.shape,i.shape,"Error in cosineDistance: ");let l=Se(1),u=ce(l,ke(L(s,i),r,!0));return ts(u,o,a)}var qO=W({cosineDistance_:HO});function KO(e,t,r,n=3){let a=F(e,"labels","hingeLoss"),s=F(t,"predictions","hingeLoss"),i=null;r!=null&&(i=F(r,"weights","hingeLoss")),Vr(a.shape,s.shape,"Error in hingeLoss: ");let o=Se(1);a=ce(L(Se(2),a),o);let l=_a(ce(o,L(a,s)));return ts(l,i,n)}var XO=W({hingeLoss_:KO});function ZO(e,t,r,n=1,a=3){let s=F(e,"labels","huberLoss"),i=F(t,"predictions","huberLoss"),o=null;r!=null&&(o=F(r,"weights","huberLoss")),Vr(s.shape,i.shape,"Error in huberLoss: ");let l=Se(n),u=rr(ce(i,s)),d=vh(u,l),h=ce(u,d),p=le(L(Se(.5),At(d)),L(l,h));return ts(p,o,a)}var YO=W({huberLoss_:ZO});function JO(e,t,r,n=1e-7,a=3){let s=F(e,"labels","logLoss"),i=F(t,"predictions","logLoss"),o=null;r!=null&&(o=F(r,"weights","logLoss")),Vr(s.shape,i.shape,"Error in logLoss: ");let l=Se(1),u=Se(n),d=zt(L(s,Mn(le(i,u)))),h=L(ce(l,s),Mn(le(ce(l,i),u))),p=ce(d,h);return ts(p,o,a)}var QO=W({logLoss_:JO});function eD(e,t,r,n=3){let a=F(e,"labels","meanSquaredError"),s=F(t,"predictions","meanSquaredError"),i=null;r!=null&&(i=F(r,"weights","meanSquaredError")),Vr(a.shape,s.shape,"Error in meanSquaredError: ");let o=sA(a,s);return ts(o,i,n)}var tD=W({meanSquaredError_:eD});function rD(e,t){let r=F(e,"labels","sigmoidCrossEntropyWithLogits"),n=F(t,"logits","sigmoidCrossEntropyWithLogits");Vr(r.shape,n.shape,"Error in sigmoidCrossEntropyWithLogits: ");let a=_a(n),s=L(n,r),i=km(Rn(zt(rr(n))));return le(ce(a,s),i)}function nD(e,t,r,n=0,a=3){let s=F(e,"multiClassLabels","sigmoidCrossEntropy"),i=F(t,"logits","sigmoidCrossEntropy"),o=null;if(r!=null&&(o=F(r,"weights","sigmoidCrossEntropy")),Vr(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),n>0){let u=Se(n),d=Se(1),h=Se(.5);s=le(L(s,ce(d,u)),L(h,u))}let l=rD(s,i);return ts(l,o,a)}var aD=W({sigmoidCrossEntropy_:nD});function sD(e,t,r=-1){if(r===-1&&(r=t.rank-1),r!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${r}`);return Fa((n,a,s)=>{let i=a7(a,[r],!0),o=ce(me(a,"float32"),i);s([n,o]);let l=zt(L(o,n));return{value:ke(l,[r]),gradFunc:(u,d)=>{let[h,p]=d,c=Eo(u.shape,[r]);return[L(G(u,c),ce(me(h,"float32"),Rn(p))),L(G(u,c),ce(Rn(p),me(h,"float32")))]}}})(e,t)}function iD(e,t,r,n=0,a=3){let s=F(e,"onehotLabels","softmaxCrossEntropy"),i=F(t,"logits","softmaxCrossEntropy"),o=null;if(r!=null&&(o=F(r,"weights","softmaxCrossEntropy")),Vr(s.shape,i.shape,"Error in softmaxCrossEntropy: "),n>0){let u=Se(n),d=Se(1),h=Se(s.shape[1]);s=le(L(s,ce(d,u)),pe(u,h))}let l=sD(s,i);return ts(l,o,a)}var oD=W({softmaxCrossEntropy_:iD});function lD(e,t,r,n){let a=F(e,"indices","sparseFillEmptyRows","int32"),s=F(t,"values","sparseFillEmptyRows"),i=F(r,"denseShape","sparseFillEmptyRows","int32"),o=F(n,"defaultValue","sparseFillEmptyRows",s.dtype);if(a.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
|
|
${a.shape}`);if(s.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${s.shape}`);if(i.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${i.shape}`);if(o.rank!==0)throw new Error(`Default value should be a scalar but received shape ${o.shape}`);let l={indices:a,values:s,denseShape:i,defaultValue:o},u=B.runKernel(sh,l);return{outputIndices:u[0],outputValues:u[1],emptyRowIndicator:u[2],reverseIndexMap:u[3]}}var uD=W({sparseFillEmptyRows_:lD});function dD(e,t,r){let n=F(e,"inputIndices","sparseReshape","int32"),a=F(t,"inputShape","sparseReshape","int32"),s=F(r,"newShape","sparseReshape","int32");if(n.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
|
|
${n.shape}`);if(a.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${a.shape}`);if(s.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${s.shape}`);let i={inputIndices:n,inputShape:a,newShape:s},o=B.runKernel(id,i);return{outputIndices:o[0],outputShape:o[1]}}var pD=W({sparseReshape_:dD});function hD(e,t,r){let n=F(e,"data","sparseSegmentMean"),a=F(t,"indices","sparseSegmentMean","int32"),s=F(r,"segmentIds","sparseSegmentMean","int32");if(n.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(a.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${a.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${s.shape}`);let i={data:n,indices:a,segmentIds:s};return B.runKernel(ih,i)}var cD=W({sparseSegmentMean_:hD});function fD(e,t,r){let n=F(e,"data","sparseSegmentSum"),a=F(t,"indices","sparseSegmentSum","int32"),s=F(r,"segmentIds","sparseSegmentSum","int32");if(n.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(a.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${a.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${s.shape}`);let i={data:n,indices:a,segmentIds:s};return B.runKernel(oh,i)}var mD=W({sparseSegmentSum_:fD});function gD(e,t,r,n,a,s,i,o){let l=F(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let u=F(t,"dataSplits","stringNGrams");if(u.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let d={separator:r,nGramWidths:n,leftPad:a,rightPad:s,padWidth:i,preserveShortSequences:o},h={data:l,dataSplits:u},p=B.runKernel(uh,h,d);return{nGrams:p[0],nGramsSplits:p[1]}}var yD=W({stringNGrams_:gD});function AD(e,t,r=!0){let n=F(e,"input","stringSplit","string"),a=F(t,"delimiter","stringSplit","string");if(n.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${n.shape}`);if(a.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${a.shape}`);let s={skipEmpty:r},i={input:n,delimiter:a},o=B.runKernel(cm,i,s);return{indices:o[0],values:o[1],shape:o[2]}}var xD=W({stringSplit_:AD});function bD(e,t){let r=F(e,"input","stringToHashBucketFast","string"),n={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let a={input:r};return B.runKernel(fm,a,n)}var vD=W({stringToHashBucketFast_:bD}),wD={fft:Mm,ifft:Wp,rfft:Fm,irfft:aA},kD={hammingWindow:Yz,hannWindow:T7,frame:N7,stft:tO},Ie={flipLeftRight:sO,grayscaleToRGB:oO,resizeNearestNeighbor:MO,resizeBilinear:EO,rotateWithOffset:uO,cropAndResize:nO,nonMaxSuppression:pO,nonMaxSuppressionAsync:xO,nonMaxSuppressionWithScore:vO,nonMaxSuppressionWithScoreAsync:kO,nonMaxSuppressionPadded:SO,nonMaxSuppressionPaddedAsync:NO,threshold:PO,transform:zO},F7={bandPart:DO,gramSchmidt:BO,qr:VO},ID={absoluteDifference:jO,computeWeightedLoss:ts,cosineDistance:qO,hingeLoss:XO,huberLoss:YO,logLoss:QO,meanSquaredError:tD,sigmoidCrossEntropy:aD,softmaxCrossEntropy:oD},bp={sparseFillEmptyRows:uD,sparseReshape:pD,sparseSegmentMean:cD,sparseSegmentSum:mD},rf={stringNGrams:yD,stringSplit:xD,stringToHashBucketFast:vD},rs=class extends Ak{minimize(e,t=!1,r){let{value:n,grads:a}=this.computeGradients(e,r);if(r!=null){let s=r.map(i=>({name:i.name,tensor:a[i.name]}));this.applyGradients(s)}else this.applyGradients(a);return re(a),t?n:(n.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return e7(e,t)}dispose(){this.iterations_!=null&&re(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:Se(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(rs,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var Dm=class extends rs{constructor(e,t,r=null){super(),this.learningRate=e,this.rho=t,this.epsilon=r,this.accumulatedGrads=[],this.accumulatedUpdates=[],r==null&&(this.epsilon=B.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,r)=>{let n=B.registeredVariables[t],a=!1;this.accumulatedGrads[r]==null&&(this.accumulatedGrads[r]={originalName:`${t}/accum_grad`,variable:K(()=>at(n).variable(a))}),this.accumulatedUpdates[r]==null&&(this.accumulatedUpdates[r]={originalName:`${t}/accum_var`,variable:K(()=>at(n).variable(a))});let s=Array.isArray(e)?e[r].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[r].variable,o=this.accumulatedUpdates[r].variable;K(()=>{let l=le(L(i,this.rho),L(At(s),1-this.rho)),u=L(pe(Er(le(o,this.epsilon)),Er(le(i,this.epsilon))),s),d=le(L(o,this.rho),L(At(u),1-this.rho));i.assign(l),o.assign(d);let h=le(L(u,-this.learningRate),n);n.assign(h)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(re(this.accumulatedGrads.map(e=>e.variable)),re(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,r=!1;this.accumulatedGrads=e.slice(0,t).map(n=>({originalName:n.name,variable:n.tensor.variable(r)})),this.accumulatedUpdates=e.slice(t,t*2).map(n=>({originalName:n.name,variable:n.tensor.variable(r)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};Dm.className="Adadelta";Bi(Dm);var Lm=class extends rs{constructor(e,t=.1){super(),this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,r)=>{let n=B.registeredVariables[t];this.accumulatedGrads[r]==null&&(this.accumulatedGrads[r]={originalName:`${t}/accumulator`,variable:K(()=>dd(n.shape,this.initialAccumulatorValue).variable(!1))});let a=Array.isArray(e)?e[r].tensor:e[t];if(a==null)return;let s=this.accumulatedGrads[r].variable;K(()=>{let i=le(s,At(a));s.assign(i);let o=le(L(pe(a,Er(le(i,B.backend.epsilon()))),-this.learningRate),n);n.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&re(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(r=>({originalName:r.name,variable:r.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};Lm.className="Adagrad";Bi(Lm);var Bm=class extends rs{constructor(e,t,r,n=null){super(),this.learningRate=e,this.beta1=t,this.beta2=r,this.epsilon=n,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],K(()=>{this.accBeta1=Se(t).variable(),this.accBeta2=Se(r).variable()}),n==null&&(this.epsilon=B.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(r=>r.name):Object.keys(e);K(()=>{let r=ce(1,this.accBeta1),n=ce(1,this.accBeta2);t.forEach((a,s)=>{let i=B.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:K(()=>at(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${a}/v`,variable:K(()=>at(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,d=this.accumulatedSecondMoment[s].variable,h=le(L(u,this.beta1),L(l,1-this.beta1)),p=le(L(d,this.beta2),L(At(l),1-this.beta2)),c=pe(h,r),f=pe(p,n);u.assign(h),d.assign(p);let m=le(L(pe(c,le(Er(f),this.epsilon)),-this.learningRate),i);i.assign(m)}),this.accBeta1.assign(L(this.accBeta1,this.beta1)),this.accBeta2.assign(L(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&re(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&re(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),K(()=>{this.accBeta1.assign(Ds(this.beta1,this.iterations_+1)),this.accBeta2.assign(Ds(this.beta2,this.iterations_+1))});let t=e.length/2,r=!1;this.accumulatedFirstMoment=e.slice(0,t).map(n=>({originalName:n.name,variable:n.tensor.variable(r)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(n=>({originalName:n.name,variable:n.tensor.variable(r)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};Bm.className="Adam";Bi(Bm);var Wm=class extends rs{constructor(e,t,r,n=null,a=0){super(),this.learningRate=e,this.beta1=t,this.beta2=r,this.epsilon=n,this.decay=a,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],K(()=>{this.iteration=Se(0).variable(),this.accBeta1=Se(t).variable()}),n==null&&(this.epsilon=B.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(r=>r.name):Object.keys(e);K(()=>{let r=ce(1,this.accBeta1),n=pe(-this.learningRate,le(L(this.iteration,this.decay),1));t.forEach((a,s)=>{let i=B.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:at(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${a}/v`,variable:at(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,d=this.accumulatedWeightedInfNorm[s].variable,h=le(L(u,this.beta1),L(l,1-this.beta1)),p=L(d,this.beta2),c=rr(l),f=es(p,c);u.assign(h),d.assign(f);let m=le(L(pe(n,r),pe(h,le(f,this.epsilon))),i);i.assign(m)}),this.iteration.assign(le(this.iteration,1)),this.accBeta1.assign(L(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&re(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&re(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};Wm.className="Adamax";Bi(Wm);var kh=class extends rs{constructor(e){super(),this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,r)=>{let n=Array.isArray(e)?e[r].tensor:e[t];if(n==null)return;let a=B.registeredVariables[t];K(()=>{let s=le(L(this.c,n),a);a.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=cr(Se(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};kh.className="SGD";Bi(kh);var Vm=class extends kh{constructor(e,t,r=!1){super(e),this.learningRate=e,this.momentum=t,this.useNesterov=r,this.accumulations=[],this.m=Se(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,r)=>{let n=B.registeredVariables[t];this.accumulations[r]==null&&(this.accumulations[r]={originalName:`${t}/momentum`,variable:K(()=>at(n).variable(!1))});let a=this.accumulations[r].variable,s=Array.isArray(e)?e[r].tensor:e[t];s!=null&&K(()=>{let i,o=le(L(this.m,a),s);this.useNesterov?i=le(L(this.c,le(s,L(o,this.m))),n):i=le(L(this.c,o),n),a.assign(o),n.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&re(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(r=>({originalName:r.name,variable:r.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};Vm.className="Momentum";Bi(Vm);var Um=class extends rs{constructor(e,t=.9,r=0,n=null,a=!1){if(super(),this.learningRate=e,this.decay=t,this.momentum=r,this.epsilon=n,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=a,n==null&&(this.epsilon=B.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,r)=>{let n=B.registeredVariables[t],a=!1;this.accumulatedMeanSquares[r]==null&&(this.accumulatedMeanSquares[r]={originalName:`${t}/rms`,variable:K(()=>at(n).variable(a))}),this.accumulatedMoments[r]==null&&(this.accumulatedMoments[r]={originalName:`${t}/momentum`,variable:K(()=>at(n).variable(a))}),this.accumulatedMeanGrads[r]==null&&this.centered&&(this.accumulatedMeanGrads[r]={originalName:`${t}/mg`,variable:K(()=>at(n).variable(a))});let s=Array.isArray(e)?e[r].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[r].variable,o=this.accumulatedMoments[r].variable;K(()=>{let l=le(L(i,this.decay),L(At(s),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[r].variable,d=le(L(u,this.decay),L(s,1-this.decay)),h=pe(L(s,this.learningRate),Er(ce(l,le(At(d),this.epsilon)))),p=le(L(o,this.momentum),h);i.assign(l),u.assign(d),o.assign(p);let c=ce(n,p);n.assign(c)}else{let u=le(L(i,this.decay),L(At(s),1-this.decay)),d=le(L(o,this.momentum),pe(L(s,this.learningRate),Er(le(u,this.epsilon))));i.assign(u),o.assign(d);let h=ce(n,d);n.assign(h)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&re(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&re(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&re(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,r=!1;this.accumulatedMeanSquares=e.slice(0,t).map(n=>({originalName:n.name,variable:n.tensor.variable(r)})),this.accumulatedMoments=e.slice(t,t*2).map(n=>({originalName:n.name,variable:n.tensor.variable(r)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(n=>({originalName:n.name,variable:n.tensor.variable(r)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};Um.className="RMSProp";Bi(Um);var ws=class{static sgd(e){return new kh(e)}static momentum(e,t,r=!1){return new Vm(e,t,r)}static rmsprop(e,t=.9,r=0,n=null,a=!1){return new Um(e,t,r,n,a)}static adam(e=.001,t=.9,r=.999,n=null){return new Bm(e,t,r,n)}static adadelta(e=.001,t=.95,r=null){return new Dm(e,t,r)}static adamax(e=.002,t=.9,r=.999,n=null,a=0){return new Wm(e,t,r,n,a)}static adagrad(e,t=.1){return new Lm(e,t)}},co={sgd:ws.sgd,momentum:ws.momentum,adadelta:ws.adadelta,adagrad:ws.adagrad,rmsprop:ws.rmsprop,adamax:ws.adamax,adam:ws.adam},SD=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function hA(){return new Promise(e=>SD(()=>e()))}var N={};Le(N,{ERF_A1:()=>zD,ERF_A2:()=>OD,ERF_A3:()=>DD,ERF_A4:()=>LD,ERF_A5:()=>BD,ERF_P:()=>_D,PARALLELIZE_THRESHOLD:()=>cA,SELU_SCALE:()=>P7,SELU_SCALEALPHA:()=>$7,applyActivation:()=>zm,assertAndGetBroadcastShape:()=>bt,assertAxesAreInnerMostDims:()=>OP,assertParamsConsistent:()=>TD,assignToTypedArray:()=>HD,axesAreInnerMostDims:()=>G2,calculateShapes:()=>lk,checkEinsumDimSizes:()=>JD,checkPadOnDimRoundingMode:()=>Ur,combineLocations:()=>t7,complexWithEvenIndex:()=>UD,complexWithOddIndex:()=>GD,computeConv2DInfo:()=>yh,computeConv3DInfo:()=>Mk,computeDefaultPad:()=>F2,computeDilation2DInfo:()=>r$,computeOptimalWindowSize:()=>CD,computeOutAndReduceShapes:()=>r7,computeOutShape:()=>ND,computePool2DInfo:()=>Rk,computePool3DInfo:()=>n$,convertConv2DDataFormat:()=>Fk,decodeEinsumEquation:()=>ZD,eitherStridesOrDilationsAreOne:()=>Pa,expandShapeToKeepDim:()=>Eo,exponent:()=>KD,exponents:()=>qD,fromStringArrayToUint8:()=>xL,fromUint8ToStringArray:()=>AL,getAxesPermutation:()=>n7,getBroadcastDims:()=>ak,getComplexWithIndex:()=>jD,getEinsumComputePath:()=>QD,getEinsumPermutation:()=>YD,getFusedBiasGradient:()=>_m,getFusedDyActivation:()=>Pm,getImageCenter:()=>ED,getInnerMostAxes:()=>DP,getPermuted:()=>MD,getReductionAxes:()=>Zt,getReshaped:()=>RD,getReshapedPermuted:()=>FD,getSliceBeginCoords:()=>$D,getSliceSize:()=>PD,getSparseFillEmptyRowsIndicesDenseShapeMismatch:()=>nL,getSparseFillEmptyRowsNegativeIndexErrorMessage:()=>aL,getSparseFillEmptyRowsOutOfRangeIndexErrorMessage:()=>sL,getSparseReshapeEmptyTensorZeroOutputDimErrorMessage:()=>lL,getSparseReshapeInputOutputMismatchErrorMessage:()=>dL,getSparseReshapeInputOutputMultipleErrorMessage:()=>uL,getSparseReshapeMultipleNegativeOneOutputDimErrorMessage:()=>iL,getSparseReshapeNegativeOutputDimErrorMessage:()=>oL,getSparseSegmentReductionIndicesOutOfRangeErrorMessage:()=>fL,getSparseSegmentReductionNegativeSegmentIdsErrorMessage:()=>pL,getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage:()=>hL,getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage:()=>cL,getUndoAxesPermutation:()=>j2,isIdentityPermutation:()=>eL,log:()=>RR,mergeRealAndImagArrays:()=>WD,prepareAndValidate:()=>ok,prepareSplitSize:()=>rL,segment_util:()=>_7,shouldFuse:()=>Om,slice_util:()=>_t,splitRealAndImagArrays:()=>VD,tupleValuesAreOne:()=>_s,upcastType:()=>Cr,validateInput:()=>k2,validateUpdateShape:()=>w2,warn:()=>Is});function TD(e,t){let r=e[0].length;e.forEach((a,s)=>{P(a.length===r,()=>`Error in concat${r}D: rank of tensors[${s}] must be the same as the rank of the rest (${r})`)}),P(t>=0&&t<r,()=>`Error in concat${r}D: axis must be between 0 and ${r-1}.`);let n=e[0];e.forEach((a,s)=>{for(let i=0;i<r;i++)P(i===t||a[i]===n[i],()=>`Error in concat${r}D: Shape of tensors[${s}] (${a}) does not match the shape of the rest (${n}) along the non-concatenated axis ${s}.`)})}function ND(e,t){let r=e[0].slice();for(let n=1;n<e.length;n++)r[t]+=e[n][t];return r}var cA=30;function CD(e){return e<=cA?e:ff(e,Math.floor(Math.sqrt(e)))}function ED(e,t,r){let n=r*(typeof e=="number"?e:e[0]),a=t*(typeof e=="number"?e:e[1]);return[n,a]}function RD(e,t,r,n=!0){let a=[];if(n)a=a.concat(t.slice(0)),a.push(e[0]/r),a=a.concat(e.slice(1));else{a=a.concat(e[0]);let s=t.length;for(let i=0;i<s;++i)a=a.concat([e[i+1]/t[i],t[i]]);a=a.concat(e.slice(s+1))}return a}function MD(e,t,r=!0){let n=[];if(r){n.push(t);for(let a=t+1;a<e;++a)a<=2*t?(n.push(a),n.push(a-(t+1))):n.push(a)}else{let a=[],s=[];for(let i=1;i<e;++i)i>=t*2+1||i%2===1?s.push(i):a.push(i);n.push(...a),n.push(0),n.push(...s)}return n}function FD(e,t,r,n=!0){let a=[];n?a.push(e[0]/r):a.push(e[0]*r);for(let s=1;s<e.length;++s)s<=t.length?n?a.push(t[s-1]*e[s]):a.push(e[s]/t[s-1]):a.push(e[s]);return a}function $D(e,t){let r=[0];for(let n=0;n<t;++n)r.push(e[n][0]);return r}function PD(e,t,r){let n=e.slice(0,1);for(let a=0;a<r;++a)n.push(e[a+1]-t[a][0]-t[a][1]);return n}var $7=1.7580993408473768,P7=1.0507009873554805,_D=.3275911,zD=.254829592,OD=-.284496736,DD=1.421413741,LD=-1.453152027,BD=1.061405429;function WD(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let r=new Float32Array(e.length*2);for(let n=0;n<r.length;n+=2)r[n]=e[n/2],r[n+1]=t[n/2];return r}function VD(e){let t=new Float32Array(e.length/2),r=new Float32Array(e.length/2);for(let n=0;n<e.length;n+=2)t[n/2]=e[n],r[n/2]=e[n+1];return{real:t,imag:r}}function UD(e){let t=Math.ceil(e.length/4),r=new Float32Array(t),n=new Float32Array(t);for(let a=0;a<e.length;a+=4)r[Math.floor(a/4)]=e[a],n[Math.floor(a/4)]=e[a+1];return{real:r,imag:n}}function GD(e){let t=Math.floor(e.length/4),r=new Float32Array(t),n=new Float32Array(t);for(let a=2;a<e.length;a+=4)r[Math.floor(a/4)]=e[a],n[Math.floor(a/4)]=e[a+1];return{real:r,imag:n}}function jD(e,t){let r=e[t*2],n=e[t*2+1];return{real:r,imag:n}}function HD(e,t,r,n){e[n*2]=t,e[n*2+1]=r}function qD(e,t){let r=new Float32Array(e/2),n=new Float32Array(e/2);for(let a=0;a<Math.ceil(e/2);a++){let s=(t?2:-2)*Math.PI*(a/e);r[a]=Math.cos(s),n[a]=Math.sin(s)}return{real:r,imag:n}}function KD(e,t,r){let n=(r?2:-2)*Math.PI*(e/t),a=Math.cos(n),s=Math.sin(n);return{real:a,imag:s}}var Z1="->",XD=/->/g,V3=",",U3="...";function ZD(e,t){e=e.replace(/\s/g,"");let r=(e.length-e.replace(XD,"").length)/Z1.length;if(r<1)throw new Error("Equations without an arrow are not supported.");if(r>1)throw new Error(`Equation must contain exactly one arrow ("${Z1}").`);let[n,a]=e.split(Z1);P(n.indexOf(U3)===-1,()=>`The ellipsis notation ("${U3}") is not supported yet.`);let s=n.split(V3),i=s.length;if(t!==i)throw new Error(`Expected ${i} input tensors, received ${t}`);if(i>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let o=[];for(let p=0;p<a.length;++p){let c=a[p];if(!s.some(f=>f.indexOf(c)!==-1))throw new Error(`Output subscripts contain the label ${c} not present in the input subscripts.`);o.indexOf(c)===-1&&o.push(c)}for(let p=0;p<n.length;++p){let c=n[p];o.indexOf(c)===-1&&c!==V3&&o.push(c)}let l=new Array(s.length);for(let p=0;p<i;++p){if(new Set(s[p].split("")).size!==s[p].length)throw new Error(`Found duplicate axes in input component ${s[p]}. Support for duplicate axes in input is not implemented yet.`);l[p]=[];for(let c=0;c<s[p].length;++c)l[p].push(o.indexOf(s[p][c]))}let u=o.length,d=a.length,h=[];for(let p=d;p<u;++p)h.push(p);return{allDims:o,summedDims:h,idDims:l}}function YD(e,t){let r=new Array(e);r.fill(-1);for(let a=0;a<t.length;++a)r[t[a]]=a;let n=[];for(let a=0;a<e;++a)r[a]===-1&&n.push(a);return r=r.filter(a=>a!==-1),{permutationIndices:r,expandDims:n}}function JD(e,t,r){let n=new Array(e);for(let a=0;a<r.length;++a){let s=r[a].shape;for(let i=0;i<t[a].length;++i)n[t[a][i]]===void 0?n[t[a][i]]=s[i]:P(n[t[a][i]]===s[i],()=>`Expected dimension ${n[t[a][i]]} at axis ${i} of input shaped ${JSON.stringify(s)}, but got dimension ${s[i]}`)}}function QD(e,t){let r=e,n=[],a=0;e.length===0&&r.push(-1),a=e.length+1;for(let i=0;i<a;++i)n.push([]);let s=[];for(let i=0;i<r.length;++i){let o=r[i],l=tL(t,o);for(let u of l)s.indexOf(u)===-1&&(n[i].push(u),s.push(u))}return{path:r,steps:n}}function eL(e){return e.every((t,r)=>t===r)}function tL(e,t){let r=[];for(let n=0;n<e.length;++n)(e[n].length===0||e[n].indexOf(t)!==-1||t===-1)&&r.push(n);return r}function rL(e,t,r=0){let n=[];if(typeof t=="number")P(e.shape[r]%t===0,()=>"Number of splits must evenly divide the axis."),n=new Array(t).fill(e.shape[r]/t);else{let a=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);P(a<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[r]-i}P(e.shape[r]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),n=t}return n}function nL(e){return`Received SparseTensor with denseShape[0] = 0 but
|
|
indices.shape[0] = ${e}`}function aL(e,t){return`indices(${e}, 0) is invalid: ${t} < 0`}function sL(e,t,r){return`indices(${e}, 0) is invalid: ${t} >= ${r}`}function iL(e,t){return`only one output dimension may be -1, not both ${e} and ${t}`}function oL(e,t){return`size ${e} must be non-negative, not ${t}`}function lL(){return"reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero"}function uL(e,t){let r=Tt(e),n=Tt(t);return`Input to reshape is a SparseTensor with ${r}
|
|
dense values, but the requested shape requires a multiple of ${n}. inputShape=${e} outputShape= ${t}`}function dL(e,t){let r=Tt(e),n=Tt(t);return`Input to reshape is a tensor with ${r} dense values, but the requested shape has ${n}. inputShape=${e} outputShape=${t}`}function pL(){return"segment ids must be >= 0"}function hL(){return"segment ids are not increasing"}function cL(e,t){return`Segment id ${e} out of range [0, ${t}), possibly because segmentIds input is not sorted.`}function fL(e,t,r){return`Bad: indices[${e}] == ${t} out of range [0, ${r})`}var _7={};Le(_7,{collectGatherOpShapeInfo:()=>yL,computeOutShape:()=>gL,segOpComputeOptimalWindowSize:()=>mL});function mL(e,t){let r=!1,n;for(e<=cA?(n=e,r=!0):n=ff(e,Math.floor(Math.sqrt(e)));!r;)n>t||n===e?r=!0:n=ff(e,n+1);return n}function gL(e,t,r){let n=[],a=e.length;for(let s=0;s<a;s++)s!==t?n.push(e[s]):n.push(r);return n}function yL(e,t,r,n){let a=t.shape.length,s=e.shape.length;if(n!==0&&(n<-a||n>a))throw new Error(`Expect batchDims in the range of [-${a}, ${a}], but got ${n}`);if(n<0&&(n+=a),n>s)throw new Error(`batchDims (${n}) must be less than rank(x) (
|
|
${s}).`);if(r<n)throw new Error(`batchDims (${n}) must be less than or equal to axis (${r}).`);for(let h=0;h<n;++h)if(e.shape[h]!==t.shape[h])throw new Error(`x.shape[${h}]: ${e.shape[h]} should be equal to indices.shape[${h}]: ${t.shape[h]}.`);let i=e.shape[r],o=[],l=1,u=1,d=1;for(let h=0;h<n;++h)o.push(e.shape[h]),l*=e.shape[h];for(let h=n;h<r;h++)o.push(e.shape[h]),u*=e.shape[h];for(let h=n;h<a;h++)o.push(t.shape[h]);for(let h=r+1;h<s;h++)o.push(e.shape[h]),d*=e.shape[h];return{batchSize:l,sliceSize:d,outerSize:u,dimSize:i,outputShape:o}}function AL(e){try{return e.map(t=>Af(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function xL(e){return e.map(t=>hh(t))}var qn={};Le(qn,{nonMaxSuppressionV3Impl:()=>C7,nonMaxSuppressionV4Impl:()=>E7,nonMaxSuppressionV5Impl:()=>R7,whereImpl:()=>A7});var z7={kernelName:Lo,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(e,wh(me(r,"float32"),-1))}}},bL={kernelName:Pu,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>{let n=At(me(r,"float32")),a=Er(ce(Se(1),n));return zt(pe(e,a))}}}},vL={kernelName:_u,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>{let n=Er(ce(At(me(r,"float32")),1));return pe(e,n)}}}},wL={kernelName:Ya,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t,a=bt(r.shape,n.shape);return{a:()=>{let s=e,i=Zt(r.shape,a);return i.length>0&&(s=ke(s,i)),G(s,r.shape)},b:()=>{let s=e,i=Zt(n.shape,a);return i.length>0&&(s=ke(s,i)),G(s,n.shape)}}}},kL={kernelName:qs,saveAllInputs:!0,gradFunc:(e,t)=>{let r={};return t.forEach((n,a)=>{r[a]=()=>e.clone()}),r}},IL={kernelName:Ks,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>at(r)}}},SL={kernelName:Du,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>at(r)}}},TL={kernelName:Lu,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>pe(e,Er(ce(Se(1),At(me(r,"float32")))))}}},NL={kernelName:Bu,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>{let n=Er(le(Se(1),At(me(r,"float32"))));return pe(e,n)}}}},CL={kernelName:Uu,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t,a=bt(r.shape,n.shape);return{a:()=>{let s=le(At(r),At(n)),i=L(e,pe(n,s)),o=Zt(r.shape,a);return o.length>0&&(i=ke(i,o)),G(i,r.shape)},b:()=>{let s=le(At(r),At(n)),i=zt(L(e,pe(r,s))),o=Zt(n.shape,a);return o.length>0&&(i=ke(i,o)),G(i,n.shape)}}}},EL={kernelName:Wu,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>pe(e,le(At(me(r,"float32")),1))}}},RL={kernelName:Vu,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>pe(e,ce(Se(1),At(me(r,"float32"))))}}};function ML(e,t,r,n,a,s){let i=F(e,"dy","avgPool3dGrad"),o=F(t,"input","avgPool3dGrad"),l=i,u=o,d=!1;o.rank===4&&(d=!0,l=G(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),u=G(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),P(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),P(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),Ur("avgPool3dGrad",a,s);let h={dy:l,input:u},p={filterSize:r,strides:n,pad:a,dimRoundingMode:s},c=B.runKernel(Hf,h,p);return d?G(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var FL=W({avgPool3dGrad_:ML}),$L={kernelName:Kp,inputsToSave:["x"],gradFunc:(e,t,r)=>{let[n]=t,{filterSize:a,strides:s,pad:i,dimRoundingMode:o}=r;return{x:()=>FL(e,n,a,s,i,o)}}};function PL(e,t,r,n,a){let s=F(e,"dy","avgPoolGrad"),i=F(t,"input","avgPoolGrad");P(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,u=!1;i.rank===3&&(u=!0,o=G(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=G(s,[1,s.shape[0],s.shape[1],s.shape[2]])),P(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),P(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let d={dy:l,input:o},h={filterSize:r,strides:n,pad:a},p=B.runKernel(jf,d,h);return u?G(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var _L=W({avgPoolGrad_:PL}),zL={kernelName:Xs,inputsToSave:["x"],gradFunc:(e,t,r)=>{let[n]=t,{filterSize:a,strides:s,pad:i}=r;return{x:()=>_L(e,n,a,s,i)}}},OL={kernelName:Zs,inputsToSave:["a","b"],gradFunc:(e,t,r)=>{let[n,a]=t,{transposeA:s,transposeB:i}=r;return!s&&!i?{a:()=>Je(e,a,!1,!0),b:()=>Je(n,e,!0,!1)}:!s&&i?{a:()=>Je(e,a,!1,!1),b:()=>Je(e,n,!0,!1)}:s&&!i?{a:()=>Je(a,e,!1,!0),b:()=>Je(n,e,!1,!1)}:{a:()=>Je(a,e,!0,!0),b:()=>Je(e,n,!0,!0)}}},DL={kernelName:Bo,gradFunc:(e,t,r)=>{let{blockShape:n,crops:a}=r;return{x:()=>Cm(e,n,a)}}},LL={kernelName:Nw,gradFunc:(e,t,r)=>{let n=r,a=n.inputShape,s=n.shape,i=Array.from(s);for(let l=a.length-1;l>=0;l--)if(a[l]===s[l])i[l]=1;else if(a[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l<i.length;l++)i[l]>1&&o.push(l);return{x:()=>ke(e,o,!0)}}},BL={kernelName:Ys,gradFunc:e=>({x:()=>e.clone()})},WL={kernelName:Js,gradFunc:e=>({x:()=>at(e)})},VL={kernelName:Ja,inputsToSave:["x"],gradFunc:(e,t,r)=>{let[n]=t,{clipValueMin:a,clipValueMax:s}=r;return{x:()=>Wr(fa(Nl(n,a),Cl(n,s)),e,at(e))}}},UL={kernelName:Zp,inputsToSave:["x"],gradFunc:z7.gradFunc},GL={kernelName:Wo,saveAllInputs:!0,gradFunc:(e,t,r)=>{let n=t.map(o=>o.shape),{axis:a}=r,s=Un(a,t[0].shape)[0],i=n.map(o=>o[s]);return Xt(e,i,s).map(o=>()=>o)}},jL={kernelName:Qs,inputsToSave:["x","filter"],gradFunc:(e,t,r)=>{let[n,a]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=r;return P(_s(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>z2(n.shape,e,a,i,o,l),filter:()=>dA(n,e,a.shape,i,o,l)}}},HL={kernelName:ei,inputsToSave:["dy","filter"],gradFunc:(e,t,r)=>{let[n,a]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=r;return{dy:()=>zs(e,a,s,i,o,1,l),filter:()=>dA(e,n,a.shape,s,i,o,l)}}};function qL(e,t,r,n,a){let s=e;e.rank===4&&(s=G(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=G(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),P(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),P(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),P(r.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${r}.`),P(s.shape[4]===r[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${r[3]}.`),P(i.shape[4]===r[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${r[4]}).`);let o={x:s,dy:i},l={strides:n,pad:a,filterShape:r};return B.runKernel(Zf,o,l)}var KL=W({conv3DBackpropFilter_:qL}),XL={kernelName:Yp,inputsToSave:["x","filter"],gradFunc:(e,t,r)=>{let{dilations:n,strides:a,pad:s}=r;P(_s(n),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${n}'`);let[i,o]=t;return{x:()=>Wk(i.shape,e,o,a,s),filter:()=>KL(i,e,o.shape,a,s)}}},ZL={kernelName:ti,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(zt(tA(me(r,"float32"))),e)}}},YL={kernelName:ri,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(rA(me(r,"float32")),e)}}},JL={kernelName:Vo,inputsToSave:["x"],gradFunc:(e,t,r)=>{let[n]=t,{axis:a,exclusive:s,reverse:i}=r;return{x:()=>{let o=n7([a],n.rank),l=B2(e,a,s,!i);return o!=null&&(l=nt(l,o)),l}}}},QL={kernelName:ni,inputsToSave:["x","filter"],gradFunc:(e,t,r)=>{let{dilations:n,strides:a,pad:s,dimRoundingMode:i}=r,o=n==null?[1,1]:n;P(_s(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,u]=t;return P(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),P(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),P(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),P(Pa(a,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${o}'.`),Ur("depthwiseConv2d",s,i),{x:()=>S7(l.shape,e,u,a,s,o,i),filter:()=>I7(l,e,u.shape,a,s,o,i)}}},eB={kernelName:Jp,inputsToSave:["x","filter"],gradFunc:(e,t,r)=>{let[n,a]=t,s={x:n,filter:a,dy:e},i={x:n,filter:a,dy:e};return{x:()=>B.runKernel(mf,s,r),filter:()=>B.runKernel(gf,i,r)}}},tB={kernelName:si,outputsToSave:[!0],gradFunc:(e,t)=>{let[r]=t,n={dy:e,y:r};return{x:()=>B.runKernel(rm,n)}}},rB={kernelName:ju,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t,n=L(Rn(zt(At(r))),2/Math.sqrt(Math.PI));return{x:()=>L(e,n)}}},nB={kernelName:ii,outputsToSave:[!0],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(e,r)}}},aB={kernelName:Ho,inputsToSave:["input"],gradFunc:(e,t)=>{let[r]=t;return{input:()=>G(e,r.shape)}}},sB={kernelName:qo,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(e,Rn(r))}}},iB={kernelName:oi,gradFunc:e=>({x:()=>at(e)})},oB={kernelName:li,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t,a=bt(r.shape,n.shape);return{a:()=>{let s=pe(e,me(n,"float32")),i=Zt(r.shape,a);return i.length>0?G(ke(s,i),r.shape):s},b:()=>{let s=L(e,me(r,"float32")),i=Zt(n.shape,a);i.length>0&&(s=G(ke(s,i),n.shape));let o=At(n);return zt(pe(s,me(o,"float32")))}}}},lB={kernelName:ui,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,r)=>{let{varianceEpsilon:n}=r,[a,s,i,o]=t,l=o==null?Se(1):o,u=Zt(s.shape,a.shape),d=[];if(s.rank===1){for(let m=0;m<a.shape.length-1;++m)d.push(a.shape[m]);d.push(1)}let h=ce(a,s),p=L(e,l),c=Q2(le(i,Se(n))),f=L(L(L(c,c),c),Se(-.5));return{x:()=>s.rank===1?G(L(L(e,Bn(G(c,[1,1,1,s.shape[0]]),d)),l),a.shape):G(L(L(e,c),l),a.shape),mean:()=>{let m=L(L(c,Se(-1)),p);return s.rank===1&&(m=ke(m,u)),G(m,s.shape)},variance:()=>{let m=L(L(f,h),p);return s.rank===1&&(m=ke(m,u)),G(m,s.shape)},scale:()=>{let m=L(h,c),g=L(e,m);return s.rank===1&&(g=ke(g,u)),G(g,s.shape)},offset:()=>{let m=e;return s.rank===1&&(m=ke(m,u)),G(m,s.shape)}}}},uB={kernelName:Xo,inputsToSave:["x","indices"],gradFunc:(e,t,r)=>{let[n,a]=t,{axis:s}=r,i=Un(s,n.shape)[0];return{x:()=>{let o=n.shape,l=a.size,u=o.slice(0,i),d=u.length,h=o.slice(s,o.length).slice(1),p=h.length,c=G3(0,d),f=G3(d+1,d+1+p),m=j3([u,[l],h]),g=G(e,m),y=G(a,[l]),A=j3([[d],c,f]),x=nt(g,A),b=g7(x,y,n.shape[i]),v=j2(A);return b=nt(b,v),b},indices:()=>a}}};function G3(e,t){let r=[];for(let n=e;n<t;++n)r.push(n);return r}function j3(e){let t=[];for(let r=0;r<e.length;++r)for(let n=0;n<e[r].length;++n)t.push(e[r][n]);return t}var dB={kernelName:di,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t;return{a:()=>at(r),b:()=>at(n)}}},pB={kernelName:pi,gradFunc:e=>({x:()=>me(e,"float32")})},hB={kernelName:qu,gradFunc:e=>({x:()=>at(e)})},cB={kernelName:Ku,gradFunc:e=>({x:()=>at(e)})},fB={kernelName:Xu,gradFunc:e=>({x:()=>at(e)})},mB={kernelName:hi,inputsToSave:["x"],gradFunc:(e,t,r)=>{let[n]=t,{alpha:a}=r,s=fn(n,0);return{x:()=>Wr(s,e,L(e,a))}}},gB={kernelName:Zu,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>pe(e,le(r,1))}}},yB={kernelName:ci,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>pe(e,me(r,"float32"))}}},AB={kernelName:Cw,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,r)=>{let[n]=t,{axis:a}=r;return{logits:()=>{let s=Rn(n);return ce(e,L(ke(e,a,!0),s))}}}};function xB(e,t,r,n=5,a=1,s=1,i=.5){let o={x:e,y:t,dy:r},l={depthRadius:n,bias:a,alpha:s,beta:i};return B.runKernel(im,o,l)}var bB=W({localResponseNormalizationBackprop_:xB}),vB={kernelName:rh,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,r)=>{let[n,a]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r;return{x:()=>bB(n,a,e,s,i,o,l)}}};function O7(e,t,r,n){return t.rank<r.rank&&(t=G(t,Eo(t.shape,n))),e.rank<r.rank&&(e=G(e,Eo(e.shape,n))),{x:()=>L(e,me(En(r,t),e.dtype))}}var H3={kernelName:fi,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,r)=>{let n=r,{reductionIndices:a}=n,s=t[0],i=t[1],o=Un(a,s.shape),l=O7(e,i,s,o);return{x:()=>l.x()}}},wB={kernelName:mi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t;return{a:()=>L(e,me(Nl(r,n),"float32")),b:()=>L(e,me(V2(r,n),"float32"))}}};function kB(e,t,r,n,a,s,i){let o=F(e,"dy","maxPool3dGrad"),l=F(t,"input","maxPool3dGrad"),u=F(r,"output","maxPool3dGrad"),d=o,h=l,p=u,c=!1;l.rank===4&&(c=!0,d=G(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),h=G(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),p=G(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),P(d.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${d.rank}.`),P(h.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${h.rank}.`),P(p.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${p.rank}.`),Ur("maxPool3dGrad",s,i);let f={dy:d,input:h,output:p},m={filterSize:n,strides:a,pad:s,dimRoundingMode:i},g=B.runKernel(lm,f,m);return c?G(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var IB=W({maxPool3dGrad_:kB}),SB={kernelName:nh,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,r)=>{let[n,a]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r;return{x:()=>IB(e,n,a,s,i,o,l)}}};function TB(e,t,r,n,a,s,i){let o=F(e,"dy","maxPoolGrad"),l=F(t,"input","maxPoolGrad"),u=F(r,"output","maxPoolGrad");P(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),P(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),P(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),Ur("maxPoolGrad",s,i);let d={dy:o,input:l,output:u},h={filterSize:n,strides:a,pad:s,dimRoundingMode:i};return B.runKernel(om,d,h)}var NB=W({maxPoolGrad_:TB}),CB={kernelName:gi,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,r)=>{let[n,a]=t,{filterSize:s,strides:i,pad:o}=r;return{x:()=>NB(e,n,a,s,i,o)}}},EB={kernelName:yi,inputsToSave:["x"],gradFunc:(e,t,r)=>{let[n]=t,{axis:a}=r,s=Un(a,n.shape),i=r7(n.shape,s)[1],o=Tt(i);return{x:()=>{let l=n.shape.slice();s.forEach(d=>{l[d]=1});let u=G(e,l);return pe(L(u,hn(n.shape,"float32")),o)}}}},RB={kernelName:Ai,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,r)=>{let n=r,{axis:a}=n,[s,i]=t,o=Un(a,s.shape),l=O7(e,i,s,o);return{x:()=>l.x()}}},MB={kernelName:xi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t;return{a:()=>L(e,me(Cl(r,n),"float32")),b:()=>L(e,me(fn(r,n),"float32"))}}},FB={kernelName:bi,inputsToSave:["x"],gradFunc:(e,t,r)=>{let n=t[0],{paddings:a}=r,s=a.map(i=>i[0]);return{x:()=>Pe(e,s,n.shape)}}},$B={kernelName:Ju,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t,a=bt(r.shape,n.shape);return{a:()=>{let s=Zt(r.shape,a);return s.length>0?G(ke(e,s),r.shape):e},b:()=>{let s=L(e,zt(bh(pe(r,n)))),i=Zt(n.shape,a);return i.length>0?G(ke(s,i),n.shape):s}}}},PB={kernelName:vi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t,a=bt(r.shape,n.shape);return{a:()=>{let s=L(e,me(n,"float32")),i=Zt(r.shape,a);return i.length>0?G(ke(s,i),r.shape):s},b:()=>{let s=L(e,me(r,"float32")),i=Zt(n.shape,a);return i.length>0?G(ke(s,i),n.shape):s}}}},_B={kernelName:tl,gradFunc:e=>({x:()=>zt(e)})},zB={kernelName:il,inputsToSave:["indices"],gradFunc:(e,t)=>{let r=t[0];return{indices:()=>Wt(r.shape,"float32")}}},OB={kernelName:sl,gradFunc:e=>({x:()=>at(e)})},DB={kernelName:ol,saveAllInputs:!0,gradFunc:(e,t,r)=>{let{axis:n}=r;return tn(e,n).map(a=>()=>a)}},q3={kernelName:wi,inputsToSave:["x"],gradFunc:(e,t,r)=>{let n=t[0],{paddings:a}=r,s=a.map(i=>i[0]);return{x:()=>Pe(e,s,n.shape)}}},LB={kernelName:ki,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[r,n,a]=t,s=r,i=n,o=bt(s.shape,i.shape);return{a:()=>{let l=me(i,"float32"),u=L(e,L(l,Ds(s,ce(l,Se(1))))),d=Zt(s.shape,o);return d.length>0&&(u=ke(u,d)),G(u,s.shape)},b:()=>{let l=fn(s,0),u=Wr(l,Mn(s),at(s)),d=L(e,L(a,u)),h=Zt(i.shape,o);return h.length>0&&(d=ke(d,h)),G(d,i.shape)}}}},BB={kernelName:Ii,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[r,n]=t,a=fn(r,0);return{x:()=>Wr(a,e,L(e,n)),alpha:()=>{let s=Wr(a,at(e),L(e,r)),i=Zt(n.shape,e.shape);return i.length>0&&(s=ke(s,i)),G(s,n.shape)}}}},WB={kernelName:ai,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t,a=bt(r.shape,n.shape);return{a:()=>{let s=pe(e,me(n,"float32")),i=Zt(r.shape,a);return i.length>0?G(ke(s,i),r.shape):s},b:()=>{let s=L(e,me(r,"float32")),i=Zt(n.shape,a);i.length>0&&(s=G(ke(s,i),n.shape));let o=At(n);return zt(pe(s,me(o,"float32")))}}}},VB={kernelName:td,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>pe(e,zt(At(r)))}}},UB={kernelName:Ni,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t,n=L(Cl(r,6),wh(r));return{x:()=>L(e,me(n,"float32"))}}},GB={kernelName:Si,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(e,me(wh(r),"float32"))}}},jB={kernelName:ul,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>G(e,r.shape)}}},HB={kernelName:Ti,inputsToSave:["images"],gradFunc:(e,t,r)=>{let[n]=t,a={dy:e,images:n};return{images:()=>B.runKernel(hm,a,r)}}},qB={kernelName:rd,inputsToSave:["images"],gradFunc:(e,t,r)=>{let[n]=t,a={dy:e,images:n};return{images:()=>B.runKernel(pm,a,r)}}},KB={kernelName:dl,gradFunc:(e,t,r)=>{let{dims:n}=r,a=Un(n,e.shape);return{x:()=>$n(e,a)}}},XB={kernelName:pl,gradFunc:e=>({x:()=>at(e)})},ZB={kernelName:Ci,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>zt(pe(e,L(Ds(r,1.5),2)))}}},YB={kernelName:cl,inputsToSave:["condition"],gradFunc:(e,t)=>{let[r]=t;return{condition:()=>me(at(r),"float32"),t:()=>L(e,me(r,e.dtype)),e:()=>L(e,me(Sm(r),e.dtype))}}},JB={kernelName:nd,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>{let n=fn(r,Se(0)),a=Se($7),s=Se(P7),i=L(e,s),o=L(L(e,a),Rn(me(r,"float32")));return Wr(n,i,o)}}}},QB={kernelName:Ri,outputsToSave:[!0],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(e,L(r,ce(Se(1),r)))}}},eW={kernelName:ad,gradFunc:e=>({x:()=>at(e)})},tW={kernelName:Ei,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(bm(me(r,"float32")),e)}}},rW={kernelName:ml,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(L2(me(r,"float32")),e)}}},nW={kernelName:fl,inputsToSave:["x"],gradFunc:(e,t,r)=>{let[n]=t,{begin:a,size:s}=r,i=n.shape,[o,l]=yk(n,a,s),u=[];for(let d=0;d<e.rank;d++)u.push([o[d],i[d]-o[d]-l[d]]);return{x:()=>Hn(e,u)}}},aW={kernelName:$i,outputsToSave:[!0],gradFunc:(e,t,r)=>{let[n]=t,{dim:a}=r,s=!0,i=L(e,n);return{logits:()=>ce(i,L(ke(i,[a],s),n))}}},sW={kernelName:sd,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(e,Nr(r))}}},K3={kernelName:gl,gradFunc:(e,t,r)=>{let{blockShape:n,paddings:a}=r;return{x:()=>xm(e,n,a)}}},X3={kernelName:yl,gradFunc:(e,t,r)=>{let{axis:n}=r;return{x:()=>kt(e,n)}}},iW={kernelName:Mi,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>pe(e,L(Er(me(r,"float32")),2))}}},oW={kernelName:od,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(e,L(me(r,"float32"),2))}}},lW={kernelName:Pi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t,a=Se(2);return{a:()=>L(e,L(a,ce(r,n))),b:()=>L(e,L(a,ce(n,r)))}}},uW={kernelName:Di,gradFunc:e=>({x:()=>at(e)})},dW={kernelName:_i,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t,a=bt(r.shape,n.shape);return{a:()=>{let s=e,i=Zt(r.shape,a);return i.length>0&&(s=ke(s,i)),G(s,r.shape)},b:()=>{let s=e,i=Zt(n.shape,a);return i.length>0&&(s=ke(s,i)),G(zt(s),n.shape)}}}},pW={kernelName:Fi,inputsToSave:["x"],gradFunc:(e,t,r)=>{let[n]=t,a=n.shape.slice(),{axis:s}=r;Un(s,n.shape).forEach(l=>{a[l]=1});let i=G(e,a),o=L(i,hn(n.shape,"float32"));return{x:()=>o}}},hW={kernelName:xl,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>pe(e,At(bm(r)))}}},cW={kernelName:zi,outputsToSave:[!0],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(ce(Se(1),At(r)),e)}}},fW={kernelName:Qa,inputsToSave:["x"],gradFunc:(e,t,r)=>{let[n]=t,{reps:a}=r;return{x:()=>{let s=at(n);if(n.rank===1)for(let i=0;i<a[0];++i)s=le(s,Pe(e,[i*n.shape[0]],[n.shape[0]]));else if(n.rank===2)for(let i=0;i<a[0];++i)for(let o=0;o<a[1];++o)s=le(s,Pe(e,[i*n.shape[0],o*n.shape[1]],[n.shape[0],n.shape[1]]));else if(n.rank===3)for(let i=0;i<a[0];++i)for(let o=0;o<a[1];++o)for(let l=0;l<a[2];++l)s=le(s,Pe(e,[i*n.shape[0],o*n.shape[1],l*n.shape[2]],[n.shape[0],n.shape[1],n.shape[2]]));else if(n.rank===4)for(let i=0;i<a[0];++i)for(let o=0;o<a[1];++o)for(let l=0;l<a[2];++l)for(let u=0;u<a[3];++u)s=le(s,Pe(e,[i*n.shape[0],o*n.shape[1],l*n.shape[2],u*n.shape[3]],[n.shape[0],n.shape[1],n.shape[2],n.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${n.rank} tensors yet.`);return s}}}},mW={kernelName:Oi,gradFunc:(e,t,r)=>{let n=r,{perm:a}=n,s=j2(a);return{x:()=>nt(e,s)}}},gW={kernelName:wl,gradFunc:(e,t,r)=>{let n=r,{axis:a}=n;return{value:()=>or(e,a)}}},yW={kernelName:dh,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>AW(e,r)}}};function AW(e,t){let r=es(t,at(t)),n=wu(e,r),a=Nl(t,Se(0,"int32")),s=n.rank-a.rank;for(let o=0;o<s;++o)a=qt(a,o+1);a=fa(a,hn(n.shape,"bool"));let i=at(n);return Wr(a,n,i)}var xW={kernelName:kl,gradFunc:e=>({x:()=>at(e)})},bW=[z7,bL,vL,wL,kL,IL,SL,TL,NL,CL,EL,RL,$L,zL,OL,DL,LL,BL,WL,VL,UL,GL,HL,jL,XL,ZL,YL,JL,QL,eB,WB,tB,rB,nB,aB,sB,oB,iB,lB,uB,dB,pB,hB,cB,fB,mB,gB,yB,AB,vB,H3,H3,wB,SB,CB,EB,RB,MB,FB,$B,PB,_B,zB,OB,DB,q3,q3,LB,BB,VB,UB,GB,jB,HB,qB,KB,XB,ZB,YB,JB,QB,eW,tW,rW,nW,aW,sW,K3,K3,X3,X3,iW,lW,oW,uW,dW,pW,hW,cW,fW,mW,gW,yW,xW];for(let e of bW)Ew(e);var D7={};Le(D7,{maxNorm:()=>IW,minMaxNorm:()=>NW,nonNeg:()=>TW,unitNorm:()=>SW});var Y1;function nr(){return Y1==null&&(Y1=jn().epsilon()),Y1}function ma(){return"channelsLast"}var Ga=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Ga.prototype)}},la=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,la.prototype)}},q=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,q.prototype)}},Ve=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Ve.prototype)}},L7=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,L7.prototype)}};function Mo(e,t){if(Array.isArray(e)){let r=[];for(let n=0;n<t;n++)r=r.concat(e);return r}else{let r=new Array(t);return r.fill(e),r}}function Ta(e,t){if(!e)throw new L7(t)}function Z3(e,t){let r=0;for(let n of e)n===t&&r++;return r}function Qr(e){return e.length===1?e[0]:e}function It(e){return Array.isArray(e)?e:[e]}function ja(e){let t=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function yo(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,r)=>r.toUpperCase())}var Dn={};function fA(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function vy(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>vy(t));else{let t=Object.keys(e);for(let r of t){let n=e[r];n!=null&&typeof n=="object"&&(!Array.isArray(n)&&n.type==="ndarray"&&typeof n.value=="number"?e[r]=n.value:vy(n))}}}function Ih(e,t={},r={},n="object",a=!1){if(typeof e=="string"){let s=e,i;if(s in r)i=r[s];else if(s in Dn)i=Dn[s];else if(i=t[s],i==null)throw new q(`Unknown ${n}: ${e}. This may be due to one of the following reasons:
|
|
1. The ${n} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${n} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new q(`${n}: Improper config format: ${JSON.stringify(s)}.
|
|
'className' and 'config' must set.`);let i=s.className,o,l;if(i in r?[o,l]=r[i]:i in Dn?[o,l]=Dn.className:i in t&&([o,l]=t[i]),o==null)throw new q(`Unknown ${n}: ${i}. This may be due to one of the following reasons:
|
|
1. The ${n} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${n} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let c of Object.keys(Dn))u[c]=Dn[c];for(let c of Object.keys(r))u[c]=r[c];let d=s.config;d.customObjects=u;let h={...Dn};for(let c of Object.keys(r))Dn[c]=r[c];vy(s.config);let p=l(o,s.config,r,a);return Dn={...h},p}else{let u={...Dn};for(let h of Object.keys(r))Dn[h]=r[h];let d=new o(s.config);return Dn={...u},d}}}function vW(e,t){return e<t?-1:e>t?1:0}function Gc(e,t){return-1*vW(e,t)}function Cs(e){if(e==null)return e;let t=[];for(let r of e)t.indexOf(r)===-1&&t.push(r);return t}function wW(e){if(e==null)throw new q(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function Rl(e,t,r){if(r!=null&&e.indexOf(r)<0)throw new q(`${r} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function mA(e,t,r=0,n=1/0){return Ta(r>=0),Ta(n>=r),Array.isArray(e)&&e.length>=r&&e.length<=n&&e.every(a=>typeof a===t)}function fr(e,t){Array.isArray(e)?(w.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((r,n)=>fr(r,`element ${n+1} of ${t}`))):w.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${B7(e)}.`)}function B7(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>B7(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function kW(e,t,r){let n=r!=null?r():w.now(),a;return(...s)=>{let i=r!=null?r():w.now();return i-n<t||(n=i,a=e(...s)),a}}function W7(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function gA(e,t){return K(()=>Er(ke(L(e,e),t,!0)))}var Sh=class extends ue.Serializable{getConfig(){return{}}},yA=class extends Sh{constructor(e){super(),this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return K(()=>{let t=gA(e,this.axis),r=cn(t,0,this.maxValue);return L(e,pe(r,le(nr(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};yA.className="MaxNorm";ue.registerClass(yA);var AA=class extends Sh{constructor(e){super(),this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return K(()=>pe(e,le(nr(),gA(e,this.axis))))}getConfig(){return{axis:this.axis}}};AA.className="UnitNorm";ue.registerClass(AA);var xA=class extends Sh{apply(e){return _a(e)}};xA.className="NonNeg";ue.registerClass(xA);var bA=class extends Sh{constructor(e){super(),this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return K(()=>{let t=gA(e,this.axis),r=le(L(this.rate,cn(t,this.minValue,this.maxValue)),L(1-this.rate,t));return L(e,pe(r,le(nr(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};bA.className="MinMaxNorm";ue.registerClass(bA);var Y3={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function sr(e){return fA(e)}function J3(e,t={}){return Ih(e,ue.SerializationMap.getMap().classNameMap,t,"constraint")}function ir(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in Y3?Y3[e]:e,config:{}};return J3(t)}else return e instanceof Sh?e:J3(e)}function IW(e){return new yA(e)}function SW(e){return new AA(e)}function TW(){return new xA}function NW(e){return new bA(e)}var V7={};Le(V7,{constant:()=>ZW,glorotNormal:()=>nV,glorotUniform:()=>rV,heNormal:()=>aV,heUniform:()=>sV,identity:()=>eV,leCunNormal:()=>iV,leCunUniform:()=>oV,ones:()=>XW,orthogonal:()=>lV,randomNormal:()=>JW,randomUniform:()=>YW,truncatedNormal:()=>QW,varianceScaling:()=>tV,zeros:()=>KW});var CW=["channelsFirst","channelsLast"],EW=["nearest","bilinear"],RW=["valid","same","causal"],MW=["max","avg"],FW=["sum","mul","concat","ave"],su=new Map;function Gt(e){Rl(CW,"DataFormat",e)}function $W(e){Rl(EW,"InterpolationFormat",e)}function _n(e){Rl(RW,"PaddingMode",e)}function U7(e){Rl(MW,"PoolMode",e)}var Rp=[],Q3="/";function ko(e,t){Rp.push(e);try{let r=t();return Rp.pop(),r}catch(r){throw Rp.pop(),r}}function PW(){return Rp.length===0?"":Rp.join(Q3)+Q3}function G7(e){if(!H7(e))throw new Error("Not a valid tensor name: '"+e+"'");return PW()+e}function j7(e){if(!H7(e))throw new Error("Not a valid tensor name: '"+e+"'");su.has(e)||su.set(e,0);let t=su.get(e);if(su.set(e,su.get(e)+1),t>0){let r=`${e}_${t}`;return su.set(r,1),r}else return e}var _W=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function H7(e){return!!e.match(_W)}function zW(e){return e===parseInt(e.toString(),10)}function Es(e,t,r){t==null&&(t=0),r==null&&(r=e.length);let n=1;for(let a=t;a<r;++a)n*=e[a];return n}function Su(e){if(e.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let r=0;r<e.length;r++){let n=e[r];n<t&&(t=n)}return t}function Bs(e){if(e.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let r=0;r<e.length;r++){let n=e[r];n>t&&(t=n)}return t}function ga(e,t){if(t<e)throw new q(`end (${t}) < begin (${e}) is forbidden.`);let r=[];for(let n=e;n<t;++n)r.push(n);return r}function Gm(e,t){return me(e,t)}function Th(e,t=-1){let r=e.shape.slice();return t<0&&(t=r.length+t+1),r.splice(t,0,1),G(e,r)}function OW(e,t){return K(()=>{if(e.shape.length!==2)throw new q(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let r=Th(e,1);return wy(r,[1,t,1])})}function DW(e){let t=[Es(e.shape)];return G(e,t)}function LW(e){if(e.rank<=1)throw new q(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],Es(e.shape,1)];return G(e,t)}function Io(e,t,r){return K(()=>{switch(e.rank){case 1:return Rm(e,t,r);case 2:return nA(e,[t,0],[r,e.shape[1]]);case 3:return El(e,[t,0,0],[r,e.shape[1],e.shape[2]]);case 4:return Ro(e,[t,0,0,0],[r,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Pe(e,[t,0,0,0,0],[r,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Pe(e,[t,0,0,0,0,0],[r,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new q(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function J1(e,t,r){return K(()=>{switch(e.rank){case 1:return Rm(e,t,r);case 2:return nA(e,[0,t],[e.shape[0],r]);case 3:return El(e,[0,0,t],[e.shape[0],e.shape[1],r]);case 4:return Ro(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],r]);default:throw new q(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function jc(e,t,r,n){return K(()=>{switch(e.rank){case 1:return Rm(e,t,r);case 2:switch(n){case 1:return Io(e,t,r);case 2:return J1(e,t,r);default:throw new q(`The axis is not within the rank of the tensor ${n}`)}case 3:switch(n){case 1:return Io(e,t,r);case 2:return El(e,[0,t,0],[e.shape[0],r,e.shape[2]]);case 3:return J1(e,t,r);default:throw new q(`The axis is not within the rank of the tensor ${n}`)}case 4:switch(n){case 1:return Io(e,t,r);case 2:return Ro(e,[0,t,0,0],[e.shape[0],r,e.shape[2],e.shape[3]]);case 3:return Ro(e,[0,0,t,0],[e.shape[0],e.shape[1],r,e.shape[3]]);case 4:return J1(e,t,r);default:throw new q(`The axis is not within the rank of the tensor ${n}`)}default:throw new q(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function vA(e,t=-1){let r;return t<0&&(r=e[0].rank,r!==0?t=r:t=0),t===e[0].rank&&(t=-1),kt(e,t)}function ev(e,t){switch(e.rank){case 1:return Dk([e,t]);case 2:return ud([e,t],0);case 3:return Lk([e,t],0);case 4:return Bk([e,t],0);default:throw new q(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function wy(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new q(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Bn(e,t)}function jm(e,t=0,r=1,n,a){return l7(e,t,r,n,a)}function Ea(e,t,r,n){if(e.rank<2||t.rank<2)throw new Ve(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let a=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(a!==s)throw new Ve(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2)return Ls.matMul({a:e,b:t,transposeA:!1,transposeB:!1,bias:n?ky(e.rank,n,ma()):null,activation:r});{let a=e.shape.slice(),s=a.pop();e=G(e,[-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),u=[...i,o],d=Array.from({length:t.rank},(f,m)=>m===0?t.rank-2:m<=t.rank-2?m-1:m);t=G(nt(t,d),[l,-1]);let h=[...a,...u],p=!1,c=!1;return G(Ls.matMul({a:e,b:t,transposeA:p,transposeB:c,bias:n?ky(e.rank,n,ma()):null,activation:r}),h)}}function q7(e,t,r){return K(()=>(Array.isArray(t)?t=St(t,"int32"):t=me(t,"int32"),wu(e,t,r)))}function Nh(e){return L(e,e)}function ky(e,t,r){let n=t.shape;if(t.rank!==1&&t.rank!==e)throw new q(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(r==="channelsFirst")return n.length===1?G(t,[1,n[0],1,1,1]):G(t,[1,n[3],n[0],n[1],n[2]]);if(r==="channelsLast")return n.length===1?G(t,[1,1,1,1,n[0]]):G(t,[1].concat(n))}else if(e===4){if(r==="channelsFirst")return n.length===1?G(t,[1,n[0],1,1]):G(t,[1,n[2],n[0],n[1]]);if(r==="channelsLast")return n.length===1?G(t,[1,1,1,n[0]]):G(t,[1].concat(n))}else if(e===3){if(r==="channelsFirst")return n.length===1?G(t,[1,n[0],1]):G(t,[1,n[1],n[0]]);if(r==="channelsLast")return n.length===1?G(t,[1,1,n[0]]):G(t,[1].concat(n))}else if(e<3)return t;throw new q(`Unsupported input rank by biasAdd: ${t.rank}`)}function xa(e,t,r){return K(()=>(r==null&&(r=ma()),Gt(r),le(e,ky(e.rank,t,r))))}function BW(e,t=1){if(t!==1)throw new Ve(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return xh(e)}function WW(e){return K(()=>pe(e,le(rr(e),1)))}function K7(e,t,r,n){return K(()=>w7(e,t,r,n))}function VW(e){return K(()=>{let t=le(.5,L(.2,e));return cn(t,0,1)})}function Ch(e,t,r=!1){return r?e():t()}var UW=["fanIn","fanOut","fanAvg"],GW=["normal","uniform","truncatedNormal"];function jW(e){Rl(UW,"FanMode",e)}function HW(e){Rl(GW,"Distribution",e)}var Kn=class extends ue.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},wA=class extends Kn{apply(e,t){return Wt(e,t)}};wA.className="Zeros";ue.registerClass(wA);var Hm=class extends Kn{apply(e,t){return hn(e,t)}};Hm.className="Ones";ue.registerClass(Hm);var kA=class extends Kn{constructor(e){if(super(),typeof e!="object")throw new q(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new q(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return K(()=>L(Se(this.value),hn(e,t)))}getConfig(){return{value:this.value}}};kA.className="Constant";ue.registerClass(kA);var IA=class extends Kn{constructor(e){super(),this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return cd(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};IA.className="RandomUniform";ue.registerClass(IA);var SA=class extends Kn{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Ve(`randomNormal does not support dType ${t}.`);return jm(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};SA.className="RandomNormal";ue.registerClass(SA);var TA=class extends Kn{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Ve(`truncatedNormal does not support dType ${t}.`);return $m(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};TA.className="TruncatedNormal";ue.registerClass(TA);var NA=class extends Kn{constructor(e){super(),this.gain=e.gain!=null?e.gain:1}apply(e,t){return K(()=>{if(e.length!==2||e[0]!==e[1])throw new q("Identity matrix initializer can only be used for 2D square matrices.");return L(this.gain,W2(e[0]))})}getConfig(){return{gain:this.gain}}};NA.className="Identity";ue.registerClass(NA);function qW(e,t="channelsLast"){let r,n;if(Gt(t),e.length===2)r=e[0],n=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let a=Es(e,2);r=e[1]*a,n=e[0]*a}else if(t==="channelsLast"){let a=Es(e,0,e.length-2);r=e[e.length-2]*a,n=e[e.length-1]*a}}else{let a=Es(e);r=Math.sqrt(a),n=Math.sqrt(a)}return[r,n]}var rn=class extends Kn{constructor(e){if(super(),e.scale<0)throw new q(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,jW(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,HW(this.distribution),this.seed=e.seed}apply(e,t){let r=qW(e),n=r[0],a=r[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,n):this.mode==="fanOut"?s/=Math.max(1,a):s/=Math.max(1,(n+a)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Ve(`${this.getClassName()} does not support dType ${t}.`);return $m(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return cd(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};rn.className="VarianceScaling";ue.registerClass(rn);var qm=class extends rn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return rn.className}};qm.className="GlorotUniform";ue.registerClass(qm);var Km=class extends rn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return rn.className}};Km.className="GlorotNormal";ue.registerClass(Km);var Xm=class extends rn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return rn.className}};Xm.className="HeNormal";ue.registerClass(Xm);var Zm=class extends rn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return rn.className}};Zm.className="HeUniform";ue.registerClass(Zm);var Ym=class extends rn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return rn.className}};Ym.className="LeCunNormal";ue.registerClass(Ym);var Jm=class extends rn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return rn.className}};Jm.className="LeCunNormal";ue.registerClass(Jm);var CA=class extends Kn{constructor(e){if(super(),this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Ve("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return K(()=>{if(e.length<2)throw new Ve("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let r=e[0]>e[1]?[e[1],e[0]]:e,n=jm(r,0,1,"float32"),a=F7.gramSchmidt(n);return e[0]>e[1]&&(a=nt(a)),L(this.gain,a)})}getConfig(){return{gain:this.gain,seed:this.seed}}};CA.className="Orthogonal";ue.registerClass(CA);var tv={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function rv(e,t={}){return Ih(e,ue.SerializationMap.getMap().classNameMap,t,"initializer")}function Pt(e){return fA(e)}function Et(e){if(typeof e=="string"){let t=e in tv?tv[e]:e;if(t==="GlorotNormal")return new Km;if(t==="GlorotUniform")return new qm;if(t==="HeNormal")return new Xm;if(t==="HeUniform")return new Zm;if(t==="LeCunNormal")return new Ym;if(t==="LeCunUniform")return new Jm;{let r={};return r.className=t,r.config={},rv(r)}}else return e instanceof Kn?e:rv(e)}function KW(){return new wA}function XW(){return new Hm}function ZW(e){return new kA(e)}function YW(e){return new IA(e)}function JW(e){return new SA(e)}function QW(e){return new TA(e)}function eV(e){return new NA(e)}function tV(e){return new rn(e)}function rV(e){return new qm(e)}function nV(e){return new Km(e)}function aV(e){return new Xm(e)}function sV(e){return new Zm(e)}function iV(e){return new Ym(e)}function oV(e){return new Jm(e)}function lV(e){return new CA(e)}var X7={};Le(X7,{Layer:()=>st,RNN:()=>ns,RNNCell:()=>Mh,activation:()=>UU,add:()=>JU,alphaDropout:()=>_G,average:()=>QU,averagePooling1d:()=>Dx,averagePooling2d:()=>Lx,averagePooling3d:()=>Bx,avgPool1d:()=>lG,avgPool2d:()=>dG,avgPool3d:()=>hG,avgPooling1d:()=>uG,avgPooling2d:()=>pG,avgPooling3d:()=>cG,batchNormalization:()=>sG,bidirectional:()=>NG,concatenate:()=>eG,conv1d:()=>PU,conv2d:()=>_U,conv2dTranspose:()=>zU,conv3d:()=>OU,conv3dTranspose:()=>DU,convLstm2d:()=>kG,convLstm2dCell:()=>IG,cropping2D:()=>BU,dense:()=>GU,depthwiseConv2d:()=>VU,dot:()=>aG,dropout:()=>jU,elu:()=>CU,embedding:()=>YU,flatten:()=>qU,gaussianDropout:()=>PG,gaussianNoise:()=>$G,globalAveragePooling1d:()=>fG,globalAveragePooling2d:()=>mG,globalMaxPool1d:()=>EG,globalMaxPool2d:()=>RG,globalMaxPooling1d:()=>K4,globalMaxPooling2d:()=>X4,gru:()=>yG,gruCell:()=>AG,input:()=>y4,inputLayer:()=>NU,layerNormalization:()=>iG,leakyReLU:()=>RU,lstm:()=>xG,lstmCell:()=>bG,masking:()=>zG,maxPool1d:()=>MG,maxPool2d:()=>FG,maxPooling1d:()=>Z4,maxPooling2d:()=>Y4,maxPooling3d:()=>gG,maximum:()=>tG,minimum:()=>rG,multiply:()=>nG,permute:()=>ZU,prelu:()=>MU,reLU:()=>EU,repeatVector:()=>KU,reshape:()=>XU,rnn:()=>SG,separableConv2d:()=>LU,simpleRNN:()=>vG,simpleRNNCell:()=>wG,softmax:()=>FU,spatialDropout1d:()=>HU,stackedRNNCells:()=>TG,thresholdedReLU:()=>$U,timeDistributed:()=>CG,upSampling2d:()=>WU,zeroPadding2d:()=>oG});var uV=0;function Z7(){return uV++}var Hc={};function Qm(e=""){return e in Hc||(Hc[e]=0),Hc[e]+=1,e+Hc[e].toString()}function Iy(e){return Array.isArray(e)&&Array.isArray(e[0])}function If(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function je(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new q(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function ft(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new q(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Sf(e){let t=0;for(let r of e)r.shape.length===0?t+=1:t+=r.shape.reduce((n,a)=>n*a);return t}var nv="Variable",Y7=class{constructor(e,t="float32",r=nv,n=!0,a=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=Z7(),r=r==null?nv:r,this.originalName=G7(r),this.name=j7(this.originalName),this.trainable_=n,this.constraint=a,this.val=y7(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),dV(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function dV(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function Sy(e){return e.map(t=>t.read())}function EA(e){e.forEach(t=>{t[0].write(t[1])})}var Kt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},ua=class{constructor(e,t,r,n,a,s,i){this.dtype=e,this.shape=t,this.sourceLayer=r,this.inputs=n,this.callArgs=a,this.outputTensorIndex=i,this.id=Z7(),s!=null&&(this.originalName=G7(s),this.name=j7(this.originalName)),this.rank=t.length}},pV=0,e0=class{constructor(e,t){this.callArgs=t,this.id=pV++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let r of e.inboundLayers)r!=null&&r.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},hV=0,st=class extends ue.Serializable{constructor(e={}){super(),this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=hV++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let r=this.getClassName();t=ja(r)+"_"+Qm(r)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let r;if(e.batchInputShape!=null)r=e.batchInputShape;else if(e.inputShape!=null){let a=null;e.batchSize!=null&&(a=e.batchSize),r=[a].concat(e.inputShape)}this.batchInputShape=r;let n=e.dtype;n==null&&(n=e.inputDType),n==null&&(n="float32"),this.dtype=n}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new la(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new q(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return Qr(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return Qr(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new Ga(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new Ga(`Layer ${this.name} is not connected, no input to return.`);return Qr(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new Ga(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new Ga(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return Qr(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=It(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=It(this.inputSpec);if(e.length!==t.length)throw new q(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let r=0;r<e.length;r++){let n=e[r],a=t[r];if(a==null)continue;let s=n.rank;if(a.ndim!=null&&s!==a.ndim)throw new q(`Input ${r} is incompatible with layer ${this.name}: expected ndim=${a.ndim}, found ndim=${s}`);if(a.maxNDim!=null&&s>a.maxNDim)throw new q(`Input ${r} is incompatible with layer ${this.name}: expected max_ndim=${a.maxNDim}, found ndim=${s}`);if(a.minNDim!=null&&s<a.minNDim)throw new q(`Input ${r} is incompatible with layer ${this.name}: expected min_ndim=${a.minNDim}, found ndim=${s}.`);if(a.dtype!=null&&n.dtype!==a.dtype)throw new q(`Input ${r} is incompatible with layer ${this.name} : expected dtype=${a.dtype}, found dtype=${n.dtype}.`);if(a.axes){let i=n.shape;for(let o in a.axes){let l=Number(o),u=a.axes[o],d=l>=0?i[l]:i[i.length+l];if(u!=null&&[u,null].indexOf(d)===-1)throw new q(`Input ${r} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${u} but got shape ${i}.`)}}if(a.shape!=null)for(let i=0;i<a.shape.length;++i){let o=a.shape[i],l=n.shape[i];if(o!=null&&l!=null&&o!==l)throw new q(`Input ${r} is incompatible with layer ${this.name}: expected shape=${a.shape}, found shape=${n.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let r=It(e),n=!0;for(let s of r)if(!(s instanceof ua)){n=!1;break}let a=!0;for(let s of r)if(s instanceof ua){a=!1;break}if(n===a)throw new q("Arguments to apply() must be all SymbolicTensors or all Tensors");return ko(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of It(e))s.push(i.shape);this.build(Qr(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&a&&(this._refCount=1)}if(this.assertInputCompatibility(e),a){let s=this.call(e,t),i=It(s),o=[];for(let l of i)r.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=Qr(o),this.activityRegularizer!=null)throw new Ve("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=cV(e),i=this.computeOutputShape(s),o,l=fV(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((u,d)=>new ua(l,u,this,It(e),t,this.name,d)):o=new ua(l,i,this,It(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new Ve("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((r,n)=>{r!=null&&e[n]!=null&&e[n]!==r&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new Ga(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let r=JSON.stringify(t.outputShapes);e.indexOf(r)===-1&&e.push(r)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new Ga(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new la(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Sf(this.weights)}build(e){this.built=!0}getWeights(e=!1){return Sy(e?this.trainableWeights:this.weights)}setWeights(e){K(()=>{let t=this.weights;if(t.length!==e.length)throw new q(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let r=[],n=Sy(t);for(let a=0;a<n.length;++a){let s=n[a],i=t[a],o=e[a];if(!w.arraysEqual(s.shape,o.shape))throw new q(`Layer weight shape ${s.shape} not compatible with provided weight shape ${o.shape}`);r.push([i,o])}EA(r)})}addWeight(e,t,r,n,a,s,i,o){if(this._addedWeightNames.indexOf(e)!==-1)throw new q(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),r==null&&(r="float32"),this.fastWeightInitDuringBuild&&(n=o!=null?o():Et("zeros"));let l=n.apply(t,r),u=new Y7(l,r,e,s,i);return l.dispose(),a!=null&&this.addLoss(()=>a.apply(u.read())),s==null&&(s=!0),s?this._trainableWeights.push(u):this._nonTrainableWeights.push(u),u}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=It(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(r=>{if(r!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,r,n,a,s,i=null){let o=It(e);t=It(t),r=It(r),n=It(n),a=If(a),s=If(s);let l=[],u=[],d=[];for(let h of o)l.push(h.sourceLayer),u.push(h.nodeIndex),d.push(h.tensorIndex);new e0({outboundLayer:this,inboundLayers:l,nodeIndices:u,tensorIndices:d,inputTensors:o,outputTensors:t,inputMasks:r,outputMasks:n,inputShapes:a,outputShapes:s},i);for(let h=0;h<t.length;h++)t[h].sourceLayer=this,t[h].nodeIndex=this.inboundNodes.length-1,t[h].tensorIndex=h}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount===0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function cV(e){e=It(e);let t=[];for(let r of e)t.push(r.shape);return Qr(t)}function fV(e){return"float32"}function J7(e,t,r){if((t==null||r!=null&&r>0)&&(t=e.sourceLayer,r=e.nodeIndex),t.inboundNodes.length===0)return[e];{let n=t.inboundNodes[r];if(n.inboundLayers.length===0)return n.inputTensors;{let a=[];for(let s=0;s<n.inboundLayers.length;s++){let i=n.inputTensors[s],o=n.inboundLayers[s],l=n.nodeIndices[s],u=J7(i,o,l);for(let d of u)a.indexOf(d)===-1&&a.push(d)}return a}}}var gd=class extends st{constructor(e){if(super({dtype:e.dtype,name:e.name!=null?e.name:Qm("input").toString()}),e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new q("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new q("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new q("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let r=e.dtype||"float32";this.batchInputShape=t,this.dtype=r,this.inputSpec=[{shape:t}];let n=new ua(this.dtype,this.batchInputShape,this,[],{},this.name);n.nodeIndex=0,n.tensorIndex=0,new e0({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[n],outputTensors:[n],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new q(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};gd.className="InputLayer";ue.registerClass(gd);function Q7(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new q("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let r=e.dtype;return r==null&&(r="float32"),new gd({batchInputShape:t,name:e.name,dtype:r,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}async function ks(e){if(e==null)return;let t=[],r=[],n=[];for(let a in e){let s=e[a];if(typeof s!="number"){let i=s;t.push(i.data()),r.push(a),n.push(i)}}if(t.length>0){let a=await Promise.all(t);for(let s=0;s<a.length;++s)e[r[s]]=a[s][0];re(n)}}function e4(e){if(e!=null)for(let t in e){let r=e[t];typeof r!="number"&&r.dispose()}}var mV=125,Tu=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},t4=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let r of this.callbacks)await r.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let r of this.callbacks)await r.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let r of this.callbacks)await r.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let r of this.callbacks)await r.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},gV=class extends Tu{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let r=t.size==null?0:t.size;this.seen+=r;for(let n in t){let a=t[n];if(typeof a=="number")this.totals.hasOwnProperty(n)||(this.totals[n]=0),this.totals[n]=this.totals[n]+a*r;else{let s;n in this.totals?s=this.totals[n]:this.totals[n]=0;let i=K(()=>le(this.totals[n],L(a,r)));this.totals[n]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let r of this.params.metrics)this.totals[r]!=null&&(typeof this.totals[r]=="number"?t[r]=this.totals[r]/this.seen:K(()=>{let n=L(pe(1,this.seen),this.totals[r]);t[r]=n,this.totals[r].dispose(),cr(t[r])}))}},r4=class extends Tu{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let r in t)this.history[r]==null&&(this.history[r]=[]),this.history[r].push(t[r])}async syncData(){let e=[],t=[],r=[];for(let a in this.history){let s=this.history[a];for(let i=0;i<s.length;++i)if(typeof s[i]!="number"){let o=s[i];e.push(o.data()),t.push(a),r.push(i)}}let n=await Promise.all(e);for(let a=0;a<n.length;++a)this.history[t[a]][r[a]].dispose(),this.history[t[a]][r[a]]=n[a][0]}},n4=class extends Tu{constructor(e,t){if(super(),this.currentEpoch=0,this.nowFunc=e.nowFunc,this.nextFrameFunc=e.nextFrameFunc||hA,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=mV),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");w.isNumber(this.yieldEvery)&&(this.maybeWait=kW(this.maybeWait.bind(this),this.yieldEvery,this.nowFunc)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,r){let n=[];this.yield!=null&&(await ks(r),n.push(this.yield(e,t,r))),n.push(this.nextFrameFunc()),await Promise.all(n)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await ks(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let r=[];this.epochEnd!=null&&(await ks(t),r.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&r.push(this.nextFrameFunc()),await Promise.all(r)}async onBatchBegin(e,t){this.batchBegin!=null&&(await ks(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let r=[];this.batchEnd!=null&&(await ks(t),r.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?r.push(this.nextFrameFunc()):w.isNumber(this.yieldEvery)&&r.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(r)}async onTrainBegin(e){this.trainBegin!=null&&(await ks(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await ks(e),await this.trainEnd(e))}};function a4(e,t){return e==null&&(e={}),e instanceof Tu?[e]:Array.isArray(e)&&e[0]instanceof Tu?e:It(e).map(r=>new n4(r,t))}var Ia=class{constructor(){}static registerCallbackConstructor(e,t){w.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),Ia.checkForDuplicate(t),Ia.constructors[e]==null&&(Ia.constructors[e]=[]),Ia.constructors[e].push(t)}static checkForDuplicate(e){for(let t in Ia.constructors)Ia.constructors[+t].forEach(r=>{if(r===e)throw new q("Duplicate callback constructor.")})}static clear(){Ia.constructors={}}static createCallbacks(e){let t=[];for(let r in Ia.constructors){let n=+r;e>=n&&t.push(...Ia.constructors[n])}return t.map(r=>new r)}},RA=Ia;RA.constructors={};function s4(e,t,r,n,a,s,i,o,l){let u=new r4,d=[new gV,...RA.createCallbacks(t)];e!=null&&d.push(...e),d.push(u);let h=new t4(d);return h.setParams({epochs:r,initialEpoch:n,samples:a,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:h,history:u}}function ha(e,t={},r=!1){return Ih(e,ue.SerializationMap.getMap().classNameMap,t,"layer",r)}function Tf(e,t){return K(()=>{e.dtype!=="float32"&&(e=me(e,"float32"));let r=ke(Nh(e),t,!0),n=dd(r.shape,nr()),a=Er(es(r,n));return pe(e,a)})}function Ml(e,t){return K(()=>Bt(Nh(ce(t,e)),-1))}function t0(e,t){return K(()=>Bt(rr(ce(t,e)),-1))}function yd(e,t){return K(()=>{let r=ce(e,t),n=cn(rr(e),nr(),Number.MAX_VALUE),a=rr(pe(r,n));return L(100,Bt(a,-1))})}function yV(e,t){return K(()=>{let r=cn(t,nr(),Number.MAX_VALUE),n=Mn(le(1,r)),a=cn(e,nr(),Number.MAX_VALUE),s=Mn(le(1,a));return Bt(Nh(ce(n,s)),-1)})}function AV(e,t){return K(()=>{let r=es(0,ce(1,L(e,t)));return Bt(Nh(r),-1)})}function xV(e,t){return K(()=>{let r=es(0,ce(1,L(e,t)));return Bt(r,-1)})}function bV(e,t){return K(()=>{let r=ke(L(e,t),-1),n=mr(L(ce(1,e),t),-1);return es(0,le(1,ce(n,r)))})}function vV(e,t){return K(()=>{let r=Math.log(2),n=ce(t,e),a=ce(le(n,pd(L(-2,n))),r);return Bt(a,-1)})}function Vp(e,t,r=!1){return K(()=>{if(r)t=fd(t);else{let n=ke(t,t.shape.length-1,!0);t=pe(t,n)}return t=cn(t,nr(),1-nr()),zt(ke(L(me(e,"float32"),Mn(t)),t.shape.length-1))})}function Nf(e,t,r=!1){return K(()=>{let n=me(bh(DW(e)),"int32");t=cn(t,nr(),1-nr());let a=t.shape,s=G(Lp(n,a[a.length-1]),a);return Vp(s,t,r)})}function wV(e,t){if(!w.arraysEqual(e.shape,t.shape))throw new q(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return K(()=>{let r=_a(t),n=zt(rr(t));return le(ce(r,L(t,e)),km(Rn(n)))})}function r0(e,t){return K(()=>{let r;return r=cn(t,nr(),1-nr()),r=Mn(pe(r,ce(1,r))),Bt(wV(e,r),-1)})}function kV(e,t){return K(()=>{let r=cn(e,nr(),1),n=cn(t,nr(),1);return ke(L(e,Mn(pe(r,n))),-1)})}function IV(e,t){return K(()=>{let r=Mn(le(nr(),t));return Bt(ce(t,L(e,r)),-1)})}function MA(e,t){return K(()=>{let r=Tf(e,-1),n=Tf(t,-1),a=L(r,n);return zt(ke(a,-1))})}var Cf={meanSquaredError:Ml,meanAbsoluteError:t0,meanAbsolutePercentageError:yd,meanSquaredLogarithmicError:yV,squaredHinge:AV,hinge:xV,categoricalHinge:bV,logcosh:vV,categoricalCrossentropy:Vp,sparseCategoricalCrossentropy:Nf,binaryCrossentropy:r0,kullbackLeiblerDivergence:kV,poisson:IV,cosineProximity:MA};function Q1(e){if(typeof e=="string"){if(e in Cf)return Cf[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new q(t)}else return e}function FA(e,t){return K(()=>{let r=L(.5,Fn(t)),n=Gm(fn(t,r),e.dtype);return Bt(En(e,n),-1)})}function $A(e,t){return K(()=>Gm(En(Cn(e,-1),Cn(t,-1)),"float32"))}function i4(e,t){return K(()=>me(ke(fa(En(e,1),En(t,1))),"float32"))}function SV(e,t){return K(()=>me(ke(fa(En(e,1),En(t,0))),"float32"))}function TV(e,t){return K(()=>me(ke(fa(En(e,0),En(t,1))),"float32"))}function o4(e,t){return K(()=>{let r=i4(e,t),n=TV(e,t),a=le(r,n);return me(Wr(fn(a,0),pe(r,a),0),"float32")})}function NV(e,t){return K(()=>{let r=i4(e,t),n=SV(e,t),a=le(r,n);return me(Wr(fn(a,0),pe(r,a),0),"float32")})}function l4(e,t){return r0(e,t)}function u4(e,t){return e.rank===t.rank&&(e=et(e,[e.rank-1])),t=Cn(t,-1),t.dtype!==e.dtype&&(t=me(t,e.dtype)),me(En(e,t),"float32")}var CV=Ml,EV=Ml,RV=t0,MV=t0,FV=yd,$V=yd,PA=Vp,PV=MA,d4=Nf,Ef={binaryAccuracy:FA,categoricalAccuracy:$A,precision:o4,categoricalCrossentropy:PA,sparseCategoricalCrossentropy:d4,mse:CV,MSE:EV,mae:RV,MAE:MV,mape:FV,MAPE:$V,cosine:PV};function _V(e){if(typeof e=="string"&&e in Ef)return Ef[e];if(typeof e!="string"&&e!=null)return e;throw new q(`Unknown metric ${e}`)}function qc(e){if(Ta(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let r of Object.keys(Cf))if(Cf[r]===e){t=r;break}if(t!==void 0)return t;for(let r of Object.keys(Ef))if(Ef[r]===e){t=r;break}return t!==void 0?t:e.name}}function zV(e){let t={Adagrad:()=>co.adagrad(.01),Adadelta:()=>co.adadelta(1,.95,nr()),Adam:()=>co.adam(.001,.9,.999,nr()),Adamax:()=>co.adamax(.002,.9,.999,nr(),0),RMSProp:()=>co.rmsprop(.001,.9,0,nr()),SGD:()=>co.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new q(`Unknown Optimizer ${e}`)}var av=1*1024*1024;function sv(e,t,r=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!Ty(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(r){let n=JSON.stringify(e);n.length>av&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${n.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${av}.`)}}function Ty(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let r of t)if(typeof r!="string"||!Ty(e[r]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!Ty(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function OV(e,t,r,n=console.log){let a=LV(e),s=["Layer (type)","Input Shape","Output shape","Param #"];a?(t=t||90,r=r||[.32,.61,.89,1]):(t=t||115,r=r||[.24,.48,.7,.8,1]),r[r.length-1]<=1&&(r=r.map(d=>Math.floor(t*d)));let i;if(!a){s.push("Receives inputs"),i=[];for(let d in e.nodesByDepth)i.push(...e.nodesByDepth[d])}n("_".repeat(t)),Rf(s,r,n),n("=".repeat(t));let o=e.layers;for(let d=0;d<o.length;++d)a?BV(o[d],r,n):WV(o[d],r,i,n),n((d===o.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=DV(e),u=Sf(e.nonTrainableWeights);n(`Total params: ${l+u}`),n(`Trainable params: ${l}`),n(`Non-trainable params: ${u}`),n("_".repeat(t))}function DV(e){let t;return e.collectedTrainableWeights!=null?t=Sf(e.collectedTrainableWeights):t=Sf(e.trainableWeights),t}function LV(e){let t=!0,r=[],n=[];for(let a in e.nodesByDepth)r.push(e.nodesByDepth[a]);for(let a of r){if(a.length>1||a.length===1&&a[0].inboundLayers.length>1){t=!1;break}n.push(...a)}if(t)for(let a of e.layers){let s=!1;for(let i of a.inboundNodes)if(n.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function Rf(e,t,r=console.log){let n="";for(let a=0;a<e.length;++a)a>0&&(n=n.slice(0,n.length-1)+" "),n+=e[a],n=n.slice(0,t[a]),n+=" ".repeat(t[a]-n.length);r(n)}function BV(e,t,r){let n,a;try{a=e.inboundNodes.map(l=>JSON.stringify(l.inputShapes)).join(",")}catch(l){a="multiple"}try{n=JSON.stringify(e.outputShape)}catch(l){n="multiple"}let s=e.name,i=e.getClassName(),o=[`${s} (${i})`,a,n,e.countParams().toString()];Rf(o,t,r)}function WV(e,t,r,n){let a,s;try{s=e.inboundNodes.map(h=>JSON.stringify(h.inputShapes)).join(",")}catch(h){s="multiple"}try{a=JSON.stringify(e.outputShape)}catch(h){a="multiple"}let i=[];for(let h of e.inboundNodes)if(!(r!=null&&r.length>0&&r.indexOf(h)===-1))for(let p=0;p<h.inboundLayers.length;++p){let c=h.inboundLayers[p].name,f=h.nodeIndices[p],m=h.tensorIndices[p];i.push(`${c}[${f}][${m}]`)}let o=e.name,l=e.getClassName(),u=i.length===0?"":i[0],d=[`${o} (${l})`,s,a,e.countParams().toString(),u];Rf(d,t,n);for(let h=1;h<i.length;++h)Rf(["","","","",i[h]],t,n)}function p4(e,t,r){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof r=="string"}function Up(e,t){if(e===null)return null;if(typeof e=="string")return yo(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let r=[],n=e.length;for(let a=0;a<n;++a){let s=e[a];p4(t,a,s)?r.push(s):r.push(Up(s,t))}return r}else{let r={};for(let n of Object.keys(e)){let a=e[n];if(n==="name"&&typeof a=="string")r[n]=a;else{let s=yo(n);r[s]=Up(a,s)}}return r}}function Ny(e,t){if(e==null)return null;if(typeof e=="string")return ja(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let r=[],n=e.length;for(let a=0;a<n;++a){let s=e[a];p4(t,a,s)?r.push(s):r.push(Ny(s,t))}return r}else{let r={};for(let n of Object.keys(e)){let a=e[n],s=ja(n);(n==="name"||n==="className")&&typeof a=="string"?r[s]=a:r[s]=Ny(a,n)}return r}}var _A="0.0.0";function VV(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return me(t,e.dtype)}catch(r){throw new q(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var bo=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof bo)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,r){if(this.id2Value[e.id]==null)this.id2Value[e.id]=VV(e,t),this.name2Id[e.name]=e.id,r!=null&&(this.id2Mask[e.id]=r);else throw new q(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof ua){if(this.id2Value[e.id]==null)throw new q(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new q(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof ua){if(this.id2Value[e.id]==null)throw new q(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new q(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&re(this.id2Mask)}},ey={},iv={};function vp(e,t,r,n){let a=r==null?!1:r.training,s=Array.isArray(e),i=s?e:[e],o=i.map(f=>f.name),l=[],u=t.names();for(let f of o)u.indexOf(f)!==-1?l.push(t.getValue(f)):l.push(null);n!=null&&(n.maxNumTensors=-1/0,n.minNumTensors=1/0);let d=o.join(",")+"|"+t.names().join(","),h,p;if(ey[d]==null){let f=UV(i,t);h=f.sorted,p=f.recipientCounts,ey[d]=h,iv[d]=p}h=ey[d],p={},a||Object.assign(p,iv[d]);let c=new bo(t);for(let f=0;f<h.length;++f){if(n!=null){let R=vf().numTensors;R>n.maxNumTensors&&(n.maxNumTensors=R),R<n.minNumTensors&&(n.minNumTensors=R)}let m=h[f],g=m.sourceLayer;if(g instanceof gd)continue;let y=[],A=[],x=[],b=!1;for(let R of m.inputs){let _=c.getValue(R),M=c.getMask(R);y.push(_),A.push(M),M!=null&&(b=!0),a||(p[R.name]--,p[R.name]===0&&!t.hasKey(R)&&o.indexOf(R.name)===-1&&!_.isDisposed&&R.sourceLayer.stateful!==!0&&x.push(_))}b&&(r=r||{},r.mask=A[0]);let v=It(g.apply(y,r)),S=null;g.supportsMasking&&(S=g.computeMask(y,A));let T=jV(m),E=Array.isArray(T)?T:[T];for(let R=0;R<E.length;++R){c.hasKey(E[R])||c.add(E[R],v[R],Array.isArray(S)?S[0]:S);let _=o.indexOf(E[R].name);_!==-1&&(l[_]=v[R])}a||re(x)}return c.disposeMasks(),s?l:l[0]}function UV(e,t){w.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let r=[],n={};if(e.length===1){let a=ov(e[0],t);r=a.sorted,n=a.recipientMap}else{let a=new Set;for(let s of e){let{sorted:i,recipientMap:o}=ov(s,t);for(let l of i)a.has(l.name)||(r.push(l),a.add(l.name));for(let l in o)n[l]==null&&(n[l]=new Set),o[l].forEach(u=>n[l].add(u))}}return{sorted:r,recipientCounts:GV(n)}}function GV(e){let t={};for(let r in e)t[r]=e[r].size;return t}function ov(e,t){let r=new Set,n=[],a={};for(let o of t.names())r.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(r.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),n.push(o),r.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let u of o.inputs)a[u.name]==null&&(a[u.name]=new Set),a[u.name].add(o.name),!r.has(u.name)&&s.push(u)}}return{sorted:n,recipientMap:a}}function jV(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let r=null;for(let n=0;n<e.sourceLayer.inboundNodes.length;++n)for(let a of e.sourceLayer.inboundNodes[n].outputTensors)if(a.id===e.id){r=n;break}t=e.sourceLayer.getOutputAt(r)}return t}var Sa=class extends st{constructor(e){if(super({}),this.containerNodes=new Set,this.name=e.name,this.name==null){let y=this.getClassName().toLowerCase();this.name=Qm(y)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],Cs(this.inputs).length!==this.inputs.length)throw new q(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(y=>y.name)}`);Cs(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let A=y.sourceLayer,x=y.nodeIndex,b=y.tensorIndex;this.outputLayers.push(A),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(b)}for(let y of this.inputs){let A=y.sourceLayer,x=y.nodeIndex,b=y.tensorIndex;Ta(x===0,"input layer has >1 nodes"),Ta(b===0,"input layer has >1 tensors"),this.inputLayers.push(A),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(b)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;y<this.inputLayers.length;y++){let A=this.inputLayers[y];if(!(A instanceof gd))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${y} (0-based) originates from layer type ${A.getClassName()}.`);this.inputNames.push(A.name),this.feedInputShapes.push(A.batchInputShape),this.feedInputNames.push(A.name)}for(let y of this.outputLayers)this.outputNames.push(y.name);this.internalInputShapes=this.inputs.map(y=>y.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},r={},n={},a={},s={},i=[],o=(y,A,x,b,v,S)=>{(b==null||v==null||S==null)&&(b=y.sourceLayer,v=y.nodeIndex,S=y.tensorIndex);let T=b.inboundNodes[v];if(x.indexOf(T)!==-1)throw new la(`The tensor ${y.name} at layer "${b.name}" is part of a cycle.`);if(A.indexOf(T)!==-1)return;this.containerNodes.add(Sa.nodeKey(b,v)),b.id in s||(s[b.id]=Object.keys(s).length),x.indexOf(T)===-1&&x.push(T);let E=T.inboundLayers.length;for(let R=0;R<E;R++){let _=T.inputTensors[R],M=T.inboundLayers[R],I=T.nodeIndices[R],z=T.tensorIndices[R];o(_,A,x,M,I,z)}for(A.push(T);x.indexOf(T)>=0;)x.splice(x.indexOf(T),1);i.push(T)},l=[],u=[];for(let y of this.outputs)o(y,l,u);let d=i.slice().reverse();for(let y of d){r[y.id]=y,y.id in t||(t[y.id]=0);let A=t[y.id],x=n[y.outboundLayer.id]==null?0:n[y.outboundLayer.id];A=Math.max(A,x),n[y.outboundLayer.id]=A,a[y.outboundLayer.id]=y.outboundLayer,t[y.id]=A;for(let b=0;b<y.inboundLayers.length;b++){let v=y.inboundLayers[b],S=y.nodeIndices[b],T=v.inboundNodes[S],E=t[T.id]==null?0:t[T.id];t[T.id]=Math.max(A+1,E),r[T.id]=T}}let h={};for(let y in t){let A=t[y];A in h||(h[A]=[]),h[A].push(r[y])}let p={};for(let y in n){let A=n[y];A in p||(p[A]=[]),p[A].push(a[y])}let c=Object.keys(p).map(y=>parseInt(y,10)).sort(Gc);this.layers=[];for(let y of c){let A=p[y];A.sort((x,b)=>{let v=s[x.id],S=s[b.id];return v<S?-1:v>S?1:0});for(let x of A)x instanceof Sa&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=p,c=Object.keys(h).map(y=>parseInt(y,10)).sort(Gc);let f=this.inputs.slice(),m=[];for(let y of c)for(let A of h[y]){let x=A.outboundLayer;if(x!=null){for(let b of A.inputTensors)if(f.indexOf(b)===-1)throw new la(`Graph disconnected: cannot obtain value for tensor ${b} at layer "${x.name}". The following previous layers were accessed without issue: ${m}`);for(let b of A.outputTensors)f.push(b);m.push(x.name)}}this.nodesByDepth=h;let g=this.layers.map(y=>y.name);for(let y of g){let A=g.filter(x=>x===y).length;if(A!==1)throw new la(`The name "${y}" is used ${A} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new e0({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount===0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(r=>r.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new q("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let r of this.layers)t.push(...r.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let r={},n=0;for(let s of this.layers)for(let i of s.weights){if(r[i.originalName]!=null)throw new q(`Duplicate weight name: ${i.originalName}`);r[i.originalName]=i,n++}let a=[];for(let s in e){let i=s;if(r[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(r[i]!=null)a.push([r[i],e[s]]);else if(t)throw new q(`Provided weight data has no target variable: ${s}`);delete r[i]}if(t){let s=[];for(let i in r)s.push(i);if(s.length>0)throw new q(`${s.length} of ${n} weights are not set: ${s}`)}EA(a)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${_A}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let r=Ny(this.updatedConfig());return t?JSON.stringify(r):r}call(e,t){return K(()=>{e=It(e);let r=new bo;for(let n=0;n<this.inputs.length;++n)r.add(this.inputs[n],e[n]);return vp(this.outputs,r,t)})}computeMask(e,t){return K(()=>{e=It(e);let r;return t==null?r=Mo(null,e.length):r=It(t),this.runInternalGraph(e,r)[1]})}computeOutputShape(e){let t=If(e);if(t.length!==this.inputLayers.length)throw new q(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let r={};for(let i=0;i<t.length;i++){let o=this.inputLayers[i],l=t[i],u=o.name+"_0_0";r[u]=l}let n=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(Gc);if(n.length>1)for(let i of n){let o=this.nodesByDepth[i];for(let l of o){let u=l.outboundLayer;if(this.inputLayers.map(f=>f.id).indexOf(u.id)!==-1)continue;let d=[];for(let f=0;f<l.inboundLayers.length;f++){let m=l.inboundLayers[f],g=l.nodeIndices[f],y=l.tensorIndices[f],A=`${m.name}_${g}_${y}`,x=r[A];d.push(x)}let h=u.computeOutputShape(Qr(d)),p=If(h),c=u.inboundNodes.indexOf(l);for(let f=0;f<p.length;f++){let m=`${u.name}_${c}_${f}`;r[m]=p[f]}}}let a=[],s=[];for(let i=0;i<this.outputLayers.length;i++){let o=this.outputLayers[i],l=this.outputLayersNodeIndices[i],u=this.outputLayersTensorIndices[i],d=`${o.name}_${l}_${u}`;s.push(d)}for(let i=0;i<s.length;i++){let o=s[i];Ta(o in r),a.push(r[o])}return Qr(a)}runInternalGraph(e,t){t==null&&(t=Mo(null,e.length));let r={};for(let o=0;o<this.inputs.length;++o){let l=this.inputs[o],u=e[o],d=t[o];r[l.id]=[u,d]}let n=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(Gc);for(let o of n){let l=this.nodesByDepth[o];for(let u of l){let d=u.outboundLayer,h=u.inputTensors,p=u.outputTensors,c=new Array;for(let f of h)f.id in r&&c.push(r[f.id]);if(c.length===h.length){let f={},m,g,y,A;if(u.callArgs!=null&&(f=u.callArgs),c.length===1){let[x,b]=c[0];f.mask==null&&(f.mask=b),y=It(d.call(x,f)),A=It(d.computeMask(x,b)),m=[x],g=[b]}else m=c.map(x=>x[0]),g=c.map(x=>x[1]),f.mask==null&&(f.mask=g),y=It(d.call(m,f)),A=It(d.computeMask(m,g));if(d.activityRegularizer)throw new Ve("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x<p.length;++x){let b=p[x],v=y[x],S=A[x];r[b.id]=[v,S]}}}}let a=[],s=[],i=[];for(let o of this.outputs){Ta(o.id in r,`Could not compute output ${o.name} : ${o.id}`);let[l,u]=r[o.id];i.push(l.shape),a.push(l),s.push(u)}return[a,s,i]}buildNodeConversionMap(e){let t={},r;for(let n of this.layers){r=n instanceof Sa?1:0;for(let a=0;a<n.inboundNodes.length;a++){let s=Sa.nodeKey(n,a);this.containerNodes.has(s)&&(t[s]=r,r+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new q(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new q("Provide either a layer name or layer index");for(let r of this.layers)if(r.name===e)return r;throw new q(`No such layer: ${e}`)}calculateLosses(){return K(()=>{let e=[];for(let t of this.layers)for(let r=0;r<t.inboundNodes.length;++r){let n=Sa.nodeKey(t,r);this.containerNodes.has(n)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),r=[];for(let s of this.layers){let i=s.getClassName(),o=s.getConfig(),l=[];for(let d=0;d<s.inboundNodes.length;d++){let h=s.inboundNodes[d],p=Sa.nodeKey(s,d),c={};if(this.containerNodes.has(p)){if(h.callArgs)try{JSON.stringify(h.callArgs),c=h.callArgs}catch(f){console.warn(`Layer ${s.name} was passed non-serializable keyword arguments: ${h.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),c={}}if(h.inboundLayers.length>0){let f=[];for(let m=0;m<h.inboundLayers.length;m++){let g=h.inboundLayers[m],y=h.nodeIndices[m],A=h.tensorIndices[m],x=Sa.nodeKey(g,y),b=t[x];b==null&&(b=0),f.push([g.name,b,A,c])}l.push(f)}}}let u={};u.name=s.name,u.className=i,u.config=o,u.inboundNodes=l,r.push(u)}e.layers=r;let n=[];for(let s=0;s<this.inputLayers.length;s++){let i=this.inputLayers[s],o=this.inputLayersNodeIndices[s],l=Sa.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let d=this.inputLayersTensorIndices[s];n.push([i.name,u,d])}e.inputLayers=n;let a=[];for(let s=0;s<this.outputLayers.length;s++){let i=this.outputLayers[s],o=this.outputLayersNodeIndices[s],l=Sa.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let d=this.outputLayersTensorIndices[s];a.push([i.name,u,d])}return e.outputLayers=a,e}static fromConfig(e,t,r={},n=!1){let a={},s={};function i(m,g){m.name in s?s[m.name].push(g):s[m.name]=[g]}function o(m,g){let y=[],A;for(let x of g){let b=x[0],v=x[1],S=x[2];if(A=x[3]==null?{}:x[3],!(b in a)){i(m,g);return}let T=a[b];if(T.inboundNodes.length<=v){i(m,g);return}let E=T.inboundNodes[v];y.push(E.outputTensors[S])}y.length>0&&m.apply(Qr(y),A)}function l(m){let g=m.name,y=ha(m,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(n),a[g]=y,m.inboundNodes.forEach(A=>{if(!(A instanceof Array))throw new q(`Corrupted configuration, expected array for nodeData: ${A}`);i(y,A)})}let u=t.name,d=t.layers;for(let m of d)l(m);for(;!wW(s);)for(let m of d){let g=a[m.name];if(g.name in s){let y=s[g.name];delete s[g.name];for(let A of y)o(g,A)}}let h=[],p=[],c=t.inputLayers;for(let m of c){let g=m[0],y=m[1],A=m[2];Ta(g in a);let x=a[g].inboundNodes[y].outputTensors;h.push(x[A])}let f=t.outputLayers;for(let m of f){let g=m[0],y=m[1],A=m[2];Ta(g in a);let x=a[g].inboundNodes[y].outputTensors;p.push(x[A])}return new e({inputs:h,outputs:p,name:u})}get stateful(){if(this._stateful)throw new q("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){K(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function HV(e,t,r){let n=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>null);if(n===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==n)throw new Error(`Provided ${r} is an array of ${e.length} element(s), but the model has ${n} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let a=[];return t.forEach(s=>{s in e?a.push(e[s]):a.push(null)}),a}else throw new Error(`The model has multiple (${n}) outputs, so ${r} must be either an array with ${n} elements or an object with ${t} keys. Provided ${r} not understood: ${JSON.stringify(e)}`)}function h4(e,t){return HV(e,t,"classWeight")}async function c4(e,t,r,n){if(t!=null||n!=null)throw new Error("Support sampleWeight is not implemented yet");if(r!=null){let a=K(()=>{if(e.shape.length===1)return Br(e);if(e.shape.length===2){if(e.shape[1]>1)return Cn(e,1);if(e.shape[1]===1)return G(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await a.data());re(a);let i=[];return s.forEach(o=>{if(r[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(r[o])}),St(i,"float32")}else return null}function qV(e,t){return L(e,t)}var KV=32;function f4(e,t){let r,n,a=t;r=a.xs,n=a.ys,w.assert(r!=null&&n!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=lv("input",e.inputNames,r),i=lv("output",e.outputNames,n),o=s[0].shape[0];w.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),w.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<s.length;l++)w.assert(s[l].shape[0]===o,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l<i.length;l++)w.assert(i[l].shape[0]===o,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function lv(e,t,r){if(r instanceof rt)return[r];if(Array.isArray(r))return w.assert(r.length===t.length,()=>`Received an array of ${r.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),r;{let n=[];for(let a of t){if(r[a]==null)throw new q(`The feature data generated by the dataset lacks the required ${e} key '${a}'.`);n.push(r[a])}return n}}function XV(e){if(e.length===3)throw new Ve("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function ZV(e,t,r){let n=r.batchesPerEpoch!=null;if(w.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),w.assert(r!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),w.assert(r.epochs!=null&&r.epochs>0&&Number.isInteger(r.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${r.epochs}`),w.assert(!n||r.batchesPerEpoch>0&&Number.isInteger(r.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${r.batchesPerEpoch}`),w.assert(r.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let a=r.validationData!=null,s,i;if(a)if(uv(r.validationData))w.assert(r.validationBatches==null||r.validationBatches>0&&Number.isInteger(r.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${r.validationBatches}`);else{let g=XV(r.validationData);s=g.xs,i=g.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),u;a?u=l.slice().concat(l.map(g=>"val_"+g)):u=l.slice();let d=a4(r.callbacks,r.yieldEvery),h=r.verbose==null?1:r.verbose,{callbackList:p,history:c}=s4(d,h,r.epochs,null,null,YV(t,r),null,a,u);p.setModel(e),e.history=c,await p.onTrainBegin(),e.stopTraining_=!1;let f=r.initialEpoch==null?0:r.initialEpoch,m=await t.iterator();for(;f<r.epochs;){let g={};await p.onEpochBegin(f);let y=0,A=0;for(n||(m=await t.iterator());!n||y<r.batchesPerEpoch;){let x=await m.next();if(n&&x.done){console.warn(`You provided \`batchesPerEpoch\` as ${r.batchesPerEpoch}, but your dataset iterator ran out of data after ${y} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${r.batchesPerEpoch*r.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(x.value!=null){let{xs:b,ys:v}=f4(e,x.value),S={};S.batch=A,S.size=b[0].shape[0],await p.onBatchBegin(A,S);let T=[];if(r.classWeight!=null){let _=h4(r.classWeight,e.outputNames);for(let M=0;M<_.length;++M)T.push(await c4(v[M],null,_[M]))}let E=b.concat(v).concat(T),R=o(E);re(E);for(let _=0;_<l.length;++_){let M=l[_],I=R[_];S[M]=I,cr(I)}await p.onBatchEnd(A,S),e4(S),A++,y++}if(n?y>=r.batchesPerEpoch:x.done){if(a){let b;uv(r.validationData)?b=It(await e.evaluateDataset(r.validationData,{batches:r.validationBatches})):b=It(e.evaluate(s,i,{batchSize:r.validationBatchSize==null?KV:r.validationBatchSize,verbose:0}));for(let v=0;v<e.metricsNames.length;++v)g[`val_${e.metricsNames[v]}`]=b[v]}break}if(e.stopTraining_)break}if(await p.onEpochEnd(f,g),f++,e.stopTraining_)break}return await p.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function YV(e,t){let r=null;return t.batchesPerEpoch!=null?r=t.batchesPerEpoch:Number.isFinite(e.size)&&(r=e.size),r}function uv(e){return typeof e.iterator=="function"}function JV(e){return typeof e.next=="function"}async function QV(e,t,r){r=r||{};let n=r.batches!=null,a=e.testFunction,s=[];if(r.verbose>0)throw new Ve("Verbose mode is not implemented yet.");w.assert(!n||r.batches>0&&Number.isInteger(r.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(r.batches)}`);let i=JV(t)?t:await t.iterator(),o=0,l=0;for(;!n||l<r.batches;){let u=await i.next();if(s=K(()=>{if(u.value){let{xs:d,ys:h}=f4(e,u.value),p=d.concat(h),c=K(()=>a(p));if(re(p),l===0)for(let m=0;m<c.length;++m)s.push(Se(0));let f=p[0].shape[0];for(let m=0;m<c.length;++m){let g=c[m],y=s[m];s[m]=K(()=>le(s[m],L(f,g))),l>0&&re(y)}re(c),o+=f,++l}return s}),u.done){n&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${r.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<s.length;++u){let d=s[u];s[u]=pe(s[u],o),re(d)}return Qr(s)}function Cy(e){w.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function wp(e,t,r){return e==null?[null]:Array.isArray(e)?e.map(n=>Io(n,t,r-t)):Io(e,t,r-t)}function zA(e,t){return K(()=>e==null?null:Array.isArray(e)?e.map(r=>zA(r,t)):q7(e,t.dtype==="int32"?t:me(t,"int32")))}function Ey(e,t){let r=[],n=0,a=null;for(;n<e;)a=n+t,a>=e&&(a=e),r.push([n,a]),n=a;return r}async function eU(e,t,r,n,a,s,i,o,l,u,d,h,p,c,f){a==null&&(a=32),s==null&&(s=1),d==null&&(d=!0),p==null&&(p=0);let m=!1;if(l!=null&&u!=null&&(m=!0),f!=null&&(m=!0,c==null))throw new q("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(r,a,c,"steps_per_epoch"),y;g!=null&&(y=ga(0,g)),i==null&&(i=1);let{callbackList:A,history:x}=s4(o,i,s,p,g,c,a,m,h);A.setModel(e),e.history=x,await A.onTrainBegin(),e.stopTraining_=!1;for(let b=p;b<s;++b){await A.onEpochBegin(b);let v={};if(c!=null)throw new Ve("stepsPerEpoch mode is not implemented yet.");{if(d==="batch")throw new Ve("batch shuffling is not implemneted yet");d&&w.shuffle(y);let S=St(y),T=Ey(g,a);for(let E=0;E<T.length;++E){let R={};if(await A.onBatchBegin(E,R),K(()=>{let _=T[E][0],M=T[E][1],I=Io(S,_,M-_);R.batch=E,R.size=M-_;let z=zA(r,I),O=t(z);for(let j=0;j<n.length;++j){let X=n[j],D=O[j];R[X]=D,cr(D)}if(E===T.length-1&&m){let j=e.testLoop(l,u,a);for(let X=0;X<n.length;++X){let D=n[X],Q=j[X];cr(Q),v["val_"+D]=Q}}}),await A.onBatchEnd(E,R),e4(R),e.stopTraining_)break}S.dispose()}if(await A.onEpochEnd(b,v),e.stopTraining_)break}return await A.onTrainEnd(),await e.history.syncData(),e.history}async function tU(e,t,r,n={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let a,s,i,o,l,u,d,h,p;try{let c=n.batchSize==null?32:n.batchSize;Cy(c);let f=!1,m=await e.standardizeUserData(t,r,n.sampleWeight,n.classWeight,f,c);a=m[0],s=m[1],p=m[2];let g=!1,y;if(n.validationData!=null&&n.validationData.length>0){if(g=!0,n.validationData.length===2)l=n.validationData[0],u=n.validationData[1];else throw n.validationData.length===3?new Ve("validationData including sample weights is not supported yet."):new q(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${n.validationData} is invalid.`);let E=!0,R=await e.standardizeUserData(l,u,null,null,E,c);d=R[0],h=R[1],y=d.concat(h)}else if(n.validationSplit!=null&&n.validationSplit>0&&n.validationSplit<1){g=!0;let E=Math.floor(a[0].shape[0]*(1-n.validationSplit)),R=a[0].shape[0];d=wp(a,E,R),i=a,a=wp(a,0,E),h=wp(s,E,R),o=s,s=wp(s,0,E),y=d.concat(h)}else n.validationSteps!=null&&(g=!0);let A=a.concat(s).concat(p);e.checkTrainableWeightsConsistency();let x=e.makeTrainFunction(),b=e.getDedupedMetricsNames(),v,S;g?(e.makeTestFunction(),v=e.testFunction,S=b.slice().concat(b.map(E=>"val_"+E))):(v=null,y=[],S=b.slice());let T=a4(n.callbacks,n.yieldEvery);return await eU(e,x,A,b,c,n.epochs,n.verbose,T,v,y,n.shuffle,S,n.initialEpoch,null,null)}finally{e.isTraining=!1,oa(a,t),oa(s,r),oa(i,t),oa(o,r),oa(d,l),oa(h,u),p!=null&&re(p)}}function m4(e){let t=[];e instanceof rt&&(e=[e]);for(let r=0;r<e.length;++r){let n=e[r];if(n.rank===1)t.push(Th(n,1));else{if(n.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(n)}}return t}function oa(e,t){if(e==null)return;let r=[];if(t instanceof rt)r.push(t.id);else if(Array.isArray(t))t.forEach(a=>r.push(a.id));else if(t!=null)for(let a in t){let s=t[a];r.push(s.id)}let n=[];if(e instanceof rt)r.indexOf(e.id)===-1&&n.push(e);else if(Array.isArray(e))e.forEach(a=>{r.indexOf(a.id)===-1&&n.push(a)});else if(e!=null)for(let a in e){let s=e[a];r.indexOf(s.id)===-1&&n.push(s)}n.forEach(a=>{a.isDisposed||a.dispose()})}function rU(e){return e instanceof rt}function Ry(e){return Array.isArray(e)}function dv(e){return!rU(e)&&!Ry(e)}function pv(e,t,r,n=!0,a=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(Ry(e)&&e.length>0)i=!0;else if(dv(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new q(`Error when checking model ${a} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(dv(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new q(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(Ry(e)){if(e=e,e.length!==t.length)throw new q(`Error when checking model ${a}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new q(`The model ${a} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=m4(s),r!=null)for(let i=0;i<t.length;++i){if(r[i]==null)continue;let o=s[i];if(o.shape.length!==r[i].length)throw new q(`Error when checking ${a}: expected ${t[i]} to have ${r[i].length} dimension(s). but got array with shape ${o.shape}`);for(let l=0;l<r[i].length;++l){if(l===0&&!n)continue;let u=o.shape[l],d=r[i][l];if(d!=null&&d>=0&&u!==d)throw new q(`${a} expected a batch of elements where each example has shape [${r[i].slice(1,r[i].length)}] (i.e.,tensor shape [*,${r[i].slice(1,r[i].length)}]) but the ${a} received an input with ${o.shape[0]} examples, each with shape [${o.shape.slice(1,o.shape.length)}] (tensor shape [${o.shape}])`)}}return s}function nU(e,t,r){let n=Cs(e.map(s=>s.shape[0]));n.sort();let a=Cs(t.map(s=>s.shape[0]));if(a.sort(),n.length>1)throw new q(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(a.length>1)throw new q(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(n.length>0&&a.length>0&&!w.arraysEqual(n,a))throw new q(`Input Tensors should have the same number of samples as target Tensors. Found ${n[0]} input sample(s) and ${a[0]} target sample(s).`)}function aU(e,t,r){let n=[Ml,r0,Vp];for(let a=0;a<e.length;++a){let s=e[a],i=t[a],o=r[a];if(i!=null){if(i===Vp&&s.shape[s.shape.length-1]===1)throw new q(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(n.indexOf(i)!==-1){let l=s.shape.slice(1),u=o.slice(1);for(let d=0;d<l.length;++d){let h=l[d],p=u[d];if(p!=null&&h!==p)throw new q(`A target Tensor with shape ${s.shape} was passed for an output of shape ${o}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function hv(e,t,r,n=!0,a=""){let s;if(Array.isArray(e)){if(e.length!==t.length)throw new q(`Error when checking model ${a}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);s=e}else{if(t.length>1)throw new q(`The model expects ${t.length} ${a} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(r!=null)for(let i=0;i<t.length;++i){if(r[i]==null)continue;let o=s[i];if(o.shape.length!==r[i].length)throw new q(`Error when checking ${a}: expected ${t[i]} to have ${r[i].length} dimension(s), but got array with shape ${JSON.stringify(o.shape)}`);for(let l=0;l<r[i].length;++l){if(l===0&&!n)continue;let u=o.shape[l],d=r[i][l];if(d!=null&&d!==u)throw new q(`Error when checking ${a}: expected ${t[i]} to have shape ${JSON.stringify(r[i])} but got array with shape ${JSON.stringify(o.shape)}.`)}}}function sU(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(n=>[]);let r;if(typeof e=="string"||typeof e=="function")r=[e];else if(Array.isArray(e)||typeof e=="object")r=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(r))return t.map(n=>r);{let n=[];for(let a of t){let s=r.hasOwnProperty(a)?r[a]:[];Array.isArray(s)||(s=[s]),n.push(s)}return n}}var iU="layers-model",Xa=class extends Sa{constructor(e){super(e),this.isTraining=!1}summary(e,t,r=console.log){if(!this.built)throw new q("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");OV(this,e,t,r)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=zV(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof rs))throw new q("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new q(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(Q1(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new q(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>Q1(s))}else{let s=Q1(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s<this.outputs.length;++s){let i=this.internalOutputShapes[s],o=this.outputNames[s];this.feedOutputNames.push(o),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[s])}let r=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],ko("loss",()=>{for(let s=0;s<this.outputs.length;++s){if(r.indexOf(s)!==-1)continue;let i=this.lossFunctions[s];this.outputs.length>1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let n=sU(e.metrics,this.outputNames),a=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};ko("metric",()=>{for(let s=0;s<this.outputs.length;++s){if(r.indexOf(s)!==-1)continue;let i=n[s];(o=>{let l="",u,d,h;for(let p of o){if(typeof p=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(p)!==-1){let f=this.internalOutputShapes[s];f[f.length-1]===1||this.lossFunctions[s]===r0?["accuracy","acc"].indexOf(p)!==-1?d=FA:["crossentropy","ce"].indexOf(p)!==-1&&(d=l4):this.lossFunctions[s]===Nf?["accuracy","acc"].indexOf(p)!==-1?d=u4:["crossentropy","ce"].indexOf(p)!==-1&&(d=d4):["accuracy","acc"].indexOf(p)!==-1?d=$A:["crossentropy","ce"].indexOf(p)!==-1&&(d=PA);let m;["accuracy","acc"].indexOf(p)!==-1?m="acc":["crossentropy","ce"].indexOf(p)!==-1&&(m="ce"),h=d,u=l+m}else h=_V(p),u=l+qc(p);let c;ko(u,()=>{c=h}),a(s,u,c)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,r={}){let n=r.batchSize==null?32:r.batchSize;Cy(n);let a=!0,s=this.standardizeUserDataXY(e,t,a,n);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,n,r.verbose,r.steps);return Qr(l)}finally{oa(s[0],e),oa(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),QV(this,e,t)}checkNumSamples(e,t,r,n="steps"){let a;if(r!=null){if(a=null,t!=null)throw new q(`If ${n} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?a=e[0].shape[0]:a=e.shape[0];else throw new q(`Either the input data should have a defined shape, or ${n} shoud be specified.`);return a}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new q("`outputs` is an empty Array, which is not allowed.");let r=Array.isArray(t),n=r?t:[t],a=this.retrieveSymbolicTensors(n),s=new bo;if(e instanceof rt&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new q(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;o<this.inputs.length;++o)s.add(this.inputs[o],e[o])}else for(let o of this.inputs){let l=e[o.name];if(l==null)throw new q(`No value is provided for the model's input ${o.name}`);s.add(o,l)}let i=vp(a,s);return r?i:i[0]}retrieveSymbolicTensors(e){let t=Mo(null,e.length),r=e.length;for(let n of this.layers){let a=Array.isArray(n.output)?n.output:[n.output],s=a.map(i=>i.name);for(let i=0;i<e.length;++i){let o=s.indexOf(e[i]);if(o!==-1&&(t[i]=a[o],r--),r===0)break}if(r===0)break}if(r>0){let n=[];throw t.forEach((a,s)=>{a==null&&n.push(e[s])}),new q(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(n)}`)}return t}predictLoop(e,t=32,r=!1){return K(()=>{let n=this.checkNumSamples(e);if(r)throw new Ve("Verbose predictLoop() is not implemented yet.");let a=Ey(n,t),s=this.outputs.map(i=>[]);for(let i=0;i<a.length;++i)K(()=>{let o=a[i][0],l=a[i][1],u=wp(e,o,l),d=[];if(Array.isArray(u))for(let p=0;p<u.length;++p)d.push({key:this.inputs[p],value:u[p]});else d.push({key:this.inputs[0],value:u});let h=new bo(d);return vp(this.outputs,h)}).forEach((o,l)=>s[l].push(o));return Qr(s.map(i=>kt(i,0)))})}predict(e,t={}){let r=m4(e);hv(r,this.inputNames,this.feedInputShapes,!1);try{let n=t.batchSize==null?32:t.batchSize;return Cy(n),this.predictLoop(r,n)}finally{oa(r,e)}}predictOnBatch(e){hv(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,r=!0,n){if(this.optimizer_==null)throw new la("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let a=[];for(let s=0;s<this.feedOutputShapes.length;++s){let i=this.feedOutputShapes[s];this.feedLossFns[s]===Nf?a.push(i.slice(0,i.length-1).concat([1])):a.push(i)}if(e=pv(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=pv(t,this.feedOutputNames,a,!1,"target"),nU(e,t,null),aU(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&n!=null&&n>0&&e[0].shape[0]%n!==0)throw new q(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${n}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,r,n,a=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,a,s);if(r!=null)throw new Error("sample weight is not supported yet.");let l=null;if(n!=null){let u=h4(n,this.outputNames);l=[];for(let d=0;d<u.length;++d)l.push(await c4(o[d],null,u[d]))}return[i,o,l]}testLoop(e,t,r,n=0,a){return K(()=>{let s=this.checkNumSamples(t,r,a,"steps"),i=[];if(n>0)throw new Ve("Verbose mode is not implemented yet.");if(a!=null)throw new Ve("steps mode in testLoop() is not implemented yet");{let o=Ey(s,r),l=St(ga(0,s));for(let u=0;u<o.length;++u){let d=o[u][0],h=o[u][1],p=Io(l,d,h-d),c=zA(t,p),f=e(c);if(u===0)for(let m=0;m<f.length;++m)i.push(Se(0));for(let m=0;m<f.length;++m){let g=f[m];i[m]=le(i[m],L(h-d,g))}}for(let u=0;u<i.length;++u)i[u]=pe(i[u],s)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let r=0;r<e.length;++r){let n=e[r],a=n;Z3(e,n)>1&&(a+=`_${Z3(e.slice(0,r),n)}`),t.push(a)}return t}makeTrainFunction(){return e=>{let t=[],r=e.slice(0,this.inputs.length),n=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let u=[];for(let c=0;c<this.inputs.length;++c)u.push({key:this.inputs[c],value:r[c]});let d=new bo(u),h=vp(this.outputs,d,{training:!0}),p;for(let c=0;c<this.lossFunctions.length;++c){let f=this.lossFunctions[c](n[c],h[c]);a[c]!=null&&(f=qV(f,a[c]));let m=Bt(f);t.push(m),c===0?p=f:p=le(p,f)}for(let c=0;c<this.metricsTensors.length;++c){let f;if(this.outputs.length>1&&c<this.outputs.length)f=t[c];else{let m=this.metricsTensors[c][0],g=this.metricsTensors[c][1];f=Bt(m(n[g],h[g]))}cr(f),s.push(f)}return p=Bt(p),this.calculateLosses().forEach(c=>{p=le(p,c)}),p},o=this.collectedTrainableWeights.map(u=>u.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>K(()=>{let t=[],r,n=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;l<this.inputs.length;++l)s.push({key:this.inputs[l],value:n[l]});let i=new bo(s),o=vp(this.outputs,i);for(let l=0;l<this.lossFunctions.length;++l){let u=this.lossFunctions[l],d=Bt(u(a[l],o[l]));l===0?r=d:r=le(r,d),t.push(r)}for(let l=0;l<this.metricsTensors.length;++l){let u=this.metricsTensors[l][0],d=this.metricsTensors[l][1],h=Bt(u(a[d],o[d]));t.push(h)}return t})}async fit(e,t,r={}){return tU(this,e,t,r)}async fitDataset(e,t){return ZV(this,e,t)}async trainOnBatch(e,t){let r=await this.standardizeUserData(e,t),n=r[0],a=r[1],s=this.makeTrainFunction()(n.concat(a)),i=[];for(let o of s){let l=await o.data();i.push(l[0])}return re(s),oa(r[0],e),oa(r[1],t),Qr(i)}getNamedWeights(e){let t=[],r=e!=null&&e.trainableOnly,n=r?this.trainableWeights:this.weights,a=this.getWeights(r);for(let s=0;s<n.length;++s)r&&!n[s].trainable||t.push({name:n[s].originalName,tensor:a[s]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=vf().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-vf().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=ja(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>ja(t))}else{let t=Object.keys(this.loss);e={};let r=this.loss;for(let n of t)if(typeof r[n]=="string")e[n]=ja(r[n]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[ja(qc(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>ja(qc(e)));{let e={};for(let t in this.metrics)e[t]=ja(qc(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Up(e.optimizer_config),r=ha(t),n;if(typeof e.loss=="string")n=yo(e.loss);else if(Array.isArray(e.loss))n=e.loss.map(s=>yo(s));else if(e.loss!=null){n={};for(let s in e.loss)n[s]=yo(e.loss[s])}let a;if(Array.isArray(e.metrics))a=e.metrics.map(s=>yo(s));else if(e.metrics!=null){a={};for(let s in e.metrics)a[s]=yo(e.metrics[s])}this.compile({loss:n,metrics:a,optimizer:r})}async save(e,t){if(typeof e=="string"){let i=Tr.getSaveHandlers(e);if(i.length===0)throw new q(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new q(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new q("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let r=await Tr.encodeWeights(this.getNamedWeights(t)),n=!1,a=null,s={modelTopology:this.toJSON(a,n),format:iU,generatedBy:`TensorFlow.js tfjs-layers v${_A}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await Tr.encodeWeights(await this.optimizer.getWeights(),i);r.specs.push(...l),r.data=Tr.concatenateArrayBuffers([r.data,o])}return this.userDefinedMetadata!=null&&(sv(this.userDefinedMetadata,this.name,!0),s.userDefinedMetadata=this.userDefinedMetadata),s.weightData=r.data,s.weightSpecs=r.specs,e.save(s)}setUserDefinedMetadata(e){sv(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};Xa.className="Model";ue.registerClass(Xa);var g4=class extends Xa{};g4.className="Functional";ue.registerClass(g4);async function oU(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let r=e.modelTopology;r.model_config!=null&&(r=r.model_config);let n=Up(r),a=ha(n,t);if(e.weightsManifest!=null){let s=await Tr.loadWeights(e.weightsManifest,e.pathPrefix,a.weights.map(o=>o.originalName)),i={};for(let o of a.weights)i[o.originalName]=s[o.originalName];a.loadWeights(i),re(s)}return a}async function lU(e,t){if(t==null&&(t={}),typeof e=="string"){let r=Tr.getLoadHandlers(e,t);if(r.length===0)r.push(Tr.browserHTTPRequest(e,t));else if(r.length>1)throw new q(`Found more than one (${r.length}) load handlers for URL '${e}'`);e=r[0]}return uU(e,void 0,t)}async function uU(e,t,r){if(r==null&&(r={}),e.load==null)throw new q("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let n=await e.load(),a=n.modelTopology;a.model_config!=null&&(a=a.model_config);let s=r.strict==null?!0:r.strict,i=n.weightData!=null&&n.weightSpecs!=null&&s,o=ha(Up(a),t,i),l=n.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),n.userDefinedMetadata!=null&&o.setUserDefinedMetadata(n.userDefinedMetadata),n.weightData!=null){if(n.weightSpecs==null)throw new q("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:d}=dU(n.weightData,n.weightSpecs);o.loadWeights(u,s),o.optimizer!=null&&d.length>0&&await o.optimizer.setWeights(d),re(u),re(d.map(h=>h.tensor))}return o}function dU(e,t){let r=Tr.decodeWeights(e,t),n={},a=[];return t.forEach(s=>{s.group==="optimizer"?a.push({name:s.name,tensor:r[s.name]}):n[s.name]=r[s.name]}),{modelWeights:n,optimizerWeights:a}}var My=class extends Xa{constructor(e){if(super({inputs:[],outputs:[]}),e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:Qm("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new q(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof My||e instanceof Xa,r;if(t){if(r=e,r.outputs.length!==1)throw new q("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(r.inputs.length!==1)throw new q("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new q("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let n=Q7({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(n)}if(t)this.outputs=r.outputs,this.inputs=r.inputs;else{if(e.inboundNodes.length!==1)throw new q(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new q("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=J7(this.outputs[0])}this.inboundNodes=[],new e0({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:Mo(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(n=>n.shape),outputShapes:this.outputs[0].shape})}else{let n=e.apply(this.outputs[0]);if(Array.isArray(n))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[n],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(ft(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new Xa({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,r=console.log){this.built||this.build(),super.summary(e,t,r)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,r={}){if(!this.built)throw new la("The model needs to be compiled before being used.");return this.model.evaluate(e,t,r)}async evaluateDataset(e,t){if(!this.built)throw new la("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,r={}){if(!this.built)throw new la("The model needs to be compiled before being used.");return this.model.fit(e,t,r)}async fitDataset(e,t){if(!this.built)throw new la("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,r={},n=!1){let a,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new q("Legacy serialization format not supported yet.");a=t}else w.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),a=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof My))throw new Ve(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of a){let l=ha(o,void 0,n);n&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new q("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new q("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let r={};r.className=t.getClassName(),r.config=t.getConfig(),e.push(r)}return{name:this.name,layers:e}}},n0=My;n0.className="Sequential";ue.registerClass(n0);function pU(e){return new Xa(e)}function hU(e){return new n0(e)}function cU(e,t){return t==null&&(t={}),lU(e,t)}function y4(e){return Q7(e)}function fU(e,t){RA.registerCallbackConstructor(e,t)}var on=class extends ue.Serializable{getConfig(){return{}}},A4=class extends on{apply(e,t=1){return BW(e,t)}};A4.className="elu";ue.registerClass(A4);var x4=class extends on{apply(e){return eA(e)}};x4.className="selu";ue.registerClass(x4);var b4=class extends on{apply(e){return _a(e)}};b4.className="relu";ue.registerClass(b4);var v4=class extends on{apply(e){return K(()=>vh(6,_a(e)))}};v4.className="relu6";ue.registerClass(v4);var w4=class extends on{apply(e){return e}};w4.className="linear";ue.registerClass(w4);var k4=class extends on{apply(e){return Nr(e)}};k4.className="sigmoid";ue.registerClass(k4);var I4=class extends on{apply(e){return VW(e)}};I4.className="hardSigmoid";ue.registerClass(I4);var S4=class extends on{apply(e){return pd(e)}};S4.className="softplus";ue.registerClass(S4);var T4=class extends on{apply(e){return WW(e)}};T4.className="softsign";ue.registerClass(T4);var N4=class extends on{apply(e){return bu(e)}};N4.className="tanh";ue.registerClass(N4);var OA=class extends on{apply(e,t=-1){return fd(e,t)}};OA.className="softmax";ue.registerClass(OA);var C4=class extends on{apply(e,t=-1){return U2(e,t)}};C4.className="logSoftmax";ue.registerClass(C4);var E4=class extends on{apply(e,t=1){return K(()=>L(Nr(L(e,t)),e))}};E4.className="swish";ue.registerClass(E4);var R4=class extends on{apply(e){return K(()=>L(e,bu(pd(e))))}};R4.className="mish";ue.registerClass(R4);function Ws(e){return e.getClassName()}function ty(e,t={}){return Ih(e,ue.SerializationMap.getMap().classNameMap,t,"activation")}function Vs(e){if(e==null){let t={};return t.className="linear",t.config={},ty(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},ty(t)}else return e instanceof on?e:ty(e)}function DA(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var M4=class extends ue.Serializable{},Eh=class extends M4{constructor(e){super(),DA(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return K(()=>{let t=Wt([1]);return this.hasL1&&(t=le(t,ke(L(this.l1,rr(e))))),this.hasL2&&(t=le(t,ke(L(this.l2,Nh(e))))),G(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Eh.className="L1L2";ue.registerClass(Eh);function mU(e){return DA(e),new Eh({l1:e!=null?e.l1:null,l2:0})}function gU(e){return DA(e),new Eh({l2:e!=null?e.l2:null,l1:0})}var cv={l1l2:"L1L2"};function xt(e){return fA(e)}function fv(e,t={}){return Ih(e,ue.SerializationMap.getMap().classNameMap,t,"regularizer")}function Rt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in cv?cv[e]:e,config:{}};return fv(t)}else return e instanceof M4?e:fv(e)}var LA=class extends st{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=je(e);let r=_a(e);return this.maxValue!=null&&(r=cn(r,0,this.maxValue)),r}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};LA.className="ReLU";ue.registerClass(LA);var BA=class extends st{constructor(e){super(e==null?{}:e),this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let r=je(e);return wm(r,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};BA.className="LeakyReLU";ue.registerClass(BA);var WA=class extends st{constructor(e){if(super(e==null?{}:e),this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=Et(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=Rt(e.alphaRegularizer),this.alphaConstraint=ir(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new q(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=ft(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let n of this.sharedAxes)t[n-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let r={};if(this.sharedAxes!=null)for(let n=1;n<e.length;++n)r[n]=e[n];this.inputSpec=[new Kt({ndim:e.length,axes:r})],this.built=!0}call(e,t){return e=je(e),Em(e,this.alpha.read())}getConfig(){let e={alphaInitializer:Pt(this.alphaInitializer),alphaRegularizer:xt(this.alphaRegularizer),alphaConstraint:sr(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};WA.className="PReLU";ue.registerClass(WA);var VA=class extends st{constructor(e){if(super(e==null?{}:e),this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Ve(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let r=je(e);return xh(r)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};VA.className="ELU";ue.registerClass(VA);var UA=class extends st{constructor(e){super(e==null?{}:e),this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let r=je(e);return L(r,me(fn(r,this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};UA.className="ThresholdedReLU";ue.registerClass(UA);var GA=class extends st{constructor(e){super(e==null?{}:e),this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new OA().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let r=je(e);return this.softmax(r,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};GA.className="Softmax";ue.registerClass(GA);function gu(e,t,r){if(typeof e=="number")return Mo(e,t);if(e.length!==t)throw new q(`The ${r} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let n=0;n<t;++n){let a=e[n];if(!zW(a))throw new q(`The ${r} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${a}`)}return e}function ca(e,t,r,n,a=1){if(e==null)return e;let s=t+(t-1)*(a-1),i;return r==="same"?i=e:i=e-s+1,Math.floor((i+n-1)/n)}function Na(e,t,r,n){if(e==null)return null;if(n==="valid")e=e*t+Bs([r-t,0]);else if(n==="same")e=e*t;else throw new q(`Unsupport padding mode: ${n}.`);return e}function jA(e,t){return K(()=>(Gt(t),t==="channelsFirst"?nt(e,[0,2,3,1]):e))}function F4(e,t){return K(()=>(Gt(t),t==="channelsFirst"?nt(e,[0,2,3,4,1]):e))}function yU(e,t,r,n=1,a="valid",s,i=1){return K(()=>{if(s==null&&(s=ma()),Gt(s),e.shape.length!==3)throw new q(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new q(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(r!=null&&r.shape.length!==1)throw new q(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=nt(e,[0,2,1])),a==="causal")throw new Ve("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=_2(e,t,n,a==="same"?"same":"valid","NWC",i);return r!=null&&(o=xa(o,r)),o})}function mv(e,t,r,n=[1,1],a="valid",s,i,o=null){return K(()=>{if(s==null&&(s=ma()),Gt(s),e.rank!==3&&e.rank!==4)throw new q(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new q(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=jA(e,s);if(a==="causal")throw new Ve("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=Ls.conv2d({x:l,filter:t,strides:n,pad:a==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:r,activation:o}),s==="channelsFirst"&&(l=nt(l,[0,3,1,2])),l})}function AU(e,t,r,n=[1,1,1],a="valid",s,i){return K(()=>{if(s==null&&(s=ma()),Gt(s),e.rank!==4&&e.rank!==5)throw new q(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new q(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=F4(e,s);if(a==="causal")throw new Ve("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=D2(o,t,n,a==="same"?"same":"valid","NDHWC",i),r!=null&&(o=xa(o,r)),s==="channelsFirst"&&(o=nt(o,[0,4,1,2,3])),o})}var HA=class extends st{constructor(e,t){if(super(t),this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",HA.verifyArgs(t),this.rank=e,fr(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Ve(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=gu(t.kernelSize,e,"kernelSize"),this.strides=gu(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,_n(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Gt(this.dataFormat),this.activation=Vs(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=Et(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=ir(t.biasConstraint),this.biasRegularizer=Rt(t.biasRegularizer),this.activityRegularizer=Rt(t.activityRegularizer),this.dilationRate=gu(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new q(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new q(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new q(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Ta("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!mA(e.kernelSize,"number",1,3))throw new q(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:Ws(this.activation),useBias:this.useBias,biasInitializer:Pt(this.biasInitializer),biasRegularizer:xt(this.biasRegularizer),activityRegularizer:xt(this.activityRegularizer),biasConstraint:sr(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Rh=class extends HA{constructor(e,t){super(e,t),this.kernel=null,Rh.verifyArgs(t),this.filters=t.filters,fr(this.filters,"filters"),this.kernelInitializer=Et(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=ir(t.kernelConstraint),this.kernelRegularizer=Rt(t.kernelRegularizer)}build(e){e=ft(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new q(`The channel dimension of the input should be defined. Found ${e[t]}`);let r=e[t],n=this.kernelSize.concat([r,this.filters]);this.kernel=this.addWeight("kernel",n,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:r}}],this.built=!0}call(e,t){return K(()=>{e=je(e);let r,n=this.bias==null?null:this.bias.read(),a=W7(this.activation.getClassName());if(a!=null&&this.rank===2)r=mv(e,this.kernel.read(),n,this.strides,this.padding,this.dataFormat,this.dilationRate,a);else{if(this.rank===1)r=yU(e,this.kernel.read(),n,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)r=mv(e,this.kernel.read(),n,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)r=AU(e,this.kernel.read(),n,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Ve("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(r=this.activation.apply(r))}return r})}computeOutputShape(e){e=ft(e);let t=[],r=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let a=0;a<r.length;++a){let s=ca(r[a],this.kernelSize[a],this.padding,this.strides[a],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[a]);t.push(s)}let n=[e[0]];return this.dataFormat==="channelsLast"?(n=n.concat(t),n.push(this.filters)):(n.push(this.filters),n=n.concat(t)),n}getConfig(){let e={filters:this.filters,kernelInitializer:Pt(this.kernelInitializer),kernelRegularizer:xt(this.kernelRegularizer),kernelConstraint:sr(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new q(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},$4=class extends Rh{constructor(e){super(2,e),$4.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!mA(e.kernelSize,"number",1,2))throw new q(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}},a0=$4;a0.className="Conv2D";ue.registerClass(a0);var P4=class extends Rh{constructor(e){super(3,e),P4.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new q(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}},s0=P4;s0.className="Conv3D";ue.registerClass(s0);var qA=class extends a0{constructor(e){if(super(e),this.inputSpec=[new Kt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new q(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=ft(e),e.length!==4)throw new q("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new q("The channel dimension of the inputs should be defined. Found `None`.");let r=e[t],n=this.kernelSize.concat([this.filters,r]);this.kernel=this.addWeight("kernel",n,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Kt({ndim:4,axes:{[t]:r}})],this.built=!0}call(e,t){return K(()=>{let r=je(e);if(r.shape.length!==4)throw new q(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${r.shape.length}`);let n=r.shape,a=n[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=n[s],l=n[i],u=this.kernelSize[0],d=this.kernelSize[1],h=this.strides[0],p=this.strides[1],c=Na(o,h,u,this.padding),f=Na(l,p,d,this.padding),m=[a,c,f,this.filters];this.dataFormat!=="channelsLast"&&(r=nt(r,[0,2,3,1]));let g=O2(r,this.kernel.read(),m,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=nt(g,[0,3,1,2])),this.bias!=null&&(g=xa(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=ft(e);let t=e.slice(),r,n,a;this.dataFormat==="channelsFirst"?(r=1,n=2,a=3):(r=3,n=1,a=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[r]=this.filters,t[n]=Na(t[n],o,s,this.padding),t[a]=Na(t[a],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};qA.className="Conv2DTranspose";ue.registerClass(qA);var KA=class extends s0{constructor(e){if(super(e),this.inputSpec=[new Kt({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new q(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=ft(e),e.length!==5)throw new q("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new q("The channel dimension of the inputs should be defined. Found `None`.");let r=e[t],n=this.kernelSize.concat([this.filters,r]);this.kernel=this.addWeight("kernel",n,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Kt({ndim:5,axes:{[t]:r}})],this.built=!0}call(e,t){return K(()=>{let r=je(e);if(r.shape.length!==5)throw new q(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${r.shape.length}`);let n=r.shape,a=n[0],s,i,o;this.dataFormat==="channelsFirst"?(o=2,s=3,i=4):(o=1,s=2,i=3);let l=n[o],u=n[s],d=n[i],h=this.kernelSize[0],p=this.kernelSize[1],c=this.kernelSize[2],f=this.strides[0],m=this.strides[1],g=this.strides[2],y=Na(l,f,h,this.padding),A=Na(u,m,p,this.padding),x=Na(d,g,c,this.padding),b=[a,y,A,x,this.filters];this.dataFormat!=="channelsLast"&&(r=nt(r,[0,2,3,4,1]));let v=Vk(r,this.kernel.read(),b,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(v=nt(v,[0,4,1,2,3])),this.bias!==null&&(v=xa(v,this.bias.read(),this.dataFormat)),this.activation!==null&&(v=this.activation.apply(v)),v})}computeOutputShape(e){e=ft(e);let t=e.slice(),r,n,a,s;this.dataFormat==="channelsFirst"?(r=1,n=2,a=3,s=4):(r=4,n=1,a=2,s=3);let i=this.kernelSize[0],o=this.kernelSize[1],l=this.kernelSize[2],u=this.strides[0],d=this.strides[1],h=this.strides[2];return t[r]=this.filters,t[n]=Na(t[n],u,i,this.padding),t[a]=Na(t[a],d,o,this.padding),t[s]=Na(t[s],h,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};KA.className="Conv3DTranspose";ue.registerClass(KA);var _4=class extends Rh{constructor(e,t){if(super(e,t),this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new q("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new q("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new q(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=Et(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=Rt(t.depthwiseRegularizer),this.depthwiseConstraint=ir(t.depthwiseConstraint),this.pointwiseInitializer=Et(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=Rt(t.pointwiseRegularizer),this.pointwiseConstraint=ir(t.pointwiseConstraint)}build(e){if(e=ft(e),e.length<this.rank+2)throw new q(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new q(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let r=e[t],n=this.kernelSize.concat([r,this.depthMultiplier]),a=[];for(let i=0;i<this.rank;++i)a.push(1);a.push(r*this.depthMultiplier,this.filters);let s=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",n,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,s,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",a,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,s,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,s,this.biasConstraint):this.bias=null,this.inputSpec=[new Kt({ndim:this.rank+2,axes:{[t]:r}})],this.built=!0}call(e,t){return K(()=>{e=je(e);let r;if(this.rank===1)throw new Ve("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=nt(e,[0,2,3,1])),r=d7(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(r=xa(r,this.bias.read(),this.dataFormat)),this.activation!=null&&(r=this.activation.apply(r)),this.dataFormat==="channelsFirst"&&(r=nt(r,[0,3,1,2])),r})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Pt(this.depthwiseInitializer),e.pointwiseInitializer=Pt(this.pointwiseInitializer),e.depthwiseRegularizer=xt(this.depthwiseRegularizer),e.pointwiseRegularizer=xt(this.pointwiseRegularizer),e.depthwiseConstraint=sr(this.depthwiseConstraint),e.pointwiseConstraint=sr(this.pointwiseConstraint),e}};_4.className="SeparableConv";var XA=class extends _4{constructor(e){super(2,e)}};XA.className="SeparableConv2D";ue.registerClass(XA);var z4=class extends Rh{constructor(e){super(1,e),z4.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!mA(e.kernelSize,"number",1,1))throw new q(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}},ZA=z4;ZA.className="Conv1D";ue.registerClass(ZA);var YA=class extends st{constructor(e){super(e),typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return K(()=>{if(e=je(e),this.dataFormat==="channelsLast"){let r=jc(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return jc(r,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let r=jc(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return jc(r,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};YA.className="Cropping2D";ue.registerClass(YA);var JA=class extends st{constructor(e){super(e),this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Gt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,$W(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],r=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,r]}else{let t=e[1]==null?null:this.size[0]*e[1],r=e[2]==null?null:this.size[1]*e[2];return[e[0],t,r,e[3]]}}call(e,t){return K(()=>{let r=je(e),n=r.shape;if(this.dataFormat==="channelsFirst"){r=nt(r,[0,2,3,1]);let a=this.size[0]*n[2],s=this.size[1]*n[3],i=this.interpolation==="nearest"?Ie.resizeNearestNeighbor(r,[a,s]):Ie.resizeBilinear(r,[a,s]);return nt(i,[0,3,1,2])}else{let a=this.size[0]*n[1],s=this.size[1]*n[2];return this.interpolation==="nearest"?Ie.resizeNearestNeighbor(r,[a,s]):Ie.resizeBilinear(r,[a,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};JA.className="UpSampling2D";ue.registerClass(JA);function xU(e,t,r=[1,1],n="valid",a,s){return K(()=>{a==null&&(a=ma()),Gt(a);let i=jA(e,a);if(e.rank!==4)throw new q(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new q(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=Ah(i,t,r,n==="same"?"same":"valid","NHWC",s),a==="channelsFirst"&&(i=nt(i,[0,3,1,2])),i})}var QA=class extends HA{constructor(e){super(2,e),this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=Et(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=ir(e.depthwiseConstraint),this.depthwiseRegularizer=Rt(e.depthwiseRegularizer)}build(e){if(e=ft(e),e.length<4)throw new q(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new q(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let r=e[t],n=[this.kernelSize[0],this.kernelSize[1],r,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",n,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[r*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return K(()=>{e=je(e);let r=xU(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(r=xa(r,this.bias.read(),this.dataFormat)),this.activation!=null&&(r=this.activation.apply(r)),r})}computeOutputShape(e){e=ft(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],r=this.dataFormat==="channelsFirst"?e[3]:e[2],n=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,a=ca(t,this.kernelSize[0],this.padding,this.strides[0]),s=ca(r,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],n,a,s]:[e[0],a,s,n]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Pt(this.depthwiseInitializer),e.depthwiseRegularizer=xt(this.depthwiseRegularizer),e.depthwiseConstraint=sr(this.depthwiseRegularizer),e}};QA.className="DepthwiseConv2D";ue.registerClass(QA);function O4(e,t,r,n){if(Array.isArray(e)){if(t!=null||r!=null)throw new q("When inputs is an array, neither initialState or constants should be provided");n!=null&&(r=e.slice(e.length-n,e.length),e=e.slice(0,e.length-n)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function a(s){return s==null||Array.isArray(s)?s:[s]}return t=a(t),r=a(r),{inputs:e,initialState:t,constants:r}}function D4(e,t,r,n=!1,a,s,i=!1,o=!1){return K(()=>{let l=t.shape.length;if(l<3)throw new q(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(ga(2,l));if(t=nt(t,u),s!=null)throw new Ve("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),a!=null&&(a=me(me(a,"bool"),"float32"),a.rank===l-1&&(a=qt(a,-1)),a=nt(a,u)),n&&(t=$n(t,0),a!=null&&(a=$n(a,0)));let d=[],h,p=r,c=t.shape[0],f=tn(t),m;a!=null&&(m=tn(a));for(let y=0;y<c;++y){let A=f[y],x=K(()=>e(A,p));if(a==null)h=x[0],p=x[1];else{let b=K(()=>{let v=m[y],S=ce(Fn(v),v),T=le(L(x[0],v),L(p[0],S)),E=p.map((R,_)=>le(L(x[1][_],v),L(R,S)));return{output:T,newStates:E}});h=b.output,p=b.newStates}o&&d.push(h)}let g;return o&&(g=or(d,1)),[h,g,p]})}var L4=class extends st{constructor(e){super(e);let t;if(e.cell==null)throw new q("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new l0({cells:e.cell}):t=e.cell,t.stateSize==null)throw new q("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Kt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return ga(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){Iy(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let r=t[0],n;if(this.returnSequences?n=[e[0],e[1],r]:n=[e[0],r],this.returnState){let a=[];for(let s of t)a.push([e[0],s]);return[n].concat(a)}else return n}computeMask(e,t){return K(()=>{Array.isArray(t)&&(t=t[0]);let r=this.returnSequences?t:null;if(this.returnState){let n=this.states.map(a=>null);return[r].concat(n)}else return r})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let r=0;r<e;++r)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){if(this.numConstants!=null)throw new Ve("Constants support is not implemented in RNN yet.");Iy(e)&&(e=e[0]),e=e;let t=this.stateful?e[0]:null,r=e.slice(2);this.inputSpec[0]=new Kt({shape:[t,null,...r]});let n=[e[0]].concat(e.slice(2));this.cell.build(n);let a;if(Array.isArray(this.cell.stateSize)?a=this.cell.stateSize:a=[this.cell.stateSize],this.stateSpec!=null){if(!w.arraysEqual(this.stateSpec.map(s=>s.shape[s.shape.length-1]),a))throw new q(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=a.map(s=>new Kt({shape:[null,s]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){K(()=>{if(!this.stateful)throw new Ga("Cannot call resetStates() on an RNN Layer that is not stateful.");let r=this.inputSpec[0].shape[0];if(r==null)throw new q("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(n=>Wt([r,n])):this.states_=[Wt([r,this.cell.stateSize])];else if(e==null)re(this.states_),this.keptStates!=null&&(re(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(n=>Wt([r,n])):this.states_[0]=Wt([r,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new q(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):re(this.states_);for(let n=0;n<this.states_.length;++n){let a=e[n],s=Array.isArray(this.cell.stateSize)?this.cell.stateSize[n]:this.cell.stateSize,i=[r,s];if(!w.arraysEqual(a.shape,i))throw new q(`State ${n} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${a.shape}`);this.states_[n]=a}}this.states_=this.states_.map(n=>cr(n.clone()))})}apply(e,t){let r=t==null?null:t.initialState,n=t==null?null:t.constants;t==null&&(t={});let a=O4(e,r,n,this.numConstants);e=a.inputs,r=a.initialState,n=a.constants;let s=[],i=[];if(r!=null){t.initialState=r,s=s.concat(r),this.stateSpec=[];for(let o of r)this.stateSpec.push(new Kt({shape:o.shape}));i=i.concat(this.stateSpec)}if(n!=null&&(t.constants=n,s=s.concat(n),this.numConstants=n.length),s[0]instanceof ua){let o=[e].concat(s),l=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=l;let d=super.apply(o,t);return this.inputSpec=u,d}else return super.apply(e,t)}call(e,t){return K(()=>{let r=t==null?null:t.mask,n=t==null?null:t.training,a=t==null?null:t.initialState;e=je(e),a==null&&(this.stateful?a=this.states_:a=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(a.length!==s)throw new q(`RNN Layer has ${s} state(s) but was passed ${a.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:n},o=D4((p,c)=>{let f=this.cell.call([p].concat(c),i);return[f[0],f.slice(1)]},e,a,this.goBackwards,r,null,this.unroll,this.returnSequences),l=o[0],u=o[1],d=o[2];this.stateful&&this.resetStates(d,n);let h=this.returnSequences?u:l;return this.returnState?[h].concat(d):h})}getInitialState(e){return K(()=>{let t=Wt(e.shape);return t=ke(t,[1,2]),t=Th(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(r=>r>1?wy(t,[1,r]):t):this.cell.stateSize>1?[wy(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let r=this.cell.getConfig();return this.getClassName()===L4.className&&(t.cell={className:this.cell.getClassName(),config:r}),{...r,...e,...t}}static fromConfig(e,t,r={}){let n=t.cell,a=ha(n,r);return new e(Object.assign(t,{cell:a}))}},ns=L4;ns.className="RNN";ue.registerClass(ns);var Mh=class extends st{},i0=class extends Mh{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,fr(this.units,"units"),this.activation=Vs(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Et(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Et(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Et(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Rt(e.kernelRegularizer),this.recurrentRegularizer=Rt(e.recurrentRegularizer),this.biasRegularizer=Rt(e.biasRegularizer),this.kernelConstraint=ir(e.kernelConstraint),this.recurrentConstraint=ir(e.recurrentConstraint),this.biasConstraint=ir(e.biasConstraint),this.dropout=Su([1,Bs([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Su([1,Bs([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=ft(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return K(()=>{if(e=e,e.length!==2)throw new q(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let r=e[1];e=e[0];let n=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Us({ones:()=>Fn(e),rate:this.dropout,training:n,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Us({ones:()=>Fn(r),rate:this.recurrentDropout,training:n,dropoutFunc:this.dropoutFunc}));let a,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?a=Ea(L(e,s),this.kernel.read()):a=Ea(e,this.kernel.read()),this.bias!=null&&(a=xa(a,this.bias.read())),i!=null&&(r=L(r,i));let o=le(a,Ea(r,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Ws(this.activation),useBias:this.useBias,kernelInitializer:Pt(this.kernelInitializer),recurrentInitializer:Pt(this.recurrentInitializer),biasInitializer:Pt(this.biasInitializer),kernelRegularizer:xt(this.kernelRegularizer),recurrentRegularizer:xt(this.recurrentRegularizer),biasRegularizer:xt(this.biasRegularizer),activityRegularizer:xt(this.activityRegularizer),kernelConstraint:sr(this.kernelConstraint),recurrentConstraint:sr(this.recurrentConstraint),biasConstraint:sr(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return{...e,...t}}};i0.className="SimpleRNNCell";ue.registerClass(i0);var ex=class extends ns{constructor(e){e.cell=new i0(e),super(e)}call(e,t){return K(()=>{this.cell.dropoutMask!=null&&(re(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(re(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let r=t==null?null:t.mask,n=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:r,training:n,initialState:a})})}static fromConfig(e,t){return new e(t)}};ex.className="SimpleRNN";ue.registerClass(ex);var o0=class extends Mh{constructor(e){if(super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new q("GRUCell does not support reset_after parameter set to true.");this.units=e.units,fr(this.units,"units"),this.activation=Vs(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Vs(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Et(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Et(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Et(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Rt(e.kernelRegularizer),this.recurrentRegularizer=Rt(e.recurrentRegularizer),this.biasRegularizer=Rt(e.biasRegularizer),this.kernelConstraint=ir(e.kernelConstraint),this.recurrentConstraint=ir(e.recurrentConstraint),this.biasConstraint=ir(e.biasConstraint),this.dropout=Su([1,Bs([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Su([1,Bs([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=ft(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return K(()=>{if(e=e,e.length!==2)throw new q(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let r=t.training==null?!1:t.training,n=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Us({ones:()=>Fn(e),rate:this.dropout,training:r,count:3,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Us({ones:()=>Fn(n),rate:this.recurrentDropout,training:r,count:3,dropoutFunc:this.dropoutFunc}));let a=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0<this.dropout&&this.dropout<1&&(e=L(e,a[0]));let u=Ea(e,this.kernel.read());this.useBias&&(u=xa(u,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(n=L(n,s[0]));let d=this.recurrentKernel.read(),[h,p]=Xt(d,[2*this.units,this.units],d.rank-1),c=Ea(n,h),[f,m,g]=Xt(u,3,u.rank-1),[y,A]=Xt(c,2,c.rank-1);i=this.recurrentActivation.apply(le(f,y)),o=this.recurrentActivation.apply(le(m,A));let x=Ea(L(o,n),p);l=this.activation.apply(le(g,x));let b=le(L(i,n),L(le(1,zt(i)),l));return[b,b]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Ws(this.activation),recurrentActivation:Ws(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Pt(this.kernelInitializer),recurrentInitializer:Pt(this.recurrentInitializer),biasInitializer:Pt(this.biasInitializer),kernelRegularizer:xt(this.kernelRegularizer),recurrentRegularizer:xt(this.recurrentRegularizer),biasRegularizer:xt(this.biasRegularizer),activityRegularizer:xt(this.activityRegularizer),kernelConstraint:sr(this.kernelConstraint),recurrentConstraint:sr(this.recurrentConstraint),biasConstraint:sr(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return{...e,...t}}};o0.className="GRUCell";ue.registerClass(o0);var tx=class extends ns{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new o0(e),super(e)}call(e,t){return K(()=>{this.cell.dropoutMask!=null&&(re(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(re(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let r=t==null?null:t.mask,n=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:r,training:n,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};tx.className="GRU";ue.registerClass(tx);var Fh=class extends Mh{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,fr(this.units,"units"),this.activation=Vs(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Vs(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Et(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Et(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Et(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=Rt(e.kernelRegularizer),this.recurrentRegularizer=Rt(e.recurrentRegularizer),this.biasRegularizer=Rt(e.biasRegularizer),this.kernelConstraint=ir(e.kernelConstraint),this.recurrentConstraint=ir(e.recurrentConstraint),this.biasConstraint=ir(e.biasConstraint),this.dropout=Su([1,Bs([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Su([1,Bs([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=ft(e);let r=e[e.length-1];this.kernel=this.addWeight("kernel",[r,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let n;if(this.useBias){if(this.unitForgetBias){let a=this.biasInitializer,s=this.units;n=new(t=class extends Kn{apply(i,o){let l=a.apply([s]),u=new Hm().apply([s]),d=a.apply([s*2]);return ev(ev(l,u),d)}},t.className="CustomInit",t)}else n=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,n,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return K(()=>{let r=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new q(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=e[1],a=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Us({ones:()=>Fn(e),rate:this.dropout,training:r,count:4,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Us({ones:()=>Fn(n),rate:this.recurrentDropout,training:r,count:4,dropoutFunc:this.dropoutFunc}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,u,d;0<this.dropout&&this.dropout<1&&(e=L(e,s[0]));let h=Ea(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(n=L(n,i[0])),h=le(h,Ea(n,this.recurrentKernel.read())),this.useBias&&(h=xa(h,this.bias.read()));let[p,c,f,m]=Xt(h,4,h.rank-1);o=this.recurrentActivation.apply(p),l=this.recurrentActivation.apply(c),u=le(L(l,a),L(o,this.activation.apply(f))),d=this.recurrentActivation.apply(m);let g=L(d,this.activation.apply(u));return[g,g,u]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Ws(this.activation),recurrentActivation:Ws(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Pt(this.kernelInitializer),recurrentInitializer:Pt(this.recurrentInitializer),biasInitializer:Pt(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:xt(this.kernelRegularizer),recurrentRegularizer:xt(this.recurrentRegularizer),biasRegularizer:xt(this.biasRegularizer),activityRegularizer:xt(this.activityRegularizer),kernelConstraint:sr(this.kernelConstraint),recurrentConstraint:sr(this.recurrentConstraint),biasConstraint:sr(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return{...e,...t}}};Fh.className="LSTMCell";ue.registerClass(Fh);var rx=class extends ns{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Fh(e),super(e)}call(e,t){return K(()=>{this.cell.dropoutMask!=null&&(re(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(re(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let r=t==null?null:t.mask,n=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:r,training:n,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};rx.className="LSTM";ue.registerClass(rx);var l0=class extends Mh{constructor(e){super(e),this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return K(()=>{e=e;let r=e.slice(1),n=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?n.push(r.splice(0,i.stateSize.length)):n.push(r.splice(0,1));n.reverse();let a=[],s;for(let i=0;i<this.cells.length;++i){let o=this.cells[i];r=n[i],i===0?s=[e[0]].concat(r):s=[s[0]].concat(r),s=o.call(s,t),a.push(s.slice(1))}r=[];for(let i of a.slice().reverse())r.push(...i);return[s[0]].concat(r)})}build(e){Iy(e)&&(e=e[0]),e=e;let t;this.cells.forEach((r,n)=>{ko(`RNNCell_${n}`,()=>{r.build(e),Array.isArray(r.stateSize)?t=r.stateSize[0]:t=r.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=n=>({className:n.getClassName(),config:n.getConfig()}),r={cells:this.cells.map(t)};return{...e,...r}}static fromConfig(e,t,r={}){let n=[];for(let a of t.cells)n.push(ha(a,r));return new e({cells:n})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let r of this.cells)t.push(...r.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return Sy(e)}setWeights(e){let t=[];for(let r of this.cells){let n=r.weights.length,a=e.splice(n);for(let s=0;s<r.weights.length;++s)t.push([r.weights[s],a[s]])}EA(t)}};l0.className="StackedRNNCells";ue.registerClass(l0);function Us(e){let{ones:t,rate:r,training:n=!1,count:a=1,dropoutFunc:s}=e,i=()=>s!=null?s(t(),r):K7(t(),r),o=()=>Ch(i,t,n);return!a||a<=1?cr(o().clone()):Array(a).fill(void 0).map(o).map(l=>cr(l.clone()))}var B4=class extends ns{constructor(e){if(e.unroll)throw new Ve("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Ve("It is not possible at the moment to stack convolutional cells.");super(e),this.inputSpec=[new Kt({ndim:5})]}call(e,t){return K(()=>{if(this.cell.dropoutMask!=null&&(re(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(re(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new q("ConvRNN2D cell does not support constants");let r=t==null?null:t.mask,n=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:r,training:n,initialState:a})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return K(()=>{let{stateSize:t}=this.cell,r=e.shape,n=this.computeSingleOutputShape(r),a=[n[0],...n.slice(2)],s=Wt(a);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){K(()=>{if(!this.stateful)throw new Ga("Cannot call resetStates() on an RNN Layer that is not stateful.");let r=this.inputSpec[0].shape,n=this.computeSingleOutputShape(r),a=[n[0],...n.slice(2)];if(r[0]==null)throw new q("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Wt(a)):this.states_=[Wt(a)];else if(e==null)re(this.states_),this.keptStates!=null&&(re(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Wt(a)):this.states_[0]=Wt(a);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new q(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):re(this.states_);for(let s=0;s<this.states_.length;++s){let i=e[s],o=a;if(!w.arraysEqual(i.shape,o))throw new q(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${i.shape}`);this.states_[s]=i}}this.states_=this.states_.map(s=>cr(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:r,kernelSize:n,padding:a,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],u=e[o?4:3],d=ca(l,n[0],a,s[0],i[0]),h=ca(u,n[1],a,s[1],i[1]);return[...e.slice(0,2),...o?[r,d,h]:[d,h,r]]}};B4.className="ConvRNN2D";var u0=class extends Fh{constructor(e){let{filters:t,kernelSize:r,strides:n,padding:a,dataFormat:s,dilationRate:i}=e;super({...e,units:t}),this.filters=t,fr(this.filters,"filters"),this.kernelSize=gu(r,2,"kernelSize"),this.kernelSize.forEach(o=>fr(o,"kernelSize")),this.strides=gu(n||1,2,"strides"),this.strides.forEach(o=>fr(o,"strides")),this.padding=a||"valid",_n(this.padding),this.dataFormat=s||"channelsLast",Gt(this.dataFormat),this.dilationRate=gu(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>fr(o,"dilationRate"))}build(e){var t;e=ft(e);let r=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[r]==null)throw new q(`The channel dimension of the input should be defined. Found ${e[r]}`);let n=e[r],a=4,s=this.kernelSize.concat([n,this.filters*a]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*a]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,u=this.filters;o=new(t=class extends Kn{apply(d,h){let p=l.apply([u]),c=hn([u]),f=l.apply([u*2]);return vA([p,c,f])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*a],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return K(()=>{if(e.length!==3)throw new q(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let r=t.training||!1,n=e[0],a=e[1],s=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Us({ones:()=>Fn(n),rate:this.dropout,training:r,count:i,dropoutFunc:this.dropoutFunc}));let o=this.dropoutMask,l=(V,ee,J)=>!ee||!ee[J]?V:L(ee[J],V),u=l(n,o,0),d=l(n,o,1),h=l(n,o,2),p=l(n,o,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Us({ones:()=>Fn(a),rate:this.recurrentDropout,training:r,count:i,dropoutFunc:this.dropoutFunc}));let c=this.recurrentDropoutMask,f=l(a,c,0),m=l(a,c,1),g=l(a,c,2),y=l(a,c,3),A=3,[x,b,v,S]=Xt(this.kernel.read(),i,A),[T,E,R,_]=this.useBias?Xt(this.bias.read(),i):[null,null,null,null];u=this.inputConv(u,x,T,this.padding),d=this.inputConv(d,b,E,this.padding),h=this.inputConv(h,v,R,this.padding),p=this.inputConv(p,S,_,this.padding);let[M,I,z,O]=Xt(this.recurrentKernel.read(),i,A);f=this.recurrentConv(f,M),m=this.recurrentConv(m,I),g=this.recurrentConv(g,z),y=this.recurrentConv(y,O);let j=this.recurrentActivation.apply(le(u,f)),X=this.recurrentActivation.apply(le(d,m)),D=le(L(X,s),L(j,this.activation.apply(le(h,g)))),Q=L(this.recurrentActivation.apply(le(p,y)),this.activation.apply(D));return[Q,Q,D]})}getConfig(){let{units:e,...t}=super.getConfig(),r={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return{...t,...r}}inputConv(e,t,r,n){let a=zs(e,t,this.strides,n||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return r?xa(a,r,this.dataFormat):a}recurrentConv(e,t){return zs(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};u0.className="ConvLSTM2DCell";ue.registerClass(u0);var nx=class extends B4{constructor(e){let t=new u0(e);super({...e,cell:t})}static fromConfig(e,t){return new e(t)}};nx.className="ConvLSTM2D";ue.registerClass(nx);var d0=class extends st{constructor(e){super(e),this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,r=[];for(let n=0;n<this.noiseShape.length;++n)r.push(this.noiseShape[n]==null?t[n]:this.noiseShape[n]);return r}call(e,t){return K(()=>{this.invokeCallHook(e,t);let r=je(e);if(0<this.rate&&this.rate<1){let n=t.training==null?!1:t.training,a=this.getNoiseShape(r);return Ch(()=>K7(r,this.rate,a,this.seed),()=>r,n)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};d0.className="Dropout";ue.registerClass(d0);var ax=class extends d0{constructor(e){super(e),this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};ax.className="SpatialDropout1D";ue.registerClass(ax);var sx=class extends st{constructor(e){if(super(e),this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,fr(this.units,"units"),this.activation=Vs(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=Et(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=Et(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=ir(e.kernelConstraint),this.biasConstraint=ir(e.biasConstraint),this.kernelRegularizer=Rt(e.kernelRegularizer),this.biasRegularizer=Rt(e.biasRegularizer),this.activityRegularizer=Rt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=ft(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=ft(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return K(()=>{this.invokeCallHook(e,t);let r=je(e),n=W7(this.activation.getClassName()),a;return n!=null?a=Ea(r,this.kernel.read(),n,this.bias?this.bias.read():null):(a=Ea(r,this.kernel.read()),this.bias!=null&&(a=xa(a,this.bias.read())),this.activation!=null&&(a=this.activation.apply(a))),a})}getConfig(){let e={units:this.units,activation:Ws(this.activation),useBias:this.useBias,kernelInitializer:Pt(this.kernelInitializer),biasInitializer:Pt(this.biasInitializer),kernelRegularizer:xt(this.kernelRegularizer),biasRegularizer:xt(this.biasRegularizer),activityRegularizer:xt(this.activityRegularizer),kernelConstraint:sr(this.kernelConstraint),biasConstraint:sr(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};sx.className="Dense";ue.registerClass(sx);var ix=class extends st{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=ft(e);for(let t of e.slice(1))if(t==null)throw new q(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Es(e,1)]}call(e,t){return K(()=>{this.invokeCallHook(e,t);let r=je(e);if(this.dataFormat==="channelsFirst"&&r.rank>1){let n=[0];for(let a=2;a<r.rank;++a)n.push(a);n.push(1),r=nt(r,n)}return LW(r)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};ix.className="Flatten";ue.registerClass(ix);var ox=class extends st{constructor(e){super(e),this.supportsMasking=!0,this.activation=Vs(e.activation)}call(e,t){return K(()=>{this.invokeCallHook(e,t);let r=je(e);return this.activation.apply(r)})}getConfig(){let e={activation:Ws(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};ox.className="Activation";ue.registerClass(ox);var lx=class extends st{constructor(e){super(e),this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return K(()=>(e=je(e),OW(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};lx.className="RepeatVector";ue.registerClass(lx);var ux=class extends st{constructor(e){super(e),this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let r="Total size of new array must be unchanged.",n=t.slice(),a=1,s=null;for(let o=0;o<n.length;++o){let l=n[o];if(this.isUnknown(l))if(s===null)s=o;else throw new q("Can only specifiy one unknown dimension.");else a*=l}let i=Es(e);if(s!==null){if(a===0||i%a!==0)throw new q(r);n[s]=i/a}else if(i!==a)throw new q(r);return n}computeOutputShape(e){let t=!1;for(let r=0;r<e.length;++r)if(this.isUnknown(e[r])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return K(()=>{this.invokeCallHook(e,t);let r=je(e),n=r.shape,a=n.slice(0,1).concat(this.fixUnknownDimension(n.slice(1),this.targetShape));return G(r,a)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};ux.className="Reshape";ue.registerClass(ux);var dx=class extends st{constructor(e){if(super(e),e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=ga(1,e.dims.length+1);if(!w.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Kt({ndim:this.dims.length+1})]}computeOutputShape(e){e=ft(e);let t=e.slice();return this.dims.forEach((r,n)=>{t[n+1]=e[r]}),t}call(e,t){return nt(je(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};dx.className="Permute";ue.registerClass(dx);var px=class extends st{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let r=je(e),n=-1;return wf(ku(r,this.maskValue),n)}call(e,t){return K(()=>{this.invokeCallHook(e,t);let r=je(e),n=-1,a=!0,s=wf(ku(r,this.maskValue),n,a);return L(r,me(s,r.dtype))})}};px.className="Masking";ue.registerClass(px);var hx=class extends st{constructor(e){if(super(e),this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(It(e.inputLength))}this.inputDim=e.inputDim,fr(this.inputDim,"inputDim"),this.outputDim=e.outputDim,fr(this.outputDim,"outputDim"),this.embeddingsInitializer=Et(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=Rt(e.embeddingsRegularizer),this.activityRegularizer=Rt(e.activityRegularizer),this.embeddingsConstraint=ir(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return K(()=>this.maskZero?(e=je(e),ku(e,at(e))):null)}computeOutputShape(e){if(e=ft(e),this.inputLength==null)return[...e,this.outputDim];let t=It(this.inputLength);if(t.length!==e.length-1)throw new q(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let r=0;for(let n=0;n<t.length;++n){let a=t[n],s=e[n+1];if(a!=null&&s!=null&&a!==s)throw new q(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);a==null&&(t[r]=s),r++}}return[e[0],...t,this.outputDim]}call(e,t){return K(()=>{this.invokeCallHook(e,t);let r=je(e);r.dtype!=="int32"&&(r=Gm(r,"int32"));let n=q7(this.embeddings.read(),G(r,[r.size]));return G(n,ft(this.computeOutputShape(r.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Pt(this.embeddingsInitializer),embeddingsRegularizer:xt(this.embeddingsRegularizer),activityRegularizer:xt(this.activityRegularizer),embeddingsConstraint:sr(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};hx.className="Embedding";ue.registerClass(hx);var Fl=class extends st{constructor(e){super(e||{}),this.supportsMasking=!0}mergeFunction(e){throw new Ve}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let r=e.slice(0,e.length-t.length);for(let n=0;n<t.length;++n){let a=e[e.length-t.length+n],s=t[n];if(a==null||s==null||a<0||s<0)r.push(null);else if(a===1)r.push(s);else if(s===1)r.push(a);else{if(a!==s)throw new q("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));r.push(a)}}return r}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[ft(e)]),e=e,e.length<2)throw new q(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let a of e)a!=null&&a[0]!==null&&t.push(a[0]);if(t=Cs(t),t.length>1)throw new q(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let r=e[0]==null?null:e[0].slice(1);for(let a=1;a<e.length;++a){let s=e[a]==null?null:e[a].slice(1);r=this.computeElementwiseOpOutputShape(r,s)}let n=e.map(a=>a.length);e.indexOf(null)===-1&&Cs(n).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return K(()=>{if(e=e,this.reshapeRequired){let r=[],n=e.map(a=>a.rank);if(n.indexOf(null)===-1){let a=Bs(n);for(let s of e){let i=s.rank;for(let o=0;o<a-i;++o)s=Th(s,1);r.push(s)}return this.mergeFunction(r)}else{let a=!1;for(let o of e){let l=o.rank;if(l==null){let u=o.shape,d=u[0],h=u.slice(1).concat([d]),p=G(o,[d].concat(Es(u.slice(1))));p=nt(p,[1,0]),p=G(p,h),r.push(p),a=!0}else if(l>1){let u=ga(1,l).concat([0]);r.push(nt(o,u)),a=!0}else r.push(o)}let s=this.mergeFunction(r),i=s.rank;if(a){if(i==null){let o=s.shape,l=o.length,u=o[l-1],d=[u].concat(o.slice(0,o.length-1));s=G(nt(G(s,[-1,u]),[1,0]),d)}else if(i>1){let o=[i-1].concat(ga(0,i-1));s=nt(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let n=1;n<e.length;++n){let a=e[n]==null?null:e[n].slice(1);t=this.computeElementwiseOpOutputShape(t,a)}let r=[];for(let n of e)n!=null&&n[0]!==null&&r.push(n[0]);return r=Cs(r),r.length===1?t=r.concat(t):t=[null].concat(t),t}computeMask(e,t){return K(()=>{if(t==null)return null;if(!Array.isArray(t))throw new q("`mask` should be an Array");if(!Array.isArray(e))throw new q("`inputs` should be an Array");if(t.length!==e.length)throw new q(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(n=>n==null))return null;t=t.map(n=>n==null?n:qt(n,0));let r=t[0];for(let n=1;n<t.length-1;++n)r=fa(r,t[n]);return r})}},cx=class extends Fl{constructor(e){super(e)}mergeFunction(e){return K(()=>{let t=e[0].clone();for(let r=1;r<e.length;++r)t=le(t,e[r]);return t})}};cx.className="Add";ue.registerClass(cx);var fx=class extends Fl{constructor(e){super(e)}mergeFunction(e){return K(()=>{let t=e[0].clone();for(let r=1;r<e.length;++r)t=L(t,e[r]);return t})}};fx.className="Multiply";ue.registerClass(fx);var mx=class extends Fl{constructor(e){super(e)}mergeFunction(e){return K(()=>{let t=e[0].clone();for(let r=1;r<e.length;++r)t=le(t,e[r]);return L(1/e.length,t)})}};mx.className="Average";ue.registerClass(mx);var gx=class extends Fl{constructor(e){super(e)}mergeFunction(e){return K(()=>{let t=e[0];for(let r=1;r<e.length;++r)t=es(t,e[r]);return t})}};gx.className="Maximum";ue.registerClass(gx);var yx=class extends Fl{constructor(e){super(e)}mergeFunction(e){return K(()=>{let t=e[0];for(let r=1;r<e.length;++r)t=vh(t,e[r]);return t})}};yx.className="Minimum";ue.registerClass(yx);var Ax=class extends Fl{constructor(e){super(e),this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new q("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let n of e)if(n!=null){t=!1;break}if(t)return;let r=[];for(let n=0;n<e.length;++n){let a=e[n].slice();a.splice(this.axis,1);let s=!1;for(let i of r)if(w.arraysEqual(i,a)){s=!0;break}s||r.push(a)}if(r.length>1)throw new q("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return K(()=>vA(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new q("A `Concatenate` layer should be called on a list of inputs.");let t=e,r=t[0].slice(),n=this.axis<0?r.length+this.axis:this.axis;for(let a of t.slice(1)){if(r[n]==null||a[n]==null){r[n]=null;break}r[n]+=a[n]}return r}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new q("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new q("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new q(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return K(()=>{let r=!0;if(t.forEach(s=>{if(s!=null){r=!1;return}}),r)return null;let n=[];for(let s=0;s<e.length;++s)t[s]==null?n.push(me(Fn(e[s]),"bool")):t[s].rank<e[s].rank?n.push(qt(t[s],-1)):n.push(t[s]);let a=kt(n,this.axis);return M2(a,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Ax.className="Concatenate";ue.registerClass(Ax);function mp(e,t){for(;e<0;)e+=t;return e}function bU(e,t,r){if(e.shape.length>3||t.shape.length>3)throw new Ve("batchDot is not implemented for tensors of 4D or higher rank yet");if(w.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),w.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof r=="number"&&(r=[r,r]),e.dtype==="complex64"||t.dtype==="complex64")throw new Ve("batchDot is not implemented for complex64-type Tensors yet.");let n=e.shape.length,a=t.shape.length;r==null&&(r=[n-1,a-2]);let s=r;return K(()=>{let i;if(n>a){i=n-a;let l=[];for(let u=0;u<i;++u)l.push(1);t=G(t,t.shape.concat(l))}else if(a>n){i=a-n;let l=[];for(let u=0;u<i;++u)l.push(1);e=G(e,e.shape.concat(l))}else i=0;let o;if(e.shape.length===2&&t.shape.length===2)s[0]===s[1]?o=ke(L(e,t),s[0]):o=ke(L(nt(e,[1,0]),t),s[1]);else{let l=s[0]!==e.shape.length-1,u=s[1]===t.shape.length-1;o=Je(e,t,l,u)}if(i>0){let l;n>a?l=n+a-3:l=n-1;let u=[];for(let d=l;d<l+i;++d)u.push(d);o=et(o,u)}return o.shape.length===1&&(o=qt(o,1)),o})}var xx=class extends Fl{constructor(e){super(e),this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){w.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],r=e[1];if(t.length>3||r.length>3)throw new Ve("Dot layer does not support tensors of 4D or higher rank yet.");let n=this.interpretAxes(t,r);if(t[n[0]]!==r[n[1]])throw new q(`Dimension incompatibility: ${t[n[0]]} !== ${r[n[1]]}`)}mergeFunction(e){if(e.length!==2)throw new q(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],r=e[1],n;return Array.isArray(this.axes)?n=this.axes.map((a,s)=>mp(a,e[s].shape.length)):n=[mp(this.axes,t.shape.length),mp(this.axes,r.shape.length)],this.normalize&&(t=Tf(t,n[0]),r=Tf(r,n[1])),bU(t,r,n)}interpretAxes(e,t){let r;return Array.isArray(this.axes)?r=this.axes:r=[mp(this.axes,e.length),mp(this.axes,t.length)],r}computeOutputShape(e){w.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),r=e[1].slice();if(t.length>3||r.length>3)throw new Ve("Dot layer does not support tensors of 4D or higher rank yet.");let n=this.interpretAxes(t,r);t.splice(n[0],1),r.splice(n[1],1),r.splice(0,1);let a=t.concat(r);return a.length===1&&a.push(1),a}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};xx.className="Dot";ue.registerClass(xx);var bx=class extends st{constructor(e){super(e),this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return K(()=>{this.invokeCallHook(e,t);let r=je(e);return Ch(()=>le(jm(r.shape,0,this.stddev),r),()=>r,t.training||!1)})}};bx.className="GaussianNoise";ue.registerClass(bx);var vx=class extends st{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return K(()=>{this.invokeCallHook(e,t);let r=je(e);return this.rate>0&&this.rate<1?Ch(()=>{let n=Math.sqrt(this.rate/(1-this.rate));return L(r,jm(r.shape,1,n))},()=>r,t.training||!1):r})}};vx.className="GaussianDropout";ue.registerClass(vx);var wx=class extends st{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||je(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return K(()=>{if(this.rate<1&&this.rate>0){let r=this._getNoiseShape(e);return Ch(()=>{let n=je(e),a=1.6732632423543772,s=1.0507009873554805,i=-a*s,o=Nl(cd(r),this.rate);o=Gm(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,u=-l*i*this.rate,d=le(L(n,o),L(le(o,-1),i));return le(L(d,l),u)},()=>je(e),t.training||!1)}return e})}};wx.className="AlphaDropout";ue.registerClass(wx);function Gp(e,t,r,n,a,s=.001){let i;if(e.rank===2)i=$k(e,t,r,n,a,s);else if(e.rank===3)i=Pk(e,t,r,n,a,s);else if(e.rank===4)i=_k(e,t,r,n,a,s);else throw new Ve(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function vU(e,t,r,n,a=.001){return K(()=>{let s=Nm(e,n),i=s.mean,o=s.variance;return[Gp(e,i,o,r,t,a),i,o]})}function wU(e,t,r,n,a=.001){return K(()=>{let s=Nm(e,n),i=s.mean,o=s.variance,l=[];for(let c of ga(0,e.rank))n.indexOf(c)!==-1?l.push(1):l.push(e.shape[c]);let u=G(i,l),d=G(o,l),h=t==null?null:G(t,l),p=r==null?null:G(r,l);return[Gp(e,u,d,p,h,a),i,o]})}function kU(e,t,r,n,a=.001){return w.arraysEqual(n.slice().sort(),ga(0,e.rank-1))?vU(e,t,r,n,a):wU(e,t,r,n,a)}var kx=class extends st{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Et(e.betaInitializer||"zeros"),this.gammaInitializer=Et(e.gammaInitializer||"ones"),this.movingMeanInitializer=Et(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=Et(e.movingVarianceInitializer||"ones"),this.betaConstraint=ir(e.betaConstraint),this.gammaConstraint=ir(e.gammaConstraint),this.betaRegularizer=Rt(e.betaRegularizer),this.gammaRegularizer=Rt(e.gammaRegularizer)}build(e){e=ft(e);let t=this.axis>=0?this.axis:this.axis+e.length,r=e[t];if(r==null)throw new q(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Kt({ndim:e.length,axes:{[t]:r}})];let n=[r];this.scale&&(this.gamma=this.addWeight("gamma",n,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",n,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",n,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",n,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return K(()=>{let r=t.training==null?!1:t.training,n=je(e),a=n.shape,s=a.length,i=ga(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=Mo(1,s);l[o]=a[o];let u=i.slice();u.sort();let d=!w.arraysEqual(u,ga(0,s).slice(0,s-1)),h=()=>{if(d){let g=G(this.movingMean.read(),l),y=G(this.movingVariance.read(),l),A=this.center?G(this.beta.read(),l):null,x=this.scale?G(this.gamma.read(),l):null;return Gp(n,g,y,A,x,this.epsilon)}else return Gp(n,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!r)return h();let[p,c,f]=kU(n,this.gamma.read(),this.beta.read(),i,this.epsilon),m=(g,y,A)=>{K(()=>{let x=1-A,b=g.read(),v=L(ce(b,y),x);g.write(ce(b,v))})};return m(this.movingMean,c,this.momentum),m(this.movingVariance,f,this.momentum),p})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Pt(this.betaInitializer),gammaInitializer:Pt(this.gammaInitializer),movingMeanInitializer:Pt(this.movingMeanInitializer),movingVarianceInitializer:Pt(this.movingVarianceInitializer),betaRegularizer:xt(this.betaRegularizer),gammaRegularizer:xt(this.gammaRegularizer),betaConstraint:sr(this.betaConstraint),gammaConstraint:sr(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};kx.className="BatchNormalization";ue.registerClass(kx);var Ix=class extends st{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Et(e.betaInitializer||"zeros"),this.gammaInitializer=Et(e.gammaInitializer||"ones"),this.betaRegularizer=Rt(e.betaRegularizer),this.gammaRegularizer=Rt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=ft(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let a=0;a<this.axis.length;++a)this.axis[a]<0&&(this.axis[a]+=t);for(let a of this.axis)if(a<0||a>=t)throw new Error(`Invalid axis: ${a}`);if(this.axis.length!==Cs(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let r=this.axis.map(a=>e[a]),n=!0;this.scale?this.gamma=this.addWeight("gamma",r,"float32",this.gammaInitializer,this.gammaRegularizer,n):this.gamma=null,this.center?this.beta=this.addWeight("beta",r,"float32",this.betaInitializer,this.betaRegularizer,n):this.beta=null,this.built=!0}call(e,t){let r=je(e),n=r.shape,a=n.length;return K(()=>{let{mean:s,variance:i}=Nm(r,this.axis,!0),o=Mo(1,a);for(let c of this.axis)o[c]=n[c];let l=c=>c!=null&&c.shape.length!==a?G(c,o):c,u=l(this.gamma.read()),d=l(this.beta.read()),h=[],p=[];for(let c=0;c<a;++c)this.axis.indexOf(c)!==-1?(h.push(n[c]),p.push(1)):(h.push(1),p.push(n[c]));return s=Bn(s,h),i=Bn(i,h),u=Bn(u,p),d=Bn(d,p),Gp(r,s,i,d,u,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Pt(this.betaInitializer),gammaInitializer:Pt(this.gammaInitializer),betaRegularizer:xt(this.betaRegularizer),gammaRegularizer:xt(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};Ix.className="LayerNormalization";ue.registerClass(Ix);function IU(e,t,r){return K(()=>{if(e.rank!==4)throw new q(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new q("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(r==null&&(r=ma()),r!=="channelsLast"&&r!=="channelsFirst")throw new q(`Unknown data format: ${r}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let n;return r==="channelsFirst"?n=[[0,0],[0,0],t[0],t[1]]:n=[[0,0],t[0],t[1],[0,0]],Hn(e,n)})}var Sx=class extends st{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?ma():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new q(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,r;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],r=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new q(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new q(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);r=e.padding[1]}this.padding=[t,r]}this.inputSpec=[new Kt({ndim:4})]}computeOutputShape(e){e=ft(e);let t,r;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?r=e[3]+this.padding[1][0]+this.padding[1][1]:r=null,[e[0],e[1],t,r]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?r=e[2]+this.padding[1][0]+this.padding[1][1]:r=null,[e[0],t,r,e[3]])}call(e,t){return K(()=>IU(je(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Sx.className="ZeroPadding2D";ue.registerClass(Sx);function p0(e,t,r,n,a,s){return K(()=>{Gt(a),U7(s),_n(n),r==null&&(r=[1,1]),n==null&&(n="valid"),a==null&&(a=ma()),s==null&&(s="max"),e=jA(e,a);let i,o=n==="same"?"same":"valid";return s==="max"?i=Tm(e,t,r,o):i=Am(e,t,r,o),a==="channelsFirst"&&(i=nt(i,[0,3,1,2])),i})}function W4(e,t,r,n,a,s){return K(()=>{Gt(a),U7(s),_n(n),r==null&&(r=[1,1,1]),n==null&&(n="valid"),a==null&&(a=ma()),s==null&&(s="max"),e=F4(e,a);let i,o=n==="same"?"same":"valid";return s==="max"?i=q2(e,t,r,o):i=$2(e,t,r,o),a==="channelsFirst"&&(i=nt(i,[0,4,1,2,3])),i})}var V4=class extends st{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new q(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(fr(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new q(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);fr(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,_n(this.padding),this.inputSpec=[new Kt({ndim:3})]}computeOutputShape(e){e=ft(e);let t=ca(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return K(()=>{this.invokeCallHook(e,t),e=Th(je(e),2);let r=this.poolingFunction(je(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return et(r,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},Tx=class extends V4{constructor(e){super(e)}poolingFunction(e,t,r,n,a){return Gt(a),_n(n),p0(e,t,r,n,a,"max")}};Tx.className="MaxPooling1D";ue.registerClass(Tx);var Nx=class extends V4{constructor(e){super(e)}poolingFunction(e,t,r,n,a){return Gt(a),_n(n),p0(e,t,r,n,a,"avg")}};Nx.className="AveragePooling1D";ue.registerClass(Nx);var U4=class extends st{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new q(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];fr(this.poolSize,"poolSize"),fr(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Gt(this.dataFormat),_n(this.padding),this.inputSpec=[new Kt({ndim:4})]}computeOutputShape(e){e=ft(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],r=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=ca(t,this.poolSize[0],this.padding,this.strides[0]),r=ca(r,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,r]:[e[0],t,r,e[3]]}call(e,t){return K(()=>(this.invokeCallHook(e,t),this.poolingFunction(je(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Cx=class extends U4{constructor(e){super(e)}poolingFunction(e,t,r,n,a){return Gt(a),_n(n),p0(e,t,r,n,a,"max")}};Cx.className="MaxPooling2D";ue.registerClass(Cx);var Ex=class extends U4{constructor(e){super(e)}poolingFunction(e,t,r,n,a){return Gt(a),_n(n),p0(e,t,r,n,a,"avg")}};Ex.className="AveragePooling2D";ue.registerClass(Ex);var G4=class extends st{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new q(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];fr(this.poolSize,"poolSize"),fr(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Gt(this.dataFormat),_n(this.padding),this.inputSpec=[new Kt({ndim:5})]}computeOutputShape(e){e=ft(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],r=this.dataFormat==="channelsFirst"?e[3]:e[2],n=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=ca(t,this.poolSize[0],this.padding,this.strides[0]),r=ca(r,this.poolSize[1],this.padding,this.strides[1]),n=ca(n,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,r,n]:[e[0],t,r,n,e[4]]}call(e,t){return K(()=>(this.invokeCallHook(e,t),this.poolingFunction(je(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Rx=class extends G4{constructor(e){super(e)}poolingFunction(e,t,r,n,a){return Gt(a),_n(n),W4(e,t,r,n,a,"max")}};Rx.className="MaxPooling3D";ue.registerClass(Rx);var Mx=class extends G4{constructor(e){super(e)}poolingFunction(e,t,r,n,a){return Gt(a),_n(n),W4(e,t,r,n,a,"avg")}};Mx.className="AveragePooling3D";ue.registerClass(Mx);var j4=class extends st{constructor(e){super(e),this.inputSpec=[new Kt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Ve}},Fx=class extends j4{constructor(e){super(e||{})}call(e,t){return K(()=>{let r=je(e);return Bt(r,1)})}};Fx.className="GlobalAveragePooling1D";ue.registerClass(Fx);var $x=class extends j4{constructor(e){super(e||{})}call(e,t){return K(()=>{let r=je(e);return mr(r,1)})}};$x.className="GlobalMaxPooling1D";ue.registerClass($x);var H4=class extends st{constructor(e){super(e),this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Gt(this.dataFormat),this.inputSpec=[new Kt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Ve}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Px=class extends H4{call(e,t){return K(()=>{let r=je(e);return this.dataFormat==="channelsLast"?Bt(r,[1,2]):Bt(r,[2,3])})}};Px.className="GlobalAveragePooling2D";ue.registerClass(Px);var _x=class extends H4{call(e,t){return K(()=>{let r=je(e);return this.dataFormat==="channelsLast"?mr(r,[1,2]):mr(r,[2,3])})}};_x.className="GlobalMaxPooling2D";ue.registerClass(_x);var q4=class extends st{constructor(e){super(e),this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,r={}){let n=t.layer,a=ha(n,r);delete t.layer;let s={layer:a};return Object.assign(s,t),new e(s)}},zx=class extends q4{constructor(e){super(e),this.supportsMasking=!0}build(e){if(e=ft(e),e.length<3)throw new q(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=ft(e);let t=[e[0]].concat(e.slice(2)),r=this.layer.computeOutputShape(t),n=e[1];return[r[0],n].concat(r.slice(1))}call(e,t){return K(()=>(e=je(e),D4((r,n)=>[je(this.layer.call(r,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};zx.className="TimeDistributed";ue.registerClass(zx);function SU(e){Rl(FW,"BidirectionalMergeMode",e)}var TU="concat",Ox=class extends q4{constructor(e){super(e);let t=e.layer.getConfig(),r={};r.className=e.layer.getClassName(),r.config=t,this.forwardLayer=ha(r),t.goBackwards=t.goBackwards!==!0;let n={};if(n.className=e.layer.getClassName(),n.config=t,this.backwardLayer=ha(n),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?TU:e.mergeMode,SU(this.mergeMode),e.weights)throw new Ve("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,r=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,r)),this.backwardLayer.setWeights(e.slice(r))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let r,n,a;return this.returnState&&(a=t.slice(1)),r=t[0],r=r,this.mergeMode==="concat"?(r[r.length-1]*=2,n=[r]):this.mergeMode==null?n=[r,r.slice()]:n=[r],this.returnState?this.mergeMode==null?n.concat(a).concat(a.slice()):[r].concat(a).concat(a.slice()):Qr(n)}apply(e,t){let r=t==null?null:t.initialState,n=t==null?null:t.constants;t==null&&(t={});let a=O4(e,r,n,this.numConstants);if(e=a.inputs,r=a.initialState,n=a.constants,Array.isArray(e)&&(r=e.slice(1),e=e[0]),(r==null||r.length===0)&&n==null)return super.apply(e,t);let s=[],i=[];if(r!=null){let l=r.length;if(l%2>0)throw new q("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=r,s.push(...r);let u=r.map(d=>new Kt({shape:d.shape}));this.forwardLayer.stateSpec=u.slice(0,l/2),this.backwardLayer.stateSpec=u.slice(l/2),i.push(...u)}if(n!=null)throw new Ve("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof ua;for(let l of s)if(l instanceof ua!==o)throw new q("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),u=this.inputSpec.concat(i),d=this.inputSpec;this.inputSpec=u;let h=super.apply(l,t);return this.inputSpec=d,h}else return super.apply(e,t)}call(e,t){return K(()=>{let r=t.initialState,n,a;if(r==null)n=this.forwardLayer.call(e,t),a=this.backwardLayer.call(e,t);else{let o=r.slice(0,r.length/2),l=r.slice(r.length/2);n=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),a=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(n)&&(s=n.slice(1).concat(a.slice(1))),n=n[0],a=a[0]),this.returnSequences&&(a=$n(a,1));let i;return this.mergeMode==="concat"?i=vA([n,a]):this.mergeMode==="sum"?i=le(n,a):this.mergeMode==="ave"?i=L(.5,le(n,a)):this.mergeMode==="mul"?i=L(n,a):this.mergeMode==null&&(i=[n,a]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){ko(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),ko(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let r;if(this.returnSequences?this.mergeMode==null?r=[t,t]:r=t:this.mergeMode==null?r=[null,null]:r=null,this.returnState){let n=this.forwardLayer.states.map(a=>null);return Array.isArray(r)?r.concat(n).concat(n):[r].concat(n).concat(n)}else return r}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let r=ha(t.layer);if(delete t.layer,t.numConstants!=null)throw new Ve("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let n=t;return n.layer=r,new e(n)}};Ox.className="Bidirectional";ue.registerClass(Ox);function NU(e){return new gd(e)}function CU(e){return new VA(e)}function EU(e){return new LA(e)}function RU(e){return new BA(e)}function MU(e){return new WA(e)}function FU(e){return new GA(e)}function $U(e){return new UA(e)}function PU(e){return new ZA(e)}function _U(e){return new a0(e)}function zU(e){return new qA(e)}function OU(e){return new s0(e)}function DU(e){return new KA(e)}function LU(e){return new XA(e)}function BU(e){return new YA(e)}function WU(e){return new JA(e)}function VU(e){return new QA(e)}function UU(e){return new ox(e)}function GU(e){return new sx(e)}function jU(e){return new d0(e)}function HU(e){return new ax(e)}function qU(e){return new ix(e)}function KU(e){return new lx(e)}function XU(e){return new ux(e)}function ZU(e){return new dx(e)}function YU(e){return new hx(e)}function JU(e){return new cx(e)}function QU(e){return new mx(e)}function eG(e){return new Ax(e)}function tG(e){return new gx(e)}function rG(e){return new yx(e)}function nG(e){return new fx(e)}function aG(e){return new xx(e)}function sG(e){return new kx(e)}function iG(e){return new Ix(e)}function oG(e){return new Sx(e)}function Dx(e){return new Nx(e)}function lG(e){return Dx(e)}function uG(e){return Dx(e)}function Lx(e){return new Ex(e)}function dG(e){return Lx(e)}function pG(e){return Lx(e)}function Bx(e){return new Mx(e)}function hG(e){return Bx(e)}function cG(e){return Bx(e)}function fG(e){return new Fx(e)}function mG(e){return new Px(e)}function K4(e){return new $x(e)}function X4(e){return new _x(e)}function Z4(e){return new Tx(e)}function Y4(e){return new Cx(e)}function gG(e){return new Rx(e)}function yG(e){return new tx(e)}function AG(e){return new o0(e)}function xG(e){return new rx(e)}function bG(e){return new Fh(e)}function vG(e){return new ex(e)}function wG(e){return new i0(e)}function kG(e){return new nx(e)}function IG(e){return new u0(e)}function SG(e){return new ns(e)}function TG(e){return new l0(e)}function NG(e){return new Ox(e)}function CG(e){return new zx(e)}var EG=K4,RG=X4,MG=Z4,FG=Y4;function $G(e){return new bx(e)}function PG(e){return new vx(e)}function _G(e){return new wx(e)}function zG(e){return new px(e)}var J4={};Le(J4,{MAPE:()=>qG,MSE:()=>ZG,binaryAccuracy:()=>OG,binaryCrossentropy:()=>DG,categoricalAccuracy:()=>BG,categoricalCrossentropy:()=>WG,cosineProximity:()=>GG,mape:()=>KG,meanAbsoluteError:()=>jG,meanAbsolutePercentageError:()=>HG,meanSquaredError:()=>XG,mse:()=>YG,precision:()=>VG,recall:()=>UG,sparseCategoricalAccuracy:()=>LG});function OG(e,t){return FA(e,t)}function DG(e,t){return l4(e,t)}function LG(e,t){return u4(e,t)}function BG(e,t){return $A(e,t)}function WG(e,t){return PA(e,t)}function VG(e,t){return o4(e,t)}function UG(e,t){return NV(e,t)}function GG(e,t){return MA(e,t)}function jG(e,t){return t0(e,t)}function HG(e,t){return yd(e,t)}function qG(e,t){return yd(e,t)}function KG(e,t){return yd(e,t)}function XG(e,t){return Ml(e,t)}function ZG(e,t){return Ml(e,t)}function YG(e,t){return Ml(e,t)}var Q4={};Le(Q4,{modelFromJSON:()=>oU});var e6={};Le(e6,{l1:()=>QG,l1l2:()=>JG,l2:()=>ej});function JG(e){return new Eh(e)}function QG(e){return mU(e)}function ej(e){return gU(e)}var t6=class extends Tu{constructor(){super(...arguments),this.model=null}setModel(e){if(!(e instanceof Xa))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function Kc(e,t){return e<t}function gv(e,t){return e>t}var r6=class extends t6{constructor(e){if(super(),e==null&&(e={}),e.restoreBestWeights)throw new Ve("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=Kc:this.mode==="max"?this.monitorFunc=gv:this.monitor.indexOf("acc")!==-1?this.monitorFunc=gv:this.monitorFunc=Kc,this.monitorFunc===Kc&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Kc?1/0:-1/0}async onEpochEnd(e,t){await ks(t);let r=this.getMonitorValue(t);r!=null&&(this.monitorFunc(r-this.minDelta,this.best)?(this.best=r,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function tj(e){return new r6(e)}var rj={earlyStopping:tj},nj=Y();nj.registerFlag("KEEP_INTERMEDIATE_TENSORS",()=>!1,e=>{e&&console.warn("Keep intermediate tensors is ON. This will print the values of all intermediate tensors during model inference. Not all models support this mode. For details, check e2e/benchmarks/ model_config.js. This significantly impacts performance.")});var n6=(e=>(e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_QINT16=15]="DT_QINT16",e[e.DT_QUINT16=16]="DT_QUINT16",e[e.DT_UINT16=17]="DT_UINT16",e[e.DT_COMPLEX128=18]="DT_COMPLEX128",e[e.DT_HALF=19]="DT_HALF",e[e.DT_RESOURCE=20]="DT_RESOURCE",e[e.DT_VARIANT=21]="DT_VARIANT",e[e.DT_UINT32=22]="DT_UINT32",e[e.DT_UINT64=23]="DT_UINT64",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF",e[e.DT_QINT16_REF=115]="DT_QINT16_REF",e[e.DT_QUINT16_REF=116]="DT_QUINT16_REF",e[e.DT_UINT16_REF=117]="DT_UINT16_REF",e[e.DT_COMPLEX128_REF=118]="DT_COMPLEX128_REF",e[e.DT_HALF_REF=119]="DT_HALF_REF",e[e.DT_RESOURCE_REF=120]="DT_RESOURCE_REF",e[e.DT_VARIANT_REF=121]="DT_VARIANT_REF",e[e.DT_UINT32_REF=122]="DT_UINT32_REF",e[e.DT_UINT64_REF=123]="DT_UINT64_REF",e))(n6||{}),yv;(e=>{let t;(r=>{r[r.LEGACY=0]="LEGACY",r[r.V1=1]="V1",r[r.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(yv||(yv={}));var Wx={};function aj(e,t){let r={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};Wx[e]=r}function a6(e){return Wx[e]}function sj(e){delete Wx[e]}function k(e,t,r,n,a){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return Dr(t.inputNames[s.inputIndexStart],r,n,a);if(s.type==="tensors")return t.inputNames.slice(o,l).map(h=>Dr(h,r,n,a));let u=Dr(t.inputNames.slice(o)[0],r,n,a),d=u.dataSync();return s.type==="number"?d[0]:w.toNestedArray(u.shape,d)}let i=t.attrParams[e];return i&&i.value}function Dr(e,t,r,n){let[a,s]=dn(e);if(n!=null){let o=n.getHashTableHandleByName(a);if(o!=null)return o}let i=r.currentContextIds.find(o=>!!t[Mf(a,o)]);return i!==void 0?t[Mf(a,i)][s]:void 0}function ij(e,t,r){return t[Mf(e,r.currentContextId)]}function Ca(e,t){let[r,n,a]=dn(e);return[Mf(r,t&&t.currentContextId),n,a]}function Mf(e,t){return t?`${e}-${t}`:e}function dn(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let r=t[0],n=t.length===3?t[1]:void 0,a=Number(t[t.length-1]);return[r,a,n]}function nf(e,t,r){let n=k("pad",e,t,r);if(n==="explicit"){n=k("explicitPaddings",e,t,r);let a=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)a[s][0]=n[s*2],a[s][1]=n[s*2+1];return a}return n}function Ha(e){return e.kept?e:Br(e)}var s6={};Le(s6,{json:()=>oj});var oj=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],i6={};Le(i6,{json:()=>lj});var lj=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],o6={};Le(o6,{json:()=>uj});var uj=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListLength",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}]},{tfOpName:"TensorListResize",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"size",type:"number"}]}],l6={};Le(l6,{json:()=>dj});var dj=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],u6={};Le(u6,{json:()=>pj});var pj=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],d6={};Le(d6,{json:()=>hj});var hj=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],p6={};Le(p6,{json:()=>cj});var cj=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],h6={};Le(h6,{json:()=>fj});var fj=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],c6={};Le(c6,{json:()=>mj});var mj=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],f6={};Le(f6,{json:()=>gj});var gj=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]},{tfOpName:"ImageProjectiveTransformV3",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"transforms",type:"tensor"},{start:2,name:"outputShape",type:"number[]"},{start:3,name:"fillValue",type:"number"}],attrs:[{tfName:"interpolation",name:"interpolation",type:"string"},{tfName:"fill_mode",name:"fillMode",type:"string"}]}],m6={};Le(m6,{json:()=>yj});var yj=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],g6={};Le(g6,{json:()=>Aj});var Aj=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],y6={};Le(y6,{json:()=>xj});var xj=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],A6={};Le(A6,{json:()=>bj});var bj=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumprod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],x6={};Le(x6,{json:()=>vj});var vj=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],b6={};Le(b6,{json:()=>wj});var wj=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],v6={};Le(v6,{json:()=>kj});var kj=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],w6={};Le(w6,{json:()=>Ij});var Ij=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],k6={};Le(k6,{json:()=>Sj});var Sj=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}],Av=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[s6,i6,o6,l6,u6,d6,p6,h6,c6,f6,m6,g6,y6,A6,x6,b6,v6,w6,k6],t=[].concat(...e.map(r=>r.json));this.opMappers=t.reduce((r,n)=>(r[n.tfOpName]=n,r),{})}transformGraph(e,t={}){let r=e.node,n=[],a=[],s=[],i=r.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?n.push(f[m.name]):m.op==="Const"?a.push(f[m.name]):(m.input==null||m.input.length===0)&&s.push(f[m.name]),f),{}),o=[],l=[],u={},d={};t!=null&&(u=this.mapSignatureEntries(t.inputs),d=this.mapSignatureEntries(t.outputs));let h=Object.keys(i);h.forEach(f=>{let m=i[f];m.inputNames.forEach((g,y)=>{let[A,,x]=Ca(g),b=i[A];if(b.outputs!=null){let v=b.outputs.indexOf(x);if(v!==-1){let S=`${A}:${v}`;m.inputNames[y]=S}}m.inputs.push(b),b.children.push(m)})}),Object.keys(d).length===0?h.forEach(f=>{let m=i[f];m.children.length===0&&l.push(m)}):Object.keys(d).forEach(f=>{let[m]=Ca(f),g=i[m];g!=null&&(g.signatureKey=d[f],l.push(g))}),Object.keys(u).length>0?Object.keys(u).forEach(f=>{let[m]=Ca(f),g=i[m];g&&(g.signatureKey=u[f],o.push(g))}):o=n;let p={};e.library!=null&&e.library.function!=null&&(p=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let c={nodes:i,inputs:o,outputs:l,weights:a,placeholders:n,signature:t,functions:p};return s.length>0&&(c.initNodes=s),c}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,r)=>(t[e[r].name]=r,t),{})}mapNode(e){let t=a6(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let r={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(n=>n.startsWith("^")?n.slice(1):n),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(r.inputParams=t.inputs.reduce((n,a)=>(n[a.name]={type:a.type,inputIndexStart:a.start,inputIndexEnd:a.end},n),{})),t.attrs!=null&&(r.attrParams=t.attrs.reduce((n,a)=>{let s=a.type,i;switch(a.type){case"string":i=Fy(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Fy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"string[]":i=Ly(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Ly(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number":i=Py(e.attr,a.tfName,a.defaultValue||0),i===void 0&&!!a.tfDeprecatedName&&(i=Py(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number[]":i=Dy(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Dy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool":i=$y(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=$y(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool[]":i=Wy(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Wy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape":i=Oy(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Oy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape[]":i=By(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=By(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype":i=_y(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=_y(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype[]":i=zy(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=zy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"func":i=xv(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=xv(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${a.type} for op: ${e.op}`)}return n[a.name]={value:i,type:s},n},{})),r}mapFunction(e){let t=e.nodeDef,r=[],n=[],a={};t!=null&&(a=t.reduce((u,d)=>(u[d.name]=this.mapNode(d),d.op==="Const"&&n.push(u[d.name]),u),{}));let s=[],i=[];e.signature.inputArg.forEach(u=>{let[d]=Ca(u.name),h={name:d,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:Vx(u.type),type:"dtype"}},children:[]};h.signatureKey=u.name,s.push(h),a[d]=h}),Object.keys(a).forEach(u=>{let d=a[u];d.inputNames.forEach((h,p)=>{let[c,,f]=Ca(h),m=a[c];if(m.outputs!=null){let g=m.outputs.indexOf(f);if(g!==-1){let y=`${c}:${g}`;d.inputNames[p]=y}}d.inputs.push(m),m.children.push(d)})});let o=e.ret;e.signature.outputArg.forEach(u=>{let[d,h]=Ca(o[u.name]),p=a[d];p!=null&&(p.defaultOutput=h,i.push(p))});let l=this.mapArgsToSignature(e);return{nodes:a,inputs:s,outputs:i,weights:n,placeholders:r,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,r)=>(t[r.name]=this.mapArgToTensorInfo(r),t),{}),outputs:e.signature.outputArg.reduce((t,r)=>(t[r.name]=this.mapArgToTensorInfo(r,e.ret),t),{})}}mapArgToTensorInfo(e,t){let r=e.name;return t!=null&&(r=t[r]),{name:r,dtype:e.type}}};function Tj(e){let t=Y().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function I6(e,t){let r=Array.isArray(e)?String.fromCharCode.apply(null,e):Tj(e);return t?r:r.toLowerCase()}function Fy(e,t,r,n=!1){let a=e[t];return a!=null?I6(a.s,n):r}function $y(e,t,r){let n=e[t];return n?n.b:r}function Py(e,t,r){let n=e[t]||{},a=n.i!=null?n.i:n.f!=null?n.f:r;return typeof a=="number"?a:parseInt(a,10)}function Vx(e){switch(typeof e=="string"&&(e=n6[e]),e){case 1:case 19:return"float32";case 3:case 9:case 6:case 4:return"int32";case 10:return"bool";case 2:return"float32";case 7:return"string";default:return null}}function xv(e,t,r){let n=e[t];return n&&n.func?n.func.name:r}function _y(e,t,r){let n=e[t];return n&&n.type?Vx(n.type):r}function zy(e,t,r){let n=e[t];return n&&n.list&&n.list.type?n.list.type.map(a=>Vx(a)):r}function S6(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function Oy(e,t,r){let n=e[t];return n&&n.shape?S6(n.shape):r}function Dy(e,t,r){let n=e[t];return n?((n.list.f&&n.list.f.length?n.list.f:n.list.i)||[]).map(a=>typeof a=="number"?a:parseInt(a,10)):r}function Ly(e,t,r,n=!1){let a=e[t];return a&&a.list&&a.list.s?a.list.s.map(s=>I6(s,n)):r}function By(e,t,r){let n=e[t];return n&&n.list&&n.list.shape?n.list.shape.map(a=>S6(a)):r}function Wy(e,t,r){let n=e[t];return n&&n.list&&n.list.b?n.list.b:r}var Nj=class{constructor(e,t,r){this.node=e,this.tensorMap=t,this.context=r,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(n=>this.getInput(n)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((n,a)=>(n[a]=this.getAttr(a),n),{}))}getInput(e){return Dr(e,this.tensorMap,this.context)}getAttr(e,t){let r=this.node.rawAttrs[e];if(r.tensor!=null)return Dr(e,this.tensorMap,this.context);if(r.i!=null||r.f!=null)return Py(this.node.rawAttrs,e,t);if(r.s!=null)return Fy(this.node.rawAttrs,e,t);if(r.b!=null)return $y(this.node.rawAttrs,e,t);if(r.shape!=null)return Oy(this.node.rawAttrs,e,t);if(r.type!=null)return _y(this.node.rawAttrs,e,t);if(r.list!=null){if(r.list.i!=null||r.list.f!=null)return Dy(this.node.rawAttrs,e,t);if(r.list.s!=null)return Ly(this.node.rawAttrs,e,t);if(r.list.shape!=null)return By(this.node.rawAttrs,e,t);if(r.list.b!=null)return Wy(this.node.rawAttrs,e,t);if(r.list.type!=null)return zy(this.node.rawAttrs,e,t)}return t}},Cj=(e,t,r)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[le(k("a",e,t,r),k("b",e,t,r))];case"AddN":return[ym(k("tensors",e,t,r))];case"FloorMod":case"Mod":return[hd(k("a",e,t,r),k("b",e,t,r))];case"Mul":return[L(k("a",e,t,r),k("b",e,t,r))];case"RealDiv":case"Div":return[pe(k("a",e,t,r),k("b",e,t,r))];case"DivNoNan":return[qk(k("a",e,t,r),k("b",e,t,r))];case"FloorDiv":return[gh(k("a",e,t,r),k("b",e,t,r))];case"Sub":return[ce(k("a",e,t,r),k("b",e,t,r))];case"Minimum":return[vh(k("a",e,t,r),k("b",e,t,r))];case"Maximum":return[es(k("a",e,t,r),k("b",e,t,r))];case"Pow":return[Ds(k("a",e,t,r),k("b",e,t,r))];case"SquaredDifference":return[sA(k("a",e,t,r),k("b",e,t,r))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ej=(e,t,r)=>{switch(e.op){case"Abs":case"ComplexAbs":return[rr(k("x",e,t,r))];case"Acos":return[wk(k("x",e,t,r))];case"Acosh":return[kk(k("x",e,t,r))];case"Asin":return[Sk(k("x",e,t,r))];case"Asinh":return[Tk(k("x",e,t,r))];case"Atan":return[Nk(k("x",e,t,r))];case"Atan2":return[Ck(k("x",e,t,r),k("y",e,t,r))];case"Atanh":return[Ek(k("x",e,t,r))];case"Ceil":return[Ok(k("x",e,t,r))];case"Complex":return[Ps(k("real",e,t,r),k("imag",e,t,r))];case"Cos":return[bm(k("x",e,t,r))];case"Cosh":return[L2(k("x",e,t,r))];case"Elu":return[xh(k("x",e,t,r))];case"Erf":return[Xk(k("x",e,t,r))];case"Exp":return[Rn(k("x",e,t,r))];case"Expm1":return[Zk(k("x",e,t,r))];case"Floor":return[bh(k("x",e,t,r))];case"Log":return[Mn(k("x",e,t,r))];case"Log1p":return[km(k("x",e,t,r))];case"Imag":return[vm(k("x",e,t,r))];case"Neg":return[zt(k("x",e,t,r))];case"Reciprocal":return[u7(k("x",e,t,r))];case"Real":return[Bp(k("x",e,t,r))];case"Relu":return[_a(k("x",e,t,r))];case"Round":return[J2(k("x",e,t,r))];case"Selu":return[eA(k("x",e,t,r))];case"Sigmoid":return[Nr(k("x",e,t,r))];case"Sin":return[tA(k("x",e,t,r))];case"Sign":return[h7(k("x",e,t,r))];case"Sinh":return[rA(k("x",e,t,r))];case"Softplus":return[pd(k("x",e,t,r))];case"Sqrt":return[Er(k("x",e,t,r))];case"Square":return[At(k("x",e,t,r))];case"Tanh":return[bu(k("x",e,t,r))];case"Tan":return[f7(k("x",e,t,r))];case"ClipByValue":return[cn(k("x",e,t,r),k("clipValueMin",e,t,r),k("clipValueMax",e,t,r))];case"Relu6":return[Y2(k("x",e,t,r))];case"Rsqrt":return[Q2(Dr(e.inputNames[0],t,r))];case"Prod":return[K2(k("x",e,t,r),k("axes",e,t,r))];case"LeakyRelu":return[wm(k("x",e,t,r),k("alpha",e,t,r))];case"Prelu":return[Em(k("x",e,t,r),k("alpha",e,t,r))];case"IsNan":return[Yk(Dr(e.inputNames[0],t,r))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Ln(e,t,r=""){if(!(typeof e=="number"||typeof t=="number")){w.assert(e.length===t.length,()=>r+` Shapes ${e} and ${t} must match`);for(let n=0;n<e.length;n++){let a=e[n],s=t[n];w.assert(a<0||s<0||a===s,()=>r+` Shapes ${e} and ${t} must match`)}}}function bv(e){return!(typeof e=="number"||e.some(t=>t<0))}function gp(e,t,r){let n=Vy(e,r),a=!bv(n);if(a&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${n}`);if(a&&t.forEach(s=>{n=Vy(s.shape,n)}),!bv(n))throw new Error(`Non-fully-defined elementShape: ${n}`);return n}function Vy(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let r=[];for(let n=0;n<e.length;++n){let a=e[n],s=t[n];if(a>=0&&s>=0&&a!==s)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);r[n]=a>=0?a:s}return r}var Rj=class{constructor(e,t,r,n,a,s,i){this.name=e,this.dtype=t,this.maxSize=r,this.elementShape=n,this.identicalElementShapes=a,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=Se(0),cr(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let r=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
|
|
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),Ln(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),r.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(r.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);r.tensor=t,cr(t),r.written=!0,this.tensors[e]=r}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((r,n)=>this.write(r,t[n]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let n=0;n<this.size();n++)e.push(n)}if(e.length===0)return ct([],[0].concat(this.elementShape));let r=this.readMany(e);return Ln(this.elementShape,r[0].shape,"TensorArray shape mismatch: "),or(r,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return ct([],[0].concat(this.elementShape));let t=[];for(let n=0;n<this.size();n++)t.push(n);let r=this.readMany(t);return Ln(this.elementShape,r[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${r[0].shape})`),kt(r,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let r=Math.max(...e);if(!this.dynamicSize&&r>=this.maxSize)throw new Error(`Max index must be < array size (${r} vs. ${this.maxSize})`);this.writeMany(e,tn(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let r=0,n=e.map(o=>(r+=o,r));if(r!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${r}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let a=r===0?0:t.size/r,s=[];K(()=>{t=G(t,[1,r,a]);for(let o=0;o<e.length;++o){let l=o===0?0:n[o-1],u=[0,l,0],d=[1,e[o],a];s[o]=G(Pe(t,u,d),this.elementShape)}return s});let i=[];for(let o=0;o<e.length;o++)i[o]=o;this.writeMany(i,s)}},Nu=class{constructor(e,t,r,n=-1){this.tensors=e,this.elementShape=t,this.elementDtype=r,e!=null&&e.forEach(a=>{if(r!==a.dtype)throw new Error(`Invalid data types; op elements ${r}, but list elements ${a.dtype}`);Ln(t,a.shape,"TensorList shape mismatch: "),cr(a)}),this.idTensor=Se(0),this.maxNumElements=n,cr(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Nu([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,r=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(r!==-1&&this.tensors.length!==r)throw new Error(`Operation expected a list with ${r} elements but got a list with ${this.tensors.length} elements.`);Ln(e,this.elementShape,"TensorList shape mismatch: ");let n=gp(this.elementShape,this.tensors,e);return K(()=>{let a=this.tensors.map(s=>G(s,n));return or(a,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let r=gp(this.elementShape,this.tensors,e),n=this.tensors.pop();return Ln(n.shape,e,"TensorList shape mismatch: "),G(n,r)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(Ln(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");cr(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);let t=new Nu([],this.elementShape,this.elementDtype,this.maxNumElements);t.tensors.length=e;for(let r=0;r<Math.min(this.tensors.length,e);++r)t.tensors[r]=this.tensors[r];return t}getItem(e,t,r){if(r!==this.elementDtype)throw new Error(`Invalid data types; op elements ${r}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);Ln(this.tensors[e].shape,t,"TensorList shape mismatch: ");let n=gp(this.elementShape,this.tensors,t);return G(this.tensors[e],n)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);Ln(this.elementShape,t.shape,"TensorList shape mismatch: "),cr(t),this.tensors[e]=t}gather(e,t,r){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);Ln(this.elementShape,r,"TensorList shape mismatch: "),e=e.slice(0,this.size());let n=gp(this.elementShape,this.tensors,r);return e.length===0?ct([],[0].concat(n)):K(()=>{let a=e.map(s=>G(this.tensors[s],n));return or(a,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);Ln(this.elementShape,t,"TensorList shape mismatch: ");let r=gp(this.elementShape,this.tensors,t);return this.size()===0?ct([],[0].concat(r)):K(()=>{let n=this.tensors.map(a=>G(a,r));return kt(n,0)})}};function Mj(e,t,r){let n=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==r)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${r}`);let a=e.shape.slice(1);Ln(a,t,"TensorList shape mismatch: ");let s=tn(e);return new Nu(s,t,n)}function Fj(e,t,r){return new Nu([],e,t,r)}function $j(e,t,r,n){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let a=Math.max(...t);if(n!=null&&n!==-1&&a>=n)throw new Error(`Max index must be < array size (${a} vs. ${n})`);let s=new Nu([],r,e.dtype,n),i=tn(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function Pj(e,t,r){let n=0,a=t.map(d=>(n+=d,n));if(n!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${e.shape}`);let s=e.shape.slice(1),i=Vy(s,r),o=n===0?0:e.size/n,l=K(()=>{let d=[];e=G(e,[1,n,o]);for(let h=0;h<t.length;++h){let p=h===0?0:a[h-1],c=[0,p,0],f=[1,t[h],o];d[h]=G(Pe(e,c,f),i)}return e.dispose(),d}),u=new Nu([],r,e.dtype,t.length);for(let d=0;d<l.length;d++)u.setItem(d,l[d]);return u}var _j=async(e,t,r)=>{switch(e.op){case"If":case"StatelessIf":{let n=k("thenBranch",e,t,r),a=k("elseBranch",e,t,r),s=k("cond",e,t,r),i=k("args",e,t,r);return(await s.data())[0]?r.functionMap[n].executeFunctionAsync(i,r.tensorArrayMap,r.tensorListMap):r.functionMap[a].executeFunctionAsync(i,r.tensorArrayMap,r.tensorListMap)}case"While":case"StatelessWhile":{let n=k("body",e,t,r),a=k("cond",e,t,r),s=k("args",e,t,r),i=await r.functionMap[a].executeFunctionAsync(s,r.tensorArrayMap,r.tensorListMap),o=s.map(d=>d.id),l=await i[0].data();i.forEach(d=>{!d.kept&&o.indexOf(d.id)===-1&&d.dispose()});let u=s;for(;l[0];){let d=u;u=await r.functionMap[n].executeFunctionAsync(u,r.tensorArrayMap,r.tensorListMap);let h=u.map(c=>c.id);d.forEach(c=>{!c.kept&&o.indexOf(c.id)===-1&&h.indexOf(c.id)===-1&&c.dispose()});let p=await r.functionMap[a].executeFunctionAsync(u,r.tensorArrayMap,r.tensorListMap);l=await p[0].data(),p.forEach(c=>{!c.kept&&o.indexOf(c.id)===-1&&h.indexOf(c.id)===-1&&c.dispose()})}return u}case"LoopCond":{let n=k("pred",e,t,r);return[Ha(n)]}case"Switch":{let n=k("pred",e,t,r),a=k("data",e,t,r);return a.kept||(a=Ha(a)),(await n.data())[0]?[void 0,a]:[a,void 0]}case"Merge":{let n=e.inputNames.find(a=>Dr(a,t,r)!==void 0);if(n){let a=Dr(n,t,r);return[Ha(a)]}return}case"Enter":{let n=k("frameName",e,t,r),a=k("tensor",e,t,r);return r.enterFrame(n),[Ha(a)]}case"Exit":{let n=k("tensor",e,t,r);return r.exitFrame(),[Ha(n)]}case"NextIteration":{let n=k("tensor",e,t,r);return r.nextIteration(),[Ha(n)]}case"TensorArrayV3":{let n=k("size",e,t,r),a=k("dtype",e,t,r),s=k("elementShape",e,t,r),i=k("dynamicSize",e,t,r),o=k("clearAfterRead",e,t,r),l=k("identicalElementShapes",e,t,r),u=k("name",e,t,r),d=new Rj(u,a,n,s,l,i,o);return r.addTensorArray(d),[d.idTensor,Se(1)]}case"TensorArrayWriteV3":{let n=k("tensorArrayId",e,t,r),a=k("index",e,t,r),s=k("tensor",e,t,r),i=r.getTensorArray(n.id);return i.write(a,s),[i.idTensor]}case"TensorArrayReadV3":{let n=k("tensorArrayId",e,t,r),a=k("index",e,t,r);return[r.getTensorArray(n.id).read(a)]}case"TensorArrayGatherV3":{let n=k("tensorArrayId",e,t,r),a=k("indices",e,t,r),s=k("dtype",e,t,r);return[r.getTensorArray(n.id).gather(a,s)]}case"TensorArrayScatterV3":{let n=k("tensorArrayId",e,t,r),a=k("indices",e,t,r),s=k("tensor",e,t,r),i=r.getTensorArray(n.id);return i.scatter(a,s),[i.idTensor]}case"TensorArrayConcatV3":{let n=k("tensorArrayId",e,t,r),a=r.getTensorArray(n.id),s=k("dtype",e,t,r);return[a.concat(s)]}case"TensorArraySplitV3":{let n=k("tensorArrayId",e,t,r),a=k("tensor",e,t,r),s=k("lengths",e,t,r),i=r.getTensorArray(n.id);return i.split(s,a),[i.idTensor]}case"TensorArraySizeV3":{let n=k("tensorArrayId",e,t,r),a=r.getTensorArray(n.id);return[Se(a.size(),"int32")]}case"TensorArrayCloseV3":{let n=k("tensorArrayId",e,t,r),a=r.getTensorArray(n.id);return a.clearAndClose(),[a.idTensor]}case"TensorListSetItem":{let n=k("tensorListId",e,t,r),a=k("index",e,t,r),s=k("tensor",e,t,r),i=r.getTensorList(n.id);return i.setItem(a,s),[i.idTensor]}case"TensorListGetItem":{let n=k("tensorListId",e,t,r),a=k("index",e,t,r),s=k("elementShape",e,t,r),i=k("elementDType",e,t,r);return[r.getTensorList(n.id).getItem(a,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let n=k("indices",e,t,r),a=k("tensor",e,t,r),s=k("elementShape",e,t,r),i=k("numElements",e,t,r),o=$j(a,n,s,i);return r.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let n=k("elementShape",e,t,r),a=k("elementDType",e,t,r),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=k(s,e,t,r),o=Fj(n,a,i);return r.addTensorList(o),[o.idTensor]}case"TensorListGather":{let n=k("tensorListId",e,t,r),a=k("indices",e,t,r),s=k("elementShape",e,t,r),i=k("elementDType",e,t,r);return[r.getTensorList(n.id).gather(a,i,s)]}case"TensorListStack":{let n=k("tensorListId",e,t,r),a=k("elementShape",e,t,r),s=k("elementDType",e,t,r),i=k("numElements",e,t,r);return[r.getTensorList(n.id).stack(a,s,i)]}case"TensorListFromTensor":{let n=k("tensor",e,t,r),a=k("elementShape",e,t,r),s=k("elementDType",e,t,r),i=Mj(n,a,s);return r.addTensorList(i),[i.idTensor]}case"TensorListConcat":{let n=k("tensorListId",e,t,r),a=r.getTensorList(n.id),s=k("dtype",e,t,r),i=k("elementShape",e,t,r);return[a.concat(s,i)]}case"TensorListPushBack":{let n=k("tensorListId",e,t,r),a=k("tensor",e,t,r),s=r.getTensorList(n.id);return s.pushBack(a),[s.idTensor]}case"TensorListPopBack":{let n=k("tensorListId",e,t,r),a=k("elementShape",e,t,r),s=k("elementDType",e,t,r);return[r.getTensorList(n.id).popBack(a,s)]}case"TensorListSplit":{let n=k("tensor",e,t,r),a=k("elementShape",e,t,r),s=k("lengths",e,t,r),i=Pj(n,s,a);return r.addTensorList(i),[i.idTensor]}case"TensorListLength":{let n=k("tensorListId",e,t,r),a=r.getTensorList(n.id);return[Se(a.size(),"int32")]}case"TensorListResize":{let n=k("tensorListId",e,t,r),a=k("size",e,t,r),s=r.getTensorList(n.id).resize(a);return r.addTensorList(s),[s.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function vv(e,t,r){let[n,a]=k("fusedOps",e,t,r),s=n==="biasadd",i=!s,o=a==="prelu",l=n==="fusedbatchnorm",u=k("numArgs",e,t,r);if(s){if(o&&u!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&s&&u!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let d=k("strides",e,t,r),h=nf(e,t,r),p=k("dataFormat",e,t,r).toUpperCase(),c=k("dilations",e,t,r),[f,m]=k("args",e,t,r);i&&(m=f,f=void 0);let g=k("leakyreluAlpha",e,t,r);return{stride:d,pad:h,dataFormat:p,dilations:c,biasArg:f,preluArg:m,activationFunc:a,leakyreluAlpha:g}}var zj=(e,t,r)=>{switch(e.op){case"Conv1D":{let n=k("stride",e,t,r),a=k("pad",e,t,r),s=k("dataFormat",e,t,r).toUpperCase(),i=k("dilation",e,t,r);return[_2(k("x",e,t,r),k("filter",e,t,r),n,a,s,i)]}case"Conv2D":{let n=k("strides",e,t,r),a=nf(e,t,r),s=k("dataFormat",e,t,r).toUpperCase(),i=k("dilations",e,t,r);return[zs(k("x",e,t,r),k("filter",e,t,r),[n[1],n[2]],a,s,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:n,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:u,leakyreluAlpha:d}=vv(e,t,r);return[Ls.conv2d({x:k("x",e,t,r),filter:k("filter",e,t,r),strides:[n[1],n[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:u,preluActivationWeights:l,leakyreluAlpha:d})]}case"FusedDepthwiseConv2dNative":{let{stride:n,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:u,leakyreluAlpha:d}=vv(e,t,r);return[Ls.depthwiseConv2d({x:k("x",e,t,r),filter:k("filter",e,t,r),strides:[n[1],n[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:u,preluActivationWeights:l,leakyreluAlpha:d})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let n=k("outputShape",e,t,r),a=k("strides",e,t,r),s=nf(e,t,r);return[O2(k("x",e,t,r),k("filter",e,t,r),n,[a[1],a[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let n=k("strides",e,t,r),a=nf(e,t,r),s=k("dilations",e,t,r),i=k("dataFormat",e,t,r).toUpperCase();return[Ah(k("input",e,t,r),k("filter",e,t,r),[n[1],n[2]],a,i,[s[1],s[2]])]}case"Conv3D":{let n=k("strides",e,t,r),a=k("pad",e,t,r),s=k("dataFormat",e,t,r).toUpperCase(),i=k("dilations",e,t,r);return[D2(k("x",e,t,r),k("filter",e,t,r),[n[1],n[2],n[3]],a,s,[i[1],i[2],i[3]])]}case"AvgPool":{let n=k("strides",e,t,r),a=k("pad",e,t,r),s=k("kernelSize",e,t,r);return[Am(k("x",e,t,r),[s[1],s[2]],[n[1],n[2]],a)]}case"MaxPool":{let n=k("strides",e,t,r),a=k("pad",e,t,r),s=k("kernelSize",e,t,r);return[Tm(k("x",e,t,r),[s[1],s[2]],[n[1],n[2]],a)]}case"MaxPoolWithArgmax":{let n=k("strides",e,t,r),a=k("pad",e,t,r),s=k("kernelSize",e,t,r),i=k("includeBatchInIndex",e,t,r),{result:o,indexes:l}=s7(k("x",e,t,r),[s[1],s[2]],[n[1],n[2]],a,i);return[o,l]}case"AvgPool3D":{let n=k("strides",e,t,r),a=k("pad",e,t,r),s=k("kernelSize",e,t,r);return[$2(k("x",e,t,r),[s[1],s[2],s[3]],[n[1],n[2],n[3]],a)]}case"MaxPool3D":{let n=k("strides",e,t,r),a=k("pad",e,t,r),s=k("kernelSize",e,t,r);return[q2(k("x",e,t,r),[s[1],s[2],s[3]],[n[1],n[2],n[3]],a)]}case"Dilation2D":{let n=k("strides",e,t,r),a=k("pad",e,t,r),s=k("dilations",e,t,r),i=n[1],o=n[2],l=s[1],u=s[2];return[Hk(k("x",e,t,r),k("filter",e,t,r),[i,o],a,[l,u],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Oj=(e,t,r)=>{switch(e.op){case"Fill":{let n=k("shape",e,t,r),a=k("dtype",e,t,r),s=k("value",e,t,r);return[dd(n,s,a)]}case"LinSpace":{let n=k("start",e,t,r),a=k("stop",e,t,r),s=k("num",e,t,r);return[Jk(n,a,s)]}case"Multinomial":{let n=k("logits",e,t,r),a=k("numSamples",e,t,r),s=k("seed",e,t,r);return[o7(n,a,s)]}case"OneHot":{let n=k("indices",e,t,r),a=k("depth",e,t,r),s=k("onValue",e,t,r),i=k("offValue",e,t,r);return[Lp(n,a,s,i)]}case"Ones":return[hn(k("shape",e,t,r),k("dtype",e,t,r))];case"OnesLike":return[Fn(k("x",e,t,r))];case"RandomUniform":return[cd(k("shape",e,t,r),k("minval",e,t,r),k("maxval",e,t,r),k("dtype",e,t,r))];case"Range":{let n=k("start",e,t,r),a=k("stop",e,t,r),s=k("step",e,t,r);return[Iu(n,a,s,k("dtype",e,t,r))]}case"TruncatedNormal":{let n=k("shape",e,t,r),a=k("mean",e,t,r),s=k("stdDev",e,t,r),i=k("seed",e,t,r);return[$m(n,a,s,k("dtype",e,t,r),i)]}case"Zeros":return[Wt(k("shape",e,t,r),k("dtype",e,t,r))];case"ZerosLike":return[at(k("x",e,t,r))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function ry(e,t,r){let n=k("boxes",e,t,r),a=k("scores",e,t,r),s=k("maxOutputSize",e,t,r),i=k("iouThreshold",e,t,r),o=k("scoreThreshold",e,t,r),l=k("softNmsSigma",e,t,r);return{boxes:n,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var Dj=async(e,t,r)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:n,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}=ry(e,t,r),u=await Ie.nonMaxSuppressionWithScoreAsync(n,a,s,i,o,l);return[u.selectedIndices,u.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:n,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=ry(e,t,r),l=k("padToMaxOutputSize",e,t,r),u=await Ie.nonMaxSuppressionPaddedAsync(n,a,s,i,o,l);return[u.selectedIndices,u.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:n,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=ry(e,t,r);return[await Ie.nonMaxSuppressionAsync(n,a,s,i,o)]}case"Where":{let n=me(k("condition",e,t,r),"bool"),a=[await iA(n)];return n.dispose(),a}case"ListDiff":return p7(k("x",e,t,r),k("y",e,t,r));default:throw TypeError(`Node type ${e.op} is not implemented`)}},Lj=(e,t,r)=>{switch(e.op){case"TopKV2":{let n=k("x",e,t,r),a=k("k",e,t,r),s=k("sorted",e,t,r),i=m7(n,a,s);return[i.values,i.indices]}case"Unique":{let n=k("x",e,t,r),a=by(n);return[a.values,a.indices]}case"UniqueV2":{let n=k("x",e,t,r),a=k("axis",e,t,r),s=by(n,a);return[s.values,s.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Bj=(e,t,r)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let n=k("default",e,t,r);return[Dr(e.name,t,r)||n];case"Placeholder":return[Dr(e.name,t,r)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let u=k("x",e,t,r);return[Ha(u)]}case"IdentityN":return k("x",e,t,r).map(u=>Ha(u));case"Snapshot":let a=k("x",e,t,r);return[Ha(a)];case"Shape":return[St(k("x",e,t,r).shape,"int32")];case"ShapeN":return k("x",e,t,r).map(u=>St(u.shape));case"Size":return[Se(k("x",e,t,r).size,"int32")];case"Rank":return[Se(k("x",e,t,r).rank,"int32")];case"NoOp":return[Se(1)];case"Print":let s=k("x",e,t,r),i=k("data",e,t,r),o=k("message",e,t,r),l=k("summarize",e,t,r);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(o);for(let u=0;u<i.length;u++)console.log(Array.prototype.slice.call(i[u].dataSync()).slice(0,l));return[s];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Wj=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=Se(0),this.tensorMap=new Map,cr(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return Se(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let r=await e.data();return this.tensorMap.forEach(n=>n.dispose()),this.tensorMap.clear(),K(()=>{let n=tn(t),a=r.length,s=n.length;w.assert(a===s,()=>`The number of elements doesn't match, keys has ${a} elements, the values has ${s} elements.`);for(let i=0;i<a;i++){let o=r[i],l=n[i];cr(l),this.tensorMap.set(o,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let r=await e.data();return K(()=>{let n=[];for(let a=0;a<r.length;a++){let s=r[a],i=this.findWithDefault(s,t);n.push(i)}return or(n)})}findWithDefault(e,t){let r=this.tensorMap.get(e);return r!=null?r:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},Vj=async(e,t,r,n)=>{switch(e.op){case"HashTable":case"HashTableV2":{let a=k("keyDType",e,t,r),s=k("valueDType",e,t,r),i=new Wj(a,s);return n.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let a=k("tableHandle",e,t,r,n),s=k("keys",e,t,r),i=k("values",e,t,r);return[await n.getHashTableById(a.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let a=k("tableHandle",e,t,r,n),s=k("keys",e,t,r),i=k("defaultValue",e,t,r);return[await n.getHashTableById(a.id).find(s,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let a=k("tableHandle",e,t,r,n);return[n.getHashTableById(a.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Uj=(e,t,r)=>{switch(e.op){case"ResizeBilinear":{let n=k("images",e,t,r),a=k("size",e,t,r),s=k("alignCorners",e,t,r),i=k("halfPixelCenters",e,t,r);return[Ie.resizeBilinear(n,[a[0],a[1]],s,i)]}case"ResizeNearestNeighbor":{let n=k("images",e,t,r),a=k("size",e,t,r),s=k("alignCorners",e,t,r),i=k("halfPixelCenters",e,t,r);return[Ie.resizeNearestNeighbor(n,[a[0],a[1]],s,i)]}case"CropAndResize":{let n=k("image",e,t,r),a=k("boxes",e,t,r),s=k("boxInd",e,t,r),i=k("cropSize",e,t,r),o=k("method",e,t,r),l=k("extrapolationValue",e,t,r);return[Ie.cropAndResize(n,a,s,i,o,l)]}case"ImageProjectiveTransformV3":{let n=k("images",e,t,r),a=k("transforms",e,t,r),s=k("outputShape",e,t,r),i=k("fillValue",e,t,r),o=k("interpolation",e,t,r),l=k("fillMode",e,t,r);return[Ie.transform(n,a,o.toLowerCase(),l.toLowerCase(),i,s)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Gj=(e,t,r)=>{switch(e.op){case"Equal":return[En(k("a",e,t,r),k("b",e,t,r))];case"NotEqual":return[ku(k("a",e,t,r),k("b",e,t,r))];case"Greater":return[fn(k("a",e,t,r),k("b",e,t,r))];case"GreaterEqual":return[Nl(k("a",e,t,r),k("b",e,t,r))];case"Less":return[V2(k("a",e,t,r),k("b",e,t,r))];case"LessEqual":return[Cl(k("a",e,t,r),k("b",e,t,r))];case"LogicalAnd":return[fa(k("a",e,t,r),k("b",e,t,r))];case"LogicalNot":return[Sm(k("a",e,t,r))];case"LogicalOr":return[H2(k("a",e,t,r),k("b",e,t,r))];case"Select":case"SelectV2":return[Wr(k("condition",e,t,r),k("a",e,t,r),k("b",e,t,r))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},jj=(e,t,r)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[Je(k("a",e,t,r),k("b",e,t,r),k("transposeA",e,t,r),k("transposeB",e,t,r))];case"Einsum":return[Kk(k("equation",e,t,r),...k("tensors",e,t,r))];case"Transpose":return[nt(k("x",e,t,r),k("perm",e,t,r))];case"_FusedMatMul":let[n,a]=k("fusedOps",e,t,r),s=n==="biasadd",i=a==="prelu",o=k("numArgs",e,t,r),l=k("leakyreluAlpha",e,t,r);if(s){if(i&&o!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&o!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[u,d]=k("args",e,t,r);return[Ls.matMul({a:k("a",e,t,r),b:k("b",e,t,r),transposeA:k("transposeA",e,t,r),transposeB:k("transposeB",e,t,r),bias:u,activation:a,preluActivationWeights:d,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Hj=(e,t,r)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[vu(k("x",e,t,r),k("mean",e,t,r),k("variance",e,t,r),k("offset",e,t,r),k("scale",e,t,r),k("epsilon",e,t,r))];case"FusedBatchNormV3":return[vu(k("x",e,t,r),k("mean",e,t,r),k("variance",e,t,r),k("offset",e,t,r),k("scale",e,t,r),k("epsilon",e,t,r))];case"LRN":return[Qk(k("x",e,t,r),k("radius",e,t,r),k("bias",e,t,r),k("alpha",e,t,r),k("beta",e,t,r))];case"Softmax":return[fd(k("x",e,t,r))];case"LogSoftmax":return[U2(k("x",e,t,r))];case"SparseToDense":return[lA(k("sparseIndices",e,t,r),k("outputShape",e,t,r),k("sparseValues",e,t,r),k("defaultValue",e,t,r))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},qj=(e,t,r)=>{switch(e.op){case"Max":{let i=k("axis",e,t,r),o=k("keepDims",e,t,r);return[mr(k("x",e,t,r),i,o)]}case"Mean":{let i=k("axis",e,t,r),o=k("keepDims",e,t,r);return[Bt(k("x",e,t,r),i,o)]}case"Min":{let i=k("axis",e,t,r),o=k("keepDims",e,t,r);return[Os(k("x",e,t,r),i,o)]}case"Sum":{let i=k("axis",e,t,r),o=k("keepDims",e,t,r);return[ke(k("x",e,t,r),i,o)]}case"All":{let i=k("axis",e,t,r),o=k("keepDims",e,t,r);return[M2(k("x",e,t,r),i,o)]}case"Any":{let i=k("axis",e,t,r),o=k("keepDims",e,t,r);return[wf(k("x",e,t,r),i,o)]}case"ArgMax":{let i=k("axis",e,t,r);return[Cn(k("x",e,t,r),i)]}case"ArgMin":{let i=k("axis",e,t,r);return[Ik(k("x",e,t,r),i)]}case"Prod":{let i=k("axis",e,t,r),o=k("keepDims",e,t,r);return[K2(k("x",e,t,r),i,o)]}case"Cumprod":{let i=k("axis",e,t,r),o=k("exclusive",e,t,r),l=k("reverse",e,t,r);return[Uk(k("x",e,t,r),i,o,l)]}case"Cumsum":{let i=k("axis",e,t,r),o=k("exclusive",e,t,r),l=k("reverse",e,t,r);return[B2(k("x",e,t,r),i,o,l)]}case"Bincount":let n=k("x",e,t,r),a=k("weights",e,t,r),s=k("size",e,t,r);return[P2(n,a,s)];case"DenseBincount":{let i=k("x",e,t,r),o=k("weights",e,t,r),l=k("size",e,t,r),u=k("binaryOutput",e,t,r);return[Gk(i,o,l,u)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Kj=(e,t,r)=>{switch(e.op){case"ConcatV2":case"Concat":{let n=k("n",e,t,r),a=k("axis",e,t,r),s=k("tensors",e,t,r);return s=s.slice(0,n),[kt(s,a)]}case"Gather":{let n=k("x",e,t,r),a=k("indices",e,t,r);return[wu(n,me(a,"int32"),0)]}case"GatherV2":{let n=k("axis",e,t,r),a=k("batchDims",e,t,r),s=k("x",e,t,r),i=k("indices",e,t,r);return[wu(s,me(i,"int32"),n,a)]}case"Reverse":{let n=k("dims",e,t,r),a=[];for(let i=0;i<n.length;i++)n[i]&&a.push(i);let s=k("x",e,t,r);return[$n(s,a)]}case"ReverseV2":{let n=k("axis",e,t,r),a=k("x",e,t,r);return[$n(a,n)]}case"Slice":{let n=k("begin",e,t,r),a=k("size",e,t,r);return[Pe(k("x",e,t,r),n,a)]}case"StridedSlice":{let n=k("begin",e,t,r),a=k("end",e,t,r),s=k("strides",e,t,r),i=k("beginMask",e,t,r),o=k("endMask",e,t,r),l=k("ellipsisMask",e,t,r),u=k("newAxisMask",e,t,r),d=k("shrinkAxisMask",e,t,r),h=k("x",e,t,r);return[c7(h,n,a,s,i,o,l,u,d)]}case"Pack":return K(()=>{let n=k("axis",e,t,r),a=k("tensors",e,t,r),s=a[0].shape,i=et(a[0]).shape,o=a.map(l=>{let u=w.arraysEqual(l.shape,s);if(!u&&!w.arraysEqual(et(l).shape,i))throw new Error("the input tensors shape does not match");return u?l:G(l,s)});return[or(o,n)]});case"Unpack":{let n=k("axis",e,t,r),a=k("tensor",e,t,r);return tn(a,n)}case"Tile":{let n=k("reps",e,t,r);return[Bn(k("x",e,t,r),n)]}case"Split":case"SplitV":{let n=k("axis",e,t,r),a=k("numOrSizeSplits",e,t,r),s=k("x",e,t,r);return Xt(s,a,n)}case"ScatterNd":{let n=k("indices",e,t,r),a=k("values",e,t,r),s=k("shape",e,t,r);return[b7(n,a,s)]}case"GatherNd":{let n=k("x",e,t,r),a=k("indices",e,t,r);return[v7(n,a)]}case"SparseToDense":{let n=k("sparseIndices",e,t,r),a=k("outputShape",e,t,r),s=k("sparseValues",e,t,r),i=k("defaultValue",e,t,r);return[lA(n,s,a,s.dtype===i.dtype?i:me(i,s.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Xj=(e,t,r)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:n,outputValues:a,emptyRowIndicator:s,reverseIndexMap:i}=bp.sparseFillEmptyRows(k("indices",e,t,r),k("values",e,t,r),k("denseShape",e,t,r),k("defaultValue",e,t,r));return[n,a,s,i]}case"SparseReshape":{let{outputIndices:n,outputShape:a}=bp.sparseReshape(k("inputIndices",e,t,r),k("inputShape",e,t,r),k("newShape",e,t,r));return[n,a]}case"SparseSegmentMean":return[bp.sparseSegmentMean(k("data",e,t,r),k("indices",e,t,r),k("segmentIds",e,t,r))];case"SparseSegmentSum":return[bp.sparseSegmentSum(k("data",e,t,r),k("indices",e,t,r),k("segmentIds",e,t,r))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Zj=(e,t,r)=>{switch(e.op){case"FFT":return[Mm(k("x",e,t,r))];case"IFFT":return[Wp(k("x",e,t,r))];case"RFFT":return[Fm(k("x",e,t,r))];case"IRFFT":return[aA(k("x",e,t,r))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Yj=(e,t,r)=>{switch(e.op){case"StringNGrams":{let{nGrams:n,nGramsSplits:a}=rf.stringNGrams(k("data",e,t,r),k("dataSplits",e,t,r),k("separator",e,t,r),k("nGramWidths",e,t,r),k("leftPad",e,t,r),k("rightPad",e,t,r),k("padWidth",e,t,r),k("preserveShortSequences",e,t,r));return[n,a]}case"StringSplit":{let{indices:n,values:a,shape:s}=rf.stringSplit(k("input",e,t,r),k("delimiter",e,t,r),k("skipEmpty",e,t,r));return[n,a,s]}case"StringToHashBucketFast":return[rf.stringToHashBucketFast(k("input",e,t,r),k("numBuckets",e,t,r))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Jj=(e,t,r)=>{switch(e.op){case"Cast":return[me(k("x",e,t,r),k("dtype",e,t,r))];case"ExpandDims":{let n=k("axis",e,t,r);return[qt(k("x",e,t,r),n)]}case"Squeeze":{let n=k("axis",e,t,r);return[et(k("x",e,t,r),n)]}case"Reshape":return[G(k("x",e,t,r),k("shape",e,t,r))];case"MirrorPad":return[i7(k("x",e,t,r),k("padding",e,t,r),k("mode",e,t,r))];case"PadV2":case"Pad":return[Hn(k("x",e,t,r),k("padding",e,t,r),k("constantValue",e,t,r))];case"SpaceToBatchND":{let n=k("blockShape",e,t,r),a=k("paddings",e,t,r);return[Cm(k("x",e,t,r),n,a)]}case"BatchToSpaceND":{let n=k("blockShape",e,t,r),a=k("crops",e,t,r);return[xm(k("x",e,t,r),n,a)]}case"DepthToSpace":{let n=k("blockSize",e,t,r),a=k("dataFormat",e,t,r).toUpperCase();return[jk(k("x",e,t,r),n,a)]}case"BroadcastTo":return[Ep(k("x",e,t,r),k("shape",e,t,r))];case"BroadcastArgs":return[zk(k("s0",e,t,r),k("s1",e,t,r))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function wv(e,t,r,n){let a=((s,i,o)=>{switch(s.category){case"arithmetic":return K(()=>Cj(s,i,o));case"basic_math":return K(()=>Ej(s,i,o));case"control":return _j(s,i,o);case"convolution":return K(()=>zj(s,i,o));case"creation":return K(()=>Oj(s,i,o));case"dynamic":return Dj(s,i,o);case"evaluation":return K(()=>Lj(s,i,o));case"image":return K(()=>Uj(s,i,o));case"graph":return K(()=>Bj(s,i,o));case"logical":return K(()=>Gj(s,i,o));case"matrices":return K(()=>jj(s,i,o));case"normalization":return K(()=>Hj(s,i,o));case"reduction":return K(()=>qj(s,i,o));case"slice_join":return K(()=>Kj(s,i,o));case"sparse":return K(()=>Xj(s,i,o));case"spectral":return K(()=>Zj(s,i,o));case"string":return K(()=>Yj(s,i,o));case"transformation":return K(()=>Jj(s,i,o));case"hash_table":return Vj(s,i,o,n);case"custom":let l=a6(s.op);if(l&&l.customExecutor)return l.customExecutor(new Nj(s,i,o));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,r);return w.isPromise(a)?a.then(s=>[].concat(s)):[].concat(a)}var kv=class{constructor(e={},t={},r={},n={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=r,this.functionMap=n,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let r=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(r))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function Iv(e,t,r,n){let a=new Set,s=[],i=null,o=null,l=new Set,u=Object.keys(e).map(p=>dn(p)[0]),d=[];n!=null&&(d=n.map(p=>dn(p.name)[0]));let h=[...t];for(;h.length>0;){let p=h.pop();if((T6(p)||nH(p)||aH(p))&&i==null&&(i=p,o=i.children.map(c=>c.name).filter(c=>a.has(c))),a.add(p.name),r[p.name]==null&&u.indexOf(p.name)===-1&&d.indexOf(p.name)===-1){if(p.inputs.length===0){s.push(p.name);continue}p.inputs.forEach(c=>{l.has(c.name)||(l.add(c.name),h.push(c))})}}return{inputs:e,outputs:t,usedNodes:a,missingInputs:s,dynamicNode:i,syncInputs:o}}function Qj(e,t,r){let{usedNodes:n,inputs:a}=r,s=[],i=Object.keys(a).map(d=>dn(d)[0]).map(d=>e.nodes[d]),o=e.initNodes;i.forEach(d=>{n.has(d.name)&&s.push(d)}),e.weights.forEach(d=>{n.has(d.name)&&s.push(d)}),o!=null&&o.forEach(d=>{n.has(d.name)&&s.push(d)});let l=new Set,u=[];for(;s.length>0;){let d=s.pop();l.add(d.name),t[d.name]||u.push(d),d.children.forEach(h=>{!l.has(h.name)&&n.has(h.name)&&h.inputs.every(p=>l.has(p.name))&&s.push(h)})}return u}var eH=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],tH=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],rH=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function T6(e){return eH.indexOf(e.op)>=0}function nH(e){return tH.indexOf(e.op)>=0}function aH(e){return rH.indexOf(e.op)>=0}var Uy=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this.intermediateTensors={},this.keepTensorForDebug=!1,this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(r=>{this._functionExecutorMap[r]=new Uy(e.functions[r],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(r=>e[r].map(n=>n.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let r=e.map(a=>a.name).sort(),n=t.map(a=>a.name).sort();return r.join(this.SEPERATOR)+"--"+n.join(this.SEPERATOR)}compile(e,t){let r=Iv(e,t,this.weightMap,this._initNodes),{missingInputs:n,dynamicNode:a,syncInputs:s}=r;if(a!=null)throw new Error(`This execution contains the node '${a.name}', which has the dynamic op '${a.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(n.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${n}]`)}return Qj(this.graph,this.weightMap,r)}execute(e,t){e=this.mapInputs(e);let r=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let n=r.map(d=>this.graph.nodes[dn(d)[0]]),a=t.map(d=>dn(d)[0]),s=a.map(d=>this.graph.nodes[d]);this.resetIntermediateTensors(),s.length===0&&(s=this._outputs);let i=this.getCompilationKey(n,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let l={},u={};return K(()=>{let d=new kv(this.weightMap,l,u,this.functionExecutorMap),h={...this.weightMap};Object.keys(e).forEach(f=>{let[m,g]=dn(f),y=[];y[g]=e[f],h[m]=y});let p=this.getFrozenTensorIds(h),c={};for(let f=0;f<o.length;f++){let m=o[f];if(!h[m.name]){let g=wv(m,h,d,this._resourceManager);if(w.isPromise(g))throw new Error(`The execution of the op '${m.op}' returned a promise. Please use model.executeAsync() instead.`);h[m.name]=g,this.checkTensorForDisposal(m.name,m,h,d,p,a,c)}}return this.parent==null&&d.dispose(p),t.map(f=>Dr(f,h,d))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(r=>e[r]).map(r=>r.map(n=>n.id)));return new Set(t)}checkTensorForDisposal(e,t,r,n,a,s,i){t.category==="control"||s.indexOf(e)!==-1||(r[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=ij(o.name,r,n);l!=null&&l.forEach(u=>{if(u&&!u.kept&&!a.has(u.id)){let d=i[u.id];if(d===1){if(!this.keepTensorForDebug)u.dispose();else{let[h,p]=Ca(t.name,n);this.intermediateTensors[h]?this.intermediateTensors[h][p]=u:(this.intermediateTensors[h]=[],this.intermediateTensors[h][p]=u)}delete i[u.id]}else d!=null&&i[u.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}disposeIntermediateTensors(){!this.intermediateTensors||(Object.keys(this.intermediateTensors).forEach(e=>this.intermediateTensors[e].forEach(t=>t.dispose())),this.disposeTensorsMap())}disposeTensorsMap(){!this.tensorsMap||Object.keys(this.tensorsMap).forEach(e=>{this.tensorsMap[e].forEach(t=>{t&&!t.kept&&!t.isDisposed&&!this.keepIds.has(t.id)&&t.dispose()})})}getIntermediateTensors(){return this.tensorsMap}resetIntermediateTensors(){for(let e in this.intermediateTensors)this.intermediateTensors[e].forEach(t=>t.dispose()),delete this.intermediateTensors[e]}async _executeAsync(e,t,r=!1,n={},a={}){r||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));try{this.keepTensorForDebug=Y().getBool("KEEP_INTERMEDIATE_TENSORS")}catch(u){console.warn(u.message)}this.resetIntermediateTensors();let s=new kv(this.weightMap,n,a,this.functionExecutorMap);this.tensorsMap=await this.executeWithControlFlow(e,s,t,r);let i=t.map(u=>Dr(u,this.tensorsMap,s)),o=i.map(u=>u.id),l=Object.keys(e).map(u=>e[u].id);return this.keepIds=new Set([...o,...l,...this.weightIds]),this.keepTensorForDebug||this.disposeTensorsMap(),this.parent==null&&s.dispose(this.keepIds),i}async executeFunctionAsync(e,t,r){let n=e.reduce((a,s,i)=>(a[this.inputs[i].name]=s,a),{});return this._executeAsync(n,this.outputNodes,!0,t,r)}async executeWithControlFlow(e,t,r,n){let a=Object.keys(e),s=a.map(A=>this.graph.nodes[dn(A)[0]]),i=r.map(A=>dn(A)[0]),o=i.map(A=>this.graph.nodes[A]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:u,dynamicNode:d,syncInputs:h}=Iv(e,o,this.weightMap,this._initNodes),p=[...s,...this.graph.weights,...this._initNodes||[]].map(A=>({node:A,contexts:t.currentContext})),c={...this.weightMap};Object.keys(e).forEach(A=>{let[x,b]=dn(A),v=[];v[b]=e[A],c[x]=v});let f={},m=this.getFrozenTensorIds(c),g={};for(;p.length>0;){let A=this.processStack(s,p,t,c,g,m,i,f,l);await Promise.all(A)}d==null&&!n&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=o.filter(A=>!T6(A)&&!Dr(A.name,c,t)).map(A=>A.name);if(y.length>0){let A="";throw d!=null&&(A=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${h}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${a}]. Consider providing the following inputs: [${u}]. ${A}`)}return c}processStack(e,t,r,n,a,s,i,o,l){let u=[];for(;t.length>0;){let d=t.pop();r.currentContext=d.contexts;let h="";if(d.node.op==="Enter"&&k("isConstant",d.node,n,r)&&([h]=Ca(d.node.name,r)),n[d.node.name]==null){let p=wv(d.node,n,r,this._resourceManager);h||([h]=Ca(d.node.name,r));let c=r.currentContext;w.isPromise(p)?u.push(p.then(f=>(n[h]=f,r.currentContext=c,this.checkTensorForDisposal(h,d.node,n,r,s,i,o),this.processChildNodes(d.node,t,r,n,a,l),f))):(n[h]=p,this.checkTensorForDisposal(h,d.node,n,r,s,i,o),this.processChildNodes(d.node,t,r,n,a,l))}else this.processChildNodes(d.node,t,r,n,a,l)}return u}processChildNodes(e,t,r,n,a,s){e.children.forEach(i=>{let[o]=Ca(i.name,r);a[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!Dr(l,n,r))&&(a[o]=!0,t.push({contexts:r.currentContext,node:i})):i.inputNames.every(l=>!!Dr(l,n,r))&&(a[o]=!0,t.push({contexts:r.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let r=e[t],[n]=dn(t),a=this.graph.nodes[n];if(a.attrParams.shape&&a.attrParams.shape.value){let s=a.attrParams.shape.value,i=s.length===r.shape.length&&r.shape.every((o,l)=>s[l]===-1||s[l]===o);w.assert(i,()=>`The shape of dict['${a.name}'] provided in model.execute(dict) must be [${s}], but was [${r.shape}]`)}a.attrParams.dtype&&a.attrParams.dtype.value&&w.assert(r.dtype===a.attrParams.dtype.value,()=>`The dtype of dict['${a.name}'] provided in model.execute(dict) must be ${a.attrParams.dtype.value}, but was ${r.dtype}`)})}mapInputs(e){let t={};for(let r in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[r]!=null){let n=this._signature.inputs[r];t[n.name]=e[r]}else t[r]=e[r];return t}checkInputs(e){let t=Object.keys(e).filter(r=>{let[n]=dn(r);return this.graph.nodes[n]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[r]=dn(t);if(!this.graph.nodes[r])throw new Error(`The output '${t}' is not found in the graph`)})}},sH=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},iH="?tfjs-format=file",oH="model.json",h0=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new sH}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=Tr.browserHTTPRequest(e,this.loadOptions);else{let t=Tr.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(Tr.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,r;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?r=this.artifacts.userDefinedMetadata.signature:r=this.artifacts.signature,this.signature=r,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let n=Tr.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new Uy(Av.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(n),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let a=Av.Instance.transformGraph(e.modelInitializer);this.initializer=new Uy(a),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let r=Tr.getSaveHandlers(e);if(r.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(r.length>1)throw new Error(`Found more than one (${r.length}) save handlers for URL '${e}'`);e=r[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof rt)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,r,n)=>(t[r]=e[n],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let r=this.executor.execute(e,t);return r.length>1?r:r[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let r=await this.executor.executeAsync(e,t);return r.length>1?r:r[0]}getIntermediateTensors(){return this.executor.getIntermediateTensors()}disposeIntermediateTensors(){this.executor.disposeIntermediateTensors()}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,r)=>(t[r]=[e[r]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function lH(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${oH}${iH}`);let r=new h0(e,t);return await r.load(),r}var uH="0.0.0",N6={};Le(N6,{CSVDataset:()=>L6,Dataset:()=>Ad,FileDataSource:()=>H6,TextLineDataset:()=>D6,URLDataSource:()=>q6,array:()=>FH,csv:()=>UH,func:()=>GH,generator:()=>jH,microphone:()=>qH,version_data:()=>KH,webcam:()=>HH,zip:()=>$H});var dH=Oo(Vf()),pH=Oo(Vf());function hH(e,t){return Ff(e,t)}function Ff(e,t,r=new Map,n=new Set){if(e==null)return null;if(typeof Blob=="function"&&e instanceof Blob)return e.slice();if(n.has(e))throw new Error("Circular references are not supported.");if(r.has(e))return r.get(e);let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(a.recurse)if(Cu(e)){let s=Array.isArray(e)?[]:{};n.add(e);for(let i in e){let o=e[i],l=Ff(o,t,r,n);s[i]=l}return n.delete(e),e.__proto__&&(s.__proto__=e.__proto__),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return r.set(e,a.value),a.value}function cH(e,t=E6){return C6(e,t)}function C6(e,t,r=new Set){let n=e[0];if(r.has(n))throw new Error("Circular references are not supported.");let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(a.recurse)if(Cu(n)){let s=Array.isArray(n)?[]:{};r.add(n);for(let i in n){let o=e.map(u=>u[i]),l=C6(o,t,r);s[i]=l}return r.delete(n),s}else throw new Error(`Can't recurse into non-iterable type: ${n}`);else return a.value}function E6(e){return e===null?null:Cu(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function R6(e,t){let r=new Map;Ff(e,t,r);for(let n of Array.from(r.keys())){let a=r.get(n);if(w.isPromise(a)){let s=await a;r.set(n,s)}}return Ff(e,t,r)}function Cu(e){let t=!1;if(Y().get("IS_BROWSER"))t=e instanceof TextDecoder;else{let{StringDecoder:r}=fw();t=e instanceof r}return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof rt)&&!(e instanceof Promise)&&!t)}function fH(e){return e==null||mH(e)||Array.isArray(e)||typeof e=="object"&&e instanceof rt||w.isTypedArray(e)}function mH(e){return e===null||typeof e!="object"&&typeof e!="function"}function gH(e){return hH(e,yH)}function yH(e){return e instanceof rt?{value:e.clone(),recurse:!1}:Cu(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var M6=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),r=this.get(t);return this.set(t,this.pop()),r}},F6=class extends M6{constructor(){super(F6.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),r=this.length();for(let n=0;n<r;n++)t[n]=this.get(this.wrap(this.begin+n));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=r}},$6=F6;$6.INITIAL_CAPACITY=32;function P6(e){return new bH(e)}function Ux(e){return new vH(e)}function AH(e,t){return new _6(e,t)}function xH(e,t=z6.FAIL){return new RH(e,t)}var yr=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],r=await e.next();for(;!r.done;)t.push(r.value),r=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),r=e(t.value);for(;!t.done&&r;)t=await this.next(),r=e(t.value)}handleErrors(e){return new CH(this,e)}filter(e){return new TH(this,e)}map(e){return new NH(this,e)}mapAsync(e){return new Sv(this,e)}serialMapAsync(e){return new Sv(this,e).serial()}flatmap(e){return new EH(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new SH(this,e,t)}columnMajorBatch(e,t=!0,r=E6){return this.rowMajorBatch(e,t).map(n=>cH(n,r))}concatenate(e,t){return new _6(P6([this,e]),t)}take(e){return e<0||e==null?this:new IH(this,e)}skip(e){return e<0||e==null?this:new kH(this,e)}prefetch(e){return new O6(this,e)}shuffle(e,t){return new MH(this,e,t)}serial(){return new wH(this)}},bH=class extends yr{constructor(e){super(),this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:gH(e),done:!1}}},vH=class extends yr{constructor(e){super(),this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},wH=class extends yr{constructor(e){super(),this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},kH=class extends yr{constructor(e,t){super(),this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;re(e.value)}return this.upstream.next()}},IH=class extends yr{constructor(e,t){super(),this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},SH=class extends yr{constructor(e,t,r=!0){super(),this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=r,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},TH=class extends yr{constructor(e,t){super(),this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;re(e.value)}}},NH=class extends yr{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=da.getTensorsInContainer(e.value),r=this.transform(e.value),n=da.getTensorsInContainer(r);for(let a of t)da.isTensorInList(a,n)||a.dispose();return{value:r,done:!1}}},CH=class extends yr{constructor(e,t){super(),this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},Sv=class extends yr{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=da.getTensorsInContainer(e.value),r=await this.transform(e.value),n=da.getTensorsInContainer(r);for(let a of t)da.isTensorInList(a,n)||a.dispose();return{value:r,done:!1}}},Gx=class extends yr{constructor(){super(),this.outputQueue=new $6,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},EH=class extends Gx{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=da.getTensorsInContainer(e.value),r=this.transform(e.value),n=da.getTensorsInContainer(r);this.outputQueue.pushAll(r);for(let a of t)da.isTensorInList(a,n)||a.dispose();return!0}},_6=class extends yr{constructor(e,t){super(),this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let r=await this.moreIterators.next();if(r.done)return{value:null,done:!0};this.iterator=r.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},z6=(e=>(e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST",e))(z6||{}),RH=class extends yr{constructor(e,t=0){super(),this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,r=0;function n(s){return s instanceof yr?{value:s.next().then(i=>(t++,i.done&&r++,i.value)),recurse:!1}:{value:null,recurse:!0}}let a=await R6(this.iterators,n);if(t===r)return{value:null,done:!0};if(r>0)switch(this.mismatchMode){case 0:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case 1:return{value:null,done:!0};case 2:default:}return this.count++,{value:a,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},O6=class extends yr{constructor(e,t){super(),this.upstream=e,this.bufferSize=t,this.buffer=new M6(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},MH=class extends O6{constructor(e,t,r){super(e,t),this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=pH.alea(r||w.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Ad=class{constructor(){this.size=null}batch(e,t=!0){let r=this;w.assert(e>0,()=>`batchSize needs to be positive, but it is
|
|
${e}`);let n;return this.size===1/0||this.size==null?n=this.size:t?n=Math.ceil(this.size/e):n=Math.floor(this.size/e),un(async()=>(await r.iterator()).columnMajorBatch(e,t,PH),n)}concatenate(e){let t=this,r;return this.size===1/0||e.size===1/0?r=1/0:this.size!=null&&e.size!=null?r=this.size+e.size:r=null,un(async()=>(await t.iterator()).concatenate(await e.iterator()),r)}filter(e){let t=this,r;return this.size===1/0?r=1/0:r=null,un(async()=>(await t.iterator()).filter(n=>K(()=>e(n))),r)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return un(async()=>(await t.iterator()).map(r=>K(()=>e(r))),this.size)}mapAsync(e){let t=this;return un(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return un(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,r;return this.size!=null&&e>0?r=this.size*e:e===0?r=0:this.size!=null&&(e===void 0||e<0)?r=1/0:r=null,un(async()=>{let n=Ux(async()=>({value:await t.iterator(),done:!1}));return AH(n.take(e))},r)}skip(e){let t=this,r;return this.size!=null&&e>=0&&this.size>=e?r=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?r=0:r=null,un(async()=>(await t.iterator()).skip(e),r)}shuffle(e,t,r=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let n=this,a=dH.alea(t||w.now().toString());return un(async()=>{let s=a.int32();return r&&(s+=a.int32()),(await n.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,r;return this.size!=null&&this.size>e?r=e:this.size!=null&&this.size<=e?r=this.size:r=null,un(async()=>(await t.iterator()).take(e),r)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Ad.MAX_BUFFER_SIZE=1e4;function un(e,t=null){return new class extends Ad{constructor(){super(...arguments),this.size=t}async iterator(){return e()}}}function FH(e){return un(async()=>P6(e),e.length)}function $H(e){if(!Cu(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let r=0;r<e.length;r++)t=t==null?e[r].size:Math.min(t,e[r].size);else if(e instanceof Object)for(let r in e)t=t==null?e[r].size:Math.min(t,e[r].size);return un(async()=>{let r=await R6(e,n=>{if(n instanceof Ad)return{value:n.iterator(),recurse:!1};if(Cu(n))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return xH(r,1)},t)}function PH(e){if(e===null)return null;let t=e[0];return fH(t)?{value:_H(e),recurse:!1}:{value:null,recurse:!0}}function _H(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof rt?or(e):ct(e)}var D6=class extends Ad{constructor(e){super(),this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
|
|
`).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},Xc='"',yp=Symbol("out"),Tv=Symbol("field"),Zc=Symbol("quote"),ny=Symbol("quoteafterquote"),Nv=Symbol("quoteinquote"),L6=class extends Ad{constructor(e,t){super(),this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new D6(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(w.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&w.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((n,a)=>(n[a]=n[a]+1||1,n),{}),r=Object.keys(t).filter(n=>t[n]>1);if(w.assert(r.length===0,()=>"Duplicate column names found: "+r.toString()),this.columnConfigs){for(let n of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(n)===-1)throw new Error('The key "'+n+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),r={},n={};for(let a=0;a<this.fullColumnNames.length;a++){let s=this.fullColumnNames[a],i=this.columnConfigs?this.columnConfigs[s]:null;if(!(this.configuredColumnsOnly&&!i)){let o=t[a],l=null;if(o==="")if(i&&i.default!==void 0)l=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${s} is empty in this line: ${e}`);l=void 0}else{let u=Number(o);if(isNaN(u))i&&i.dtype==="bool"?l=this.getBoolean(o):l=o;else if(!i||!i.dtype)l=u;else switch(i.dtype){case"float32":l=u;break;case"int32":l=Math.floor(u);break;case"bool":l=this.getBoolean(o);break;default:l=u}}i&&i.isLabel?n[s]=l:r[s]=l}}return Object.keys(n).length===0?r:{xs:r,ys:n}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let r=[],n=0,a=e.length,s=yp;for(let i=0;i<a;i++)switch(s){case yp:switch(e.charAt(i)){case Xc:n=i+1,s=Zc;break;case this.delimiter:if(n=i+1,this.delimiter===" "&&this.delimWhitespace)break;r.push(""),s=yp;break;default:s=Tv,n=i;break}break;case Tv:switch(e.charAt(i)){case this.delimiter:r.push(e.substring(n,i)),s=yp,n=i+1;break;default:}break;case Zc:switch(e.charAt(i)){case Xc:s=ny;break;default:}break;case ny:switch(e.charAt(i)){case this.delimiter:r.push(e.substring(n,i-1)),s=yp,n=i+1;break;case Xc:s=Zc;break;default:s=Nv;break}break;case Nv:switch(e.charAt(i)){case Xc:s=Zc;break;default:}break;default:}if(s===ny?r.push(e.substring(n,a-1)):r.push(e.substring(n)),t&&r.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${r}`);return r}},B6=class extends yr{constructor(e){super(),this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(!Y().get("IS_BROWSER"))throw new Error("microphone API is only supported in browser environment.");let t=new B6(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(r){throw new Error(`Error thrown while initializing video stream: ${r.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,r=await this.getAudioData();if(this.includeSpectrogram){let n=this.flattenQueue(r.freqDataQueue);e=this.getTensorFromAudioDataArray(n,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let n=this.flattenQueue(r.timeDataQueue);t=this.getTensorFromAudioDataArray(n,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],r=0;return new Promise(n=>{let a=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&n({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++r===this.numFrames&&(clearInterval(a),n({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,r=new Float32Array(e.length*t);return e.forEach((n,a)=>r.set(n,a*t)),r}getTensorFromAudioDataArray(e,t){let r=new Float32Array(w.sizeFromShape(t));return r.set(e,r.length-e.length),ct(r,t)}},W6=class extends yr{constructor(e,t){if(super(),this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=St([0],"int32"),this.webcamConfig.centerCrop){let r=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,n=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,a=(1-r)/2,s=(1-n)/2,i=a+r,o=n+s;this.cropBox=pa([s,a,o,i],[1,4])}else this.cropBox=pa([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(!Y().get("IS_BROWSER"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let r=new W6(e,t);return await r.start(),r}async start(){this.webcamConfig.facingMode&&w.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=Pn.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return K(()=>{let t=qt(me(e,"float32"),0),r;r=Ie.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let n=r.shape;return G(r,n.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},V6=class{},U6=class extends yr{split(e){return new zH(this,e)}},zH=class extends U6{constructor(e,t){super(),this.upstream=e,this.impl=new OH(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},OH=class extends Gx{constructor(e,t){super(),this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let r of t.slice(0,-1))this.outputQueue.push(r);return this.carryover=t[t.length-1],!0}},DH=class extends yr{decodeUTF8(){return new LH(this)}},LH=class extends U6{constructor(e){super(),this.upstream=e,this.impl=new BH(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},BH=class extends Gx{constructor(e){if(super(),this.upstream=e,Y().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=fw();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let r;return Y().get("IS_BROWSER")?r=this.decoder.decode(t,{stream:!0}):r=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(r),!0}},G6=class extends DH{constructor(e,t={}){super(),this.file=e,this.options=t,w.assert(e instanceof Uint8Array||(Y().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let r=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,r)));else{let n=new FileReader;n.onload=s=>{let i=n.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},n.onabort=s=>t(new Error("Aborted")),n.onerror=s=>t(new Error(s.type));let a=this.file.slice(this.offset,r);n.readAsArrayBuffer(a)}this.offset=r}),done:!1}}};async function WH(e,t={},r){let n,a;typeof e=="string"?n=e:(n=e.url,a=VH(e));let s=await(r||w.fetch)(n,a);if(s.ok){let i=new Uint8Array(await s.arrayBuffer());return new G6(i,t)}else throw new Error(s.statusText)}var VH=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function j6(e){return typeof e=="string"&&e.slice(0,7)==="file://"}var H6=class extends V6{constructor(e,t={}){super(),this.input=e,this.options=t}async iterator(){if(j6(this.input)&&Y().get("IS_NODE")){let e=o2();this.input=e.readFileSync(this.input.slice(7))}return new G6(this.input,this.options)}},q6=class extends V6{constructor(e,t={}){super(),this.url=e,this.fileOptions=t}async iterator(){return j6(this.url)?new H6(this.url,this.fileOptions).iterator():WH(this.url,this.fileOptions)}};function UH(e,t={}){return new L6(new q6(e),t)}function GH(e){let t=Ux(e);return un(async()=>t)}function jH(e){return un(async()=>{let t=await e();return Ux(()=>t.next())})}async function HH(e,t){return W6.create(e,t)}async function qH(e){return B6.create(e)}var KH="0.0.0";function Te(e,t){Array.isArray(e)||(e=[e]),e.forEach(r=>{r!=null&&w.assert(r.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var XH=qn.whereImpl,K6=class extends Fu{constructor(){super(),this.blockSize=48,this.firstUse=!0,this.data=new qp(this,br())}nextDataId(){return K6.nextDataId++}write(e,t,r){this.firstUse&&(this.firstUse=!1,Y().get("IS_NODE")&&N.warn(`
|
|
============================
|
|
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
|
|
============================`));let n={id:this.nextDataId()};return this.data.set(n,{values:e,dtype:r,refCount:1}),n}makeTensorInfo(e,t,r){let n;if(t==="string"&&r!=null&&r.length>0&&w.isString(r[0])){let a=r.map(s=>w.encodeString(s));n=this.write(a,e,t)}else n=this.write(r,e,t);return{dataId:n,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,r,n,a){this.data.set(e,{values:t,dtype:n,refCount:a})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:r}=this.data.get(e);if(t==="complex64"){let n=this.readSync(r.real.dataId),a=this.readSync(r.imag.dataId);return N.mergeRealAndImagArrays(n,a)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),r=t;if(e.dtype==="string")try{r=t.map(n=>w.decodeString(n))}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,r)}makeOutput(e,t,r){let n=this.write(e,t,r);return br().makeTensorFromDataId(n,t,r,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:r}=this.data.get(e);r!=null&&(this.disposeData(r.real.dataId,!0),this.disposeData(r.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){Te([e],"where");let t=this.readSync(e.dataId);return XH(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}},jx=K6;jx.nextDataId=0;var c0={};Le(c0,{addImpl:()=>Z6,bincountImpl:()=>qx,bincountReduceImpl:()=>Y6,ceilImpl:()=>J6,concatImpl:()=>Kx,equalImpl:()=>Q6,expImpl:()=>tI,expm1Impl:()=>nI,floorImpl:()=>aI,gatherNdImpl:()=>sI,gatherV2Impl:()=>iI,greaterEqualImpl:()=>lI,greaterImpl:()=>oI,lessEqualImpl:()=>dI,lessImpl:()=>uI,linSpaceImpl:()=>pI,logImpl:()=>hI,maxImpl:()=>cI,maximumImpl:()=>fI,minimumImpl:()=>mI,multiplyImpl:()=>Xx,negImpl:()=>gI,notEqualImpl:()=>yI,prodImpl:()=>AI,rangeImpl:()=>Yx,rsqrtImpl:()=>xI,sigmoidImpl:()=>Oq,simpleAbsImpl:()=>X6,sliceImpl:()=>Pf,sparseFillEmptyRowsImpl:()=>vI,sparseReshapeImpl:()=>wI,sparseSegmentReductionImpl:()=>Jx,sqrtImpl:()=>Bq,squaredDifferenceImpl:()=>kI,stridedSliceImpl:()=>II,stringNGramsImpl:()=>SI,stringSplitImpl:()=>TI,stringToHashBucketFastImpl:()=>NI,subImpl:()=>CI,tileImpl:()=>EI,topKImpl:()=>MI,transposeImpl:()=>Zx,uniqueImpl:()=>FI});function X6(e){let t=new Float32Array(e.length);for(let r=0;r<e.length;++r)t[r]=Math.abs(e[r]);return t}var ZH=e=>{let{x:t}=e.inputs,r=e.backend;Te(t,"abs");let n=new Float32Array(w.sizeFromShape(t.shape)),a=r.data.get(t.dataId).values;return n=X6(a),r.makeOutput(n,t.shape,t.dtype)},YH={kernelName:Lo,backendName:"cpu",kernelFunc:ZH};function Yt(e){return(t,r,n,a,s)=>{let i=N.assertAndGetBroadcastShape(t,r),o=i.length,l=w.computeStrides(i),u=w.sizeFromShape(i),d=w.getTypedArrayFromDType(s,u),h=t.length,p=r.length,c=w.computeStrides(t),f=w.computeStrides(r),m=N.getBroadcastDims(t,i),g=N.getBroadcastDims(r,i);if(m.length+g.length===0)for(let y=0;y<d.length;++y)d[y]=e(n[y%n.length],a[y%a.length]);else for(let y=0;y<d.length;++y){let A=w.indexToLoc(y,o,l),x=A.slice(-h);m.forEach(T=>x[T]=0);let b=w.locToIndex(x,h,c),v=A.slice(-p);g.forEach(T=>v[T]=0);let S=w.locToIndex(v,p,f);d[y]=e(n[b],a[S])}return[d,i]}}function pn(e){let{inputs:t,backend:r}=e,{real:n,imag:a}=t,s=r.data.get(n.dataId).values,i=r.data.get(a.dataId).values,o=r.makeTensorInfo(n.shape,"complex64"),l=r.data.get(o.dataId);return l.complexTensorInfos={real:r.makeTensorInfo(n.shape,"float32",s),imag:r.makeTensorInfo(a.shape,"float32",i)},o}var JH={kernelName:Xp,backendName:"cpu",kernelFunc:pn};function $f(e,t,r="float32"){if(r==="complex64"){let a=$f(e,t,"float32"),s=$f(e,t,"float32");return pn({inputs:{real:a,imag:s},backend:e})}let n=w.makeZerosTypedArray(w.sizeFromShape(t),r);return e.makeTensorInfo(t,r,n)}function $a(e){let{inputs:t,backend:r}=e,{x:n}=t;return r.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var QH={kernelName:pi,backendName:"cpu",kernelFunc:$a};function Fo(e){let{inputs:t,backend:r}=e,{input:n}=t,a=r.data.get(n.dataId).complexTensorInfos.real,s=r.data.get(a.dataId).values;return r.makeTensorInfo(a.shape,a.dtype,s)}var eq={kernelName:ah,backendName:"cpu",kernelFunc:Fo};function Gs(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{dtype:s}=n;if(s==="complex64"){if(a.dtype==="complex64")return $a({inputs:{x:a},backend:r});let i=$f(r,a.shape,a.dtype),o=Gs({inputs:{x:a},backend:r,attrs:{dtype:"float32"}}),l=pn({inputs:{real:o,imag:i},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=Fo({inputs:{input:a},backend:r}),o=Gs({inputs:{x:i},backend:r,attrs:{dtype:s}});return r.disposeIntermediateTensorInfo(i),o}if(!w.hasEncodingLoss(a.dtype,s)){let i=$a({inputs:{x:a},backend:r});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=r.data.get(a.dataId).values,o=Int32Array.from(i);return r.makeTensorInfo(a.shape,"int32",o)}if(s==="bool"){let i=r.data.get(a.dataId).values,o=w.toTypedArray([0],a.dtype),[l,u]=Yt((d,h)=>d!==h?1:0)(a.shape,[],i,o,"bool");return r.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var tq={kernelName:Ys,backendName:"cpu",kernelFunc:Gs};function Ar(e,t,r,n){return r==null?({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;Te([i,o],e);let u=l.data.get(i.dataId).values,d=l.data.get(o.dataId).values,h=i.dtype==="string"?N.fromUint8ToStringArray(u):u,p=i.dtype==="string"?N.fromUint8ToStringArray(d):d,c=n||i.dtype,[f,m]=t(i.shape,o.shape,h,p,c);return l.makeTensorInfo(m,c,f)}:({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let u=Gs({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),d=l.data.get(u.dataId),h=d.complexTensorInfos.real,p=d.complexTensorInfos.imag,c=l.data.get(h.dataId).values,f=l.data.get(p.dataId).values,m=Gs({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(m.dataId),y=g.complexTensorInfos.real,A=g.complexTensorInfos.imag,x=l.data.get(y.dataId).values,b=l.data.get(A.dataId).values,[v,S,T]=r(i.shape,o.shape,c,f,x,b),E=l.makeTensorInfo(T,"float32",v),R=l.makeTensorInfo(T,"float32",S),_=pn({inputs:{real:E,imag:R},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(m),l.disposeIntermediateTensorInfo(E),l.disposeIntermediateTensorInfo(R),_}else{let u=l.data.get(i.dataId).values,d=l.data.get(o.dataId).values,h=n||i.dtype,[p,c]=t(i.shape,o.shape,u,d,h);return l.makeTensorInfo(c,h,p)}}}function Hx(e){return(t,r,n,a,s,i)=>{let o=N.assertAndGetBroadcastShape(t,r),l=w.sizeFromShape(o),u=o.length,d=w.computeStrides(o),h=w.getTypedArrayFromDType("float32",l),p=w.getTypedArrayFromDType("float32",l),c=N.getBroadcastDims(t,o),f=N.getBroadcastDims(r,o),m=N.mergeRealAndImagArrays(n,a),g=N.mergeRealAndImagArrays(s,i),y=t.length,A=w.computeStrides(t),x=r.length,b=w.computeStrides(r);if(c.length+f.length===0)for(let v=0;v<h.length;v++){let S=v%m.length,T=v%g.length,E=e(m[S*2],m[S*2+1],g[T*2],g[T*2+1]);h[v]=E.real,p[v]=E.imag}else for(let v=0;v<h.length;v++){let S=w.indexToLoc(v,u,d),T=S.slice(-y);c.forEach(I=>T[I]=0);let E=w.locToIndex(T,y,A),R=S.slice(-x);f.forEach(I=>R[I]=0);let _=w.locToIndex(R,x,b),M=e(m[E*2],m[E*2+1],g[_*2],g[_*2+1]);h[v]=M.real,p[v]=M.imag}return[h,p,o]}}var Z6=Yt((e,t)=>e+t),rq=Hx((e,t,r,n)=>({real:e+r,imag:t+n})),$h=Ar(Ya,Z6,rq),nq={kernelName:Ya,backendName:"cpu",kernelFunc:$h};function qx(e,t,r,n,a){let s=w.sizeFromShape(n),i=w.makeZerosTypedArray(a,r);for(let o=0;o<e.length;o++){let l=e[o];if(l<0)throw new Error("Input x must be non-negative!");l>=a||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function Y6(e,t,r,n=!1){let a=e.shape[0],s=e.shape[1],i=We([a,r],t.dtype);for(let o=0;o<a;o++)for(let l=0;l<s;l++){let u=e.get(o,l);if(u<0)throw new Error("Input x must be non-negative!");u>=r||(n?i.set(1,o,u):t.size>0?i.set(i.get(o,u)+t.get(o,l),o,u):i.set(i.get(o,u)+1,o,u))}return i}function Wi(e){return(t,r,n)=>{let a=w.getTypedArrayFromDType(r,t.length);for(let s=0;s<t.length;++s)a[s]=e(t[s],n);return a}}function mt(e,t,r){return({inputs:n,attrs:a,backend:s})=>{let{x:i}=n;if(Te(i,e),i.dtype==="string"||r==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=w.sizeFromShape(i.shape),d=r||i.dtype,h=w.getArrayFromDType(d,u);for(let p=0;p<u;++p)h[p]=t(l[p],a);return o.makeTensorInfo(i.shape,d,h)}}function xd(e,t,r){return({inputs:n,attrs:a,backend:s})=>{let{x:i}=n;if(Te(i,e),i.dtype==="string"||r==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=r||i.dtype,d=t(l,u,a);return o.makeTensorInfo(i.shape,u,d)}}var J6=Wi(e=>Math.ceil(e)),aq=xd(Js,J6),sq={kernelName:Js,backendName:"cpu",kernelFunc:aq};function Kx(e,t,r,n){let a=w.getArrayFromDType(r,w.sizeFromShape(t));if(n&&r!=="string"){let s=0;e.forEach(i=>{let o=w.sizeFromShape(i.shape);a.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=r==="string"?N.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let u=0;u<i.shape[0];++u){let d=u*t[1]+s;for(let h=0;h<i.shape[1];++h)a[d+h]=o[l++]}s+=i.shape[1]})}return a}var Q6=Yt((e,t)=>e===t?1:0),eI=Ar(jo,Q6,null,"bool"),iq={kernelName:jo,backendName:"cpu",kernelFunc:eI},tI=Wi(e=>Math.exp(e)),rI=xd(ii,tI,"float32"),oq={kernelName:ii,backendName:"cpu",kernelFunc:rI},nI=Wi(e=>Math.expm1(e)),lq=xd(qo,nI),uq={kernelName:qo,backendName:"cpu",kernelFunc:lq},aI=Wi(e=>Math.floor(e)),dq=xd(oi,aI),pq={kernelName:oi,backendName:"cpu",kernelFunc:dq};function sI(e,t,r,n,a,s,i,o,l){let u=We([n,s],r);for(let d=0;d<n;d++){let h=[],p=0;for(let c=0;c<a;c++){let f=e[d*a+c];p+=f*i[c],h.push(f)}if(p<0||p>=l/s)throw new Error(`Invalid indices: ${h} does not index into ${o}`);for(let c=0;c<s;c++)u.values[d*s+c]=t.get(...t.indexToLoc(p*s+c))}return u}function iI(e,t,r){let n=We(r,e.dtype);for(let a=0;a<n.size;++a){let s=n.indexToLoc(a).slice(),i=s[0],o=s[2],l=t.locToIndex([i,o]);s[2]=t.values[l];let u=e.locToIndex(s);0<=u&&u<e.values.length&&(n.values[a]=e.values[u])}return n}var oI=Yt((e,t)=>e>t?1:0),hq=Ar(Yo,oI,null,"bool"),cq={kernelName:Yo,backendName:"cpu",kernelFunc:hq},lI=Yt((e,t)=>e>=t?1:0),fq=Ar(di,lI,null,"bool"),mq={kernelName:di,backendName:"cpu",kernelFunc:fq},uI=Yt((e,t)=>e<t?1:0),gq=Ar(Jo,uI,null,"bool"),yq={kernelName:Jo,backendName:"cpu",kernelFunc:gq},dI=Yt((e,t)=>e<=t?1:0),Aq=Ar(Qo,dI,null,"bool"),xq={kernelName:Qo,backendName:"cpu",kernelFunc:Aq};function pI(e,t,r){let n=(t-e)/(r-1),a=w.makeZerosTypedArray(r,"float32");a[0]=e;for(let s=1;s<a.length;s++)a[s]=a[s-1]+n;return a}var hI=Wi(e=>Math.log(e)),bq=xd(ci,hI),vq={kernelName:ci,backendName:"cpu",kernelFunc:bq};function cI(e,t,r,n){let a=w.getTypedArrayFromDType(n,w.sizeFromShape(r));for(let s=0;s<a.length;++s){let i=s*t,o=e[i];for(let l=0;l<t;++l){let u=e[i+l];(Number.isNaN(u)||u>o)&&(o=u)}a[s]=o}return a}var fI=Yt((e,t)=>Math.max(e,t)),wq=Ar(mi,fI),kq={kernelName:mi,backendName:"cpu",kernelFunc:wq},mI=Yt((e,t)=>Math.min(e,t)),Iq=Ar(xi,mI),Sq={kernelName:xi,backendName:"cpu",kernelFunc:Iq},Xx=Yt((e,t)=>e*t),Tq=Hx((e,t,r,n)=>({real:e*r-t*n,imag:e*n+t*r})),f0=Ar(vi,Xx,Tq),Nq={kernelName:vi,backendName:"cpu",kernelFunc:f0};function gI(e,t,r){let n=w.createScalarValue(-1,r);return Xx([],t,n,e,r)}function Cq(e){let{inputs:t,backend:r}=e,{x:n}=t;Te(n,"neg");let a=r.data.get(n.dataId).values,[s,i]=gI(a,n.shape,n.dtype);return r.makeTensorInfo(i,n.dtype,s)}var Eq={kernelName:tl,backendName:"cpu",kernelFunc:Cq},yI=Yt((e,t)=>e!==t?1:0),Rq=Ar(rl,yI,null,"bool"),Mq={kernelName:rl,backendName:"cpu",kernelFunc:Rq};function Zx(e,t,r,n,a){let s=t.length,i=w.sizeFromShape(t),o=w.computeStrides(t),l=w.computeStrides(a),u=w.getTypedArrayFromDType(r,w.sizeFromShape(a));for(let d=0;d<i;++d){let h=w.indexToLoc(d,s,o),p=new Array(h.length);for(let f=0;f<p.length;f++)p[f]=h[n[f]];let c=w.locToIndex(p,s,l);u[c]=e[d]}return u}function nn(e){let{inputs:t,attrs:r,backend:n}=e,{x:a}=t,{perm:s}=r;Te(a,"transpose");let i=a.shape.length,o=new Array(i);for(let d=0;d<o.length;d++)o[d]=a.shape[s[d]];let l=n.data.get(a.dataId).values,u=Zx(l,a.shape,a.dtype,s,o);return{dataId:n.write(u,o,a.dtype),shape:o,dtype:a.dtype}}var Fq={kernelName:Oi,backendName:"cpu",kernelFunc:nn};function AI(e,t,r,n){let[a,s]=N.computeOutAndReduceShapes(e,n),i=Cr(t,"int32"),o=w.makeZerosTypedArray(w.sizeFromShape(a),i),l=w.sizeFromShape(s);for(let u=0;u<o.length;++u){let d=u*l,h=1;for(let p=0;p<l;++p)h*=r[d+p];o[u]=h}return{outVals:o,outShape:a,outDtype:i}}function $q(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n;Te(a,"prod");let o=a.shape.length,l=w.parseAxisParam(s,a.shape),u=N.getAxesPermutation(l,o),d=l,h=a,p=[];u!=null&&(h=nn({inputs:{x:a},backend:r,attrs:{perm:u}}),p.push(h),d=N.getInnerMostAxes(d.length,o));let c=r.data.get(h.dataId).values,{outVals:f,outShape:m,outDtype:g}=AI(h.shape,h.dtype,c,d),y=m;return i&&(y=N.expandShapeToKeepDim(m,l)),p.forEach(A=>r.disposeIntermediateTensorInfo(A)),r.makeTensorInfo(y,g,f)}var Pq={kernelName:ll,backendName:"cpu",kernelFunc:$q};function Yx(e,t,r,n){let a=e===t,s=e<t&&r<0,i=t<e&&r>1;if(a||s||i)return w.makeZerosTypedArray(0,n);let o=Math.abs(Math.ceil((t-e)/r)),l=w.makeZerosTypedArray(o,n);t<e&&r===1&&(r=-1),l[0]=e;for(let u=1;u<l.length;u++)l[u]=l[u-1]+r;return l}var xI=Wi(e=>1/Math.sqrt(e)),_q=xd(Ci,xI),zq={kernelName:Ci,backendName:"cpu",kernelFunc:_q},Oq=Wi(e=>1/(1+Math.exp(-e))),bI=mt(Ri,e=>1/(1+Math.exp(-e))),Dq={kernelName:Ri,backendName:"cpu",kernelFunc:bI};function Pf(e,t,r,n,a){let s=_t.isSliceContinous(n,t,r),i=w.sizeFromShape(r),o=w.computeStrides(n);if(s){let h=_t.computeFlatOffset(t,o);return a==="string"?e.slice(h,h+i):e.subarray(h,h+i)}let l=a==="string"?N.fromUint8ToStringArray(e):e,u=We(n,a,l),d=We(r,a);for(let h=0;h<d.size;++h){let p=d.indexToLoc(h),c=p.map((f,m)=>f+t[m]);d.set(u.get(...c),...p)}return a==="string"?N.fromStringArrayToUint8(d.values):d.values}function $o(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{begin:s,size:i}=n;Te(a,"slice");let[o,l]=_t.parseSliceParams(a,s,i);_t.assertParamsValid(a,o,l);let u=r.data.get(a.dataId).values,d=Pf(u,o,l,a.shape,a.dtype);return r.makeTensorInfo(l,a.dtype,d)}var Lq={kernelName:fl,backendName:"cpu",kernelFunc:$o};function vI(e,t,r,n,a,s,i){let o=t[0],l=s[0],u=new Array(l),d=new Array(o),h=t[1];if(l===0){if(o!==0)throw new Error(N.getSparseFillEmptyRowsIndicesDenseShapeMismatch(o));let g=w.getArrayFromDType(r,0),y=w.getArrayFromDType(a,0);return[g,[0,h],y,u,d]}let p=!0,c=0,f=new Array(l).fill(0);for(let g=0;g<o;++g){let y=e[g*h];if(y<0)throw new Error(N.getSparseFillEmptyRowsNegativeIndexErrorMessage(g,y));if(y>=l)throw new Error(N.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(g,y,l));++f[y],p=p&&y>=c,c=y}let m=!0;for(let g=0;g<l;++g){let y=f[g]===0;u[g]=y,m=m&&!y,f[g]=Math.max(f[g],1),g>0&&(f[g]+=f[g-1])}if(m&&p){let g=e,y=n;for(let A=0;A<o;++A)d[A]=A;return[g,[o,h],y,u,d]}else{let g=f[l-1],y=w.getArrayFromDType(r,g*h),A=w.getArrayFromDType(a,g),x=new Array(l).fill(0);for(let b=0;b<o;++b){let v=e[b*h],S=x[v],T=(v===0?0:f[v-1])+S;x[v]++;for(let E=0;E<h;++E)y[T*h+E]=e[b*h+E];A[T]=n[b],d[b]=T}for(let b=0;b<l;++b)if(x[b]===0){let v=b===0?0:f[b-1];y[v*h+0]=b;for(let S=1;S<h;++S)y[v*h+S]=0;A[v]=i}return[y,[g,h],A,u,d]}}function wI(e,t,r,n,a){let s=w.sizeFromShape(n),i=t[0],o=a.length,l=[],u=1,d=-1;for(let m=0;m<o;++m){let g=a[m];if(g===-1){if(d!==-1)throw new Error(N.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(d,m));d=m,l.push(1)}else{if(g<0)throw new Error(N.getSparseReshapeNegativeOutputDimErrorMessage(m,g));u*=g,l.push(g)}}if(d!==-1){if(u<=0)throw new Error(N.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage());let m=Math.trunc(s/u);if(u*m!==s)throw new Error(N.getSparseReshapeInputOutputMultipleErrorMessage(n,l));l[d]=m}if(w.sizeFromShape(l)!==s)throw new Error(N.getSparseReshapeInputOutputMismatchErrorMessage(n,l));let h=n.length,p=[];if(h>0){p[h-1]=1;for(let m=h-2;m>=0;--m)p[m]=p[m+1]*n[m+1]}let c=[];if(o>0){c[o-1]=1;for(let m=o-2;m>=0;--m)c[m]=c[m+1]*l[m+1]}let f=w.getArrayFromDType(r,i*o);for(let m=0;m<i;++m){let g=0;for(let y=0;y<h;++y)g+=e[m*h+y]*p[y];for(let y=0;y<o;++y)f[m*o+y]=Math.trunc(g/c[y]),g%=c[y]}return[f,[i,o],l]}function Jx(e,t,r,n,a,s=!1,i=0){let o=n.length,l=[t[0],e.length/t[0]],u=l[1],d=o>0?a[o-1]+1:0;if(d<0)throw new Error(N.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let h=t.slice();h[0]=d;let p=h.reduce((A,x)=>A*x,1),c=w.getArrayFromDType(r,p);if(o===0)return d>0&&c.fill(i),[c,h];if(d<=0)throw new Error(N.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let f=0,m=1,g=0,y=a[f];for(;;){let A=0;if(m<o){if(A=a[m],y===A){++m;continue}if(y>=A)throw new Error(N.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage())}if(y<0||y>=d)throw new Error(N.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(y,d));y>g&&c.fill(i,g*u,y*u);for(let x=f;x<m;++x){let b=n[x];if(b<0||b>=l[0])throw new Error(N.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(x,n[x],l[0]));for(let v=0;v<u;v++)c[y*u+v]+=e[b*u+v]}if(s)for(let x=0;x<u;x++)c[y*u+x]/=m-f;if(f=m,++m,g=y+1,y=A,m>o)break}return g<d&&c.fill(i,g*u,d*u),[c,h]}var Bq=Wi(e=>Math.sqrt(e)),Wq=mt(Mi,e=>Math.sqrt(e)),Vq={kernelName:Mi,backendName:"cpu",kernelFunc:Wq},kI=Yt((e,t)=>{let r=e-t;return r*r}),Uq=Ar(Pi,kI),Gq={kernelName:Pi,backendName:"cpu",kernelFunc:Uq};function II(e,t,r,n){let a=We(e,t.dtype);for(let s=0;s<a.size;s++){let i=a.indexToLoc(s),o=new Array(i.length);for(let l=0;l<o.length;l++)o[l]=i[l]*r[l]+n[l];a.set(t.get(...o),...i)}return a}var jq=class{constructor(e,t,r,n,a,s){this.separator=w.encodeString(e),this.nGramWidths=t,this.leftPad=w.encodeString(r),this.rightPad=w.encodeString(n),this.padWidth=a,this.preserveShort=s}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let r=this.getPadWidth(t);return Math.max(0,e+2*r-t+1)}createNGrams(e,t,r,n,a,s){for(let i=0;i<a;++i){let o=this.getPadWidth(s),l=Math.max(0,o-i),u=Math.max(0,o-(a-(i+1))),d=s-(l+u),h=t+(l>0?0:i-o),p=0;p+=l*this.leftPad.length;for(let g=0;g<d;++g)p+=e[h+g].length;p+=u*this.rightPad.length,p+=(l+u+d-1)*this.separator.length,r[n+i]=new Uint8Array(p);let c=r[n+i],f=0,m=g=>g.forEach(y=>c[f++]=y);for(let g=0;g<l;++g)m(this.leftPad),m(this.separator);for(let g=0;g<d-1;++g)m(e[h+g]),m(this.separator);if(d>0){m(e[h+d-1]);for(let g=0;g<u;++g)m(this.separator),m(this.rightPad)}else{for(let g=0;g<u-1;++g)m(this.rightPad),m(this.separator);m(this.rightPad)}}}compute(e,t){let r=e.length,n=t.length;if(n>0){let o=t[0];if(o!==0)throw new Error(`First split value must be 0, got ${o}`);for(let l=1;l<n;++l){let u=t[l]>=o;if(u=u&&t[l]<=r,!u)throw new Error(`Invalid split value ${t[l]}, must be in [${o}, ${r}]`);o=t[l]}if(o!==r)throw new Error(`Last split value must be data size. Expected ${r}, got ${o}`)}let a=n-1,s=w.getArrayFromDType("int32",n);if(r===0||n===0){let o=new Array(r);for(let l=0;l<=a;++l)s[l]=0;return[o,s]}s[0]=0;for(let o=1;o<=a;++o){let l=t[o]-t[o-1],u=0;this.nGramWidths.forEach(d=>{u+=this.getNumNGrams(l,d)}),this.preserveShort&&l>0&&u===0&&(u=1),s[o]=s[o-1]+u}let i=new Array(s[a]);for(let o=0;o<a;++o){let l=t[o],u=s[o];if(this.nGramWidths.forEach(d=>{let h=t[o+1]-t[o],p=this.getNumNGrams(h,d);this.createNGrams(e,l,i,u,p,d),u+=p}),this.preserveShort&&u===s[o]){let d=t[o+1]-t[o];if(d===0)continue;let h=d+2*this.padWidth,p=1;this.createNGrams(e,l,i,u,p,h)}}return[i,s]}};function SI(e,t,r,n,a,s,i,o){return new jq(r,n,a,s,i,o).compute(e,t)}function Hq(e,t,r,n){if(!e.length)return;if(t.length===0){for(let s=0;s<e.length;++s)n.push(e.subarray(s,s+1));return}if(t.length===1){let s=t[0],i=e.indexOf(s);for(;i!==-1;){let o=e.subarray(0,i);(!r||o.length!==0)&&n.push(o),e=e.subarray(i+1),i=e.indexOf(s)}(!r||e.length!==0)&&n.push(e);return}let a=0;for(let s=0;s<e.length+1;s++)if(s===e.length||t.indexOf(e[s])!==-1){let i=e.subarray(a,s);(!r||i.length!==0)&&n.push(i),a=s+1}}function TI(e,t,r){let n=e.length,a=[],s=0,i=0,o=new Array(n);for(let p=0;p<n;++p){let c=a.length;Hq(e[p],t,r,a);let f=a.length-c;o[p]=f,s+=f,i=Math.max(i,f)}let l=w.getArrayFromDType("int32",s*2),u=new Array(s),d=[n,i],h=0;for(let p=0;p<n;++p)for(let c=0;c<o[p];++c)l[h*2]=p,l[h*2+1]=c,u[h]=a[h],++h;return[l,u,d]}function NI(e,t){let r=w.getArrayFromDType("int32",e.length);for(let n=0;n<e.length;++n)r[n]=w.fingerPrint64(e[n]).modulo(t).getLowBitsUnsigned();return r}var CI=Yt((e,t)=>e-t),qq=Hx((e,t,r,n)=>({real:e-r,imag:t-n})),Qx=Ar(_i,CI,qq),Kq={kernelName:_i,backendName:"cpu",kernelFunc:Qx};function EI(e,t){let r=new Array(e.rank);for(let a=0;a<r.length;a++)r[a]=e.shape[a]*t[a];let n=We(r,e.dtype);for(let a=0;a<n.values.length;++a){let s=n.indexToLoc(a),i=new Array(e.rank);for(let l=0;l<i.length;l++)i[l]=s[l]%e.shape[l];let o=e.locToIndex(i);n.values[a]=e.values[o]}return n}var kp=(e,t)=>{let r=t.value-e.value;return r===0?e.index-t.index:r};function RI(e,t,r=0,n=e.length-1){for(;n>r;){if(n-r>600){let o=n-r+1,l=t-r+1,u=Math.log(o),d=.5*Math.exp(2*u/3),h=.5*Math.sqrt(u*d*(o-d)/o)*Math.sign(l-o/2),p=Math.max(r,Math.floor(t-l*d/o+h)),c=Math.min(n,Math.floor(t+(o-l)*d/o+h));RI(e,t,p,c)}let a=e[t],s=r,i=n;for(w.swap(e,r,t),kp(e[n],a)>0&&w.swap(e,r,n);s<i;){for(w.swap(e,s,i),s++,i--;kp(e[s],a)<0;)s=s+1;for(;kp(e[i],a)>0;)i=i-1}kp(e[r],a)===0?w.swap(e,r,i):(i=i+1,w.swap(e,i,n)),i<=t&&(r=i+1),t<=i&&(n=i-1)}}function MI(e,t,r,n,a){let s=t[t.length-1],[i,o]=[e.length/s,s],l=w.getTypedArrayFromDType(r,i*n),u=w.getTypedArrayFromDType("int32",i*n);for(let h=0;h<i;h++){let p=h*o,c=e.subarray(p,p+o),f=new Array(c.length);c.forEach((A,x)=>f[x]={value:A,index:x}),n<f.length&&(RI(f,n),f=f.slice(0,n)),a&&f.sort(kp);let m=h*n,g=l.subarray(m,m+n),y=u.subarray(m,m+n);for(let A=0;A<n;A++)g[A]=f[A].value,y[A]=f[A].index}let d=t.slice();return d[d.length-1]=n,[We(d,r,l),We(d,"int32",u)]}function FI(e,t,r,n){let a=w.parseAxisParam(t,r)[0],s=[1,r[0],1];for(let f=0;f<a;f++)s[0]*=r[f];s[1]=r[a];for(let f=a+1;f<r.length;f++)s[2]*=r[f];let i={},o=new Int32Array(r[a]),l=new ar(s,n,e),u=[],d=s[0]===1&&s[2]===1;for(let f=0;f<r[a];f++){let m;if(d)m=e[f].toString();else{let g=[];for(let y=0;y<s[0];y++)for(let A=0;A<s[2];A++)g.push(l.get(y,f,A));m=g.join(",")}if(i[m]!==void 0)o[f]=i[m];else{let g=Object.keys(i).length;i[m]=g,o[f]=g,u.push(f)}}let h=s.slice();h[1]=Object.keys(i).length;let p=new ar(h,n);u.forEach((f,m)=>{for(let g=0;g<s[0];g++)for(let y=0;y<s[2];y++)p.set(l.get(g,f,y),g,m,y)});let c=r.slice();return c[a]=h[1],{outputValues:p.values,outputShape:c,indices:o}}var Xq="0.0.0";Tl("cpu",()=>new jx,1);var $I=mt(si,e=>e>=0?e:Math.exp(e)-1),Zq={kernelName:si,backendName:"cpu",kernelFunc:$I};function PI(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{alpha:s}=n;Te([a],"leakyRelu");let i=w.sizeFromShape(a.shape),o=r.data.get(a.dataId).values,l=w.getTypedArrayFromDType("float32",i);for(let u=0;u<o.length;u++)l[u]=o[u]<0?s*o[u]:o[u];return r.makeTensorInfo(a.shape,"float32",l)}var Yq={kernelName:hi,backendName:"cpu",kernelFunc:PI},Jq=Yt((e,t)=>e<0?t*e:e);function _I(e){let{inputs:t,backend:r}=e,{x:n,alpha:a}=t;Te([n,a],"prelu");let s=r.data.get(n.dataId).values,i=r.data.get(a.dataId).values,[o,l]=Jq(n.shape,a.shape,s,i,"float32");return r.makeTensorInfo(l,"float32",o)}var Qq={kernelName:Ii,backendName:"cpu",kernelFunc:_I},zI=mt(Si,e=>Math.max(0,e)),eK={kernelName:Si,backendName:"cpu",kernelFunc:zI},OI=mt(Ni,e=>Math.min(Math.max(0,e),6)),tK={kernelName:Ni,backendName:"cpu",kernelFunc:OI};function eb(e,t,r,n,a){if(r==="linear")return $a({inputs:{x:t},backend:e});if(r==="relu")return zI({inputs:{x:t},backend:e});if(r==="elu")return $I({inputs:{x:t},backend:e});if(r==="relu6")return OI({inputs:{x:t},backend:e});if(r==="prelu")return _I({inputs:{x:t,alpha:n},backend:e});if(r==="leakyrelu")return PI({inputs:{x:t},backend:e,attrs:{alpha:a}});if(r==="sigmoid")return bI({inputs:{x:t},backend:e});throw new Error(`Activation ${r} has not been implemented for the CPU backend.`)}function Mt(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{shape:s}=n,i=w.sizeFromShape(a.shape),o=w.inferFromImplicitShape(s,i),l=w.sizeFromShape(o);w.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${a.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),r.incRef(a.dataId);let u=r.data.get(a.dataId);if(u.complexTensorInfos!=null){let d=u.complexTensorInfos.real,h=u.complexTensorInfos.imag;d.shape=o,h.shape=o}return{dataId:a.dataId,shape:o,dtype:a.dtype}}var rK={kernelName:ul,backendName:"cpu",kernelFunc:Mt};function DI(e){let{inputs:t,backend:r,attrs:n}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=n;Te([a,s],"matMul");let l=a.shape.length,u=s.shape.length,d=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[u-1]:s.shape[u-2],p=i?a.shape[l-1]:a.shape[l-2],c=o?s.shape[u-2]:s.shape[u-1],f=a.shape.slice(0,-2),m=s.shape.slice(0,-2),g=w.sizeFromShape(f),y=w.sizeFromShape(m),A=Sl.assertAndGetBroadcastShape(a.shape.slice(0,-2),s.shape.slice(0,-2)).concat([p,c]);w.assert(d===h,()=>`Error in matMul: inner shapes (${d}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,d,p]:[g,p,d],b=o?[y,c,h]:[y,h,c],v=Mt({inputs:{x:a},backend:r,attrs:{shape:x}}),S=Mt({inputs:{x:s},backend:r,attrs:{shape:b}}),T=i?v.shape[1]:v.shape[2],E=i?v.shape[2]:v.shape[1],R=o?S.shape[1]:S.shape[2],_=Math.max(g,y),M=r.data.get(v.dataId).values,I=r.data.get(S.dataId).values,z=w.computeStrides(v.shape),O=w.computeStrides(S.shape),[j,X,D]=i?[z[0],1,z[1]]:[z[0],z[1],1],[Q,V,ee]=o?[1,O[1],O[0]]:[O[1],1,O[0]],J=E*R,se=We([_,E,R],v.dtype),Z=se.values,ae=r.blockSize;for(let de=0;de<_;de++)for(let Ae=0;Ae<E;Ae+=ae)for(let be=0;be<R;be+=ae)for(let Ee=0;Ee<T;Ee+=ae){let Me=Math.min(Ae+ae,E),De=Math.min(be+ae,R),Be=Math.min(Ee+ae,T);for(let Ze=Ae;Ze<Me;Ze++)for(let ot=be;ot<De;ot++){let dt=0;for(let pt=Ee;pt<Be;pt++){let $e=Math.min(de,g-1)*j,vt=Math.min(de,y-1)*ee,yt=M[$e+Ze*X+pt*D],$r=I[pt*Q+ot*V+vt];dt+=yt*$r}Z[de*J+(Ze*R+ot)]+=dt}}return r.disposeIntermediateTensorInfo(v),r.disposeIntermediateTensorInfo(S),r.makeTensorInfo(A,se.dtype,se.values)}var nK={kernelName:Zs,backendName:"cpu",kernelFunc:DI};function aK(e){let{inputs:t,backend:r,attrs:n}=e,{a,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:d,leakyreluAlpha:h}=n,p,c,f,m=[];p=DI({inputs:{a,b:s},attrs:{transposeA:l,transposeB:u},backend:r}),i&&(c=$h({inputs:{a:p,b:i},backend:r}),m.push(p),p=c),d&&(f=eb(r,p,d,o,h),m.push(p),p=f);for(let g of m)r.disposeIntermediateTensorInfo(g);return p}var sK={kernelName:Ms,backendName:"cpu",kernelFunc:aK},iK=mt(Pu,e=>Math.acos(e)),oK={kernelName:Pu,backendName:"cpu",kernelFunc:iK},lK=mt(_u,e=>Math.acosh(e)),uK={kernelName:_u,backendName:"cpu",kernelFunc:lK};function dK(e){let{inputs:t,backend:r}=e,n=t;Te(t,"addN");let a=n.map(o=>r.data.get(o.dataId).values),s=We(n[0].shape,n[0].dtype),i=s.values;for(let o=0;o<n.length;o++){let l=a[o];for(let u=0;u<i.length;u++)i[u]+=l[u]}return r.makeTensorInfo(s.shape,s.dtype,s.values)}var pK={kernelName:qs,backendName:"cpu",kernelFunc:dK};function hK(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n;Te(a,"all");let o=w.parseAxisParam(s,a.shape),l=o,u=N.getAxesPermutation(l,a.shape.length),d=a;u!=null&&(d=nn({inputs:{x:a},backend:r,attrs:{perm:u}}),l=N.getInnerMostAxes(l.length,a.shape.length)),N.assertAxesAreInnerMostDims("all",l,d.shape.length);let[h,p]=N.computeOutAndReduceShapes(d.shape,l),c=w.sizeFromShape(p),f=w.makeZerosTypedArray(w.sizeFromShape(h),d.dtype),m=r.data.get(d.dataId).values;for(let y=0;y<f.length;++y){let A=y*c,x=m[A];for(let b=0;b<c;++b){let v=m[A+b];x=x&&v}f[y]=x}u!=null&&r.disposeIntermediateTensorInfo(d);let g=r.makeTensorInfo(h,d.dtype,f);if(i){let y=N.expandShapeToKeepDim(h,o),A=Mt({inputs:{x:g},backend:r,attrs:{shape:y}});return r.disposeIntermediateTensorInfo(g),A}return g}var cK={kernelName:zu,backendName:"cpu",kernelFunc:hK};function fK(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n;Te(a,"any");let o=w.parseAxisParam(s,a.shape),l=o,u=N.getAxesPermutation(l,a.shape.length),d=a;u!=null&&(d=nn({inputs:{x:a},backend:r,attrs:{perm:u}}),l=N.getInnerMostAxes(l.length,a.shape.length)),N.assertAxesAreInnerMostDims("any",l,d.shape.length);let[h,p]=N.computeOutAndReduceShapes(d.shape,l),c=w.sizeFromShape(p),f=w.makeZerosTypedArray(w.sizeFromShape(h),d.dtype),m=r.data.get(d.dataId).values;for(let y=0;y<f.length;++y){let A=y*c,x=m[A];for(let b=0;b<c;++b){let v=m[A+b];x=x||v}f[y]=x}u!=null&&r.disposeIntermediateTensorInfo(d);let g=r.makeTensorInfo(h,d.dtype,f);if(i){let y=N.expandShapeToKeepDim(h,o),A=Mt({inputs:{x:g},backend:r,attrs:{shape:y}});return r.disposeIntermediateTensorInfo(g),A}return g}var mK={kernelName:Ou,backendName:"cpu",kernelFunc:fK};function gK(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s}=n;Te(a,"argMax");let i=w.parseAxisParam(s,a.shape),o=N.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=nn({inputs:{x:a},backend:r,attrs:{perm:o}}),u.push(l),i=N.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],N.assertAxesAreInnerMostDims("argMax",i,l.shape.length);let[d,h]=N.computeOutAndReduceShapes(l.shape,i),p=w.sizeFromShape(d),c=w.makeZerosTypedArray(p,"int32"),f=w.sizeFromShape(h),m=r.data.get(l.dataId).values;for(let g=0;g<c.length;++g){let y=g*f,A=m[y],x=0;for(let b=0;b<f;++b){let v=m[y+b];v>A&&(A=v,x=b)}c[g]=x}return u.forEach(g=>r.disposeIntermediateTensorInfo(g)),r.makeTensorInfo(d,"int32",c)}var yK={kernelName:Ks,backendName:"cpu",kernelFunc:gK};function AK(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s}=n;Te(a,"argMin");let i=w.parseAxisParam(s,a.shape),o=N.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=nn({inputs:{x:a},backend:r,attrs:{perm:o}}),u.push(l),i=N.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],N.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[d,h]=N.computeOutAndReduceShapes(l.shape,i),p=w.sizeFromShape(d),c=w.makeZerosTypedArray(p,"int32"),f=w.sizeFromShape(h),m=r.data.get(l.dataId).values;for(let g=0;g<c.length;++g){let y=g*f,A=m[y],x=0;for(let b=0;b<f;++b){let v=m[y+b];v<A&&(A=v,x=b)}c[g]=x}return u.forEach(g=>r.disposeIntermediateTensorInfo(g)),r.makeTensorInfo(d,"int32",c)}var xK={kernelName:Du,backendName:"cpu",kernelFunc:AK},bK=mt(Lu,e=>Math.asin(e)),vK={kernelName:Lu,backendName:"cpu",kernelFunc:bK},wK=mt(Bu,e=>Math.asinh(e)),kK={kernelName:Bu,backendName:"cpu",kernelFunc:wK},IK=mt(Wu,e=>Math.atan(e)),SK={kernelName:Wu,backendName:"cpu",kernelFunc:IK},TK=Yt((e,t)=>Math.atan2(e,t)),NK=Ar(Uu,TK),CK={kernelName:Uu,backendName:"cpu",kernelFunc:NK},EK=mt(Vu,e=>Math.atanh(e)),RK={kernelName:Vu,backendName:"cpu",kernelFunc:EK};function tb(e,t,r,n,a,s){let i=a.strideHeight,o=a.strideWidth,l=a.dilationHeight,u=a.dilationWidth,d=a.effectiveFilterHeight,h=a.effectiveFilterWidth,p=a.padInfo.top,c=a.padInfo.left,f=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=We(a.outShape,r),g=m.values,y=a.outShape[1]*a.outShape[2]*a.outShape[3],A=a.outShape[2]*a.outShape[3],x=a.outShape[3];for(let b=0;b<a.batchSize;++b){let v=b*y,S=b*n[0];for(let T=0;T<a.inChannels;++T)for(let E=0;E<a.outHeight;++E){let R=E*i-p,_=Math.max(0,R),M=Math.min(a.inHeight,d+R),I=v+E*A;for(let z=0;z<a.outWidth;++z){let O=z*o-c,j=Math.max(0,O),X=Math.min(a.inWidth,h+O),D=f,Q=0,V=0;for(let J=_;J<M;J+=l){let se=S+J*n[1];for(let Z=j;Z<X;Z+=u){let ae=se+Z*n[2],de=e[ae+T];s==="max"&&de>D?D=de:s==="avg"&&(Q+=de,V++)}if(isNaN(D))break}let ee=I+z*x+T;g[ee]=s==="avg"?Q/V:D}}}return m}function LI(e,t,r,n,a=!1,s=!1){let i=We(n.outShape,"int32"),o=n.strideHeight,l=n.strideWidth,u=n.dilationHeight,d=n.dilationWidth,h=n.effectiveFilterHeight,p=n.effectiveFilterWidth,c=n.padInfo.top,f=n.padInfo.left,m=We(t,r,e);for(let g=0;g<n.batchSize;++g)for(let y=0;y<n.inChannels;++y)for(let A=0;A<n.outHeight;++A){let x=A*o-c,b=x;for(;b<0;)b+=u;let v=Math.min(n.inHeight,h+x);for(let S=0;S<n.outWidth;++S){let T=S*l-f,E=T;for(;E<0;)E+=d;let R=Math.min(n.inWidth,p+T),_=Number.NEGATIVE_INFINITY,M=-1;for(let I=b;I<v;I+=u){let z=I-x;for(let O=E;O<R;O+=d){let j=O-T,X=m.get(g,I,O,y);X>_&&(_=X,a?M=s?((g*n.inHeight+I)*n.inWidth+O)*n.inChannels+y:(I*n.inWidth+O)*n.inChannels+y:M=z*p+j)}}i.set(M,g,A,S,y)}}return i}function BI(e,t,r,n,a,s){let i=a.strideDepth,o=a.strideHeight,l=a.strideWidth,u=a.dilationDepth,d=a.dilationHeight,h=a.dilationWidth,p=a.effectiveFilterDepth,c=a.effectiveFilterHeight,f=a.effectiveFilterWidth,m=a.padInfo.front,g=a.padInfo.top,y=a.padInfo.left,A=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=We(a.outShape,r),b=x.values,v=a.outShape[1]*a.outShape[2]*a.outShape[3]*a.outShape[4],S=a.outShape[2]*a.outShape[3]*a.outShape[4],T=a.outShape[3]*a.outShape[4],E=a.outShape[4];for(let R=0;R<a.batchSize;++R){let _=R*v,M=R*n[0];for(let I=0;I<a.inChannels;++I)for(let z=0;z<a.outDepth;++z){let O=z*i-m,j=O;for(;j<0;)j+=u;let X=Math.min(a.inDepth,p+O),D=_+z*S;for(let Q=0;Q<a.outHeight;++Q){let V=Q*o-g,ee=V;for(;ee<0;)ee+=d;let J=Math.min(a.inHeight,c+V),se=D+Q*T;for(let Z=0;Z<a.outWidth;++Z){let ae=Z*l-y,de=ae;for(;de<0;)de+=h;let Ae=Math.min(a.inWidth,f+ae),be=se+Z*E,Ee=A,Me=0,De=0;for(let Ze=j;Ze<X;Ze+=u){let ot=M+Ze*n[1];for(let dt=ee;dt<J;dt+=d){let pt=ot+dt*n[2];for(let $e=de;$e<Ae;$e+=h){let vt=pt+$e*n[3],yt=e[vt+I];if(s==="max"&&yt>Ee?Ee=yt:s==="avg"&&(Me+=yt,De++),isNaN(Ee))break}if(isNaN(Ee))break}if(isNaN(Ee))break}let Be=be+I;b[Be]=s==="avg"?Me/De:Ee}}}}return x}function MK(e,t){let r=We(t.outShape,"int32"),n=t.strideDepth,a=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,d=t.effectiveFilterHeight,h=t.effectiveFilterWidth,p=t.padInfo.front,c=t.padInfo.top,f=t.padInfo.left;for(let m=0;m<t.batchSize;++m)for(let g=0;g<t.inChannels;++g)for(let y=0;y<t.outDepth;++y){let A=y*n-p,x=A;for(;x<0;)x+=i;let b=Math.min(t.inDepth,u+A);for(let v=0;v<t.outHeight;++v){let S=v*a-c,T=S;for(;T<0;)T+=o;let E=Math.min(t.inHeight,d+S);for(let R=0;R<t.outWidth;++R){let _=R*s-f,M=_;for(;M<0;)M+=l;let I=Math.min(t.inWidth,h+_),z=Number.NEGATIVE_INFINITY,O=-1;for(let j=x;j<b;j+=i){let X=j-A;for(let D=T;D<E;D+=o){let Q=D-S;for(let V=M;V<I;V+=l){let ee=V-_,J=e.get(m,j,D,V,g);J>=z&&(z=J,O=X*d*h+Q*d+ee)}}}r.set(O,m,y,v,R,g)}}}return r}function FK(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t;Te(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n,u=1;w.assert(N.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let d=N.computePool2DInfo(a.shape,s,i,u,o,l),h;if(d.filterWidth===1&&d.filterHeight===1&&w.arraysEqual(d.inShape,d.outShape))h=$a({inputs:{x:a},backend:r});else{let p=r.data.get(a.dataId).values,c=w.computeStrides(a.shape),f=tb(p,a.shape,a.dtype,c,d,"avg");h=r.makeTensorInfo(d.outShape,a.dtype,f.values)}return h}var $K={kernelName:Xs,backendName:"cpu",kernelFunc:FK};function PK(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=n;Te(a,"avgPool3d");let d=N.computePool3DInfo(a.shape,s,i,1,o,l,u),h=r.data.get(a.dataId).values,p=BI(h,a.shape,a.dtype,w.computeStrides(a.shape),d,"avg");return r.makeTensorInfo(p.shape,"float32",p.values)}var _K={kernelName:Kp,backendName:"cpu",kernelFunc:PK};function zK(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n;Te([a,s],"avgPool3DGrad");let d=N.computePool3DInfo(s.shape,i,o,1,l,u),h=d.strideDepth,p=d.strideHeight,c=d.strideWidth,f=d.filterDepth,m=d.filterHeight,g=d.filterWidth,y=d.dilationDepth,A=d.dilationHeight,x=d.dilationWidth,b=d.effectiveFilterDepth,v=d.effectiveFilterHeight,S=d.effectiveFilterWidth,T=b-1-d.padInfo.front,E=S-1-d.padInfo.left,R=v-1-d.padInfo.top,_=We(s.shape,"float32"),M=1/(f*m*g),I=r.bufferSync(a);for(let z=0;z<d.batchSize;++z)for(let O=0;O<d.inChannels;++O)for(let j=0;j<d.inDepth;++j)for(let X=0;X<d.inHeight;++X)for(let D=0;D<d.inWidth;++D){let Q=j-T,V=X-R,ee=D-E,J=0;for(let se=0;se<b;se+=y){let Z=(Q+se)/h;if(!(Z<0||Z>=d.outDepth||Math.floor(Z)!==Z))for(let ae=0;ae<v;ae+=A){let de=(V+ae)/p;if(!(de<0||de>=d.outHeight||Math.floor(de)!==de))for(let Ae=0;Ae<S;Ae+=x){let be=(ee+Ae)/c;be<0||be>=d.outWidth||Math.floor(be)!==be||(J+=I.get(z,Z,de,be,O))}}}_.set(J*M,z,j,X,D,O)}return r.makeTensorInfo(_.shape,_.dtype,_.values)}var OK={kernelName:Hf,backendName:"cpu",kernelFunc:zK};function DK(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,input:s}=t,i=s;Te([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=n,d=N.computePool2DInfo(i.shape,o,l,1,u),h=d.strideHeight,p=d.strideWidth,c=d.filterHeight,f=d.filterWidth,m=d.dilationHeight,g=d.dilationWidth,y=d.effectiveFilterHeight,A=d.effectiveFilterWidth,x=A-1-d.padInfo.left,b=y-1-d.padInfo.top,v=We(i.shape,"float32"),S=1/(c*f),T=r.data.get(a.dataId).values,E=We(a.shape,"float32",T);for(let R=0;R<d.batchSize;++R)for(let _=0;_<d.inChannels;++_)for(let M=0;M<d.inHeight;++M)for(let I=0;I<d.inWidth;++I){let z=M-b,O=I-x,j=0;for(let X=0;X<y;X+=m){let D=(z+X)/h;if(!(D<0||D>=d.outHeight||Math.floor(D)!==D))for(let Q=0;Q<A;Q+=g){let V=(O+Q)/p;V<0||V>=d.outWidth||Math.floor(V)!==V||(j+=E.get(R,D,V,_))}}v.set(j*S,R,M,I,_)}return r.makeTensorInfo(v.shape,v.dtype,v.values)}var LK={kernelName:jf,backendName:"cpu",kernelFunc:DK};function BK(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,scale:s,offset:i,mean:o,variance:l}=t;w.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),w.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),w.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),Te([a,o,l,s,i],"batchNorm");let{varianceEpsilon:u}=n;u==null&&(u=.001);let d=r.data.get(a.dataId).values,h=r.data.get(o.dataId).values,p=r.data.get(l.dataId).values,c=s?r.data.get(s.dataId).values:new Float32Array([1]),f=i?r.data.get(i.dataId).values:new Float32Array([0]),m=new Float32Array(d.length),g=f.length,y=c.length,A=p.length,x=h.length,b=0,v=0,S=0,T=0;for(let E=0;E<d.length;++E)m[E]=f[b++]+(d[E]-h[v++])*c[S++]/Math.sqrt(p[T++]+u),b>=g&&(b=0),v>=x&&(v=0),S>=y&&(S=0),T>=A&&(T=0);return r.makeTensorInfo(a.shape,a.dtype,m)}var WK={kernelName:ui,backendName:"cpu",kernelFunc:BK};function VK(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockShape:s,crops:i}=n;Te([a],"batchToSpaceND");let o=s.reduce((y,A)=>y*A),l=N.getReshaped(a.shape,s,o),u=N.getPermuted(l.length,s.length),d=N.getReshapedPermuted(a.shape,s,o),h=N.getSliceBeginCoords(i,s.length),p=N.getSliceSize(d,i,s.length),c=Mt({inputs:{x:a},backend:r,attrs:{shape:l}}),f=nn({inputs:{x:c},backend:r,attrs:{perm:u}}),m=Mt({inputs:{x:f},backend:r,attrs:{shape:d}}),g=$o({inputs:{x:m},backend:r,attrs:{begin:h,size:p}});return r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(f),r.disposeIntermediateTensorInfo(m),g}var UK={kernelName:Bo,backendName:"cpu",kernelFunc:VK};function GK(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,weights:s}=t,{size:i}=n,o=r.data.get(a.dataId).values,l=r.data.get(s.dataId).values,u=qx(o,l,s.dtype,s.shape,i);return r.makeTensorInfo([i],s.dtype,u)}var jK={kernelName:qf,backendName:"cpu",kernelFunc:GK};function HK(e){let{inputs:t,backend:r}=e,{s0:n,s1:a}=t,s=r.data.get(n.dataId).values,i=r.data.get(a.dataId).values,o=N.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return r.makeTensorInfo([o.length],"int32",Int32Array.from(o))}var qK={kernelName:Kf,backendName:"cpu",kernelFunc:HK},KK=mt(Ja,(e,t)=>{let r=t;return e>r.clipValueMax?r.clipValueMax:e<r.clipValueMin?r.clipValueMin:e}),XK={kernelName:Ja,backendName:"cpu",kernelFunc:KK},ZK=e=>{let{x:t}=e.inputs,r=e.backend,n=new Float32Array(w.sizeFromShape(t.shape)),a=r.data.get(t.dataId),s=a.complexTensorInfos.real,i=a.complexTensorInfos.imag,o=r.data.get(s.dataId).values,l=r.data.get(i.dataId).values;for(let u=0;u<o.length;u++){let d=o[u],h=l[u];n[u]=Math.hypot(d,h)}return r.makeOutput(n,t.shape,"float32")},YK={kernelName:Zp,backendName:"cpu",kernelFunc:ZK};function Eu(e){let{inputs:t,backend:r}=e,{input:n}=t,a=r.data.get(n.dataId).complexTensorInfos.imag,s=r.data.get(a.dataId).values;return r.makeTensorInfo(a.shape,a.dtype,s)}var JK={kernelName:eh,backendName:"cpu",kernelFunc:Eu};function Ru(e){let{inputs:t,backend:r,attrs:n}=e,{axis:a}=n,s=w.parseAxisParam(a,t[0].shape)[0],i=N.computeOutShape(t.map(m=>m.shape),s);if(w.sizeFromShape(i)===0)return r.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(m=>w.sizeFromShape(m.shape)>0);if(o.length===1)return $a({inputs:{x:o[0]},backend:r});let l=o.map(m=>m.shape);if(N.assertParamsConsistent(l,s),o[0].dtype==="complex64"){let m=o.map(b=>Fo({inputs:{input:b},backend:r})),g=o.map(b=>Eu({inputs:{input:b},backend:r})),y=Ru({inputs:m,backend:r,attrs:{axis:s}}),A=Ru({inputs:g,backend:r,attrs:{axis:s}}),x=pn({inputs:{real:y,imag:A},backend:r});return m.forEach(b=>r.disposeIntermediateTensorInfo(b)),g.forEach(b=>r.disposeIntermediateTensorInfo(b)),r.disposeIntermediateTensorInfo(y),r.disposeIntermediateTensorInfo(A),x}let u=o.map(m=>{let g=w.sizeFromShape(m.shape.slice(s));return Mt({inputs:{x:m},backend:r,attrs:{shape:[-1,g]}})}),d=u.map(m=>({vals:r.data.get(m.dataId).values,shape:m.shape}));i=N.computeOutShape(u.map(m=>m.shape),1);let h=u[0].shape[0]===1,p=Kx(d,i,t[0].dtype,h),c=N.computeOutShape(o.map(m=>m.shape),s),f=r.makeTensorInfo(c,t[0].dtype,p);return u.forEach(m=>r.disposeIntermediateTensorInfo(m)),f}var QK={kernelName:Wo,backendName:"cpu",kernelFunc:Ru};function WI(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:d}=n;Te([a,s],"conv2d");let h=N.convertConv2DDataFormat(l),p=N.computeConv2DInfo(a.shape,s.shape,i,u,o,d,!1,h),c=p.filterHeight,f=p.filterWidth,m=p.dilationHeight,g=p.dilationWidth,y=p.padInfo.left,A=p.padInfo.top,x=p.dataFormat==="channelsLast",b=new ar(p.outShape,a.dtype),v=w.computeStrides(a.shape),S=w.computeStrides(s.shape),T=v[0],E=x?v[1]:v[2],R=x?v[2]:1,_=x?1:v[1],M=b.strides[0],I=x?b.strides[1]:b.strides[2],z=x?b.strides[2]:1,O=x?1:b.strides[1],j=r.data.get(a.dataId).values,X=r.data.get(s.dataId).values,D=b.values;for(let Q=0;Q<p.batchSize;++Q){let V=Q*T,ee=Q*M;for(let J=0;J<p.outHeight;++J){let se=ee+J*I,Z=J*p.strideHeight-A;for(let ae=0;ae<c;++ae){let de=Z+ae*m;if(de<0||de>=p.inHeight)continue;let Ae=ae*S[0],be=V+de*E;for(let Ee=0;Ee<p.outWidth;++Ee){let Me=se+Ee*z,De=Ee*p.strideWidth-y;for(let Be=0;Be<f;++Be){let Ze=De+Be*g;if(Ze<0||Ze>=p.inWidth)continue;let ot=Ae+Be*S[1],dt=be+Ze*R,pt=ot;for(let $e=0;$e<p.inChannels;++$e){let vt=j[dt+$e*_];for(let yt=0;yt<p.outChannels;++yt)D[Me+yt*O]+=vt*X[pt+yt];pt+=p.outChannels}}}}}}return r.makeTensorInfo(b.shape,b.dtype,D)}var eX={kernelName:Qs,backendName:"cpu",kernelFunc:WI};function tX(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:d}=n;Te([a,s],"conv2dBackpropFilter");let h=N.convertConv2DDataFormat(l),p=N.computeConv2DInfo(a.shape,d,i,1,o,u,!1,h),{strideHeight:c,strideWidth:f,filterHeight:m,filterWidth:g}=p,y=p.dataFormat==="channelsLast",A=new ar(p.filterShape,"float32"),x=p.padInfo.left,b=p.padInfo.top,v=r.data.get(a.dataId).values,S=r.data.get(s.dataId).values,T=new ar(a.shape,a.dtype,v),E=new ar(s.shape,s.dtype,S);for(let R=0;R<m;++R){let _=Math.max(0,Math.ceil((b-R)/c)),M=Math.min(p.outHeight,(p.inHeight+b-R)/c);for(let I=0;I<g;++I){let z=Math.max(0,Math.ceil((x-I)/f)),O=Math.min(p.outWidth,(p.inWidth+x-I)/f);for(let j=0;j<p.inChannels;++j)for(let X=0;X<p.outChannels;++X){let D=0;for(let Q=0;Q<p.batchSize;++Q)for(let V=_;V<M;++V){let ee=R+V*c-b;for(let J=z;J<O;++J){let se=I+J*f-x;y?D+=T.get(Q,ee,se,j)*E.get(Q,V,J,X):D+=T.get(Q,j,ee,se)*E.get(Q,X,V,J)}}A.set(D,R,I,j,X)}}}return r.makeTensorInfo(A.shape,A.dtype,A.values)}var rX={kernelName:Xf,backendName:"cpu",kernelFunc:tX};function nX(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:d}=n;Te([a,s],"conv2dBackpropInput");let h=w.computeStrides(s.shape),p=w.computeStrides(a.shape),c=N.convertConv2DDataFormat(u),f=N.computeConv2DInfo(i,s.shape,o,1,l,d,!1,c),m=new ar(f.inShape,"float32"),g=m.values,y=r.data.get(a.dataId).values,A=r.data.get(s.dataId).values,[x,b,v]=h,{batchSize:S,filterHeight:T,filterWidth:E,inChannels:R,inHeight:_,inWidth:M,outChannels:I,outHeight:z,outWidth:O,strideHeight:j,strideWidth:X}=f;c=f.dataFormat;let D=T-1-f.padInfo.top,Q=E-1-f.padInfo.left,V=c==="channelsLast",ee=m.strides[0],J=V?m.strides[1]:m.strides[2],se=V?m.strides[2]:1,Z=V?1:m.strides[1],ae=p[0],de=V?p[1]:p[2],Ae=V?p[2]:1,be=V?1:p[1];for(let Ee=0;Ee<S;++Ee)for(let Me=0;Me<R;++Me)for(let De=0;De<_;++De){let Be=De-D,Ze=Math.max(0,Math.ceil(Be/j)),ot=Math.min(z,(T+Be)/j);for(let dt=0;dt<M;++dt){let pt=dt-Q,$e=Math.max(0,Math.ceil(pt/X)),vt=Math.min(O,(E+pt)/X),yt=0;for(let dr=Ze;dr<ot;++dr){let Zr=dr*j-Be;for(let er=$e;er<vt;++er){let pr=er*X-pt,Qn=ae*Ee+de*dr+Ae*er,Yr=x*(T-1-Zr)+b*(E-1-pr)+v*Me;for(let tr=0;tr<I;++tr){let vn=y[Qn+be*tr],wn=A[Yr+tr];yt+=vn*wn}}}let $r=ee*Ee+J*De+se*dt+Z*Me;g[$r]=yt}}return r.makeTensorInfo(m.shape,m.dtype,m.values)}var aX={kernelName:ei,backendName:"cpu",kernelFunc:nX};function sX(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=n;Te([a,s],"conv3d");let u=N.computeConv3DInfo(a.shape,s.shape,i,l,o),{filterDepth:d,filterHeight:h,filterWidth:p,dilationDepth:c,dilationHeight:f,dilationWidth:m,padInfo:g}=u,y=g.front,A=g.left,x=g.top,b=new ar(u.outShape,a.dtype),v=r.data.get(a.dataId).values,S=r.data.get(s.dataId).values,T=b.values,E=w.computeStrides(a.shape),R=w.computeStrides(s.shape);for(let _=0;_<u.batchSize;++_){let M=_*E[0],I=_*b.strides[0];for(let z=0;z<u.outDepth;++z){let O=I+z*b.strides[1],j=z*u.strideDepth-y;for(let X=0;X<d;++X){let D=j+X*c;if(D<0||D>=u.inDepth)continue;let Q=X*R[0],V=M+D*E[1];for(let ee=0;ee<u.outHeight;++ee){let J=O+ee*b.strides[2],se=ee*u.strideHeight-x;for(let Z=0;Z<h;++Z){let ae=se+Z*f;if(ae<0||ae>=u.inHeight)continue;let de=Q+Z*R[1],Ae=V+ae*E[2];for(let be=0;be<u.outWidth;++be){let Ee=J+be*u.outChannels,Me=be*u.strideWidth-A;for(let De=0;De<p;++De){let Be=Me+De*m;if(Be<0||Be>=u.inWidth)continue;let Ze=de+De*R[2],ot=Ae+Be*u.inChannels,dt=Ze;for(let pt=0;pt<u.inChannels;++pt){let $e=v[ot+pt];for(let vt=0;vt<u.outChannels;++vt)T[Ee+vt]+=$e*S[dt+vt];dt+=u.outChannels}}}}}}}}return r.makeTensorInfo(b.shape,b.dtype,b.values)}var iX={kernelName:Yp,backendName:"cpu",kernelFunc:sX};function oX(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,dy:s}=t,{strides:i,pad:o,filterShape:l}=n;Te([a,s],"conv3dBackpropFilterV2");let u=w.computeStrides(a.shape),d=w.computeStrides(s.shape),h=N.computeConv3DInfo(a.shape,l,i,1,o),p=h.strideDepth,c=h.strideHeight,f=h.strideWidth,m=h.filterDepth,g=h.filterHeight,y=h.filterWidth,A=new ar(h.filterShape,"float32"),x=A.values,[b,v,S,T]=A.strides,E=r.data.get(s.dataId).values,[R,_,M,I]=d,z=r.data.get(a.dataId).values,[O,j,X,D]=u,Q=h.padInfo.front,V=h.padInfo.left,ee=h.padInfo.top;for(let J=0;J<m;++J){let se=Math.max(0,Math.ceil((Q-J)/p)),Z=Math.min(h.outDepth,(h.inDepth+Q-J)/p),ae=J*b;for(let de=0;de<g;++de){let Ae=Math.max(0,Math.ceil((ee-de)/c)),be=Math.min(h.outHeight,(h.inHeight+ee-de)/c),Ee=de*v+ae;for(let Me=0;Me<y;++Me){let De=Math.max(0,Math.ceil((V-Me)/f)),Be=Math.min(h.outWidth,(h.inWidth+V-Me)/f),Ze=Me*S+Ee;for(let ot=0;ot<h.inChannels;++ot){let dt=ot*T+Ze;for(let pt=0;pt<h.outChannels;++pt){let $e=0;for(let vt=0;vt<h.batchSize;++vt){let yt=vt*O,$r=vt*R;for(let dr=se;dr<Z;++dr){let Zr=(J+dr*p-Q)*j+yt,er=dr*_+$r;for(let pr=Ae;pr<be;++pr){let Qn=(de+pr*c-ee)*X+Zr,Yr=pr*M+er;for(let tr=De;tr<Be;++tr){let vn=(Me+tr*f-V)*D+Qn,wn=tr*I+Yr;$e+=z[vn+ot]*E[wn+pt]}}}}x[dt+pt]=$e}}}}}return r.makeTensorInfo(A.shape,A.dtype,A.values)}var lX={kernelName:Zf,backendName:"cpu",kernelFunc:oX};function uX(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,filter:s}=t,{pad:i,strides:o,inputShape:l}=n;Te([a],"conv3dBackpropInputV2");let u=w.computeStrides(a.shape),d=w.computeStrides(s.shape),h=N.computeConv3DInfo(l,s.shape,o,1,i),p=new ar(h.inShape,"float32"),c=p.values,[f,m,g,y]=p.strides,A=r.data.get(a.dataId).values,[x,b,v,S]=u,T=r.data.get(s.dataId).values,[E,R,_,M]=d,{batchSize:I,filterDepth:z,filterHeight:O,filterWidth:j,inChannels:X,inDepth:D,inHeight:Q,inWidth:V,outChannels:ee,outDepth:J,outHeight:se,outWidth:Z,strideDepth:ae,strideHeight:de,strideWidth:Ae}=h,be=z-1-h.padInfo.front,Ee=O-1-h.padInfo.top,Me=j-1-h.padInfo.left;for(let De=0;De<I;++De)for(let Be=0;Be<X;++Be)for(let Ze=0;Ze<D;++Ze){let ot=Ze-be,dt=Math.max(0,Math.ceil(ot/ae)),pt=Math.min(J,(z+ot)/ae);for(let $e=0;$e<Q;++$e){let vt=$e-Ee,yt=Math.max(0,Math.ceil(vt/de)),$r=Math.min(se,(O+vt)/de);for(let dr=0;dr<V;++dr){let Zr=dr-Me,er=Math.max(0,Math.ceil(Zr/Ae)),pr=Math.min(Z,(j+Zr)/Ae),Qn=0;for(let Yr=dt;Yr<pt;++Yr){let tr=Yr*ae-ot;for(let vn=yt;vn<$r;++vn){let wn=vn*de-vt;for(let fs=er;fs<pr;++fs){let ro=fs*Ae-Zr,ic=x*De+b*Yr+v*vn+S*fs,ms=E*(z-1-tr)+R*(O-1-wn)+_*(j-1-ro)+M*Be;for(let Ua=0;Ua<ee;++Ua){let Qd=A[ic+Ua],Hl=T[ms+Ua];Qn+=Qd*Hl}}}}c[f*De+m*Ze+g*$e+y*dr+Be]=Qn}}}return r.makeTensorInfo(p.shape,p.dtype,p.values)}var dX={kernelName:Yf,backendName:"cpu",kernelFunc:uX},pX=mt(ti,e=>Math.cos(e)),hX={kernelName:ti,backendName:"cpu",kernelFunc:pX},cX=mt(ri,e=>Math.cosh(e)),fX={kernelName:ri,backendName:"cpu",kernelFunc:cX};function mX(e){let{inputs:t,backend:r,attrs:n}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=n,[d,h,p,c]=a.shape,f=s.shape[0],[m,g]=o,y=We([f,m,g,c],"float32"),A=r.data.get(s.dataId).values,x=r.data.get(i.dataId).values,b=r.data.get(a.dataId).values,v=w.computeStrides(a.shape),S=w.computeStrides(y.shape);for(let T=0;T<f;T++){let E=T*4,R=A[E],_=A[E+1],M=A[E+2],I=A[E+3],z=x[T];if(z>=d)continue;let O=m>1?(M-R)*(h-1)/(m-1):0,j=g>1?(I-_)*(p-1)/(g-1):0;for(let X=0;X<m;X++){let D=m>1?R*(h-1)+X*O:.5*(R+M)*(h-1);if(D<0||D>h-1){for(let Q=0;Q<g;Q++)for(let V=0;V<c;V++){let ee=V+Q*S[2]+X*S[1]+T*S[0];y.values[ee]=u}continue}if(l==="bilinear"){let Q=Math.floor(D),V=Math.ceil(D),ee=D-Q;for(let J=0;J<g;J++){let se=g>1?_*(p-1)+J*j:.5*(_+I)*(p-1);if(se<0||se>p-1){for(let Ae=0;Ae<c;Ae++){let be=Ae+J*S[2]+X*S[1]+T*S[0];y.values[be]=u}continue}let Z=Math.floor(se),ae=Math.ceil(se),de=se-Z;for(let Ae=0;Ae<c;Ae++){let be=Ae+Z*v[2]+Q*v[1]+z*v[0],Ee=b[be];be=Ae+ae*v[2]+Q*v[1]+z*v[0];let Me=b[be];be=Ae+Z*v[2]+V*v[1]+z*v[0];let De=b[be];be=Ae+ae*v[2]+V*v[1]+z*v[0];let Be=b[be],Ze=Ee+(Me-Ee)*de,ot=De+(Be-De)*de;be=Ae+J*S[2]+X*S[1]+T*S[0],y.values[be]=Ze+(ot-Ze)*ee}}}else for(let Q=0;Q<g;++Q){let V=g>1?_*(p-1)+Q*j:.5*(_+I)*(p-1);if(V<0||V>p-1){for(let se=0;se<c;se++){let Z=se+Q*S[2]+X*S[1]+T*S[0];y.values[Z]=u}continue}let ee=Math.round(V),J=Math.round(D);for(let se=0;se<c;se++){let Z=se+ee*v[2]+J*v[1]+z*v[0],ae=se+Q*S[2]+X*S[1]+T*S[0];y.values[ae]=b[Z]}}}}return r.makeTensorInfo(y.shape,y.dtype,y.values)}var gX={kernelName:Uo,backendName:"cpu",kernelFunc:mX};function yX(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=n;Te(a,"cumprod");let l=N.getAxesPermutation([s],a.shape.length),u=a;l!=null&&(u=nn({inputs:{x:a},backend:r,attrs:{perm:l}}));let d=N.getInnerMostAxes(1,a.shape.length)[0];if(d!==u.shape.length-1)throw new Error(`backend.cumprod in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${d}`);let h=Cr(u.dtype,"int32"),p=w.makeOnesTypedArray(w.sizeFromShape(u.shape),h),c=r.data.get(u.dataId).values,f=u.shape[u.shape.length-1],m=o?(y,A)=>y+f-A-1:(y,A)=>y+A;for(let y=0;y<c.length;y+=f)for(let A=0;A<f;A++){let x=m(y,A);if(A===0)p[x]=i?1:c[x];else{let b=m(y,A-1);p[x]=i?c[b]*p[b]:c[x]*p[b]}}let g=r.makeTensorInfo(u.shape,h,p);if(l!=null){let y=N.getUndoAxesPermutation(l),A=nn({inputs:{x:g},backend:r,attrs:{perm:y}});return r.disposeIntermediateTensorInfo(g),r.disposeIntermediateTensorInfo(u),A}return g}var AX={kernelName:Gu,backendName:"cpu",kernelFunc:yX};function xX(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=n;Te(a,"cumsum");let l=N.getAxesPermutation([s],a.shape.length),u=a;l!=null&&(u=nn({inputs:{x:a},backend:r,attrs:{perm:l}}));let d=N.getInnerMostAxes(1,a.shape.length)[0];if(d!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${d}`);let h=Cr(u.dtype,"int32"),p=w.makeZerosTypedArray(w.sizeFromShape(u.shape),h),c=r.data.get(u.dataId).values,f=u.shape[u.shape.length-1],m=o?(y,A)=>y+f-A-1:(y,A)=>y+A;for(let y=0;y<c.length;y+=f)for(let A=0;A<f;A++){let x=m(y,A);if(A===0)p[x]=i?0:c[x];else{let b=m(y,A-1);p[x]=i?c[b]+p[b]:c[x]+p[b]}}let g=r.makeTensorInfo(u.shape,h,p);if(l!=null){let y=N.getUndoAxesPermutation(l),A=nn({inputs:{x:g},backend:r,attrs:{perm:y}});return r.disposeIntermediateTensorInfo(g),r.disposeIntermediateTensorInfo(u),A}return g}var bX={kernelName:Vo,backendName:"cpu",kernelFunc:xX};function vX(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,weights:s}=t,{size:i,binaryOutput:o}=n;if(a.shape.length===1){let l=r.data.get(a.dataId).values,u=r.data.get(s.dataId).values,d=qx(l,u,s.dtype,s.shape,i);return r.makeTensorInfo([i],s.dtype,d)}else if(a.shape.length===2){let l=r.bufferSync(a),u=r.bufferSync(s),d=Y6(l,u,i,o);return r.makeTensorInfo(d.shape,s.dtype,d.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${a.shape.length}.`)}var wX={kernelName:Jf,backendName:"cpu",kernelFunc:vX};function kX(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockSize:s,dataFormat:i}=n;w.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`);let o=a.shape[0],l=a.shape[1],u=a.shape[2],d=a.shape[3],h=l*s,p=u*s,c=d/(s*s),f=r.data.get(a.dataId).values,m=new Float32Array(o*h*p*c),g=0;for(let y=0;y<o;++y)for(let A=0;A<h;++A){let x=Math.floor(A/s),b=A%s;for(let v=0;v<p;++v){let S=Math.floor(v/s),T=v%s,E=(b*s+T)*c;for(let R=0;R<c;++R){let _=R+E+d*(S+u*(x+l*y));m[g++]=f[_]}}}return r.makeTensorInfo([o,h,p,c],a.dtype,m)}var IX={kernelName:Go,backendName:"cpu",kernelFunc:kX};function VI(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=n;Te([a,s],"depthwiseConv2DNative");let d=w.computeStrides(a.shape),h=w.computeStrides(s.shape),p=l;p==null&&(p=[1,1]),w.assert(N.eitherStridesOrDilationsAreOne(i,p),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${p}'`);let c=N.computeConv2DInfo(a.shape,s.shape,i,p,o,u,!0),{filterHeight:f,filterWidth:m,dilationHeight:g,dilationWidth:y,padInfo:A}=c,x=A.left,b=A.top,v=c.outChannels/c.inChannels,S=new ar(c.outShape,a.dtype),T=r.data.get(a.dataId).values,E=r.data.get(s.dataId).values,R=S.values;for(let _=0;_<c.batchSize;++_){let M=_*d[0],I=_*S.strides[0];for(let z=0;z<c.outHeight;++z){let O=I+z*S.strides[1],j=z*c.strideHeight-b;for(let X=0;X<f;++X){let D=j+X*g;if(D<0||D>=c.inHeight)continue;let Q=X*h[0],V=M+D*d[1];for(let ee=0;ee<c.outWidth;++ee){let J=O+ee*S.strides[2],se=ee*c.strideWidth-x;for(let Z=0;Z<m;++Z){let ae=se+Z*y;if(ae<0||ae>=c.inWidth)continue;let de=Q+Z*h[1],Ae=V+ae*c.inChannels,be=J,Ee=de;for(let Me=0;Me<c.inChannels;++Me){let De=T[Ae+Me];for(let Be=0;Be<v;++Be)R[be+Be]+=De*E[Ee+Be];be+=v,Ee+=v}}}}}}return r.makeTensorInfo(S.shape,S.dtype,S.values)}var SX={kernelName:ni,backendName:"cpu",kernelFunc:VI};function TX(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:d}=n;Te([a,s],"depthwiseConv2dNativeBackpropFilter");let h=N.computeConv2DInfo(a.shape,d,i,o,l,u,!0),{strideHeight:p,strideWidth:c,filterHeight:f,filterWidth:m}=h,g=new ar(h.filterShape,"float32"),y=h.padInfo.left,A=h.padInfo.top,x=h.outChannels/h.inChannels,b=r.data.get(a.dataId).values,v=new ar(a.shape,a.dtype,b),S=r.data.get(s.dataId).values,T=new ar(s.shape,s.dtype,S);for(let E=0;E<f;++E){let R=Math.max(0,Math.ceil((A-E)/p)),_=Math.min(h.outHeight,(h.inHeight+A-E)/p);for(let M=0;M<m;++M){let I=Math.max(0,Math.ceil((y-M)/c)),z=Math.min(h.outWidth,(h.inWidth+y-M)/c);for(let O=0;O<h.outChannels;++O){let j=Math.trunc(O/x),X=O%x,D=0;for(let Q=0;Q<h.batchSize;++Q)for(let V=R;V<_;++V){let ee=E+V*p-A;for(let J=I;J<z;++J){let se=M+J*c-y;D+=v.get(Q,ee,se,j)*T.get(Q,V,J,O)}}g.set(D,E,M,j,X)}}}return r.makeTensorInfo(g.shape,g.dtype,g.values)}var NX={kernelName:Qf,backendName:"cpu",kernelFunc:TX};function CX(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:d}=n;Te([a,s],"depthwiseConv2DNativeBackpropInput");let h=w.computeStrides(a.shape),p=w.computeStrides(s.shape),c=N.computeConv2DInfo(d,s.shape,i,o,l,u,!0),f=new ar(c.inShape,"float32"),m=f.values,[g,y,A]=f.strides,x=r.data.get(a.dataId).values,[b,v,S]=h,T=r.data.get(s.dataId).values,[E,R,_]=p,{batchSize:M,filterHeight:I,filterWidth:z,inChannels:O,inHeight:j,inWidth:X,outChannels:D,outHeight:Q,outWidth:V,strideHeight:ee,strideWidth:J}=c,se=I-1-c.padInfo.top,Z=z-1-c.padInfo.left,ae=D/O;for(let de=0;de<M;++de)for(let Ae=0;Ae<O;++Ae)for(let be=0;be<j;++be){let Ee=be-se,Me=Math.max(0,Math.ceil(Ee/ee)),De=Math.min(Q,(I+Ee)/ee);for(let Be=0;Be<X;++Be){let Ze=Be-Z,ot=Math.max(0,Math.ceil(Ze/J)),dt=Math.min(V,(z+Ze)/J),pt=0;for(let $e=Me;$e<De;++$e){let vt=$e*ee-Ee;for(let yt=ot;yt<dt;++yt){let $r=yt*J-Ze,dr=b*de+v*$e+S*yt,Zr=E*(I-1-vt)+R*(z-1-$r)+_*Ae;for(let er=0;er<ae;++er){let pr=Ae*ae+er,Qn=x[dr+pr],Yr=T[Zr+er];pt+=Qn*Yr}}}m[g*de+y*be+A*Be+Ae]=pt}}return r.makeTensorInfo(f.shape,f.dtype,f.values)}var EX={kernelName:em,backendName:"cpu",kernelFunc:CX};function RX(e){let{inputs:t,backend:r}=e,{x:n}=t,a=w.sizeFromShape(n.shape),s=r.data.get(n.dataId).values,i=We([a,a],n.dtype),o=i.values;for(let u=0;u<s.length;u++)o[u*a+u]=s[u];let l=[...n.shape,...n.shape];return r.makeTensorInfo(l,i.dtype,i.values)}var MX={kernelName:tm,backendName:"cpu",kernelFunc:RX},FX={kernelName:Jp,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:r})=>{let{x:n,filter:a}=e,{strides:s,pad:i,dilations:o}=r,l=t,u=l.data.get(n.dataId).values,d=n.shape.length,h=l.data.get(a.dataId).values,p=a.shape.length,{batchSize:c,inHeight:f,inWidth:m,inChannels:g,outHeight:y,outWidth:A,padInfo:x,strideHeight:b,strideWidth:v,filterHeight:S,filterWidth:T,dilationHeight:E,dilationWidth:R,outShape:_}=N.computeDilation2DInfo(n.shape,a.shape,s,i,"NHWC",o),M=w.sizeFromShape(_),I=_.length,z=w.getArrayFromDType(n.dtype,M);for(let O=0;O<c;++O)for(let j=0;j<y;++j){let X=j*b-x.top;for(let D=0;D<A;++D){let Q=D*v-x.left;for(let V=0;V<g;++V){let ee=Number.MIN_SAFE_INTEGER;for(let se=0;se<S;++se){let Z=X+se*E;if(Z>=0&&Z<f)for(let ae=0;ae<T;++ae){let de=Q+ae*R;if(de>=0&&de<m){let Ae=w.locToIndex([O,Z,de,V],d,w.computeStrides(n.shape)),be=w.locToIndex([se,ae,V],p,w.computeStrides(a.shape)),Ee=u[Ae]+h[be];Ee>ee&&(ee=Ee)}}}let J=w.locToIndex([O,j,D,V],I,w.computeStrides(_));z[J]=ee}}}return{dataId:l.write(w.toTypedArray(z,n.dtype),_,n.dtype),shape:_,dtype:n.dtype}}},$X={kernelName:gf,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:r})=>{let{x:n,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=r,u=t,d=w.toNestedArray(n.shape,u.data.get(n.dataId).values),h=w.toNestedArray(a.shape,u.data.get(a.dataId).values),{batchSize:p,inHeight:c,inWidth:f,inChannels:m,outHeight:g,outWidth:y,padInfo:A,strideHeight:x,strideWidth:b,filterHeight:v,filterWidth:S,dilationHeight:T,dilationWidth:E,outShape:R}=N.computeDilation2DInfo(n.shape,a.shape,i,o,"NHWC",l);w.assert(s.rank===R.length,()=>`Error in ${gf}, dy must have the same rank as output ${R.length}, but got ${s.rank}`);let _=w.toNestedArray(R,u.data.get(s.dataId).values),M=w.makeZerosNestedTypedArray(a.shape,a.dtype);for(let I=0;I<p;++I)for(let z=0;z<g;++z){let O=z*x-A.top;for(let j=0;j<y;++j){let X=j*b-A.left;for(let D=0;D<m;++D){let Q=Number.MIN_SAFE_INTEGER,V=0,ee=0;for(let J=0;J<v;++J){let se=O+J*T;if(se>=0&&se<c)for(let Z=0;Z<S;++Z){let ae=X+Z*E;if(ae>=0&&ae<f){let de=d[I][se][ae][D]+h[J][Z][D];de>Q&&(Q=de,V=J,ee=Z)}}}M[V][ee][D]+=_[I][z][j][D]}}}return{dataId:u.write(w.toTypedArray(M,n.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},PX={kernelName:mf,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:r})=>{let{x:n,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=r,u=t,d=w.toNestedArray(n.shape,u.data.get(n.dataId).values),h=w.toNestedArray(a.shape,u.data.get(a.dataId).values),{batchSize:p,inHeight:c,inWidth:f,inChannels:m,outHeight:g,outWidth:y,padInfo:A,strideHeight:x,strideWidth:b,filterHeight:v,filterWidth:S,dilationHeight:T,dilationWidth:E,outShape:R}=N.computeDilation2DInfo(n.shape,a.shape,i,o,"NHWC",l);w.assert(s.rank===R.length,()=>`Error in ${mf}, dy must have the same rank as output ${R.length}, but got ${s.rank}`);let _=w.toNestedArray(R,u.data.get(s.dataId).values),M=w.makeZerosNestedTypedArray(n.shape,n.dtype);for(let I=0;I<p;++I)for(let z=0;z<g;++z){let O=z*x-A.top;for(let j=0;j<y;++j){let X=j*b-A.left;for(let D=0;D<m;++D){let Q=Number.MIN_SAFE_INTEGER,V=O<0?0:O,ee=X<0?0:X;for(let J=0;J<v;++J){let se=O+J*T;if(se>=0&&se<c)for(let Z=0;Z<S;++Z){let ae=X+Z*E;if(ae>=0&&ae<f){let de=d[I][se][ae][D]+h[J][Z][D];de>Q&&(Q=de,V=se,ee=ae)}}}M[I][V][ee][D]+=_[I][z][j][D]}}}return{dataId:u.write(w.toTypedArray(M,n.dtype),n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}};function Ph(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n;Te(a,"sum");let o;a.dtype==="bool"?o=Gs({inputs:{x:a},backend:r,attrs:{dtype:"int32"}}):o=$a({inputs:{x:a},backend:r});let l=o.shape.length,u=w.parseAxisParam(s,o.shape),d=N.getAxesPermutation(u,l),h=u,p=o;d!=null&&(p=nn({inputs:{x:o},backend:r,attrs:{perm:d}}),h=N.getInnerMostAxes(h.length,l)),N.assertAxesAreInnerMostDims("sum",h,p.shape.length);let[c,f]=N.computeOutAndReduceShapes(p.shape,h),m=N.upcastType(p.dtype,"int32"),g=$f(r,c,m),y=w.sizeFromShape(f),A=r.data.get(g.dataId).values,x=r.data.get(p.dataId).values;for(let b=0;b<A.length;++b){let v=b*y,S=0;for(let T=0;T<y;++T)S+=x[v+T];A[b]=S}if(i){let b=N.expandShapeToKeepDim(g.shape,u),v=g;g=Mt({inputs:{x:g},backend:r,attrs:{shape:b}}),r.disposeIntermediateTensorInfo(v)}return r.disposeIntermediateTensorInfo(o),d!=null&&r.disposeIntermediateTensorInfo(p),g}var _X={kernelName:Fi,backendName:"cpu",kernelFunc:Ph};function zX(e){let{inputs:t,backend:r,attrs:n}=e,{equation:a}=n,s=t,{allDims:i,summedDims:o,idDims:l}=N.decodeEinsumEquation(a,s.length);N.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:d}=N.getEinsumComputePath(o,l),h=d.length,p=null,c=i.length,f=[];for(let m=0;m<h;++m){for(let g of d[m]){let{permutationIndices:y,expandDims:A}=N.getEinsumPermutation(c,l[g]),x;N.isIdentityPermutation(y)?x=s[g]:(x=nn({inputs:{x:s[g]},backend:r,attrs:{perm:y}}),f.push(x));let b=x.shape.slice();for(let v=0;v<A.length;++v)b.splice(A[v],0,1);w.arraysEqual(x.shape,b)||(x=Mt({inputs:{x},backend:r,attrs:{shape:b}}),f.push(x)),p===null?p=x:(p=f0({inputs:{a:x,b:p},backend:r}),f.push(p))}m<h-1&&(u[m]>=0&&(p=Ph({inputs:{x:p},backend:r,attrs:{axis:u[m]-(i.length-c),keepDims:!1}}),f.push(p)),c--)}for(let m of f)m!==p&&r.disposeIntermediateTensorInfo(m);return p}var OX={kernelName:Qp,backendName:"cpu",kernelFunc:zX};function DX(e){let{inputs:t,backend:r}=e,{dy:n,y:a}=t;Te([n,a],"eluGrad");let s=new Float32Array(w.sizeFromShape(a.shape)),i=r.data.get(a.dataId).values,o=r.data.get(n.dataId).values;for(let l=0;l<i.length;++l){let u=i[l];u>=1?s[l]=o[l]:s[l]=o[l]*(u+1)}return r.makeTensorInfo(a.shape,"float32",s)}var LX={kernelName:rm,backendName:"cpu",kernelFunc:DX},BX=N.ERF_P,WX=N.ERF_A1,VX=N.ERF_A2,UX=N.ERF_A3,GX=N.ERF_A4,jX=N.ERF_A5,HX=mt(ju,e=>{let t=Math.sign(e),r=Math.abs(e),n=1/(1+BX*r);return t*(1-((((jX*n+GX)*n+UX)*n+VX)*n+WX)*n*Math.exp(-r*r))}),qX={kernelName:ju,backendName:"cpu",kernelFunc:HX};function _f(e){let{inputs:t,backend:r,attrs:n}=e,{input:a}=t,{dim:s}=n,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(w.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),Mt({inputs:{x:a},backend:r,attrs:{shape:o}})}var KX={kernelName:Ho,backendName:"cpu",kernelFunc:_f},XX=Yt((e,t)=>e/t),rb=Ar(ai,XX),Gy={kernelName:ai,backendName:"cpu",kernelFunc:rb};function UI(e,t,r){let n=e.shape,a=n[0],s=n[1],i=r.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,u=[a,s],d=w.sizeFromShape(u),h=w.getTypedArrayFromDType("float32",d),p=w.getTypedArrayFromDType("float32",d);for(let g=0;g<a;g++){let y=$o({inputs:{x:o},backend:r,attrs:{begin:[g,0],size:[1,s]}}),A=$o({inputs:{x:l},backend:r,attrs:{begin:[g,0],size:[1,s]}}),x=pn({inputs:{real:y,imag:A},backend:r}),{real:b,imag:v}=ZX(x,t,r),S=N.mergeRealAndImagArrays(b,v);for(let T=0;T<s;T++){let E=N.getComplexWithIndex(S,T);h[g*s+T]=E.real,p[g*s+T]=E.imag}r.disposeIntermediateTensorInfo(y),r.disposeIntermediateTensorInfo(A),r.disposeIntermediateTensorInfo(x)}let c=r.makeTensorInfo(u,"float32",h),f=r.makeTensorInfo(u,"float32",p),m=pn({inputs:{real:c,imag:f},backend:r});return r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(f),m}function ZX(e,t,r){let n=w.sizeFromShape(e.shape),a=r.data.get(e.dataId),s=r.data.get(a.complexTensorInfos.real.dataId).values,i=r.data.get(a.complexTensorInfos.imag.dataId).values;if(YX(n)){let o=jy(s,i,n,t,r),l=[e.shape[0],e.shape[1]];if(t){let u=r.makeTensorInfo(l,"float32",o.real),d=r.makeTensorInfo(l,"float32",o.imag),h=r.makeTensorInfo([],"float32",w.createScalarValue(n,"float32")),p=$a({inputs:{x:h},backend:r}),c=Gy.kernelFunc({inputs:{a:u,b:h},backend:r}),f=Gy.kernelFunc({inputs:{a:d,b:p},backend:r}),m=r.data.get(c.dataId).values,g=r.data.get(f.dataId).values;return r.disposeIntermediateTensorInfo(u),r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(f),{real:m,imag:g}}return o}else{let o=N.mergeRealAndImagArrays(s,i),l=JX(o,n,t);return N.splitRealAndImagArrays(l)}}function YX(e){return(e&e-1)===0}function jy(e,t,r,n,a){if(r===1)return{real:e,imag:t};let s=N.mergeRealAndImagArrays(e,t),i=r/2,o=N.complexWithEvenIndex(s),l=o.real,u=o.imag,d=[l.length],h=a.makeTensorInfo(d,"float32",l),p=a.makeTensorInfo(d,"float32",u),c=pn({inputs:{real:h,imag:p},backend:a}),f=N.complexWithOddIndex(s),m=f.real,g=f.imag,y=[m.length],A=a.makeTensorInfo(y,"float32",m),x=a.makeTensorInfo(y,"float32",g),b=pn({inputs:{real:A,imag:x},backend:a}),v=jy(l,u,i,n,a),S=v.real,T=v.imag,E=[S.length],R=a.makeTensorInfo(E,"float32",S),_=a.makeTensorInfo(E,"float32",T),M=pn({inputs:{real:R,imag:_},backend:a}),I=jy(m,g,i,n,a),z=I.real,O=I.imag,j=[z.length],X=a.makeTensorInfo(j,"float32",z),D=a.makeTensorInfo(j,"float32",O),Q=pn({inputs:{real:X,imag:D},backend:a}),V=N.exponents(r,n),ee=[V.real.length],J=a.makeTensorInfo(ee,"float32",V.real),se=a.makeTensorInfo(ee,"float32",V.imag),Z=pn({inputs:{real:J,imag:se},backend:a}),ae=f0({inputs:{a:Z,b:Q},backend:a}),de=$h({inputs:{a:M,b:ae},backend:a}),Ae=Qx({inputs:{a:M,b:ae},backend:a}),be=Fo({inputs:{input:de},backend:a}),Ee=Fo({inputs:{input:Ae},backend:a}),Me=Eu({inputs:{input:de},backend:a}),De=Eu({inputs:{input:Ae},backend:a}),Be=Ru({inputs:[be,Ee],backend:a,attrs:{axis:0}}),Ze=Ru({inputs:[Me,De],backend:a,attrs:{axis:0}}),ot=a.data.get(Be.dataId).values,dt=a.data.get(Ze.dataId).values;return a.disposeIntermediateTensorInfo(h),a.disposeIntermediateTensorInfo(p),a.disposeIntermediateTensorInfo(c),a.disposeIntermediateTensorInfo(A),a.disposeIntermediateTensorInfo(x),a.disposeIntermediateTensorInfo(b),a.disposeIntermediateTensorInfo(R),a.disposeIntermediateTensorInfo(_),a.disposeIntermediateTensorInfo(M),a.disposeIntermediateTensorInfo(X),a.disposeIntermediateTensorInfo(D),a.disposeIntermediateTensorInfo(Q),a.disposeIntermediateTensorInfo(J),a.disposeIntermediateTensorInfo(se),a.disposeIntermediateTensorInfo(Z),a.disposeIntermediateTensorInfo(ae),a.disposeIntermediateTensorInfo(de),a.disposeIntermediateTensorInfo(Ae),a.disposeIntermediateTensorInfo(be),a.disposeIntermediateTensorInfo(Me),a.disposeIntermediateTensorInfo(Ee),a.disposeIntermediateTensorInfo(De),a.disposeIntermediateTensorInfo(Be),a.disposeIntermediateTensorInfo(Ze),{real:ot,imag:dt}}function JX(e,t,r){let n=new Float32Array(t*2);for(let a=0;a<t;a++){let s=0,i=0;for(let o=0;o<t;o++){let l=N.exponent(a*o,t,r),u=N.getComplexWithIndex(e,o);s+=u.real*l.real-u.imag*l.imag,i+=u.real*l.imag+u.imag*l.real}r&&(s/=t,i/=t),N.assignToTypedArray(n,s,i,a)}return n}function QX(e){let{inputs:t,backend:r}=e,{input:n}=t,a=w.sizeFromShape(n.shape),s=n.shape[n.shape.length-1],i=a/s,o=Mt({inputs:{x:n},backend:r,attrs:{shape:[i,s]}}),l=UI(o,!1,r),u=Mt({inputs:{x:l},backend:r,attrs:{shape:n.shape}});return r.disposeIntermediateTensorInfo(o),r.disposeIntermediateTensorInfo(l),u}var eZ={kernelName:nm,backendName:"cpu",kernelFunc:QX};function nb(e){let{backend:t,attrs:r}=e,{shape:n,value:a,dtype:s}=r,i=s||w.inferDtype(a),o=w.getArrayFromDType(i,w.sizeFromShape(n));return rZ(o,a,i),t.makeTensorInfo(n,i,o)}var tZ={kernelName:Hu,backendName:"cpu",kernelFunc:nb};function rZ(e,t,r){e.fill(t)}var nZ={kernelName:Ko,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:r})=>{let{image:n}=e,a=r,s=w.getTypedArrayFromDType(n.dtype,w.sizeFromShape(n.shape)),[i,o,l,u]=n.shape,d=a.data.get(n.dataId).values;for(let h=0;h<i;h++){let p=h*l*o*u;for(let c=0;c<o;c++){let f=c*(l*u);for(let m=0;m<l;m++){let g=m*u;for(let y=0;y<u;y++){let A=Math.round(l-m-1),x=p+f+g+y,b=d[x];if(A>=0&&A<l){let v=A*u,S=p+f+v+y;b=d[S]}s[x]=b}}}}return{dataId:a.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},aZ=Yt((e,t)=>Math.floor(e/t)),sZ=Ar(li,aZ,null,"int32"),iZ={kernelName:li,backendName:"cpu",kernelFunc:sZ};function oZ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:d,dilations:h,dimRoundingMode:p,activation:c,leakyreluAlpha:f}=n,m=WI({inputs:{x:a,filter:s},backend:r,attrs:{strides:l,pad:u,dataFormat:d,dilations:h,dimRoundingMode:p}});if(i){let g=m;m=$h({inputs:{a:m,b:i},backend:r}),r.disposeIntermediateTensorInfo(g)}if(c){let g=m;m=eb(r,m,c,o,f),r.disposeIntermediateTensorInfo(g)}return m}var lZ={kernelName:Fs,backendName:"cpu",kernelFunc:oZ};function uZ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:d,dilations:h,dimRoundingMode:p,activation:c,leakyreluAlpha:f}=n,m=VI({inputs:{x:a,filter:s},backend:r,attrs:{strides:l,pad:u,dataFormat:d,dilations:h,dimRoundingMode:p}});if(i){let g=m;m=$h({inputs:{a:m,b:i},backend:r}),r.disposeIntermediateTensorInfo(g)}if(c){let g=m;m=eb(r,m,c,o,f),r.disposeIntermediateTensorInfo(g)}return m}var dZ={kernelName:$s,backendName:"cpu",kernelFunc:uZ};function pZ(e){let{inputs:t,backend:r}=e,{params:n,indices:a}=t,s=w.sizeFromShape(n.shape),i=a.shape,o=i[i.length-1],[l,u,d,h]=N.prepareAndValidate(n,a);if(u===0)return r.makeTensorInfo(l,n.dtype,[]);let p=r.data.get(a.dataId).values,c=r.bufferSync(n),f=sI(p,c,n.dtype,u,o,d,h,n.shape,s);return r.makeTensorInfo(l,n.dtype,f.values)}var hZ={kernelName:Zo,backendName:"cpu",kernelFunc:pZ};function cZ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,indices:s}=t,{axis:i,batchDims:o}=n;Te([a,s],"gatherV2");let l=w.parseAxisParam(i,a.shape)[0],u=r.data.get(s.dataId).values,d=a.shape[l];for(let b=0;b<u.length;++b){let v=u[b];w.assert(v<=d-1&&v>=0,()=>`GatherV2: the index value ${v} is not in [0, ${d-1}]`)}let h=o;o==null&&(h=0);let p=w.sizeFromShape(s.shape),c=N.segment_util.collectGatherOpShapeInfo(a,s,l,h),f=Mt({inputs:{x:a},backend:r,attrs:{shape:[c.batchSize,c.outerSize,c.dimSize,c.sliceSize]}}),m=Mt({inputs:{x:s},backend:r,attrs:{shape:[c.batchSize,p/c.batchSize]}}),g=[c.batchSize,c.outerSize,p/c.batchSize,c.sliceSize],y=r.bufferSync(m),A=r.bufferSync(f),x=iI(A,y,g);return r.disposeIntermediateTensorInfo(f),r.disposeIntermediateTensorInfo(m),r.makeTensorInfo(c.outputShape,x.dtype,x.values)}var fZ={kernelName:Xo,backendName:"cpu",kernelFunc:cZ};function mZ(e){let{inputs:t,backend:r}=e,{input:n}=t,a=w.sizeFromShape(n.shape),s=n.shape[n.shape.length-1],i=a/s,o=Mt({inputs:{x:n},backend:r,attrs:{shape:[i,s]}}),l=UI(o,!0,r),u=Mt({inputs:{x:l},backend:r,attrs:{shape:n.shape}});return r.disposeIntermediateTensorInfo(o),r.disposeIntermediateTensorInfo(l),u}var gZ={kernelName:am,backendName:"cpu",kernelFunc:mZ},yZ=mt(qu,e=>Number.isFinite(e)?1:0,"bool"),AZ={kernelName:qu,backendName:"cpu",kernelFunc:yZ},xZ=mt(Ku,e=>Math.abs(e)===1/0?1:0,"bool"),bZ={kernelName:Ku,backendName:"cpu",kernelFunc:xZ},vZ=mt(Xu,e=>Number.isNaN(e)?1:0,"bool"),wZ={kernelName:Xu,backendName:"cpu",kernelFunc:vZ};function kZ(e){let{backend:t,attrs:r}=e,{start:n,stop:a,num:s}=r,i=pI(n,a,s);return t.makeTensorInfo([i.length],"float32",i)}var IZ={kernelName:sm,backendName:"cpu",kernelFunc:kZ},SZ=mt(Zu,e=>Math.log1p(e)),TZ={kernelName:Zu,backendName:"cpu",kernelFunc:SZ},NZ=Yt((e,t)=>e&&t),CZ=Ar(el,NZ,null,"bool"),EZ={kernelName:el,backendName:"cpu",kernelFunc:CZ},RZ=mt(Yu,e=>e?0:1,"bool"),MZ={kernelName:Yu,backendName:"cpu",kernelFunc:RZ},FZ=Yt((e,t)=>e||t),$Z=Ar(th,FZ,null,"bool"),PZ={kernelName:th,backendName:"cpu",kernelFunc:$Z};function _Z(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;Te(a,"LRN");let u=a.shape[3],d=u-1,h=r.data.get(a.dataId).values,p=w.sizeFromShape(a.shape),c=new Float32Array(p);function f(m){let g=m%u,y=m-g+Math.max(0,g-s),A=m-g+Math.min(g+s,d),x=0;for(;y<=A;y++){let b=h[y];x+=b*b}return x}for(let m=0;m<p;m++){let g=f(m),y=h[m]*Math.pow(i+o*g,-l);c[m]=y}return r.makeTensorInfo(a.shape,a.dtype,c)}var zZ={kernelName:rh,backendName:"cpu",kernelFunc:_Z};function OZ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:d}=n;Te(i,"LRNGrad");let h=w.sizeFromShape(i.shape),p=i.shape[3],c=r.data.get(i.dataId).values,f=r.data.get(a.dataId).values,m=r.data.get(s.dataId).values,g=new Float32Array(h),y=h;for(let A=0;A<y;A++){let x=A%p,b=A-x+Math.max(0,x-o),v=A-x+Math.min(p,x+o+1),S=0;for(let T=b;T<v;T++)S+=Math.pow(f[T],2);S=u*S+l;for(let T=b;T<v;T++){let E=-2*u*d*f[T]*m[A]/S;A===T&&(E+=Math.pow(S,-d)),E*=c[A],g[T]+=E}}return r.makeTensorInfo(i.shape,a.dtype,g)}var DZ={kernelName:im,backendName:"cpu",kernelFunc:OZ};function GI(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{reductionIndices:s,keepDims:i}=n,o=r,l=a.shape,u=l.length,d=w.parseAxisParam(s,l),h=d,p=N.getAxesPermutation(h,u),c=o.data.get(a.dataId).values;if(p!=null){let b=new Array(u);for(let v=0;v<b.length;v++)b[v]=l[p[v]];c=Zx(c,l,a.dtype,p,b),h=N.getInnerMostAxes(h.length,u),l=b}Te(a,"max"),N.assertAxesAreInnerMostDims("max",h,u);let[f,m]=N.computeOutAndReduceShapes(l,h),g=w.sizeFromShape(m),y=cI(c,g,f,a.dtype),A=o.write(y,f,a.dtype),x=f;return i&&(x=N.expandShapeToKeepDim(f,d)),{dataId:A,shape:x,dtype:a.dtype}}var LZ={kernelName:fi,backendName:"cpu",kernelFunc:GI};function BZ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t;Te(a,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n,u=1;w.assert(N.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let d=N.computePool2DInfo(a.shape,s,i,u,o,l),h;if(d.filterWidth===1&&d.filterHeight===1&&w.arraysEqual(d.inShape,d.outShape))h=$a({inputs:{x:a},backend:r});else{let p=r.data.get(a.dataId).values,c=w.computeStrides(a.shape),f=tb(p,a.shape,a.dtype,c,d,"max");h=r.makeTensorInfo(d.outShape,a.dtype,f.values)}return h}var WZ={kernelName:gi,backendName:"cpu",kernelFunc:BZ};function VZ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=n;Te(a,"maxPool3d");let d=N.computePool3DInfo(a.shape,s,i,1,o,l,u),h=r.data.get(a.dataId).values,p=BI(h,a.shape,a.dtype,w.computeStrides(a.shape),d,"max");return r.makeTensorInfo(p.shape,"float32",p.values)}var UZ={kernelName:nh,backendName:"cpu",kernelFunc:VZ};function GZ(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n;Te([a,s],"maxPool3DGrad");let d=N.computePool3DInfo(s.shape,i,o,1,l,u),h=r.bufferSync(s),p=MK(h,d),c=d.strideDepth,f=d.strideHeight,m=d.strideWidth,g=d.dilationDepth,y=d.dilationHeight,A=d.dilationWidth,x=d.effectiveFilterDepth,b=d.effectiveFilterHeight,v=d.effectiveFilterWidth,S=x-1-d.padInfo.front,T=v-1-d.padInfo.left,E=b-1-d.padInfo.top,R=We(s.shape,"float32"),_=r.bufferSync(a);for(let M=0;M<d.batchSize;++M)for(let I=0;I<d.inChannels;++I)for(let z=0;z<d.inDepth;++z)for(let O=0;O<d.inHeight;++O)for(let j=0;j<d.inWidth;++j){let X=z-S,D=O-E,Q=j-T,V=0;for(let ee=0;ee<x;ee+=g){let J=(X+ee)/c;if(!(J<0||J>=d.outDepth||Math.floor(J)!==J))for(let se=0;se<b;se+=y){let Z=(D+se)/f;if(!(Z<0||Z>=d.outHeight||Math.floor(Z)!==Z))for(let ae=0;ae<v;ae+=A){let de=(Q+ae)/m;if(de<0||de>=d.outWidth||Math.floor(de)!==de)continue;let Ae=x*b*v-1-p.get(M,J,Z,de,I),be=ee*b*v+se*v+ae,Ee=Ae===be?1:0;Ee!==0&&(V+=_.get(M,J,Z,de,I)*Ee)}}}R.set(V,M,z,O,j,I)}return r.makeTensorInfo(R.shape,R.dtype,R.values)}var jZ={kernelName:lm,backendName:"cpu",kernelFunc:GZ};function HZ(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,input:s,output:i}=t,o=s;Te([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:d,dimRoundingMode:h}=n,p=N.computePool2DInfo(o.shape,l,u,1,d,h),c=r.data.get(o.dataId).values,f=We(p.outShape,o.dtype,LI(c,o.shape,o.dtype,p).values),m=p.strideHeight,g=p.strideWidth,y=p.dilationHeight,A=p.dilationWidth,x=p.effectiveFilterHeight,b=p.effectiveFilterWidth,v=b-1-p.padInfo.left,S=x-1-p.padInfo.top,T=We(o.shape,"float32"),E=r.data.get(a.dataId).values,R=We(a.shape,"float32",E);for(let _=0;_<p.batchSize;++_)for(let M=0;M<p.inChannels;++M)for(let I=0;I<p.inHeight;++I)for(let z=0;z<p.inWidth;++z){let O=I-S,j=z-v,X=0;for(let D=0;D<x;D+=y){let Q=(O+D)/m;if(!(Q<0||Q>=p.outHeight||Math.floor(Q)!==Q))for(let V=0;V<b;V+=A){let ee=(j+V)/g;if(ee<0||ee>=p.outWidth||Math.floor(ee)!==ee)continue;let J=x*b-1-f.get(_,Q,ee,M),se=D*b+V,Z=J===se?1:0;Z!==0&&(X+=R.get(_,Q,ee,M)*Z)}}T.set(X,_,I,z,M)}return r.makeTensorInfo(T.shape,T.dtype,T.values)}var qZ={kernelName:om,backendName:"cpu",kernelFunc:HZ};function KZ(e,t,r,n,a){let s=w.computeStrides(t),i=tb(e,t,r,s,a,"max"),o=LI(e,t,r,a,!0,n);return[i.values,o.values]}var XZ={kernelName:um,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:r})=>{let{x:n}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=r;Te(n,"MaxPoolWithArgmax");let u=l.data.get(n.dataId).values,d=N.computePool2DInfo(n.shape,a,s,[1,1],i),[h,p]=KZ(u,n.shape,n.dtype,o,d),c=l.write(h,d.outShape,n.dtype),f=l.write(p,d.outShape,n.dtype);return[{dataId:c,shape:d.outShape,dtype:n.dtype},{dataId:f,shape:d.outShape,dtype:"int32"}]}};function ZZ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n,o=w.parseAxisParam(s,a.shape),l=N.computeOutAndReduceShapes(a.shape,o)[1],u=w.sizeFromShape(l),d=[],h=r.makeTensorInfo([],"float32",new Float32Array([u]));d.push(h);let p=Gs({inputs:{x:a},backend:r,attrs:{dtype:"float32"}});d.push(p);let c=rb({inputs:{a:p,b:h},backend:r});d.push(c);let f=Ph({inputs:{x:c},backend:r,attrs:{axis:s,keepDims:i}});return d.forEach(m=>r.disposeIntermediateTensorInfo(m)),f}var YZ={kernelName:yi,backendName:"cpu",kernelFunc:ZZ};function JZ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n;Te(a,"min");let o=w.parseAxisParam(s,a.shape),l=o,u=N.getAxesPermutation(l,a.shape.length),d=a;u!=null&&(d=nn({inputs:{x:a},backend:r,attrs:{perm:u}}),l=N.getInnerMostAxes(l.length,a.shape.length)),N.assertAxesAreInnerMostDims("min",l,d.shape.length);let[h,p]=N.computeOutAndReduceShapes(d.shape,l),c=w.sizeFromShape(p),f=w.makeZerosTypedArray(w.sizeFromShape(h),d.dtype),m=r.data.get(d.dataId).values;for(let y=0;y<f.length;++y){let A=y*c,x=m[A];for(let b=0;b<c;++b){let v=m[A+b];(Number.isNaN(v)||v<x)&&(x=v)}f[y]=x}u!=null&&r.disposeIntermediateTensorInfo(d);let g=r.makeTensorInfo(h,d.dtype,f);if(i){let y=N.expandShapeToKeepDim(h,o),A=Mt({inputs:{x:g},backend:r,attrs:{shape:y}});return r.disposeIntermediateTensorInfo(g),A}return g}var QZ={kernelName:Ai,backendName:"cpu",kernelFunc:JZ};function eY(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{paddings:s,mode:i}=n;Te(a,"mirrorPad");let o=s.map((A,x)=>A[0]+a.shape[x]+A[1]),l=s.map(A=>A[0]),u=s.map((A,x)=>A[0]+a.shape[x]),d=i==="reflect"?0:1,h=r.data.get(a.dataId).values,p=a.shape.length,c=w.computeStrides(a.shape),f=w.sizeFromShape(o),m=o.length,g=w.computeStrides(o),y=w.getTypedArrayFromDType(a.dtype,f);for(let A=0;A<f;A++){let x=w.indexToLoc(A,m,g);for(let v=0;v<m;v++)x[v]<l[v]?x[v]=l[v]*2-x[v]-d:x[v]>=u[v]&&(x[v]=(u[v]-1)*2-x[v]+d);x=x.map((v,S)=>v-l[S]);let b=w.locToIndex(x,p,c);y[A]=h[b]}return{dataId:r.write(y,o,a.dtype),shape:o,dtype:a.dtype}}var tY={kernelName:bi,backendName:"cpu",kernelFunc:eY},rY=Yt((e,t)=>{let r=e%t;return e<0&&t<0||e>=0&&t>=0?r:(r+t)%t}),nY=Ar(Ju,rY),aY={kernelName:Ju,backendName:"cpu",kernelFunc:nY},sY=Oo(Vf());function jI(e){let{inputs:t,backend:r,attrs:n}=e,{logits:a}=t,{dim:s}=n,i=a.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=w.parseAxisParam([o],a.shape),u=GI({inputs:{x:a},backend:r,attrs:{reductionIndices:l,keepDims:!1}}),d=N.expandShapeToKeepDim(u.shape,l),h=Mt({inputs:{x:u},backend:r,attrs:{shape:d}}),p=Qx({inputs:{a,b:h},backend:r}),c=rI({inputs:{x:p},backend:r}),f=Ph({inputs:{x:c},backend:r,attrs:{axis:l,keepDims:!1}}),m=Mt({inputs:{x:f},backend:r,attrs:{shape:d}}),g=rb({inputs:{a:c,b:m},backend:r});return r.disposeIntermediateTensorInfo(u),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(f),r.disposeIntermediateTensorInfo(m),g}var iY={kernelName:$i,backendName:"cpu",kernelFunc:jI};function oY(e){let{inputs:t,backend:r,attrs:n}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=n;Te(a,"multinomial");let l=o?a:jI({inputs:{logits:a},backend:r,attrs:{dim:-1}}),u=l.shape[0],d=l.shape[1],h=r.data.get(l.dataId).values,p=[u,s],c=w.makeZerosTypedArray(w.sizeFromShape(p),"int32");for(let f=0;f<u;++f){let m=f*d,g=new Float32Array(d-1);g[0]=h[m];for(let x=1;x<g.length;++x)g[x]=g[x-1]+h[m+x];let y=sY.alea(i.toString()),A=f*s;for(let x=0;x<s;++x){let b=y();c[A+x]=g.length;for(let v=0;v<g.length;v++)if(b<g[v]){c[A+x]=v;break}}}return o||r.disposeIntermediateTensorInfo(l),r.makeTensorInfo(p,"int32",c)}var lY={kernelName:dm,backendName:"cpu",kernelFunc:oY},uY=qn.nonMaxSuppressionV3Impl;function dY(e){let{inputs:t,backend:r,attrs:n}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=n;Te(a,"NonMaxSuppression");let u=r.data.get(a.dataId).values,d=r.data.get(s.dataId).values,{selectedIndices:h}=uY(u,d,i,o,l);return r.makeTensorInfo([h.length],"int32",new Int32Array(h))}var pY={kernelName:nl,backendName:"cpu",kernelFunc:dY},hY=qn.nonMaxSuppressionV4Impl;function cY(e){let{inputs:t,backend:r,attrs:n}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=n;Te(a,"NonMaxSuppressionPadded");let d=r.data.get(a.dataId).values,h=r.data.get(s.dataId).values,{selectedIndices:p,validOutputs:c}=hY(d,h,i,o,l,u);return[r.makeTensorInfo([p.length],"int32",new Int32Array(p)),r.makeTensorInfo([],"int32",new Int32Array([c]))]}var fY={kernelName:Qu,backendName:"cpu",kernelFunc:cY},mY=qn.nonMaxSuppressionV5Impl;function gY(e){let{inputs:t,backend:r,attrs:n}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=n;Te(a,"NonMaxSuppressionWithScore");let d=r.data.get(a.dataId).values,h=r.data.get(s.dataId).values,p=i,c=o,f=l,m=u,{selectedIndices:g,selectedScores:y}=mY(d,h,p,c,f,m);return[r.makeTensorInfo([g.length],"int32",new Int32Array(g)),r.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var yY={kernelName:al,backendName:"cpu",kernelFunc:gY};function AY(e){let{inputs:t,backend:r,attrs:n}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=n;Te(a,"oneHot");let l=w.sizeFromShape(a.shape),u=new Float32Array(l*s);u.fill(o);let d=r.data.get(a.dataId).values;for(let h=0;h<l;++h)d[h]>=0&&d[h]<s&&(u[h*s+d[h]]=i);return r.makeTensorInfo([...a.shape,s],"int32",u)}var xY={kernelName:il,backendName:"cpu",kernelFunc:AY};function zf(e){let{inputs:t,backend:r}=e,{x:n}=t;if(n.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(n.dtype==="complex64"){let a=Fo({inputs:{input:n},backend:r}),s=zf({inputs:{x:a},backend:r}),i=Eu({inputs:{input:n},backend:r}),o=zf({inputs:{x:i},backend:r}),l=pn({inputs:{real:s,imag:o},backend:r});return r.disposeIntermediateTensorInfo(a),r.disposeIntermediateTensorInfo(s),r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}else return nb({backend:r,attrs:{shape:n.shape,value:0,dtype:n.dtype}})}var bY={kernelName:kl,backendName:"cpu",kernelFunc:zf};function HI(e){let{inputs:t,backend:r}=e,{x:n}=t;if(n.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(n.dtype==="complex64"){let a=Fo({inputs:{input:n},backend:r}),s=HI({inputs:{x:a},backend:r}),i=Eu({inputs:{input:n},backend:r}),o=zf({inputs:{x:i},backend:r}),l=pn({inputs:{real:s,imag:o},backend:r});return r.disposeIntermediateTensorInfo(a),r.disposeIntermediateTensorInfo(s),r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}else return nb({backend:r,attrs:{shape:n.shape,value:1,dtype:n.dtype}})}var vY={kernelName:sl,backendName:"cpu",kernelFunc:HI};function qI(e){let{inputs:t,backend:r,attrs:n}=e,{axis:a}=n;if(t.length===1)return _f({inputs:{input:t[0]},backend:r,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(d=>{w.assertShapesMatch(s,d.shape,"All tensors passed to stack must have matching shapes"),w.assert(i===d.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(d=>{let h=_f({inputs:{input:d},backend:r,attrs:{dim:a}});return o.push(h),h}),u=Ru({inputs:l,backend:r,attrs:{axis:a}});return o.forEach(d=>r.disposeIntermediateTensorInfo(d)),u}var wY={kernelName:ol,backendName:"cpu",kernelFunc:qI};function kY(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{paddings:s,constantValue:i}=n;Te(a,"pad");let o=s.map((y,A)=>y[0]+a.shape[A]+y[1]),l=s.map(y=>y[0]),u=r.data.get(a.dataId).values,d=w.sizeFromShape(a.shape),h=a.shape.length,p=w.computeStrides(a.shape),c=w.sizeFromShape(o),f=o.length,m=w.computeStrides(o),g=w.getTypedArrayFromDType(a.dtype,c);i!==0&&g.fill(i);for(let y=0;y<d;y++){let A=w.indexToLoc(y,h,p).map((b,v)=>b+l[v]),x=w.locToIndex(A,f,m);g[x]=u[y]}return{dataId:r.write(g,o,a.dtype),shape:o,dtype:a.dtype}}var KI={kernelName:wi,backendName:"cpu",kernelFunc:kY},IY=Yt((e,t)=>Math.pow(e,t)),SY=Ar(ki,IY),TY={kernelName:ki,backendName:"cpu",kernelFunc:SY};function NY(e){let{backend:t,attrs:r}=e,{start:n,stop:a,dtype:s,step:i}=r,o=Yx(n,a,i,s);return t.makeTensorInfo([o.length],s,o)}var CY={kernelName:ed,backendName:"cpu",kernelFunc:NY},EY=mt(td,e=>1/e),RY={kernelName:td,backendName:"cpu",kernelFunc:EY};function MY(e){let{inputs:t,backend:r,attrs:n}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=n;Te(a,"resizeBilinear");let l=w.computeStrides(a.shape),[u,d]=o,[h,p,c,f]=a.shape,m=r.data.get(a.dataId).values,g=new Float32Array(w.sizeFromShape([h,u,d,f])),y=[s&&u>1?p-1:p,s&&d>1?c-1:c],A=[s&&u>1?u-1:u,s&&d>1?d-1:d],x=0,b=y[0]/A[0],v=y[1]/A[1];for(let S=0;S<h;S++)for(let T=0;T<u;T++){let E;i?E=b*(T+.5)-.5:E=b*T;let R=Math.max(0,Math.floor(E)),_=E-R,M=Math.min(p-1,Math.ceil(E)),I=S*l[0]+R*l[1],z=S*l[0]+M*l[1];for(let O=0;O<d;O++){let j;i?j=v*(O+.5)-.5:j=v*O;let X=Math.max(0,Math.floor(j)),D=j-X,Q=Math.min(c-1,Math.ceil(j)),V=I+X*l[2],ee=z+X*l[2],J=I+Q*l[2],se=z+Q*l[2];for(let Z=0;Z<f;Z++){let ae=m[V+Z],de=m[ee+Z],Ae=m[J+Z],be=m[se+Z],Ee=ae+(Ae-ae)*D,Me=de+(be-de)*D,De=Ee+(Me-Ee)*_;g[x++]=De}}}return r.makeTensorInfo([h,u,d,f],"float32",g)}var FY={kernelName:Ti,backendName:"cpu",kernelFunc:MY};function $Y(e){let{inputs:t,backend:r,attrs:n}=e,{images:a,dy:s}=t,{alignCorners:i}=n;Te([s,a],"resizeBilinearGrad");let o=w.computeStrides(a.shape),[l,u,d,h]=a.shape,[,p,c]=s.shape,f=new Float32Array(l*u*d*h),m=[i&&p>1?u-1:u,i&&c>1?d-1:d],g=[i&&p>1?p-1:p,i&&c>1?c-1:c],y=m[0]/g[0],A=m[1]/g[1],x=r.data.get(s.dataId).values,b=0;for(let v=0;v<l;v++){let S=v*o[0];for(let T=0;T<p;T++){let E=T*y,R=Math.floor(E),_=Math.min(Math.ceil(E),u-1),M=S+R*o[1],I=S+_*o[1],z=E-R,O=1-z;for(let j=0;j<c;j++){let X=j*A,D=Math.floor(X),Q=Math.min(Math.ceil(X),d-1),V=X-D,ee=1-V,J=M+D*o[2],se=M+Q*o[2],Z=I+D*o[2],ae=I+Q*o[2],de=O*ee,Ae=O*V,be=z*ee,Ee=z*V;for(let Me=0;Me<h;Me++){let De=x[b++];f[J+Me]+=De*de,f[se+Me]+=De*Ae,f[Z+Me]+=De*be,f[ae+Me]+=De*Ee}}}}return r.makeTensorInfo([l,d,u,h],"float32",f)}var PY={kernelName:hm,backendName:"cpu",kernelFunc:$Y};function _Y(e){let{inputs:t,backend:r,attrs:n}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=n;Te(a,"resizeNearestNeighbor");let l=w.computeStrides(a.shape),[u,d]=o,[h,p,c,f]=a.shape,m=r.data.get(a.dataId).values,g=new Float32Array(h*u*d*f),y=[s&&u>1?p-1:p,s&&d>1?c-1:c],A=[s&&u>1?u-1:u,s&&d>1?d-1:d],x=y[0]/A[0],b=y[1]/A[1],v=0;for(let S=0;S<h;S++){let T=S*l[0];for(let E=0;E<u;E++){let R=i?x*(E+.5):x*E,_=Math.min(p-1,s?Math.round(R):Math.floor(R));i&&(_=Math.max(0,_));let M=T+_*l[1];for(let I=0;I<d;I++){let z=i?b*(I+.5):b*I,O=Math.min(c-1,s?Math.round(z):Math.floor(z));i&&(O=Math.max(0,O));let j=M+O*l[2];for(let X=0;X<f;X++){let D=m[j+X];g[v++]=D}}}}return r.makeTensorInfo([h,u,d,f],a.dtype,g)}var zY={kernelName:rd,backendName:"cpu",kernelFunc:_Y};function OY(e){let{inputs:t,backend:r,attrs:n}=e,{images:a,dy:s}=t,{alignCorners:i}=n;Te([s,a],"resizeNearestNeighborGrad");let o=w.computeStrides(a.shape),l=w.computeStrides(s.shape),[u,d,h,p]=a.shape,[,c,f]=s.shape,m=new Float32Array(u*d*h*p),g=r.data.get(s.dataId).values,y=[i&&c>1?d-1:d,i&&f>1?h-1:h],A=[i&&c>1?c-1:c,i&&f>1?f-1:f],x=y[0]/A[0],b=y[1]/A[1],v=1/x,S=1/b,T=Math.ceil(v)*2+2,E=Math.ceil(S)*2+2;for(let R=0;R<u;R++){let _=R*o[0];for(let M=0;M<d;M++){let I=_+M*o[1],z=Math.floor(M*v),O=Math.floor(z-T/2);for(let j=0;j<h;j++){let X=I+j*o[2],D=Math.floor(j*S),Q=Math.floor(D-E/2);for(let V=0;V<p;V++){let ee=0;for(let J=0;J<T;J++){let se=J+O;if(se<0||se>=c)continue;let Z=_+se*l[1],ae=se*x,de=Math.min(d-1,i?Math.round(ae):Math.floor(ae));if(M===de)for(let Ae=0;Ae<E;Ae++){let be=Ae+Q;if(be<0||be>=f)continue;let Ee=Z+be*l[2],Me=be*b,De=Math.min(h-1,i?Math.round(Me):Math.floor(Me));j===De&&(ee+=g[Ee+V])}}m[X+V]=ee}}}}return r.makeTensorInfo(a.shape,a.dtype,m)}var DY={kernelName:pm,backendName:"cpu",kernelFunc:OY};function LY(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{dims:s}=n;Te(a,"reverse");let i=a.shape.length,o=w.parseAxisParam(s,a.shape);if(i===0)return $a({inputs:{x:a},backend:r});let l=new ar(a.shape,a.dtype),u=r.bufferSync(a);for(let d=0;d<l.size;d++){let h=l.indexToLoc(d),p=h.slice();o.forEach(c=>p[c]=a.shape[c]-1-p[c]),l.set(u.get(...p),...h)}return r.makeTensorInfo(l.shape,l.dtype,l.values)}var BY={kernelName:dl,backendName:"cpu",kernelFunc:LY},WY={kernelName:Il,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:r})=>{let{image:n}=e,{radians:a,fillValue:s,center:i}=t,o=r,l=w.getTypedArrayFromDType(n.dtype,w.sizeFromShape(n.shape)),[u,d,h,p]=n.shape,[c,f]=N.getImageCenter(i,d,h),m=255,g=Math.sin(a),y=Math.cos(a),A=o.data.get(n.dataId).values;for(let x=0;x<u;x++){let b=x*h*d*p;for(let v=0;v<d;v++){let S=v*(h*p);for(let T=0;T<h;T++){let E=T*p;for(let R=0;R<p;R++){let _=[u,v,T,R],M=_[2],I=_[1],z=(M-c)*y-(I-f)*g,O=(M-c)*g+(I-f)*y;z=Math.round(z+c),O=Math.round(O+f);let j=s;if(typeof s!="number"&&(R===3?j=m:j=s[R]),z>=0&&z<h&&O>=0&&O<d){let D=O*(h*p),Q=z*p,V=b+D+Q+R;j=A[V]}let X=b+S+E+R;l[X]=j}}}}return{dataId:o.write(l,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},VY=mt(pl,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2===0?t:t+1}),UY={kernelName:pl,backendName:"cpu",kernelFunc:VY};function XI(e,t,r,n,a,s,i,o,l,u){let d=[n/a,a],h=e.values,p=t.values;if(n===0)return We(r,t.dtype);let c=We(d,t.dtype);c.values.fill(l);for(let f=0;f<s;f++){let m=[],g=0;for(let y=0;y<i;y++){let A=h[f*i+y];m.push(A),g+=A*o[y]}if(g<0||g>=n/a)throw new Error(`Invalid indices: ${m} does not index into ${r}`);for(let y=0;y<a;y++)u?c.values[g*a+y]+=p[f*a+y]:c.values[g*a+y]=t.rank===0?p[0]:p[f*a+y]}return c}function GY(e){let{inputs:t,backend:r,attrs:n}=e,{indices:a,updates:s}=t,{shape:i}=n,{sliceRank:o,numUpdates:l,sliceSize:u,strides:d,outputSize:h}=N.calculateShapes(s,a,i),p=!0,c=r.bufferSync(a),f=r.bufferSync(s),m=XI(c,f,i,h,u,l,o,d,0,p);return r.makeTensorInfo(i,m.dtype,m.values)}var jY={kernelName:hl,backendName:"cpu",kernelFunc:GY};function HY(e){let{inputs:t,backend:r}=e,{condition:n,t:a,e:s}=t;Te([n,a,s],"select");let i=n.shape.length,o=r.data.get(n.dataId).values,l=r.data.get(a.dataId).values,u=r.data.get(s.dataId).values,d=Cr(a.dtype,s.dtype),h=w.makeZerosTypedArray(w.sizeFromShape(a.shape),d),p=0,c=i===0||i>1||a.shape.length===1?1:w.sizeFromShape(a.shape.slice(1));for(let f=0;f<o.length;f++)for(let m=0;m<c;m++)o[f]===1?h[p++]=l[f]:h[p++]=u[f];return r.makeTensorInfo(a.shape,d,h)}var qY={kernelName:cl,backendName:"cpu",kernelFunc:HY},KY=N.SELU_SCALEALPHA,XY=N.SELU_SCALE,ZY=mt(nd,e=>e>=0?XY*e:KY*(Math.exp(e)-1)),YY={kernelName:nd,backendName:"cpu",kernelFunc:ZY},JY=mt(ad,e=>e<0?-1:e>0?1:0),QY={kernelName:ad,backendName:"cpu",kernelFunc:JY},eJ=mt(Ei,e=>Math.sin(e)),tJ={kernelName:Ei,backendName:"cpu",kernelFunc:eJ},rJ=mt(ml,e=>Math.sinh(e)),nJ={kernelName:ml,backendName:"cpu",kernelFunc:rJ},aJ=11920928955078125e-23,Cv=Math.log(aJ)+2,sJ=mt(sd,e=>{let t=e>-Cv,r=e<Cv,n=Math.exp(e),a;return r?a=n:t?a=e:a=Math.log(1+n),a}),iJ={kernelName:sd,backendName:"cpu",kernelFunc:sJ};function oJ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockShape:s,paddings:i}=n;Te([a],"spaceToBatchND");let o=w.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let g=1+s.length;g<a.shape.length;++g)l.push([0,0]);let u=KI.kernelFunc({inputs:{x:a},backend:r,attrs:{paddings:l,constantValue:0}}),d=N.getReshaped(u.shape,s,o,!1),h=N.getPermuted(d.length,s.length,!1),p=N.getReshapedPermuted(u.shape,s,o,!1),c=Mt({inputs:{x:u},backend:r,attrs:{shape:d}}),f=nn({inputs:{x:c},backend:r,attrs:{perm:h}}),m=Mt({inputs:{x:f},backend:r,attrs:{shape:p}});return r.disposeIntermediateTensorInfo(u),r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(f),m}var lJ={kernelName:gl,backendName:"cpu",kernelFunc:oJ};function uJ(e){let{inputs:t,backend:r}=e,{indices:n,values:a,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${s.shape}`);if(n.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${n.shape}`);if(a.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${a.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${i.shape}`);let o=r.data.get(n.dataId).values,l=r.data.get(a.dataId).values,u=r.data.get(s.dataId).values,d=r.data.get(i.dataId).values[0],[h,p,c,f,m]=vI(o,n.shape,n.dtype,l,a.dtype,u,d);return[r.makeTensorInfo(p,n.dtype,h),r.makeTensorInfo([p[0]],a.dtype,c),r.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),r.makeTensorInfo([m.length],n.dtype,new Int32Array(m))]}var dJ={kernelName:sh,backendName:"cpu",kernelFunc:uJ};function pJ(e){let{inputs:t,backend:r}=e,{inputIndices:n,inputShape:a,newShape:s}=t;if(n.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${n.shape}`);if(a.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${a.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(r.data.get(a.dataId).values),o=r.data.get(n.dataId).values,l=Array.from(r.data.get(s.dataId).values),[u,d,h]=wI(o,n.shape,n.dtype,i,l);return[r.makeTensorInfo(d,n.dtype,u),r.makeTensorInfo([h.length],s.dtype,new Int32Array(h))]}var hJ={kernelName:id,backendName:"cpu",kernelFunc:pJ};function cJ(e){let{inputs:t,backend:r}=e,{data:n,indices:a,segmentIds:s}=t;if(n.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(a.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${a.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);if(a.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let i=r.data.get(n.dataId).values,o=r.data.get(a.dataId).values,l=r.data.get(s.dataId).values,[u,d]=Jx(i,n.shape,n.dtype,o,l,!0);return r.makeTensorInfo(d,n.dtype,u)}var fJ={kernelName:ih,backendName:"cpu",kernelFunc:cJ};function mJ(e){let{inputs:t,backend:r}=e,{data:n,indices:a,segmentIds:s}=t;if(n.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(a.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${a.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);if(a.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let i=r.data.get(n.dataId).values,o=r.data.get(a.dataId).values,l=r.data.get(s.dataId).values,[u,d]=Jx(i,n.shape,n.dtype,o,l);return r.makeTensorInfo(d,n.dtype,u)}var gJ={kernelName:oh,backendName:"cpu",kernelFunc:mJ};function yJ(e){let{inputs:t,backend:r,attrs:n}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=n,{sliceRank:l,numUpdates:u,sliceSize:d,strides:h,outputSize:p}=N.calculateShapes(s,a,o),c=!1,f=r.bufferSync(a),m=r.bufferSync(s),g=r.data.get(i.dataId).values[0],y=XI(f,m,o,p,d,u,l,h,g,c);return r.makeTensorInfo(o,y.dtype,y.values)}var AJ={kernelName:lh,backendName:"cpu",kernelFunc:yJ};function xJ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=n,o=w.parseAxisParam(i,a.shape)[0],l=N.prepareSplitSize(a,s,o),u=new Array(a.shape.length).fill(0),d=a.shape.slice();return l.map(h=>{let p=[...d];p[o]=h;let c=$o({inputs:{x:a},backend:r,attrs:{begin:u,size:p}});return u[o]+=h,c})}var bJ={kernelName:yl,backendName:"cpu",kernelFunc:xJ},vJ={kernelName:od,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:r}=e,n=t;Te(r,"square");let a=n.data.get(r.dataId).values,s=new Float32Array(a.length);for(let i=0;i<a.length;++i){let o=a[i];s[i]=o*o}return{dataId:n.write(s,r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},wJ=mt(Di,(e,t)=>{let r=t;return isNaN(e)?NaN:e>0?1:r.alpha}),kJ={kernelName:Di,backendName:"cpu",kernelFunc:wJ};function IJ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:d,newAxisMask:h,shrinkAxisMask:p}=n;Te(a,"stridedSlice");let{finalShapeSparse:c,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:y,begin:A,end:x,strides:b}=_t.sliceInfo(a.shape,s,i,o,l,u,d,h,p),v;if(m)v=Mt({inputs:{x:a},backend:r,attrs:{shape:f}});else if(g||y){w.assert(a.shape.length>=1,()=>`Input must have rank at least 1, got: ${a.shape.length}`);let S=_t.computeOutShape(A,x,b),T=$o({inputs:{x:a},backend:r,attrs:{begin:A,size:S}});v=Mt({inputs:{x:T},backend:r,attrs:{shape:f}}),r.disposeIntermediateTensorInfo(T)}else{let S=r.bufferSync(a),T=II(c,S,b,A);v=r.makeTensorInfo(f,T.dtype,T.values)}return v}var SJ={kernelName:Al,backendName:"cpu",kernelFunc:IJ};function TJ(e){let{inputs:t,backend:r,attrs:n}=e,{separator:a,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=n,{data:d,dataSplits:h}=t,p=r.data.get(d.dataId).values,c=r.data.get(h.dataId).values,[f,m]=SI(p,c,a,s,i,o,l,u);return[r.makeTensorInfo([f.length],"string",f),r.makeTensorInfo(h.shape,"int32",m)]}var NJ={kernelName:uh,backendName:"cpu",kernelFunc:TJ};function CJ(e){let{inputs:t,backend:r,attrs:n}=e,{skipEmpty:a}=n,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=r.data.get(s.dataId).values,l=r.data.get(i.dataId).values[0],[u,d,h]=TI(o,l,a),p=d.length;return[r.makeTensorInfo([p,2],"int32",u),r.makeTensorInfo([p],"string",d),r.makeTensorInfo([2],"int32",new Int32Array(h))]}var EJ={kernelName:cm,backendName:"cpu",kernelFunc:CJ};function RJ(e){let{inputs:t,backend:r,attrs:n}=e,{numBuckets:a}=n,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(a<=0)throw new Error("Number of buckets must be at least 1");let i=r.data.get(s.dataId).values,o=NI(i,a);return r.makeTensorInfo(s.shape,"int32",o)}var MJ={kernelName:fm,backendName:"cpu",kernelFunc:RJ},FJ=mt(xl,e=>Math.tan(e)),$J={kernelName:xl,backendName:"cpu",kernelFunc:FJ},PJ=mt(zi,e=>Math.tanh(e)),_J={kernelName:zi,backendName:"cpu",kernelFunc:PJ};function zJ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{reps:s}=n;Te(a,"tile");let i=EI(r.bufferSync(a),s);return r.makeTensorInfo(i.shape,i.dtype,i.values)}var OJ={kernelName:Qa,backendName:"cpu",kernelFunc:zJ};function DJ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{k:s,sorted:i}=n;Te(a,"topk");let o=r.data.get(a.dataId).values,[l,u]=MI(o,a.shape,a.dtype,s,i);return[r.makeTensorInfo(l.shape,l.dtype,l.values),r.makeTensorInfo(u.shape,u.dtype,u.values)]}var LJ={kernelName:bl,backendName:"cpu",kernelFunc:DJ};function BJ(e){let{inputs:t,attrs:r,backend:n}=e,{image:a,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=r,[d,h,p,c]=a.shape,[f,m]=u!=null?u:[h,p],g=[d,f,m,c],y=w.computeStrides(a.shape),A=y[0],x=y[1],b=y[2],v=w.getTypedArrayFromDType(a.dtype,w.sizeFromShape(g));v.fill(l);let S=n.data.get(a.dataId).values,T=n.data.get(s.dataId).values;for(let E=0;E<d;++E){let R=s.shape[0]===1?T:T.subarray(E*8,E*8+8);for(let _=0;_<f;++_)for(let M=0;M<m;++M)for(let I=0;I<c;++I){let z,O=R[6]*M+R[7]*_+1;if(O===0)continue;let j=(R[0]*M+R[1]*_+R[2])/O,X=(R[3]*M+R[4]*_+R[5])/O,D=Ev(j,p,o),Q=Ev(X,h,o);switch(i){case"nearest":z=HJ(S,h,p,A,x,b,E,Q,D,I,l);break;case"bilinear":z=qJ(S,h,p,A,x,b,E,Q,D,I,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${i}`)}let V=E*A+_*x+M*b+I;v[V]=z}return n.makeTensorInfo(g,a.dtype,v)}return{dataId:n.write(v,g,a.dtype),shape:a.shape,dtype:a.dtype}}var WJ={kernelName:vl,backendName:"cpu",kernelFunc:BJ};function Ev(e,t,r){switch(r){case"reflect":return VJ(e,t);case"wrap":return UJ(e,t);case"nearest":return jJ(e,t);case"constant":default:return GJ(e,t)}}function VJ(e,t){let r=e;if(r<0)if(t<=1)r=0;else{let n=2*t;r<n&&(r=n*Math.trunc(-r/n)+r),r=r<-t?r+n:-r-1}else if(r>t-1)if(t<=1)r=0;else{let n=2*t;r-=n*Math.trunc(r/n),r>=t&&(r=n-r-1)}return w.clamp(0,r,t-1)}function UJ(e,t){let r=e;if(r<0)if(t<=1)r=0;else{let n=t-1;r+=t*(Math.trunc(-r/n)+1)}else if(r>t-1)if(t<=1)r=0;else{let n=t-1;r-=t*Math.trunc(r/n)}return w.clamp(0,r,t-1)}function GJ(e,t){return e}function jJ(e,t){return w.clamp(0,e,t-1)}function Ip(e,t,r,n,a,s,i,o,l,u,d){let h=i*n+o*a+l*s+u;return 0<=o&&o<t&&0<=l&&l<r?e[h]:d}function HJ(e,t,r,n,a,s,i,o,l,u,d){let h=Math.round(o),p=Math.round(l);return Ip(e,t,r,n,a,s,i,h,p,u,d)}function qJ(e,t,r,n,a,s,i,o,l,u,d){let h=Math.floor(o),p=Math.floor(l),c=h+1,f=p+1,m=(f-l)*Ip(e,t,r,n,a,s,i,h,p,u,d)+(l-p)*Ip(e,t,r,n,a,s,i,h,f,u,d),g=(f-l)*Ip(e,t,r,n,a,s,i,c,p,u,d)+(l-p)*Ip(e,t,r,n,a,s,i,c,f,u,d);return(c-o)*m+(o-h)*g}function KJ(e){let{inputs:t,attrs:r,backend:n}=e,{axis:a}=r,{x:s}=t;Te(s,"unique");let i=n.data.get(s.dataId).values,{outputValues:o,outputShape:l,indices:u}=FI(i,a,s.shape,s.dtype);return[n.makeTensorInfo(l,s.dtype,o),n.makeTensorInfo([u.length],"int32",u)]}var XJ={kernelName:mm,backendName:"cpu",kernelFunc:KJ};function ZJ(e){let{inputs:t,backend:r,attrs:n}=e,{value:a}=t,{axis:s}=n;s<0&&(s+=a.shape.length);let i=a.shape.length,o=a.shape[s],l=new Array(i-1),u=0;for(let c=0;c<i;c++)c!==s&&(l[u++]=a.shape[c]);let d=new Array(i).fill(0),h=a.shape.slice();h[s]=1;let p=new Array(o);for(let c=0;c<p.length;c++){d[s]=c;let f=$o({inputs:{x:a},backend:r,attrs:{begin:d,size:h}});p[c]=Mt({inputs:{x:f},backend:r,attrs:{shape:l}}),r.disposeIntermediateTensorInfo(f)}return p}var YJ={kernelName:wl,backendName:"cpu",kernelFunc:ZJ};function JJ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,segmentIds:s}=t,{numSegments:i}=n;Te(a,"unsortedSegmentSum");let o=a.shape.length,l=s.shape.length,u=[],d=[],h=o-l,p=s;for(let f=0;f<h;++f){let m=_f({inputs:{input:p},backend:r,attrs:{dim:f+1}});p=m,d.push(m)}for(let f=0;f<i;++f){let m=w.createScalarValue(f,"int32"),g=r.makeTensorInfo([],"int32",m),y=eI({inputs:{a:g,b:p},backend:r}),A=Gs({inputs:{x:y},backend:r,attrs:{dtype:"float32"}}),x=f0({inputs:{a:A,b:a},backend:r}),b=Ph({inputs:{x},backend:r,attrs:{axis:0,keepDims:!1}});u.push(b),d.push(g),d.push(y),d.push(A),d.push(x),d.push(b)}let c=qI({inputs:u,backend:r,attrs:{axis:0}});return d.forEach(f=>r.disposeIntermediateTensorInfo(f)),c}var QJ={kernelName:dh,backendName:"cpu",kernelFunc:JJ},eQ=[sK,YH,oK,uK,nq,pK,cK,mK,yK,xK,vK,kK,SK,CK,RK,$K,_K,OK,LK,nK,WK,UK,jK,qK,tq,sq,XK,JH,YK,QK,eX,rX,aX,iX,lX,dX,hX,fX,gX,AX,bX,wX,IX,SX,NX,EX,MX,FX,$X,PX,OX,Zq,LX,iq,qX,oq,KX,uq,eZ,tZ,nZ,pq,iZ,lZ,dZ,hZ,fZ,cq,mq,QH,gZ,JK,AZ,bZ,wZ,Yq,yq,xq,IZ,vq,TZ,EZ,MZ,PZ,zZ,DZ,LZ,kq,WZ,UZ,jZ,qZ,XZ,YZ,QZ,Sq,tY,aY,lY,Nq,Eq,pY,fY,yY,Mq,xY,vY,wY,KI,TY,Qq,Pq,CY,eq,Gy,RY,eK,tK,rK,FY,PY,zY,DY,BY,WY,UY,zq,jY,qY,YY,Dq,QY,tJ,nJ,Lq,iY,iJ,lJ,dJ,hJ,fJ,gJ,AJ,bJ,Vq,vJ,Gq,kJ,SJ,NJ,EJ,MJ,Kq,_X,$J,_J,OJ,LJ,WJ,Fq,XJ,YJ,QJ,bY];for(let e of eQ)Gn(e);var ZI={};Le(ZI,{assertNotComplex:()=>vd,bindCanvasToFramebuffer:()=>pQ,bindColorTextureToFramebuffer:()=>sf,bindTextureToProgramUniformSampler:()=>pS,bindTextureUnit:()=>lS,bindVertexBufferToProgramAttribute:()=>Hy,callAndCheck:()=>we,canBeRepresented:()=>YI,createFragmentShader:()=>eS,createFramebuffer:()=>oS,createProgram:()=>tS,createStaticIndexBuffer:()=>aS,createStaticVertexBuffer:()=>nS,createTexture:()=>sS,createVertexShader:()=>QI,getBatchDim:()=>Po,getExtensionOrThrow:()=>Sp,getFramebufferErrorMessage:()=>hS,getMaxTexturesInShader:()=>gS,getNumChannels:()=>uQ,getProgramUniformLocation:()=>dS,getProgramUniformLocationOrThrow:()=>uS,getRowsCols:()=>_o,getShapeAs3D:()=>of,getTextureShapeFromLogicalShape:()=>fS,getWebGLDisjointQueryTimerVersion:()=>yS,getWebGLErrorMessage:()=>JI,getWebGLMaxTextureSize:()=>mS,hasExtension:()=>Nn,isCapableOfRenderingToFloatTexture:()=>AS,isDownloadFloatTextureEnabled:()=>xS,isReshapeFree:()=>jp,isWebGLFenceEnabled:()=>bS,isWebGLVersionEnabled:()=>Ky,linkProgram:()=>rS,logShaderSourceAndInfoLog:()=>sb,resetMaxTextureSize:()=>hQ,resetMaxTexturesInShader:()=>cQ,unbindColorTextureFromFramebuffer:()=>qy,unbindTextureUnit:()=>dQ,validateFramebuffer:()=>Tp,validateProgram:()=>af,validateTextureSize:()=>iS});var Ao={},ay={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function m0(e,t){Ao[e]=t}function ya(e,t){if(!(e in Ao)||t!=null){let n=rQ(e,t);if(n!==null)Ao[e]=n;else return console.log("Could not get context for WebGL version",e),null}let r=Ao[e];return r==null||r.isContextLost()?(delete Ao[e],ya(e)):(r.disable(r.DEPTH_TEST),r.disable(r.STENCIL_TEST),r.disable(r.BLEND),r.disable(r.DITHER),r.disable(r.POLYGON_OFFSET_FILL),r.disable(r.SAMPLE_COVERAGE),r.enable(r.SCISSOR_TEST),r.enable(r.CULL_FACE),r.cullFace(r.BACK),Ao[e])}function tQ(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function rQ(e,t){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let r=t==null?tQ(e):t;return r.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete Ao[e]},!1),e===1?r.getContext("webgl",ay)||r.getContext("experimental-webgl",ay):r.getContext("webgl2",ay)}function _h(e,t){return[t,e]}function nQ(e,t){return e*t}function Yc(e){let t=w.sizeFromShape(e),r=Math.ceil(t/4);return w.sizeToSquarishShape(r)}function bd(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function aQ(e,t){let[r,n]=bd(e,t);return r*n*4}function ab(e,t){let r=e,n,a,s,i,o,l,u,d,h,p;return Y().getNumber("WEBGL_VERSION")===2?(n=r.R32F,a=r.R16F,s=r.RGBA16F,i=r.RGBA32F,o=r.RED,u=4,d=1,h=r.HALF_FLOAT,p=r.FLOAT,l=r.RGBA8):(n=e.RGBA,a=e.RGBA,s=e.RGBA,i=r.RGBA,o=e.RGBA,u=4,d=4,h=t!=null?t.HALF_FLOAT_OES:null,p=e.FLOAT,l=e.RGBA),{internalFormatFloat:n,internalFormatHalfFloat:a,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:d,textureTypeHalfFloat:h,textureTypeFloat:p}}function we(e,t){let r=t();return Y().getBool("DEBUG")&&sQ(e),r}function sQ(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+JI(e,t))}var iQ=596e-10,oQ=65504;function YI(e){return!!(Y().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||iQ<Math.abs(e)&&Math.abs(e)<oQ)}function JI(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function Sp(e,t){return as(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function QI(e,t){let r=as(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(we(e,()=>e.shaderSource(r,t)),we(e,()=>e.compileShader(r)),e.getShaderParameter(r,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(r)),new Error("Failed to compile vertex shader.");return r}function eS(e,t){let r=as(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(we(e,()=>e.shaderSource(r,t)),we(e,()=>e.compileShader(r)),Y().get("ENGINE_COMPILE_ONLY"))return r;if(e.getShaderParameter(r,e.COMPILE_STATUS)===!1)throw sb(t,e.getShaderInfoLog(r)),new Error("Failed to compile fragment shader.");return r}var lQ=/ERROR: [0-9]+:([0-9]+):/g;function sb(e,t){let r=lQ.exec(t);if(r==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let n=+r[1],a=e.split(`
|
|
`),s=a.length.toString().length+2,i=a.map((h,p)=>w.rightPad((p+1).toString(),s)+h),o=0;for(let h=0;h<i.length;h++)o=Math.max(i[h].length,o);let l=i.slice(0,n-1),u=i.slice(n-1,n),d=i.slice(n);console.log(l.join(`
|
|
`)),console.log(t.split(`
|
|
`)[0]),console.log(`%c ${w.rightPad(u[0],o)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(d.join(`
|
|
`))}function tS(e){return as(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function rS(e,t){if(we(e,()=>e.linkProgram(t)),!Y().get("ENGINE_COMPILE_ONLY")&&e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function af(e,t){if(we(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function nS(e,t){let r=as(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return we(e,()=>e.bindBuffer(e.ARRAY_BUFFER,r)),we(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),r}function aS(e,t){let r=as(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return we(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,r)),we(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),r}function uQ(){return Y().getNumber("WEBGL_VERSION")===2?1:4}function sS(e){return as(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function iS(e,t){let r=Y().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let n=`[${e}x${t}]`;throw new Error("Requested texture size "+n+" is invalid.")}if(e>r||t>r){let n=`[${e}x${t}]`,a=`[${r}x${r}]`;throw new Error("Requested texture size "+n+" greater than WebGL maximum on this browser / GPU "+a+".")}}function oS(e){return as(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function Hy(e,t,r,n,a,s,i){let o=e.getAttribLocation(t,r);return o===-1?!1:(we(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),we(e,()=>e.vertexAttribPointer(o,a,e.FLOAT,!1,s,i)),we(e,()=>e.enableVertexAttribArray(o)),!0)}function lS(e,t,r){cS(e,r),we(e,()=>e.activeTexture(e.TEXTURE0+r)),we(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function dQ(e,t){cS(e,t),we(e,()=>e.activeTexture(e.TEXTURE0+t)),we(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function uS(e,t,r){return as(e,()=>e.getUniformLocation(t,r),'uniform "'+r+'" not present in program.')}function dS(e,t,r){return e.getUniformLocation(t,r)}function pS(e,t,r,n){we(e,()=>lS(e,t,n)),we(e,()=>e.uniform1i(r,n))}function pQ(e){we(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),we(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),we(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function sf(e,t,r){we(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,r)),we(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function qy(e,t){we(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),we(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function Tp(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+hS(e,t))}function hS(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function as(e,t,r){let n=we(e,()=>t());if(n==null)throw new Error(r);return n}function cS(e,t){let r=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,n=t+e.TEXTURE0;if(n<e.TEXTURE0||n>r){let a=`[gl.TEXTURE0, gl.TEXTURE${r}]`;throw new Error(`textureUnit must be in ${a}.`)}}function Po(e,t=2){return w.sizeFromShape(e.slice(0,e.length-t))}function _o(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function of(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[Po(e),..._o(e)]),t}function fS(e,t=!1){let r=Y().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(r=r*2,e=e.map((a,s)=>s>=e.length-2?w.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=w.squeezeShape(e).newShape);let n=w.sizeFromShape(e);if(e.length<=1&&n<=r)return[1,n];if(e.length===2&&e[0]<=r&&e[1]<=r)return e;if(e.length===3&&e[0]*e[1]<=r&&e[2]<=r)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=r&&e[1]*e[2]<=r)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=r&&e[3]<=r)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=r&&e[1]*e[2]*e[3]<=r)return[e[0],e[1]*e[2]*e[3]];if(t){let a=Po(e),s=2,i=2;return e.length&&([s,i]=_o(e)),n=a*(s/2)*(i/2),w.sizeToSquarishShape(n).map(o=>o*2)}return w.sizeToSquarishShape(n)}function Jc(e){return e%2===0}function jp(e,t){if(e=e.slice(-2),t=t.slice(-2),w.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let r=e.slice(-1)[0],n=t.slice(-1)[0];if(r===n||Jc(r)&&Jc(n)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&Jc(e[0])&&Jc(t[0])}var lf,uf;function mS(e){if(lf==null){let t=ya(e);lf=t.getParameter(t.MAX_TEXTURE_SIZE)}return lf}function hQ(){lf=null}function cQ(){uf=null}function gS(e){if(uf==null){let t=ya(e);uf=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,uf)}function yS(e){if(e===0)return 0;let t,r=ya(e);return Nn(r,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:Nn(r,"EXT_disjoint_timer_query")?t=1:t=0,t}function Nn(e,t){return e.getExtension(t)!=null}function Ky(e){try{if(ya(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function AS(e){if(e===0)return!1;let t=ya(e);if(e===1){if(!Nn(t,"OES_texture_float"))return!1}else if(!Nn(t,"EXT_color_buffer_float"))return!1;return Xy(t)}function xS(e){if(e===0)return!1;let t=ya(e);if(e===1){if(!Nn(t,"OES_texture_float")||!Nn(t,"WEBGL_color_buffer_float"))return!1}else{if(Nn(t,"EXT_color_buffer_float"))return Xy(t);let r="EXT_color_buffer_half_float";if(Nn(t,r)){let n=t.getExtension(r);return fQ(t,n)}return!1}return Xy(t)}function Xy(e){let t=ab(e),r=e.createTexture();e.bindTexture(e.TEXTURE_2D,r);let n=1,a=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,n,a,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,r,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(r),e.deleteFramebuffer(s),i}function fQ(e,t){let r=ab(e,t),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let a=1,s=1;e.texImage2D(e.TEXTURE_2D,0,r.internalFormatHalfFloat,a,s,0,r.textureFormatFloat,r.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(i),o}function bS(e){return e!==2?!1:ya(e).fenceSync!=null}function vd(e,t){Array.isArray(e)||(e=[e]),e.forEach(r=>{r!=null&&w.assert(r.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Fe=Y();Fe.registerFlag("HAS_WEBGL",()=>Fe.getNumber("WEBGL_VERSION")>0);Fe.registerFlag("WEBGL_VERSION",()=>Ky(2)?2:Ky(1)?1:0);Fe.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Fe.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Fe.get("WEBGL_VERSION")===2);Fe.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Fe.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Fe.registerFlag("WEBGL_PACK",()=>Fe.getBool("HAS_WEBGL"));Fe.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_CLIP",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_REDUCE",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_LAZILY_UNPACK",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_CONV_IM2COL",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>mS(Fe.getNumber("WEBGL_VERSION")));Fe.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>gS(Fe.getNumber("WEBGL_VERSION")));Fe.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Fe.getNumber("WEBGL_VERSION");return e===0?0:yS(e)});Fe.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Fe.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!fh.isMobile());Fe.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>AS(Fe.getNumber("WEBGL_VERSION")));Fe.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Fe.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Fe.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Fe.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>xS(Fe.getNumber("WEBGL_VERSION")));Fe.registerFlag("WEBGL_FENCE_API_ENABLED",()=>bS(Fe.getNumber("WEBGL_VERSION")));Fe.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Fe.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Fe.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Fe.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>fh.isMobile()?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});Fe.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);Fe.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);Fe.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);Fe.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);function Gr(){let e,t,r,n,a,s,i,o,l,u;return Y().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",r="out",n="in",a="texture",s="outputColor",i="out vec4 outputColor;",o=`
|
|
bool isnan_custom(float val) {
|
|
uint floatToUint = floatBitsToUint(val);
|
|
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
|
|
}
|
|
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan_custom(val.x),
|
|
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
|
|
}
|
|
|
|
#define isnan(value) isnan_custom(value)
|
|
`,l="",u=`
|
|
#define round(value) newRound(value)
|
|
int newRound(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 newRound(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`):(e="",t="attribute",r="varying",n="varying",a="texture2D",s="gl_FragColor",i="",o=`
|
|
#define isnan(value) isnan_custom(value)
|
|
bool isnan_custom(float val) {
|
|
return (val > 0. || val < 1. || val == 0.) ? false : true;
|
|
}
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
|
|
}
|
|
`,l=`
|
|
uniform float INFINITY;
|
|
|
|
bool isinf(float val) {
|
|
return abs(val) == INFINITY;
|
|
}
|
|
bvec4 isinf(vec4 val) {
|
|
return equal(abs(val), vec4(INFINITY));
|
|
}
|
|
`,u=`
|
|
int round(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 round(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`),{version:e,attribute:t,varyingVs:r,varyingFs:n,texture2D:a,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:u}}function $l(e,t,r="index"){let n=w.computeStrides(t);return n.map((a,s)=>{let i=`int ${e[s]} = ${r} / ${a}`,o=s===n.length-1?`int ${e[s+1]} = ${r} - ${e[s]} * ${a}`:`index -= ${e[s]} * ${a}`;return`${i}; ${o};`}).join("")}function g0(e,t,r="index"){let n=w.computeStrides(t);return n.map((a,s)=>{let i=`int ${e[s]} = ${r} / outShapeStrides[${s}]`,o=s===n.length-1?`int ${e[s+1]} = ${r} - ${e[s]} * outShapeStrides[${s}]`:`index -= ${e[s]} * outShapeStrides[${s}]`;return`${i}; ${o};`}).join("")}function mQ(e,t){let r=e.length,n=e.map(s=>`${t}[${s}]`),a=new Array(r-1);a[r-2]=n[r-1];for(let s=r-3;s>=0;--s)a[s]=`(${a[s+1]} * ${n[s+1]})`;return a}function gQ(e,t,r="index"){let n=e.map((s,i)=>i),a=mQ(n,t);return a.map((s,i)=>{let o=`int ${e[i]} = ${r} / ${a[i]}`,l=i===a.length-1?`int ${e[i+1]} = ${r} - ${e[i]} * ${a[i]}`:`index -= ${e[i]} * ${a[i]}`;return`${o}; ${l};`}).join("")}function ib(e){let t=w.computeStrides(e).map(r=>r.toString());return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
|
|
}
|
|
`}function ob(){return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
|
|
}
|
|
`}var vS=`
|
|
const float FLOAT_MAX = 1.70141184e38;
|
|
const float FLOAT_MIN = 1.17549435e-38;
|
|
|
|
lowp vec4 encode_float(highp float v) {
|
|
if (isnan(v)) {
|
|
return vec4(255, 255, 255, 255);
|
|
}
|
|
|
|
highp float av = abs(v);
|
|
|
|
if(av < FLOAT_MIN) {
|
|
return vec4(0.0, 0.0, 0.0, 0.0);
|
|
} else if(v > FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
|
|
} else if(v < -FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
|
|
}
|
|
|
|
highp vec4 c = vec4(0,0,0,0);
|
|
|
|
highp float e = floor(log2(av));
|
|
highp float m = exp2(fract(log2(av))) - 1.0;
|
|
|
|
c[2] = floor(128.0 * m);
|
|
m -= c[2] / 128.0;
|
|
c[1] = floor(32768.0 * m);
|
|
m -= c[1] / 32768.0;
|
|
c[0] = floor(8388608.0 * m);
|
|
|
|
highp float ebias = e + 127.0;
|
|
c[3] = floor(ebias / 2.0);
|
|
ebias -= c[3] * 2.0;
|
|
c[2] += floor(ebias) * 128.0;
|
|
|
|
c[3] += 128.0 * step(0.0, -v);
|
|
|
|
return c / 255.0;
|
|
}
|
|
`,{getBroadcastDims:wS}=N;function yQ(e,t,r){let n=[];if(e.forEach(p=>{let c=w.sizeFromShape(p.shapeInfo.logicalShape);if(p.shapeInfo.isUniform?n.push(`uniform float ${p.name}${c>1?`[${c}]`:""};`):(n.push(`uniform sampler2D ${p.name};`),n.push(`uniform int offset${p.name};`)),r.enableShapeUniforms){let{uniformShape:f}=lb(r.packedInputs,p.shapeInfo.logicalShape,p.shapeInfo.texShape);switch(f.length){case 1:n.push(`uniform int ${p.name}Shape;`);break;case 2:n.push(`uniform ivec2 ${p.name}Shape;`);break;case 3:n.push(`uniform ivec3 ${p.name}Shape;`);break;case 4:n.push(`uniform ivec4 ${p.name}Shape;`);break;default:break}n.push(`uniform ivec2 ${p.name}TexShape;`)}}),r.enableShapeUniforms){switch(t.logicalShape.length){case 1:n.push("uniform int outShape;");break;case 2:n.push("uniform ivec2 outShape;"),n.push("uniform int outShapeStrides;");break;case 3:n.push("uniform ivec3 outShape;"),n.push("uniform ivec2 outShapeStrides;");break;case 4:n.push("uniform ivec4 outShape;"),n.push("uniform ivec3 outShapeStrides;");break;default:break}n.push("uniform ivec2 outTexShape;")}r.customUniforms&&r.customUniforms.forEach(p=>{n.push(`uniform ${p.type} ${p.name}${p.arrayIndex?`[${p.arrayIndex}]`:""};`)});let a=n.join(`
|
|
`),s=e.map(p=>AQ(p,t,r.packedInputs,r.enableShapeUniforms)).join(`
|
|
`),i=t.texShape,o=Gr(),l=vQ(o),u,d,h=IQ(o);return t.isPacked?(u=xQ(t.logicalShape,i,r.enableShapeUniforms),d=kQ(o)):(u=bQ(t.logicalShape,i,r.enableShapeUniforms),d=wQ(o)),r.packedInputs&&(h+=CQ),[h,l,d,a,u,s,r.userCode].join(`
|
|
`)}function wd(e,t=!1){let r=e.shapeInfo.logicalShape;switch(r.length){case 0:return BQ(e,t);case 1:return VQ(e,t);case 2:return GQ(e,t);case 3:return HQ(e,t);case 4:return KQ(e,t);case 5:return XQ(e);case 6:return ZQ(e);default:throw new Error(`${r.length}-D input sampling is not yet supported`)}}function kS(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return LQ(e);case 1:return WQ(e,t);case 2:return UQ(e,t);case 3:return jQ(e,t);default:return qQ(e,t)}}function AQ(e,t,r=!1,n){let a="";r?a+=kS(e,n):a+=wd(e,n);let s=e.shapeInfo.logicalShape,i=t.logicalShape;return s.length<=i.length&&(r?a+=YQ(e,t):a+=JQ(e,t)),a}function xQ(e,t,r){switch(e.length){case 0:return IS();case 1:return EQ(e,t,r);case 2:return OQ(e,t,r);case 3:return MQ(e,t,r);default:return $Q(e,t,r)}}function bQ(e,t,r){switch(e.length){case 0:return IS();case 1:return RQ(e,t,r);case 2:return DQ(e,t,r);case 3:return FQ(e,t,r);case 4:return PQ(e,t,r);case 5:return _Q(e,t);case 6:return zQ(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function vQ(e){return`
|
|
float sampleTexture(sampler2D textureSampler, vec2 uv) {
|
|
return ${e.texture2D}(textureSampler, uv).r;
|
|
}
|
|
`}function wQ(e){return`
|
|
void setOutput(float val) {
|
|
${e.output} = vec4(val, 0, 0, 0);
|
|
}
|
|
`}function kQ(e){return`
|
|
void setOutput(vec4 val) {
|
|
${e.output} = val;
|
|
}
|
|
`}function IQ(e){return`${e.version}
|
|
precision highp float;
|
|
precision highp int;
|
|
precision highp sampler2D;
|
|
${e.varyingFs} vec2 resultUV;
|
|
${e.defineOutput}
|
|
const vec2 halfCR = vec2(0.5, 0.5);
|
|
|
|
struct ivec5
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
};
|
|
|
|
struct ivec6
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
int v;
|
|
};
|
|
|
|
uniform float NAN;
|
|
${e.defineSpecialNaN}
|
|
${e.defineSpecialInf}
|
|
${e.defineRound}
|
|
|
|
int imod(int x, int y) {
|
|
return x - y * (x / y);
|
|
}
|
|
|
|
int idiv(int a, int b, float sign) {
|
|
int res = a / b;
|
|
int mod = imod(a, b);
|
|
if (sign < 0. && mod != 0) {
|
|
res -= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//Based on the work of Dave Hoskins
|
|
//https://www.shadertoy.com/view/4djSRW
|
|
#define HASHSCALE1 443.8975
|
|
float random(float seed){
|
|
vec2 p = resultUV * seed;
|
|
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
|
|
p3 += dot(p3, p3.yzx + 19.19);
|
|
return fract((p3.x + p3.y) * p3.z);
|
|
}
|
|
|
|
${SQ}
|
|
${TQ}
|
|
${NQ}
|
|
`}var SQ=`
|
|
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
|
|
int texelIndex = index / 2;
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,TQ=`
|
|
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
|
|
int texNumC, int row, int col) {
|
|
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,NQ=`
|
|
vec2 packedUVfrom3D(int texNumR, int texNumC,
|
|
int texelsInBatch, int texelsInLogicalRow, int b,
|
|
int row, int col) {
|
|
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,CQ=`
|
|
float getChannel(vec4 frag, vec2 innerDims) {
|
|
vec2 modCoord = mod(innerDims, 2.);
|
|
return modCoord.x == 0. ?
|
|
(modCoord.y == 0. ? frag.r : frag.g) :
|
|
(modCoord.y == 0. ? frag.b : frag.a);
|
|
}
|
|
float getChannel(vec4 frag, int dim) {
|
|
float modCoord = mod(float(dim), 2.);
|
|
return modCoord == 0. ? frag.r : frag.g;
|
|
}
|
|
`;function IS(){return`
|
|
int getOutputCoords() {
|
|
return 0;
|
|
}
|
|
`}function EQ(e,t,r){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?r?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ${n[1]}.0);
|
|
}
|
|
`:n[1]===1?r?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ${n[0]}.0);
|
|
}
|
|
`:r?`
|
|
int getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
return 2 * (resTexRC.x * ${n[1]} + resTexRC.y);
|
|
}
|
|
`}function RQ(e,t,r){return t[0]===1?r?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * float(outTexShape[1]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * ${t[1]}.0);
|
|
}
|
|
`:t[1]===1?r?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * float(outTexShape[0]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * ${t[0]}.0);
|
|
}
|
|
`:r?`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
return resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
return resTexRC.x * ${t[1]} + resTexRC.y;
|
|
}
|
|
`}function MQ(e,t,r){if(r)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`;let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],a=Math.ceil(e[2]/2),s=a*Math.ceil(e[1]/2);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
|
|
int b = index / ${s};
|
|
index -= b * ${s};
|
|
|
|
int r = 2 * (index / ${a});
|
|
int c = imod(index, ${a}) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`}function FQ(e,t,r){if(r)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${g0(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`;let n=$l(["r","c","d"],e);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${n}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}function $Q(e,t,r){if(r)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatchN = texelsInBatch * outShape[1];
|
|
|
|
int b2 = index / texelsInBatchN;
|
|
index -= b2 * texelsInBatchN;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec4(b2, b, r, c);
|
|
}
|
|
`;let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],a=Math.ceil(e[e.length-1]/2),s=a*Math.ceil(e[e.length-2]/2),i=s,o="",l="b, r, c";for(let u=2;u<e.length-1;u++)i*=e[e.length-u-1],o=`
|
|
int b${u} = index / ${i};
|
|
index -= b${u} * ${i};
|
|
`+o,l=`b${u}, `+l;return`
|
|
ivec${e.length} getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
|
|
${o}
|
|
|
|
int b = index / ${s};
|
|
index -= b * ${s};
|
|
|
|
int r = 2 * (index / ${a});
|
|
int c = imod(index, ${a}) * 2;
|
|
|
|
return ivec${e.length}(${l});
|
|
}
|
|
`}function PQ(e,t,r){if(r)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${g0(["r","c","d","d2"],e)}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`;let n=$l(["r","c","d","d2"],e);return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${n}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`}function _Q(e,t){let r=$l(["r","c","d","d2","d3"],e);return`
|
|
ivec5 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
|
|
${t[1]}));
|
|
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${r}
|
|
|
|
ivec5 outShape = ivec5(r, c, d, d2, d3);
|
|
return outShape;
|
|
}
|
|
`}function zQ(e,t){let r=$l(["r","c","d","d2","d3","d4"],e);return`
|
|
ivec6 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${r}
|
|
|
|
ivec6 result = ivec6(r, c, d, d2, d3, d4);
|
|
return result;
|
|
}
|
|
`}function OQ(e,t,r){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(w.arraysEqual(e,t))return r?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return 2 * ivec2(resultUV.yx * vec2(${n[0]}, ${n[1]}));
|
|
}
|
|
`;let a=Math.ceil(e[1]/2);return r?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
int r = 2 * (index / ${a});
|
|
int c = imod(index, ${a}) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`}function DQ(e,t,r){return w.arraysEqual(e,t)?r?`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
|
|
}
|
|
`:e[1]===1?r?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:e[0]===1?r?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:r?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
int r = index / outShape[1];
|
|
int c = index - r * outShape[1];
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
int r = index / ${e[1]};
|
|
int c = index - r * ${e[1]};
|
|
return ivec2(r, c);
|
|
}
|
|
`}function Pl(e){return`offset${e}`}function LQ(e){let t=e.name,r="get"+t.charAt(0).toUpperCase()+t.slice(1),n=Gr();return`
|
|
vec4 ${r}() {
|
|
return ${n.texture2D}(${t}, halfCR);
|
|
}
|
|
`}function BQ(e,t){let r=e.name,n="get"+r.charAt(0).toUpperCase()+r.slice(1);if(e.shapeInfo.isUniform)return`float ${n}() {return ${r};}`;let[a,s]=e.shapeInfo.texShape;if(a===1&&s===1)return`
|
|
float ${n}() {
|
|
return sampleTexture(${r}, halfCR);
|
|
}
|
|
`;let i=Pl(r);if(t)return`
|
|
float ${n}() {
|
|
vec2 uv = uvFromFlat(${r}TexShape[0], ${r}TexShape[1], ${i});
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`;let[o,l]=e.shapeInfo.texShape;return`
|
|
float ${n}() {
|
|
vec2 uv = uvFromFlat(${o}, ${l}, ${i});
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`}function WQ(e,t){let r=e.name,n="get"+r.charAt(0).toUpperCase()+r.slice(1),a=e.shapeInfo.texShape,s=Gr();if(t)return`
|
|
vec4 ${n}(int index) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${r}TexShape[0]) / 2.0), ceil(float(${r}TexShape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom1D(
|
|
packedTexShape[0], packedTexShape[1], index);
|
|
return ${s.texture2D}(${r}, uv);
|
|
}
|
|
`;let i=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)];return`
|
|
vec4 ${n}(int index) {
|
|
vec2 uv = packedUVfrom1D(
|
|
${i[0]}, ${i[1]}, index);
|
|
return ${s.texture2D}(${r}, uv);
|
|
}
|
|
`}function VQ(e,t){let r=e.name,n="get"+r.charAt(0).toUpperCase()+r.slice(1);if(e.shapeInfo.isUniform)return`
|
|
float ${n}(int index) {
|
|
${kd(e)}
|
|
}
|
|
`;let a=e.shapeInfo.texShape,s=a[0],i=a[1];if(i===1&&s===1)return`
|
|
float ${n}(int index) {
|
|
return sampleTexture(${r}, halfCR);
|
|
}
|
|
`;let o=Pl(r);return i===1?t?`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${o}) + 0.5) / float(${r}TexShape[0]));
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`:`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${o}) + 0.5) / ${s}.0);
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`:s===1?t?`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2((float(index + ${o}) + 0.5) / float(${r}TexShape[1]), 0.5);
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`:`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2((float(index + ${o}) + 0.5) / ${i}.0, 0.5);
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`:t?`
|
|
float ${n}(int index) {
|
|
vec2 uv = uvFromFlat(${r}TexShape[0], ${r}TexShape[1], index + ${o});
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`:`
|
|
float ${n}(int index) {
|
|
vec2 uv = uvFromFlat(${s}, ${i}, index + ${o});
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`}function UQ(e,t){let r=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),s=e.shapeInfo.texShape,i=s[0],o=s[1],l=Gr();if(s!=null&&w.arraysEqual(r,s))return t?`
|
|
vec4 ${a}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${n}TexShape[1], ${n}TexShape[0]);
|
|
|
|
return ${l.texture2D}(${n}, uv);
|
|
}
|
|
`:`
|
|
vec4 ${a}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${o}.0, ${i}.0);
|
|
|
|
return ${l.texture2D}(${n}, uv);
|
|
}
|
|
`;if(t)return`
|
|
vec4 ${a}(int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${n}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
|
|
return ${l.texture2D}(${n}, uv);
|
|
}
|
|
`;let u=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],d=Math.ceil(r[1]/2);return`
|
|
vec4 ${a}(int row, int col) {
|
|
vec2 uv = packedUVfrom2D(${d}, ${u[0]}, ${u[1]}, row, col);
|
|
return ${l.texture2D}(${n}, uv);
|
|
}
|
|
`}function GQ(e,t){let r=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),s=e.shapeInfo.texShape;if(s!=null&&w.arraysEqual(r,s)){if(t)return`
|
|
float ${a}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${n}TexShape[1], ${n}TexShape[0]);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let p=s[0],c=s[1];return`
|
|
float ${a}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${c}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}let{newShape:i,keptDims:o}=w.squeezeShape(r),l=i;if(l.length<r.length){let p=Id(e,l),c=["row","col"];return`
|
|
${wd(p,t)}
|
|
float ${a}(int row, int col) {
|
|
return ${a}(${Sd(c,o)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col) {
|
|
int index = round(dot(vec2(row, col), vec2(${r[1]}, 1)));
|
|
${kd(e)}
|
|
}
|
|
`;let u=s[0],d=s[1],h=Pl(n);return d===1?t?`
|
|
float ${a}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${h}), vec3(${n}Shape[1], 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / float(${n}TexShape[0]));
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${h}), vec3(${r[1]}, 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / ${u}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:u===1?t?`
|
|
float ${a}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${h}), vec3(${n}Shape[1], 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / float(${n}TexShape[1]), 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${h}), vec3(${r[1]}, 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / ${d}.0, 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:t?`
|
|
float ${a}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${n}Shape[1] + col + ${h};
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${r[1]} + col + ${h};
|
|
vec2 uv = uvFromFlat(${u}, ${d}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function jQ(e,t){let r=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),s=e.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)];if(r[0]===1){let p=r.slice(1),c=[1,2],f=Id(e,p),m=["b","row","col"];return`
|
|
${kS(f,t)}
|
|
vec4 ${a}(int b, int row, int col) {
|
|
return ${a}(${Sd(m,c)});
|
|
}
|
|
`}let o=Gr();if(t)return`
|
|
vec4 ${a}(int b, int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${n}Shape[2]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom3D(
|
|
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
|
|
return ${o.texture2D}(${n}, uv);
|
|
}
|
|
`;let l=i[0],u=i[1],d=Math.ceil(r[2]/2),h=d*Math.ceil(r[1]/2);return`
|
|
vec4 ${a}(int b, int row, int col) {
|
|
vec2 uv = packedUVfrom3D(
|
|
${l}, ${u}, ${h}, ${d}, b, row, col);
|
|
return ${o.texture2D}(${n}, uv);
|
|
}
|
|
`}function HQ(e,t){let r=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),s=r[1]*r[2],i=r[2],{newShape:o,keptDims:l}=w.squeezeShape(r),u=o;if(u.length<r.length){let m=Id(e,u),g=["row","col","depth"];return`
|
|
${wd(m,t)}
|
|
float ${a}(int row, int col, int depth) {
|
|
return ${a}(${Sd(g,l)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth) {
|
|
int index = round(dot(vec3(row, col, depth),
|
|
vec3(${s}, ${i}, 1)));
|
|
${kd(e)}
|
|
}
|
|
`;let d=e.shapeInfo.texShape,h=d[0],p=d[1],c=e.shapeInfo.flatOffset;if(p===s&&c==null)return t?`
|
|
float ${a}(int row, int col, int depth) {
|
|
int stride1 = ${n}Shape[2];
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(stride1, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${n}TexShape[1], ${n}TexShape[0]);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int row, int col, int depth) {
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(${i}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${p}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(p===i&&c==null)return t?`
|
|
float ${a}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${n}Shape[1], 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${n}TexShape[1], ${n}TexShape[0]);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${r[1]}, 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let f=Pl(n);return t?`
|
|
float ${a}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int stride0 = ${n}Shape[1] * ${n}Shape[2];
|
|
int stride1 = ${n}Shape[2];
|
|
int index = row * ${s} + col * ${i} + depth + ${f};
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${s} + col * ${i} + depth + ${f};
|
|
vec2 uv = uvFromFlat(${h}, ${p}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function qQ(e,t){let r=e.name,n="get"+r.charAt(0).toUpperCase()+r.slice(1),a=Gr();if(t)return`
|
|
vec4 ${n}(int b2, int b, int row, int col) {
|
|
int valuesPerRow = int(ceil(float(${r}Shape[3]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${r}Shape[2]) / 2.0));
|
|
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
|
|
texelsInBatch *= ${r}Shape[1];
|
|
index = b2 * texelsInBatch + index;
|
|
ivec2 packedTexShape = ivec2(ceil(float(${r}TexShape[0]) / 2.0), ceil(float(${r}TexShape[1]) / 2.0));
|
|
int texR = index / packedTexShape[1];
|
|
int texC = index - texR * packedTexShape[1];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${a.texture2D}(${r}, uv);
|
|
}
|
|
`;let s=e.shapeInfo.logicalShape,i=s.length,o=e.shapeInfo.texShape,l=[Math.ceil(o[0]/2),Math.ceil(o[1]/2)],u=l[0],d=l[1],h=Math.ceil(s[i-1]/2),p=h*Math.ceil(s[i-2]/2),c="int b, int row, int col",f=`b * ${p} + (row / 2) * ${h} + (col / 2)`;for(let m=2;m<i-1;m++)c=`int b${m}, `+c,p*=s[i-m-1],f=`b${m} * ${p} + `+f;return`
|
|
vec4 ${n}(${c}) {
|
|
int index = ${f};
|
|
int texR = index / ${d};
|
|
int texC = index - texR * ${d};
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${d}, ${u});
|
|
return ${a.texture2D}(${r}, uv);
|
|
}
|
|
`}function KQ(e,t){let r=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),s=r[3],i=r[2]*s,o=r[1]*i,{newShape:l,keptDims:u}=w.squeezeShape(r);if(l.length<r.length){let A=Id(e,l),x=["row","col","depth","depth2"];return`
|
|
${wd(A,t)}
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
return ${a}(${Sd(x,u)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
int index = round(dot(vec4(row, col, depth, depth2),
|
|
vec4(${o}, ${i}, ${s}, 1)));
|
|
${kd(e)}
|
|
}
|
|
`;let d=e.shapeInfo.flatOffset,h=e.shapeInfo.texShape,p=h[0],c=h[1],f=`int stride2 = ${n}Shape[3];`,m=`int stride1 = ${n}Shape[2] * stride2;`,g=`int stride0 = ${n}Shape[1] * stride1;`;if(c===o&&d==null)return t?`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
${f}
|
|
${m}
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(stride1, stride2, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${n}TexShape[1], ${n}TexShape[0]);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(${i}, ${s}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${c}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(c===s&&d==null)return t?`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${n}Shape[1] * ${n}Shape[2], ${n}Shape[2], 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${n}TexShape[1], ${n}TexShape[0]);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${r[1]*r[2]}, ${r[2]}, 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${c}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let y=Pl(n);return t?`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
${f}
|
|
${m}
|
|
${g}
|
|
int index = row * stride0 + col * stride1 +
|
|
depth * stride2 + depth2;
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${y});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${o} + col * ${i} +
|
|
depth * ${s} + depth2;
|
|
vec2 uv = uvFromFlat(${p}, ${c}, index + ${y});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function XQ(e){let t=e.shapeInfo.logicalShape,r=e.name,n="get"+r.charAt(0).toUpperCase()+r.slice(1),a=t[4],s=t[3]*a,i=t[2]*s,o=t[1]*i,{newShape:l,keptDims:u}=w.squeezeShape(t);if(l.length<t.length){let m=Id(e,l),g=["row","col","depth","depth2","depth3"];return`
|
|
${wd(m)}
|
|
float ${n}(int row, int col, int depth, int depth2, int depth3) {
|
|
return ${n}(${Sd(g,u)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${n}(int row, int col, int depth, int depth2, int depth3) {
|
|
float index = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${o}, ${i}, ${s}, ${a})) +
|
|
depth3;
|
|
${kd(e)}
|
|
}
|
|
`;let d=e.shapeInfo.flatOffset,h=e.shapeInfo.texShape,p=h[0],c=h[1];if(c===o&&d==null)return`
|
|
float ${n}(int row, int col, int depth, int depth2, int depth3) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${i}, ${s}, ${a}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${c}.0, ${p}.0);
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`;if(c===a&&d==null)return`
|
|
float ${n}(int row, int col, int depth, int depth2, int depth3) {
|
|
float texR = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]},
|
|
${t[2]*t[3]}, ${t[3]}, 1));
|
|
int texC = depth3;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${c}.0, ${p}.0);
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`;let f=Pl(r);return`
|
|
float ${n}(int row, int col, int depth, int depth2, int depth3) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${o} + col * ${i} + depth * ${s} +
|
|
depth2 * ${a} + depth3 + ${f};
|
|
vec2 uv = uvFromFlat(${p}, ${c}, index);
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`}function ZQ(e){let t=e.shapeInfo.logicalShape,r=e.name,n="get"+r.charAt(0).toUpperCase()+r.slice(1),{newShape:a,keptDims:s}=w.squeezeShape(t);if(a.length<t.length){let g=Id(e,a),y=["row","col","depth","depth2","depth3","depth4"];return`
|
|
${wd(g)}
|
|
float ${n}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
return ${n}(${Sd(y,s)});
|
|
}
|
|
`}let i=t[5],o=t[4]*i,l=t[3]*o,u=t[2]*l,d=t[1]*u;if(e.shapeInfo.isUniform)return`
|
|
float ${n}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int index = round(dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${d}, ${u}, ${l}, ${o})) +
|
|
dot(
|
|
vec2(depth3, depth4),
|
|
vec2(${i}, 1)));
|
|
${kd(e)}
|
|
}
|
|
`;let h=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,c=p[0],f=p[1];if(f===d&&h==null)return`
|
|
float ${n}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${u}, ${l}, ${o}, ${i})) +
|
|
float(depth4);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${c}.0);
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`;if(f===i&&h==null)return`
|
|
float ${n}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
float texR = dot(vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]*t[4]},
|
|
${t[2]*t[3]*t[4]},
|
|
${t[3]*t[4]},
|
|
${t[4]})) + float(depth3);
|
|
int texC = depth4;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${c}.0);
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`;let m=Pl(r);return`
|
|
float ${n}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${d} + col * ${u} + depth * ${l} +
|
|
depth2 * ${o} + depth3 * ${i} + depth4 + ${m};
|
|
vec2 uv = uvFromFlat(${c}, ${f}, index);
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`}function kd(e){let t=e.name,r=w.sizeFromShape(e.shapeInfo.logicalShape);return r<2?`return ${t};`:`
|
|
for (int i = 0; i < ${r}; i++) {
|
|
if (i == index) {
|
|
return ${t}[i];
|
|
}
|
|
}
|
|
`}function YQ(e,t){let r=e.name,n=r.charAt(0).toUpperCase()+r.slice(1),a="get"+n+"AtOutCoords",s=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=wS(e.shapeInfo.logicalShape,t.logicalShape),l=gt(i),u=i-s,d,h=["x","y","z","w","u","v"];s===0?d="":i<2&&o.length>=1?d="coords = 0;":d=o.map(g=>`coords.${h[g+u]} = 0;`).join(`
|
|
`);let p="";i<2&&s>0?p="coords":p=e.shapeInfo.logicalShape.map((g,y)=>`coords.${h[y+u]}`).join(", ");let c="return outputValue;",f=w.sizeFromShape(e.shapeInfo.logicalShape)===1,m=w.sizeFromShape(t.logicalShape)===1;if(s===1&&!f&&!m)c=`
|
|
return vec4(outputValue.xy, outputValue.xy);
|
|
`;else if(f&&!m)i===1?c=`
|
|
return vec4(outputValue.x, outputValue.x, 0., 0.);
|
|
`:c=`
|
|
return vec4(outputValue.x);
|
|
`;else if(o.length){let g=s-2,y=s-1;o.indexOf(g)>-1&&o.indexOf(y)>-1?c="return vec4(outputValue.x);":o.indexOf(g)>-1?c="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(y)>-1&&(c="return vec4(outputValue.xx, outputValue.zz);")}return`
|
|
vec4 ${a}() {
|
|
${l} coords = getOutputCoords();
|
|
${d}
|
|
vec4 outputValue = get${n}(${p});
|
|
${c}
|
|
}
|
|
`}function JQ(e,t){let r=e.name,n=r.charAt(0).toUpperCase()+r.slice(1),a="get"+n+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&w.arraysEqual(i,s))return`
|
|
float ${a}() {
|
|
return sampleTexture(${r}, resultUV);
|
|
}
|
|
`;let u=gt(l),d=wS(e.shapeInfo.logicalShape,t.logicalShape),h=l-o,p,c=["x","y","z","w","u","v"];o===0?p="":l<2&&d.length>=1?p="coords = 0;":p=d.map(m=>`coords.${c[m+h]} = 0;`).join(`
|
|
`);let f="";return l<2&&o>0?f="coords":f=e.shapeInfo.logicalShape.map((m,g)=>`coords.${c[g+h]}`).join(", "),`
|
|
float ${a}() {
|
|
${u} coords = getOutputCoords();
|
|
${p}
|
|
return get${n}(${f});
|
|
}
|
|
`}function gt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function lb(e,t,r){let{newShape:n,keptDims:a}=w.squeezeShape(t),s=t.length,i=e&&s===3&&t[0]===1,o=i?t.slice(1):n,l=!e&&s>1&&!w.arraysEqual(t,r)&&n.length<s||i;return{useSqueezeShape:l,uniformShape:l?o:t,keptDims:a}}function Id(e,t){let r=JSON.parse(JSON.stringify(e));return r.shapeInfo.logicalShape=t,r}function Sd(e,t){return t.map(r=>e[r]).join(", ")}function QQ(e,t,r,n){let a=r.map((d,h)=>{let p={logicalShape:d.shape,texShape:d.isUniform?null:d.texData.texShape,isUniform:d.isUniform,isPacked:d.isUniform?!1:d.texData.isPacked,flatOffset:null};return d.texData!=null&&d.texData.slice!=null&&d.texData.slice.flatOffset>0&&(p.flatOffset=d.texData.slice.flatOffset),{name:t.variableNames[h],shapeInfo:p}}),s=a.map(d=>d.shapeInfo),i={logicalShape:n.shape,texShape:n.texData.texShape,isUniform:!1,isPacked:n.texData.isPacked,flatOffset:null},o=yQ(a,i,t),l=eS(e.gl,o),u=e.createProgram(l);return Y().get("ENGINE_COMPILE_ONLY")?{program:t,fragmentShader:l,source:o,webGLProgram:u,inShapeInfos:s,outShapeInfo:i,uniformLocations:null,customUniformLocations:null,infLoc:null,nanLoc:null,inShapesLocations:null,inTexShapesLocations:null,outShapeLocation:null,outShapeStridesLocation:null,outTexShapeLocation:null}:{program:t,fragmentShader:l,source:o,webGLProgram:u,inShapeInfos:s,outShapeInfo:i,...SS(e,t,u)}}function SS(e,t,r){let n={},a={},s={},i=[],o,l,u,d=null,h=null;h=e.getUniformLocation(r,"NAN",!1),Y().getNumber("WEBGL_VERSION")===1&&(d=e.getUniformLocation(r,"INFINITY",!1));let p=!1;for(let c=0;c<t.variableNames.length;c++){let f=t.variableNames[c];n[f]=e.getUniformLocation(r,f,p),n[`offset${f}`]=e.getUniformLocation(r,`offset${f}`,p),t.enableShapeUniforms&&(a[`${f}Shape`]=e.getUniformLocation(r,`${f}Shape`,p),s[`${f}TexShape`]=e.getUniformLocation(r,`${f}TexShape`,p))}return t.enableShapeUniforms&&(o=e.getUniformLocation(r,"outShape",p),u=e.getUniformLocation(r,"outShapeStrides",p),l=e.getUniformLocation(r,"outTexShape",p)),t.customUniforms&&t.customUniforms.forEach((c,f)=>{i[f]=e.getUniformLocation(r,c.name,p)}),{uniformLocations:n,customUniformLocations:i,infLoc:d,nanLoc:h,inShapesLocations:a,inTexShapesLocations:s,outShapeLocation:o,outShapeStridesLocation:u,outTexShapeLocation:l}}function Rv(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((r,n)=>{let a=r.logicalShape,s=t[n],i=s.shape;if(!w.arraysEqual(a,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${a} and ${i} must match`);if(r.isUniform&&s.isUniform)return;let o=r.texShape,l=s.isUniform?null:s.texData.texShape;if(!w.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function eee(e,t,r,n,a){t.program.enableShapeUniforms||(Rv(t.inShapeInfos,r),Rv([t.outShapeInfo],[n]));let s=n.texData.texture,i=n.texData.texShape;n.texData.isPacked?e.setOutputPackedMatrixTexture(s.texture,i[0],i[1]):e.setOutputMatrixTexture(s.texture,i[0],i[1]),e.setProgram(t.webGLProgram),Y().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),r.forEach((l,u)=>{let d=t.program.variableNames[u],h=t.uniformLocations[d],p=t.uniformLocations[`offset${d}`],c=t.inShapesLocations[`${d}Shape`],f=t.inTexShapesLocations[`${d}TexShape`];if(c){let{uniformShape:m}=lb(t.program.packedInputs,l.shape,l.texData.texShape);switch(m.length){case 1:e.gl.uniform1iv(c,new Int32Array(m));break;case 2:e.gl.uniform2iv(c,new Int32Array(m));break;case 3:e.gl.uniform3iv(c,new Int32Array(m));break;case 4:e.gl.uniform4iv(c,new Int32Array(m));break;default:break}}if(f&&e.gl.uniform2i(f,l.texData.texShape[0],l.texData.texShape[1]),h!=null){if(l.isUniform){if(w.sizeFromShape(l.shape)<2)e.gl.uniform1f(h,l.uniformValues[0]);else{let m=l.uniformValues;m instanceof Float32Array||(m=new Float32Array(m)),e.gl.uniform1fv(h,m)}return}l.texData.slice!=null&&p!=null&&e.gl.uniform1i(p,l.texData.slice.flatOffset),e.setInputMatrixTexture(l.texData.texture.texture,h,u)}});let o=t.outShapeLocation;if(o)switch(n.shape.length){case 1:e.gl.uniform1iv(o,new Int32Array(n.shape));break;case 2:e.gl.uniform2iv(o,new Int32Array(n.shape));break;case 3:e.gl.uniform3iv(o,new Int32Array(n.shape));break;case 4:e.gl.uniform4iv(o,new Int32Array(n.shape));break;default:break}if(t.outShapeStridesLocation){let l=w.computeStrides(n.shape);switch(n.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(l));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(l));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(l));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,n.texData.texShape[0],n.texData.texShape[1]),t.program.customUniforms&&a&&t.program.customUniforms.forEach((l,u)=>{let d=t.customUniformLocations[u],h=a[u];if(l.type==="float")e.gl.uniform1fv(d,h);else if(l.type==="vec2")e.gl.uniform2fv(d,h);else if(l.type==="vec3")e.gl.uniform3fv(d,h);else if(l.type==="vec4")e.gl.uniform4fv(d,h);else if(l.type==="int")e.gl.uniform1iv(d,h);else if(l.type==="ivec2")e.gl.uniform2iv(d,h);else if(l.type==="ivec3")e.gl.uniform3iv(d,h);else if(l.type==="ivec4")e.gl.uniform4iv(d,h);else throw Error(`uniform type ${l.type} is not supported yet.`)}),e.executeProgram()}function tee(e,t,r){let n="";t.concat(r).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!i.isUniform){let l=i.texData.texShape,{useSqueezeShape:u,uniformShape:d,keptDims:h}=lb(e.packedInputs,i.shape,l),p="",c="",f="";if(d.length===1&&e.packedInputs){let v=[Math.ceil(l[0]/2),Math.ceil(l[1]/2)];p=`${v[0]>1}_${v[1]>1}`}else if(d.length===2&&!e.packedInputs)c=`${d[0]>1}_${d[1]>1}`;else if(d.length>2&&!e.packedInputs){let v=w.computeStrides(d);f=`${v[0]===l[1]}_${v[v.length-1]===l[1]}`}let m=i.shape.length,g=d.length===2&&w.arraysEqual(i.shape,l),y=w.sizeFromShape(i.shape)===1,A=N.getBroadcastDims(i.shape,r.shape),x=!e.packedInputs&&m===r.shape.length&&w.arraysEqual(l,r.texData.texShape),b=e.packedInputs||d.length>2?"":`${l[0]>1}_${l[1]>1}`;n+=`${m}_${x}_${u?h:""}_${d.length}_${y}_${A}_${g}_${p}_${c}_${f}_${b}_${o}`}else{let l=i.isUniform?"uniform":i.texData.texShape;n+=`${i.shape}_${l}_${o}`}});let a=e.userCode,s=e.constructor.name;return s+="_"+n+"_"+a+`${Y().getNumber("WEBGL_VERSION")}`,s}function ln(e){return Y().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var ree=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=Gr();this.outputShape=e,this.enableShapeUniforms=ln(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?g0(["r","c","d"],e):$l(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getA(rc.x, rc.y, rc.z);
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},nee=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=Gr();this.outputShape=e,this.enableShapeUniforms=ln(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?g0(["r","c","d"],e):$l(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},aee=class{constructor(e){this.variableNames=["A"],this.outTexUsage=3;let t=Gr();this.outputShape=e,this.userCode=`
|
|
${vS}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},see=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=3;let t=Gr();this.outputShape=e,this.userCode=`
|
|
${vS}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},iee=class{constructor(e,t=!1){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let r=Gr();this.outputShape=e,this.enableShapeUniforms=ln(this.outputShape.length);let n="result";t&&(n="floor(result * 255. + 0.5)"),this.userCode=`
|
|
${this.enableShapeUniforms?ob():ib(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
int flatIndex = getFlatIndex(coords);
|
|
int offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
vec4 values = ${r.texture2D}(A, uv);
|
|
|
|
float result;
|
|
|
|
if(offset == 0) {
|
|
result = values[0];
|
|
} else if(offset == 1) {
|
|
result = values[1];
|
|
} else if(offset == 2) {
|
|
result = values[2];
|
|
} else {
|
|
result = values[3];
|
|
}
|
|
|
|
${r.output} = vec4(${n}, 0., 0., 0.);
|
|
}
|
|
`}},oee=class{constructor(e,t=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let r=Gr();this.outputShape=e,this.enableShapeUniforms=ln(this.outputShape.length);let n="",a="result";t&&(a="floor(result * 255. + 0.5)");for(let s=0;s<=1;s++)for(let i=0;i<=1;i++){let o=s*2+i;n+=`
|
|
localCoords = coords;
|
|
if(localCoords[2] + ${i} < ${this.enableShapeUniforms?"outShape[2]":`${e[2]}`}) {
|
|
localCoords[2] += ${i};
|
|
if (localCoords[1] + ${s} < ${this.enableShapeUniforms?"outShape[1]":`${e[1]}`}) {
|
|
localCoords[1] += ${s};
|
|
|
|
flatIndex = getFlatIndex(localCoords);
|
|
offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
values = ${r.texture2D}(A, uv);
|
|
|
|
if (offset == 0) {
|
|
result[${o}] = values[0];
|
|
} else if (offset == 1) {
|
|
result[${o}] = values[1];
|
|
} else if (offset == 2) {
|
|
result[${o}] = values[2];
|
|
} else {
|
|
result[${o}] = values[3];
|
|
}
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
${this.enableShapeUniforms?ob():ib(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
int flatIndex, r, c, offset;
|
|
ivec3 localCoords;
|
|
vec2 uv;
|
|
vec4 values;
|
|
|
|
${n}
|
|
|
|
${r.output} = ${a};
|
|
}
|
|
`}},TS={};Le(TS,{bindVertexProgramAttributeStreams:()=>_S,createBufferFromOutputTexture:()=>DS,createFloat16MatrixTexture:()=>MS,createFloat16PackedMatrixTexture:()=>PS,createFloat32MatrixTexture:()=>RS,createIndexBuffer:()=>ES,createPackedMatrixTexture:()=>$S,createUnsignedBytesMatrixTexture:()=>FS,createVertexBuffer:()=>CS,createVertexShader:()=>NS,downloadByteEncodedFloatMatrixFromOutputTexture:()=>BS,downloadFloat32MatrixFromBuffer:()=>LS,downloadMatrixFromPackedOutputTexture:()=>VS,downloadPackedMatrixFromBuffer:()=>WS,getInternalFormatForFloat16MatrixTexture:()=>db,getInternalFormatForFloat16PackedMatrixTexture:()=>cb,getInternalFormatForFloat32MatrixTexture:()=>ub,getInternalFormatForPackedMatrixTexture:()=>hb,getInternalFormatForUnsignedBytesMatrixTexture:()=>pb,uploadDenseMatrixToTexture:()=>zS,uploadPixelDataToTexture:()=>OS});function NS(e){let t=Gr(),r=`${t.version}
|
|
precision highp float;
|
|
${t.attribute} vec3 clipSpacePos;
|
|
${t.attribute} vec2 uv;
|
|
${t.varyingVs} vec2 resultUV;
|
|
|
|
void main() {
|
|
gl_Position = vec4(clipSpacePos, 1);
|
|
resultUV = uv;
|
|
}`;return QI(e,r)}function CS(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return nS(e,t)}function ES(e){let t=new Uint16Array([0,1,2,2,1,3]);return aS(e,t)}function zh(e,t,r,n,a,s){iS(t,r);let i=sS(e),o=e.TEXTURE_2D;return we(e,()=>e.bindTexture(o,i)),we(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),we(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),we(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),we(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),Y().getNumber("WEBGL_VERSION")===1?we(e,()=>e.texImage2D(o,0,n,t,r,0,a,s,null)):we(e,()=>e.texStorage2D(o,1,n,t,r)),we(e,()=>e.bindTexture(e.TEXTURE_2D,null)),{texture:i,texShape:[r,t]}}function ub(e){return e.internalFormatFloat}function RS(e,t,r,n){let[a,s]=_h(t,r);return zh(e,a,s,ub(n),n.textureFormatFloat,e.FLOAT)}function db(e){return e.internalFormatHalfFloat}function MS(e,t,r,n){let[a,s]=_h(t,r);return zh(e,a,s,db(n),n.textureFormatFloat,n.textureTypeHalfFloat)}function pb(e){return e.downloadTextureFormat}function FS(e,t,r,n){let[a,s]=_h(t,r);return zh(e,a,s,pb(n),e.RGBA,e.UNSIGNED_BYTE)}function hb(e){return e.internalFormatPackedFloat}function $S(e,t,r,n){let[a,s]=bd(t,r);return zh(e,a,s,hb(n),e.RGBA,e.FLOAT)}function cb(e){return e.internalFormatPackedHalfFloat}function PS(e,t,r,n){let[a,s]=bd(t,r);return zh(e,a,s,cb(n),e.RGBA,n.textureTypeHalfFloat)}function _S(e,t,r){return we(e,()=>e.bindBuffer(e.ARRAY_BUFFER,r)),Hy(e,t,"clipSpacePos",r,3,20,0)&&Hy(e,t,"uv",r,2,20,12)}function zS(e,t,r,n,a,s){we(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;a instanceof Uint8Array?(i=new Uint8Array(r*n*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(r*n*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(a),Y().getNumber("WEBGL_VERSION")===2?we(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,r,n,e.RGBA,o,i)):we(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,r,n,0,e.RGBA,o,i)),we(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function OS(e,t,r){we(e,()=>e.bindTexture(e.TEXTURE_2D,t)),r.data instanceof Uint8Array?Y().getNumber("WEBGL_VERSION")===2?we(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,r.width,r.height,e.RGBA,e.UNSIGNED_BYTE,r.data)):we(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,r.width,r.height,0,e.RGBA,e.UNSIGNED_BYTE,r.data)):Y().getNumber("WEBGL_VERSION")===2?we(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,e.RGBA,e.UNSIGNED_BYTE,r)):we(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,r)),we(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function DS(e,t,r,n){let a=e.createBuffer();we(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,a));let s=4*4*t*r;return we(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),we(e,()=>e.readPixels(0,0,r,t,e.RGBA,e.FLOAT,0)),we(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),a}function LS(e,t,r){let n=e,a=new Float32Array(r);return n.bindBuffer(n.PIXEL_PACK_BUFFER,t),n.getBufferSubData(n.PIXEL_PACK_BUFFER,0,a),n.bindBuffer(n.PIXEL_PACK_BUFFER,null),a}function BS(e,t,r,n){let[a,s]=_h(t,r),i=4,o=new Uint8Array(nQ(t*r,i));return we(e,()=>e.readPixels(0,0,a,s,n.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function WS(e,t,r,n,a,s,i,o){let l=e,u=new Float32Array(aQ(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function VS(e,t,r){let n=new Float32Array(t*r*4);return we(e,()=>e.readPixels(0,0,r,t,e.RGBA,e.FLOAT,n)),n}var yu=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=Y().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,m0(t,e)):this.gl=ya(t);let r="WEBGL_color_buffer_float",n="EXT_color_buffer_half_float";if(this.parallelCompilationExtension=this.gl.getExtension("KHR_parallel_shader_compile"),Y().getNumber("WEBGL_VERSION")===1){let a="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=Sp(this.gl,a),Nn(this.gl,s))this.textureHalfFloatExtension=Sp(this.gl,s);else if(Y().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(r),Nn(this.gl,n))this.colorBufferHalfFloatExtension=Sp(this.gl,n);else if(Y().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(r="EXT_color_buffer_float",Nn(this.gl,r))this.colorBufferFloatExtension=this.gl.getExtension(r);else if(Nn(this.gl,n))this.colorBufferHalfFloatExtension=this.gl.getExtension(n);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=CS(this.gl),this.indexBuffer=ES(this.gl),this.framebuffer=oS(this.gl),this.textureConfig=ab(this.gl,this.textureHalfFloatExtension)}get debug(){return Y().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;we(e,()=>e.finish()),we(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),we(e,()=>e.deleteFramebuffer(this.framebuffer)),we(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),we(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),we(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),RS(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),MS(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),FS(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),OS(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,r,n){this.throwIfDisposed(),zS(this.gl,e,t,r,n,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),PS(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),$S(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(qy(this.gl,this.framebuffer),this.outputTexture=null),we(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,r){return this.downloadMatrixDriver(e,()=>BS(this.gl,t,r,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,r,n,a,s){return WS(this.gl,e,t,r,n,a,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return LS(this.gl,e,t)}createBufferFromTexture(e,t,r){this.bindTextureToFrameBuffer(e);let n=DS(this.gl,t,r,this.textureConfig);return this.unbindTextureToFrameBuffer(),n}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,r;if(Y().getBool("WEBGL_FENCE_API_ENABLED")){let n=e,a=n.fenceSync(n.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),r=()=>{let s=n.clientWaitSync(a,0,0);return s===n.ALREADY_SIGNALED||s===n.CONDITION_SATISFIED},t=a}else Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),r=()=>this.isQueryAvailable(t,Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):r=()=>!0;return{query:t,isFencePassed:r}}downloadMatrixFromPackedTexture(e,t,r){return this.downloadMatrixDriver(e,()=>VS(this.gl,t,r))}createProgram(e){this.throwIfDisposed();let t=this.gl;this.vertexShader==null&&(this.vertexShader=NS(t));let r=tS(t);return we(t,()=>t.attachShader(r,this.vertexShader)),we(t,()=>t.attachShader(r,e)),rS(t,r),this.debug&&af(t,r),this.vertexAttrsAreBound||(this.setProgram(r),this.vertexAttrsAreBound=_S(t,this.program,this.vertexBuffer)),r}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&we(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&af(this.gl,this.program),we(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,r=!0){return this.throwIfDisposed(),r?uS(this.gl,e,t):dS(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),we(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,r){this.throwIfDisposed(),this.throwIfNoProgram(),pS(this.gl,e,t,r)}setOutputMatrixTexture(e,t,r){this.setOutputMatrixTextureDriver(e,r,t)}setOutputPackedMatrixTexture(e,t,r){this.throwIfDisposed();let[n,a]=bd(t,r);this.setOutputMatrixTextureDriver(e,n,a)}setOutputMatrixWriteRegion(e,t,r,n){this.setOutputMatrixWriteRegionDriver(r,e,n,t)}setOutputPackedMatrixWriteRegion(e,t,r,n){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&af(this.gl,this.program),Tp(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),we(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),we(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=Sp(this.gl,Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let r=this.gl,n=this.getQueryTimerExtensionWebGL2(),a=r.createQuery();return r.beginQuery(n.TIME_ELAPSED_EXT,a),a}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,r=this.getQueryTimerExtensionWebGL2();t.endQuery(r.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await w.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let r=this.gl;return r.getQueryParameter(e,r.QUERY_RESULT)/1e6}else{let r=this.getQueryTimerExtensionWebGL1();return r.getQueryObjectEXT(e,r.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let r=this.gl,n=this.getQueryTimerExtensionWebGL2(),a=r.getQueryParameter(e,r.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),a&&!this.disjoint}else{let r=this.getQueryTimerExtensionWebGL1(),n=r.getQueryObjectEXT(e,r.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(r.GPU_DISJOINT_EXT)),n&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=lee(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:r}=this.itemsToPoll[t];r()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&w.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),sf(this.gl,e,this.framebuffer),this.debug&&Tp(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(sf(this.gl,this.outputTexture,this.framebuffer),this.debug&&Tp(this.gl)):qy(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let r=t();return this.unbindTextureToFrameBuffer(),r}setOutputMatrixTextureDriver(e,t,r){this.throwIfDisposed();let n=this.gl;sf(n,e,this.framebuffer),this.debug&&Tp(n),this.outputTexture=e,we(n,()=>n.viewport(0,0,t,r)),we(n,()=>n.scissor(0,0,t,r))}setOutputMatrixWriteRegionDriver(e,t,r,n){this.throwIfDisposed(),we(this.gl,()=>this.gl.scissor(e,t,r,n))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function lee(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{addImpl:uee,bincountImpl:US,bincountReduceImpl:dee,ceilImpl:pee,concatImpl:hee,equalImpl:cee,expImpl:fee,expm1Impl:mee,floorImpl:gee,gatherNdImpl:yee,gatherV2Impl:Aee,greaterImpl:xee,greaterEqualImpl:bee,lessImpl:vee,lessEqualImpl:wee,linSpaceImpl:kee,logImpl:Iee,maxImpl:See,maximumImpl:Tee,minimumImpl:Nee,multiplyImpl:Cee,negImpl:Eee,notEqualImpl:Ree,prodImpl:Mee,rangeImpl:Fee,rsqrtImpl:$ee,sigmoidImpl:Pee,simpleAbsImpl:GS,sliceImpl:_ee,sparseFillEmptyRowsImpl:zee,sparseReshapeImpl:Oee,sparseSegmentReductionImpl:jS,sqrtImpl:Dee,stridedSliceImpl:Lee,stringNGramsImpl:Bee,stringSplitImpl:Wee,stringToHashBucketFastImpl:Vee,subImpl:Uee,tileImpl:Gee,topKImpl:jee,transposeImpl:fb,uniqueImpl:Hee}=c0;function HS(e,t){return["x","y","z","w","u","v"].slice(0,t).map(r=>`${e}.${r}`)}function Lr(e,t){return t===1?[e]:HS(e,t)}function qee(e,t){if(e===1)return"rc";let r="";for(let n=0;n<e;n++)r+=t[n],n<e-1&&(r+=",");return r}var Kee=class{constructor(e){if(this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.enableShapeUniforms=ln(this.outputShape.length),this.rank===0)this.userCode=`
|
|
void main() {
|
|
setOutput(vec4(getA(), 0., 0., 0.));
|
|
}
|
|
`;else{let t=Lr("rc",this.rank),r=gt(this.rank),n=this.getOutOfBoundsCondition(t),a=this.getSetup(t),s=this.getOutput(t);this.userCode=`
|
|
void main() {
|
|
${r} rc = getOutputCoords();
|
|
|
|
if(${n}) {
|
|
setOutput(vec4(0));
|
|
} else {
|
|
${a}
|
|
|
|
setOutput(vec4(${s}));
|
|
}
|
|
}
|
|
`}}getSourceCoordsArr(e){let t=[];for(let r=0;r<=1;r++)for(let n=0;n<=1;n++){let a=`${r===0?"r":"rp1"}, ${n===0?"c":"cp1"}`;for(let s=2;s<this.rank;s++)a=`${e[e.length-1-s]},`+a;t.push(a)}return t}getOutOfBoundsCondition(e){if(this.rank===1)return`rc > ${this.enableShapeUniforms?"outShape":this.outputShape[0]}`;let t="";for(let r=this.rank-2;r<this.rank;r++)t+=`${e[r]} >= ${this.enableShapeUniforms?`outShape[${r}]`:this.outputShape[r]}`,r<this.rank-1&&(t+="||");return t}getSetup(e){if(this.rank===1)return"";let t=e.slice(-2),r=this.enableShapeUniforms?`outShape[${this.rank} - 1]`:this.outputShape[this.rank-1],n=this.enableShapeUniforms?`outShape[${this.rank} - 2]`:this.outputShape[this.rank-2];return`
|
|
int r = ${t[0]};
|
|
int c = ${t[1]};
|
|
int rp1 = r + 1;
|
|
int cp1 = c + 1;
|
|
|
|
bool cEdge = cp1 >= ${r};
|
|
bool rEdge = rp1 >= ${n};
|
|
`}getOutput(e){let t=this.getSourceCoordsArr(e);return this.rank===1?`getA(rc), (rc + 1 >= ${this.enableShapeUniforms?"outShape":this.outputShape[0]} ? 0. : getA(rc + 1)), 0, 0`:`getA(${t[0]}),
|
|
cEdge ? 0. : getA(${t[1]}),
|
|
rEdge ? 0. : getA(${t[2]}),
|
|
rEdge || cEdge ? 0. : getA(${t[3]})`}},qS=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=ln(this.outputShape.length);let r="";for(let n=0;n<4;n++){let a="thisRC = rc;";n%2===1&&(a+="thisRC.z += 1;"),n>1&&(a+="thisRC.y += 1;"),r+=`
|
|
${a}
|
|
${n>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
|
|
int flatIndex = getFlatIndex(thisRC);
|
|
|
|
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
|
|
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
|
|
|
|
result[${n}] =
|
|
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
|
|
${n>0?"}":""}
|
|
`}this.userCode=`
|
|
${Xee(t,this.enableShapeUniforms)}
|
|
${this.enableShapeUniforms?ob():ib(e)}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
ivec3 thisRC;
|
|
int rows = ${this.enableShapeUniforms?"outShape[1]":e[1]};
|
|
int cols = ${this.enableShapeUniforms?"outShape[2]":e[2]};
|
|
|
|
${r}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function Xee(e,t){return`
|
|
ivec3 inputCoordsFromReshapedOutCoords(int index) {
|
|
${t?gQ(["r","c","d"],"inputShape"):$l(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}var Zee=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,r){let n=Fv(t,r),a=$v(e,n,r);a in this.freeTextures||(this.freeTextures[a]=[]),a in this.usedTextures||(this.usedTextures[a]=[]);let s=Mv(e,n,this.gpgpu.gl,this.gpgpu.textureConfig,r);if(this.freeTextures[a].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[a].shift();return this.usedTextures[a].push(o),o}let i;return n===3?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):n===4?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):n===1?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):n===0?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):n===2&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[a].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,r,n){if(this.freeTextures==null)return;let a=Fv(r,n),s=$v(t,a,n);s in this.freeTextures||(this.freeTextures[s]=[]);let i=Mv(t,a,this.gpgpu.gl,this.gpgpu.textureConfig,n),o=Y().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e.texture),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],u=l.indexOf(e);if(u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(u,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function Yee(e,t){let r=e;if(t===r.R32F)return 4;if(t===r.R16F)return 2;if(t===r.RGBA32F||t===e.RGBA)return 16;if(t===r.RGBA16F)return 8;if(t===r.RGBA8)return 4;throw new Error(`Unknown internal format ${t}`)}function Mv(e,t,r,n,a){let s=Jee(t,n),i;if(a){let[l,u]=bd(e[0],e[1]);i=l*u}else{let[l,u]=_h(e[0],e[1]);i=l*u}let o=Yee(r,s);return i*o}function Jee(e,t){switch(e){case 3:return hb(t);case 4:return cb(t);case 1:return ub(t);case 0:return db(t);case 2:return pb(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function Qee(e){return Y().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?3:1:e?4:0}function Fv(e,t){if(e===1)return 3;if(e===0||e==null)return Qee(t);if(e===3||e===2)return 2;throw new Error(`Unknown logical texture type ${e}`)}function $v(e,t,r){return`${e[0]}_${e[1]}_${t}_${r}`}var Ka=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=ln(this.outputShape.length),this.userCode=`
|
|
float unaryOperation(float x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
float y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},Xn="if (isnan(x)) return x;",ete="return x;",Pv="return abs(x);",tte="return (x >= 0.0) ? x : (exp(x) - 1.0);",rte=Xn+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,nte=Xn+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,iu="return x;",ate="return 1.0 / (1.0 + exp(-1.0 * x));",ste="return x;",ite=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,ote=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,lte=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,ute="return 1.0 / (1.0 + exp(-1.0 * x));",vo=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=ln(this.outputShape.length),this.userCode=`
|
|
vec4 unaryOperation(vec4 x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
vec4 x = getAAtOutCoords();
|
|
vec4 y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},dte=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e,this.enableShapeUniforms=ln(this.outputShape.length);let t=e.length,r=Lr("rc",t),n=gt(t),a=qee(t,r),s=r.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=`
|
|
void main() {
|
|
${n} rc = getOutputCoords();
|
|
vec4 packedInput = getA(${a});
|
|
|
|
setOutput(getChannel(packedInput, ${i}));
|
|
}
|
|
`}},pte=qn.whereImpl,hte=1e-7,cte=1e-4,sy={};function fte(e){return e in sy||(sy[e]={}),sy[e]}var mte=Y().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),gte=600;function yte(){return Y().global.screen==null?1024:Y().global.screen.height*Y().global.screen.width*window.devicePixelRatio*gte/1024/1024}var KS=class extends Fu{constructor(e){if(super(),this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!Y().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");let t;if(e!=null){if(e instanceof yu)t=e;else{let r=ya(Y().getNumber("WEBGL_VERSION"),e);t=new yu(r)}this.binaryCache={},this.gpgpuCreatedLocally=!1}else{let r=ya(Y().getNumber("WEBGL_VERSION"));t=new yu(r),this.binaryCache=fte(Y().getNumber("WEBGL_VERSION")),this.gpgpuCreatedLocally=!0}this.gpgpu=t,this.canvas=this.gpgpu.gl.canvas,this.textureManager=new Zee(this.gpgpu),this.numMBBeforeWarning=yte(),this.texData=new qp(this,br())}nextDataId(){return KS.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,r){if((Y().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||Y().getBool("DEBUG"))&&this.checkNumericalProblems(e),r==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let n={id:this.nextDataId()};return this.texData.set(n,{shape:t,dtype:r,values:e,usage:1,refCount:1}),n}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,r,n,a){if(Y().getBool("DEBUG")&&this.checkNumericalProblems(t),n==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:r,dtype:n,values:t,usage:1,refCount:a})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:r,dtype:n,complexTensorInfos:a,slice:s,shape:i,isPacked:o}=t;if(s!=null){let h;o?h=new vo(i,iu):h=new Ka(i,iu);let p=this.runWebGLProgram(h,[{dataId:e,shape:i,dtype:n}],n),c=this.readSync(p.dataId);return this.disposeIntermediateTensorInfo(p),c}if(r!=null)return this.convertAndCacheOnCPU(e);if(n==="string")return r;let l=this.activeTimers!=null,u;l&&(u=w.now());let d;if(n==="complex64"){let h=this.readSync(a.real.dataId),p=this.readSync(a.imag.dataId);d=N.mergeRealAndImagArrays(h,p)}else d=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=w.now()-u),this.convertAndCacheOnCPU(e,d)}async read(e){if(this.pendingRead.has(e)){let c=this.pendingRead.get(e);return new Promise(f=>c.push(f))}let t=this.texData.get(e),{values:r,shape:n,slice:a,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(a!=null){let c;o?c=new vo(n,iu):c=new Ka(n,iu);let f=this.runWebGLProgram(c,[{dataId:e,shape:n,dtype:s}],s),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(r!=null)return this.convertAndCacheOnCPU(e);if(Y().getBool("DEBUG")&&!Y().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&Y().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(s!=="complex64"&&Y().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let c=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(c.texture.texture,...Yc(n))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let d;if(s==="complex64"){let c=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),f=c[0],m=c[1];d=N.mergeRealAndImagArrays(f,m)}else if(l==null)d=this.getValuesFromTexture(e);else{let c=w.sizeFromShape(n);d=this.gpgpu.downloadFloat32MatrixFromBuffer(l,c)}if(u!=null&&this.disposeIntermediateTensorInfo(u),l!=null){let c=this.gpgpu.gl;we(c,()=>c.deleteBuffer(l))}let h=this.convertAndCacheOnCPU(e,d),p=this.pendingRead.get(e);return this.pendingRead.delete(e),p.forEach(c=>c(h)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&br().removeDataId(e,this),this.pendingDeletes--),h}readToGPU(e,t={}){let r=this.texData.get(e),{values:n,shape:a,slice:s,dtype:i,isPacked:o,texture:l}=r;if(i==="complex64")throw new Error("Does not support reading texture for complex64 dtype.");if(s!=null){let p;o?p=new vo(a,iu):p=new Ka(a,iu);let c=this.runWebGLProgram(p,[{dataId:e,shape:a,dtype:i}],i),f=this.readToGPU(c,t);return this.disposeIntermediateTensorInfo(c),f}if(l==null)throw n!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let u=this.decode(e,t.customTexShape),d=br().makeTensorFromDataId(u.dataId,u.shape,u.dtype),h=this.texData.get(u.dataId);return{tensorRef:d,...h.texture}}bufferSync(e){let t=this.readSync(e.dataId),r=t;if(e.dtype==="string")try{r=t.map(n=>w.decodeString(n))}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,r)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let r=e[t];if(!YI(r))throw Y().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${r} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${r} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:r,isPacked:n}=this.texData.get(e),a=w.sizeFromShape(t);if(Y().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let h=this.decode(e),p=this.texData.get(h.dataId),c=this.gpgpu.downloadMatrixFromPackedTexture(p.texture.texture,...Yc(t)).subarray(0,a);return this.disposeIntermediateTensorInfo(h),c}let s=Y().getBool("WEBGL_PACK")&&n===!0,i=s?of(t):t,o=s?new see(i):new aee(i),l=this.runWebGLProgram(o,[{shape:i,dtype:r,dataId:e}],"float32"),u=this.texData.get(l.dataId),d=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(u.texture.texture,u.texShape[0],u.texShape[1]).subarray(0,a);return this.disposeIntermediateTensorInfo(l),d}timerAvailable(){return Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}time(e){let t=this.activeTimers,r=[],n=!1;this.programTimersStack==null?(this.programTimersStack=r,n=!0):this.activeTimers.push(r),this.activeTimers=r,e();let a=w.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=w.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,n&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};return(async()=>{if(Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(a);i.kernelMs=w.sum(o),i.getExtraProfileInfo=()=>o.map((l,u)=>({name:s[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i})()}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:w.now(),endMs:null}}endTimer(e){return Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=w.now(),e)}async getQueryTime(e){if(Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:r}=this.texData.get(e);return r!=null&&(this.disposeData(r.real.dataId,t),this.disposeData(r.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:r,texShape:n,usage:a,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(n,r),this.textureManager.releaseTexture(t,n,a,s)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture.texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=mte){return Y().getBool("WEBGL_CPU_FORWARD")&&e.every(r=>this.texData.get(r.dataId).texture==null&&w.sizeFromShape(r.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){N.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return pte(e.shape,t)}packedUnaryOp(e,t,r){let n=new vo(e.shape,t),a=this.compileAndRun(n,[e],r);return br().makeTensorFromDataId(a.dataId,a.shape,a.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let n=GS(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,n)}if(Y().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,Pv,e.dtype);let t=new Ka(e.shape,Pv),r=this.compileAndRun(t,[e]);return br().makeTensorFromDataId(r.dataId,r.shape,r.dtype)}makeTensorInfo(e,t,r){let n;if(t==="string"&&r!=null&&r.length>0&&w.isString(r[0])){let a=r.map(s=>w.encodeString(s));n=this.write(a,e,t)}else n=this.write(r,e,t);return this.texData.get(n).usage=null,{dataId:n,shape:e,dtype:t}}makeOutput(e,t,r){let{dataId:n}=this.makeTensorInfo(e,t,r);return br().makeTensorFromDataId(n,e,t,this)}unpackTensor(e){let t=new dte(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new Kee(e.shape),r=!0;return this.runWebGLProgram(t,[e],e.dtype,null,r)}packedReshape(e,t){let r=[Po(e.shape),..._o(e.shape)],n={dtype:e.dtype,shape:r,dataId:e.dataId},a=[Po(t),..._o(t)],s=new qS(a,r),i=!0,o=[r],l=this.runWebGLProgram(s,[n],e.dtype,o,i);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e,t){let r=this.texData.get(e),{isPacked:n,shape:a,dtype:s}=r;if(t!=null){let h=w.sizeFromShape(a),p=t[0]*t[1]*4;w.assert(h<=p,()=>"customTexShape is too small. Row * Column * 4 should be equal or larger than the size of the tensor data.")}let i=of(a),o;n?o=new nee(i):o=new ree(i);let l=!0,u=[t!=null?t:Yc(i)],d=this.runWebGLProgram(o,[{shape:i,dtype:s,dataId:e}],s,u,l,t);return{dtype:s,shape:a,dataId:d.dataId}}runWebGLProgram(e,t,r,n,a=!1,s){let i=this.makeTensorInfo(e.outputShape,r),o=this.texData.get(i.dataId);if(e.packedOutput&&(o.isPacked=!0),e.outPackingScheme===0){let g=s!=null?s:Yc(e.outputShape);o.texShape=g.map(y=>y*2)}if(e.outTexUsage!=null&&(o.usage=e.outTexUsage),w.sizeFromShape(i.shape)===0)return o.values=w.getTypedArrayFromDType(i.dtype,0),i;let l=[],u=t.map(g=>{if(g.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let y=this.texData.get(g.dataId);if(y.texture==null){if(!e.packedInputs&&w.sizeFromShape(g.shape)<=Y().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:g.shape,texData:null,isUniform:!0,uniformValues:y.values};e.packedInputs&&(y.isPacked=!0,y.shape=g.shape)}if(this.uploadToGPU(g.dataId),!!y.isPacked!=!!e.packedInputs)g=y.isPacked?this.unpackTensor(g):this.packTensor(g),l.push(g),y=this.texData.get(g.dataId);else if(y.isPacked&&!jp(y.shape,g.shape)){let A=g,x=g.shape;g.shape=y.shape,g=this.packedReshape(g,x),l.push(g),y=this.texData.get(g.dataId),A.shape=x}return{shape:g.shape,texData:y,isUniform:!1}});this.uploadToGPU(i.dataId);let d={shape:i.shape,texData:o,isUniform:!1},h=tee(e,u,d),p=this.getAndSaveBinary(h,()=>QQ(this.gpgpu,e,u,d)),c=this.activeTimers!=null,f;c&&(f=this.startTimer()),Y().get("ENGINE_COMPILE_ONLY")||eee(this.gpgpu,p,u,d,n),l.forEach(g=>this.disposeIntermediateTensorInfo(g)),c&&(f=this.endTimer(f),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(f)}));let m=Y().get("WEBGL_FLUSH_THRESHOLD");if(m>0){let g=w.now();g-this.lastGlFlushTime>m&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=g)}if(!Y().getBool("WEBGL_LAZILY_UNPACK")&&o.isPacked&&a===!1){let g=this.unpackTensor(i);return this.disposeIntermediateTensorInfo(i),g}return i}compileAndRun(e,t,r,n,a=!1){return r=r||t[0].dtype,this.runWebGLProgram(e,t,r,n,a)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(Y().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=K(()=>{if(!Y().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=Y().getBool("DEBUG");Y().set("DEBUG",!1);let t=this.abs(Se(1e-8)).dataSync()[0];if(Y().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?hte:cte}uploadToGPU(e){let t=this.texData.get(e),{shape:r,dtype:n,values:a,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,u;l&&(u=w.now());let d=t.texShape;if(d==null&&(d=fS(r,o),t.texShape=d),a!=null){let h=of(r),p,c=d[1],f=d[0],m=a instanceof Uint8Array||a instanceof Uint8ClampedArray;(o||!m)&&([c,f]=bd(d[0],d[1])),o?p=new oee(h,m):p=new iee(h,m);let g=m?[f,c]:d,y=this.makeTensorInfo(g,n),A=this.texData.get(y.dataId);m?A.usage=2:A.usage=1,A.texShape=g,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(y.dataId),c,f,a);let x=[[f,c]],b=!0,v=this.runWebGLProgram(p,[y],n,x,b),S=this.texData.get(v.dataId);t.texShape=S.texShape,t.isPacked=S.isPacked,t.usage=S.usage,Y().get("ENGINE_COMPILE_ONLY")?this.disposeData(v.dataId):(t.texture=S.texture,t.values=null,this.texData.delete(v.dataId)),this.disposeIntermediateTensorInfo(y),l&&(this.uploadWaitMs+=w.now()-u)}else{let h=this.acquireTexture(d,i,n,o);t.texture=h}}convertAndCacheOnCPU(e,t){let r=this.texData.get(e),{dtype:n}=r;return this.releaseGPUData(e),t!=null&&(r.values=Ate(t,n)),r.values}acquireTexture(e,t,r,n){if(this.numBytesInGPU+=this.computeBytes(e,r),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let a=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${a} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,n)}computeBytes(e,t){return e[0]*e[1]*w.bytesPerElement(t)}checkCompileCompletion(){for(let[,e]of Object.entries(this.binaryCache))this.checkCompletion_(e)}async checkCompileCompletionAsync(){let e=[];if(this.gpgpu.parallelCompilationExtension){for(let[,t]of Object.entries(this.binaryCache))e.push(this.checkCompletionAsync_(t));return Promise.all(e)}else{for(let[,t]of Object.entries(this.binaryCache)){let r=new Promise(n=>{try{this.checkCompletion_(t),n(!0)}catch(a){throw a}});e.push(r)}return Promise.all(e)}}async checkCompletionAsync_(e){return this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.parallelCompilationExtension.COMPLETION_STATUS_KHR)?this.checkCompletion_(e):(await hA(),this.checkCompletionAsync_(e))}checkCompletion_(e){if(this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.gl.LINK_STATUS)===!1)throw console.log(this.gpgpu.gl.getProgramInfoLog(e.webGLProgram)),this.gpgpu.gl.getShaderParameter(e.fragmentShader,this.gpgpu.gl.COMPILE_STATUS)===!1?(sb(e.source,this.gpgpu.gl.getShaderInfoLog(e.fragmentShader)),new Error("Failed to compile fragment shader.")):new Error("Failed to link vertex and fragment shaders.");return!0}getUniformLocations(){for(let[,e]of Object.entries(this.binaryCache)){let{uniformLocations:t,customUniformLocations:r,infLoc:n,nanLoc:a,inShapesLocations:s,inTexShapesLocations:i,outShapeLocation:o,outShapeStridesLocation:l,outTexShapeLocation:u}=SS(this.gpgpu,e.program,e.webGLProgram);e.uniformLocations=t,e.customUniformLocations=r,e.infLoc=n,e.nanLoc=a,e.inShapesLocations=s,e.inTexShapesLocations=i,e.outShapeLocation=o,e.outShapeStridesLocation=l,e.outTexShapeLocation=u}}},Oh=KS;Oh.nextDataId=0;function Ate(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let r=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let n=0;n<r.length;++n)r[n]=Math.round(e[n]);return r}else throw new Error(`Unknown dtype ${t}`)}var xte="0.0.0";function XS(){Y().set("WEBGL_FORCE_F16_TEXTURES",!0)}fh.isBrowser()&&Tl("webgl",()=>new Oh,2);var bte={forceHalfFloat:XS},ZS=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,Mu=class{constructor(e,t,r){this.variableNames=["A","B"],this.outputShape=N.assertAndGetBroadcastShape(t,r),this.enableShapeUniforms=ln(this.outputShape.length),this.userCode=`
|
|
float binaryOperation(float a, float b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float a = getAAtOutCoords();
|
|
float b = getBAtOutCoords();
|
|
setOutput(binaryOperation(a, b));
|
|
}
|
|
`}},y0=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`,Dh=class{constructor(e,t,r,n=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=N.assertAndGetBroadcastShape(t,r);let a=this.outputShape.length;this.enableShapeUniforms=ln(a);let s="";if(n)if(a===0||w.sizeFromShape(this.outputShape)===1)s=`
|
|
result.y = 0.;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else if(s=`
|
|
${gt(a)} coords = getOutputCoords();
|
|
`,a===1)this.enableShapeUniforms?s+=`
|
|
result.y = (coords + 1) >= outShape ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`:s+=`
|
|
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else{let i=Lr("coords",a);this.enableShapeUniforms?s+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[a-2]} + 1) >= outShape[${a} - 2];
|
|
bool nextColOutOfBounds =
|
|
(${i[a-1]} + 1) >= outShape[${a} - 1];
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`:s+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[a-2]} + 1) >= ${this.outputShape[a-2]};
|
|
bool nextColOutOfBounds =
|
|
(${i[a-1]} + 1) >= ${this.outputShape[a-1]};
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`}this.userCode=`
|
|
vec4 binaryOperation(vec4 a, vec4 b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
vec4 a = getAAtOutCoords();
|
|
vec4 b = getBAtOutCoords();
|
|
|
|
vec4 result = binaryOperation(a, b);
|
|
${s}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function an(e){let{inputs:t,backend:r}=e,{x:n}=t;return r.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var vte={kernelName:pi,backendName:"webgl",kernelFunc:an};function Vi(e){let{inputs:t,backend:r}=e,{real:n,imag:a}=t,s=r.makeTensorInfo(n.shape,"complex64"),i=r.texData.get(s.dataId),o=an({inputs:{x:n},backend:r}),l=an({inputs:{x:a},backend:r});return i.complexTensorInfos={real:o,imag:l},s}var wte={kernelName:Xp,backendName:"webgl",kernelFunc:Vi},YS="return (a < 0.) ? b * a : a;",JS=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function kte(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{alpha:s}=n,i=r.makeTensorInfo([],"float32",w.createScalarValue(s,"float32")),o=Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Dh(JS,a.shape,i.shape):new Mu(YS,a.shape,i.shape),l=r.runWebGLProgram(o,[a,i],"float32");return r.disposeIntermediateTensorInfo(i),l}var Ite={kernelName:hi,backendName:"webgl",kernelFunc:kte},QS="return (a < 0.) ? b * a : a;",e8=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function Ste(e){let{inputs:t,backend:r}=e,{x:n,alpha:a}=t,s=Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Dh(e8,n.shape,a.shape):new Mu(QS,n.shape,a.shape);return r.runWebGLProgram(s,[n,a],"float32")}var Tte={kernelName:Ii,backendName:"webgl",kernelFunc:Ste},Td="if (isnan(x)) return x;",Nte=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,Cte=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`;function it({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:r,dtype:n}){return({inputs:a,backend:s})=>{let{x:i}=a,o=s,l=n||i.dtype;if(o.shouldExecuteOnCPU([i])&&r!=null){let h=o.texData.get(i.dataId),p=r(h.values,l);return o.makeTensorInfo(i.shape,l,p)}let u=Y().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,d;return u?d=new vo(i.shape,t):d=new Ka(i.shape,e),o.runWebGLProgram(d,[i],l)}}function wr({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:r=!1,supportsComplex:n=!1,cpuKernelImpl:a,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:u}=i,d=o;if(n&&l.dtype==="complex64"){let f=d.texData.get(l.dataId),m=d.texData.get(u.dataId),[g,y]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(x=>{let[b,v]=x,S={dataId:b.dataId,dtype:b.dtype,shape:l.shape},T={dataId:v.dataId,dtype:v.dtype,shape:u.shape},E=new Mu(e,l.shape,u.shape);return d.runWebGLProgram(E,[S,T],Cr(b.dtype,v.dtype))}),A=Vi({inputs:{real:g,imag:y},backend:d});return d.disposeIntermediateTensorInfo(g),d.disposeIntermediateTensorInfo(y),A}let h=s||Cr(l.dtype,u.dtype);if((l.dtype==="string"||u.dtype==="string"||d.shouldExecuteOnCPU([l,u]))&&a!=null){let f=d.texData.get(l.dataId).values,m=d.texData.get(u.dataId).values,g=l.dtype==="string"?N.fromUint8ToStringArray(f):f,y=l.dtype==="string"?N.fromUint8ToStringArray(m):m,[A,x]=a(l.shape,u.shape,g,y,h),b=d.makeTensorInfo(x,h),v=d.texData.get(b.dataId);return v.values=A,b}let p=Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,c;return p?c=new Dh(t,l.shape,u.shape,r):c=new Mu(e,l.shape,u.shape),d.runWebGLProgram(c,[l,u],h)}}function A0(e,t=!1){if(e==="linear")return t?ste:ete;if(e==="relu")return t?ote:rte;if(e==="elu")return t?ite:tte;if(e==="relu6")return t?lte:nte;if(e==="prelu")return t?e8:QS;if(e==="leakyrelu")return t?JS:YS;if(e==="sigmoid")return t?ute:ate;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var t8=class{constructor(e,t,r,n=!1,a=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=r,this.enableShapeUniforms=ln(this.outputShape.length);let u=n?e[1]:e[2],d=Math.ceil(u/2),h=n?"i * 2, rc.y":"rc.y, i * 2",p=a?"rc.z, i * 2":"i * 2, rc.z",c=n?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=a?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",g="";i&&(o?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${i}
|
|
}`:l?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${i}
|
|
}`:m=`vec4 activation(vec4 x) {
|
|
${i}
|
|
}`,g="result = activation(result);");let y=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let A="rc.x",x="rc.x";e[0]<t[0]?A=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(x=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
|
|
${m}
|
|
// Don't use uniform for sharedDimensionPacked for performance.
|
|
const float sharedDimension = ${d}.0;
|
|
|
|
vec4 dot2x2ARowBCol(ivec3 rc) {
|
|
vec4 result = vec4(0);
|
|
for (int i = 0; i < ${d}; i++) {
|
|
int batchA = ${A};
|
|
int batchB = ${x};
|
|
vec4 a = getMatrixA(batchA, ${h});
|
|
vec4 b = getMatrixB(batchB, ${p});
|
|
|
|
// These swizzled products need to be separately added.
|
|
// See: https://github.com/tensorflow/tfjs/issues/1735
|
|
result += (${c[0]} * ${f[0]});
|
|
result += (${c[1]} * ${f[1]});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
vec4 result = dot2x2ARowBCol(rc);
|
|
|
|
${y}
|
|
|
|
${g}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}},_v={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},zv=class{constructor(e,t,r){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=N.assertAndGetBroadcastShape(t,r),this.userCode=`
|
|
float binaryOpComplex(
|
|
float areal, float aimag, float breal, float bimag) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float areal = getARealAtOutCoords();
|
|
float aimag = getAImagAtOutCoords();
|
|
float breal = getBRealAtOutCoords();
|
|
float bimag = getBImagAtOutCoords();
|
|
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
`}},Ov="return a * b;";function mb(e){let{inputs:t,backend:r}=e,{a:n,b:a}=t,s=N.upcastType(n.dtype,a.dtype);if(n.dtype==="complex64"){let o=r.texData.get(n.dataId),l=r.texData.get(a.dataId),u=new zv(_v.REAL,n.shape,a.shape),d=new zv(_v.IMAG,n.shape,a.shape),h=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:n.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:n.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:a.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:a.shape}],p=r.runWebGLProgram(u,h,"float32"),c=r.runWebGLProgram(d,h,"float32"),f=Vi({inputs:{real:p,imag:c},backend:r});return r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(c),f}if(r.shouldExecuteOnCPU([n,a])){let o=r.texData.get(n.dataId),l=r.texData.get(a.dataId),[u,d]=Cee(n.shape,a.shape,o.values,l.values,s),h=r.makeTensorInfo(d,s),p=r.texData.get(h.dataId);return p.values=u,h}let i;return Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new Dh(Ov,n.shape,a.shape):i=new Mu(Ov,n.shape,a.shape),r.runWebGLProgram(i,[n,a],s)}var Ete={kernelName:vi,backendName:"webgl",kernelFunc:mb};function Rte(e,t,r){let n=[Po(e.shape),..._o(e.shape)],a={dtype:e.dtype,shape:n,dataId:e.dataId},s=[Po(t),..._o(t)],i=new qS(s,n),o=!0,l=[n],u=r.runWebGLProgram(i,[a],e.dtype,l,o);return{dataId:u.dataId,shape:t,dtype:u.dtype}}function ve(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{shape:s}=n,i=r,o=w.sizeFromShape(a.shape),l=w.inferFromImplicitShape(s,o),u=w.sizeFromShape(l);w.assert(o===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${a.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let d=i.texData.get(a.dataId);return d.isPacked&&!jp(a.shape,l)&&!(d.texture!==null&&jp(d.shape,l))?Rte(a,l,i):(i.incRef(a.dataId),{dataId:a.dataId,shape:l,dtype:a.dtype})}var Mte={kernelName:ul,backendName:"webgl",kernelFunc:ve},Dv=class{constructor(e,t){this.variableNames=["x"];let{windowSize:r,batchSize:n,inSize:a,outSize:s}=e;this.outputShape=[n,s];let i=Math.floor(r/4)*4,o=r%4,l="sumValue += dot(values, ones);";if(t!=null){let d=1/t;l=`sumValue += dot(values * ${w.isInt(d)?d.toPrecision(2):d}, ones);`}let u="";a%r>0&&(u=`
|
|
if (inIdx < 0 || inIdx >= ${a}) {
|
|
return 0.0;
|
|
}
|
|
`),this.userCode=`
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${u}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${r};
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${i}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${l}
|
|
}
|
|
|
|
int inIdx = inOffset + ${i};
|
|
if (${o===1}) {
|
|
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${o===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1), 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${o===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2), 0.0);
|
|
|
|
${l}
|
|
}
|
|
setOutput(sumValue);
|
|
}
|
|
`}},Fte=class{constructor(e,t){this.variableNames=["x"];let{windowSize:r,batchSize:n,inSize:a,outSize:s}=e;this.outputShape=[n,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(r/4)*4,d=r%4,h=`
|
|
if (${t==="sum"}) {
|
|
sumValue += dot(values, ones);
|
|
} else if (${t==="prod"}) {
|
|
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
|
|
prodValue *= tmp[0] * tmp[1];
|
|
} else {
|
|
minMaxValue = ${o}(values, minMaxValue);
|
|
if (${t==="min"} || ${t==="max"}) {
|
|
minMaxValue = ${o}(values, minMaxValue);
|
|
bvec4 isNaN = isnan(values);
|
|
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
|
|
minMaxValue = vec4(NAN);
|
|
}
|
|
}
|
|
}
|
|
`,p="vec4";t==="all"?(i="1.0",h=`
|
|
bool reducedAllValue = all(values);
|
|
float floatedReducedAllValue = float(reducedAllValue);
|
|
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
|
|
`,p="bvec4"):t==="any"&&(i="0.0",h=`
|
|
bool reducedAnyValue = any(values);
|
|
float floatedReducedAnyValue = float(reducedAnyValue);
|
|
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
|
|
`,p="bvec4");let c="";a%r>0&&(c=`
|
|
if (inIdx < 0 || inIdx >= ${a}) {
|
|
return initializationValue;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${i};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${c}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${r};
|
|
|
|
vec4 minMaxValue = vec4(${i});
|
|
float prodValue = 1.0;
|
|
float sumValue = 0.0;
|
|
float allValue = 1.0;
|
|
float anyValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${h}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${d===1}) {
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${h}
|
|
} else if (${d===2}) {
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${h}
|
|
} else if (${d===3}) {
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
${h}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function $te(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let r=t.length?t[t.length-1].outSize:e[1],n=N.computeOptimalWindowSize(r);t.push({inSize:r,windowSize:n,outSize:Math.ceil(r/n)})}return t}function _l(e,t,r,n){let a=$te(e.shape),s=e;for(let i=0;i<a.length;i++){let{inSize:o,windowSize:l,outSize:u}=a[i],d,h;r==="mean"?d=i===0?new Dv({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},o):new Dv({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u}):d=new Fte({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},r),h=s,s=n.runWebGLProgram(d,[s],t),h.dataId!==e.dataId&&n.disposeIntermediateTensorInfo(h)}return s}var Pte=class{constructor(e,t){this.variableNames=["A"];let r=new Array(e.length);for(let s=0;s<r.length;s++)r[s]=e[t[s]];this.outputShape=r,this.rank=r.length;let n=gt(this.rank),a=_te(t);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
setOutput(getA(${a}));
|
|
}
|
|
`}};function _te(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let r=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],n=new Array(t);for(let a=0;a<e.length;a++)n[e[a]]=r[a];return n.join()}var zte=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let r=new Array(e.length);for(let u=0;u<r.length;u++)r[u]=e[t[u]];if(this.outputShape=r,this.rank=r.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let n=gt(this.rank),a=HS("rc",this.rank),s=new Array(this.rank);for(let u=0;u<t.length;u++)s[t[u]]=a[u];let i=`vec2(${s.slice(-2).join()})`,o=`++${a[this.rank-1]} < ${r[this.rank-1]}`,l=`getChannel(getA(${s.join()}), ${i})`;this.userCode=`
|
|
void main() {
|
|
${n} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result[0] = ${l};
|
|
if(${o}) {
|
|
result[1] = ${l};
|
|
}
|
|
--${a[this.rank-1]};
|
|
if(++${a[this.rank-2]} < ${r[this.rank-2]}) {
|
|
result[2] = ${l};
|
|
if(${o}) {
|
|
result[3] = ${l};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function x0(e,t,r){let n=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new zte(e.shape,t):new Pte(e.shape,t);return r.runWebGLProgram(n,[e],e.dtype)}function Ote(e,t,r,n){let a=t,s=e.shape.length,i=w.parseAxisParam(a,e.shape),o=i,l=N.getAxesPermutation(o,s),u=l!=null,d=e;u&&(d=x0(e,l,n),o=N.getInnerMostAxes(o.length,s)),N.assertAxesAreInnerMostDims("sum",o,s);let[h,p]=N.computeOutAndReduceShapes(d.shape,o),c=h;r&&(c=N.expandShapeToKeepDim(h,i));let f=w.sizeFromShape(p),m=w.sizeFromShape(e.shape)/f,g=ve({inputs:{x:d},attrs:{shape:[m,f]},backend:n}),y=ch(e.dtype),A=_l(g,y,"sum",n),x=ve({inputs:{x:A},attrs:{shape:c},backend:n});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(A),u&&n.disposeIntermediateTensorInfo(d),x}function b0(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n;return Ote(a,s,i,r)}var Dte={kernelName:Fi,backendName:"webgl",kernelFunc:b0};function vr(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{perm:s}=n,i=r,o=a.shape.length,l=new Array(o);for(let d=0;d<l.length;d++)l[d]=a.shape[s[d]];let u;if(i.shouldExecuteOnCPU([a])){let d=i.texData.get(a.dataId).values,h=fb(d,a.shape,a.dtype,s,l);u=i.makeTensorInfo(l,a.dtype);let p=i.texData.get(u.dataId);p.values=h}else u=x0(a,s,i);return u}var Lte={kernelName:Oi,backendName:"webgl",kernelFunc:vr},r8=1e3;function Of({a:e,b:t,transposeA:r,transposeB:n,backend:a,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:l=null}){let u=e.shape.length,d=t.shape.length,h=r?e.shape[u-2]:e.shape[u-1],p=n?t.shape[d-1]:t.shape[d-2],c=r?e.shape[u-1]:e.shape[u-2],f=n?t.shape[d-2]:t.shape[d-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),y=w.sizeFromShape(m),A=w.sizeFromShape(g),x=Sl.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([c,f]);w.assert(h===p,()=>`Error in matMul: inner shapes (${h}) and (${p}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${r} and transposeB=${n} must match.`);let b=r?[y,h,c]:[y,c,h],v=n?[A,f,p]:[A,p,f],S=ve({inputs:{x:e},backend:a,attrs:{shape:b}}),T=ve({inputs:{x:t},backend:a,attrs:{shape:v}}),E=[S,T],R=Math.max(y,A),_=r?S.shape[1]:S.shape[2],M=s!=null,I=i!=null,z=l==="leakyrelu",O=l!=null?A0(l,!0):null,j=M||I||z||O!=null,X;if((c===1||f===1)&&_>r8&&j===!1){let Q=S,V=T;r&&(Q=vr({inputs:{x:S},backend:a,attrs:{perm:[0,2,1]}}),E.push(Q)),n&&(V=vr({inputs:{x:T},backend:a,attrs:{perm:[0,2,1]}}),E.push(V));let ee=f!==1,J=f===1,se=Q;ee&&(se=ve({inputs:{x:Q},backend:a,attrs:{shape:[R,_,1]}}),E.push(se));let Z=f===1?2:1,ae=V;J&&(ae=ve({inputs:{x:V},backend:a,attrs:{shape:[R,1,_]}}),E.push(ae));let de=mb({inputs:{a:se,b:ae},backend:a});X=b0({inputs:{x:de},backend:a,attrs:{axis:Z,keepDims:!0}}),E.push(de)}else{let Q=Cr(e.dtype,t.dtype),V=new t8(b,v,[R,c,f],r,n,M,O,I,z),ee=[S,T];if(s!=null&&ee.push(s),I&&ee.push(i),z){let J=a.makeTensorInfo([],"float32",w.createScalarValue(o,"float32"));ee.push(J),E.push(J)}X=a.runWebGLProgram(V,ee,Q)}let D=ve({inputs:{x:X},backend:a,attrs:{shape:x}});E.push(X);for(let Q of E)a.disposeIntermediateTensorInfo(Q);return D}function Bte(e){let{inputs:t,backend:r,attrs:n}=e,{a,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:d,leakyreluAlpha:h}=n;return Of({a,b:s,transposeA:l,transposeB:u,backend:r,bias:i,preluActivationWeights:o,leakyreluAlpha:h,activation:d})}var Wte={kernelName:Ms,backendName:"webgl",kernelFunc:Bte},Lv="return abs(x);";function Vte(e){let{inputs:t,backend:r}=e,{x:n}=t;if(r.shouldExecuteOnCPU([n])&&n.dtype!=="complex64"){let s=r.texData.get(n.dataId),i=GS(s.values);return r.makeTensorInfo(n.shape,n.dtype,i)}let a;return Y().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new vo(n.shape,Lv):a=new Ka(n.shape,Lv),r.runWebGLProgram(a,[n],n.dtype)}var Ute={kernelName:Lo,backendName:"webgl",kernelFunc:Vte},Gte=Xn+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return acos(x);
|
|
`,jte=it({opSnippet:Gte}),Hte={kernelName:Pu,backendName:"webgl",kernelFunc:jte},qte=Xn+`
|
|
if (x < 1.0) return NAN;
|
|
return log(x + sqrt(x * x - 1.0));`,Kte=it({opSnippet:qte}),Xte={kernelName:_u,backendName:"webgl",kernelFunc:Kte},Bv="return a + b;",Zte=wr({opSnippet:Bv,packedOpSnippet:Bv,supportsComplex:!0,cpuKernelImpl:uee}),Yte={kernelName:Ya,backendName:"webgl",kernelFunc:Zte},Jte=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let r=[];this.variableNames.forEach(a=>{r.push(`float v${a} = get${a}AtOutCoords();`)});let n=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${r.join(`
|
|
`)}
|
|
|
|
float result = ${n};
|
|
setOutput(result);
|
|
}
|
|
`}},Qte=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let r=[];this.variableNames.forEach(a=>{r.push(`vec4 v${a} = get${a}AtOutCoords();`)});let n=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${r.join(`
|
|
`)}
|
|
|
|
vec4 result = ${n};
|
|
setOutput(result);
|
|
}
|
|
`}};function df(e){let{inputs:t,backend:r}=e,n=t;if(n.length===1)return an({inputs:{x:n[0]},backend:r});if(n.length>Y().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(n.length/2),l=df({inputs:n.slice(0,o),backend:r}),u=df({inputs:n.slice(o),backend:r});return df({inputs:[l,u],backend:r})}let a=n.map(o=>o.dtype).reduce((o,l)=>Cr(o,l)),s=n.map(o=>o.shape),i=Y().getBool("WEBGL_PACK")?new Qte(n[0].shape,s):new Jte(n[0].shape,s);return r.runWebGLProgram(i,n,a)}var ere={kernelName:qs,backendName:"webgl",kernelFunc:df};function tre(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n,o=a.shape.length,l=w.parseAxisParam(s,a.shape),u=l,d=N.getAxesPermutation(u,o),h=a;d!=null&&(h=vr({inputs:{x:a},backend:r,attrs:{perm:d}}),u=N.getInnerMostAxes(u.length,o)),N.assertAxesAreInnerMostDims("all",u,o);let[p,c]=N.computeOutAndReduceShapes(h.shape,u),f=w.sizeFromShape(c),m=ve({inputs:{x:h},backend:r,attrs:{shape:[-1,f]}}),g=_l(m,m.dtype,"all",r),y;if(i){let A=N.expandShapeToKeepDim(p,l);y=ve({inputs:{x:g},backend:r,attrs:{shape:A}})}else y=ve({inputs:{x:g},backend:r,attrs:{shape:p}});return r.disposeIntermediateTensorInfo(m),r.disposeIntermediateTensorInfo(g),d!=null&&r.disposeIntermediateTensorInfo(h),y}var rre={kernelName:zu,backendName:"webgl",kernelFunc:tre};function nre(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n,o=a.shape.length,l=w.parseAxisParam(s,a.shape),u=l,d=N.getAxesPermutation(u,o),h=a;d!=null&&(h=vr({inputs:{x:a},backend:r,attrs:{perm:d}}),u=N.getInnerMostAxes(u.length,o)),N.assertAxesAreInnerMostDims("any",u,o);let[p,c]=N.computeOutAndReduceShapes(h.shape,u),f=w.sizeFromShape(c),m=ve({inputs:{x:h},backend:r,attrs:{shape:[-1,f]}}),g=_l(m,m.dtype,"any",r),y;if(i){let A=N.expandShapeToKeepDim(p,l);y=ve({inputs:{x:g},backend:r,attrs:{shape:A}})}else y=ve({inputs:{x:g},backend:r,attrs:{shape:p}});return r.disposeIntermediateTensorInfo(m),r.disposeIntermediateTensorInfo(g),d!=null&&r.disposeIntermediateTensorInfo(h),y}var are={kernelName:Ou,backendName:"webgl",kernelFunc:nre},sre=class{constructor(e,t,r){this.variableNames=["A"];let{windowSize:n,batchSize:a,outSize:s}=e;r||this.variableNames.push("bestIndicesA"),this.outputShape=[a,s];let i=t==="max"?">":"<",o=r?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
int bestIndex = inOffset;
|
|
float bestValue = getA(batch, bestIndex);
|
|
|
|
for (int i = 0; i < ${n}; i++) {
|
|
int inIdx = ${o};
|
|
float candidate = getA(batch, inIdx);
|
|
if (candidate ${i} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = inIdx;
|
|
}
|
|
}
|
|
setOutput(float(bestIndex));
|
|
}
|
|
`}},ire=class{constructor(e,t,r,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,w.assert(e.length>2,()=>`Packed arg${r.charAt(0).toUpperCase()+r.slice(1)} supports only inputs with rank above 2.`);let a=e[e.length-1],s=Math.ceil(a/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),n||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=gt(o),u=Lr("coords",o),d,h;if(s===1){h=o+1;let T=gt(h);d=`
|
|
${T} sourceLocR = ${T}(${u.join()}, 0);
|
|
++${u[o-1]};
|
|
${T} sourceLocG = ${T}(${u.join()}, 0);
|
|
++${u[o-2]};
|
|
${T} sourceLocA = ${T}(${u.join()}, 0);
|
|
--${u[o-1]};
|
|
${T} sourceLocB = ${T}(${u.join()}, 0);
|
|
--${u[o-2]};`}else h=o,d=`
|
|
${l} sourceLocR = coords;
|
|
++${u[o-1]};
|
|
${l} sourceLocG = coords;
|
|
++${u[o-2]};
|
|
${l} sourceLocA = coords;
|
|
--${u[o-1]};
|
|
${l} sourceLocB = coords;
|
|
--${u[o-2]};`;let p=["x","y","z","w","u","v"].slice(0,h),c="."+p[h-1],f=p.map(T=>"int "+T),m=Lr("sourceLocR",h-1).concat("inIdx.r"),g=Lr("sourceLocG",h-1).concat("inIdx.g"),y=Lr("sourceLocB",h-1).concat("inIdx.b"),A=Lr("sourceLocA",h-1).concat("inIdx.a"),x=r==="max"?"greaterThan":"lessThan",b=n?"":`
|
|
inIdx = round(vec4(getBestIndicesAChannel(${m.join()}),
|
|
getBestIndicesAChannel(${g.join()}),
|
|
getBestIndicesAChannel(${y.join()}),
|
|
getBestIndicesAChannel(${A.join()})));`,v=`vec4(
|
|
getAChannel(${m.join()}),
|
|
hasNextCol ? getAChannel(${g.join()}) : 0.,
|
|
hasNextRow ? getAChannel(${y.join()}) : 0.,
|
|
hasNextRow && hasNextCol ? getAChannel(${A.join()}) : 0.)`,S=n?"":`
|
|
float getBestIndicesAChannel(${f.join()}) {
|
|
return getChannel(getBestIndicesA(${p.join()}),
|
|
vec2(${p.slice(-2).join()}));
|
|
}`;this.userCode=`
|
|
float getAChannel(${f.join()}) {
|
|
return getChannel(getA(${p.join()}),
|
|
vec2(${p.slice(-2).join()}));
|
|
}
|
|
${S}
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
bool hasNextCol = ${u[o-1]} < ${i[o-1]-1};
|
|
bool hasNextRow = ${u[o-2]} < ${i[o-2]-1};
|
|
${d}
|
|
ivec4 srcIdx = ivec4(sourceLocR${c}, sourceLocG${c},
|
|
sourceLocB${c}, sourceLocA${c}) * ${t};
|
|
ivec4 inIdx = srcIdx;
|
|
vec4 bestIndex = vec4(inIdx);
|
|
vec4 bestValue = ${v};
|
|
|
|
for (int i = 0; i < ${t}; i++) {
|
|
inIdx = srcIdx;
|
|
${b}
|
|
vec4 candidate = ${v};
|
|
bvec4 nan = isnan(candidate);
|
|
bvec4 replace = bvec4(
|
|
vec4(${x}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
|
|
|
|
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
|
|
replace.y ? candidate.y : bestValue.y,
|
|
replace.z ? candidate.z : bestValue.z,
|
|
replace.w ? candidate.w : bestValue.w);
|
|
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
|
|
srcIdx++;
|
|
}
|
|
setOutput(bestIndex);
|
|
}
|
|
`}};function n8(e,t,r,n=null){let a=t.shape[0],s=t.shape[1];n!=null&&(a=n.shape[0],s=n.shape[1]);let i=N.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:a,outSize:Math.ceil(s/i)},l=new sre(o,r,n==null),u=[t];n!=null&&u.push(n);let d=e.runWebGLProgram(l,u,"int32");if(d.shape[1]===1)return d;let h=n8(e,t,r,d);return e.disposeIntermediateTensorInfo(d),h}function a8(e,t,r,n=null){let a=n!=null?n.shape:t.shape,s=a[a.length-1],i=N.computeOptimalWindowSize(s),o=new ire(a,i,r,n==null),l=n==null?[t]:[t,n],u=e.runWebGLProgram(o,l,"int32");if(u.shape.length===t.shape.length){let d=a8(e,t,r,u);return e.disposeIntermediateTensorInfo(u),d}return u}function s8(e,t,r,n){let a=[r];if(N.assertAxesAreInnerMostDims("arg"+n.charAt(0).toUpperCase()+n.slice(1),a,t.shape.length),!Y().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],i=e.texData.get(t.dataId),o=i!==null&&i.isPacked,l=t;o&&(l=e.unpackTensor(t),s.push(l));let[u,d]=N.computeOutAndReduceShapes(l.shape,a),h=w.sizeFromShape(d),p=ve({inputs:{x:l},backend:e,attrs:{shape:[-1,h]}});s.push(p);let c=n8(e,p,n);s.push(c);let f=ve({inputs:{x:c},backend:e,attrs:{shape:u}});return s.forEach(m=>e.disposeIntermediateTensorInfo(m)),f}return a8(e,t,n)}function ore(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s}=n,i=w.parseAxisParam(s,a.shape),o=N.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=vr({inputs:{x:a},backend:r,attrs:{perm:o}}),u.push(l),i=N.getInnerMostAxes(i.length,l.shape.length)),N.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let d=s8(r,l,i[0],"max");return u.forEach(h=>r.disposeIntermediateTensorInfo(h)),d}var lre={kernelName:Ks,backendName:"webgl",kernelFunc:ore};function ure(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s}=n,i=w.parseAxisParam(s,a.shape),o=N.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=vr({inputs:{x:a},backend:r,attrs:{perm:o}}),u.push(l),i=N.getInnerMostAxes(i.length,l.shape.length)),N.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let d=s8(r,l,i[0],"min");return u.forEach(h=>r.disposeIntermediateTensorInfo(h)),d}var dre={kernelName:Du,backendName:"webgl",kernelFunc:ure},pre=Xn+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return asin(x);
|
|
`,hre=it({opSnippet:pre}),cre={kernelName:Lu,backendName:"webgl",kernelFunc:hre},fre=Xn+"return log(x + sqrt(x * x + 1.0));",mre=it({opSnippet:fre}),gre={kernelName:Bu,backendName:"webgl",kernelFunc:mre},yre=Xn+`
|
|
return atan(x);
|
|
`,Are=it({opSnippet:yre}),xre={kernelName:Wu,backendName:"webgl",kernelFunc:Are},bre=Nte+`
|
|
return atan(a, b);
|
|
`,vre=`
|
|
vec4 result = atan(a, b);
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+Cte+`
|
|
return result;
|
|
`,wre=wr({opSnippet:bre,packedOpSnippet:vre}),kre={kernelName:Uu,backendName:"webgl",kernelFunc:wre},Ire=Xn+`
|
|
if ((x < -1.0) || (x > 1.0)) return NAN;
|
|
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Sre=it({opSnippet:Ire}),Tre={kernelName:Vu,backendName:"webgl",kernelFunc:Sre},Hp=class{constructor(e,t,r,n=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&r)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,d=e.effectiveFilterHeight,h=e.effectiveFilterWidth,p=e.padInfo.top,c=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(f||(y="-1.0 / 1e-20"),r){let T=">=";this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${p}, ${c});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
float avgValue = 0.0;
|
|
|
|
for (int wR = 0; wR < ${d};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${h};
|
|
wC += ${u}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xR, xC, d);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${T} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${n?a?m:g:`wR * ${h} + wC`};
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let A="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let b=Math.floor(s/4)*4,v=s%4,S=`
|
|
if (${f}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${A}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${p}, ${c});
|
|
const float initializationValue = ${y};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xR, int xC, int d) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xR, xC, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${y});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wR = 0; wR < ${d};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${b}; wC += 4) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
getValue(batch, xR, xC + 3 * ${u}, d)
|
|
);
|
|
|
|
${S}
|
|
}
|
|
|
|
int xC = xCCorner + ${b};
|
|
if (${v===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${S}
|
|
} else if (${v===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${S}
|
|
} else if (${v===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
initializationValue
|
|
);
|
|
|
|
${S}
|
|
}
|
|
}
|
|
setOutput(${x});
|
|
}
|
|
`}},gb=class{constructor(e,t,r,n=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&r)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,d=e.dilationHeight,h=e.dilationWidth,p=e.effectiveFilterDepth,c=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,g=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let A=t==="avg",x="0.0";if(A||(x="-1.0 / 1e-20"),r){let R=">=";this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${l});
|
|
const ivec3 pads = ivec3(${m}, ${g}, ${y});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
|
|
for (int wD = 0; wD < ${p};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${c};
|
|
wR += ${d}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${f};
|
|
wC += ${h}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xD, xR, xC, ch);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${R} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${n?a?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${c} * ${f} +
|
|
wR * ${f} + wC`};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let b="max",v=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(v="avgValue / count");let S=Math.floor(s/4)*4,T=s%4,E=`
|
|
if (${A}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${b}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${l});
|
|
const ivec3 pads = ivec3(${m}, ${g}, ${y});
|
|
const float initializationValue = ${x};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xD, int xR, int xC, int ch) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xD, xR, xC, ch);
|
|
}
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${x});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wD = 0; wD < ${p};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${c};
|
|
wR += ${d}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${S}; wC += 4) {
|
|
int xC = xCCorner + wC * ${h};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${h}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${h}, ch),
|
|
getValue(batch, xD, xR, xC + 3 * ${h}, ch)
|
|
);
|
|
|
|
${E}
|
|
}
|
|
|
|
int xC = xCCorner + ${S};
|
|
if (${T===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${E}
|
|
} else if (${T===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${h}, ch),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${E}
|
|
} else if (${T===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${h}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${h}, ch),
|
|
initializationValue
|
|
);
|
|
|
|
${E}
|
|
}
|
|
}
|
|
setOutput(${v});
|
|
}
|
|
}
|
|
`}};function Nre(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t;vd(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n,u=1;w.assert(N.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let d=N.computePool2DInfo(a.shape,s,i,u,o,l);if(d.filterWidth===1&&d.filterHeight===1&&w.arraysEqual(d.inShape,d.outShape))return an({inputs:{x:a},backend:r});let h=new Hp(d,"avg",!1);return r.runWebGLProgram(h,[a],"float32")}var Cre={kernelName:Xs,backendName:"webgl",kernelFunc:Nre};function Ere(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=n,d=[1,1,1],h=N.computePool3DInfo(a.shape,s,i,d,o,l,u),p=new gb(h,"avg",!1);return r.runWebGLProgram(p,[a],"float32")}var Rre={kernelName:Kp,backendName:"webgl",kernelFunc:Ere},Mre=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,r=e.filterWidth,n=e.strideHeight,a=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=o-1-e.padInfo.top,d=l-1-e.padInfo.left,h=1/(t*r);this.userCode=`
|
|
const ivec2 pads = ivec2(${u}, ${d});
|
|
const float avgMultiplier = float(${h});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${o};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${l};
|
|
wC+= ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${a}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},Fre=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,r=e.filterHeight,n=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,d=e.effectiveFilterDepth,h=e.effectiveFilterHeight,p=e.effectiveFilterWidth,c=d-1-e.padInfo.front,f=h-1-e.padInfo.top,m=p-1-e.padInfo.left,g=1/(t*r*n);this.userCode=`
|
|
const ivec3 pads = ivec3(${c}, ${f}, ${m});
|
|
const float avgMultiplier = float(${g});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${d};
|
|
wD += ${o}) {
|
|
float dyD = float(dyDCorner + wD) / ${a}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${l}) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${p};
|
|
wC += ${u}) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function $re(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:d}=n,h=[1,1,1],p=N.computePool3DInfo(i.shape,o,l,h,u,d),c=new Fre(p);return r.runWebGLProgram(c,[a],i.dtype)}var Pre={kernelName:Hf,backendName:"webgl",kernelFunc:$re};function _re(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,input:s}=t,i=s;vd([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=n,d=N.computePool2DInfo(i.shape,o,l,1,u),h=new Mre(d);return r.runWebGLProgram(h,[a],i.dtype)}var zre={kernelName:jf,backendName:"webgl",kernelFunc:_re};function Ore(e){let{inputs:t,backend:r,attrs:n}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=n;return Of({a,b:s,transposeA:i,transposeB:o,backend:r})}var Dre={kernelName:Zs,backendName:"webgl",kernelFunc:Ore},Lre=class{constructor(e,t,r,n,a,s){this.outputShape=[],this.variableNames=["x","mean","variance"],N.assertAndGetBroadcastShape(e,t),N.assertAndGetBroadcastShape(e,r);let i="0.0";n!=null&&(N.assertAndGetBroadcastShape(e,n),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";a!=null&&(N.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float x = getXAtOutCoords();
|
|
float mean = getMeanAtOutCoords();
|
|
float variance = getVarianceAtOutCoords();
|
|
float offset = ${i};
|
|
float scale = ${o};
|
|
float inv = scale * inversesqrt(variance + float(${s}));
|
|
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
|
|
}
|
|
`}},Bre=class{constructor(e,t,r,n,a,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],N.assertAndGetBroadcastShape(e,t),N.assertAndGetBroadcastShape(e,r);let i="vec4(0.0)";n!=null&&(N.assertAndGetBroadcastShape(e,n),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";a!=null&&(N.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 offset = ${i};
|
|
vec4 scale = ${o};
|
|
|
|
vec4 x = getXAtOutCoords();
|
|
vec4 mean = getMeanAtOutCoords();
|
|
vec4 variance = getVarianceAtOutCoords();
|
|
|
|
vec4 inv = scale * inversesqrt(variance + vec4(${s}));
|
|
|
|
setOutput((x - mean) * inv + offset);
|
|
}
|
|
`}},Wre=({inputs:e,backend:t,attrs:r})=>{let{x:n,mean:a,variance:s,offset:i,scale:o}=e;w.assert(a.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),w.assert(i==null||a.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),w.assert(o==null||a.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=r;l==null&&(l=.001);let u=[n,a,s],d=null;i!=null&&(d=i.shape,u.push(i));let h=null;o!=null&&(h=o.shape,u.push(o));let p=Y().getBool("WEBGL_PACK_NORMALIZATION")?new Bre(n.shape,a.shape,s.shape,d,h,l):new Lre(n.shape,a.shape,s.shape,d,h,l);return t.runWebGLProgram(p,u,u[0].dtype)},Vre={kernelName:ui,backendName:"webgl",kernelFunc:Wre},Ure=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=gt(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let r=Gre(this.rank),n,a=e.map((s,i)=>`sourceLoc.${Zy[i]} = start[${i}] + coords.${Zy[i]};`);n=`
|
|
${t} sourceLoc;
|
|
${t} coords = getOutputCoords();
|
|
${a.join(`
|
|
`)}
|
|
`,this.userCode=`
|
|
void main() {
|
|
${n}
|
|
setOutput(getSource(${r}));
|
|
}
|
|
`}},Zy=["x","y","z","w","u","v"];function Gre(e){if(e===1)return"sourceLoc";if(e<=6)return Zy.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var jre=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=gt(this.rank),r=Lr("coords",this.rank),n=Lr("sourceLoc",this.rank),a=this.rank===1?"sourceLoc":`vec2(${n.slice(-2).join()})`,s=`getChannel(getSource(${n.join()}), ${a})`,i=`
|
|
result.x = ${s};
|
|
if (++${r[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${n[this.rank-1]};
|
|
result.y = ${s};
|
|
--${n[this.rank-1]};
|
|
}
|
|
`,o=this.rank===1?"":`
|
|
--${r[this.rank-1]};
|
|
if (++${r[this.rank-2]} < ${e[this.rank-2]}) {
|
|
++${n[this.rank-2]};
|
|
result.z = ${s};
|
|
if (++${r[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${n[this.rank-1]};
|
|
result.w = ${s};
|
|
}
|
|
}
|
|
`,l=this.rank<=4?`sourceLoc = coords +
|
|
${t}(${e.map((u,d)=>`start[${d}]`).join()});`:e.map((u,d)=>`${n[d]} = ${r[d]} + start[${d}];`).join(`
|
|
`);this.userCode=`
|
|
void main() {
|
|
${t} coords = getOutputCoords();
|
|
${t} sourceLoc;
|
|
${l}
|
|
vec4 result = vec4(0.);
|
|
${i}
|
|
${o}
|
|
setOutput(result);
|
|
}
|
|
`}};function Hre(e,t,r,n){let a=n.texData.get(e.dataId),s=n.makeTensorInfo(r,e.dtype),i=n.texData.get(s.dataId);Object.assign(i,a),i.refCount=1,i.shape=r,i.dtype=e.dtype;let o=_t.computeFlatOffset(t,w.computeStrides(e.shape));a.slice&&(o+=a.slice.flatOffset),i.slice={flatOffset:o,origDataId:a.slice&&a.slice.origDataId||e.dataId};let l=n.dataRefCount.get(i.slice.origDataId)||1;return n.dataRefCount.set(i.slice.origDataId,l+1),s}function Nd(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{begin:s,size:i}=n,[o,l]=_t.parseSliceParams(a,s,i);if(_t.assertParamsValid(a,o,l),w.sizeFromShape(l)===0)return r.makeTensorInfo(l,a.dtype,[]);if(r.shouldExecuteOnCPU([a])||a.dtype==="string"){let h=r.texData.get(a.dataId),p=_ee(h.values,o,l,a.shape,a.dtype);return r.makeTensorInfo(l,a.dtype,p)}let{isPacked:u}=r.texData.get(a.dataId),d=_t.isSliceContinous(a.shape,o,l);if(u||!d){let h=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new jre(l):new Ure(l),p=[o];return r.runWebGLProgram(h,[a],a.dtype,p)}return r.uploadToGPU(a.dataId),Hre(a,o,l,r)}var qre={kernelName:fl,backendName:"webgl",kernelFunc:Nd},Kre=e=>{let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockShape:s,crops:i}=n;w.assert(a.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((A,x)=>A*x),l=N.getReshaped(a.shape,s,o),u=N.getPermuted(l.length,s.length),d=N.getReshapedPermuted(a.shape,s,o),h=N.getSliceBeginCoords(i,s.length),p=N.getSliceSize(d,i,s.length),c=[],f=ve({inputs:{x:a},backend:r,attrs:{shape:l}}),m=vr({inputs:{x:f},backend:r,attrs:{perm:u}}),g=ve({inputs:{x:m},backend:r,attrs:{shape:d}}),y=Nd({inputs:{x:g},backend:r,attrs:{begin:h,size:p}});return c.push(f),c.push(m),c.push(g),c.forEach(A=>r.disposeIntermediateTensorInfo(A)),y},Xre={kernelName:Bo,backendName:"webgl",kernelFunc:Kre};function Zre(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,weights:s}=t,{size:i}=n,o=r.readSync(a.dataId),l=r.readSync(s.dataId),u=US(o,l,s.dtype,s.shape,i);return r.makeTensorInfo([i],s.dtype,u)}var Yre={kernelName:qf,backendName:"webgl",kernelFunc:Zre};function Jre(e){let{inputs:t,backend:r}=e,{s0:n,s1:a}=t,s=r.readSync(n.dataId),i=r.readSync(a.dataId),o=N.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return r.makeTensorInfo([o.length],"int32",Int32Array.from(o))}var Qre={kernelName:Kf,backendName:"webgl",kernelFunc:Jre},ene="return float(a != b);",i8=wr({opSnippet:ene,cpuKernelImpl:Ree,dtype:"bool"}),tne={kernelName:rl,backendName:"webgl",kernelFunc:i8};function Lh(e){let{inputs:t,backend:r}=e,{input:n}=t,a=r.texData.get(n.dataId);return an({inputs:{x:a.complexTensorInfos.real},backend:r})}var rne={kernelName:ah,backendName:"webgl",kernelFunc:Lh},nne="return float(int(x));";function ane(e,t){let r=new Ka(e.shape,nne),n=t.runWebGLProgram(r,[e],"int32");return{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}function Yy(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{dtype:s}=n;if(s==="complex64"){if(a.dtype==="complex64")return an({inputs:{x:a},backend:r});let i=Wt(a.shape),o=Yy({inputs:{x:a},backend:r,attrs:{dtype:"float32"}}),l=Vi({inputs:{real:o,imag:i},backend:r});return i.dispose(),r.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=Lh({inputs:{input:a},backend:r}),o=Yy({inputs:{x:i},backend:r,attrs:{dtype:s}});return r.disposeIntermediateTensorInfo(i),o}if(!w.hasEncodingLoss(a.dtype,s)){let i=an({inputs:{x:a},backend:r});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return ane(a,r);if(s==="bool"){let i=r.makeTensorInfo([],"bool",w.getTypedArrayFromDType("bool",1)),o=i8({inputs:{a,b:i},backend:r});return r.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var sne={kernelName:Ys,backendName:"webgl",kernelFunc:Yy},Wv="return ceil(x);",ine=it({opSnippet:Wv,packedOpSnippet:Wv,cpuKernelImpl:pee}),one={kernelName:Js,backendName:"webgl",kernelFunc:ine},lne=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
|
|
void main() {
|
|
float value = getAAtOutCoords();
|
|
if (isnan(value)) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, minVal, maxVal));
|
|
}
|
|
`}},une=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 value = getAAtOutCoords();
|
|
|
|
if (any(isnan(value))) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
|
|
}
|
|
`}};function dne(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=n,o;Y().getBool("WEBGL_PACK_CLIP")?o=new une(a.shape):o=new lne(a.shape);let l=[[s],[i]];return r.runWebGLProgram(o,[a],a.dtype,l)}var pne={kernelName:Ja,backendName:"webgl",kernelFunc:dne},hne=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float re = abs(getRealAtOutCoords());
|
|
float im = abs(getImagAtOutCoords());
|
|
float mx = max(re, im);
|
|
|
|
// sadly the length function in glsl is not underflow-safe
|
|
// (at least not on Intel GPUs). So the safe solution is
|
|
// to ensure underflow-safety in all cases.
|
|
setOutput(
|
|
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
|
|
);
|
|
}
|
|
`}};function Vv(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function cne(e){let{inputs:t,backend:r}=e,{x:n}=t,a=r.texData.get(n.dataId),s=new hne(n.shape),i=[Vv(n,a.complexTensorInfos.real),Vv(n,a.complexTensorInfos.imag)];return r.runWebGLProgram(s,i,i[0].dtype)}var fne={kernelName:Zp,backendName:"webgl",kernelFunc:cne},mne=class{constructor(e){this.outputShape=[],this.outputShape=N.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s<t.length;s++)t[s]=t[s-1]+e[s][1];let r=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let s=1;s<t.length;s++){let i=t[s-1];r.push(`else if (yC < ${t[s]}) setOutput(getT${s}(yR, yC-${i}));`)}let n=t.length,a=t[t.length-1];r.push(`else setOutput(getT${n}(yR, yC-${a}));`),this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int yR = coords.x;
|
|
int yC = coords.y;
|
|
|
|
${r.join(`
|
|
`)}
|
|
}
|
|
`}},gne=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=N.computeOutShape(e,t);let r=this.outputShape,n=r.length,a=gt(n),s=Lr("coords",n),i=["x","y","z","w","u","v"].slice(0,n);this.variableNames=e.map((f,m)=>`T${m}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let f=1;f<o.length;f++)o[f]=o[f-1]+e[f][t];let l=i[t],u=i.slice(-2),d=i.join(),h=`if (${l} < ${o[0]}) {
|
|
return getChannel(
|
|
getT0(${d}), vec2(${u.join()}));
|
|
}`;for(let f=1;f<o.length;f++){let m=o[f-1];h+=`
|
|
if (${l} < ${o[f]} && ${l} >= ${o[f-1]}) {
|
|
return getChannel(
|
|
getT${f}(${Qc(i,l,m)}),
|
|
vec2(${Qc(u,l,m)}));
|
|
}`}let p=o.length,c=o[o.length-1];h+=`
|
|
return getChannel(
|
|
getT${p}(${Qc(i,l,c)}),
|
|
vec2(${Qc(u,l,c)}));`,this.userCode=`
|
|
float getValue(${i.map(f=>"int "+f)}) {
|
|
${h}
|
|
}
|
|
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
vec4 result = vec4(getValue(${s}), 0., 0., 0.);
|
|
|
|
${s[n-1]} = ${s[n-1]} + 1;
|
|
if (${s[n-1]} < ${r[n-1]}) {
|
|
result.g = getValue(${s});
|
|
}
|
|
|
|
${s[n-2]} = ${s[n-2]} + 1;
|
|
if (${s[n-2]} < ${r[n-2]}) {
|
|
result.a = getValue(${s});
|
|
}
|
|
|
|
${s[n-1]} = ${s[n-1]} - 1;
|
|
if (${s[n-2]} < ${r[n-2]} &&
|
|
${s[n-1]} < ${r[n-1]}) {
|
|
result.b = getValue(${s});
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function Qc(e,t,r){let n=e.indexOf(t);return e.map((a,s)=>s===n?`${a} - ${r}`:a).join()}function v0(e){let{inputs:t,backend:r}=e,{input:n}=t,a=r.texData.get(n.dataId);return an({inputs:{x:a.complexTensorInfos.imag},backend:r})}var yne={kernelName:eh,backendName:"webgl",kernelFunc:v0};function hu(e,t,r){let n=e[0].dtype;if(n==="complex64"){let d=e.map(m=>Lh({inputs:{input:m},backend:r})),h=e.map(m=>v0({inputs:{input:m},backend:r})),p=hu(d,t,r),c=hu(h,t,r),f=Vi({inputs:{real:p,imag:c},backend:r});return d.forEach(m=>r.disposeIntermediateTensorInfo(m)),h.forEach(m=>r.disposeIntermediateTensorInfo(m)),r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(c),f}let a=r.shouldExecuteOnCPU(e);if(n==="string"&&(a=!0),a){let d=e.map(y=>{let A=w.sizeFromShape(y.shape.slice(t));return ve({inputs:{x:y},backend:r,attrs:{shape:[-1,A]}})}),h=d.map(y=>({vals:r.readSync(y.dataId),shape:y.shape})),p=N.computeOutShape(d.map(y=>y.shape),1),c=d[0].shape[0]===1,f=hee(h,p,n,c),m=N.computeOutShape(e.map(y=>y.shape),t),g=r.makeTensorInfo(m,n,f);return d.forEach(y=>r.disposeIntermediateTensorInfo(y)),g}if(e.length>Y().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let d=Math.floor(e.length/2),h=hu(e.slice(0,d),t,r),p=hu(e.slice(d),t,r),c=hu([h,p],t,r);return r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(p),c}if(Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let d=new gne(e.map(h=>h.shape),t);return r.runWebGLProgram(d,e,n)}let{tensors2D:s,outShape:i}=Ane(e,t,r),o=new mne(s.map(d=>d.shape)),l=r.runWebGLProgram(o,s,n);s.forEach(d=>r.disposeIntermediateTensorInfo(d));let u=ve({inputs:{x:l},attrs:{shape:i},backend:r});return r.disposeIntermediateTensorInfo(l),u}function Ane(e,t,r){let n=N.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>ve({inputs:{x:a},attrs:{shape:[-1,w.sizeFromShape(a.shape.slice(t))]},backend:r})),outShape:n}}function o8(e){let{inputs:t,backend:r,attrs:n}=e,{axis:a}=n,s=w.parseAxisParam(a,t[0].shape)[0],i=N.computeOutShape(t.map(u=>u.shape),s);if(w.sizeFromShape(i)===0)return r.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(u=>w.sizeFromShape(u.shape)>0);if(o.length===1)return an({inputs:{x:o[0]},backend:r});let l=o.map(u=>u.shape);return N.assertParamsConsistent(l,s),hu(o,s,r)}var xne={kernelName:Wo,backendName:"webgl",kernelFunc:o8},l8=class{constructor(e,t=!1,r=null,n=!1,a=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,d=e.dilationWidth,h=e.filterHeight,p=e.filterWidth,c=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",g=m?1:2,y=m?2:3,A=m?3:1,x="",b="";r&&(n?x=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${r}
|
|
}`:a?x=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${r}
|
|
}`:x=`
|
|
float activation(float x) {
|
|
${r}
|
|
}
|
|
`,b="result = activation(result);");let v=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${x}
|
|
|
|
const ivec2 strides = ivec2(${o}, ${l});
|
|
const ivec2 pads = ivec2(${s}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d2 = coords[${A}];
|
|
|
|
ivec2 xRCCorner =
|
|
ivec2(coords[${g}], coords[${y}]) * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${h}; wR++) {
|
|
int xR = xRCorner + wR * ${u};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${p}; wC++) {
|
|
int xC = xCCorner + wC * ${d};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${c}; d1 += 4) {
|
|
vec4 wValues = vec4(
|
|
getW(wR, wC, d1, d2),
|
|
getW(wR, wC, d1 + 1, d2),
|
|
getW(wR, wC, d1 + 2, d2),
|
|
getW(wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xR, xC, d1),
|
|
getX(batch, xR, xC, d1 + 1),
|
|
getX(batch, xR, xC, d1 + 2),
|
|
getX(batch, xR, xC, d1 + 3)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec4 xValues = vec4(
|
|
getX(batch, d1, xR, xC),
|
|
getX(batch, d1 + 1, xR, xC),
|
|
getX(batch, d1 + 2, xR, xC),
|
|
getX(batch, d1 + 3, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
|
|
if (${f===1}) {
|
|
|
|
if (${m}) {
|
|
dotProd +=
|
|
getX(batch, xR, xC, ${c}) *
|
|
getW(wR, wC, ${c}, d2);
|
|
} else {
|
|
dotProd +=
|
|
getX(batch, ${c}, xR, xC) *
|
|
getW(wR, wC, ${c}, d2);
|
|
}
|
|
|
|
} else if (${f===2}) {
|
|
vec2 wValues = vec2(
|
|
getW(wR, wC, ${c}, d2),
|
|
getW(wR, wC, ${c} + 1, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xR, xC, ${c}),
|
|
getX(batch, xR, xC, ${c} + 1)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec2 xValues = vec2(
|
|
getX(batch, ${c}, xR, xC),
|
|
getX(batch, ${c} + 1, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
} else if (${f===3}) {
|
|
vec3 wValues = vec3(
|
|
getW(wR, wC, ${c}, d2),
|
|
getW(wR, wC, ${c} + 1, d2),
|
|
getW(wR, wC, ${c} + 2, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xR, xC, ${c}),
|
|
getX(batch, xR, xC, ${c} + 1),
|
|
getX(batch, xR, xC, ${c} + 2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec3 xValues = vec3(
|
|
getX(batch, ${c}, xR, xC),
|
|
getX(batch, ${c} + 1, xR, xC),
|
|
getX(batch, ${c} + 2, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${v}
|
|
${b}
|
|
setOutput(result);
|
|
}
|
|
`}},bne=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,r=e.padInfo.top,n=e.padInfo.left,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,d=e.filterDepth,h=e.filterHeight,p=e.filterWidth,c=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=`
|
|
const ivec3 strides = ivec3(${a}, ${s}, ${i});
|
|
const ivec3 pads = ivec3(${t}, ${r}, ${n});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d2 = coords.u;
|
|
|
|
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xFCorner = xFRCCorner.x;
|
|
int xRCorner = xFRCCorner.y;
|
|
int xCCorner = xFRCCorner.z;
|
|
|
|
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
|
|
// y(yF, yR, yC, d2). ? = to be determined. : = across all
|
|
// values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${d}; wF++) {
|
|
int xF = xFCorner + wF * ${o};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h}; wR++) {
|
|
int xR = xRCorner + wR * ${l};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${p}; wC++) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${c}; d1 += 4) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xF, xR, xC, d1),
|
|
getX(batch, xF, xR, xC, d1 + 1),
|
|
getX(batch, xF, xR, xC, d1 + 2),
|
|
getX(batch, xF, xR, xC, d1 + 3)
|
|
);
|
|
vec4 wValues = vec4(
|
|
getW(wF, wR, wC, d1, d2),
|
|
getW(wF, wR, wC, d1 + 1, d2),
|
|
getW(wF, wR, wC, d1 + 2, d2),
|
|
getW(wF, wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
if (${f===1}) {
|
|
dotProd +=
|
|
getX(batch, xF, xR, xC, ${c}) *
|
|
getW(wF, wR, wC, ${c}, d2);
|
|
} else if (${f===2}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xF, xR, xC, ${c}),
|
|
getX(batch, xF, xR, xC, ${c} + 1)
|
|
);
|
|
vec2 wValues = vec2(
|
|
getW(wF, wR, wC, ${c}, d2),
|
|
getW(wF, wR, wC, ${c} + 1, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else if (${f===3}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xF, xR, xC, ${c}),
|
|
getX(batch, xF, xR, xC, ${c} + 1),
|
|
getX(batch, xF, xR, xC, ${c} + 2)
|
|
);
|
|
vec3 wValues = vec3(
|
|
getW(wF, wR, wC, ${c}, d2),
|
|
getW(wF, wR, wC, ${c} + 1, d2),
|
|
getW(wF, wR, wC, ${c} + 2, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},vne=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=e,this.enableShapeUniforms=ln(this.outputShape.length);let{dataFormat:r}=t,n=Gr(),a=r==="channelsLast",s=a?0:1,i=a?1:2,o=this.enableShapeUniforms?"if(blockIndex < outShape[1] && pos < outShape[0]) {":`if(blockIndex < ${e[1]} && pos < ${e[0]}) {`,l="";for(let u=0;u<=1;u++)for(let d=0;d<=1;d++)l+=`
|
|
blockIndex = rc.y + ${d};
|
|
pos = rc.x + ${u};
|
|
|
|
${o}
|
|
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
|
|
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
|
|
|
|
if(d0 < inputShape[${s}] && d0 >= 0) {
|
|
// Use custom imod instead mod. On Intel GPU, mod may generate
|
|
// unexpected value.
|
|
// https://github.com/tensorflow/tfjs/issues/5447
|
|
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
|
|
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
|
|
inChannels);
|
|
|
|
if(d1 < inputShape[${i}] && d1 >= 0) {
|
|
|
|
ch = imod(pos, inChannels);
|
|
|
|
if (${a}) {
|
|
innerDims = vec2(d1, ch);
|
|
result[${u*2+d}] = getChannel(
|
|
getA(d0, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
} else {
|
|
innerDims = vec2(d0, d1);
|
|
result[${u*2+d}] = getChannel(
|
|
getA(ch, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`;this.userCode=`
|
|
void main() {
|
|
ivec2 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0);
|
|
|
|
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
|
|
vec2 innerDims;
|
|
|
|
${l}
|
|
|
|
${n.output} = result;
|
|
}
|
|
`}};function u8({x:e,filter:t,convInfo:r,backend:n,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,u=n.texData.get(e.dataId),d=r.inChannels,h=l[0]*l[1]*l[2],p=r.outChannels,c=r.dataFormat==="channelsLast",f=!1,m=!1,g,y=[];if(!((h===1||p===1)&&d>r8)&&u.isPacked&&c&&u.texture!=null&&l[2]%2!==0&&w.arraysEqual(u.shape.slice(-3),l.slice(-3))){let A=l[0]*l[1]*(l[2]+1),x={dataId:e.dataId,shape:[1,A,r.inChannels],dtype:e.dtype},b=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,w.assert(jp(u.shape,x.shape),()=>`packed reshape ${u.shape} to ${x.shape} isn't free`);let v=ve({inputs:{x:t},backend:n,attrs:{shape:[1,r.inChannels,r.outChannels]}});y.push(v);let S=Of({a:x,b:v,backend:n,transposeA:f,transposeB:m,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),T=n.texData.get(S.dataId);w.assert(T.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=b,T.shape=r.outShape,g=an({inputs:{x:S},backend:n}),g.shape=r.outShape,y.push(S)}else{let A=c?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],x=ve({inputs:{x:e},backend:n,attrs:{shape:[1,A,r.inChannels]}}),b=ve({inputs:{x:t},backend:n,attrs:{shape:[1,r.inChannels,r.outChannels]}}),v=Of({a:x,b,transposeA:f,transposeB:m,backend:n,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i});g=ve({inputs:{x:v},backend:n,attrs:{shape:r.outShape}}),y.push(x),y.push(b),y.push(v)}for(let A of y)n.disposeIntermediateTensorInfo(A);return g}function d8({x:e,filter:t,convInfo:r,backend:n,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:u,inChannels:d,outWidth:h,outHeight:p,dataFormat:c}=r,f=c==="channelsLast",m=l*u*d,g=p*h,y=[m,g],A=!0,x=!1,b=[],v=ve({inputs:{x:e},backend:n,attrs:{shape:e.shape.slice(1)}}),S=ve({inputs:{x:t},backend:n,attrs:{shape:[1,m,w.sizeFromShape(t.shape)/m]}});b.push(v),b.push(S);let T=new vne(y,r),E=[v.shape,[r.padInfo.top,r.padInfo.left],[r.strideHeight,r.strideWidth],[r.dilationHeight,r.dilationWidth],[r.inChannels],[r.filterWidth*r.inChannels],[r.outWidth]],R=n.runWebGLProgram(T,[v],"float32",E),_=ve({inputs:{x:R},backend:n,attrs:{shape:[1,y[0],y[1]]}});b.push(R),b.push(_);let M=a!=null,I=s!=null,z=o==="leakyrelu",O=o?A0(o,!0):null,j=new t8(_.shape,S.shape,[1,g,r.outChannels],A,x,M,O,I,z),X=[_,S];if(a&&X.push(a),I&&X.push(s),z){let ee=n.makeTensorInfo([],"float32",w.createScalarValue(i,"float32"));X.push(ee),b.push(ee)}let D=n.runWebGLProgram(j,X,"float32"),Q=f?[1,p,h,r.outChannels]:[1,r.outChannels,p,h],V=ve({inputs:{x:D},backend:n,attrs:{shape:Q}});b.push(D);for(let ee of b)n.disposeIntermediateTensorInfo(ee);return V}function wne(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:d}=n,h=N.convertConv2DDataFormat(l),p=N.computeConv2DInfo(a.shape,s.shape,i,u,o,d,!1,h),c;if(p.filterHeight===1&&p.filterWidth===1&&p.dilationHeight===1&&p.dilationWidth===1&&p.strideHeight===1&&p.strideWidth===1&&(p.padInfo.type==="SAME"||p.padInfo.type==="VALID"))c=u8({x:a,filter:s,convInfo:p,backend:r});else if(Y().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)c=d8({x:a,filter:s,convInfo:p,backend:r});else{let m=new l8(p);c=r.runWebGLProgram(m,[a,s],"float32")}let f=ve({inputs:{x:c},backend:r,attrs:{shape:p.outShape}});return r.disposeIntermediateTensorInfo(c),f}var kne={kernelName:Qs,backendName:"webgl",kernelFunc:wne},Ine=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,r=e.strideWidth,n=e.padInfo.top,a=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int d2 = coords.w;
|
|
|
|
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${n};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${r} - ${a};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
if (${s}) {
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
} else {
|
|
float dyValue = getDy(b, d2, yR, yC);
|
|
float xValue = getX(b, d1, xR, xC);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},Sne=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,r=e.filterWidth,n=e.strideHeight,a=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=r-1-e.padInfo.left,l=s?1:2,u=s?2:3,d=s?3:1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[${d}];
|
|
|
|
ivec2 dyCorner = ivec2(coords[${l}], coords[${u}]) - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${r}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${a}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${r} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
|
|
if (${s}) {
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
} else {
|
|
float xValue = getDy(batch, d2, idyR, idyC);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},Tne=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,r=e.strideHeight,n=e.strideWidth,a=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=`
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int wF = coords.x;
|
|
int wR = coords.y;
|
|
int wC = coords.z;
|
|
int d1 = coords.w;
|
|
int d2 = coords.u;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yF = 0; yF < ${e.outDepth}; yF++) {
|
|
int xF = wF + yF * ${t} - ${a};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${r} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${i};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yF, yR, yC, d2);
|
|
float xValue = getX(b, xF, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},Nne=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,r=e.filterHeight,n=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=r-1-e.padInfo.top,u=n-1-e.padInfo.left;this.userCode=`
|
|
const ivec3 pads = ivec3(${o}, ${l}, ${u});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.u;
|
|
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyFCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${t}; wF++) {
|
|
float dyF = float(dyFCorner + wF) / ${a}.0;
|
|
|
|
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyF = int(dyF);
|
|
|
|
int wFPerm = ${t} - 1 - wF;
|
|
|
|
for (int wR = 0; wR < ${r}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${r} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
float xValue = getDy(batch, idyF, idyR, idyC, d2);
|
|
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function Cne(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:d}=n,h=N.convertConv2DDataFormat(l),p=N.computeConv2DInfo(a.shape,d,i,1,o,u,!1,h),c=new Ine(p);return r.runWebGLProgram(c,[a,s],"float32")}var Ene={kernelName:Xf,backendName:"webgl",kernelFunc:Cne};function Rne(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:d}=n,h=N.convertConv2DDataFormat(u),p=N.computeConv2DInfo(i,s.shape,o,1,l,d,!1,h),c=new Sne(p);return r.runWebGLProgram(c,[a,s],"float32")}var Mne={kernelName:ei,backendName:"webgl",kernelFunc:Rne};function Fne(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=n,u=N.computeConv3DInfo(a.shape,s.shape,i,l,o),d=new bne(u);return r.runWebGLProgram(d,[a,s],"float32")}var $ne={kernelName:Yp,backendName:"webgl",kernelFunc:Fne};function Pne(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,dy:s}=t,{strides:i,pad:o,filterShape:l}=n,u=N.computeConv3DInfo(a.shape,l,i,1,o),d=new Tne(u);return r.runWebGLProgram(d,[a,s],"float32")}var _ne={kernelName:Zf,backendName:"webgl",kernelFunc:Pne};function zne(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,filter:s}=t,{pad:i,strides:o,inputShape:l}=n,u=N.computeConv3DInfo(l,s.shape,o,1,i),d=new Nne(u);return r.runWebGLProgram(d,[a,s],"float32")}var One={kernelName:Yf,backendName:"webgl",kernelFunc:zne},Dne=Td+`
|
|
return cos(x);
|
|
`,Lne=it({opSnippet:Dne}),Bne={kernelName:ti,backendName:"webgl",kernelFunc:Lne},Wne=`
|
|
float e2x = exp(-x);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,Vne=it({opSnippet:Wne}),Une={kernelName:ri,backendName:"webgl",kernelFunc:Vne},Gne=class{constructor(e,t,r,n,a){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[u]=t,[d,h]=r;this.outputShape=[u,d,h,l];let p=n==="bilinear"?1:0,[c,f]=[`${i-1}.0`,`${o-1}.0`],[m,g,y]=d>1?[`${(i-1)/(d-1)}`,"(y2-y1) * height_ratio",`y1*${c} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${c}`],[A,x,b]=h>1?[`${(o-1)/(h-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=`
|
|
const float height_ratio = float(${m});
|
|
const float width_ratio = float(${A});
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int y = coords[1];
|
|
int x = coords[2];
|
|
int d = coords[3];
|
|
|
|
// get box vals
|
|
float y1 = getBoxes(b,0);
|
|
float x1 = getBoxes(b,1);
|
|
float y2 = getBoxes(b,2);
|
|
float x2 = getBoxes(b,3);
|
|
|
|
// get image in batch index
|
|
int bInd = round(getBoxInd(b));
|
|
if(bInd < 0 || bInd >= ${s}) {
|
|
return;
|
|
}
|
|
|
|
float height_scale = ${g};
|
|
float width_scale = ${x};
|
|
|
|
float in_y = ${y};
|
|
if( in_y < 0.0 || in_y > ${c} ) {
|
|
setOutput(float(${a}));
|
|
return;
|
|
}
|
|
float in_x = ${b};
|
|
if( in_x < 0.0 || in_x > ${f} ) {
|
|
setOutput(float(${a}));
|
|
return;
|
|
}
|
|
|
|
vec2 sourceFracIndexCR = vec2(in_x,in_y);
|
|
if(${p} == 1) {
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
|
|
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
|
|
|
|
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
|
|
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
float newValue = top + (bottom - top) * fracCR.y;
|
|
setOutput(newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestCR = ivec2(floor(
|
|
sourceFracIndexCR + vec2(0.5,0.5)));
|
|
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutput(newValue);
|
|
}
|
|
}
|
|
`}},jne=e=>{let{inputs:t,backend:r,attrs:n}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=n,d=new Gne(a.shape,s.shape,o,l,u);return r.runWebGLProgram(d,[a,s,i],"float32")},Hne={kernelName:Uo,backendName:"webgl",kernelFunc:jne},Uv=class{constructor(e,t,r){this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}],this.outputShape=e;let n=e.length,a=t?"1.0":`getX(${Gv(n,"coords")})`,s=e[e.length-1],i="",o="";t?(i=r?`end != ${s-1}`:"end != 0",o=r?"end + 1":"end - 1"):(i=r?`end + pow2 < ${s}`:"end >= pow2",o=r?"end + pow2":"end - pow2"),this.userCode=`
|
|
void main() {
|
|
${gt(n)} coords = getOutputCoords();
|
|
int end = ${jv(n,"coords")};
|
|
float val = ${a};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${i}) {
|
|
int idx = ${o};
|
|
${jv(n,"coords")} = idx;
|
|
val *= getX(${Gv(n,"coords")});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}};function Gv(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative product for rank ${e} is not yet supported`)}function jv(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative product for rank ${e} is not yet supported`)}function qne(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=n,l=a.shape.length,u=N.getAxesPermutation([s],l),d=a;u!=null&&(d=vr({inputs:{x:a},backend:r,attrs:{perm:u}}));let h=N.getInnerMostAxes(1,l)[0];if(h!==l-1)throw new Error(`WebGL cumprod shader expects an inner-most axis=${a.shape.length-1} but got axis=${s}`);let p=d.shape[h],c=an({inputs:{x:d},backend:r});for(let f=0;f<=Math.ceil(Math.log2(p))-1;f++){let m=new Uv(d.shape,!1,o),g=[[f]],y=c;c=r.runWebGLProgram(m,[c],c.dtype,g),r.disposeIntermediateTensorInfo(y)}if(i){let f=new Uv(d.shape,i,o),m=c;c=r.runWebGLProgram(f,[c],c.dtype),r.disposeIntermediateTensorInfo(m)}if(u!=null){let f=N.getUndoAxesPermutation(u),m=vr({inputs:{x:c},backend:r,attrs:{perm:f}});return r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(d),m}return c}var Kne={kernelName:Gu,backendName:"webgl",kernelFunc:qne},Hv=class{constructor(e,t,r){this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}],this.outputShape=e;let n=e.length,a=t?"0.0":`getX(${qv(n,"coords")})`,s=e[e.length-1],i="",o="";t?(i=r?`end != ${s-1}`:"end != 0",o=r?"end + 1":"end - 1"):(i=r?`end + pow2 < ${s}`:"end >= pow2",o=r?"end + pow2":"end - pow2"),this.userCode=`
|
|
void main() {
|
|
${gt(n)} coords = getOutputCoords();
|
|
int end = ${Kv(n,"coords")};
|
|
float val = ${a};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${i}) {
|
|
int idx = ${o};
|
|
${Kv(n,"coords")} = idx;
|
|
val += getX(${qv(n,"coords")});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}};function qv(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function Kv(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function Xne(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=n,l=a.shape.length,u=N.getAxesPermutation([s],l),d=a;u!=null&&(d=vr({inputs:{x:a},backend:r,attrs:{perm:u}}));let h=N.getInnerMostAxes(1,l)[0];if(h!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${a.shape.length-1} but got axis=${s}`);let p=d.shape[h],c=an({inputs:{x:d},backend:r});for(let f=0;f<=Math.ceil(Math.log2(p))-1;f++){let m=new Hv(d.shape,!1,o),g=[[f]],y=c;c=r.runWebGLProgram(m,[c],c.dtype,g),r.disposeIntermediateTensorInfo(y)}if(i){let f=new Hv(d.shape,i,o),m=c;c=r.runWebGLProgram(f,[c],c.dtype),r.disposeIntermediateTensorInfo(m)}if(u!=null){let f=N.getUndoAxesPermutation(u),m=vr({inputs:{x:c},backend:r,attrs:{perm:f}});return r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(d),m}return c}var Zne={kernelName:Vo,backendName:"webgl",kernelFunc:Xne};function Yne(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,weights:s}=t,{size:i,binaryOutput:o}=n;if(a.shape.length===1){let l=r.readSync(a.dataId),u=r.readSync(s.dataId),d=US(l,u,s.dtype,s.shape,i);return r.makeTensorInfo([i],s.dtype,d)}else if(a.shape.length===2){let l=r.bufferSync(a),u=r.bufferSync(s),d=dee(l,u,i,o);return r.makeTensorInfo(d.shape,s.dtype,d.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${a.shape.length}.`)}var Jne={kernelName:Jf,backendName:"webgl",kernelFunc:Yne},Qne=class{constructor(e,t,r){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=r,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int h = ${this.getHeightCoordString()};
|
|
int w = ${this.getWidthCoordString()};
|
|
int d = ${this.getDepthCoordString()};
|
|
|
|
int in_h = h / ${t};
|
|
int offset_h = imod(h, ${t});
|
|
int in_w = w / ${t};
|
|
int offset_w = imod(w, ${t});
|
|
int offset_d = (offset_h * ${t} + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
int in_d = d + offset_d;
|
|
|
|
float result = ${this.getInputSamplingString()};
|
|
setOutput(result);
|
|
}
|
|
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function eae(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockSize:s,dataFormat:i}=n,o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],u=i==="NHWC"?a.shape[2]:a.shape[3],d=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,p=u*s,c=d/(s*s),f=i==="NHWC"?[o,h,p,c]:[o,c,h,p],m=new Qne(f,s,i);return r.runWebGLProgram(m,[a],a.dtype)}var tae={kernelName:Go,backendName:"webgl",kernelFunc:eae},p8=class{constructor(e,t=!1,r=null,n=!1,a=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=ln(this.outputShape.length);let s=e.filterHeight,i=e.filterWidth,o=e.outChannels/e.inChannels,l="",u="";r&&(n?l=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${r}
|
|
}`:a?l=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${r}
|
|
}`:l=`
|
|
float activation(float x) {
|
|
${r}
|
|
}
|
|
`,u="result = activation(result);");let d=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${l}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${o};
|
|
int q = d2 - d1 * ${o};
|
|
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
|
|
for (int wR = 0; wR < ${s}; wR++) {
|
|
int xR = xRCorner + wR * dilations[0];
|
|
|
|
if (xR < 0 || xR >= inDims[0]) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${i}; wC++) {
|
|
int xC = xCCorner + wC * dilations[1];
|
|
|
|
if (xC < 0 || xC >= inDims[1]) {
|
|
continue;
|
|
}
|
|
|
|
float xVal = getX(batch, xR, xC, d1);
|
|
float wVal = getW(wR, wC, d1, q);
|
|
dotProd += xVal * wVal;
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${d}
|
|
${u}
|
|
setOutput(result);
|
|
}
|
|
`}},h8=class{constructor(e,t=!1,r=null,n=!1,a=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=ln(this.outputShape.length);let s=e.outChannels/e.inChannels,i=e.padInfo.left,o=e.strideWidth,l=e.dilationWidth,u=e.filterHeight,d=e.filterWidth,h=d,p=`
|
|
int xR; int xC; int xCOffset;
|
|
vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g<d;g++)p+=`
|
|
vec4 xTexelC${g*2};
|
|
int xTexelC${g*2}Ready;
|
|
vec4 xTexelC${g*2+1};
|
|
int xTexelC${g*2+1}Ready;
|
|
vec4 xC${g};`;p+=`
|
|
for (int r = 0; r < ${u}; r++) {
|
|
`;for(let g=0;g<d;g++)p+=`
|
|
xTexelC${g*2} = vec4(0.0);
|
|
xTexelC${g*2}Ready = 0;
|
|
xTexelC${g*2+1} = vec4(0.0);
|
|
xTexelC${g*2+1}Ready = 0;
|
|
xC${g} = vec4(0.0);`;p+=`
|
|
xR = xRCorner + r * dilations[0];
|
|
if (xR >=0 && xR < inDims[0]) {
|
|
`;for(let g=0;g<(h+1)/2;g++){let y=g*2;if(p+=`
|
|
xC = xCCorner + ${y*l};
|
|
`,o===1){if(y<d&&(i%2===1?(p+=`
|
|
xCOffset = xC + 1;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
`,l===1&&y>0?p+=`
|
|
xC${y} = vec4(xTexelC${y-2}.zw, xTexelC${y}.xy);
|
|
`:p+=`
|
|
xCOffset = xC + 1 - 2;
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
previous.zw = vec2(0.0);
|
|
}
|
|
|
|
xC${y} = vec4(previous.zw, xTexelC${y}.xy);
|
|
} else {
|
|
xC${y} = vec4(0.0, 0.0, xTexelC${y}.xy);
|
|
}
|
|
`):p+=`
|
|
if (xC >= 0 && xC < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
|
|
xC${y} = xTexelC${y};
|
|
`,y+1<d)){let A=i%2===0?w.nearestLargerEven(l):l;l%2===0&&i%2===1||l%2!==0&&i%2!==1?(p+=`
|
|
xCOffset = xC + imod(pads[1], 2) + ${A};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
`,l>1&&(p+=`
|
|
xCOffset -= 2;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xCOffset, d1);
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
`),p+=`
|
|
xC${y+1} = vec4(xTexelC${y}.zw, xTexelC${y+1}.xy);
|
|
`):A===1?p+=`
|
|
xC${y+1} = xTexelC${y};
|
|
`:p+=`
|
|
xCOffset = xC + ${A};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
|
|
xC${y+1} = xTexelC${y+1};
|
|
`}}else y<d&&(i%2===1?(p+=`
|
|
xCOffset = xC + 1 - strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xCOffset, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xC + 1, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xC + 2 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
|
|
xC${y} = vec4(xTexelC${y}.zw, xTexelC${y+1}.zw);
|
|
`,y+1<d&&(p+=`
|
|
final = vec4(0.0);
|
|
xCOffset = xC + 1 + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xC${y+1} = vec4(xTexelC${y+1}.xy, final.xy);
|
|
`)):(p+=`
|
|
if(xC >= 0 && xC < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
|
|
xCOffset = xC + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
|
|
xC${y} = vec4(
|
|
xTexelC${y}.xy, xTexelC${y+1}.xy);
|
|
`,y+1<d&&(p+=`
|
|
xC${y+1} = vec4(xTexelC${y}.zw, xTexelC${y+1}.zw);
|
|
`)));y<d&&(p+=`
|
|
wTexel = getW(r, ${y}, d1, q);
|
|
dotProd += xC${y} * vec4(wTexel.xz, wTexel.xz);
|
|
`,y+1<d&&(p+=`
|
|
wTexel = getW(r, ${y+1}, d1, q);
|
|
dotProd += xC${y+1} * vec4(wTexel.xz, wTexel.xz);
|
|
`))}p+=`
|
|
}
|
|
`,p+=`
|
|
}
|
|
`;let c="",f="";r&&(n?c=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${r}
|
|
}`:a?c=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${r}
|
|
}`:c=`vec4 activation(vec4 x) {
|
|
${r}
|
|
}`,f="result = activation(result);");let m=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${c}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${s};
|
|
int q = d2 - d1 * ${s};
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
|
|
vec4 dotProd = vec4(0.000000000000001);
|
|
|
|
${p}
|
|
|
|
vec4 result = dotProd - vec4(0.000000000000001);
|
|
${m}
|
|
${f}
|
|
setOutput(result);
|
|
}
|
|
`}};function rae(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=n,d=l;d==null&&(d=[1,1]),w.assert(N.eitherStridesOrDilationsAreOne(i,d),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let h=N.computeConv2DInfo(a.shape,s.shape,i,d,o,u,!0),p;Y().getBool("WEBGL_PACK_DEPTHWISECONV")&&h.strideWidth<=2&&h.outChannels/h.inChannels===1?p=new h8(h):p=new p8(h);let c=[[h.padInfo.top,h.padInfo.left],[h.strideHeight,h.strideWidth],[h.dilationHeight,h.dilationWidth],[h.inHeight,h.inWidth]];return r.runWebGLProgram(p,[a,s],"float32",c)}var nae={kernelName:ni,backendName:"webgl",kernelFunc:rae},aae=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,r=e.strideWidth,n=e.padInfo.top,a=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int dm = coords.w;
|
|
int d2 = d1 * ${s} + dm;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
// TO DO: Vec4 over the batch size
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${n};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${r} - ${a};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},sae=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,r=e.filterWidth,n=e.strideHeight,a=e.strideWidth,s=t-1-e.padInfo.top,i=r-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=`
|
|
const ivec2 pads = ivec2(${s}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[3];
|
|
ivec2 dyCorner = coords.yz - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${r}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${a}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${r} - 1 - wC;
|
|
|
|
// TO DO: Vec4 over the channelMul
|
|
for (int dm = 0; dm < ${o}; dm++) {
|
|
int d2 = d1 * ${o} + dm;
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, dm);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function iae(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:d}=n,h=N.computeConv2DInfo(a.shape,d,i,o,l,u,!0),p=new aae(h);return r.runWebGLProgram(p,[a,s],"float32")}var oae={kernelName:Qf,backendName:"webgl",kernelFunc:iae};function lae(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:d}=n,h=N.computeConv2DInfo(d,s.shape,i,o,l,u,!0),p=new sae(h);return r.runWebGLProgram(p,[a,s],"float32")}var uae={kernelName:em,backendName:"webgl",kernelFunc:lae},dae=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
|
|
setOutput(val);
|
|
}
|
|
`}};function pae(e){let{inputs:t,backend:r}=e,{x:n}=t,a=[...n.shape,...n.shape],s=w.sizeFromShape(n.shape),i=ve({inputs:{x:n},backend:r,attrs:{shape:[s]}}),o=new dae(s),l=r.runWebGLProgram(o,[i],i.dtype),u=ve({inputs:{x:l},backend:r,attrs:{shape:a}});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(l),u}var hae={kernelName:tm,backendName:"webgl",kernelFunc:pae},cae=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:r,padInfo:n,strideHeight:a,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:u}=e,{top:d,left:h}=n;this.userCode=`
|
|
const ivec2 strides = ivec2(${a}, ${s});
|
|
const ivec2 pads = ivec2(${d}, ${h});
|
|
const float neg_infinity = -3.4e38;
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.w;
|
|
ivec2 outTopLeftCorner =
|
|
coords.yz * strides - pads;
|
|
int hBeg = outTopLeftCorner.x;
|
|
int wBeg = outTopLeftCorner.y;
|
|
|
|
float curVal = neg_infinity;
|
|
for (int h = 0; h < ${i}; h++) {
|
|
int hIn = hBeg + h * ${l};
|
|
|
|
if (hIn >= 0 && hIn < ${t}) {
|
|
for (int w = 0; w < ${o}; w++) {
|
|
int wIn = wBeg + w * ${u};
|
|
|
|
if (wIn >= 0 && wIn < ${r}) {
|
|
float xVal = getX(batch, hIn, wIn, d1);
|
|
float wVal = getW(h, w, d1);
|
|
|
|
float val = xVal + wVal;
|
|
if (val > curVal) {
|
|
curVal = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = curVal;
|
|
setOutput(result);
|
|
}
|
|
`}};function fae(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=n,u=N.computeDilation2DInfo(a.shape,s.shape,i,o,"NHWC",l),d,h=new cae(u);d=r.runWebGLProgram(h,[a,s],"float32");let p=ve({inputs:{x:d},backend:r,attrs:{shape:u.outShape}});return r.disposeIntermediateTensorInfo(d),p}var mae={kernelName:Jp,backendName:"webgl",kernelFunc:fae};function gae(e){let{inputs:t,backend:r,attrs:n}=e,{equation:a}=n,s=t,{allDims:i,summedDims:o,idDims:l}=N.decodeEinsumEquation(a,s.length);N.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:d}=N.getEinsumComputePath(o,l),h=d.length,p=null,c=i.length,f=[];for(let m=0;m<h;++m){for(let g of d[m]){let{permutationIndices:y,expandDims:A}=N.getEinsumPermutation(c,l[g]),x;N.isIdentityPermutation(y)?x=s[g]:(x=vr({inputs:{x:s[g]},backend:r,attrs:{perm:y}}),f.push(x));let b=x.shape.slice();for(let v=0;v<A.length;++v)b.splice(A[v],0,1);w.arraysEqual(x.shape,b)||(x=ve({inputs:{x},backend:r,attrs:{shape:b}}),f.push(x)),p===null?p=x:(p=mb({inputs:{a:x,b:p},backend:r}),f.push(p))}m<h-1&&(u[m]>=0&&(p=b0({inputs:{x:p},backend:r,attrs:{axis:u[m]-(i.length-c),keepDims:!1}}),f.push(p)),c--)}for(let m of f)m!==p&&r.disposeIntermediateTensorInfo(m);return p}var yae={kernelName:Qp,backendName:"webgl",kernelFunc:gae},Aae="return (x >= 0.0) ? x : (exp(x) - 1.0);",xae=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,bae=it({opSnippet:Aae,packedOpSnippet:xae}),vae={kernelName:si,backendName:"webgl",kernelFunc:bae},wae="return (b >= 1.0) ? a : a * (b + 1.0);",kae=`
|
|
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
|
|
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
|
|
`,Iae=e=>{let{inputs:t,backend:r}=e,{dy:n,y:a}=t,s=Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Dh(kae,n.shape,a.shape):new Mu(wae,n.shape,a.shape);return r.runWebGLProgram(s,[n,a],n.dtype)},Sae={kernelName:rm,backendName:"webgl",kernelFunc:Iae},Tae=`
|
|
return vec4(equal(a, b));
|
|
`,Nae="return float(a == b);",Cae=wr({opSnippet:Nae,packedOpSnippet:Tae,dtype:"bool",cpuKernelImpl:cee}),Eae={kernelName:jo,backendName:"webgl",kernelFunc:Cae},Rae=`
|
|
// Error function is calculated approximately with elementary function.
|
|
// See "Handbook of Mathematical Functions with Formulas,
|
|
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
|
|
float p = ${N.ERF_P};
|
|
float a1 = ${N.ERF_A1};
|
|
float a2 = ${N.ERF_A2};
|
|
float a3 = ${N.ERF_A3};
|
|
float a4 = ${N.ERF_A4};
|
|
float a5 = ${N.ERF_A5};
|
|
|
|
float sign = sign(x);
|
|
x = abs(x);
|
|
float t = 1.0 / (1.0 + p * x);
|
|
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
|
|
`,Mae=it({opSnippet:Rae}),Fae={kernelName:ju,backendName:"webgl",kernelFunc:Mae},$ae=Td+`
|
|
return exp(x);
|
|
`,Pae=`
|
|
vec4 result = exp(x);
|
|
bvec4 isNaN = isnan(x);
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,c8=it({opSnippet:$ae,packedOpSnippet:Pae,cpuKernelImpl:fee,dtype:"float32"}),_ae={kernelName:ii,backendName:"webgl",kernelFunc:c8};function Jy(e){let{inputs:t,attrs:r,backend:n}=e,{dim:a}=r,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=a;return a<0&&(w.assert(-(i+1)<=a,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+a+1),o.splice(l,0,1),ve({inputs:{x:s},backend:n,attrs:{shape:o}})}var zae={kernelName:Ho,backendName:"webgl",kernelFunc:Jy},Xv="return exp(x) - 1.0;",Oae=it({opSnippet:Xv,packedOpSnippet:Xv,cpuKernelImpl:mee}),Dae={kernelName:qo,backendName:"webgl",kernelFunc:Oae},Zv=class{constructor(e,t,r){this.variableNames=["real","imag"];let n=t[1];this.outputShape=t;let a=r?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=r?`${n}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
|
|
const float exponentMultiplier = ${a};
|
|
|
|
float unaryOpComplex(float real, float expR, float imag, float expI) {
|
|
${i}
|
|
}
|
|
|
|
float mulMatDFT(int batch, int index) {
|
|
float indexRatio = float(index) / float(${n});
|
|
float exponentMultiplierTimesIndexRatio =
|
|
exponentMultiplier * indexRatio;
|
|
|
|
float result = 0.0;
|
|
|
|
for (int i = 0; i < ${n}; i++) {
|
|
// x = (-2|2 * PI / N) * index * i;
|
|
float x = exponentMultiplierTimesIndexRatio * float(i);
|
|
float expR = cos(x);
|
|
float expI = sin(x);
|
|
float real = getReal(batch, i);
|
|
float imag = getImag(batch, i);
|
|
|
|
result +=
|
|
unaryOpComplex(real, expR, imag, expI) / ${s};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
setOutput(mulMatDFT(coords[0], coords[1]));
|
|
}
|
|
`}};function f8(e,t,r){let n=r.texData.get(e.dataId),a=w.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=a/s,o=ve({inputs:{x:e},backend:r,attrs:{shape:[i,s]}}),l=o.shape,u=new Zv("real",l,t),d=new Zv("imag",l,t),h=[{dataId:n.complexTensorInfos.real.dataId,dtype:n.complexTensorInfos.real.dtype,shape:l},{dataId:n.complexTensorInfos.imag.dataId,dtype:n.complexTensorInfos.imag.dtype,shape:l}],p=r.runWebGLProgram(u,h,"float32"),c=r.runWebGLProgram(d,h,"float32"),f=Vi({inputs:{real:p,imag:c},backend:r});r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(c);let m=ve({inputs:{x:f},backend:r,attrs:{shape:e.shape}});return r.disposeIntermediateTensorInfo(o),r.disposeIntermediateTensorInfo(f),m}function Lae(e){let{inputs:t,backend:r}=e,{input:n}=t;return f8(n,!1,r)}var Bae={kernelName:nm,backendName:"webgl",kernelFunc:Lae},Wae=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Input can be obtained from uniform value.
|
|
setOutput(value);
|
|
}
|
|
`}};function Bh(e){let{backend:t,attrs:r}=e,{shape:n,value:a}=r,{dtype:s}=r;if(s=s||w.inferDtype(a),s==="string"){let i=w.getArrayFromDType(s,w.sizeFromShape(n));return i.fill(a),t.makeTensorInfo(n,s,i)}else{let i=new Wae(n,a),o=[[a]];return t.runWebGLProgram(i,[],s,o)}}var Vae={kernelName:Hu,backendName:"webgl",kernelFunc:Bh},Uae=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
|
|
int coordX = ${t} - x - 1;
|
|
float outputValue;
|
|
if(coordX >= 0 && coordX < ${t}) {
|
|
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
|
|
} else {
|
|
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},Gae={kernelName:Ko,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:r}=e,n=t,a=new Uae(r.shape);return n.runWebGLProgram(a,[r],r.dtype)}},Yv="return floor(x);",jae=it({opSnippet:Yv,packedOpSnippet:Yv,cpuKernelImpl:gee}),Hae={kernelName:oi,backendName:"webgl",kernelFunc:jae},qae=`
|
|
float s = sign(a) * sign(b);
|
|
int ia = round(a);
|
|
int ib = round(b);
|
|
if (ib != 0) {
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
return float(idiv(ia, ib, s));
|
|
} else {
|
|
return NAN;
|
|
}
|
|
`,Kae=`
|
|
ivec4 ia = round(a);
|
|
ivec4 ib = round(b);
|
|
bvec4 cond = notEqual(ib, ivec4(0));
|
|
ivec4 result = ivec4(0);
|
|
vec4 s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
result[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
result[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
result[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
result[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4(result);
|
|
`,Xae=wr({opSnippet:qae,packedOpSnippet:Kae,dtype:"int32"}),Zae={kernelName:li,backendName:"webgl",kernelFunc:Xae},Yae=class{constructor(e){this.variableNames=["A"];let t=Gr(),[r,n]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${n}.0, ${r}.0);
|
|
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
setOutput(floor(value * 255.0 + 0.5));
|
|
}
|
|
`}},Jae=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=Gr(),[r,n]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for(int row=0; row<=1; row++) {
|
|
for(int col=0; col<=1; col++) {
|
|
texC = coords[1] + row;
|
|
depth = coords[2] + col;
|
|
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${n}.0, ${r}.0);
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
result[row * 2 + col] = floor(value * 255.0 + 0.5);
|
|
}
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},Qae={kernelName:Pp,backendName:"webgl",kernelFunc:ese},ou;function ese(e){let{inputs:t,backend:r,attrs:n}=e,{pixels:a}=t,{numChannels:s}=n,i=typeof HTMLVideoElement!="undefined"&&a instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&a instanceof HTMLImageElement,[l,u]=i?[a.videoWidth,a.videoHeight]:[a.width,a.height],d=[u,l],h=[u,l,s];(o||i)&&(ou==null&&(ou=document.createElement("canvas").getContext("2d")),ou.canvas.width=l,ou.canvas.height=u,ou.drawImage(a,0,0,l,u),a=ou.canvas);let p=r.makeTensorInfo(d,"int32");r.texData.get(p.dataId).usage=2,r.gpgpu.uploadPixelDataToTexture(r.getTexture(p.dataId),a);let c=Y().getBool("WEBGL_PACK")?new Jae(h):new Yae(h),f=r.runWebGLProgram(c,[p],"int32");return r.disposeData(p.dataId),f}function tse(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:d,dilations:h,dimRoundingMode:p,activation:c,leakyreluAlpha:f}=n,m=N.convertConv2DDataFormat(d),g=N.computeConv2DInfo(a.shape,s.shape,l,h,u,p,!1,m),y,A=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))y=u8({x:a,filter:s,convInfo:g,backend:r,bias:i,activation:c,preluActivationWeights:o,leakyreluAlpha:f});else if(Y().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)y=d8({x:a,filter:s,convInfo:g,backend:r,bias:i,activation:c,preluActivationWeights:o,leakyreluAlpha:f});else{let b=i!=null,v=o!=null,S=c==="leakyrelu",T=c?A0(c,!1):null,E=new l8(g,b,T,v,S),R=[a,s];if(i&&R.push(i),o&&R.push(o),S){let _=r.makeTensorInfo([],"float32",w.createScalarValue(f,"float32"));R.push(_),A.push(_)}y=r.runWebGLProgram(E,R,"float32")}let x=ve({inputs:{x:y},backend:r,attrs:{shape:g.outShape}});return A.push(y),A.forEach(b=>r.disposeIntermediateTensorInfo(b)),x}var rse={kernelName:Fs,backendName:"webgl",kernelFunc:tse};function nse(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:d,dimRoundingMode:h,activation:p,leakyreluAlpha:c}=n,f=[],m=d;m==null&&(m=[1,1]),w.assert(N.eitherStridesOrDilationsAreOne(l,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${m}'`);let g=N.computeConv2DInfo(a.shape,s.shape,l,m,u,h,!0),y=Y().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels===1,A=p?A0(p,y):null,x=[a,s],b=i!=null,v=o!=null,S=p==="leakyrelu";if(b&&x.push(i),v&&x.push(o),S){let _=r.makeTensorInfo([],"float32",w.createScalarValue(c,"float32"));x.push(_),f.push(_)}let T;y?T=new h8(g,b,A,v,S):T=new p8(g,b,A,v,S);let E=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],R=r.runWebGLProgram(T,x,"float32",E);return f.forEach(_=>r.disposeIntermediateTensorInfo(_)),R}var ase={kernelName:$s,backendName:"webgl",kernelFunc:nse},sse=class{constructor(e,t,r){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=r;let n=gt(t.length),a=gt(r.length),s=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
|
|
${n} strides = ${n}(${this.strides});
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
int flattenIndex = 0;
|
|
for (int j = 0; j < ${this.sliceDim}; j++) {
|
|
int index = round(getIndices(coords[0], j));
|
|
flattenIndex += index * ${s};
|
|
}
|
|
setOutput(getX(flattenIndex, coords[1]));
|
|
}
|
|
`}};function ise(e){let{inputs:t,backend:r}=e,{params:n,indices:a}=t,s=a.shape,i=s[s.length-1],o=w.sizeFromShape(n.shape),[l,u,d,h]=N.prepareAndValidate(n,a),p=ve({inputs:{x:a},backend:r,attrs:{shape:[u,i]}}),c=ve({inputs:{x:n},backend:r,attrs:{shape:[w.sizeFromShape(n.shape)/d,d]}});if(r.shouldExecuteOnCPU([n,a])||n.dtype==="string"){let y=r.readSync(a.dataId),A=r.bufferSync(n),x=yee(y,A,n.dtype,u,i,d,h,n.shape,o);return r.makeTensorInfo(l,n.dtype,x.values)}let f=new sse(i,h,[u,d]),m=r.runWebGLProgram(f,[c,p],c.dtype),g=ve({inputs:{x:m},backend:r,attrs:{shape:l}});return r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(m),g}var ose={kernelName:Zo,backendName:"webgl",kernelFunc:ise},lse=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let r=gt(this.rank),n=use(e,2);this.userCode=`
|
|
void main() {
|
|
${r} resRC = getOutputCoords();
|
|
int index = int(getIndices(resRC.x, resRC.z));
|
|
float inBounds = (index >= 0) && (index < ${e[2]}) ? 1.0 : 0.0;
|
|
setOutput(inBounds * getA(${n}));
|
|
}
|
|
`}};function use(e,t){let r=["resRC.x","resRC.y","resRC.z","resRC.w"],n=[];for(let a=0;a<e.length;a++)a===2?n.push("index"):n.push(`${r[a]}`);return n.join()}function m8(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,indices:s}=t,{axis:i,batchDims:o}=n,l=w.parseAxisParam(i,a.shape)[0];if(Y().get("DEBUG")){let A=r.readSync(s.dataId),x=a.shape[l];for(let b=0;b<A.length;++b){let v=A[b];w.assert(v<=x-1&&v>=0,()=>`GatherV2: the index value ${v} is not in [0, ${x-1}]`)}}let u=N.segment_util.collectGatherOpShapeInfo(a,s,l,o),d=w.sizeFromShape(s.shape),h=[],p=ve({inputs:{x:a},backend:r,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),c=ve({inputs:{x:s},backend:r,attrs:{shape:[u.batchSize,d/u.batchSize]}});h.push(p),h.push(c);let f=[u.batchSize,u.outerSize,d/u.batchSize,u.sliceSize];if(r.shouldExecuteOnCPU([a,s])||a.dtype==="string"){let A=r.bufferSync(c),x=r.bufferSync(p),b=Aee(x,A,f);return h.forEach(v=>r.disposeIntermediateTensorInfo(v)),r.makeTensorInfo(u.outputShape,b.dtype,b.values)}let m=new lse(p.shape,f),g=r.runWebGLProgram(m,[p,c],p.dtype);h.push(g);let y=ve({inputs:{x:g},backend:r,attrs:{shape:u.outputShape}});return h.forEach(A=>r.disposeIntermediateTensorInfo(A)),y}var dse={kernelName:Xo,backendName:"webgl",kernelFunc:m8},pse="return float(a > b);",hse=`
|
|
return vec4(greaterThan(a, b));
|
|
`,cse=wr({opSnippet:pse,packedOpSnippet:hse,cpuKernelImpl:xee,dtype:"bool"}),fse={kernelName:Yo,backendName:"webgl",kernelFunc:cse},mse="return float(a >= b);",gse=`
|
|
return vec4(greaterThanEqual(a, b));
|
|
`,yse=wr({opSnippet:mse,packedOpSnippet:gse,dtype:"bool",cpuKernelImpl:bee}),Ase={kernelName:di,backendName:"webgl",kernelFunc:yse};function xse(e){let{inputs:t,backend:r}=e,{input:n}=t;return f8(n,!0,r)}var bse={kernelName:am,backendName:"webgl",kernelFunc:xse},vse="return float(!isnan(x) && !isinf(x));",wse=it({opSnippet:vse,dtype:"bool"}),kse={kernelName:qu,backendName:"webgl",kernelFunc:wse},Ise="return float(isinf(x));",Sse=it({opSnippet:Ise,dtype:"bool"}),Tse={kernelName:Ku,backendName:"webgl",kernelFunc:Sse},Nse="return float(isnan(x));",Cse=it({opSnippet:Nse,dtype:"bool"}),Ese={kernelName:Xu,backendName:"webgl",kernelFunc:Cse},Rse="return float(a < b);",Mse=`
|
|
return vec4(lessThan(a, b));
|
|
`,Fse=wr({opSnippet:Rse,packedOpSnippet:Mse,cpuKernelImpl:vee,dtype:"bool"}),$se={kernelName:Jo,backendName:"webgl",kernelFunc:Fse},Pse="return float(a <= b);",_se=`
|
|
return vec4(lessThanEqual(a, b));
|
|
`,zse=wr({opSnippet:Pse,packedOpSnippet:_se,cpuKernelImpl:wee,dtype:"bool"}),Ose={kernelName:Qo,backendName:"webgl",kernelFunc:zse};function Dse(e){let{backend:t,attrs:r}=e,{start:n,stop:a,num:s}=r,i=kee(n,a,s);return t.makeTensorInfo([i.length],"float32",i)}var Lse={kernelName:sm,backendName:"webgl",kernelFunc:Dse},Bse=Td+`
|
|
return x < 0.0 ? 0./0. : log(x);
|
|
`,Wse=`
|
|
vec4 result = log(x);
|
|
bvec4 isNaN = isnan(x);
|
|
result.r = isNaN.r ? x.r : (x.r < 0.0 ? 0./0. : result.r);
|
|
result.g = isNaN.g ? x.g : (x.g < 0.0 ? 0./0. : result.g);
|
|
result.b = isNaN.b ? x.b : (x.b < 0.0 ? 0./0. : result.b);
|
|
result.a = isNaN.a ? x.a : (x.a < 0.0 ? 0./0. : result.a);
|
|
return result;
|
|
`,Vse=it({opSnippet:Bse,packedOpSnippet:Wse,cpuKernelImpl:Iee}),Use={kernelName:ci,backendName:"webgl",kernelFunc:Vse},Gse=Td+`
|
|
return log(1.0 + x);
|
|
`,jse=it({opSnippet:Gse}),Hse={kernelName:Zu,backendName:"webgl",kernelFunc:jse},qse="return float(a >= 1.0 && b >= 1.0);",Kse=`
|
|
return vec4(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) *
|
|
vec4(greaterThanEqual(b, vec4(1.0))));
|
|
`,Xse=wr({opSnippet:qse,packedOpSnippet:Kse,dtype:"bool"}),Zse={kernelName:el,backendName:"webgl",kernelFunc:Xse},Yse="return float(!(x >= 1.0));",Jse=it({opSnippet:Yse}),Qse={kernelName:Yu,backendName:"webgl",kernelFunc:Jse},eie="return float(a >= 1.0 || b >= 1.0);",tie=`
|
|
return min(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) +
|
|
vec4(greaterThanEqual(b, vec4(1.0))),
|
|
vec4(1.0));
|
|
`,rie=wr({opSnippet:eie,packedOpSnippet:tie,dtype:"bool"}),nie={kernelName:th,backendName:"webgl",kernelFunc:rie},aie=class{constructor(e,t,r,n,a){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${r}) + float(${n}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
int d = coords[3];
|
|
float x = getX(b, r, c, d);
|
|
float sum = 0.0;
|
|
for (int j = -${s}; j <= ${s}; j++) {
|
|
int idx = d + j;
|
|
if (idx >= 0 && idx <= ${i}) {
|
|
float z = getX(b, r, c, idx);
|
|
sum += z * z;
|
|
}
|
|
}
|
|
float val = x * ${o};
|
|
setOutput(val);
|
|
}
|
|
`}},sie=class{constructor(e,t,r,n,a){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${r}) + float(${n}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords.x;
|
|
int r = coords.y;
|
|
int c = coords.z;
|
|
int d = coords.w;
|
|
|
|
bool hasNextCol = d < ${this.outputShape[3]};
|
|
bool hasNextRow = c < ${this.outputShape[2]};
|
|
|
|
vec4 sum = vec4(0.);
|
|
vec4 xFragAtOutputCoords = getX(b, r, c, d);
|
|
|
|
vec4 xAtOutputCoords = vec4(
|
|
getChannel(xFragAtOutputCoords, vec2(c, d)),
|
|
hasNextCol ?
|
|
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
|
|
hasNextRow ?
|
|
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
|
|
);
|
|
|
|
int firstChannel = d - ${s};
|
|
vec2 cache = vec2(0.);
|
|
if(firstChannel >= 0){
|
|
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
|
|
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
|
|
if(hasNextRow){
|
|
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
|
|
}
|
|
}
|
|
|
|
ivec2 depth = ivec2(d, d + 1);
|
|
for (int j = - ${s}; j <= ${s}; j++) {
|
|
ivec2 idx = depth + j;
|
|
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
|
|
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
|
|
|
|
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
|
|
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
|
|
|
|
if(depthInRange || depthPlusOneInRange){
|
|
vec4 z = vec4(0.);
|
|
vec4 xFragAtCurrentDepth;
|
|
z.xz = cache.xy;
|
|
if(depthPlusOneInRange && hasNextCol){
|
|
xFragAtCurrentDepth = idx.y != d ?
|
|
getX(b, r, c, idx.y) : xFragAtOutputCoords;
|
|
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
|
|
if(hasNextRow){
|
|
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
|
|
}
|
|
}
|
|
cache.xy = z.yw;
|
|
sum += z * z;
|
|
}
|
|
}
|
|
vec4 result = xAtOutputCoords * ${o};
|
|
setOutput(result);
|
|
}
|
|
`}},iie=e=>{let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n,u=Y().getBool("WEBGL_PACK_NORMALIZATION")?new sie(a.shape,s,i,o,l):new aie(a.shape,s,i,o,l);return r.runWebGLProgram(u,[a],a.dtype)},oie={kernelName:rh,backendName:"webgl",kernelFunc:iie},lie=class{constructor(e,t,r,n,a){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=r,this.alpha=n,this.beta=a,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float result = 0.0;
|
|
for (int d = 0; d < ${this.depth}; ++d) {
|
|
int depthBegin = int(max(0.0, float(d - ${t})));
|
|
int depthEnd = int(min(float(${this.depth}),
|
|
float(d + ${t} + 1)));
|
|
|
|
const int MIN_DEPTH_BEGIN = 0;
|
|
const int MAX_DEPTH_END = ${this.depth};
|
|
|
|
float norm = 0.0;
|
|
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd) {
|
|
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
norm = float(${n}) * norm + float(${r});
|
|
|
|
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd){
|
|
float dyi = -2.0 * float(${n})
|
|
* float(${a})
|
|
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
|
|
/ norm;
|
|
if (k == d) {
|
|
dyi += pow(norm, -1.0 * ${a});
|
|
}
|
|
if (k == coords[3]) {
|
|
dyi *= getDy(b, r, c, d);
|
|
result += dyi;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}},uie=e=>{let{inputs:t,backend:r,attrs:n}=e,{x:a,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:d}=n,h=new lie(a.shape,o,l,u,d);return r.runWebGLProgram(h,[a,s,i],a.dtype)},die={kernelName:im,backendName:"webgl",kernelFunc:uie};function pie(e,t,r,n){let a=w.sizeFromShape(t),s=w.sizeFromShape(e.shape)/a,i=ve({inputs:{x:e},attrs:{shape:[s,a]},backend:n}),o=_l(i,e.dtype,"max",n),l=ve({inputs:{x:o},attrs:{shape:r},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}function g8(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{reductionIndices:s,keepDims:i}=n,o=a.shape.length,l=w.parseAxisParam(s,a.shape),u=l,d=N.getAxesPermutation(u,o),h=d!=null,p=r.shouldExecuteOnCPU([a]),c=a;if(h){if(p){let A=r.texData.get(c.dataId).values,x=new Array(o);for(let S=0;S<x.length;S++)x[S]=a.shape[d[S]];let b=fb(A,a.shape,a.dtype,d,x);c=r.makeTensorInfo(x,a.dtype);let v=r.texData.get(c.dataId);v.values=b}else c=x0(a,d,r);u=N.getInnerMostAxes(u.length,o)}N.assertAxesAreInnerMostDims("max",u,o);let[f,m]=N.computeOutAndReduceShapes(c.shape,u),g=f;i&&(g=N.expandShapeToKeepDim(f,l));let y;if(p){let A=r.texData.get(c.dataId).values,x=See(A,w.sizeFromShape(m),g,a.dtype);y=r.makeTensorInfo(g,a.dtype);let b=r.texData.get(y.dataId);b.values=x}else y=pie(c,m,g,r);return h&&r.disposeIntermediateTensorInfo(c),y}var hie={kernelName:fi,backendName:"webgl",kernelFunc:g8},cie=ZS+`
|
|
return max(a, b);
|
|
`,fie=`
|
|
vec4 result = vec4(max(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+y0+`
|
|
return result;
|
|
`,mie=wr({opSnippet:cie,packedOpSnippet:fie,cpuKernelImpl:Tee}),gie={kernelName:mi,backendName:"webgl",kernelFunc:mie};function yie(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t;vd(a,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n,u=1;w.assert(N.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let d=N.computePool2DInfo(a.shape,s,i,u,o,l);if(d.filterWidth===1&&d.filterHeight===1&&w.arraysEqual(d.inShape,d.outShape))return an({inputs:{x:a},backend:r});let h=new Hp(d,"max",!1);return r.runWebGLProgram(h,[a],a.dtype)}var Aie={kernelName:gi,backendName:"webgl",kernelFunc:yie};function xie(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:u}=n,d=[1,1,1],h=N.computePool3DInfo(a.shape,s,i,d,o,u,l),p=new gb(h,"max",!1);return r.runWebGLProgram(p,[a],a.dtype)}var bie={kernelName:nh,backendName:"webgl",kernelFunc:xie},vie=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,r=e.strideWidth,n=e.dilationHeight,a=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=a-1-e.padInfo.top,o=s-1-e.padInfo.left,l=a*s-1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${a};
|
|
wR += ${n}) {
|
|
float dyR = float(dyRCorner + wR) / ${t}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${s}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue = wR * ${s} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},wie=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,r=e.strideHeight,n=e.strideWidth,a=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,d=o-1-e.padInfo.front,h=l-1-e.padInfo.top,p=u-1-e.padInfo.left,c=o*l*u-1;this.userCode=`
|
|
const ivec3 pads = ivec3(${d}, ${h}, ${p});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${o};
|
|
wD += ${a}) {
|
|
float dyD = float(dyDCorner + wD) / ${t}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${l};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${r}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${u};
|
|
wC += ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${n}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
int maxPosValue = ${c} -
|
|
int(getMaxPos(batch, idyD, idyR, idyC, ch));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue =
|
|
wD * ${l} * ${u} +
|
|
wR * ${u} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function kie(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:d}=n,h=[1,1,1],p=N.computePool3DInfo(i.shape,o,l,h,u,d),c=new gb(p,"max",!0),f=r.runWebGLProgram(c,[i],i.dtype),m=new wie(p),g=r.runWebGLProgram(m,[a,f],i.dtype);return r.disposeIntermediateTensorInfo(f),g}var Iie={kernelName:lm,backendName:"webgl",kernelFunc:kie};function Sie(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,input:s,output:i}=t,o=s;vd([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:d,dimRoundingMode:h}=n,p=N.computePool2DInfo(o.shape,l,u,1,d,h),c=!0,f=new Hp(p,"max",c),m=r.runWebGLProgram(f,[o],o.dtype),g=new vie(p),y=r.runWebGLProgram(g,[a,m],o.dtype);return r.disposeIntermediateTensorInfo(m),y}var Tie={kernelName:om,backendName:"webgl",kernelFunc:Sie};function Nie(e,t,r,n){let a=new Hp(r,"max",!1),s=n.runWebGLProgram(a,[e],"float32");a=new Hp(r,"max",!0,!0,t);let i=n.runWebGLProgram(a,[e],"float32");return[s,i]}var Cie={kernelName:um,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:r})=>{let{x:n}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=r;w.assert(n.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${n.shape.length}.`);let u=[1,1];w.assert(N.eitherStridesOrDilationsAreOne(s,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${u}'`);let d=N.computePool2DInfo(n.shape,a,s,u,i),[h,p]=Nie(n,o,d,l);return[h,p]}};function Eie(e,t,r,n){let a=w.sizeFromShape(t),s=w.sizeFromShape(e.shape)/a,i=ve({inputs:{x:e},attrs:{shape:[s,a]},backend:n}),o=_l(i,"float32","mean",n),l=ve({inputs:{x:o},attrs:{shape:r},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}var Rie={kernelName:yi,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:r})=>{let{x:n}=e,{keepDims:a,axis:s}=t,i=r,o=n.shape.length,l=w.parseAxisParam(s,n.shape),u=l,d=N.getAxesPermutation(u,o),h=d!=null,p=i.shouldExecuteOnCPU([n]),c=[],f=n;if(h){if(p){let x=i.texData.get(f.dataId).values,b=new Array(o);for(let T=0;T<b.length;T++)b[T]=n.shape[d[T]];let v=fb(x,n.shape,n.dtype,d,b);f=i.makeTensorInfo(b,n.dtype);let S=i.texData.get(f.dataId);S.values=v}else f=x0(n,d,i);c.push(f),u=N.getInnerMostAxes(u.length,o)}N.assertAxesAreInnerMostDims("sum",u,o);let[m,g]=N.computeOutAndReduceShapes(f.shape,u),y=m;a&&(y=N.expandShapeToKeepDim(m,l));let A=Eie(f,g,y,i);for(let x of c)i.disposeIntermediateTensorInfo(x);return A}};function Mie(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n,o=a.shape.length,l=w.parseAxisParam(s,a.shape),u=l,d=N.getAxesPermutation(u,o),h=a;d!=null&&(h=vr({inputs:{x:a},backend:r,attrs:{perm:d}}),u=N.getInnerMostAxes(u.length,a.shape.length)),N.assertAxesAreInnerMostDims("min",u,o);let[p,c]=N.computeOutAndReduceShapes(h.shape,u),f=w.sizeFromShape(c),m=ve({inputs:{x:h},backend:r,attrs:{shape:[-1,f]}}),g=_l(m,m.dtype,"min",r),y;if(i){let A=N.expandShapeToKeepDim(p,l);y=ve({inputs:{x:g},backend:r,attrs:{shape:A}})}else y=ve({inputs:{x:g},backend:r,attrs:{shape:p}});return r.disposeIntermediateTensorInfo(m),r.disposeIntermediateTensorInfo(g),d!=null&&r.disposeIntermediateTensorInfo(h),y}var Fie={kernelName:Ai,backendName:"webgl",kernelFunc:Mie},$ie=ZS+`
|
|
return min(a, b);
|
|
`,Pie=`
|
|
vec4 result = vec4(min(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+y0+`
|
|
return result;
|
|
`,_ie=wr({opSnippet:$ie,packedOpSnippet:Pie,cpuKernelImpl:Nee}),zie={kernelName:xi,backendName:"webgl",kernelFunc:_ie},Oie=class{constructor(e,t,r){this.variableNames=["x"],this.outputShape=t.map((u,d)=>u[0]+e[d]+u[1]);let n=e.length,a=gt(n),s=t.map(u=>u[0]).join(","),i=t.map((u,d)=>u[0]+e[d]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,n),l=r==="reflect"?0:1;if(n===1){this.userCode=`
|
|
int start = ${s};
|
|
int end = ${i};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start) {
|
|
outC = start * 2 - outC - ${l};
|
|
} else if(outC >= end) {
|
|
outC = (end - 1) * 2 - outC + ${l};
|
|
}
|
|
setOutput(getX(outC - start));
|
|
}
|
|
`;return}this.userCode=`
|
|
${a} start = ${a}(${s});
|
|
${a} end = ${a}(${i});
|
|
|
|
void main() {
|
|
${a} outC = getOutputCoords();
|
|
for (int i = 0; i < ${n}; i++) {
|
|
if (outC[i] < start[i]) {
|
|
outC[i] = start[i] * 2 - outC[i] - ${l};
|
|
} else if(outC[i] >= end[i]) {
|
|
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
|
|
}
|
|
}
|
|
${a} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
`}},Die=class{constructor(e,t,r){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((c,f)=>c[0]+e[f]+c[1]);let n=e.length,a=gt(n),s=t.map(c=>c[0]).join(","),i=t.map((c,f)=>c[0]+e[f]).join(","),o=Lr("rc",n),l=Lr("source",n),u=`${o[n-1]} < ${this.outputShape[n-1]}`,d=n===1?"source":`vec2(${l.slice(-2).join()})`,h=r==="reflect"?0:1,p="";if(n===1){let c=`
|
|
${a} source = rc;
|
|
if (source < start) {
|
|
source = start * 2 - source - ${h};
|
|
} else if (source >= end) {
|
|
source = (end - 1) * 2 - source + ${h};
|
|
}
|
|
source -= start;
|
|
`;p=`
|
|
${a} rc = outputLoc;
|
|
${c}
|
|
result[0] = getChannel(getX(${l.join()}), ${d});
|
|
${o[n-1]} += 1;
|
|
if(${u}) {
|
|
${c}
|
|
result[1] = getChannel(getX(${l.join()}), ${d});
|
|
}
|
|
`}else{let c=`
|
|
${a} source = rc;
|
|
${a} lt = ${a}(lessThan(source, start));
|
|
${a} gte = ${a}(greaterThanEqual(source, end));
|
|
${a} orig = 1 - (lt + gte);
|
|
source = orig * source +
|
|
lt * (start * 2 - source - ${h}) +
|
|
gte * ((end - 1) * 2 - source + ${h});
|
|
source -= start;
|
|
`;p=`
|
|
${a} rc = outputLoc;
|
|
${c}
|
|
result[0] = getChannel(getX(${l.join()}), ${d});
|
|
${o[n-1]} += 1;
|
|
if(${u}) {
|
|
${c}
|
|
result[1] = getChannel(getX(${l.join()}), ${d});
|
|
}
|
|
rc = outputLoc;
|
|
${o[n-2]} += 1;
|
|
if(${o[n-2]} < ${this.outputShape[n-2]}) {
|
|
${c}
|
|
result[2] = getChannel(getX(${l.join()}), ${d});
|
|
${o[n-1]} += 1;
|
|
if(${u}) {
|
|
${c}
|
|
result[3] = getChannel(getX(${l.join()}), ${d});
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
const ${a} start = ${a}(${s});
|
|
const ${a} end = ${a}(${i});
|
|
|
|
void main() {
|
|
${a} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${p}
|
|
setOutput(result);
|
|
}
|
|
`}},Lie=({inputs:e,backend:t,attrs:r})=>{let{x:n}=e,{paddings:a,mode:s}=r,i=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Die(n.shape,a,s):new Oie(n.shape,a,s);return t.runWebGLProgram(i,[n],n.dtype)},Bie={kernelName:bi,backendName:"webgl",kernelFunc:Lie},Wie=`if (b == 0.0) return NAN;
|
|
return mod(a, b);`,Vie=`
|
|
vec4 result = mod(a, b);
|
|
vec4 isNaN = vec4(equal(b, vec4(0.0)));
|
|
`+y0+`
|
|
return result;
|
|
`,Uie=wr({opSnippet:Wie,packedOpSnippet:Vie}),Gie={kernelName:Ju,backendName:"webgl",kernelFunc:Uie},jie=class{constructor(e,t,r){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,r],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
|
|
float r = random(seed);
|
|
float cdf = 0.0;
|
|
|
|
for (int i = 0; i < ${t-1}; i++) {
|
|
cdf += getProbs(batch, i);
|
|
|
|
if (r < cdf) {
|
|
setOutput(float(i));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If no other event happened, last event happened.
|
|
setOutput(float(${t-1}));
|
|
}
|
|
`}},Hie=`
|
|
if (a == b) {
|
|
return 1.0;
|
|
};
|
|
return a / b;`,qie=`
|
|
// vec4 one = vec4(equal(a, b));
|
|
// return one + (vec4(1.0) - one) * a / b;
|
|
vec4 result = a / b;
|
|
if(a.x == b.x) {
|
|
result.x = 1.;
|
|
}
|
|
if(a.y == b.y) {
|
|
result.y = 1.;
|
|
}
|
|
if(a.z == b.z) {
|
|
result.z = 1.;
|
|
}
|
|
if(a.w == b.w) {
|
|
result.w = 1.;
|
|
}
|
|
|
|
return result;
|
|
`,y8=wr({opSnippet:Hie,packedOpSnippet:qie,checkOutOfBounds:!0}),Kie={kernelName:ai,backendName:"webgl",kernelFunc:y8},Jv="return a - b;",A8=wr({opSnippet:Jv,packedOpSnippet:Jv,supportsComplex:!0,cpuKernelImpl:Uee}),Xie={kernelName:_i,backendName:"webgl",kernelFunc:A8};function x8(e){let{inputs:t,backend:r,attrs:n}=e,{logits:a}=t,{dim:s}=n,i=w.parseAxisParam([s],a.shape),o=g8({inputs:{x:a},backend:r,attrs:{reductionIndices:i,keepDims:!1}}),l=N.expandShapeToKeepDim(o.shape,i),u=ve({inputs:{x:o},backend:r,attrs:{shape:l}}),d=A8({inputs:{a,b:u},backend:r}),h=c8({inputs:{x:d},backend:r}),p=b0({inputs:{x:h},backend:r,attrs:{axis:i,keepDims:!1}}),c=ve({inputs:{x:p},backend:r,attrs:{shape:l}}),f=y8({inputs:{a:h,b:c},backend:r});return r.disposeIntermediateTensorInfo(o),r.disposeIntermediateTensorInfo(u),r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(c),f}var Zie={kernelName:$i,backendName:"webgl",kernelFunc:x8};function Yie(e){let{inputs:t,backend:r,attrs:n}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=n,l=o?a:x8({inputs:{logits:a},backend:r,attrs:{dim:a.shape.length-1}}),u=l.shape[0],d=l.shape[1],h=new jie(u,d,s),p=[[i]],c=r.runWebGLProgram(h,[l],"int32",p);return o||r.disposeIntermediateTensorInfo(l),c}var Jie={kernelName:dm,backendName:"webgl",kernelFunc:Yie},Qie=Xn+`
|
|
return -x;
|
|
`,eoe=`
|
|
vec4 result = -x;
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`;function toe(e){let{inputs:t,backend:r}=e,{x:n}=t;if(r.shouldExecuteOnCPU([n])){let s=r.texData.get(n.dataId),[i,o]=Eee(s.values,n.shape,n.dtype);return r.makeTensorInfo(o,n.dtype,i)}let a;return Y().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new vo(n.shape,eoe):a=new Ka(n.shape,Qie),r.runWebGLProgram(a,[n],n.dtype)}var roe={kernelName:tl,backendName:"webgl",kernelFunc:toe},noe=qn.nonMaxSuppressionV3Impl;function aoe(e){N.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:r,attrs:n}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=n,u=r.readSync(a.dataId),d=r.readSync(s.dataId),{selectedIndices:h}=noe(u,d,i,o,l);return r.makeTensorInfo([h.length],"int32",new Int32Array(h))}var soe={kernelName:nl,backendName:"webgl",kernelFunc:aoe},ioe=qn.nonMaxSuppressionV4Impl;function ooe(e){N.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:r,attrs:n}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=n,d=r.readSync(a.dataId),h=r.readSync(s.dataId),{selectedIndices:p,validOutputs:c}=ioe(d,h,i,o,l,u);return[r.makeTensorInfo([p.length],"int32",new Int32Array(p)),r.makeTensorInfo([],"int32",new Int32Array([c]))]}var loe={kernelName:Qu,backendName:"webgl",kernelFunc:ooe},uoe=qn.nonMaxSuppressionV5Impl;function doe(e){N.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:r,attrs:n}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=n,d=r.readSync(a.dataId),h=r.readSync(s.dataId),p=i,c=o,f=l,m=u,{selectedIndices:g,selectedScores:y}=uoe(d,h,p,c,f,m);return[r.makeTensorInfo([g.length],"int32",new Int32Array(g)),r.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var poe={kernelName:al,backendName:"webgl",kernelFunc:doe},hoe=class{constructor(e,t,r,n){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int index = round(getIndices(coords.x));
|
|
setOutput(mix(float(${n}), float(${r}),
|
|
float(index == coords.y)));
|
|
}
|
|
`}},coe=e=>{let{inputs:t,backend:r,attrs:n}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=n,l=w.sizeFromShape(a.shape),u=new hoe(l,s,i,o),d=ve({inputs:{x:a},backend:r,attrs:{shape:[l]}}),h=r.runWebGLProgram(u,[d],a.dtype);r.disposeIntermediateTensorInfo(d);let p=[...a.shape,s],c=ve({inputs:{x:h},backend:r,attrs:{shape:p}});return r.disposeIntermediateTensorInfo(h),c},foe={kernelName:il,backendName:"webgl",kernelFunc:coe};function Df(e){let{inputs:t,backend:r}=e,{x:n}=t;if(n.dtype==="complex64"){let a=Lh({inputs:{input:n},backend:r}),s=Df({inputs:{x:a},backend:r}),i=v0({inputs:{input:n},backend:r}),o=Df({inputs:{x:i},backend:r}),l=Vi({inputs:{real:s,imag:o},backend:r});return r.disposeIntermediateTensorInfo(a),r.disposeIntermediateTensorInfo(s),r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}else return Bh({attrs:{shape:n.shape,dtype:n.dtype,value:n.dtype==="string"?"":0},backend:r})}var moe={kernelName:kl,backendName:"webgl",kernelFunc:Df};function b8(e){let{inputs:t,backend:r}=e,{x:n}=t;if(n.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(n.dtype==="complex64"){let a=Lh({inputs:{input:n},backend:r}),s=b8({inputs:{x:a},backend:r}),i=v0({inputs:{input:n},backend:r}),o=Df({inputs:{x:i},backend:r}),l=Vi({inputs:{real:s,imag:o},backend:r});return r.disposeIntermediateTensorInfo(a),r.disposeIntermediateTensorInfo(s),r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}else return Bh({attrs:{shape:n.shape,dtype:n.dtype,value:1},backend:r})}var goe={kernelName:sl,backendName:"webgl",kernelFunc:b8};function yoe(e){let{inputs:t,backend:r,attrs:n}=e,{axis:a}=n;if(t.length===1)return Jy({inputs:{input:t[0]},backend:r,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(d=>{w.assertShapesMatch(s,d.shape,"All tensors passed to stack must have matching shapes"),w.assert(i===d.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(d=>{let h=Jy({inputs:{input:d},backend:r,attrs:{dim:a}});return o.push(h),h}),u=o8({inputs:l,backend:r,attrs:{axis:a}});return o.forEach(d=>r.disposeIntermediateTensorInfo(d)),u}var Aoe={kernelName:ol,backendName:"webgl",kernelFunc:yoe},xoe=class{constructor(e,t,r){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let n=e.length,a=gt(n),s=t.map(l=>l[0]).join(","),i=t.map((l,u)=>l[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,n);if(n===1){this.userCode=`
|
|
int start = ${s};
|
|
int end = ${i};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start || outC >= end) {
|
|
setOutput(value);
|
|
} else {
|
|
setOutput(getX(outC - start));
|
|
}
|
|
}
|
|
`;return}this.userCode=`
|
|
${a} start = ${a}(${s});
|
|
${a} end = ${a}(${i});
|
|
|
|
void main() {
|
|
${a} outC = getOutputCoords();
|
|
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
|
|
setOutput(value);
|
|
} else {
|
|
${a} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
}
|
|
`}},boe=class{constructor(e,t,r){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let n=e.length,a=gt(n),s=t.map(f=>f[0]).join(","),i=t.map((f,m)=>f[0]+e[m]).join(","),o=Lr("rc",n),l=Lr("source",n),u=`${o[n-1]} < ${this.outputShape[n-1]}`,d=n===1?"source":`vec2(${l.slice(-2).join()})`,h=[`${a} rc = outputLoc;`,`${o[n-1]} += 1;
|
|
if(${u}) {
|
|
`,n===1?"":`}
|
|
rc = outputLoc;
|
|
${o[n-2]} += 1;
|
|
if(${o[n-2]} < ${this.outputShape[n-2]}) {`,n===1?"":` ${o[n-1]} += 1;
|
|
if(${u}) {`],p=n===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",c="";for(let f=0,m=n===1?2:4;f<m;f++)c+=`
|
|
${h[f]}
|
|
if (${p}) {
|
|
result[${f}] = float(value);
|
|
} else {
|
|
${a} source = rc - start;
|
|
result[${f}] = getChannel(getX(${l.join()}), ${d});
|
|
}
|
|
`;c+=n===1?"} ":"}}",this.userCode=`
|
|
const ${a} start = ${a}(${s});
|
|
const ${a} end = ${a}(${i});
|
|
|
|
void main() {
|
|
${a} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${c}
|
|
setOutput(result);
|
|
}
|
|
`}},v8=e=>{let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{paddings:s,constantValue:i}=n;if(w.sizeFromShape(a.shape)===0){let u=s.map((d,h)=>d[0]+a.shape[h]+d[1]);return Bh({backend:r,attrs:{shape:u,value:i,dtype:a.dtype}})}let o=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new boe(a.shape,s,i):new xoe(a.shape,s,i),l=[[i]];return r.runWebGLProgram(o,[a],a.dtype,l)},voe={kernelName:wi,backendName:"webgl",kernelFunc:v8},woe=`
|
|
if(a < 0.0 && floor(b) < b){
|
|
return NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
return (round(mod(b, 2.0)) != 1) ?
|
|
pow(abs(a), b) : sign(a) * pow(abs(a), b);
|
|
`,koe=`
|
|
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
|
|
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
|
|
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
|
|
vec4 result = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
bvec4 isExpZero = equal(b, vec4(0.0));
|
|
result.r = isExpZero.r ? 1.0 : result.r;
|
|
result.g = isExpZero.g ? 1.0 : result.g;
|
|
result.b = isExpZero.b ? 1.0 : result.b;
|
|
result.a = isExpZero.a ? 1.0 : result.a;
|
|
|
|
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
|
|
`+y0+`
|
|
return result;
|
|
`,Ioe=wr({opSnippet:woe,packedOpSnippet:koe}),Soe={kernelName:ki,backendName:"webgl",kernelFunc:Ioe};function Toe(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n,o=a.shape.length,l=[],u=w.parseAxisParam(s,a.shape),d=u,h=N.getAxesPermutation(d,o),p=a;h!=null&&(p=vr({inputs:{x:a},backend:r,attrs:{perm:h}}),d=N.getInnerMostAxes(d.length,o),l.push(p)),N.assertAxesAreInnerMostDims("prod",d,o);let c;if(r.shouldExecuteOnCPU([p])){let f=r.texData.get(p.dataId).values,{outVals:m,outShape:g,outDtype:y}=Mee(p.shape,p.dtype,f,d);c=r.makeTensorInfo(g,y,m)}else{let[f,m]=N.computeOutAndReduceShapes(p.shape,d),g=w.sizeFromShape(m),y=ve({inputs:{x:p},backend:r,attrs:{shape:[-1,g]}}),A=ch(a.dtype),x=_l(y,A,"prod",r);c=ve({inputs:{x},backend:r,attrs:{shape:f}}),l.push(y),l.push(x)}if(i){l.push(c);let f=N.expandShapeToKeepDim(c.shape,u);c=ve({inputs:{x:c},backend:r,attrs:{shape:f}})}return l.forEach(f=>r.disposeIntermediateTensorInfo(f)),c}var Noe={kernelName:ll,backendName:"webgl",kernelFunc:Toe},w8=e=>{let{backend:t,attrs:r}=e,{start:n,stop:a,step:s,dtype:i}=r,o=Fee(n,a,s,i);return t.makeTensorInfo([o.length],i,o)},Coe={kernelName:ed,backendName:"webgl",kernelFunc:w8},Eoe="return 1.0 / x;",Roe=it({opSnippet:Eoe}),Moe={kernelName:td,backendName:"webgl",kernelFunc:Roe},Foe=Xn+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,$oe=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,Poe=it({opSnippet:Foe,packedOpSnippet:$oe}),_oe={kernelName:Si,backendName:"webgl",kernelFunc:Poe},zoe=Xn+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,Ooe=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,Doe=it({opSnippet:zoe,packedOpSnippet:Ooe}),Loe={kernelName:Ni,backendName:"webgl",kernelFunc:Doe},Boe=class{constructor(e,t,r,n,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,r,l];let u=[n&&t>1?i-1:i,n&&r>1?o-1:o],d=[n&&t>1?t-1:t,n&&r>1?r-1:r],h;a?h="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":h="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/d[0]},
|
|
${u[1]/d[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${h};
|
|
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
|
|
ivec2 sourceCeilRC = ivec2(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
float newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},Woe=class{constructor(e,t,r,n,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,r,l];let u=[n&&t>1?i-1:i,n&&r>1?o-1:o],d=[n&&t>1?t-1:t,n&&r>1?r-1:r],h;a?h="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":h="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/d[0]},
|
|
${u[1]/d[1]},
|
|
${u[1]/d[1]});
|
|
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
|
|
${o}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${h};
|
|
|
|
// Compute the four integer indices.
|
|
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
|
|
ivec3 sourceCeilRC = ivec3(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${r-1};
|
|
|
|
// In parallel, construct four corners for all four components in
|
|
// packed 2x2 cell.
|
|
vec4 topLeft = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomLeft = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 topRight = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomRight = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
|
|
|
|
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
|
|
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
|
|
vec4 newValue = mix(top, bottom, fracRC.x);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function Voe(e){let{inputs:t,backend:r,attrs:n}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=n,[l,u]=o,d=Y().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Woe(a.shape,l,u,s,i):new Boe(a.shape,l,u,s,i);return r.runWebGLProgram(d,[a],"float32")}var Uoe={kernelName:Ti,backendName:"webgl",kernelFunc:Voe},Goe=class{constructor(e,t,r){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,n,a]=t,[,s,i]=e,o=[r&&s>1?n-1:n,r&&i>1?a-1:a],l=[r&&s>1?s-1:s,r&&i>1?i-1:i],u=o[0]/l[0],d=o[1]/l[1],h=1/u,p=1/d,c=Math.ceil(h)*2+2,f=Math.ceil(p)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${d});
|
|
|
|
const float invHeightScale = float(${h});
|
|
const float invWidthScale = float(${p});
|
|
|
|
const int winHeight = int(${c});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(startRLerp - float(winHeight / 2));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(startCLerp - float(winWidth / 2));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float dxR = float(dyR) * heightScale;
|
|
int topDxRIndex = int(floor(dxR));
|
|
int bottomDxRIndex = int(min(ceil(dxR), ${n-1}.0));
|
|
float dxRLerp = dxR - float(topDxRIndex);
|
|
float inverseDxRLerp = 1.0 - dxRLerp;
|
|
|
|
float dxC = float(dyC) * widthScale;
|
|
int leftDxCIndex = int(floor(dxC));
|
|
int rightDxCIndex = int(min(ceil(dxC), ${a-1}.0));
|
|
float dxCLerp = dxC - float(leftDxCIndex);
|
|
float inverseDxCLerp = 1.0 - dxCLerp;
|
|
|
|
if (r == topDxRIndex && c == leftDxCIndex) {
|
|
// topLeft
|
|
accumulator +=
|
|
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == topDxRIndex && c == rightDxCIndex) {
|
|
// topRight
|
|
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == leftDxCIndex) {
|
|
// bottomLeft
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == rightDxCIndex) {
|
|
// bottomRight
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function joe(e){let{inputs:t,backend:r,attrs:n}=e,{images:a,dy:s}=t,{alignCorners:i}=n,o=new Goe(s.shape,a.shape,i);return r.runWebGLProgram(o,[s],s.dtype)}var Hoe={kernelName:hm,backendName:"webgl",kernelFunc:joe},qoe=class{constructor(e,t,r,n,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,r,l];let u=[n&&t>1?i-1:i,n&&r>1?o-1:o],d=[n&&t>1?t-1:t,n&&r>1?r-1:r],h=n?"0.5":"0.0",p;a?p="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":p="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/d[0]},
|
|
${u[1]/d[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestRC = ivec2(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${h})));
|
|
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},Koe=class{constructor(e,t,r,n,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,r,l];let u=[n&&t>1?i-1:i,n&&r>1?o-1:o],d=[n&&t>1?t-1:t,n&&r>1?r-1:r],h=n?"0.5":"0.0",p;a?p="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":p="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/d[0]},
|
|
${u[1]/d[1]},
|
|
${u[1]/d[1]});
|
|
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
|
|
${o}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec3 sourceNearestRC = ivec3(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${h})));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${r-1};
|
|
|
|
vec4 newValue = vec4(
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function Xoe(e){let{inputs:t,backend:r,attrs:n}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=n,[l,u]=o,d=Y().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Koe(a.shape,l,u,s,i):new qoe(a.shape,l,u,s,i);return r.runWebGLProgram(d,[a],a.dtype)}var Zoe={kernelName:rd,backendName:"webgl",kernelFunc:Xoe},Yoe=class{constructor(e,t,r){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,n,a]=t,[,s,i]=e,o=[r&&s>1?n-1:n,r&&i>1?a-1:a],l=[r&&s>1?s-1:s,r&&i>1?i-1:i],u=o[0]/l[0],d=o[1]/l[1],h=1/u,p=1/d,c=Math.ceil(h)*2+2,f=Math.ceil(p)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${d});
|
|
|
|
const float invHeightScale = float(${h});
|
|
const float invWidthScale = float(${p});
|
|
|
|
const int winHeight = int(${c});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float sourceFracRow =
|
|
float(${o[0]}) *
|
|
(float(dyR) / float(${l[0]}));
|
|
|
|
float sourceFracCol =
|
|
float(${o[1]}) *
|
|
(float(dyC) / float(${l[1]}));
|
|
|
|
int sourceNearestRow = int(min(
|
|
float(int(${n}) - 1),
|
|
${r} ? float(round(sourceFracRow)) :
|
|
float(floor(sourceFracRow))));
|
|
|
|
int sourceNearestCol = int(min(
|
|
float(int(${a}) - 1),
|
|
${r} ? float(round(sourceFracCol)) :
|
|
float(floor(sourceFracCol))));
|
|
|
|
if (r == sourceNearestRow && c == sourceNearestCol) {
|
|
accumulator += getDy(b, dyR, dyC, d);
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function Joe(e){let{inputs:t,backend:r,attrs:n}=e,{images:a,dy:s}=t,{alignCorners:i}=n,o=new Yoe(s.shape,a.shape,i);return r.runWebGLProgram(o,[s],s.dtype)}var Qoe={kernelName:pm,backendName:"webgl",kernelFunc:Joe},ele=class{constructor(e,t){this.variableNames=["x"];let r=e.length;if(r>4)throw new Error(`WebGL backend: Reverse of rank-${r} tensor is not yet supported`);if(this.outputShape=e,r===1){this.userCode=`
|
|
void main() {
|
|
int coord = getOutputCoords();
|
|
setOutput(getX(${e[0]} - coord - 1));
|
|
}
|
|
`;return}let n=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,a=e.map((i,o)=>n(o)).join(","),s=gt(r);this.userCode=`
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
setOutput(getX(${a}));
|
|
}
|
|
`}},tle=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let r=e.length;if(r>4)throw new Error(`WebGL backend: Reverse of rank-${r} tensor is not yet supported`);this.outputShape=e;let n=Lr("rc",r),a=`${n[r-1]} + 1 < ${this.outputShape[r-1]}`,s=`${n[r-2]} + 1 < ${this.outputShape[r-2]}`,i=gt(r);r===1?this.userCode=`
|
|
void main(){
|
|
int rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = getChannel(getX(${e[0]} - rc - 1),
|
|
${e[0]} - rc - 1);
|
|
if(${a}){
|
|
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
|
|
${e[0]} - (rc + 1) - 1);
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`:this.userCode=`
|
|
void main() {
|
|
${i} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = ${o(n.slice())};
|
|
if(${a}){
|
|
result.g = ${l(n.slice())};
|
|
}
|
|
if(${s}) {
|
|
result.b = ${u(n.slice())};
|
|
if(${a}) {
|
|
result.a = ${d(n.slice())};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`;function o(c){return h(c)}function l(c){return c[r-1]="("+c[r-1]+" + 1)",h(c)}function u(c){return c[r-2]="("+c[r-2]+" + 1)",h(c)}function d(c){return c[r-1]="("+c[r-1]+" + 1)",c[r-2]="("+c[r-2]+" + 1)",h(c)}function h(c){let f=e.map((y,A)=>p(A,c)),m=f.join(","),g=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${g}))`}function p(c,f){return t.indexOf(c)!==-1&&e[c]!==1?`${e[c]} - ${f[c]} - 1`:`${f[c]}`}}};function rle(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{dims:s}=n,i=a.shape.length,o=w.parseAxisParam(s,a.shape);if(i===0)return an({inputs:{x:a},backend:r});let l=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new tle(a.shape,o):new ele(a.shape,o);return r.runWebGLProgram(l,[a],a.dtype)}var nle={kernelName:dl,backendName:"webgl",kernelFunc:rle},ale=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let r=e[1],n=e[2];this.outputShape=e;let a="";typeof t=="number"?a=`float outputValue = ${t.toFixed(2)};`:a=`
|
|
vec3 fill = vec3(${t.join(",")});
|
|
float outputValue = fill[coords[3]];`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
float coordXFloat = (float(x) - params[0]) * params[3] -
|
|
(float(y) - params[1]) * params[2];
|
|
float coordYFloat = (float(x) - params[0]) * params[2] +
|
|
(float(y) - params[1]) * params[3];
|
|
int coordX = int(round(coordXFloat + params[0]));
|
|
int coordY = int(round(coordYFloat + params[1]));
|
|
${a}
|
|
if(coordX >= 0 && coordX < ${n} && coordY >= 0 && coordY < ${r}) {
|
|
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},sle={kernelName:Il,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:r})=>{let{image:n}=e,{radians:a,fillValue:s,center:i}=t,o=r,l=new ale(n.shape,s),[u,d]=N.getImageCenter(i,n.shape[1],n.shape[2]),h=[[u,d,Math.sin(a),Math.cos(a)]];return o.runWebGLProgram(l,[n],n.dtype,h)}},ile=`
|
|
// OpenGL ES does not support round function.
|
|
// The algorithm is based on banker's rounding.
|
|
float base = floor(x);
|
|
if ((x - base) < 0.5) {
|
|
return floor(x);
|
|
} else if ((x - base) > 0.5) {
|
|
return ceil(x);
|
|
} else {
|
|
if (mod(base, 2.0) == 0.0) {
|
|
return base;
|
|
} else {
|
|
return base + 1.0;
|
|
}
|
|
}
|
|
`,ole=it({opSnippet:ile}),lle={kernelName:pl,backendName:"webgl",kernelFunc:ole},ule="return inversesqrt(x);",dle=it({opSnippet:ule,cpuKernelImpl:$ee}),ple={kernelName:Ci,backendName:"webgl",kernelFunc:dle},k8=class{constructor(e,t,r,n,a,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=gt(a.length),l=gt(s.length),u="";r===1?u="i":r===2&&(u="i, j");let d=`getIndices(${u})`,h="";n===1?h="i":n===2&&(h="i, coords[1]");let p=`getUpdates(${h})`,c=t>1?"strides[j]":"strides";this.userCode=`
|
|
${o} strides = ${o}(${a});
|
|
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
float sum = 0.0;
|
|
bool found = false;
|
|
for (int i = 0; i < ${e}; i++) {
|
|
int flattenedIndex = 0;
|
|
for (int j = 0; j < ${t}; j++) {
|
|
int index = round(${d});
|
|
flattenedIndex += index * ${c};
|
|
}
|
|
if (flattenedIndex == coords[0]) {
|
|
sum += ${p};
|
|
found = true;
|
|
}
|
|
}
|
|
setOutput(mix(getDefaultValue(), sum, float(found)));
|
|
}
|
|
`}};function hle(e){let{inputs:t,backend:r,attrs:n}=e,{indices:a,updates:s}=t,{shape:i}=n,{sliceRank:o,numUpdates:l,sliceSize:u,strides:d,outputSize:h}=N.calculateShapes(s,a,i),p=[h/u,u];if(h===0)return r.makeTensorInfo(i,a.dtype);let c=ve({inputs:{x:a},backend:r,attrs:{shape:[l,o]}}),f=ve({inputs:{x:s},backend:r,attrs:{shape:[l,u]}}),m=r.makeTensorInfo([],"float32",new Float32Array([0])),g=new k8(l,o,c.shape.length,f.shape.length,d,p),y=r.runWebGLProgram(g,[f,c,m],f.dtype),A=ve({inputs:{x:y},backend:r,attrs:{shape:i}});return r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(f),r.disposeIntermediateTensorInfo(y),r.disposeIntermediateTensorInfo(m),A}var cle={kernelName:hl,backendName:"webgl",kernelFunc:hle},fle=class{constructor(e,t,r){this.variableNames=["c","a","b"],this.outputShape=t;let n,a;if(r>4)throw Error(`Where for rank ${r} is not yet supported`);if(r===1)a="resRC",n="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let u=0;u<t.length;u++)l.push(`${i[u]}`),u<e&&o.push(`${i[u]}`);n=o.join(),a=l.join()}let s=gt(r);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
float cVal = getC(${n});
|
|
if (cVal >= 1.0) {
|
|
setOutput(getA(${a}));
|
|
} else {
|
|
setOutput(getB(${a}));
|
|
}
|
|
}
|
|
`}};function mle(e){let{inputs:t,backend:r}=e,{condition:n,t:a,e:s}=t,i=new fle(n.shape.length,a.shape,a.shape.length);return r.runWebGLProgram(i,[n,a,s],Cr(a.dtype,s.dtype))}var gle={kernelName:cl,backendName:"webgl",kernelFunc:mle},yle=`
|
|
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
|
|
// see: https://arxiv.org/abs/1706.02515
|
|
float scaleAlpha = ${N.SELU_SCALEALPHA};
|
|
float scale = ${N.SELU_SCALE};
|
|
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
|
|
`,Ale=it({opSnippet:yle}),xle={kernelName:nd,backendName:"webgl",kernelFunc:Ale},ble=Td+`
|
|
return 1.0 / (1.0 + exp(-1.0 * x));
|
|
`,vle=`
|
|
vec4 result = 1.0 / (1.0 + exp(-1.0 * x));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,wle=it({opSnippet:ble,packedOpSnippet:vle,cpuKernelImpl:Pee}),kle={kernelName:Ri,backendName:"webgl",kernelFunc:wle},Ile=`
|
|
if (isnan(x)) { return 0.0; }
|
|
return sign(x);
|
|
`,Sle=it({opSnippet:Ile}),Tle={kernelName:ad,backendName:"webgl",kernelFunc:Sle},Nle=Td+`
|
|
return sin(x);
|
|
`,Cle=it({opSnippet:Nle}),Ele={kernelName:Ei,backendName:"webgl",kernelFunc:Cle},Rle=`
|
|
float e2x = exp(x);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,Mle=it({opSnippet:Rle}),Fle={kernelName:ml,backendName:"webgl",kernelFunc:Mle},$le=`
|
|
float epsilon = 1.1920928955078125e-7;
|
|
float threshold = log(epsilon) + 2.0;
|
|
|
|
bool too_large = x > -threshold;
|
|
bool too_small = x < threshold;
|
|
|
|
float result;
|
|
float exp_x = exp(x);
|
|
|
|
if (too_large){
|
|
result = x;
|
|
}
|
|
else if (too_small){
|
|
result = exp_x;
|
|
}
|
|
else{
|
|
result = log(exp_x + 1.0);
|
|
}
|
|
return result;
|
|
`,Ple=it({opSnippet:$le}),_le={kernelName:sd,backendName:"webgl",kernelFunc:Ple},zle=e=>{let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockShape:s,paddings:i}=n;w.assert(a.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,A)=>y*A),l=[[0,0]];l.push(...i);for(let y=1+s.length;y<a.shape.length;++y)l.push([0,0]);let u=[],d=v8({inputs:{x:a},backend:r,attrs:{paddings:l,constantValue:0}}),h=N.getReshaped(d.shape,s,o,!1),p=N.getPermuted(h.length,s.length,!1),c=N.getReshapedPermuted(d.shape,s,o,!1),f=ve({inputs:{x:d},backend:r,attrs:{shape:h}}),m=vr({inputs:{x:f},backend:r,attrs:{perm:p}}),g=ve({inputs:{x:m},backend:r,attrs:{shape:c}});return u.push(d),u.push(f),u.push(m),u.forEach(y=>r.disposeIntermediateTensorInfo(y)),g},Ole={kernelName:gl,backendName:"webgl",kernelFunc:zle};function Dle(e){let{inputs:t,backend:r}=e,{indices:n,values:a,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${s.shape}`);if(n.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${n.shape}`);if(a.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${a.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${i.shape}`);let o=r.readSync(n.dataId),l=r.readSync(a.dataId),u=r.readSync(s.dataId),d=r.readSync(i.dataId)[0],[h,p,c,f,m]=zee(o,n.shape,n.dtype,l,a.dtype,u,d);return[r.makeTensorInfo(p,n.dtype,h),r.makeTensorInfo([p[0]],a.dtype,c),r.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),r.makeTensorInfo([m.length],n.dtype,new Int32Array(m))]}var Lle={kernelName:sh,backendName:"webgl",kernelFunc:Dle};function Ble(e){let{inputs:t,backend:r}=e,{inputIndices:n,inputShape:a,newShape:s}=t;if(n.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${n.shape}`);if(a.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${a.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(r.readSync(a.dataId)),o=r.readSync(n.dataId),l=Array.from(r.readSync(s.dataId)),[u,d,h]=Oee(o,n.shape,n.dtype,i,l);return[r.makeTensorInfo(d,n.dtype,u),r.makeTensorInfo([h.length],s.dtype,new Int32Array(h))]}var Wle={kernelName:id,backendName:"webgl",kernelFunc:Ble};function Vle(e){let{inputs:t,backend:r}=e,{data:n,indices:a,segmentIds:s}=t;if(n.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(a.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${a.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);let i=r.readSync(n.dataId),o=r.readSync(a.dataId),l=r.readSync(s.dataId),[u,d]=jS(i,n.shape,n.dtype,o,l,!0);return r.makeTensorInfo(d,n.dtype,u)}var Ule={kernelName:ih,backendName:"webgl",kernelFunc:Vle};function Gle(e){let{inputs:t,backend:r}=e,{data:n,indices:a,segmentIds:s}=t;if(n.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(a.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${a.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);let i=r.readSync(n.dataId),o=r.readSync(a.dataId),l=r.readSync(s.dataId),[u,d]=jS(i,n.shape,n.dtype,o,l);return r.makeTensorInfo(d,n.dtype,u)}var jle={kernelName:oh,backendName:"webgl",kernelFunc:Gle};function Hle(e){let{inputs:t,backend:r,attrs:n}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=n,{sliceRank:l,numUpdates:u,strides:d,outputSize:h}=N.calculateShapes(s,a,o),p=!1,c=new k8(u,l,a.shape.length,s.shape.length,d,[h,1],p),f=r.runWebGLProgram(c,[s,a,i],s.dtype),m=ve({inputs:{x:f},backend:r,attrs:{shape:o}});return r.disposeIntermediateTensorInfo(f),m}var qle={kernelName:lh,backendName:"webgl",kernelFunc:Hle};function Kle(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=n,o=w.parseAxisParam(i,a.shape)[0],l=N.prepareSplitSize(a,s,o),u=a.shape.length,d=new Array(u).fill(0),h=a.shape.slice();return l.map(p=>{let c=[...h];c[o]=p;let f=Nd({inputs:{x:a},backend:r,attrs:{begin:d,size:c}});return d[o]+=p,f})}var Xle={kernelName:yl,backendName:"webgl",kernelFunc:Kle},Qv="return sqrt(x);",Zle=it({opSnippet:Qv,packedOpSnippet:Qv,cpuKernelImpl:Dee}),Yle={kernelName:Mi,backendName:"webgl",kernelFunc:Zle},Jle="return x * x;",Qle=it({opSnippet:Jle}),eue={kernelName:od,backendName:"webgl",kernelFunc:Qle},ew="return (a - b) * (a - b);",tue=wr({opSnippet:ew,packedOpSnippet:ew}),rue={kernelName:Pi,backendName:"webgl",kernelFunc:tue};function nue({inputs:e,attrs:t,backend:r}){let{x:n}=e,a=Xn+`
|
|
return x > 0.0 ? 1.0 : float(${t.alpha});
|
|
`,s=new Ka(n.shape,a);return r.runWebGLProgram(s,[n],n.dtype)}var aue={kernelName:Di,backendName:"webgl",kernelFunc:nue},sue=class{constructor(e,t,r){this.variableNames=["x"],this.outputShape=r;let n=r.length,a=gt(r.length),s=gt(r.length),i="";if(n===1)i="coords * strides + begin";else{let o=0;i=r.map((l,u)=>(o++,r.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${o-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=`
|
|
${a} begin = ${a}(${e});
|
|
${a} strides = ${a}(${t});
|
|
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
setOutput(getX(${i}));
|
|
}
|
|
`}};function iue(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:d,newAxisMask:h,shrinkAxisMask:p}=n,{finalShapeSparse:c,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:y,begin:A,end:x,strides:b}=_t.sliceInfo(a.shape,s,i,o,l,u,d,h,p),v;if(m)v=ve({inputs:{x:a},backend:r,attrs:{shape:f}});else if(g||y){w.assert(a.shape.length>=1,()=>`Input must have rank at least 1, got: ${a.shape.length}`);let T=_t.computeOutShape(A,x,b),E=Nd({inputs:{x:a},backend:r,attrs:{begin:A,size:T}});v=ve({inputs:{x:E},backend:r,attrs:{shape:f}}),r.disposeIntermediateTensorInfo(E)}else if(r.shouldExecuteOnCPU([a])){let T=r.readSync(a.dataId),E=We(a.shape,a.dtype,T),R=Lee(c,E,b,A);v=r.makeTensorInfo(f,a.dtype,R.values)}else{let T=new sue(A,b,c);v=r.runWebGLProgram(T,[a],a.dtype)}let S=ve({inputs:{x:v},backend:r,attrs:{shape:f}});return r.disposeIntermediateTensorInfo(v),S}var oue={kernelName:Al,backendName:"webgl",kernelFunc:iue};function lue(e){let{inputs:t,backend:r,attrs:n}=e,{separator:a,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=n,{data:d,dataSplits:h}=t,p=r.readSync(d.dataId),c=r.readSync(h.dataId),[f,m]=Bee(p,c,a,s,i,o,l,u);return[r.makeTensorInfo([f.length],"string",f),r.makeTensorInfo(h.shape,"int32",m)]}var uue={kernelName:uh,backendName:"webgl",kernelFunc:lue};function due(e){let{inputs:t,backend:r,attrs:n}=e,{skipEmpty:a}=n,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=r.readSync(s.dataId),l=r.readSync(i.dataId)[0],[u,d,h]=Wee(o,l,a),p=d.length;return[r.makeTensorInfo([p,2],"int32",u),r.makeTensorInfo([p],"string",d),r.makeTensorInfo([2],"int32",new Int32Array(h))]}var pue={kernelName:cm,backendName:"webgl",kernelFunc:due};function hue(e){let{inputs:t,backend:r,attrs:n}=e,{numBuckets:a}=n,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(a<=0)throw new Error("Number of buckets must be at least 1");let i=r.readSync(s.dataId),o=Vee(i,a);return r.makeTensorInfo(s.shape,"int32",o)}var cue={kernelName:fm,backendName:"webgl",kernelFunc:hue},fue="return tan(x);",mue=it({opSnippet:fue}),gue={kernelName:xl,backendName:"webgl",kernelFunc:mue},yue=`
|
|
float e2x = exp(-2.0 * abs(x));
|
|
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,Aue=it({opSnippet:yue}),xue={kernelName:zi,backendName:"webgl",kernelFunc:Aue},bue=class{constructor(e,t){this.variableNames=["A"];let r=new Array(e.length);for(let s=0;s<r.length;s++)r[s]=e[s]*t[s];this.outputShape=r,this.rank=r.length;let n=gt(this.rank),a=vue(e);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
setOutput(getA(${a}));
|
|
}
|
|
`}};function vue(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let r=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],n=[];for(let a=0;a<e.length;a++)n.push(`imod(${r[a]}, ${e[a]})`);return n.join()}function I8(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{reps:s}=n;if(a.dtype==="string"||a.shape.length>5){let o=r.readSync(a.dataId),l=a.dtype==="string"?o.map(h=>w.decodeString(h)):o,u=We(a.shape,a.dtype,l),d=Gee(u,s);return r.makeTensorInfo(d.shape,d.dtype,d.values)}let i=new bue(a.shape,s);return r.runWebGLProgram(i,[a],a.dtype)}var wue={kernelName:Qa,backendName:"webgl",kernelFunc:I8},kue=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// We compare elements pair-wise within a group of size 2 * inc.
|
|
// The comparing rule for each group alternates between ascending
|
|
// and descending. Within each group, we compare each pair at
|
|
// positions i and i+inc. To decide whether an element at position i
|
|
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
|
|
// inc, it is in the first half of the group, we denote it as x0,
|
|
// otherwise we denote it as x1.
|
|
// For example, as shown in the Bitonic top K paper referenced above,
|
|
// Figure5(a) shows that element[1] is in the
|
|
// second half of the group when group size is 2, but it is in the
|
|
// first half of the group when group size is 4.
|
|
|
|
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
|
|
int i = isFirstInPair ? elemIdx : elemIdx - inc;
|
|
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
|
|
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
|
|
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
|
|
|
|
// Denotes which direction indices are in (ascending or descending).
|
|
bool reverse = imod(elemIdx, 2 * dir) >= dir;
|
|
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
|
|
if (reverse == isGreater) { // Elements in opposite order of direction
|
|
int iTemp = i0;
|
|
i0 = i1;
|
|
i1 = iTemp;
|
|
}
|
|
if (isFirstInPair) {
|
|
setOutput(float(i0));
|
|
} else {
|
|
setOutput(float(i1));
|
|
}
|
|
}
|
|
`}},Iue=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// The output size is half of the previous size.
|
|
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
|
|
// we only need to output the indices at positions |, the indices at
|
|
// positions _ can be thrown away, see Figure5(b) After Phase 2
|
|
// (Merge phase) in the Bitonic Top K paper referenced above.
|
|
// For example, the paper shows we only need to output the orange bars.
|
|
// The output sequence should look like this | | | | | | | |.
|
|
// Because the sequence is halved, to map the output index back
|
|
// to the previous sequence to find the corresponding value,
|
|
// we need to double the index. When we double the index,
|
|
// we basically interpolate a position, so 2i looks like
|
|
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
|
|
// of each 2k positions by - elemIdx % k. E.g. for output at
|
|
// index 4,5,6,7, we want to get the corresponding element at
|
|
// original index 8,9,10,11, for output at index 8,9,10,11,
|
|
// we want to get the corresponding element at original index
|
|
// 16,17,18,19, so on and so forth.
|
|
|
|
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
|
|
|
|
float x0 = getX(batch, i0);
|
|
float x1 = i1 < n ? getX(batch, i1) : x0;
|
|
|
|
setOutput(x0 >= x1 ? float(i0) : float(i1));
|
|
}
|
|
`}};function po(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function tw(e){let t=1;for(;t<e;)t*=2;return t}function Sue(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{k:s,sorted:i}=n,o=Y().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),l=Y().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),u=a.shape,d=u[u.length-1];if(r.shouldExecuteOnCPU([a])||d<o||s>l){let R=r.readSync(a.dataId),[_,M]=jee(R,u,a.dtype,s,i);return[r.makeTensorInfo(_.shape,_.dtype,_.values),r.makeTensorInfo(M.shape,M.dtype,M.values)]}if(s===0)return u[u.length-1]=0,[r.makeTensorInfo(u,a.dtype,[]),r.makeTensorInfo(u,"int32",[])];if(d===1)return[a,Bh({attrs:{shape:u,dtype:"int32",value:0},backend:r})];let h=r.texData.get(a.dataId),p=h!==null&&h.isPacked,c=p?r.unpackTensor(a):a,f=w.sizeFromShape(u)/d,m=ve({inputs:{x:c},attrs:{shape:[f,d]},backend:r});p&&po(r,c);let g=tw(s),y=tw(d),A=null,x=()=>A===null?[m,m]:[m,A],b=(R,_,M)=>{let I=x(),z=new kue(M),O=[[d],[A===null?1:0],[Number.NEGATIVE_INFINITY],[R],[_]],j=A;A=r.runWebGLProgram(z,I,"int32",O),po(r,j)};for(let R=1;R<g;R*=2){let _=R*2;for(let M=R;M>=1;M/=2)b(_,M,[f,y])}for(let R=y;R>g;R/=2){let _=x(),M=new Iue([f,R/2]),I=[[d],[A===null?1:0],[g]],z=A;A=r.runWebGLProgram(M,_,"int32",I),po(r,z);let O=g/2,j=O*2;for(let X=O;X>=1;X/=2)b(j,X,A.shape)}let v=A;A=Nd({inputs:{x:A},backend:r,attrs:{begin:0,size:[f,s]}}),po(r,v);let S=m8({inputs:{x:m,indices:A},backend:r,attrs:{axis:1,batchDims:1}});po(r,m);let T=u.slice(0,-1);T.push(s),v=A,A=ve({inputs:{x:A},attrs:{shape:T},backend:r}),po(r,v);let E=S;return S=ve({inputs:{x:S},attrs:{shape:T},backend:r}),po(r,E),[S,A]}var Tue={kernelName:bl,backendName:"webgl",kernelFunc:Sue},Nue=class{constructor(e,t,r,n,a,s){this.variableNames=["Image","Transforms"],this.outputShape=s;let i=r==="nearest"?1:2,o;switch(n){case"constant":o=1;break;case"reflect":o=2;break;case"wrap":o=3;break;case"nearest":o=4;break;default:o=1;break}this.userCode=`
|
|
float mapCoord(float outCoord, float len) {
|
|
float inCoord = outCoord;
|
|
if(${o} == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
inCoord -= sz2 * float(int(float(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${o} == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord -= len * float(int(float(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${o} == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
} else {
|
|
return outCoord;
|
|
}
|
|
}
|
|
|
|
float readWithFillValue(int batch, int coordY, int coordX,
|
|
int channel) {
|
|
float outputValue;
|
|
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = float(${a});
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
float outputValue;
|
|
int batch = coords[0];
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
int channel = coords[3];
|
|
float xf = float(x);
|
|
float yf = float(y);
|
|
float a1 = getTransforms(batch, 0);
|
|
float a2 = getTransforms(batch, 1);
|
|
float a3 = getTransforms(batch, 2);
|
|
float b1 = getTransforms(batch, 3);
|
|
float b2 = getTransforms(batch, 4);
|
|
float b3 = getTransforms(batch, 5);
|
|
float c1 = getTransforms(batch, 6);
|
|
float c2 = getTransforms(batch, 7);
|
|
float projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = float(${a});
|
|
} else {
|
|
float inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
float inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
float mapX = mapCoord(inX, float(${t}));
|
|
float mapY = mapCoord(inY, float(${e}));
|
|
|
|
if (${i} == 1) {
|
|
int coordY = int(round(mapY));
|
|
int coordX = int(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
float yFloor = floor(mapY);
|
|
float xFloor = floor(mapX);
|
|
float yCeil = yFloor + 1.0;
|
|
float xCeil = xFloor + 1.0;
|
|
float valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
|
|
float valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}};function Cue(e){let{inputs:t,backend:r,attrs:n}=e,{image:a,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=n,[d,h,p,c]=a.shape,[f,m]=u!=null?u:[h,p],g=[d,f,m,c],y=new Nue(h,p,i,o,l,g);return r.runWebGLProgram(y,[a,s],"float32")}var Eue={kernelName:vl,backendName:"webgl",kernelFunc:Cue};function Rue(e){let{inputs:t,attrs:r,backend:n}=e,{axis:a}=r,{x:s}=t;vd(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=n.readSync(s.dataId),{outputValues:o,outputShape:l,indices:u}=Hee(i,a,s.shape,s.dtype);return[n.makeTensorInfo(l,s.dtype,o),n.makeTensorInfo([u.length],"int32",u)]}var Mue={kernelName:mm,backendName:"webgl",kernelFunc:Rue};function Fue(e){let{inputs:t,backend:r,attrs:n}=e,{value:a}=t,{axis:s}=n;s<0&&(s+=a.shape.length);let i=a,o=i.shape.length,l=a.shape[s],u=new Array(o-1),d=0;for(let m=0;m<o;m++)m!==s&&(u[d++]=i.shape[m]);let h=[],p=new Array(o).fill(0),c=i.shape.slice();c[s]=1;let f=new Array(l);for(let m=0;m<f.length;m++){p[s]=m;let g=Nd({inputs:{x:i},backend:r,attrs:{begin:p,size:c}}),y=ve({inputs:{x:g},backend:r,attrs:{shape:u}});f[m]=y,h.push(g)}return h.forEach(m=>r.disposeIntermediateTensorInfo(m)),f}var $ue={kernelName:wl,backendName:"webgl",kernelFunc:Fue},Pue=class{constructor(e,t){this.variableNames=["x","segmentIds"];let r=e.windowSize,n=e.batchSize,a=e.inSize,s=e.numSegments,i=s*Math.ceil(a/r);this.outputShape=[n,i];let o="0.0",l="sumValue",u=Math.floor(r/4)*4,d=r%4,h=`
|
|
sumValue += dot(values, segFilter);
|
|
`,p="";a%r>0&&(p=`
|
|
if (inIdx < 0 || inIdx >= ${a}) {
|
|
return initializationValue;
|
|
}
|
|
`);let c="";a%r>0&&(c=`
|
|
if (inIdx < 0 || inIdx >= ${a}) {
|
|
return -1.0;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${o};
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${p}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
float getSegmentIdAtIndex(int inIdx) {
|
|
${c}
|
|
return getSegmentIds(inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = int(floor(float(outIdx) / float(
|
|
${s})) * float(${r}));
|
|
int currentSeg = int(mod(float(outIdx), float(${s})));
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
|
|
);
|
|
|
|
${h}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${d===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${h}
|
|
} else if (${d===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${h}
|
|
} else if (${d===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
0
|
|
);
|
|
|
|
${h}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function _ue(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,segmentIds:s}=t,{numSegments:i}=n,o=a.shape.length,l=[],u=0,d=N.getAxesPermutation([u],o),h=a;d!=null&&(h=vr({inputs:{x:a},backend:r,attrs:{perm:d}}),l.push(h),u=N.getInnerMostAxes(1,o)[0]);let p=N.segment_util.computeOutShape(h.shape,u,i),c=w.sizeFromShape([h.shape[u]]),f=ve({inputs:{x:h},backend:r,attrs:{shape:[-1,c]}});l.push(f);let m=ch(a.dtype),g=(b,v,S,T,E)=>{let R=b.shape[0],_=b.shape[1],M=N.segment_util.segOpComputeOptimalWindowSize(_,E),I={windowSize:M,inSize:_,batchSize:R,numSegments:E},z=new Pue(I,v),O=r.compileAndRun(z,[b,S],T);if(l.push(O),O.shape[1]===E)return O;let j=w8({backend:r,attrs:{start:0,stop:E,step:1,dtype:"float32"}}),X=I8({inputs:{x:j},backend:r,attrs:{reps:[_/M]}});return l.push(j),l.push(X),g(O,v,X,T,E)},y=g(f,"unsortedSegmentSum",s,m,i),A=ve({inputs:{x:y},backend:r,attrs:{shape:p}}),x=A;if(d!=null){l.push(A);let b=N.getUndoAxesPermutation(d);x=vr({inputs:{x},backend:r,attrs:{perm:b}})}return l.forEach(b=>r.disposeIntermediateTensorInfo(b)),x}var zue={kernelName:dh,backendName:"webgl",kernelFunc:_ue},Oue=[Wte,Ute,Hte,Xte,Yte,ere,rre,are,lre,dre,cre,gre,xre,kre,Tre,Cre,Rre,Pre,zre,Dre,Vre,Xre,Yre,Qre,sne,one,pne,wte,fne,xne,kne,Ene,Mne,$ne,_ne,One,Bne,Une,Hne,Kne,Zne,Jne,tae,nae,oae,uae,hae,mae,yae,vae,Sae,Eae,Fae,_ae,zae,Dae,Bae,Vae,Gae,Hae,Zae,Qae,rse,ase,ose,dse,fse,Ase,vte,bse,yne,kse,Tse,Ese,Ite,$se,Ose,Lse,Use,Hse,Zse,Qse,nie,oie,die,hie,gie,Aie,bie,Iie,Tie,Cie,Rie,Fie,zie,Bie,Gie,Jie,Ete,roe,soe,loe,poe,tne,foe,goe,Aoe,voe,Soe,Tte,Noe,Coe,rne,Kie,Moe,_oe,Loe,Mte,Uoe,Hoe,Zoe,Qoe,nle,sle,lle,ple,cle,gle,xle,kle,Tle,Ele,Fle,qre,Zie,_le,Ole,Lle,Wle,Ule,jle,qle,Xle,Yle,eue,rue,aue,oue,uue,pue,cue,Xie,Dte,gue,xue,wue,Tue,Eue,Lte,Mue,$ue,zue,moe];for(let e of Oue)Gn(e);var za=Y();za.registerFlag("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE",()=>15);za.registerFlag("WEBGPU_CPU_FORWARD",()=>!0);za.registerFlag("WEBGPU_MATMUL_WORK_PER_THREAD",()=>4);za.registerFlag("WEBGPU_USE_NAIVE_CONV2D",()=>!1);za.registerFlag("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE",()=>!1);za.registerFlag("WEBGPU_CONV_SEPARATE_IM2COL_SHADER",()=>!1);za.registerFlag("WEBGPU_USE_LOW_POWER_GPU",()=>!1);za.registerFlag("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e3);za.registerFlag("WEBGPU_USE_PROFILE_TOOL",()=>!1);za.registerFlag("WEBGPU_USE_IMPORT",()=>!1);var Due="return a + b;",Lue="return areal * breal - aimag * bimag;",Bue="return areal * bimag + aimag * breal;",Wue="return a / b;",Vue="return a * b;",Uue="return (a - b) * (a - b);",Gue="return a - b;",jue="return f32(a == b);",Hue="return vec4<f32>(a == b);",que="return f32(a > b);",Kue="return vec4<f32>(a > b);",Xue="return f32(a >= b);",Zue="return vec4<f32>(a >= b);",Yue="return f32(a < b);",Jue="return vec4<f32>(a < b);",Que="return f32(a <= b);",ede="return vec4<f32>(a <= b);",tde="return f32(f32(a) >= 1.0 && f32(b) >= 1.0);",rde=`return (vec4<f32>(a >= vec4<f32>(1.0)) *
|
|
vec4<f32>(b >= vec4<f32>(1.0)));`,nde=`
|
|
if (isnan(a)) { return a; }
|
|
if (isnan(b)) { return b; }
|
|
`,S8=`
|
|
if (isNaN.r) {
|
|
resultTemp.r = uniforms.NAN;
|
|
}
|
|
if (isNaN.g) {
|
|
resultTemp.g = uniforms.NAN;
|
|
}
|
|
if (isNaN.b) {
|
|
resultTemp.b = uniforms.NAN;
|
|
}
|
|
if (isNaN.a) {
|
|
resultTemp.a = uniforms.NAN;
|
|
}
|
|
`,ade=`
|
|
let s = sign(a) * sign(b);
|
|
let ia = i32(round(a));
|
|
let ib = i32(round(b));
|
|
return f32(idiv(ia, ib, s));
|
|
`,sde=`
|
|
let ia = vec4<i32>(round(a));
|
|
let ib = vec4<i32>(round(b));
|
|
let cond = ib != vec4<i32>(0);
|
|
var resultTemp = vec4<i32>(0);
|
|
let s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
resultTemp[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
resultTemp[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
resultTemp[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
resultTemp[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4<f32>(resultTemp);
|
|
`,ide="return f32(a != b);",ode="return vec4<f32>(a != b);",lde=`
|
|
if(a < 0.0 && floor(b) < b) {
|
|
return uniforms.NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
if (round(abs(b) % 2.0) != 1.0) {
|
|
return pow(abs(a), b);
|
|
}
|
|
return sign(a) * pow(abs(a), b);
|
|
`,ude=`
|
|
let isModRound1Bool = vec4<i32>(round(abs(b) % vec4<f32>(2.0))) == vec4<i32>(1);
|
|
let isModRound1 = vec4<f32>(isModRound1Bool);
|
|
let multiplier = sign(a) * isModRound1 + (vec4<f32>(1.0) - isModRound1);
|
|
var resultTemp = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
let isExpZero = b == vec4<f32>(0.0);
|
|
if (isExpZero.r) {
|
|
resultTemp.r = 1.0;
|
|
}
|
|
if (isExpZero.g) {
|
|
resultTemp.g = 1.0;
|
|
}
|
|
if (isExpZero.b) {
|
|
resultTemp.b = 1.0;
|
|
}
|
|
if (isExpZero.a) {
|
|
resultTemp.a = 1.0;
|
|
}
|
|
let isNaN = a < vec4<f32>(0.0) & floor(b) < b;
|
|
${S8}
|
|
return resultTemp;
|
|
`,dde="if (a < 0.0) { return b * a; } return a;",pde=`
|
|
let aLessThanZero = vec4<f32>(a < vec4<f32>(0.0));
|
|
return (aLessThanZero * (b * a)) + ((vec4<f32>(1.0) - aLessThanZero) * a);
|
|
`;function rw(e,t){let r=t?S8:nde;return t?`
|
|
var resultTemp = vec4<f32>(${e}(a, b));
|
|
let isNaN = isnanVec4(a) | isnanVec4(b);
|
|
`+r+`
|
|
return resultTemp;
|
|
`:r+`
|
|
return ${e}(a, b);
|
|
`}function Wh(e,t){switch(e){case 0:return Vue;case 1:return Due;case 2:return Gue;case 3:return Wue;case 4:return t?Hue:jue;case 5:return t?Kue:que;case 6:return t?Zue:Xue;case 7:return t?Jue:Yue;case 8:return t?ede:Que;case 9:return t?rde:tde;case 10:return t?ode:ide;case 11:return Uue;case 12:return t?sde:ade;case 14:return t?pde:dde;case 15:return rw("max",t);case 16:return rw("min",t);case 13:return t?ude:lde;case 17:return Lue;case 18:return Bue;default:throw new Error(`BinaryType ${e} is not implemented!`)}}var hde="return abs(a);",cde="return ceil(a);",fde="return cos(a);",mde=`
|
|
let e2x = exp(-a);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,gde="return exp(a) - 1.0;",yde="if (a >= 0.0) { return a; } return (exp(a) - 1.0);",Ade=`
|
|
var resFloat = exp(a) - vec4<f32>(1.0);
|
|
if (a.r >= 0.0) {
|
|
resFloat.r = a.r;
|
|
}
|
|
if (a.g >= 0.0) {
|
|
resFloat.g = a.g;
|
|
}
|
|
if (a.b >= 0.0) {
|
|
resFloat.b = a.b;
|
|
}
|
|
if (a.a >= 0.0) {
|
|
resFloat.a = a.a;
|
|
}
|
|
return resFloat;
|
|
`,xde="return exp(a);",bde="return floor(a);",vde="return a;",wde=`if (a < 0.0) { return 1.0/0.0; }
|
|
return log(a);`,kde="return f32(!(a >= 1.0));",Ide="return -a;",Sde="if (a < 0.0) { return uniforms.alpha * a; } return a;",Tde=`
|
|
let aLessThanZero = vec4<f32>(a < vec4<f32>(0.0));
|
|
return (aLessThanZero * (uniforms.alpha * a)) + ((vec4<f32>(1.0) - aLessThanZero) * a);
|
|
`,Nde="if(a < 0.0) { return 0.0; } return a;",Cde="return clamp(a, 0.0, 6.0);",Ede="return clamp(a, vec4<f32>(0.0, 0.0, 0.0, 0.0), vec4<f32>(6.0, 6.0, 6.0, 6.0));",Rde=`
|
|
var resFloat = a * vec4<f32>(a >= vec4<f32>(0.0));
|
|
let isNaN = isnanVec4(a);
|
|
|
|
if (isNaN.r) {
|
|
resFloat.r = a.r;
|
|
}
|
|
if (isNaN.g) {
|
|
resFloat.g = a.g;
|
|
}
|
|
if (isNaN.b) {
|
|
resFloat.b = a.b;
|
|
}
|
|
if (isNaN.a) {
|
|
resFloat.a = a.a;
|
|
}
|
|
return resFloat;
|
|
`,Mde="return 1.0/sqrt(a);",Fde="return 1.0 / (1.0 + exp(-1.0 * a));",$de="return sin(a);",Pde=`
|
|
let e2x = exp(a);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,_de="return sqrt(a);",zde="return a * a;",Ode=`
|
|
let e2x = exp(-2.0 * abs(a));
|
|
return sign(a) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,Dde="return f32(i32((a)));";function fo(e,t){switch(e){case 0:return hde;case 2:return fde;case 3:return mde;case 1:return cde;case 4:return t?Ade:yde;case 5:return xde;case 6:return gde;case 7:return bde;case 8:return vde;case 9:return wde;case 10:return kde;case 11:return Ide;case 14:return t?Tde:Sde;case 12:return t?Rde:Nde;case 13:return t?Ede:Cde;case 15:return Mde;case 18:return Fde;case 16:return $de;case 17:return Pde;case 19:return _de;case 20:return zde;case 21:return Ode;case 22:return Dde;default:throw new Error(`BinaryType ${e} is not implemented!`)}}function ss(e,t=!1){if(e===null)return null;if(e==="linear")return fo(8);if(e==="relu")return fo(12,t);if(e==="elu")return fo(4,t);if(e==="relu6")return fo(13,t);if(e==="prelu")return Wh(14,t);if(e==="sigmoid")return fo(18,t);if(e==="leakyrelu")return fo(14,t);throw new Error(`Activation ${e} has not been implemented for the WebGPU backend.`)}function Lde(e,t){if(Math.max(...e)>3)throw new Error("Cannot symbolically compute strides for rank > 4 tensor.");let r=e.length,n=e.map(s=>`${t}[${s}]`),a=new Array(r-1);a[r-2]=n[r-1];for(let s=r-3;s>=0;--s)a[s]=`(${a[s+1]} * ${n[s+1]})`;return a}function gr(e){if(e<=1)return"i32";if(e===2)return"vec2<i32>";if(e===3)return"vec3<i32>";if(e===4)return"vec4<i32>";throw Error(`GPU for rank ${e} is not yet supported`)}function pf(e,t){return e==="float32"?t?"vec4<f32>":"f32":e==="int32"||e==="bool"?t?"vec4<i32>":"i32":e}function yb(){return`
|
|
@stage(compute) @workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ)
|
|
`}function Ui(){return`
|
|
${yb()}
|
|
fn main(@builtin(local_invocation_id) LocalId : vec3<u32>,
|
|
@builtin(global_invocation_id) GlobalId : vec3<u32>,
|
|
@builtin(num_workgroups) NumWorkgroups: vec3<u32>) {
|
|
localId = LocalId;
|
|
globalId = GlobalId;
|
|
numWorkgroups = NumWorkgroups;
|
|
`}function tt(){return`
|
|
${Ui()}
|
|
let index = getGlobalIndex();
|
|
`}function Bde(e,t,r,n=!1){let a=[];if(a.push(`
|
|
let workGroupSizeX = ${r.workGroupSize[0]}u;
|
|
let workGroupSizeY = ${r.workGroupSize[1]}u;
|
|
let workGroupSizeZ = ${r.workGroupSize[2]}u;
|
|
|
|
var<private> localId: vec3<u32>;
|
|
var<private> globalId: vec3<u32>;
|
|
var<private> numWorkgroups: vec3<u32>;
|
|
|
|
// Only used when the y/z dimension of workgroup size is 1.
|
|
fn getGlobalIndex() -> i32 {
|
|
if (numWorkgroups.y == 1u && numWorkgroups.z == 1u) {
|
|
return i32(globalId.x);
|
|
}
|
|
|
|
let localInvocationIndex = localId.z * workGroupSizeX * workGroupSizeY +
|
|
localId.y * workGroupSizeX + localId.x;
|
|
let workGroupID = (globalId - localId)/vec3<u32>(
|
|
workGroupSizeX, workGroupSizeY, workGroupSizeZ);
|
|
|
|
return i32((workGroupID.z * numWorkgroups.x * numWorkgroups.y +
|
|
workGroupID.y * numWorkgroups.x + workGroupID.x) *
|
|
(workGroupSizeX * workGroupSizeY * workGroupSizeZ) +
|
|
localInvocationIndex);
|
|
}
|
|
`),n===!0)return a.push(`
|
|
struct Uniform {
|
|
size : i32,
|
|
numChannels : i32,
|
|
outShapeStrides : vec2<i32>,
|
|
dispatchSize : vec3<u32>,
|
|
};
|
|
|
|
@group(0) @binding(0) var<storage, write> result: array<${pf(t.dtype,r.isVec4)}>;
|
|
@group(0) @binding(2) var<uniform> uniforms: Uniform;
|
|
`),[nw,a.join(`
|
|
`),aw(t.shape),r.getUserCode()].join(`
|
|
`);let s="struct Uniforms { NAN : f32, ";r.variableNames.forEach((d,h)=>{s+=`${d.charAt(0).toLowerCase()+d.slice(1)}Shape : ${gr(e[h].shape.length)}, `}),s+=`outShape : ${gr(t.shape.length)}, `;let i=t.shape.length-1;s+=`
|
|
outShapeStrides: ${gr(i)}, `,r.size&&(s+="size : i32, "),r.uniforms&&(s+=r.uniforms),s+="};",a.push(s),r.atomic?a.push(`
|
|
@group(0) @binding(0) var<storage, read_write> result: array<atomic<i32>>;
|
|
`):a.push(`
|
|
@group(0) @binding(0) var<storage, write> result: array<${pf(t.dtype,r.isVec4)}>;
|
|
`),r.variableNames.forEach((d,h)=>{a.push(`
|
|
@group(0) @binding(${1+h}) var<storage, read> ${d}: array<${pf(e[h].dtype,r.isVec4)}>;
|
|
`)}),s!==""&&a.push(`
|
|
@group(0) @binding(${1+r.variableNames.length}) var<uniform> uniforms: Uniforms;
|
|
`);let[o,l]=Hde(t.shape,r.dispatchLayout),u=[nw,a.join(`
|
|
`),aw(t.shape),o,Wde(t.shape.length)];if(r.atomic||u.push(Vde(t.shape,t.dtype,r.isVec4)),l===t.shape.length){let d=e.map(h=>Ude(h,t.shape,r.isVec4,r.dispatchLayout.x.length===t.shape.length)).join(`
|
|
`);u.push(d)}return u.push(r.getUserCode()),u.join(`
|
|
`)}var nw=`
|
|
// Checks whether coordinates lie within the bounds of the shape.
|
|
fn coordsInBounds2D(coord : vec2<i32>, shape : vec2<i32>) -> bool {
|
|
return all(coord >= vec2<i32>(0)) && all(coord < shape);
|
|
}
|
|
fn coordsInBounds3D(coord : vec3<i32>, shape : vec3<i32>) -> bool {
|
|
return all(coord >= vec3<i32>(0)) && all(coord < shape);
|
|
}
|
|
fn coordsInBounds4D(coord : vec4<i32>, shape : vec4<i32>) -> bool {
|
|
return all(coord >= vec4<i32>(0)) && all(coord < shape);
|
|
}
|
|
|
|
fn getIndexFromCoords1D(coord : i32, shape : i32) -> i32 {
|
|
return coord;
|
|
}
|
|
fn getIndexFromCoords2D(coords : vec2<i32>, shape : vec2<i32>) -> i32 {
|
|
return dot(coords, vec2<i32>(shape.y, 1));
|
|
}
|
|
fn getIndexFromCoords3D(coords : vec3<i32>, shape : vec3<i32>) -> i32 {
|
|
return dot(coords, vec3<i32>(shape.y * shape.z, shape.z, 1));
|
|
}
|
|
fn getIndexFromCoords4D(coords : vec4<i32>, shape : vec4<i32>) -> i32 {
|
|
return dot(coords, vec4<i32>(
|
|
shape.y * shape.z * shape.w, shape.z * shape.w, shape.w, 1));
|
|
}
|
|
|
|
fn idiv(a: i32, b: i32, sign: f32) -> i32 {
|
|
var res: i32 = a / b;
|
|
let mod: i32 = a % b;
|
|
if (sign < 0. && mod != 0) {
|
|
res = res - 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
// NaN defination in IEEE 754-1985 is :
|
|
// - sign = either 0 or 1.
|
|
// - biased exponent = all 1 bits.
|
|
// - fraction = anything except all 0 bits (since all 0 bits represents infinity).
|
|
// https://en.wikipedia.org/wiki/IEEE_754-1985#Representation_of_non-numbers
|
|
fn isnan(val: f32) -> bool {
|
|
let floatToUint: u32 = bitcast<u32>(val);
|
|
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
|
|
}
|
|
fn isnanVec4(val : vec4<f32>) -> vec4<bool> {
|
|
return vec4<bool>(isnan(val[0]), isnan(val[1]), isnan(val[2]), isnan(val[3]));
|
|
}
|
|
`;function Wde(e){let t="";switch(e){case 0:case 1:t+=`
|
|
fn getOutputIndexFromCoords(coords : i32) -> i32 {
|
|
return coords;
|
|
}
|
|
`;break;case 2:t+=`
|
|
fn getOutputIndexFromCoords(coords : vec2<i32>) -> i32 {
|
|
return dot(coords, vec2<i32>(uniforms.outShapeStrides, 1));
|
|
}
|
|
`;break;case 3:t+=`
|
|
fn getOutputIndexFromCoords(coords : vec3<i32>) -> i32 {
|
|
return dot(coords, vec3<i32>(uniforms.outShapeStrides.x, uniforms.outShapeStrides.y, 1));
|
|
}
|
|
`;break;case 4:t+=`
|
|
fn getOutputIndexFromCoords(coords : vec4<i32>) -> i32 {
|
|
return dot(coords, vec4<i32>(
|
|
uniforms.outShapeStrides.x, uniforms.outShapeStrides.y, uniforms.outShapeStrides.z, 1));
|
|
}
|
|
`;break;default:w.assert(!1,()=>`Unsupported ${e}D shape`);break}return t}function Vde(e,t,r){let n=e.length,a=pf(t,r),s;if(r?s=`fn setOutputAtIndex(flatIndex : i32, value : vec4<f32>) {
|
|
result[flatIndex] = ${a}(value);
|
|
}
|
|
fn setOutputAtIndexI32(flatIndex : i32, value : vec4<i32>) {
|
|
result[flatIndex] = ${a}(value);
|
|
}`:s=`fn setOutputAtIndex(flatIndex : i32, value : f32) {
|
|
result[flatIndex] = ${a}(value);
|
|
}
|
|
fn setOutputAtIndexI32(flatIndex : i32, value : i32) {
|
|
result[flatIndex] = ${a}(value);
|
|
}`,n>=2){let i=["d0","d1","d2","d3"].slice(0,n),o=gr(n);r?s+=`
|
|
fn setOutputAtCoords(${i.map(l=>`${l} : i32`).join(", ")}, value : vec4<f32>) {
|
|
let flatIndex = getOutputIndexFromCoords(${o}(${i.join(", ")}));
|
|
setOutputAtIndex(flatIndex / 4, value);
|
|
}
|
|
fn setOutputAtCoordsI32(${i.map(l=>`${l} : i32`).join(", ")}, value : vec4<i32>) {
|
|
let flatIndex = getOutputIndexFromCoords(${o}(${i.join(", ")}));
|
|
setOutputAtIndexI32(flatIndex / 4, value);
|
|
}
|
|
`:s+=`
|
|
fn setOutputAtCoords(${i.map(l=>`${l} : i32`).join(", ")}, value : f32) {
|
|
let flatIndex = getOutputIndexFromCoords(${o}(${i.join(", ")}));
|
|
setOutputAtIndex(flatIndex, value);
|
|
}
|
|
fn setOutputAtCoordsI32(${i.map(l=>`${l} : i32`).join(", ")}, value : i32) {
|
|
let flatIndex = getOutputIndexFromCoords(${o}(${i.join(", ")}));
|
|
setOutputAtIndexI32(flatIndex, value);
|
|
}
|
|
`}return s}function Ude(e,t,r,n){let a=Gde(e,r);return e.shape.length<=t.length&&(a+=jde(e,t,r,n)),a}function Gde(e,t){let r=e.name,n=e.shape.length,a=gr(n),s="get"+r.charAt(0).toUpperCase()+r.slice(1),i=["d0","d1","d2","d3"].slice(0,n),o=i.map(d=>`${d} : i32`).join(", ");if(n<1)return t?`
|
|
fn ${s}() -> vec4<f32> {
|
|
return vec4<f32>(${r}[0]);
|
|
}
|
|
`:`
|
|
fn ${s}() ->f32 {
|
|
return f32(${r}[0]);
|
|
}
|
|
`;let l=`uniforms.${r.charAt(0).toLowerCase()+r.slice(1)}Shape`,u=`${n}D`;return n===0&&(u="1D"),t?`
|
|
fn ${s}(${o}) -> vec4<f32> {
|
|
return vec4<f32>(${r}[getIndexFromCoords${u}(${a}(${i.join(",")}),
|
|
${l}) / 4]);
|
|
}
|
|
`:`
|
|
fn ${s}(${o}) -> f32 {
|
|
return f32(${r}[getIndexFromCoords${u}(${a}(${i.join(",")}),
|
|
${l})]);
|
|
}
|
|
`}function jde(e,t,r,n){let a=e.name,s=a.charAt(0).toUpperCase()+a.slice(1),i="get"+s+"ByOutput",o=e.shape.length,l=t.length,u=gr(l);if(w.arraysEqual(e.shape,t)&&n)return r?`
|
|
fn ${i}Index(globalIndex : i32) -> vec4<f32> {
|
|
return vec4<f32>(${a}[globalIndex]);
|
|
}
|
|
|
|
fn ${i}Coords(coords : ${u}) -> vec4<f32> {
|
|
return vec4<f32>(${a}[${l>1?"getOutputIndexFromCoords(coords)":"coords"} / 4]);
|
|
}
|
|
`:`
|
|
fn ${i}Index(globalIndex : i32) -> f32 {
|
|
return f32(${a}[globalIndex]);
|
|
}
|
|
|
|
fn ${i}Coords(coords : ${u}) -> f32 {
|
|
return f32(${a}[${l>1?"getOutputIndexFromCoords(coords)":"coords"}]);
|
|
}
|
|
`;let d=N.getBroadcastDims(e.shape,t),h=l-o,p="";if(o===0)return r?`
|
|
fn ${i}Index(globalIndex : i32) -> vec4<f32> {
|
|
return get${s}();
|
|
}
|
|
|
|
fn ${i}Coords(coords : ${u}) -> vec4<f32> {
|
|
return get${s}();
|
|
}
|
|
`:`
|
|
fn ${i}Index(globalIndex : i32) -> f32{
|
|
return get${s}();
|
|
}
|
|
|
|
fn ${i}Coords(coords : ${u}) -> f32{
|
|
return get${s}();
|
|
}
|
|
`;l<2&&d.length>=1?p="coords = 0;":p=d.map(g=>`coords[${g+h}] = 0;`).join(`
|
|
`);let c="";if(l<2&&o>0)c="coords";else if(l>1){let g=gr(o),y=e.shape.map((A,x)=>`coords[${x+h}]`).join(", ");c=`${g}(${y})`}else c="coords";let f=`uniforms.${a.charAt(0).toLowerCase()+a.slice(1)}Shape`,m=`${o}D`;return r?`
|
|
fn ${i}Index(globalIndex : i32) -> vec4<f32> {
|
|
var coords = getCoordsFromIndex(globalIndex);
|
|
${p}
|
|
return ${a}[getIndexFromCoords${m}(${c}, ${f}) / 4];
|
|
}
|
|
|
|
fn ${i}Coords(coordsIn : ${u}) -> vec4<f32> {
|
|
var coords = coordsIn;
|
|
${p}
|
|
return ${a}[getIndexFromCoords${m}(${c}, ${f}) / 4];
|
|
}
|
|
`:`
|
|
fn ${i}Index(globalIndex : i32) -> f32 {
|
|
var coords = getCoordsFromIndex(globalIndex);
|
|
${p}
|
|
return f32(${a}[getIndexFromCoords${m}(${c}, ${f})]);
|
|
}
|
|
|
|
fn ${i}Coords(coordsIn : ${u}) -> f32 {
|
|
var coords = coordsIn;
|
|
${p}
|
|
return f32(${a}[getIndexFromCoords${m}(${c}, ${f})]);
|
|
}
|
|
`}function Hde(e,t){let{x:r,y:n=[],z:a=[]}=t,s=e.length;if(r.length===s)return[`fn getOutputCoords() -> ${gr(s)}{
|
|
let globalIndex = getGlobalIndex();
|
|
return getCoordsFromIndex(globalIndex);
|
|
}
|
|
`,s];let i="",o=[r,n,a],l=0;for(let p=0;p<o.length;p++){let c=o[p];if(c.length!==0)if(l+=c.length,c.length===1)i+=`let d${c[0]} = i32(globalId[${p}]);`;else{let f=Lde(c,"uniforms.outShape");i+=`var index${p} = i32(globalId[${p}]);`;for(let m=0;m<f.length;m++)i+=`let d${c[m]} = index${p} / ${f[m]};`,m===f.length-1?i+=`let d${c[m+1]} = index${p} - d${c[m]} * ${f[m]};`:i+=`index${p} = index${p} - d${c[m]} * ${f[m]};`}}let u=[];for(let p=0;p<l;p++)u.push(`d${p}`);let d=gr(l),h=`fn getOutputCoords() -> ${d} {
|
|
${i}
|
|
`;return u.length===0?h+=`return ${d}(0); }`:h+=`return ${d}(${u.join(",")}); }`,[h,l]}function aw(e){let t=e.length;if(t<=1)return"fn getCoordsFromIndex(index : i32) -> i32 { return index; }";let r=w.computeStrides(e),n=gr(t),a=[];for(let i=0;i<t;i++)a.push(`d${i}`);if(r.length===1)return` fn getCoordsFromIndex(index : i32) -> vec2<i32> {
|
|
let d0 = index / uniforms.outShapeStrides; let d1 = index - d0 * uniforms.outShapeStrides;
|
|
return vec2<i32>(d0, d1);
|
|
}`;let s="var index2 = index;"+r.map((i,o)=>{let l=`let ${a[o]} = index2 / uniforms.outShapeStrides[${o}]`,u=o===r.length-1?`let ${a[o+1]} = index2 - ${a[o]} * uniforms.outShapeStrides[${o}]`:`index2 = index2 - ${a[o]} * uniforms.outShapeStrides[${o}]`;return`${l}; ${u};`}).join("");return`
|
|
fn getCoordsFromIndex(index : i32) -> ${n} {
|
|
${s}
|
|
return ${n}(${a.join(",")});
|
|
}
|
|
`}var T8={};Le(T8,{ArrayBufferToTypedArray:()=>C8,GPUBytesPerElement:()=>Qy,computeDispatch:()=>Oe,computeWorkGroupSizeForConv2d:()=>Ab,computeWorkGroupSizeForMatMul:()=>N8,computeWorkPerThreadForConv2d:()=>xb,flatDispatchLayout:()=>Xe,isWebGPUSupported:()=>bb,tilesFitEvenlyIntoShape:()=>Za});var So=e=>{let t=1;for(let r=0;r<e.length;r++)t*=e[r];return t};function Za(e,t){if(e.length!==t.length)throw new Error(`Cannot compute whether rank ${e.length} tiles fit evenly into rank ${t.length} shape - ranks must match.`);return t.every((r,n)=>r%e[n]===0)}function Oe(e,t,r=[1,1,1],n=[1,1,1]){let[a,s,i]=[Math.ceil(So(e.x.map(o=>t[o]))/(r[0]*n[0])),e.y?Math.ceil(So(e.y.map(o=>t[o]))/(r[1]*n[1])):1,e.z?Math.ceil(So(e.z.map(o=>t[o]))/(r[2]*n[2])):1];return[a,s,i]}function Ab(e,t){let r=So(e.x.map(a=>t[a])),n=So(e.y.map(a=>t[a]));return r<=4?[4,16,1]:n<=4?[16,4,1]:[16,16,1]}function N8(e,t,r){return e===1?[32,1,1]:r===1?[1,32,1]:[8,8,1]}function xb(e,t){let r=So(e.x.map(a=>t[a])),n=So(e.y.map(a=>t[a]));return r<=4?[1,2,1]:n<=4?[2,1,1]:[2,2,1]}function Xe(e){return{x:e.map((t,r)=>r)}}function Qy(e){if(e==="float32"||e==="int32"||e==="bool"||e==="string")return 4;if(e==="complex64")return 8;throw new Error(`Unknown dtype ${e}`)}function C8(e,t){if(t==="float32")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"||t==="string")return Uint8Array.from(new Int32Array(e));throw new Error(`Unknown dtype ${t}`)}function bb(){return(typeof window!="undefined"||typeof WorkerGlobalScope!="undefined")&&!!navigator.gpu}function E8(e,t,r,n){return w.assert(n%4===0&&e[0]===4,()=>"tileInner must be divisible by 4. And ColPerThread must be 4"),`
|
|
var<workgroup> mm_Asub : array<array<vec4<f32>, ${n/e[0]}>, ${t}>;
|
|
var<workgroup> mm_Bsub : array<array<vec4<f32>, ${r/e[0]}>, ${n}>;
|
|
|
|
let RowPerThread = ${e[1]};
|
|
let ColPerThread = ${e[0]};
|
|
let TileInner = ${n};
|
|
|
|
${Ui()}
|
|
|
|
let tileRow = ${t===1?"0":"i32(localId.y) * RowPerThread"};
|
|
let tileCol = i32(localId.x);
|
|
|
|
let globalRow = ${t===1?"0":"i32(globalId.y) * RowPerThread"};
|
|
let globalCol = i32(globalId.x);
|
|
let numTiles = (uniforms.dimInner - 1) / TileInner + 1;
|
|
|
|
var acc: array<vec4<f32>, RowPerThread>;
|
|
var ACached : vec4<f32>;
|
|
var BCached : array<vec4<f32>, 4>;
|
|
|
|
// Loop over shared dimension.
|
|
var globalColA = tileCol;
|
|
let RowPerThreadB = TileInner / i32(workGroupSizeY);
|
|
let tileRowB = i32(localId.y) * RowPerThreadB;
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
// Load one tile of A into local memory.
|
|
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
|
|
let inputRow = tileRow + innerRow;
|
|
let inputCol = tileCol;
|
|
mm_Asub[inputRow][inputCol] = mm_readA(globalRow + innerRow, globalColA, globalId);
|
|
}
|
|
globalColA = globalColA + TileInner / ColPerThread;
|
|
|
|
// Load one tile of B into local memory.
|
|
for (var innerRow = 0; innerRow < RowPerThreadB; innerRow = innerRow + 1) {
|
|
let inputRow = tileRowB + innerRow;
|
|
let inputCol = tileCol;
|
|
mm_Bsub[inputRow][inputCol] = mm_readB(t * TileInner + inputRow, globalCol, globalId);
|
|
}
|
|
|
|
workgroupBarrier();
|
|
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < TileInner / ColPerThread; k = k + 1) {
|
|
BCached[0] = mm_Bsub[k * ColPerThread][tileCol];
|
|
BCached[1] = mm_Bsub[k * ColPerThread + 1][tileCol];
|
|
BCached[2] = mm_Bsub[k * ColPerThread + 2][tileCol];
|
|
BCached[3] = mm_Bsub[k * ColPerThread + 3][tileCol];
|
|
|
|
for (var i = 0; i < RowPerThread; i = i + 1) {
|
|
ACached = mm_Asub[tileRow + i][k];
|
|
acc[i] = BCached[0] * ACached.x + acc[i];
|
|
acc[i] = BCached[1] * ACached.y + acc[i];
|
|
acc[i] = BCached[2] * ACached.z + acc[i];
|
|
acc[i] = BCached[3] * ACached.w + acc[i];
|
|
}
|
|
}
|
|
|
|
workgroupBarrier();
|
|
}
|
|
|
|
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
|
|
mm_write(globalRow + innerRow,
|
|
globalCol,
|
|
acc[innerRow], globalId);
|
|
}
|
|
}`}var qde=class{constructor(e,t,r,n=null,a=null,s=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[8,8,1],this.isVec4=!0,this.outputShape=t,this.dispatchLayout={x:[2],y:[1],z:[0]},t[1]===1?this.elementsPerThread=[4,1,1]:this.elementsPerThread=[4,4,1],this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread);let i=n!=null,o=s!=null;i&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),this.tileAOuter=t[1]===1?1:this.workGroupSize[1]*this.elementsPerThread[1],this.tileBOuter=this.workGroupSize[0]*this.elementsPerThread[0],this.tileInner=this.tileBOuter,this.aShape=e,this.addBias=i,this.activation=a,this.hasPreluActivationWeights=o,[this.fitA,this.fitB]=this.getShapeFit(),this.shaderKey=`matMulPackedVec4_${this.activation}_${this.fitA}_${this.fitB}_${this.elementsPerThread}`}getShapeFit(){let e=this.aShape[2],t=this.outputShape[2],r=[this.outputShape[0],e,t],n=[this.tileAOuter,this.tileInner],a=[this.tileInner,this.tileBOuter];return[Za(n,this.aShape.slice(1)),Za(a,r.slice(1))]}getUserCode(){let e=this.fitA?"return A[batch * batchASize + row * uniforms.dimInner / 4 + col]":`if (coordsInBounds2D(vec2<i32>(row, col * 4), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
|
|
return A[batch * batchASize + row * uniforms.dimInner / 4 + col];
|
|
}
|
|
return vec4<f32>(0.0)`,t=this.fitB?"return B[batch * batchBSize + row * uniforms.dimBOuter / 4 + col]":`if(coordsInBounds2D(vec2<i32>(row, col * 4), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return B[batch * batchBSize + row * uniforms.dimBOuter / 4 + col];
|
|
}
|
|
return vec4<f32>(0.0)`,r="",n="";if(this.activation){let s=ss(this.activation,this.isVec4);this.hasPreluActivationWeights?r=`fn activation(a : vec4<f32>, outCoord : vec3<i32>) -> vec4<f32> {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${s}
|
|
}`:r=`
|
|
fn activation(a : vec4<f32>, outCoord : vec3<i32>) -> vec4<f32> {
|
|
${s}
|
|
}`,n="value = activation(value, outCoord);"}let a=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${r}
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
|
|
let batchASize = uniforms.aShape[1] * uniforms.aShape[2] / 4;
|
|
let batch = i32(globalId.z);
|
|
${e};
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
|
|
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2] / 4;
|
|
let batch = i32(globalId.z);
|
|
${t};
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueIn : vec4<f32>, globalId : vec3<u32>) {
|
|
if (row < uniforms.aShape[1] && col * 4 < uniforms.bShape[2])
|
|
{
|
|
var value = valueIn;
|
|
let batch = i32(globalId.z);
|
|
let outCoord = vec3<i32>(batch, row, col * 4);
|
|
${a}
|
|
${n}
|
|
setOutputAtCoords(outCoord[0], outCoord[1], outCoord[2], value);
|
|
}
|
|
}
|
|
${E8(this.elementsPerThread,this.tileAOuter,this.tileBOuter,this.tileInner)}
|
|
`}};function vb(e,t){let r=t[1]*e[1],n=t[0]*e[0],a=r>n?r:n;return`
|
|
var<workgroup> mm_Asub : array<array<f32, ${a}>, ${r}>;
|
|
var<workgroup> mm_Bsub : array<array<f32, ${n}>, ${a}>;
|
|
${Ui()}
|
|
let tileRow = i32(localId.y) * ${e[1]};
|
|
let tileCol = i32(localId.x) * ${e[0]};
|
|
|
|
let globalRow = i32(globalId.y) * ${e[1]};
|
|
let globalCol = i32(globalId.x) * ${e[0]};
|
|
|
|
let numTiles = (uniforms.dimInner - 1) / ${a} + 1;
|
|
|
|
var acc : array<array<f32, ${e[0]}>, ${e[1]}>;
|
|
var ACached : f32;
|
|
var BCached : array<f32, ${e[0]}>;
|
|
|
|
// Without this initialization strange values show up in acc.
|
|
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
|
|
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
|
|
acc[innerRow][innerCol] = 0.0;
|
|
}
|
|
}
|
|
|
|
let ColPerThreadA = ${a} / ${t[0]};
|
|
let tileColA = i32(localId.x) * ColPerThreadA;
|
|
let RowPerThreadB = ${a} / ${t[1]};
|
|
let tileRowB = i32(localId.y) * RowPerThreadB;
|
|
|
|
// Loop over shared dimension.
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
// Load one tile of A into local memory.
|
|
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
|
|
for (var innerCol = 0; innerCol < ColPerThreadA; innerCol = innerCol + 1) {
|
|
let inputRow = tileRow + innerRow;
|
|
let inputCol = tileColA + innerCol;
|
|
|
|
mm_Asub[inputRow][inputCol] = mm_readA(
|
|
globalRow + innerRow,
|
|
t * ${a} + inputCol, globalId);
|
|
}
|
|
}
|
|
// Load one tile of B into local memory.
|
|
for (var innerRow = 0; innerRow < RowPerThreadB; innerRow = innerRow + 1) {
|
|
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
|
|
let inputRow = tileRowB + innerRow;
|
|
let inputCol = tileCol + innerCol;
|
|
|
|
mm_Bsub[inputRow][inputCol] = mm_readB(
|
|
t * ${a} + inputRow,
|
|
globalCol + innerCol, globalId);
|
|
}
|
|
}
|
|
|
|
workgroupBarrier();
|
|
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < ${a}; k = k + 1) {
|
|
for (var inner = 0; inner < ${e[0]}; inner = inner + 1) {
|
|
BCached[inner] = mm_Bsub[k][tileCol + inner];
|
|
}
|
|
|
|
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
|
|
ACached = mm_Asub[tileRow + innerRow][k];
|
|
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
|
|
acc[innerRow][innerCol] = acc[innerRow][innerCol] + ACached * BCached[innerCol];
|
|
}
|
|
}
|
|
}
|
|
|
|
workgroupBarrier();
|
|
}
|
|
|
|
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
|
|
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
|
|
|
|
if ((globalCol + innerCol) < uniforms.dimBOuter &&
|
|
(globalRow + innerRow) < uniforms.dimAOuter) {
|
|
mm_write(globalRow + innerRow,
|
|
globalCol + innerCol,
|
|
acc[innerRow][innerCol], globalId);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`}function Kde(e){return`
|
|
let TileSize = ${e[0]*4};
|
|
var<workgroup> mm_Asub : array<vec4<f32>, ${e[0]}>;
|
|
|
|
${Ui()}
|
|
let tileCol = i32(localId.x);
|
|
let globalCol = i32(globalId.x);
|
|
let globalRow = i32(globalId.y);
|
|
|
|
let numTiles = (uniforms.dimInner - 1) / TileSize + 1;
|
|
|
|
// Without this initialization strange values show up in acc.
|
|
var acc = 0.0;
|
|
|
|
// Loop over shared dimension.
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
// Load one tile of A into local memory.
|
|
let colA = t * TileSize + tileCol * 4;
|
|
mm_Asub[tileCol] = vec4<f32>(mm_readA(globalRow, colA, globalId),
|
|
mm_readA(globalRow, colA + 1, globalId),
|
|
mm_readA(globalRow, colA + 2, globalId),
|
|
mm_readA(globalRow, colA + 3, globalId));
|
|
workgroupBarrier();
|
|
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < TileSize / 4; k = k + 1) {
|
|
let rowB = t * TileSize + k * 4;
|
|
let BCached = vec4<f32>(mm_readB(rowB, globalCol, globalId),
|
|
mm_readB(rowB + 1, globalCol, globalId),
|
|
mm_readB(rowB + 2, globalCol, globalId),
|
|
mm_readB(rowB + 3, globalCol, globalId));
|
|
|
|
let ACached = mm_Asub[k];
|
|
acc = acc + dot(ACached, BCached);
|
|
}
|
|
|
|
workgroupBarrier();
|
|
}
|
|
|
|
if (globalRow < uniforms.dimAOuter && globalCol < uniforms.dimBOuter) {
|
|
mm_write(globalRow, globalCol, acc, globalId);
|
|
}
|
|
}
|
|
`}var R8=class{constructor(e,t,r,n=!1,a=!1,s=null,i=null,o=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[16,16,1],this.outputShape=t,this.dispatchLayout={x:[2],y:[1],z:[0]};let l=n?e[1]:e[2];this.workGroupSize=N8(t[1],l,t[2]),(t[1]===1||t[2]===1)&&(r=1),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[r,r,1]),w.arraysEqual(this.dispatch,[1,1,1])&&(r=1,this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[r,r,1]));let u=s!=null,d=o!=null;u&&this.variableNames.push("bias"),d&&this.variableNames.push("preluActivationWeights"),this.workPerThread=r,this.aShape=e,this.transposeA=n,this.transposeB=a,this.addBias=u,this.activation=i,this.hasPreluActivationWeights=d;let h=this.outputShape[2],p=this.transposeB?[this.outputShape[0],h,l]:[this.outputShape[0],l,h];[this.fitA,this.fitB]=this.getShapeFit(p),this.shaderKey=`matMulPacked_${this.workPerThread}_${n}_${a}_${this.activation}_${this.fitA}_${this.fitB}_${this.outputShape[1]>1}`}getShapeFit(e){let t=this.workGroupSize[1]*this.workPerThread,r=this.workGroupSize[0]*this.workPerThread,n=t>r?t:r;this.outputShape[1]===1&&(n*=4),w.assert(n%this.workGroupSize[0]===0&&n%this.workGroupSize[1]===0,()=>"tileInner must be multiple of workgroupsize.x and workgroupsize.y");let a=[t,n],s=[n,r];return[Za(a,this.aShape.slice(1)),Za(s,e.slice(1))]}getUserCode(){let e;this.transposeA===!1?e=this.fitA?"return A[batch * batchASize + row * uniforms.dimInner + col];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
|
|
return A[batch * batchASize + row * uniforms.dimInner + col];
|
|
}
|
|
return 0.0;`:e=this.fitA?"return A[batch * batchASize + col * uniforms.dimAOuter + row];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
|
|
return A[batch* batchASize + col * uniforms.dimAOuter + row];
|
|
}
|
|
return 0.0;`;let t;this.transposeB===!1?t=this.fitB?"return B[batch * batchBSize + row * uniforms.dimBOuter + col];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return B[batch * batchBSize + row * uniforms.dimBOuter + col];
|
|
}
|
|
return 0.0;`:t=this.fitB?"return B[batch * batchBSize + col * uniforms.dimInner + row];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return B[batch * batchBSize + col * uniforms.dimInner + row];
|
|
}
|
|
return 0.0;`;let r="",n="";if(this.activation){let s=ss(this.activation,!1);this.hasPreluActivationWeights?r=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${s}
|
|
}`:r=`
|
|
fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
${s}
|
|
}
|
|
`,n="value = activation(value, outCoord);"}let a=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${r}
|
|
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
|
|
let batch = i32(globalId.z);
|
|
${e}
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
let batch = i32(globalId.z);
|
|
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
|
|
${t}
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueIn : f32, globalId : vec3<u32>) {
|
|
var value = valueIn;
|
|
let batch = i32(globalId.z);
|
|
let outCoord = vec3<i32>(batch, row, col);
|
|
${a}
|
|
${n}
|
|
setOutputAtCoords(batch, row, col, value);
|
|
}
|
|
${this.outputShape[1]>1?vb([this.workPerThread,this.workPerThread,1],this.workGroupSize):Kde(this.workGroupSize)}
|
|
`}};function Xde(){return`
|
|
var<workgroup> sumValues : array<f32, workGroupSizeX>;
|
|
${Ui()}
|
|
let coords = getOutputCoords();
|
|
let batch = coords[0];
|
|
let row = coords[1];
|
|
let col = coords[2];
|
|
var sum = 0.0;
|
|
let Length = uniforms.dimInner;
|
|
for (var k = i32(localId.x); k < Length; k = k + i32(workGroupSizeX)) {
|
|
let dataA = mm_readA(batch, row, k);
|
|
let dataB = mm_readB(batch, k, col);
|
|
sum = sum + dataA * dataB;
|
|
}
|
|
sumValues[localId.x] = sum;
|
|
workgroupBarrier();
|
|
|
|
for(var currentSize = workGroupSizeX / 2u; currentSize > 1u;
|
|
currentSize = currentSize / 2u) {
|
|
if (localId.x < currentSize)
|
|
{
|
|
sumValues[localId.x] = sumValues[localId.x] + sumValues[localId.x + currentSize];
|
|
}
|
|
workgroupBarrier();
|
|
}
|
|
|
|
if (localId.x == 0u) {
|
|
sum = sumValues[0] + sumValues[1];
|
|
mm_write(batch, row, col, sum);
|
|
}
|
|
}
|
|
`}var Zde=class{constructor(e,t=!1,r=!1,n=null,a=null,s=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[256,1,1],this.outputShape=e,this.dispatchLayout={x:[],y:[1,2],z:[0]},this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize);let i=n!=null,o=s!=null;i&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),this.transposeA=t,this.transposeB=r,this.addBias=i,this.activation=a,this.hasPreluActivationWeights=o,this.shaderKey=`matMulReduce_${this.activation}_${t}_${r}`}getUserCode(){let e;this.transposeA===!1?e="return A[batch * batchASize + row * uniforms.dimInner + col];":e="return A[batch * batchASize + col * uniforms.dimAOuter + row];";let t;this.transposeB===!1?t="return B[batch * batchBSize + row * uniforms.dimBOuter + col];":t="return B[batch * batchBSize + col * uniforms.dimInner + row];";let r="",n="";if(this.activation){let s=ss(this.activation,!1);this.hasPreluActivationWeights?r=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${s}
|
|
}`:r=`
|
|
fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
${s}
|
|
}
|
|
`,n="value = activation(value, outCoord);"}let a=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${r}
|
|
|
|
fn mm_readA(batch: i32, row : i32, col : i32) -> f32 {
|
|
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
|
|
${e}
|
|
}
|
|
|
|
fn mm_readB(batch: i32, row : i32, col : i32) -> f32 {
|
|
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
|
|
${t}
|
|
}
|
|
|
|
fn mm_write(batch: i32, row : i32, col : i32, valueIn : f32) {
|
|
var value = valueIn;
|
|
let outCoord = vec3<i32>(batch, row, col);
|
|
${a}
|
|
${n}
|
|
setOutputAtCoords(batch, row, col, value);
|
|
}
|
|
${Xde()}
|
|
`}};function Yde(e){let t=e[1]/2,r=e[0],n=t>r?t:r;return`
|
|
var<workgroup> mm_Asub1 : array<array<f32, ${n}>, ${t}>;
|
|
var<workgroup> mm_Bsub1 : array<array<f32, ${r}>, ${n}>;
|
|
var<workgroup> mm_Asub2 : array<array<f32, ${n}>, ${t}>;
|
|
var<workgroup> mm_Bsub2 : array<array<f32, ${r}>, ${n}>;
|
|
|
|
// If the output size is small for matrix multiplication, avoid to use vec4
|
|
// and handle some elements per thread to optimally utilize the ALU.
|
|
// Introduces two shared memory buffers, some logical threads could handle
|
|
// arithmetic operations and others handle IO operations between barrier api,
|
|
// makes ALUs and load/store units work simultaneously, could improves
|
|
// the performance.
|
|
${Ui()}
|
|
let tileRow = i32(localId.y);
|
|
let tileCol = i32(localId.x);
|
|
let globalRow = i32(globalId.y);
|
|
let globalCol = i32(globalId.x);
|
|
|
|
// uniforms.dimInner should be greater than 0.
|
|
let numTiles = (uniforms.dimInner - 1) / ${n} + 1;
|
|
var acc = 0.0;
|
|
|
|
var globalColA = tileCol;
|
|
var globalRowB = tileRow;
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
if (t == 0) {
|
|
if (tileRow < ${t}) {
|
|
// Load one tile of A and B into local memory.
|
|
// globalRow is always greater than or equal tileRow.
|
|
mm_Asub1[tileRow][tileCol] =
|
|
mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId);
|
|
globalColA = globalColA + ${n};
|
|
mm_Bsub1[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId);
|
|
globalRowB = globalRowB + ${n};
|
|
}
|
|
} else {
|
|
if (tileRow < ${t}) {
|
|
// Load one tile of A and B into local memory.
|
|
// globalRow is always greater than or equal tileRow.
|
|
mm_Asub1[tileRow][tileCol] =
|
|
mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId);
|
|
globalColA = globalColA + ${n};
|
|
mm_Bsub1[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId);
|
|
globalRowB = globalRowB + ${n};
|
|
} else {
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < ${n}; k = k + 1) {
|
|
let subRow = tileRow - ${t};
|
|
if (subRow < 0) {
|
|
continue;
|
|
}
|
|
acc = acc + mm_Asub2[subRow][k] * mm_Bsub2[k][tileCol];
|
|
}
|
|
}
|
|
}
|
|
workgroupBarrier();
|
|
if (t != 0) {
|
|
t = t + 1;
|
|
}
|
|
|
|
if (t < numTiles) {
|
|
if (tileRow < ${t}) {
|
|
// Load one tile of A and B into local memory.
|
|
// globalRow is always greater than or equal tileRow.
|
|
mm_Asub2[tileRow][tileCol] =
|
|
mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId);
|
|
globalColA = globalColA + ${n};
|
|
mm_Bsub2[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId);
|
|
globalRowB = globalRowB + ${n};
|
|
} else {
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < ${n}; k = k + 1) {
|
|
let subRow = tileRow - ${t};
|
|
if (subRow < 0) {
|
|
continue;
|
|
}
|
|
acc = acc + mm_Asub1[subRow][k] * mm_Bsub1[k][tileCol];
|
|
}
|
|
}
|
|
}
|
|
workgroupBarrier();
|
|
}
|
|
let writeCol = (globalRow - tileRow) / 2 + tileRow - ${t};
|
|
if (tileRow >= ${t} && writeCol >= 0) {
|
|
mm_write(writeCol, globalCol, acc, globalId);
|
|
}
|
|
}
|
|
`}var Jde=class{constructor(e,t,r,n=null,a=null,s=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[8,16,1],w.assert(e[1]<=16||t[2]<=16,()=>"This program can be only used when A width or B Height are small"),this.outputShape=r,this.dispatchLayout={x:[2],y:[1],z:[0]},this.dispatch=[Math.ceil(r[2]/this.workGroupSize[0]),Math.ceil(r[1]*2/this.workGroupSize[1]),r[0]];let i=n!=null;i&&this.variableNames.push("bias");let o=s!=null;o&&this.variableNames.push("preluActivationWeights"),this.addBias=i,this.activation=a,this.hasPreluActivationWeights=o,this.shaderKey=`matMulSmallOutputSize_${this.activation}`}getUserCode(){let e=`if (coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
|
|
return A[batch * batchASize + row * uniforms.dimInner + col];
|
|
}
|
|
return 0.0;`,t=`if (coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return B[batch * batchBSize + row * uniforms.dimBOuter + col];
|
|
}
|
|
return 0.0;`,r="",n="";if(this.activation){let s=ss(this.activation,!1);this.hasPreluActivationWeights?r=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${s}
|
|
}`:r=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
${s}
|
|
}`,n="value = activation(value, outCoord);"}let a=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${r}
|
|
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
|
|
let batch = i32(globalId.z);
|
|
${e}
|
|
}
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
let batch = i32(globalId.z);
|
|
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
|
|
${t}
|
|
}
|
|
fn mm_write(row : i32, col : i32, valueIn : f32, globalId : vec3<u32>) {
|
|
if (coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimBOuter))) {
|
|
let batch = i32(globalId.z);
|
|
let outCoord = vec3<i32>(batch, row, col);
|
|
var value = valueIn;
|
|
${a}
|
|
${n}
|
|
setOutputAtCoords(batch, row, col, value);
|
|
}
|
|
}
|
|
${Yde(this.workGroupSize)}
|
|
`}};function qe(e){let{inputs:t,attrs:r}=e,{x:n}=t,{shape:a}=r,s=w.sizeFromShape(n.shape),i=w.inferFromImplicitShape(a,s),o=w.sizeFromShape(i);return w.assert(s===o,()=>`The new shape (${i}) has ${o} elements and the old shape (${n.shape}) has ${s} elements. The new shape and old shape must have the same number of elements.`),e.backend.incRef(n.dataId),{dataId:n.dataId,shape:i,dtype:n.dtype}}var Qde={kernelName:ul,backendName:"webgpu",kernelFunc:qe};function wb({a:e,b:t,transposeA:r,transposeB:n,backend:a,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:l=null}){let u=e.shape.length,d=t.shape.length,h=r?e.shape[u-2]:e.shape[u-1],p=n?t.shape[d-1]:t.shape[d-2],c=r?e.shape[u-1]:e.shape[u-2],f=n?t.shape[d-2]:t.shape[d-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),y=w.sizeFromShape(m),A=w.sizeFromShape(g),x=Sl.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([c,f]);w.assert(h===p,()=>`Error in matMul: inner shapes (${h}) and (${p}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${r} and transposeB=${n} must match.`);let b=r?[y,h,c]:[y,c,h],v=n?[A,f,p]:[A,p,f],S=qe({inputs:{x:e},backend:a,attrs:{shape:b}}),T=qe({inputs:{x:t},backend:a,attrs:{shape:v}}),E=[S,T],R=Math.max(y,A),_=h%4===0&&f%4===0&&!r&&!n&&f>=32,M;c*f<=32?M=new Zde([R,c,f],r,n,s,l,i):!r&&!n&&(c<=16&&(f<=512||p>=2*f)||f<=16&&(c<=512||h>=2*c))?M=new Jde(b,v,[R,c,f],s,l,i):_?M=new qde(b,[R,c,f],Y().get("WEBGPU_MATMUL_WORK_PER_THREAD"),s,l,i):M=new R8(b,[R,c,f],Y().get("WEBGPU_MATMUL_WORK_PER_THREAD"),r,n,s,l,i);let I=[S,T];s&&I.push(s),i&&I.push(i);let z=[{type:"int32",data:[c]},{type:"int32",data:[f]},{type:"int32",data:[h]}];l==="leakyrelu"&&(z.push({type:"float32",data:[o]}),M.uniforms+=" alpha : f32,");let O=a.runWebGPUProgram(M,I,e.dtype,z),j=qe({inputs:{x:O},backend:a,attrs:{shape:x}});E.push(O);for(let X of E)a.disposeData(X.dataId);return j}function epe(e){let{inputs:t,backend:r,attrs:n}=e,{a,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:d,leakyreluAlpha:h}=n;return wb({a,b:s,transposeA:l,transposeB:u,backend:r,bias:i,preluActivationWeights:o,leakyreluAlpha:h,activation:d})}var tpe={kernelName:Ms,backendName:"webgpu",kernelFunc:epe},sw=class{constructor(e,t,r){this.variableNames=["AReal","AImag","BReal","BImag"],this.workGroupSize=[128,1,1],this.size=!0,this.outputShape=N.assertAndGetBroadcastShape(t,r),this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`binaryOpComplex_${e}`,this.op=e}getUserCode(){return`
|
|
fn binaryOpComplex(
|
|
areal : f32, aimag : f32, breal : f32, bimag : f32) -> f32 {
|
|
${Wh(this.op,!1)}
|
|
}
|
|
|
|
${tt()}
|
|
if(index < uniforms.size) {
|
|
let areal = getARealByOutputIndex(index);
|
|
let aimag = getAImagByOutputIndex(index);
|
|
let breal = getBRealByOutputIndex(index);
|
|
let bimag = getBImagByOutputIndex(index);
|
|
setOutputAtIndex(index, binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
}
|
|
`}},rpe=class{constructor(e,t,r,n){this.variableNames=["A","B"],this.size=!0;let a=256;this.workGroupSize=[a,1,1],this.outputShape=N.assertAndGetBroadcastShape(t,r),this.dispatchLayout=Xe(this.outputShape),this.lastDimensionSize=n?r[0]:t[0],this.lastDimensionSize<256?this.workPerThread=1:this.lastDimensionSize<512?this.workPerThread=2:this.workPerThread=4,this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.useSharedMemoryWithB=n,this.op=e,this.shaderKey=`binaryShared_${e}_${this.lastDimensionSize}_${this.useSharedMemoryWithB}`}getUserCode(){let e=this.lastDimensionSize>1?`coords[${this.outputShape.length-1}]`:"0",t=this.useSharedMemoryWithB?`let a = getAByOutputCoords(coords);
|
|
let b = sharedBuf[${e}];`:`let a = sharedBuf[${e}];
|
|
let b = getBByOutputCoords(coords);`;return`
|
|
fn binaryOperation(a : f32, b : f32) -> f32 {
|
|
${Wh(this.op,!1)}
|
|
}
|
|
var<workgroup> sharedBuf : array<f32, ${this.lastDimensionSize}>;
|
|
${tt()}
|
|
|
|
// Fill in the shared memory buffer. Here we need a loop to make sure
|
|
// that all data in A|B are uploaded when |sharedMemorySize| is larger
|
|
// than work group size.
|
|
for(var localIndex = i32(localId.x); localIndex < ${this.lastDimensionSize}; localIndex = localIndex + ${this.workGroupSize[0]}) {
|
|
sharedBuf[localIndex] = f32(${this.useSharedMemoryWithB?"B":"A"}[localIndex]);
|
|
}
|
|
workgroupBarrier();
|
|
|
|
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
if(flatIndex < uniforms.size) {
|
|
let coords = getCoordsFromIndex(flatIndex);
|
|
|
|
${t}
|
|
setOutputAtIndex(flatIndex, binaryOperation(a, b));
|
|
}
|
|
}
|
|
}
|
|
`}},npe=class{constructor(e,t,r){this.variableNames=["A","B"],this.workPerThread=4,this.isVec4=!0,this.size=!0;let n=128;this.workGroupSize=[n,1,1],this.outputShape=N.assertAndGetBroadcastShape(t,r),this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.op=e,this.shaderKey=`binaryVec4_${e}`}getUserCode(){return`
|
|
fn binaryOperation(a : vec4<f32>, b : vec4<f32>) -> vec4<f32> {
|
|
${Wh(this.op,this.isVec4)}
|
|
}
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let a = getAByOutputIndex(index);
|
|
let b = getBByOutputIndex(index);
|
|
setOutputAtIndex(index, binaryOperation(a, b));
|
|
}
|
|
}
|
|
`}},M8=class{constructor(e,t,r){this.variableNames=["A","B"],this.size=!0;let n=128;this.workGroupSize=[n,1,1],this.outputShape=N.assertAndGetBroadcastShape(t,r),this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`binary_${e}`,this.op=e}getUserCode(){return`
|
|
fn binaryOperation(a : f32, b : f32) -> f32 {
|
|
${Wh(this.op,!1)}
|
|
}
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let a = getAByOutputIndex(index);
|
|
let b = getBByOutputIndex(index);
|
|
setOutputAtIndex(index, binaryOperation(a, b));
|
|
}
|
|
}
|
|
`}};function iw(e,t,r){if(w.arraysEqual(t,r)&&w.sizeFromShape(t)%4===0)return new npe(e,t,r);let n=t.length===1&&r.length>1&&t[0]<1024,a=r.length===1&&t.length>1&&r[0]<1024;return n||a?new rpe(e,t,r,a):new M8(e,t,r)}function Vn(e){let{inputs:t}=e,{x:r}=t;return e.backend.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var ape={kernelName:pi,backendName:"webgpu",kernelFunc:Vn};function Cd(e){let{inputs:t,backend:r}=e,{real:n,imag:a}=t,s=r.makeTensorInfo(n.shape,"complex64"),i=r.tensorMap.get(s.dataId),o=Vn({inputs:{x:n},backend:r}),l=Vn({inputs:{x:a},backend:r});return i.complexTensorInfos={real:o,imag:l},s}var spe={kernelName:Xp,backendName:"webgpu",kernelFunc:Cd},Vh=class{constructor(e,t){this.variableNames=["A"],this.size=!0;let r=128;this.workGroupSize=[r,1,1],this.outputShape=e,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.op=t,this.shaderKey=`unary_${t}`}getUserCode(){return`
|
|
fn unaryOperation(a : f32) -> f32 {
|
|
${fo(this.op,!1)}
|
|
}
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let a = getAByOutputIndex(index);
|
|
setOutputAtIndex(index, unaryOperation(a));
|
|
}
|
|
}
|
|
`}};function kr({opType:e,cpuKernelImpl:t,dtype:r}){return({inputs:n,backend:a})=>{let{x:s}=n,i=a,o=r||s.dtype;if(i.shouldExecuteOnCPU([s])&&t!=null){let u=i.tensorMap.get(s.dataId),d=t(u.values,o);return i.makeTensorInfo(s.shape,o,d)}let l=new Vh(s.shape,e);return i.runWebGPUProgram(l,[s],o)}}function jr({opSnippet:e,cpuKernelImpl:t,supportsComplex:r=!1,dtype:n}){return({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;if(r&&i.dtype==="complex64"){let h=l.tensorMap.get(i.dataId),p=l.tensorMap.get(o.dataId),c,f;if(e!==0)[c,f]=[[h.complexTensorInfos.real,p.complexTensorInfos.real],[h.complexTensorInfos.imag,p.complexTensorInfos.imag]].map(g=>{let[y,A]=g,x={dataId:y.dataId,dtype:y.dtype,shape:i.shape},b={dataId:A.dataId,dtype:A.dtype,shape:o.shape},v=iw(e,i.shape,o.shape);return l.runWebGPUProgram(v,[x,b],Cr(y.dtype,A.dtype))});else{let g=new sw(17,i.shape,o.shape),y=new sw(18,i.shape,o.shape),A=[{dataId:h.complexTensorInfos.real.dataId,dtype:h.complexTensorInfos.real.dtype,shape:i.shape},{dataId:h.complexTensorInfos.imag.dataId,dtype:h.complexTensorInfos.imag.dtype,shape:i.shape},{dataId:p.complexTensorInfos.real.dataId,dtype:p.complexTensorInfos.real.dtype,shape:o.shape},{dataId:p.complexTensorInfos.imag.dataId,dtype:p.complexTensorInfos.imag.dtype,shape:o.shape}];c=l.runWebGPUProgram(g,A,"float32"),f=l.runWebGPUProgram(y,A,"float32")}let m=Cd({inputs:{real:c,imag:f},backend:l});return l.disposeData(c.dataId),l.disposeData(f.dataId),m}let u=n||Cr(i.dtype,o.dtype);if((i.dtype==="string"||o.dtype==="string"||l.shouldExecuteOnCPU([i,o]))&&t!=null){let h=l.tensorMap.get(i.dataId).values,p=l.tensorMap.get(o.dataId).values,c=i.dtype==="string"?N.fromUint8ToStringArray(h):h,f=i.dtype==="string"?N.fromUint8ToStringArray(p):p,[m,g]=t(i.shape,o.shape,c,f,u);return l.makeTensorInfo(g,u,m)}let d=iw(e,i.shape,o.shape);return l.runWebGPUProgram(d,[i,o],u)}}var{addImpl:ipe,ceilImpl:ope,concatImpl:lpe,equalImpl:upe,expImpl:dpe,expm1Impl:ppe,floorImpl:hpe,gatherNdImpl:cpe,gatherV2Impl:fpe,greaterEqualImpl:mpe,greaterImpl:gpe,lessEqualImpl:ype,lessImpl:Ape,logImpl:xpe,maxImpl:bpe,maximumImpl:vpe,minimumImpl:wpe,multiplyImpl:kpe,negImpl:Ipe,notEqualImpl:Spe,prodImpl:Tpe,rangeImpl:Npe,rsqrtImpl:Cpe,simpleAbsImpl:Epe,sliceImpl:Rpe,stridedSliceImpl:Mpe,stringNGramsImpl:Fpe,subImpl:$pe,tileImpl:Ppe,topKImpl:_pe,transposeImpl:zpe,uniqueImpl:BAe}=c0,Ope=kr({opType:0,cpuKernelImpl:Epe}),Dpe={kernelName:Lo,backendName:"webgpu",kernelFunc:Ope},Lpe=jr({opSnippet:1,cpuKernelImpl:ipe,supportsComplex:!0}),Bpe={kernelName:Ya,backendName:"webgpu",kernelFunc:Lpe},Wpe=class{constructor(e){this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e[0],this.variableNames=e.map((t,r)=>`T${r}`),this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey="addN"}getUserCode(){let e=[];this.variableNames.forEach(r=>{e.push(`let v${r} = get${r}ByOutputCoords(coords);`)});let t=this.variableNames.map(r=>`v${r}`).join(" + ");return`
|
|
${tt()}
|
|
for (var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
if (flatIndex < uniforms.size) {
|
|
let coords = getCoordsFromIndex(flatIndex);
|
|
${e.join(`
|
|
`)}
|
|
setOutputAtIndex(flatIndex, ${t});
|
|
}
|
|
}
|
|
}
|
|
`}};function Vpe(e){let{inputs:t,backend:r}=e,n=t;if(n.length===1)return Vn({inputs:{x:n[0]},backend:r});let a=n.map(o=>o.dtype).reduce((o,l)=>Cr(o,l)),s=n.map(o=>o.shape),i=new Wpe(s);return r.runWebGPUProgram(i,n,a)}var Upe={kernelName:qs,backendName:"webgpu",kernelFunc:Vpe},F8=class{constructor(e,t,r){this.workGroupSize=[64,1,1],this.variableNames=["x"],this.uniforms="axis : i32, infinityValue : f32,",this.size=!0;let n=[t];N.assertAxesAreInnerMostDims("arg"+r.charAt(0).toUpperCase()+r.slice(1),n,e.length),this.op=r==="min"?"<":">";let[a]=N.computeOutAndReduceShapes(e,n);this.outputShape=a.length===0?[1]:a,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,[1,1,1]),this.inputShape=e,this.shaderKey=`argMinMax${this.op}`}getUserCode(){let e=`
|
|
var<workgroup> xBestIndices : array<i32, ${this.workGroupSize[0]}>;
|
|
var<workgroup> xBestValues : array<f32, ${this.workGroupSize[0]}>;
|
|
`,t=(n,a)=>this.outputShape.length===1?n:`${n}[${a}]`,r=n=>this.inputShape.length===1?"uniforms.xShape":`uniforms.xShape[${n}]`;return`
|
|
fn DIV_CEIL(a : u32, b : u32) -> u32 {
|
|
return ((a - 1u) / b + 1u);
|
|
}
|
|
|
|
${e}
|
|
|
|
// In order to get a flattened index into the input tensor, we need to
|
|
// add back the index along the reduced dimension to |outputCoords|.
|
|
// This function outputs the offset to the first value along
|
|
// |axis| and the stride to get the next value of the input along |axis|.
|
|
fn getInputCoordInfo(outputIndex : i32) -> vec2<i32>{
|
|
let outputCoords = getCoordsFromIndex(outputIndex);
|
|
var i = ${this.outputShape.length-1};
|
|
|
|
var stride = 1;
|
|
var inputStride = 1;
|
|
var offset = 0;
|
|
|
|
for (var r = 1; r <= ${this.inputShape.length}; r = r + 1) {
|
|
let length = ${r(`${this.inputShape.length} - r`)};
|
|
if (${this.inputShape.length} - r == uniforms.axis) {
|
|
inputStride = stride;
|
|
} else {
|
|
offset = offset + ${t("outputCoords","i")} * stride;
|
|
i = i - 1;
|
|
}
|
|
stride = stride * length;
|
|
}
|
|
|
|
return vec2<i32>(offset, inputStride);
|
|
}
|
|
|
|
fn getInputIndex(coordInfo : vec2<i32>, index : i32) -> i32{
|
|
return coordInfo[0] + coordInfo[1] * index;
|
|
}
|
|
|
|
${tt()}
|
|
let outputIndex = index / i32(workGroupSizeX);
|
|
let coordInfo = getInputCoordInfo(outputIndex);
|
|
let Length = ${r("uniforms.axis")};
|
|
|
|
var bestIndex = i32(localId.x);
|
|
var bestValue = uniforms.infinityValue;
|
|
|
|
for (var k = i32(localId.x); k < Length && outputIndex < uniforms.size;
|
|
k = k + i32(workGroupSizeX)) {
|
|
let candidate = f32(x[getInputIndex(coordInfo, k)]);
|
|
if (!isnan(candidate) && candidate ${this.op} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = k;
|
|
}
|
|
}
|
|
xBestValues[localId.x] = bestValue;
|
|
xBestIndices[localId.x] = bestIndex;
|
|
workgroupBarrier();
|
|
|
|
var reduceSize = min(u32(Length), workGroupSizeX);
|
|
for (var currentSize = reduceSize / 2u; reduceSize > 1u;
|
|
currentSize = reduceSize / 2u) {
|
|
let interval = DIV_CEIL(reduceSize, 2u);
|
|
if (localId.x < currentSize) {
|
|
let candidate = xBestValues[localId.x + interval];
|
|
if (candidate ${this.op} bestValue) {
|
|
bestValue = candidate;
|
|
xBestValues[localId.x] = bestValue;
|
|
xBestIndices[localId.x] = xBestIndices[localId.x + interval];
|
|
}
|
|
}
|
|
reduceSize = interval;
|
|
workgroupBarrier();
|
|
}
|
|
|
|
if (localId.x == 0u && outputIndex < uniforms.size) {
|
|
setOutputAtIndexI32(outputIndex, xBestIndices[localId.x]);
|
|
}
|
|
}
|
|
`}},Gpe=class{constructor(e,t){this.variableNames=["A"],this.workGroupSize=[16,16,1];let r=new Array(e.length);for(let n=0;n<r.length;n++)r[n]=e[t[n]];this.outputShape=r,this.dispatchLayout={x:[0],y:[1]},this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[1,1,1]),this.shaderKey="transposeShared"}getUserCode(){return`
|
|
let TILE_DIM = ${this.workGroupSize[0]};
|
|
var<workgroup> tile : array<array<f32, ${this.workGroupSize[0]+1}>, ${this.workGroupSize[0]}>;
|
|
${yb()}
|
|
fn main(@builtin(local_invocation_id) localId : vec3<u32>,
|
|
@builtin(workgroup_id) workgroupId : vec3<u32>) {
|
|
var x = i32(workgroupId.x) * TILE_DIM + i32(localId.x);
|
|
var y = i32(workgroupId.y) * TILE_DIM + i32(localId.y);
|
|
let width = uniforms.outShape[0];
|
|
let height = uniforms.outShape[1];
|
|
if (x < width && y < height) {
|
|
tile[localId.y][localId.x] = A[y * width + x];
|
|
}
|
|
workgroupBarrier();
|
|
|
|
x = i32(workgroupId.y) * TILE_DIM + i32(localId.x);
|
|
y = i32(workgroupId.x) * TILE_DIM + i32(localId.y);
|
|
if (x < height && y < width) {
|
|
setOutputAtIndex((y * height + x), tile[localId.x]
|
|
[localId.y]);
|
|
}
|
|
}
|
|
`}},jpe=class{constructor(e,t){this.variableNames=["A"],this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0;let r=new Array(e.length);for(let n=0;n<r.length;n++)r[n]=e[t[n]];this.outputShape=r,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.newDim=t,this.shaderKey=`transpose_${t}`}getUserCode(){let e=gr(this.outputShape.length),t=Hpe(this.newDim);return`
|
|
${tt()}
|
|
|
|
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
if(flatIndex < uniforms.size) {
|
|
let resRC = getCoordsFromIndex(flatIndex);
|
|
setOutputAtIndex(flatIndex, A[getIndexFromCoords${this.outputShape.length}D(
|
|
${e}(${t}), uniforms.aShape)]);
|
|
}
|
|
}
|
|
}
|
|
`}};function Hpe(e){let t=e.length;if(t>4)throw Error(`Transpose for rank ${t} is not yet supported`);let r=new Array(t);for(let n=0;n<e.length;n++)r[e[n]]=`resRC[${n}]`;return r.join()}function zl(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{perm:s}=n,i=r,o=a.shape.length,l=new Array(o);for(let d=0;d<l.length;d++)l[d]=a.shape[s[d]];if(r.shouldExecuteOnCPU([a])){let d=i.tensorMap.get(a.dataId).values,h=zpe(d,a.shape,a.dtype,s,l);return r.makeTensorInfo(l,a.dtype,h)}if(a.shape.length===2&&w.arraysEqual(s,[1,0])){let d=new Gpe(a.shape,s);return i.runWebGPUProgram(d,[a],a.dtype)}let u=new jpe(a.shape,s);return i.runWebGPUProgram(u,[a],a.dtype)}var qpe={kernelName:Oi,backendName:"webgpu",kernelFunc:zl};function Kpe(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s}=n,i=w.parseAxisParam(s,a.shape),o=N.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=zl({inputs:{x:a},backend:r,attrs:{perm:o}}),u.push(l),i=N.getInnerMostAxes(i.length,l.shape.length)),N.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let d=new F8(l.shape,i[0],"max"),h=[{type:"int32",data:[i[0]]},{type:"float32",data:[Number.NEGATIVE_INFINITY]}],p=r.runWebGPUProgram(d,[l],"int32",h);return u.forEach(c=>r.disposeData(c.dataId)),p}var Xpe={kernelName:Ks,backendName:"webgpu",kernelFunc:Kpe};function Zpe(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s}=n,i=w.parseAxisParam(s,a.shape),o=N.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=zl({inputs:{x:a},backend:r,attrs:{perm:o}}),u.push(l),i=N.getInnerMostAxes(i.length,l.shape.length)),N.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let d=new F8(l.shape,i[0],"min"),h=[{type:"int32",data:[i[0]]},{type:"float32",data:[Number.POSITIVE_INFINITY]}],p=r.runWebGPUProgram(d,[l],"int32",h);return u.forEach(c=>r.disposeData(c.dataId)),p}var Ype={kernelName:Du,backendName:"webgpu",kernelFunc:Zpe},$8=class{constructor(e,t){this.variableNames=["x"],this.uniforms="stride : vec2<i32>, pad : vec2<i32>, dilation : vec2<i32>, convDims : vec2<i32>, filterDims : vec2<i32>,",this.workGroupSize=[128,1,1],this.size=!0,this.outputShape=e.outShape,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`pool2D_${t}`,this.poolType=t}getUserCode(){let e="resultValue = max(value, resultValue);";this.poolType==="avg"&&(e="resultValue = resultValue + value; count = count + 1.0;");let t="resultValue";return this.poolType==="avg"&&(t="resultValue / count"),`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let batch = coords[0];
|
|
let xRCCorner = vec2<i32>(coords.yz) * uniforms.stride - uniforms.pad;
|
|
let xRCorner = xRCCorner.x;
|
|
let xCCorner = xRCCorner.y;
|
|
|
|
var resultValue = ${this.poolType==="avg"?"0.0":"-1.0 / pow(10.0, -20.0)"};
|
|
var count = 0.0;
|
|
|
|
for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + uniforms.dilation.x) {
|
|
let xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= uniforms.convDims.x) {
|
|
continue;
|
|
}
|
|
|
|
for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + uniforms.dilation.y) {
|
|
let xC = xCCorner + wC;
|
|
if (xC < 0 || xC >= uniforms.convDims.y) {
|
|
continue;
|
|
}
|
|
|
|
let value = getX(batch, xR, xC, coords[3]);
|
|
${e}
|
|
}
|
|
}
|
|
|
|
setOutputAtIndex(index, ${t});
|
|
}
|
|
}
|
|
`}},P8=class{constructor(e){this.variableNames=["x"],this.uniforms="stride : vec2<i32>,",this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e.outShape,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="poolWithFilterSizeEqualsOne"}getUserCode(){return`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let batch = coords[0];
|
|
let d = coords[3];
|
|
|
|
let xRCCorner = coords.yz * uniforms.stride;
|
|
let xRCorner = xRCCorner.x;
|
|
let xCCorner = xRCCorner.y;
|
|
|
|
let value = getX(batch, xRCorner, xCCorner, d);
|
|
setOutputAtIndex(index, value);
|
|
}
|
|
}
|
|
`}};function Jpe(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n,u=1,d=N.computePool2DInfo(a.shape,s,i,u,o,l);if(d.filterWidth===1&&d.filterHeight===1&&w.arraysEqual(d.inShape,d.outShape))return Vn({inputs:{x:a},backend:r});let h,p=[{type:"int32",data:[d.strideHeight,d.strideWidth]}];return d.filterHeight===1&&d.filterWidth===1?h=new P8(d):(h=new $8(d,"avg"),p.push({type:"int32",data:[d.padInfo.top,d.padInfo.left]},{type:"int32",data:[d.dilationHeight,d.dilationWidth]},{type:"int32",data:[d.inHeight,d.inWidth]},{type:"int32",data:[d.effectiveFilterHeight,d.effectiveFilterWidth]})),r.runWebGPUProgram(h,[a],a.dtype,p)}var Qpe={kernelName:Xs,backendName:"webgpu",kernelFunc:Jpe};function ehe(e){let{inputs:t,backend:r,attrs:n}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=n;return wb({a,b:s,transposeA:i,transposeB:o,backend:r})}var the={kernelName:Zs,backendName:"webgpu",kernelFunc:ehe},rhe=class{constructor(e,t){this.variableNames=["source"],this.workPerThread=1,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.rank=t.length,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.start=e,this.uniforms=`start : ${gr(e.length)}, `,this.shaderKey="slice"}getUserCode(){let e=gr(this.rank),t=nhe(this.rank),r;return this.start.length===1?r=this.outputShape.map((n,a)=>"sourceLoc = uniforms.start + coords;"):r=this.outputShape.map((n,a)=>`sourceLoc.${e2[a]} = uniforms.start[${a}] + coords.${e2[a]};`),`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
var sourceLoc : ${e};
|
|
let coords = getCoordsFromIndex(index);
|
|
${r.join(`
|
|
`)}
|
|
setOutputAtIndex(index, getSource(${t}));
|
|
}
|
|
}
|
|
`}},e2=["x","y","z","w","u","v"];function nhe(e){if(e===1)return"sourceLoc";if(e<=6)return e2.slice(0,e).map(t=>`sourceLoc.${t}`).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}function Ed(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{begin:s,size:i}=n,[o,l]=_t.parseSliceParams(a,s,i);if(_t.assertParamsValid(a,o,l),r.shouldExecuteOnCPU([a])||a.dtype==="string"){let h=r.tensorMap.get(a.dataId),p=Rpe(h.values,o,l,a.shape,a.dtype);return r.makeTensorInfo(l,a.dtype,p)}if(w.sizeFromShape(l)===0)return r.makeTensorInfo(l,a.dtype,[]);let u=new rhe(o,l),d=[{type:"int32",data:o}];return r.runWebGPUProgram(u,[a],a.dtype,d)}var ahe={kernelName:fl,backendName:"webgpu",kernelFunc:Ed},she=e=>{let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockShape:s,crops:i}=n;w.assert(a.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGPU backend not implemented yet");let o=s.reduce((A,x)=>A*x),l=N.getReshaped(a.shape,s,o),u=N.getPermuted(l.length,s.length),d=N.getReshapedPermuted(a.shape,s,o),h=N.getSliceBeginCoords(i,s.length),p=N.getSliceSize(d,i,s.length),c=[],f=qe({inputs:{x:a},backend:r,attrs:{shape:l}}),m=zl({inputs:{x:f},backend:r,attrs:{perm:u}}),g=qe({inputs:{x:m},backend:r,attrs:{shape:d}}),y=Ed({inputs:{x:g},backend:r,attrs:{begin:h,size:p}});return c.push(f),c.push(m),c.push(g),c.forEach(A=>r.disposeData(A.dataId)),y},ihe={kernelName:Bo,backendName:"webgpu",kernelFunc:she},_8=jr({opSnippet:10,dtype:"bool",cpuKernelImpl:Spe}),ohe={kernelName:rl,backendName:"webgpu",kernelFunc:_8};function Uh(e){let{inputs:t,backend:r}=e,{input:n}=t,a=r.tensorMap.get(n.dataId);return Vn({inputs:{x:a.complexTensorInfos.real},backend:r})}var lhe={kernelName:ah,backendName:"webgpu",kernelFunc:Uh};function uhe(e,t){let r=new Vh(e.shape,22),n=t.runWebGPUProgram(r,[e],"int32");return{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}function t2(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{dtype:s}=n;if(s==="complex64"){if(a.dtype==="complex64")return Vn({inputs:{x:a},backend:r});let i=Wt(a.shape),o=t2({inputs:{x:a},backend:r,attrs:{dtype:"float32"}}),l=Cd({inputs:{real:o,imag:i},backend:r});return i.dispose(),r.disposeData(o.dataId),l}if(a.dtype==="complex64"){let i=Uh({inputs:{input:a},backend:r}),o=t2({inputs:{x:i},backend:r,attrs:{dtype:s}});return r.disposeData(i.dataId),o}if(!w.hasEncodingLoss(a.dtype,s)){let i=Vn({inputs:{x:a},backend:r});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return uhe(a,r);if(s==="bool"){let i=r.makeTensorInfo([],"bool",w.getTypedArrayFromDType("bool",1)),o=_8({inputs:{a,b:i},backend:r});return r.disposeData(i.dataId),o}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var dhe={kernelName:Ys,backendName:"webgpu",kernelFunc:t2},phe=kr({opType:1,cpuKernelImpl:ope}),hhe={kernelName:Js,backendName:"webgpu",kernelFunc:phe},che=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32, maxVal : f32,",this.workPerThread=4,this.workGroupSize=[64,1,1],this.isVec4=!0,this.size=!0,this.outputShape=e,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey="clipVec4"}getUserCode(){return`
|
|
${tt()}
|
|
if(index < uniforms.size) {
|
|
let value = getAByOutputIndex(index);
|
|
var clampedValue : vec4<f32>;
|
|
for (var i = 0; i < 4; i = i + 1) {
|
|
if (isnan(value[i])) {
|
|
clampedValue[i] = value[i];
|
|
} else {
|
|
clampedValue[i] = clamp(value[i], uniforms.minVal, uniforms.maxVal);
|
|
}
|
|
}
|
|
|
|
setOutputAtIndex(index, clampedValue);
|
|
}
|
|
}
|
|
`}},fhe=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32, maxVal : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="clip"}getUserCode(){return`
|
|
${tt()}
|
|
if(index < uniforms.size) {
|
|
let value = getAByOutputIndex(index);
|
|
if (isnan(value)) {
|
|
setOutputAtIndex(index, value);
|
|
return;
|
|
}
|
|
setOutputAtIndex(index, clamp(value, uniforms.minVal, uniforms.maxVal));
|
|
}
|
|
}
|
|
`}};function mhe(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=n,o,l=[{type:"float32",data:[s]},{type:"float32",data:[i]}];return w.sizeFromShape(a.shape)%4===0?o=new che(a.shape):o=new fhe(a.shape),r.runWebGPUProgram(o,[a],a.dtype,l)}var ghe={kernelName:Ja,backendName:"webgpu",kernelFunc:mhe},yhe=class{constructor(e){this.uniforms="",this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=N.computeOutShape(e,1),this.variableNames=e.map((t,r)=>`T${r}`),this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.offsetLength=e.length-1;for(let t=0;t<this.offsetLength;t++)this.uniforms+=`offset${t} : i32,`;this.shaderKey="concat"}getUserCode(){let e=[];if(this.offsetLength>0){e.push("if (yC < uniforms.offset0){ setOutputAtCoords(coords.x, coords.y, getT0(yR, yC)); }");for(let n=1;n<this.offsetLength;n++)e.push(`else if (yC < uniforms.offset${[n]}){ setOutputAtCoords(coords.x, coords.y, getT${n}(yR, yC - uniforms.offset${n-1})); }`);let t=this.offsetLength,r=this.offsetLength-1;e.push(`else { setOutputAtCoords(coords.x, coords.y, getT${t}(yR, yC - uniforms.offset${r})); }`)}else e.push("setOutputAtCoords(coords.x, coords.y, getT0(yR, yC));");return`
|
|
${tt()}
|
|
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
if(flatIndex < uniforms.size) {
|
|
let coords = getCoordsFromIndex(flatIndex);
|
|
let yR = coords.x;
|
|
let yC = coords.y;
|
|
|
|
${e.join(`
|
|
`)}
|
|
}
|
|
}
|
|
}
|
|
`}};function w0(e){let{inputs:t,backend:r}=e,{input:n}=t,a=r.tensorMap.get(n.dataId);return Vn({inputs:{x:a.complexTensorInfos.imag},backend:r})}var Ahe={kernelName:eh,backendName:"webgpu",kernelFunc:w0};function r2(e,t,r){let n=e[0].dtype;if(n==="complex64"){let c=e.map(A=>Uh({inputs:{input:A},backend:r})),f=e.map(A=>w0({inputs:{input:A},backend:r})),m=r2(c,t,r),g=r2(f,t,r),y=Cd({inputs:{real:m,imag:g},backend:r});return c.forEach(A=>r.disposeData(A.dataId)),f.forEach(A=>r.disposeData(A.dataId)),r.disposeData(m.dataId),r.disposeData(g.dataId),y}let a=r.shouldExecuteOnCPU(e);if(n==="string"&&(a=!0),a){let c=e.map(b=>{let v=w.sizeFromShape(b.shape.slice(t));return qe({inputs:{x:b},backend:r,attrs:{shape:[-1,v]}})}),f=c.map(b=>({vals:r.readSync(b.dataId),shape:b.shape})),m=N.computeOutShape(c.map(b=>b.shape),1),g=c[0].shape[0]===1,y=lpe(f,m,n,g),A=N.computeOutShape(e.map(b=>b.shape),t),x=r.makeTensorInfo(A,n,y);return c.forEach(b=>r.disposeData(b.dataId)),x}let{tensors2D:s,outShape:i}=xhe(e,t,r),o=s.map(c=>c.shape),l=new yhe(o),u=[],d=new Array(o.length-1);if(d.length>0){d[0]=o[0][1],u.push({type:"int32",data:[d[0]]});for(let c=1;c<d.length;c++)d[c]=d[c-1]+o[c][1],u.push({type:"int32",data:[d[c]]})}let h=r.runWebGPUProgram(l,s,s[0].dtype,u);s.forEach(c=>r.disposeData(c.dataId));let p=qe({inputs:{x:h},backend:r,attrs:{shape:i}});return r.disposeData(h.dataId),p}function xhe(e,t,r){let n=N.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>qe({inputs:{x:a},backend:r,attrs:{shape:[w.sizeFromShape(a.shape.slice(0,t)),w.sizeFromShape(a.shape.slice(t))]}})),outShape:n}}function z8(e){let{inputs:t,backend:r,attrs:n}=e,{axis:a}=n,s=w.parseAxisParam(a,t[0].shape)[0],i=N.computeOutShape(t.map(u=>u.shape),s);if(w.sizeFromShape(i)===0)return r.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(u=>w.sizeFromShape(u.shape)>0);if(o.length===1)return Vn({inputs:{x:o[0]},backend:r});let l=o.map(u=>u.shape);return N.assertParamsConsistent(l,s),r2(o,s,r)}var bhe={kernelName:Wo,backendName:"webgpu",kernelFunc:z8},vhe=class{constructor(e,t=!1,r=null,n=!1,a=!1){this.variableNames=["x","W"],this.uniforms=`filterDims : vec2<i32>, pad : vec2<i32>, stride : vec2<i32>, dilation : vec2<i32>,
|
|
dimAOuter : i32, dimBOuter : i32, dimInner : i32,`,this.workGroupSize=[8,8,1],this.isVec4=!0,this.outputShape=e.outShape,w.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.outputShape[1]===1?this.elementsPerThread=[4,1,1]:this.elementsPerThread=[4,4,1],this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),this.convInfo=e,this.addBias=t,this.activation=r,this.hasPreluActivationWeights=n,this.hasLeakyreluAlpha=a,this.addBias&&this.variableNames.push("bias"),this.hasPreluActivationWeights&&this.variableNames.push("preluActivationWeights"),this.hasLeakyreluAlpha&&this.variableNames.push("leakyreluAlpha"),this.tileAOuter=this.outputShape[1]===1?1:this.workGroupSize[1]*this.elementsPerThread[1],this.tileBOuter=this.workGroupSize[0]*this.elementsPerThread[0],this.tileInner=this.tileBOuter,[this.fitA,this.fitB]=this.getShapeFit(),this.shaderKey=`conv2DMMVec4_${this.activation}_${this.fitA}_${this.fitB}_${this.elementsPerThread}`}getShapeFit(){let e=[this.tileAOuter,this.tileInner],t=[this.tileInner,this.tileBOuter],r=this.outputShape[1]*this.outputShape[2],n=this.outputShape[3],a=this.convInfo.filterHeight*this.convInfo.filterWidth*this.convInfo.inChannels;return[Za(e,[r,a]),Za(t,[a,n])]}getSampleAWithRemainder(e){return`let flatIndex${e} = getIndexFromCoords4D(coord, uniforms.xShape);
|
|
let divBy4Remainder${e} = flatIndex${e} % 4;
|
|
let divBy4Index${e} = flatIndex${e} / 4;
|
|
let curData${e} = x[divBy4Index${e}];
|
|
if (divBy4Remainder${e} == 0) {
|
|
temp = curData${e};
|
|
} else {
|
|
// TODO: This could end up being a redundant load with another one in
|
|
// the same shader invocation. Perhaps there's an opportunity for
|
|
// optimization
|
|
let nextData${e} = x[divBy4Index${e} + 1];
|
|
if (divBy4Remainder${e} == 1) {
|
|
temp = vec4<f32>(curData${e}.yzw, nextData${e}.x);
|
|
} else if (divBy4Remainder${e} == 2) {
|
|
temp = vec4<f32>(curData${e}.zw, nextData${e}.xy);
|
|
} else if (divBy4Remainder${e} == 3) {
|
|
temp = vec4<f32>(curData${e}.w, nextData${e}.xyz);
|
|
}
|
|
}
|
|
`}getUserCode(){let e=E8(this.elementsPerThread,this.tileAOuter,this.tileBOuter,this.tileInner),t=`let outRow = r / uniforms.outShape[2];
|
|
let outCol = r % uniforms.outShape[2];
|
|
let WRow = c / (uniforms.filterDims[1] * uniforms.xShape[3]);
|
|
let WCol = c / uniforms.xShape[3] % uniforms.filterDims[1];
|
|
let inChCoord = c % uniforms.xShape[3];
|
|
var coord = vec4<i32>(
|
|
batch,
|
|
outRow * uniforms.stride[0] + uniforms.dilation[0] * WRow - uniforms.pad[0],
|
|
outCol * uniforms.stride[1] + uniforms.dilation[1] * WCol - uniforms.pad[1],
|
|
inChCoord);
|
|
var resData = vec4<f32>(0.0);
|
|
${this.convInfo.inChannels%4===0?`// The bounds checking is always needed since we use it to pad zero for
|
|
// the 'same' padding type.
|
|
if (coordsInBounds4D(coord, uniforms.xShape)) {
|
|
resData = x[getIndexFromCoords4D(coord, uniforms.xShape) / 4];
|
|
} else {
|
|
resData = vec4<f32>(0.0); }`:`var temp = vec4<f32>(0.0);
|
|
${this.getSampleAWithRemainder(1)}
|
|
resData = temp;
|
|
if (WCol == (uniforms.filterDims[1] - 1)) {
|
|
coord = vec4<i32>(
|
|
coord.x, coord.y + 1, coord.z + 1 - uniforms.filterDims[1], 0);
|
|
${this.getSampleAWithRemainder(2)}
|
|
if (inChCoord == 0) {
|
|
resData = vec4<f32>(resData.xyz, temp.x);
|
|
} else if (inChCoord == 1) {
|
|
resData = vec4<f32>(resData.xy, temp.xy);
|
|
} else {
|
|
resData = vec4<f32>(resData.x, temp.xyz);
|
|
}
|
|
}
|
|
`}
|
|
return resData;`,r=this.fitA?`${t}`:`if (r < uniforms.dimAOuter && c < uniforms.dimInner) {
|
|
${t}
|
|
}
|
|
return vec4<f32>(0.0);
|
|
`,n=this.fitB?"return W[row * uniforms.dimBOuter / 4 + col];":`if(coordsInBounds2D(vec2<i32>(row, col * 4), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return W[row * uniforms.dimBOuter / 4 + col];
|
|
}
|
|
return vec4<f32>(0.0);
|
|
`,a="",s="";if(this.activation){let o=ss(this.activation,this.isVec4);if(this.hasPreluActivationWeights)a=`fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${o}
|
|
}`;else{if(this.hasLeakyreluAlpha)throw a=`fn activation(outCoord: vec4<f32>) -> vec4<f32> {
|
|
let b = getLeakyreluAlphaByOutputCoords(outCoord);
|
|
${o}
|
|
}`,new Error("Leakyrelu is not supported.");a=`
|
|
fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
|
|
${o}
|
|
}`}s="value = activation(value, outCoord);"}let i=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${a}
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
|
|
let r = row;
|
|
let c = col * 4;
|
|
var batch = i32(globalId.z);
|
|
${r}
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
|
|
${n}
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueInput : vec4<f32>, globalId : vec3<u32>) {
|
|
var batch = i32(globalId.z);
|
|
var value = valueInput;
|
|
if (row < uniforms.dimAOuter && col * 4 < uniforms.dimBOuter)
|
|
{
|
|
let outCoord = vec4<i32>(
|
|
batch,
|
|
row / uniforms.outShape[2],
|
|
row % uniforms.outShape[2],
|
|
col * 4);
|
|
${i}
|
|
${s}
|
|
setOutputAtCoords(outCoord[0], outCoord[1], outCoord[2], outCoord[3],
|
|
value);
|
|
}
|
|
}
|
|
${e}
|
|
`}},whe=class{constructor(e,t=!1,r=null,n=!1){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>, pad : vec2<i32>, stride : vec2<i32>, dilation : vec2<i32>, dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.outputShape=e.outShape,w.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.workGroupSize=Ab(this.dispatchLayout,this.outputShape),this.elementsPerThread=xb(this.dispatchLayout,this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=r,this.hasPreluActivationWeights=n,[this.fitA,this.fitB]=this.getShapeFit(),this.shaderKey=`conv2DMM_${this.elementsPerThread}_${this.activation}_${this.fitA}_${this.fitB}`}getShapeFit(){let e=this.workGroupSize[1]*this.elementsPerThread[1],t=this.workGroupSize[0]*this.elementsPerThread[0],r=e>t?e:t;w.assert(r%this.workGroupSize[0]===0&&r%this.workGroupSize[1]===0,()=>"tileInner must be multiple of workgroupsize.x and workgroupsize.y");let n=[e,r],a=[r,t],s=this.outputShape[1]*this.outputShape[2],i=this.outputShape[3],o=this.convInfo.filterHeight*this.convInfo.filterWidth*this.convInfo.inChannels;return[Za(n,[s,o]),Za(a,[o,i])]}getUserCode(){let e=vb(this.elementsPerThread,this.workGroupSize),t=`
|
|
let outRow = row / uniforms.outShape[2];
|
|
let outCol = row % uniforms.outShape[2];
|
|
|
|
let WRow = col / (uniforms.filterDims[1] * uniforms.xShape[3]);
|
|
let WCol = col / uniforms.xShape[3] % uniforms.filterDims[1];
|
|
let coord = vec4<i32>(
|
|
batch,
|
|
outRow * uniforms.stride[0] + uniforms.dilation[0] * WRow - uniforms.pad[0],
|
|
outCol * uniforms.stride[1] + uniforms.dilation[1] * WCol - uniforms.pad[1],
|
|
col % uniforms.xShape[3]);
|
|
// The bounds checking is always needed since we use it to pad zero for the
|
|
// 'same' padding type.
|
|
if(coordsInBounds4D(coord, uniforms.xShape)) {
|
|
return x[getIndexFromCoords4D(coord, uniforms.xShape)];
|
|
}
|
|
return 0.0;`,r=this.fitA?`${t}`:`if (row < uniforms.dimAOuter && col < uniforms.dimInner) {
|
|
${t}
|
|
}
|
|
return 0.0;
|
|
`,n=this.fitB?"return W[row * uniforms.dimBOuter + col];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return W[row * uniforms.dimBOuter + col];
|
|
}
|
|
return 0.0;
|
|
`,a="",s="";if(this.activation){let o=ss(this.activation,!1);this.hasPreluActivationWeights?a=`fn activation(a: f32, outCoord : vec4<i32>) -> f32 {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${o}
|
|
}`:a=`
|
|
fn activation(a : f32, outCoord : vec4<i32>) -> f32 {
|
|
${o}
|
|
}
|
|
`,s="value = activation(value, outCoord);"}let i=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${a}
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
var batch = i32(globalId.z);
|
|
${r}
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
${n}
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueInput : f32, globalId : vec3<u32>) {
|
|
var batch = i32(globalId.z);
|
|
var value = valueInput;
|
|
let outCoord = vec4<i32>(
|
|
batch,
|
|
row / uniforms.outShape[2],
|
|
row % uniforms.outShape[2],
|
|
col);
|
|
${i}
|
|
${s}
|
|
result[getIndexFromCoords4D(outCoord, uniforms.outShape)] = value;
|
|
}
|
|
${e}
|
|
`}},khe=class{constructor(e,t=!1,r=null,n=!1){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>, pad : vec2<i32>, stride : vec2<i32>, dilation : vec2<i32>,",this.workGroupSize=[128,1,1],this.outputShape=e.outShape,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),w.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=r,this.hasPreluActivationWeights=n,this.shaderKey=`conv2DNaive_${this.activation}`}getUserCode(){let e="",t="";if(this.activation){let n=ss(this.activation);this.hasPreluActivationWeights?e=`fn activation(a : f32, outCoord : vec4<i32>) -> f32{
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${n}
|
|
}`:e=`
|
|
fn activation(a : f32, outCoord : vec4<i32>) -> f32{
|
|
${n}
|
|
}
|
|
`,t="value = activation(value, outCoord);"}let r=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${e}
|
|
fn readInp(batch : i32, row : i32, col : i32, chan : i32) -> f32 {
|
|
let coord = vec4<i32>(batch, row, col, chan);
|
|
if(coordsInBounds4D(coord, uniforms.xShape)) {
|
|
return getX(batch, row, col, chan);
|
|
}
|
|
return 0.0;
|
|
}
|
|
|
|
fn readFilt(row : i32, col : i32, xChannel : i32, outChannel : i32) -> f32{
|
|
let coord = vec4<i32>(row, col, xChannel, outChannel);
|
|
if(coordsInBounds4D(coord, uniforms.wShape)) {
|
|
return getW(row, col, xChannel, outChannel);
|
|
}
|
|
return 0.0;
|
|
}
|
|
|
|
fn writeResult(batch : i32, row : i32, col : i32, chan : i32, value : f32) {
|
|
let coord = vec4<i32>(batch, row, col, chan);
|
|
if (coordsInBounds4D(coord, uniforms.outShape)) {
|
|
${r}
|
|
${t}
|
|
setOutputAtCoords(batch, row, col, chan, value);
|
|
}
|
|
}
|
|
|
|
${Ui()}
|
|
let coords = getOutputCoords();
|
|
let batch = coords[0];
|
|
let outChannel = coords[3];
|
|
|
|
var acc = 0.0;
|
|
|
|
for (var row = 0; row < uniforms.filterDims[0]; row = row + 1) {
|
|
for (var col = 0; col < uniforms.filterDims[1]; col = col + 1) {
|
|
for (var xChannel = 0; xChannel < uniforms.xShape[3]; xChannel = xChannel + 1) {
|
|
let coordRow = coords[1] * uniforms.stride[0] + uniforms.dilation[0] * row - uniforms.pad[0];
|
|
let coordCol = coords[2] * uniforms.stride[1] + uniforms.dilation[1] * col - uniforms.pad[1];
|
|
let v = readInp(batch, coordRow, coordCol, xChannel);
|
|
let f = readFilt(row, col, xChannel, outChannel);
|
|
acc = acc + v * f;
|
|
}
|
|
}
|
|
}
|
|
|
|
writeResult(batch, coords[1], coords[2], outChannel, acc);
|
|
}
|
|
`}},Ihe=class{constructor(e,t){this.variableNames=["A"],this.uniforms=`pad : vec2<i32>, stride : vec2<i32>, dilation : vec2<i32>, outWidth : i32, itemsPerBlockRow : i32,
|
|
inChannels : i32,`,this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.isChannelsLast=t,this.shaderKey=`im2col_${this.isChannelsLast}`}getUserCode(){let e=this.isChannelsLast?0:1,t=this.isChannelsLast?1:2;return`
|
|
${tt()}
|
|
|
|
for(var i = 0; i<${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
|
|
let rc = getCoordsFromIndex(flatIndex);
|
|
|
|
if(flatIndex < uniforms.size) {
|
|
let blockIndex = rc[0];
|
|
let pos = rc[1];
|
|
|
|
let offsetY = blockIndex / uniforms.outWidth * uniforms.stride[1] - uniforms.pad[1];
|
|
let d0 = offsetY + uniforms.dilation[1] * pos / uniforms.itemsPerBlockRow;
|
|
var value = 0.0;
|
|
if(d0 < uniforms.aShape[${e}] && d0 >= 0) {
|
|
let offsetX = (blockIndex % uniforms.outWidth) * uniforms.stride[0] -
|
|
uniforms.pad[0];
|
|
let d1 = offsetX + uniforms.dilation[0] * ((pos %
|
|
uniforms.itemsPerBlockRow) / uniforms.inChannels);
|
|
let ch = pos % uniforms.inChannels;
|
|
if(d1 < uniforms.aShape[${t}] && d1 >= 0) {
|
|
value = getA(d0, d1, ch);
|
|
}
|
|
}
|
|
setOutputAtIndex(flatIndex, value);
|
|
}
|
|
}
|
|
}
|
|
`}};function She({x:e,filter:t,convInfo:r,backend:n,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,u=r.dataFormat==="channelsLast",d=!1,h=!1,p=r.filterHeight===r.inHeight&&r.filterWidth===r.inWidth&&r.padInfo.type==="VALID",c,f;if(p){let y=r.inHeight*r.inWidth*r.inChannels;c=qe({inputs:{x:e},backend:n,attrs:{shape:[1,r.batchSize,y]}}),f=qe({inputs:{x:t},backend:n,attrs:{shape:[1,y,r.outChannels]}})}else{let y=u?l[0]*l[1]*l[2]:l[0]*l[2]*l[3];c=qe({inputs:{x:e},backend:n,attrs:{shape:[1,y,r.inChannels]}}),f=qe({inputs:{x:t},backend:n,attrs:{shape:[1,r.inChannels,r.outChannels]}})}let m=wb({a:c,b:f,transposeA:d,transposeB:h,backend:n,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),g=qe({inputs:{x:m},backend:n,attrs:{shape:r.outShape}});return n.disposeData(c.dataId),n.disposeData(f.dataId),n.disposeData(m.dataId),g}function The({x:e,filter:t,convInfo:r,backend:n,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:u,inChannels:d,strideWidth:h,strideHeight:p,padInfo:c,outWidth:f,outHeight:m,dilationWidth:g,dilationHeight:y,dataFormat:A}=r,x=A==="channelsLast",b=l*u*d,v=m*f,S=[v,b],T=!1,E=!1,R=[],_=qe({inputs:{x:e},backend:n,attrs:{shape:e.shape.slice(1)}}),M=qe({inputs:{x:t},backend:n,attrs:{shape:[1,b,-1]}});R.push(_),R.push(M);let I=new Ihe(S,x),z=[{type:"int32",data:[c.left,c.top]},{type:"int32",data:[h,p]},{type:"int32",data:[g,y]},{type:"int32",data:[f]},{type:"int32",data:[d*l]},{type:"int32",data:[d]}],O=n.runWebGPUProgram(I,[_],_.dtype,z),j=qe({inputs:{x:O},backend:n,attrs:{shape:[1,S[0],S[1]]}});R.push(O),R.push(j);let X=[1,S[0],S[1]],D=new R8(X,[1,v,r.outChannels],Y().get("WEBGPU_MATMUL_WORK_PER_THREAD"),T,E,a,o,s),Q=X[1],V=X[2],ee=r.outChannels,J=[{type:"int32",data:[Q]},{type:"int32",data:[ee]},{type:"int32",data:[V]}],se=[j,M];a&&se.push(a),s&&se.push(s),o==="leakyrelu"&&(z.push({type:"float32",data:[i]}),D.uniforms+=" alpha : f32,");let Z=n.runWebGPUProgram(D,se,j.dtype,J),ae=x?[1,m,f,r.outChannels]:[1,r.outChannels,m,f],de=qe({inputs:{x:Z},backend:n,attrs:{shape:ae}});R.push(Z);for(let Ae of R)n.disposeData(Ae.dataId);return de}function O8({x:e,filter:t,convInfo:r,backend:n,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=a!=null,u=s!=null,d;if(r.filterHeight===r.inHeight&&r.filterWidth===r.inWidth&&r.padInfo.type==="VALID"||r.filterHeight===1&&r.filterWidth===1&&r.dilationHeight===1&&r.dilationWidth===1&&r.strideHeight===1&&r.strideWidth===1&&(r.padInfo.type==="SAME"||r.padInfo.type==="VALID"))return She({x:e,filter:t,convInfo:r,backend:n,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i});if(Y().getBool("WEBGPU_CONV_SEPARATE_IM2COL_SHADER")&&e.shape[0]===1)return The({x:e,filter:t,convInfo:r,backend:n,bias:a,preluActivationWeights:s,leakyreluAlpha:i,activation:o});let h=Y().getBool("WEBGPU_USE_NAIVE_CONV2D"),p=(r.inChannels%4===0||r.inChannels===3&&r.padInfo.type==="VALID")&&r.outChannels%4===0,c=[r.padInfo.top,r.padInfo.left],f=[{type:"int32",data:[r.filterHeight,r.filterWidth]},{type:"int32",data:[...c]},{type:"int32",data:[r.strideHeight,r.strideWidth]},{type:"int32",data:[r.dilationHeight,r.dilationWidth]}];if(h)d=new khe(r,l,o,u);else{p?d=new vhe(r,l,o,u):d=new whe(r,l,o,u);let g=r.outShape[1]*r.outShape[2],y=r.outShape[3],A=r.filterHeight*r.filterWidth*r.inShape[3];f.push({type:"int32",data:[g]},{type:"int32",data:[y]},{type:"int32",data:[A]})}let m=[e,t];return l&&m.push(a),u&&m.push(s),o==="leakyrelu"&&(f.push({type:"float32",data:[i]}),d.uniforms+=" alpha : f32,"),n.runWebGPUProgram(d,m,e.dtype,f)}function Nhe(e){let{inputs:t,attrs:r,backend:n}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:d}=r,h=N.convertConv2DDataFormat(l),p=N.computeConv2DInfo(a.shape,s.shape,i,u,o,d,!1,h);return O8({x:a,filter:s,convInfo:p,backend:n})}var Che={kernelName:Qs,backendName:"webgpu",kernelFunc:Nhe},Ehe=class{constructor(e){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>, pads : vec2<i32>, stride : vec2<i32>, outBackprop : vec4<i32>, dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.outputShape=e.inShape,w.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.workGroupSize=Ab(this.dispatchLayout,this.outputShape),this.elementsPerThread=xb(this.dispatchLayout,this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),this.shaderKey=`conv2DDerInputMM_${this.elementsPerThread}`}getUserCode(){return`
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
var batch = i32(globalId.z);
|
|
if (row < uniforms.dimAOuter && col < uniforms.dimInner) {
|
|
|
|
let outRow = row / uniforms.outShape[2];
|
|
let outCol = row % uniforms.outShape[2];
|
|
|
|
let WRow = col / (uniforms.filterDims[1] * uniforms.outBackprop[3]);
|
|
let WCol = col / uniforms.outBackprop[3] % uniforms.filterDims[1];
|
|
let xR = f32(outRow - uniforms.pads[0] + WRow) / f32(uniforms.stride[0]);
|
|
let xC = f32(outCol - uniforms.pads[1] + WCol) / f32(uniforms.stride[1]);
|
|
if (xR < 0.0 || xR >= f32(uniforms.outBackprop[1]) || fract(xR) > 0.0) {
|
|
return 0.0;
|
|
}
|
|
if (xC < 0.0 || xC >= f32(uniforms.outBackprop[2]) || fract(xC) > 0.0) {
|
|
return 0.0;
|
|
}
|
|
let coord = vec4<i32>(
|
|
batch,
|
|
i32(xR),
|
|
i32(xC),
|
|
col % uniforms.outBackprop[3]);
|
|
return x[getIndexFromCoords4D(coord, uniforms.xShape)];
|
|
}
|
|
return 0.0;
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
let coordX = uniforms.filterDims.x - 1 -
|
|
row / (uniforms.filterDims[1] * uniforms.outBackprop[3]);
|
|
let coordY = uniforms.filterDims.y - 1 -
|
|
(row / uniforms.outBackprop[3]) % uniforms.filterDims[1];
|
|
if (row < uniforms.dimInner && col < uniforms.dimBOuter &&
|
|
coordX >= 0 && coordY >= 0) {
|
|
let coord = vec4<i32>(coordX, coordY, col,
|
|
row % uniforms.outBackprop[3]);
|
|
return W[getIndexFromCoords4D(coord, uniforms.wShape)];
|
|
}
|
|
return 0.0;
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueInput : f32, globalId : vec3<u32>) {
|
|
var batch = i32(globalId.z);
|
|
var value = valueInput;
|
|
let outCoord = vec4<i32>(
|
|
batch,
|
|
row / uniforms.outShape[2],
|
|
row % uniforms.outShape[2],
|
|
col);
|
|
result[getIndexFromCoords4D(outCoord, uniforms.outShape)] = value;
|
|
}
|
|
|
|
${vb(this.elementsPerThread,this.workGroupSize)}
|
|
`}},Rhe=class{constructor(e){this.variableNames=["dy","W"],this.uniforms="filterDims : vec2<i32>, pads : vec2<i32>, stride : vec2<i32>, outBackprop : vec4<i32>,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e.inShape,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.isChannelsLast=e.dataFormat==="channelsLast",this.shaderKey=`conv2DDerInput_${this.isChannelsLast}`}getUserCode(){let e=this.isChannelsLast?1:2,t=this.isChannelsLast?2:3,r=this.isChannelsLast?3:1;return`
|
|
${tt()} {
|
|
if(index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let batch = coords[0];
|
|
let d1 = coords[${r}];
|
|
|
|
let dyCorner = vec2<i32>(coords[${e}]), coords[${t}]) - uniforms.pads;
|
|
let dyRCorner = dyCorner.x;
|
|
let dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
var dotProd = 0.0;
|
|
for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + 1) {
|
|
let dyR = (f32(dyRCorner) + f32(wR)) / f32(uniforms.stride.x);
|
|
let wRPerm = uniforms.filterDims.x - 1 - wR;
|
|
if (dyR < 0.0 || dyR >= f32(uniforms.outBackprop[1]) || fract(dyR) > 0.0 ||
|
|
wRPerm < 0) {
|
|
continue;
|
|
}
|
|
let idyR = dyR;
|
|
|
|
for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + 1) {
|
|
let dyC = (f32(dyCCorner) + f32(wC)) / f32(uniforms.stride.y);
|
|
let wCPerm = uniforms.filterDims.y - 1 - wC;
|
|
if (dyC < 0.0 || dyC >= f32(uniforms.outBackprop[2]) ||
|
|
fract(dyC) > 0.0 || wCPerm < 0) {
|
|
continue;
|
|
}
|
|
let idyC = dyC;
|
|
|
|
for (var d2 = 0; d2 < uniforms.outBackprop[3]; d2 = d2 + 1) {
|
|
if (${this.isChannelsLast}) {
|
|
let xValue = getDy(batch, idyR, idyC, d2);
|
|
let wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd = dotProd + xValue * wValue;
|
|
} else {
|
|
let xValue = getDy(batch, d2, idyR, idyC);
|
|
let wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd = dotProd + xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutputAtIndex(index, dotProd);
|
|
}
|
|
}
|
|
`}};function Mhe(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:d}=n,h=N.convertConv2DDataFormat(u),p=N.computeConv2DInfo(i,s.shape,o,1,l,d,!1,h),c=[{type:"int32",data:[p.filterHeight,p.filterWidth]},{type:"int32",data:[p.filterHeight-1-p.padInfo.top,p.filterWidth-1-p.padInfo.left]},{type:"int32",data:[p.strideHeight,p.strideWidth]},{type:"int32",data:[p.batchSize,p.outHeight,p.outWidth,p.outChannels]}],f;if(Y().getBool("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE"))f=new Rhe(p);else{f=new Ehe(p);let m=p.inShape[1]*p.inShape[2],g=p.inShape[3],y=p.filterHeight*p.filterWidth*p.outChannels;c.push({type:"uint32",data:[m]},{type:"uint32",data:[g]},{type:"uint32",data:[y]})}return r.runWebGPUProgram(f,[a,s],"float32",c)}var Fhe={kernelName:ei,backendName:"webgpu",kernelFunc:Mhe},$he=kr({opType:2}),Phe={kernelName:ti,backendName:"webgpu",kernelFunc:$he},_he=kr({opType:3}),zhe={kernelName:ri,backendName:"webgpu",kernelFunc:_he},Ohe=class{constructor(e,t,r,n){this.variableNames=["Image","Boxes","BoxInd"],this.uniforms="extrapolationValue : f32,",this.workGroupSize=[64,1,1],this.size=!0;let[a]=t;this.outputShape=[a,r[0],r[1],e],this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.methodId=n==="bilinear"?1:0,this.cropHeightBiggerThan1=this.outputShape[1]>1,this.cropWidthBiggerThan1=this.outputShape[2]>1,this.shaderKey=`cropAndResize_${this.methodId}_${this.cropHeightBiggerThan1}_${this.cropWidthBiggerThan1}`}getUserCode(){let[e,t]=["f32(uniforms.imageShape[1] - 1)","f32(uniforms.imageShape[2] - 1)"],[r,n,a]=this.cropHeightBiggerThan1?[`(${e} / f32(uniforms.outShape[1] - 1))`,"(y2-y1) * height_ratio",`y1*${e} + f32(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${e}`],[s,i,o]=this.cropWidthBiggerThan1?[`(${t} / f32(uniforms.outShape[2] - 1))`,"(x2-x1) * width_ratio",`x1*${t} + f32(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${t}`];return`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let height_ratio = f32(${r});
|
|
let width_ratio = f32(${s});
|
|
let b = coords[0];
|
|
let y = coords[1];
|
|
let x = coords[2];
|
|
let d = coords[3];
|
|
// get box vals
|
|
let y1 = getBoxes(b, 0);
|
|
let x1 = getBoxes(b, 1);
|
|
let y2 = getBoxes(b, 2);
|
|
let x2 = getBoxes(b, 3);
|
|
// get image in batch index
|
|
let bInd = i32(round(getBoxInd(b)));
|
|
if(bInd < 0 || bInd >= uniforms.outShape[0]) {
|
|
return;
|
|
}
|
|
let height_scale = ${n};
|
|
let width_scale = ${i};
|
|
let in_y = ${a};
|
|
if( in_y < 0.0 || in_y > ${e} ) {
|
|
setOutputAtIndex(index, uniforms.extrapolationValue);
|
|
return;
|
|
}
|
|
let in_x = ${o};
|
|
if( in_x < 0.0 || in_x > ${t} ) {
|
|
setOutputAtIndex(index, uniforms.extrapolationValue);
|
|
return;
|
|
}
|
|
let sourceFracIndexCR = vec2<f32>(in_x,in_y);
|
|
if(${this.methodId} == 1) {
|
|
// Compute the four integer indices.
|
|
let sourceFloorCR = vec2<i32>(sourceFracIndexCR);
|
|
let sourceCeilCR = vec2<i32>(ceil(sourceFracIndexCR));
|
|
let topLeft = getImage(bInd, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
let bottomLeft = getImage(bInd, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
let topRight = getImage(bInd, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
let bottomRight = getImage(bInd, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
let fracCR = sourceFracIndexCR - vec2<f32>(sourceFloorCR);
|
|
let top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
let bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
let newValue = top + (bottom - top) * fracCR.y;
|
|
setOutputAtIndex(index, newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
let sourceNearestCR = vec2<i32>(floor(
|
|
sourceFracIndexCR + vec2<f32>(0.5,0.5)));
|
|
let newValue = getImage(
|
|
bInd, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutputAtIndex(index, newValue);
|
|
}
|
|
}
|
|
}
|
|
`}},Dhe=e=>{let{inputs:t,backend:r,attrs:n}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=n,d=new Ohe(a.shape[3],s.shape,o,l),h=[{type:"float32",data:[u]}];return r.runWebGPUProgram(d,[a,s,i],"float32",h)},Lhe={kernelName:Uo,backendName:"webgpu",kernelFunc:Dhe},Bhe=class{constructor(e,t){this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.uniforms="blockSize : i32,",this.outputShape=e,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`depthToSpace_${t}`,this.dataFormat=t}getUserCode(){return`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let b = coords[0];
|
|
let h = ${this.getHeightCoordString()};
|
|
let w = ${this.getWidthCoordString()};
|
|
let d = ${this.getDepthCoordString()};
|
|
|
|
let in_h = h / uniforms.blockSize;
|
|
let offset_h = h % uniforms.blockSize;
|
|
let in_w = w / uniforms.blockSize;
|
|
let offset_w = w % uniforms.blockSize;
|
|
let offset_d = (offset_h * uniforms.blockSize + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
let in_d = d + offset_d;
|
|
|
|
let rlt = ${this.getInputSamplingString()};
|
|
setOutputAtIndex(index, rlt);
|
|
}
|
|
}`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?"uniforms.outShape[3]":"uniforms.outShape[1]"}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function Whe(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockSize:s,dataFormat:i}=n,o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],u=i==="NHWC"?a.shape[2]:a.shape[3],d=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,p=u*s,c=d/(s*s),f=i==="NHWC"?[o,h,p,c]:[o,c,h,p],m=[{type:"int32",data:[s]}],g=new Bhe(f,i);return r.runWebGPUProgram(g,[a],a.dtype,m)}var Vhe={kernelName:Go,backendName:"webgpu",kernelFunc:Whe},D8=class{constructor(e,t=!1,r=null,n=!1){this.variableNames=["x","W"],this.uniforms="pad : vec2<i32>, stride : vec2<i32>, dilation : vec2<i32>, inDims : vec2<i32>,",this.workGroupSize=[4,4,4],this.isVec4=!0,this.outputShape=e.outShape,this.dispatchLayout={x:[0,1],y:[2],z:[3]},this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[1,4,4]),w.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=r,this.hasPreluActivation=n,this.shaderKey=`depthwise3x3_${r}`}getUserCode(){let e="",t="";if(this.activation){let n=ss(this.activation,this.isVec4);this.hasPreluActivation?e=`fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${n}
|
|
}`:e=`
|
|
fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
|
|
${n}
|
|
}
|
|
`,t="dotProd[i] = activation(dotProd[i], coords);"}let r=this.addBias?"dotProd[i] = dotProd[i] + getBiasByOutputCoords(coords);":"";return`
|
|
${e}
|
|
|
|
${yb()}
|
|
fn main(@builtin(global_invocation_id) globalId: vec3<u32>) {
|
|
let batch = 0;
|
|
let r = i32(globalId.x);
|
|
let c = i32(globalId.y) * 4;
|
|
let d2 = i32(globalId.z) * 4;
|
|
let xRCCorner = vec2<i32>(r, c) * uniforms.stride - uniforms.pad;
|
|
let d1 = d2;
|
|
let q = 0;
|
|
|
|
let xRCorner = xRCCorner.x;
|
|
let xCCorner = xRCCorner.y;
|
|
|
|
var wVals : array<vec4<f32>, 9>;
|
|
wVals[0] = getW(0, 0, d1, q);
|
|
wVals[1] = getW(0, 1, d1, q);
|
|
wVals[2] = getW(0, 2, d1, q);
|
|
wVals[3] = getW(1, 0, d1, q);
|
|
wVals[4] = getW(1, 1, d1, q);
|
|
wVals[5] = getW(1, 2, d1, q);
|
|
wVals[6] = getW(2, 0, d1, q);
|
|
wVals[7] = getW(2, 1, d1, q);
|
|
wVals[8] = getW(2, 2, d1, q);
|
|
|
|
var xVals : array<array<vec4<f32>, 6>, 3>;
|
|
for (var wR = 0; wR < 3; wR = wR + 1) {
|
|
let xR = xRCorner + wR * uniforms.dilation[0];
|
|
for (var wC = 0; wC < 6; wC = wC + 1) {
|
|
let xC = xCCorner + wC * uniforms.dilation[1];
|
|
if (xR < 0 || xR >= uniforms.inDims[0] || xC < 0 || xC >= uniforms.inDims[1]) {
|
|
xVals[wR][wC] = vec4<f32>(0.0);
|
|
} else {
|
|
xVals[wR][wC] = getX(batch, xR, xC, d1);
|
|
}
|
|
}
|
|
}
|
|
|
|
var dotProd : array<vec4<f32>, 4>;
|
|
dotProd[0] = vec4<f32>(0.0);
|
|
dotProd[1] = vec4<f32>(0.0);
|
|
dotProd[2] = vec4<f32>(0.0);
|
|
dotProd[3] = vec4<f32>(0.0);
|
|
|
|
for (var wR = 0; wR < 3; wR = wR + 1) {
|
|
for (var wC = 0; wC < 3; wC = wC + 1) {
|
|
let indexW = wR * 3 + wC;
|
|
dotProd[0] = dotProd[0] + xVals[wR][0 + wC] * wVals[indexW];
|
|
dotProd[1] = dotProd[1] + xVals[wR][1 + wC] * wVals[indexW];
|
|
dotProd[2] = dotProd[2] + xVals[wR][2 + wC] * wVals[indexW];
|
|
dotProd[3] = dotProd[3] + xVals[wR][3 + wC] * wVals[indexW];
|
|
}
|
|
}
|
|
|
|
for (var i = 0; i < 4; i = i + 1) {
|
|
let coords = vec4<i32>(batch, r, c + i, d2);
|
|
if (coordsInBounds4D(coords, uniforms.outShape)) {
|
|
${r}
|
|
${t}
|
|
setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], dotProd[i]);
|
|
}
|
|
}
|
|
}
|
|
`}},L8=class{constructor(e,t=!1,r=null,n=!1){this.variableNames=["x","W"],this.uniforms=`pad : vec2<i32>, stride : vec2<i32>, dilation : vec2<i32>,
|
|
inDims : vec2<i32>, filterHeight : i32, filterWidth : i32,
|
|
channelMul : i32,`,this.workGroupSize=[256,1,1],this.outputShape=e.outShape,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),w.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=r,this.hasPreluActivation=n,this.shaderKey=`depthwise_${this.activation}`}getUserCode(){let e="",t="";if(this.activation){let n=ss(this.activation,!1);this.hasPreluActivation?e=`fn activation(a : f32, outCoord : vec4<i32>) -> f32 {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${n}
|
|
}`:e=`
|
|
fn activation(a : f32, outCoord : vec4<i32>) -> f32 {
|
|
${n}
|
|
}
|
|
`,t="dotProd = activation(dotProd, coords);"}let r=this.addBias?"dotProd = dotProd + getBiasByOutputCoords(coords);":"";return`
|
|
${e}
|
|
|
|
fn writeResult(batch : i32, row : i32, col : i32, chan : i32,
|
|
value : f32) {
|
|
let coord = vec4<i32>(batch, row, col, chan);
|
|
if (coordsInBounds4D(coord, uniforms.outShape)) {
|
|
setOutputAtCoords(batch, row, col, chan, value);
|
|
}
|
|
}
|
|
|
|
${Ui()}
|
|
let coords = getOutputCoords();
|
|
let batch = coords[0];
|
|
let xRCCorner = vec2<i32>(coords.yz) * uniforms.stride - uniforms.pad;
|
|
let d2 = coords[3];
|
|
let d1 = d2 / uniforms.channelMul;
|
|
let q = d2 - d1 * uniforms.channelMul;
|
|
|
|
let inputRowStart = xRCCorner.x;
|
|
let inputColStart = xRCCorner.y;
|
|
let inputRowEnd = inputRowStart + uniforms.filterHeight *
|
|
uniforms.dilation[0];
|
|
let inputColEnd = inputColStart + uniforms.filterWidth *
|
|
uniforms.dilation[1];
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
var dotProd = 0.0;
|
|
|
|
// Extract if checking out of for loop for performance.
|
|
if (inputRowStart >= 0 && inputColStart >= 0 &&
|
|
inputRowEnd < uniforms.inDims[0] &&
|
|
inputColEnd < uniforms.inDims[1]) {
|
|
// Here using a constant value |this.convInfo.filterHeight| instead
|
|
// of uniform value is in order to loop unrolling.
|
|
for (var wR = 0; wR < uniforms.filterHeight; wR = wR + 1) {
|
|
let xR = inputRowStart + wR * uniforms.dilation[0];
|
|
|
|
for (var wC = 0; wC < uniforms.filterWidth; wC = wC + 1) {
|
|
let xC = inputColStart + wC * uniforms.dilation[1];
|
|
|
|
let xVal = getX(batch, xR, xC, d1);
|
|
let wVal = getW(wR, wC, d1, q);
|
|
dotProd = dotProd + xVal * wVal;
|
|
}
|
|
}
|
|
} else {
|
|
for (var wR = 0; wR < uniforms.filterHeight; wR = wR + 1) {
|
|
let xR = inputRowStart + wR * uniforms.dilation[0];
|
|
|
|
if (xR < 0 || xR >= uniforms.inDims[0]) {
|
|
continue;
|
|
}
|
|
|
|
for (var wC = 0; wC < uniforms.filterWidth; wC = wC + 1) {
|
|
let xC = inputColStart + wC * uniforms.dilation[1];
|
|
|
|
if (xC < 0 || xC >= uniforms.inDims[1]) {
|
|
continue;
|
|
}
|
|
|
|
let xVal = getX(batch, xR, xC, d1);
|
|
let wVal = getW(wR, wC, d1, q);
|
|
dotProd = dotProd + xVal * wVal;
|
|
}
|
|
}
|
|
}
|
|
|
|
${r}
|
|
${t}
|
|
writeResult(batch, coords[1], coords[2], d2, dotProd);
|
|
}
|
|
`}};function Uhe(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=n,d=l;d==null&&(d=[1,1]);let h=N.computeConv2DInfo(a.shape,s.shape,i,d,o,u,!0),p=[{type:"int32",data:[h.padInfo.top,h.padInfo.left]},{type:"int32",data:[h.strideHeight,h.strideWidth]},{type:"int32",data:[h.dilationHeight,h.dilationWidth]},{type:"int32",data:[h.inHeight,h.inWidth]}],c;return h.batchSize===1&&h.inHeight===h.outHeight&&h.inWidth===h.outWidth&&h.strideHeight===1&&h.strideWidth===1&&h.filterHeight===h.filterWidth&&h.inChannels===h.outChannels&&h.dilationHeight===1&&h.dilationWidth===1&&h.filterHeight===3&&h.inChannels%4===0?c=new D8(h):(c=new L8(h),p.push({type:"int32",data:[h.filterHeight]},{type:"int32",data:[h.filterWidth]},{type:"int32",data:[h.outChannels/h.inChannels]})),r.runWebGPUProgram(c,[a,s],a.dtype,p)}var Ghe={kernelName:ni,backendName:"webgpu",kernelFunc:Uhe},B8=jr({opSnippet:0,cpuKernelImpl:kpe,supportsComplex:!0}),jhe={kernelName:vi,backendName:"webgpu",kernelFunc:B8},Hhe=class{constructor(e,t){this.workGroupSize=[64,1,1],this.variableNames=["x"],this.uniforms="reduceSize : i32,",this.size=!0,this.inputShape=[e.batchSize,e.inSize];let[r]=N.computeOutAndReduceShapes(this.inputShape,[1]);this.outputShape=r.length===0?[1]:r,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,[1,1,1]),this.reduceType=t,this.shaderKey=`reduce_${t}`}getUserCode(){let e="",t="0.0";this.reduceType==="min"||this.reduceType==="max"?(e=`
|
|
if (isnan(candidate)) {
|
|
bestValue = uniforms.NAN;
|
|
} else if (!isnan(bestValue) && candidate ${this.reduceType==="min"?"<":">"} bestValue)
|
|
{ bestValue = candidate; }`,t="f32(x[offset])"):this.reduceType==="sum"||this.reduceType==="mean"?e=" bestValue = bestValue + candidate; ":this.reduceType==="prod"&&(e=" bestValue = bestValue * candidate; ",t="1.0");let r=this.reduceType==="mean"?"setOutputAtIndex(outputIndex, bestValue / f32(uniforms.reduceSize));":"setOutputAtIndex(outputIndex, bestValue);";return`
|
|
fn DIV_CEIL(a : u32, b : u32) -> u32 {
|
|
return ((a - 1u) / b + 1u);
|
|
}
|
|
|
|
${`
|
|
var<workgroup> xBestValues : array<f32, ${this.workGroupSize[0]}>;
|
|
`}
|
|
fn getOffset(outputIndex : i32) -> i32 {
|
|
let outputCoords = getCoordsFromIndex(outputIndex);
|
|
let offset = ${this.outputShape.length===1?"outputCoords":"outputCoords[0]"} * uniforms.reduceSize;
|
|
return offset;
|
|
}
|
|
${tt()}
|
|
let outputIndex = index / i32(workGroupSizeX);
|
|
let offset = getOffset(outputIndex);
|
|
var bestValue = ${t};
|
|
let Length = uniforms.reduceSize;
|
|
let WorkPerThread = DIV_CEIL(u32(Length), workGroupSizeX);
|
|
for (var k = i32(localId.x); k < Length && outputIndex < uniforms.size;
|
|
k = k + i32(workGroupSizeX)) {
|
|
let candidate = f32(x[offset + k]);
|
|
${e}
|
|
}
|
|
xBestValues[localId.x] = bestValue;
|
|
workgroupBarrier();
|
|
|
|
var reduceSize = min(u32(Length), workGroupSizeX);
|
|
for (var currentSize = reduceSize / 2u; reduceSize > 1u;
|
|
currentSize = reduceSize / 2u) {
|
|
let interval = DIV_CEIL(reduceSize, 2u);
|
|
if (localId.x < currentSize) {
|
|
let candidate = xBestValues[localId.x + interval];
|
|
${e}
|
|
xBestValues[localId.x] = bestValue;
|
|
}
|
|
reduceSize = interval;
|
|
workgroupBarrier();
|
|
}
|
|
|
|
if (localId.x == 0u && outputIndex < uniforms.size) {
|
|
${r}
|
|
}
|
|
}
|
|
`}};function Gh(e,t,r,n,a){let s=e.shape.length,i=[],o=w.parseAxisParam(t,e.shape),l=o,u=N.getAxesPermutation(l,s),d=e;u!=null&&(d=zl({inputs:{x:e},attrs:{perm:u},backend:a}),l=N.getInnerMostAxes(l.length,s),i.push(d)),N.assertAxesAreInnerMostDims(n,l,s);let[h,p]=N.computeOutAndReduceShapes(d.shape,l),c=h;r&&(c=N.expandShapeToKeepDim(h,o));let f;if((n==="max"||n==="prod")&&a.shouldExecuteOnCPU([d])){let m=a.tensorMap.get(d.dataId).values;switch(n){case"max":let g=bpe(m,w.sizeFromShape(p),c,e.dtype);f=a.makeTensorInfo(c,e.dtype,g);break;case"prod":let{outVals:y,outShape:A,outDtype:x}=Tpe(d.shape,d.dtype,m,l);f=a.makeTensorInfo(A,x,y);break;default:throw new Error(`${n} CPU implementation is not yet supported.`)}}else{let m=w.sizeFromShape(p),g=w.sizeFromShape(d.shape)/m,y={windowSize:m,inSize:m,batchSize:g,outSize:1},A=n==="mean"?"float32":ch(e.dtype),x=[{type:"int32",data:[m]}],b=new Hhe(y,n),v=a.runWebGPUProgram(b,[d],A,x);i.push(v),f=qe({inputs:{x:v},attrs:{shape:c},backend:a})}return i.forEach(m=>a.disposeData(m.dataId)),f}function kb(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n;return Gh(a,s,i,"sum",r)}var qhe={kernelName:Fi,backendName:"webgpu",kernelFunc:kb};function Khe(e){let{inputs:t,backend:r,attrs:n}=e,{equation:a}=n,s=t,{allDims:i,summedDims:o,idDims:l}=N.decodeEinsumEquation(a,s.length);N.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:d}=N.getEinsumComputePath(o,l),h=d.length,p=null,c=i.length,f=[];for(let m=0;m<h;++m){for(let g of d[m]){let{permutationIndices:y,expandDims:A}=N.getEinsumPermutation(c,l[g]),x;N.isIdentityPermutation(y)?x=s[g]:(x=zl({inputs:{x:s[g]},backend:r,attrs:{perm:y}}),f.push(x));let b=x.shape.slice();for(let v=0;v<A.length;++v)b.splice(A[v],0,1);w.arraysEqual(x.shape,b)||(x=qe({inputs:{x},backend:r,attrs:{shape:b}}),f.push(x)),p===null?p=x:(p=B8({inputs:{a:x,b:p},backend:r}),f.push(p))}m<h-1&&(u[m]>=0&&(p=kb({inputs:{x:p},backend:r,attrs:{axis:u[m]-(i.length-c),keepDims:!1}}),f.push(p)),c--)}for(let m of f)m!==p&&r.disposeData(m.dataId);return p}var Xhe={kernelName:Qp,backendName:"webgpu",kernelFunc:Khe},Zhe=kr({opType:4}),Yhe={kernelName:si,backendName:"webgpu",kernelFunc:Zhe},Jhe=jr({opSnippet:4,dtype:"bool",cpuKernelImpl:upe}),Qhe={kernelName:jo,backendName:"webgpu",kernelFunc:Jhe},W8=kr({opType:5,cpuKernelImpl:dpe,dtype:"float32"}),ece={kernelName:ii,backendName:"webgpu",kernelFunc:W8};function n2(e){let{inputs:t,attrs:r,backend:n}=e,{dim:a}=r,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=a;return a<0&&(w.assert(-(i+1)<=a,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+a+1),o.splice(l,0,1),qe({inputs:{x:s},backend:n,attrs:{shape:o}})}var tce={kernelName:Ho,backendName:"webgpu",kernelFunc:n2},rce=kr({opType:6,cpuKernelImpl:ppe}),nce={kernelName:qo,backendName:"webgpu",kernelFunc:rce},ace=class{constructor(e){this.variableNames=[],this.outputShape=[],this.uniforms="value : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="fill"}getUserCode(){return`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
setOutputAtIndex(index, uniforms.value);
|
|
}
|
|
}
|
|
`}};function Rd(e){let{backend:t,attrs:r}=e,{shape:n,value:a}=r,{dtype:s}=r;if(s=s||w.inferDtype(a),s==="string"){let i=w.getArrayFromDType(s,w.sizeFromShape(n));return i.fill(a),t.makeTensorInfo(n,s,i)}else{let i=new ace(n),o=[{type:"float32",data:[a]}];return t.runWebGPUProgram(i,[],s,o)}}var sce={kernelName:Hu,backendName:"webgpu",kernelFunc:Rd},ice=class{constructor(e){this.outputShape=[],this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="flipLeftRight"}getUserCode(){return`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let coordX = uniforms.xShape[2] - coords[2] - 1;
|
|
let outputValue = getX(coords[0], coords[1], coordX, coords[3]);
|
|
setOutputAtIndex(index, outputValue);
|
|
}
|
|
}
|
|
`}},oce={kernelName:Ko,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{image:r}=e,n=t,a=new ice(r.shape);return n.runWebGPUProgram(a,[r],r.dtype)}},lce=kr({opType:7,cpuKernelImpl:hpe}),uce={kernelName:oi,backendName:"webgpu",kernelFunc:lce},dce=jr({opSnippet:12,dtype:"int32"}),pce={kernelName:li,backendName:"webgpu",kernelFunc:dce},hce=(e,t,r,n,a)=>{let s=[n,...r];return a&&s.push(a),e.createBindGroup({layout:t,entries:s.map((i,o)=>({binding:o,resource:i}))})},V8=(e,t,r,n,a,s=!1)=>{let i={dtype:a.dtype,shape:a.shape},o=Bde(n,i,t,s),l=e.createShaderModule({code:o,label:t.constructor.name});return e.createComputePipeline({layout:r,compute:{module:l,entryPoint:"main"},label:t.constructor.name})};function U8(e,t,r,n="",a=""){return e.shaderKey+"_"+(e.workGroupSize?e.workGroupSize.join(","):"")+t.map(s=>s.length).join(",")+r.join(",")+e.variableNames.join(",")+n+a}function ow(e){let{externalImage:t,backend:r,attrs:n,outShape:a,useImport:s}=e,{numChannels:i}=n,o=w.sizeFromShape(a),l=w.computeStrides(a),u=r.makeTensorInfo(a,"int32"),d=r.getFromPixelsProgram(s?"import":"copyExternal");d.updateOutputShape(a);let h=[u.shape],p=[u.dtype,s?"import":"copyExternal"],c=U8(d,h,p),f=d.getLayout(r.device),m=r.getAndSavePipeline(c,()=>V8(r.device,d,f.pipelineLayout,[],u,!0));d.setPipeline(m),s||r.queue.copyExternalImageToTexture({source:t,origin:{x:0,y:0}},{texture:d.makeInputTexture(r.device,a[1],a[0])},[a[1],a[0]]);let g=r.tensorMap.get(u.dataId);g.bufferInfo.buffer=r.acquireBuffer(g.bufferInfo.byteSize);let y=[o,i,...l,...d.dispatch];d.setUniform(r.device,y);let A;if(s){let x={source:t};A=r.device.importExternalTexture(x)}else A=d.inputTexture.createView();return r.runFromPixelsProgram(d,g.bufferInfo.buffer,f,A,u.dataId),u}var cce={kernelName:Pp,backendName:"webgpu",kernelFunc:fce},lu;function fce(e){let{inputs:t,backend:r,attrs:n}=e,{pixels:a}=t,{numChannels:s}=n;if(a==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let i=typeof HTMLVideoElement!="undefined"&&a instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&a instanceof HTMLImageElement,l=typeof HTMLCanvasElement!="undefined"&&a instanceof HTMLCanvasElement||typeof OffscreenCanvas!="undefined"&&a instanceof OffscreenCanvas,u=typeof ImageBitmap!="undefined"&&a instanceof ImageBitmap,[d,h]=i?[a.videoWidth,a.videoHeight]:[a.width,a.height],p=[h,d,s];if(Y().getBool("WEBGPU_USE_IMPORT")&&i)return ow({externalImage:a,backend:r,attrs:n,outShape:p,useImport:!0});if((i||o)&&(lu==null&&(lu=document.createElement("canvas").getContext("2d")),lu.canvas.width=d,lu.canvas.height=h,lu.drawImage(a,0,0,d,h),a=lu.canvas),u||l||i||o)return ow({externalImage:a,backend:r,attrs:n,outShape:p,useImport:!1});let c=a.data,f=c;if(s!=null&&s!==4){f=new Uint8Array(a.width*a.height*s);let y=c.length,A=0;for(let x=0;x<y;x++)x%4<s&&(f[A++]=c[x])}let m=r.makeTensorInfo(p,"int32"),g=r.tensorMap.get(m.dataId);return g.values=new Int32Array(f),r.maybeReleaseBuffer(m.dataId),r.uploadToGPU(m.dataId),m}var mce=class{constructor(e,t,r,n,a){this.uniforms="varianceEpsilon : f32,",this.workGroupSize=[128,1,1],this.size=!0,this.variableNames=["x","mean","variance"],N.assertAndGetBroadcastShape(e,t),N.assertAndGetBroadcastShape(e,r),this.outputShape=e,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),n!=null&&(N.assertAndGetBroadcastShape(e,n),this.variableNames.push("offset")),a!=null&&(N.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale")),this.offsetShape=n,this.scaleShape=a,this.shaderKey="batchNorm"}getUserCode(){let e="0.0";this.offsetShape!=null&&(e="getOffsetByOutputIndex(index)");let t="1.0";return this.scaleShape!=null&&(t="getScaleByOutputIndex(index)"),`
|
|
${tt()}
|
|
if (index < uniforms.size)
|
|
{
|
|
let xValue = getXByOutputIndex(index);
|
|
let meanValue = getMeanByOutputIndex(index);
|
|
let varianValue = getVarianceByOutputIndex(index);
|
|
let offsetValue = ${e};
|
|
let scaleValue = ${t};
|
|
let inv = scaleValue * inverseSqrt(varianValue + f32(uniforms.varianceEpsilon));
|
|
setOutputAtIndex(index,dot(vec3<f32>(xValue, -meanValue, offsetValue), vec3<f32>(inv, inv, 1.0)));
|
|
}
|
|
}
|
|
`}},gce={kernelName:ui,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:r})=>{let{x:n,scale:a,offset:s,mean:i,variance:o}=e,{varianceEpsilon:l}=t,u=r,d=[n,i,o],h=null;s!=null&&(h=s.shape,d.push(s));let p=null;a!=null&&(p=a.shape,d.push(a));let c=new mce(n.shape,i.shape,o.shape,h,p),f=[{type:"float32",data:[l]}];return u.runWebGPUProgram(c,d,n.dtype,f)}};function yce(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:d,dilations:h,dimRoundingMode:p,activation:c,leakyreluAlpha:f}=n,m=N.convertConv2DDataFormat(d),g=N.computeConv2DInfo(a.shape,s.shape,l,h,u,p,!1,m);return O8({x:a,filter:s,convInfo:g,backend:r,bias:i,preluActivationWeights:o,leakyreluAlpha:f,activation:c})}var Ace={kernelName:Fs,backendName:"webgpu",kernelFunc:yce};function xce(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:d,dimRoundingMode:h,activation:p,leakyreluAlpha:c}=n,f=d;f==null&&(f=[1,1]),w.assert(N.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let m=N.computeConv2DInfo(a.shape,s.shape,l,f,u,h,!0),g=[a,s],y=i!=null,A=o!=null;y&&g.push(i),A&&g.push(o);let x=[{type:"int32",data:[m.padInfo.top,m.padInfo.left]},{type:"int32",data:[m.strideHeight,m.strideWidth]},{type:"int32",data:[m.dilationHeight,m.dilationWidth]},{type:"int32",data:[m.inHeight,m.inWidth]}],b;return m.batchSize===1&&m.inHeight===m.outHeight&&m.inWidth===m.outWidth&&m.strideHeight===1&&m.strideWidth===1&&m.filterHeight===m.filterWidth&&m.inChannels===m.outChannels&&m.dilationHeight===1&&m.dilationWidth===1&&m.filterHeight===3&&m.inChannels%4===0?b=new D8(m,y,p,A):(b=new L8(m,y,p,A),x.push({type:"int32",data:[m.filterHeight]},{type:"int32",data:[m.filterWidth]},{type:"int32",data:[m.outChannels/m.inChannels]})),p==="leakyrelu"&&(x.push({type:"float32",data:[c]}),b.uniforms+=" alpha : f32,"),r.runWebGPUProgram(b,g,"float32",x)}var bce={kernelName:$s,backendName:"webgpu",kernelFunc:xce},vce=class{constructor(e,t){this.variableNames=["A","indices"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`gathernd_${e}`,this.sliceDim=e,this.uniforms=`sliceDim : i32, strides : ${gr(e)},`}getUserCode(){let e;return this.sliceDim>1?e="uniforms.strides[j]":e="uniforms.strides",`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
var flattenIndex = 0;
|
|
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
|
|
let indexTemp = i32(round(getIndices(coords[0], j)));
|
|
let strideNum = ${e};
|
|
flattenIndex = flattenIndex + indexTemp * strideNum;
|
|
}
|
|
|
|
setOutputAtIndex(index, getA(flattenIndex, coords[1]));
|
|
}
|
|
}
|
|
`}};function wce(e){let{inputs:t,backend:r}=e,{params:n,indices:a}=t,s=a.shape,i=s[s.length-1],o=w.sizeFromShape(n.shape),[l,u,d,h]=N.prepareAndValidate(n,a),p=qe({inputs:{x:a},backend:r,attrs:{shape:[u,i]}}),c=qe({inputs:{x:n},backend:r,attrs:{shape:[w.sizeFromShape(n.shape)/d,d]}});if(r.shouldExecuteOnCPU([n,a])||n.dtype==="string"){let A=r.readSync(a.dataId),x=r.bufferSync(n),b=cpe(A,x,n.dtype,u,i,d,h,n.shape,o);return r.makeTensorInfo(l,n.dtype,b.values)}let f=new vce(i,[u,d]),m=[{type:"int32",data:[i]},{type:"int32",data:h}],g=r.runWebGPUProgram(f,[c,p],c.dtype,m),y=qe({inputs:{x:g},backend:r,attrs:{shape:l}});return r.disposeData(p.dataId),r.disposeData(c.dataId),r.disposeData(g.dataId),y}var kce={kernelName:Zo,backendName:"webgpu",kernelFunc:wce},Ice=class{constructor(e,t){this.variableNames=["A","indices"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e.slice(),this.aShape=e,this.outputShape=t,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="gather"}getUserCode(){let e=Sce(this.aShape);return`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let resRC = getCoordsFromIndex(index);
|
|
let indexZ = i32(getIndices(resRC.x, resRC.z));
|
|
let inBounds = select(0.0, 1.0, indexZ >= 0 && indexZ < uniforms.aShape[2]);
|
|
setOutputAtIndex(index, inBounds * getA(${e}));
|
|
}
|
|
}
|
|
`}};function Sce(e){let t=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[];for(let n=0;n<e.length;n++)n===2?r.push("indexZ"):r.push(`${t[n]}`);return r.join()}function G8(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,indices:s}=t,{axis:i,batchDims:o}=n,l=w.parseAxisParam(i,a.shape)[0],u=N.segment_util.collectGatherOpShapeInfo(a,s,l,o),d=w.sizeFromShape(s.shape),h=[],p=qe({inputs:{x:a},backend:r,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),c=qe({inputs:{x:s},backend:r,attrs:{shape:[u.batchSize,d/u.batchSize]}});h.push(p),h.push(c);let f=[u.batchSize,u.outerSize,d/u.batchSize,u.sliceSize];if(r.shouldExecuteOnCPU([a,s])){let A=r.tensorMap.get(c.dataId).values,x=We(c.shape,c.dtype,A),b=r.tensorMap.get(p.dataId).values,v=We(p.shape,p.dtype,b),S=fpe(v,x,f);return h.forEach(T=>r.disposeData(T.dataId)),r.makeTensorInfo(u.outputShape,S.dtype,S.values)}let m=new Ice(p.shape,f),g=r.runWebGPUProgram(m,[p,c],p.dtype);h.push(g);let y=qe({inputs:{x:g},backend:r,attrs:{shape:u.outputShape}});return h.forEach(A=>r.disposeData(A.dataId)),y}var Tce={kernelName:Xo,backendName:"webgpu",kernelFunc:G8},Nce=jr({opSnippet:5,cpuKernelImpl:gpe,dtype:"bool"}),Cce={kernelName:Yo,backendName:"webgpu",kernelFunc:Nce},Ece=jr({opSnippet:6,dtype:"bool",cpuKernelImpl:mpe}),Rce={kernelName:di,backendName:"webgpu",kernelFunc:Ece};function Mce(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{alpha:s}=n,i=[{type:"float32",data:[s]}],o=new Vh(a.shape,14);return o.uniforms="alpha : f32,",r.runWebGPUProgram(o,[a],"float32",i)}var Fce={kernelName:hi,backendName:"webgpu",kernelFunc:Mce},$ce=jr({opSnippet:7,dtype:"bool",cpuKernelImpl:Ape}),Pce={kernelName:Jo,backendName:"webgpu",kernelFunc:$ce},_ce=jr({opSnippet:8,dtype:"bool",cpuKernelImpl:ype}),zce={kernelName:Qo,backendName:"webgpu",kernelFunc:_ce},Oce=kr({opType:9,cpuKernelImpl:xpe}),Dce={kernelName:ci,backendName:"webgpu",kernelFunc:Oce},Lce=jr({opSnippet:9,dtype:"bool"}),Bce={kernelName:el,backendName:"webgpu",kernelFunc:Lce},Wce=kr({opType:10}),Vce={kernelName:Yu,backendName:"webgpu",kernelFunc:Wce};function j8(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{reductionIndices:s,keepDims:i}=n;return Gh(a,s,i,"max",r)}var Uce={kernelName:fi,backendName:"webgpu",kernelFunc:j8},Gce=jr({opSnippet:15,cpuKernelImpl:vpe}),jce={kernelName:mi,backendName:"webgpu",kernelFunc:Gce};function Hce(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n,u=1,d=N.computePool2DInfo(a.shape,s,i,u,o,l),h,p=[];if(d.filterHeight===1&&d.filterWidth===1){if(w.arraysEqual(d.inShape,d.outShape))return Vn({inputs:{x:a},backend:r});h=new P8(d),p.push({type:"int32",data:[d.strideHeight,d.strideWidth]})}else h=new $8(d,"max"),p.push({type:"int32",data:[d.strideHeight,d.strideWidth]},{type:"int32",data:[d.padInfo.top,d.padInfo.left]},{type:"int32",data:[d.dilationHeight,d.dilationWidth]},{type:"int32",data:[d.inHeight,d.inWidth]},{type:"int32",data:[d.effectiveFilterHeight,d.effectiveFilterWidth]});return r.runWebGPUProgram(h,[a],a.dtype,p)}var qce={kernelName:gi,backendName:"webgpu",kernelFunc:Hce};function Kce(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{keepDims:s,axis:i}=n;return Gh(a,i,s,"mean",r)}var Xce={kernelName:yi,backendName:"webgpu",kernelFunc:Kce};function Zce(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n;return Gh(a,s,i,"min",r)}var Yce={kernelName:Ai,backendName:"webgpu",kernelFunc:Zce},Jce=jr({opSnippet:16,cpuKernelImpl:wpe}),Qce={kernelName:xi,backendName:"webgpu",kernelFunc:Jce},efe=class{constructor(e,t,r){this.uniforms="",this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t.map((n,a)=>n[0]+e[a]+n[1]),this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.xShape=e,t.map((n,a)=>{this.uniforms+=` pad${a} : vec2<i32>,`}),this.offset=r==="reflect"?0:1,this.shaderKey=`mirrorPad_${r}`}getUserCode(){let e=this.xShape.length,t=this.xShape.map((l,u)=>`uniforms.pad${u}[0]`).join(","),r=this.xShape.map((l,u)=>`uniforms.pad${u}[0] + uniforms.xShape${e>1?`[${u}]`:""}`).join(","),n=e===1?"start":"start[i]",a=e===1?"end":"end[i]",s=e===1?"outC":"outC[i]",i=gr(e),o=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let start = ${i}(${t});
|
|
let end = ${i}(${r});
|
|
var outC = getCoordsFromIndex(index);
|
|
for (var i = 0; i < ${e}; i = i + 1) {
|
|
if (${s} < ${n}) {
|
|
${s} = ${n} * 2 - ${s} - ${this.offset};
|
|
} else if(${s} >= ${a}) {
|
|
${s} = (${a} - 1) * 2 - ${s} + ${this.offset};
|
|
}
|
|
}
|
|
let coords = outC - start;
|
|
setOutputAtIndex(index, getX(${o}));
|
|
}
|
|
}
|
|
`}},tfe={kernelName:bi,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:r})=>{let{x:n}=e,{paddings:a,mode:s}=t,i=r,o=a.map(u=>({type:"int32",data:[u[0],u[1]]})),l=new efe(n.shape,a,s);return i.runWebGPUProgram(l,[n],n.dtype,o)}};function rfe(e){let{inputs:t,backend:r}=e,{x:n}=t;if(r.shouldExecuteOnCPU([n])){let s=r.tensorMap.get(n.dataId),[i,o]=Ipe(s.values,n.shape,n.dtype);return r.makeTensorInfo(o,n.dtype,i)}let a=new Vh(n.shape,11);return r.runWebGPUProgram(a,[n],n.dtype)}var nfe={kernelName:tl,backendName:"webgpu",kernelFunc:rfe};function afe(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:r,attrs:n}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=n,u=r.readSync(a.dataId),d=r.readSync(s.dataId),{selectedIndices:h}=qn.nonMaxSuppressionV3Impl(u,d,i,o,l);return r.makeTensorInfo([h.length],"int32",new Int32Array(h))}var sfe={kernelName:nl,backendName:"webgpu",kernelFunc:afe};function ife(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:r,attrs:n}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=n,d=r.readSync(a.dataId),h=r.readSync(s.dataId),p=i,c=o,f=l,m=u,{selectedIndices:g,selectedScores:y}=qn.nonMaxSuppressionV5Impl(d,h,p,c,f,m);return[r.makeTensorInfo([g.length],"int32",new Int32Array(g)),r.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var ofe={kernelName:al,backendName:"webgpu",kernelFunc:ife};function Lf(e){let{inputs:t,backend:r}=e,{x:n}=t;if(n.dtype==="complex64"){let a=Uh({inputs:{input:n},backend:r}),s=Lf({inputs:{x:a},backend:r}),i=w0({inputs:{input:n},backend:r}),o=Lf({inputs:{x:i},backend:r}),l=Cd({inputs:{real:s,imag:o},backend:r});return r.disposeData(a.dataId),r.disposeData(s.dataId),r.disposeData(i.dataId),r.disposeData(o.dataId),l}else return Rd({attrs:{shape:n.shape,dtype:n.dtype,value:n.dtype==="string"?"":0},backend:r})}var lfe={kernelName:kl,backendName:"webgpu",kernelFunc:Lf};function H8(e){let{inputs:t,backend:r}=e,{x:n}=t;if(n.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(n.dtype==="complex64"){let a=Uh({inputs:{input:n},backend:r}),s=H8({inputs:{x:a},backend:r}),i=w0({inputs:{input:n},backend:r}),o=Lf({inputs:{x:i},backend:r}),l=Cd({inputs:{real:s,imag:o},backend:r});return r.disposeData(a.dataId),r.disposeData(s.dataId),r.disposeData(i.dataId),r.disposeData(o.dataId),l}else return Rd({attrs:{shape:n.shape,dtype:n.dtype,value:1},backend:r})}var ufe={kernelName:sl,backendName:"webgpu",kernelFunc:H8};function dfe(e){let{inputs:t,backend:r,attrs:n}=e,{axis:a}=n;if(t.length===1)return n2({inputs:{input:t[0]},backend:r,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(d=>{w.assertShapesMatch(s,d.shape,"All tensors passed to stack must have matching shapes"),w.assert(i===d.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(d=>{let h=n2({inputs:{input:d},backend:r,attrs:{dim:a}});return o.push(h),h}),u=z8({inputs:l,backend:r,attrs:{axis:a}});return o.forEach(d=>r.disposeData(d.dataId)),u}var pfe={kernelName:ol,backendName:"webgpu",kernelFunc:dfe},hfe=class{constructor(e,t){this.variableNames=["x"],this.uniforms="constantValue : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t.map((r,n)=>r[0]+e[n]+r[1]),this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),t.map((r,n)=>{this.uniforms+=` pad${n} : vec2<i32>,`}),this.xShape=e,this.shaderKey="pad"}getUserCode(){let e=this.xShape.length,t=gr(e),r=this.xShape.map((u,d)=>`uniforms.pad${d}[0]`).join(","),n=this.xShape.map((u,d)=>`uniforms.pad${d}[0] + uniforms.xShape${e>1?`[${d}]`:""}`).join(","),a=e>1?`${t}(${r})`:`${r}`,s=e>1?`${t}(${n})`:`${n}`,i=e>1?"any(outC < start)":"outC < start",o=e>1?"any(outC >= end)":"outC >= end",l=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let start = ${a};
|
|
let end = ${s};
|
|
let outC = getCoordsFromIndex(index);
|
|
|
|
if (${i} || ${o}) {
|
|
setOutputAtIndex(index, uniforms.constantValue);
|
|
} else {
|
|
let coords = outC - start;
|
|
setOutputAtIndex(index, getX(${l}));
|
|
}
|
|
}
|
|
}
|
|
`}},q8=e=>{let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{paddings:s,constantValue:i}=n;if(s.every(u=>w.arraysEqual(u,[0,0])))return Vn({inputs:{x:a},backend:r});if(w.sizeFromShape(a.shape)===0){let u=s.map((d,h)=>d[0]+a.shape[h]+d[1]);return Rd({backend:r,attrs:{shape:u,value:i,dtype:a.dtype}})}let o=[{type:"float32",data:[i]}];s.map(u=>o.push({type:"int32",data:[u[0],u[1]]}));let l=new hfe(a.shape,s);return r.runWebGPUProgram(l,[a],a.dtype,o)},cfe={kernelName:wi,backendName:"webgpu",kernelFunc:q8},ffe=jr({opSnippet:13}),mfe={kernelName:ki,backendName:"webgpu",kernelFunc:ffe};function gfe(e){let{inputs:t,backend:r}=e,{x:n,alpha:a}=t,s=new M8(14,n.shape,a.shape);return r.runWebGPUProgram(s,[n,a],"float32")}var yfe={kernelName:Ii,backendName:"webgpu",kernelFunc:gfe};function Afe(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n;return Gh(a,s,i,"prod",r)}var xfe={kernelName:ll,backendName:"webgpu",kernelFunc:Afe},bfe=e=>{let{backend:t,attrs:r}=e,{start:n,stop:a,step:s,dtype:i}=r,o=Npe(n,a,s,i);return t.makeTensorInfo([o.length],i,o)},vfe={kernelName:ed,backendName:"webgpu",kernelFunc:bfe},K8=jr({opSnippet:3}),wfe={kernelName:ai,backendName:"webgpu",kernelFunc:K8},kfe=kr({opType:12}),Ife={kernelName:Si,backendName:"webgpu",kernelFunc:kfe},Sfe=kr({opType:13}),Tfe={kernelName:Ni,backendName:"webgpu",kernelFunc:Sfe},Nfe=class{constructor(e,t,r){this.variableNames=["x"],this.uniforms="adjustHeightWidth : vec2<f32>, halfPixelCenters : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=[e[0],t,r,e[3]],this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="resizeBilinear"}getUserCode(){return`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let b = coords[0];
|
|
let d = coords[3];
|
|
let rc = coords.yz;
|
|
|
|
let effectiveInSize = vec2<f32>(
|
|
f32(uniforms.xShape.y) - uniforms.adjustHeightWidth[0],
|
|
f32(uniforms.xShape.z) - uniforms.adjustHeightWidth[1]);
|
|
|
|
let effectiveOutSize = vec2<f32>(
|
|
f32(uniforms.outShape.y) - uniforms.adjustHeightWidth[0],
|
|
f32(uniforms.outShape.z) - uniforms.adjustHeightWidth[1]);
|
|
|
|
let effectiveInputOverOutputRatioRC =
|
|
effectiveInSize / effectiveOutSize;
|
|
|
|
// Fractional source index
|
|
let sourceFracIndexRC =
|
|
(vec2<f32>(rc) + vec2<f32>(uniforms.halfPixelCenters)) *
|
|
effectiveInputOverOutputRatioRC - vec2<f32>(uniforms.halfPixelCenters);
|
|
|
|
// Compute the four integer indices.
|
|
let sourceFloorRC = vec2<i32>(sourceFracIndexRC);
|
|
let sourceCeilRC = vec2<i32>(
|
|
min(vec2<f32>(uniforms.xShape.yz) - vec2<f32>(1.0), ceil(sourceFracIndexRC)));
|
|
|
|
let topLeft = getX(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
let bottomLeft = getX(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
let topRight = getX(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
let bottomRight = getX(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
let fracRC = sourceFracIndexRC - vec2<f32>(sourceFloorRC);
|
|
|
|
let top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
let bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
let newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutputAtIndex(index, newValue);
|
|
}
|
|
}
|
|
`}};function Cfe(e){let{inputs:t,backend:r,attrs:n}=e,{images:a}=t,{alignCorners:s,size:i,halfPixelCenters:o}=n,[l,u]=i,d=s&&l>1?1:0,h=s&&u>1?1:0,p=[{type:"float32",data:[d,h]},{type:"float32",data:[o?.5:0]}],c=new Nfe(a.shape,l,u);return r.runWebGPUProgram(c,[a],"float32",p)}var Efe={kernelName:Ti,backendName:"webgpu",kernelFunc:Cfe},Rfe=class{constructor(e,t,r,n){this.variableNames=["x"],this.uniforms="adjustHeightWidth : vec2<f32>, roundBase : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=[e[0],t,r,e[3]],this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.halfPixelCenters=n,this.shaderKey=`resizeNearest_${n}`}getUserCode(){let e;return this.halfPixelCenters?e="max((vec2<f32>(rc) + vec2<f32>(0.5)) * effectiveInputOverOutputRatioRC, vec2<f32>(0.0))":e="vec2<f32>(rc) * effectiveInputOverOutputRatioRC",`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let b = coords[0];
|
|
let d = coords[3];
|
|
let rc = coords.yz;
|
|
|
|
let effectiveInSize = vec2<f32>(
|
|
f32(uniforms.xShape.y) - uniforms.adjustHeightWidth[0],
|
|
f32(uniforms.xShape.z) - uniforms.adjustHeightWidth[1]);
|
|
|
|
let effectiveOutSize = vec2<f32>(
|
|
f32(uniforms.outShape.y) - uniforms.adjustHeightWidth[0],
|
|
f32(uniforms.outShape.z) - uniforms.adjustHeightWidth[1]);
|
|
|
|
let effectiveInputOverOutputRatioRC =
|
|
effectiveInSize / effectiveOutSize;
|
|
|
|
// Fractional source index
|
|
let sourceFracIndexRC = ${e};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
let inputShapeRC = vec2<f32>(f32(uniforms.xShape.y), f32(uniforms.xShape.z));
|
|
let sourceNearestRC = vec2<i32>(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + uniforms.roundBase)));
|
|
let newValue = getX(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutputAtIndex(index, newValue);
|
|
}
|
|
}
|
|
`}};function Mfe(e){let{inputs:t,backend:r,attrs:n}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=n,[l,u]=o,d=s&&l>1?1:0,h=s&&u>1?1:0,p=[{type:"float32",data:[d,h]},{type:"float32",data:[s?.5:0]}],c=new Rfe(a.shape,l,u,i);return r.runWebGPUProgram(c,[a],a.dtype,p)}var Ffe={kernelName:rd,backendName:"webgpu",kernelFunc:Mfe},$fe=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms=`centerX : f32, centerY : f32, sinRadians : f32,
|
|
cosRadians : f32,`,this.shaderKey="rotate",this.outputShape=e,typeof t=="number"?(this.uniforms+=" fillValue : f32,",this.fillSnippet="var outputValue = uniforms.fillValue;",this.shaderKey+="_float"):(this.uniforms+=" fillValue : vec3<f32>,",this.fillSnippet="var outputValue = uniforms.fillValue[coords[3]];",this.shaderKey+="_vec3")}getUserCode(){return`
|
|
${tt()}
|
|
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let coordXFloat = (f32(coords[2]) - uniforms.centerX) *
|
|
uniforms.cosRadians - (f32(coords[1]) - uniforms.centerY) *
|
|
uniforms.sinRadians;
|
|
let coordYFloat = (f32(coords[2]) - uniforms.centerX) *
|
|
uniforms.sinRadians + (f32(coords[1]) - uniforms.centerY) *
|
|
uniforms.cosRadians;
|
|
let coordX = i32(round(coordXFloat + uniforms.centerX));
|
|
let coordY = i32(round(coordYFloat + uniforms.centerY));
|
|
${this.fillSnippet}
|
|
if(coordX >= 0 && coordX < uniforms.xShape[2] && coordY >= 0 &&
|
|
coordY < uniforms.xShape[1]) {
|
|
outputValue = getX(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutputAtIndex(index, outputValue);
|
|
}
|
|
}
|
|
`}},Pfe={kernelName:Il,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:r})=>{let{image:n}=e,{radians:a,fillValue:s,center:i}=t,o=r,l=new $fe(n.shape,s),[u,d]=N.getImageCenter(i,n.shape[1],n.shape[2]),h=[{type:"float32",data:[u]},{type:"float32",data:[d]},{type:"float32",data:[Math.sin(a)]},{type:"float32",data:[Math.cos(a)]}];return typeof s=="number"?h.push({type:"float32",data:[Number.parseFloat(s.toFixed(2))]}):h.push({type:"float32",data:s}),o.runWebGPUProgram(l,[n],n.dtype,h)}},_fe=kr({opType:15,cpuKernelImpl:Cpe}),zfe={kernelName:Ci,backendName:"webgpu",kernelFunc:_fe},Ofe=class{constructor(e,t,r,n,a,s,i){this.variableNames=["updates","indices"],this.workGroupSize=[64,1,1],this.atomic=!0,this.outputShape=s,this.type=i,this.dispatchLayout=Xe(e),this.dispatch=Oe(this.dispatchLayout,e,this.workGroupSize),this.sliceDimGreaterThanOne=t>1,this.shaderKey=`scatter_${r}_${n}_${this.sliceDimGreaterThanOne}_${i}`;let o=gr(a.length);this.uniforms=`sliceDim : i32, strides: ${o}, size: i32,`,this.updatesRank=n,this.indicesRank=r}getUserCode(){let e="";this.indicesRank===1?e="coords[0]":this.indicesRank===2&&(e="coords[0], j");let t=`getIndices(${e})`,r=this.sliceDimGreaterThanOne?"uniforms.strides[j]":"uniforms.strides",n="",a="",s="";this.updatesRank===1?(n="coords[0]",a="flattenedIndex",s=`
|
|
fn getUpdatesCoordsFromFlatIndex(index : i32) -> i32 {
|
|
return index;
|
|
}
|
|
`):this.updatesRank===2&&(n="coords[0], coords[1]",a="vec2<i32>(flattenedIndex, coords[1])",s=`
|
|
fn getUpdatesCoordsFromFlatIndex(index : i32) -> vec2<i32> {
|
|
let d0 = index / uniforms.updatesShape[1];
|
|
let d1 = index - d0 * uniforms.updatesShape[1];
|
|
return vec2<i32>(d0, d1);
|
|
}
|
|
`);let i=`getUpdates(${n})`,o=this.type==="int32"?"atomicAdd(&(result[flatIndex]), i32(updateValue));":`
|
|
var assumed = atomicLoad(&(result[flatIndex]));
|
|
var success = 0;
|
|
for (; success == 0;) {
|
|
let new = bitcast<f32>(assumed) + updateValue;
|
|
let newI32 = bitcast<i32>(new);
|
|
let resValue = atomicCompareExchangeWeak(&(result[flatIndex]), assumed, newI32);
|
|
assumed = resValue[0];
|
|
success = resValue[1];
|
|
}
|
|
`;return`
|
|
${s}
|
|
|
|
${tt()}
|
|
|
|
if (index < uniforms.size) {
|
|
let coords = getUpdatesCoordsFromFlatIndex(index);
|
|
var flattenedIndex = 0;
|
|
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
|
|
let indexInside = i32(round(${t}));
|
|
flattenedIndex = flattenedIndex + indexInside * ${r};
|
|
}
|
|
let updateValue = ${i};
|
|
let flatIndex = getOutputIndexFromCoords(${a});
|
|
|
|
${o}
|
|
}
|
|
}`}};function Dfe(e){let{inputs:t,backend:r,attrs:n}=e,{indices:a,updates:s}=t,{shape:i}=n,{sliceRank:o,numUpdates:l,sliceSize:u,strides:d,outputSize:h}=N.calculateShapes(s,a,i),p=[h/u,u];if(h===0)return r.makeTensorInfo(i,a.dtype);let c=qe({inputs:{x:a},backend:r,attrs:{shape:[l,o]}}),f=qe({inputs:{x:s},backend:r,attrs:{shape:[l,u]}}),m=f.dtype,g=Rd({backend:r,attrs:{shape:p,value:0,dtype:m}}),y=w.sizeFromShape(f.shape),A=[{type:"int32",data:[o]},{type:"int32",data:d},{type:"int32",data:[y]}],x=new Ofe(f.shape,o,c.shape.length,f.shape.length,d,p,m),b=r.runWebGPUProgram(x,[f,c],m,A,g),v=qe({inputs:{x:b},backend:r,attrs:{shape:i}});return r.disposeData(c.dataId),r.disposeData(f.dataId),r.disposeData(b.dataId),v}var Lfe={kernelName:hl,backendName:"webgpu",kernelFunc:Dfe},Bfe=class{constructor(e,t,r){this.variableNames=["c","a","b"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.cRank=e,this.rank=r,this.shaderKey="select"}getUserCode(){let e,t;if(this.rank>4)throw Error(`Where for rank ${this.rank} is not yet supported`);if(this.rank===1)t="resRC",e="resRC";else{let r=["resRC.x","resRC.y","resRC.z","resRC.w"],n=[],a=[];for(let s=0;s<this.outputShape.length;s++)a.push(`${r[s]}`),s<this.cRank&&n.push(`${r[s]}`);e=n.join(),t=a.join()}return`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let resRC = getCoordsFromIndex(index);
|
|
let cVal = getC(${e});
|
|
if (cVal >= 1.0) {
|
|
setOutputAtIndex(index, getA(${t}));
|
|
} else {
|
|
setOutputAtIndex(index, getB(${t}));
|
|
}
|
|
}
|
|
}
|
|
`}};function Wfe(e){let{inputs:t,backend:r}=e,{condition:n,t:a,e:s}=t,i=new Bfe(n.shape.length,a.shape,a.shape.length);return r.runWebGPUProgram(i,[n,a,s],Cr(a.dtype,s.dtype))}var Vfe={kernelName:cl,backendName:"webgpu",kernelFunc:Wfe},Ufe=kr({opType:18}),Gfe={kernelName:Ri,backendName:"webgpu",kernelFunc:Ufe},jfe=kr({opType:16}),Hfe={kernelName:Ei,backendName:"webgpu",kernelFunc:jfe},qfe=kr({opType:17}),Kfe={kernelName:ml,backendName:"webgpu",kernelFunc:qfe},X8=jr({opSnippet:2,cpuKernelImpl:$pe,supportsComplex:!0}),Xfe={kernelName:_i,backendName:"webgpu",kernelFunc:X8};function Zfe(e){let{inputs:t,backend:r,attrs:n}=e,{logits:a}=t,{dim:s}=n,i=w.parseAxisParam([s],a.shape),o=j8({inputs:{x:a},backend:r,attrs:{reductionIndices:i,keepDims:!1}}),l=N.expandShapeToKeepDim(o.shape,i),u=qe({inputs:{x:o},backend:r,attrs:{shape:l}}),d=X8({inputs:{a,b:u},backend:r}),h=W8({inputs:{x:d},backend:r}),p=kb({inputs:{x:h},backend:r,attrs:{axis:i,keepDims:!1}}),c=qe({inputs:{x:p},backend:r,attrs:{shape:l}}),f=K8({inputs:{a:h,b:c},backend:r});return r.disposeData(o.dataId),r.disposeData(u.dataId),r.disposeData(d.dataId),r.disposeData(h.dataId),r.disposeData(p.dataId),r.disposeData(c.dataId),f}var Yfe={kernelName:$i,backendName:"webgpu",kernelFunc:Zfe},Jfe=e=>{let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockShape:s,paddings:i}=n;w.assert(a.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGPU backend not implemented yet");let o=s.reduce((y,A)=>y*A),l=[[0,0]];l.push(...i);for(let y=1+s.length;y<a.shape.length;++y)l.push([0,0]);let u=[],d=q8({inputs:{x:a},backend:r,attrs:{paddings:l,constantValue:0}}),h=N.getReshaped(d.shape,s,o,!1),p=N.getPermuted(h.length,s.length,!1),c=N.getReshapedPermuted(d.shape,s,o,!1),f=qe({inputs:{x:d},backend:r,attrs:{shape:h}}),m=zl({inputs:{x:f},backend:r,attrs:{perm:p}}),g=qe({inputs:{x:m},backend:r,attrs:{shape:c}});return u.push(d),u.push(f),u.push(m),u.forEach(y=>r.disposeData(y.dataId)),g},Qfe={kernelName:gl,backendName:"webgpu",kernelFunc:Jfe},eme=class{constructor(e,t,r,n,a,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.workGroupSize=[64,1,1],this.workPerThread=4,this.size=!0,this.outputShape=s,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]);let o=t>1;this.shaderKey=`scatter_${r}_${n}_${o}`;let l=gr(a.length);this.uniforms=`updateSize : i32, sliceDim : i32, strides: ${l},`;let u="";r===1?u="i":r===2&&(u="i, j"),this.indicesSnippet=`getIndices(${u})`;let d="";n===1?d="i":n===2&&(d="i, coords[1]"),this.updatesSnippet=`getUpdates(${d})`,this.strideString=o?"uniforms.strides[j]":"uniforms.strides"}getUserCode(){return`
|
|
${tt()}
|
|
|
|
let globalIndex = index * ${this.workPerThread};
|
|
if (globalIndex < uniforms.size) {
|
|
var sum = vec4<f32>(0.0);
|
|
var found = vec4<bool>(false);
|
|
for (var i = 0; i < uniforms.updateSize; i = i + 1) {
|
|
var flattenedIndex = 0;
|
|
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
|
|
let indexInside = i32(round(${this.indicesSnippet}));
|
|
flattenedIndex = flattenedIndex + indexInside * ${this.strideString};
|
|
}
|
|
for (var innerIndex = 0; innerIndex < ${this.workPerThread}; innerIndex = innerIndex + 1) {
|
|
let curIndex = globalIndex + innerIndex;
|
|
let coords = getCoordsFromIndex(curIndex);
|
|
if (flattenedIndex == coords[0]) {
|
|
sum[innerIndex] = sum[innerIndex] + ${this.updatesSnippet};
|
|
found[innerIndex] = true;
|
|
}
|
|
}
|
|
}
|
|
for (var innerIndex = 0; innerIndex < ${this.workPerThread}; innerIndex = innerIndex + 1) {
|
|
let curIndex = globalIndex + innerIndex;
|
|
if (curIndex < uniforms.size)
|
|
{
|
|
setOutputAtIndex(curIndex, mix(getDefaultValue(), sum[innerIndex], f32(found[innerIndex])));
|
|
}
|
|
}
|
|
}
|
|
}`}};function tme(e){let{inputs:t,backend:r,attrs:n}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=n,{sliceRank:l,numUpdates:u,strides:d,outputSize:h}=N.calculateShapes(s,a,o),p=!1,c=[{type:"int32",data:[u]},{type:"int32",data:[l]},{type:"int32",data:d}],f=new eme(u,l,a.shape.length,s.shape.length,d,[h,1],p),m=r.runWebGPUProgram(f,[s,a,i],s.dtype,c),g=qe({inputs:{x:m},backend:r,attrs:{shape:o}});return r.disposeData(m.dataId),g}var rme={kernelName:lh,backendName:"webgpu",kernelFunc:tme};function nme(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=n,o=w.parseAxisParam(i,a.shape)[0],l=N.prepareSplitSize(a,s,o),u=a.shape.length,d=new Array(u).fill(0),h=a.shape.slice();return l.map(p=>{let c=[...h];c[o]=p;let f=Ed({inputs:{x:a},backend:r,attrs:{begin:d,size:c}});return d[o]+=p,f})}var ame={kernelName:yl,backendName:"webgpu",kernelFunc:nme},sme=kr({opType:19}),ime={kernelName:Mi,backendName:"webgpu",kernelFunc:sme},ome={kernelName:od,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{x:r}=e,n=t,a=new Vh(r.shape,20);return n.runWebGPUProgram(a,[r],r.dtype)}},lme=jr({opSnippet:11}),ume={kernelName:Pi,backendName:"webgpu",kernelFunc:lme},dme=class{constructor(e){this.variableNames=["x"],this.workPerThread=1,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]);let t=gr(this.outputShape.length);this.uniforms=`begin : ${t}, strides : ${t}, `,this.shaderKey="stridedSlice"}getUserCode(){let e=this.outputShape.length,t="";if(e===1)t="coords * uniforms.strides + uniforms.begin";else{let r=0;t=this.outputShape.map((n,a)=>(r++,this.outputShape.length===1?`coords * uniforms.strides[${a}] + uniforms.begin[${a}]`:`coords[${r-1}] * uniforms.strides[${a}] + uniforms.begin[${a}]`)).join(",")}return`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
setOutputAtIndex(index, getX(${t}));
|
|
}
|
|
}
|
|
`}};function pme(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:d,newAxisMask:h,shrinkAxisMask:p}=n,{finalShapeSparse:c,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:y,begin:A,end:x,strides:b}=_t.sliceInfo(a.shape,s,i,o,l,u,d,h,p),v;if(m)v=qe({inputs:{x:a},backend:r,attrs:{shape:f}});else if(g||y){w.assert(a.shape.length>=1,()=>`Input must have rank at least 1, got: ${a.shape.length}`);let S=_t.computeOutShape(A,x,b),T=Ed({inputs:{x:a},backend:r,attrs:{begin:A,size:S}});v=qe({inputs:{x:T},backend:r,attrs:{shape:f}}),r.disposeData(T.dataId)}else if(r.shouldExecuteOnCPU([a])){let S=r.readSync(a.dataId),T=We(a.shape,a.dtype,S),E=Mpe(c,T,b,A);v=r.makeTensorInfo(f,a.dtype,E.values)}else{let S=new dme(c),T=[{type:"int32",data:A},{type:"int32",data:b}],E=r.runWebGPUProgram(S,[a],a.dtype,T);v=qe({inputs:{x:E},backend:r,attrs:{shape:f}}),r.disposeData(E.dataId)}return v}var hme={kernelName:Al,backendName:"webgpu",kernelFunc:pme};function cme(e){let{inputs:t,backend:r,attrs:n}=e,{separator:a,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=n,{data:d,dataSplits:h}=t,p=r.readSync(d.dataId),c=r.readSync(h.dataId),[f,m]=Fpe(p,c,a,s,i,o,l,u);return[r.makeTensorInfo([f.length],"string",f),r.makeTensorInfo(h.shape,"int32",m)]}var fme={kernelName:uh,backendName:"webgpu",kernelFunc:cme},mme=kr({opType:21}),gme={kernelName:zi,backendName:"webgpu",kernelFunc:mme},yme=class{constructor(e,t){this.variableNames=["A"],this.workGroupSize=[64,1,1],this.size=!0;let r=new Array(e.length);for(let n=0;n<r.length;n++)r[n]=e[n]*t[n];this.outputShape=r,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.rank=this.outputShape.length,this.shaderKey="tile"}getUserCode(){let e=Ame(this.rank,"uniforms.");return`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let resRC = getCoordsFromIndex(index);
|
|
setOutputAtIndex(index, getA(${e}));
|
|
}
|
|
}
|
|
`}};function Ame(e,t=""){if(e>=5)throw Error(`Tile for rank ${e} is not yet supported`);if(e===1)return`(resRC % ${t}aShape)`;let r=["resRC.x","resRC.y","resRC.z","resRC.w"],n=[];for(let a=0;a<e;a++)n.push(`(${r[a]} % ${t}aShape[${a}])`);return n.join()}function xme(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{reps:s}=n;if(r.shouldExecuteOnCPU([a])||a.dtype==="string"||a.shape.length>=5){let o=r.readSync(a.dataId),l=a.dtype==="string"?o.map(h=>w.decodeString(h)):o,u=We(a.shape,a.dtype,l),d=Ppe(u,s);return r.makeTensorInfo(d.shape,d.dtype,d.values)}let i=new yme(a.shape,s);return r.runWebGPUProgram(i,[a],a.dtype)}var bme={kernelName:Qa,backendName:"webgpu",kernelFunc:xme},vme=class{constructor(e){this.variableNames=["x","indices"],this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms=`inputSize : i32, firstPass : i32, negativeInf : f32,
|
|
dir : i32, inc : i32,`,this.shaderKey="swap"}getUserCode(){return`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let outC = getCoordsFromIndex(index);
|
|
let batch = outC[0];
|
|
let elemIdx = outC[1];
|
|
// We compare elements pair-wise within a group of size 2 * inc.
|
|
// The comparing rule for each group alternates between ascending
|
|
// and descending. Within each group, we compare each pair at
|
|
// positions i and i+inc. To decide whether an element at position i
|
|
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
|
|
// inc, it is in the first half of the group, we denote it as x0,
|
|
// otherwise we denote it as x1.
|
|
// For example, as shown in the Bitonic top K paper referenced
|
|
// above, Figure5(a) shows that element[1] is in the second half of
|
|
// the group when group size is 2, but it is in the first half of
|
|
// the group when group size is 4.
|
|
let isFirstInPair = elemIdx % (2 * uniforms.inc) < uniforms.inc;
|
|
var i = 0;
|
|
if (isFirstInPair) {
|
|
i = elemIdx;
|
|
} else {
|
|
i = elemIdx - uniforms.inc;
|
|
}
|
|
|
|
var i0 = 0;
|
|
if (uniforms.firstPass == 1) {
|
|
i0 = i;
|
|
} else {
|
|
i0 = i32(getIndices(batch, i));
|
|
}
|
|
|
|
var i1 = 0;
|
|
if (uniforms.firstPass == 1) {
|
|
i1 = i + uniforms.inc;
|
|
} else {
|
|
i1 = i32(getIndices(batch, i + uniforms.inc));
|
|
}
|
|
|
|
var x0 = f32(0.0);
|
|
var x1 = f32(0.0);
|
|
if (i0 < uniforms.inputSize) {
|
|
x0 = getX(batch, i0);
|
|
} else {
|
|
x0 = uniforms.negativeInf;
|
|
}
|
|
if (i1 < uniforms.inputSize) {
|
|
x1 = getX(batch, i1);
|
|
} else {
|
|
x1 = uniforms.negativeInf;
|
|
}
|
|
|
|
let reverse = elemIdx % (2 * uniforms.dir) >= uniforms.dir;
|
|
let isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
|
|
if (reverse == isGreater) {
|
|
// Elements in opposite order of direction
|
|
let iTemp = i0;
|
|
i0 = i1;
|
|
i1 = iTemp;
|
|
}
|
|
if (isFirstInPair) {
|
|
setOutputAtIndex(index, f32(i0));
|
|
} else {
|
|
setOutputAtIndex(index, f32(i1));
|
|
}
|
|
}
|
|
}
|
|
`}},wme=class{constructor(e){this.variableNames=["x","indices"],this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms="inputSize : i32, firstPass : i32, k : i32,",this.shaderKey="merge"}getUserCode(){return`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let outC = getCoordsFromIndex(index);
|
|
let batch = outC[0];
|
|
let elemIdx = outC[1];
|
|
// The output size is half of the previous size.
|
|
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _
|
|
// (k=4), we only need to output the indices at positions |, the
|
|
// indices at positions _ can be thrown away, see Figure5(b) After
|
|
// Phase 2 (Merge phase) in the Bitonic Top K paper referenced
|
|
// above.
|
|
// For example, the paper shows we only need to output the orange
|
|
// bars. The output sequence should look like this | | | | | | | |.
|
|
// Because the sequence is halved, to map the output index back to
|
|
// the previous sequence to find the corresponding value, we need
|
|
// to double the index. When we double the index, we basically
|
|
// interpolate a position, so 2i looks like
|
|
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k
|
|
// position of each 2k positions by - elemIdx % k. E.g. for output
|
|
// at index 4,5,6,7, we want to get the corresponding element at
|
|
// original index 8,9,10,11, for output at index 8,9,10,11,
|
|
// we want to get the corresponding element at original index
|
|
// 16,17,18,19, so on and so forth.
|
|
|
|
var i = 0;
|
|
if (elemIdx < uniforms.k) {
|
|
i = elemIdx;
|
|
} else {
|
|
i = elemIdx * 2 - elemIdx % uniforms.k;
|
|
}
|
|
var i0 = 0;
|
|
if (uniforms.firstPass == 1) {
|
|
i0 = i;
|
|
} else {
|
|
i0 = i32(getIndices(batch, i));
|
|
}
|
|
var i1 = 0;
|
|
if (uniforms.firstPass == 1) {
|
|
i1 = i + uniforms.k;
|
|
} else {
|
|
i1 = i32(getIndices(batch, i + uniforms.k));
|
|
}
|
|
|
|
let x0 = getX(batch, i0);
|
|
var x1 = f32(0.0);
|
|
if (i1 < uniforms.inputSize) {
|
|
x1 = getX(batch, i1);
|
|
} else {
|
|
x1 = x0;
|
|
}
|
|
|
|
if (x0 >= x1) {
|
|
setOutputAtIndex(index, f32(i0));
|
|
} else {
|
|
setOutputAtIndex(index, f32(i1));
|
|
}
|
|
}
|
|
}
|
|
`}};function uu(e,t){t!==null&&e.disposeData(t.dataId)}function lw(e){let t=1;for(;t<e;)t*=2;return t}function kme(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{k:s,sorted:i}=n,o=a.shape,l=o[o.length-1];if(r.shouldExecuteOnCPU([a])){let b=r.readSync(a.dataId),[v,S]=_pe(b,o,a.dtype,s,i);return[r.makeTensorInfo(v.shape,v.dtype,v.values),r.makeTensorInfo(S.shape,S.dtype,S.values)]}if(s===0)return o[o.length-1]=0,[r.makeTensorInfo(o,a.dtype,[]),r.makeTensorInfo(o,"int32",[])];if(l===1)return[a,Rd({attrs:{shape:o,dtype:"int32",value:0},backend:r})];let u=w.sizeFromShape(o)/l,d=qe({inputs:{x:a},attrs:{shape:[u,l]},backend:r}),h=lw(s),p=lw(l),c=null,f=()=>c===null?[d,d]:[d,c],m=(b,v,S)=>{let T=f(),E=new vme(S),R=[{type:"int32",data:[l]},{type:"int32",data:[c===null?1:0]},{type:"float32",data:[Number.NEGATIVE_INFINITY]},{type:"int32",data:[b]},{type:"int32",data:[v]}],_=c;c=r.runWebGPUProgram(E,T,"int32",R),uu(r,_)};for(let b=1;b<h;b*=2){let v=b*2;for(let S=b;S>=1;S/=2)m(v,S,[u,p])}for(let b=p;b>h;b/=2){let v=f(),S=new wme([u,b/2]),T=[{type:"int32",data:[l]},{type:"int32",data:[c===null?1:0]},{type:"int32",data:[h]}],E=c;c=r.runWebGPUProgram(S,v,"int32",T),uu(r,E);let R=h/2,_=R*2;for(let M=R;M>=1;M/=2)m(_,M,c.shape)}let g=c;c=Ed({inputs:{x:c},backend:r,attrs:{begin:0,size:[u,s]}}),uu(r,g);let y=G8({inputs:{x:d,indices:c},backend:r,attrs:{axis:1,batchDims:1}});uu(r,d);let A=o.slice(0,-1);A.push(s),g=c,c=qe({inputs:{x:c},attrs:{shape:A},backend:r}),uu(r,g);let x=y;return y=qe({inputs:{x:y},attrs:{shape:A},backend:r}),uu(r,x),[y,c]}var Ime={kernelName:bl,backendName:"webgpu",kernelFunc:kme},Sme=class{constructor(e){this.variableNames=["Image","Transforms"],this.uniforms="interpolationModeId : i32, fillModeId : i32, fillValue : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="transform"}getUserCode(){return`
|
|
fn mapCoord(outCoord : f32, len : f32) -> f32{
|
|
var inCoord = outCoord;
|
|
if(uniforms.fillModeId == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * f32(i32(f32(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
if (inCoord < -len) {
|
|
inCoord = inCoord + sz2;
|
|
} else {
|
|
inCoord = -inCoord - 1.0;
|
|
}
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz2 = 2.0 * len;
|
|
inCoord = inCoord - sz2 * f32(i32(f32(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (uniforms.fillModeId == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz = len - 1.0;
|
|
inCoord = inCoord + len * (f32(i32(f32(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz = len - 1.0;
|
|
inCoord = inCoord - len * f32(i32(f32(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (uniforms.fillModeId == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
}
|
|
return outCoord;
|
|
}
|
|
fn readWithFillValue(batch : i32, coordY : i32, coordX : i32,
|
|
channel : i32) -> f32 {
|
|
var outputValue : f32;
|
|
if (0 <= coordY && coordY < uniforms.imageShape[1] && 0 <= coordX && coordX < uniforms.imageShape[2]) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = uniforms.fillValue;
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
var outputValue : f32;
|
|
let batch = coords[0];
|
|
let x = coords[2];
|
|
let y = coords[1];
|
|
let channel = coords[3];
|
|
let xf = f32(x);
|
|
let yf = f32(y);
|
|
let a1 = getTransforms(batch, 0);
|
|
let a2 = getTransforms(batch, 1);
|
|
let a3 = getTransforms(batch, 2);
|
|
let b1 = getTransforms(batch, 3);
|
|
let b2 = getTransforms(batch, 4);
|
|
let b3 = getTransforms(batch, 5);
|
|
let c1 = getTransforms(batch, 6);
|
|
let c2 = getTransforms(batch, 7);
|
|
let projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = uniforms.fillValue;
|
|
} else {
|
|
let inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
let inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
let mapX = mapCoord(inX, f32(uniforms.imageShape[2]));
|
|
let mapY = mapCoord(inY, f32(uniforms.imageShape[1]));
|
|
|
|
if (uniforms.interpolationModeId == 1) {
|
|
let coordY = i32(round(mapY));
|
|
let coordX = i32(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
let yFloor = floor(mapY);
|
|
let xFloor = floor(mapX);
|
|
let yCeil = yFloor + 1.0;
|
|
let xCeil = xFloor + 1.0;
|
|
let valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, i32(yFloor), i32(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, i32(yFloor), i32(xCeil), channel);
|
|
let valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, i32(yCeil), i32(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, i32(yCeil), i32(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutputAtIndex(index, outputValue);
|
|
}
|
|
}
|
|
`}};function Tme(e){let{inputs:t,backend:r,attrs:n}=e,{image:a,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=n,[d,h,p,c]=a.shape,[f,m]=u!=null?u:[h,p],g=[d,f,m,c],y=new Sme(g),A=i==="nearest"?1:2,x;switch(o){case"constant":x=1;break;case"reflect":x=2;break;case"wrap":x=3;break;case"nearest":x=4;break;default:x=1;break}let b=[{type:"int32",data:[A]},{type:"int32",data:[x]},{type:"float32",data:[l]}];return r.runWebGPUProgram(y,[a,s],"float32",b)}var Nme={kernelName:vl,backendName:"webgpu",kernelFunc:Tme};function Cme(e){let{inputs:t,backend:r,attrs:n}=e,{value:a}=t,{axis:s}=n;s<0&&(s+=a.shape.length);let i=a,o=i.shape.length,l=a.shape[s],u=new Array(o-1),d=0;for(let m=0;m<o;m++)m!==s&&(u[d++]=i.shape[m]);let h=[],p=new Array(o).fill(0),c=i.shape.slice();c[s]=1;let f=new Array(l);for(let m=0;m<f.length;m++){p[s]=m;let g=Ed({inputs:{x:i},backend:r,attrs:{begin:p,size:c}}),y=qe({inputs:{x:g},backend:r,attrs:{shape:u}});f[m]=y,h.push(g)}return h.forEach(m=>r.disposeData(m.dataId)),f}var Eme={kernelName:wl,backendName:"webgpu",kernelFunc:Cme},Rme=[tpe,Dpe,Bpe,Upe,Xpe,Ype,Qpe,the,ihe,dhe,hhe,ghe,spe,bhe,Che,Fhe,Phe,zhe,Lhe,Vhe,Ghe,Xhe,Yhe,Qhe,ece,tce,nce,sce,oce,cce,uce,pce,gce,Ace,bce,kce,Tce,Cce,Rce,ape,Ahe,Fce,Pce,zce,Dce,Bce,Vce,Uce,jce,qce,Xce,Yce,Qce,tfe,jhe,nfe,sfe,ofe,ohe,ufe,pfe,cfe,mfe,yfe,xfe,vfe,lhe,wfe,Ife,Tfe,Qde,Efe,Ffe,Pfe,zfe,Lfe,Vfe,Gfe,Hfe,Kfe,ahe,hme,fme,Yfe,Qfe,rme,ame,ime,ome,ume,Xfe,qhe,gme,bme,Ime,Nme,qpe,Eme,lfe];for(let e of Rme)Gn(e);var Mme=class{constructor(e){this.device=e,this.numUsedBuffers=0,this.numFreeBuffers=0,this.freeBuffers=new Map,this.usedBuffers=new Map,this.numBytesUsed=0,this.numBytesAllocated=0}acquireUploadBuffer(e,t){return this.acquireBuffer(e,t,!0)}acquireBuffer(e,t,r=!1){let n=uw(e,t);if(this.freeBuffers.has(n)||this.freeBuffers.set(n,[]),this.usedBuffers.has(n)||this.usedBuffers.set(n,[]),this.numBytesUsed+=e,this.numUsedBuffers++,this.freeBuffers.get(n).length>0){this.numFreeBuffers--;let s=this.freeBuffers.get(n).shift();return this.usedBuffers.get(n).push(s),s}this.numBytesAllocated+=e;let a=this.device.createBuffer({mappedAtCreation:r,size:e,usage:t});return this.usedBuffers.get(n).push(a),a}releaseBuffer(e,t,r){if(this.freeBuffers.size===0)return;let n=uw(t,r);this.freeBuffers.has(n)||this.freeBuffers.set(n,[]),this.freeBuffers.get(n).push(e),this.numFreeBuffers++,this.numUsedBuffers--;let a=this.usedBuffers.get(n),s=a.indexOf(e);if(s<0)throw new Error("Cannot release a buffer that was never provided by this buffer manager");a.splice(s,1),this.numBytesUsed-=t}releaseUploadBuffer(e,t,r){e.mapAsync(GPUMapMode.WRITE).then(()=>{this.releaseBuffer(e,t,r)},n=>{})}getNumUsedBuffers(){return this.numUsedBuffers}getNumFreeBuffers(){return this.numFreeBuffers}dispose(){this.freeBuffers.forEach((e,t)=>{e.forEach(r=>{r.destroy()})}),this.usedBuffers.forEach((e,t)=>{e.forEach(r=>{r.destroy()})}),this.freeBuffers=new Map,this.usedBuffers=new Map,this.numUsedBuffers=0,this.numFreeBuffers=0,this.numBytesUsed=0,this.numBytesAllocated=0}};function uw(e,t){return`${e}_${t}`}var Z8=class{constructor(){this.outputShape=[0],this.variableNames=[],this.workGroupSize=[256,1,1],this.lastUniformData=[],this.inputTexture=null,this.layout=null,this.lastPixelSize={width:0,height:0},this.disposed=!1,this.shaderKey="fromPixels",this.useImport=!1}updateOutputShape(e){w.arraysEqual(this.outputShape,e)||(this.outputShape=e,this.workPerThread=e[2],this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]))}makeFromPixelsSource(){let e=this.useImport?"textureLoad(src, vec2<i32>(coords.yx));":"textureLoad(src, vec2<i32>(coords.yx), 0)";return`
|
|
@binding(1) @group(0) var src: ${this.useImport?"texture_external":"texture_2d<f32>"};
|
|
|
|
${tt()}
|
|
let flatIndexBase = index * uniforms.numChannels;
|
|
for (var i = 0; i < uniforms.numChannels; i = i + 1) {
|
|
let flatIndex = flatIndexBase + i;
|
|
if (flatIndex < uniforms.size) {
|
|
let coords = getCoordsFromIndex(flatIndexBase);
|
|
let values = ${e};
|
|
result[flatIndex] = i32(floor(255.0 * values[i]));
|
|
}
|
|
}
|
|
}
|
|
`}getUserCode(){return this.makeFromPixelsSource()}setPipeline(e){this.pipeline=e}setUniform(e,t){if(!this.uniform){let r=e.createBuffer({size:t.length*4,usage:GPUBufferUsage.UNIFORM|GPUBufferUsage.COPY_DST});this.uniform=r}!t||t.length===this.lastUniformData.length&&t.every((r,n)=>r===this.lastUniformData[n])||(e.queue.writeBuffer(this.uniform,0,new Uint32Array(t)),this.lastUniformData=t)}makeInputTexture(e,t,r){return(!this.inputTexture||this.lastPixelSize.width!==t||this.lastPixelSize.height!==r)&&(this.inputTexture&&this.inputTexture.destroy(),this.inputTexture=e.createTexture({size:[t,r],format:"rgba8unorm",usage:GPUTextureUsage.COPY_DST|GPUTextureUsage.RENDER_ATTACHMENT|GPUTextureUsage.TEXTURE_BINDING}),this.lastPixelSize.width=t,this.lastPixelSize.height=r),this.inputTexture}dispose(){this.disposed||(this.uniform&&this.uniform.destroy(),this.inputTexture&&this.inputTexture.destroy(),this.disposed=!0)}getLayout(e){return this.layout===null&&(this.layout=this.createTextureLayout(e)),this.layout}createTextureLayout(e){let t=[];t.push({binding:0,visibility:GPUShaderStage.COMPUTE,buffer:{type:"storage"}}),t.push({binding:1,visibility:GPUShaderStage.COMPUTE,texture:{}}),t.push({binding:2,visibility:GPUShaderStage.COMPUTE,buffer:{}});let r=e.createBindGroupLayout({entries:t}),n=e.createPipelineLayout({bindGroupLayouts:[r]});return{bindGroupLayout:r,pipelineLayout:n}}},Fme=class extends Z8{constructor(){super(...arguments),this.layout=null,this.useImport=!0}getUserCode(){return this.makeFromPixelsSource()}getLayout(e){return this.layout===null&&(this.layout=this.createTextureImportLayout(e)),this.layout}createTextureImportLayout(e){let t=[];t.push({binding:0,visibility:GPUShaderStage.COMPUTE,buffer:{type:"storage"}}),t.push({binding:1,visibility:GPUShaderStage.COMPUTE,externalTexture:{}}),t.push({binding:2,visibility:GPUShaderStage.COMPUTE,buffer:{}});let r=e.createBindGroupLayout({entries:t}),n=e.createPipelineLayout({bindGroupLayouts:[r]});return{bindGroupLayout:r,pipelineLayout:n}}},$me=Y().getNumber("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD"),dw=(e,t)=>{let r=e.limits.maxComputeWorkgroupsPerDimension,n=t.dispatchLayout,a=t.dispatch;if(a.every(i=>i<=r))return a;w.assert(a[0]>r&&n.y===void 0&&n.z===void 0,()=>"Dispatch size exceeds WebGPU limits in Y or Z dimension.");let s=Math.ceil(Math.sqrt(a[0]));return s>r?(s=Math.ceil(Math.cbrt(a[0])),w.assert(s<=r,()=>"Total dispatch size exceeds WebGPU maximum."),[s,s,s]):[s,s,1]},Y8=class extends Fu{constructor(e,t=!1){if(super(),this.commandQueueOwnedIds=new WeakSet,this.tensorDisposalQueue=[],this.uniformDisposalQueue=[],this.stagingDisposalQueue=[],this.disposed=!1,this.uploadWaitMs=0,this.downloadWaitMs=0,this.dispatchNumberInEncoder=0,!bb())throw new Error("WebGPU is not supported on this device");this.layoutCache={},this.pipelineCache={},this.device=e,this.queue=e.queue,this.currentCommandEncoder=null,this.currentComputePass=null,this.supportTimeQuery=t,this.bufferManager=new Mme(this.device),this.tensorMap=new qp(this,br()),this.supportTimeQuery&&(this.querySet=this.device.createQuerySet({type:"timestamp",count:2})),Y().getBool("WEBGPU_USE_PROFILE_TOOL")&&(this.dummyCanvas=document.createElement("canvas"),this.dummyCanvas.width=1,this.dummyCanvas.height=1,this.dummyContext=this.dummyCanvas.getContext("webgpu"),this.dummyContext.configure({device:e,format:"bgra8unorm"}),document.body.appendChild(this.dummyCanvas))}nextDataId(){return Y8.nextDataId++}floatPrecision(){return 32}defaultGpuBufferUsage(){return GPUBufferUsage.STORAGE|GPUBufferUsage.COPY_SRC|GPUBufferUsage.COPY_DST}flushDisposalQueue(){this.tensorDisposalQueue.forEach(e=>{this.maybeReleaseBuffer(e),this.tensorMap.delete(e)}),this.uniformDisposalQueue.forEach(e=>this.bufferManager.releaseBuffer(e.buffer,e.byteSize,e.usage)),this.stagingDisposalQueue.forEach(e=>this.bufferManager.releaseUploadBuffer(e.buffer,e.byteSize,e.usage)),this.tensorDisposalQueue=[],this.uniformDisposalQueue=[],this.stagingDisposalQueue=[]}disposeData(e,t=!1){if(this.tensorMap.has(e)){let r=this.tensorMap.get(e);if(r.refCount--,!t&&r.refCount>0)return!1;if(this.commandQueueOwnedIds.has(e))return this.tensorDisposalQueue.push(e),!1;this.maybeReleaseBuffer(e);let{complexTensorInfos:n}=this.tensorMap.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.tensorMap.delete(e)}return!0}memory(){return{numBytesInGPU:this.bufferManager.numBytesUsed,numBytesAllocatedInGPU:this.bufferManager.numBytesAllocated,unreliable:!1}}getBufferManager(){return this.bufferManager}acquireBuffer(e,t=this.defaultGpuBufferUsage()){return this.bufferManager.acquireBuffer(e,t)}maybeReleaseBuffer(e){let t=this.tensorMap.get(e);t!=null&&t.bufferInfo.buffer!=null&&(this.bufferManager.releaseBuffer(t.bufferInfo.buffer,t.bufferInfo.byteSize,t.bufferInfo.usage),t.bufferInfo.buffer=null)}refCount(e){return this.tensorMap.has(e)?this.tensorMap.get(e).refCount:0}incRef(e){let t=this.tensorMap.get(e);t.refCount++}decRef(e){if(this.tensorMap.has(e)){let t=this.tensorMap.get(e);t.refCount--}}write(e,t,r){if(r==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let n={id:this.nextDataId()},a=w.sizeFromShape(t)*Qy(r);return this.tensorMap.set(n,{dtype:r,values:e,bufferInfo:{byteSize:a,usage:this.defaultGpuBufferUsage()},refCount:1}),n}move(e,t,r,n,a){if(n==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s=w.sizeFromShape(r)*Qy(n);this.tensorMap.set(e,{dtype:n,values:t,bufferInfo:{byteSize:s,usage:this.defaultGpuBufferUsage()},refCount:a})}submitQueue(){this.ensureComputePassEnded(),this.queue.submit([this.currentCommandEncoder.finish()]),this.currentCommandEncoder=null,this.dispatchNumberInEncoder=0,this.commandQueueOwnedIds=new WeakSet,this.flushDisposalQueue()}getBuffer(e){return this.uploadToGPU(e),this.tensorMap.get(e).bufferInfo.buffer}getFromPixelsProgram(e){switch(e){case"copyExternal":return this.fromPixelProgram||(this.fromPixelProgram=new Z8),this.fromPixelProgram;case"import":return this.fromPixelImportProgram||(this.fromPixelImportProgram=new Fme),this.fromPixelImportProgram;default:w.assert(!1,()=>"Unsupported fromPixels shape");return}}ensureCommandEncoderReady(){this.currentCommandEncoder||(this.currentCommandEncoder=this.device.createCommandEncoder())}ensureComputePassEnded(){this.currentComputePass&&(this.currentComputePass.endPass(),this.currentComputePass=null)}getComputePass(){return this.currentComputePass||(this.currentComputePass=this.currentCommandEncoder.beginComputePass()),this.currentComputePass}async getBufferData(e){if(e.values!=null)return e.values;let t=this.acquireBuffer(e.bufferInfo.byteSize,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(e.bufferInfo.buffer,0,t,0,e.bufferInfo.byteSize),this.submitQueue(),await t.mapAsync(GPUMapMode.READ);let r=t.getMappedRange().slice(0);return t.unmap(),t!=null&&this.bufferManager.releaseBuffer(t,e.bufferInfo.byteSize,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ),Y().getBool("WEBGPU_USE_PROFILE_TOOL")&&(w.assert(this.dummyContext!==void 0,()=>"Fail to get context for profiling tool"),this.dummyContext.getCurrentTexture()),r}convertAndCacheOnCPU(e,t){let r=this.tensorMap.get(e);return this.maybeReleaseBuffer(e),r.values=t,r.values}readSync(e){let t=this.tensorMap.get(e),{values:r}=t;if(r==null)throw new Error("WebGPU readSync is only available for CPU-resident tensors.");return r}async read(e){if(!this.tensorMap.has(e))throw new Error(`Tensor ${e} was not registered!`);let t=this.tensorMap.get(e),{values:r}=t;if(r!=null)return this.convertAndCacheOnCPU(e,r);let n;if(t.dtype==="complex64"){let a=await Promise.all([this.read(t.complexTensorInfos.real.dataId),this.read(t.complexTensorInfos.imag.dataId)]),s=a[0],i=a[1];n=N.mergeRealAndImagArrays(s,i)}else{let a=await this.getBufferData(t);n=C8(a,t.dtype)}return this.convertAndCacheOnCPU(e,n),n}bufferSync(e){let t=this.readSync(e.dataId),r=t;if(e.dtype==="string")try{r=t.map(n=>w.decodeString(n))}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,r)}async time(e){let t=this.activeTimers,r=[],n=!1;this.programTimersStack==null?(this.programTimersStack=r,n=!0):this.activeTimers.push(r),this.activeTimers=r,e();let a=w.flatten(this.activeTimers.map(l=>l.query)).filter(l=>l!=null),s=w.flatten(this.activeTimers.map(l=>l.name)).filter(l=>l!=null);this.activeTimers=t,n&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null},o=await Promise.all(a);return i.kernelMs=w.sum(o),i.getExtraProfileInfo=()=>o.map((l,u)=>({name:s[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", "),this.uploadWaitMs=0,this.downloadWaitMs=0,i}getAndSavePipeline(e,t){return e in this.pipelineCache||(this.pipelineCache[e]=t()),this.pipelineCache[e]}makeTensorInfo(e,t,r){let n;if(t==="string"&&r!=null&&r.length>0&&w.isString(r[0])){let a=r.map(s=>w.encodeString(s));n=this.write(a,e,t)}else n=this.write(r,e,t);return{dataId:n,shape:e,dtype:t}}tensorToBinding(e){if(!e)return null;let t=this.tensorMap.get(e.dataId);return{offset:0,size:t.bufferInfo.byteSize,buffer:t.bufferInfo.buffer}}async getQueryTime(e){return this.supportTimeQuery?this.getTimeFromQuerySet(e):0}uploadToGPU(e){let t=this.tensorMap.get(e);if(t.bufferInfo.buffer==null&&(t.bufferInfo.buffer=this.acquireBuffer(t.bufferInfo.byteSize),t.values)){let r=this.bufferManager.acquireUploadBuffer(t.bufferInfo.byteSize,GPUBufferUsage.MAP_WRITE|GPUBufferUsage.COPY_SRC),n=r.getMappedRange();t.dtype==="int32"||t.dtype==="bool"?new Int32Array(n).set(t.values):new Float32Array(n).set(t.values),r.unmap(),this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(r,0,t.bufferInfo.buffer,0,t.bufferInfo.byteSize);let a={byteSize:t.bufferInfo.byteSize,usage:GPUBufferUsage.MAP_WRITE|GPUBufferUsage.COPY_SRC,buffer:r};this.stagingDisposalQueue.push(a)}}makeUniforms(e){let t=0,r=[];e.forEach(s=>{s.data.length===0&&(s.data=[1]);let i;switch(s.data.length){case 1:i=4;break;case 2:i=8;break;case 3:i=16;break;case 4:i=16;break;default:w.assert(!1,()=>`Unsupported ${s.data.length}D shape`)}t=Math.ceil(t/i)*i,r.push(t),t+=s.data.length*4});let n=new ArrayBuffer(t);e.forEach((s,i)=>{let o=r[i];s.type==="int32"?new Int32Array(n,o,s.data.length).set(s.data):s.type==="uint32"?new Uint32Array(n,o,s.data.length).set(s.data):new Float32Array(n,o,s.data.length).set(s.data)});let a=this.acquireBuffer(t,GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM);return this.queue.writeBuffer(a,0,n,0,t),{offset:0,size:t,buffer:a}}createLayout(e){let t=[];t.push({binding:0,visibility:GPUShaderStage.COMPUTE,buffer:{type:"storage"}});for(let a=0;a<e;a++)t.push({binding:a+1,visibility:GPUShaderStage.COMPUTE,buffer:{type:"read-only-storage"}});t.push({binding:e+1,visibility:GPUShaderStage.COMPUTE,buffer:{type:"uniform"}});let r=this.device.createBindGroupLayout({entries:t}),n=this.device.createPipelineLayout({bindGroupLayouts:[r]});return{bindGroupLayout:r,pipelineLayout:n}}getCachedOrCreateLayout(e){return e in this.layoutCache||(this.layoutCache[e]=this.createLayout(e)),this.layoutCache[e]}runWebGPUProgram(e,t,r,n,a){if(!a){if(a=this.makeTensorInfo(e.outputShape,r),w.sizeFromShape(a.shape)===0){let T=this.tensorMap.get(a.dataId);return T.values=w.getTypedArrayFromDType(a.dtype,0),a}this.uploadToGPU(a.dataId)}e.dispatch=dw(this.device,e);let s=[{type:"float32",data:[NaN]}],i=t.concat(a).map(T=>T.shape),o="int32";i.map(T=>{s.push({type:o,data:T})});let l=w.computeStrides(a.shape);if(s.push({type:o,data:l}),e.size){let T=w.sizeFromShape(e.outputShape);s.push({type:o,data:[e.isVec4?T/4:T]})}n&&(s=[...s,...n]);let u=this.makeUniforms(s),d=t.map((T,E)=>{if(T.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");return this.uploadToGPU(T.dataId),{dtype:this.tensorMap.get(T.dataId).dtype,shape:T.shape,name:e.variableNames[E]}}),h=d.map(T=>T.dtype).concat(a.dtype),p=d.map(T=>N.getBroadcastDims(T.shape,a.shape)),c=d.map(T=>w.arraysEqual(T.shape,a.shape)).join("_"),f=p.map(T=>T.join("_")).join(";"),m=U8(e,i,h,f,c),{bindGroupLayout:g,pipelineLayout:y}=this.getCachedOrCreateLayout(e.variableNames.length),A=this.getAndSavePipeline(m,()=>V8(this.device,e,y,d,a)),x=this.activeTimers!=null,b=hce(this.device,g,t.map(T=>this.tensorToBinding(T)),this.tensorToBinding(a),u);this.ensureCommandEncoderReady();let v=this.getComputePass();x&&this.supportTimeQuery&&v.writeTimestamp(this.querySet,0),v.setPipeline(A),v.setBindGroup(0,b),v.dispatch(e.dispatch[0],e.dispatch[1],e.dispatch[2]),x&&this.supportTimeQuery&&v.writeTimestamp(this.querySet,1),this.dispatchNumberInEncoder++,t.forEach(T=>{this.commandQueueOwnedIds.add(T.dataId)}),this.commandQueueOwnedIds.add(a.dataId);let S={byteSize:u.size,usage:GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM,buffer:u.buffer};return this.uniformDisposalQueue.push(S),Y().get("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE")<=this.dispatchNumberInEncoder&&this.submitQueue(),x&&this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(this.querySet)}),a}runFromPixelsProgram(e,t,r,n,a){e.dispatch=dw(this.device,e);let s=this.device.createBindGroup({layout:r.bindGroupLayout,entries:[{binding:0,resource:{buffer:t}},{binding:1,resource:n},{binding:2,resource:{buffer:e.uniform}}]});this.ensureCommandEncoderReady();let i=this.getComputePass(),o=this.activeTimers!=null;o&&this.supportTimeQuery&&i.writeTimestamp(this.querySet,0),i.setPipeline(e.pipeline),i.setBindGroup(0,s),i.dispatch(e.dispatch[0],e.dispatch[1],e.dispatch[2]),o&&this.supportTimeQuery&&i.writeTimestamp(this.querySet,1),this.commandQueueOwnedIds.add(a),this.submitQueue(),o&&this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(this.querySet)})}async getTimeFromQuerySet(e){let t=this.acquireBuffer(16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),r=this.acquireBuffer(16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.resolveQuerySet(e,0,2,t,0),this.currentCommandEncoder.copyBufferToBuffer(t,0,r,0,16),this.submitQueue(),await r.mapAsync(GPUMapMode.READ);let n=new BigUint64Array(r.getMappedRange()),a=Number(n[1]-n[0]);return r.unmap(),this.bufferManager.releaseBuffer(r,16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST),this.bufferManager.releaseBuffer(t,16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),a/1e6}shouldExecuteOnCPU(e,t=$me){return Y().getBool("WEBGPU_CPU_FORWARD")&&e.every(r=>this.tensorMap.get(r.dataId).bufferInfo.buffer==null&&w.sizeFromShape(r.shape)<t)}numDataIds(){return this.tensorMap.numDataIds()-this.tensorDisposalQueue.length}dispose(){this.disposed||(this.bufferManager.dispose(),this.fromPixelProgram&&this.fromPixelProgram.dispose(),this.fromPixelImportProgram&&this.fromPixelImportProgram.dispose(),this.disposed=!0)}},Ib=Y8;Ib.nextDataId=0;var J8={};Le(J8,{WebGPUBackend:()=>Ib,webgpu_util:()=>T8});bb()&&Tl("webgpu",async()=>{Y().set("CHECK_COMPUTATION_FOR_ERRORS",!1);let e={powerPreference:Y().get("WEBGPU_USE_LOW_POWER_GPU")?"low-power":"high-performance"},t=await navigator.gpu.requestAdapter(e),r=t.limits,n={},a=t.features.has("timestamp-query");n.requiredLimits={maxComputeWorkgroupStorageSize:r.maxComputeWorkgroupStorageSize,maxComputeWorkgroupsPerDimension:r.maxComputeWorkgroupsPerDimension},a?n.requiredFeatures=["timestamp-query"]:console.warn("This device doesn't support timestamp-query extension. Start Chrome browser with flag --disable-dawn-features=disallow_unsafe_apis then try again. Or zero will shown for the kernel time when profiling mode isenabled. Using performance.now is not workable for webgpu sinceit doesn't support synchronously to read data from GPU.");let s=await t.requestDevice(n);return new Ib(s,a)},3);var Vt=(e=>(e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64",e))(Vt||{}),k0=(e=>(e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu",e))(k0||{}),Q8;function Pme(e){Q8=e.wasm.cwrap(Ms,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function _me(e){let{inputs:t,backend:r,attrs:n}=e,{a,b:s,bias:i,preluActivationWeights:o}=t;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:d,leakyreluAlpha:h}=n,p=r.dataIdMap.get(a.dataId).id,c=r.dataIdMap.get(s.dataId).id,f=0;if(i!=null){let E=r.dataIdMap.get(i.dataId);if(E.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${E.shape.length}.`);f=E.id}let m=o==null?0:r.dataIdMap.get(o.dataId).id,g=k0[d];if(g==null)throw new Error(`${d} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?a.shape[2]:a.shape[1],A=u?s.shape[1]:s.shape[2],x=Sl.assertAndGetBroadcastShape(a.shape.slice(0,-2),s.shape.slice(0,-2)),b=r.makeOutput([...x,y,A],a.dtype),v=r.dataIdMap.get(b.dataId).id,S=new Uint8Array(new Int32Array(a.shape).buffer),T=new Uint8Array(new Int32Array(s.shape).buffer);return Q8(p,S,a.shape.length,c,T,s.shape.length,l,u,g,f,m,h||0,v),b}var zme={kernelName:Ms,backendName:"wasm",setupFunc:Pme,kernelFunc:_me};function Ir(e,t){let r;function n(s){r=s.wasm.cwrap(e,null,["number","number","number"])}function a(s){let{backend:i,inputs:{x:o}}=s,l=i.dataIdMap.get(o.dataId).id,u=i.makeOutput(o.shape,t||o.dtype),d=i.dataIdMap.get(u.dataId).id;return w.sizeFromShape(u.shape)===0||r(l,Vt[o.dtype],d),u}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:a}}var Ome=Ir(Lo);function Hr(e,t,r){let n;function a(i){n=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:u,b:d}=l,h=o.dataIdMap.get(u.dataId).id,p=o.dataIdMap.get(d.dataId).id,c=r!=null?r:u.dtype,f=N.assertAndGetBroadcastShape(u.shape,d.shape),m=o.makeOutput(f,c);if(w.sizeFromShape(f)===0)return m;let g=new Uint8Array(new Int32Array(u.shape).buffer),y=new Uint8Array(new Int32Array(d.shape).buffer),A=o.dataIdMap.get(m.dataId).id;return n(h,g,u.shape.length,p,y,d.shape.length,Vt[u.dtype],A),m}return{kernelName:e,backendName:"wasm",setupFunc:a,kernelFunc:s}}var Dme=!0,Lme=Hr(Ya,Dme),eT;function Bme(e){eT=e.wasm.cwrap(qs,null,["array","number","number","number"])}function Wme(e){let{inputs:t,backend:r}=e,n=r.makeOutput(t[0].shape,t[0].dtype);if(w.sizeFromShape(n.shape)===0)return n;let a=t.map(o=>r.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(a).buffer),i=r.dataIdMap.get(n.dataId).id;return eT(s,a.length,Vt[n.dtype],i),n}var Vme={kernelName:qs,backendName:"wasm",setupFunc:Bme,kernelFunc:Wme};function I0(e){let{inputs:{x:t},backend:r}=e,n=r.makeOutput(t.shape,t.dtype),a=r.typedArrayFromHeap(t);return r.typedArrayFromHeap(n).set(a),n}var Ume={kernelName:pi,backendName:"wasm",kernelFunc:I0},tT;function Gme(e){tT=e.wasm.cwrap(Oi,null,["number","array","number","number","number","array","number"])}function js(e){let{inputs:t,backend:r,attrs:n}=e,[a,s]=Hme(t.x.shape,n.perm),i=!0;for(let f=0;f<s.length;f++)s[f]!==f&&(i=!1);let o=jme(t.x.shape,n.perm),l={dataId:t.x.dataId,shape:a,dtype:t.x.dtype};if(i){let f=I0({inputs:t,backend:r});return f.shape=o,f}let u=r.makeOutput(o,l.dtype),d=r.dataIdMap.get(l.dataId).id,h=r.dataIdMap.get(u.dataId).id,p=new Uint8Array(new Int32Array(s).buffer),c=new Uint8Array(new Int32Array(l.shape).buffer);return tT(d,c,l.shape.length,Vt[l.dtype],h,p,s.length),u}function jme(e,t){let r=new Array(e.length);for(let n=0;n<r.length;n++)r[n]=e[t[n]];return r}function Hme(e,t){let r=[],n=[];for(let a=0;a<e.length;++a)e[a]!==1&&r.push(e[a]),e[t[a]]!==1&&n.push(t[a]);for(let a=0;a<n.length;++a){let s=-1;for(let i=0;i<n.length;++i)n[i]>=a&&(s===-1||n[s]>n[i])&&(s=i);n[s]=a}return[r,n]}var qme={kernelName:Oi,backendName:"wasm",kernelFunc:js,setupFunc:Gme};function Gi(e,t,r){let n=e.shape,a=e.shape.length,s=w.parseAxisParam(t,n),i=s,o=N.getAxesPermutation(i,a),l=null,u=!1;if(o!=null){let d=new Array(a);for(let p=0;p<d.length;p++)d[p]=n[o[p]];i=N.getInnerMostAxes(i.length,a),l=js({inputs:{x:e},attrs:{perm:o},backend:r});let h=r.dataIdMap.get(e.dataId).id;r.dataIdMap.get(l.dataId).id!==h&&(u=!0)}return{transposed:l,originalAxes:s,axes:i,inputWasTransposed:u}}var rT;function Kme(e){rT=e.wasm.cwrap(zu,null,["number, number, number"])}function Xme(e){let{backend:t,inputs:r,attrs:n}=e,{axis:a,keepDims:s}=n,{x:i}=r,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:d,originalAxes:h,inputWasTransposed:p}=Gi(i,a,t);if(p){let A=t.dataIdMap.get(u.dataId).id;l=u,o=A}let c=l.shape.length;N.assertAxesAreInnerMostDims("all",d,c);let[f,m]=N.computeOutAndReduceShapes(l.shape,d),g=w.sizeFromShape(m),y=t.makeOutput(f,i.dtype);if(w.sizeFromShape(l.shape)!==0){let A=t.dataIdMap.get(y.dataId).id;rT(o,g,A)}if(p&&t.disposeData(u.dataId),s){let A=N.expandShapeToKeepDim(y.shape,h);y.shape=A}return y}var Zme={kernelName:zu,backendName:"wasm",setupFunc:Kme,kernelFunc:Xme},nT;function Yme(e){nT=e.wasm.cwrap(Ou,null,["number, number, number"])}function Jme(e){let{backend:t,inputs:r,attrs:n}=e,{axis:a,keepDims:s}=n,{x:i}=r,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:d,originalAxes:h,inputWasTransposed:p}=Gi(i,a,t);if(p){let A=t.dataIdMap.get(u.dataId).id;l=u,o=A}let c=l.shape.length;N.assertAxesAreInnerMostDims("any",d,c);let[f,m]=N.computeOutAndReduceShapes(l.shape,d),g=w.sizeFromShape(m),y=t.makeOutput(f,i.dtype);if(w.sizeFromShape(l.shape)!==0){let A=t.dataIdMap.get(y.dataId).id;nT(o,g,A)}if(p&&t.disposeData(u.dataId),s){let A=N.expandShapeToKeepDim(y.shape,h);y.shape=A}return y}var Qme={kernelName:Ou,backendName:"wasm",setupFunc:Yme,kernelFunc:Jme},aT;function e0e(e){aT=e.wasm.cwrap(Ks,null,["number","number","number","number","number"])}function t0e(e){let{backend:t,inputs:r,attrs:n}=e,{axis:a}=n,{x:s}=r,i=t.dataIdMap.get(s.dataId).id,o=i,l=s,{transposed:u,axes:d,inputWasTransposed:h}=Gi(s,a,t);if(h){let y=t.dataIdMap.get(u.dataId).id;y!==i&&(l=u,o=y)}let p=l.shape.slice(0,-1),c=t.makeOutput(p,"int32"),f=t.dataIdMap.get(c.dataId).id,m=w.sizeFromShape(c.shape),g=l.shape[d[0]];return aT(o,Vt[l.dtype],m,g,f),h&&t.disposeData(u.dataId),c}var r0e={kernelName:Ks,backendName:"wasm",kernelFunc:t0e,setupFunc:e0e},sT;function n0e(e){sT=e.wasm.cwrap(Xs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function a0e(e){let{inputs:t,attrs:r,backend:n}=e,a=t.x,s=n.dataIdMap.get(a.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=r,d=N.computePool2DInfo(a.shape,i,o,1,l,u),h=d.filterHeight,p=d.filterWidth,c=d.padInfo.top,f=d.padInfo.right,m=d.padInfo.bottom,g=d.padInfo.left,y=d.strideHeight,A=d.strideWidth,x=d.inChannels;if(d.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${d.dataFormat}'. Please use 'channelsLast'.`);if(d.dilationWidth!==1||d.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${d.dilationHeight}, ${d.dilationWidth}].`);let b=n.makeOutput(d.outShape,"float32"),v=n.dataIdMap.get(b.dataId).id;return sT(s,a.shape[0],a.shape[1],a.shape[2],h,p,c,f,m,g,y,A,x,v),b}var s0e={kernelName:Xs,backendName:"wasm",setupFunc:n0e,kernelFunc:a0e};function en(e){let{inputs:t,attrs:r}=e,{x:n}=t,{shape:a}=r,s=w.sizeFromShape(n.shape),i=w.inferFromImplicitShape(a,s);return w.assert(s===w.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${n.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(n.dataId),{dataId:n.dataId,shape:i,dtype:n.dtype}}var i0e={kernelName:ul,backendName:"wasm",kernelFunc:en},iT;function o0e(e){iT=e.wasm.cwrap(Zs,null,["number","array","number","number","array","number","number","number","number"])}function l0e(e){let{inputs:t,backend:r,attrs:n}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=n;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=a.shape.length,u=s.shape.length,d=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[u-1]:s.shape[u-2],p=i?a.shape[l-1]:a.shape[l-2],c=o?s.shape[u-2]:s.shape[u-1],f=a.shape.slice(0,-2),m=s.shape.slice(0,-2),g=w.sizeFromShape(f),y=w.sizeFromShape(m),A=Sl.assertAndGetBroadcastShape(a.shape.slice(0,-2),s.shape.slice(0,-2)).concat([p,c]);w.assert(d===h,()=>`Error in matMul: inner shapes (${d}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,d,p]:[g,p,d],b=o?[y,c,h]:[y,h,c],v=en({inputs:{x:a},backend:r,attrs:{shape:x}}),S=en({inputs:{x:s},backend:r,attrs:{shape:b}}),T=r.dataIdMap.get(v.dataId).id,E=r.dataIdMap.get(S.dataId).id,R=i?v.shape[2]:v.shape[1],_=o?S.shape[1]:S.shape[2],M=Math.max(g,y),I=r.makeOutput([M,R,_],v.dtype),z=r.dataIdMap.get(I.dataId).id,O=new Uint8Array(new Int32Array(v.shape).buffer),j=new Uint8Array(new Int32Array(S.shape).buffer);return iT(T,O,v.shape.length,E,j,S.shape.length,i,o,z),r.disposeData(v.dataId),r.disposeData(S.dataId),I.shape=A,I}var u0e={kernelName:Zs,backendName:"wasm",setupFunc:o0e,kernelFunc:l0e};function zo(e){let{inputs:{x:t},attrs:{begin:r,size:n},backend:a}=e,[s,i]=_t.parseSliceParams(t,r,n),o=_t.isSliceContinous(t.shape,s,i),l=a.readSync(t.dataId),u=a.makeOutput(i,t.dtype),d=w.computeStrides(t.shape),h=a.dataIdMap.get(u.dataId);if(o){let f=_t.computeFlatOffset(s,d);return t.dtype==="string"?h.stringBytes=l.slice(f,f+w.sizeFromShape(i)):a.typedArrayFromHeap(u).set(l.subarray(f,f+w.sizeFromShape(i))),u}if(t.dtype==="string"){let f=Pf(l,s,i,t.shape,t.dtype);return h.stringBytes=f,u}let p=a.typedArrayFromHeap(u),c=t.shape.length;if(c===2)d0e(l,d[0],p,s,i);else if(c===3)p0e(l,d[0],d[1],p,s,i);else if(c===4)h0e(l,d[0],d[1],d[2],p,s,i);else{let f=Pf(l,s,i,t.shape,t.dtype);p.set(f)}return u}function d0e(e,t,r,n,a){let s=0,i=n[0],o=n[1],l=i+a[0];for(let u=i;u<l;u++){let d=u*t+o;r.set(e.subarray(d,d+a[1]),s),s+=a[1]}}function p0e(e,t,r,n,a,s){let i=0,o=a[0],l=a[1],u=a[2],d=o+s[0],h=l+s[1];for(let p=o;p<d;p++)for(let c=l;c<h;c++){let f=p*t+c*r+u;n.set(e.subarray(f,f+s[2]),i),i+=s[2]}}function h0e(e,t,r,n,a,s,i){let o=0,l=s[0],u=s[1],d=s[2],h=l+i[0],p=u+i[1],c=d+i[2],f=s[3];for(let m=l;m<h;m++)for(let g=u;g<p;g++)for(let y=d;y<c;y++){let A=m*t+g*r+y*n+f;a.set(e.subarray(A,A+i[3]),o),o+=i[3]}}var c0e={kernelName:fl,backendName:"wasm",kernelFunc:zo};function f0e(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockShape:s,crops:i}=n,o=s.reduce((y,A)=>y*A),l=N.getReshaped(a.shape,s,o),u=N.getPermuted(l.length,s.length),d=N.getReshapedPermuted(a.shape,s,o),h=N.getSliceBeginCoords(i,s.length),p=N.getSliceSize(d,i,s.length),c=en({inputs:{x:a},backend:r,attrs:{shape:l}}),f=js({inputs:{x:c},backend:r,attrs:{perm:u}}),m=en({inputs:{x:f},backend:r,attrs:{shape:d}}),g=zo({inputs:{x:m},backend:r,attrs:{begin:h,size:p}});return r.disposeData(c.dataId),r.disposeData(f.dataId),r.disposeData(c.dataId),g}var m0e={kernelName:Bo,backendName:"wasm",kernelFunc:f0e};function jh(e){let{inputs:{x:t},attrs:{dtype:r},backend:n}=e,a=n.makeOutput(t.shape,r),s=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(a).set(s),a}var g0e={kernelName:Ys,backendName:"wasm",kernelFunc:jh},y0e=Ir(Js),oT;function A0e(e){oT=e.wasm.cwrap(Ja,null,["number","number","number","number"])}function x0e(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=n,o=r.dataIdMap.get(a.dataId).id,l=r.makeOutput(a.shape,a.dtype),u=r.dataIdMap.get(l.dataId).id;return oT(o,s,i,u),l}var b0e={kernelName:Ja,backendName:"wasm",setupFunc:A0e,kernelFunc:x0e};function lT(e){let{inputs:t,backend:r}=e,n=w.parseAxisParam(e.attrs.axis,t[0].shape)[0],a=N.computeOutShape(t.map(c=>c.shape),n),s=t.filter(c=>w.sizeFromShape(c.shape)>0);if(s.length===1)return I0({inputs:{x:s[0]},backend:r});let i=r.makeOutput(a,t[0].dtype);if(w.sizeFromShape(a)===0)return i;let o=s.map(c=>c.shape);if(N.assertParamsConsistent(o,n),s[0].dtype==="string"){let c=s.map(x=>{let b=w.sizeFromShape(x.shape.slice(n));return en({inputs:{x},backend:r,attrs:{shape:[-1,b]}})}),f=c.map(x=>({vals:r.readSync(x.dataId),shape:x.shape}));a=N.computeOutShape(c.map(x=>x.shape),1);let m=c[0].shape[0]===1,g=Kx(f,a,t[0].dtype,m),y=N.computeOutShape(s.map(x=>x.shape),n);i.shape=y;let A=r.dataIdMap.get(i.dataId);return A.stringBytes=N.fromStringArrayToUint8(g),c.forEach(x=>r.disposeData(x.dataId)),i}let l=w.sizeFromShape(s[0].shape.slice(0,n)),u=0,d=s.map(c=>{let f=w.sizeFromShape(c.shape.slice(n));return u+=f,f}),h=s.map(c=>r.typedArrayFromHeap(c)),p=r.typedArrayFromHeap(i);for(let c=0;c<l;c++){let f=c*u;for(let m=0;m<h.length;m++){let g=d[m],y=c*g,A=h[m].subarray(y,y+g);p.set(A,f),f+=g}}return i}var v0e={kernelName:Wo,backendName:"wasm",kernelFunc:lT},uT;function w0e(e){uT=e.wasm.cwrap(Qs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function k0e(e){let{inputs:t,attrs:r,backend:n}=e,{x:a,filter:s}=t,i=n.dataIdMap.get(a.dataId).id,o=n.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:d,dimRoundingMode:h,dataFormat:p}=r,c=N.convertConv2DDataFormat(p),f=N.computeConv2DInfo(a.shape,s.shape,l,u,d,h,!1,c),m=f.filterHeight,g=f.filterWidth,y=f.padInfo.top,A=f.padInfo.right,x=f.padInfo.bottom,b=f.padInfo.left,v=f.dilationHeight,S=f.dilationWidth,T=f.strideHeight,E=f.strideWidth,R=f.inChannels,_=f.outChannels,M=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let I=n.makeOutput(f.outShape,"float32"),z=n.dataIdMap.get(I.dataId).id;return uT(i,a.shape[0],a.shape[1],a.shape[2],o,m,g,y,A,x,b,M,v,S,T,E,R,_,z),I}var I0e={kernelName:Qs,backendName:"wasm",setupFunc:w0e,kernelFunc:k0e},dT;function S0e(e){dT=e.wasm.cwrap(ei,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function T0e(e){let{backend:t,inputs:r,attrs:n}=e,{dy:a,filter:s}=r,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,inputShape:d}=n,h=1,p=N.convertConv2DDataFormat(l),c=N.computeConv2DInfo(d,s.shape,i,h,o,u,!1,p),{batchSize:f,filterHeight:m,filterWidth:g,inChannels:y,inHeight:A,inWidth:x,outChannels:b,outHeight:v,outWidth:S,strideHeight:T,strideWidth:E}=c,R=m-1-c.padInfo.top,_=g-1-c.padInfo.left,M=c.dataFormat==="channelsLast",I=w.computeStrides(c.inShape),z=w.computeStrides(a.shape),[O,j,X]=w.computeStrides(s.shape),D=I[0],Q=M?I[1]:I[2],V=M?I[2]:1,ee=M?1:I[1],J=z[0],se=M?z[1]:z[2],Z=M?z[2]:1,ae=M?1:z[1],de=t.makeOutput(c.inShape,"float32"),Ae=t.dataIdMap.get(de.dataId).id,be=t.dataIdMap.get(a.dataId).id,Ee=t.dataIdMap.get(s.dataId).id;return dT(be,Ee,f,m,g,A,x,y,v,S,b,T,E,R,_,O,j,X,D,Q,V,ee,J,se,Z,ae,Ae),de}var N0e={kernelName:ei,backendName:"wasm",setupFunc:S0e,kernelFunc:T0e},C0e=Ir(ti),E0e=Ir(ri),pT=(e=>(e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest",e))(pT||{}),hT;function R0e(e){hT=e.wasm.cwrap(Uo,null,["number","number","number","number","array","number","number","number","number","number"])}function M0e(e){let{backend:t,inputs:r,attrs:n}=e,{method:a,extrapolationValue:s,cropSize:i}=n,{image:o,boxes:l,boxInd:u}=r,d=l.shape[0],[h,p]=i,c=[d,h,p,o.shape[3]],f=t.dataIdMap.get(o.dataId),m;o.dtype!=="float32"&&(m=jh({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(m.dataId));let g=f.id,y=t.dataIdMap.get(l.dataId).id,A=t.dataIdMap.get(u.dataId).id,x=t.makeOutput(c,"float32"),b=t.dataIdMap.get(x.dataId).id,v=new Uint8Array(new Int32Array(o.shape).buffer);return hT(g,y,A,d,v,h,p,pT[a],s,b),m!=null&&t.disposeData(m.dataId),x}var F0e={kernelName:Uo,backendName:"wasm",setupFunc:R0e,kernelFunc:M0e},cT;function $0e(e){cT=e.wasm.cwrap(Gu,null,["number","number","number","number","number","number"])}function P0e(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=n,l=a.shape.length;w.assert(a.dtype==="float32"||a.dtype==="int32",()=>`cumprod does not support ${a.dtype} tensors in the WASM backend`);let u=N.getAxesPermutation([s],l),d=a;u!==null&&(d=js({inputs:{x:a},attrs:{perm:u},backend:r}));let h=N.getInnerMostAxes(1,l)[0];N.assertAxesAreInnerMostDims("cumprod",[h],l);let p=r.makeOutput(d.shape,d.dtype),c=d.shape[h],f=r.dataIdMap.get(d.dataId).id,m=r.dataIdMap.get(p.dataId).id;cT(f,i?1:0,o?1:0,c,m,Vt[a.dtype]);let g=p;if(u!==null){let y=N.getUndoAxesPermutation(u);g=js({inputs:{x:p},attrs:{perm:y},backend:r}),r.disposeData(d.dataId),r.disposeData(p.dataId)}return g}var _0e={kernelName:Gu,backendName:"wasm",setupFunc:$0e,kernelFunc:P0e},fT;function z0e(e){fT=e.wasm.cwrap(Vo,null,["number","number","number","number","number","number"])}function O0e(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=n,l=a.shape.length;w.assert(a.dtype==="float32"||a.dtype==="int32",()=>`cumsum does not support ${a.dtype} tensors in the WASM backend`);let u=N.getAxesPermutation([s],l),d=a;u!==null&&(d=js({inputs:{x:a},attrs:{perm:u},backend:r}));let h=N.getInnerMostAxes(1,l)[0];N.assertAxesAreInnerMostDims("cumsum",[h],l);let p=r.makeOutput(d.shape,d.dtype),c=d.shape[h],f=r.dataIdMap.get(d.dataId).id,m=r.dataIdMap.get(p.dataId).id;fT(f,i?1:0,o?1:0,c,m,Vt[a.dtype]);let g=p;if(u!==null){let y=N.getUndoAxesPermutation(u);g=js({inputs:{x:p},attrs:{perm:y},backend:r}),r.disposeData(d.dataId),r.disposeData(p.dataId)}return g}var D0e={kernelName:Vo,backendName:"wasm",setupFunc:z0e,kernelFunc:O0e},mT;function L0e(e){mT=e.wasm.cwrap(Go,null,["number","number","number","array","number","array","array","number","number"])}function B0e(e){let{backend:t,inputs:r,attrs:n}=e,{x:a}=r,{blockSize:s,dataFormat:i}=n,o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],u=i==="NHWC"?a.shape[2]:a.shape[3],d=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,p=u*s,c=d/(s*s),f=i==="NHWC"?[o,h,p,c]:[o,c,h,p],m=t.makeOutput(f,"float32"),g=t.dataIdMap.get(a.dataId).id,y=new Uint8Array(new Int32Array(w.computeStrides(a.shape)).buffer),A=new Uint8Array(new Int32Array(f).buffer),x=new Uint8Array(new Int32Array(w.computeStrides(f)).buffer),b=t.dataIdMap.get(m.dataId).id;return mT(g,s,i==="NHWC"?1:0,y,a.shape.length-1,A,x,f.length,b),m}var W0e={kernelName:Go,backendName:"wasm",setupFunc:L0e,kernelFunc:B0e},gT;function V0e(e){gT=e.wasm.cwrap(ni,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function U0e(e){let{inputs:t,attrs:r,backend:n}=e,{x:a,filter:s}=t,i=n.dataIdMap.get(a.dataId).id,o=n.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:d,dimRoundingMode:h}=r,p=u==null?[1,1]:u,c=N.computeConv2DInfo(a.shape,s.shape,l,p,d,h,!0),f=c.filterHeight,m=c.filterWidth,g=c.padInfo.top,y=c.padInfo.right,A=c.padInfo.bottom,x=c.padInfo.left,b=c.dilationHeight,v=c.dilationWidth,S=c.strideHeight,T=c.strideWidth,E=c.inChannels,R=c.outChannels,_=c.padInfo.type==="SAME"?1:0;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let M=n.makeOutput(c.outShape,"float32"),I=n.dataIdMap.get(M.dataId).id;return gT(i,a.shape[0],a.shape[1],a.shape[2],o,f,m,g,y,A,x,_,b,v,S,T,E,R,I),M}var G0e={kernelName:ni,backendName:"wasm",setupFunc:V0e,kernelFunc:U0e},j0e=Ir(si),H0e=!1,q0e=Hr(jo,H0e,"bool"),K0e=Ir(ii,"float32");function a2(e){let{inputs:t,attrs:r,backend:n}=e,{input:a}=t,{dim:s}=r,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(w.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),en({inputs:{x:a},backend:n,attrs:{shape:o}})}var X0e={kernelName:Ho,backendName:"wasm",kernelFunc:a2};function yT(e){let{attrs:{shape:t,value:r,dtype:n},backend:a}=e,s=a.makeOutput(t,n);return a.typedArrayFromHeap(s).fill(r),s}var Z0e={kernelName:Hu,backendName:"wasm",kernelFunc:yT},AT;function Y0e(e){AT=e.wasm.cwrap(Ko,null,["number","number","number","number","number","number"])}function J0e(e){let{inputs:t,backend:r}=e,{image:n}=t,a=r.makeOutput(n.shape,n.dtype),s=r.dataIdMap.get(n.dataId).id,i=r.dataIdMap.get(a.dataId).id,[o,l,u,d]=n.shape;return AT(s,o,l,u,d,i),a}var Q0e={kernelName:Ko,backendName:"wasm",kernelFunc:J0e,setupFunc:Y0e},ege=Ir(oi),tge=!1,rge=Hr(li,tge),xT;function nge(e){xT=e.wasm.cwrap(ui,null,["number","number","number","number","number","number","number"])}function age(e){let{backend:t,inputs:r,attrs:n}=e,{varianceEpsilon:a}=n,{x:s,mean:i,variance:o,offset:l,scale:u}=r,d=t.dataIdMap.get(s.dataId).id,h=t.dataIdMap.get(i.dataId).id,p=t.dataIdMap.get(o.dataId).id,c=l!=null?t.dataIdMap.get(l.dataId).id:0,f=u!=null?t.dataIdMap.get(u.dataId).id:0,m=t.makeOutput(s.shape,s.dtype);if(w.sizeFromShape(s.shape)===0)return m;let g=t.dataIdMap.get(m.dataId).id;return xT(d,h,p,c,f,a,g),m}var sge={kernelName:ui,backendName:"wasm",setupFunc:nge,kernelFunc:age},bT;function ige(e){bT=e.wasm.cwrap(Fs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function oge(e){let{inputs:t,attrs:r,backend:n}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:d,dataFormat:h,dimRoundingMode:p,activation:c,leakyreluAlpha:f}=r,m=N.computeConv2DInfo(a.shape,s.shape,l,d,u,p),g=k0[c];if(g==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let y=n.dataIdMap.get(a.dataId).id,A=n.dataIdMap.get(s.dataId).id,x=m.outChannels,b=0;if(i!=null){let Z=n.dataIdMap.get(i.dataId);if(Z.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${Z.shape.length}.`);if(Z.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${Z.shape}) does not match the number of output channels (${x})`);b=Z.id}let v=m.filterHeight,S=m.filterWidth,T=m.padInfo.top,E=m.padInfo.right,R=m.padInfo.bottom,_=m.padInfo.left,M=m.dilationHeight,I=m.dilationWidth,z=m.strideHeight,O=m.strideWidth,j=m.inChannels,X=m.padInfo.type==="SAME"?1:0,D=m.batchSize,Q=m.inHeight,V=m.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let ee=n.makeOutput(m.outShape,"float32"),J=n.dataIdMap.get(ee.dataId).id,se=o==null?0:n.dataIdMap.get(o.dataId).id;return bT(y,D,Q,V,A,v,S,b,T,E,R,_,X,M,I,z,O,j,x,g,se,f||0,J),ee}var lge={kernelName:Fs,backendName:"wasm",setupFunc:ige,kernelFunc:oge},vT;function uge(e){vT=e.wasm.cwrap($s,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function dge(e){let{inputs:t,attrs:r,backend:n}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:d,dataFormat:h,dimRoundingMode:p,activation:c,leakyreluAlpha:f}=r,m=N.computeConv2DInfo(a.shape,s.shape,l,d,u,p,!0),g=k0[c];if(g==null)throw new Error(`${c} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=n.dataIdMap.get(a.dataId).id,A=n.dataIdMap.get(s.dataId).id,x=m.outChannels,b=0;if(i!=null){let Z=n.dataIdMap.get(i.dataId);if(Z.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${Z.shape.length}.`);if(Z.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${Z.shape}) does not match the number of output channels (${x})`);b=Z.id}let v=m.filterHeight,S=m.filterWidth,T=m.padInfo.top,E=m.padInfo.right,R=m.padInfo.bottom,_=m.padInfo.left,M=m.dilationHeight,I=m.dilationWidth,z=m.strideHeight,O=m.strideWidth,j=m.inChannels,X=m.padInfo.type==="SAME"?1:0,D=m.batchSize,Q=m.inHeight,V=m.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let ee=n.makeOutput(m.outShape,"float32"),J=n.dataIdMap.get(ee.dataId).id,se=o==null?0:n.dataIdMap.get(o.dataId).id;return vT(y,D,Q,V,A,v,S,b,T,E,R,_,X,M,I,z,O,j,x,g,se,f||0,J),ee}var pge={kernelName:$s,backendName:"wasm",setupFunc:uge,kernelFunc:dge},wT;function hge(e){wT=e.wasm.cwrap(Zo,null,["number","number","number","number","number","number","array","number"])}function cge(e){let{backend:t,inputs:r}=e,{params:n,indices:a}=r,[s,i,o,l]=b2.prepareAndValidate(n,a),u=t.makeOutput(s,n.dtype);if(i===0)return u;let d=a.shape,h=d[d.length-1],p=t.dataIdMap.get(n.dataId).id,c=t.dataIdMap.get(a.dataId).id,f=new Uint8Array(new Int32Array(l).buffer),m=t.dataIdMap.get(u.dataId).id;return wT(p,Vt[n.dtype],c,i,h,o,f,m),u}var fge={kernelName:Zo,backendName:"wasm",setupFunc:hge,kernelFunc:cge},kT;function mge(e){kT=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function gge(e){let{backend:t,inputs:r,attrs:n}=e,{x:a,indices:s}=r,{axis:i,batchDims:o}=n,l=w.parseAxisParam(i,a.shape)[0],u=t.readSync(s.dataId),d=a.shape[l];for(let T=0;T<u.length;++T){let E=u[T];w.assert(E<=d-1&&E>=0,()=>`GatherV2: the index value ${E} is not in [0, ${d-1}]`)}let h=N.segment_util.collectGatherOpShapeInfo(a,s,l,o),p=en({inputs:{x:a},attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]},backend:t}),c=w.sizeFromShape(s.shape),f=en({inputs:{x:s},attrs:{shape:[h.batchSize,c/h.batchSize]},backend:t}),m=[h.batchSize,h.outerSize,c/h.batchSize,h.sliceSize],g=t.makeOutput(m,a.dtype);if(w.sizeFromShape(a.shape)===0)return g;let y=p.shape.length-1,A=t.dataIdMap.get(p.dataId).id,x=t.dataIdMap.get(f.dataId).id,b=t.dataIdMap.get(g.dataId).id,v=new Uint8Array(new Int32Array(w.computeStrides(p.shape)).buffer),S=new Uint8Array(new Int32Array(w.computeStrides(m)).buffer);return kT(A,Vt[a.dtype],v,y,x,h.batchSize,S,b),t.disposeData(p.dataId),t.disposeData(f.dataId),g.shape=h.outputShape,g}var yge={kernelName:Xo,backendName:"wasm",setupFunc:mge,kernelFunc:gge},Age=!1,xge=Hr(Yo,Age,"bool"),bge=!1,vge=Hr(di,bge,"bool"),IT;function wge(e){IT=e.wasm.cwrap(hi,null,["number","number","number","number"])}function kge(e){let{inputs:{x:t},attrs:{alpha:r},backend:n}=e,a=n.dataIdMap.get(t.dataId).id,s=n.makeOutput(t.shape,"float32");if(w.sizeFromShape(t.shape)!==0){let i=n.dataIdMap.get(s.dataId).id;IT(a,Vt[t.dtype],r,i)}return s}var Ige={kernelName:hi,backendName:"wasm",setupFunc:wge,kernelFunc:kge},Sge=!1,Tge=Hr(Jo,Sge,"bool"),Nge=!1,Cge=Hr(Qo,Nge,"bool"),Ege=Ir(ci),Rge=!1,Mge=Hr(el,Rge,"bool"),ST;function Fge(e){ST=e.wasm.cwrap(fi,null,["number","number","number","number"])}function $ge(e){let{backend:t,inputs:r,attrs:n}=e,{reductionIndices:a,keepDims:s}=n,{x:i}=r,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:d,originalAxes:h,inputWasTransposed:p}=Gi(i,a,t);if(p){let A=t.dataIdMap.get(u.dataId).id;l=u,o=A}let c=l.shape.length;N.assertAxesAreInnerMostDims("max",d,c);let[f,m]=N.computeOutAndReduceShapes(l.shape,d),g=w.sizeFromShape(m),y=t.makeOutput(f,i.dtype);if(w.sizeFromShape(l.shape)!==0){let A=t.dataIdMap.get(y.dataId).id;ST(o,Vt[i.dtype],g,A)}if(p&&t.disposeData(u.dataId),s){let A=N.expandShapeToKeepDim(y.shape,h);y.shape=A}return y}var Pge={kernelName:fi,backendName:"wasm",setupFunc:Fge,kernelFunc:$ge},_ge=!1,zge=Hr(mi,_ge),TT;function Oge(e){TT=e.wasm.cwrap(gi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Dge(e){let{inputs:t,attrs:r,backend:n}=e,a=t.x,s=n.dataIdMap.get(a.dataId).id;w.assert(a.dtype==="float32",()=>`Error in MaxPool: only float32 input is supported. Got ${a.dtype}.`);let{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=r,d=N.computePool2DInfo(a.shape,i,o,1,l,u),h=d.filterHeight,p=d.filterWidth,c=d.padInfo.top,f=d.padInfo.right,m=d.padInfo.bottom,g=d.padInfo.left,y=d.dilationHeight,A=d.dilationWidth,x=d.strideHeight,b=d.strideWidth,v=d.inChannels,S=d.outChannels;if(d.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${d.dataFormat}'. Please use 'channelsLast'.`);let T=n.makeOutput(d.outShape,"float32"),E=n.dataIdMap.get(T.dataId).id;return TT(s,a.shape[0],a.shape[1],a.shape[2],h,p,c,f,m,g,y,A,x,b,v,S,E),T}var Lge={kernelName:gi,backendName:"wasm",setupFunc:Oge,kernelFunc:Dge},NT;function Bge(e){NT=e.wasm.cwrap(yi,null,["number, number, number"])}function Wge(e){let{backend:t,inputs:r,attrs:n}=e,{axis:a,keepDims:s}=n,{x:i}=r,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:d,axes:h,originalAxes:p,inputWasTransposed:c}=Gi(i,a,t),f=h;if(c){let b=t.dataIdMap.get(d.dataId).id;b!==o&&(u=d,l=b,f=N.getInnerMostAxes(f.length,u.shape.length))}N.assertAxesAreInnerMostDims("mean",f,u.shape.length);let[m,g]=N.computeOutAndReduceShapes(u.shape,f),y=w.sizeFromShape(g),A=u;u.dtype!=="float32"&&(A=jh({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(A.dataId).id);let x=t.makeOutput(m,"float32");if(w.sizeFromShape(u.shape)!==0){let b=t.dataIdMap.get(x.dataId).id;NT(l,y,b)}if(c&&t.disposeData(d.dataId),s){let b=N.expandShapeToKeepDim(x.shape,p);x.shape=b}return u.dtype!=="float32"&&t.disposeData(A.dataId),x}var Vge={kernelName:yi,backendName:"wasm",setupFunc:Bge,kernelFunc:Wge},CT;function Uge(e){CT=e.wasm.cwrap(Ai,null,["number","number","number","number"])}function Gge(e){let{backend:t,inputs:r,attrs:n}=e,{axis:a,keepDims:s}=n,{x:i}=r,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:d,axes:h,originalAxes:p,inputWasTransposed:c}=Gi(i,a,t);if(c){let x=t.dataIdMap.get(d.dataId).id;x!==o&&(u=d,l=x)}let f=u.shape.length;N.assertAxesAreInnerMostDims("min",h,f);let[m,g]=N.computeOutAndReduceShapes(u.shape,h),y=w.sizeFromShape(g),A=t.makeOutput(m,u.dtype);if(w.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(A.dataId).id;CT(l,Vt[i.dtype],y,x)}if(c&&t.disposeData(d.dataId),s){let x=N.expandShapeToKeepDim(A.shape,p);A.shape=x}return A}var jge={kernelName:Ai,backendName:"wasm",setupFunc:Uge,kernelFunc:Gge},Hge=!1,qge=Hr(xi,Hge),ET=(e=>(e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric",e))(ET||{}),RT;function Kge(e){RT=e.wasm.cwrap(bi,null,["number","array","number","number","array","array","number","number"])}function Xge(e){let{inputs:{x:t},backend:r,attrs:{paddings:n,mode:a}}=e,s=n.map((f,m)=>f[0]+t.shape[m]+f[1]),i=r.dataIdMap.get(t.dataId).id,o=r.makeOutput(s,t.dtype),l=r.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),d=n.map(f=>f[0]),h=n.map(f=>f[1]),p=new Uint8Array(new Int32Array(d).buffer),c=new Uint8Array(new Int32Array(h).buffer);return RT(i,u,t.shape.length,Vt[t.dtype],p,c,ET[a],l),o}var Zge={kernelName:bi,backendName:"wasm",kernelFunc:Xge,setupFunc:Kge},Yge=!0,Jge=Hr(vi,Yge),Qge=Ir(tl);function Sb(e,t){let r=new Int32Array(e.wasm.HEAPU8.buffer,t,4),n=r[0],a=r[1],s=r[2],i=r[3];return e.wasm._free(t),{pSelectedIndices:n,selectedSize:a,pSelectedScores:s,pValidOutputs:i}}var MT;function e1e(e){MT=e.wasm.cwrap(nl,"number",["number","number","number","number","number"])}function t1e(e){let{backend:t,inputs:r,attrs:n}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i}=n,{boxes:o,scores:l}=r,u=t.dataIdMap.get(o.dataId).id,d=t.dataIdMap.get(l.dataId).id,h=MT(u,d,s,a,i),{pSelectedIndices:p,selectedSize:c,pSelectedScores:f,pValidOutputs:m}=Sb(t,h);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([c],"int32",p)}var r1e={kernelName:nl,backendName:"wasm",setupFunc:e1e,kernelFunc:t1e},FT;function n1e(e){FT=e.wasm.cwrap(Qu,"number",["number","number","number","number","number","bool"])}function a1e(e){let{backend:t,inputs:r,attrs:n}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=n,{boxes:l,scores:u}=r,d=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(u.dataId).id,p=FT(d,h,s,a,i,o),{pSelectedIndices:c,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=Sb(t,p);t.wasm._free(m);let y=t.makeOutput([f],"int32",c),A=t.makeOutput([],"int32",g);return[y,A]}var s1e={kernelName:Qu,backendName:"wasm",setupFunc:n1e,kernelFunc:a1e},$T;function i1e(e){$T=e.wasm.cwrap(al,"number",["number","number","number","number","number","number"])}function o1e(e){let{backend:t,inputs:r,attrs:n}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=n,{boxes:l,scores:u}=r,d=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(u.dataId).id,p=$T(d,h,s,a,i,o),{pSelectedIndices:c,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=Sb(t,p);t.wasm._free(g);let y=t.makeOutput([f],"int32",c),A=t.makeOutput([f],"float32",m);return[y,A]}var l1e={kernelName:al,backendName:"wasm",setupFunc:i1e,kernelFunc:o1e},u1e=!1,d1e=Hr(rl,u1e,"bool"),PT;function p1e(e){PT=e.wasm.cwrap(il,null,["number","number","number","number","number"])}function h1e(e){let{inputs:t,backend:r,attrs:n}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=n,l=r.makeOutput([...a.shape,s],"int32"),u=r.dataIdMap.get(l.dataId).id,d=r.dataIdMap.get(a.dataId).id;return PT(d,s,i,o,u),l}var c1e={kernelName:il,backendName:"wasm",setupFunc:p1e,kernelFunc:h1e};function f1e(e){let{inputs:{x:t},backend:r}=e,n=r.makeOutput(t.shape,t.dtype);return r.typedArrayFromHeap(n).fill(1),n}var m1e={kernelName:sl,backendName:"wasm",kernelFunc:f1e};function g1e(e){let{inputs:t,backend:r,attrs:n}=e,{axis:a}=n;if(t.length===1)return a2({inputs:{input:t[0]},backend:r,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(d=>{w.assertShapesMatch(s,d.shape,"All tensors passed to stack must have matching shapes"),w.assert(i===d.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(d=>{let h=a2({inputs:{input:d},backend:r,attrs:{dim:a}});return o.push(h),h}),u=lT({inputs:l,backend:r,attrs:{axis:a}});return o.forEach(d=>r.disposeData(d.dataId)),u}var y1e={kernelName:ol,backendName:"wasm",kernelFunc:g1e},_T;function A1e(e){_T=e.wasm.cwrap(wi,null,["number","array","number","number","array","array","number","number"])}function x1e(e){let{inputs:{x:t},backend:r,attrs:{paddings:n,constantValue:a}}=e,s=n.map((f,m)=>f[0]+t.shape[m]+f[1]);if(w.sizeFromShape(t.shape)===0)return yT({backend:r,attrs:{shape:s,value:a,dtype:t.dtype}});let i=r.dataIdMap.get(t.dataId).id,o=r.makeOutput(s,t.dtype),l=r.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),d=n.map(f=>f[0]),h=n.map(f=>f[1]),p=new Uint8Array(new Int32Array(d).buffer),c=new Uint8Array(new Int32Array(h).buffer);return _T(i,u,t.shape.length,Vt[t.dtype],p,c,a,l),o}var zT={kernelName:wi,backendName:"wasm",kernelFunc:x1e,setupFunc:A1e},b1e=!1,v1e=Hr(ki,b1e),OT;function w1e(e){OT=e.wasm.cwrap(Ii,null,["number","number","number"])}function k1e(e){let{inputs:t,backend:r}=e,{x:n,alpha:a}=t,s=r.dataIdMap.get(n.dataId).id,i=r.dataIdMap.get(a.dataId).id,o=s,l=n,u=l;l.dtype!=="float32"&&(u=jh({backend:r,inputs:{x:n},attrs:{dtype:"float32"}}),o=r.dataIdMap.get(u.dataId).id);let d=r.makeOutput(n.shape,"float32"),h=r.dataIdMap.get(d.dataId).id;return OT(o,i,h),l.dtype!=="float32"&&r.disposeData(u.dataId),d}var I1e={kernelName:Ii,backendName:"wasm",setupFunc:w1e,kernelFunc:k1e},DT;function S1e(e){DT=e.wasm.cwrap(ll,null,["number","number","number","number"])}function T1e(e){let{backend:t,inputs:r,attrs:n}=e,{axis:a,keepDims:s}=n,{x:i}=r,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:d,axes:h,originalAxes:p,inputWasTransposed:c}=Gi(i,a,t),f=h;if(c){let x=t.dataIdMap.get(d.dataId).id;x!==o&&(u=d,l=x,f=N.getInnerMostAxes(f.length,u.shape.length))}N.assertAxesAreInnerMostDims("prod",f,u.shape.length);let[m,g]=N.computeOutAndReduceShapes(u.shape,f),y=w.sizeFromShape(g),A=t.makeOutput(m,u.dtype);if(w.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(A.dataId).id;DT(l,y,Vt[A.dtype],x)}if(c&&t.disposeData(d.dataId),s){let x=N.expandShapeToKeepDim(A.shape,p);A.shape=x}return A}var N1e={kernelName:ll,backendName:"wasm",setupFunc:S1e,kernelFunc:T1e},C1e=e=>{let{backend:t,attrs:r}=e,{start:n,stop:a,step:s,dtype:i}=r,o=Yx(n,a,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},E1e={kernelName:ed,backendName:"wasm",kernelFunc:C1e},R1e=!0,M1e=Hr(ai,R1e),F1e=Ir(Si),$1e=Ir(Ni),LT;function P1e(e){LT=e.wasm.cwrap(Ti,null,["number","number","number","number","number","number","number","number","number","number"])}function _1e(e){let{backend:t,inputs:r,attrs:n}=e,{images:a}=r,{alignCorners:s,halfPixelCenters:i,size:o}=n,[l,u]=o,[d,h,p,c]=a.shape,f=[d,l,u,c],m=t.dataIdMap.get(a.dataId),g;m.dtype!=="float32"&&(g=jh({backend:t,inputs:{x:a},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(g.dataId));let y=m.id,A=t.makeOutput(f,"float32");if(w.sizeFromShape(a.shape)===0)return A;let x=t.dataIdMap.get(A.dataId).id;return LT(y,d,h,p,c,l,u,s?1:0,i?1:0,x),g!=null&&t.disposeData(g.dataId),A}var z1e={kernelName:Ti,backendName:"wasm",setupFunc:P1e,kernelFunc:_1e},BT;function O1e(e){BT=e.wasm.cwrap(dl,null,["number","array","number","array","number","number"])}function D1e(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{dims:s}=n,i=w.parseAxisParam(s,a.shape);if(a.shape.length===0)return I0({inputs:{x:a},backend:r});let o=r.makeOutput(a.shape,a.dtype),l=r.dataIdMap.get(a.dataId).id,u=r.dataIdMap.get(o.dataId).id,d=new Uint8Array(new Int32Array(i).buffer),h=new Uint8Array(new Int32Array(a.shape).buffer);BT(l,d,i.length,h,a.shape.length,u);let p=en({inputs:{x:o},attrs:{shape:a.shape},backend:r});return r.disposeData(o.dataId),p}var L1e={kernelName:dl,backendName:"wasm",kernelFunc:D1e,setupFunc:O1e},WT;function B1e(e){WT=e.wasm.cwrap(Il,null,["number","number","number","number","number","number","number","number","array","number","number"])}function W1e(e){let{inputs:t,backend:r,attrs:n}=e,{image:a}=t,{radians:s,fillValue:i,center:o}=n,l=r.makeOutput(a.shape,a.dtype),u=r.dataIdMap.get(a.dataId).id,d=r.dataIdMap.get(l.dataId).id,[h,p,c,f]=a.shape,[m,g]=N.getImageCenter(o,p,c),y=i===0,A=255,x=typeof i=="number"?[i,i,i,y?0:A]:[...i,A],b=new Uint8Array(new Int32Array(x).buffer);return WT(u,h,p,c,f,s,m,g,b,x.length,d),l}var V1e={kernelName:Il,backendName:"wasm",kernelFunc:W1e,setupFunc:B1e},U1e=Ir(pl),G1e=Ir(Ci),VT;function j1e(e){VT=e.wasm.cwrap(hl,null,["number","number","number","number","number","number","array","number","number"])}function H1e(e){let{backend:t,inputs:r,attrs:n}=e,{indices:a,updates:s}=r,{shape:i}=n,o=t.makeOutput(i,s.dtype);if(w.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:u,sliceSize:d,strides:h,outputSize:p}=v2.calculateShapes(s,a,i),c=t.dataIdMap.get(a.dataId).id,f=t.dataIdMap.get(s.dataId).id,m=new Uint8Array(new Int32Array(h).buffer),g=t.dataIdMap.get(o.dataId).id;return VT(c,f,Vt[s.dtype],l,u,d,m,p,g),o}var q1e={kernelName:hl,backendName:"wasm",setupFunc:j1e,kernelFunc:H1e},UT;function K1e(e){UT=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function X1e(e){let{inputs:t,backend:r}=e,{condition:n,t:a,e:s}=t,i=r.dataIdMap.get(n.dataId).id,o=r.dataIdMap.get(a.dataId).id,l=r.dataIdMap.get(s.dataId).id,u=r.makeOutput(a.shape,a.dtype),d=r.dataIdMap.get(u.dataId).id,h=n.shape.length,p=a.shape.length,c=h===0||h>1||p===1?1:w.sizeFromShape(a.shape.slice(1));return UT(i,o,l,c,d),u}var Z1e={kernelName:cl,backendName:"wasm",kernelFunc:X1e,setupFunc:K1e},GT;function Y1e(e){GT=e.wasm.cwrap(Ri,null,["number","number"])}function J1e(e){let{backend:t,inputs:{x:r}}=e,n=t.dataIdMap.get(r.dataId).id,a=t.makeOutput(r.shape,r.dtype),s=t.dataIdMap.get(a.dataId).id;return w.sizeFromShape(a.shape)===0||GT(n,s),a}var Q1e={kernelName:"Sigmoid",backendName:"wasm",setupFunc:Y1e,kernelFunc:J1e},eye=Ir(Ei),jT;function tye(e){jT=e.wasm.cwrap($i,null,["number","number","number","number"])}function rye(e){let{backend:t,inputs:{logits:r},attrs:{dim:n}}=e,a=t.dataIdMap.get(r.dataId).id,s=t.makeOutput(r.shape,r.dtype),i=t.dataIdMap.get(s.dataId).id,o=r.shape[n],l=w.sizeFromShape(r.shape)/o;return w.sizeFromShape(s.shape)===0||jT(a,i,o,l),s}var nye={kernelName:$i,backendName:"wasm",setupFunc:tye,kernelFunc:rye};function aye(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockShape:s,paddings:i}=n,o=w.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let g=1+s.length;g<a.shape.length;++g)l.push([0,0]);let u=zT.kernelFunc({inputs:{x:a},backend:r,attrs:{paddings:l,constantValue:0}}),d=N.getReshaped(u.shape,s,o,!1),h=N.getPermuted(d.length,s.length,!1),p=N.getReshapedPermuted(u.shape,s,o,!1),c=en({inputs:{x:u},backend:r,attrs:{shape:d}}),f=js({inputs:{x:c},backend:r,attrs:{perm:h}}),m=en({inputs:{x:f},backend:r,attrs:{shape:p}});return r.disposeData(u.dataId),r.disposeData(c.dataId),r.disposeData(f.dataId),m}var sye={kernelName:gl,backendName:"wasm",kernelFunc:aye},HT;function iye(e){HT=e.wasm.cwrap("SparseFillEmptyRows","number",["number","number","number","number","number","number","number","number","number","number","number","number"])}function oye(e){let{backend:t,inputs:r}=e,{indices:n,values:a,denseShape:s,defaultValue:i}=r,o=n.shape[0],l=n.shape[1],u=t.readSync(s.dataId)[0],d=[o+u,l],h=t.dataIdMap.get(n.dataId).id,p=t.dataIdMap.get(a.dataId).id,c=t.dataIdMap.get(i.dataId).id,f=t.makeOutput(d,n.dtype),m=t.dataIdMap.get(f.dataId).id,g=t.makeOutput(d.slice(0,1),a.dtype),y=t.dataIdMap.get(g.dataId).id,A=t.makeOutput([u],"bool"),x=t.dataIdMap.get(A.dataId).id,b=t.makeOutput([o],n.dtype),v=t.dataIdMap.get(b.dataId).id,S=t.makeOutput([4],"int32"),T=t.dataIdMap.get(S.dataId).id,E=HT(h,p,Vt[a.dtype],o,u,l,c,m,y,x,v,T),R=t.readSync(S.dataId),_;switch(R[0]){case 1:{_=N.getSparseFillEmptyRowsIndicesDenseShapeMismatch(R[1]);break}case 2:{_=N.getSparseFillEmptyRowsNegativeIndexErrorMessage(R[1],R[2]);break}case 3:_=N.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(R[1],R[2],R[3]);break;default:_=""}if(t.disposeData(S.dataId),_)throw t.disposeData(f.dataId),t.disposeData(g.dataId),t.disposeData(A.dataId),t.disposeData(b.dataId),new Error(_);let M=f,I=g;return E!==d[0]&&(M=zo({inputs:{x:f},attrs:{begin:0,size:[E,l]},backend:t}),I=zo({inputs:{x:g},attrs:{begin:0,size:E},backend:t}),t.disposeData(f.dataId),t.disposeData(g.dataId)),[M,I,A,b]}var lye={kernelName:sh,backendName:"wasm",setupFunc:iye,kernelFunc:oye},qT;function uye(e){qT=e.wasm.cwrap(id,null,["number","number","number","number","number","number","number"])}function dye(e){let{backend:t,inputs:r}=e,{inputIndices:n,inputShape:a,newShape:s}=r;if(n.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${n.shape}`);if(a.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${a.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=t.dataIdMap.get(n.dataId).id,o=t.dataIdMap.get(a.dataId).id,l=t.dataIdMap.get(s.dataId).id,u=n.shape[0],d=w.sizeFromShape(s.shape),h=t.makeOutput([u,d],n.dtype),p=t.dataIdMap.get(h.dataId).id,c=t.makeOutput([d],s.dtype),f=t.dataIdMap.get(c.dataId).id,m=t.makeOutput([3],"int32"),g=t.dataIdMap.get(m.dataId).id;qT(i,o,l,u,p,f,g);let y=t.readSync(m.dataId),A;switch(y[0]){case 0:{A=N.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(y[1],y[2]);break}case 1:{A=N.getSparseReshapeNegativeOutputDimErrorMessage(y[1],y[2]);break}case 2:A=N.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage();break;case 3:{let x=Array.from(t.readSync(a.dataId)),b=Array.from(t.readSync(c.dataId));A=N.getSparseReshapeInputOutputMultipleErrorMessage(x,b);break}case 4:{let x=Array.from(t.readSync(a.dataId)),b=Array.from(t.readSync(c.dataId));A=N.getSparseReshapeInputOutputMismatchErrorMessage(x,b);break}default:A=""}if(t.disposeData(m.dataId),A)throw t.disposeData(h.dataId),t.disposeData(c.dataId),new Error(A);return[h,c]}var pye={kernelName:id,backendName:"wasm",setupFunc:uye,kernelFunc:dye},KT;function XT(e){KT=e.wasm.cwrap("SparseSegmentReduction",null,["number","number","number","number","number","number","number","number","number"])}function ZT(e,t){let{backend:r,inputs:n}=e,{data:a,indices:s,segmentIds:i}=n,o=s.shape[0],l=r.readSync(i.dataId,o-1,o)[0],u=o>0?l+1:0;if(u<0)throw new Error(N.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let d=a.shape.slice();d[0]=u;let h=r.dataIdMap.get(a.dataId).id,p=r.dataIdMap.get(s.dataId).id,c=r.dataIdMap.get(i.dataId).id,f=r.makeOutput(d,a.dtype),m=r.dataIdMap.get(f.dataId).id,g=r.makeOutput([4],"int32"),y=r.dataIdMap.get(g.dataId).id;KT(h,Vt[a.dtype],a.shape[0],p,c,m,y,t,0);let A=r.readSync(g.dataId),x;switch(A[0]){case 0:{x=N.getSparseSegmentReductionNegativeSegmentIdsErrorMessage();break}case 1:{x=N.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage();break}case 2:x=N.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(A[1],A[2]);break;case 3:x=N.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(A[1],A[2],A[3]);break;default:x=""}if(r.disposeData(g.dataId),x)throw r.disposeData(f.dataId),new Error(x);return f}function hye(e){return ZT(e,!0)}var cye={kernelName:ih,backendName:"wasm",setupFunc:XT,kernelFunc:hye};function fye(e){return ZT(e,!1)}var mye={kernelName:oh,backendName:"wasm",setupFunc:XT,kernelFunc:fye};function gye(e){let{inputs:t,attrs:r,backend:n}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=r,o=w.parseAxisParam(i,a.shape)[0],l=N.prepareSplitSize(a,s,o),u=new Array(a.shape.length).fill(0),d=a.shape.slice();return l.map(h=>{let p=[...d];p[o]=h;let c=zo({inputs:{x:a},attrs:{begin:u,size:p},backend:n});return u[o]+=h,c})}var yye={kernelName:yl,backendName:"wasm",kernelFunc:gye},Aye=Ir(Mi),xye=Ir(od),bye=!0,vye=Hr(Pi,bye),YT;function wye(e){YT=e.wasm.cwrap(Di,null,["number","number","number","number"])}function kye(e){let{backend:t,inputs:r,attrs:n}=e,{alpha:a}=n,{x:s}=r,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return YT(i,a,Vt[s.dtype],l),o}var Iye={kernelName:Di,backendName:"wasm",setupFunc:wye,kernelFunc:kye},JT;function Sye(e){JT=e.wasm.cwrap(Al,null,["number","array","number","array","array","array","array","array","number","number"])}function Tye(e){let{backend:t,inputs:r,attrs:n}=e,{x:a}=r,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:d,newAxisMask:h,shrinkAxisMask:p}=n,{finalShapeSparse:c,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:y,begin:A,end:x,strides:b}=_t.sliceInfo(a.shape,s,i,o,l,u,d,h,p),v;if(m)v=en({inputs:{x:a},backend:t,attrs:{shape:f}});else if(g||y){w.assert(a.shape.length>=1,()=>`Input must have rank at least 1, got: ${a.shape.length}`);let S=_t.computeOutShape(A,x,b),T=zo({inputs:{x:a},backend:t,attrs:{begin:A,size:S}});v=en({inputs:{x:T},backend:t,attrs:{shape:f}}),t.disposeData(T.dataId)}else{let S=t.makeOutput(c,"float32"),T=t.dataIdMap.get(a.dataId).id,E=new Uint8Array(new Int32Array(w.computeStrides(a.shape)).buffer),R=new Uint8Array(new Int32Array(A).buffer),_=new Uint8Array(new Int32Array(x).buffer),M=new Uint8Array(new Int32Array(b).buffer),I=new Uint8Array(new Int32Array(c).buffer),z=new Uint8Array(new Int32Array(w.computeStrides(c)).buffer),O=t.dataIdMap.get(S.dataId).id;JT(T,E,a.shape.length,R,_,M,I,z,c.length,O),v=en({inputs:{x:S},backend:t,attrs:{shape:f}}),t.disposeData(S.dataId)}return v}var Nye={kernelName:Al,backendName:"wasm",setupFunc:Sye,kernelFunc:Tye},Cye=!0,Eye=Hr(_i,Cye),QT;function Rye(e){QT=e.wasm.cwrap(Fi,null,["number","number","number","number"])}function Mye(e){let{backend:t,inputs:r,attrs:n}=e,{axis:a,keepDims:s}=n,{x:i}=r,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:d,axes:h,originalAxes:p,inputWasTransposed:c}=Gi(i,a,t),f=h;if(c){let x=t.dataIdMap.get(d.dataId).id;x!==o&&(u=d,l=x,f=N.getInnerMostAxes(f.length,u.shape.length))}N.assertAxesAreInnerMostDims("sum",f,u.shape.length);let[m,g]=N.computeOutAndReduceShapes(u.shape,f),y=w.sizeFromShape(g),A=t.makeOutput(m,u.dtype);if(w.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(A.dataId).id;QT(l,y,Vt[A.dtype],x)}if(c&&t.disposeData(d.dataId),s){let x=N.expandShapeToKeepDim(A.shape,p);A.shape=x}return A}var Fye={kernelName:Fi,backendName:"wasm",setupFunc:Rye,kernelFunc:Mye},$ye=Ir(xl),Pye=Ir(zi),eN;function _ye(e){eN=e.wasm.cwrap(Qa,null,["number","array","number","array","number","number"])}function zye(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,s=r.dataIdMap.get(a.dataId).id,{reps:i}=n,o=new Array(a.shape.length);for(let p=0;p<o.length;p++)o[p]=a.shape[p]*i[p];let l=new Uint8Array(new Int32Array(a.shape).buffer),u=new Uint8Array(new Int32Array(o).buffer),d=r.makeOutput(o,a.dtype),h=r.dataIdMap.get(d.dataId).id;return eN(s,l,a.shape.length,u,o.length,Vt[d.dtype],h),d}var Oye={kernelName:Qa,backendName:"wasm",setupFunc:_ye,kernelFunc:zye},tN;function Dye(e){tN=e.wasm.cwrap(bl,null,["number","array","number","number","number","bool","number","number"])}var Lye=({inputs:e,backend:t,attrs:r})=>{let{x:n}=e,{k:a,sorted:s}=r,i=t.dataIdMap.get(n.dataId).id,o=new Uint8Array(new Int32Array(n.shape).buffer),l=n.shape.slice();l[l.length-1]=a;let u=t.makeOutput(l,n.dtype),d=t.dataIdMap.get(u.dataId).id,h=t.makeOutput(l,"int32"),p=t.dataIdMap.get(h.dataId).id;return tN(i,o,n.shape.length,Vt[n.dtype],a,s,d,p),[u,h]},Bye={kernelName:bl,backendName:"wasm",setupFunc:Dye,kernelFunc:Lye},rN;function Wye(e){rN=e.wasm.cwrap(vl,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function Vye(e){let{backend:t,inputs:r,attrs:n}=e,{image:a,transforms:s}=r,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=n,[d,h,p,c]=a.shape,[f,m]=u!=null?u:[h,p],g=[d,f,m,c],y=new Uint8Array(new Int32Array(w.computeStrides(a.shape)).buffer),A=t.makeOutput(g,a.dtype),x=t.dataIdMap.get(A.dataId).id,b=t.dataIdMap.get(a.dataId).id,v=t.dataIdMap.get(s.dataId).id,S=i==="nearest"?1:2,T;switch(o){case"constant":T=1;break;case"reflect":T=2;break;case"wrap":T=3;break;case"nearest":T=4;break;default:T=1;break}return rN(b,v,s.shape[0]>1,d,f,m,c,p,h,y,a.shape.length-1,S,T,l,x),A}var Uye={kernelName:vl,backendName:"wasm",setupFunc:Wye,kernelFunc:Vye};function Gye(e){let{inputs:t,backend:r,attrs:n}=e,{value:a}=t,{axis:s}=n;s<0&&(s+=a.shape.length);let i=a.shape[s],o=a.shape.length,l=new Array(o-1),u=0;for(let c=0;c<o;c++)c!==s&&(l[u++]=a.shape[c]);let d=new Array(i),h=new Array(o).fill(0),p=a.shape.slice();p[s]=1;for(let c=0;c<d.length;c++)h[s]=c,d[c]=zo({inputs:{x:a},attrs:{begin:h,size:p},backend:r});return d.map(({dataId:c,dtype:f})=>({dataId:c,dtype:f,shape:l}))}var jye={kernelName:wl,backendName:"wasm",kernelFunc:Gye};function Hye(e){let{inputs:{x:t},backend:r}=e,n=r.makeOutput(t.shape,t.dtype);return r.typedArrayFromHeap(n).fill(0),n}var qye={kernelName:kl,backendName:"wasm",kernelFunc:Hye},Kye=[zme,Ome,Lme,Vme,Zme,Qme,r0e,s0e,u0e,m0e,g0e,y0e,b0e,v0e,I0e,N0e,C0e,E0e,F0e,_0e,D0e,W0e,G0e,j0e,q0e,K0e,X0e,Z0e,Q0e,ege,rge,sge,lge,pge,fge,yge,xge,vge,Ume,Ige,Tge,Cge,Ege,Mge,Pge,zge,Lge,Vge,jge,qge,Zge,Jge,Qge,r1e,s1e,l1e,d1e,c1e,m1e,y1e,zT,v1e,I1e,N1e,E1e,M1e,F1e,$1e,i0e,z1e,L1e,V1e,U1e,G1e,q1e,Z1e,Q1e,eye,c0e,nye,sye,lye,pye,cye,mye,yye,Aye,xye,vye,Iye,Nye,Eye,Fye,$ye,Pye,Oye,Bye,Uye,qme,jye,qye];for(let e of Kye)Gn(e);var s2=Y();s2.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));s2.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(s2.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var pw=Oo(sR()),Xye=`"use strict";var Module={};var ENVIRONMENT_IS_NODE=typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require("worker_threads");var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var fs=require("fs");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:function(f){(0,eval)(fs.readFileSync(f,"utf8"))},postMessage:function(msg){parentPort.postMessage(msg)},performance:global.performance||{now:function(){return Date.now()}}})}function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+"
|
|
");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;self.alert=threadAlert;Module["instantiateWasm"]=((info,receiveInstance)=>{var instance=new WebAssembly.Instance(Module["wasmModule"],info);receiveInstance(instance);Module["wasmModule"]=null;return instance.exports});self.onmessage=(e=>{try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance})}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0,1);Module["establishStackSpace"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].threadInit();try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(Module["keepRuntimeAlive"]()){Module["PThread"].setExitStatus(result)}else{Module["__emscripten_thread_exit"](result)}}catch(ex){if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["keepRuntimeAlive"]()){}else{Module["__emscripten_thread_exit"](ex.status)}}else{throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["__emscripten_thread_exit"](-1)}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else if(e.data.cmd==="processProxyingQueue"){if(Module["_pthread_self"]()){Module["_emscripten_proxy_execute_queue"](e.data.queue)}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);if(Module["__emscripten_thread_crashed"]){Module["__emscripten_thread_crashed"]()}throw ex}});`,Zye=Oo(iR()),nN=class extends Fu{constructor(e){super(),this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(aN),i2=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new qp(this,br())}write(e,t,r){let n={id:this.dataIdNextNumber++};return this.move(n,e,t,r,1),n}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}move(e,t,r,n,a){let s=this.dataIdNextNumber++;if(n==="string"){let u=t;this.dataIdMap.set(e,{id:s,stringBytes:u,shape:r,dtype:n,memoryOffset:null,refCount:a});return}let i=w.sizeFromShape(r),o=i*w.bytesPerElement(n),l=this.wasm._malloc(o);this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:r,dtype:n,refCount:a}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e,t,r){let{memoryOffset:n,dtype:a,shape:s,stringBytes:i}=this.dataIdMap.get(e);if(a==="string")return(t==null||t===0)&&(r==null||r>=i.length)?i:i.slice(t,r);t=t||0,r=r||w.sizeFromShape(s);let o=w.bytesPerElement(a),l=this.wasm.HEAPU8.slice(n+t*o,n+r*o);return Qye(l.buffer,a)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let r=this.dataIdMap.get(e);if(r.refCount--,!t&&r.refCount>0)return!1;this.wasm._free(r.memoryOffset),this.wasm.tfjs.disposeData(r.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,r){let n;if(r==null)n=this.write(null,e,t);else{let a=this.dataIdNextNumber++;n={id:a},this.dataIdMap.set(n,{id:a,memoryOffset:r,shape:e,dtype:t,refCount:1});let s=w.sizeFromShape(e);this.wasm.tfjs.registerTensor(a,s,r)}return{dataId:n,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:r}){let n=this.wasm.HEAPU8.buffer,{memoryOffset:a}=this.dataIdMap.get(r),s=w.sizeFromShape(e);switch(t){case"float32":return new Float32Array(n,a,s);case"int32":return new Int32Array(n,a,s);case"bool":return new Uint8Array(n,a,s);default:throw new Error(`Unknown dtype ${t}`)}}};function Yye(e){return(t,r)=>(w.fetch(e,{credentials:"same-origin"}).then(n=>{n.ok||t.env.a(`failed to load wasm binary file at '${e}'`),n.arrayBuffer().then(a=>{WebAssembly.instantiate(a,t).then(s=>{r(s.instance,s.module)})})}),{})}function hw(e,t,r){if(Bf!=null)return Bf;let n="tfjs-backend-wasm.wasm";return e&&t?n="tfjs-backend-wasm-threaded-simd.wasm":e&&(n="tfjs-backend-wasm-simd.wasm"),Mp!=null&&Mp[n]!=null?Mp[n]:r+n}async function Jye(){let[e,t]=await Promise.all([Y().getAsync("WASM_HAS_SIMD_SUPPORT"),Y().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((r,n)=>{let a={};a.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let u=Xye.replace(/\n/g,"\\n"),d=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(d)}return o.endsWith(".wasm")?hw(e,t,Np!=null?Np:l):l+o},Tb&&(a.instantiateWasm=Yye(hw(e,t,Np!=null?Np:"")));let s=!1;a.onAbort=()=>{s||Fp||(Fp=!0,n({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&Bf==null?(a.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+pw.default.toString()],{type:"text/javascript"}),i=(0,pw.default)(a)):i=(0,Zye.default)(a),i.then(o=>{s=!0,Fp=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),initWithThreadsCount:o.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:o.cwrap("get_threads_count","number",[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},r({wasm:o})})})}function Qye(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var e2e=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Bf=null,Np=null,Mp={},Fp=!1,Tb=!1;function t2e(e,t=!1){if(C2("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Fp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Bf=e,Tb=t}function Nb(e,t=!1){if(Fp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")Np=e;else{Mp=e;let r=e2e.filter(n=>Mp[n]==null);if(r.length>0)throw new Error(`There were no entries found for the following binaries: ${r.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}Tb=t}var aN=-1,i2=-1;function r2e(e){aN=e}function n2e(){if(i2===-1)throw new Error("WASM backend not initialized.");return i2}var a2e="0.0.0",s2e=2;Tl("wasm",async()=>{let{wasm:e}=await Jye();return new nN(e)},s2e);var vs="3.15.0-20220405",Hh={tfjs:vs,"tfjs-core":vs,"tfjs-data":vs,"tfjs-layers":vs,"tfjs-converter":vs,"tfjs-backend-cpu":vs,"tfjs-backend-webgl":vs,"tfjs-backend-wasm":vs};var sN=`
|
|
precision highp float;
|
|
attribute vec2 pos;
|
|
attribute vec2 uv;
|
|
varying vec2 vUv;
|
|
uniform float flipY;
|
|
void main(void) {
|
|
vUv = uv;
|
|
gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);
|
|
}
|
|
`;var iN=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform float m[20];
|
|
void main(void) {
|
|
vec4 c = texture2D(texture, vUv);
|
|
gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];
|
|
gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];
|
|
gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];
|
|
gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];
|
|
}
|
|
`,oN=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform float m[20];
|
|
void main(void) {
|
|
vec4 c = texture2D(texture, vUv);
|
|
gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];
|
|
gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];
|
|
gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];
|
|
gl_FragColor.a = c.a;
|
|
}
|
|
`,lN=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform vec2 size;
|
|
uniform sampler2D texture;
|
|
vec2 pixelate(vec2 coord, vec2 size) {
|
|
return floor( coord / size ) * size;
|
|
}
|
|
void main(void) {
|
|
gl_FragColor = vec4(0.0);
|
|
vec2 coord = pixelate(vUv, size);
|
|
gl_FragColor += texture2D(texture, coord);
|
|
}
|
|
`,uN=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform vec2 px;
|
|
void main(void) {
|
|
gl_FragColor = vec4(0.0);
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;
|
|
gl_FragColor += texture2D(texture, vUv )*0.159576912161;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;
|
|
}
|
|
`,dN=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform vec2 px;
|
|
uniform float m[9];
|
|
void main(void) {
|
|
vec4 c11 = texture2D(texture, vUv - px); // top left
|
|
vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y)); // top center
|
|
vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y)); // top right
|
|
vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) ); // mid left
|
|
vec4 c22 = texture2D(texture, vUv); // mid center
|
|
vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) ); // mid right
|
|
vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) ); // bottom left
|
|
vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) ); // bottom center
|
|
vec4 c33 = texture2D(texture, vUv + px ); // bottom right
|
|
gl_FragColor =
|
|
c11 * m[0] + c12 * m[1] + c22 * m[2] +
|
|
c21 * m[3] + c22 * m[4] + c23 * m[5] +
|
|
c31 * m[6] + c32 * m[7] + c33 * m[8];
|
|
gl_FragColor.a = c22.a;
|
|
}
|
|
`;var Cb=(e,t,r)=>{let n=new RegExp("\\b"+t+" \\w+ (\\w+)","ig");e.replace(n,(a,s)=>(r[s]=0,a))},Eb=class{constructor(t,r,n){fe(this,"uniform",{});fe(this,"attribute",{});fe(this,"gl");fe(this,"id");fe(this,"compile",(t,r)=>{let n=this.gl.createShader(r);return n?(this.gl.shaderSource(n,t),this.gl.compileShader(n),this.gl.getShaderParameter(n,this.gl.COMPILE_STATUS)?n:(ie(`filter: gl compile failed: ${this.gl.getShaderInfoLog(n)}`),null)):(ie("filter: could not create shader"),null)});this.gl=t;let a=this.compile(r,this.gl.VERTEX_SHADER),s=this.compile(n,this.gl.FRAGMENT_SHADER);if(this.id=this.gl.createProgram(),!(!a||!s)){if(!this.id){ie("filter: could not create webgl program");return}if(this.gl.attachShader(this.id,a),this.gl.attachShader(this.id,s),this.gl.linkProgram(this.id),!this.gl.getProgramParameter(this.id,this.gl.LINK_STATUS)){ie(`filter: gl link failed: ${this.gl.getProgramInfoLog(this.id)}`);return}this.gl.useProgram(this.id),Cb(r,"attribute",this.attribute);for(let i in this.attribute)this.attribute[i]=this.gl.getAttribLocation(this.id,i);Cb(r,"uniform",this.uniform),Cb(n,"uniform",this.uniform);for(let i in this.uniform)this.uniform[i]=this.gl.getUniformLocation(this.id,i)}}};function pN(){let e=0,t=null,r=!1,n=-1,a=[null,null],s=[],i=null,o=null,l=qr(100,100),u={},d={INTERMEDIATE:1},h=l.getContext("webgl");if(!h){ie("filter: cannot get webgl context");return}this.gl=h;function p(A,x){if(!(A===l.width&&x===l.height)){if(l.width=A,l.height=x,!i){let b=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);i=h.createBuffer(),h.bindBuffer(h.ARRAY_BUFFER,i),h.bufferData(h.ARRAY_BUFFER,b,h.STATIC_DRAW),h.pixelStorei(h.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}h.viewport(0,0,l.width,l.height),a=[null,null]}}function c(A,x){let b=h.createFramebuffer();h.bindFramebuffer(h.FRAMEBUFFER,b);let v=h.createRenderbuffer();h.bindRenderbuffer(h.RENDERBUFFER,v);let S=h.createTexture();return h.bindTexture(h.TEXTURE_2D,S),h.texImage2D(h.TEXTURE_2D,0,h.RGBA,A,x,0,h.RGBA,h.UNSIGNED_BYTE,null),h.texParameteri(h.TEXTURE_2D,h.TEXTURE_MAG_FILTER,h.LINEAR),h.texParameteri(h.TEXTURE_2D,h.TEXTURE_MIN_FILTER,h.LINEAR),h.texParameteri(h.TEXTURE_2D,h.TEXTURE_WRAP_S,h.CLAMP_TO_EDGE),h.texParameteri(h.TEXTURE_2D,h.TEXTURE_WRAP_T,h.CLAMP_TO_EDGE),h.framebufferTexture2D(h.FRAMEBUFFER,h.COLOR_ATTACHMENT0,h.TEXTURE_2D,S,0),h.bindTexture(h.TEXTURE_2D,null),h.bindFramebuffer(h.FRAMEBUFFER,null),{fbo:b,texture:S}}function f(A){return a[A]=a[A]||c(l.width,l.height),a[A]}function m(A=0){if(!o)return;let x=null,b=null,v=!1;e===0?x=t:x=f(n).texture||null,e++,r&&!(A&d.INTERMEDIATE)?(b=null,v=e%2===0):(n=(n+1)%2,b=f(n).fbo||null),h.bindTexture(h.TEXTURE_2D,x),h.bindFramebuffer(h.FRAMEBUFFER,b),h.uniform1f(o.uniform.flipY,v?-1:1),h.drawArrays(h.TRIANGLES,0,6)}function g(A){if(u[A])return o=u[A],h.useProgram((o?o.id:null)||null),o;if(o=new Eb(h,sN,A),!o)return ie("filter: could not get webgl program"),null;let x=Float32Array.BYTES_PER_ELEMENT,b=4*x;return h.enableVertexAttribArray(o.attribute.pos),h.vertexAttribPointer(o.attribute.pos,2,h.FLOAT,!1,b,0*x),h.enableVertexAttribArray(o.attribute.uv),h.vertexAttribPointer(o.attribute.uv,2,h.FLOAT,!1,b,2*x),u[A]=o,o}let y={colorMatrix:A=>{let x=new Float32Array(A);x[4]/=255,x[9]/=255,x[14]/=255,x[19]/=255;let b=x[18]===1&&x[3]===0&&x[8]===0&&x[13]===0&&x[15]===0&&x[16]===0&&x[17]===0&&x[19]===0?oN:iN,v=g(b);!v||(h.uniform1fv(v.uniform.m,x),m())},brightness:A=>{let x=(A||0)+1;y.colorMatrix([x,0,0,0,0,0,x,0,0,0,0,0,x,0,0,0,0,0,1,0])},saturation:A=>{let x=(A||0)*2/3+1,b=(x-1)*-.5;y.colorMatrix([x,b,b,0,0,b,x,b,0,0,b,b,x,0,0,0,0,0,1,0])},desaturate:()=>{y.saturation(-1)},contrast:A=>{let x=(A||0)+1,b=-128*(x-1);y.colorMatrix([x,0,0,0,b,0,x,0,0,b,0,0,x,0,b,0,0,0,1,0])},negative:()=>{y.contrast(-2)},hue:A=>{A=(A||0)/180*Math.PI;let x=Math.cos(A),b=Math.sin(A),v=.213,S=.715,T=.072;y.colorMatrix([v+x*(1-v)+b*-v,S+x*-S+b*-S,T+x*-T+b*(1-T),0,0,v+x*-v+b*.143,S+x*(1-S)+b*.14,T+x*-T+b*-.283,0,0,v+x*-v+b*-(1-v),S+x*-S+b*S,T+x*(1-T)+b*T,0,0,0,0,0,1,0])},desaturateLuminance:()=>{y.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},sepia:()=>{y.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},brownie:()=>{y.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},vintagePinhole:()=>{y.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},kodachrome:()=>{y.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},technicolor:()=>{y.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},polaroid:()=>{y.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},shiftToBGR:()=>{y.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},convolution:A=>{let x=new Float32Array(A),b=1/l.width,v=1/l.height,S=g(dN);!S||(h.uniform1fv(S.uniform.m,x),h.uniform2f(S.uniform.px,b,v),m())},detectEdges:()=>{y.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},sobelX:()=>{y.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},sobelY:()=>{y.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},sharpen:A=>{let x=A||1;y.convolution.call(this,[0,-1*x,0,-1*x,1+4*x,-1*x,0,-1*x,0])},emboss:A=>{let x=A||1;y.convolution.call(this,[-2*x,-1*x,0,-1*x,1,1*x,0,1*x,2*x])},blur:A=>{let x=A/7/l.width,b=A/7/l.height,v=g(uN);!v||(h.uniform2f(v.uniform.px,0,b),m(d.INTERMEDIATE),h.uniform2f(v.uniform.px,x,0),m())},pixelate:A=>{let x=A/l.width,b=A/l.height,v=g(lN);!v||(h.uniform2f(v.uniform.size,x,b),m())}};this.add=function(A){let x=Array.prototype.slice.call(arguments,1),b=y[A];s.push({func:b,args:x})},this.reset=function(){s=[]},this.get=function(){return s},this.apply=function(A){p(A.width,A.height),e=0,t||(t=h.createTexture()),h.bindTexture(h.TEXTURE_2D,t),h.texParameteri(h.TEXTURE_2D,h.TEXTURE_WRAP_S,h.CLAMP_TO_EDGE),h.texParameteri(h.TEXTURE_2D,h.TEXTURE_WRAP_T,h.CLAMP_TO_EDGE),h.texParameteri(h.TEXTURE_2D,h.TEXTURE_MIN_FILTER,h.NEAREST),h.texParameteri(h.TEXTURE_2D,h.TEXTURE_MAG_FILTER,h.NEAREST),h.texImage2D(h.TEXTURE_2D,0,h.RGBA,h.RGBA,h.UNSIGNED_BYTE,A);for(let x=0;x<s.length;x++){r=x===s.length-1;let b=s[x];b.func.apply(this,b.args||[])}return l},this.draw=function(A){return this.add("brightness",0),this.apply(A)}}async function S0(e){let t=e.shape.length===4?et(e):e,r=Xt(t,3,2),n=[Os(r[0]),Os(r[1]),Os(r[2])],a=[mr(r[0]),mr(r[1]),mr(r[2])],s=await Promise.all(a.map(c=>c.data())),i=.99*Math.max(s[0][0],s[1][0],s[2][0]),o=[ce(r[0],n[0]),ce(r[1],n[1]),ce(r[2],n[2])],l=[ce(a[0],n[0]),ce(a[1],n[1]),ce(a[2],n[2])],u=[pe(i,l[0]),pe(i,l[1]),pe(i,l[2])],d=[L(o[0],u[0]),L(o[1],u[1]),L(o[2],u[2])],h=or([d[0],d[1],d[2]],2),p=G(h,[1,t.shape[0],t.shape[1],3]);return re([...r,...n,...a,...o,...l,...u,...d,h,t]),p}var T0=2048,ut=null,Jt=null,Md=null,Nt,is={inputSum:0,cacheDiff:1,sumMethod:0,inputTensor:void 0};function qr(e,t){let r;if(he.browser)if(he.worker){if(typeof OffscreenCanvas=="undefined")throw new Error("canvas error: attempted to run in web worker but OffscreenCanvas is not supported");r=new OffscreenCanvas(e,t)}else{if(typeof document=="undefined")throw new Error("canvas error: attempted to run in browser but DOM is not defined");r=document.createElement("canvas"),r.width=e,r.height=t}else typeof he.Canvas!="undefined"?r=new he.Canvas(e,t):typeof globalThis.Canvas!="undefined"&&(r=new globalThis.Canvas(e,t));return r}function N0(e,t){let r=t||qr(e.width,e.height);return r.getContext("2d").drawImage(e,0,0),r}async function Fd(e,t,r=!0){if(!e)return t.debug&&ie("input error: input is missing"),{tensor:null,canvas:null};if(!(e instanceof rt)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof he.Canvas!="undefined"&&e instanceof he.Canvas)&&!(typeof globalThis.Canvas!="undefined"&&e instanceof globalThis.Canvas)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("input error: type is not recognized");if(e instanceof rt){let n=null;if(e.isDisposedInternal)throw new Error("input error: attempted to use tensor but it is disposed");if(!e.shape)throw new Error("input error: attempted to use tensor without a shape");if(e.shape.length===3){if(e.shape[2]===3)n=qt(e,0);else if(e.shape[2]===4){let a=El(e,[0,0,0],[-1,-1,3]);n=qt(a,0),re(a)}}else e.shape.length===4&&(e.shape[3]===3?n=Br(e):e.shape[3]===4&&(n=Ro(e,[0,0,0,0],[-1,-1,-1,3])));if(n==null||n.shape.length!==4||n.shape[0]!==1||n.shape[3]!==3)throw new Error(`input error: attempted to use tensor with unrecognized shape: ${e.shape}`);if(n.dtype==="int32"){let a=me(n,"float32");re(n),n=a}return{tensor:n,canvas:t.filter.return?Jt:null}}else{if(typeof e.readyState!="undefined"&&e.readyState<=2)return t.debug&&ie("input stream is not ready"),{tensor:null,canvas:ut};let n=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,a=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0;if(!n||!a)return t.debug&&ie("cannot determine input dimensions"),{tensor:null,canvas:ut};let s=n,i=a;if(s>T0&&(s=T0,i=Math.trunc(s*a/n)),i>T0&&(i=T0,s=Math.trunc(i*n/a)),(t.filter.width||0)>0?s=t.filter.width:(t.filter.height||0)>0&&(s=n*((t.filter.height||0)/a)),(t.filter.height||0)>0?i=t.filter.height:(t.filter.width||0)>0&&(i=a*((t.filter.width||0)/n)),!s||!i)throw new Error("input error: cannot determine dimension");(!ut||(ut==null?void 0:ut.width)!==s||(ut==null?void 0:ut.height)!==i)&&(ut=qr(s,i));let o=ut.getContext("2d");if(typeof ImageData!="undefined"&&e instanceof ImageData?o.putImageData(e,0,0):t.filter.flip&&typeof o.translate!="undefined"?(o.translate(n,0),o.scale(-1,1),o.drawImage(e,0,0,n,a,0,0,ut==null?void 0:ut.width,ut==null?void 0:ut.height),o.setTransform(1,0,0,1,0,0)):o.drawImage(e,0,0,n,a,0,0,ut==null?void 0:ut.width,ut==null?void 0:ut.height),(!Jt||ut.width!==Jt.width||(ut==null?void 0:ut.height)!==(Jt==null?void 0:Jt.height))&&(Jt=qr(ut.width,ut.height)),t.filter.enabled&&he.webgl.supported?(Nt||(Nt=he.browser?new pN:null),he.filter=!!Nt,!Nt||!Nt.add?(t.debug&&ie("input process error: cannot initialize filters"),he.webgl.supported=!1,t.filter.enabled=!1,N0(ut,Jt)):(Nt.reset(),t.filter.brightness!==0&&Nt.add("brightness",t.filter.brightness),t.filter.contrast!==0&&Nt.add("contrast",t.filter.contrast),t.filter.sharpness!==0&&Nt.add("sharpen",t.filter.sharpness),t.filter.blur!==0&&Nt.add("blur",t.filter.blur),t.filter.saturation!==0&&Nt.add("saturation",t.filter.saturation),t.filter.hue!==0&&Nt.add("hue",t.filter.hue),t.filter.negative&&Nt.add("negative"),t.filter.sepia&&Nt.add("sepia"),t.filter.vintage&&Nt.add("brownie"),t.filter.sepia&&Nt.add("sepia"),t.filter.kodachrome&&Nt.add("kodachrome"),t.filter.technicolor&&Nt.add("technicolor"),t.filter.polaroid&&Nt.add("polaroid"),t.filter.pixelate!==0&&Nt.add("pixelate",t.filter.pixelate),Nt.get()>0?Jt=Nt.apply(ut):Jt=Nt.draw(ut))):(N0(ut,Jt),Nt&&(Nt=null),he.filter=!!Nt),!r)return{tensor:null,canvas:Jt};if(!Jt)throw new Error("canvas error: cannot create output");let l,u=3;if(typeof ImageData!="undefined"&&e instanceof ImageData||e.data&&e.width&&e.height)if(he.browser&&Pn)l=Pn?Pn.fromPixels(e):null;else{u=e.data.length/e.height/e.width;let p=new Uint8Array(e.data.buffer);l=ct(p,[e.height,e.width,u],"int32")}else if((!Md||Jt.width!==Md.width||Jt.height!==Md.height)&&(Md=qr(Jt.width,Jt.height)),Pn&&he.browser)t.backend==="webgl"||t.backend==="humangl"||t.backend==="webgpu"?l=Pn.fromPixels(Jt):(Md=N0(Jt),l=Pn.fromPixels(Md));else{let f=N0(Jt).getContext("2d").getImageData(0,0,s,i);u=f.data.length/s/i;let m=new Uint8Array(f.data.buffer);l=ct(m,[s,i,u])}if(u===4){let p=El(l,[0,0,0],[-1,-1,3]);re(l),l=p}if(!l)throw new Error("input error: cannot create tensor");let d=me(l,"float32"),h=t.filter.equalization?await S0(d):qt(d,0);return re([l,d]),{tensor:h,canvas:t.filter.return?Jt:null}}}async function hN(e,t){let r=!1;if(e.cacheSensitivity===0||!t.shape||t.shape.length!==4||t.shape[1]>2048||t.shape[2]>2048)return r;if(!is.inputTensor)is.inputTensor=Br(t);else if(is.inputTensor.shape[1]!==t.shape[1]||is.inputTensor.shape[2]!==t.shape[2])re(is.inputTensor),is.inputTensor=Br(t);else{let n={};n.diff=ce(t,is.inputTensor),n.squared=L(n.diff,n.diff),n.sum=ke(n.squared);let s=(await n.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;re([is.inputTensor,n.diff,n.squared,n.sum]),is.inputTensor=Br(t),r=s<=(e.cacheSensitivity||0)}return r}async function cN(e,t,r){let n={};if(!t||!r||t.shape.length!==4||t.shape.length!==r.shape.length)return e.debug||ie("invalid input tensor or tensor shapes do not match:",t.shape,r.shape),0;if(t.shape[0]!==1||r.shape[0]!==1||t.shape[3]!==3||r.shape[3]!==3)return e.debug||ie("input tensors must be of shape [1, height, width, 3]:",t.shape,r.shape),0;n.input1=Br(t),n.input2=t.shape[1]!==r.shape[1]||t.shape[2]!==r.shape[2]?Ie.resizeBilinear(r,[t.shape[1],t.shape[2]]):Br(r),n.diff=ce(n.input1,n.input2),n.squared=L(n.diff,n.diff),n.sum=ke(n.squared);let s=(await n.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;return re([n.input1,n.input2,n.diff,n.squared,n.sum]),s}var Rb=class{constructor(){fe(this,"browser");fe(this,"node");fe(this,"worker");fe(this,"platform","");fe(this,"agent","");fe(this,"backends",[]);fe(this,"initial");fe(this,"filter");fe(this,"tfjs");fe(this,"offscreen");fe(this,"perfadd",!1);fe(this,"wasm",{supported:void 0,backend:void 0,simd:void 0,multithread:void 0});fe(this,"webgl",{supported:void 0,backend:void 0,version:void 0,renderer:void 0});fe(this,"webgpu",{supported:void 0,backend:void 0,adapter:void 0});fe(this,"cpu",{model:void 0,flags:[]});fe(this,"kernels",[]);fe(this,"Canvas");fe(this,"Image");fe(this,"ImageData");if(this.browser=typeof navigator!="undefined",this.node=typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined",this.tfjs={version:Hh["tfjs-core"]},this.offscreen=typeof OffscreenCanvas!="undefined",this.initial=!0,this.worker=this.browser&&this.offscreen?typeof WorkerGlobalScope!="undefined":void 0,typeof navigator!="undefined"){let t=navigator.userAgent.match(/\(([^()]+)\)/g);if(t&&t[0]){let r=t[0].match(/\(([^()]+)\)/g);this.platform=r&&r[0]?r[0].replace(/\(|\)/g,""):"",this.agent=navigator.userAgent.replace(t[0],""),this.platform[1]&&(this.agent=this.agent.replace(t[1],"")),this.agent=this.agent.replace(/ /g," ")}}else typeof process!="undefined"&&(this.platform=`${process.platform} ${process.arch}`,this.agent=`NodeJS ${process.version}`)}async updateBackend(){this.backends=Object.keys(br().registryFactory),this.wasm.supported=typeof WebAssembly!="undefined",this.wasm.backend=this.backends.includes("wasm"),this.wasm.supported&&this.wasm.backend&&sn()==="wasm"&&(this.wasm.simd=await Y().getAsync("WASM_HAS_SIMD_SUPPORT"),this.wasm.multithread=await Y().getAsync("WASM_HAS_MULTITHREAD_SUPPORT"));let t=qr(100,100),r=t?t.getContext("webgl2"):void 0;if(this.webgl.supported=typeof r!="undefined",this.webgl.backend=this.backends.includes("webgl"),this.webgl.supported&&this.webgl.backend&&(sn()==="webgl"||sn()==="humangl")){let n=jn().gpgpu!=="undefined"?await jn().getGPGPUContext().gl:null;n&&(this.webgl.version=n.getParameter(n.VERSION),this.webgl.renderer=n.getParameter(n.RENDERER))}this.webgpu.supported=this.browser&&typeof navigator.gpu!="undefined",this.webgpu.backend=this.backends.includes("webgpu");try{this.webgpu.supported&&(this.webgpu.adapter=(await navigator.gpu.requestAdapter()).name)}catch(n){this.webgpu.supported=!1}try{this.kernels=Ra(sn()).map(n=>n.kernelName.toLowerCase())}catch(n){}}async updateCPU(){let t={model:"",flags:[]};this.node&&this.platform.startsWith("linux"),this.cpu?this.cpu=t:Object.defineProperty(this,"cpu",{value:t})}},he=new Rb;var os={cacheModels:!1,verbose:!0,debug:!1,modelBasePath:""};async function u2e(e,t){return os.debug&&ie("load model fetch:",e,t),fetch(e,t)}function fN(e){os.cacheModels=e.cacheModels,os.verbose=e.debug,os.modelBasePath=e.modelBasePath}async function Ge(e){let t=C3(os.modelBasePath,e||""),r=t.split("/"),n="indexeddb://"+r[r.length-1].replace(".json",""),a=await Tr.listModels(),s=os.cacheModels&&Object.keys(a).includes(n),i=typeof fetch=="undefined"?{}:{fetchFunc:(u,d)=>u2e(u,d)},o=new h0(s?n:t,i),l=!1;try{o.findIOHandler(),os.debug&&ie("model load handler:",o.handler);let u=await o.handler.load();o.loadSync(u),os.verbose&&ie("load model:",o.modelUrl),l=!0}catch(u){ie("error loading model:",t,u)}if(l&&os.cacheModels&&!s)try{let u=await o.save(n);ie("model saved:",n,u)}catch(u){ie("error saving model:",t,u)}return o}var Mb="2.7.0";var lg={};xs(lg,{Models:()=>rc,load:()=>G5,reset:()=>og,validate:()=>j5});var Zn,Fb=[],h2e=["white","black","asian","indian","other"],c2e=[15,23,28,35.5,45.5,55.5,65],mN=0,gN=0,$b=Number.MAX_SAFE_INTEGER;async function yN(e){return he.initial&&(Zn=null),Zn?e.debug&&ie("cached model:",Zn.modelUrl):Zn=await Ge(e.face.gear),Zn}async function Pb(e,t,r,n){var i,o;if(!Zn)return{age:0,gender:"unknown",genderScore:0,race:[]};let a=$b<(((i=t.face.gear)==null?void 0:i.skipFrames)||0),s=(((o=t.face.gear)==null?void 0:o.skipTime)||0)>oe()-gN;return t.skipAllowed&&s&&a&&mN===n&&Fb[r]?($b++,Fb[r]):($b=0,new Promise(async l=>{var y,A;if(!(Zn!=null&&Zn.inputs[0].shape))return;let u={},d=[[0,.1,.9,.9]];u.resize=Ie.cropAndResize(e,d,[0],[Zn.inputs[0].shape[2],Zn.inputs[0].shape[1]]);let h={age:0,gender:"unknown",genderScore:0,race:[]};(y=t.face.gear)!=null&&y.enabled&&([u.age,u.gender,u.race]=Zn.execute(u.resize,["age_output","gender_output","race_output"]));let p=await u.gender.data();h.gender=p[0]>p[1]?"male":"female",h.genderScore=Math.round(100*(p[0]>p[1]?p[0]:p[1]))/100;let c=await u.race.data();for(let x=0;x<c.length;x++)c[x]>(((A=t.face.gear)==null?void 0:A.minConfidence)||.2)&&h.race.push({score:Math.round(100*c[x])/100,race:h2e[x]});h.race.sort((x,b)=>b.score-x.score);let m=Array.from(await u.age.data()).map((x,b)=>[c2e[b],x]).sort((x,b)=>b[1]-x[1]),g=m[0][0];for(let x=1;x<m.length;x++)g+=m[x][1]*(m[x][0]-g);h.age=Math.round(10*g)/10,Object.keys(u).forEach(x=>re(u[x])),Fb[r]=h,mN=n,gN=oe(),l(h)}))}var Qe={tf255:255,tf1:1,tf2:2,tf05:.5,tf127:127.5,rgb:[.2989,.587,.114]};function xN(){Qe.tf255=Se(255,"float32"),Qe.tf1=Se(1,"float32"),Qe.tf2=Se(2,"float32"),Qe.tf05=Se(.5,"float32"),Qe.tf127=Se(127.5,"float32"),Qe.rgb=St([.2989,.587,.114],"float32")}var mn,C0=[],bN=0,vN=0,_b=Number.MAX_SAFE_INTEGER;async function wN(e){return he.initial&&(mn=null),mn?e.debug&&ie("cached model:",mn.modelUrl):mn=await Ge(e.face.ssrnet.modelPathAge),mn}async function zb(e,t,r,n){var i,o,l,u;if(!mn)return{age:0};let a=_b<(((i=t.face.ssrnet)==null?void 0:i.skipFrames)||0),s=(((o=t.face.ssrnet)==null?void 0:o.skipTime)||0)>oe()-vN;return t.skipAllowed&&a&&s&&bN===n&&((l=C0[r])==null?void 0:l.age)&&((u=C0[r])==null?void 0:u.age)>0?(_b++,C0[r]):(_b=0,new Promise(async d=>{if(!(mn!=null&&mn.inputs)||!mn.inputs[0]||!mn.inputs[0].shape)return;let h={};h.resize=Ie.resizeBilinear(e,[mn.inputs[0].shape[2],mn.inputs[0].shape[1]],!1),h.enhance=L(h.resize,Qe.tf255);let p={age:0};if(t.face.ssrnet.enabled&&(h.age=mn.execute(h.enhance)),h.age){let c=await h.age.data();p.age=Math.trunc(10*c[0])/10}Object.keys(h).forEach(c=>re(h[c])),C0[r]=p,bN=n,vN=oe(),d(p)}))}var Yn,E0=[],IN=0,SN=0,Ob=Number.MAX_SAFE_INTEGER,Db=[.2989,.587,.114];async function TN(e){return he.initial&&(Yn=null),Yn?e.debug&&ie("cached model:",Yn.modelUrl):Yn=await Ge(e.face.ssrnet.modelPathGender),Yn}async function Lb(e,t,r,n){var i,o,l,u;if(!Yn)return{gender:"unknown",genderScore:0};let a=Ob<(((i=t.face.ssrnet)==null?void 0:i.skipFrames)||0),s=(((o=t.face.ssrnet)==null?void 0:o.skipTime)||0)>oe()-SN;return t.skipAllowed&&a&&s&&IN===n&&((l=E0[r])==null?void 0:l.gender)&&((u=E0[r])==null?void 0:u.genderScore)>0?(Ob++,E0[r]):(Ob=0,new Promise(async d=>{if(!(Yn!=null&&Yn.inputs[0].shape))return;let h={};h.resize=Ie.resizeBilinear(e,[Yn.inputs[0].shape[2],Yn.inputs[0].shape[1]],!1),h.enhance=K(()=>{let[f,m,g]=Xt(h.resize,3,3),y=L(f,Db[0]),A=L(m,Db[1]),x=L(g,Db[2]),b=ym([y,A,x]);return L(ce(b,Qe.tf05),2)});let p={gender:"unknown",genderScore:0};t.face.ssrnet.enabled&&(h.gender=Yn.execute(h.enhance));let c=await h.gender.data();p.gender=c[0]>c[1]?"female":"male",p.genderScore=c[0]>c[1]?Math.trunc(100*c[0])/100:Math.trunc(100*c[1])/100,Object.keys(h).forEach(f=>re(h[f])),E0[r]=p,IN=n,SN=oe(),d(p)}))}var Rr,R0=[],Bb=Number.MAX_SAFE_INTEGER,CN=0,EN=0;async function RN(e){var t;return he.initial&&(Rr=null),Rr?e.debug&&ie("cached model:",Rr.modelUrl):Rr=await Ge((t=e.face.antispoof)==null?void 0:t.modelPath),Rr}async function Wb(e,t,r,n){var i,o;if(!Rr)return 0;let a=(((i=t.face.antispoof)==null?void 0:i.skipTime)||0)>oe()-EN,s=Bb<(((o=t.face.antispoof)==null?void 0:o.skipFrames)||0);return t.skipAllowed&&a&&s&&CN===n&&R0[r]?(Bb++,R0[r]):(Bb=0,new Promise(async l=>{let u=Ie.resizeBilinear(e,[Rr!=null&&Rr.inputs[0].shape?Rr.inputs[0].shape[2]:0,Rr!=null&&Rr.inputs[0].shape?Rr.inputs[0].shape[1]:0],!1),d=Rr==null?void 0:Rr.execute(u),h=(await d.data())[0];R0[r]=Math.round(100*h)/100,CN=n,EN=oe(),re([u,d]),l(R0[r])}))}var Jn={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},Vb={count:468,mouth:13,symmetryLine:[13,Jn.midwayBetweenEyes[0]]},Kh={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},Ub=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]},{key:"EyebrowUpper",indices:[63,64,65,66,67,68,69,70]},{key:"EyebrowLower",indices:[48,49,50,51,52,53]}],Xh=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],Ol=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var m2e=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],g2e=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],y2e=[33,133,362,263,1,78,308],qke=m2e.map(e=>Xh[e]),Kke=g2e.map(e=>Xh[e]),Xke=y2e.map(e=>Xh[e]);var $d=e=>[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])],M0=e=>[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2,1],qb=(e,t)=>e?[Math.trunc(Math.max(0,e.startPoint[0])),Math.trunc(Math.max(0,e.startPoint[1])),Math.trunc(Math.min(t.shape[2]||0,e.endPoint[0])-Math.max(0,e.startPoint[0])),Math.trunc(Math.min(t.shape[1]||0,e.endPoint[1])-Math.max(0,e.startPoint[1]))]:[0,0,0,0],Kb=(e,t)=>e?[e.startPoint[0]/(t.shape[2]||0),e.startPoint[1]/(t.shape[1]||0),(e.endPoint[0]-e.startPoint[0])/(t.shape[2]||0),(e.endPoint[1]-e.startPoint[1])/(t.shape[1]||0)]:[0,0,0,0],PN=(e,t)=>{let r=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],n=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:r,endPoint:n,landmarks:e.landmarks,confidence:e.confidence}},jb=(e,t,r)=>{let n=t.shape[1],a=t.shape[2],s=[e.startPoint[1]/n,e.startPoint[0]/a,e.endPoint[1]/n,e.endPoint[0]/a],i=Ie.cropAndResize(t,[s],[0],r),o=pe(i,Qe.tf255);return re(i),o},F0=(e,t)=>{let r=M0(e),n=$d(e),a=[t*n[0]/2,t*n[1]/2];return{startPoint:[r[0]-a[0],r[1]-a[1]],endPoint:[r[0]+a[0],r[1]+a[1]],landmarks:e.landmarks,confidence:e.confidence}},$0=e=>{let t=M0(e),r=$d(e),n=Math.max(...r)/2;return{startPoint:[Math.round(t[0]-n),Math.round(t[1]-n)],endPoint:[Math.round(t[0]+n),Math.round(t[1]+n)],landmarks:e.landmarks,confidence:e.confidence}},_N=e=>{let t=e.map(n=>n[0]),r=e.map(n=>n[1]);return{startPoint:[Math.min(...t),Math.min(...r)],endPoint:[Math.max(...t),Math.max(...r)],landmarks:e}},Hb=[[1,0,0],[0,1,0],[0,0,1]],A2e=e=>e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI)),x2e=(e,t)=>A2e(Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]));var FN=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]],Dl=(e,t)=>{let r=0;for(let n=0;n<e.length;n++)r+=e[n]*t[n];return r},b2e=(e,t)=>{let r=[];for(let n=0;n<e.length;n++)r.push(e[n][t]);return r},$N=(e,t)=>{let r=[],n=e.length;for(let a=0;a<n;a++){r.push([]);for(let s=0;s<n;s++)r[a].push(Dl(e[a],b2e(t,s)))}return r},zN=(e,t)=>{let r=Math.cos(e),n=Math.sin(e),a=[[r,-n,0],[n,r,0],[0,0,1]],s=FN(t[0],t[1]),i=$N(s,a),o=FN(-t[0],-t[1]);return $N(i,o)},v2e=e=>{let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],r=[e[0][2],e[1][2]],n=[-Dl(t[0],r),-Dl(t[1],r)];return[t[0].concat(n[0]),t[1].concat(n[1]),[0,0,1]]},w2e=(e,t)=>[Dl(e,t[0]),Dl(e,t[1])];function ON(e){let t={strides:[e/16,e/8],anchors:[2,6]},r=[];for(let n=0;n<t.strides.length;n++){let a=t.strides[n],s=Math.floor((e+a-1)/a),i=Math.floor((e+a-1)/a),o=t.anchors[n];for(let l=0;l<s;l++){let u=a*(l+.5);for(let d=0;d<i;d++){let h=a*(d+.5);for(let p=0;p<o;p++)r.push([h,u])}}}return r}function DN(e,t,r,n,a){let s=$d(t),i=e.map(c=>[s[0]/a*(c[0]-a/2),s[1]/a*(c[1]-a/2),c[2]||0]),o=r&&r!==0&&Math.abs(r)>.2,l=o?zN(r,[0,0]):Hb,u=o?i.map(c=>[...w2e(c,l),c[2]]):i,d=o?v2e(n):Hb,h=M0(t),p=[Dl(h,d[0]),Dl(h,d[1])];return u.map(c=>[Math.trunc(c[0]+p[0]),Math.trunc(c[1]+p[1]),Math.trunc(c[2]||0)])}function LN(e,t,r,n){let a=t.landmarks.length>=Vb.count?Vb.symmetryLine:Kh.symmetryLine,s=0,i=Hb,o;if(e&&he.kernels.includes("rotatewithoffset"))if(s=x2e(t.landmarks[a[0]],t.landmarks[a[1]]),s&&s!==0&&Math.abs(s)>.2){let u=M0(t),d=[u[0]/r.shape[2],u[1]/r.shape[1]],h=Ie.rotateWithOffset(r,s,0,d);i=zN(-s,u),o=jb(t,h,[n,n]),re(h)}else o=jb(t,r,[n,n]);else o=jb(t,r,[n,n]);return[s,i,o]}var k2e=e=>{let t=e.map(n=>n[0]),r=e.map(n=>n[1]);return[Math.min(...t)+(Math.max(...t)-Math.min(...t))/2,Math.min(...r)+(Math.max(...r)-Math.min(...r))/2]},BN=(e,t)=>{let r=k2e(e),n=$d(t);return{startPoint:[r[0]-n[0]/2,r[1]-n[1]/2],endPoint:[r[0]+n[0]/2,r[1]+n[1]/2]}};var WN=6,I2e=1.4,Oa,VN=null,ji=0,Zh=null,P0=()=>ji;async function UN(e){var t;return he.initial&&(Oa=null),Oa?e.debug&&ie("cached model:",Oa.modelUrl):Oa=await Ge((t=e.face.detector)==null?void 0:t.modelPath),ji=Oa.inputs[0].shape?Oa.inputs[0].shape[2]:0,Zh=Se(ji,"int32"),VN=pa(ON(ji)),Oa}function S2e(e){let t={};t.boxStarts=Pe(e,[0,1],[-1,2]),t.centers=le(t.boxStarts,VN),t.boxSizes=Pe(e,[0,3],[-1,2]),t.boxSizesNormalized=pe(t.boxSizes,Zh),t.centersNormalized=pe(t.centers,Zh),t.halfBoxSize=pe(t.boxSizesNormalized,Qe.tf2),t.starts=ce(t.centersNormalized,t.halfBoxSize),t.ends=le(t.centersNormalized,t.halfBoxSize),t.startNormalized=L(t.starts,Zh),t.endNormalized=L(t.ends,Zh);let r=ud([t.startNormalized,t.endNormalized],1);return Object.keys(t).forEach(n=>re(t[n])),r}async function GN(e,t){var o,l,u,d;if(!e||e.isDisposedInternal||e.shape.length!==4||e.shape[1]<1||e.shape[2]<1)return[];let r={};r.resized=Ie.resizeBilinear(e,[ji,ji]),r.div=pe(r.resized,Qe.tf127),r.normalized=ce(r.div,Qe.tf05);let n=Oa==null?void 0:Oa.execute(r.normalized);if(Array.isArray(n)){let h=n.sort((p,c)=>p.size-c.size);r.concat384=kt([h[0],h[2]],2),r.concat512=kt([h[1],h[3]],2),r.concat=kt([r.concat512,r.concat384],1),r.batch=et(r.concat,0)}else r.batch=et(n);re(n),r.boxes=S2e(r.batch),r.logits=Pe(r.batch,[0,0],[-1,1]),r.sigmoid=Nr(r.logits),r.scores=et(r.sigmoid),r.nms=await Ie.nonMaxSuppressionAsync(r.boxes,r.scores,((o=t.face.detector)==null?void 0:o.maxDetected)||0,((l=t.face.detector)==null?void 0:l.iouThreshold)||0,((u=t.face.detector)==null?void 0:u.minConfidence)||0);let a=await r.nms.array(),s=[],i=await r.scores.data();for(let h=0;h<a.length;h++){let p=i[a[h]];if(p>(((d=t.face.detector)==null?void 0:d.minConfidence)||0)){let c={};c.bbox=Pe(r.boxes,[a[h],0],[1,-1]),c.slice=Pe(r.batch,[a[h],WN-1],[1,-1]),c.squeeze=et(c.slice),c.landmarks=G(c.squeeze,[WN,-1]);let f=await c.bbox.data(),m={startPoint:[f[0],f[1]],endPoint:[f[2],f[3]],landmarks:await c.landmarks.array(),confidence:p},g=PN(m,[(e.shape[2]||0)/ji,(e.shape[1]||0)/ji]),y=F0(g,t.face.scale||I2e),A=$0(y);s.push(A),Object.keys(c).forEach(x=>re(c[x]))}}return Object.keys(r).forEach(h=>re(r[h])),s}var _0={};xs(_0,{connected:()=>Yb,kpt:()=>Zb});var Zb=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPinky","rightPinky","leftIndex","rightIndex","leftThumb","rightThumb","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","bodyCenter","bodyTop","leftPalm","leftHand","rightPalm","rightHand"],Yb={shoulders:["leftShoulder","rightShoulder"],hips:["rightHip","leftHip"],mouth:["leftMouth","rightMouth"],leftLegUpper:["leftHip","leftKnee"],leftLegLower:["leftKnee","leftAnkle"],leftFoot:["leftAnkle","leftHeel","leftFoot"],leftTorso:["leftShoulder","leftHip"],leftArmUpper:["leftShoulder","leftElbow"],leftArmLower:["leftElbow","leftWrist"],leftHand:["leftWrist","leftPalm"],leftHandPinky:["leftPalm","leftPinky"],leftHandIndex:["leftPalm","leftIndex"],leftHandThumb:["leftPalm","leftThumb"],leftEyeOutline:["leftEyeInside","leftEyeOutside"],rightLegUpper:["rightHip","rightKnee"],rightLegLower:["rightKnee","rightAnkle"],rightFoot:["rightAnkle","rightHeel","rightFoot"],rightTorso:["rightShoulder","rightHip"],rightArmUpper:["rightShoulder","rightElbow"],rightArmLower:["rightElbow","rightWrist"],rightHand:["rightWrist","rightPalm"],rightHandPinky:["rightPalm","rightPinky"],rightHandIndex:["rightPalm","rightIndex"],rightHandThumb:["rightPalm","rightThumb"],rightEyeOutline:["rightEyeInside","rightEyeOutside"]};var HN=224,T2e,N2e=5,z0=[8,16,32,32,32];async function qN(){let e=[],t=0;for(;t<N2e;){let r=0,n=t;for(;n<z0.length&&z0[n]===z0[t];)r+=2,n++;let a=z0[t],s=Math.ceil(HN/a),i=Math.ceil(HN/a);for(let o=0;o<s;++o)for(let l=0;l<i;++l)for(let u=0;u<r;++u)e.push({x:(l+.5)/i,y:(o+.5)/s});t=n}T2e={x:St(e.map(r=>r.x)),y:St(e.map(r=>r.y))}}function ls(e,t=[1,1]){let r=[e.map(o=>o[0]),e.map(o=>o[1])],n=[Math.min(...r[0]),Math.min(...r[1])],a=[Math.max(...r[0]),Math.max(...r[1])],s=[n[0],n[1],a[0]-n[0],a[1]-n[1]],i=[s[0]/t[0],s[1]/t[1],s[2]/t[0],s[3]/t[1]];return{box:s,boxRaw:i}}function KN(e,t=[1,1]){let r=[e.map(u=>u[0]),e.map(u=>u[1])],n=[Math.min(...r[0]),Math.min(...r[1])],a=[Math.max(...r[0]),Math.max(...r[1])],s=[(n[0]+a[0])/2,(n[1]+a[1])/2],i=Math.max(s[0]-n[0],s[1]-n[1],-s[0]+a[0],-s[1]+a[1]),o=[Math.trunc(s[0]-i),Math.trunc(s[1]-i),Math.trunc(2*i),Math.trunc(2*i)],l=[o[0]/t[0],o[1]/t[1],o[2]/t[0],o[3]/t[1]];return{box:o,boxRaw:l}}function O0(e,t){let r=[e[2]*t,e[3]*t];return[e[0]-(r[0]-e[2])/2,e[1]-(r[1]-e[3])/2,r[0],r[1]]}var YN={initial:!0},gn={detector:null,landmarks:null},Pd={detector:[224,224],landmarks:[256,256]},Jb=Number.MAX_SAFE_INTEGER,E2e={landmarks:["ld_3d","activation_segmentation","activation_heatmap","world_3d","output_poseflag"],detector:[]},L0=null,Yh,Hi=[[0,0],[0,0],[0,0],[0,0]],XN=0,ZN=e=>1-1/(1+Math.exp(e));async function JN(e){if(YN.initial&&(gn.detector=null),!gn.detector&&e.body.detector&&e.body.detector.modelPath){gn.detector=await Ge(e.body.detector.modelPath);let t=Object.values(gn.detector.modelSignature.inputs);Pd.detector[0]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[1].size):0,Pd.detector[1]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0}else e.debug&&gn.detector&&ie("cached model:",gn.detector.modelUrl);return await qN(),gn.detector}async function QN(e){if(YN.initial&&(gn.landmarks=null),gn.landmarks)e.debug&&ie("cached model:",gn.landmarks.modelUrl);else{gn.landmarks=await Ge(e.body.modelPath);let t=Object.values(gn.landmarks.modelSignature.inputs);Pd.landmarks[0]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[1].size):0,Pd.landmarks[1]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0}return gn.landmarks}async function R2e(e,t){let r={};if(!e.shape||!e.shape[1]||!e.shape[2])return e;let n;if(Yh&&(r.cropped=Ie.cropAndResize(e,[Yh],[0],[e.shape[1],e.shape[2]])),e.shape[1]!==e.shape[2]){let a=[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],s=[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0];Hi=[[0,0],a,s,[0,0]],r.pad=Hn(r.cropped||e,Hi),r.resize=Ie.resizeBilinear(r.pad,[t,t]),n=pe(r.resize,Qe.tf255)}else e.shape[1]!==t?(r.resize=Ie.resizeBilinear(r.cropped||e,[t,t]),n=pe(r.resize,Qe.tf255)):n=pe(r.cropped||e,Qe.tf255);return Object.keys(r).forEach(a=>re(r[a])),n}function M2e(e,t){for(let r of e)r.position=[Math.trunc(r.position[0]*(t[0]+Hi[2][0]+Hi[2][1])/t[0]-Hi[2][0]),Math.trunc(r.position[1]*(t[1]+Hi[1][0]+Hi[1][1])/t[1]-Hi[1][0]),r.position[2]],r.positionRaw=[r.position[0]/t[0],r.position[1]/t[1],2*r.position[2]/(t[0]+t[1])];if(Yh)for(let r of e)r.positionRaw=[r.positionRaw[0]+Yh[1],r.positionRaw[1]+Yh[0],r.positionRaw[2]],r.position=[Math.trunc(r.positionRaw[0]*t[0]),Math.trunc(r.positionRaw[1]*t[1]),r.positionRaw[2]];return e}async function F2e(e){let t=e.find(o=>o.part==="leftPalm"),r=e.find(o=>o.part==="leftWrist"),n=e.find(o=>o.part==="leftIndex");t.position[2]=((r.position[2]||0)+(n.position[2]||0))/2;let a=e.find(o=>o.part==="rightPalm"),s=e.find(o=>o.part==="rightWrist"),i=e.find(o=>o.part==="rightIndex");a.position[2]=((s.position[2]||0)+(i.position[2]||0))/2}async function $2e(e,t,r){var f;let n={};[n.ld,n.segmentation,n.heatmap,n.world,n.poseflag]=(f=gn.landmarks)==null?void 0:f.execute(e,E2e.landmarks);let a=(await n.poseflag.data())[0],s=await n.ld.data(),i=await n.world.data();Object.keys(n).forEach(m=>re(n[m]));let o=[],l=5;for(let m=0;m<s.length/l;m++){let g=ZN(s[l*m+3]),y=ZN(s[l*m+4]),A=Math.trunc(100*g*y*a)/100,x=[s[l*m+0]/Pd.landmarks[0],s[l*m+1]/Pd.landmarks[1],s[l*m+2]+0],b=[Math.trunc(r[0]*x[0]),Math.trunc(r[1]*x[1]),x[2]],v=[i[l*m+0],i[l*m+1],i[l*m+2]+0];o.push({part:Zb[m],positionRaw:x,position:b,distance:v,score:A})}if(a<(t.body.minConfidence||0))return null;F2e(o);let u=M2e(o,r),d=u.map(m=>m.position),h=ls(d,[r[0],r[1]]),p={};for(let[m,g]of Object.entries(Yb)){let y=[];for(let A=0;A<g.length-1;A++){let x=u.find(v=>v.part===g[A]),b=u.find(v=>v.part===g[A+1]);x&&b&&y.push([x.position,b.position])}p[m]=y}return{id:0,score:Math.trunc(100*a)/100,box:h.box,boxRaw:h.boxRaw,keypoints:u,annotations:p}}async function Qb(e,t){let r=[e.shape[2]||0,e.shape[1]||0],n=(t.body.skipTime||0)>oe()-XN,a=Jb<(t.body.skipFrames||0);if(t.skipAllowed&&n&&a&&L0!==null)Jb++;else{let s={};s.landmarks=await R2e(e,256),L0=await $2e(s.landmarks,t,r),Object.keys(s).forEach(i=>re(s[i])),XN=oe(),Jb=0}return L0?[L0]:[]}var _d=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var us,Ll=0,e5=[],tC=0,t5=Number.MAX_SAFE_INTEGER;async function rC(e){if(he.initial&&(us=null),us)e.debug&&ie("cached model:",us.modelUrl);else{us=await Ge(e.object.modelPath);let t=Object.values(us.modelSignature.inputs);Ll=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0}return us}async function P2e(e,t,r){if(!e)return[];let n={},a=[],s=await e.array();n.squeeze=et(e);let i=Xt(n.squeeze,6,1);n.stack=or([i[1],i[0],i[3],i[2]],1),n.boxes=et(n.stack),n.scores=et(i[4]),n.classes=et(i[5]),re([e,...i]),n.nms=await Ie.nonMaxSuppressionAsync(n.boxes,n.scores,r.object.maxDetected,r.object.iouThreshold,r.object.minConfidence||0);let o=await n.nms.data(),l=0;for(let u of Array.from(o)){let d=Math.trunc(100*s[0][u][4])/100,h=s[0][u][5],p=_d[h].label,[c,f]=[s[0][u][0]/Ll,s[0][u][1]/Ll],m=[c,f,s[0][u][2]/Ll-c,s[0][u][3]/Ll-f],g=[Math.trunc(m[0]*t[0]),Math.trunc(m[1]*t[1]),Math.trunc(m[2]*t[0]),Math.trunc(m[3]*t[1])];a.push({id:l++,score:d,class:h,label:p,box:g,boxRaw:m})}return Object.keys(n).forEach(u=>re(n[u])),a}async function r5(e,t){let r=(t.object.skipTime||0)>oe()-tC,n=t5<(t.object.skipFrames||0);return t.skipAllowed&&r&&n&&e5.length>0?(t5++,e5):(t5=0,new Promise(async a=>{let s=[e.shape[2]||0,e.shape[1]||0],i=Ie.resizeBilinear(e,[Ll,Ll]),o=t.object.enabled?us==null?void 0:us.execute(i,["tower_0/detections"]):null;tC=oe(),re(i);let l=await P2e(o,s,t);e5=l,a(l)}))}var B0={};xs(B0,{connected:()=>a5,kpt:()=>n5});var n5=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","bodyCenter","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"],a5={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var Mr,aC=0,Kr={id:0,keypoints:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,annotations:{}},s5=Number.MAX_SAFE_INTEGER;async function sC(e){return he.initial&&(Mr=null),Mr?e.debug&&ie("cached model:",Mr.modelUrl):Mr=await Ge(e.body.modelPath),Mr}async function _2e(e,t){let[r,n]=e.shape,a=G(e,[n*r]),s=mr(a,0),i=(await s.data())[0];if(re([a,s]),i>t){let o=Cn(a,0),l=hd(o,r),u=(await l.data())[0],d=pe(o,Se(r,"int32")),h=(await d.data())[0];return re([l,d]),[u,h,i]}return[0,0,i]}async function i5(e,t){let r=(t.body.skipTime||0)>oe()-aC,n=s5<(t.body.skipFrames||0);return t.skipAllowed&&r&&n&&Object.keys(Kr.keypoints).length>0?(s5++,[Kr]):(s5=0,new Promise(async a=>{var h;let s=K(()=>{if(!(Mr!=null&&Mr.inputs[0].shape))return null;let p=Ie.resizeBilinear(e,[Mr.inputs[0].shape[2],Mr.inputs[0].shape[1]],!1),c=L(p,Qe.tf2);return ce(c,Qe.tf1)}),i;if(t.body.enabled&&(i=Mr==null?void 0:Mr.execute(s)),aC=oe(),re(s),i){Kr.keypoints.length=0;let p=i.squeeze();re(i);let c=p.unstack(2);re(p);for(let f=0;f<c.length;f++){let[m,g,y]=await _2e(c[f],t.body.minConfidence);y>(((h=t.body)==null?void 0:h.minConfidence)||0)&&Kr.keypoints.push({score:Math.round(100*y)/100,part:n5[f],positionRaw:[m/Mr.inputs[0].shape[2],g/Mr.inputs[0].shape[1]],position:[Math.round(e.shape[2]*m/Mr.inputs[0].shape[2]),Math.round(e.shape[1]*g/Mr.inputs[0].shape[1])]})}c.forEach(f=>re(f))}Kr.score=Kr.keypoints.reduce((p,c)=>c.score>p?c.score:p,0);let o=Kr.keypoints.map(p=>p.position[0]),l=Kr.keypoints.map(p=>p.position[1]);Kr.box=[Math.min(...o),Math.min(...l),Math.max(...o)-Math.min(...o),Math.max(...l)-Math.min(...l)];let u=Kr.keypoints.map(p=>p.positionRaw[0]),d=Kr.keypoints.map(p=>p.positionRaw[1]);Kr.boxRaw=[Math.min(...u),Math.min(...d),Math.max(...u)-Math.min(...u),Math.max(...d)-Math.min(...d)];for(let[p,c]of Object.entries(a5)){let f=[];for(let m=0;m<c.length-1;m++){let g=Kr.keypoints.find(A=>A.part===c[m]),y=Kr.keypoints.find(A=>A.part===c[m+1]);g&&y&&g.score>(t.body.minConfidence||0)&&y.score>(t.body.minConfidence||0)&&f.push([g.position,y.position])}Kr.annotations[p]=f}a([Kr])}))}var z2e=["angry","disgust","fear","happy","sad","surprise","neutral"],zn,W0=[],oC=0,lC=0,o5=Number.MAX_SAFE_INTEGER;async function uC(e){var t;return he.initial&&(zn=null),zn?e.debug&&ie("cached model:",zn.modelUrl):zn=await Ge((t=e.face.emotion)==null?void 0:t.modelPath),zn}async function l5(e,t,r,n){var i,o;if(!zn)return[];let a=o5<(((i=t.face.emotion)==null?void 0:i.skipFrames)||0),s=(((o=t.face.emotion)==null?void 0:o.skipTime)||0)>oe()-lC;return t.skipAllowed&&s&&a&&oC===n&&W0[r]&&W0[r].length>0?(o5++,W0[r]):(o5=0,new Promise(async l=>{var d,h;let u=[];if((d=t.face.emotion)!=null&&d.enabled){let p={},c=zn!=null&&zn.inputs[0].shape?zn.inputs[0].shape[2]:0;p.resize=Ie.resizeBilinear(e,[c,c],!1),p.channels=L(p.resize,Qe.rgb),p.grayscale=ke(p.channels,3,!0),p.grayscaleSub=ce(p.grayscale,Qe.tf05),p.grayscaleMul=L(p.grayscaleSub,Qe.tf2),p.emotion=zn==null?void 0:zn.execute(p.grayscaleMul),lC=oe();let f=await p.emotion.data();for(let m=0;m<f.length;m++)f[m]>(((h=t.face.emotion)==null?void 0:h.minConfidence)||0)&&u.push({score:Math.min(.99,Math.trunc(100*f[m])/100),emotion:z2e[m]});u.sort((m,g)=>g.score-m.score),Object.keys(p).forEach(m=>re(p[m]))}W0[r]=u,oC=n,l(u)}))}var yn,u5=[],pC=0,hC=0,cC=Number.MAX_SAFE_INTEGER;async function fC(e){return he.initial&&(yn=null),yn?e.debug&&ie("cached model:",yn.modelUrl):yn=await Ge(e.face.mobilefacenet.modelPath),yn}async function d5(e,t,r,n){var i,o;if(!yn)return[];let a=cC<(((i=t.face.embedding)==null?void 0:i.skipFrames)||0),s=(((o=t.face.embedding)==null?void 0:o.skipTime)||0)>oe()-hC;return t.skipAllowed&&s&&a&&pC===n&&u5[r]?(cC++,u5[r]):new Promise(async l=>{var d;let u=[];if(((d=t.face.embedding)==null?void 0:d.enabled)&&(yn==null?void 0:yn.inputs[0].shape)){let h={};h.crop=Ie.resizeBilinear(e,[yn.inputs[0].shape[2],yn.inputs[0].shape[1]],!1),h.data=yn==null?void 0:yn.execute(h.crop);let p=await h.data.data();u=Array.from(p)}u5[r]=u,pC=n,hC=oe(),l(u)})}var ds,qi=0,O2e=2.3,p5=Jn.leftEyeLower0,h5=Jn.rightEyeLower0,zd={leftBounds:[p5[0],p5[p5.length-1]],rightBounds:[h5[0],h5[h5.length-1]]},Od={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};async function xC(e){var t;return he.initial&&(ds=null),ds?e.debug&&ie("cached model:",ds.modelUrl):ds=await Ge((t=e.face.iris)==null?void 0:t.modelPath),qi=ds.inputs[0].shape?ds.inputs[0].shape[2]:0,qi===-1&&(qi=64),ds}function V0(e,t,r,n){for(let a=0;a<Ub.length;a++){let{key:s,indices:i}=Ub[a],o=Jn[`${r}${s}`];if(!n||n.includes(s))for(let l=0;l<i.length;l++){let u=i[l];e[o[l]]=[t[u][0],t[u][1],(t[u][2]+e[o[l]][2])/2]}}}var D2e=e=>{let t=e[zd.leftBounds[0]][2],r=e[zd.rightBounds[0]][2];return t-r},gC=(e,t,r,n,a,s=!1)=>{let i=$0(F0(_N([e[r],e[n]]),O2e)),o=$d(i),l=Ie.cropAndResize(t,[[i.startPoint[1]/a,i.startPoint[0]/a,i.endPoint[1]/a,i.endPoint[0]/a]],[0],[qi,qi]);if(s&&he.kernels.includes("flipleftright")){let u=Ie.flipLeftRight(l);re(l),l=u}return{box:i,boxSize:o,crop:l}},yC=(e,t,r,n=!1)=>{let a=[];for(let s=0;s<Od.numCoordinates;s++){let i=e[s*3],o=e[s*3+1],l=e[s*3+2];a.push([(n?1-i/qi:i/qi)*r[0]+t.startPoint[0],o/qi*r[1]+t.startPoint[1],l])}return{rawCoords:a,iris:a.slice(Od.index)}},AC=(e,t,r)=>{let n=e[Jn[`${r}EyeUpper0`][Od.upperCenter]][2],a=e[Jn[`${r}EyeLower0`][Od.lowerCenter]][2],s=(n+a)/2;return t.map((i,o)=>{let l=s;return o===2?l=n:o===4&&(l=a),[i[0],i[1],l]})};async function bC(e,t,r,n){if(!ds)return r.debug&&ie("face mesh iris detection requested, but model is not loaded"),e;let{box:a,boxSize:s,crop:i}=gC(e,t,zd.leftBounds[0],zd.leftBounds[1],n,!0),{box:o,boxSize:l,crop:u}=gC(e,t,zd.rightBounds[0],zd.rightBounds[1],n,!0),d=kt([i,u]);re(i),re(u);let h=ds.execute(d);re(d);let p=await h.data();re(h);let c=p.slice(0,Od.numCoordinates*3),{rawCoords:f,iris:m}=yC(c,a,s,!0),g=p.slice(Od.numCoordinates*3),{rawCoords:y,iris:A}=yC(g,o,l,!1),x=D2e(e);Math.abs(x)<30?(V0(e,f,"left",null),V0(e,y,"right",null)):x<1?V0(e,f,"left",["EyeUpper0","EyeLower0"]):V0(e,y,"right",["EyeUpper0","EyeLower0"]);let b=AC(e,m,"left"),v=AC(e,A,"right");return e.concat(b).concat(v)}var Ki={eyeLLower:[33,7,163,144,145,153,154,155,133],eyeRLower:[263,249,390,373,374,380,381,382,362],lips:[61,76,91,181,84,17,314,405,321,291,291,185,40,39,37,0,267,269,270,291,62,183,88,178,87,14,268,303,304,408,291,184,42,178,87,14,268,303,304,408,61,62,90,180,85,16,315,404,307,308,291,185,40,73,72,0,302,269,270,409,61,184,95,179,86,15,316,403,324,408,291,184,74,41,38,11,268,303,304,408],eyeL:[33,7,163,144,145,153,154,155,133,246,161,160,159,158,157,173,130,25,110,24,23,22,26,112,243,247,30,29,27,28,56,190,226,31,228,229,230,231,232,233,244,113,225,224,223,222,221,189,35,124,46,53,52,65,143,111,117,118,119,120,121,128,245,156,70,63,105,66,107,55,193],eyeR:[263,249,390,373,374,380,381,382,362,466,388,387,386,385,384,398,359,255,339,254,253,252,256,341,463,467,260,259,257,258,286,414,446,261,448,449,450,451,452,453,464,342,445,444,443,442,441,413,265,353,276,283,282,295,372,340,346,347,348,349,350,357,465,383,300,293,334,296,336,285,417]};async function wC(e,t){let r={irisL:t[3].dataSync(),irisR:t[1].dataSync(),eyeL:t[0].dataSync(),eyeR:t[6].dataSync(),lips:t[5].dataSync()},n=Ki.eyeRLower.reduce((s,i)=>s+=e[i][2],0)/Ki.eyeRLower.length;for(let s=0;s<r.irisR.length/2;s++)e.push([r.irisR[2*s+0],r.irisR[2*s+1],n]);let a=Ki.eyeLLower.reduce((s,i)=>s+=e[i][2],0)/Ki.eyeLLower.length;for(let s=0;s<r.irisL.length/2;s++)e.push([r.irisL[2*s+0],r.irisL[2*s+1],a]);for(let s=0;s<r.eyeL.length/2;s++)e[Ki.eyeL[s]]=[r.eyeL[2*s+0],r.eyeL[2*s+1],e[Ki.eyeL[s]][2]];for(let s=0;s<r.eyeR.length/2;s++)e[Ki.eyeR[s]]=[r.eyeR[2*s+0],r.eyeR[2*s+1],e[Ki.eyeR[s]][2]];return e}var Da={boxes:[],skipped:Number.MAX_SAFE_INTEGER,timestamp:0},La=null,Dd=0;async function kC(e,t){var o,l,u,d,h,p,c,f,m,g;let r=(((o=t.face.detector)==null?void 0:o.skipTime)||0)>oe()-Da.timestamp,n=Da.skipped<(((l=t.face.detector)==null?void 0:l.skipFrames)||0);!t.skipAllowed||!r||!n||Da.boxes.length===0?(Da.boxes=await GN(e,t),Da.timestamp=oe(),Da.skipped=0):Da.skipped++;let a=[],s=[],i=0;for(let y=0;y<Da.boxes.length;y++){let A=Da.boxes[y],x=0,b,v={id:i++,mesh:[],meshRaw:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,boxScore:0,faceScore:0,annotations:{}};if([x,b,v.tensor]=LN((u=t.face.detector)==null?void 0:u.rotation,A,e,(d=t.face.mesh)!=null&&d.enabled?Dd:P0()),(h=t==null?void 0:t.filter)!=null&&h.equalization){let S=await S0(v.tensor);re(v.tensor),v.tensor=S}if(v.boxScore=Math.round(100*A.confidence)/100,(p=t.face.mesh)!=null&&p.enabled)if(!La)t.debug&&ie("face mesh detection requested, but model is not loaded");else{let S=La.execute(v.tensor),T=S.find(I=>I.shape[I.shape.length-1]===1),E=S.find(I=>I.shape[I.shape.length-1]===1404),R=await T.data();v.faceScore=Math.round(100*R[0])/100;let _=G(E,[-1,3]),M=await _.array();if(v.faceScore<(((c=t.face.detector)==null?void 0:c.minConfidence)||1))A.confidence=v.faceScore;else{(f=t.face.attention)!=null&&f.enabled?M=await wC(M,S):(m=t.face.iris)!=null&&m.enabled&&(M=await bC(M,v.tensor,t,Dd)),v.mesh=DN(M,A,x,b,Dd),v.meshRaw=v.mesh.map(z=>[z[0]/(e.shape[2]||0),z[1]/(e.shape[1]||0),(z[2]||0)/Dd]);for(let z of Object.keys(Jn))v.annotations[z]=Jn[z].map(O=>v.mesh[O]);v.score=v.faceScore;let I={...BN(v.mesh,A),confidence:A.confidence,landmarks:A.landmarks};v.box=qb(I,e),v.boxRaw=Kb(I,e),s.push(I)}re([...S,_])}else{v.box=qb(A,e),v.boxRaw=Kb(A,e),v.score=v.boxScore,v.mesh=A.landmarks.map(S=>[(A.startPoint[0]+A.endPoint[0])/2+(A.endPoint[0]+A.startPoint[0])*S[0]/P0(),(A.startPoint[1]+A.endPoint[1])/2+(A.endPoint[1]+A.startPoint[1])*S[1]/P0()]),v.meshRaw=v.mesh.map(S=>[S[0]/(e.shape[2]||0),S[1]/(e.shape[1]||0),(S[2]||0)/Dd]);for(let S of Object.keys(Kh))v.annotations[S]=[v.mesh[Kh[S]]]}v.score>(((g=t.face.detector)==null?void 0:g.minConfidence)||1)?a.push(v):re(v.tensor)}return Da.boxes=s,a}async function IC(e){var t,r,n;return he.initial&&(La=null),La?e.debug&&ie("cached model:",La.modelUrl):(t=e.face.attention)!=null&&t.enabled?La=await Ge((r=e.face.attention)==null?void 0:r.modelPath):La=await Ge((n=e.face.mesh)==null?void 0:n.modelPath),Dd=La.inputs[0].shape?La.inputs[0].shape[2]:0,La}var SC=Ol,TC=Xh;var An,U0=[],NC=0,CC=0,f5=Number.MAX_SAFE_INTEGER;async function EC(e){var t;return he.initial&&(An=null),An?e.debug&&ie("cached model:",An.modelUrl):An=await Ge((t=e.face.description)==null?void 0:t.modelPath),An}function m5(e){let t=e.image||e.tensor||e;if(!(An!=null&&An.inputs[0].shape))return t;let r=Ie.resizeBilinear(t,[An.inputs[0].shape[2],An.inputs[0].shape[1]],!1),n=L(r,Qe.tf255);return re(r),n}async function g5(e,t,r,n){var i,o,l,u;if(!An)return{age:0,gender:"unknown",genderScore:0,descriptor:[]};let a=f5<(((i=t.face.description)==null?void 0:i.skipFrames)||0),s=(((o=t.face.description)==null?void 0:o.skipTime)||0)>oe()-NC;return t.skipAllowed&&a&&s&&CC===n&&((l=U0[r])==null?void 0:l.age)&&((u=U0[r])==null?void 0:u.age)>0?(f5++,U0[r]):(f5=0,new Promise(async d=>{var p,c;let h={age:0,gender:"unknown",genderScore:0,descriptor:[]};if((p=t.face.description)!=null&&p.enabled){let f=m5(e),m=An==null?void 0:An.execute(f);NC=oe(),re(f);let y=await(await m.find(R=>R.shape[1]===1)).data(),A=Math.trunc(200*Math.abs(y[0]-.5))/100;A>(((c=t.face.description)==null?void 0:c.minConfidence)||0)&&(h.gender=y[0]<=.5?"female":"male",h.genderScore=Math.min(.99,A));let x=Cn(m.find(R=>R.shape[1]===100),1),b=(await x.data())[0];re(x);let S=await m.find(R=>R.shape[1]===100).data();h.age=Math.round(S[b-1]>S[b+1]?10*b-100*S[b-1]:10*b+100*S[b+1])/10;let T=m.find(R=>R.shape[1]===1024),E=T?await T.data():[];h.descriptor=Array.from(E),m.forEach(R=>re(R))}U0[r]=h,CC=n,d(h)}))}function G0(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function Jh(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function FC(e,t,r){let n=t.shape[1],a=t.shape[2],s=[[e.startPoint[1]/n,e.startPoint[0]/a,e.endPoint[1]/n,e.endPoint[0]/a]];return Ie.cropAndResize(t,s,[0],r)}function $C(e,t){let r=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],n=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],a=e.palmLandmarks.map(s=>[s[0]*t[0],s[1]*t[1]]);return{startPoint:r,endPoint:n,palmLandmarks:a,confidence:e.confidence}}function j0(e,t=1.5){let r=Jh(e),n=G0(e),a=[t*n[0]/2,t*n[1]/2],s=[r[0]-a[0],r[1]-a[1]],i=[r[0]+a[0],r[1]+a[1]];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}function H0(e){let t=Jh(e),r=G0(e),a=Math.max(...r)/2,s=[t[0]-a,t[1]-a],i=[t[0]+a,t[1]+a];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}function B2e(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function PC(e,t){let r=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return B2e(r)}var RC=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function Xi(e,t){let r=0;for(let n=0;n<e.length;n++)r+=e[n]*t[n];return r}function W2e(e,t){let r=[];for(let n=0;n<e.length;n++)r.push(e[n][t]);return r}function MC(e,t){let r=[],n=e.length;for(let a=0;a<n;a++){r.push([]);for(let s=0;s<n;s++)r[a].push(Xi(e[a],W2e(t,s)))}return r}function A5(e,t){let r=Math.cos(e),n=Math.sin(e),a=[[r,-n,0],[n,r,0],[0,0,1]],s=RC(t[0],t[1]),i=MC(s,a),o=RC(-t[0],-t[1]);return MC(i,o)}function _C(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],r=[e[0][2],e[1][2]],n=[-Xi(t[0],r),-Xi(t[1],r)];return[t[0].concat(n[0]),t[1].concat(n[1]),[0,0,1]]}function x5(e,t){return[Xi(e,t[0]),Xi(e,t[1])]}var OC=[{x:.015625,y:.015625},{x:.015625,y:.015625},{x:.046875,y:.015625},{x:.046875,y:.015625},{x:.078125,y:.015625},{x:.078125,y:.015625},{x:.109375,y:.015625},{x:.109375,y:.015625},{x:.140625,y:.015625},{x:.140625,y:.015625},{x:.171875,y:.015625},{x:.171875,y:.015625},{x:.203125,y:.015625},{x:.203125,y:.015625},{x:.234375,y:.015625},{x:.234375,y:.015625},{x:.265625,y:.015625},{x:.265625,y:.015625},{x:.296875,y:.015625},{x:.296875,y:.015625},{x:.328125,y:.015625},{x:.328125,y:.015625},{x:.359375,y:.015625},{x:.359375,y:.015625},{x:.390625,y:.015625},{x:.390625,y:.015625},{x:.421875,y:.015625},{x:.421875,y:.015625},{x:.453125,y:.015625},{x:.453125,y:.015625},{x:.484375,y:.015625},{x:.484375,y:.015625},{x:.515625,y:.015625},{x:.515625,y:.015625},{x:.546875,y:.015625},{x:.546875,y:.015625},{x:.578125,y:.015625},{x:.578125,y:.015625},{x:.609375,y:.015625},{x:.609375,y:.015625},{x:.640625,y:.015625},{x:.640625,y:.015625},{x:.671875,y:.015625},{x:.671875,y:.015625},{x:.703125,y:.015625},{x:.703125,y:.015625},{x:.734375,y:.015625},{x:.734375,y:.015625},{x:.765625,y:.015625},{x:.765625,y:.015625},{x:.796875,y:.015625},{x:.796875,y:.015625},{x:.828125,y:.015625},{x:.828125,y:.015625},{x:.859375,y:.015625},{x:.859375,y:.015625},{x:.890625,y:.015625},{x:.890625,y:.015625},{x:.921875,y:.015625},{x:.921875,y:.015625},{x:.953125,y:.015625},{x:.953125,y:.015625},{x:.984375,y:.015625},{x:.984375,y:.015625},{x:.015625,y:.046875},{x:.015625,y:.046875},{x:.046875,y:.046875},{x:.046875,y:.046875},{x:.078125,y:.046875},{x:.078125,y:.046875},{x:.109375,y:.046875},{x:.109375,y:.046875},{x:.140625,y:.046875},{x:.140625,y:.046875},{x:.171875,y:.046875},{x:.171875,y:.046875},{x:.203125,y:.046875},{x:.203125,y:.046875},{x:.234375,y:.046875},{x:.234375,y:.046875},{x:.265625,y:.046875},{x:.265625,y:.046875},{x:.296875,y:.046875},{x:.296875,y:.046875},{x:.328125,y:.046875},{x:.328125,y:.046875},{x:.359375,y:.046875},{x:.359375,y:.046875},{x:.390625,y:.046875},{x:.390625,y:.046875},{x:.421875,y:.046875},{x:.421875,y:.046875},{x:.453125,y:.046875},{x:.453125,y:.046875},{x:.484375,y:.046875},{x:.484375,y:.046875},{x:.515625,y:.046875},{x:.515625,y:.046875},{x:.546875,y:.046875},{x:.546875,y:.046875},{x:.578125,y:.046875},{x:.578125,y:.046875},{x:.609375,y:.046875},{x:.609375,y:.046875},{x:.640625,y:.046875},{x:.640625,y:.046875},{x:.671875,y:.046875},{x:.671875,y:.046875},{x:.703125,y:.046875},{x:.703125,y:.046875},{x:.734375,y:.046875},{x:.734375,y:.046875},{x:.765625,y:.046875},{x:.765625,y:.046875},{x:.796875,y:.046875},{x:.796875,y:.046875},{x:.828125,y:.046875},{x:.828125,y:.046875},{x:.859375,y:.046875},{x:.859375,y:.046875},{x:.890625,y:.046875},{x:.890625,y:.046875},{x:.921875,y:.046875},{x:.921875,y:.046875},{x:.953125,y:.046875},{x:.953125,y:.046875},{x:.984375,y:.046875},{x:.984375,y:.046875},{x:.015625,y:.078125},{x:.015625,y:.078125},{x:.046875,y:.078125},{x:.046875,y:.078125},{x:.078125,y:.078125},{x:.078125,y:.078125},{x:.109375,y:.078125},{x:.109375,y:.078125},{x:.140625,y:.078125},{x:.140625,y:.078125},{x:.171875,y:.078125},{x:.171875,y:.078125},{x:.203125,y:.078125},{x:.203125,y:.078125},{x:.234375,y:.078125},{x:.234375,y:.078125},{x:.265625,y:.078125},{x:.265625,y:.078125},{x:.296875,y:.078125},{x:.296875,y:.078125},{x:.328125,y:.078125},{x:.328125,y:.078125},{x:.359375,y:.078125},{x:.359375,y:.078125},{x:.390625,y:.078125},{x:.390625,y:.078125},{x:.421875,y:.078125},{x:.421875,y:.078125},{x:.453125,y:.078125},{x:.453125,y:.078125},{x:.484375,y:.078125},{x:.484375,y:.078125},{x:.515625,y:.078125},{x:.515625,y:.078125},{x:.546875,y:.078125},{x:.546875,y:.078125},{x:.578125,y:.078125},{x:.578125,y:.078125},{x:.609375,y:.078125},{x:.609375,y:.078125},{x:.640625,y:.078125},{x:.640625,y:.078125},{x:.671875,y:.078125},{x:.671875,y:.078125},{x:.703125,y:.078125},{x:.703125,y:.078125},{x:.734375,y:.078125},{x:.734375,y:.078125},{x:.765625,y:.078125},{x:.765625,y:.078125},{x:.796875,y:.078125},{x:.796875,y:.078125},{x:.828125,y:.078125},{x:.828125,y:.078125},{x:.859375,y:.078125},{x:.859375,y:.078125},{x:.890625,y:.078125},{x:.890625,y:.078125},{x:.921875,y:.078125},{x:.921875,y:.078125},{x:.953125,y:.078125},{x:.953125,y:.078125},{x:.984375,y:.078125},{x:.984375,y:.078125},{x:.015625,y:.109375},{x:.015625,y:.109375},{x:.046875,y:.109375},{x:.046875,y:.109375},{x:.078125,y:.109375},{x:.078125,y:.109375},{x:.109375,y:.109375},{x:.109375,y:.109375},{x:.140625,y:.109375},{x:.140625,y:.109375},{x:.171875,y:.109375},{x:.171875,y:.109375},{x:.203125,y:.109375},{x:.203125,y:.109375},{x:.234375,y:.109375},{x:.234375,y:.109375},{x:.265625,y:.109375},{x:.265625,y:.109375},{x:.296875,y:.109375},{x:.296875,y:.109375},{x:.328125,y:.109375},{x:.328125,y:.109375},{x:.359375,y:.109375},{x:.359375,y:.109375},{x:.390625,y:.109375},{x:.390625,y:.109375},{x:.421875,y:.109375},{x:.421875,y:.109375},{x:.453125,y:.109375},{x:.453125,y:.109375},{x:.484375,y:.109375},{x:.484375,y:.109375},{x:.515625,y:.109375},{x:.515625,y:.109375},{x:.546875,y:.109375},{x:.546875,y:.109375},{x:.578125,y:.109375},{x:.578125,y:.109375},{x:.609375,y:.109375},{x:.609375,y:.109375},{x:.640625,y:.109375},{x:.640625,y:.109375},{x:.671875,y:.109375},{x:.671875,y:.109375},{x:.703125,y:.109375},{x:.703125,y:.109375},{x:.734375,y:.109375},{x:.734375,y:.109375},{x:.765625,y:.109375},{x:.765625,y:.109375},{x:.796875,y:.109375},{x:.796875,y:.109375},{x:.828125,y:.109375},{x:.828125,y:.109375},{x:.859375,y:.109375},{x:.859375,y:.109375},{x:.890625,y:.109375},{x:.890625,y:.109375},{x:.921875,y:.109375},{x:.921875,y:.109375},{x:.953125,y:.109375},{x:.953125,y:.109375},{x:.984375,y:.109375},{x:.984375,y:.109375},{x:.015625,y:.140625},{x:.015625,y:.140625},{x:.046875,y:.140625},{x:.046875,y:.140625},{x:.078125,y:.140625},{x:.078125,y:.140625},{x:.109375,y:.140625},{x:.109375,y:.140625},{x:.140625,y:.140625},{x:.140625,y:.140625},{x:.171875,y:.140625},{x:.171875,y:.140625},{x:.203125,y:.140625},{x:.203125,y:.140625},{x:.234375,y:.140625},{x:.234375,y:.140625},{x:.265625,y:.140625},{x:.265625,y:.140625},{x:.296875,y:.140625},{x:.296875,y:.140625},{x:.328125,y:.140625},{x:.328125,y:.140625},{x:.359375,y:.140625},{x:.359375,y:.140625},{x:.390625,y:.140625},{x:.390625,y:.140625},{x:.421875,y:.140625},{x:.421875,y:.140625},{x:.453125,y:.140625},{x:.453125,y:.140625},{x:.484375,y:.140625},{x:.484375,y:.140625},{x:.515625,y:.140625},{x:.515625,y:.140625},{x:.546875,y:.140625},{x:.546875,y:.140625},{x:.578125,y:.140625},{x:.578125,y:.140625},{x:.609375,y:.140625},{x:.609375,y:.140625},{x:.640625,y:.140625},{x:.640625,y:.140625},{x:.671875,y:.140625},{x:.671875,y:.140625},{x:.703125,y:.140625},{x:.703125,y:.140625},{x:.734375,y:.140625},{x:.734375,y:.140625},{x:.765625,y:.140625},{x:.765625,y:.140625},{x:.796875,y:.140625},{x:.796875,y:.140625},{x:.828125,y:.140625},{x:.828125,y:.140625},{x:.859375,y:.140625},{x:.859375,y:.140625},{x:.890625,y:.140625},{x:.890625,y:.140625},{x:.921875,y:.140625},{x:.921875,y:.140625},{x:.953125,y:.140625},{x:.953125,y:.140625},{x:.984375,y:.140625},{x:.984375,y:.140625},{x:.015625,y:.171875},{x:.015625,y:.171875},{x:.046875,y:.171875},{x:.046875,y:.171875},{x:.078125,y:.171875},{x:.078125,y:.171875},{x:.109375,y:.171875},{x:.109375,y:.171875},{x:.140625,y:.171875},{x:.140625,y:.171875},{x:.171875,y:.171875},{x:.171875,y:.171875},{x:.203125,y:.171875},{x:.203125,y:.171875},{x:.234375,y:.171875},{x:.234375,y:.171875},{x:.265625,y:.171875},{x:.265625,y:.171875},{x:.296875,y:.171875},{x:.296875,y:.171875},{x:.328125,y:.171875},{x:.328125,y:.171875},{x:.359375,y:.171875},{x:.359375,y:.171875},{x:.390625,y:.171875},{x:.390625,y:.171875},{x:.421875,y:.171875},{x:.421875,y:.171875},{x:.453125,y:.171875},{x:.453125,y:.171875},{x:.484375,y:.171875},{x:.484375,y:.171875},{x:.515625,y:.171875},{x:.515625,y:.171875},{x:.546875,y:.171875},{x:.546875,y:.171875},{x:.578125,y:.171875},{x:.578125,y:.171875},{x:.609375,y:.171875},{x:.609375,y:.171875},{x:.640625,y:.171875},{x:.640625,y:.171875},{x:.671875,y:.171875},{x:.671875,y:.171875},{x:.703125,y:.171875},{x:.703125,y:.171875},{x:.734375,y:.171875},{x:.734375,y:.171875},{x:.765625,y:.171875},{x:.765625,y:.171875},{x:.796875,y:.171875},{x:.796875,y:.171875},{x:.828125,y:.171875},{x:.828125,y:.171875},{x:.859375,y:.171875},{x:.859375,y:.171875},{x:.890625,y:.171875},{x:.890625,y:.171875},{x:.921875,y:.171875},{x:.921875,y:.171875},{x:.953125,y:.171875},{x:.953125,y:.171875},{x:.984375,y:.171875},{x:.984375,y:.171875},{x:.015625,y:.203125},{x:.015625,y:.203125},{x:.046875,y:.203125},{x:.046875,y:.203125},{x:.078125,y:.203125},{x:.078125,y:.203125},{x:.109375,y:.203125},{x:.109375,y:.203125},{x:.140625,y:.203125},{x:.140625,y:.203125},{x:.171875,y:.203125},{x:.171875,y:.203125},{x:.203125,y:.203125},{x:.203125,y:.203125},{x:.234375,y:.203125},{x:.234375,y:.203125},{x:.265625,y:.203125},{x:.265625,y:.203125},{x:.296875,y:.203125},{x:.296875,y:.203125},{x:.328125,y:.203125},{x:.328125,y:.203125},{x:.359375,y:.203125},{x:.359375,y:.203125},{x:.390625,y:.203125},{x:.390625,y:.203125},{x:.421875,y:.203125},{x:.421875,y:.203125},{x:.453125,y:.203125},{x:.453125,y:.203125},{x:.484375,y:.203125},{x:.484375,y:.203125},{x:.515625,y:.203125},{x:.515625,y:.203125},{x:.546875,y:.203125},{x:.546875,y:.203125},{x:.578125,y:.203125},{x:.578125,y:.203125},{x:.609375,y:.203125},{x:.609375,y:.203125},{x:.640625,y:.203125},{x:.640625,y:.203125},{x:.671875,y:.203125},{x:.671875,y:.203125},{x:.703125,y:.203125},{x:.703125,y:.203125},{x:.734375,y:.203125},{x:.734375,y:.203125},{x:.765625,y:.203125},{x:.765625,y:.203125},{x:.796875,y:.203125},{x:.796875,y:.203125},{x:.828125,y:.203125},{x:.828125,y:.203125},{x:.859375,y:.203125},{x:.859375,y:.203125},{x:.890625,y:.203125},{x:.890625,y:.203125},{x:.921875,y:.203125},{x:.921875,y:.203125},{x:.953125,y:.203125},{x:.953125,y:.203125},{x:.984375,y:.203125},{x:.984375,y:.203125},{x:.015625,y:.234375},{x:.015625,y:.234375},{x:.046875,y:.234375},{x:.046875,y:.234375},{x:.078125,y:.234375},{x:.078125,y:.234375},{x:.109375,y:.234375},{x:.109375,y:.234375},{x:.140625,y:.234375},{x:.140625,y:.234375},{x:.171875,y:.234375},{x:.171875,y:.234375},{x:.203125,y:.234375},{x:.203125,y:.234375},{x:.234375,y:.234375},{x:.234375,y:.234375},{x:.265625,y:.234375},{x:.265625,y:.234375},{x:.296875,y:.234375},{x:.296875,y:.234375},{x:.328125,y:.234375},{x:.328125,y:.234375},{x:.359375,y:.234375},{x:.359375,y:.234375},{x:.390625,y:.234375},{x:.390625,y:.234375},{x:.421875,y:.234375},{x:.421875,y:.234375},{x:.453125,y:.234375},{x:.453125,y:.234375},{x:.484375,y:.234375},{x:.484375,y:.234375},{x:.515625,y:.234375},{x:.515625,y:.234375},{x:.546875,y:.234375},{x:.546875,y:.234375},{x:.578125,y:.234375},{x:.578125,y:.234375},{x:.609375,y:.234375},{x:.609375,y:.234375},{x:.640625,y:.234375},{x:.640625,y:.234375},{x:.671875,y:.234375},{x:.671875,y:.234375},{x:.703125,y:.234375},{x:.703125,y:.234375},{x:.734375,y:.234375},{x:.734375,y:.234375},{x:.765625,y:.234375},{x:.765625,y:.234375},{x:.796875,y:.234375},{x:.796875,y:.234375},{x:.828125,y:.234375},{x:.828125,y:.234375},{x:.859375,y:.234375},{x:.859375,y:.234375},{x:.890625,y:.234375},{x:.890625,y:.234375},{x:.921875,y:.234375},{x:.921875,y:.234375},{x:.953125,y:.234375},{x:.953125,y:.234375},{x:.984375,y:.234375},{x:.984375,y:.234375},{x:.015625,y:.265625},{x:.015625,y:.265625},{x:.046875,y:.265625},{x:.046875,y:.265625},{x:.078125,y:.265625},{x:.078125,y:.265625},{x:.109375,y:.265625},{x:.109375,y:.265625},{x:.140625,y:.265625},{x:.140625,y:.265625},{x:.171875,y:.265625},{x:.171875,y:.265625},{x:.203125,y:.265625},{x:.203125,y:.265625},{x:.234375,y:.265625},{x:.234375,y:.265625},{x:.265625,y:.265625},{x:.265625,y:.265625},{x:.296875,y:.265625},{x:.296875,y:.265625},{x:.328125,y:.265625},{x:.328125,y:.265625},{x:.359375,y:.265625},{x:.359375,y:.265625},{x:.390625,y:.265625},{x:.390625,y:.265625},{x:.421875,y:.265625},{x:.421875,y:.265625},{x:.453125,y:.265625},{x:.453125,y:.265625},{x:.484375,y:.265625},{x:.484375,y:.265625},{x:.515625,y:.265625},{x:.515625,y:.265625},{x:.546875,y:.265625},{x:.546875,y:.265625},{x:.578125,y:.265625},{x:.578125,y:.265625},{x:.609375,y:.265625},{x:.609375,y:.265625},{x:.640625,y:.265625},{x:.640625,y:.265625},{x:.671875,y:.265625},{x:.671875,y:.265625},{x:.703125,y:.265625},{x:.703125,y:.265625},{x:.734375,y:.265625},{x:.734375,y:.265625},{x:.765625,y:.265625},{x:.765625,y:.265625},{x:.796875,y:.265625},{x:.796875,y:.265625},{x:.828125,y:.265625},{x:.828125,y:.265625},{x:.859375,y:.265625},{x:.859375,y:.265625},{x:.890625,y:.265625},{x:.890625,y:.265625},{x:.921875,y:.265625},{x:.921875,y:.265625},{x:.953125,y:.265625},{x:.953125,y:.265625},{x:.984375,y:.265625},{x:.984375,y:.265625},{x:.015625,y:.296875},{x:.015625,y:.296875},{x:.046875,y:.296875},{x:.046875,y:.296875},{x:.078125,y:.296875},{x:.078125,y:.296875},{x:.109375,y:.296875},{x:.109375,y:.296875},{x:.140625,y:.296875},{x:.140625,y:.296875},{x:.171875,y:.296875},{x:.171875,y:.296875},{x:.203125,y:.296875},{x:.203125,y:.296875},{x:.234375,y:.296875},{x:.234375,y:.296875},{x:.265625,y:.296875},{x:.265625,y:.296875},{x:.296875,y:.296875},{x:.296875,y:.296875},{x:.328125,y:.296875},{x:.328125,y:.296875},{x:.359375,y:.296875},{x:.359375,y:.296875},{x:.390625,y:.296875},{x:.390625,y:.296875},{x:.421875,y:.296875},{x:.421875,y:.296875},{x:.453125,y:.296875},{x:.453125,y:.296875},{x:.484375,y:.296875},{x:.484375,y:.296875},{x:.515625,y:.296875},{x:.515625,y:.296875},{x:.546875,y:.296875},{x:.546875,y:.296875},{x:.578125,y:.296875},{x:.578125,y:.296875},{x:.609375,y:.296875},{x:.609375,y:.296875},{x:.640625,y:.296875},{x:.640625,y:.296875},{x:.671875,y:.296875},{x:.671875,y:.296875},{x:.703125,y:.296875},{x:.703125,y:.296875},{x:.734375,y:.296875},{x:.734375,y:.296875},{x:.765625,y:.296875},{x:.765625,y:.296875},{x:.796875,y:.296875},{x:.796875,y:.296875},{x:.828125,y:.296875},{x:.828125,y:.296875},{x:.859375,y:.296875},{x:.859375,y:.296875},{x:.890625,y:.296875},{x:.890625,y:.296875},{x:.921875,y:.296875},{x:.921875,y:.296875},{x:.953125,y:.296875},{x:.953125,y:.296875},{x:.984375,y:.296875},{x:.984375,y:.296875},{x:.015625,y:.328125},{x:.015625,y:.328125},{x:.046875,y:.328125},{x:.046875,y:.328125},{x:.078125,y:.328125},{x:.078125,y:.328125},{x:.109375,y:.328125},{x:.109375,y:.328125},{x:.140625,y:.328125},{x:.140625,y:.328125},{x:.171875,y:.328125},{x:.171875,y:.328125},{x:.203125,y:.328125},{x:.203125,y:.328125},{x:.234375,y:.328125},{x:.234375,y:.328125},{x:.265625,y:.328125},{x:.265625,y:.328125},{x:.296875,y:.328125},{x:.296875,y:.328125},{x:.328125,y:.328125},{x:.328125,y:.328125},{x:.359375,y:.328125},{x:.359375,y:.328125},{x:.390625,y:.328125},{x:.390625,y:.328125},{x:.421875,y:.328125},{x:.421875,y:.328125},{x:.453125,y:.328125},{x:.453125,y:.328125},{x:.484375,y:.328125},{x:.484375,y:.328125},{x:.515625,y:.328125},{x:.515625,y:.328125},{x:.546875,y:.328125},{x:.546875,y:.328125},{x:.578125,y:.328125},{x:.578125,y:.328125},{x:.609375,y:.328125},{x:.609375,y:.328125},{x:.640625,y:.328125},{x:.640625,y:.328125},{x:.671875,y:.328125},{x:.671875,y:.328125},{x:.703125,y:.328125},{x:.703125,y:.328125},{x:.734375,y:.328125},{x:.734375,y:.328125},{x:.765625,y:.328125},{x:.765625,y:.328125},{x:.796875,y:.328125},{x:.796875,y:.328125},{x:.828125,y:.328125},{x:.828125,y:.328125},{x:.859375,y:.328125},{x:.859375,y:.328125},{x:.890625,y:.328125},{x:.890625,y:.328125},{x:.921875,y:.328125},{x:.921875,y:.328125},{x:.953125,y:.328125},{x:.953125,y:.328125},{x:.984375,y:.328125},{x:.984375,y:.328125},{x:.015625,y:.359375},{x:.015625,y:.359375},{x:.046875,y:.359375},{x:.046875,y:.359375},{x:.078125,y:.359375},{x:.078125,y:.359375},{x:.109375,y:.359375},{x:.109375,y:.359375},{x:.140625,y:.359375},{x:.140625,y:.359375},{x:.171875,y:.359375},{x:.171875,y:.359375},{x:.203125,y:.359375},{x:.203125,y:.359375},{x:.234375,y:.359375},{x:.234375,y:.359375},{x:.265625,y:.359375},{x:.265625,y:.359375},{x:.296875,y:.359375},{x:.296875,y:.359375},{x:.328125,y:.359375},{x:.328125,y:.359375},{x:.359375,y:.359375},{x:.359375,y:.359375},{x:.390625,y:.359375},{x:.390625,y:.359375},{x:.421875,y:.359375},{x:.421875,y:.359375},{x:.453125,y:.359375},{x:.453125,y:.359375},{x:.484375,y:.359375},{x:.484375,y:.359375},{x:.515625,y:.359375},{x:.515625,y:.359375},{x:.546875,y:.359375},{x:.546875,y:.359375},{x:.578125,y:.359375},{x:.578125,y:.359375},{x:.609375,y:.359375},{x:.609375,y:.359375},{x:.640625,y:.359375},{x:.640625,y:.359375},{x:.671875,y:.359375},{x:.671875,y:.359375},{x:.703125,y:.359375},{x:.703125,y:.359375},{x:.734375,y:.359375},{x:.734375,y:.359375},{x:.765625,y:.359375},{x:.765625,y:.359375},{x:.796875,y:.359375},{x:.796875,y:.359375},{x:.828125,y:.359375},{x:.828125,y:.359375},{x:.859375,y:.359375},{x:.859375,y:.359375},{x:.890625,y:.359375},{x:.890625,y:.359375},{x:.921875,y:.359375},{x:.921875,y:.359375},{x:.953125,y:.359375},{x:.953125,y:.359375},{x:.984375,y:.359375},{x:.984375,y:.359375},{x:.015625,y:.390625},{x:.015625,y:.390625},{x:.046875,y:.390625},{x:.046875,y:.390625},{x:.078125,y:.390625},{x:.078125,y:.390625},{x:.109375,y:.390625},{x:.109375,y:.390625},{x:.140625,y:.390625},{x:.140625,y:.390625},{x:.171875,y:.390625},{x:.171875,y:.390625},{x:.203125,y:.390625},{x:.203125,y:.390625},{x:.234375,y:.390625},{x:.234375,y:.390625},{x:.265625,y:.390625},{x:.265625,y:.390625},{x:.296875,y:.390625},{x:.296875,y:.390625},{x:.328125,y:.390625},{x:.328125,y:.390625},{x:.359375,y:.390625},{x:.359375,y:.390625},{x:.390625,y:.390625},{x:.390625,y:.390625},{x:.421875,y:.390625},{x:.421875,y:.390625},{x:.453125,y:.390625},{x:.453125,y:.390625},{x:.484375,y:.390625},{x:.484375,y:.390625},{x:.515625,y:.390625},{x:.515625,y:.390625},{x:.546875,y:.390625},{x:.546875,y:.390625},{x:.578125,y:.390625},{x:.578125,y:.390625},{x:.609375,y:.390625},{x:.609375,y:.390625},{x:.640625,y:.390625},{x:.640625,y:.390625},{x:.671875,y:.390625},{x:.671875,y:.390625},{x:.703125,y:.390625},{x:.703125,y:.390625},{x:.734375,y:.390625},{x:.734375,y:.390625},{x:.765625,y:.390625},{x:.765625,y:.390625},{x:.796875,y:.390625},{x:.796875,y:.390625},{x:.828125,y:.390625},{x:.828125,y:.390625},{x:.859375,y:.390625},{x:.859375,y:.390625},{x:.890625,y:.390625},{x:.890625,y:.390625},{x:.921875,y:.390625},{x:.921875,y:.390625},{x:.953125,y:.390625},{x:.953125,y:.390625},{x:.984375,y:.390625},{x:.984375,y:.390625},{x:.015625,y:.421875},{x:.015625,y:.421875},{x:.046875,y:.421875},{x:.046875,y:.421875},{x:.078125,y:.421875},{x:.078125,y:.421875},{x:.109375,y:.421875},{x:.109375,y:.421875},{x:.140625,y:.421875},{x:.140625,y:.421875},{x:.171875,y:.421875},{x:.171875,y:.421875},{x:.203125,y:.421875},{x:.203125,y:.421875},{x:.234375,y:.421875},{x:.234375,y:.421875},{x:.265625,y:.421875},{x:.265625,y:.421875},{x:.296875,y:.421875},{x:.296875,y:.421875},{x:.328125,y:.421875},{x:.328125,y:.421875},{x:.359375,y:.421875},{x:.359375,y:.421875},{x:.390625,y:.421875},{x:.390625,y:.421875},{x:.421875,y:.421875},{x:.421875,y:.421875},{x:.453125,y:.421875},{x:.453125,y:.421875},{x:.484375,y:.421875},{x:.484375,y:.421875},{x:.515625,y:.421875},{x:.515625,y:.421875},{x:.546875,y:.421875},{x:.546875,y:.421875},{x:.578125,y:.421875},{x:.578125,y:.421875},{x:.609375,y:.421875},{x:.609375,y:.421875},{x:.640625,y:.421875},{x:.640625,y:.421875},{x:.671875,y:.421875},{x:.671875,y:.421875},{x:.703125,y:.421875},{x:.703125,y:.421875},{x:.734375,y:.421875},{x:.734375,y:.421875},{x:.765625,y:.421875},{x:.765625,y:.421875},{x:.796875,y:.421875},{x:.796875,y:.421875},{x:.828125,y:.421875},{x:.828125,y:.421875},{x:.859375,y:.421875},{x:.859375,y:.421875},{x:.890625,y:.421875},{x:.890625,y:.421875},{x:.921875,y:.421875},{x:.921875,y:.421875},{x:.953125,y:.421875},{x:.953125,y:.421875},{x:.984375,y:.421875},{x:.984375,y:.421875},{x:.015625,y:.453125},{x:.015625,y:.453125},{x:.046875,y:.453125},{x:.046875,y:.453125},{x:.078125,y:.453125},{x:.078125,y:.453125},{x:.109375,y:.453125},{x:.109375,y:.453125},{x:.140625,y:.453125},{x:.140625,y:.453125},{x:.171875,y:.453125},{x:.171875,y:.453125},{x:.203125,y:.453125},{x:.203125,y:.453125},{x:.234375,y:.453125},{x:.234375,y:.453125},{x:.265625,y:.453125},{x:.265625,y:.453125},{x:.296875,y:.453125},{x:.296875,y:.453125},{x:.328125,y:.453125},{x:.328125,y:.453125},{x:.359375,y:.453125},{x:.359375,y:.453125},{x:.390625,y:.453125},{x:.390625,y:.453125},{x:.421875,y:.453125},{x:.421875,y:.453125},{x:.453125,y:.453125},{x:.453125,y:.453125},{x:.484375,y:.453125},{x:.484375,y:.453125},{x:.515625,y:.453125},{x:.515625,y:.453125},{x:.546875,y:.453125},{x:.546875,y:.453125},{x:.578125,y:.453125},{x:.578125,y:.453125},{x:.609375,y:.453125},{x:.609375,y:.453125},{x:.640625,y:.453125},{x:.640625,y:.453125},{x:.671875,y:.453125},{x:.671875,y:.453125},{x:.703125,y:.453125},{x:.703125,y:.453125},{x:.734375,y:.453125},{x:.734375,y:.453125},{x:.765625,y:.453125},{x:.765625,y:.453125},{x:.796875,y:.453125},{x:.796875,y:.453125},{x:.828125,y:.453125},{x:.828125,y:.453125},{x:.859375,y:.453125},{x:.859375,y:.453125},{x:.890625,y:.453125},{x:.890625,y:.453125},{x:.921875,y:.453125},{x:.921875,y:.453125},{x:.953125,y:.453125},{x:.953125,y:.453125},{x:.984375,y:.453125},{x:.984375,y:.453125},{x:.015625,y:.484375},{x:.015625,y:.484375},{x:.046875,y:.484375},{x:.046875,y:.484375},{x:.078125,y:.484375},{x:.078125,y:.484375},{x:.109375,y:.484375},{x:.109375,y:.484375},{x:.140625,y:.484375},{x:.140625,y:.484375},{x:.171875,y:.484375},{x:.171875,y:.484375},{x:.203125,y:.484375},{x:.203125,y:.484375},{x:.234375,y:.484375},{x:.234375,y:.484375},{x:.265625,y:.484375},{x:.265625,y:.484375},{x:.296875,y:.484375},{x:.296875,y:.484375},{x:.328125,y:.484375},{x:.328125,y:.484375},{x:.359375,y:.484375},{x:.359375,y:.484375},{x:.390625,y:.484375},{x:.390625,y:.484375},{x:.421875,y:.484375},{x:.421875,y:.484375},{x:.453125,y:.484375},{x:.453125,y:.484375},{x:.484375,y:.484375},{x:.484375,y:.484375},{x:.515625,y:.484375},{x:.515625,y:.484375},{x:.546875,y:.484375},{x:.546875,y:.484375},{x:.578125,y:.484375},{x:.578125,y:.484375},{x:.609375,y:.484375},{x:.609375,y:.484375},{x:.640625,y:.484375},{x:.640625,y:.484375},{x:.671875,y:.484375},{x:.671875,y:.484375},{x:.703125,y:.484375},{x:.703125,y:.484375},{x:.734375,y:.484375},{x:.734375,y:.484375},{x:.765625,y:.484375},{x:.765625,y:.484375},{x:.796875,y:.484375},{x:.796875,y:.484375},{x:.828125,y:.484375},{x:.828125,y:.484375},{x:.859375,y:.484375},{x:.859375,y:.484375},{x:.890625,y:.484375},{x:.890625,y:.484375},{x:.921875,y:.484375},{x:.921875,y:.484375},{x:.953125,y:.484375},{x:.953125,y:.484375},{x:.984375,y:.484375},{x:.984375,y:.484375},{x:.015625,y:.515625},{x:.015625,y:.515625},{x:.046875,y:.515625},{x:.046875,y:.515625},{x:.078125,y:.515625},{x:.078125,y:.515625},{x:.109375,y:.515625},{x:.109375,y:.515625},{x:.140625,y:.515625},{x:.140625,y:.515625},{x:.171875,y:.515625},{x:.171875,y:.515625},{x:.203125,y:.515625},{x:.203125,y:.515625},{x:.234375,y:.515625},{x:.234375,y:.515625},{x:.265625,y:.515625},{x:.265625,y:.515625},{x:.296875,y:.515625},{x:.296875,y:.515625},{x:.328125,y:.515625},{x:.328125,y:.515625},{x:.359375,y:.515625},{x:.359375,y:.515625},{x:.390625,y:.515625},{x:.390625,y:.515625},{x:.421875,y:.515625},{x:.421875,y:.515625},{x:.453125,y:.515625},{x:.453125,y:.515625},{x:.484375,y:.515625},{x:.484375,y:.515625},{x:.515625,y:.515625},{x:.515625,y:.515625},{x:.546875,y:.515625},{x:.546875,y:.515625},{x:.578125,y:.515625},{x:.578125,y:.515625},{x:.609375,y:.515625},{x:.609375,y:.515625},{x:.640625,y:.515625},{x:.640625,y:.515625},{x:.671875,y:.515625},{x:.671875,y:.515625},{x:.703125,y:.515625},{x:.703125,y:.515625},{x:.734375,y:.515625},{x:.734375,y:.515625},{x:.765625,y:.515625},{x:.765625,y:.515625},{x:.796875,y:.515625},{x:.796875,y:.515625},{x:.828125,y:.515625},{x:.828125,y:.515625},{x:.859375,y:.515625},{x:.859375,y:.515625},{x:.890625,y:.515625},{x:.890625,y:.515625},{x:.921875,y:.515625},{x:.921875,y:.515625},{x:.953125,y:.515625},{x:.953125,y:.515625},{x:.984375,y:.515625},{x:.984375,y:.515625},{x:.015625,y:.546875},{x:.015625,y:.546875},{x:.046875,y:.546875},{x:.046875,y:.546875},{x:.078125,y:.546875},{x:.078125,y:.546875},{x:.109375,y:.546875},{x:.109375,y:.546875},{x:.140625,y:.546875},{x:.140625,y:.546875},{x:.171875,y:.546875},{x:.171875,y:.546875},{x:.203125,y:.546875},{x:.203125,y:.546875},{x:.234375,y:.546875},{x:.234375,y:.546875},{x:.265625,y:.546875},{x:.265625,y:.546875},{x:.296875,y:.546875},{x:.296875,y:.546875},{x:.328125,y:.546875},{x:.328125,y:.546875},{x:.359375,y:.546875},{x:.359375,y:.546875},{x:.390625,y:.546875},{x:.390625,y:.546875},{x:.421875,y:.546875},{x:.421875,y:.546875},{x:.453125,y:.546875},{x:.453125,y:.546875},{x:.484375,y:.546875},{x:.484375,y:.546875},{x:.515625,y:.546875},{x:.515625,y:.546875},{x:.546875,y:.546875},{x:.546875,y:.546875},{x:.578125,y:.546875},{x:.578125,y:.546875},{x:.609375,y:.546875},{x:.609375,y:.546875},{x:.640625,y:.546875},{x:.640625,y:.546875},{x:.671875,y:.546875},{x:.671875,y:.546875},{x:.703125,y:.546875},{x:.703125,y:.546875},{x:.734375,y:.546875},{x:.734375,y:.546875},{x:.765625,y:.546875},{x:.765625,y:.546875},{x:.796875,y:.546875},{x:.796875,y:.546875},{x:.828125,y:.546875},{x:.828125,y:.546875},{x:.859375,y:.546875},{x:.859375,y:.546875},{x:.890625,y:.546875},{x:.890625,y:.546875},{x:.921875,y:.546875},{x:.921875,y:.546875},{x:.953125,y:.546875},{x:.953125,y:.546875},{x:.984375,y:.546875},{x:.984375,y:.546875},{x:.015625,y:.578125},{x:.015625,y:.578125},{x:.046875,y:.578125},{x:.046875,y:.578125},{x:.078125,y:.578125},{x:.078125,y:.578125},{x:.109375,y:.578125},{x:.109375,y:.578125},{x:.140625,y:.578125},{x:.140625,y:.578125},{x:.171875,y:.578125},{x:.171875,y:.578125},{x:.203125,y:.578125},{x:.203125,y:.578125},{x:.234375,y:.578125},{x:.234375,y:.578125},{x:.265625,y:.578125},{x:.265625,y:.578125},{x:.296875,y:.578125},{x:.296875,y:.578125},{x:.328125,y:.578125},{x:.328125,y:.578125},{x:.359375,y:.578125},{x:.359375,y:.578125},{x:.390625,y:.578125},{x:.390625,y:.578125},{x:.421875,y:.578125},{x:.421875,y:.578125},{x:.453125,y:.578125},{x:.453125,y:.578125},{x:.484375,y:.578125},{x:.484375,y:.578125},{x:.515625,y:.578125},{x:.515625,y:.578125},{x:.546875,y:.578125},{x:.546875,y:.578125},{x:.578125,y:.578125},{x:.578125,y:.578125},{x:.609375,y:.578125},{x:.609375,y:.578125},{x:.640625,y:.578125},{x:.640625,y:.578125},{x:.671875,y:.578125},{x:.671875,y:.578125},{x:.703125,y:.578125},{x:.703125,y:.578125},{x:.734375,y:.578125},{x:.734375,y:.578125},{x:.765625,y:.578125},{x:.765625,y:.578125},{x:.796875,y:.578125},{x:.796875,y:.578125},{x:.828125,y:.578125},{x:.828125,y:.578125},{x:.859375,y:.578125},{x:.859375,y:.578125},{x:.890625,y:.578125},{x:.890625,y:.578125},{x:.921875,y:.578125},{x:.921875,y:.578125},{x:.953125,y:.578125},{x:.953125,y:.578125},{x:.984375,y:.578125},{x:.984375,y:.578125},{x:.015625,y:.609375},{x:.015625,y:.609375},{x:.046875,y:.609375},{x:.046875,y:.609375},{x:.078125,y:.609375},{x:.078125,y:.609375},{x:.109375,y:.609375},{x:.109375,y:.609375},{x:.140625,y:.609375},{x:.140625,y:.609375},{x:.171875,y:.609375},{x:.171875,y:.609375},{x:.203125,y:.609375},{x:.203125,y:.609375},{x:.234375,y:.609375},{x:.234375,y:.609375},{x:.265625,y:.609375},{x:.265625,y:.609375},{x:.296875,y:.609375},{x:.296875,y:.609375},{x:.328125,y:.609375},{x:.328125,y:.609375},{x:.359375,y:.609375},{x:.359375,y:.609375},{x:.390625,y:.609375},{x:.390625,y:.609375},{x:.421875,y:.609375},{x:.421875,y:.609375},{x:.453125,y:.609375},{x:.453125,y:.609375},{x:.484375,y:.609375},{x:.484375,y:.609375},{x:.515625,y:.609375},{x:.515625,y:.609375},{x:.546875,y:.609375},{x:.546875,y:.609375},{x:.578125,y:.609375},{x:.578125,y:.609375},{x:.609375,y:.609375},{x:.609375,y:.609375},{x:.640625,y:.609375},{x:.640625,y:.609375},{x:.671875,y:.609375},{x:.671875,y:.609375},{x:.703125,y:.609375},{x:.703125,y:.609375},{x:.734375,y:.609375},{x:.734375,y:.609375},{x:.765625,y:.609375},{x:.765625,y:.609375},{x:.796875,y:.609375},{x:.796875,y:.609375},{x:.828125,y:.609375},{x:.828125,y:.609375},{x:.859375,y:.609375},{x:.859375,y:.609375},{x:.890625,y:.609375},{x:.890625,y:.609375},{x:.921875,y:.609375},{x:.921875,y:.609375},{x:.953125,y:.609375},{x:.953125,y:.609375},{x:.984375,y:.609375},{x:.984375,y:.609375},{x:.015625,y:.640625},{x:.015625,y:.640625},{x:.046875,y:.640625},{x:.046875,y:.640625},{x:.078125,y:.640625},{x:.078125,y:.640625},{x:.109375,y:.640625},{x:.109375,y:.640625},{x:.140625,y:.640625},{x:.140625,y:.640625},{x:.171875,y:.640625},{x:.171875,y:.640625},{x:.203125,y:.640625},{x:.203125,y:.640625},{x:.234375,y:.640625},{x:.234375,y:.640625},{x:.265625,y:.640625},{x:.265625,y:.640625},{x:.296875,y:.640625},{x:.296875,y:.640625},{x:.328125,y:.640625},{x:.328125,y:.640625},{x:.359375,y:.640625},{x:.359375,y:.640625},{x:.390625,y:.640625},{x:.390625,y:.640625},{x:.421875,y:.640625},{x:.421875,y:.640625},{x:.453125,y:.640625},{x:.453125,y:.640625},{x:.484375,y:.640625},{x:.484375,y:.640625},{x:.515625,y:.640625},{x:.515625,y:.640625},{x:.546875,y:.640625},{x:.546875,y:.640625},{x:.578125,y:.640625},{x:.578125,y:.640625},{x:.609375,y:.640625},{x:.609375,y:.640625},{x:.640625,y:.640625},{x:.640625,y:.640625},{x:.671875,y:.640625},{x:.671875,y:.640625},{x:.703125,y:.640625},{x:.703125,y:.640625},{x:.734375,y:.640625},{x:.734375,y:.640625},{x:.765625,y:.640625},{x:.765625,y:.640625},{x:.796875,y:.640625},{x:.796875,y:.640625},{x:.828125,y:.640625},{x:.828125,y:.640625},{x:.859375,y:.640625},{x:.859375,y:.640625},{x:.890625,y:.640625},{x:.890625,y:.640625},{x:.921875,y:.640625},{x:.921875,y:.640625},{x:.953125,y:.640625},{x:.953125,y:.640625},{x:.984375,y:.640625},{x:.984375,y:.640625},{x:.015625,y:.671875},{x:.015625,y:.671875},{x:.046875,y:.671875},{x:.046875,y:.671875},{x:.078125,y:.671875},{x:.078125,y:.671875},{x:.109375,y:.671875},{x:.109375,y:.671875},{x:.140625,y:.671875},{x:.140625,y:.671875},{x:.171875,y:.671875},{x:.171875,y:.671875},{x:.203125,y:.671875},{x:.203125,y:.671875},{x:.234375,y:.671875},{x:.234375,y:.671875},{x:.265625,y:.671875},{x:.265625,y:.671875},{x:.296875,y:.671875},{x:.296875,y:.671875},{x:.328125,y:.671875},{x:.328125,y:.671875},{x:.359375,y:.671875},{x:.359375,y:.671875},{x:.390625,y:.671875},{x:.390625,y:.671875},{x:.421875,y:.671875},{x:.421875,y:.671875},{x:.453125,y:.671875},{x:.453125,y:.671875},{x:.484375,y:.671875},{x:.484375,y:.671875},{x:.515625,y:.671875},{x:.515625,y:.671875},{x:.546875,y:.671875},{x:.546875,y:.671875},{x:.578125,y:.671875},{x:.578125,y:.671875},{x:.609375,y:.671875},{x:.609375,y:.671875},{x:.640625,y:.671875},{x:.640625,y:.671875},{x:.671875,y:.671875},{x:.671875,y:.671875},{x:.703125,y:.671875},{x:.703125,y:.671875},{x:.734375,y:.671875},{x:.734375,y:.671875},{x:.765625,y:.671875},{x:.765625,y:.671875},{x:.796875,y:.671875},{x:.796875,y:.671875},{x:.828125,y:.671875},{x:.828125,y:.671875},{x:.859375,y:.671875},{x:.859375,y:.671875},{x:.890625,y:.671875},{x:.890625,y:.671875},{x:.921875,y:.671875},{x:.921875,y:.671875},{x:.953125,y:.671875},{x:.953125,y:.671875},{x:.984375,y:.671875},{x:.984375,y:.671875},{x:.015625,y:.703125},{x:.015625,y:.703125},{x:.046875,y:.703125},{x:.046875,y:.703125},{x:.078125,y:.703125},{x:.078125,y:.703125},{x:.109375,y:.703125},{x:.109375,y:.703125},{x:.140625,y:.703125},{x:.140625,y:.703125},{x:.171875,y:.703125},{x:.171875,y:.703125},{x:.203125,y:.703125},{x:.203125,y:.703125},{x:.234375,y:.703125},{x:.234375,y:.703125},{x:.265625,y:.703125},{x:.265625,y:.703125},{x:.296875,y:.703125},{x:.296875,y:.703125},{x:.328125,y:.703125},{x:.328125,y:.703125},{x:.359375,y:.703125},{x:.359375,y:.703125},{x:.390625,y:.703125},{x:.390625,y:.703125},{x:.421875,y:.703125},{x:.421875,y:.703125},{x:.453125,y:.703125},{x:.453125,y:.703125},{x:.484375,y:.703125},{x:.484375,y:.703125},{x:.515625,y:.703125},{x:.515625,y:.703125},{x:.546875,y:.703125},{x:.546875,y:.703125},{x:.578125,y:.703125},{x:.578125,y:.703125},{x:.609375,y:.703125},{x:.609375,y:.703125},{x:.640625,y:.703125},{x:.640625,y:.703125},{x:.671875,y:.703125},{x:.671875,y:.703125},{x:.703125,y:.703125},{x:.703125,y:.703125},{x:.734375,y:.703125},{x:.734375,y:.703125},{x:.765625,y:.703125},{x:.765625,y:.703125},{x:.796875,y:.703125},{x:.796875,y:.703125},{x:.828125,y:.703125},{x:.828125,y:.703125},{x:.859375,y:.703125},{x:.859375,y:.703125},{x:.890625,y:.703125},{x:.890625,y:.703125},{x:.921875,y:.703125},{x:.921875,y:.703125},{x:.953125,y:.703125},{x:.953125,y:.703125},{x:.984375,y:.703125},{x:.984375,y:.703125},{x:.015625,y:.734375},{x:.015625,y:.734375},{x:.046875,y:.734375},{x:.046875,y:.734375},{x:.078125,y:.734375},{x:.078125,y:.734375},{x:.109375,y:.734375},{x:.109375,y:.734375},{x:.140625,y:.734375},{x:.140625,y:.734375},{x:.171875,y:.734375},{x:.171875,y:.734375},{x:.203125,y:.734375},{x:.203125,y:.734375},{x:.234375,y:.734375},{x:.234375,y:.734375},{x:.265625,y:.734375},{x:.265625,y:.734375},{x:.296875,y:.734375},{x:.296875,y:.734375},{x:.328125,y:.734375},{x:.328125,y:.734375},{x:.359375,y:.734375},{x:.359375,y:.734375},{x:.390625,y:.734375},{x:.390625,y:.734375},{x:.421875,y:.734375},{x:.421875,y:.734375},{x:.453125,y:.734375},{x:.453125,y:.734375},{x:.484375,y:.734375},{x:.484375,y:.734375},{x:.515625,y:.734375},{x:.515625,y:.734375},{x:.546875,y:.734375},{x:.546875,y:.734375},{x:.578125,y:.734375},{x:.578125,y:.734375},{x:.609375,y:.734375},{x:.609375,y:.734375},{x:.640625,y:.734375},{x:.640625,y:.734375},{x:.671875,y:.734375},{x:.671875,y:.734375},{x:.703125,y:.734375},{x:.703125,y:.734375},{x:.734375,y:.734375},{x:.734375,y:.734375},{x:.765625,y:.734375},{x:.765625,y:.734375},{x:.796875,y:.734375},{x:.796875,y:.734375},{x:.828125,y:.734375},{x:.828125,y:.734375},{x:.859375,y:.734375},{x:.859375,y:.734375},{x:.890625,y:.734375},{x:.890625,y:.734375},{x:.921875,y:.734375},{x:.921875,y:.734375},{x:.953125,y:.734375},{x:.953125,y:.734375},{x:.984375,y:.734375},{x:.984375,y:.734375},{x:.015625,y:.765625},{x:.015625,y:.765625},{x:.046875,y:.765625},{x:.046875,y:.765625},{x:.078125,y:.765625},{x:.078125,y:.765625},{x:.109375,y:.765625},{x:.109375,y:.765625},{x:.140625,y:.765625},{x:.140625,y:.765625},{x:.171875,y:.765625},{x:.171875,y:.765625},{x:.203125,y:.765625},{x:.203125,y:.765625},{x:.234375,y:.765625},{x:.234375,y:.765625},{x:.265625,y:.765625},{x:.265625,y:.765625},{x:.296875,y:.765625},{x:.296875,y:.765625},{x:.328125,y:.765625},{x:.328125,y:.765625},{x:.359375,y:.765625},{x:.359375,y:.765625},{x:.390625,y:.765625},{x:.390625,y:.765625},{x:.421875,y:.765625},{x:.421875,y:.765625},{x:.453125,y:.765625},{x:.453125,y:.765625},{x:.484375,y:.765625},{x:.484375,y:.765625},{x:.515625,y:.765625},{x:.515625,y:.765625},{x:.546875,y:.765625},{x:.546875,y:.765625},{x:.578125,y:.765625},{x:.578125,y:.765625},{x:.609375,y:.765625},{x:.609375,y:.765625},{x:.640625,y:.765625},{x:.640625,y:.765625},{x:.671875,y:.765625},{x:.671875,y:.765625},{x:.703125,y:.765625},{x:.703125,y:.765625},{x:.734375,y:.765625},{x:.734375,y:.765625},{x:.765625,y:.765625},{x:.765625,y:.765625},{x:.796875,y:.765625},{x:.796875,y:.765625},{x:.828125,y:.765625},{x:.828125,y:.765625},{x:.859375,y:.765625},{x:.859375,y:.765625},{x:.890625,y:.765625},{x:.890625,y:.765625},{x:.921875,y:.765625},{x:.921875,y:.765625},{x:.953125,y:.765625},{x:.953125,y:.765625},{x:.984375,y:.765625},{x:.984375,y:.765625},{x:.015625,y:.796875},{x:.015625,y:.796875},{x:.046875,y:.796875},{x:.046875,y:.796875},{x:.078125,y:.796875},{x:.078125,y:.796875},{x:.109375,y:.796875},{x:.109375,y:.796875},{x:.140625,y:.796875},{x:.140625,y:.796875},{x:.171875,y:.796875},{x:.171875,y:.796875},{x:.203125,y:.796875},{x:.203125,y:.796875},{x:.234375,y:.796875},{x:.234375,y:.796875},{x:.265625,y:.796875},{x:.265625,y:.796875},{x:.296875,y:.796875},{x:.296875,y:.796875},{x:.328125,y:.796875},{x:.328125,y:.796875},{x:.359375,y:.796875},{x:.359375,y:.796875},{x:.390625,y:.796875},{x:.390625,y:.796875},{x:.421875,y:.796875},{x:.421875,y:.796875},{x:.453125,y:.796875},{x:.453125,y:.796875},{x:.484375,y:.796875},{x:.484375,y:.796875},{x:.515625,y:.796875},{x:.515625,y:.796875},{x:.546875,y:.796875},{x:.546875,y:.796875},{x:.578125,y:.796875},{x:.578125,y:.796875},{x:.609375,y:.796875},{x:.609375,y:.796875},{x:.640625,y:.796875},{x:.640625,y:.796875},{x:.671875,y:.796875},{x:.671875,y:.796875},{x:.703125,y:.796875},{x:.703125,y:.796875},{x:.734375,y:.796875},{x:.734375,y:.796875},{x:.765625,y:.796875},{x:.765625,y:.796875},{x:.796875,y:.796875},{x:.796875,y:.796875},{x:.828125,y:.796875},{x:.828125,y:.796875},{x:.859375,y:.796875},{x:.859375,y:.796875},{x:.890625,y:.796875},{x:.890625,y:.796875},{x:.921875,y:.796875},{x:.921875,y:.796875},{x:.953125,y:.796875},{x:.953125,y:.796875},{x:.984375,y:.796875},{x:.984375,y:.796875},{x:.015625,y:.828125},{x:.015625,y:.828125},{x:.046875,y:.828125},{x:.046875,y:.828125},{x:.078125,y:.828125},{x:.078125,y:.828125},{x:.109375,y:.828125},{x:.109375,y:.828125},{x:.140625,y:.828125},{x:.140625,y:.828125},{x:.171875,y:.828125},{x:.171875,y:.828125},{x:.203125,y:.828125},{x:.203125,y:.828125},{x:.234375,y:.828125},{x:.234375,y:.828125},{x:.265625,y:.828125},{x:.265625,y:.828125},{x:.296875,y:.828125},{x:.296875,y:.828125},{x:.328125,y:.828125},{x:.328125,y:.828125},{x:.359375,y:.828125},{x:.359375,y:.828125},{x:.390625,y:.828125},{x:.390625,y:.828125},{x:.421875,y:.828125},{x:.421875,y:.828125},{x:.453125,y:.828125},{x:.453125,y:.828125},{x:.484375,y:.828125},{x:.484375,y:.828125},{x:.515625,y:.828125},{x:.515625,y:.828125},{x:.546875,y:.828125},{x:.546875,y:.828125},{x:.578125,y:.828125},{x:.578125,y:.828125},{x:.609375,y:.828125},{x:.609375,y:.828125},{x:.640625,y:.828125},{x:.640625,y:.828125},{x:.671875,y:.828125},{x:.671875,y:.828125},{x:.703125,y:.828125},{x:.703125,y:.828125},{x:.734375,y:.828125},{x:.734375,y:.828125},{x:.765625,y:.828125},{x:.765625,y:.828125},{x:.796875,y:.828125},{x:.796875,y:.828125},{x:.828125,y:.828125},{x:.828125,y:.828125},{x:.859375,y:.828125},{x:.859375,y:.828125},{x:.890625,y:.828125},{x:.890625,y:.828125},{x:.921875,y:.828125},{x:.921875,y:.828125},{x:.953125,y:.828125},{x:.953125,y:.828125},{x:.984375,y:.828125},{x:.984375,y:.828125},{x:.015625,y:.859375},{x:.015625,y:.859375},{x:.046875,y:.859375},{x:.046875,y:.859375},{x:.078125,y:.859375},{x:.078125,y:.859375},{x:.109375,y:.859375},{x:.109375,y:.859375},{x:.140625,y:.859375},{x:.140625,y:.859375},{x:.171875,y:.859375},{x:.171875,y:.859375},{x:.203125,y:.859375},{x:.203125,y:.859375},{x:.234375,y:.859375},{x:.234375,y:.859375},{x:.265625,y:.859375},{x:.265625,y:.859375},{x:.296875,y:.859375},{x:.296875,y:.859375},{x:.328125,y:.859375},{x:.328125,y:.859375},{x:.359375,y:.859375},{x:.359375,y:.859375},{x:.390625,y:.859375},{x:.390625,y:.859375},{x:.421875,y:.859375},{x:.421875,y:.859375},{x:.453125,y:.859375},{x:.453125,y:.859375},{x:.484375,y:.859375},{x:.484375,y:.859375},{x:.515625,y:.859375},{x:.515625,y:.859375},{x:.546875,y:.859375},{x:.546875,y:.859375},{x:.578125,y:.859375},{x:.578125,y:.859375},{x:.609375,y:.859375},{x:.609375,y:.859375},{x:.640625,y:.859375},{x:.640625,y:.859375},{x:.671875,y:.859375},{x:.671875,y:.859375},{x:.703125,y:.859375},{x:.703125,y:.859375},{x:.734375,y:.859375},{x:.734375,y:.859375},{x:.765625,y:.859375},{x:.765625,y:.859375},{x:.796875,y:.859375},{x:.796875,y:.859375},{x:.828125,y:.859375},{x:.828125,y:.859375},{x:.859375,y:.859375},{x:.859375,y:.859375},{x:.890625,y:.859375},{x:.890625,y:.859375},{x:.921875,y:.859375},{x:.921875,y:.859375},{x:.953125,y:.859375},{x:.953125,y:.859375},{x:.984375,y:.859375},{x:.984375,y:.859375},{x:.015625,y:.890625},{x:.015625,y:.890625},{x:.046875,y:.890625},{x:.046875,y:.890625},{x:.078125,y:.890625},{x:.078125,y:.890625},{x:.109375,y:.890625},{x:.109375,y:.890625},{x:.140625,y:.890625},{x:.140625,y:.890625},{x:.171875,y:.890625},{x:.171875,y:.890625},{x:.203125,y:.890625},{x:.203125,y:.890625},{x:.234375,y:.890625},{x:.234375,y:.890625},{x:.265625,y:.890625},{x:.265625,y:.890625},{x:.296875,y:.890625},{x:.296875,y:.890625},{x:.328125,y:.890625},{x:.328125,y:.890625},{x:.359375,y:.890625},{x:.359375,y:.890625},{x:.390625,y:.890625},{x:.390625,y:.890625},{x:.421875,y:.890625},{x:.421875,y:.890625},{x:.453125,y:.890625},{x:.453125,y:.890625},{x:.484375,y:.890625},{x:.484375,y:.890625},{x:.515625,y:.890625},{x:.515625,y:.890625},{x:.546875,y:.890625},{x:.546875,y:.890625},{x:.578125,y:.890625},{x:.578125,y:.890625},{x:.609375,y:.890625},{x:.609375,y:.890625},{x:.640625,y:.890625},{x:.640625,y:.890625},{x:.671875,y:.890625},{x:.671875,y:.890625},{x:.703125,y:.890625},{x:.703125,y:.890625},{x:.734375,y:.890625},{x:.734375,y:.890625},{x:.765625,y:.890625},{x:.765625,y:.890625},{x:.796875,y:.890625},{x:.796875,y:.890625},{x:.828125,y:.890625},{x:.828125,y:.890625},{x:.859375,y:.890625},{x:.859375,y:.890625},{x:.890625,y:.890625},{x:.890625,y:.890625},{x:.921875,y:.890625},{x:.921875,y:.890625},{x:.953125,y:.890625},{x:.953125,y:.890625},{x:.984375,y:.890625},{x:.984375,y:.890625},{x:.015625,y:.921875},{x:.015625,y:.921875},{x:.046875,y:.921875},{x:.046875,y:.921875},{x:.078125,y:.921875},{x:.078125,y:.921875},{x:.109375,y:.921875},{x:.109375,y:.921875},{x:.140625,y:.921875},{x:.140625,y:.921875},{x:.171875,y:.921875},{x:.171875,y:.921875},{x:.203125,y:.921875},{x:.203125,y:.921875},{x:.234375,y:.921875},{x:.234375,y:.921875},{x:.265625,y:.921875},{x:.265625,y:.921875},{x:.296875,y:.921875},{x:.296875,y:.921875},{x:.328125,y:.921875},{x:.328125,y:.921875},{x:.359375,y:.921875},{x:.359375,y:.921875},{x:.390625,y:.921875},{x:.390625,y:.921875},{x:.421875,y:.921875},{x:.421875,y:.921875},{x:.453125,y:.921875},{x:.453125,y:.921875},{x:.484375,y:.921875},{x:.484375,y:.921875},{x:.515625,y:.921875},{x:.515625,y:.921875},{x:.546875,y:.921875},{x:.546875,y:.921875},{x:.578125,y:.921875},{x:.578125,y:.921875},{x:.609375,y:.921875},{x:.609375,y:.921875},{x:.640625,y:.921875},{x:.640625,y:.921875},{x:.671875,y:.921875},{x:.671875,y:.921875},{x:.703125,y:.921875},{x:.703125,y:.921875},{x:.734375,y:.921875},{x:.734375,y:.921875},{x:.765625,y:.921875},{x:.765625,y:.921875},{x:.796875,y:.921875},{x:.796875,y:.921875},{x:.828125,y:.921875},{x:.828125,y:.921875},{x:.859375,y:.921875},{x:.859375,y:.921875},{x:.890625,y:.921875},{x:.890625,y:.921875},{x:.921875,y:.921875},{x:.921875,y:.921875},{x:.953125,y:.921875},{x:.953125,y:.921875},{x:.984375,y:.921875},{x:.984375,y:.921875},{x:.015625,y:.953125},{x:.015625,y:.953125},{x:.046875,y:.953125},{x:.046875,y:.953125},{x:.078125,y:.953125},{x:.078125,y:.953125},{x:.109375,y:.953125},{x:.109375,y:.953125},{x:.140625,y:.953125},{x:.140625,y:.953125},{x:.171875,y:.953125},{x:.171875,y:.953125},{x:.203125,y:.953125},{x:.203125,y:.953125},{x:.234375,y:.953125},{x:.234375,y:.953125},{x:.265625,y:.953125},{x:.265625,y:.953125},{x:.296875,y:.953125},{x:.296875,y:.953125},{x:.328125,y:.953125},{x:.328125,y:.953125},{x:.359375,y:.953125},{x:.359375,y:.953125},{x:.390625,y:.953125},{x:.390625,y:.953125},{x:.421875,y:.953125},{x:.421875,y:.953125},{x:.453125,y:.953125},{x:.453125,y:.953125},{x:.484375,y:.953125},{x:.484375,y:.953125},{x:.515625,y:.953125},{x:.515625,y:.953125},{x:.546875,y:.953125},{x:.546875,y:.953125},{x:.578125,y:.953125},{x:.578125,y:.953125},{x:.609375,y:.953125},{x:.609375,y:.953125},{x:.640625,y:.953125},{x:.640625,y:.953125},{x:.671875,y:.953125},{x:.671875,y:.953125},{x:.703125,y:.953125},{x:.703125,y:.953125},{x:.734375,y:.953125},{x:.734375,y:.953125},{x:.765625,y:.953125},{x:.765625,y:.953125},{x:.796875,y:.953125},{x:.796875,y:.953125},{x:.828125,y:.953125},{x:.828125,y:.953125},{x:.859375,y:.953125},{x:.859375,y:.953125},{x:.890625,y:.953125},{x:.890625,y:.953125},{x:.921875,y:.953125},{x:.921875,y:.953125},{x:.953125,y:.953125},{x:.953125,y:.953125},{x:.984375,y:.953125},{x:.984375,y:.953125},{x:.015625,y:.984375},{x:.015625,y:.984375},{x:.046875,y:.984375},{x:.046875,y:.984375},{x:.078125,y:.984375},{x:.078125,y:.984375},{x:.109375,y:.984375},{x:.109375,y:.984375},{x:.140625,y:.984375},{x:.140625,y:.984375},{x:.171875,y:.984375},{x:.171875,y:.984375},{x:.203125,y:.984375},{x:.203125,y:.984375},{x:.234375,y:.984375},{x:.234375,y:.984375},{x:.265625,y:.984375},{x:.265625,y:.984375},{x:.296875,y:.984375},{x:.296875,y:.984375},{x:.328125,y:.984375},{x:.328125,y:.984375},{x:.359375,y:.984375},{x:.359375,y:.984375},{x:.390625,y:.984375},{x:.390625,y:.984375},{x:.421875,y:.984375},{x:.421875,y:.984375},{x:.453125,y:.984375},{x:.453125,y:.984375},{x:.484375,y:.984375},{x:.484375,y:.984375},{x:.515625,y:.984375},{x:.515625,y:.984375},{x:.546875,y:.984375},{x:.546875,y:.984375},{x:.578125,y:.984375},{x:.578125,y:.984375},{x:.609375,y:.984375},{x:.609375,y:.984375},{x:.640625,y:.984375},{x:.640625,y:.984375},{x:.671875,y:.984375},{x:.671875,y:.984375},{x:.703125,y:.984375},{x:.703125,y:.984375},{x:.734375,y:.984375},{x:.734375,y:.984375},{x:.765625,y:.984375},{x:.765625,y:.984375},{x:.796875,y:.984375},{x:.796875,y:.984375},{x:.828125,y:.984375},{x:.828125,y:.984375},{x:.859375,y:.984375},{x:.859375,y:.984375},{x:.890625,y:.984375},{x:.890625,y:.984375},{x:.921875,y:.984375},{x:.921875,y:.984375},{x:.953125,y:.984375},{x:.953125,y:.984375},{x:.984375,y:.984375},{x:.984375,y:.984375},{x:.03125,y:.03125},{x:.03125,y:.03125},{x:.09375,y:.03125},{x:.09375,y:.03125},{x:.15625,y:.03125},{x:.15625,y:.03125},{x:.21875,y:.03125},{x:.21875,y:.03125},{x:.28125,y:.03125},{x:.28125,y:.03125},{x:.34375,y:.03125},{x:.34375,y:.03125},{x:.40625,y:.03125},{x:.40625,y:.03125},{x:.46875,y:.03125},{x:.46875,y:.03125},{x:.53125,y:.03125},{x:.53125,y:.03125},{x:.59375,y:.03125},{x:.59375,y:.03125},{x:.65625,y:.03125},{x:.65625,y:.03125},{x:.71875,y:.03125},{x:.71875,y:.03125},{x:.78125,y:.03125},{x:.78125,y:.03125},{x:.84375,y:.03125},{x:.84375,y:.03125},{x:.90625,y:.03125},{x:.90625,y:.03125},{x:.96875,y:.03125},{x:.96875,y:.03125},{x:.03125,y:.09375},{x:.03125,y:.09375},{x:.09375,y:.09375},{x:.09375,y:.09375},{x:.15625,y:.09375},{x:.15625,y:.09375},{x:.21875,y:.09375},{x:.21875,y:.09375},{x:.28125,y:.09375},{x:.28125,y:.09375},{x:.34375,y:.09375},{x:.34375,y:.09375},{x:.40625,y:.09375},{x:.40625,y:.09375},{x:.46875,y:.09375},{x:.46875,y:.09375},{x:.53125,y:.09375},{x:.53125,y:.09375},{x:.59375,y:.09375},{x:.59375,y:.09375},{x:.65625,y:.09375},{x:.65625,y:.09375},{x:.71875,y:.09375},{x:.71875,y:.09375},{x:.78125,y:.09375},{x:.78125,y:.09375},{x:.84375,y:.09375},{x:.84375,y:.09375},{x:.90625,y:.09375},{x:.90625,y:.09375},{x:.96875,y:.09375},{x:.96875,y:.09375},{x:.03125,y:.15625},{x:.03125,y:.15625},{x:.09375,y:.15625},{x:.09375,y:.15625},{x:.15625,y:.15625},{x:.15625,y:.15625},{x:.21875,y:.15625},{x:.21875,y:.15625},{x:.28125,y:.15625},{x:.28125,y:.15625},{x:.34375,y:.15625},{x:.34375,y:.15625},{x:.40625,y:.15625},{x:.40625,y:.15625},{x:.46875,y:.15625},{x:.46875,y:.15625},{x:.53125,y:.15625},{x:.53125,y:.15625},{x:.59375,y:.15625},{x:.59375,y:.15625},{x:.65625,y:.15625},{x:.65625,y:.15625},{x:.71875,y:.15625},{x:.71875,y:.15625},{x:.78125,y:.15625},{x:.78125,y:.15625},{x:.84375,y:.15625},{x:.84375,y:.15625},{x:.90625,y:.15625},{x:.90625,y:.15625},{x:.96875,y:.15625},{x:.96875,y:.15625},{x:.03125,y:.21875},{x:.03125,y:.21875},{x:.09375,y:.21875},{x:.09375,y:.21875},{x:.15625,y:.21875},{x:.15625,y:.21875},{x:.21875,y:.21875},{x:.21875,y:.21875},{x:.28125,y:.21875},{x:.28125,y:.21875},{x:.34375,y:.21875},{x:.34375,y:.21875},{x:.40625,y:.21875},{x:.40625,y:.21875},{x:.46875,y:.21875},{x:.46875,y:.21875},{x:.53125,y:.21875},{x:.53125,y:.21875},{x:.59375,y:.21875},{x:.59375,y:.21875},{x:.65625,y:.21875},{x:.65625,y:.21875},{x:.71875,y:.21875},{x:.71875,y:.21875},{x:.78125,y:.21875},{x:.78125,y:.21875},{x:.84375,y:.21875},{x:.84375,y:.21875},{x:.90625,y:.21875},{x:.90625,y:.21875},{x:.96875,y:.21875},{x:.96875,y:.21875},{x:.03125,y:.28125},{x:.03125,y:.28125},{x:.09375,y:.28125},{x:.09375,y:.28125},{x:.15625,y:.28125},{x:.15625,y:.28125},{x:.21875,y:.28125},{x:.21875,y:.28125},{x:.28125,y:.28125},{x:.28125,y:.28125},{x:.34375,y:.28125},{x:.34375,y:.28125},{x:.40625,y:.28125},{x:.40625,y:.28125},{x:.46875,y:.28125},{x:.46875,y:.28125},{x:.53125,y:.28125},{x:.53125,y:.28125},{x:.59375,y:.28125},{x:.59375,y:.28125},{x:.65625,y:.28125},{x:.65625,y:.28125},{x:.71875,y:.28125},{x:.71875,y:.28125},{x:.78125,y:.28125},{x:.78125,y:.28125},{x:.84375,y:.28125},{x:.84375,y:.28125},{x:.90625,y:.28125},{x:.90625,y:.28125},{x:.96875,y:.28125},{x:.96875,y:.28125},{x:.03125,y:.34375},{x:.03125,y:.34375},{x:.09375,y:.34375},{x:.09375,y:.34375},{x:.15625,y:.34375},{x:.15625,y:.34375},{x:.21875,y:.34375},{x:.21875,y:.34375},{x:.28125,y:.34375},{x:.28125,y:.34375},{x:.34375,y:.34375},{x:.34375,y:.34375},{x:.40625,y:.34375},{x:.40625,y:.34375},{x:.46875,y:.34375},{x:.46875,y:.34375},{x:.53125,y:.34375},{x:.53125,y:.34375},{x:.59375,y:.34375},{x:.59375,y:.34375},{x:.65625,y:.34375},{x:.65625,y:.34375},{x:.71875,y:.34375},{x:.71875,y:.34375},{x:.78125,y:.34375},{x:.78125,y:.34375},{x:.84375,y:.34375},{x:.84375,y:.34375},{x:.90625,y:.34375},{x:.90625,y:.34375},{x:.96875,y:.34375},{x:.96875,y:.34375},{x:.03125,y:.40625},{x:.03125,y:.40625},{x:.09375,y:.40625},{x:.09375,y:.40625},{x:.15625,y:.40625},{x:.15625,y:.40625},{x:.21875,y:.40625},{x:.21875,y:.40625},{x:.28125,y:.40625},{x:.28125,y:.40625},{x:.34375,y:.40625},{x:.34375,y:.40625},{x:.40625,y:.40625},{x:.40625,y:.40625},{x:.46875,y:.40625},{x:.46875,y:.40625},{x:.53125,y:.40625},{x:.53125,y:.40625},{x:.59375,y:.40625},{x:.59375,y:.40625},{x:.65625,y:.40625},{x:.65625,y:.40625},{x:.71875,y:.40625},{x:.71875,y:.40625},{x:.78125,y:.40625},{x:.78125,y:.40625},{x:.84375,y:.40625},{x:.84375,y:.40625},{x:.90625,y:.40625},{x:.90625,y:.40625},{x:.96875,y:.40625},{x:.96875,y:.40625},{x:.03125,y:.46875},{x:.03125,y:.46875},{x:.09375,y:.46875},{x:.09375,y:.46875},{x:.15625,y:.46875},{x:.15625,y:.46875},{x:.21875,y:.46875},{x:.21875,y:.46875},{x:.28125,y:.46875},{x:.28125,y:.46875},{x:.34375,y:.46875},{x:.34375,y:.46875},{x:.40625,y:.46875},{x:.40625,y:.46875},{x:.46875,y:.46875},{x:.46875,y:.46875},{x:.53125,y:.46875},{x:.53125,y:.46875},{x:.59375,y:.46875},{x:.59375,y:.46875},{x:.65625,y:.46875},{x:.65625,y:.46875},{x:.71875,y:.46875},{x:.71875,y:.46875},{x:.78125,y:.46875},{x:.78125,y:.46875},{x:.84375,y:.46875},{x:.84375,y:.46875},{x:.90625,y:.46875},{x:.90625,y:.46875},{x:.96875,y:.46875},{x:.96875,y:.46875},{x:.03125,y:.53125},{x:.03125,y:.53125},{x:.09375,y:.53125},{x:.09375,y:.53125},{x:.15625,y:.53125},{x:.15625,y:.53125},{x:.21875,y:.53125},{x:.21875,y:.53125},{x:.28125,y:.53125},{x:.28125,y:.53125},{x:.34375,y:.53125},{x:.34375,y:.53125},{x:.40625,y:.53125},{x:.40625,y:.53125},{x:.46875,y:.53125},{x:.46875,y:.53125},{x:.53125,y:.53125},{x:.53125,y:.53125},{x:.59375,y:.53125},{x:.59375,y:.53125},{x:.65625,y:.53125},{x:.65625,y:.53125},{x:.71875,y:.53125},{x:.71875,y:.53125},{x:.78125,y:.53125},{x:.78125,y:.53125},{x:.84375,y:.53125},{x:.84375,y:.53125},{x:.90625,y:.53125},{x:.90625,y:.53125},{x:.96875,y:.53125},{x:.96875,y:.53125},{x:.03125,y:.59375},{x:.03125,y:.59375},{x:.09375,y:.59375},{x:.09375,y:.59375},{x:.15625,y:.59375},{x:.15625,y:.59375},{x:.21875,y:.59375},{x:.21875,y:.59375},{x:.28125,y:.59375},{x:.28125,y:.59375},{x:.34375,y:.59375},{x:.34375,y:.59375},{x:.40625,y:.59375},{x:.40625,y:.59375},{x:.46875,y:.59375},{x:.46875,y:.59375},{x:.53125,y:.59375},{x:.53125,y:.59375},{x:.59375,y:.59375},{x:.59375,y:.59375},{x:.65625,y:.59375},{x:.65625,y:.59375},{x:.71875,y:.59375},{x:.71875,y:.59375},{x:.78125,y:.59375},{x:.78125,y:.59375},{x:.84375,y:.59375},{x:.84375,y:.59375},{x:.90625,y:.59375},{x:.90625,y:.59375},{x:.96875,y:.59375},{x:.96875,y:.59375},{x:.03125,y:.65625},{x:.03125,y:.65625},{x:.09375,y:.65625},{x:.09375,y:.65625},{x:.15625,y:.65625},{x:.15625,y:.65625},{x:.21875,y:.65625},{x:.21875,y:.65625},{x:.28125,y:.65625},{x:.28125,y:.65625},{x:.34375,y:.65625},{x:.34375,y:.65625},{x:.40625,y:.65625},{x:.40625,y:.65625},{x:.46875,y:.65625},{x:.46875,y:.65625},{x:.53125,y:.65625},{x:.53125,y:.65625},{x:.59375,y:.65625},{x:.59375,y:.65625},{x:.65625,y:.65625},{x:.65625,y:.65625},{x:.71875,y:.65625},{x:.71875,y:.65625},{x:.78125,y:.65625},{x:.78125,y:.65625},{x:.84375,y:.65625},{x:.84375,y:.65625},{x:.90625,y:.65625},{x:.90625,y:.65625},{x:.96875,y:.65625},{x:.96875,y:.65625},{x:.03125,y:.71875},{x:.03125,y:.71875},{x:.09375,y:.71875},{x:.09375,y:.71875},{x:.15625,y:.71875},{x:.15625,y:.71875},{x:.21875,y:.71875},{x:.21875,y:.71875},{x:.28125,y:.71875},{x:.28125,y:.71875},{x:.34375,y:.71875},{x:.34375,y:.71875},{x:.40625,y:.71875},{x:.40625,y:.71875},{x:.46875,y:.71875},{x:.46875,y:.71875},{x:.53125,y:.71875},{x:.53125,y:.71875},{x:.59375,y:.71875},{x:.59375,y:.71875},{x:.65625,y:.71875},{x:.65625,y:.71875},{x:.71875,y:.71875},{x:.71875,y:.71875},{x:.78125,y:.71875},{x:.78125,y:.71875},{x:.84375,y:.71875},{x:.84375,y:.71875},{x:.90625,y:.71875},{x:.90625,y:.71875},{x:.96875,y:.71875},{x:.96875,y:.71875},{x:.03125,y:.78125},{x:.03125,y:.78125},{x:.09375,y:.78125},{x:.09375,y:.78125},{x:.15625,y:.78125},{x:.15625,y:.78125},{x:.21875,y:.78125},{x:.21875,y:.78125},{x:.28125,y:.78125},{x:.28125,y:.78125},{x:.34375,y:.78125},{x:.34375,y:.78125},{x:.40625,y:.78125},{x:.40625,y:.78125},{x:.46875,y:.78125},{x:.46875,y:.78125},{x:.53125,y:.78125},{x:.53125,y:.78125},{x:.59375,y:.78125},{x:.59375,y:.78125},{x:.65625,y:.78125},{x:.65625,y:.78125},{x:.71875,y:.78125},{x:.71875,y:.78125},{x:.78125,y:.78125},{x:.78125,y:.78125},{x:.84375,y:.78125},{x:.84375,y:.78125},{x:.90625,y:.78125},{x:.90625,y:.78125},{x:.96875,y:.78125},{x:.96875,y:.78125},{x:.03125,y:.84375},{x:.03125,y:.84375},{x:.09375,y:.84375},{x:.09375,y:.84375},{x:.15625,y:.84375},{x:.15625,y:.84375},{x:.21875,y:.84375},{x:.21875,y:.84375},{x:.28125,y:.84375},{x:.28125,y:.84375},{x:.34375,y:.84375},{x:.34375,y:.84375},{x:.40625,y:.84375},{x:.40625,y:.84375},{x:.46875,y:.84375},{x:.46875,y:.84375},{x:.53125,y:.84375},{x:.53125,y:.84375},{x:.59375,y:.84375},{x:.59375,y:.84375},{x:.65625,y:.84375},{x:.65625,y:.84375},{x:.71875,y:.84375},{x:.71875,y:.84375},{x:.78125,y:.84375},{x:.78125,y:.84375},{x:.84375,y:.84375},{x:.84375,y:.84375},{x:.90625,y:.84375},{x:.90625,y:.84375},{x:.96875,y:.84375},{x:.96875,y:.84375},{x:.03125,y:.90625},{x:.03125,y:.90625},{x:.09375,y:.90625},{x:.09375,y:.90625},{x:.15625,y:.90625},{x:.15625,y:.90625},{x:.21875,y:.90625},{x:.21875,y:.90625},{x:.28125,y:.90625},{x:.28125,y:.90625},{x:.34375,y:.90625},{x:.34375,y:.90625},{x:.40625,y:.90625},{x:.40625,y:.90625},{x:.46875,y:.90625},{x:.46875,y:.90625},{x:.53125,y:.90625},{x:.53125,y:.90625},{x:.59375,y:.90625},{x:.59375,y:.90625},{x:.65625,y:.90625},{x:.65625,y:.90625},{x:.71875,y:.90625},{x:.71875,y:.90625},{x:.78125,y:.90625},{x:.78125,y:.90625},{x:.84375,y:.90625},{x:.84375,y:.90625},{x:.90625,y:.90625},{x:.90625,y:.90625},{x:.96875,y:.90625},{x:.96875,y:.90625},{x:.03125,y:.96875},{x:.03125,y:.96875},{x:.09375,y:.96875},{x:.09375,y:.96875},{x:.15625,y:.96875},{x:.15625,y:.96875},{x:.21875,y:.96875},{x:.21875,y:.96875},{x:.28125,y:.96875},{x:.28125,y:.96875},{x:.34375,y:.96875},{x:.34375,y:.96875},{x:.40625,y:.96875},{x:.40625,y:.96875},{x:.46875,y:.96875},{x:.46875,y:.96875},{x:.53125,y:.96875},{x:.53125,y:.96875},{x:.59375,y:.96875},{x:.59375,y:.96875},{x:.65625,y:.96875},{x:.65625,y:.96875},{x:.71875,y:.96875},{x:.71875,y:.96875},{x:.78125,y:.96875},{x:.78125,y:.96875},{x:.84375,y:.96875},{x:.84375,y:.96875},{x:.90625,y:.96875},{x:.90625,y:.96875},{x:.96875,y:.96875},{x:.96875,y:.96875},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375}];var q0=class{constructor(t){fe(this,"model");fe(this,"anchors");fe(this,"anchorsTensor");fe(this,"inputSize");fe(this,"inputSizeTensor");fe(this,"doubleInputSizeTensor");this.model=t,this.anchors=OC.map(r=>[r.x,r.y]),this.anchorsTensor=pa(this.anchors),this.inputSize=this.model&&this.model.inputs&&this.model.inputs[0].shape?this.model.inputs[0].shape[2]:0,this.inputSizeTensor=St([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=St([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){let r={};r.boxOffsets=Pe(t,[0,0],[-1,2]),r.boxSizes=Pe(t,[0,2],[-1,2]),r.div=pe(r.boxOffsets,this.inputSizeTensor),r.boxCenterPoints=le(r.div,this.anchorsTensor),r.halfBoxSizes=pe(r.boxSizes,this.doubleInputSizeTensor),r.sub=ce(r.boxCenterPoints,r.halfBoxSizes),r.startPoints=L(r.sub,this.inputSizeTensor),r.add=le(r.boxCenterPoints,r.halfBoxSizes),r.endPoints=L(r.add,this.inputSizeTensor);let n=ud([r.startPoints,r.endPoints],1);return Object.keys(r).forEach(a=>re(r[a])),n}normalizeLandmarks(t,r){let n={};n.reshape=G(t,[-1,7,2]),n.div=pe(n.reshape,this.inputSizeTensor),n.landmarks=le(n.div,this.anchors[r]);let a=L(n.landmarks,this.inputSizeTensor);return Object.keys(n).forEach(s=>re(n[s])),a}async predict(t,r){let n={};n.resize=Ie.resizeBilinear(t,[this.inputSize,this.inputSize]),n.div=pe(n.resize,Qe.tf127),n.image=ce(n.div,Qe.tf1),n.batched=this.model.execute(n.image),n.predictions=et(n.batched),n.slice=Pe(n.predictions,[0,0],[-1,1]),n.sigmoid=Nr(n.slice),n.scores=et(n.sigmoid);let a=await n.scores.data();n.boxes=Pe(n.predictions,[0,1],[-1,4]),n.norm=this.normalizeBoxes(n.boxes),n.nms=await Ie.nonMaxSuppressionAsync(n.norm,n.scores,3*r.hand.maxDetected,r.hand.iouThreshold,r.hand.minConfidence);let s=await n.nms.array(),i=[];for(let o of s){let l={};l.box=Pe(n.norm,[o,0],[1,-1]),l.slice=Pe(n.predictions,[o,5],[1,14]),l.norm=this.normalizeLandmarks(l.slice,o),l.palmLandmarks=G(l.norm,[-1,2]);let u=await l.box.data(),d=u.slice(0,2),h=u.slice(2,4),p=await l.palmLandmarks.array(),c={startPoint:d,endPoint:h,palmLandmarks:p,confidence:a[o]},f=$C(c,[t.shape[2]/this.inputSize,t.shape[1]/this.inputSize]);i.push(f),Object.keys(l).forEach(m=>re(l[m]))}return Object.keys(n).forEach(o=>re(n[o])),i}};var G2e=5,DC=1.65,LC=[0,5,9,13,17,1,2],j2e=0,H2e=2,BC=0,K0=class{constructor(t,r){fe(this,"handDetector");fe(this,"handPoseModel");fe(this,"inputSize");fe(this,"storedBoxes");fe(this,"skipped");fe(this,"detectedHands");this.handDetector=t,this.handPoseModel=r,this.inputSize=this.handPoseModel&&this.handPoseModel.inputs[0].shape?this.handPoseModel.inputs[0].shape[2]:0,this.storedBoxes=[],this.skipped=Number.MAX_SAFE_INTEGER,this.detectedHands=0}calculateLandmarksBoundingBox(t){let r=t.map(i=>i[0]),n=t.map(i=>i[1]),a=[Math.min(...r),Math.min(...n)],s=[Math.max(...r),Math.max(...n)];return{startPoint:a,endPoint:s}}getBoxForPalmLandmarks(t,r){let n=t.map(s=>x5([...s,1],r)),a=this.calculateLandmarksBoundingBox(n);return j0(H0(a),G2e)}getBoxForHandLandmarks(t){let r=this.calculateLandmarksBoundingBox(t),n=j0(H0(r),DC);n.palmLandmarks=[];for(let a=0;a<LC.length;a++)n.palmLandmarks.push(t[LC[a]].slice(0,2));return n}transformRawCoords(t,r,n,a){let s=G0(r),i=[s[0]/this.inputSize,s[1]/this.inputSize,(s[0]+s[1])/this.inputSize/2],o=t.map(c=>[i[0]*(c[0]-this.inputSize/2),i[1]*(c[1]-this.inputSize/2),i[2]*c[2]]),l=A5(n,[0,0]),u=o.map(c=>[...x5(c,l),c[2]]),d=_C(a),h=[...Jh(r),1],p=[Xi(h,d[0]),Xi(h,d[1])];return u.map(c=>[Math.trunc(c[0]+p[0]),Math.trunc(c[1]+p[1]),Math.trunc(c[2])])}async estimateHands(t,r){let n=!1,a,s=(r.hand.skipTime||0)>oe()-BC,i=this.skipped<(r.hand.skipFrames||0);r.skipAllowed&&s&&i&&(a=await this.handDetector.predict(t,r),this.skipped=0),r.skipAllowed&&this.skipped++,a&&a.length>0&&(a.length!==this.detectedHands&&this.detectedHands!==r.hand.maxDetected||!r.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...a],this.storedBoxes.length>0&&(n=!0));let o=[];for(let l=0;l<this.storedBoxes.length;l++){let u=this.storedBoxes[l];if(!!u)if(r.hand.landmarks){let d=r.hand.rotation?PC(u.palmLandmarks[j2e],u.palmLandmarks[H2e]):0,h=Jh(u),p=[h[0]/t.shape[2],h[1]/t.shape[1]],c=r.hand.rotation&&he.kernels.includes("rotatewithoffset")?Ie.rotateWithOffset(t,d,0,p):t.clone(),f=A5(-d,h),m=n?this.getBoxForPalmLandmarks(u.palmLandmarks,f):u,g=FC(m,c,[this.inputSize,this.inputSize]),y=pe(g,Qe.tf255);re(g),re(c);let[A,x]=this.handPoseModel.execute(y);BC=oe(),re(y);let b=(await A.data())[0];if(re(A),b>=r.hand.minConfidence/4){let v=G(x,[-1,3]),S=await v.array();re(x),re(v);let T=this.transformRawCoords(S,m,d,f),E=this.getBoxForHandLandmarks(T);this.storedBoxes[l]={...E,confidence:b};let R={landmarks:T,confidence:b,boxConfidence:u.confidence,fingerConfidence:b,box:{topLeft:E.startPoint,bottomRight:E.endPoint}};o.push(R)}else this.storedBoxes[l]=null;re(x)}else{let d=j0(H0(u),DC),h={confidence:u.confidence,boxConfidence:u.confidence,fingerConfidence:0,box:{topLeft:d.startPoint,bottomRight:d.endPoint},landmarks:[]};o.push(h)}}return this.storedBoxes=this.storedBoxes.filter(l=>l!==null),this.detectedHands=o.length,o.length>r.hand.maxDetected&&(o.length=r.hand.maxDetected),o}};var Xr={thumb:0,index:1,middle:2,ring:3,pinky:4,all:[0,1,2,3,4],nameMapping:{0:"thumb",1:"index",2:"middle",3:"ring",4:"pinky"},pointsMapping:{0:[[0,1],[1,2],[2,3],[3,4]],1:[[0,5],[5,6],[6,7],[7,8]],2:[[0,9],[9,10],[10,11],[11,12]],3:[[0,13],[13,14],[14,15],[15,16]],4:[[0,17],[17,18],[18,19],[19,20]]},getName:e=>Xr.nameMapping[e],getPoints:e=>Xr.pointsMapping[e]},Yi={none:0,half:1,full:2,nameMapping:{0:"none",1:"half",2:"full"},getName:e=>Yi.nameMapping[e]},Dt={verticalUp:0,verticalDown:1,horizontalLeft:2,horizontalRight:3,diagonalUpRight:4,diagonalUpLeft:5,diagonalDownRight:6,diagonalDownLeft:7,nameMapping:{0:"verticalUp",1:"verticalDown",2:"horizontalLeft",3:"horizontalRight",4:"diagonalUpRight",5:"diagonalUpLeft",6:"diagonalDownRight",7:"diagonalDownLeft"},getName:e=>Dt.nameMapping[e]},Zi=class{constructor(t){fe(this,"name");fe(this,"curls");fe(this,"directions");fe(this,"weights");fe(this,"weightsRelative");this.name=t,this.curls={},this.directions={},this.weights=[1,1,1,1,1],this.weightsRelative=[1,1,1,1,1]}curl(t,r,n){typeof this.curls[t]=="undefined"&&(this.curls[t]=[]),this.curls[t].push([r,n])}direction(t,r,n){this.directions[t]||(this.directions[t]=[]),this.directions[t].push([r,n])}weight(t,r){this.weights[t]=r;let n=this.weights.reduce((a,s)=>a+s,0);this.weightsRelative=this.weights.map(a=>a*5/n)}matchAgainst(t,r){let n=0;for(let a in t){let s=t[a],i=this.curls[a];if(typeof i=="undefined"){n+=this.weightsRelative[a];continue}for(let[o,l]of i)if(s===o){n+=l*this.weightsRelative[a];break}}for(let a in r){let s=r[a],i=this.directions[a];if(typeof i=="undefined"){n+=this.weightsRelative[a];continue}for(let[o,l]of i)if(s===o){n+=l*this.weightsRelative[a];break}}return n/10}};var{thumb:ba,index:ps,middle:hs,ring:Bl,pinky:Wl}=Xr,{none:va,half:K2e,full:wa}=Yi,{verticalUp:Ld,verticalDown:D7e,horizontalLeft:b5,horizontalRight:X2e,diagonalUpRight:Z2e,diagonalUpLeft:Bd,diagonalDownRight:L7e,diagonalDownLeft:B7e}=Dt,Ji=new Zi("thumbs up");Ji.curl(ba,va,1);Ji.direction(ba,Ld,1);Ji.direction(ba,Bd,.25);Ji.direction(ba,Z2e,.25);for(let e of[Xr.index,Xr.middle,Xr.ring,Xr.pinky])Ji.curl(e,wa,1),Ji.direction(e,b5,1),Ji.direction(e,X2e,1);var Qt=new Zi("victory");Qt.curl(ba,K2e,.5);Qt.curl(ba,va,.5);Qt.direction(ba,Ld,1);Qt.direction(ba,Bd,1);Qt.curl(ps,va,1);Qt.direction(ps,Ld,.75);Qt.direction(ps,Bd,1);Qt.curl(hs,va,1);Qt.direction(hs,Ld,1);Qt.direction(hs,Bd,.75);Qt.curl(Bl,wa,1);Qt.direction(Bl,Ld,.2);Qt.direction(Bl,Bd,1);Qt.direction(Bl,b5,.2);Qt.curl(Wl,wa,1);Qt.direction(Wl,Ld,.2);Qt.direction(Wl,Bd,1);Qt.direction(Wl,b5,.2);Qt.weight(ps,2);Qt.weight(hs,2);var Qi=new Zi("point");Qi.curl(ba,wa,1);Qi.curl(ps,va,.5);Qi.curl(hs,wa,.5);Qi.curl(Bl,wa,.5);Qi.curl(Wl,wa,.5);Qi.weight(ps,2);Qi.weight(hs,2);var eo=new Zi("middle finger");eo.curl(ba,va,1);eo.curl(ps,wa,.5);eo.curl(hs,wa,.5);eo.curl(Bl,wa,.5);eo.curl(Wl,wa,.5);eo.weight(ps,2);eo.weight(hs,2);var Wd=new Zi("open palm");Wd.curl(ba,va,.75);Wd.curl(ps,va,.75);Wd.curl(hs,va,.75);Wd.curl(Bl,va,.75);Wd.curl(Wl,va,.75);var WC=[Ji,Qt,Qi,eo,Wd];var Y2e=.7,Vl={HALF_CURL_START_LIMIT:60,NO_CURL_START_LIMIT:130,DISTANCE_VOTE_POWER:1.1,SINGLE_ANGLE_VOTE_POWER:.9,TOTAL_ANGLE_VOTE_POWER:1.6};function VC(e,t,r,n){let a=(t-n)/(e-r),s=Math.atan(a)*180/Math.PI;return s<=0?s=-s:s>0&&(s=180-s),s}function GC(e,t){if(!e||!t)return[0,0];let r=VC(e[0],e[1],t[0],t[1]);if(e.length===2)return r;let n=VC(e[1],e[2],t[1],t[2]);return[r,n]}function UC(e,t=1){let r=0,n=0,a=0;return e>=75&&e<=105?r=1*t:e>=25&&e<=155?n=1*t:a=1*t,[r,n,a]}function J2e(e,t,r){let n=e[0]-t[0],a=e[0]-r[0],s=t[0]-r[0],i=e[1]-t[1],o=e[1]-r[1],l=t[1]-r[1],u=e[2]-t[2],d=e[2]-r[2],h=t[2]-r[2],p=Math.sqrt(n*n+i*i+u*u),c=Math.sqrt(a*a+o*o+d*d),f=Math.sqrt(s*s+l*l+h*h),m=(f*f+p*p-c*c)/(2*f*p);m>1?m=1:m<-1&&(m=-1);let g=Math.acos(m);g=57.2958*g%180;let y;return g>Vl.NO_CURL_START_LIMIT?y=Yi.none:g>Vl.HALF_CURL_START_LIMIT?y=Yi.half:y=Yi.full,y}function jC(e,t,r,n){let a;return n===Math.abs(e)?e>0?a=Dt.horizontalLeft:a=Dt.horizontalRight:n===Math.abs(t)?t>0?a=Dt.horizontalLeft:a=Dt.horizontalRight:r>0?a=Dt.horizontalLeft:a=Dt.horizontalRight,a}function HC(e,t,r,n){let a;return n===Math.abs(e)?e<0?a=Dt.verticalDown:a=Dt.verticalUp:n===Math.abs(t)?t<0?a=Dt.verticalDown:a=Dt.verticalUp:r<0?a=Dt.verticalDown:a=Dt.verticalUp,a}function Q2e(e,t,r,n,a,s,i,o){let l,u=HC(e,t,r,n),d=jC(a,s,i,o);return u===Dt.verticalUp?d===Dt.horizontalLeft?l=Dt.diagonalUpLeft:l=Dt.diagonalUpRight:d===Dt.horizontalLeft?l=Dt.diagonalDownLeft:l=Dt.diagonalDownRight,l}function eAe(e,t,r,n){let a=e[0]-t[0],s=e[0]-r[0],i=t[0]-r[0],o=e[1]-t[1],l=e[1]-r[1],u=t[1]-r[1],d=Math.max(Math.abs(a),Math.abs(s),Math.abs(i)),h=Math.max(Math.abs(o),Math.abs(l),Math.abs(u)),p=0,c=0,f=0,m=h/(d+1e-5);m>1.5?p+=Vl.DISTANCE_VOTE_POWER:m>.66?c+=Vl.DISTANCE_VOTE_POWER:f+=Vl.DISTANCE_VOTE_POWER;let g=Math.sqrt(a*a+o*o),y=Math.sqrt(s*s+l*l),A=Math.sqrt(i*i+u*u),x=Math.max(g,y,A),b=e[0],v=e[1],S=r[0],T=r[1];x===g?(S=r[0],T=r[1]):x===A&&(b=t[0],v=t[1]);let _=GC([b,v],[S,T]),M=UC(_,Vl.TOTAL_ANGLE_VOTE_POWER);p+=M[0],c+=M[1],f+=M[2];for(let z of n){let O=UC(z,Vl.SINGLE_ANGLE_VOTE_POWER);p+=O[0],c+=O[1],f+=O[2]}let I;return p===Math.max(p,c,f)?I=HC(l,o,u,h):f===Math.max(c,f)?I=jC(s,a,i,d):I=Q2e(l,o,u,h,s,a,i,d),I}function qC(e){let t=[],r=[],n=[],a=[];if(!e)return{curls:n,directions:a};for(let s of Xr.all){let i=Xr.getPoints(s),o=[],l=[];for(let u of i){let d=e[u[0]],h=e[u[1]],p=GC(d,h),c=p[0],f=p[1];o.push(c),l.push(f)}t.push(o),r.push(l)}for(let s of Xr.all){let i=s===Xr.thumb?1:0,o=Xr.getPoints(s),l=e[o[i][0]],u=e[o[i+1][1]],d=e[o[3][1]],h=J2e(l,u,d),p=eAe(l,u,d,t[s].slice(i));n[s]=h,a[s]=p}return{curls:n,directions:a}}function X0(e){if(!e||e.length===0)return null;let t=qC(e),r={};for(let n of Xr.all)r[Xr.getName(n)]={curl:Yi.getName(t.curls[n]),direction:Dt.getName(t.directions[n])};return r}function KC(e){let t=[];if(!e||e.length===0)return t;let r=qC(e);for(let n of WC){let a=n.matchAgainst(r.curls,r.directions);a>=Y2e&&t.push({name:n.name,confidence:a})}return t}var XC={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]},Vd,Ud,ZC;async function w5(e,t){let r=await ZC.estimateHands(e,t);if(!r)return[];let n=[];for(let a=0;a<r.length;a++){let s={};if(r[a].landmarks)for(let d of Object.keys(XC))s[d]=XC[d].map(h=>r[a].landmarks[h]);let i=r[a].landmarks,o=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],l=[0,0,0,0];if(i&&i.length>0){for(let d of i)d[0]<o[0]&&(o[0]=d[0]),d[1]<o[1]&&(o[1]=d[1]),d[0]>o[2]&&(o[2]=d[0]),d[1]>o[3]&&(o[3]=d[1]);o[2]-=o[0],o[3]-=o[1],l=[o[0]/(e.shape[2]||0),o[1]/(e.shape[1]||0),o[2]/(e.shape[2]||0),o[3]/(e.shape[1]||0)]}else o=r[a].box?[Math.trunc(Math.max(0,r[a].box.topLeft[0])),Math.trunc(Math.max(0,r[a].box.topLeft[1])),Math.trunc(Math.min(e.shape[2]||0,r[a].box.bottomRight[0])-Math.max(0,r[a].box.topLeft[0])),Math.trunc(Math.min(e.shape[1]||0,r[a].box.bottomRight[1])-Math.max(0,r[a].box.topLeft[1]))]:[0,0,0,0],l=[r[a].box.topLeft[0]/(e.shape[2]||0),r[a].box.topLeft[1]/(e.shape[1]||0),(r[a].box.bottomRight[0]-r[a].box.topLeft[0])/(e.shape[2]||0),(r[a].box.bottomRight[1]-r[a].box.topLeft[1])/(e.shape[1]||0)];let u=X0(i);n.push({id:a,score:Math.round(100*r[a].confidence)/100,boxScore:Math.round(100*r[a].boxConfidence)/100,fingerScore:Math.round(100*r[a].fingerConfidence)/100,label:"hand",box:o,boxRaw:l,keypoints:i,annotations:s,landmarks:u})}return n}async function k5(e){var r,n;he.initial&&(Vd=null,Ud=null),!Vd||!Ud?[Vd,Ud]=await Promise.all([e.hand.enabled?Ge((r=e.hand.detector)==null?void 0:r.modelPath):null,e.hand.landmarks?Ge((n=e.hand.skeleton)==null?void 0:n.modelPath):null]):(e.debug&&ie("cached model:",Vd.modelUrl),e.debug&&ie("cached model:",Ud.modelUrl));let t=new q0(Vd);return ZC=new K0(t,Ud),[Vd,Ud]}var ur=[null,null],tAe=["StatefulPartitionedCall/Postprocessor/Slice","StatefulPartitionedCall/Postprocessor/ExpandDims_1"],to=[[0,0],[0,0]],rAe=["hand","fist","pinch","point","face","tip","pinchtip"],JC=4,QC=1.6,nAe=512,aAe=1.4,Z0=Number.MAX_SAFE_INTEGER,I5=0,cs=[0,0],jt={boxes:[],hands:[]},e9={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],base:[0],palm:[0,17,13,9,5,1,0]};async function t9(e){var t;if(he.initial&&(ur[0]=null),ur[0])e.debug&&ie("cached model:",ur[0].modelUrl);else{Y0(["tensorlistreserve","enter","tensorlistfromtensor","merge","loopcond","switch","exit","tensorliststack","nextiteration","tensorlistsetitem","tensorlistgetitem","reciprocal","shape","split","where"],e),ur[0]=await Ge((t=e.hand.detector)==null?void 0:t.modelPath);let r=Object.values(ur[0].modelSignature.inputs);to[0][0]=Array.isArray(r)?parseInt(r[0].tensorShape.dim[1].size):0,to[0][1]=Array.isArray(r)?parseInt(r[0].tensorShape.dim[2].size):0}return ur[0]}async function r9(e){var t;if(he.initial&&(ur[1]=null),ur[1])e.debug&&ie("cached model:",ur[1].modelUrl);else{ur[1]=await Ge((t=e.hand.skeleton)==null?void 0:t.modelPath);let r=Object.values(ur[1].modelSignature.inputs);to[1][0]=Array.isArray(r)?parseInt(r[0].tensorShape.dim[1].size):0,to[1][1]=Array.isArray(r)?parseInt(r[0].tensorShape.dim[2].size):0}return ur[1]}async function sAe(e,t){let r=[];if(!e||!ur[0])return r;let n={},a=(e.shape[2]||1)/(e.shape[1]||1),s=Math.min(Math.round((e.shape[1]||0)/8)*8,nAe),i=Math.round(s*a/8)*8;n.resize=Ie.resizeBilinear(e,[s,i]),n.cast=me(n.resize,"int32"),[n.rawScores,n.rawBoxes]=await ur[0].executeAsync(n.cast,tAe),n.boxes=et(n.rawBoxes,[0,2]),n.scores=et(n.rawScores,[0]);let o=tn(n.scores,1);re(o[JC]),o.splice(JC,1),n.filtered=or(o,1),re(o),n.max=mr(n.filtered,1),n.argmax=Cn(n.filtered,1);let l=0;n.nms=await Ie.nonMaxSuppressionAsync(n.boxes,n.max,(t.hand.maxDetected||0)+1,t.hand.iouThreshold||0,t.hand.minConfidence||1);let u=await n.nms.data(),d=await n.max.data(),h=await n.argmax.data();for(let p of Array.from(u)){let c=Pe(n.boxes,p,1),f=await c.data();re(c);let m=[f[1],f[0],f[3]-f[1],f[2]-f[0]],g=O0(m,aAe),y=[Math.trunc(m[0]*cs[0]),Math.trunc(m[1]*cs[1]),Math.trunc(m[2]*cs[0]),Math.trunc(m[3]*cs[1])],A=d[p],x=rAe[h[p]],b={id:l++,score:A,box:y,boxRaw:g,label:x};r.push(b)}return Object.keys(n).forEach(p=>re(n[p])),r.sort((p,c)=>c.score-p.score),r.length>(t.hand.maxDetected||1)&&(r.length=t.hand.maxDetected||1),r}async function S5(e,t,r){let n={id:t.id,score:Math.round(100*t.score)/100,boxScore:Math.round(100*t.score)/100,fingerScore:0,box:t.box,boxRaw:t.boxRaw,label:t.label,keypoints:[],landmarks:{},annotations:{}};if(e&&ur[1]&&r.hand.landmarks&&t.score>(r.hand.minConfidence||0)){let a={},s=[t.boxRaw[1],t.boxRaw[0],t.boxRaw[3]+t.boxRaw[1],t.boxRaw[2]+t.boxRaw[0]];a.crop=Ie.cropAndResize(e,[s],[0],[to[1][0],to[1][1]],"bilinear"),a.div=pe(a.crop,Qe.tf255),[a.score,a.keypoints]=ur[1].execute(a.div,["Identity_1","Identity"]);let i=(await a.score.data())[0],o=(100-Math.trunc(100/(1+Math.exp(i))))/100;if(o>=(r.hand.minConfidence||0)){n.fingerScore=o,a.reshaped=G(a.keypoints,[-1,3]);let d=(await a.reshaped.array()).map(h=>[h[0]/to[1][1],h[1]/to[1][0],h[2]||0]).map(h=>[h[0]*t.boxRaw[2],h[1]*t.boxRaw[3],h[2]||0]);n.keypoints=d.map(h=>[cs[0]*(h[0]+t.boxRaw[0]),cs[1]*(h[1]+t.boxRaw[1]),h[2]||0]),n.landmarks=X0(n.keypoints);for(let h of Object.keys(e9))n.annotations[h]=e9[h].map(p=>n.landmarks&&n.keypoints[p]?n.keypoints[p]:null)}Object.keys(a).forEach(l=>re(a[l]))}return n}async function T5(e,t){var a,s;if(!ur[0]||!ur[1]||!((a=ur[0])!=null&&a.inputs[0].shape)||!((s=ur[1])!=null&&s.inputs[0].shape))return[];cs=[e.shape[2]||0,e.shape[1]||0],Z0++;let r=(t.hand.skipTime||0)>oe()-I5,n=Z0<(t.hand.skipFrames||0);return t.skipAllowed&&r&&n?jt.hands:new Promise(async i=>{let o=3*(t.hand.skipTime||0)>oe()-I5,l=Z0<3*(t.hand.skipFrames||0);t.skipAllowed&&jt.hands.length===t.hand.maxDetected?jt.hands=await Promise.all(jt.boxes.map(d=>S5(e,d,t))):t.skipAllowed&&o&&l&&jt.hands.length>0?jt.hands=await Promise.all(jt.boxes.map(d=>S5(e,d,t))):(jt.boxes=await sAe(e,t),I5=oe(),jt.hands=await Promise.all(jt.boxes.map(d=>S5(e,d,t))),Z0=0);let u=[...jt.boxes];if(jt.boxes.length=0,t.cacheSensitivity>0)for(let d=0;d<jt.hands.length;d++){let h=KN(jt.hands[d].keypoints,cs);if(h.box[2]/(e.shape[2]||1)>.05&&h.box[3]/(e.shape[1]||1)>.05&&jt.hands[d].fingerScore&&jt.hands[d].fingerScore>(t.hand.minConfidence||0)){let p=O0(h.box,QC),c=O0(h.boxRaw,QC);jt.boxes.push({...u[d],box:p,boxRaw:c})}}for(let d=0;d<jt.hands.length;d++){let h=ls(jt.hands[d].keypoints,cs);jt.hands[d].box=h.box,jt.hands[d].boxRaw=h.boxRaw}i(jt.hands)})}var Fr,J0=[],N5=Number.MAX_SAFE_INTEGER,a9=0,s9=0;async function i9(e){var t;return he.initial&&(Fr=null),Fr?e.debug&&ie("cached model:",Fr.modelUrl):Fr=await Ge((t=e.face.liveness)==null?void 0:t.modelPath),Fr}async function C5(e,t,r,n){var i,o;if(!Fr)return 0;let a=(((i=t.face.liveness)==null?void 0:i.skipTime)||0)>oe()-s9,s=N5<(((o=t.face.liveness)==null?void 0:o.skipFrames)||0);return t.skipAllowed&&a&&s&&a9===n&&J0[r]?(N5++,J0[r]):(N5=0,new Promise(async l=>{let u=Ie.resizeBilinear(e,[Fr!=null&&Fr.inputs[0].shape?Fr.inputs[0].shape[2]:0,Fr!=null&&Fr.inputs[0].shape?Fr.inputs[0].shape[1]:0],!1),d=Fr==null?void 0:Fr.execute(u),h=(await d.data())[0];J0[r]=Math.round(100*h)/100,a9=n,s9=oe(),re([u,d]),l(J0[r])}))}var Qh={};xs(Qh,{connected:()=>eg,horizontal:()=>E5,kpt:()=>Q0,relative:()=>M5,vertical:()=>R5});var Q0=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],E5=[["leftEye","rightEye"],["leftEar","rightEar"],["leftShoulder","rightShoulder"],["leftElbow","rightElbow"],["leftWrist","rightWrist"],["leftHip","rightHip"],["leftKnee","rightKnee"],["leftAnkle","rightAnkle"]],R5=[["leftKnee","leftShoulder"],["rightKnee","rightShoulder"],["leftAnkle","leftKnee"],["rightAnkle","rightKnee"]],M5=[[["leftHip","rightHip"],["leftShoulder","rightShoulder"]],[["leftElbow","rightElbow"],["leftShoulder","rightShoulder"]]],eg={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var l9=.005,xn={keypoints:[],padding:[[0,0],[0,0],[0,0],[0,0]]};function F5(e){for(let t of E5){let r=e.keypoints.findIndex(a=>a.part===t[0]),n=e.keypoints.findIndex(a=>a.part===t[1]);if(e.keypoints[r]&&e.keypoints[n]&&e.keypoints[r].position[0]<e.keypoints[n].position[0]){let a=e.keypoints[r];e.keypoints[r]=e.keypoints[n],e.keypoints[n]=a}}for(let t of R5){let r=e.keypoints.findIndex(a=>a&&a.part===t[0]),n=e.keypoints.findIndex(a=>a&&a.part===t[1]);e.keypoints[r]&&e.keypoints[n]&&e.keypoints[r].position[1]<e.keypoints[n].position[1]&&e.keypoints.splice(r,1)}for(let[t,r]of M5){let n=e.keypoints.findIndex(u=>u&&u.part===t[0]),a=e.keypoints.findIndex(u=>u&&u.part===t[1]),s=e.keypoints.findIndex(u=>u&&u.part===r[0]),i=e.keypoints.findIndex(u=>u&&u.part===r[1]);if(!e.keypoints[s]||!e.keypoints[i])continue;let o=e.keypoints[n]?[Math.abs(e.keypoints[s].position[0]-e.keypoints[n].position[0]),Math.abs(e.keypoints[i].position[0]-e.keypoints[n].position[0])]:[0,0],l=e.keypoints[a]?[Math.abs(e.keypoints[i].position[0]-e.keypoints[a].position[0]),Math.abs(e.keypoints[s].position[0]-e.keypoints[a].position[0])]:[0,0];if(o[0]>o[1]||l[0]>l[1]){let u=e.keypoints[n];e.keypoints[n]=e.keypoints[a],e.keypoints[a]=u}}}function u9(e){for(let t=0;t<e.length;t++)if(e[t]&&xn.keypoints[t]){let r=[Math.abs(e[t].positionRaw[0]-xn.keypoints[t].positionRaw[0]),Math.abs(e[t].positionRaw[1]-xn.keypoints[t].positionRaw[1])];r[0]<l9&&r[1]<l9?e[t]=xn.keypoints[t]:xn.keypoints[t]=e[t]}else xn.keypoints[t]=e[t];return e}function d9(e,t){let r={};if(!e.shape||!e.shape[1]||!e.shape[2])return e;xn.padding=[[0,0],[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0],[0,0]],r.pad=Hn(e,xn.padding),r.resize=Ie.resizeBilinear(r.pad,[t,t]);let n=me(r.resize,"int32");return Object.keys(r).forEach(a=>re(r[a])),n}function p9(e,t){e.keypoints=e.keypoints.filter(n=>n&&n.position);for(let n of e.keypoints)n.position=[n.position[0]*(t[0]+xn.padding[2][0]+xn.padding[2][1])/t[0]-xn.padding[2][0],n.position[1]*(t[1]+xn.padding[1][0]+xn.padding[1][1])/t[1]-xn.padding[1][0]],n.positionRaw=[n.position[0]/t[0],n.position[1]/t[1]];let r=ls(e.keypoints.map(n=>n.position),t);return e.box=r.box,e.boxRaw=r.boxRaw,e}var bn,tg=0,$5=Number.MAX_SAFE_INTEGER,Ul={boxes:[],bodies:[],last:0};async function h9(e){return he.initial&&(bn=null),bn?e.debug&&ie("cached model:",bn.modelUrl):(Y0(["size"],e),bn=await Ge(e.body.modelPath)),tg=bn.inputs[0].shape?bn.inputs[0].shape[2]:0,tg<64&&(tg=256),bn}async function oAe(e,t,r){let n=e[0][0],a=[],s=0;for(let d=0;d<n.length;d++)if(s=n[d][2],s>t.body.minConfidence){let h=[n[d][1],n[d][0]];a.push({score:Math.round(100*s)/100,part:Q0[d],positionRaw:h,position:[Math.round((r.shape[2]||0)*h[0]),Math.round((r.shape[1]||0)*h[1])]})}s=a.reduce((d,h)=>h.score>d?h.score:d,0);let i=[],o=ls(a.map(d=>d.position),[r.shape[2],r.shape[1]]),l={};for(let[d,h]of Object.entries(eg)){let p=[];for(let c=0;c<h.length-1;c++){let f=a.find(g=>g.part===h[c]),m=a.find(g=>g.part===h[c+1]);f&&m&&f.score>(t.body.minConfidence||0)&&m.score>(t.body.minConfidence||0)&&p.push([f.position,m.position])}l[d]=p}let u={id:0,score:s,box:o.box,boxRaw:o.boxRaw,keypoints:a,annotations:l};return F5(u),i.push(u),i}async function lAe(e,t,r){let n=[];for(let a=0;a<e[0].length;a++){let s=e[0][a],i=Math.round(100*s[51+4])/100;if(i>t.body.minConfidence){let o=[];for(let h=0;h<17;h++){let p=s[3*h+2];if(p>t.body.minConfidence){let c=[s[3*h+1],s[3*h+0]];o.push({part:Q0[h],score:Math.round(100*p)/100,positionRaw:c,position:[Math.round((r.shape[2]||0)*c[0]),Math.round((r.shape[1]||0)*c[1])]})}}let l=ls(o.map(h=>h.position),[r.shape[2],r.shape[1]]),u={};for(let[h,p]of Object.entries(eg)){let c=[];for(let f=0;f<p.length-1;f++){let m=o.find(y=>y.part===p[f]),g=o.find(y=>y.part===p[f+1]);m&&g&&m.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&c.push([m.position,g.position])}u[h]=c}let d={id:a,score:i,box:l.box,boxRaw:l.boxRaw,keypoints:[...o],annotations:u};F5(d),n.push(d)}}return n.sort((a,s)=>s.score-a.score),n.length>t.body.maxDetected&&(n.length=t.body.maxDetected),n}async function P5(e,t){if(!bn||!(bn!=null&&bn.inputs[0].shape))return[];t.skipAllowed||(Ul.boxes.length=0),$5++;let r=(t.body.skipTime||0)>oe()-Ul.last,n=$5<(t.body.skipFrames||0);return t.skipAllowed&&r&&n?Ul.bodies:new Promise(async a=>{let s={};$5=0,s.input=d9(e,tg),s.res=bn==null?void 0:bn.execute(s.input),Ul.last=oe();let i=await s.res.array();Ul.bodies=s.res.shape[2]===17?await oAe(i,t,e):await lAe(i,t,e);for(let o of Ul.bodies)p9(o,[e.shape[2]||1,e.shape[1]||1]),u9(o.keypoints);Object.keys(s).forEach(o=>re(s[o])),a(Ul.bodies)})}var Gd,rg=[],f9=0,_5=Number.MAX_SAFE_INTEGER,ag=0,ng=2.5;async function m9(e){if(!Gd||he.initial){Gd=await Ge(e.object.modelPath);let t=Object.values(Gd.modelSignature.inputs);ag=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0}else e.debug&&ie("cached model:",Gd.modelUrl);return Gd}async function uAe(e,t,r){let n=0,a=[];for(let l of[1,2,4])K(async()=>{let u=l*13,d=et(e.find(m=>m.shape[1]===u**2&&(m.shape[2]||0)===_d.length)),h=et(e.find(m=>m.shape[1]===u**2&&(m.shape[2]||0)<_d.length)),c=await h.reshape([-1,4,h.shape[1]/4]).argMax(2).array(),f=await d.array();for(let m=0;m<d.shape[0];m++)for(let g=0;g<d.shape[1];g++){let y=f[m][g];if(y>(r.object.minConfidence||0)&&g!==61){let A=(.5+Math.trunc(m%u))/u,x=(.5+Math.trunc(m/u))/u,b=c[m].map(I=>I*(u/l/ag)),[v,S]=[A-ng/l*b[0],x-ng/l*b[1]],[T,E]=[A+ng/l*b[2]-v,x+ng/l*b[3]-S],R=[v,S,T,E];R=R.map(I=>Math.max(0,Math.min(I,1)));let _=[R[0]*t[0],R[1]*t[1],R[2]*t[0],R[3]*t[1]],M={id:n++,score:Math.round(100*y)/100,class:g+1,label:_d[g].label,box:_.map(I=>Math.trunc(I)),boxRaw:R};a.push(M)}}});e.forEach(l=>re(l));let s=a.map(l=>[l.boxRaw[1],l.boxRaw[0],l.boxRaw[3],l.boxRaw[2]]),i=a.map(l=>l.score),o=[];if(s&&s.length>0){let l=await Ie.nonMaxSuppressionAsync(s,i,r.object.maxDetected,r.object.iouThreshold,r.object.minConfidence);o=await l.data(),re(l)}return a=a.filter((l,u)=>o.includes(u)).sort((l,u)=>u.score-l.score),a}async function z5(e,t){let r=(t.object.skipTime||0)>oe()-f9,n=_5<(t.object.skipFrames||0);return t.skipAllowed&&r&&n&&rg.length>0?(_5++,rg):(_5=0,!he.kernels.includes("mod")||!he.kernels.includes("sparsetodense")?rg:new Promise(async a=>{let s=[e.shape[2]||0,e.shape[1]||0],i=Ie.resizeBilinear(e,[ag,ag],!1),o=pe(i,Qe.tf255),l=o.transpose([0,3,1,2]);re(o),re(i);let u;t.object.enabled&&(u=Gd.execute(l)),f9=oe(),re(l);let d=await uAe(u,s,t);rg=d,a(d)}))}var tc=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],dAe=tc.length,ec=tc.reduce((e,t,r)=>(e[t]=r,e),{}),pAe=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],d4e=pAe.map(([e,t])=>[ec[e],ec[t]]),y9=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function A9(e){let t=e.reduce(({maxX:r,maxY:n,minX:a,minY:s},{position:{x:i,y:o}})=>({maxX:Math.max(r,i),maxY:Math.max(n,o),minX:Math.min(a,i),minY:Math.min(s,o)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function x9(e,[t,r],[n,a]){let s=t/n,i=r/a,o=(u,d)=>({id:d,score:u.score,boxRaw:[u.box[0]/a,u.box[1]/n,u.box[2]/a,u.box[3]/n],box:[Math.trunc(u.box[0]*i),Math.trunc(u.box[1]*s),Math.trunc(u.box[2]*i),Math.trunc(u.box[3]*s)],keypoints:u.keypoints.map(({score:h,part:p,position:c})=>({score:h,part:p,position:[Math.trunc(c.x*i),Math.trunc(c.y*s)],positionRaw:[c.x/n,c.y/n]})),annotations:{}});return e.map((u,d)=>o(u,d))}var sg=class{constructor(t,r){fe(this,"priorityQueue");fe(this,"numberOfElements");fe(this,"getElementValue");this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=r}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let r=2*t;if(r<this.numberOfElements&&this.less(r,r+1)&&r++,!this.less(t,r))break;this.exchange(t,r),t=r}}getValueAt(t){return this.getElementValue(this.priorityQueue[t])}less(t,r){return this.getValueAt(t)<this.getValueAt(r)}exchange(t,r){let n=this.priorityQueue[t];this.priorityQueue[t]=this.priorityQueue[r],this.priorityQueue[r]=n}};function O5(e,t,r,n){return{y:n.get(e,t,r),x:n.get(e,t,r+dAe)}}function D5(e,t,r){let{heatmapY:n,heatmapX:a,id:s}=e,{y:i,x:o}=O5(n,a,s,r);return{x:e.heatmapX*t+o,y:e.heatmapY*t+i}}function L5(e,t,r){return e<t?t:e>r?r:e}function b9(e,t,r,n){let a=r-e,s=n-t;return a*a+s*s}function B5(e,t){return{x:e.x+t.x,y:e.y+t.y}}var ka,cAe=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"],ig=1,jd=16,fAe=50**2;function v9(e,t,r,n,a,s,i=2){let o=y=>({y:s.get(y.y,y.x,e),x:s.get(y.y,y.x,s.shape[2]/2+e)}),l=(y,A,x)=>({y:L5(Math.round(y.y/jd),0,A-1),x:L5(Math.round(y.x/jd),0,x-1)}),[u,d]=n.shape,h=l(t.position,u,d),p=o(h),f=B5(t.position,p);for(let y=0;y<i;y++){let A=l(f,u,d),x=O5(A.y,A.x,r,a);f=B5({x:A.x*jd,y:A.y*jd},{x:x.x,y:x.y})}let m=l(f,u,d),g=n.get(m.y,m.x,r);return{position:f,part:tc[r],score:g}}function mAe(e,t,r,n,a){let s=y9.map(([p,c])=>[ec[p],ec[c]]),i=s.map(([,p])=>p),o=s.map(([p])=>p),l=t.shape[2],u=i.length,d=new Array(l),h=D5(e.part,jd,r);d[e.part.id]={score:e.score,part:tc[e.part.id],position:h};for(let p=u-1;p>=0;--p){let c=i[p],f=o[p];d[c]&&!d[f]&&(d[f]=v9(p,d[c],f,t,r,a))}for(let p=0;p<u;++p){let c=o[p],f=i[p];d[c]&&!d[f]&&(d[f]=v9(p,d[c],f,t,r,n))}return d}function gAe(e,t,r,n,a){let[s,i]=a.shape,o=!0,l=Math.max(r-ig,0),u=Math.min(r+ig+1,s);for(let d=l;d<u;++d){let h=Math.max(n-ig,0),p=Math.min(n+ig+1,i);for(let c=h;c<p;++c)if(a.get(d,c,e)>t){o=!1;break}if(!o)break}return o}function yAe(e,t){let[r,n,a]=t.shape,s=new sg(r*n*a,({score:i})=>i);for(let i=0;i<r;++i)for(let o=0;o<n;++o)for(let l=0;l<a;++l){let u=t.get(i,o,l);u<e||gAe(l,u,i,o,t)&&s.enqueue({score:u,part:{heatmapY:i,heatmapX:o,id:l}})}return s}function w9(e,{x:t,y:r},n){return e.some(({keypoints:a})=>{var i;let s=(i=a[n])==null?void 0:i.position;return s?b9(r,t,s.y,s.x)<=fAe:!1})}function AAe(e,t){return t.reduce((n,{position:a,score:s},i)=>(w9(e,a,i)||(n+=s),n),0)/t.length}function xAe(e,t,r,n,a,s){let i=[],o=yAe(s,t);for(;i.length<a&&!o.empty();){let l=o.dequeue(),u=D5(l.part,jd,e);if(w9(i,u,l.part.id))continue;let d=mAe(l,t,e,r,n);d=d.filter(c=>c.score>s);let h=AAe(i,d),p=A9(d);h>s&&i.push({keypoints:d,box:p,score:Math.round(100*h)/100})}return i}async function W5(e,t){let r=K(()=>{if(!ka.inputs[0].shape)return[];let i=Ie.resizeBilinear(e,[ka.inputs[0].shape[2],ka.inputs[0].shape[1]]),o=ce(pe(me(i,"float32"),127.5),1),u=ka.execute(o,cAe).map(d=>et(d,[0]));return u[1]=Nr(u[1]),u}),n=await Promise.all(r.map(i=>i.buffer()));for(let i of r)re(i);let a=await xAe(n[0],n[1],n[2],n[3],t.body.maxDetected,t.body.minConfidence);return ka.inputs[0].shape?x9(a,[e.shape[1],e.shape[2]],[ka.inputs[0].shape[2],ka.inputs[0].shape[1]]):[]}async function k9(e){return!ka||he.initial?ka=await Ge(e.body.modelPath):e.debug&&ie("cached model:",ka.modelUrl),ka}var Ba,V5=!1;async function U5(e){return!Ba||he.initial?Ba=await Ge(e.segmentation.modelPath):e.debug&&ie("cached model:",Ba.modelUrl),Ba}async function S9(e,t,r){var m,g;if(V5)return{data:[],canvas:null,alpha:null};V5=!0,Ba||await U5(r);let n=await Fd(e,r),a=((m=n.tensor)==null?void 0:m.shape[2])||0,s=((g=n.tensor)==null?void 0:g.shape[1])||0;if(!n.tensor)return{data:[],canvas:null,alpha:null};let i={};i.resize=Ie.resizeBilinear(n.tensor,[Ba.inputs[0].shape?Ba.inputs[0].shape[1]:0,Ba.inputs[0].shape?Ba.inputs[0].shape[2]:0],!1),re(n.tensor),i.norm=pe(i.resize,Qe.tf255),i.res=Ba.execute(i.norm),i.squeeze=et(i.res,0),i.squeeze.shape[2]===2?(i.softmax=fd(i.squeeze),[i.bg,i.fg]=tn(i.softmax,2),i.expand=qt(i.fg,2),i.pad=qt(i.expand,0),i.crop=Ie.cropAndResize(i.pad,[[0,0,.5,.5]],[0],[a,s]),i.data=et(i.crop,0)):i.data=Ie.resizeBilinear(i.squeeze,[s,a]);let o=Array.from(await i.data.data());if(he.node&&!he.Canvas&&typeof ImageData=="undefined")return r.debug&&ie("canvas support missing"),Object.keys(i).forEach(y=>re(i[y])),{data:o,canvas:null,alpha:null};let l=qr(a,s);Pn&&await Pn.toPixels(i.data,l);let u=l.getContext("2d");r.segmentation.blur&&r.segmentation.blur>0&&(u.filter=`blur(${r.segmentation.blur}px)`);let d=u.getImageData(0,0,a,s),h=qr(a,s),p=h.getContext("2d");n.canvas&&p.drawImage(n.canvas,0,0),p.globalCompositeOperation="darken",r.segmentation.blur&&r.segmentation.blur>0&&(p.filter=`blur(${r.segmentation.blur}px)`),p.drawImage(l,0,0),p.globalCompositeOperation="source-over",p.filter="none";let c=p.getImageData(0,0,a,s);for(let y=0;y<a*s;y++)c.data[4*y+3]=d.data[4*y+0];p.putImageData(c,0,0);let f=null;if(t&&h){f=qr(a,s);let y=await Fd(t,r);re(y.tensor);let A=f.getContext("2d");A.drawImage(y.canvas,0,0,f.width,f.height),A.drawImage(h,0,0)}return Object.keys(i).forEach(y=>re(i[y])),V5=!1,{data:o,canvas:h,alpha:l}}var rc=class{constructor(){fe(this,"ssrnetage",null);fe(this,"gear",null);fe(this,"blazeposedetect",null);fe(this,"blazepose",null);fe(this,"centernet",null);fe(this,"efficientpose",null);fe(this,"mobilefacenet",null);fe(this,"emotion",null);fe(this,"facedetect",null);fe(this,"faceiris",null);fe(this,"facemesh",null);fe(this,"faceres",null);fe(this,"ssrnetgender",null);fe(this,"handpose",null);fe(this,"handskeleton",null);fe(this,"handtrack",null);fe(this,"liveness",null);fe(this,"movenet",null);fe(this,"nanodet",null);fe(this,"posenet",null);fe(this,"segmentation",null);fe(this,"antispoof",null)}};function og(e){for(let t of Object.keys(e.models))e.models[t]=null}async function G5(e){var t,r,n,a,s,i,o,l,u,d,h,p,c,f,m,g,y,A,x,b,v,S,T,E,R,_,M,I,z,O,j;he.initial&&og(e),e.config.hand.enabled&&(!e.models.handpose&&((r=(t=e.config.hand.detector)==null?void 0:t.modelPath)==null?void 0:r.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await k5(e.config)),!e.models.handskeleton&&e.config.hand.landmarks&&((a=(n=e.config.hand.detector)==null?void 0:n.modelPath)==null?void 0:a.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await k5(e.config))),e.config.body.enabled&&!e.models.blazepose&&((i=(s=e.config.body)==null?void 0:s.modelPath)==null?void 0:i.includes("blazepose"))&&(e.models.blazepose=QN(e.config)),e.config.body.enabled&&!e.models.blazeposedetect&&e.config.body.detector&&e.config.body.detector.modelPath&&(e.models.blazeposedetect=JN(e.config)),e.config.body.enabled&&!e.models.efficientpose&&((l=(o=e.config.body)==null?void 0:o.modelPath)==null?void 0:l.includes("efficientpose"))&&(e.models.efficientpose=sC(e.config)),e.config.body.enabled&&!e.models.movenet&&((d=(u=e.config.body)==null?void 0:u.modelPath)==null?void 0:d.includes("movenet"))&&(e.models.movenet=h9(e.config)),e.config.body.enabled&&!e.models.posenet&&((p=(h=e.config.body)==null?void 0:h.modelPath)==null?void 0:p.includes("posenet"))&&(e.models.posenet=k9(e.config)),e.config.face.enabled&&!e.models.facedetect&&(e.models.facedetect=UN(e.config)),e.config.face.enabled&&((c=e.config.face.antispoof)==null?void 0:c.enabled)&&!e.models.antispoof&&(e.models.antispoof=RN(e.config)),e.config.face.enabled&&((f=e.config.face.liveness)==null?void 0:f.enabled)&&!e.models.liveness&&(e.models.liveness=i9(e.config)),e.config.face.enabled&&((m=e.config.face.description)==null?void 0:m.enabled)&&!e.models.faceres&&(e.models.faceres=EC(e.config)),e.config.face.enabled&&((g=e.config.face.emotion)==null?void 0:g.enabled)&&!e.models.emotion&&(e.models.emotion=uC(e.config)),e.config.face.enabled&&((y=e.config.face.iris)==null?void 0:y.enabled)&&!((A=e.config.face.attention)!=null&&A.enabled)&&!e.models.faceiris&&(e.models.faceiris=xC(e.config)),e.config.face.enabled&&((x=e.config.face.mesh)==null?void 0:x.enabled)&&!e.models.facemesh&&(e.models.facemesh=IC(e.config)),e.config.face.enabled&&((b=e.config.face.gear)==null?void 0:b.enabled)&&!e.models.gear&&(e.models.gear=yN(e.config)),e.config.face.enabled&&((v=e.config.face.ssrnet)==null?void 0:v.enabled)&&!e.models.ssrnetage&&(e.models.ssrnetage=wN(e.config)),e.config.face.enabled&&((S=e.config.face.ssrnet)==null?void 0:S.enabled)&&!e.models.ssrnetgender&&(e.models.ssrnetgender=TN(e.config)),e.config.face.enabled&&((T=e.config.face.mobilefacenet)==null?void 0:T.enabled)&&!e.models.mobilefacenet&&(e.models.mobilefacenet=fC(e.config)),e.config.hand.enabled&&!e.models.handtrack&&((R=(E=e.config.hand.detector)==null?void 0:E.modelPath)==null?void 0:R.includes("handtrack"))&&(e.models.handtrack=t9(e.config)),e.config.hand.enabled&&e.config.hand.landmarks&&!e.models.handskeleton&&((M=(_=e.config.hand.detector)==null?void 0:_.modelPath)==null?void 0:M.includes("handtrack"))&&(e.models.handskeleton=r9(e.config)),e.config.object.enabled&&!e.models.centernet&&((z=(I=e.config.object)==null?void 0:I.modelPath)==null?void 0:z.includes("centernet"))&&(e.models.centernet=rC(e.config)),e.config.object.enabled&&!e.models.nanodet&&((j=(O=e.config.object)==null?void 0:O.modelPath)==null?void 0:j.includes("nanodet"))&&(e.models.nanodet=m9(e.config)),e.config.segmentation.enabled&&!e.models.segmentation&&(e.models.segmentation=U5(e.config));for await(let X of Object.keys(e.models))e.models[X]&&typeof e.models[X]!="undefined"&&(e.models[X]=await e.models[X])}async function j5(e){let t=["const","placeholder","noop","pad","squeeze","add","sub","mul","div"];for(let r of Object.keys(e.models)){let n=e.models[r];if(!n)continue;let a=[],s=n==null?void 0:n.executor;if(s&&s.graph.nodes)for(let o of Object.values(s.graph.nodes)){let l=o.op.toLowerCase();a.includes(l)||a.push(l)}else!s&&e.config.debug&&ie("model signature not determined:",r);let i=[];for(let o of a)!t.includes(o)&&!e.env.kernels.includes(o)&&!e.env.kernels.includes(o.replace("_",""))&&!e.env.kernels.includes(o.replace("native",""))&&!e.env.kernels.includes(o.replace("v2",""))&&i.push(o);e.config.debug&&i.length>0&&ie("model validation failed:",r,i)}}var Ct={name:"humangl",priority:999,canvas:null,gl:null,extensions:[],webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function bAe(){let e=Ct.gl;!e||(Ct.extensions=e.getSupportedExtensions())}async function N9(e){var t;if(e.config.backend==="humangl"&&(Ct.name in br().registry&&(!Ct.gl||!Ct.gl.getParameter(Ct.gl.VERSION))&&(ie("error: humangl backend invalid context"),og(e)),!R2(Ct.name))){try{Ct.canvas=await qr(100,100)}catch(n){ie("error: cannot create canvas:",n);return}try{if(Ct.gl=(t=Ct.canvas)==null?void 0:t.getContext("webgl2",Ct.webGLattr),!Ct.gl.getParameter(Ct.gl.VERSION).includes("2.0")){ie("override: using fallback webgl backend as webgl 2.0 is not detected"),e.config.backend="webgl";return}Ct.canvas&&(Ct.canvas.addEventListener("webglcontextlost",async a=>{throw ie("error: humangl:",a.type),ie("possible browser memory leak using webgl or conflict with multiple backend registrations"),e.emit("error"),new Error("backend error: webgl context lost")}),Ct.canvas.addEventListener("webglcontextrestored",a=>{ie("error: humangl context restored:",a)}),Ct.canvas.addEventListener("webglcontextcreationerror",a=>{ie("error: humangl context create:",a)}))}catch(n){ie("error: cannot get WebGL context:",n);return}try{m0(2,Ct.gl)}catch(n){ie("error: cannot set WebGL context:",n);return}try{let n=new yu(Ct.gl);Tl(Ct.name,()=>new Oh(n),Ct.priority)}catch(n){ie("error: cannot register WebGL backend:",n);return}try{Ra("webgl").forEach(a=>{let s={...a,backendName:Ct.name};Gn(s)})}catch(n){ie("error: cannot update WebGL backend registration:",n);return}let r=jn().getGPGPUContext?jn().getGPGPUContext().gl:null;if(r)ie(`humangl webgl version:${r.getParameter(r.VERSION)} renderer:${r.getParameter(r.RENDERER)}`);else{ie("error: no current gl context:",r,Ct.gl);return}try{Aa.set("WEBGL_VERSION",2)}catch(n){ie("error: cannot set WebGL backend flags:",n);return}bAe(),ie("backend registered:",Ct.name)}}function vAe(){if(!he.kernels.includes("mod")){let e={kernelName:"Mod",backendName:sn(),kernelFunc:t=>K(()=>ce(t.inputs.a,L(pe(t.inputs.a,t.inputs.b),t.inputs.b)))};Gn(e),he.kernels.push("mod")}if(!he.kernels.includes("floormod")){let e={kernelName:"FloorMod",backendName:sn(),kernelFunc:t=>K(()=>gh(t.inputs.a/t.inputs.b)*t.inputs.b+hd(t.inputs.a,t.inputs.b))};Gn(e),he.kernels.push("floormod")}}async function ug(e,t=!1){if(e.state="backend",t||he.initial||e.config.backend&&e.config.backend.length>0&&sn()!==e.config.backend){let r=oe();if(e.config.backend&&e.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&e.config.debug&&e.config.debug&&ie("running inside web worker"),he.browser&&e.config.backend==="tensorflow"&&(e.config.debug&&ie("override: backend set to tensorflow while running in browser"),e.config.backend="humangl"),he.node&&(e.config.backend==="webgl"||e.config.backend==="humangl")&&(e.config.debug&&ie(`override: backend set to ${e.config.backend} while running in nodejs`),e.config.backend="tensorflow"),he.browser&&e.config.backend==="webgpu")if(typeof navigator=="undefined"||typeof navigator.gpu=="undefined")ie("override: backend set to webgpu but browser does not support webgpu"),e.config.backend="humangl";else{let a=await navigator.gpu.requestAdapter();e.config.debug&&ie("enumerated webgpu adapter:",a)}e.config.backend==="humangl"&&await N9(e);let n=Object.keys(br().registryFactory);if(e.config.debug&&ie("available backends:",n),n.includes(e.config.backend)||(ie(`error: backend ${e.config.backend} not found in registry`),e.config.backend=he.node?"tensorflow":"webgl",e.config.debug&&ie(`override: setting backend ${e.config.backend}`)),e.config.debug&&ie("setting backend:",e.config.backend),e.config.backend==="wasm"){if(e.config.debug&&ie("wasm path:",e.config.wasmPath),typeof(Ue==null?void 0:Ue.setWasmPaths)!="undefined")await Nb(e.config.wasmPath,e.config.wasmPlatformFetch);else throw new Error("backend error: attempting to use wasm backend but wasm path is not set");let a=await Y().getAsync("WASM_HAS_SIMD_SUPPORT"),s=await Y().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");e.config.debug&&ie(`wasm execution: ${a?"SIMD":"no SIMD"} ${s?"multithreaded":"singlethreaded"}`),e.config.debug&&!a&&ie("warning: wasm simd support is not enabled")}try{await E2(e.config.backend),await ld(),xN()}catch(a){return ie("error: cannot set backend:",e.config.backend,a),!1}}if(sn()==="humangl"&&(Aa.set("CHECK_COMPUTATION_FOR_ERRORS",!1),Aa.set("WEBGL_CPU_FORWARD",!0),Aa.set("WEBGL_USE_SHAPES_UNIFORMS",!0),Aa.set("CPU_HANDOFF_SIZE_THRESHOLD",256),typeof e.config.deallocate!="undefined"&&e.config.deallocate&&(ie("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),Aa.set("WEBGL_DELETE_TEXTURE_THRESHOLD",0)),jn().getGPGPUContext)){let n=await jn().getGPGPUContext().gl;e.config.debug&&ie(`gl version:${n.getParameter(n.VERSION)} renderer:${n.getParameter(n.RENDERER)}`)}sn(),N2(),await ld(),e.performance.initBackend=Math.trunc(oe()-r),e.config.backend=sn(),await he.updateBackend(),vAe()}return!0}function Y0(e,t){for(let r of e){let n={kernelName:r,backendName:t.backend,kernelFunc:()=>{t.debug&&ie("kernelFunc",r,t.backend)}};Gn(n)}he.kernels=Ra(sn()).map(r=>r.kernelName.toLowerCase())}var J5={};xs(J5,{all:()=>Y5,body:()=>qd,canvas:()=>Z5,face:()=>Hd,gesture:()=>Zd,hand:()=>Kd,object:()=>Xd,options:()=>xr,person:()=>X5});var xr={color:"rgba(173, 216, 230, 0.6)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",alpha:.5,font:'small-caps 16px "Segoe UI"',lineHeight:18,lineWidth:4,pointSize:2,roundRect:8,drawPoints:!1,drawLabels:!0,drawBoxes:!0,drawAttention:!0,drawGestures:!0,drawPolygons:!0,drawGaze:!0,fillPolygons:!1,useDepth:!0,useCurves:!1};var On=e=>{if(!e)ie("draw error: invalid canvas");else if(!e.getContext)ie("draw error: canvas context not defined");else{let t=e.getContext("2d");if(!t)ie("draw error: cannot get canvas context");else return t}return null},Gl=e=>Math.round(e*180/Math.PI),Wa=(e,t=[!0,!0,!1])=>{let r=t[0]?127+Math.trunc(3*e):255,n=t[1]?127-Math.trunc(3*e):255,a=t[2]?127-Math.trunc(3*e):255;return`rgba(${r}, ${n}, ${a}, ${xr.alpha})`};function jl(e,t,r,n,a){n=n||0,e.fillStyle=a.useDepth&&n?Wa(n,n===-255?[!0,!1,!0]:[!0,!1,!1]):a.color,e.beginPath(),e.arc(t,r,a.pointSize,0,2*Math.PI),e.fill()}function Va(e,t,r,n,a,s){if(e.beginPath(),e.lineWidth=s.lineWidth,s.useCurves){let i=(t+t+n)/2,o=(r+r+a)/2;e.ellipse(i,o,n/2,a/2,0,0,2*Math.PI)}else e.moveTo(t+s.roundRect,r),e.lineTo(t+n-s.roundRect,r),e.quadraticCurveTo(t+n,r,t+n,r+s.roundRect),e.lineTo(t+n,r+a-s.roundRect),e.quadraticCurveTo(t+n,r+a,t+n-s.roundRect,r+a),e.lineTo(t+s.roundRect,r+a),e.quadraticCurveTo(t,r+a,t,r+a-s.roundRect),e.lineTo(t,r+s.roundRect),e.quadraticCurveTo(t,r,t+s.roundRect,r),e.closePath();e.stroke()}function H5(e,t,r){if(!(t.length<2)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let n of t){let a=n[2]||0;e.strokeStyle=r.useDepth&&a!==0?Wa(a):r.color,e.fillStyle=r.useDepth&&a!==0?Wa(a):r.color,e.lineTo(n[0],Math.round(n[1]))}e.stroke(),r.fillPolygons&&(e.closePath(),e.fill())}}function E9(e,t,r){if(!(t.length<2)){if(e.lineWidth=r.lineWidth,!r.useCurves||t.length<=2){H5(e,t,r);return}e.moveTo(t[0][0],t[0][1]);for(let n=0;n<t.length-2;n++){let a=(t[n][0]+t[n+1][0])/2,s=(t[n][1]+t[n+1][1])/2;e.quadraticCurveTo(t[n][0],t[n][1],a,s)}e.quadraticCurveTo(t[t.length-2][0],t[t.length-2][1],t[t.length-1][0],t[t.length-1][1]),e.stroke(),r.fillPolygons&&(e.closePath(),e.fill())}}function q5(e,t,r,n=5){let a,s,i;e.beginPath(),e.moveTo(t[0],t[1]),e.lineTo(r[0],r[1]),a=Math.atan2(r[1]-t[1],r[0]-t[0]),s=n*Math.cos(a)+r[0],i=n*Math.sin(a)+r[1],e.moveTo(s,i),a+=1/3*(2*Math.PI),s=n*Math.cos(a)+r[0],i=n*Math.sin(a)+r[1],e.lineTo(s,i),a+=1/3*(2*Math.PI),s=n*Math.cos(a)+r[0],i=n*Math.sin(a)+r[1],e.lineTo(s,i),e.closePath(),e.stroke(),e.fill()}async function Hd(e,t,r){var s,i,o,l,u;let n=Ut(xr,r);if(!t||!e)return;let a=On(e);if(!!a)for(let d of t){if(a.font=n.font,a.strokeStyle=n.color,a.fillStyle=n.color,n.drawBoxes&&Va(a,d.box[0],d.box[1],d.box[2],d.box[3],n),n.drawLabels){let h=[];if(h.push(`face: ${Math.trunc(100*d.score)}%`),d.genderScore&&h.push(`${d.gender||""} ${Math.trunc(100*d.genderScore)}%`),d.age&&h.push(`age: ${d.age||""}`),d.iris&&h.push(`distance: ${d.iris}`),d.real&&h.push(`real: ${Math.trunc(100*d.real)}%`),d.live&&h.push(`live: ${Math.trunc(100*d.live)}%`),d.emotion&&d.emotion.length>0){let p=d.emotion.map(c=>`${Math.trunc(100*c.score)}% ${c.emotion}`);p.length>3&&(p.length=3),h.push(p.join(" "))}d.rotation&&d.rotation.angle&&d.rotation.gaze&&(d.rotation.angle.roll&&h.push(`roll: ${Gl(d.rotation.angle.roll)}\xB0 yaw:${Gl(d.rotation.angle.yaw)}\xB0 pitch:${Gl(d.rotation.angle.pitch)}\xB0`),d.rotation.gaze.bearing&&h.push(`gaze: ${Gl(d.rotation.gaze.bearing)}\xB0`)),h.length===0&&h.push("face"),a.fillStyle=n.color;for(let p=h.length-1;p>=0;p--){let c=Math.max(d.box[0],0),f=p*n.lineHeight+d.box[1];n.shadowColor&&n.shadowColor!==""&&(a.fillStyle=n.shadowColor,a.fillText(h[p],c+5,f+16)),a.fillStyle=n.labelColor,a.fillText(h[p],c+4,f+15)}}if(a.lineWidth=2,d.mesh&&d.mesh.length>0){if(n.drawPoints){let h=Math.max(468,d.mesh.length);for(let p=0;p<h;p++)jl(a,d.mesh[p][0],d.mesh[p][1],d.mesh[p][2],n)}if(n.drawAttention&&d.mesh.length>468)for(let h=468;h<d.mesh.length;h++)jl(a,d.mesh[h][0],d.mesh[h][1],-255,n);if(n.drawPolygons){if(d.mesh.length>450)for(let h=0;h<Ol.length/3;h++){let p=[Ol[h*3+0],Ol[h*3+1],Ol[h*3+2]].map(c=>d.mesh[c]);H5(a,p,n)}if(d.annotations&&d.annotations.leftEyeIris&&d.annotations.leftEyeIris[0]){a.strokeStyle=n.useDepth?"rgba(255, 200, 255, 0.3)":n.color,a.beginPath();let h=Math.abs(d.annotations.leftEyeIris[3][0]-d.annotations.leftEyeIris[1][0])/2,p=Math.abs(d.annotations.leftEyeIris[4][1]-d.annotations.leftEyeIris[2][1])/2;a.ellipse(d.annotations.leftEyeIris[0][0],d.annotations.leftEyeIris[0][1],h,p,0,0,2*Math.PI),a.stroke(),n.fillPolygons&&(a.fillStyle=n.useDepth?"rgba(255, 255, 200, 0.3)":n.color,a.fill())}if(d.annotations&&d.annotations.rightEyeIris&&d.annotations.rightEyeIris[0]){a.strokeStyle=n.useDepth?"rgba(255, 200, 255, 0.3)":n.color,a.beginPath();let h=Math.abs(d.annotations.rightEyeIris[3][0]-d.annotations.rightEyeIris[1][0])/2,p=Math.abs(d.annotations.rightEyeIris[4][1]-d.annotations.rightEyeIris[2][1])/2;a.ellipse(d.annotations.rightEyeIris[0][0],d.annotations.rightEyeIris[0][1],h,p,0,0,2*Math.PI),a.stroke(),n.fillPolygons&&(a.fillStyle=n.useDepth?"rgba(255, 255, 200, 0.3)":n.color,a.fill())}if(n.drawGaze&&((s=d.rotation)==null?void 0:s.angle)&&typeof Path2D!="undefined"){a.strokeStyle="pink";let h=d.box[0]+d.box[2]/2-d.box[3]*Gl(d.rotation.angle.yaw)/90,p=d.box[1]+d.box[3]/2+d.box[2]*Gl(d.rotation.angle.pitch)/90,c=new Path2D(`
|
|
M ${d.box[0]+d.box[2]/2} ${d.box[1]}
|
|
C
|
|
${h} ${d.box[1]},
|
|
${h} ${d.box[1]+d.box[3]},
|
|
${d.box[0]+d.box[2]/2} ${d.box[1]+d.box[3]}
|
|
`),f=new Path2D(`
|
|
M ${d.box[0]} ${d.box[1]+d.box[3]/2}
|
|
C
|
|
${d.box[0]} ${p},
|
|
${d.box[0]+d.box[2]} ${p},
|
|
${d.box[0]+d.box[2]} ${d.box[1]+d.box[3]/2}
|
|
`);a.stroke(f),a.stroke(c)}if(n.drawGaze&&((o=(i=d.rotation)==null?void 0:i.gaze)==null?void 0:o.strength)&&((u=(l=d.rotation)==null?void 0:l.gaze)==null?void 0:u.bearing)&&d.annotations.leftEyeIris&&d.annotations.rightEyeIris&&d.annotations.leftEyeIris[0]&&d.annotations.rightEyeIris[0]){a.strokeStyle="pink",a.fillStyle="pink";let h=[d.annotations.leftEyeIris[0][0]+Math.sin(d.rotation.gaze.bearing)*d.rotation.gaze.strength*d.box[3],d.annotations.leftEyeIris[0][1]+Math.cos(d.rotation.gaze.bearing)*d.rotation.gaze.strength*d.box[2]];q5(a,[d.annotations.leftEyeIris[0][0],d.annotations.leftEyeIris[0][1]],[h[0],h[1]],4);let p=[d.annotations.rightEyeIris[0][0]+Math.sin(d.rotation.gaze.bearing)*d.rotation.gaze.strength*d.box[3],d.annotations.rightEyeIris[0][1]+Math.cos(d.rotation.gaze.bearing)*d.rotation.gaze.strength*d.box[2]];q5(a,[d.annotations.rightEyeIris[0][0],d.annotations.rightEyeIris[0][1]],[p[0],p[1]],4)}}}}}async function qd(e,t,r){var s;let n=Ut(xr,r);if(!t||!e)return;let a=On(e);if(!!a){a.lineJoin="round";for(let i=0;i<t.length;i++){if(a.strokeStyle=n.color,a.fillStyle=n.color,a.lineWidth=n.lineWidth,a.font=n.font,n.drawBoxes&&t[i].box&&((s=t[i].box)==null?void 0:s.length)===4&&(Va(a,t[i].box[0],t[i].box[1],t[i].box[2],t[i].box[3],n),n.drawLabels&&(n.shadowColor&&n.shadowColor!==""&&(a.fillStyle=n.shadowColor,a.fillText(`body ${100*t[i].score}%`,t[i].box[0]+3,1+t[i].box[1]+n.lineHeight,t[i].box[2])),a.fillStyle=n.labelColor,a.fillText(`body ${100*t[i].score}%`,t[i].box[0]+2,0+t[i].box[1]+n.lineHeight,t[i].box[2]))),n.drawPoints&&t[i].keypoints)for(let o=0;o<t[i].keypoints.length;o++)!t[i].keypoints[o].score||t[i].keypoints[o].score===0||(a.fillStyle=n.useDepth&&t[i].keypoints[o].position[2]?Wa(t[i].keypoints[o].position[2]||0):n.color,jl(a,t[i].keypoints[o].position[0],t[i].keypoints[o].position[1],0,n));if(n.drawLabels&&t[i].keypoints){a.font=n.font;for(let o of t[i].keypoints)!o.score||o.score===0||(a.fillStyle=n.useDepth&&o.position[2]?Wa(o.position[2]):n.color,a.fillText(`${o.part} ${Math.trunc(100*o.score)}%`,o.position[0]+4,o.position[1]+4))}if(n.drawPolygons&&t[i].keypoints&&t[i].annotations)for(let o of Object.values(t[i].annotations))for(let l of o)E9(a,l,n)}}}async function Kd(e,t,r){let n=Ut(xr,r);if(!t||!e)return;let a=On(e);if(!!a){a.lineJoin="round",a.font=n.font;for(let s of t){if(n.drawBoxes&&(a.strokeStyle=n.color,a.fillStyle=n.color,Va(a,s.box[0],s.box[1],s.box[2],s.box[3],n),n.drawLabels&&(n.shadowColor&&n.shadowColor!==""&&(a.fillStyle=n.shadowColor,a.fillText(`hand:${Math.trunc(100*s.score)}%`,s.box[0]+3,1+s.box[1]+n.lineHeight,s.box[2])),a.fillStyle=n.labelColor,a.fillText(`hand:${Math.trunc(100*s.score)}%`,s.box[0]+2,0+s.box[1]+n.lineHeight,s.box[2])),a.stroke()),n.drawPoints&&s.keypoints&&s.keypoints.length>0)for(let i of s.keypoints)a.fillStyle=n.useDepth?Wa(i[2]||0):n.color,jl(a,i[0],i[1],0,n);if(n.drawLabels&&s.annotations){let i=(o,l)=>{if(!o||o.length===0||!o[0])return;let u=o[o.length-1][2]||0;a.fillStyle=n.useDepth?Wa(u):n.color,a.fillText(l,o[o.length-1][0]+4,o[o.length-1][1]+4)};a.font=n.font,i(s.annotations.index,"index"),i(s.annotations.middle,"middle"),i(s.annotations.ring,"ring"),i(s.annotations.pinky,"pinky"),i(s.annotations.thumb,"thumb"),i(s.annotations.palm,"palm")}if(n.drawPolygons&&s.annotations){let i=o=>{if(!(!o||o.length===0||!o[0]))for(let l=0;l<o.length;l++){a.beginPath();let u=o[l][2]||0;a.strokeStyle=n.useDepth?Wa(l*u):n.color,a.moveTo(o[l>0?l-1:0][0],o[l>0?l-1:0][1]),a.lineTo(o[l][0],o[l][1]),a.stroke()}};a.lineWidth=n.lineWidth,i(s.annotations.index),i(s.annotations.middle),i(s.annotations.ring),i(s.annotations.pinky),i(s.annotations.thumb)}}}}async function Xd(e,t,r){let n=Ut(xr,r);if(!t||!e)return;let a=On(e);if(!!a){a.lineJoin="round",a.font=n.font;for(let s of t)if(n.drawBoxes){if(a.strokeStyle=n.color,a.fillStyle=n.color,Va(a,s.box[0],s.box[1],s.box[2],s.box[3],n),n.drawLabels){let i=`${s.label} ${Math.round(100*s.score)}%`;n.shadowColor&&n.shadowColor!==""&&(a.fillStyle=n.shadowColor,a.fillText(i,s.box[0]+3,1+s.box[1]+n.lineHeight,s.box[2])),a.fillStyle=n.labelColor,a.fillText(i,s.box[0]+2,0+s.box[1]+n.lineHeight,s.box[2])}a.stroke()}}}async function Zd(e,t,r){let n=Ut(xr,r);if(!(!t||!e)&&n.drawGestures){let a=On(e);if(!a)return;a.font=n.font,a.fillStyle=n.color;let s=1;for(let i=0;i<t.length;i++){let o=[],l=[];if([o,l]=Object.entries(t[i]),l.length>1&&l[1].length>0){let u=o[1]>0?`#${o[1]}`:"",d=`${o[0]} ${u}: ${l[1]}`;n.shadowColor&&n.shadowColor!==""&&(a.fillStyle=n.shadowColor,a.fillText(d,8,2+s*n.lineHeight)),a.fillStyle=n.labelColor,a.fillText(d,6,0+s*n.lineHeight),s+=1}}}}var K5=0;async function X5(e,t,r){let n=Ut(xr,r);if(!t||!e)return;let a=On(e);if(!!a){a.lineJoin="round",a.font=n.font;for(let s=0;s<t.length;s++)if(n.drawBoxes){if(a.strokeStyle=n.color,a.fillStyle=n.color,Va(a,t[s].box[0],t[s].box[1],t[s].box[2],t[s].box[3],n),n.drawLabels){let i=`person #${s}`;n.shadowColor&&n.shadowColor!==""&&(a.fillStyle=n.shadowColor,a.fillText(i,t[s].box[0]+3,1+t[s].box[1]+n.lineHeight,t[s].box[2])),a.fillStyle=n.labelColor,a.fillText(i,t[s].box[0]+2,0+t[s].box[1]+n.lineHeight,t[s].box[2])}a.stroke()}}}async function Z5(e,t){if(!e||!t)return;let r=On(t);!r||r.drawImage(e,0,0)}async function Y5(e,t,r){if(!t||!t.performance||!t||!e)return null;let n=oe(),a=Ut(xr,r),s=Promise.all([Hd(e,t.face,a),qd(e,t.body,a),Kd(e,t.hand,a),Xd(e,t.object,a),Zd(e,t.gesture,a)]);return K5=he.perfadd?K5+Math.round(oe()-n):Math.round(oe()-n),t.performance.draw=K5,s}var Yd=.1,Q5=.5;function kAe(e,t,r){let n=!1,a=r.length-1;for(let s=0;s<r.length;a=s++)r[s].y>t!=r[a].y>t&&e<(r[a].x-r[s].x)*(t-r[s].y)/(r[a].y-r[s].y)+r[s].x&&(n=!n);return n}async function R9(e){if(!e.tensor||!e.mesh||e.mesh.length<100)return e.tensor;let t=e.tensor.shape[2]||0,r=e.tensor.shape[1]||0,n=await e.tensor.buffer(),a=[];for(let i of Jn.silhouette)a.push({x:(e.mesh[i][0]-e.box[0])/e.box[2],y:(e.mesh[i][1]-e.box[1])/e.box[3]});Yd&&Yd>0&&(a=a.map(i=>({x:i.x>.5?i.x+Yd:i.x-Yd,y:i.y>.5?i.y+Yd:i.y-Yd})));for(let i=0;i<t;i++)for(let o=0;o<r;o++)kAe(i/t,o/t,a)||(n.set(Q5*n.get(0,o,i,0),0,o,i,0),n.set(Q5*n.get(0,o,i,1),0,o,i,1),n.set(Q5*n.get(0,o,i,2),0,o,i,2));let s=n.toTensor();return re(n),s}var SAe=e=>{let t=(h,p)=>Math.atan2(h[1]-p[1],h[0]-p[0]);if(!e.annotations.rightEyeIris||!e.annotations.leftEyeIris)return{bearing:0,strength:0};let r=[0,-.1],n=1,a=(e.mesh[33][2]||0)>(e.mesh[263][2]||0),s=a?e.mesh[473]:e.mesh[468],i=a?[(e.mesh[133][0]+e.mesh[33][0])/2,(e.mesh[133][1]+e.mesh[33][1])/2]:[(e.mesh[263][0]+e.mesh[362][0])/2,(e.mesh[263][1]+e.mesh[362][1])/2],o=a?[e.mesh[133][0]-e.mesh[33][0],e.mesh[23][1]-e.mesh[27][1]]:[e.mesh[263][0]-e.mesh[362][0],e.mesh[253][1]-e.mesh[257][1]],l=[(i[0]-s[0])/o[0]-r[0],n*(s[1]-i[1])/o[1]-r[1]],u=Math.sqrt(l[0]*l[0]+l[1]*l[1]);return u=Math.min(u,e.boxRaw[2]/2,e.boxRaw[3]/2),{bearing:(t([0,0],l)+Math.PI/2)%Math.PI,strength:u}},M9=(e,t)=>{let r=m=>{let g=Math.sqrt(m[0]*m[0]+m[1]*m[1]+m[2]*m[2]);return m[0]/=g,m[1]/=g,m[2]/=g,m},n=(m,g)=>{let y=m[0]-g[0],A=m[1]-g[1],x=m[2]-g[2];return[y,A,x]},a=(m,g)=>{let y=m[1]*g[2]-m[2]*g[1],A=m[2]*g[0]-m[0]*g[2],x=m[0]*g[1]-m[1]*g[0];return[y,A,x]},s=m=>{let[g,y,A,x,b,v,S,T,E]=m,R,_,M;return x<1?x>-1?(M=Math.asin(x),_=Math.atan2(-S,g),R=Math.atan2(-v,b)):(M=-Math.PI/2,_=-Math.atan2(T,E),R=0):(M=Math.PI/2,_=Math.atan2(T,E),R=0),isNaN(R)&&(R=0),isNaN(_)&&(_=0),isNaN(M)&&(M=0),{pitch:2*-R,yaw:2*-_,roll:2*-M}},i=e.meshRaw;if(!i||i.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let o=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,l=[i[10],i[152],i[234],i[454]].map(m=>[m[0]*t[0]/o,m[1]*t[1]/o,m[2]]),u=r(n(l[1],l[0])),d=r(n(l[3],l[2])),h=r(a(d,u));d=a(u,h);let p=[d[0],d[1],d[2],u[0],u[1],u[2],h[0],h[1],h[2]],c=s(p),f=i.length===478?SAe(e):{bearing:0,strength:0};return{angle:c,matrix:p,gaze:f}};var e3=async(e,t)=>{var c,f,m,g,y,A,x,b,v,S,T,E,R,_,M,I,z,O,j,X,D,Q;let r=oe(),n,a,s,i,o,l,u,d,h=[];e.state="run:face";let p=await kC(t,e.config);if(e.performance.face=he.perfadd?(e.performance.face||0)+Math.trunc(oe()-r):Math.trunc(oe()-r),!t.shape||t.shape.length!==4)return[];if(!p)return[];for(let V=0;V<p.length;V++){if(e.analyze("Get Face"),!p[V].tensor||p[V].tensor.isDisposedInternal){ie("Face object is disposed:",p[V].tensor);continue}if((c=e.config.face.detector)!=null&&c.mask){let ae=await R9(p[V]);re(p[V].tensor),p[V].tensor=ae}let ee=p[V].mesh&&p[V].mesh.length>200?M9(p[V],[t.shape[2],t.shape[1]]):null;e.analyze("Start Emotion:"),e.config.async?i=(f=e.config.face.emotion)!=null&&f.enabled?l5(p[V].tensor||ct([]),e.config,V,p.length):[]:(e.state="run:emotion",r=oe(),i=(m=e.config.face.emotion)!=null&&m.enabled?await l5(p[V].tensor||ct([]),e.config,V,p.length):[],e.performance.emotion=he.perfadd?(e.performance.emotion||0)+Math.trunc(oe()-r):Math.trunc(oe()-r)),e.analyze("End Emotion:"),e.analyze("Start AntiSpoof:"),e.config.async?l=(g=e.config.face.antispoof)!=null&&g.enabled?Wb(p[V].tensor||ct([]),e.config,V,p.length):0:(e.state="run:antispoof",r=oe(),l=(y=e.config.face.antispoof)!=null&&y.enabled?await Wb(p[V].tensor||ct([]),e.config,V,p.length):0,e.performance.antispoof=he.perfadd?(e.performance.antispoof||0)+Math.trunc(oe()-r):Math.trunc(oe()-r)),e.analyze("End AntiSpoof:"),e.analyze("Start Liveness:"),e.config.async?u=(A=e.config.face.liveness)!=null&&A.enabled?C5(p[V].tensor||ct([]),e.config,V,p.length):0:(e.state="run:liveness",r=oe(),u=(x=e.config.face.liveness)!=null&&x.enabled?await C5(p[V].tensor||ct([]),e.config,V,p.length):0,e.performance.liveness=he.perfadd?(e.performance.antispoof||0)+Math.trunc(oe()-r):Math.trunc(oe()-r)),e.analyze("End Liveness:"),e.analyze("Start GEAR:"),e.config.async?a=(b=e.config.face.gear)!=null&&b.enabled?Pb(p[V].tensor||ct([]),e.config,V,p.length):null:(e.state="run:gear",r=oe(),a=(v=e.config.face.gear)!=null&&v.enabled?await Pb(p[V].tensor||ct([]),e.config,V,p.length):null,e.performance.gear=Math.trunc(oe()-r)),e.analyze("End GEAR:"),e.analyze("Start SSRNet:"),e.config.async?(n=(S=e.config.face.ssrnet)!=null&&S.enabled?zb(p[V].tensor||ct([]),e.config,V,p.length):null,s=(T=e.config.face.ssrnet)!=null&&T.enabled?Lb(p[V].tensor||ct([]),e.config,V,p.length):null):(e.state="run:ssrnet",r=oe(),n=(E=e.config.face.ssrnet)!=null&&E.enabled?await zb(p[V].tensor||ct([]),e.config,V,p.length):null,s=(R=e.config.face.ssrnet)!=null&&R.enabled?await Lb(p[V].tensor||ct([]),e.config,V,p.length):null,e.performance.ssrnet=Math.trunc(oe()-r)),e.analyze("End SSRNet:"),e.analyze("Start MobileFaceNet:"),e.config.async?o=(_=e.config.face.mobilefacenet)!=null&&_.enabled?d5(p[V].tensor||ct([]),e.config,V,p.length):null:(e.state="run:mobilefacenet",r=oe(),o=(M=e.config.face.mobilefacenet)!=null&&M.enabled?await d5(p[V].tensor||ct([]),e.config,V,p.length):null,e.performance.mobilefacenet=Math.trunc(oe()-r)),e.analyze("End MobileFaceNet:"),e.analyze("Start Description:"),e.config.async?d=(I=e.config.face.description)!=null&&I.enabled?g5(p[V].tensor||ct([]),e.config,V,p.length):null:(e.state="run:description",r=oe(),d=(z=e.config.face.description)!=null&&z.enabled?await g5(p[V].tensor||ct([]),e.config,V,p.length):null,e.performance.description=he.perfadd?(e.performance.description||0)+Math.trunc(oe()-r):Math.trunc(oe()-r)),e.analyze("End Description:"),e.config.async&&([n,s,i,o,d,a,l,u]=await Promise.all([n,s,i,o,d,a,l,u])),e.analyze("Finish Face:"),((O=e.config.face.ssrnet)==null?void 0:O.enabled)&&n&&s&&(d={...d,age:n.age,gender:s.gender,genderScore:s.genderScore}),((j=e.config.face.gear)==null?void 0:j.enabled)&&a&&(d={...d,age:a.age,gender:a.gender,genderScore:a.genderScore,race:a.race}),((X=e.config.face.mobilefacenet)==null?void 0:X.enabled)&&o&&(d.descriptor=o),(D=e.config.face.iris)!=null&&D.enabled;let J=p[V].annotations&&p[V].annotations.leftEyeIris&&p[V].annotations.leftEyeIris[0]&&p[V].annotations.rightEyeIris&&p[V].annotations.rightEyeIris[0]&&p[V].annotations.leftEyeIris.length>0&&p[V].annotations.rightEyeIris.length>0&&p[V].annotations.leftEyeIris[0]!==null&&p[V].annotations.rightEyeIris[0]!==null?Math.max(Math.abs(p[V].annotations.leftEyeIris[3][0]-p[V].annotations.leftEyeIris[1][0]),Math.abs(p[V].annotations.rightEyeIris[4][1]-p[V].annotations.rightEyeIris[2][1]))/t.shape[2]:0,se=(Q=e.config.face.detector)!=null&&Q.return?et(p[V].tensor):null;re(p[V].tensor),p[V].tensor&&delete p[V].tensor;let Z={...p[V],id:V};d!=null&&d.age&&(Z.age=d.age),d!=null&&d.gender&&(Z.gender=d.gender),d!=null&&d.genderScore&&(Z.genderScore=d==null?void 0:d.genderScore),d!=null&&d.descriptor&&(Z.embedding=d==null?void 0:d.descriptor),d!=null&&d.race&&(Z.race=d==null?void 0:d.race),i&&(Z.emotion=i),l&&(Z.real=l),u&&(Z.live=u),J&&J!==0&&(Z.iris=Math.trunc(500/J/11.7)/100),ee&&(Z.rotation=ee),se&&(Z.tensor=se),h.push(Z),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.performance.face&&delete e.performance.face,e.performance.age&&delete e.performance.age,e.performance.gender&&delete e.performance.gender,e.performance.emotion&&delete e.performance.emotion),h};var F9=e=>{if(!e)return[];let t=[];for(let r=0;r<e.length;r++){let n=e[r].keypoints.find(l=>l.part==="leftWrist"),a=e[r].keypoints.find(l=>l.part==="rightWrist"),s=e[r].keypoints.find(l=>l.part==="nose");s&&n&&a&&n.position[1]<s.position[1]&&a.position[1]<s.position[1]?t.push({body:r,gesture:"i give up"}):s&&n&&n.position[1]<s.position[1]?t.push({body:r,gesture:"raise left hand"}):s&&a&&a.position[1]<s.position[1]&&t.push({body:r,gesture:"raise right hand"});let i=e[r].keypoints.find(l=>l.part==="leftShoulder"),o=e[r].keypoints.find(l=>l.part==="rightShoulder");i&&o&&Math.abs(i.positionRaw[1]-o.positionRaw[1])>.1&&t.push({body:r,gesture:`leaning ${i.position[1]>o.position[1]?"left":"right"}`})}return t},$9=e=>{if(!e)return[];let t=[];for(let r=0;r<e.length;r++)if(e[r].mesh&&e[r].mesh.length>450){let n=(e[r].mesh[33][2]||0)-(e[r].mesh[263][2]||0),a=e[r].mesh[33][0]-e[r].mesh[263][0];Math.abs(n/a)<=.15?t.push({face:r,gesture:"facing center"}):t.push({face:r,gesture:`facing ${n<0?"left":"right"}`}),Math.abs(e[r].mesh[374][1]-e[r].mesh[386][1])/Math.abs(e[r].mesh[443][1]-e[r].mesh[450][1])<.2&&t.push({face:r,gesture:"blink left eye"}),Math.abs(e[r].mesh[145][1]-e[r].mesh[159][1])/Math.abs(e[r].mesh[223][1]-e[r].mesh[230][1])<.2&&t.push({face:r,gesture:"blink right eye"});let o=Math.min(100,500*Math.abs(e[r].mesh[13][1]-e[r].mesh[14][1])/Math.abs(e[r].mesh[10][1]-e[r].mesh[152][1]));o>10&&t.push({face:r,gesture:`mouth ${Math.trunc(o)}% open`});let l=e[r].mesh[152][2]||0;Math.abs(l)>10&&t.push({face:r,gesture:`head ${l<0?"up":"down"}`})}return t},P9=e=>{if(!e)return[];let t=[];for(let r=0;r<e.length;r++){if(!e[r].annotations||!e[r].annotations.leftEyeIris||!e[r].annotations.leftEyeIris[0]||!e[r].annotations.rightEyeIris||!e[r].annotations.rightEyeIris[0])continue;let n=e[r].annotations.leftEyeIris[3][0]-e[r].annotations.leftEyeIris[1][0],a=e[r].annotations.leftEyeIris[4][1]-e[r].annotations.leftEyeIris[2][1],s=Math.abs(n*a),i=e[r].annotations.rightEyeIris[3][0]-e[r].annotations.rightEyeIris[1][0],o=e[r].annotations.rightEyeIris[4][1]-e[r].annotations.rightEyeIris[2][1],l=Math.abs(i*o),u=!1;Math.abs(s-l)/Math.max(s,l)<.25&&(u=!0,t.push({iris:r,gesture:"facing center"}));let h=Math.abs(e[r].mesh[263][0]-e[r].annotations.leftEyeIris[0][0])/e[r].box[2],p=Math.abs(e[r].mesh[33][0]-e[r].annotations.rightEyeIris[0][0])/e[r].box[2];(h>.06||p>.06)&&(u=!1),h>p?h>.05&&t.push({iris:r,gesture:"looking right"}):p>.05&&t.push({iris:r,gesture:"looking left"});let c=Math.abs(e[r].mesh[145][1]-e[r].annotations.rightEyeIris[0][1])/e[r].box[3],f=Math.abs(e[r].mesh[374][1]-e[r].annotations.leftEyeIris[0][1])/e[r].box[3];(f<.01||c<.01||f>.022||c>.022)&&(u=!1),(f<.01||c<.01)&&t.push({iris:r,gesture:"looking down"}),(f>.022||c>.022)&&t.push({iris:r,gesture:"looking up"}),u&&t.push({iris:r,gesture:"looking center"})}return t},_9=e=>{if(!e)return[];let t=[];for(let r=0;r<e.length;r++){let n=[];if(e[r].annotations)for(let[a,s]of Object.entries(e[r].annotations))a!=="palmBase"&&Array.isArray(s)&&s[0]&&n.push({name:a.toLowerCase(),position:s[0]});if(n&&n.length>0){let a=n.reduce((i,o)=>(i.position[2]||0)<(o.position[2]||0)?i:o);t.push({hand:r,gesture:`${a.name} forward`});let s=n.reduce((i,o)=>i.position[1]<o.position[1]?i:o);t.push({hand:r,gesture:`${s.name} up`})}if(e[r].keypoints){let a=KC(e[r].keypoints);for(let s of a)t.push({hand:r,gesture:s.name})}}return t};var Ce={face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0,error:null},t3=0;function z9(e,t){var i,o,l,u,d,h,p,c,f,m,g,y,A,x,b,v,S,T,E,R,_,M,I,z,O,j,X;let r=oe();if(!e)return{face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0,error:null};let n=Date.now()-e.timestamp,a=n<1e3?8-Math.log(n+1):1;if(e.canvas&&(Ce.canvas=e.canvas),e.error&&(Ce.error=e.error),!Ce.body||e.body.length!==Ce.body.length)Ce.body=JSON.parse(JSON.stringify(e.body));else for(let D=0;D<e.body.length;D++){let Q=e.body[D].box.map((Z,ae)=>((a-1)*Ce.body[D].box[ae]+Z)/a),V=e.body[D].boxRaw.map((Z,ae)=>((a-1)*Ce.body[D].boxRaw[ae]+Z)/a),ee=e.body[D].keypoints.map((Z,ae)=>{var de,Ae,be,Ee,Me,De,Be,Ze,ot;return{score:Z.score,part:Z.part,position:[Ce.body[D].keypoints[ae]?((a-1)*(Ce.body[D].keypoints[ae].position[0]||0)+(Z.position[0]||0))/a:Z.position[0],Ce.body[D].keypoints[ae]?((a-1)*(Ce.body[D].keypoints[ae].position[1]||0)+(Z.position[1]||0))/a:Z.position[1],Ce.body[D].keypoints[ae]?((a-1)*(Ce.body[D].keypoints[ae].position[2]||0)+(Z.position[2]||0))/a:Z.position[2]],positionRaw:[Ce.body[D].keypoints[ae]?((a-1)*(Ce.body[D].keypoints[ae].positionRaw[0]||0)+(Z.positionRaw[0]||0))/a:Z.positionRaw[0],Ce.body[D].keypoints[ae]?((a-1)*(Ce.body[D].keypoints[ae].positionRaw[1]||0)+(Z.positionRaw[1]||0))/a:Z.positionRaw[1],Ce.body[D].keypoints[ae]?((a-1)*(Ce.body[D].keypoints[ae].positionRaw[2]||0)+(Z.positionRaw[2]||0))/a:Z.positionRaw[2]],distance:[Ce.body[D].keypoints[ae]?((a-1)*(((de=Ce.body[D].keypoints[ae].distance)==null?void 0:de[0])||0)+(((Ae=Z.distance)==null?void 0:Ae[0])||0))/a:(be=Z.distance)==null?void 0:be[0],Ce.body[D].keypoints[ae]?((a-1)*(((Ee=Ce.body[D].keypoints[ae].distance)==null?void 0:Ee[1])||0)+(((Me=Z.distance)==null?void 0:Me[1])||0))/a:(De=Z.distance)==null?void 0:De[1],Ce.body[D].keypoints[ae]?((a-1)*(((Be=Ce.body[D].keypoints[ae].distance)==null?void 0:Be[2])||0)+(((Ze=Z.distance)==null?void 0:Ze[2])||0))/a:(ot=Z.distance)==null?void 0:ot[2]]}}),J={},se={connected:{}};(o=(i=t.body)==null?void 0:i.modelPath)!=null&&o.includes("efficientpose")?se=B0:(u=(l=t.body)==null?void 0:l.modelPath)!=null&&u.includes("blazepose")?se=_0:(h=(d=t.body)==null?void 0:d.modelPath)!=null&&h.includes("movenet")&&(se=Qh);for(let[Z,ae]of Object.entries(se.connected)){let de=[];for(let Ae=0;Ae<ae.length-1;Ae++){let be=ee.find(Me=>Me.part===ae[Ae]),Ee=ee.find(Me=>Me.part===ae[Ae+1]);be&&Ee&&de.push([be.position,Ee.position])}J[Z]=de}Ce.body[D]={...e.body[D],box:Q,boxRaw:V,keypoints:ee,annotations:J}}if(!Ce.hand||e.hand.length!==Ce.hand.length)Ce.hand=JSON.parse(JSON.stringify(e.hand));else for(let D=0;D<e.hand.length;D++){let Q=e.hand[D].box.map((se,Z)=>((a-1)*Ce.hand[D].box[Z]+se)/a),V=e.hand[D].boxRaw.map((se,Z)=>((a-1)*Ce.hand[D].boxRaw[Z]+se)/a);Ce.hand[D].keypoints.length!==e.hand[D].keypoints.length&&(Ce.hand[D].keypoints=e.hand[D].keypoints);let ee=e.hand[D].keypoints&&e.hand[D].keypoints.length>0?e.hand[D].keypoints.map((se,Z)=>se.map((ae,de)=>((a-1)*(Ce.hand[D].keypoints[Z][de]||1)+(ae||0))/a)):[],J={};if(Object.keys(Ce.hand[D].annotations).length!==Object.keys(e.hand[D].annotations).length)Ce.hand[D].annotations=e.hand[D].annotations,J=Ce.hand[D].annotations;else if(e.hand[D].annotations)for(let se of Object.keys(e.hand[D].annotations))J[se]=e.hand[D].annotations[se]&&e.hand[D].annotations[se][0]?e.hand[D].annotations[se].map((Z,ae)=>Z.map((de,Ae)=>((a-1)*Ce.hand[D].annotations[se][ae][Ae]+de)/a)):null;Ce.hand[D]={...e.hand[D],box:Q,boxRaw:V,keypoints:ee,annotations:J}}if(!Ce.face||e.face.length!==Ce.face.length)Ce.face=JSON.parse(JSON.stringify(e.face));else for(let D=0;D<e.face.length;D++){let Q=e.face[D].box.map((ee,J)=>((a-1)*Ce.face[D].box[J]+ee)/a),V=e.face[D].boxRaw.map((ee,J)=>((a-1)*Ce.face[D].boxRaw[J]+ee)/a);if(e.face[D].rotation){let ee={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};ee.matrix=(p=e.face[D].rotation)==null?void 0:p.matrix,ee.angle={roll:((a-1)*(((f=(c=Ce.face[D].rotation)==null?void 0:c.angle)==null?void 0:f.roll)||0)+(((g=(m=e.face[D].rotation)==null?void 0:m.angle)==null?void 0:g.roll)||0))/a,yaw:((a-1)*(((A=(y=Ce.face[D].rotation)==null?void 0:y.angle)==null?void 0:A.yaw)||0)+(((b=(x=e.face[D].rotation)==null?void 0:x.angle)==null?void 0:b.yaw)||0))/a,pitch:((a-1)*(((S=(v=Ce.face[D].rotation)==null?void 0:v.angle)==null?void 0:S.pitch)||0)+(((E=(T=e.face[D].rotation)==null?void 0:T.angle)==null?void 0:E.pitch)||0))/a},ee.gaze={bearing:((a-1)*(((_=(R=Ce.face[D].rotation)==null?void 0:R.gaze)==null?void 0:_.bearing)||0)+(((I=(M=e.face[D].rotation)==null?void 0:M.gaze)==null?void 0:I.bearing)||0))/a,strength:((a-1)*(((O=(z=Ce.face[D].rotation)==null?void 0:z.gaze)==null?void 0:O.strength)||0)+(((X=(j=e.face[D].rotation)==null?void 0:j.gaze)==null?void 0:X.strength)||0))/a},Ce.face[D]={...e.face[D],rotation:ee,box:Q,boxRaw:V}}Ce.face[D]={...e.face[D],box:Q,boxRaw:V}}if(!Ce.object||e.object.length!==Ce.object.length)Ce.object=JSON.parse(JSON.stringify(e.object));else for(let D=0;D<e.object.length;D++){let Q=e.object[D].box.map((ee,J)=>((a-1)*Ce.object[D].box[J]+ee)/a),V=e.object[D].boxRaw.map((ee,J)=>((a-1)*Ce.object[D].boxRaw[J]+ee)/a);Ce.object[D]={...e.object[D],box:Q,boxRaw:V}}if(e.persons){let D=e.persons;if(!Ce.persons||D.length!==Ce.persons.length)Ce.persons=JSON.parse(JSON.stringify(D));else for(let Q=0;Q<D.length;Q++)Ce.persons[Q].box=D[Q].box.map((V,ee)=>((a-1)*Ce.persons[Q].box[ee]+V)/a)}e.gesture&&(Ce.gesture=e.gesture);let s=oe();return t3=he.perfadd?t3+Math.round(s-r):Math.round(s-r),e.performance&&(Ce.performance={...e.performance,interpolate:t3}),Ce}var a3={};xs(a3,{distance:()=>nc,match:()=>n3,similarity:()=>r3});function nc(e,t,r={order:2,multiplier:25}){let n=0;for(let a=0;a<e.length;a++){let s=!r.order||r.order===2?e[a]-t[a]:Math.abs(e[a]-t[a]);n+=!r.order||r.order===2?s*s:s**r.order}return(r.multiplier||20)*n}var O9=(e,t,r,n)=>{if(e===0)return 1;let a=t===2?Math.sqrt(e):e**(1/t),s=(1-a/100-r)/(n-r);return Math.max(Math.min(s,1),0)};function r3(e,t,r={order:2,multiplier:25,min:.2,max:.8}){let n=nc(e,t,r);return O9(n,r.order||2,r.min||0,r.max||1)}function n3(e,t,r={order:2,multiplier:25,threshold:0,min:.2,max:.8}){if(!Array.isArray(e)||!Array.isArray(t)||e.length<64||t.length===0||e.length!==t[0].length)return{index:-1,distance:Number.POSITIVE_INFINITY,similarity:0};let n=Number.MAX_SAFE_INTEGER,a=-1;for(let i=0;i<t.length;i++){let o=nc(e,t[i],r);if(o<n&&(n=o,a=i),n<(r.threshold||0))break}let s=O9(n,r.order||2,r.min||0,r.max||1);return{index:a,distance:n,similarity:s}}function D9(e,t,r,n,a){var o,l,u,d,h,p,c,f,m,g,y,A,x,b,v,S;let s=0,i=[];for(let T of e){let E={id:s++,face:T,body:null,hands:{left:null,right:null},gestures:[],box:[0,0,0,0]};for(let O of t)T.box[0]>O.box[0]&&T.box[0]<O.box[0]+O.box[2]&&T.box[1]+T.box[3]>O.box[1]&&T.box[1]+T.box[3]<O.box[1]+O.box[3]&&(E.body=O);if(E.body)for(let O of r)O.box[0]+O.box[2]>E.body.box[0]&&O.box[0]+O.box[2]<E.body.box[0]+E.body.box[2]&&O.box[1]+O.box[3]>E.body.box[1]&&O.box[1]+O.box[3]<E.body.box[1]+E.body.box[3]&&E.hands&&(E.hands.left=O),O.box[0]<E.body.box[0]+E.body.box[2]&&O.box[0]>E.body.box[0]&&O.box[1]+O.box[3]>E.body.box[1]&&O.box[1]+O.box[3]<E.body.box[1]+E.body.box[3]&&E.hands&&(E.hands.right=O);for(let O of n)O.face!==void 0&&O.face===T.id?(o=E.gestures)==null||o.push(O):O.iris!==void 0&&O.iris===T.id?(l=E.gestures)==null||l.push(O):O.body!==void 0&&O.body===((u=E.body)==null?void 0:u.id)?(d=E.gestures)==null||d.push(O):O.hand!==void 0&&O.hand===((p=(h=E.hands)==null?void 0:h.left)==null?void 0:p.id)?(c=E.gestures)==null||c.push(O):O.hand!==void 0&&O.hand===((m=(f=E.hands)==null?void 0:f.right)==null?void 0:m.id)&&((g=E.gestures)==null||g.push(O));let R=[],_=[],M=O=>{O&&O.length===4&&(R.push(O[0],O[0]+O[2]),_.push(O[1],O[1]+O[3]))};M((y=E.face)==null?void 0:y.box),M((A=E.body)==null?void 0:A.box),M((b=(x=E.hands)==null?void 0:x.left)==null?void 0:b.box),M((S=(v=E.hands)==null?void 0:v.right)==null?void 0:S.box);let I=Math.min(...R),z=Math.min(..._);E.box=[I,z,Math.max(...R)-I,Math.max(..._)-z],a&&a[1]&&a[2]&&(E.boxRaw=[E.box[0]/a[2],E.box[1]/a[1],E.box[2]/a[2],E.box[3]/a[1]]),i.push(E)}return i}var dg=`
|
|
/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA
|
|
AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu
|
|
bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob
|
|
IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo
|
|
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E
|
|
AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE
|
|
EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH
|
|
SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1
|
|
tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB
|
|
AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET
|
|
IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla
|
|
Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG
|
|
x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML
|
|
Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF
|
|
PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/
|
|
AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z
|
|
5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9
|
|
zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO
|
|
tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6
|
|
8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W
|
|
wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk
|
|
EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6
|
|
GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT
|
|
A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep
|
|
rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb
|
|
LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ
|
|
ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K
|
|
KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l
|
|
pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x
|
|
UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4
|
|
HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr
|
|
xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS
|
|
NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD
|
|
1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX
|
|
+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3
|
|
GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K
|
|
q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0
|
|
nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm
|
|
uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH
|
|
ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV
|
|
wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8
|
|
87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P
|
|
FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD
|
|
YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv
|
|
JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ
|
|
QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el
|
|
UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681
|
|
ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly
|
|
CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc
|
|
UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF
|
|
63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x
|
|
XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2
|
|
ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk
|
|
Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK
|
|
cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef
|
|
eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4
|
|
/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5
|
|
rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru
|
|
/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A
|
|
zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO
|
|
I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1
|
|
jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ
|
|
GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG
|
|
cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb
|
|
WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis
|
|
ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH
|
|
ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi
|
|
lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO
|
|
xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK
|
|
JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX
|
|
PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c
|
|
W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t
|
|
C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk
|
|
4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn
|
|
xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW
|
|
vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi
|
|
qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV
|
|
hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F
|
|
j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6
|
|
wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm
|
|
oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ
|
|
k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg
|
|
nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP
|
|
1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1
|
|
H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ
|
|
1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx
|
|
zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt
|
|
fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp
|
|
Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj
|
|
VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy
|
|
rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe
|
|
5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D
|
|
d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69
|
|
MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ
|
|
Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ
|
|
MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP
|
|
ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn
|
|
0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU
|
|
yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is
|
|
pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz
|
|
TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu
|
|
uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem
|
|
gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk
|
|
HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy
|
|
s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu
|
|
m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb
|
|
0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz
|
|
9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN
|
|
DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n
|
|
R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk
|
|
nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu
|
|
6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd
|
|
9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb
|
|
Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S
|
|
MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz
|
|
FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8
|
|
VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx
|
|
Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ
|
|
mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+
|
|
5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh
|
|
05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd
|
|
ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ
|
|
5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR
|
|
Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8
|
|
1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4
|
|
B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag
|
|
Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA
|
|
3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn
|
|
3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx
|
|
1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU
|
|
tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6
|
|
f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA
|
|
bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ
|
|
zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup
|
|
6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM
|
|
350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0
|
|
/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a
|
|
YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ
|
|
agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO
|
|
mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl
|
|
mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR
|
|
nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo
|
|
EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt
|
|
4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ
|
|
ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p
|
|
iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj
|
|
PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l
|
|
c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1
|
|
8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3
|
|
ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY
|
|
euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,pg=`
|
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk
|
|
JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF
|
|
RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA
|
|
AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA
|
|
AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA
|
|
AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA
|
|
AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj
|
|
+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt
|
|
Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR
|
|
PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl
|
|
mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp
|
|
+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa
|
|
zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D
|
|
h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2
|
|
ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67
|
|
d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y
|
|
Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP
|
|
Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC
|
|
vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi
|
|
eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/
|
|
Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+
|
|
r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO
|
|
O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s
|
|
tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN
|
|
TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc
|
|
0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj
|
|
q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w
|
|
+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s
|
|
d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t
|
|
cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4
|
|
Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe
|
|
bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi
|
|
KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6
|
|
rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ
|
|
9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf
|
|
Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V
|
|
bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q
|
|
Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM
|
|
lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/
|
|
/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme
|
|
E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv
|
|
fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6
|
|
jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN
|
|
+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk
|
|
Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK
|
|
cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop
|
|
yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn
|
|
E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX
|
|
12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW
|
|
iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS
|
|
RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf
|
|
0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx
|
|
DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL
|
|
G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK
|
|
xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ
|
|
a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4
|
|
ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6
|
|
tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+
|
|
fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE
|
|
erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR
|
|
Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9
|
|
lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD
|
|
j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV
|
|
5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt
|
|
Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/
|
|
+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c
|
|
vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p
|
|
jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0
|
|
77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP
|
|
Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8
|
|
5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe
|
|
Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R
|
|
Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV
|
|
rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU
|
|
z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8
|
|
to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X
|
|
y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt
|
|
stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/
|
|
w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT
|
|
DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l
|
|
XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t
|
|
ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS
|
|
34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX
|
|
e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn
|
|
26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf
|
|
3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q
|
|
6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P
|
|
NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO
|
|
yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN
|
|
3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8
|
|
2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h
|
|
dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx
|
|
kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t
|
|
DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb
|
|
eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc
|
|
1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka
|
|
c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE
|
|
xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu
|
|
s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK
|
|
0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9
|
|
dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt
|
|
PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T
|
|
Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T
|
|
adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b
|
|
SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt
|
|
pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm
|
|
vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr
|
|
EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N
|
|
vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh
|
|
ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I
|
|
tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW
|
|
d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe
|
|
N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218
|
|
8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG
|
|
PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY
|
|
V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw
|
|
w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT
|
|
Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1
|
|
axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/
|
|
tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I
|
|
mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe
|
|
XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1
|
|
izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2
|
|
crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4
|
|
OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2
|
|
r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx
|
|
zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz
|
|
+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v
|
|
Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu
|
|
ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095
|
|
YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE
|
|
9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8
|
|
mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O
|
|
uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O
|
|
fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6
|
|
Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT
|
|
uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3
|
|
6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1
|
|
Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF
|
|
feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq
|
|
xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v
|
|
ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ
|
|
mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz
|
|
mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP
|
|
B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0
|
|
5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1
|
|
mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt
|
|
mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO
|
|
1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq
|
|
ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q
|
|
ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7
|
|
ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK
|
|
GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i
|
|
tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T
|
|
+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+
|
|
O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO
|
|
esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es
|
|
vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz
|
|
XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1
|
|
+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY
|
|
36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL
|
|
q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY
|
|
3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz
|
|
p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr
|
|
1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV
|
|
xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt
|
|
pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS
|
|
fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH
|
|
mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z
|
|
1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+
|
|
n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d
|
|
MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df
|
|
zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl
|
|
J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs
|
|
zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH
|
|
DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ
|
|
dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR
|
|
tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j
|
|
admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC
|
|
b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X
|
|
qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh
|
|
ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O
|
|
8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L
|
|
T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0
|
|
Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr
|
|
vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer
|
|
rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL
|
|
oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq
|
|
j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh
|
|
odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8
|
|
8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1
|
|
lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+
|
|
oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL
|
|
knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK
|
|
EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N
|
|
mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm
|
|
9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N
|
|
IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W
|
|
MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2
|
|
+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql
|
|
o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37
|
|
O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE
|
|
TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1
|
|
L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4
|
|
izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt
|
|
1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb
|
|
V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum
|
|
L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12
|
|
CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE
|
|
ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo
|
|
Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu
|
|
L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh
|
|
5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3
|
|
6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9
|
|
XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM
|
|
feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj
|
|
SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF
|
|
XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr
|
|
79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h
|
|
yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT
|
|
OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223
|
|
2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt
|
|
adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y
|
|
cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX
|
|
DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p
|
|
7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso
|
|
S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l
|
|
bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe
|
|
vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG
|
|
H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7
|
|
x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz
|
|
5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY
|
|
q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn
|
|
vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2
|
|
IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK
|
|
z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ
|
|
YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON
|
|
ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW
|
|
ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf
|
|
cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c
|
|
biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO
|
|
CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw
|
|
y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi
|
|
QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E
|
|
bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r
|
|
tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t
|
|
LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP
|
|
RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm
|
|
s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el
|
|
XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1
|
|
vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq
|
|
qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v
|
|
VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0
|
|
ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q
|
|
mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm
|
|
6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG
|
|
f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo
|
|
dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22
|
|
gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M
|
|
MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb
|
|
c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX
|
|
6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn
|
|
1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK
|
|
fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ
|
|
EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u
|
|
7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT
|
|
qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa
|
|
S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf
|
|
Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU
|
|
IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O
|
|
8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c
|
|
vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx
|
|
5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V
|
|
KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm
|
|
2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu
|
|
j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB
|
|
TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9
|
|
RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL
|
|
CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA
|
|
AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8
|
|
cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj
|
|
qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF
|
|
0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK
|
|
ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK
|
|
66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu
|
|
XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9
|
|
XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN
|
|
M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv
|
|
VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK
|
|
7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI
|
|
3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m
|
|
XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m
|
|
1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A
|
|
JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC
|
|
EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9
|
|
8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL
|
|
OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H
|
|
M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA
|
|
TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8
|
|
elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp
|
|
BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS
|
|
CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r
|
|
rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY
|
|
jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW
|
|
UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB
|
|
KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb
|
|
Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL
|
|
+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v
|
|
T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM
|
|
sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj
|
|
FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl
|
|
5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q
|
|
7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv
|
|
6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa
|
|
0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/
|
|
AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM
|
|
d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5
|
|
6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP
|
|
bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu
|
|
LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy
|
|
wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX
|
|
0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK
|
|
3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn
|
|
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0
|
|
vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t
|
|
zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps
|
|
uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi
|
|
Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2
|
|
O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z
|
|
aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz
|
|
0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb
|
|
T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l
|
|
qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t
|
|
trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn
|
|
mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa
|
|
eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe
|
|
PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of
|
|
TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O
|
|
1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG
|
|
f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi
|
|
0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY
|
|
5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc
|
|
V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L
|
|
/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM
|
|
t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd
|
|
VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD
|
|
KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R
|
|
fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3
|
|
Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ
|
|
DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ
|
|
3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv
|
|
x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD
|
|
weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI
|
|
6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew
|
|
PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk
|
|
j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm
|
|
OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/
|
|
AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez
|
|
N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ
|
|
92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp
|
|
+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue
|
|
V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv
|
|
avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0
|
|
vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP
|
|
8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt
|
|
n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw
|
|
nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3
|
|
7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P
|
|
0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U
|
|
x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG
|
|
0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L
|
|
faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ
|
|
QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA
|
|
BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A
|
|
tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv
|
|
9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr
|
|
jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm
|
|
b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB
|
|
ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk
|
|
dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1
|
|
rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+
|
|
x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA
|
|
AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr
|
|
YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4
|
|
5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V
|
|
kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg
|
|
BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA
|
|
AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g
|
|
Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx
|
|
OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2
|
|
H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF
|
|
+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V
|
|
h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA
|
|
EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu
|
|
ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml
|
|
HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl
|
|
n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN
|
|
3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi
|
|
/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00
|
|
+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC
|
|
UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2
|
|
M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp
|
|
5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn
|
|
N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS
|
|
OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL
|
|
/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo
|
|
stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3
|
|
GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA
|
|
AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4
|
|
qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy
|
|
WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a
|
|
fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI
|
|
rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2
|
|
rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc
|
|
3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3
|
|
Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA
|
|
AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx
|
|
skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F
|
|
o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx
|
|
NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h
|
|
2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te
|
|
pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7
|
|
cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7
|
|
mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA
|
|
AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA
|
|
hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J
|
|
qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI
|
|
XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy
|
|
RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX
|
|
qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX
|
|
kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P
|
|
ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC
|
|
ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA
|
|
lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA
|
|
AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o
|
|
b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP
|
|
y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae
|
|
kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu
|
|
9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ
|
|
k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1
|
|
8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp
|
|
DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh
|
|
nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ
|
|
AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA
|
|
AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO
|
|
yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5
|
|
PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii
|
|
IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r
|
|
O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE
|
|
yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX
|
|
6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2
|
|
JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS
|
|
AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA
|
|
AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx
|
|
Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI
|
|
6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5
|
|
K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7
|
|
Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id
|
|
PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ
|
|
2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4
|
|
eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7
|
|
piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR
|
|
ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ
|
|
JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i
|
|
UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61
|
|
rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq
|
|
ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2
|
|
f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO
|
|
IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts
|
|
bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA
|
|
AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA
|
|
BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2
|
|
SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T
|
|
lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/
|
|
2Q==`;async function MAe(e){let t=(a,s="application/octet-stream")=>fetch(`data:${s};base64,${a}`).then(i=>i.blob()),r,n;switch(e.config.warmup){case"face":r=await t(dg);break;case"body":case"full":r=await t(pg);break;default:r=null}if(r){let a=await createImageBitmap(r);n=await e.detect(a,e.config),a.close()}return n}async function FAe(e){return new Promise(t=>{let r;switch(e.config.warmup){case"face":r="data:image/jpeg;base64,"+dg;break;case"full":case"body":r="data:image/jpeg;base64,"+pg;break;default:r=null}let n;if(typeof Image!="undefined")n=new Image;else if(he.Image)n=new he.Image;else return;n.onload=async()=>{let a=qr(n.naturalWidth,n.naturalHeight);if(!a)ie("Warmup: Canvas not found"),t(void 0);else{let s=a.getContext("2d");s&&s.drawImage(n,0,0);let i=await e.image(a),o=await e.detect(i.tensor,e.config);t(o)}},r?n.src=r:t(void 0)})}async function $Ae(e){let t=a=>Buffer.from(a,"base64"),r;e.config.warmup==="face"?r=t(dg):r=t(pg);let n;if("node"in Ue){let a=(void 0).decodeJpeg(r),s=a.expandDims(0);e.tf.dispose(a),n=await e.detect(s,e.config),e.tf.dispose(s)}else e.config.debug&&ie("Warmup tfjs-node not loaded");return n}async function PAe(e){let t;return typeof createImageBitmap=="function"?t=await MAe(e):typeof Image!="undefined"||he.Canvas!==void 0?t=await FAe(e):t=await $Ae(e),t}async function L9(e,t){let r=oe();return e.state="warmup",t&&(e.config=Ut(e.config,t)),!e.config.warmup||e.config.warmup.length===0||e.config.warmup==="none"?{face:[],body:[],hand:[],gesture:[],object:[],performance:e.performance,timestamp:oe(),persons:[],error:null}:new Promise(async n=>{let a=await PAe(e),s=oe();e.config.debug&&ie("warmup",e.config.warmup,Math.round(s-r),"ms"),e.emit("warmup"),n(a)})}var Jd,ac,sc,hg,s3=class{constructor(t){fe(this,"version");fe(this,"config");fe(this,"result");fe(this,"state");fe(this,"process");fe(this,"tf");fe(this,"env");fe(this,"draw");fe(this,"models");fe(this,"events");fe(this,"faceTriangulation");fe(this,"faceUVMap");fe(this,"performance");hp(this,Jd,void 0);hp(this,ac,void 0);hp(this,sc,void 0);fe(this,"gl");fe(this,"analyze",(...t)=>{if(!pp(this,ac))return;let r=this.tf.engine().state.numTensors,n=pp(this,Jd);cp(this,Jd,r);let a=r-n;a!==0&&ie(...t,a)});hp(this,hg,t=>{if(!pp(this,sc))return null;if(!t)return"input is not defined";if(this.env.node&&!(t instanceof rt))return"input must be a tensor";try{this.tf.getBackend()}catch(r){return"backend not loaded"}return null});fe(this,"similarity",r3);fe(this,"distance",nc);fe(this,"match",n3);fe(this,"emit",t=>{var r;this.events&&this.events.dispatchEvent&&((r=this.events)==null||r.dispatchEvent(new Event(t)))});this.env=he,bs.wasmPath=Hh["tfjs-core"].includes("-")?"https://vladmandic.github.io/tfjs/dist/":`https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${T2}/dist/`,bs.modelBasePath=he.browser?"../models/":"file://models/",bs.backend=he.browser?"humangl":"tensorflow",this.version=Mb,Object.defineProperty(this,"version",{value:Mb}),this.config=JSON.parse(JSON.stringify(bs)),Object.seal(this.config),this.config.cacheModels=typeof indexedDB!="undefined",t&&(this.config=Ut(this.config,t)),fN(this.config),this.tf=Ue,this.state="idle",cp(this,Jd,0),cp(this,ac,!1),cp(this,sc,!1),this.performance={},this.events=typeof EventTarget!="undefined"?new EventTarget:void 0,this.models=new rc,this.draw={options:xr,canvas:(r,n)=>Z5(r,n),face:(r,n,a)=>Hd(r,n,a),body:(r,n,a)=>qd(r,n,a),hand:(r,n,a)=>Kd(r,n,a),gesture:(r,n,a)=>Zd(r,n,a),object:(r,n,a)=>Xd(r,n,a),person:(r,n,a)=>X5(r,n,a),all:(r,n,a)=>Y5(r,n,a)},this.result={face:[],body:[],hand:[],gesture:[],object:[],performance:{},timestamp:0,persons:[],error:null},this.process={tensor:null,canvas:null},this.faceTriangulation=SC,this.faceUVMap=TC,this.gl=Ct,this.emit("create")}reset(){let t=this.config.backend;this.config=JSON.parse(JSON.stringify(bs)),this.config.backend=t}validate(t){return G1(bs,t||this.config)}now(){return oe()}image(t,r=!0){return Fd(t,this.config,r)}async segmentation(t,r){return S9(t,r,this.config)}enhance(t){return m5(t)}compare(t,r){return cN(this.config,t,r)}async init(){await ug(this,!0),await this.tf.ready()}async load(t){this.state="load";let r=oe(),n=Object.values(this.models).filter(i=>i).length;t&&(this.config=Ut(this.config,t)),this.env.initial&&(this.config.debug&&ie(`version: ${this.version}`),this.config.debug&&ie(`tfjs version: ${this.tf.version["tfjs-core"]}`),await ug(this)||ie("error: backend check failed"),await ld(),this.env.browser&&(this.config.debug&&ie("configuration:",this.config),this.config.debug&&ie("environment:",this.env),this.config.debug&&ie("tf flags:",this.tf.ENV.flags))),await G5(this),this.env.initial&&this.config.debug&&ie("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),this.env.initial=!1,Object.values(this.models).filter(i=>i).length!==n&&(await j5(this),this.emit("load"));let s=Math.trunc(oe()-r);s>(this.performance.loadModels||0)&&(this.performance.loadModels=this.env.perfadd?(this.performance.loadModels||0)+s:s)}next(t=this.result){return z9(t,this.config)}async warmup(t){let r=oe(),n=await L9(this,t),a=oe();return this.performance.warmup=Math.trunc(a-r),n}async profile(t,r){let n=await this.tf.profile(()=>this.detect(t,r)),a={};for(let o of n.kernels)a[o.name]?a[o.name]+=o.kernelTimeMs:a[o.name]=o.kernelTimeMs;let s=[];Object.entries(a).forEach(o=>s.push({name:o[0],ms:o[1]})),s.sort((o,l)=>l.ms-o.ms),s.length=20;let i={};for(let o of s)i[o.name]=o.ms;return i}async detect(t,r){return this.state="detect",new Promise(async n=>{var g,y,A,x,b,v,S,T,E,R,_,M,I,z,O,j,X,D,Q,V,ee,J;this.state="config";let a;this.config=Ut(this.config,r),this.state="check";let s=pp(this,hg).call(this,t);s&&(ie(s,t),this.emit("error"),n({face:[],body:[],hand:[],gesture:[],object:[],performance:this.performance,timestamp:oe(),persons:[],error:s}));let i=oe();await ug(this),await this.load(),a=oe(),this.state="image";let o=await Fd(t,this.config);if(this.process=o,this.performance.inputProcess=this.env.perfadd?(this.performance.inputProcess||0)+Math.trunc(oe()-a):Math.trunc(oe()-a),this.analyze("Get Image:"),!o.tensor){this.config.debug&&ie("could not convert input to tensor"),this.emit("error"),n({face:[],body:[],hand:[],gesture:[],object:[],performance:this.performance,timestamp:oe(),persons:[],error:"could not convert input to tensor"});return}this.emit("image"),a=oe(),this.config.skipAllowed=await hN(this.config,o.tensor),this.performance.totalFrames||(this.performance.totalFrames=0),this.performance.cachedFrames||(this.performance.cachedFrames=0),this.performance.totalFrames++,this.config.skipAllowed&&this.performance.cachedFrames++,this.performance.cacheCheck=this.env.perfadd?(this.performance.cacheCheck||0)+Math.trunc(oe()-a):Math.trunc(oe()-a),this.analyze("Check Changed:");let l=[],u=[],d=[],h=[];this.state="detect:face",this.config.async?(l=this.config.face.enabled?e3(this,o.tensor):[],this.performance.face&&delete this.performance.face):(a=oe(),l=this.config.face.enabled?await e3(this,o.tensor):[],this.performance.face=this.env.perfadd?(this.performance.face||0)+Math.trunc(oe()-a):Math.trunc(oe()-a)),this.config.async&&(this.config.body.maxDetected===-1||this.config.hand.maxDetected===-1)&&(l=await l),this.analyze("Start Body:"),this.state="detect:body";let p=this.config.body.maxDetected===-1?Ut(this.config,{body:{maxDetected:this.config.face.enabled?1*l.length:1}}):this.config;this.config.async?((g=this.config.body.modelPath)!=null&&g.includes("posenet")?u=this.config.body.enabled?W5(o.tensor,p):[]:(y=this.config.body.modelPath)!=null&&y.includes("blazepose")?u=this.config.body.enabled?Qb(o.tensor,p):[]:(A=this.config.body.modelPath)!=null&&A.includes("efficientpose")?u=this.config.body.enabled?i5(o.tensor,p):[]:(x=this.config.body.modelPath)!=null&&x.includes("movenet")&&(u=this.config.body.enabled?P5(o.tensor,p):[]),this.performance.body&&delete this.performance.body):(a=oe(),(b=this.config.body.modelPath)!=null&&b.includes("posenet")?u=this.config.body.enabled?await W5(o.tensor,p):[]:(v=this.config.body.modelPath)!=null&&v.includes("blazepose")?u=this.config.body.enabled?await Qb(o.tensor,p):[]:(S=this.config.body.modelPath)!=null&&S.includes("efficientpose")?u=this.config.body.enabled?await i5(o.tensor,p):[]:(T=this.config.body.modelPath)!=null&&T.includes("movenet")&&(u=this.config.body.enabled?await P5(o.tensor,p):[]),this.performance.body=this.env.perfadd?(this.performance.body||0)+Math.trunc(oe()-a):Math.trunc(oe()-a)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.state="detect:hand";let c=this.config.hand.maxDetected===-1?Ut(this.config,{hand:{maxDetected:this.config.face.enabled?2*l.length:1}}):this.config;this.config.async?((R=(E=this.config.hand.detector)==null?void 0:E.modelPath)!=null&&R.includes("handdetect")?d=this.config.hand.enabled?w5(o.tensor,c):[]:(M=(_=this.config.hand.detector)==null?void 0:_.modelPath)!=null&&M.includes("handtrack")&&(d=this.config.hand.enabled?T5(o.tensor,c):[]),this.performance.hand&&delete this.performance.hand):(a=oe(),(z=(I=this.config.hand.detector)==null?void 0:I.modelPath)!=null&&z.includes("handdetect")?d=this.config.hand.enabled?await w5(o.tensor,c):[]:(j=(O=this.config.hand.detector)==null?void 0:O.modelPath)!=null&&j.includes("handtrack")&&(d=this.config.hand.enabled?await T5(o.tensor,c):[]),this.performance.hand=this.env.perfadd?(this.performance.hand||0)+Math.trunc(oe()-a):Math.trunc(oe()-a)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.state="detect:object",this.config.async?((X=this.config.object.modelPath)!=null&&X.includes("nanodet")?h=this.config.object.enabled?z5(o.tensor,this.config):[]:(D=this.config.object.modelPath)!=null&&D.includes("centernet")&&(h=this.config.object.enabled?r5(o.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(a=oe(),(Q=this.config.object.modelPath)!=null&&Q.includes("nanodet")?h=this.config.object.enabled?await z5(o.tensor,this.config):[]:(V=this.config.object.modelPath)!=null&&V.includes("centernet")&&(h=this.config.object.enabled?await r5(o.tensor,this.config):[]),this.performance.object=this.env.perfadd?(this.performance.object||0)+Math.trunc(oe()-a):Math.trunc(oe()-a)),this.analyze("End Object:"),this.state="detect:await",this.config.async&&([l,u,d,h]=await Promise.all([l,u,d,h])),this.state="detect:gesture";let f=[];this.config.gesture.enabled&&(a=oe(),f=[...$9(l),...F9(u),..._9(d),...P9(l)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=this.env.perfadd?(this.performance.gesture||0)+Math.trunc(oe()-a):Math.trunc(oe()-a)),this.performance.total=this.env.perfadd?(this.performance.total||0)+Math.trunc(oe()-i):Math.trunc(oe()-i);let m=((J=(ee=this.process)==null?void 0:ee.tensor)==null?void 0:J.shape)||[];this.result={face:l,body:u,hand:d,gesture:f,object:h,performance:this.performance,canvas:this.process.canvas,timestamp:Date.now(),error:null,get persons(){return D9(l,u,d,f,m)}},re(o.tensor),this.emit("detect"),this.state="idle",n(this.result)})}};Jd=new WeakMap,ac=new WeakMap,sc=new WeakMap,hg=new WeakMap;return DE(zAe);})();
|
|
/**
|
|
* @license
|
|
* Copyright 2017 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use backend file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* https://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2022 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2022 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the 'License');
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an 'AS IS' BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* Human main module
|
|
* @default Human Library
|
|
* @summary <https://github.com/vladmandic/human>
|
|
* @author <https://github.com/vladmandic>
|
|
* @copyright <https://github.com/vladmandic>
|
|
* @license MIT
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/** @license See the LICENSE file. */
|