mirror of https://github.com/vladmandic/human
4361 lines
1.0 MiB
4361 lines
1.0 MiB
|
|
/*
|
|
Human library
|
|
homepage: <https://github.com/vladmandic/human>
|
|
author: <https://github.com/vladmandic>'
|
|
*/
|
|
|
|
var ZV=Object.create,Kh=Object.defineProperty,JV=Object.getPrototypeOf,QV=Object.prototype.hasOwnProperty,eG=Object.getOwnPropertyNames,tG=Object.getOwnPropertyDescriptor;var rG=r=>Kh(r,"__esModule",{value:!0});var Ht=(r,e)=>()=>(e||r((e={exports:{}}).exports,e),e.exports),We=(r,e)=>{for(var t in e)Kh(r,t,{get:e[t],enumerable:!0})},nG=(r,e,t)=>{if(e&&typeof e=="object"||typeof e=="function")for(let n of eG(e))!QV.call(r,n)&&n!=="default"&&Kh(r,n,{get:()=>e[n],enumerable:!(t=tG(e,n))||t.enumerable});return r},pc=r=>nG(rG(Kh(r!=null?ZV(JV(r)):{},"default",r&&r.__esModule&&"default"in r?{get:()=>r.default,enumerable:!0}:{value:r,enumerable:!0})),r);var eT=Ht(()=>{});var OT=Ht((FT,l_)=>{(function(r,e,t){function n(i){var l=this,u=a();l.next=function(){var c=2091639*l.s0+l.c*23283064365386963e-26;return l.s0=l.s1,l.s1=l.s2,l.s2=c-(l.c=c|0)},l.c=1,l.s0=u(" "),l.s1=u(" "),l.s2=u(" "),l.s0-=u(i),l.s0<0&&(l.s0+=1),l.s1-=u(i),l.s1<0&&(l.s1+=1),l.s2-=u(i),l.s2<0&&(l.s2+=1),u=null}function o(i,l){return l.c=i.c,l.s0=i.s0,l.s1=i.s1,l.s2=i.s2,l}function s(i,l){var u=new n(i),c=l&&l.state,p=u.next;return p.int32=function(){return u.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,c&&(typeof c=="object"&&o(c,u),p.state=function(){return o(u,{})}),p}function a(){var i=4022871197,l=function(u){u=u.toString();for(var c=0;c<u.length;c++){i+=u.charCodeAt(c);var p=.02519603282416938*i;i=p>>>0,p-=i,p*=i,i=p>>>0,p-=i,i+=p*4294967296}return(i>>>0)*23283064365386963e-26};return l}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.alea=s})(FT,typeof l_=="object"&&l_,typeof define=="function"&&define)});var MT=Ht((PT,u_)=>{(function(r,e,t){function n(a){var i=this,l="";i.x=0,i.y=0,i.z=0,i.w=0,i.next=function(){var c=i.x^i.x<<11;return i.x=i.y,i.y=i.z,i.z=i.w,i.w^=i.w>>>19^c^c>>>8},a===(a|0)?i.x=a:l+=a;for(var u=0;u<l.length+64;u++)i.x^=l.charCodeAt(u)|0,i.next()}function o(a,i){return i.x=a.x,i.y=a.y,i.z=a.z,i.w=a.w,i}function s(a,i){var l=new n(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&o(u,l),c.state=function(){return o(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xor128=s})(PT,typeof u_=="object"&&u_,typeof define=="function"&&define)});var zT=Ht((LT,c_)=>{(function(r,e,t){function n(a){var i=this,l="";i.next=function(){var c=i.x^i.x>>>2;return i.x=i.y,i.y=i.z,i.z=i.w,i.w=i.v,(i.d=i.d+362437|0)+(i.v=i.v^i.v<<4^(c^c<<1))|0},i.x=0,i.y=0,i.z=0,i.w=0,i.v=0,a===(a|0)?i.x=a:l+=a;for(var u=0;u<l.length+64;u++)i.x^=l.charCodeAt(u)|0,u==l.length&&(i.d=i.x<<10^i.x>>>4),i.next()}function o(a,i){return i.x=a.x,i.y=a.y,i.z=a.z,i.w=a.w,i.v=a.v,i.d=a.d,i}function s(a,i){var l=new n(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&o(u,l),c.state=function(){return o(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xorwow=s})(LT,typeof c_=="object"&&c_,typeof define=="function"&&define)});var VT=Ht((BT,p_)=>{(function(r,e,t){function n(a){var i=this;i.next=function(){var u=i.x,c=i.i,p,m,f;return p=u[c],p^=p>>>7,m=p^p<<24,p=u[c+1&7],m^=p^p>>>10,p=u[c+3&7],m^=p^p>>>3,p=u[c+4&7],m^=p^p<<7,p=u[c+7&7],p=p^p<<13,m^=p^p<<9,u[c]=m,i.i=c+1&7,m};function l(u,c){var p,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,p=0;p<c.length;++p)f[p&7]=f[p&7]<<15^c.charCodeAt(p)+f[p+1&7]<<13;for(;f.length<8;)f.push(0);for(p=0;p<8&&f[p]===0;++p);for(p==8?m=f[7]=-1:m=f[p],u.x=f,u.i=0,p=256;p>0;--p)u.next()}l(i,a)}function o(a,i){return i.x=a.x.slice(),i.i=a.i,i}function s(a,i){a==null&&(a=+new Date);var l=new n(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(u.x&&o(u,l),c.state=function(){return o(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xorshift7=s})(BT,typeof p_=="object"&&p_,typeof define=="function"&&define)});var WT=Ht((GT,m_)=>{(function(r,e,t){function n(a){var i=this;i.next=function(){var u=i.w,c=i.X,p=i.i,m,f;return i.w=u=u+1640531527|0,f=c[p+34&127],m=c[p=p+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[p]=f^m,i.i=p,f+(u^u>>>16)|0};function l(u,c){var p,m,f,d,h,g=[],y=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,y=Math.max(y,c.length)),f=0,d=-32;d<y;++d)c&&(m^=c.charCodeAt((d+32)%c.length)),d===0&&(h=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,d>=0&&(h=h+1640531527|0,p=g[d&127]^=m+h,f=p==0?f+1:0);for(f>=128&&(g[(c&&c.length||0)&127]=-1),f=127,d=4*128;d>0;--d)m=g[f+34&127],p=g[f=f+1&127],m^=m<<13,p^=p<<17,m^=m>>>15,p^=p>>>12,g[f]=m^p;u.w=h,u.X=g,u.i=f}l(i,a)}function o(a,i){return i.i=a.i,i.w=a.w,i.X=a.X.slice(),i}function s(a,i){a==null&&(a=+new Date);var l=new n(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(u.X&&o(u,l),c.state=function(){return o(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xor4096=s})(GT,typeof m_=="object"&&m_,typeof define=="function"&&define)});var UT=Ht((jT,f_)=>{(function(r,e,t){function n(a){var i=this,l="";i.next=function(){var c=i.b,p=i.c,m=i.d,f=i.a;return c=c<<25^c>>>7^p,p=p-m|0,m=m<<24^m>>>8^f,f=f-c|0,i.b=c=c<<20^c>>>12^p,i.c=p=p-m|0,i.d=m<<16^p>>>16^f,i.a=f-c|0},i.a=0,i.b=0,i.c=2654435769|0,i.d=1367130551,a===Math.floor(a)?(i.a=a/4294967296|0,i.b=a|0):l+=a;for(var u=0;u<l.length+20;u++)i.b^=l.charCodeAt(u)|0,i.next()}function o(a,i){return i.a=a.a,i.b=a.b,i.c=a.c,i.d=a.d,i}function s(a,i){var l=new n(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&o(u,l),c.state=function(){return o(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.tychei=s})(jT,typeof f_=="object"&&f_,typeof define=="function"&&define)});var d_=Ht(()=>{});var HT=Ht((jwe,gg)=>{(function(r,e){var t=this,n=256,o=6,s=52,a="random",i=e.pow(n,o),l=e.pow(2,s),u=l*2,c=n-1,p;function m(w,_,I){var E=[];_=_==!0?{entropy:!0}:_||{};var $=g(h(_.entropy?[w,b(r)]:w==null?y():w,3),E),D=new f(E),O=function(){for(var M=D.g(o),G=i,j=0;M<l;)M=(M+j)*n,G*=n,j=D.g(1);for(;M>=u;)M/=2,G/=2,j>>>=1;return(M+j)/G};return O.int32=function(){return D.g(4)|0},O.quick=function(){return D.g(4)/4294967296},O.double=O,g(b(D.S),r),(_.pass||I||function(M,G,j,U){return U&&(U.S&&d(U,D),M.state=function(){return d(D,{})}),j?(e[a]=M,G):M})(O,$,"global"in _?_.global:this==e,_.state)}e["seed"+a]=m;function f(w){var _,I=w.length,E=this,$=0,D=E.i=E.j=0,O=E.S=[];for(I||(w=[I++]);$<n;)O[$]=$++;for($=0;$<n;$++)O[$]=O[D=c&D+w[$%I]+(_=O[$])],O[D]=_;(E.g=function(M){for(var G,j=0,U=E.i,H=E.j,q=E.S;M--;)G=q[U=c&U+1],j=j*n+q[c&(q[U]=q[H=c&H+G])+(q[H]=G)];return E.i=U,E.j=H,j})(n)}function d(w,_){return _.i=w.i,_.j=w.j,_.S=w.S.slice(),_}function h(w,_){var I=[],E=typeof w,$;if(_&&E=="object")for($ in w)try{I.push(h(w[$],_-1))}catch(D){}return I.length?I:E=="string"?w:w+"\0"}function g(w,_){for(var I=w+"",E,$=0;$<I.length;)_[c&$]=c&(E^=_[c&$]*19)+I.charCodeAt($++);return b(_)}function y(){try{var w;return p&&(w=p.randomBytes)?w=w(n):(w=new Uint8Array(n),(t.crypto||t.msCrypto).getRandomValues(w)),b(w)}catch(E){var _=t.navigator,I=_&&_.plugins;return[+new Date,t,I,t.screen,b(r)]}}function b(w){return String.fromCharCode.apply(0,w)}if(g(e.random(),r),typeof gg=="object"&&gg.exports){gg.exports=m;try{p=d_()}catch(w){}}else typeof define=="function"&&define.amd&&define(function(){return m})})([],Math)});var h_=Ht((Uwe,qT)=>{var kU=OT(),vU=MT(),CU=zT(),IU=VT(),NU=WT(),SU=UT(),mu=HT();mu.alea=kU;mu.xor128=vU;mu.xorwow=CU;mu.xorshift7=IU;mu.xor4096=NU;mu.tychei=SU;qT.exports=mu});var $p=Ht(()=>{});var vM=Ht(()=>{});var CM=Ht(()=>{});var IM=Ht((vx,TC)=>{var AC=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(e){e=e||{};function t(){return Q.buffer!=He&&sr(Q.buffer),ct}function n(){return Q.buffer!=He&&sr(Q.buffer),mt}function o(){return Q.buffer!=He&&sr(Q.buffer),Yt}function s(){return Q.buffer!=He&&sr(Q.buffer),un}function a(){return Q.buffer!=He&&sr(Q.buffer),Un}var i=typeof e!="undefined"?e:{},l,u;i.ready=new Promise(function(N,R){l=N,u=R});var c={},p;for(p in i)i.hasOwnProperty(p)&&(c[p]=i[p]);var m=[],f="./this.program",d=function(N,R){throw R},h=!1,g=!1,y=!1,b=!1;h=typeof window=="object",g=typeof importScripts=="function",y=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",b=!h&&!y&&!g;var w=i.ENVIRONMENT_IS_PTHREAD||!1;w&&(He=i.buffer);var _="";function I(N){return i.locateFile?i.locateFile(N,_):_+N}var E,$,D,O,M,G;if(y){g?_=$p().dirname(_)+"/":_=__dirname+"/",E=function(R,B){return M||(M=require("fs")),G||(G=$p()),R=G.normalize(R),M.readFileSync(R,B?null:"utf8")},D=function(R){var B=E(R,!0);return B.buffer||(B=new Uint8Array(B)),fe(B.buffer),B},process.argv.length>1&&(f=process.argv[1].replace(/\\/g,"/")),m=process.argv.slice(2),process.on("uncaughtException",function(N){if(!(N instanceof xm))throw N}),process.on("unhandledRejection",yi),d=function(N){process.exit(N)},i.inspect=function(){return"[Emscripten Module object]"};var j;try{j=vM()}catch(N){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),N}global.Worker=j.Worker}else b?(typeof read!="undefined"&&(E=function(R){return read(R)}),D=function(R){var B;return typeof readbuffer=="function"?new Uint8Array(readbuffer(R)):(B=read(R,"binary"),fe(typeof B=="object"),B)},typeof scriptArgs!="undefined"?m=scriptArgs:typeof arguments!="undefined"&&(m=arguments),typeof quit=="function"&&(d=function(N){quit(N)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(h||g)&&(g?_=self.location.href:typeof document!="undefined"&&document.currentScript&&(_=document.currentScript.src),typeof r!="undefined"&&r&&(_=r),_.indexOf("blob:")!==0?_=_.substr(0,_.lastIndexOf("/")+1):_="",y?(E=function(R,B){return M||(M=require("fs")),G||(G=$p()),R=G.normalize(R),M.readFileSync(R,B?null:"utf8")},D=function(R){var B=E(R,!0);return B.buffer||(B=new Uint8Array(B)),fe(B.buffer),B}):(E=function(N){var R=new XMLHttpRequest;return R.open("GET",N,!1),R.send(null),R.responseText},g&&(D=function(N){var R=new XMLHttpRequest;return R.open("GET",N,!1),R.responseType="arraybuffer",R.send(null),new Uint8Array(R.response)}),$=function(N,R,B){var K=new XMLHttpRequest;K.open("GET",N,!0),K.responseType="arraybuffer",K.onload=function(){if(K.status==200||K.status==0&&K.response){R(K.response);return}B()},K.onerror=B,K.send(null)}),O=function(N){document.title=N});y&&typeof performance=="undefined"&&(global.performance=CM().performance);var U=i.print||console.log.bind(console),H=i.printErr||console.warn.bind(console);for(p in c)c.hasOwnProperty(p)&&(i[p]=c[p]);c=null,i.arguments&&(m=i.arguments),i.thisProgram&&(f=i.thisProgram),i.quit&&(d=i.quit);var q=Atomics.load,X=Atomics.store,ne=Atomics.compareExchange,Y;i.wasmBinary&&(Y=i.wasmBinary);var re=i.noExitRuntime||!0;typeof WebAssembly!="object"&&yi("no native wasm support detected");var Q,ie,ce=!1,ae;function fe(N,R){N||yi("Assertion failed: "+R)}function de(N){var R=i["_"+N];return fe(R,"Cannot call unknown function "+N+", make sure it is exported"),R}function xe(N,R,B,K,be){var he={string:function(Ur){var cc=0;if(Ur!=null&&Ur!==0){var MI=(Ur.length<<2)+1;cc=ac(MI),Ke(Ur,cc,MI)}return cc},array:function(Ur){var cc=ac(Ur.length);return St(Ur,cc),cc}};function ye(Ur){return R==="string"?ve(Ur):R==="boolean"?Boolean(Ur):Ur}var Te=de(N),_t=[],Or=0;if(K)for(var Cr=0;Cr<K.length;Cr++){var Ha=he[B[Cr]];Ha?(Or===0&&(Or=gm()),_t[Cr]=Ha(K[Cr])):_t[Cr]=K[Cr]}var uc=Te.apply(null,_t);return uc=ye(uc),Or!==0&&ic(Or),uc}function we(N,R,B,K){B=B||[];var be=B.every(function(ye){return ye==="number"}),he=R!=="string";return he&&be&&!K?de(N):function(){return xe(N,R,B,arguments,K)}}function Ee(N,R,B){for(var K=R+B,be="";!(R>=K);){var he=N[R++];if(!he)return be;if(!(he&128)){be+=String.fromCharCode(he);continue}var ye=N[R++]&63;if((he&224)==192){be+=String.fromCharCode((he&31)<<6|ye);continue}var Te=N[R++]&63;if((he&240)==224?he=(he&15)<<12|ye<<6|Te:he=(he&7)<<18|ye<<12|Te<<6|N[R++]&63,he<65536)be+=String.fromCharCode(he);else{var _t=he-65536;be+=String.fromCharCode(55296|_t>>10,56320|_t&1023)}}return be}function ve(N,R){return N?Ee(n(),N,R):""}function Ge(N,R,B,K){if(!(K>0))return 0;for(var be=B,he=B+K-1,ye=0;ye<N.length;++ye){var Te=N.charCodeAt(ye);if(Te>=55296&&Te<=57343){var _t=N.charCodeAt(++ye);Te=65536+((Te&1023)<<10)|_t&1023}if(Te<=127){if(B>=he)break;R[B++]=Te}else if(Te<=2047){if(B+1>=he)break;R[B++]=192|Te>>6,R[B++]=128|Te&63}else if(Te<=65535){if(B+2>=he)break;R[B++]=224|Te>>12,R[B++]=128|Te>>6&63,R[B++]=128|Te&63}else{if(B+3>=he)break;R[B++]=240|Te>>18,R[B++]=128|Te>>12&63,R[B++]=128|Te>>6&63,R[B++]=128|Te&63}}return R[B]=0,B-be}function Ke(N,R,B){return Ge(N,n(),R,B)}function at(N){for(var R=0,B=0;B<N.length;++B){var K=N.charCodeAt(B);K>=55296&&K<=57343&&(K=65536+((K&1023)<<10)|N.charCodeAt(++B)&1023),K<=127?++R:K<=2047?R+=2:K<=65535?R+=3:R+=4}return R}function St(N,R){t().set(N,R)}function Tt(N,R){return N%R>0&&(N+=R-N%R),N}var He,ct,mt,Lt,kn,Yt,un,Fr,Un;function sr(N){He=N,i.HEAP8=ct=new Int8Array(N),i.HEAP16=Lt=new Int16Array(N),i.HEAP32=Yt=new Int32Array(N),i.HEAPU8=mt=new Uint8Array(N),i.HEAPU16=kn=new Uint16Array(N),i.HEAPU32=un=new Uint32Array(N),i.HEAPF32=Fr=new Float32Array(N),i.HEAPF64=Un=new Float64Array(N)}var vn=i.INITIAL_MEMORY||16777216;if(w)Q=i.wasmMemory,He=i.buffer;else if(i.wasmMemory)Q=i.wasmMemory;else if(Q=new WebAssembly.Memory({initial:vn/65536,maximum:2147483648/65536,shared:!0}),!(Q.buffer instanceof SharedArrayBuffer))throw H("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),y&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");Q&&(He=Q.buffer),vn=He.byteLength,sr(He);var jr,wr=[],cn=[],Rn=[],Ml=[],Va=[],Fs=!1,gi=!1;w||cn.push({func:function(){Vh()}});function am(){if(!w){if(i.preRun)for(typeof i.preRun=="function"&&(i.preRun=[i.preRun]);i.preRun.length;)Th(i.preRun.shift());rc(wr)}}function Ll(){Fs=!0,!w&&rc(cn)}function Iy(){w||rc(Rn)}function Sh(){w||(gi=!0)}function pn(){if(!w){if(i.postRun)for(typeof i.postRun=="function"&&(i.postRun=[i.postRun]);i.postRun.length;)Ny(i.postRun.shift());rc(Va)}}function Th(N){wr.unshift(N)}function Ny(N){Va.unshift(N)}var xi=0,Ga=null,zl=null;function Sy(N){fe(!w,"addRunDependency cannot be used in a pthread worker"),xi++,i.monitorRunDependencies&&i.monitorRunDependencies(xi)}function Ty(N){if(xi--,i.monitorRunDependencies&&i.monitorRunDependencies(xi),xi==0&&(Ga!==null&&(clearInterval(Ga),Ga=null),zl)){var R=zl;zl=null,R()}}i.preloadedImages={},i.preloadedAudios={};function yi(N){i.onAbort&&i.onAbort(N),w&&console.error("Pthread aborting at "+new Error().stack),N+="",H(N),ce=!0,ae=1,N="abort("+N+"). Build with -s ASSERTIONS=1 for more info.";var R=new WebAssembly.RuntimeError(N);throw u(R),R}function Ah(N,R){return String.prototype.startsWith?N.startsWith(R):N.indexOf(R)===0}var tc="data:application/octet-stream;base64,";function Eh(N){return Ah(N,tc)}var Ay="file://";function Dh(N){return Ah(N,Ay)}var mn="tfjs-backend-wasm.wasm";Eh(mn)||(mn=I(mn));function $h(N){try{if(N==mn&&Y)return new Uint8Array(Y);if(D)return D(N);throw"both async and sync fetching of the wasm failed"}catch(R){yi(R)}}function Ey(){if(!Y&&(h||g)){if(typeof fetch=="function"&&!Dh(mn))return fetch(mn,{credentials:"same-origin"}).then(function(N){if(!N.ok)throw"failed to load wasm binary file at '"+mn+"'";return N.arrayBuffer()}).catch(function(){return $h(mn)});if($)return new Promise(function(N,R){$(mn,function(B){N(new Uint8Array(B))},R)})}return Promise.resolve().then(function(){return $h(mn)})}function Dy(){var N={a:bb};function R(ye,Te){var _t=ye.exports;i.asm=_t,jr=i.asm.D,ie=Te,w||Ty("wasm-instantiate")}w||Sy("wasm-instantiate");function B(ye){R(ye.instance,ye.module)}function K(ye){return Ey().then(function(Te){return WebAssembly.instantiate(Te,N)}).then(ye,function(Te){H("failed to asynchronously prepare wasm: "+Te),yi(Te)})}function be(){return!Y&&typeof WebAssembly.instantiateStreaming=="function"&&!Eh(mn)&&!Dh(mn)&&typeof fetch=="function"?fetch(mn,{credentials:"same-origin"}).then(function(ye){var Te=WebAssembly.instantiateStreaming(ye,N);return Te.then(B,function(_t){return H("wasm streaming compile failed: "+_t),H("falling back to ArrayBuffer instantiation"),K(B)})}):K(B)}if(i.instantiateWasm)try{var he=i.instantiateWasm(N,R);return he}catch(ye){return H("Module.instantiateWasm callback failed with error: "+ye),!1}return be().catch(u),{}}var $y={9800:function(){throw"Canceled!"},9818:function(N,R){setTimeout(function(){DI(N,R)},0)}};function Rh(){$e.initRuntime()}function rc(N){for(;N.length>0;){var R=N.shift();if(typeof R=="function"){R(i);continue}var B=R.func;typeof B=="number"?R.arg===void 0?jr.get(B)():jr.get(B)(R.arg):B(R.arg===void 0?null:R.arg)}}function lm(N,R){if(N<=0||N>t().length||N&!0||R<0)return-28;if(R==0)return 0;R>=2147483647&&(R=Infinity);var B=Atomics.load(o(),lc>>2),K=0;if(B==N){var be=Atomics.compareExchange(o(),lc>>2,B,0);if(be==B&&(--R,K=1,R<=0))return 1}var he=Atomics.notify(o(),N>>2,R);if(he>=0)return he+K;throw"Atomics.notify returned an unexpected value "+he}i._emscripten_futex_wake=lm;function Ry(N){if(w)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!N)throw"Internal Error! Null pthread_ptr in killThread!";o()[N+12>>2]=0;var R=$e.pthreads[N];R.worker.terminate(),$e.freeThreadData(R),$e.runningWorkers.splice($e.runningWorkers.indexOf(R.worker),1),R.worker.pthread=void 0}function Fy(N){if(w)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!N)throw"Internal Error! Null pthread_ptr in cancelThread!";var R=$e.pthreads[N];R.worker.postMessage({cmd:"cancel"})}function Oy(N){if(w)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!N)throw"Internal Error! Null pthread_ptr in cleanupThread!";var R=$e.pthreads[N];if(R){o()[N+12>>2]=0;var B=R.worker;$e.returnWorkerToPool(B)}}var $e={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){},initRuntime:function(){for(var N=Vl(228),R=0;R<228/4;++R)s()[N/4+R]=0;o()[N+12>>2]=N;var B=N+152;o()[B>>2]=B;for(var K=Vl(512),R=0;R<128;++R)s()[K/4+R]=0;Atomics.store(s(),N+100>>2,K),Atomics.store(s(),N+40>>2,N),Ub(N,!g,1),EI(N)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;$e.threadExitHandlers.length>0;)$e.threadExitHandlers.pop()();w&&sc()&&AI()},runExitHandlersAndDeinitThread:function(N,R){Atomics.store(s(),N+56>>2,1),Atomics.store(s(),N+60>>2,0),$e.runExitHandlers(),Atomics.store(s(),N+4>>2,R),Atomics.store(s(),N+0>>2,1),lm(N+0,2147483647),Ub(0,0,0)},threadExit:function(N){var R=sc();R&&($e.runExitHandlersAndDeinitThread(R,N),w&&postMessage({cmd:"exit"}))},threadCancel:function(){$e.runExitHandlersAndDeinitThread(sc(),-1),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var N in $e.pthreads){var R=$e.pthreads[N];R&&R.worker&&$e.returnWorkerToPool(R.worker)}$e.pthreads={};for(var B=0;B<$e.unusedWorkers.length;++B){var K=$e.unusedWorkers[B];K.terminate()}$e.unusedWorkers=[];for(var B=0;B<$e.runningWorkers.length;++B){var K=$e.runningWorkers[B],R=K.pthread;$e.freeThreadData(R),K.terminate()}$e.runningWorkers=[]},freeThreadData:function(N){if(!!N){if(N.threadInfoStruct){var R=o()[N.threadInfoStruct+100>>2];o()[N.threadInfoStruct+100>>2]=0,hm(R),hm(N.threadInfoStruct)}N.threadInfoStruct=0,N.allocatedOwnStack&&N.stackBase&&hm(N.stackBase),N.stackBase=0,N.worker&&(N.worker.pthread=null)}},returnWorkerToPool:function(N){$e.runWithoutMainThreadQueuedCalls(function(){delete $e.pthreads[N.pthread.threadInfoStruct],$e.unusedWorkers.push(N),$e.runningWorkers.splice($e.runningWorkers.indexOf(N),1),$e.freeThreadData(N.pthread),N.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(N){o()[PI>>2]=0;try{N()}finally{o()[PI>>2]=1}},receiveObjectTransfer:function(N){},loadWasmModuleToWorker:function(N,R){N.onmessage=function(B){var K=B.data,be=K.cmd;if(N.pthread&&($e.currentProxiedOperationCallerThread=N.pthread.threadInfoStruct),K.targetThread&&K.targetThread!=sc()){var he=$e.pthreads[K.targetThread];he?he.worker.postMessage(B.data,K.transferList):console.error('Internal error! Worker sent a message "'+be+'" to target pthread '+K.targetThread+", but that thread no longer exists!"),$e.currentProxiedOperationCallerThread=void 0;return}if(be==="processQueuedMainThreadWork")Wb();else if(be==="spawnThread")zh(B.data);else if(be==="cleanupThread")Oy(K.thread);else if(be==="killThread")Ry(K.thread);else if(be==="cancelThread")Fy(K.thread);else if(be==="loaded")N.loaded=!0,R&&R(N),N.runPthread&&(N.runPthread(),delete N.runPthread);else if(be==="print")U("Thread "+K.threadId+": "+K.text);else if(be==="printErr")H("Thread "+K.threadId+": "+K.text);else if(be==="alert")alert("Thread "+K.threadId+": "+K.text);else if(be==="exit"){var ye=N.pthread&&Atomics.load(s(),N.pthread.threadInfoStruct+64>>2);ye&&$e.returnWorkerToPool(N)}else if(be==="exitProcess")try{YV(K.returnCode)}catch(Te){if(Te instanceof xm)return;throw Te}else be==="cancelDone"?$e.returnWorkerToPool(N):be==="objectTransfer"?$e.receiveObjectTransfer(B.data):B.data.target==="setimmediate"?N.postMessage(B.data):H("worker sent an unknown command "+be);$e.currentProxiedOperationCallerThread=void 0},N.onerror=function(B){H("pthread sent an error! "+B.filename+":"+B.lineno+": "+B.message)},y&&(N.on("message",function(B){N.onmessage({data:B})}),N.on("error",function(B){N.onerror(B)}),N.on("exit",function(B){})),N.postMessage({cmd:"load",urlOrBlob:i.mainScriptUrlOrBlob||r,wasmMemory:Q,wasmModule:ie})},allocateUnusedWorker:function(){var N=I("tfjs-backend-wasm.worker.js");$e.unusedWorkers.push(new Worker(N))},getNewWorker:function(){return $e.unusedWorkers.length==0&&($e.allocateUnusedWorker(),$e.loadWasmModuleToWorker($e.unusedWorkers[0])),$e.unusedWorkers.length>0?$e.unusedWorkers.pop():null},busySpinWait:function(N){for(var R=performance.now()+N;performance.now()<R;);}};function Py(N,R){FI(N,R),ic(N)}i.establishStackSpace=Py;function My(){return re}i.getNoExitRuntime=My;function Ly(N,R){return jr.get(N)(R)}i.invokeEntryPoint=Ly;function zy(N,R,B,K){yi("Assertion failed: "+ve(N)+", at: "+[R?ve(R):"unknown filename",B,K?ve(K):"unknown function"])}var Bl;y?Bl=function(){var N=process.hrtime();return N[0]*1e3+N[1]/1e6}:w?Bl=function(){return performance.now()-i.__performance_now_clock_drift}:typeof dateNow!="undefined"?Bl=dateNow:Bl=function(){return performance.now()};function By(N){return o()[SI()>>2]=N,N}function Vy(N,R){if(w)return Wa(1,1,N,R)}function Gy(N,R){if(N==R)postMessage({cmd:"processQueuedMainThreadWork"});else if(w)postMessage({targetThread:N,cmd:"processThreadQueue"});else{var B=$e.pthreads[N],K=B&&B.worker;if(!K)return;K.postMessage({cmd:"processThreadQueue"})}return 1}function Wy(){yi()}function jy(N,R,B){var K=Xy(R,B);return $y[N].apply(null,K)}function Uy(N,R){}function Hy(N,R,B){if(N<=0||N>t().length||N&!0)return-28;if(h){if(Atomics.load(o(),N>>2)!=R)return-6;for(var be=performance.now(),he=be+B,ye=Atomics.exchange(o(),lc>>2,N);;){if(be=performance.now(),be>he)return ye=Atomics.exchange(o(),lc>>2,0),-73;if(ye=Atomics.exchange(o(),lc>>2,0),ye==0)break;if(Wb(),Atomics.load(o(),N>>2)!=R)return-6;ye=Atomics.exchange(o(),lc>>2,N)}return 0}else{var K=Atomics.wait(o(),N>>2,R,B);if(K==="timed-out")return-73;if(K==="not-equal")return-6;if(K==="ok")return 0;throw"Atomics.wait returned an unexpected value "+K}}function qy(N,R,B){n().copyWithin(N,R,R+B)}function Ky(){return y?require("os").cpus().length:navigator.hardwareConcurrency}function Wa(N,R){for(var B=arguments.length-2,K=gm(),be=B,he=ac(be*8),ye=he>>3,Te=0;Te<B;Te++){var _t=arguments[2+Te];a()[ye+Te]=_t}var Or=RI(N,be,he,R);return ic(K),Or}var um=[],cm=[];function Xy(N,R){cm.length=0;var B;for(R>>=2;B=n()[N++];){var K=B<105;K&&R&1&&R++,cm.push(K?a()[R++>>1]:o()[R]),++R}return cm}function Yy(N,R,B){um.length=R;for(var K=B>>3,be=0;be<R;be++)um[be]=a()[K+be];var he=N<0,ye=he?$y[-N-1]:yb[N];return ye.apply(null,um)}function Zy(){return n().length}function Jy(N){try{return Q.grow(N-He.byteLength+65535>>>16),sr(Q.buffer),1}catch(R){}}function Qy(N){var R=Zy();if(N<=R)return!1;var B=2147483648;if(N>B)return!1;for(var K=1;K<=4;K*=2){var be=R*(1+.2/K);be=Math.min(be,N+100663296);var he=Math.min(B,Tt(Math.max(N,be),65536)),ye=Jy(he);if(ye)return!0}return!1}var Je={inEventHandler:0,removeAllEventListeners:function(){for(var N=Je.eventHandlers.length-1;N>=0;--N)Je._removeHandler(N);Je.eventHandlers=[],Je.deferredCalls=[]},registerRemoveEventListeners:function(){Je.removeEventListenersRegistered||(Ml.push(Je.removeAllEventListeners),Je.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(N,R,B){function K(ye,Te){if(ye.length!=Te.length)return!1;for(var _t in ye)if(ye[_t]!=Te[_t])return!1;return!0}for(var be in Je.deferredCalls){var he=Je.deferredCalls[be];if(he.targetFunction==N&&K(he.argsList,B))return}Je.deferredCalls.push({targetFunction:N,precedence:R,argsList:B}),Je.deferredCalls.sort(function(ye,Te){return ye.precedence<Te.precedence})},removeDeferredCalls:function(N){for(var R=0;R<Je.deferredCalls.length;++R)Je.deferredCalls[R].targetFunction==N&&(Je.deferredCalls.splice(R,1),--R)},canPerformEventHandlerRequests:function(){return Je.inEventHandler&&Je.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(!!Je.canPerformEventHandlerRequests())for(var N=0;N<Je.deferredCalls.length;++N){var R=Je.deferredCalls[N];Je.deferredCalls.splice(N,1),--N,R.targetFunction.apply(null,R.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(N,R){for(var B=0;B<Je.eventHandlers.length;++B)Je.eventHandlers[B].target==N&&(!R||R==Je.eventHandlers[B].eventTypeString)&&Je._removeHandler(B--)},_removeHandler:function(N){var R=Je.eventHandlers[N];R.target.removeEventListener(R.eventTypeString,R.eventListenerFunc,R.useCapture),Je.eventHandlers.splice(N,1)},registerOrRemoveHandler:function(N){var R=function(be){++Je.inEventHandler,Je.currentEventHandler=N,Je.runDeferredCalls(),N.handlerFunc(be),Je.runDeferredCalls(),--Je.inEventHandler};if(N.callbackfunc)N.eventListenerFunc=R,N.target.addEventListener(N.eventTypeString,R,N.useCapture),Je.eventHandlers.push(N),Je.registerRemoveEventListeners();else for(var B=0;B<Je.eventHandlers.length;++B)Je.eventHandlers[B].target==N.target&&Je.eventHandlers[B].eventTypeString==N.eventTypeString&&Je._removeHandler(B--)},queueEventHandlerOnThread_iiii:function(N,R,B,K,be){var he=gm(),ye=ac(12);o()[ye>>2]=B,o()[ye+4>>2]=K,o()[ye+8>>2]=be,jb(0,N,637534208,R,K,ye),ic(he)},getTargetThreadForEventCallback:function(N){switch(N){case 1:return 0;case 2:return $e.currentProxiedOperationCallerThread;default:return N}},getNodeNameForTarget:function(N){return N?N==window?"#window":N==screen?"#screen":N&&N.nodeName?N.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function eb(N){var R=at(N)+1,B=Vl(R);return Ke(N,B,R),B}function tb(N,R,B,K){var be=gm(),he=ac(12),ye=0;R&&(ye=eb(R)),o()[he>>2]=ye,o()[he+4>>2]=B,o()[he+8>>2]=K,jb(0,N,657457152,0,ye,he),ic(be)}function rb(N,R,B,K){R=R?ve(R):"",tb(N,R,B,K)}function nb(N){return N>2?ve(N):N}var ob=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function sb(N){N=nb(N);var R=ob[N]||(typeof document!="undefined"?document.querySelector(N):void 0);return R}function pm(N){return sb(N)}function Fh(N,R,B){var K=pm(N);if(!K)return-4;if(K.canvasSharedPtr&&(o()[K.canvasSharedPtr>>2]=R,o()[K.canvasSharedPtr+4>>2]=B),K.offscreenCanvas||!K.controlTransferredOffscreen){K.offscreenCanvas&&(K=K.offscreenCanvas);var be=!1;if(K.GLctxObject&&K.GLctxObject.GLctx){var he=K.GLctxObject.GLctx.getParameter(2978);be=he[0]===0&&he[1]===0&&he[2]===K.width&&he[3]===K.height}K.width=R,K.height=B,be&&K.GLctxObject.GLctx.viewport(0,0,R,B)}else if(K.canvasSharedPtr){var ye=o()[K.canvasSharedPtr+8>>2];return rb(ye,N,R,B),1}else return-4;return 0}function Oh(N,R,B){return w?Wa(2,1,N,R,B):Fh(N,R,B)}function ib(N,R,B){var K=pm(N);return K?Fh(N,R,B):Oh(N,R,B)}function ab(N){}function lb(N){var R=N.getExtension("ANGLE_instanced_arrays");if(R)return N.vertexAttribDivisor=function(B,K){R.vertexAttribDivisorANGLE(B,K)},N.drawArraysInstanced=function(B,K,be,he){R.drawArraysInstancedANGLE(B,K,be,he)},N.drawElementsInstanced=function(B,K,be,he,ye){R.drawElementsInstancedANGLE(B,K,be,he,ye)},1}function ub(N){var R=N.getExtension("OES_vertex_array_object");if(R)return N.createVertexArray=function(){return R.createVertexArrayOES()},N.deleteVertexArray=function(B){R.deleteVertexArrayOES(B)},N.bindVertexArray=function(B){R.bindVertexArrayOES(B)},N.isVertexArray=function(B){return R.isVertexArrayOES(B)},1}function cb(N){var R=N.getExtension("WEBGL_draw_buffers");if(R)return N.drawBuffers=function(B,K){R.drawBuffersWEBGL(B,K)},1}function pb(N){return!!(N.multiDrawWebgl=N.getExtension("WEBGL_multi_draw"))}var ft={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function(R){ft.lastError||(ft.lastError=R)},getNewId:function(N){for(var R=ft.counter++,B=N.length;B<R;B++)N[B]=null;return R},getSource:function(N,R,B,K){for(var be="",he=0;he<R;++he){var ye=K?o()[K+he*4>>2]:-1;be+=ve(o()[B+he*4>>2],ye<0?void 0:ye)}return be},createContext:function(N,R){var B=N.getContext("webgl",R);if(!B)return 0;var K=ft.registerContext(B,R);return K},registerContext:function(N,R){var B=Vl(8);o()[B+4>>2]=sc();var K={handle:B,attributes:R,version:R.majorVersion,GLctx:N};return N.canvas&&(N.canvas.GLctxObject=K),ft.contexts[B]=K,(typeof R.enableExtensionsByDefault=="undefined"||R.enableExtensionsByDefault)&&ft.initExtensions(K),B},makeContextCurrent:function(N){return ft.currentContext=ft.contexts[N],i.ctx=ja=ft.currentContext&&ft.currentContext.GLctx,!(N&&!ja)},getContext:function(N){return ft.contexts[N]},deleteContext:function(N){ft.currentContext===ft.contexts[N]&&(ft.currentContext=null),typeof Je=="object"&&Je.removeAllHandlersOnTarget(ft.contexts[N].GLctx.canvas),ft.contexts[N]&&ft.contexts[N].GLctx.canvas&&(ft.contexts[N].GLctx.canvas.GLctxObject=void 0),hm(ft.contexts[N].handle),ft.contexts[N]=null},initExtensions:function(N){if(N||(N=ft.currentContext),!N.initExtensionsDone){N.initExtensionsDone=!0;var R=N.GLctx;lb(R),ub(R),cb(R),R.disjointTimerQueryExt=R.getExtension("EXT_disjoint_timer_query"),pb(R);var B=R.getSupportedExtensions()||[];B.forEach(function(K){K.indexOf("lose_context")<0&&K.indexOf("debug")<0&&R.getExtension(K)})}},populateUniformTable:function(N){for(var R=ft.programs[N],B=ft.programInfos[N]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},K=B.uniforms,be=ja.getProgramParameter(R,35718),he=0;he<be;++he){var ye=ja.getActiveUniform(R,he),Te=ye.name;B.maxUniformLength=Math.max(B.maxUniformLength,Te.length+1),Te.slice(-1)=="]"&&(Te=Te.slice(0,Te.lastIndexOf("[")));var _t=ja.getUniformLocation(R,Te);if(_t){var Or=ft.getNewId(ft.uniforms);K[Te]=[ye.size,Or],ft.uniforms[Or]=_t;for(var Cr=1;Cr<ye.size;++Cr){var Ha=Te+"["+Cr+"]";_t=ja.getUniformLocation(R,Ha),Or=ft.getNewId(ft.uniforms),ft.uniforms[Or]=_t}}}}},mb=["default","low-power","high-performance"];function fb(N,R){var B=R>>2,K=o()[B+(24>>2)],be={alpha:!!o()[B+(0>>2)],depth:!!o()[B+(4>>2)],stencil:!!o()[B+(8>>2)],antialias:!!o()[B+(12>>2)],premultipliedAlpha:!!o()[B+(16>>2)],preserveDrawingBuffer:!!o()[B+(20>>2)],powerPreference:mb[K],failIfMajorPerformanceCaveat:!!o()[B+(28>>2)],majorVersion:o()[B+(32>>2)],minorVersion:o()[B+(36>>2)],enableExtensionsByDefault:o()[B+(40>>2)],explicitSwapControl:o()[B+(44>>2)],proxyContextToMainThread:o()[B+(48>>2)],renderViaOffscreenBackBuffer:o()[B+(52>>2)]},he=pm(N);if(!he||be.explicitSwapControl)return 0;var ye=ft.createContext(he,be);return ye}function db(N,R){return fb(N,R)}var nc={mappings:{},buffers:[null,[],[]],printChar:function(N,R){var B=nc.buffers[N];R===0||R===10?((N===1?U:H)(Ee(B,0)),B.length=0):B.push(R)},varargs:void 0,get:function(){nc.varargs+=4;var N=o()[nc.varargs-4>>2];return N},getStr:function(N){var R=ve(N);return R},get64:function(N,R){return N}};function Ph(N){return w?Wa(3,1,N):0}function Mh(N,R,B,K,be){if(w)return Wa(4,1,N,R,B,K,be)}function Lh(N,R,B,K){if(w)return Wa(5,1,N,R,B,K);for(var be=0,he=0;he<B;he++){for(var ye=o()[R+he*8>>2],Te=o()[R+(he*8+4)>>2],_t=0;_t<Te;_t++)nc.printChar(N,n()[ye+_t]);be+=Te}return o()[K>>2]=be,0}function hb(N){var R=$e.threadExitHandlers.pop();N&&R()}function gb(N,R){$e.threadExitHandlers.push(function(){jr.get(N)(R)})}function zh(N){if(w)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var R=$e.getNewWorker();if(R.pthread!==void 0)throw"Internal error!";if(!N.pthread_ptr)throw"Internal error, no pthread ptr!";$e.runningWorkers.push(R);for(var B=Vl(128*4),K=0;K<128;++K)o()[B+K*4>>2]=0;var be=N.stackBase+N.stackSize,he=$e.pthreads[N.pthread_ptr]={worker:R,stackBase:N.stackBase,stackSize:N.stackSize,allocatedOwnStack:N.allocatedOwnStack,threadInfoStruct:N.pthread_ptr},ye=he.threadInfoStruct>>2;Atomics.store(s(),ye+(64>>2),N.detached),Atomics.store(s(),ye+(100>>2),B),Atomics.store(s(),ye+(40>>2),he.threadInfoStruct),Atomics.store(s(),ye+(80>>2),N.stackSize),Atomics.store(s(),ye+(76>>2),be),Atomics.store(s(),ye+(104>>2),N.stackSize),Atomics.store(s(),ye+(104+8>>2),be),Atomics.store(s(),ye+(104+12>>2),N.detached);var Te=TI(),_t=Te+40;Atomics.store(s(),ye+(172>>2),_t),R.pthread=he;var Or={cmd:"run",start_routine:N.startRoutine,arg:N.arg,threadInfoStruct:N.pthread_ptr,stackBase:N.stackBase,stackSize:N.stackSize};R.runPthread=function(){Or.time=performance.now(),R.postMessage(Or,N.transferList)},R.loaded&&(R.runPthread(),delete R.runPthread)}function xb(N,R,B,K){if(typeof SharedArrayBuffer=="undefined")return H("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!N)return H("pthread_create called with a null thread pointer!"),28;var be=[],he=0;if(w&&(be.length===0||he))return $I(687865856,N,R,B,K);if(he)return he;var ye=0,Te=0,_t=0;R&&R!=-1?(ye=o()[R>>2],ye+=81920,Te=o()[R+8>>2],_t=o()[R+12>>2]!==0):ye=2097152;var Or=Te==0;Or?Te=OI(16,ye):(Te-=ye,fe(Te>0));for(var Cr=Vl(228),Ha=0;Ha<228>>2;++Ha)s()[(Cr>>2)+Ha]=0;o()[N>>2]=Cr,o()[Cr+12>>2]=Cr;var uc=Cr+152;o()[uc>>2]=uc;var Ur={stackBase:Te,stackSize:ye,allocatedOwnStack:Or,detached:_t,startRoutine:B,pthread_ptr:Cr,arg:K,transferList:be};return w?(Ur.cmd="spawnThread",postMessage(Ur,be)):zh(Ur),0}function Bh(N){if(w)return Wa(6,1,N);switch(N){case 30:return 16384;case 85:var R=2147483648;return R/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return By(28),-1}w||$e.initMainThreadBlock();var ja,yb=[null,Vy,Oh,Ph,Mh,Lh,Bh],bb={e:zy,v:Gy,b:Wy,w:jy,j:Uy,c:Hy,d:lm,f:Bl,p:qy,x:Ky,s:Yy,r:Qy,t:ib,i:ab,u:db,m:Ph,n:Mh,g:Lh,o:Rh,a:Q||i.wasmMemory,k:hb,l:gb,h:xb,q:Bh},NI=Dy(),Vh=i.___wasm_call_ctors=function(){return(Vh=i.___wasm_call_ctors=i.asm.y).apply(null,arguments)},wb=i._init=function(){return(wb=i._init=i.asm.z).apply(null,arguments)},_b=i._register_tensor=function(){return(_b=i._register_tensor=i.asm.A).apply(null,arguments)},kb=i._dispose_data=function(){return(kb=i._dispose_data=i.asm.B).apply(null,arguments)},vb=i._dispose=function(){return(vb=i._dispose=i.asm.C).apply(null,arguments)},Cb=i._Abs=function(){return(Cb=i._Abs=i.asm.E).apply(null,arguments)},Ib=i._Add=function(){return(Ib=i._Add=i.asm.F).apply(null,arguments)},Nb=i._AddN=function(){return(Nb=i._AddN=i.asm.G).apply(null,arguments)},Sb=i._All=function(){return(Sb=i._All=i.asm.H).apply(null,arguments)},Tb=i._Any=function(){return(Tb=i._Any=i.asm.I).apply(null,arguments)},Ab=i._ArgMax=function(){return(Ab=i._ArgMax=i.asm.J).apply(null,arguments)},Eb=i._AvgPool=function(){return(Eb=i._AvgPool=i.asm.K).apply(null,arguments)},Db=i._BatchMatMul=function(){return(Db=i._BatchMatMul=i.asm.L).apply(null,arguments)},$b=i._Ceil=function(){return($b=i._Ceil=i.asm.M).apply(null,arguments)},Rb=i._ClipByValue=function(){return(Rb=i._ClipByValue=i.asm.N).apply(null,arguments)},Fb=i._Conv2D=function(){return(Fb=i._Conv2D=i.asm.O).apply(null,arguments)},Ob=i._Conv2DBackpropInput=function(){return(Ob=i._Conv2DBackpropInput=i.asm.P).apply(null,arguments)},Pb=i._Cos=function(){return(Pb=i._Cos=i.asm.Q).apply(null,arguments)},Mb=i._CropAndResize=function(){return(Mb=i._CropAndResize=i.asm.R).apply(null,arguments)},Lb=i._Cumsum=function(){return(Lb=i._Cumsum=i.asm.S).apply(null,arguments)},zb=i._DepthToSpace=function(){return(zb=i._DepthToSpace=i.asm.T).apply(null,arguments)},Bb=i._DepthwiseConv2dNative=function(){return(Bb=i._DepthwiseConv2dNative=i.asm.U).apply(null,arguments)},Vb=i._Equal=function(){return(Vb=i._Equal=i.asm.V).apply(null,arguments)},Gh=i._Exp=function(){return(Gh=i._Exp=i.asm.W).apply(null,arguments)},Wh=i._FlipLeftRight=function(){return(Wh=i._FlipLeftRight=i.asm.X).apply(null,arguments)},jh=i._Floor=function(){return(jh=i._Floor=i.asm.Y).apply(null,arguments)},mm=i._FloorDiv=function(){return(mm=i._FloorDiv=i.asm.Z).apply(null,arguments)},oc=i._FusedBatchNorm=function(){return(oc=i._FusedBatchNorm=i.asm._).apply(null,arguments)},Gb=i._FusedConv2D=function(){return(Gb=i._FusedConv2D=i.asm.$).apply(null,arguments)},fm=i._FusedDepthwiseConv2D=function(){return(fm=i._FusedDepthwiseConv2D=i.asm.aa).apply(null,arguments)},Z=i._Gather=function(){return(Z=i._Gather=i.asm.ba).apply(null,arguments)},se=i._GatherNd=function(){return(se=i._GatherNd=i.asm.ca).apply(null,arguments)},ke=i._Greater=function(){return(ke=i._Greater=i.asm.da).apply(null,arguments)},lt=i._GreaterEqual=function(){return(lt=i._GreaterEqual=i.asm.ea).apply(null,arguments)},Zt=i._LeakyRelu=function(){return(Zt=i._LeakyRelu=i.asm.fa).apply(null,arguments)},zt=i._Less=function(){return(zt=i._Less=i.asm.ga).apply(null,arguments)},tt=i._LessEqual=function(){return(tt=i._LessEqual=i.asm.ha).apply(null,arguments)},rt=i._Log=function(){return(rt=i._Log=i.asm.ia).apply(null,arguments)},vr=i._LogicalAnd=function(){return(vr=i._LogicalAnd=i.asm.ja).apply(null,arguments)},bi=i._Max=function(){return(bi=i._Max=i.asm.ka).apply(null,arguments)},wi=i._MaxPool=function(){return(wi=i._MaxPool=i.asm.la).apply(null,arguments)},Uh=i._Maximum=function(){return(Uh=i._Maximum=i.asm.ma).apply(null,arguments)},dm=i._Mean=function(){return(dm=i._Mean=i.asm.na).apply(null,arguments)},Cn=i._Min=function(){return(Cn=i._Min=i.asm.oa).apply(null,arguments)},Ua=i._Minimum=function(){return(Ua=i._Minimum=i.asm.pa).apply(null,arguments)},Hh=i._MirrorPad=function(){return(Hh=i._MirrorPad=i.asm.qa).apply(null,arguments)},pV=i._Multiply=function(){return(pV=i._Multiply=i.asm.ra).apply(null,arguments)},mV=i._Neg=function(){return(mV=i._Neg=i.asm.sa).apply(null,arguments)},fV=i._NonMaxSuppressionV3=function(){return(fV=i._NonMaxSuppressionV3=i.asm.ta).apply(null,arguments)},dV=i._NonMaxSuppressionV4=function(){return(dV=i._NonMaxSuppressionV4=i.asm.ua).apply(null,arguments)},hV=i._NonMaxSuppressionV5=function(){return(hV=i._NonMaxSuppressionV5=i.asm.va).apply(null,arguments)},gV=i._NotEqual=function(){return(gV=i._NotEqual=i.asm.wa).apply(null,arguments)},xV=i._OneHot=function(){return(xV=i._OneHot=i.asm.xa).apply(null,arguments)},yV=i._PadV2=function(){return(yV=i._PadV2=i.asm.ya).apply(null,arguments)},bV=i._Pow=function(){return(bV=i._Pow=i.asm.za).apply(null,arguments)},wV=i._Prelu=function(){return(wV=i._Prelu=i.asm.Aa).apply(null,arguments)},_V=i._Prod=function(){return(_V=i._Prod=i.asm.Ba).apply(null,arguments)},kV=i._RealDiv=function(){return(kV=i._RealDiv=i.asm.Ca).apply(null,arguments)},vV=i._Relu=function(){return(vV=i._Relu=i.asm.Da).apply(null,arguments)},CV=i._Relu6=function(){return(CV=i._Relu6=i.asm.Ea).apply(null,arguments)},IV=i._ResizeBilinear=function(){return(IV=i._ResizeBilinear=i.asm.Fa).apply(null,arguments)},NV=i._Reverse=function(){return(NV=i._Reverse=i.asm.Ga).apply(null,arguments)},SV=i._RotateWithOffset=function(){return(SV=i._RotateWithOffset=i.asm.Ha).apply(null,arguments)},TV=i._Round=function(){return(TV=i._Round=i.asm.Ia).apply(null,arguments)},AV=i._Rsqrt=function(){return(AV=i._Rsqrt=i.asm.Ja).apply(null,arguments)},EV=i._ScatterNd=function(){return(EV=i._ScatterNd=i.asm.Ka).apply(null,arguments)},DV=i._SelectV2=function(){return(DV=i._SelectV2=i.asm.La).apply(null,arguments)},$V=i._Sigmoid=function(){return($V=i._Sigmoid=i.asm.Ma).apply(null,arguments)},RV=i._Sin=function(){return(RV=i._Sin=i.asm.Na).apply(null,arguments)},FV=i._Softmax=function(){return(FV=i._Softmax=i.asm.Oa).apply(null,arguments)},OV=i._Sqrt=function(){return(OV=i._Sqrt=i.asm.Pa).apply(null,arguments)},PV=i._Square=function(){return(PV=i._Square=i.asm.Qa).apply(null,arguments)},MV=i._SquaredDifference=function(){return(MV=i._SquaredDifference=i.asm.Ra).apply(null,arguments)},LV=i._Step=function(){return(LV=i._Step=i.asm.Sa).apply(null,arguments)},zV=i._StridedSlice=function(){return(zV=i._StridedSlice=i.asm.Ta).apply(null,arguments)},BV=i._Sub=function(){return(BV=i._Sub=i.asm.Ua).apply(null,arguments)},VV=i._Sum=function(){return(VV=i._Sum=i.asm.Va).apply(null,arguments)},GV=i._Tan=function(){return(GV=i._Tan=i.asm.Wa).apply(null,arguments)},WV=i._Tanh=function(){return(WV=i._Tanh=i.asm.Xa).apply(null,arguments)},jV=i._Tile=function(){return(jV=i._Tile=i.asm.Ya).apply(null,arguments)},UV=i._TopK=function(){return(UV=i._TopK=i.asm.Za).apply(null,arguments)},HV=i._Transpose=function(){return(HV=i._Transpose=i.asm._a).apply(null,arguments)},qV=i.__FusedMatMul=function(){return(qV=i.__FusedMatMul=i.asm.$a).apply(null,arguments)},Vl=i._malloc=function(){return(Vl=i._malloc=i.asm.ab).apply(null,arguments)},hm=i._free=function(){return(hm=i._free=i.asm.bb).apply(null,arguments)},SI=i.___errno_location=function(){return(SI=i.___errno_location=i.asm.cb).apply(null,arguments)},TI=i._emscripten_get_global_libc=function(){return(TI=i._emscripten_get_global_libc=i.asm.db).apply(null,arguments)},sc=i._pthread_self=function(){return(sc=i._pthread_self=i.asm.eb).apply(null,arguments)},AI=i.___pthread_tsd_run_dtors=function(){return(AI=i.___pthread_tsd_run_dtors=i.asm.fb).apply(null,arguments)},Wb=i._emscripten_main_thread_process_queued_calls=function(){return(Wb=i._emscripten_main_thread_process_queued_calls=i.asm.gb).apply(null,arguments)},KV=i._emscripten_current_thread_process_queued_calls=function(){return(KV=i._emscripten_current_thread_process_queued_calls=i.asm.hb).apply(null,arguments)},EI=i._emscripten_register_main_browser_thread_id=function(){return(EI=i._emscripten_register_main_browser_thread_id=i.asm.ib).apply(null,arguments)},DI=i.__emscripten_do_dispatch_to_thread=function(){return(DI=i.__emscripten_do_dispatch_to_thread=i.asm.jb).apply(null,arguments)},$I=i._emscripten_sync_run_in_main_thread_4=function(){return($I=i._emscripten_sync_run_in_main_thread_4=i.asm.kb).apply(null,arguments)},RI=i._emscripten_run_in_main_runtime_thread_js=function(){return(RI=i._emscripten_run_in_main_runtime_thread_js=i.asm.lb).apply(null,arguments)},jb=i.__emscripten_call_on_thread=function(){return(jb=i.__emscripten_call_on_thread=i.asm.mb).apply(null,arguments)},XV=i._emscripten_tls_init=function(){return(XV=i._emscripten_tls_init=i.asm.nb).apply(null,arguments)},Ub=i.__emscripten_thread_init=function(){return(Ub=i.__emscripten_thread_init=i.asm.ob).apply(null,arguments)},gm=i.stackSave=function(){return(gm=i.stackSave=i.asm.pb).apply(null,arguments)},ic=i.stackRestore=function(){return(ic=i.stackRestore=i.asm.qb).apply(null,arguments)},ac=i.stackAlloc=function(){return(ac=i.stackAlloc=i.asm.rb).apply(null,arguments)},FI=i._emscripten_stack_set_limits=function(){return(FI=i._emscripten_stack_set_limits=i.asm.sb).apply(null,arguments)},OI=i._memalign=function(){return(OI=i._memalign=i.asm.tb).apply(null,arguments)},PI=i.__emscripten_allow_main_runtime_queued_calls=9792,lc=i.__emscripten_main_thread_futex=11408;i.cwrap=we,i.PThread=$e,i.PThread=$e,i.wasmMemory=Q,i.ExitStatus=xm;var qh;function xm(N){this.name="ExitStatus",this.message="Program terminated with exit("+N+")",this.status=N}zl=function N(){qh||Hb(),qh||(zl=N)};function Hb(N){if(N=N||m,xi>0)return;if(w){l(i),Ll(),postMessage({cmd:"loaded"});return}if(am(),xi>0)return;function R(){qh||(qh=!0,i.calledRun=!0,!ce&&(Ll(),Iy(),l(i),i.onRuntimeInitialized&&i.onRuntimeInitialized(),pn()))}i.setStatus?(i.setStatus("Running..."),setTimeout(function(){setTimeout(function(){i.setStatus("")},1),R()},1)):R()}i.run=Hb;function YV(N,R){if(!(R&&re&&N===0)){if(!R&&w)throw postMessage({cmd:"exitProcess",returnCode:N}),new xm(N);re||($e.terminateAllThreads(),ae=N,Sh(),i.onExit&&i.onExit(N),ce=!0),d(N,new xm(N))}}if(i.preInit)for(typeof i.preInit=="function"&&(i.preInit=[i.preInit]);i.preInit.length>0;)i.preInit.pop()();return w&&(re=!1,$e.initWorker()),Hb(),e.ready}}();typeof vx=="object"&&typeof TC=="object"?TC.exports=AC:typeof define=="function"&&define.amd?define([],function(){return AC}):typeof vx=="object"&&(vx.WasmBackendModule=AC)});var SM=Ht((Cx,EC)=>{var DC=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(e){e=e||{};var t=typeof e!="undefined"?e:{},n,o;t.ready=new Promise(function(Z,se){n=Z,o=se});var s={},a;for(a in t)t.hasOwnProperty(a)&&(s[a]=t[a]);var i=[],l="./this.program",u=function(Z,se){throw se},c=!1,p=!1,m=!1,f=!1;c=typeof window=="object",p=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",f=!c&&!m&&!p;var d="";function h(Z){return t.locateFile?t.locateFile(Z,d):d+Z}var g,y,b,w,_,I;m?(p?d=$p().dirname(d)+"/":d=__dirname+"/",g=function(se,ke){return _||(_=require("fs")),I||(I=$p()),se=I.normalize(se),_.readFileSync(se,ke?null:"utf8")},b=function(se){var ke=g(se,!0);return ke.buffer||(ke=new Uint8Array(ke)),U(ke.buffer),ke},process.argv.length>1&&(l=process.argv[1].replace(/\\/g,"/")),i=process.argv.slice(2),process.on("uncaughtException",function(Z){if(!(Z instanceof Gb))throw Z}),process.on("unhandledRejection",Fs),u=function(Z){process.exit(Z)},t.inspect=function(){return"[Emscripten Module object]"}):f?(typeof read!="undefined"&&(g=function(se){return read(se)}),b=function(se){var ke;return typeof readbuffer=="function"?new Uint8Array(readbuffer(se)):(ke=read(se,"binary"),U(typeof ke=="object"),ke)},typeof scriptArgs!="undefined"?i=scriptArgs:typeof arguments!="undefined"&&(i=arguments),typeof quit=="function"&&(u=function(Z){quit(Z)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(c||p)&&(p?d=self.location.href:typeof document!="undefined"&&document.currentScript&&(d=document.currentScript.src),r&&(d=r),d.indexOf("blob:")!==0?d=d.substr(0,d.lastIndexOf("/")+1):d="",g=function(Z){var se=new XMLHttpRequest;return se.open("GET",Z,!1),se.send(null),se.responseText},p&&(b=function(Z){var se=new XMLHttpRequest;return se.open("GET",Z,!1),se.responseType="arraybuffer",se.send(null),new Uint8Array(se.response)}),y=function(Z,se,ke){var lt=new XMLHttpRequest;lt.open("GET",Z,!0),lt.responseType="arraybuffer",lt.onload=function(){if(lt.status==200||lt.status==0&<.response){se(lt.response);return}ke()},lt.onerror=ke,lt.send(null)},w=function(Z){document.title=Z});var E=t.print||console.log.bind(console),$=t.printErr||console.warn.bind(console);for(a in s)s.hasOwnProperty(a)&&(t[a]=s[a]);s=null,t.arguments&&(i=t.arguments),t.thisProgram&&(l=t.thisProgram),t.quit&&(u=t.quit);var D;t.wasmBinary&&(D=t.wasmBinary);var O=t.noExitRuntime||!0;typeof WebAssembly!="object"&&Fs("no native wasm support detected");var M,G=!1,j;function U(Z,se){Z||Fs("Assertion failed: "+se)}function H(Z){var se=t["_"+Z];return U(se,"Cannot call unknown function "+Z+", make sure it is exported"),se}function q(Z,se,ke,lt,Zt){var zt={string:function(Cn){var Ua=0;if(Cn!=null&&Cn!==0){var Hh=(Cn.length<<2)+1;Ua=mm(Hh),ie(Cn,Ua,Hh)}return Ua},array:function(Cn){var Ua=mm(Cn.length);return ce(Cn,Ua),Ua}};function tt(Cn){return se==="string"?re(Cn):se==="boolean"?Boolean(Cn):Cn}var rt=H(Z),vr=[],bi=0;if(lt)for(var wi=0;wi<lt.length;wi++){var Uh=zt[ke[wi]];Uh?(bi===0&&(bi=Wh()),vr[wi]=Uh(lt[wi])):vr[wi]=lt[wi]}var dm=rt.apply(null,vr);return dm=tt(dm),bi!==0&&jh(bi),dm}function X(Z,se,ke,lt){ke=ke||[];var Zt=ke.every(function(tt){return tt==="number"}),zt=se!=="string";return zt&&Zt&&!lt?H(Z):function(){return q(Z,se,ke,arguments,lt)}}var ne=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function Y(Z,se,ke){for(var lt=se+ke,Zt=se;Z[Zt]&&!(Zt>=lt);)++Zt;if(Zt-se>16&&Z.subarray&&ne)return ne.decode(Z.subarray(se,Zt));for(var zt="";se<Zt;){var tt=Z[se++];if(!(tt&128)){zt+=String.fromCharCode(tt);continue}var rt=Z[se++]&63;if((tt&224)==192){zt+=String.fromCharCode((tt&31)<<6|rt);continue}var vr=Z[se++]&63;if((tt&240)==224?tt=(tt&15)<<12|rt<<6|vr:tt=(tt&7)<<18|rt<<12|vr<<6|Z[se++]&63,tt<65536)zt+=String.fromCharCode(tt);else{var bi=tt-65536;zt+=String.fromCharCode(55296|bi>>10,56320|bi&1023)}}return zt}function re(Z,se){return Z?Y(xe,Z,se):""}function Q(Z,se,ke,lt){if(!(lt>0))return 0;for(var Zt=ke,zt=ke+lt-1,tt=0;tt<Z.length;++tt){var rt=Z.charCodeAt(tt);if(rt>=55296&&rt<=57343){var vr=Z.charCodeAt(++tt);rt=65536+((rt&1023)<<10)|vr&1023}if(rt<=127){if(ke>=zt)break;se[ke++]=rt}else if(rt<=2047){if(ke+1>=zt)break;se[ke++]=192|rt>>6,se[ke++]=128|rt&63}else if(rt<=65535){if(ke+2>=zt)break;se[ke++]=224|rt>>12,se[ke++]=128|rt>>6&63,se[ke++]=128|rt&63}else{if(ke+3>=zt)break;se[ke++]=240|rt>>18,se[ke++]=128|rt>>12&63,se[ke++]=128|rt>>6&63,se[ke++]=128|rt&63}}return se[ke]=0,ke-Zt}function ie(Z,se,ke){return Q(Z,xe,se,ke)}function ce(Z,se){de.set(Z,se)}function ae(Z,se){return Z%se>0&&(Z+=se-Z%se),Z}var fe,de,xe,we,Ee,ve,Ge,Ke,at;function St(Z){fe=Z,t.HEAP8=de=new Int8Array(Z),t.HEAP16=we=new Int16Array(Z),t.HEAP32=ve=new Int32Array(Z),t.HEAPU8=xe=new Uint8Array(Z),t.HEAPU16=Ee=new Uint16Array(Z),t.HEAPU32=Ge=new Uint32Array(Z),t.HEAPF32=Ke=new Float32Array(Z),t.HEAPF64=at=new Float64Array(Z)}var Tt=t.INITIAL_MEMORY||16777216,He,ct=[],mt=[],Lt=[],kn=[],Yt=!1;mt.push({func:function(){Rh()}});function un(){if(t.preRun)for(typeof t.preRun=="function"&&(t.preRun=[t.preRun]);t.preRun.length;)vn(t.preRun.shift());Ga(ct)}function Fr(){Yt=!0,Ga(mt)}function Un(){Ga(Lt)}function sr(){if(t.postRun)for(typeof t.postRun=="function"&&(t.postRun=[t.postRun]);t.postRun.length;)jr(t.postRun.shift());Ga(kn)}function vn(Z){ct.unshift(Z)}function jr(Z){kn.unshift(Z)}var wr=0,cn=null,Rn=null;function Ml(Z){wr++,t.monitorRunDependencies&&t.monitorRunDependencies(wr)}function Va(Z){if(wr--,t.monitorRunDependencies&&t.monitorRunDependencies(wr),wr==0&&(cn!==null&&(clearInterval(cn),cn=null),Rn)){var se=Rn;Rn=null,se()}}t.preloadedImages={},t.preloadedAudios={};function Fs(Z){t.onAbort&&t.onAbort(Z),Z+="",$(Z),G=!0,j=1,Z="abort("+Z+"). Build with -s ASSERTIONS=1 for more info.";var se=new WebAssembly.RuntimeError(Z);throw o(se),se}function gi(Z,se){return String.prototype.startsWith?Z.startsWith(se):Z.indexOf(se)===0}var am="data:application/octet-stream;base64,";function Ll(Z){return gi(Z,am)}var Iy="file://";function Sh(Z){return gi(Z,Iy)}var pn="tfjs-backend-wasm.wasm";Ll(pn)||(pn=h(pn));function Th(Z){try{if(Z==pn&&D)return new Uint8Array(D);if(b)return b(Z);throw"both async and sync fetching of the wasm failed"}catch(se){Fs(se)}}function Ny(){if(!D&&(c||p)){if(typeof fetch=="function"&&!Sh(pn))return fetch(pn,{credentials:"same-origin"}).then(function(Z){if(!Z.ok)throw"failed to load wasm binary file at '"+pn+"'";return Z.arrayBuffer()}).catch(function(){return Th(pn)});if(y)return new Promise(function(Z,se){y(pn,function(ke){Z(new Uint8Array(ke))},se)})}return Promise.resolve().then(function(){return Th(pn)})}function xi(){var Z={a:Dy};function se(tt,rt){var vr=tt.exports;t.asm=vr,M=t.asm.i,St(M.buffer),He=t.asm.o,Va("wasm-instantiate")}Ml("wasm-instantiate");function ke(tt){se(tt.instance)}function lt(tt){return Ny().then(function(rt){return WebAssembly.instantiate(rt,Z)}).then(tt,function(rt){$("failed to asynchronously prepare wasm: "+rt),Fs(rt)})}function Zt(){return!D&&typeof WebAssembly.instantiateStreaming=="function"&&!Ll(pn)&&!Sh(pn)&&typeof fetch=="function"?fetch(pn,{credentials:"same-origin"}).then(function(tt){var rt=WebAssembly.instantiateStreaming(tt,Z);return rt.then(ke,function(vr){return $("wasm streaming compile failed: "+vr),$("falling back to ArrayBuffer instantiation"),lt(ke)})}):lt(ke)}if(t.instantiateWasm)try{var zt=t.instantiateWasm(Z,se);return zt}catch(tt){return $("Module.instantiateWasm callback failed with error: "+tt),!1}return Zt().catch(o),{}}function Ga(Z){for(;Z.length>0;){var se=Z.shift();if(typeof se=="function"){se(t);continue}var ke=se.func;typeof ke=="number"?se.arg===void 0?He.get(ke)():He.get(ke)(se.arg):ke(se.arg===void 0?null:se.arg)}}function zl(){Fs()}function Sy(Z,se,ke){xe.copyWithin(Z,se,se+ke)}function Ty(){return xe.length}function yi(Z){try{return M.grow(Z-fe.byteLength+65535>>>16),St(M.buffer),1}catch(se){}}function Ah(Z){var se=Ty(),ke=2147483648;if(Z>ke)return!1;for(var lt=1;lt<=4;lt*=2){var Zt=se*(1+.2/lt);Zt=Math.min(Zt,Z+100663296);var zt=Math.min(ke,ae(Math.max(Z,Zt),65536)),tt=yi(zt);if(tt)return!0}return!1}var tc={mappings:{},buffers:[null,[],[]],printChar:function(Z,se){var ke=tc.buffers[Z];se===0||se===10?((Z===1?E:$)(Y(ke,0)),ke.length=0):ke.push(se)},varargs:void 0,get:function(){tc.varargs+=4;var Z=ve[tc.varargs-4>>2];return Z},getStr:function(Z){var se=re(Z);return se},get64:function(Z,se){return Z}};function Eh(Z){return 0}function Ay(Z,se,ke,lt,Zt){}function Dh(Z,se,ke,lt){for(var Zt=0,zt=0;zt<ke;zt++){for(var tt=ve[se+zt*8>>2],rt=ve[se+(zt*8+4)>>2],vr=0;vr<rt;vr++)tc.printChar(Z,xe[tt+vr]);Zt+=rt}return ve[lt>>2]=Zt,0}function mn(){return 6}function $h(Z){return ve[Gh()>>2]=Z,Z}function Ey(Z){switch(Z){case 30:return 16384;case 85:var se=2147483648;return se/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return $h(28),-1}var Dy={a:zl,d:Sy,e:Ah,f:Eh,c:Ay,b:Dh,g:mn,h:Ey},$y=xi(),Rh=t.___wasm_call_ctors=function(){return(Rh=t.___wasm_call_ctors=t.asm.j).apply(null,arguments)},rc=t._init=function(){return(rc=t._init=t.asm.k).apply(null,arguments)},lm=t._register_tensor=function(){return(lm=t._register_tensor=t.asm.l).apply(null,arguments)},Ry=t._dispose_data=function(){return(Ry=t._dispose_data=t.asm.m).apply(null,arguments)},Fy=t._dispose=function(){return(Fy=t._dispose=t.asm.n).apply(null,arguments)},Oy=t._Abs=function(){return(Oy=t._Abs=t.asm.p).apply(null,arguments)},$e=t._Add=function(){return($e=t._Add=t.asm.q).apply(null,arguments)},Py=t._AddN=function(){return(Py=t._AddN=t.asm.r).apply(null,arguments)},My=t._All=function(){return(My=t._All=t.asm.s).apply(null,arguments)},Ly=t._Any=function(){return(Ly=t._Any=t.asm.t).apply(null,arguments)},zy=t._ArgMax=function(){return(zy=t._ArgMax=t.asm.u).apply(null,arguments)},Bl=t._AvgPool=function(){return(Bl=t._AvgPool=t.asm.v).apply(null,arguments)},By=t._BatchMatMul=function(){return(By=t._BatchMatMul=t.asm.w).apply(null,arguments)},Vy=t._Ceil=function(){return(Vy=t._Ceil=t.asm.x).apply(null,arguments)},Gy=t._ClipByValue=function(){return(Gy=t._ClipByValue=t.asm.y).apply(null,arguments)},Wy=t._Conv2D=function(){return(Wy=t._Conv2D=t.asm.z).apply(null,arguments)},jy=t._Conv2DBackpropInput=function(){return(jy=t._Conv2DBackpropInput=t.asm.A).apply(null,arguments)},Uy=t._Cos=function(){return(Uy=t._Cos=t.asm.B).apply(null,arguments)},Hy=t._CropAndResize=function(){return(Hy=t._CropAndResize=t.asm.C).apply(null,arguments)},qy=t._Cumsum=function(){return(qy=t._Cumsum=t.asm.D).apply(null,arguments)},Ky=t._DepthToSpace=function(){return(Ky=t._DepthToSpace=t.asm.E).apply(null,arguments)},Wa=t._DepthwiseConv2dNative=function(){return(Wa=t._DepthwiseConv2dNative=t.asm.F).apply(null,arguments)},um=t._Equal=function(){return(um=t._Equal=t.asm.G).apply(null,arguments)},cm=t._Exp=function(){return(cm=t._Exp=t.asm.H).apply(null,arguments)},Xy=t._FlipLeftRight=function(){return(Xy=t._FlipLeftRight=t.asm.I).apply(null,arguments)},Yy=t._Floor=function(){return(Yy=t._Floor=t.asm.J).apply(null,arguments)},Zy=t._FloorDiv=function(){return(Zy=t._FloorDiv=t.asm.K).apply(null,arguments)},Jy=t._FusedBatchNorm=function(){return(Jy=t._FusedBatchNorm=t.asm.L).apply(null,arguments)},Qy=t._FusedConv2D=function(){return(Qy=t._FusedConv2D=t.asm.M).apply(null,arguments)},Je=t._FusedDepthwiseConv2D=function(){return(Je=t._FusedDepthwiseConv2D=t.asm.N).apply(null,arguments)},eb=t._Gather=function(){return(eb=t._Gather=t.asm.O).apply(null,arguments)},tb=t._GatherNd=function(){return(tb=t._GatherNd=t.asm.P).apply(null,arguments)},rb=t._Greater=function(){return(rb=t._Greater=t.asm.Q).apply(null,arguments)},nb=t._GreaterEqual=function(){return(nb=t._GreaterEqual=t.asm.R).apply(null,arguments)},ob=t._LeakyRelu=function(){return(ob=t._LeakyRelu=t.asm.S).apply(null,arguments)},sb=t._Less=function(){return(sb=t._Less=t.asm.T).apply(null,arguments)},pm=t._LessEqual=function(){return(pm=t._LessEqual=t.asm.U).apply(null,arguments)},Fh=t._Log=function(){return(Fh=t._Log=t.asm.V).apply(null,arguments)},Oh=t._LogicalAnd=function(){return(Oh=t._LogicalAnd=t.asm.W).apply(null,arguments)},ib=t._Max=function(){return(ib=t._Max=t.asm.X).apply(null,arguments)},ab=t._MaxPool=function(){return(ab=t._MaxPool=t.asm.Y).apply(null,arguments)},lb=t._Maximum=function(){return(lb=t._Maximum=t.asm.Z).apply(null,arguments)},ub=t._Mean=function(){return(ub=t._Mean=t.asm._).apply(null,arguments)},cb=t._Min=function(){return(cb=t._Min=t.asm.$).apply(null,arguments)},pb=t._Minimum=function(){return(pb=t._Minimum=t.asm.aa).apply(null,arguments)},ft=t._MirrorPad=function(){return(ft=t._MirrorPad=t.asm.ba).apply(null,arguments)},mb=t._Multiply=function(){return(mb=t._Multiply=t.asm.ca).apply(null,arguments)},fb=t._Neg=function(){return(fb=t._Neg=t.asm.da).apply(null,arguments)},db=t._NonMaxSuppressionV3=function(){return(db=t._NonMaxSuppressionV3=t.asm.ea).apply(null,arguments)},nc=t._NonMaxSuppressionV4=function(){return(nc=t._NonMaxSuppressionV4=t.asm.fa).apply(null,arguments)},Ph=t._NonMaxSuppressionV5=function(){return(Ph=t._NonMaxSuppressionV5=t.asm.ga).apply(null,arguments)},Mh=t._NotEqual=function(){return(Mh=t._NotEqual=t.asm.ha).apply(null,arguments)},Lh=t._OneHot=function(){return(Lh=t._OneHot=t.asm.ia).apply(null,arguments)},hb=t._PadV2=function(){return(hb=t._PadV2=t.asm.ja).apply(null,arguments)},gb=t._Pow=function(){return(gb=t._Pow=t.asm.ka).apply(null,arguments)},zh=t._Prelu=function(){return(zh=t._Prelu=t.asm.la).apply(null,arguments)},xb=t._Prod=function(){return(xb=t._Prod=t.asm.ma).apply(null,arguments)},Bh=t._RealDiv=function(){return(Bh=t._RealDiv=t.asm.na).apply(null,arguments)},ja=t._Relu=function(){return(ja=t._Relu=t.asm.oa).apply(null,arguments)},yb=t._Relu6=function(){return(yb=t._Relu6=t.asm.pa).apply(null,arguments)},bb=t._ResizeBilinear=function(){return(bb=t._ResizeBilinear=t.asm.qa).apply(null,arguments)},NI=t._Reverse=function(){return(NI=t._Reverse=t.asm.ra).apply(null,arguments)},Vh=t._RotateWithOffset=function(){return(Vh=t._RotateWithOffset=t.asm.sa).apply(null,arguments)},wb=t._Round=function(){return(wb=t._Round=t.asm.ta).apply(null,arguments)},_b=t._Rsqrt=function(){return(_b=t._Rsqrt=t.asm.ua).apply(null,arguments)},kb=t._ScatterNd=function(){return(kb=t._ScatterNd=t.asm.va).apply(null,arguments)},vb=t._SelectV2=function(){return(vb=t._SelectV2=t.asm.wa).apply(null,arguments)},Cb=t._Sigmoid=function(){return(Cb=t._Sigmoid=t.asm.xa).apply(null,arguments)},Ib=t._Sin=function(){return(Ib=t._Sin=t.asm.ya).apply(null,arguments)},Nb=t._Softmax=function(){return(Nb=t._Softmax=t.asm.za).apply(null,arguments)},Sb=t._Sqrt=function(){return(Sb=t._Sqrt=t.asm.Aa).apply(null,arguments)},Tb=t._Square=function(){return(Tb=t._Square=t.asm.Ba).apply(null,arguments)},Ab=t._SquaredDifference=function(){return(Ab=t._SquaredDifference=t.asm.Ca).apply(null,arguments)},Eb=t._Step=function(){return(Eb=t._Step=t.asm.Da).apply(null,arguments)},Db=t._StridedSlice=function(){return(Db=t._StridedSlice=t.asm.Ea).apply(null,arguments)},$b=t._Sub=function(){return($b=t._Sub=t.asm.Fa).apply(null,arguments)},Rb=t._Sum=function(){return(Rb=t._Sum=t.asm.Ga).apply(null,arguments)},Fb=t._Tan=function(){return(Fb=t._Tan=t.asm.Ha).apply(null,arguments)},Ob=t._Tanh=function(){return(Ob=t._Tanh=t.asm.Ia).apply(null,arguments)},Pb=t._Tile=function(){return(Pb=t._Tile=t.asm.Ja).apply(null,arguments)},Mb=t._TopK=function(){return(Mb=t._TopK=t.asm.Ka).apply(null,arguments)},Lb=t._Transpose=function(){return(Lb=t._Transpose=t.asm.La).apply(null,arguments)},zb=t.__FusedMatMul=function(){return(zb=t.__FusedMatMul=t.asm.Ma).apply(null,arguments)},Bb=t._malloc=function(){return(Bb=t._malloc=t.asm.Na).apply(null,arguments)},Vb=t._free=function(){return(Vb=t._free=t.asm.Oa).apply(null,arguments)},Gh=t.___errno_location=function(){return(Gh=t.___errno_location=t.asm.Pa).apply(null,arguments)},Wh=t.stackSave=function(){return(Wh=t.stackSave=t.asm.Qa).apply(null,arguments)},jh=t.stackRestore=function(){return(jh=t.stackRestore=t.asm.Ra).apply(null,arguments)},mm=t.stackAlloc=function(){return(mm=t.stackAlloc=t.asm.Sa).apply(null,arguments)};t.cwrap=X;var oc;function Gb(Z){this.name="ExitStatus",this.message="Program terminated with exit("+Z+")",this.status=Z}Rn=function Z(){oc||fm(),oc||(Rn=Z)};function fm(Z){if(Z=Z||i,wr>0||(un(),wr>0))return;function se(){oc||(oc=!0,t.calledRun=!0,!G&&(Fr(),Un(),n(t),t.onRuntimeInitialized&&t.onRuntimeInitialized(),sr()))}t.setStatus?(t.setStatus("Running..."),setTimeout(function(){setTimeout(function(){t.setStatus("")},1),se()},1)):se()}if(t.run=fm,t.preInit)for(typeof t.preInit=="function"&&(t.preInit=[t.preInit]);t.preInit.length>0;)t.preInit.pop()();return fm(),e.ready}}();typeof Cx=="object"&&typeof EC=="object"?EC.exports=DC:typeof define=="function"&&define.amd?define([],function(){return DC}):typeof Cx=="object"&&(Cx.WasmBackendModule=DC)});var dB=Ht((fB,pI)=>{(function(r,e,t){function n(i){var l=this,u=a();l.next=function(){var c=2091639*l.s0+l.c*23283064365386963e-26;return l.s0=l.s1,l.s1=l.s2,l.s2=c-(l.c=c|0)},l.c=1,l.s0=u(" "),l.s1=u(" "),l.s2=u(" "),l.s0-=u(i),l.s0<0&&(l.s0+=1),l.s1-=u(i),l.s1<0&&(l.s1+=1),l.s2-=u(i),l.s2<0&&(l.s2+=1),u=null}function o(i,l){return l.c=i.c,l.s0=i.s0,l.s1=i.s1,l.s2=i.s2,l}function s(i,l){var u=new n(i),c=l&&l.state,p=u.next;return p.int32=function(){return u.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,c&&(typeof c=="object"&&o(c,u),p.state=function(){return o(u,{})}),p}function a(){var i=4022871197,l=function(u){u=String(u);for(var c=0;c<u.length;c++){i+=u.charCodeAt(c);var p=.02519603282416938*i;i=p>>>0,p-=i,p*=i,i=p>>>0,p-=i,i+=p*4294967296}return(i>>>0)*23283064365386963e-26};return l}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.alea=s})(fB,typeof pI=="object"&&pI,typeof define=="function"&&define)});var gB=Ht((hB,mI)=>{(function(r,e,t){function n(a){var i=this,l="";i.x=0,i.y=0,i.z=0,i.w=0,i.next=function(){var c=i.x^i.x<<11;return i.x=i.y,i.y=i.z,i.z=i.w,i.w^=i.w>>>19^c^c>>>8},a===(a|0)?i.x=a:l+=a;for(var u=0;u<l.length+64;u++)i.x^=l.charCodeAt(u)|0,i.next()}function o(a,i){return i.x=a.x,i.y=a.y,i.z=a.z,i.w=a.w,i}function s(a,i){var l=new n(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&o(u,l),c.state=function(){return o(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xor128=s})(hB,typeof mI=="object"&&mI,typeof define=="function"&&define)});var yB=Ht((xB,fI)=>{(function(r,e,t){function n(a){var i=this,l="";i.next=function(){var c=i.x^i.x>>>2;return i.x=i.y,i.y=i.z,i.z=i.w,i.w=i.v,(i.d=i.d+362437|0)+(i.v=i.v^i.v<<4^(c^c<<1))|0},i.x=0,i.y=0,i.z=0,i.w=0,i.v=0,a===(a|0)?i.x=a:l+=a;for(var u=0;u<l.length+64;u++)i.x^=l.charCodeAt(u)|0,u==l.length&&(i.d=i.x<<10^i.x>>>4),i.next()}function o(a,i){return i.x=a.x,i.y=a.y,i.z=a.z,i.w=a.w,i.v=a.v,i.d=a.d,i}function s(a,i){var l=new n(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&o(u,l),c.state=function(){return o(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xorwow=s})(xB,typeof fI=="object"&&fI,typeof define=="function"&&define)});var wB=Ht((bB,dI)=>{(function(r,e,t){function n(a){var i=this;i.next=function(){var u=i.x,c=i.i,p,m,f;return p=u[c],p^=p>>>7,m=p^p<<24,p=u[c+1&7],m^=p^p>>>10,p=u[c+3&7],m^=p^p>>>3,p=u[c+4&7],m^=p^p<<7,p=u[c+7&7],p=p^p<<13,m^=p^p<<9,u[c]=m,i.i=c+1&7,m};function l(u,c){var p,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,p=0;p<c.length;++p)f[p&7]=f[p&7]<<15^c.charCodeAt(p)+f[p+1&7]<<13;for(;f.length<8;)f.push(0);for(p=0;p<8&&f[p]===0;++p);for(p==8?m=f[7]=-1:m=f[p],u.x=f,u.i=0,p=256;p>0;--p)u.next()}l(i,a)}function o(a,i){return i.x=a.x.slice(),i.i=a.i,i}function s(a,i){a==null&&(a=+new Date);var l=new n(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(u.x&&o(u,l),c.state=function(){return o(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xorshift7=s})(bB,typeof dI=="object"&&dI,typeof define=="function"&&define)});var kB=Ht((_B,hI)=>{(function(r,e,t){function n(a){var i=this;i.next=function(){var u=i.w,c=i.X,p=i.i,m,f;return i.w=u=u+1640531527|0,f=c[p+34&127],m=c[p=p+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[p]=f^m,i.i=p,f+(u^u>>>16)|0};function l(u,c){var p,m,f,d,h,g=[],y=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,y=Math.max(y,c.length)),f=0,d=-32;d<y;++d)c&&(m^=c.charCodeAt((d+32)%c.length)),d===0&&(h=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,d>=0&&(h=h+1640531527|0,p=g[d&127]^=m+h,f=p==0?f+1:0);for(f>=128&&(g[(c&&c.length||0)&127]=-1),f=127,d=4*128;d>0;--d)m=g[f+34&127],p=g[f=f+1&127],m^=m<<13,p^=p<<17,m^=m>>>15,p^=p>>>12,g[f]=m^p;u.w=h,u.X=g,u.i=f}l(i,a)}function o(a,i){return i.i=a.i,i.w=a.w,i.X=a.X.slice(),i}function s(a,i){a==null&&(a=+new Date);var l=new n(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(u.X&&o(u,l),c.state=function(){return o(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xor4096=s})(_B,typeof hI=="object"&&hI,typeof define=="function"&&define)});var CB=Ht((vB,gI)=>{(function(r,e,t){function n(a){var i=this,l="";i.next=function(){var c=i.b,p=i.c,m=i.d,f=i.a;return c=c<<25^c>>>7^p,p=p-m|0,m=m<<24^m>>>8^f,f=f-c|0,i.b=c=c<<20^c>>>12^p,i.c=p=p-m|0,i.d=m<<16^p>>>16^f,i.a=f-c|0},i.a=0,i.b=0,i.c=2654435769|0,i.d=1367130551,a===Math.floor(a)?(i.a=a/4294967296|0,i.b=a|0):l+=a;for(var u=0;u<l.length+20;u++)i.b^=l.charCodeAt(u)|0,i.next()}function o(a,i){return i.a=a.a,i.b=a.b,i.c=a.c,i.d=a.d,i}function s(a,i){var l=new n(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&o(u,l),c.state=function(){return o(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.tychei=s})(vB,typeof gI=="object"&&gI,typeof define=="function"&&define)});var NB=Ht((IB,yy)=>{(function(r,e,t){var n=256,o=6,s=52,a="random",i=t.pow(n,o),l=t.pow(2,s),u=l*2,c=n-1,p;function m(w,_,I){var E=[];_=_==!0?{entropy:!0}:_||{};var $=g(h(_.entropy?[w,b(e)]:w==null?y():w,3),E),D=new f(E),O=function(){for(var M=D.g(o),G=i,j=0;M<l;)M=(M+j)*n,G*=n,j=D.g(1);for(;M>=u;)M/=2,G/=2,j>>>=1;return(M+j)/G};return O.int32=function(){return D.g(4)|0},O.quick=function(){return D.g(4)/4294967296},O.double=O,g(b(D.S),e),(_.pass||I||function(M,G,j,U){return U&&(U.S&&d(U,D),M.state=function(){return d(D,{})}),j?(t[a]=M,G):M})(O,$,"global"in _?_.global:this==t,_.state)}function f(w){var _,I=w.length,E=this,$=0,D=E.i=E.j=0,O=E.S=[];for(I||(w=[I++]);$<n;)O[$]=$++;for($=0;$<n;$++)O[$]=O[D=c&D+w[$%I]+(_=O[$])],O[D]=_;(E.g=function(M){for(var G,j=0,U=E.i,H=E.j,q=E.S;M--;)G=q[U=c&U+1],j=j*n+q[c&(q[U]=q[H=c&H+G])+(q[H]=G)];return E.i=U,E.j=H,j})(n)}function d(w,_){return _.i=w.i,_.j=w.j,_.S=w.S.slice(),_}function h(w,_){var I=[],E=typeof w,$;if(_&&E=="object")for($ in w)try{I.push(h(w[$],_-1))}catch(D){}return I.length?I:E=="string"?w:w+"\0"}function g(w,_){for(var I=w+"",E,$=0;$<I.length;)_[c&$]=c&(E^=_[c&$]*19)+I.charCodeAt($++);return b(_)}function y(){try{var w;return p&&(w=p.randomBytes)?w=w(n):(w=new Uint8Array(n),(r.crypto||r.msCrypto).getRandomValues(w)),b(w)}catch(E){var _=r.navigator,I=_&&_.plugins;return[+new Date,r,I,r.screen,b(e)]}}function b(w){return String.fromCharCode.apply(0,w)}if(g(t.random(),e),typeof yy=="object"&&yy.exports){yy.exports=m;try{p=d_()}catch(w){}}else typeof define=="function"&&define.amd?define(function(){return m}):t["seed"+a]=m})(typeof self!="undefined"?self:IB,[],Math)});var xI=Ht((IGt,SB)=>{var nne=dB(),one=gB(),sne=yB(),ine=wB(),ane=kB(),lne=CB(),ec=NB();ec.alea=nne;ec.xor128=one;ec.xorwow=sne;ec.xorshift7=ine;ec.xor4096=ane;ec.tychei=lne;SB.exports=ec});var tV=Ht(()=>{});var ym={};We(ym,{bin:()=>KI,browser:()=>eN,default:()=>oG,dependencies:()=>QI,description:()=>BI,devDependencies:()=>ZI,jsdelivr:()=>jI,license:()=>YI,main:()=>GI,miniprogram:()=>qI,module:()=>WI,name:()=>LI,private:()=>VI,repository:()=>XI,scripts:()=>JI,types:()=>HI,unpkg:()=>UI,version:()=>zI});var LI="@tensorflow/tfjs",zI="3.4.0",BI="An open-source machine learning framework.",VI=!1,GI="dist/tf.node.js",WI="dist/index.js",jI="dist/tf.min.js",UI="dist/tf.min.js",HI="dist/index.d.ts",qI="dist/miniprogram",KI={"tfjs-custom-module":"dist/tools/custom_module/cli.js"},XI={type:"git",url:"https://github.com/tensorflow/tfjs.git"},YI="Apache-2.0",ZI={"@babel/core":"^7.9.0","@babel/polyfill":"^7.10.4","@babel/preset-env":"^7.9.5","@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@types/argparse":"^1.0.38","@types/jasmine":"2.8.7","@types/node":"~10.17.50","@types/shelljs":"^0.8.4","@types/yargs":"^15.0.7","clang-format":"~1.2.2",commander:"~2.14.1",jasmine:"3.1.0","jasmine-core":"~3.1.0",karma:"~6.3.2","karma-browserstack-launcher":"~1.6.0","karma-chrome-launcher":"~2.2.0","karma-firefox-launcher":"~1.1.0","karma-jasmine":"~1.1.1","karma-typescript":"~5.5.1","karma-typescript-es6-transform":"^5.5.1","npm-run-all":"~4.1.3",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-babel":"^4.4.0","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~4.2.2",shelljs:"~0.8.1","ts-node":"~8.8.2",tslint:"~5.11.0","tslint-no-circular-imports":"~0.5.0",typescript:"3.5.3",yalc:"1.0.0-pre.50"},JI={build:"tsc && yarn build-cli && yarn bundle","build-ci":"tsc && yarn build-cli && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-layers":"cd ../tfjs-layers && yarn && yarn build","build-layers-ci":"cd ../tfjs-layers && yarn && yarn build-ci","build-converter":"cd ../tfjs-converter && yarn && yarn build","build-converter-ci":"cd ../tfjs-converter && yarn && yarn build-ci","build-data":"cd ../tfjs-data && yarn && yarn build","build-data-ci":"cd ../tfjs-data && yarn && yarn build-ci","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-backend-webgl":"cd ../tfjs-backend-webgl && yarn && yarn build","build-backend-webgl-ci":"cd ../tfjs-backend-webgl && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-layers && yarn build-converter && yarn build-data && yarn build-backend-cpu && yarn build-backend-webgl","build-deps-ci":"yarn build-core-ci && yarn build-layers-ci && yarn build-converter-ci && yarn build-data-ci && yarn build-backend-cpu-ci && yarn build-backend-webgl-ci","build-cli":"tsc --project ./tools/custom_module/tsconfig.json && chmod +x ./dist/tools/custom_module/cli.js","run-custom-build":"ts-node -s ./tools/custom_module/cli.ts","build-npm":"./scripts/build-npm.sh","link-local":"yalc link","publish-local":"yarn build-npm && yalc push","publish-npm":"npm publish",lint:"tslint -p . -t verbose",test:"yarn && yarn build-deps && yarn build && karma start","test-dev":"karma start","test-tools":"ts-node --project ./tools/custom_module/tsconfig.json run_tools_tests.ts","test-ci":"./scripts/test-ci.sh"},QI={"@tensorflow/tfjs-backend-cpu":"3.4.0","@tensorflow/tfjs-backend-webgl":"3.4.0","@tensorflow/tfjs-converter":"3.4.0","@tensorflow/tfjs-core":"3.4.0","@tensorflow/tfjs-data":"3.4.0","@tensorflow/tfjs-layers":"3.4.0",argparse:"^1.0.10",chalk:"^4.1.0","core-js":"3","regenerator-runtime":"^0.13.5",yargs:"^16.0.3"},eN={"node-fetch":!1,util:!1,crypto:!1},oG={name:LI,version:zI,description:BI,private:VI,main:GI,module:WI,jsdelivr:jI,unpkg:UI,types:HI,miniprogram:qI,bin:KI,repository:XI,license:YI,devDependencies:ZI,scripts:JI,dependencies:QI,browser:eN};var bm={};We(bm,{browser:()=>yN,default:()=>sG,dependencies:()=>xN,description:()=>nN,devDependencies:()=>hN,engines:()=>mN,jsdelivr:()=>iN,"jsnext:main":()=>uN,license:()=>dN,main:()=>sN,miniprogram:()=>pN,module:()=>cN,name:()=>tN,private:()=>oN,repository:()=>fN,scripts:()=>gN,sideEffects:()=>bN,types:()=>lN,unpkg:()=>aN,version:()=>rN});var tN="@tensorflow/tfjs-core",rN="3.4.0",nN="Hardware-accelerated JavaScript library for machine intelligence",oN=!1,sN="dist/tf-core.node.js",iN="dist/tf-core.min.js",aN="dist/tf-core.min.js",lN="dist/index.d.ts",uN="dist/index.js",cN="dist/index.js",pN="dist/miniprogram",mN={yarn:">= 1.3.2"},fN={type:"git",url:"https://github.com/tensorflow/tfjs-core.git"},dN="Apache-2.0",hN={"@bazel/bazelisk":"^1.3.0","@bazel/typescript":"^0.27.8","@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"link:../tfjs-backend-cpu","@types/jasmine":"~3.0.0","@types/node":"~9.6.0","@types/node-fetch":"~2.1.2","clang-format":"~1.2.4",jasmine:"~3.1.0","jasmine-core":"~3.1.0",karma:"6.3.1","karma-browserstack-launcher":"~1.6.0","karma-chrome-launcher":"~2.2.0","karma-jasmine":"~1.1.0","karma-typescript":"~4.1.1","npm-run-all":"~4.1.3",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~5.3.0","rollup-plugin-visualizer":"~3.3.2",shelljs:"~0.8.3","ts-node":"~8.8.2",tslint:"~5.11.0","tslint-no-circular-imports":"~0.5.0",typescript:"3.5.3",yalc:"~1.0.0-pre.21",yargs:"~13.2.2"},gN={"build-ci":"./scripts/enumerate-tests.js --ci && tsc && yarn bundle-ci && yarn build-test-snippets",build:"node ./scripts/enumerate-tests.js && tsc && yarn bundle",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-npm":"./scripts/build-npm.sh","build-deps":"yarn build && yarn build-cpu-backend","build-cpu-backend":"cd ../tfjs-backend-cpu && yarn && yarn build","build-cpu-backend-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build:bazel":"bazelisk build //...","build-test-snippets":"yarn tsc --project ./scripts/test_snippets/tsconfig.json","format-all":"clang-format -i -style=Google --glob=src/**/*.ts","link-local":"yalc link","publish-local":"rimraf dist/ && yarn build && rollup -c && yalc push","publish-npm":"npm publish",lint:"tslint -p . -t verbose",coverage:"KARMA_COVERAGE=1 karma start --browsers='Chrome' --singleRun",test:"yarn && yarn build-deps && karma start","test-dev":"karma start","test-ci":"./scripts/test-ci.sh","test-webworker":"karma start --worker","run-browserstack":"karma start --browserstack","test-bundle-size":"./scripts/test-bundle-size.js","test-node":"rimraf dist/ && yarn build-deps && yarn build && ts-node --transpile-only --skip-ignore -P tsconfig.test.json dist/test_node.js","test-node-dev":"tsc && ts-node --transpile-only --skip-ignore -P tsconfig.test.json dist/test_node.js","test-node-ci":"ts-node --transpile-only -P tsconfig.test.json dist/test_node.js","test-async-backends":"rimraf dist/ && yarn build && ts-node --transpile-only -P tsconfig.test.json dist/test_async_backends.js","test-async-backends-ci":"ts-node --transpile-only -P tsconfig.test.json dist/test_async_backends.js","test-snippets":"yarn build && yarn build-cpu-backend && ts-node -P tsconfig.test.json ./scripts/test_snippets/test_snippets.ts","test-snippets-ci":"ts-node -P tsconfig.test.json ./scripts/test_snippets/test_snippets.ts"},xN={"@types/offscreencanvas":"~2019.3.0","@types/seedrandom":"2.4.27","@types/webgl-ext":"0.0.30","node-fetch":"~2.6.1",seedrandom:"2.4.3"},yN={"node-fetch":!1,util:!1,crypto:!1,worker_threads:!1},bN=["./dist/index.js","./dist/engine.js","./dist/tensor.js","./dist/base_side_effects.js","./dist/flags.js","./dist/platforms/*.js","./dist/register_all_gradients.js","./dist/public/chained_ops/*.js","./dist/io/*.js"],sG={name:tN,version:rN,description:nN,private:oN,main:sN,jsdelivr:iN,unpkg:aN,types:lN,"jsnext:main":uN,module:cN,miniprogram:pN,engines:mN,repository:fN,license:dN,devDependencies:hN,scripts:gN,dependencies:xN,browser:yN,sideEffects:bN};var wm={};We(wm,{browser:()=>PN,default:()=>iG,dependencies:()=>ON,description:()=>kN,devDependencies:()=>$N,jsdelivr:()=>IN,"jsnext:main":()=>TN,license:()=>DN,main:()=>CN,miniprogram:()=>EN,module:()=>AN,name:()=>wN,peerDependencies:()=>FN,private:()=>vN,scripts:()=>RN,types:()=>SN,unpkg:()=>NN,version:()=>_N});var wN="@tensorflow/tfjs-data",_N="3.4.0",kN="TensorFlow Data API in JavaScript",vN=!1,CN="dist/tf-data.node.js",IN="dist/tf-data.min.js",NN="dist/tf-data.min.js",SN="dist/index.d.ts",TN="dist/index.js",AN="dist/index.js",EN="dist/miniprogram",DN="Apache-2.0",$N={"@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"3.4.0","@tensorflow/tfjs-core":"3.4.0","@tensorflow/tfjs-layers":"3.4.0","@types/jasmine":"~2.5.53","@types/seedrandom":"^2.4.27","@types/utf8":"~2.1.6","clang-format":"~1.2.2","http-server":"~0.12.3",jasmine:"3.1.0","jasmine-core":"~3.1.0",karma:"~6.3.1","karma-chrome-launcher":"~2.2.0","karma-firefox-launcher":"~1.1.0","karma-jasmine":"~1.1.1","karma-typescript":"~5.5.1","karma-typescript-es6-transform":"^5.0.2",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~3.3.2","ts-node":"~7.0.0",tslint:"~6.1.3","tslint-no-circular-imports":"^0.7.0",typescript:"3.5.3",yalc:"^1.0.0-pre.50"},RN={build:"tsc && yarn bundle","build-ci":"tsc && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-layers":"cd ../tfjs-layers && yarn && yarn build","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-layers-ci":"cd ../tfjs-layers && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-layers && yarn build-backend-cpu","build-deps-ci":"yarn build-core-ci && yarn build-layers-ci && yarn build-backend-cpu-ci","build-npm":"./scripts/build-npm.sh","link-local":"yalc link","publish-local":"rimraf dist/ && yarn build-npm && yalc push","publish-npm":"npm publish",test:"yarn && yarn build-deps && yarn build && ts-node --transpile-only --project tsconfig.test.json src/test_node.ts","test-dev":"tsc && ts-node --transpile-only --project tsconfig.test.json src/test_node.ts","test-browsers":"karma start --browsers='Chrome,Firefox'","test-ci":"ts-node --transpile-only --skip-ignore -P tsconfig.test.json src/test_node.ts","test-snippets":"yarn && yarn build-deps && yarn build && ts-node --skip-ignore --project tsconfig.test.json ./scripts/test_snippets.ts","test-snippets-ci":"ts-node --skip-ignore --project tsconfig.test.json ./scripts/test_snippets.ts",lint:"tslint -p . -t verbose"},FN={"@tensorflow/tfjs-core":"3.4.0",seedrandom:"~2.4.3"},ON={"@types/node-fetch":"^2.1.2","node-fetch":"~2.6.1"},PN={fs:!1,"node-fetch":!1,string_decoder:!1,crypto:!1},iG={name:wN,version:_N,description:kN,private:vN,main:CN,jsdelivr:IN,unpkg:NN,types:SN,"jsnext:main":TN,module:AN,miniprogram:EN,license:DN,devDependencies:$N,scripts:RN,peerDependencies:FN,dependencies:ON,browser:PN};var _m={};We(_m,{default:()=>aG,description:()=>zN,devDependencies:()=>XN,jsdelivr:()=>HN,"jsnext:main":()=>jN,license:()=>BN,main:()=>GN,miniprogram:()=>KN,module:()=>UN,name:()=>MN,peerDependencies:()=>ZN,private:()=>VN,scripts:()=>YN,types:()=>WN,unpkg:()=>qN,version:()=>LN});var MN="@tensorflow/tfjs-layers",LN="3.4.0",zN="TensorFlow layers API in JavaScript",BN="Apache-2.0 AND MIT",VN=!1,GN="dist/tf-layers.node.js",WN="dist/index.d.ts",jN="dist/index.js",UN="dist/index.js",HN="dist/tf-layers.min.js",qN="dist/tf-layers.min.js",KN="dist/miniprogram",XN={"@babel/polyfill":"^7.8.7","@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"3.4.0","@tensorflow/tfjs-backend-webgl":"3.4.0","@tensorflow/tfjs-core":"3.4.0","@types/jasmine":"~2.5.53","clang-format":"~1.2.2","http-server":"~0.12.3",jasmine:"~3.1.0","jasmine-core":"~3.1.0",karma:"~6.3.1","karma-browserstack-launcher":"~1.6.0","karma-chrome-launcher":"~2.2.0","karma-firefox-launcher":"~1.1.0","karma-jasmine":"~1.1.1","karma-typescript":"~5.5.1","karma-typescript-es6-transform":"^5.0.2",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~3.3.2","ts-node":"~8.8.2",tslint:"~6.1.3","tslint-no-circular-imports":"^0.7.0",typescript:"3.5.3",yalc:"~1.0.0-pre.50"},YN={prep:"yarn install && yarn build-ci",build:"tsc && yarn bundle","build-ci":"tsc && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-backend-webgl":"cd ../tfjs-backend-webgl && yarn && yarn build","build-backend-webgl-ci":"cd ../tfjs-backend-webgl && yarn && yarn build-ci","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-backend-cpu && yarn build-backend-webgl","build-deps-ci":"yarn build-core-ci && yarn build-backend-cpu-ci && yarn build-backend-webgl-ci","build-npm":"./scripts/build-npm.sh",format:"./tools/clang_format_ts.sh","link-local":"yalc link","publish-local":"yarn build-npm && yalc push","publish-npm":"npm publish",test:"yarn && yarn build-deps && karma start","test-dev":"karma start","test-ci":"./scripts/test-ci.sh","test-snippets":"yarn && yarn build-deps && yarn build && ts-node --skip-ignore -s ./scripts/test_snippets.ts","test-snippets-ci":"ts-node --skip-ignore -s ./scripts/test_snippets.ts","run-browserstack":"karma start --browsers='bs_chrome_mac' --singleRun --reporters='dots,karma-typescript'",lint:"tslint -p . -t verbose"},ZN={"@tensorflow/tfjs-core":"3.4.0"},aG={name:MN,version:LN,description:zN,license:BN,private:VN,main:GN,types:WN,"jsnext:main":jN,module:UN,jsdelivr:HN,unpkg:qN,miniprogram:KN,devDependencies:XN,scripts:YN,peerDependencies:ZN};var km={};We(km,{default:()=>lG,description:()=>eS,devDependencies:()=>pS,jsdelivr:()=>iS,"jsnext:main":()=>rS,license:()=>uS,main:()=>tS,miniprogram:()=>aS,module:()=>nS,name:()=>JN,peerDependencies:()=>cS,repository:()=>lS,scripts:()=>mS,types:()=>oS,unpkg:()=>sS,version:()=>QN});var JN="@tensorflow/tfjs-converter",QN="3.4.0",eS="Tensorflow model converter for javascript",tS="dist/tf-converter.node.js",rS="dist/index.js",nS="dist/index.js",oS="dist/index.d.ts",sS="dist/tf-converter.min.js",iS="dist/tf-converter.min.js",aS="dist/miniprogram",lS={type:"git",url:"https://github.com/tensorflow/tfjs-converter.git"},uS="Apache-2.0",cS={"@tensorflow/tfjs-core":"3.4.0"},pS={"@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-replace":"^2.3.3","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"3.4.0","@tensorflow/tfjs-core":"3.4.0","@types/argparse":"^1.0.38","@types/deep-equal":"^1.0.1","@types/jasmine":"~2.8.6","@types/long":"~3.0.32","@types/node-fetch":"1.6.9",ajv:"~6.3.0",argparse:"^1.0.10","babel-core":"~6.26.3","babel-plugin-external-helpers":"~6.22.0","babel-preset-env":"~1.7.0","clang-format":"~1.2.2",copyfiles:"~1.2.0","deep-equal":"^1.0.1","jasmine-core":"~3.5.0","node-fetch":"~2.6.1",opn:"~5.1.0",protobufjs:"~6.8.6",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~3.3.2","ts-morph":"^7.1.3","ts-node":"~8.8.2",tslint:"~6.1.3","tslint-no-circular-imports":"~0.7.0",typescript:"3.5.3",yalc:"~1.0.0-pre.50"},mS={build:"yarn gen-json --test && yarn gen-kernel2ops && tsc && yarn bundle","build-ci":"yarn gen-json --test && yarn gen-kernel2ops && tsc && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-backend-cpu","build-deps-ci":"yarn build-core-ci && yarn build-backend-cpu","build-npm":"./scripts/build-npm.sh","link-local":"yalc link","publish-local":"yarn build-npm && yalc push","publish-npm":"npm publish",test:"yarn && yarn build-deps && yarn build && yarn gen-json --test && yarn gen-kernel2ops && ts-node --transpile-only -P tsconfig.test.json src/run_tests.ts","test-ci":"ts-node --transpile-only --skip-ignore -P tsconfig.test.json src/run_tests.ts","test-dev":"tsc && ts-node --transpile-only -P tsconfig.test.json src/run_tests.ts","test-snippets":"yarn && yarn build-deps && yarn build && ts-node --skip-ignore -s ./scripts/test_snippets.ts","test-snippets-ci":"ts-node --skip-ignore -s ./scripts/test_snippets.ts",lint:"tslint -p . -t verbose","make-version":"sh -c ./scripts/make-version","gen-doc":"ts-node -s ./scripts/gen_doc.ts","gen-json":"ts-node -s ./scripts/gen_json.ts","model-summary":"ts-node -s ./tools/model_summary.ts",pb2json:"ts-node -s ./tools/pb2json_converter.ts","build-pip-package":"yarn gen-json --test && cd python && ./build-pip-package.sh --test /tmp/tfjs-pips","run-python-tests":"yarn gen-json --test && cd python && ./run-python-tests.sh","gen-kernel2ops":"ts-node -s scripts/kernels_to_ops.ts --out metadata/kernel2op.json"},lG={name:JN,version:QN,description:eS,main:tS,"jsnext:main":rS,module:nS,types:oS,unpkg:sS,jsdelivr:iS,miniprogram:aS,repository:lS,license:uS,peerDependencies:cS,devDependencies:pS,scripts:mS};var uG=1e-7,cG=1e-4,qa=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},Os=class{refCount(e){return Hn("refCount")}incRef(e){return Hn("incRef")}timerAvailable(){return!0}time(e){return Hn("time")}read(e){return Hn("read")}readSync(e){return Hn("readSync")}numDataIds(){return Hn("numDataIds")}disposeData(e,t){return Hn("disposeData")}write(e,t,n){return Hn("write")}move(e,t,n,o,s){return Hn("move")}memory(){return Hn("memory")}floatPrecision(){return Hn("floatPrecision")}epsilon(){return this.floatPrecision()===32?uG:cG}dispose(){return Hn("dispose")}};function Hn(r){throw new Error(`'${r}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function fS(r){let e=r.length,t=0,n=0;for(;e>0;)n=Math.random()*e|0,e--,t=r[e],r[e]=r[n],r[n]=t}function pG(r,e){if(r.length!==e.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${r.length}Second array length was ${e.length}`);let t=r.length,n,o,s=0;for(;t>0;)s=Math.random()*t|0,t--,n=r[t],o=e[t],r[t]=r[s],e[t]=e[s],r[s]=n,e[s]=o}function mc(r,e,t){return Math.max(r,Math.min(e,t))}function mG(r){return r%2==0?r:r+1}function fG(r){let e=0;for(let t=0;t<r.length;t++)e+=r[t];return e}function dG(r,e){let t=Math.random();return e*t+(1-t)*r}function hG(r,e){let t=0;for(let n=0;n<r.length;n++){let o=Number(r[n])-Number(e[n]);t+=o*o}return t}function T(r,e){if(!r)throw new Error(typeof e=="string"?e:e())}function At(r,e,t=""){T(Kr(r,e),()=>t+` Shapes ${r} and ${e} must match`)}function Fn(r){T(r!=null,()=>"The input to the tensor constructor must be a non-null value.")}function yo(r,e=[],t=!1){if(e==null&&(e=[]),Array.isArray(r)||ir(r)&&!t)for(let n=0;n<r.length;++n)yo(r[n],e,t);else e.push(r);return e}function nt(r){if(r.length===0)return 1;let e=r[0];for(let t=1;t<r.length;t++)e*=r[t];return e}function gG(r){return r.length===0}function Kr(r,e){if(r===e)return!0;if(r==null||e==null||r.length!==e.length)return!1;for(let t=0;t<r.length;t++)if(r[t]!==e[t])return!1;return!0}function ot(r){return r%1==0}function xG(r){if(Math.tanh!=null)return Math.tanh(r);if(r===Infinity)return 1;if(r===-Infinity)return-1;{let e=Math.exp(2*r);return(e-1)/(e+1)}}function yG(r){let e=Math.ceil(Math.sqrt(r));return[e,Math.ceil(r/e)]}function bG(r){let e=new Uint32Array(r);for(let t=0;t<r;++t)e[t]=t;return fS(e),e}function Gl(r,e){return e<=r.length?r:r+" ".repeat(e-r.length)}function wG(r,e=n=>0,t){return new Promise((n,o)=>{let s=0,a=()=>{if(r()){n();return}s++;let i=e(s);if(t!=null&&s>=t){o();return}setTimeout(a,i)};a()})}function _G(r,e){let t=1,n=-1;for(let s=0;s<r.length;++s)if(r[s]>=0)t*=r[s];else if(r[s]===-1){if(n!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${n} and dim ${s}`);n=s}else if(r[s]<0)throw Error(`Shapes can not be < 0. Found ${r[s]} at dim ${s}`);if(n===-1){if(e>0&&e!==t)throw Error(`Size(${e}) must match the product of shape ${r}`);return r}if(t===0)throw Error(`Cannot infer the missing size in [${r}] when there are 0 elements`);if(e%t!=0)throw Error(`The implicit shape can't be a fractional number. Got ${e} / ${t}`);let o=r.slice();return o[n]=e/t,o}function tr(r,e){let t=e.length;return r=r==null?e.map((n,o)=>o):[].concat(r),T(r.every(n=>n>=-t&&n<t),()=>`All values in axis param must be in range [-${t}, ${t}) but got axis ${r}`),T(r.every(n=>ot(n)),()=>`All values in axis param must be integers but got axis ${r}`),r.map(n=>n<0?t+n:n)}function qb(r,e){let t=[],n=[],o=e!=null&&Array.isArray(e)&&e.length===0,s=e==null||o?null:tr(e,r).sort(),a=0;for(let i=0;i<r.length;++i){if(s!=null){if(s[a]===i&&r[i]!==1)throw new Error(`Can't squeeze axis ${i} since its dim '${r[i]}' is not 1`);(s[a]==null||s[a]>i)&&r[i]===1&&(t.push(r[i]),n.push(i)),s[a]<=i&&a++}r[i]!==1&&(t.push(r[i]),n.push(i))}return{newShape:t,keptDims:n}}function Kb(r,e){let t=null;if(r==null||r==="float32")t=new Float32Array(e);else if(r==="int32")t=new Int32Array(e);else if(r==="bool")t=new Uint8Array(e);else throw new Error(`Unknown data type ${r}`);return t}function Xb(r,e){let t=null;if(r==null||r==="float32")t=new Float32Array(e);else if(r==="int32")t=new Int32Array(e);else if(r==="bool")t=new Uint8Array(e);else if(r==="string")t=new Array(e);else throw new Error(`Unknown data type ${r}`);return t}function Yb(r,e){for(let t=0;t<r.length;t++){let n=r[t];if(isNaN(n)||!isFinite(n))throw Error(`A tensor of type ${e} being uploaded contains ${n}.`)}}function Zb(r){return r==="bool"||r==="complex64"||r==="float32"||r==="int32"||r==="string"}function kG(r,e){return!(e==="complex64"||e==="float32"&&r!=="complex64"||e==="int32"&&r!=="float32"&&r!=="complex64"||e==="bool"&&r==="bool")}function ir(r){return r instanceof Float32Array||r instanceof Int32Array||r instanceof Uint8Array}function Xh(r){if(r==="float32"||r==="int32")return 4;if(r==="complex64")return 8;if(r==="bool")return 1;throw new Error(`Unknown dtype ${r}`)}function Jb(r){if(r==null)return 0;let e=0;return r.forEach(t=>e+=t.length),e}function bo(r){return typeof r=="string"||r instanceof String}function dS(r){return typeof r=="boolean"}function hS(r){return typeof r=="number"}function fc(r){return Array.isArray(r)?fc(r[0]):r instanceof Float32Array?"float32":r instanceof Int32Array||r instanceof Uint8Array?"int32":hS(r)?"float32":bo(r)?"string":dS(r)?"bool":"float32"}function Ps(r){return!!(r&&r.constructor&&r.call&&r.apply)}function dc(r,e){for(let t=e;t<r;++t)if(r%t==0)return t;return r}function Ms(r){let e=r.length;if(e<2)return[];let t=new Array(e-1);t[e-2]=r[e-1];for(let n=e-3;n>=0;--n)t[n]=t[n+1]*r[n+1];return t}function gS(r,e,t,n=!1){let o=new Array;if(e.length===1){let s=e[0]*(n?2:1);for(let a=0;a<s;a++)o[a]=t[r+a]}else{let s=e[0],a=e.slice(1),i=a.reduce((l,u)=>l*u)*(n?2:1);for(let l=0;l<s;l++)o[l]=gS(r+l*i,a,t,n)}return o}function Wl(r,e,t=!1){if(r.length===0)return e[0];let n=r.reduce((o,s)=>o*s)*(t?2:1);if(n===0)return[];if(n!==e.length)throw new Error(`[${r}] does not match the input size ${e.length}${t?" for a complex tensor":""}.`);return gS(0,r,e,t)}function vm(r,e){let t=hc(r,e);for(let n=0;n<t.length;n++)t[n]=1;return t}function hc(r,e){if(e==null||e==="float32"||e==="complex64")return new Float32Array(r);if(e==="int32")return new Int32Array(r);if(e==="bool")return new Uint8Array(r);throw new Error(`Unknown data type ${e}`)}function vG(r,e){let t=r.reduce((n,o)=>n*o,1);if(e==null||e==="float32")return Wl(r,new Float32Array(t));if(e==="int32")return Wl(r,new Int32Array(t));if(e==="bool")return Wl(r,new Uint8Array(t));throw new Error(`Unknown data type ${e}`)}function Cm(r){r.forEach(e=>{T(Number.isInteger(e)&&e>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${r}].`)})}function CG(r,e,t){if(e===0)return 0;if(e===1)return r[0];let n=r[r.length-1];for(let o=0;o<r.length-1;++o)n+=t[o]*r[o];return n}function IG(r,e,t){if(e===0)return[];if(e===1)return[r];let n=new Array(e);for(let o=0;o<n.length-1;++o)n[o]=Math.floor(r/t[o]),r-=n[o]*t[o];return n[n.length-1]=r,n}function Im(r){return r&&r.then&&typeof r.then=="function"}var xS="tfjsflags",Yh=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=NG,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let o=this.urlFlags[e];console.warn(`Setting feature override from URL ${e}: ${o}.`),this.set(e,o)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(Im(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);xS in e&&e[xS].split(",").forEach(n=>{let[o,s]=n.split(":");this.urlFlags[o]=SG(o,s)})}};function NG(r){let e={};return r.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(t,...n)=>(TG(e,n[0],n[1]),n.join("="))),e}function TG(r,e,t){r[decodeURIComponent(e)]=decodeURIComponent(t||"")}function SG(r,e){if(e=e.toLowerCase(),e==="true"||e==="false")return e==="true";if(`${+e}`===e)return+e;throw new Error(`Could not parse value flag value ${e} for flag ${r}.`)}function W(){return Qb}var Qb=null;function yS(r){Qb=r}var ew;function tw(){if(ew==null){let r;if(typeof window!="undefined")r=window;else if(typeof global!="undefined")r=global;else if(typeof process!="undefined")r=process;else if(typeof self!="undefined")r=self;else throw new Error("Could not find a global object");ew=r}return ew}function AG(){let r=tw();return r._tfGlobals==null&&(r._tfGlobals=new Map),r._tfGlobals}function Nm(r,e){let t=AG();if(t.has(r))return t.get(r);{let n=e();return t.set(r,n),t.get(r)}}var Ls="Abs",_i="Acos",ki="Acosh",On="Add",wo="AddN",vi="All",Ci="Any",_o="ArgMax",Ka="ArgMin",Ii="Asin",Ni="Asinh",Si="Atan",Ti="Atanh",Ai="Atan2",ko="AvgPool",gc="AvgPoolGrad",Xa="AvgPool3D",xc="AvgPool3DGrad",vo="BatchMatMul",Ya="BatchToSpaceND",yc="Bincount",bS="BroadcastTo",qn="Cast",Co="Ceil",Kn="ClipByValue",bc="Complex",Za="ComplexAbs",zs="Concat",Io="Conv2D",wc="Conv2DBackpropFilter",No="Conv2DBackpropInput",Ja="Conv3D",_c="Conv3DBackpropFilterV2",kc="Conv3DBackpropInputV2",So="Cos",Ei="Cosh",To="Cumsum",Di="CropAndResize",vc="DenseBincount",$i="DepthToSpace",Ao="DepthwiseConv2dNative",Cc="DepthwiseConv2dNativeBackpropFilter",Ic="DepthwiseConv2dNativeBackpropInput",Nc="Diag",Qa="Dilation2D",Sm="Dilation2DBackpropInput",Tm="Dilation2DBackpropFilter",Eo="RealDiv",Sc="Einsum",Ri="Elu",Tc="EluGrad",Fi="Erf",Oi="Equal",Do="Exp",Bs="ExpandDims",Pi="Expm1",Ac="FFT",el="Fill",Mi="FlipLeftRight",$o="Floor",Ro="FloorDiv",Fo="FusedBatchNorm",Vs="GatherV2",Li="GatherNd",zi="Greater",Oo="GreaterEqual",Xn="Identity",Ec="IFFT",Dc="Imag",Bi="IsFinite",Vi="IsInf",Gi="IsNan",Po="LeakyRelu",Wi="Less",ji="LessEqual",$c="LinSpace",Mo="Log",Ui="Log1p",Hi="LogicalAnd",jl="LogicalNot",Ul="LogicalOr",wS="LogSoftmax",tl="LRN",Rc="LRNGrad",Lo="Max",zo="Maximum",Bo="MaxPool",Fc="MaxPoolGrad",rl="MaxPool3D",Oc="MaxPool3DGrad",Pc="MaxPoolWithArgmax",Vo="Mean",Go="Min",Wo="Minimum",jo="MirrorPad",qi="Mod",Mc="Multinomial",Uo="Multiply",Gs="Neg",Ki="NotEqual",Xi="NonMaxSuppressionV3",Yi="NonMaxSuppressionV4",Zi="NonMaxSuppressionV5",Ws="OnesLike",Ho="OneHot",js="Pack",qo="PadV2",_ne="Pool",Ko="Pow",Xo="Prelu",Ji="Prod",nl="Range",Lc="Real",Qi="Reciprocal",Yo="Relu",Us="Reshape",ol="ResizeNearestNeighbor",zc="ResizeNearestNeighborGrad",Zo="ResizeBilinear",Bc="ResizeBilinearGrad",Jo="Relu6",Qo="Reverse",es="Round",ts="Rsqrt",ea="ScatterNd",Hs="Select",ta="Selu",qs="Slice",rs="Sin",ra="Sinh",na="Sign",ns="Sigmoid",oa="Softplus",os="Sqrt",ss="Sum",sl="SpaceToBatchND",Ks="SplitV",is="Softmax",as="SquaredDifference",il="Square",ls="Sub",Vc="SparseToDense",sa="StridedSlice",us="Tan",cs="Tanh",Pn="Tile",ia="TopK",Gc="Transform",ps="Transpose",Wc="Unique",Xs="Unpack",al="UnsortedSegmentSum",Ys="ZerosLike",Yn="Step",Am="FromPixels",aa="RotateWithOffset",Zs="_FusedMatMul",Js="FusedConv2D",Qs="FusedDepthwiseConv2D";var jc=Nm("kernelRegistry",()=>new Map),Em=Nm("gradRegistry",()=>new Map);function Dm(r,e){let t=rw(r,e);return jc.get(t)}function nw(r){return Em.get(r)}function Zh(r){let e=jc.entries(),t=[];for(;;){let{done:n,value:o}=e.next();if(n)break;let[s,a]=o,[i]=s.split("_");i===r&&t.push(a)}return t}function Hl(r){let{kernelName:e,backendName:t}=r,n=rw(e,t);jc.has(n)&&console.warn(`The kernel '${e}' for backend '${t}' is already registered`),jc.set(n,r)}function _S(r){let{kernelName:e}=r;Em.has(e)&&W().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${e}'`),Em.set(e,r)}function Ine(r,e){let t=rw(r,e);if(!jc.has(t))throw new Error(`The kernel '${r}' for backend '${e}' is not registered`);jc.delete(t)}function Nne(r){if(!Em.has(r))throw new Error(`The gradient '${r}' for backend is not registered`);Em.delete(r)}function Sne(r,e){Zh(r).forEach(n=>{let o=Object.assign({},n,{backendName:e});Hl(o)})}function rw(r,e){return`${e}_${r}`}var x={};We(x,{arraysEqual:()=>Kr,assert:()=>T,assertNonNegativeIntegerDimensions:()=>Cm,assertNonNull:()=>Fn,assertShapesMatch:()=>At,bytesFromStringArray:()=>Jb,bytesPerElement:()=>Xh,checkConversionForErrors:()=>Yb,clamp:()=>mc,computeStrides:()=>Ms,createScalarValue:()=>EG,createShuffledIndices:()=>bG,decodeString:()=>Hc,distSquared:()=>hG,encodeString:()=>ll,fetch:()=>$G,flatten:()=>yo,getArrayFromDType:()=>Xb,getTypedArrayFromDType:()=>Kb,hasEncodingLoss:()=>kG,indexToLoc:()=>IG,inferDtype:()=>fc,inferFromImplicitShape:()=>_G,isBoolean:()=>dS,isFunction:()=>Ps,isInt:()=>ot,isNumber:()=>hS,isPromise:()=>Im,isScalarShape:()=>gG,isString:()=>bo,isTypedArray:()=>ir,isValidDtype:()=>Zb,locToIndex:()=>CG,makeOnesTypedArray:()=>vm,makeZerosNestedTypedArray:()=>vG,makeZerosTypedArray:()=>hc,nearestDivisor:()=>dc,nearestLargerEven:()=>mG,now:()=>ql,parseAxisParam:()=>tr,randUniform:()=>dG,repeatedTry:()=>wG,rightPad:()=>Gl,shuffle:()=>fS,shuffleCombo:()=>pG,sizeFromShape:()=>nt,sizeToSquarishShape:()=>yG,squeezeShape:()=>qb,sum:()=>fG,tanh:()=>xG,toNestedArray:()=>Wl,toTypedArray:()=>Uc});function EG(r,e){return e==="string"?ll(r):Uc([r],e)}function DG(r,e){return r instanceof Float32Array&&e==="float32"||r instanceof Int32Array&&e==="int32"||r instanceof Uint8Array&&e==="bool"}function Uc(r,e){if(e==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(r)&&(r=yo(r)),W().getBool("DEBUG")&&Yb(r,e),DG(r,e))return r;if(e==null||e==="float32"||e==="complex64")return new Float32Array(r);if(e==="int32")return new Int32Array(r);if(e==="bool"){let t=new Uint8Array(r.length);for(let n=0;n<t.length;++n)Math.round(r[n])!==0&&(t[n]=1);return t}else throw new Error(`Unknown data type ${e}`)}function ql(){return W().platform.now()}function $G(r,e){return W().platform.fetch(r,e)}function ll(r,e="utf-8"){return e=e||"utf-8",W().platform.encode(r,e)}function Hc(r,e="utf-8"){return e=e||"utf-8",W().platform.decode(r,e)}var ow=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new kS)}profileKernel(e,t,n){let o,s=()=>{o=n()},a,i=ql();if(this.backendTimer.timerAvailable())a=this.backendTimer.time(s);else{s();for(let u of o)u.dataSync();a=Promise.resolve({kernelMs:ql()-i})}if(W().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let u=0;u<o.length;u++){let c=o[u];c.data().then(p=>{RG(p,c.dtype,e)})}return{kernelName:e,outputs:o,inputs:t,timeMs:a.then(u=>u.kernelMs),extraInfo:a.then(u=>u.getExtraProfileInfo!=null?u.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:o,inputs:s,extraInfo:a}=e;n.forEach(i=>{Promise.all([i.data(),o,a]).then(l=>{this.logger.logKernelProfile(t,i,l[0],l[1],s,l[2])})})}};function RG(r,e,t){if(e!=="float32")return!1;for(let n=0;n<r.length;n++){let o=r[n];if(isNaN(o)||!isFinite(o))return console.warn(`Found ${o} in the result of '${t}'`),!0}return!1}var kS=class{logKernelProfile(e,t,n,o,s,a){let i=typeof o=="number"?Gl(`${o}ms`,9):o.error,l=Gl(e,25),u=t.rank,c=t.size,p=Gl(t.shape.toString(),14),m="";for(let f in s){let d=s[f];if(d!=null){let h=d.shape||t.shape,g=h.length;m+=`${f}: ${g}D ${g>0?h:""} `}}console.log(`%c${l} %c${i} %c${u}D ${p} %c${c} %c${m} %c${a}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function vS(r,e,t){let n={},o={};for(let l=0;l<e.length;l++)n[e[l].id]=!0;for(let l=0;l<r.length;l++){let u=r[l],c=u.inputs;for(let p in c){let m=c[p],f=!1;for(let d=0;d<e.length;d++)if(n[m.id]){u.outputs.forEach(h=>n[h.id]=!0),f=!0,o[u.id]=!0;break}if(f)break}}let s={};s[t.id]=!0;let a={};for(let l=r.length-1;l>=0;l--){let u=r[l],c=u.inputs;for(let p=0;p<u.outputs.length;p++)if(s[u.outputs[p].id]){for(let m in c)s[c[m].id]=!0,a[u.id]=!0;break}}let i=[];for(let l=0;l<r.length;l++){let u=r[l];if(o[u.id]&&a[u.id]){let c={};for(let m in u.inputs){let f=u.inputs[m];n[f.id]&&(c[m]=f)}let p=Object.assign({},u);p.inputs=c,p.outputs=u.outputs,i.push(p)}}return i}function CS(r,e,t,n){for(let o=e.length-1;o>=0;o--){let s=e[o],a=[];if(s.outputs.forEach(l=>{let u=r[l.id];u!=null?a.push(u):a.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let i=s.gradient(a);for(let l in s.inputs){if(!(l in i))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(i)}.`);let u=t(()=>i[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let c=s.inputs[l];if(!Kr(u.shape,c.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${c.shape}'`);if(r[c.id]==null)r[c.id]=u;else{let p=r[c.id];r[c.id]=n(p,u),p.dispose()}}}}var IS=20,$m=3,sw=7;function NS(r,e,t,n){let o=Ms(e),s=FG(r,e,t,o),a=e.length,i=Jh(r,e,t,o,s),l=["Tensor"];return n&&(l.push(` dtype: ${t}`),l.push(` rank: ${a}`),l.push(` shape: [${e}]`),l.push(" values:")),l.push(i.map(u=>" "+u).join(`
|
|
`)),l.join(`
|
|
`)}function FG(r,e,t,n){let o=nt(e),s=n[n.length-1],a=new Array(s).fill(0),i=e.length,l=t==="complex64"?Fm(r):r;if(i>1)for(let u=0;u<o/s;u++){let c=u*s;for(let p=0;p<s;p++)a[p]=Math.max(a[p],Rm(l[c+p],0,t).length)}return a}function Rm(r,e,t){let n;return Array.isArray(r)?n=`${parseFloat(r[0].toFixed(sw))} + ${parseFloat(r[1].toFixed(sw))}j`:bo(r)?n=`'${r}'`:t==="bool"?n=SS(r):n=parseFloat(r.toFixed(sw)).toString(),Gl(n,e)}function SS(r){return r===0?"false":"true"}function Jh(r,e,t,n,o,s=!0){let a=t==="complex64"?2:1,i=e[0],l=e.length;if(l===0){if(t==="complex64"){let h=Fm(r);return[Rm(h[0],0,t)]}return t==="bool"?[SS(r[0])]:[r[0].toString()]}if(l===1){if(i>IS){let g=$m*a,y=Array.from(r.slice(0,g)),b=Array.from(r.slice((i-$m)*a,i*a));return t==="complex64"&&(y=Fm(y),b=Fm(b)),["["+y.map((w,_)=>Rm(w,o[_],t)).join(", ")+", ..., "+b.map((w,_)=>Rm(w,o[i-$m+_],t)).join(", ")+"]"]}let h=t==="complex64"?Fm(r):Array.from(r);return["["+h.map((g,y)=>Rm(g,o[y],t)).join(", ")+"]"]}let u=e.slice(1),c=n.slice(1),p=n[0]*a,m=[];if(i>IS){for(let h=0;h<$m;h++){let g=h*p,y=g+p;m.push(...Jh(r.slice(g,y),u,t,c,o,!1))}m.push("...");for(let h=i-$m;h<i;h++){let g=h*p,y=g+p;m.push(...Jh(r.slice(g,y),u,t,c,o,h===i-1))}}else for(let h=0;h<i;h++){let g=h*p,y=g+p;m.push(...Jh(r.slice(g,y),u,t,c,o,h===i-1))}let f=l===2?",":"";m[0]="["+m[0]+f;for(let h=1;h<m.length-1;h++)m[h]=" "+m[h]+f;let d=`,
|
|
`;for(let h=2;h<l;h++)d+=`
|
|
`;return m[m.length-1]=" "+m[m.length-1]+"]"+(s?"":d),m}function Fm(r){let e=[];for(let t=0;t<r.length;t+=2)e.push([r[t],r[t+1]]);return e}var ut=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=nt(e),n!=null){let o=n.length;T(o===this.size,()=>`Length of values '${o}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||Xb(t,this.size),this.strides=Ms(e)}set(e,...t){t.length===0&&(t=[0]),T(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let o of e){if(o<0||o>=this.shape[t]){let s=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(s)}t++}let n=e[e.length-1];for(let o=0;o<e.length-1;++o)n+=this.strides[o]*e[o];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return ei().makeTensor(this.values,this.shape,this.dtype)}},ei=null,qc=null,OG=null;function TS(r){ei=r}function AS(r){qc=r}function ES(r){OG=r}var Oe=class{constructor(e,t,n,o){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=nt(e),this.strides=Ms(e),this.dataId=n,this.id=o,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return qc.buffer(this.shape,this.dtype,e)}bufferSync(){return qc.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return Wl(this.shape,e,this.dtype==="complex64")}arraySync(){return Wl(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=ei().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>Hc(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=ei().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Hc(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await ei().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(ei().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return qc.print(this,e)}clone(){return this.throwIfDisposed(),qc.clone(this)}toString(e=!1){let t=this.dataSync();return NS(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),qc.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),ei().makeVariable(this,e,t,n)}};Object.defineProperty(Oe,Symbol.hasInstance,{value:r=>!!r&&r.data!=null&&r.dataSync!=null&&r.throwIfDisposed!=null});function F(){return Nm("Tensor",()=>Oe)}F();var ul=class extends Oe{constructor(e,t,n,o){super(e.shape,e.dtype,e.dataId,o);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!Kr(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);ei().disposeTensor(this),this.dataId=e.dataId,ei().incRef(this,null)}dispose(){ei().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(ul,Symbol.hasInstance,{value:r=>r instanceof Oe&&r.assign!=null&&r.assign instanceof Function});var Zn={};We(Zn,{assertTypesMatch:()=>pw,getTensorsInContainer:()=>Om,isTensorInList:()=>MG,makeTypesMatch:()=>je});var iw;(function(r){r.R0="R0",r.R1="R1",r.R2="R2",r.R3="R3",r.R4="R4",r.R5="R5",r.R6="R6"})(iw||(iw={}));var aw;(function(r){r.float32="float32",r.int32="int32",r.bool="int32",r.complex64="complex64"})(aw||(aw={}));var lw;(function(r){r.float32="float32",r.int32="int32",r.bool="bool",r.complex64="complex64"})(lw||(lw={}));var uw;(function(r){r.float32="float32",r.int32="float32",r.bool="float32",r.complex64="complex64"})(uw||(uw={}));var cw;(function(r){r.float32="complex64",r.int32="complex64",r.bool="complex64",r.complex64="complex64"})(cw||(cw={}));var PG={float32:uw,int32:aw,bool:lw,complex64:cw};function ar(r,e){if(r==="string"||e==="string"){if(r==="string"&&e==="string")return"string";throw new Error(`Can not upcast ${r} with ${e}`)}return PG[r][e]}function Kl(r){return ar(r,"int32")}function je(r,e){if(r.dtype===e.dtype)return[r,e];let t=ar(r.dtype,e.dtype);return[r.cast(t),e.cast(t)]}function pw(r,e){T(r.dtype===e.dtype,()=>`The dtypes of the first(${r.dtype}) and second(${e.dtype}) input must match`)}function MG(r,e){return e.some(t=>t.id===r.id)}function Om(r){let e=[],t=new Set;return DS(r,e,t),e}function DS(r,e,t){if(r==null)return;if(r instanceof Oe){e.push(r);return}if(!LG(r))return;let n=r;for(let o in n){let s=n[o];t.has(s)||(t.add(s),DS(s,e,t))}}function LG(r){return Array.isArray(r)||typeof r=="object"}function mw(r){return r.kernelName!=null}var fw=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Xl=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new fw}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(console.warn(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new ow(this.backendInstance),!0}setupRegisteredKernels(){Zh(this.backendName).forEach(t=>{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){Zh(e).forEach(n=>{n.disposeFunc!=null&&n.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof Os)&&typeof n.then=="function"){let o=++this.pendingBackendInitId,s=n.then(a=>o<this.pendingBackendInitId?!1:(this.registry[e]=a,this.pendingBackendInit=null,!0)).catch(a=>(o<this.pendingBackendInitId||(this.pendingBackendInit=null,console.warn(`Initialization of backend ${e} failed`),console.warn(a.stack||a.message)),!1));return this.pendingBackendInit=s,{success:s,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return console.warn(`Initialization of backend ${e} failed`),console.warn(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:o,asyncInit:s}=this.initializeBackend(n);if(s||o)return{name:n,asyncInit:s}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),o=n.backend,s=this.readSync(t),a=o.refCount(t);o.disposeData(t,!0),n.backend=e,e.move(t,s,n.shape,n.dtype,a),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let o;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(o),()=>(o=t(),o instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),o))}scopedRun(e,t,n){e();try{let o=n();return t(),o}catch(o){throw t(),o}}nextTensorId(){return Xl.nextTensorId++}nextVariableId(){return Xl.nextVariableId++}clone(e){let t=A.runKernel(Xn,{x:e}),n={x:e},o=a=>({x:()=>{let i="float32",l={x:a},u={dtype:i};return A.runKernel(qn,l,u)}}),s=[];return this.addTapeNode(this.state.activeScope.name,n,[t],o,s,{}),t}runKernel(e,t,n){if(!(Dm(e,this.backendName)!=null))throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let o=this.backend.numDataIds(),s=0;n.forEach(l=>{s+=l.dtype==="complex64"?3:1});let a=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=o-t-s-a;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],o=this.isTapeOn(),s=this.state.numBytes,a=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let l,u=mw(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(mw(e)){let{kernelName:d,inputs:h,attrs:g}=e;this.backendName==null&&this.backend;let y=Dm(d,this.backendName);T(y!=null,()=>`Cannot find registered kernel '${d}' for backend '${this.backendName}'`),i=()=>{let b=this.backend.numDataIds();l=y.kernelFunc({inputs:h,attrs:g,backend:this.backend});let w=Array.isArray(l)?l:[l];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(d,b,w);let _=w.map(I=>{if(I.rank!=null)return I;let{dataId:E,shape:$,dtype:D}=I;return this.makeTensorFromDataId(E,$,D)});if(o){let I=this.getTensorsForGradient(d,h,_);n=this.saveTensorsForBackwardMode(I)}return _}}else{let{forwardFunc:d}=e,h=g=>{!o||(n=g.map(y=>this.keep(this.clone(y))))};i=()=>{let g=this.backend.numDataIds();l=this.tidy(()=>d(this.backend,h));let y=Array.isArray(l)?l:[l];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(u,g,y),y}}let{inputs:c,attrs:p}=e,m=mw(e)?null:e.backwardsFunc,f;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(f=this.profiler.profileKernel(u,c,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(f),t=f.outputs)}),o&&this.addTapeNode(u,c,t,m,n,p),this.state.profiling&&this.state.activeProfile.kernels.push({name:u,bytesAdded:this.state.numBytes-s,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-a,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(c).map(d=>c[d]!=null?c[d].shape:null),outputShapes:t.map(d=>d.shape),kernelTimeMs:f.timeMs,extraInfo:f.extraInfo}),Array.isArray(l)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(n=>this.keep(this.clone(n)))}getTensorsForGradient(e,t,n){let o=nw(e);if(o!=null){let s=o.inputsToSave||[],a=o.outputsToSave||[],i;o.saveAllInputs?(T(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(u=>t[u])):i=s.map(u=>t[u]);let l=n.filter((u,c)=>a[c]);return i.concat(l)}return[]}makeTensor(e,t,n,o){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",o=o||this.backend;let s=e;n==="string"&&bo(e[0])&&(s=e.map(l=>ll(l)));let a=o.write(s,t,n),i=new Oe(t,n,a,this.nextTensorId());if(this.trackTensor(i,o),n==="string"){let l=this.state.tensorInfo.get(a),u=Jb(s);this.state.numBytes+=u-l.bytes,l.bytes=u}return i}makeTensorFromDataId(e,t,n,o){n=n||"float32";let s=new Oe(t,n,e,this.nextTensorId());return this.trackTensor(s,o),s}makeVariable(e,t=!0,n,o){n=n||this.nextVariableId().toString(),o!=null&&o!==e.dtype&&(e=e.cast(o));let s=new ul(e,t,n,this.nextTensorId());if(this.state.registeredVariables[s.name]!=null)throw new Error(`Variable with name ${s.name} was already registered`);return this.state.registeredVariables[s.name]=s,this.incRef(s,this.backend),s}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*Xh(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof ul||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*Xh(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(o=>o.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let o of this.state.activeProfile.kernels)o.kernelTimeMs=await o.kernelTimeMs,o.extraInfo=await o.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,o,s,a){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:s},l=nw(e);l!=null&&(o=l.gradFunc),o!=null&&(i.gradient=u=>(u=u.map((c,p)=>{if(c==null){let m=n[p],f=hc(m.size,m.dtype);return this.makeTensor(f,m.shape,m.dtype)}return c}),o(u.length>1?u:u[0],s,a))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Om(e),n=new Set(t.map(s=>s.id));for(let s=0;s<this.state.activeScope.track.length;s++){let a=this.state.activeScope.track[s];!a.kept&&!n.has(a.id)&&a.dispose()}let o=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(s=>{!s.kept&&s.scopeId===o.id&&this.track(s)})}gradients(e,t,n,o=!1){if(T(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let s=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));T(s instanceof Oe,()=>"The result y returned by f() must be a tensor.");let a=vS(this.state.activeTape,t,s);if(!o&&a.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[s.id]=n==null?zG(s.shape):n,CS(i,a,u=>this.tidy(u),BG);let l=t.map(u=>i[u.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(u=>{for(let c of u.saved)c.dispose()}),this.state.activeTape=null),{value:s,grads:l}})}customGrad(e){return T(Ps(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{T(t.every(i=>i instanceof Oe),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,o={};t.forEach((i,l)=>{o[l]=i});let s=(i,l)=>(n=e(...t,l),T(n.value instanceof Oe,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),T(Ps(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),a=(i,l)=>{let u=n.gradFunc(i,l),c=Array.isArray(u)?u:[u];T(c.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),T(c.every(m=>m instanceof Oe),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let p={};return c.forEach((m,f)=>{p[f]=()=>m}),p};return this.runKernelFunc({forwardFunc:s,backwardsFunc:a,inputs:o})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=ql(),n=await this.backend.time(e);return n.wallMs=ql()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new fw;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Xl.nextTensorId=0;Xl.nextVariableId=0;function zG(r){let e=vm(nt(r),"float32");return A.makeTensor(e,r,"float32")}function dw(){let r=tw();if(r._tfengine==null){let e=new Yh(r);r._tfengine=new Xl(e)}return yS(r._tfengine.ENV),TS(()=>r._tfengine),r._tfengine}var A=dw();function BG(r,e){let t={a:r,b:e};return A.runKernel(On,t)}var Yl={};We(Yl,{isBrowser:()=>hw,isMobile:()=>GG});function VG(){return typeof navigator!="undefined"&&navigator!=null}function GG(r){if(r||VG()){if(r||(r=navigator),r.product==="ReactNative")return!0;let e=r.userAgent||r.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(e)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(e.substr(0,4))}return!1}function hw(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var ms=W();ms.registerFlag("DEBUG",()=>!1,r=>{r&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});ms.registerFlag("IS_BROWSER",()=>hw());ms.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");ms.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));ms.registerFlag("PROD",()=>!1);ms.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>ms.getBool("DEBUG"));ms.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);ms.registerFlag("IS_TEST",()=>!1);ms.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);ms.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function Sr(r,e){let t=r;if(ir(r))return e==="string"?[]:[r.length];if(!Array.isArray(r))return[];let n=[];for(;Array.isArray(t)||ir(t)&&e!=="string";)n.push(t.length),t=t[0];return Array.isArray(r)&&W().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&$S(r,n,[]),n}function $S(r,e,t){if(t=t||[],!Array.isArray(r)&&!ir(r)){T(e.length===0,()=>`Element arr[${t.join("][")}] is a primitive, but should be an array/TypedArray of ${e[0]} elements`);return}T(e.length>0,()=>`Element arr[${t.join("][")}] should be a primitive, but is an array of ${r.length} elements`),T(r.length===e[0],()=>`Element arr[${t.join("][")}] should have ${e[0]} elements, but has ${r.length} elements`);let n=e.slice(1);for(let o=0;o<r.length;++o)$S(r[o],n,t.concat(o))}function RS(r,e,t,n){if(r!=="string_or_numeric"){if(r==null)throw new Error("Expected dtype cannot be null.");if(r!=="numeric"&&r!==e||r==="numeric"&&e==="string")throw new Error(`Argument '${t}' passed to '${n}' must be ${r} tensor, but got ${e} tensor`)}}function k(r,e,t,n="numeric"){if(r instanceof Oe)return RS(n,r.dtype,e,t),r;let o=fc(r);if(o!=="string"&&["bool","int32","float32"].indexOf(n)>=0&&(o=n),RS(n,o,e,t),r==null||!ir(r)&&!Array.isArray(r)&&typeof r!="number"&&typeof r!="boolean"&&typeof r!="string"){let l=r==null?"null":r.constructor.name;throw new Error(`Argument '${e}' passed to '${t}' must be a Tensor or TensorLike, but got '${l}'`)}let s=Sr(r,o);!ir(r)&&!Array.isArray(r)&&(r=[r]);let i=o!=="string"?Uc(r,o):yo(r,[],!0);return A.makeTensor(i,s,o)}function la(r,e,t,n="numeric"){if(!Array.isArray(r))throw new Error(`Argument ${e} passed to ${t} must be a \`Tensor[]\` or \`TensorLike[]\``);return r.map((s,a)=>k(s,`${e}[${a}]`,t,n))}var FS="__op";function S(r){let e=Object.keys(r);if(e.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${e.length} keys.`);let t=e[0],n=r[t];t.endsWith("_")&&(t=t.substring(0,t.length-1)),t=t+FS;let o=(...s)=>{A.startScope(t);try{let a=n(...s);return Im(a)&&console.error("Cannot return a Promise inside of tidy."),A.endScope(a),a}catch(a){throw A.endScope(null),a}};return Object.defineProperty(o,"name",{value:t,configurable:!0}),o}function WG(r,e){let t=k(r,"real","complex"),n=k(e,"imag","complex");At(t.shape,n.shape,`real and imag shapes, ${t.shape} and ${n.shape}, must match in call to tf.complex().`);let o={real:t,imag:n};return A.runKernel(bc,o)}var In=S({complex_:WG});function Xr(r,e,t,n){if(n==null&&(n=fc(r)),n==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!ir(r)&&!Array.isArray(r)&&typeof r!="number"&&typeof r!="boolean"&&typeof r!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(e!=null){Cm(e);let o=nt(e),s=nt(t);T(o===s,()=>`Based on the provided shape, [${e}], the tensor should have ${o} values but has ${s}`);for(let a=0;a<t.length;++a){let i=t[a],l=a===t.length-1?i!==nt(e.slice(a)):!0;T(t[a]===e[a]||!l,()=>`Error creating a new Tensor. Inferred shape (${t}) does not match the provided shape (${e}). `)}}return!ir(r)&&!Array.isArray(r)&&(r=[r]),e=e||t,r=n!=="string"?Uc(r,n):yo(r,[],!0),A.makeTensor(r,e,n)}function Pr(r,e,t){let n=Sr(r,t);return Xr(r,e,n,t)}var Pm={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8};var Qh=4;async function OS(r,e){let t=[],n=[],o=Array.isArray(r)?r.map(a=>a.name):Object.keys(r);for(let a=0;a<o.length;++a){let i=o[a],l=Array.isArray(r)?r[a].tensor:r[i];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${i}': ${l.dtype}`);let u={name:i,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let c=new Promise(async p=>{let m=await l.bytes(),f=m.reduce((g,y)=>g+y.length,0)+Qh*m.length,d=new Uint8Array(f),h=0;for(let g=0;g<m.length;g++){let y=m[g],b=new Uint8Array(new Uint32Array([y.length]).buffer);d.set(b,h),h+=Qh,d.set(y,h),h+=y.length}p(d)});n.push(c)}else n.push(l.data());e!=null&&(u.group=e),t.push(u)}let s=await Promise.all(n);return{data:jG(s),specs:t}}function eg(r,e){let t={},n,o=0;for(let s of e){let a=s.name,i=s.dtype,l=s.shape,u=nt(l),c;if("quantization"in s){let p=s.quantization;if(p.dtype==="uint8"||p.dtype==="uint16"){if(!("min"in p&&"scale"in p))throw new Error(`Weight ${s.name} with quantization ${p.dtype} doesn't have corresponding metadata min and scale.`)}else if(p.dtype==="float16"){if(i!=="float32")throw new Error(`Weight ${s.name} is quantized with ${p.dtype} which only supports weights of type float32 not ${i}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${p.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let m=Pm[p.dtype],f=r.slice(o,o+u*m),d=p.dtype==="uint8"?new Uint8Array(f):new Uint16Array(f);if(i==="float32")if(p.dtype==="uint8"||p.dtype==="uint16"){c=new Float32Array(d.length);for(let h=0;h<d.length;h++){let g=d[h];c[h]=g*p.scale+p.min}}else if(p.dtype==="float16")n===void 0&&(n=UG()),c=n(d);else throw new Error(`Unsupported quantization type ${p.dtype} for weight type float32.`);else if(i==="int32"){if(p.dtype!=="uint8"&&p.dtype!=="uint16")throw new Error(`Unsupported quantization type ${p.dtype} for weight type int32.`);c=new Int32Array(d.length);for(let h=0;h<d.length;h++){let g=d[h];c[h]=Math.round(g*p.scale+p.min)}}else throw new Error(`Unsupported dtype in weight '${a}': ${i}`);o+=u*m}else if(i==="string"){let p=nt(s.shape);c=[];for(let m=0;m<p;m++){let f=new Uint32Array(r.slice(o,o+Qh))[0];o+=Qh;let d=new Uint8Array(r.slice(o,o+f));c.push(d),o+=f}}else{let p=Pm[i],m=r.slice(o,o+u*p);if(i==="float32")c=new Float32Array(m);else if(i==="int32")c=new Int32Array(m);else if(i==="bool")c=new Uint8Array(m);else if(i==="complex64"){c=new Float32Array(m);let f=new Float32Array(c.length/2),d=new Float32Array(c.length/2);for(let y=0;y<f.length;y++)f[y]=c[y*2],d[y]=c[y*2+1];let h=Pr(f,l,"float32"),g=Pr(d,l,"float32");t[a]=In(h,g),h.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${a}': ${i}`);o+=u*p}i!=="complex64"&&(t[a]=Pr(c,l,i))}return t}function jG(r){if(r===null)throw new Error(`Invalid input value: ${JSON.stringify(r)}`);let e=0,t=[];r.forEach(s=>{if(e+=s.byteLength,t.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let n=new Uint8Array(e),o=0;return t.forEach(s=>{n.set(new Uint8Array(s.buffer),o),o+=s.byteLength}),n.buffer}var gw=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function PS(r){return gw?Buffer.byteLength(r):new Blob([r]).size}function MS(r){if(gw)return Buffer.from(r).toString("base64");let e=new Uint8Array(r),t="";for(let n=0,o=e.length;n<o;n++)t+=String.fromCharCode(e[n]);return btoa(t)}function LS(r){if(gw){let n=Buffer.from(r,"base64");return n.buffer.slice(n.byteOffset,n.byteOffset+n.byteLength)}let e=atob(r),t=new Uint8Array(e.length);for(let n=0;n<e.length;++n)t.set([e.charCodeAt(n)],n);return t.buffer}function Kc(r){if(r.length===1)return r[0];let e=0;r.forEach(o=>{e+=o.byteLength});let t=new Uint8Array(e),n=0;return r.forEach(o=>{t.set(new Uint8Array(o),n),n+=o.byteLength}),t.buffer}function xw(r){let e="/";for(r=r.trim();r.endsWith(e);)r=r.slice(0,r.length-1);let t=r.split(e);return t[t.length-1]}function ti(r){if(r.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:r.modelTopology==null?0:PS(JSON.stringify(r.modelTopology)),weightSpecsBytes:r.weightSpecs==null?0:PS(JSON.stringify(r.weightSpecs)),weightDataBytes:r.weightData==null?0:r.weightData.byteLength}}function HG(){let r=t=>{let n=t<<13,o=0;for(;(n&8388608)==0;)o-=8388608,n<<=1;return n&=~8388608,o+=947912704,n|o},e=new Uint32Array(2048);e[0]=0;for(let t=1;t<1024;t++)e[t]=r(t);for(let t=1024;t<2048;t++)e[t]=939524096+(t-1024<<13);return e}function qG(){let r=new Uint32Array(64);r[0]=0,r[31]=1199570944,r[32]=2147483648,r[63]=3347054592;for(let e=1;e<31;e++)r[e]=e<<23;for(let e=33;e<63;e++)r[e]=2147483648+(e-32<<23);return r}function KG(){let r=new Uint32Array(64);for(let e=0;e<64;e++)r[e]=1024;return r[0]=r[32]=0,r}function UG(){let r=HG(),e=qG(),t=KG();return n=>{let o=new ArrayBuffer(4*n.length),s=new Uint32Array(o);for(let a=0;a<n.length;a++){let i=n[a],l=r[t[i>>10]+(i&1023)]+e[i>>10];s[a]=l}return new Float32Array(o)}}var It=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return It.instance==null&&(It.instance=new It),It.instance}static registerSaveRouter(e){It.getInstance().saveRouters.push(e)}static registerLoadRouter(e){It.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return It.getHandlers(e,"save")}static getLoadHandlers(e,t){return It.getHandlers(e,"load",t)}static getHandlers(e,t,n){let o=[];return(t==="load"?It.getInstance().loadRouters:It.getInstance().saveRouters).forEach(a=>{let i=a(e,n);i!==null&&o.push(i)}),o}},zS=r=>It.registerSaveRouter(r),BS=r=>It.registerLoadRouter(r),VS=r=>It.getSaveHandlers(r),GS=(r,e)=>It.getLoadHandlers(r,e);var yw="tensorflowjs",bw=1,Zl="models_store",cl="model_info_store";function WS(){if(!W().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let r=typeof window=="undefined"?self:window,e=r.indexedDB||r.mozIndexedDB||r.webkitIndexedDB||r.msIndexedDB||r.shimIndexedDB;if(e==null)throw new Error("The current browser does not appear to support IndexedDB.");return e}function ww(r){let e=r.result;e.createObjectStore(Zl,{keyPath:"modelPath"}),e.createObjectStore(cl,{keyPath:"modelPath"})}var ua=class{constructor(e){if(this.indexedDB=WS(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,o)=>{let s=this.indexedDB.open(yw,bw);s.onupgradeneeded=()=>ww(s),s.onsuccess=()=>{let a=s.result;if(t==null){let i=a.transaction(Zl,"readonly"),u=i.objectStore(Zl).get(this.modelPath);u.onsuccess=()=>{if(u.result==null)return a.close(),o(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(u.result.modelArtifacts)},u.onerror=c=>(a.close(),o(u.error)),i.oncomplete=()=>a.close()}else{let i=ti(t),l=a.transaction(cl,"readwrite"),u=l.objectStore(cl),c=u.put({modelPath:this.modelPath,modelArtifactsInfo:i}),p;c.onsuccess=()=>{p=a.transaction(Zl,"readwrite");let f=p.objectStore(Zl).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});f.onsuccess=()=>n({modelArtifactsInfo:i}),f.onerror=d=>{u=l.objectStore(cl);let h=u.delete(this.modelPath);h.onsuccess=()=>(a.close(),o(f.error)),h.onerror=g=>(a.close(),o(f.error))}},c.onerror=m=>(a.close(),o(c.error)),l.oncomplete=()=>{p==null?a.close():p.oncomplete=()=>a.close()}}},s.onerror=a=>o(s.error)})}};ua.URL_SCHEME="indexeddb://";var jS=r=>W().getBool("IS_BROWSER")&&!Array.isArray(r)&&r.startsWith(ua.URL_SCHEME)?XG(r.slice(ua.URL_SCHEME.length)):null;It.registerSaveRouter(jS);It.registerLoadRouter(jS);function XG(r){return new ua(r)}function YG(r){return r.startsWith(ua.URL_SCHEME)?r.slice(ua.URL_SCHEME.length):r}var _w=class{constructor(){this.indexedDB=WS()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(yw,bw);n.onupgradeneeded=()=>ww(n),n.onsuccess=()=>{let o=n.result,s=o.transaction(cl,"readonly"),i=s.objectStore(cl).getAll();i.onsuccess=()=>{let l={};for(let u of i.result)l[u.modelPath]=u.modelArtifactsInfo;e(l)},i.onerror=l=>(o.close(),t(i.error)),s.oncomplete=()=>o.close()},n.onerror=o=>t(n.error)})}async removeModel(e){return e=YG(e),new Promise((t,n)=>{let o=this.indexedDB.open(yw,bw);o.onupgradeneeded=()=>ww(o),o.onsuccess=()=>{let s=o.result,a=s.transaction(cl,"readwrite"),i=a.objectStore(cl),l=i.get(e),u;l.onsuccess=()=>{if(l.result==null)return s.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let c=i.delete(e),p=()=>{u=s.transaction(Zl,"readwrite");let f=u.objectStore(Zl).delete(e);f.onsuccess=()=>t(l.result.modelArtifactsInfo),f.onerror=d=>n(l.error)};c.onsuccess=p,c.onerror=m=>(p(),s.close(),n(l.error))}},l.onerror=c=>(s.close(),n(l.error)),a.oncomplete=()=>{u==null?s.close():u.oncomplete=()=>s.close()}},o.onerror=s=>n(o.error)})}};var ca="/",Xc="tensorflowjs_models",US="info",ZG="model_topology",JG="weight_specs",QG="weight_data",eW="model_metadata";function HS(r){return{info:[Xc,r,US].join(ca),topology:[Xc,r,ZG].join(ca),weightSpecs:[Xc,r,JG].join(ca),weightData:[Xc,r,QG].join(ca),modelMetadata:[Xc,r,eW].join(ca)}}function tW(r){let e=r.split(ca);if(e.length<3)throw new Error(`Invalid key format: ${r}`);return e.slice(1,e.length-1).join(ca)}function rW(r){return r.startsWith(pa.URL_SCHEME)?r.slice(pa.URL_SCHEME.length):r}var pa=class{constructor(e){if(!W().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=HS(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),o=ti(e);try{this.LS.setItem(this.keys.info,JSON.stringify(o)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,MS(e.weightData));let s={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(s.signature=e.signature),e.userDefinedMetadata!=null&&(s.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(s.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(s)),{modelArtifactsInfo:o}}catch(s){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${o.modelTopologyBytes}, weightSpecsBytes=${o.weightSpecsBytes}, weightDataBytes=${o.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let o=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(o==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=o;let s=this.LS.getItem(this.keys.modelMetadata);if(s!=null){let i=JSON.parse(s);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer)}let a=this.LS.getItem(this.keys.weightData);if(a==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=LS(a),t}};pa.URL_SCHEME="localstorage://";var qS=r=>W().getBool("IS_BROWSER")&&!Array.isArray(r)&&r.startsWith(pa.URL_SCHEME)?nW(r.slice(pa.URL_SCHEME.length)):null;It.registerSaveRouter(qS);It.registerLoadRouter(qS);function nW(r){return new pa(r)}var kw=class{constructor(){T(W().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),T(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Xc+ca,n=ca+US;for(let o=0;o<this.LS.length;++o){let s=this.LS.key(o);if(s.startsWith(t)&&s.endsWith(n)){let a=tW(s);e[a]=JSON.parse(this.LS.getItem(s))}}return e}async removeModel(e){e=rW(e);let t=HS(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return this.LS.removeItem(t.info),this.LS.removeItem(t.topology),this.LS.removeItem(t.weightSpecs),this.LS.removeItem(t.weightData),n}};var Yc="://",Yr=class{constructor(){this.managers={}}static getInstance(){return Yr.instance==null&&(Yr.instance=new Yr),Yr.instance}static registerManager(e,t){T(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(Yc)&&(e=e.slice(0,e.indexOf(Yc))),T(e.length>0,()=>"scheme must not be an empty string.");let n=Yr.getInstance();T(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function tg(r){if(r.indexOf(Yc)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Yr.getSchemes().join(",")}`);return{scheme:r.split(Yc)[0],path:r.split(Yc)[1]}}async function KS(r,e,t=!1){T(r!==e,()=>`Old path and new path are the same: '${r}'`);let n=It.getLoadHandlers(r);T(n.length>0,()=>`Copying failed because no load handler is found for source URL ${r}.`),T(n.length<2,()=>`Copying failed because more than one (${n.length}) load handlers for source URL ${r}.`);let o=n[0],s=It.getSaveHandlers(e);T(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${e}.`),T(s.length<2,()=>`Copying failed because more than one (${n.length}) save handlers for destination URL ${e}.`);let a=s[0],i=tg(r).scheme,l=tg(r).path,u=i===tg(r).scheme,c=await o.load();t&&u&&await Yr.getManager(i).removeModel(l);let p=await a.save(c);return t&&!u&&await Yr.getManager(i).removeModel(l),p.modelArtifactsInfo}async function XS(){let r=Yr.getSchemes(),e={};for(let t of r){let n=await Yr.getManager(t).listModels();for(let o in n){let s=t+Yc+o;e[s]=n[o]}}return e}async function YS(r){let e=tg(r);return Yr.getManager(e.scheme).removeModel(e.path)}async function ZS(r,e){return KS(r,e,!1)}async function JS(r,e){return KS(r,e,!0)}var QS=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(W().get("IS_BROWSER")){W().setPlatform("browser",new QS);try{Yr.registerManager(pa.URL_SCHEME,new kw)}catch(r){}try{Yr.registerManager(ua.URL_SCHEME,new _w)}catch(r){}}var oW={importFetch:()=>eT()},vw;var tT=class{constructor(){this.util=require("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return W().global.fetch!=null?W().global.fetch(e,t):(vw==null&&(vw=oW.importFetch()),vw(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};W().get("IS_NODE")&&W().setPlatform("node",new tT);function Ce(r,e="float32",t){return e=e||"float32",Cm(r),new ut(r,e,t)}function sW(r,e){let t=k(r,"x","cast");if(!Zb(e))throw new Error(`Failed to cast to unknown dtype ${e}`);if(e==="string"&&t.dtype!=="string"||e!=="string"&&t.dtype==="string")throw new Error("Only strings can be casted to strings");let n={x:t},o={dtype:e};return A.runKernel(qn,n,o)}var oe=S({cast_:sW});function iW(r){let t={x:k(r,"x","clone","string_or_numeric")};return A.runKernel(Xn,t)}var Mn=S({clone_:iW});function Cw(r,e=!1){console.log(r.toString(e))}dw();var aW={buffer:Ce,cast:oe,clone:Mn,print:Cw};AS(aW);var Tr={};We(Tr,{browserFiles:()=>oT,browserHTTPRequest:()=>aT,concatenateArrayBuffers:()=>Kc,copyModel:()=>ZS,decodeWeights:()=>eg,encodeWeights:()=>OS,fromMemory:()=>uT,getLoadHandlers:()=>GS,getModelArtifactsInfoForJSON:()=>ti,getSaveHandlers:()=>VS,http:()=>og,isHTTPScheme:()=>ng,listModels:()=>XS,loadWeights:()=>sT,moveModel:()=>JS,registerLoadRouter:()=>BS,registerSaveRouter:()=>zS,removeModel:()=>YS,weightsLoaderFactory:()=>Sw,withSaveHandler:()=>cT});var lW="model",uW=".json",cW=".weights.bin";function rT(r){return new Promise(e=>setTimeout(e)).then(r)}var pl=class{constructor(e){if(!W().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(pl.URL_SCHEME)&&(e=e.slice(pl.URL_SCHEME.length)),(e==null||e.length===0)&&(e=lW),this.modelTopologyFileName=e+uW,this.weightDataFileName=e+cW}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],o={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(o.signature=e.signature),e.userDefinedMetadata!=null&&(o.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(o.modelInitializer=e.modelInitializer);let s=window.URL.createObjectURL(new Blob([JSON.stringify(o)],{type:"application/json"})),a=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(a.download=this.modelTopologyFileName,a.href=s,await rT(()=>a.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await rT(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:ti(e)}}}};pl.URL_SCHEME="downloads://";var nT=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((n,o)=>{let s=new FileReader;s.onload=a=>{let i=JSON.parse(a.target.result),l=i.modelTopology;if(l==null){o(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&n({modelTopology:l});let u=i.weightsManifest;if(u==null){o(new Error(`weightManifest field is missing from file ${e.name}`));return}let c;try{c=this.checkManifestAndWeightFiles(u,t)}catch(d){o(d);return}let p=[],m=[],f=[];u.forEach(d=>{d.paths.forEach(h=>{m.push(h),f.push(null)}),p.push(...d.weights)}),u.forEach(d=>{d.paths.forEach(h=>{let g=new FileReader;g.onload=y=>{let b=y.target.result,w=m.indexOf(h);if(f[w]=b,f.indexOf(null)===-1){let _={modelTopology:l,weightSpecs:p,weightData:Kc(f),format:i.format,generatedBy:i.generatedBy,convertedBy:i.convertedBy};i.signature!=null&&(_.signature=i.signature),i.userDefinedMetadata!=null&&(_.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(_.modelInitializer=i.modelInitializer),n(_)}},g.onerror=y=>o(`Failed to weights data from file of path '${h}'.`),g.readAsArrayBuffer(c[h])})})},s.onerror=a=>o(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),s.readAsText(e)})}checkManifestAndWeightFiles(e,t){let n=[],o=t.map(a=>xw(a.name)),s={};for(let a of e)a.paths.forEach(i=>{let l=xw(i);if(n.indexOf(l)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${l}'`);if(n.push(l),o.indexOf(l)===-1)throw new Error(`Weight file with basename '${l}' is not provided.`);s[i]=t[o.indexOf(l)]});if(n.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${n.length}) and the number of weight files provided (${t.length}).`);return s}},mW=r=>W().getBool("IS_BROWSER")&&!Array.isArray(r)&&r.startsWith(pl.URL_SCHEME)?pW(r.slice(pl.URL_SCHEME.length)):null;It.registerSaveRouter(mW);function pW(r="model"){return new pl(r)}function oT(r){return new nT(r)}function Iw(r,e,t,n){a(r),t=t==null?0:t,n=n==null?1:n,i(t,n);let o=0,s=l=>(l.then(u=>{let c=t+ ++o/r.length*(n-t);return e(c),u}),l);function a(l){T(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function i(l,u){T(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),T(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),T(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(r.map(s))}async function Nw(r,e){e==null&&(e={});let t=e.fetchFunc==null?W().platform.fetch:e.fetchFunc,n=r.map(p=>t(p,e.requestInit,{isBinary:!0})),o=0,s=.5,i=(e.onProgress==null?await Promise.all(n):await Iw(n,e.onProgress,o,s)).map(p=>p.arrayBuffer()),l=.5,u=1;return e.onProgress==null?await Promise.all(i):await Iw(i,e.onProgress,l,u)}async function sT(r,e="",t,n){return Sw(a=>Nw(a,{requestInit:n}))(r,e,t)}function Sw(r){return async(e,t="",n)=>{let o=e.map(()=>!1),s={},a=n!=null?n.map(()=>!1):[],i=[];if(e.forEach((f,d)=>{let h=0;f.weights.forEach(g=>{let y="quantization"in g?g.quantization.dtype:g.dtype,b=Pm[y]*nt(g.shape),w=()=>{o[d]=!0,s[d]==null&&(s[d]=[]),s[d].push({manifestEntry:g,groupOffset:h,sizeBytes:b})};n!=null?n.forEach((_,I)=>{_===g.name&&(w(),a[I]=!0)}):w(),i.push(g.name),h+=b})}),!a.every(f=>f)){let f=n.filter((d,h)=>!a[h]);throw new Error(`Could not find weights in manifest with names: ${f.join(", ")}.
|
|
Manifest JSON has weights with names: ${i.join(", ")}.`)}let l=o.reduce((f,d,h)=>(d&&f.push(h),f),[]),u=[];l.forEach(f=>{e[f].paths.forEach(d=>{let h=t+(t.endsWith("/")?"":"/")+d;u.push(h)})});let c=await r(u),p={},m=0;return l.forEach(f=>{let d=e[f].paths.length,h=0;for(let _=0;_<d;_++)h+=c[m+_].byteLength;let g=new ArrayBuffer(h),y=new Uint8Array(g),b=0;for(let _=0;_<d;_++){let I=new Uint8Array(c[m+_]);y.set(I,b),b+=I.byteLength}s[f].forEach(_=>{let I=g.slice(_.groupOffset,_.groupOffset+_.sizeBytes),E=eg(I,[_.manifestEntry]);for(let $ in E)p[$]=E[$]}),m+=d}),p}}var fW="application/octet-stream",dW="application/json",rg=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(T(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=W().platform.fetch,T(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&T(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],o={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(o.signature=e.signature),e.userDefinedMetadata!=null&&(o.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(o.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(o)],{type:dW}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:fW}),"model.weights.bin");let s=await this.fetch(this.path,t);if(s.ok)return{modelArtifactsInfo:ti(e),responses:[s]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${s.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(d){let h=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?h+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":h+=" Please make sure the server is serving valid JSON for this request.",new Error(h)}let n=t.modelTopology,o=t.weightsManifest,s=t.generatedBy,a=t.convertedBy,i=t.format,l=t.signature,u=t.userDefinedMetadata;if(n==null&&o==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let c,p;o!=null&&([c,p]=await this.loadWeights(o));let m={modelTopology:n,weightSpecs:c,weightData:p,generatedBy:s,convertedBy:a,format:i};l!=null&&(m.signature=l),u!=null&&(m.userDefinedMetadata=u);let f=t.modelInitializer;return f&&(m.modelInitializer=f),m}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,o]=hW(t),s=this.weightPathPrefix||n,a=[];for(let c of e)a.push(...c.weights);let i=[],l=[];for(let c of e)for(let p of c.paths)this.weightUrlConverter!=null?l.push(this.weightUrlConverter(p)):i.push(s+p+o);this.weightUrlConverter&&i.push(...await Promise.all(l));let u=await Nw(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[a,Kc(u)]}};rg.URL_SCHEME_REGEX=/^https?:\/\//;function hW(r){let e=r.lastIndexOf("/"),t=r.lastIndexOf("?"),n=r.substring(0,e),o=t>e?r.substring(t):"";return[n+"/",o]}function ng(r){return r.match(rg.URL_SCHEME_REGEX)!=null}var iT=(r,e)=>{if(typeof fetch=="undefined"&&(e==null||e.fetchFunc==null))return null;{let t=!0;if(Array.isArray(r)?t=r.every(n=>ng(n)):t=ng(r),t)return og(r,e)}return null};It.registerSaveRouter(iT);It.registerLoadRouter(iT);function og(r,e){return new rg(r,e)}function aT(r,e){return og(r,e)}var sg=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},lT=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function uT(r,e,t,n){return arguments.length===1?r.modelTopology!=null||r.weightSpecs!=null?new sg(r):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new sg({modelTopology:r})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new sg({modelTopology:r,weightSpecs:e,weightData:t,trainingConfig:n}))}function cT(r){return new lT(r)}var mT={};We(mT,{confusionMatrix:()=>pT});function gW(r,e,t=!1,n=!1){let o=k(r,"a","matMul"),s=k(e,"b","matMul");[o,s]=je(o,s);let a={a:o,b:s},i={transposeA:t,transposeB:n};return A.runKernel(vo,a,i)}var ze=S({matMul_:gW});function xW(r,e,t=1,n=0){if(e<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${e}`);let s={indices:k(r,"indices","oneHot","int32")},a={depth:e,onValue:t,offValue:n};return A.runKernel(Ho,s,a)}var fs=S({oneHot_:xW});function yW(r,e){let t=k(r,"x","transpose");if(e==null&&(e=t.shape.map((s,a)=>a).reverse()),T(t.rank===e.length,()=>`Error in transpose: rank of input ${t.rank} must match length of perm ${e}.`),e.forEach(s=>{T(s>=0&&s<t.rank,()=>`All entries in 'perm' must be between 0 and ${t.rank-1} but got ${e}`)}),t.rank<=1)return t.clone();let n={x:t},o={perm:e};return A.runKernel(ps,n,o)}var Ue=S({transpose_:yW});function bW(r,e,t){let n=k(r,"labels","confusionMatrix"),o=k(e,"predictions","confusionMatrix");T(t==null||t>0&&Number.isInteger(t),()=>`If provided, numClasses must be a positive integer, but got ${t}`),T(n.rank===1,()=>`Expected the rank of labels to be 1, but got ${n.rank}`),T(o.rank===1,()=>`Expected the rank of predictions to be 1, but got ${o.rank}`),T(n.shape[0]===o.shape[0],()=>`Mismatch in the number of examples: ${n.shape[0]} vs. ${o.shape[0]}. Labels and predictions should have the same number of elements.`),T(t>0&&Number.isInteger(t),()=>`numClasses is required to be a positive integer, but got ${t}`);let s=fs(oe(n,"int32"),t),a=fs(oe(o,"int32"),t),i=Ue(s),l=ze(i,a);return oe(l,"int32")}var pT=S({confusionMatrix_:bW});var ig={};We(ig,{fromPixels:()=>NW,fromPixelsAsync:()=>CW,toPixels:()=>IW});function Tw(r,e,t){if(Fn(r),e!=null&&e.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let n=Sr(r,t);if(n.length!==3&&n.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(n.length===1&&e==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Xr(r,e,n,t)}var Zc;function fT(r,e=3){if(e>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(r==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let t=!1,n=!1,o=!1,s=!1,a=!1,i=!1;if(r.data instanceof Uint8Array)t=!0;else if(typeof ImageData!="undefined"&&r instanceof ImageData)n=!0;else if(typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement)o=!0;else if(typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement)s=!0;else if(r.getContext!=null)a=!0;else if(typeof ImageBitmap!="undefined"&&r instanceof ImageBitmap)i=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${r.constructor.name}`);if(o){let d=2;if(o&&r.readyState<d)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(Dm(Am,A.backendName)!=null){let d={pixels:r},h={numChannels:e};return A.runKernel(Am,d,h)}let[u,c]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],p;a?p=r.getContext("2d").getImageData(0,0,u,c).data:n||t?p=r.data:(s||o||i)&&(Zc==null&&(Zc=document.createElement("canvas").getContext("2d")),Zc.canvas.width=u,Zc.canvas.height=c,Zc.drawImage(r,0,0,u,c),p=Zc.getImageData(0,0,u,c).data);let m;if(e===4)m=new Int32Array(p);else{let d=u*c;m=new Int32Array(d*e);for(let h=0;h<d;h++)for(let g=0;g<e;++g)m[h*e+g]=p[h*4+g]}return Tw(m,[c,u,e],"int32")}function wW(r){return r!=null&&r.data instanceof Uint8Array}function _W(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function kW(r){return r!=null&&r.width!==0&&r.height!==0}function vW(r){return _W()&&!(r instanceof ImageBitmap)&&kW(r)&&!wW(r)}async function CW(r,e=3){let t=null;if(W().getBool("WRAP_TO_IMAGEBITMAP")&&vW(r)){let n;try{n=await createImageBitmap(r,{premultiplyAlpha:"none"})}catch(o){n=null}n!=null&&n.width===r.width&&n.height===r.height?t=n:t=r}else t=r;return fT(t,e)}async function IW(r,e){let t=k(r,"img","toPixels");if(!(r instanceof Oe)){let u=t;t=oe(u,"int32"),u.dispose()}if(t.rank!==2&&t.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${t.rank}.`);let[n,o]=t.shape.slice(0,2),s=t.rank===2?1:t.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(t.dtype!=="float32"&&t.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${t.dtype}. Please use float32 or int32 tensors.`);let a=await t.data(),i=t.dtype==="float32"?255:1,l=new Uint8ClampedArray(o*n*4);for(let u=0;u<n*o;++u){let c=[0,0,0,255];for(let m=0;m<s;m++){let f=a[u*s+m];if(t.dtype==="float32"){if(f<0||f>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${f}.`)}else if(t.dtype==="int32"&&(f<0||f>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${f}.`);s===1?(c[0]=f*i,c[1]=f*i,c[2]=f*i):c[m]=f*i}let p=u*4;l[p+0]=Math.round(c[0]),l[p+1]=Math.round(c[1]),l[p+2]=Math.round(c[2]),l[p+3]=Math.round(c[3])}if(e!=null){e.width=o,e.height=n;let u=e.getContext("2d"),c=new ImageData(l,o,n);u.putImageData(c,0,0)}return t!==r&&t.dispose(),l}var NW=S({fromPixels_:fT});var ag={};We(ag,{prepareAndValidate:()=>dT});function dT(r,e){let t=r.shape.length,n=e.shape.length;if(t<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${t}.`);if(n<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${n}.`);if(e.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.shape[n-1]>t)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${e.shape[n-1]} vs. ${t}`);if(nt(r.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${r.shape}.`);let o=e.shape,s=o[o.length-1],a=1;for(let p=0;p<o.length-1;++p)a*=o[p];let i=r.shape,l=o.slice();l.pop();let u=1;for(let p=s;p<t;++p)u*=i[p],l.push(i[p]);let c=[...Ms(r.shape).map(p=>p/u),1].slice(0,s);return[l,a,u,c]}var lg={};We(lg,{calculateShapes:()=>hT,validateInput:()=>ug,validateUpdateShape:()=>Aw});function Aw(r,e,t){let n=e.rank>1?e.shape[e.rank-1]:1,o=e.rank>1?e.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${t.shape}, indices.shape: ${e.shape}, shape: ${r}, sliceDim: ${n}, and batchDim: ${o}.`;if(t.rank<o)throw new Error(s+` update.rank < ${o}. `);if(r.length<n+(t.rank-o))throw new Error(s+` Output shape length < ${n+(t.rank-o)}`);if(t.rank!==o+r.length-n)throw new Error(s+` update.rank != ${o+r.length-n}`);for(let a=0;a<o;++a)if(t.shape[a]!==e.shape[a])throw new Error(s+` updates.shape[${a}] (${t.shape[a]}) != indices.shape[${a}] (${e.shape[a]}).`);for(let a=0;a<t.rank-o;++a)if(t.shape[a+o]!==r[a+n])throw new Error(s+` updates.shape[${a+o}] (${t.shape[a+o]}) != shape[${a+o}] (${r[a+o]})`)}function ug(r,e,t){if(e.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${e.rank}.`);if(r.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${r.rank}.`);if(e.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${e.dtype}`);if(t.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${t}`);if(t.length===0){if(e.size===0)throw new Error(`Indices specified for empty output. indices shape: ${e.shape}`);if(r.size===0)throw new Error(`Updates specified for empty output. updates shape: ${r.shape}`)}Aw(t,e,r)}function hT(r,e,t){let n=e.shape.length,o=n>1?e.shape[n-1]:1,s=t.length,a=1;for(let p=o;p<s;++p)a*=t[p];let i=o<1?1:o,l=nt(e.shape)/i,u=[...Ms(t.slice(0,o)),1],c=nt(t);return{sliceRank:o,numUpdates:l,sliceSize:a,strides:u,outputSize:c}}var rr={};We(rr,{assertParamsValid:()=>SW,computeFlatOffset:()=>AW,computeOutShape:()=>gT,getNormalizedAxes:()=>IT,isSliceContinous:()=>TW,maskToAxes:()=>cg,parseSliceParams:()=>Ew,sliceInfo:()=>EW,startForAxis:()=>vT,startIndicesWithElidedDims:()=>wT,stopForAxis:()=>CT,stopIndicesWithElidedDims:()=>_T,stridesForAxis:()=>kT,stridesWithElidedDims:()=>xT});function SW(r,e,t){let n=r.shape.length;T(n===e.length,()=>`Error in slice${n}D: Length of begin ${e} must match the rank of the array (${n}).`),T(n===t.length,()=>`Error in slice${n}D: Length of size ${t} must match the rank of the array (${n}).`);for(let o=0;o<n;++o)T(e[o]+t[o]<=r.shape[o],()=>`Error in slice${n}D: begin[${o}] + size[${o}] (${e[o]+t[o]}) would overflow input.shape[${o}] (${r.shape[o]})`)}function cg(r){let e=[],t=0;for(;r>0;)r&1&&e.push(t),r/=2,t++;return e}function gT(r,e,t){let n=[];for(let o=0;o<r.length;o++)n[o]=Math.ceil((e[o]-r[o])/t[o]);return n}function xT(r,e,t,n){let o=[...r];for(let s=o.length;s<n.length;s++)o.push(1);for(let s=0;s<t;s++)s===0?o[e]=1:(o.splice(e,0,1),o.pop());return o}function yT(r,e,t){return t<=r?t:t-(e-1)}function bT(r,e){let t=[];for(let n=0;n<r;n++)t.push(e+n);return t}function IT(r,e,t,n,o,s,a,i,l){let u=r.length,c=new Array(u),p=new Array(u),m=new Array(u);if(e.length&&t>0){let f=e[0],d=t+1;c=wT(a,f,d,n,r),p=_T(i,f,d,o,r),m=xT(s,f,d,r)}else for(let f=0;f<u;f++)c[f]=vT(a,n,s,r,f,l),p[f]=CT(i,o,s,r,f,l),m[f]=kT(s,f,l);return{begin:c,end:p,strides:m}}function wT(r,e,t,n,o){let s=[...o],a=bT(t,e);for(let i=0;i<s.length;i++)if(a.indexOf(i)>-1)s[i]=0;else{let l=yT(e,t,i),u=n[l];r&1<<l&&(u=0),s[i]=u}return s}function _T(r,e,t,n,o){let s=[...o],a=bT(t,e);for(let i=0;i<s.length;i++)if(a.indexOf(i)>-1)s[i]=Number.MAX_SAFE_INTEGER;else{let l=yT(e,t,i),u=n[l];r&1<<l&&(u=Number.MAX_SAFE_INTEGER),s[i]=u}for(let i=0;i<s.length;i++){let l=o[i];s[i]<0&&(s[i]+=l),s[i]=mc(0,s[i],o[i])}return s}function kT(r,e,t){let n=r[e];return(t&1<<e||n==null)&&(n=1),n}function vT(r,e,t,n,o,s){let a=e[o],i=t[o]||1;(r&1<<o||s&1<<o||a==null)&&(i>0?a=Number.MIN_SAFE_INTEGER:a=Number.MAX_SAFE_INTEGER);let l=n[o];return a<0&&(a+=l),a=mc(0,a,l-1),a}function CT(r,e,t,n,o,s){let a=e[o],i=t[o]||1;(r&1<<o||s&1<<o||a==null)&&(i>0?a=Number.MAX_SAFE_INTEGER:a=Number.MIN_SAFE_INTEGER);let l=n[o];return a<0&&(a+=l),i>0?a=mc(0,a,l):a=mc(-1,a,l-1),a}function TW(r,e,t){let n=t.length;for(let o=0;o<t.length;o++)if(t[o]>1){n=o;break}for(let o=n+1;o<t.length;o++)if(e[o]>0||t[o]!==r[o])return!1;return!0}function AW(r,e){let t=r.length>0?r[r.length-1]:1;for(let n=0;n<r.length-1;n++)t+=r[n]*e[n];return t}function Ew(r,e,t){let n,o=r.shape.length;typeof e=="number"?n=[e,...new Array(o-1).fill(0)]:e.length<o?n=e.concat(new Array(o-e.length).fill(0)):n=e.slice(),n.forEach(a=>{T(a!==-1,()=>"slice() does not support negative begin indexing.")});let s;return t==null?s=new Array(o).fill(-1):typeof t=="number"?s=[t,...new Array(o-1).fill(-1)]:t.length<o?s=t.concat(new Array(o-t.length).fill(-1)):s=t,s=s.map((a,i)=>a>=0?a:(T(a===-1,()=>`Negative size values should be exactly -1 but got ${a} for the slice() size at index ${i}.`),r.shape[i]-n[i])),[n,s]}function EW(r,e,t,n,o,s,a,i,l){let u=e.slice(),c=t.slice(),p=n;n==null&&(p=new Array(u.length));let m=cg(a);if(m.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(a!==0&&i!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(a!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let f=r.length-u.length,d=cg(i),h=r.slice();d.forEach($=>{u[$]=0,c[$]=1,h.splice($,0,1)});let{begin:g,end:y,strides:b}=IT(h,m,f,u,c,p,o,s,a);u=g,c=y,p=b;let w=cg(l);w.forEach($=>{c[$]=u[$]+1,p[$]=1});let _=gT(u,c,p),I=_.filter(($,D)=>w.indexOf(D)===-1);return{nonStrided:p.every($=>$===1),$begin:u,$end:c,$strides:p,size:_,newShape:h,outShape:I}}var J={};We(J,{Serializable:()=>pg,SerializationMap:()=>ma,registerClass:()=>fn});var pg=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},ma=class{constructor(){this.classNameMap={}}static getMap(){return ma.instance==null&&(ma.instance=new ma),ma.instance}static register(e){ma.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function fn(r){T(r.className!=null,()=>"Class being registered does not have the static className property defined."),T(typeof r.className=="string",()=>"className is required to be a string, but got type "+typeof r.className),T(r.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),ma.register(r)}var NT={};We(NT,{TEST_EPSILON_FLOAT16:()=>ST,encodeStrings:()=>TT,expectArrayBuffersEqual:()=>MW,expectArraysClose:()=>$W,expectArraysEqual:()=>FW,expectNumbersClose:()=>OW,expectPromiseToFail:()=>RW,expectValuesInRange:()=>PW,testEpsilon:()=>Dw});var DW=.001,ST=.1;function $W(r,e,t){return t==null&&(t=Dw()),$w(r,e,(n,o)=>Rw(n,o,t))}function Dw(){return A.backend.floatPrecision()===32?DW:ST}function $w(r,e,t){let n=!0;if((ir(r)||ir(e))&&(n=!1),ir(r)&&ir(e)&&(n=!0),n){let a=r.constructor.name,i=e.constructor.name;if(a!==i)throw new Error(`Arrays are of different type. Actual: ${a}. Expected: ${i}`)}if(Array.isArray(r)&&Array.isArray(e)){let a=Sr(r),i=Sr(e);if(!Kr(a,i))throw new Error(`Arrays have different shapes. Actual: [${a}]. Expected: [${i}]`)}let o=ir(r)?r:yo(r),s=ir(e)?e:yo(e);if(o.length!==s.length)throw new Error(`Arrays have different lengths actual: ${o.length} vs expected: ${s.length}.
|
|
Actual: ${o}.
|
|
Expected: ${s}.`);for(let a=0;a<s.length;++a){let i=o[a],l=s[a];if(!t(i,l))throw new Error(`Arrays differ: actual[${a}] = ${i}, expected[${a}] = ${l}.
|
|
Actual: ${o}.
|
|
Expected: ${s}.`)}}function RW(r,e){r().then(()=>e.fail(),()=>e())}function FW(r,e){let t=typeof e=="string"||typeof e=="number"||typeof e=="boolean"?[e]:e;return bo(r)||bo(r[0])||bo(e)||bo(e[0])?$w(r,t,(n,o)=>n==o):$w(r,e,(n,o)=>Rw(n,o,0))}function OW(r,e,t){if(t==null&&(t=Dw()),!Rw(r,e,t))throw new Error(`Numbers differ: actual === ${r}, expected === ${e}`)}function Rw(r,e,t){return!isFinite(r)&&!isFinite(e)?!0:!(isNaN(r)||isNaN(e)||Math.abs(r-e)>t)}function PW(r,e,t){for(let n=0;n<r.length;n++)if(r[n]<e||r[n]>t)throw new Error(`Value out of range:${r[n]} low: ${e}, high: ${t}`)}function MW(r,e){expect(new Float32Array(r)).toEqual(new Float32Array(e))}function TT(r){for(let e=0;e<r.length;e++){let t=r[e];Array.isArray(t)?TT(t):r[e]=ll(t)}return r}var LW="3.4.0";function rae(){W().set("PROD",!0)}function nae(){W().set("DEBUG",!0)}function oae(){W().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function Fw(r){W().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(r+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}ES(Fw);function sae(){A.disposeVariables()}function ds(){return A}function Mm(){return A.memory()}function iae(r){return A.profile(r)}function V(r,e){return A.tidy(r,e)}function Ae(r){Om(r).forEach(t=>t.dispose())}function Et(r){return A.keep(r)}function aae(r){return A.time(r)}function zW(r){return A.setBackend(r)}function lae(){return A.ready()}function uae(){return A.backendName}function cae(r){A.removeBackend(r)}function pae(r){return A.findBackend(r)}function mae(r){return A.findBackendFactory(r)}function Jc(r,e,t=1){return A.registerBackend(r,e,t)}function AT(){return A.backend}function fae(r,e){W().setPlatform(r,e)}function BW(r,e){let t=k(r,"a","add"),n=k(e,"b","add");[t,n]=je(t,n);let o={a:t,b:n};return A.runKernel(On,o)}var ee=S({add_:BW});function VW(r,e){let t=k(r,"a","floorDiv"),n=k(e,"b","floorDiv");[t,n]=je(t,n);let o={a:t,b:n};return A.runKernel(Ro,o)}var Jl=S({floorDiv_:VW});function GW(r,e){let t=k(r,"a","div"),n=k(e,"b","div");if([t,n]=je(t,n),t.dtype==="int32"&&n.dtype==="int32")return Jl(t,n);let o={a:t,b:n},s={};return A.runKernel(Eo,o,s)}var me=S({div_:GW});function WW(r,e){let t=k(r,"a","mul"),n=k(e,"b","mul");[t,n]=je(t,n);let o={a:t,b:n};return A.runKernel(Uo,o)}var P=S({mul_:WW});function jW(r){let e=k(r,"x","abs");if(e.dtype==="complex64"){let t={x:e};return A.runKernel(Za,t)}else{let t={x:e};return A.runKernel(Ls,t)}}var Nt=S({abs_:jW});function UW(r){let t={x:k(r,"x","acos")};return A.runKernel(_i,t)}var Lm=S({acos_:UW});function HW(r){let t={x:k(r,"x","acosh")};return A.runKernel(ki,t)}var zm=S({acosh_:HW});function qW(r){T(Array.isArray(r),()=>"The argument passed to tf.addN() must be a list of tensors"),T(r.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${r.length}`);let e=r.map((o,s)=>k(o,`tensors${s}`,"addN")),t=e[0];e.forEach(o=>{if(o.dtype!==t.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),e.forEach(o=>{if(!Kr(o.shape,t.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let n=e;return A.runKernel(wo,n)}var Ow=S({addN_:qW});function KW(r,e=null,t=!1){let o={x:k(r,"x","all","bool")},s={axis:e,keepDims:t};return A.runKernel(vi,o,s)}var Ql=S({all_:KW});function XW(r,e=null,t=!1){let o={x:k(r,"x","any","bool")},s={axis:e,keepDims:t};return A.runKernel(Ci,o,s)}var ml=S({any_:XW});function YW(r,e=0){let n={x:k(r,"x","argMax")},o={axis:e};return A.runKernel(_o,n,o)}var fl=S({argMax_:YW});function ZW(r,e=0){let n={x:k(r,"x","argMin")},o={axis:e};return A.runKernel(Ka,n,o)}var Bm=S({argMin_:ZW});function JW(r){let t={x:k(r,"x","asin")};return A.runKernel(Ii,t)}var Vm=S({asin_:JW});function QW(r){let t={x:k(r,"x","asinh")};return A.runKernel(Ni,t)}var Gm=S({asinh_:QW});function ej(r){let t={x:k(r,"x","atan")};return A.runKernel(Si,t)}var Wm=S({atan_:ej});function tj(r,e){let t=k(r,"a","atan2"),n=k(e,"b","atan2");[t,n]=je(t,n);let o={a:t,b:n};return A.runKernel(Ai,o)}var jm=S({atan2_:tj});function rj(r){let t={x:k(r,"x","atanh")};return A.runKernel(Ti,t)}var Um=S({atanh_:rj});function nj(r,e,t,n,o="NHWC",s){let a=r[3],i=[...e,a],l=ET(o);return eu(r,i,t,s,n,null,null,l)}function Pw(r,e,t,n,o,s,a="channelsLast"){let[i,l]=mg(e),u;if(a==="channelsLast")u=[i,l,r[3],r[3]];else if(a==="channelsFirst")u=[i,l,r[1],r[1]];else throw new Error(`Unknown dataFormat ${a}`);return eu(r,u,t,n,o,s,!1,a)}function oj(r,e,t,n,o,s,a="NDHWC"){let[i,l,u]=Mw(e),c,p;if(a==="NDHWC")p="channelsLast",c=[i,l,u,r[4],r[4]];else if(a==="NCDHW")p="channelsFirst",c=[i,l,u,r[1],r[1]];else throw new Error(`Unknown dataFormat ${a}`);return DT(r,c,t,n,o,!1,p,s)}function eu(r,e,t,n,o,s,a=!1,i="channelsLast"){let[l,u,c,p]=[-1,-1,-1,-1];if(i==="channelsLast")[l,u,c,p]=r;else if(i==="channelsFirst")[l,p,u,c]=r;else throw new Error(`Unknown dataFormat ${i}`);let[m,f,,d]=e,[h,g]=mg(t),[y,b]=mg(n),w=Qc(m,y),_=Qc(f,b),{padInfo:I,outHeight:E,outWidth:$}=sj(o,u,c,h,g,w,_,s,i),D=a?d*p:d,O;return i==="channelsFirst"?O=[l,D,E,$]:i==="channelsLast"&&(O=[l,E,$,D]),{batchSize:l,dataFormat:i,inHeight:u,inWidth:c,inChannels:p,outHeight:E,outWidth:$,outChannels:D,padInfo:I,strideHeight:h,strideWidth:g,filterHeight:m,filterWidth:f,effectiveFilterHeight:w,effectiveFilterWidth:_,dilationHeight:y,dilationWidth:b,inShape:r,outShape:O,filterShape:e}}function DT(r,e,t,n,o,s=!1,a="channelsLast",i){let[l,u,c,p,m]=[-1,-1,-1,-1,-1];if(a==="channelsLast")[l,u,c,p,m]=r;else if(a==="channelsFirst")[l,m,u,c,p]=r;else throw new Error(`Unknown dataFormat ${a}`);let[f,d,h,,g]=e,[y,b,w]=Mw(t),[_,I,E]=Mw(n),$=Qc(f,_),D=Qc(d,I),O=Qc(h,E),{padInfo:M,outDepth:G,outHeight:j,outWidth:U}=ij(o,u,c,p,y,b,w,$,D,O,i),H=s?g*m:g,q;return a==="channelsFirst"?q=[l,H,G,j,U]:a==="channelsLast"&&(q=[l,G,j,U,H]),{batchSize:l,dataFormat:a,inDepth:u,inHeight:c,inWidth:p,inChannels:m,outDepth:G,outHeight:j,outWidth:U,outChannels:H,padInfo:M,strideDepth:y,strideHeight:b,strideWidth:w,filterDepth:f,filterHeight:d,filterWidth:h,effectiveFilterDepth:$,effectiveFilterHeight:D,effectiveFilterWidth:O,dilationDepth:_,dilationHeight:I,dilationWidth:E,inShape:r,outShape:q,filterShape:e}}function aj(r,e,t,n,o){n==null&&(n=Lw(r,e,t));let s=r[0],a=r[1],i=tu((s-e+2*n)/t+1,o),l=tu((a-e+2*n)/t+1,o);return[i,l]}function lj(r,e,t,n,o,s){o==null&&(o=Lw(r,e,n));let a=r[0],i=r[1],l=r[2],u=tu((a-e+2*o)/n+1,s),c=tu((i-e+2*o)/n+1,s),p=tu((l-e+2*o)/n+1,s);return[u,c,p,t]}function Lw(r,e,t,n=1){let o=Qc(e,n);return Math.floor((r[0]*(t-1)-t+o)/2)}function mg(r){return typeof r=="number"?[r,r,r]:r.length===2?[r[0],r[1],1]:r}function Mw(r){return typeof r=="number"?[r,r,r]:r}function Qc(r,e){return e<=1?r:r+(r-1)*(e-1)}function sj(r,e,t,n,o,s,a,i,l){let u,c,p;if(typeof r=="number"){u={top:r,bottom:r,left:r,right:r,type:r===0?"VALID":"NUMBER"};let f=aj([e,t],s,n,r,i);c=f[0],p=f[1]}else if(r==="same"){c=Math.ceil(e/n),p=Math.ceil(t/o);let m=Math.max(0,(c-1)*n+s-e),f=Math.max(0,(p-1)*o+a-t),d=Math.floor(m/2),h=m-d,g=Math.floor(f/2),y=f-g;u={top:d,bottom:h,left:g,right:y,type:"SAME"}}else if(r==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((e-s+1)/n),p=Math.ceil((t-a+1)/o);else if(typeof r=="object"){let m=l==="channelsLast"?r[1][0]:r[2][0],f=l==="channelsLast"?r[1][1]:r[2][1],d=l==="channelsLast"?r[2][0]:r[3][0],h=l==="channelsLast"?r[2][1]:r[3][1];u={top:m,bottom:f,left:d,right:h,type:m===0&&f===0&&d===0&&h===0?"VALID":"EXPLICIT"},c=tu((e-s+m+f)/n+1,i),p=tu((t-a+d+h)/o+1,i)}else throw Error(`Unknown padding parameter: ${r}`);return{padInfo:u,outHeight:c,outWidth:p}}function ij(r,e,t,n,o,s,a,i,l,u,c){let p,m,f,d;if(typeof r=="number"){p={top:r,bottom:r,left:r,right:r,front:r,back:r,type:r===0?"VALID":"NUMBER"};let g=lj([e,t,n,1],i,1,o,r,c);m=g[0],f=g[1],d=g[2]}else if(r==="same"){m=Math.ceil(e/o),f=Math.ceil(t/s),d=Math.ceil(n/a);let h=(m-1)*o+i-e,g=(f-1)*s+l-t,y=(d-1)*a+u-n,b=Math.floor(h/2),w=h-b,_=Math.floor(g/2),I=g-_,E=Math.floor(y/2),$=y-E;p={top:_,bottom:I,left:E,right:$,front:b,back:w,type:"SAME"}}else if(r==="valid")p={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},m=Math.ceil((e-i+1)/o),f=Math.ceil((t-l+1)/s),d=Math.ceil((n-u+1)/a);else throw Error(`Unknown padding parameter: ${r}`);return{padInfo:p,outDepth:m,outHeight:f,outWidth:d}}function tu(r,e){if(!e)return Math.trunc(r);switch(e){case"round":return Math.round(r);case"ceil":return Math.ceil(r);case"floor":return Math.floor(r);default:throw new Error(`Unknown roundingMode ${e}`)}}function Ln(r){let[e,t,n]=mg(r);return e===1&&t===1&&n===1}function _r(r,e){return Ln(r)||Ln(e)}function ET(r){if(r==="NHWC")return"channelsLast";if(r==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${r}`)}function uj(r,e){let n={x:k(r,"x","reshape","string_or_numeric")},o={shape:e};return A.runKernel(Us,n,o)}var L=S({reshape_:uj});function cj(r,e,t,n,o){let s=k(r,"x","avgPool","float32"),a=1;T(_r(t,a),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${t} and dilations '${a}'`);let i=s,l=!1;s.rank===3&&(l=!0,i=L(s,[1,s.shape[0],s.shape[1],s.shape[2]])),T(i.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${i.rank}.`),o!=null&&T(ot(n),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${o} but got pad ${n}.`);let u={x:i},c={filterSize:e,strides:t,pad:n,dimRoundingMode:o},p=A.runKernel(ko,u,c);return p=oe(p,s.dtype),l?L(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var fa=S({avgPool_:cj});function pj(r,e,t,n,o,s="NDHWC"){let a=k(r,"x","avgPool3d","float32"),i=a,l=!1;a.rank===4&&(l=!0,i=L(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]])),T(i.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${i.rank}.`),T(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),o!=null&&T(ot(n),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${n}.`);let u={x:i},c={filterSize:e,strides:t,pad:n,dimRoundingMode:o,dataFormat:s},p=A.runKernel(Xa,u,c);return p=oe(p,i.dtype),l?L(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var Hm=S({avgPool3d_:pj});function mj(r,e=0){T(r.length>=1,()=>"Pass at least one tensor to concat");let t=la(r,"tensors","concat","string_or_numeric");if(t[0].dtype==="complex64"&&t.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${s.dtype}. `)}),t.length===1)return Mn(t[0]);let n=t,o={axis:e};return A.runKernel(zs,n,o)}var Qe=S({concat_:mj});function fj(r){let t={x:k(r,"x","sigmoid")};return A.runKernel(ns,t)}var Zr=S({sigmoid_:fj});function dj(r,e,t){let n=k(r,"x","slice","string_or_numeric");if(n.rank===0)throw new Error("Slicing scalar is not possible");let o={x:n},s={begin:e,size:t};return A.runKernel(qs,o,s)}var Fe=S({slice_:dj});function hj(r){let t={x:k(r,"x","tanh")};return A.runKernel(cs,t)}var ri=S({tanh_:hj});function gj(r,e,t,n,o,s){let a=k(r,"forgetBias","basicLSTMCell"),i=k(e,"lstmKernel","basicLSTMCell"),l=k(t,"lstmBias","basicLSTMCell"),u=k(n,"data","basicLSTMCell"),c=k(o,"c","basicLSTMCell"),p=k(s,"h","basicLSTMCell"),m=Qe([u,p],1),f=ze(m,i),d=ee(f,l),h=d.shape[0],g=d.shape[1]/4,y=[h,g],b=Fe(d,[0,0],y),w=Fe(d,[0,g],y),_=Fe(d,[0,g*2],y),I=Fe(d,[0,g*3],y),E=ee(P(Zr(b),ri(w)),P(c,Zr(ee(a,_)))),$=P(ri(E),Zr(I));return[E,$]}var xj=S({basicLSTMCell_:gj});function yj(r,e,t){let n=k(r,"x","batchToSpaceND"),o=e.reduce((i,l)=>i*l);T(n.rank>=1+e.length,()=>`input rank is ${n.rank} but should be > than blockShape.length ${e.length}`),T(t.length===e.length,()=>`crops.length is ${t.length} but should be equal to blockShape.length ${e.length}`),T(n.shape[0]%o==0,()=>`input tensor batch is ${n.shape[0]} but is not divisible by the product of the elements of blockShape ${e.join(" * ")} === ${o}`);let s={x:n},a={blockShape:e,crops:t};return A.runKernel(Ya,s,a)}var da=S({batchToSpaceND_:yj});function $T(r){let e;return r.rank===0||r.rank===1?e=L(r,[1,1,1,r.size]):r.rank===2?e=L(r,[1,1,r.shape[0],r.shape[1]]):r.rank===3?e=L(r,[1,r.shape[0],r.shape[1],r.shape[2]]):e=r,e}function bj(r,e,t,n,o,s){s==null&&(s=.001);let a=k(r,"x","batchNorm"),i=k(e,"mean","batchNorm"),l=k(t,"variance","batchNorm"),u;o!=null&&(u=k(o,"scale","batchNorm"));let c;n!=null&&(c=k(n,"offset","batchNorm")),T(i.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),T(c==null||i.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),T(u==null||i.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let m={x:$T(a),scale:u,offset:c,mean:i,variance:l},f={varianceEpsilon:s},d=A.runKernel(Fo,m,f);return L(d,a.shape)}var Jn=S({batchNorm_:bj});function wj(r,e,t,n,o,s){let a=k(r,"x","batchNorm"),i=k(e,"mean","batchNorm"),l=k(t,"variance","batchNorm"),u;o!=null&&(u=k(o,"scale","batchNorm"));let c;return n!=null&&(c=k(n,"offset","batchNorm")),T(a.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${a.rank}.`),T(i.rank===2||i.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${i.rank}.`),T(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&T(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),c!=null&&T(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),Jn(a,i,l,c,u,s)}var zw=S({batchNorm2d_:wj});function _j(r,e,t,n,o,s){let a=k(r,"x","batchNorm"),i=k(e,"mean","batchNorm"),l=k(t,"variance","batchNorm"),u;o!=null&&(u=k(o,"scale","batchNorm"));let c;return n!=null&&(c=k(n,"offset","batchNorm")),T(a.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${a.rank}.`),T(i.rank===3||i.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${i.rank}.`),T(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&T(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),c!=null&&T(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),Jn(a,i,l,c,u,s)}var Bw=S({batchNorm3d_:_j});function kj(r,e,t,n,o,s){let a=k(r,"x","batchNorm"),i=k(e,"mean","batchNorm"),l=k(t,"variance","batchNorm"),u;o!=null&&(u=k(o,"scale","batchNorm"));let c;return n!=null&&(c=k(n,"offset","batchNorm")),T(a.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${a.rank}.`),T(i.rank===4||i.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${i.rank}.`),T(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&T(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),c!=null&&T(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),Jn(a,i,l,c,u,s)}var Vw=S({batchNorm4d_:kj});function vj(r,e,t){let n=k(r,"x","bincount"),o=k(e,"weights","bincount");T(n.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${n.dtype}`),T(t>=0,()=>`size must be non-negative, but got ${t}.`),T(o.size===n.size||o.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${n.shape}, weights shape: ${o.shape}.`);let s={x:n,weights:o},a={size:t};return A.runKernel(yc,s,a)}var Gw=S({bincount_:vj});function Cj(r,e){let t=k(r,"broadcastTo","x"),n=t.shape;if(e.some(u=>!(u>0)||u%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${e}].`);if(e.length<t.rank)throw new Error(`broadcastTo(): shape.length=${e.length} < input.rank=${t.rank}.`);if(e.length>t.rank){let u=t.shape.slice();for(;u.length<e.length;)u.unshift(1);t=L(t,u)}let o=t.shape,s=Array.from(e);for(let u=e.length-1;u>=0;u--)if(o[u]===e[u])s[u]=1;else if(t.shape[u]!==1)throw new Error(`broadcastTo(): [${n}] cannot be broadcast to [${e}].`);if(s.map((u,c)=>u>1?c:-1).filter(u=>u>=0).length===0)return Mn(t);let i={x:t},l={reps:s};return A.runKernel(Pn,i,l)}var ha=S({broadcastTo_:Cj});function Ij(r){let t={x:k(r,"x","ceil")};return A.runKernel(Co,t)}var qm=S({ceil_:Ij});function Nj(r,e,t){let n=k(r,"x","clipByValue");T(e<=t,()=>`Error in clip: min (${e}) must be less than or equal to max (${t}).`);let o={x:n},s={clipValueMin:e,clipValueMax:t};return A.runKernel(Kn,o,s)}var lr=S({clipByValue_:Nj});function Sj(r){return Qe(r,0)}var Ww=S({concat1d_:Sj});function Tj(r,e){return Qe(r,e)}var jw=S({concat2d_:Tj});function Aj(r,e){return Qe(r,e)}var Uw=S({concat3d_:Aj});function Ej(r,e){return Qe(r,e)}var Hw=S({concat4d_:Ej});function Dj(r,e,t,n,o="NHWC",s=[1,1],a){let i=k(r,"x","conv2d"),l=k(e,"filter","conv2d"),u=i,c=!1;i.rank===3&&(c=!0,u=L(i,[1,i.shape[0],i.shape[1],i.shape[2]])),T(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),T(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),a!=null&&T(ot(n),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${n}.`);let p=o==="NHWC"?u.shape[3]:u.shape[1];T(p===l.shape[2],()=>`Error in conv2d: depth of input (${p}) must match input depth for filter ${l.shape[2]}.`),T(_r(t,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${t} and dilations '${s}'`);let m={x:u,filter:l},f={strides:t,pad:n,dataFormat:o,dilations:s,dimRoundingMode:a},d=A.runKernel(Io,m,f);return c?L(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Jr=S({conv2d_:Dj});function $j(r,e,t,n,o="NWC",s=1,a){let i=k(r,"x","conv1d"),l=k(e,"filter","conv1d"),u=i,c=!1;i.rank===2&&(c=!0,u=L(i,[1,i.shape[0],i.shape[1]])),T(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),T(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),a!=null&&T(ot(n),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${n}.`),T(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),T(_r(t,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${t} and dilation '${s}'`),T(o==="NWC",()=>`Error in conv1d: got dataFormat of ${o} but only NWC is currently supported.`);let p=L(l,[1,l.shape[0],l.shape[1],l.shape[2]]),m=L(u,[u.shape[0],1,u.shape[1],u.shape[2]]),g=Jr(m,p,[1,t],n,"NHWC",[1,s],a);return c?L(g,[g.shape[2],g.shape[3]]):L(g,[g.shape[0],g.shape[2],g.shape[3]])}var ru=S({conv1d_:$j});function Rj(r,e,t,n,o,s="NHWC",a){T(r.length===e.rank,()=>`Length of inShape (${r.length}) and rank of dy (${e.rank}) must match`);let i=r,l=e,u=!1;e.rank===3&&(u=!0,l=L(e,[1,e.shape[0],e.shape[1],e.shape[2]]),i=[1,r[0],r[1],r[2]]),T(i.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${i.length}.`),T(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),T(t.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${t.rank}`);let c=s==="NHWC"?i[3]:i[1],p=s==="NHWC"?l.shape[3]:l.shape[1];T(c===t.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${t.shape[2]}.`),T(p===t.shape[3],()=>`Error in conv2dDerInput: depth of output (${p}) must match output depth for filter ${t.shape[3]}.`),a!=null&&T(ot(o),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${a} but got pad ${o}.`);let m={dy:l,filter:t},f={strides:n,pad:o,dataFormat:s,dimRoundingMode:a,inputShape:i},d=A.runKernel(No,m,f);return u?L(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var ep=S({conv2DBackpropInput_:Rj});function Fj(r,e,t,n,o,s){let a=k(r,"x","conv2dTranspose"),i=k(e,"filter","conv2dTranspose");return ep(t,a,i,n,o,"NHWC",s)}var nu=S({conv2dTranspose_:Fj});function Oj(r,e,t,n,o="NDHWC",s=[1,1,1]){let a=k(r,"x","conv3d"),i=k(e,"filter","conv3d"),l=a,u=!1;a.rank===4&&(u=!0,l=L(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]])),T(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),T(i.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${i.rank}.`),T(l.shape[4]===i.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${i.shape[3]}.`),T(_r(t,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${t} and dilations '${s}'`),T(o==="NDHWC",()=>`Error in conv3d: got dataFormat of ${o} but only NDHWC is currently supported.`);let c={x:l,filter:i},p={strides:t,pad:n,dataFormat:o,dilations:s},m=A.runKernel(Ja,c,p);return u?L(m,[m.shape[1],m.shape[2],m.shape[3],m.shape[4]]):m}var Km=S({conv3d_:Oj});function Pj(r,e,t,n,o){T(r.length===e.rank,()=>`Length of inShape (${r.length}) and rank of dy (${e.rank}) must match`);let s=r,a=e,i=!1;e.rank===4&&(i=!0,a=L(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]),s=[1,r[0],r[1],r[2],r[3]]);let l=s[4],u=a.shape[4];T(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),T(a.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${a.rank}`),T(t.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${t.rank}`),T(l===t.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${t.shape[3]}.`),T(u===t.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${t.shape[4]}.`);let c={dy:a,filter:t},p={pad:o,strides:n,inputShape:s},m=A.runKernel(kc,c,p);return i?L(m,[m.shape[1],m.shape[2],m.shape[3],m.shape[4]]):m}var fg=S({conv3DBackpropInput_:Pj});function Mj(r,e,t,n,o){let s=k(r,"x","conv3dTranspose"),a=k(e,"filter","conv3dTranspose");return fg(t,s,a,n,o)}var qw=S({conv3dTranspose_:Mj});function Lj(r){let t={x:k(r,"x","cos")};return A.runKernel(So,t)}var ga=S({cos_:Lj});function zj(r){let t={x:k(r,"x","cosh")};return A.runKernel(Ei,t)}var ou=S({cosh_:zj});function Bj(r,e=0,t=!1,n=!1){let s={x:k(r,"x","cumsum")},a={axis:e,exclusive:t,reverse:n};return A.runKernel(To,s,a)}var su=S({cumsum_:Bj});function Vj(r,e,t,n=!1){let o=k(r,"x","denseBincount"),s=k(e,"weights","denseBincount");T(o.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${o.dtype}`),T(o.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${o.rank}.`),T(t>=0,()=>`size must be non-negative, but got ${t}.`),T(s.size===o.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${o.shape}, weights shape: ${s.shape}.`);let a={x:o,weights:s},i={size:t,binaryOutput:n};return A.runKernel(vc,a,i)}var Kw=S({denseBincount_:Vj});function Gj(r,e,t="NHWC"){let n=k(r,"x","depthToSpace"),o=t==="NHWC"?n.shape[1]:n.shape[2],s=t==="NHWC"?n.shape[2]:n.shape[3],a=t==="NHWC"?n.shape[3]:n.shape[1];T(o*e>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${o} and ${e} for depthToSpace with input shape
|
|
${n.shape}`),T(s*e>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${s} and ${e} for depthToSpace with input shape
|
|
${n.shape}`),T(a%(e*e)==0,()=>`Dimension size must be evenly divisible by ${e*e} but is ${a} for depthToSpace with input shape ${n.shape}`);let i={x:n},l={blockSize:e,dataFormat:t};return A.runKernel($i,i,l)}var Xm=S({depthToSpace_:Gj});function Wj(r,e,t,n,o="NHWC",s=[1,1],a){let i=k(r,"x","depthwiseConv2d"),l=k(e,"filter","depthwiseConv2d"),u=i,c=!1;i.rank===3&&(c=!0,u=L(i,[1,i.shape[0],i.shape[1],i.shape[2]])),T(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),T(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),T(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),a!=null&&T(ot(n),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${n}.`);let p={x:u,filter:l},m={strides:t,pad:n,dataFormat:o,dilations:s,dimRoundingMode:a},f=A.runKernel(Ao,p,m);return c?L(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var hs=S({depthwiseConv2d_:Wj});function jj(r){let t={x:k(r,"x","diag")};return A.runKernel(Nc,t)}var Uj=S({diag_:jj});function Hj(r,e,t,n,o=[1,1],s="NHWC"){let a=k(r,"x","dilation2d"),i=k(e,"filter","dilation2d");T(a.rank===3||a.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${a.rank}.`),T(i.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${i.rank}.`),T(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=a,u=!1;a.rank===3&&(l=L(a,[1,a.shape[0],a.shape[1],a.shape[2]]),u=!0);let c={x:l,filter:i},p={strides:t,pad:n,dilations:o},m=A.runKernel(Qa,c,p);return u?L(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Ym=S({dilation2d_:Hj});function qj(r,e){let t=r.length,n=[];for(let o=0;o<t;o++){let s=t-1-o,a=r[s]||1;(e[e.length-1-o]||1)>1&&a===1&&n.unshift(s)}return n}function kt(r,e){let t=[];for(let n=0;n<e.length;n++){let o=r[r.length-n-1],s=e.length-n-1,a=e[s];(o==null||o===1&&a>1)&&t.unshift(s)}return t}function Be(r,e){let t=[],n=Math.max(r.length,e.length);for(let o=0;o<n;o++){let s=r[r.length-o-1];s==null&&(s=1);let a=e[e.length-o-1];if(a==null&&(a=1),s===1)t.unshift(a);else if(a===1)t.unshift(s);else if(s!==a){let i=`Operands could not be broadcast together with shapes ${r} and ${e}.`;throw Error(i)}else t.unshift(s)}return t}function Kj(r,e){let t=k(r,"a","equal"),n=k(e,"b","equal");[t,n]=je(t,n),Be(t.shape,n.shape);let o={a:t,b:n};return A.runKernel(Oi,o)}var Nn=S({equal_:Kj});function Xj(r,e,t){let n=k(e,"a","where"),o=k(t,"b","where"),s=k(r,"condition","where","bool"),a=Be(Be(s.shape,n.shape),o.shape),i=ha(s,a),l=ha(n,a),u=ha(o,a),c={condition:i,t:l,e:u};return A.runKernel(Hs,c)}var Dt=S({where_:Xj});function Yj(r){let t={x:k(r,"x","zerosLike")};return A.runKernel(Ys,t)}var Ie=S({zerosLike_:Yj});function Zj(r,e){let t=k(r,"a","div"),n=k(e,"b","div");[t,n]=je(t,n);let o=me(t,n),s=Ie(o),a=Nn(n,s);return Dt(a,s,o)}var Zm=S({divNoNan_:Zj});function Jj(r,e){let t=k(r,"t1","dot"),n=k(e,"t2","dot");T((t.rank===1||t.rank===2)&&(n.rank===1||n.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${t.rank} and ${n.rank}.`);let o=t.rank===1?t.size:t.shape[1],s=n.rank===1?n.size:n.shape[0];if(T(o===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${o} and ${s}.`),t.rank===1&&n.rank===1){let a=L(t,[1,-1]),i=L(n,[-1,1]),l=ze(a,i);return L(l,[])}else if(t.rank===1&&n.rank===2){let a=L(t,[1,-1]),i=L(n,[n.shape[0],n.shape[1]]),l=ze(a,i);return L(l,[l.size])}else if(t.rank===2&&n.rank===1){let a=L(n,[-1,1]),i=ze(t,a);return L(i,[i.size])}else{let a=L(n,[n.shape[0],n.shape[1]]);return ze(t,a)}}var Xw=S({dot_:Jj});function Qj(r,...e){let t=e.map((o,s)=>k(o,`tensors${s}`,"einsum")),n={equation:r};return A.runKernel(Sc,t,n)}var Yw=S({einsum_:Qj});function e4(r){let t={x:k(r,"x","elu")};return A.runKernel(Ri,t)}var gs=S({elu_:e4});function t4(r){let e=k(r,"x","erf");T(e.dtype==="int32"||e.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),e.dtype==="int32"&&(e=oe(e,"float32"));let t={x:e};return A.runKernel(Fi,t)}var Jm=S({erf_:t4});function r4(r){let t={x:k(r,"x","exp")};return A.runKernel(Do,t)}var Jt=S({exp_:r4});function n4(r,e=0){let t=k(r,"x","expandDims","string_or_numeric");T(e<=t.rank,()=>"Axis must be <= rank of the tensor");let n={input:t},o={dim:e};return A.runKernel(Bs,n,o)}var ur=S({expandDims_:n4});function o4(r){let t={x:k(r,"x","expm1")};return A.runKernel(Pi,t)}var Qm=S({expm1_:o4});function s4(r,e){let t=k(r,"x","tile","string_or_numeric");T(t.rank===e.length,()=>`Error in transpose: rank of input ${t.rank} must match length of reps ${e}.`);let n={x:t},o={reps:e};return A.runKernel(Pn,n,o)}var zn=S({tile_:s4});function i4(r,e,t,n="float32"){e==null&&(e=r);let o=Ce([r,e],n),s=r<=e?r:e;for(let i=0;i<s;++i)o.set(1,i,i);let a=L(o.toTensor(),[r,e]);if(t==null)return a;if(t.length===1)return zn(ur(a,0),[t[0],1,1]);if(t.length===2)return zn(ur(ur(a,0),0),[t[0],t[1],1,1]);if(t.length===3)return zn(ur(ur(ur(a,0),0),0),[t[0],t[1],t[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${t.length}D.`)}var tp=S({eye_:i4});function xa(r,e,t){let n={shape:r,value:e,dtype:t};return A.runKernel(el,{},n)}function a4(r){let t={x:k(r,"x","floor")};return A.runKernel($o,t)}var xs=S({floor_:a4});function l4(r,e,t=0,n=0){let o=k(r,"x","gather"),s=k(e,"indices","gather","int32"),a={x:o,indices:s},i={axis:t,batchDims:n};return A.runKernel(Vs,a,i)}var Qn=S({gather_:l4});function u4(r,e){let t=k(r,"a","greater"),n=k(e,"b","greater");[t,n]=je(t,n),Be(t.shape,n.shape);let o={a:t,b:n};return A.runKernel(zi,o)}var nr=S({greater_:u4});function c4(r,e){let t=k(r,"a","greaterEqual"),n=k(e,"b","greaterEqual");[t,n]=je(t,n),Be(t.shape,n.shape);let o={a:t,b:n};return A.runKernel(Oo,o)}var dn=S({greaterEqual_:c4});function p4(r){let t={input:k(r,"input","imag")};return A.runKernel(Dc,t)}var iu=S({imag_:p4});function m4(r){let t={x:k(r,"x","isFinite")};return A.runKernel(Bi,t)}var Zw=S({isFinite_:m4});function f4(r){let t={x:k(r,"x","isInf")};return A.runKernel(Vi,t)}var Jw=S({isInf_:f4});function d4(r){let t={x:k(r,"x","isNaN")};return A.runKernel(Gi,t)}var ef=S({isNaN_:d4});function h4(r,e=.2){let n={x:k(r,"x","leakyRelu")},o={alpha:e};return A.runKernel(Po,n,o)}var ya=S({leakyRelu_:h4});function g4(r,e){let t=k(r,"a","less"),n=k(e,"b","less");[t,n]=je(t,n),Be(t.shape,n.shape);let o={a:t,b:n};return A.runKernel(Wi,o)}var au=S({less_:g4});function x4(r,e){let t=k(r,"a","lessEqual"),n=k(e,"b","lessEqual");[t,n]=je(t,n),Be(t.shape,n.shape);let o={a:t,b:n};return A.runKernel(ji,o)}var Bn=S({lessEqual_:x4});function Qw(r,e,t){if(t<=0)throw new Error("The number of values should be positive.");let n={start:r,stop:e,num:t};return A.runKernel($c,{},n)}function y4(r,e=5,t=1,n=1,o=.5){let s=k(r,"x","localResponseNormalization");T(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
|
|
rank ${s.rank}.`),T(ot(e),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${e}.`);let a=s,i=!1;s.rank===3&&(i=!0,a=L(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:a},u={depthRadius:e,bias:t,alpha:n,beta:o},c=A.runKernel(tl,l,u);return i?L(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var tf=S({localResponseNormalization_:y4});function b4(r){let t={x:k(r,"x","log")};return A.runKernel(Mo,t)}var cr=S({log_:b4});function w4(r){let t={x:k(r,"x","log1p")};return A.runKernel(Ui,t)}var lu=S({log1p_:w4});function _4(r){return T(Ps(r),()=>"The f passed in grad(f) must be a function"),(e,t)=>{let n=k(e,"x","tf.grad","string_or_numeric"),o=t!=null?k(t,"dy","tf.grad"):null;return A.tidy(()=>{let{value:s,grads:a}=A.gradients(()=>r(n),[n],o);return o!=null&&At(s.shape,o.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),dg(a),a[0]})}}function k4(r){return T(Ps(r),()=>"The f passed in grads(f) must be a function"),(e,t)=>{T(Array.isArray(e),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let n=la(e,"args","tf.grads","string_or_numeric"),o=t!=null?k(t,"dy","tf.grads"):null;return A.tidy(()=>{let{value:s,grads:a}=A.gradients(()=>r(...n),n,o);return o!=null&&At(s.shape,o.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),dg(a),a})}}function v4(r){return T(Ps(r),()=>"The f passed in valueAndGrad(f) must be a function"),(e,t)=>{T(e instanceof Oe,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),T(t==null||t instanceof Oe,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:n,value:o}=A.gradients(()=>r(e),[e],t);return dg(n),{grad:n[0],value:o}}}function C4(r){return T(Ps(r),()=>"The f passed in valueAndGrads(f) must be a function"),(e,t)=>{T(Array.isArray(e)&&e.every(o=>o instanceof Oe),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),T(t==null||t instanceof Oe,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let n=A.gradients(()=>r(...e),e,t);return t!=null&&At(n.value.shape,t.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),dg(n.grads),n}}function hg(r,e){T(Ps(r),()=>"The f passed in variableGrads(f) must be a function"),T(e==null||Array.isArray(e)&&e.every(u=>u instanceof ul),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let t=e!=null;if(!t){e=[];for(let u in A.registeredVariables)e.push(A.registeredVariables[u])}let n=t?e.filter(u=>!u.trainable):null,o=e.length;e=e.filter(u=>u.trainable),T(e.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${o} variables is trainable.`);let s=!0,{value:a,grads:i}=A.gradients(r,e,null,s);T(i.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),T(a.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${a.rank} tensor`);let l={};return e.forEach((u,c)=>{i[c]!=null&&(l[u.name]=i[c])}),n!=null&&n.forEach(u=>l[u.name]=null),{value:a,grads:l}}function Qr(r){return A.customGrad(r)}function dg(r){if(r.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
|
|
the f you passed encloses all operations that lead from x to y.`)}function I4(r){let t={x:k(r,"x","neg")};return A.runKernel(Gs,t)}var qe=S({neg_:I4});function N4(r){let t={x:k(r,"x","softplus")};return A.runKernel(oa,t)}var ys=S({softplus_:N4});function S4(r){let e=k(r,"x","logSigmoid");return Qr(n=>({value:qe(ys(qe(n))),gradFunc:a=>P(a,Zr(qe(n)))}))(e)}var e_=S({logSigmoid_:S4});function T4(r,e=null,t=!1){let o={x:k(r,"x","max")},s={reductionIndices:e,keepDims:t};return A.runKernel(Lo,o,s)}var pr=S({max_:T4});function A4(r,e){let t=k(r,"a","sub"),n=k(e,"b","sub");[t,n]=je(t,n);let o={a:t,b:n};return A.runKernel(ls,o)}var pe=S({sub_:A4});function E4(r,e=null,t=!1){let n=k(r,"x","sum");n.dtype==="bool"&&(n=oe(n,"int32"));let o={x:n},s={axis:e,keepDims:t};return A.runKernel(ss,o,s)}var ge=S({sum_:E4});function D4(r,e=-1){let t=k(r,"logits","logSoftmax");if(e===-1&&(e=t.rank-1),e!==t.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${t.rank} and axis was ${e}`);return Qr((o,s)=>{let a=!0,i=pr(o,e,!0),l=pe(o,i),u=pe(oe(l,"float32"),cr(ge(Jt(l),e,a)));return s([u]),{value:u,gradFunc:(p,m)=>{let[f]=m,d=!0,h=Jt(f);return pe(p,P(ge(p,e,d),h))}}})(t)}var uu=S({logSoftmax_:D4});function t_(r,e){for(let t=0;t<r.length;++t)if(r[r.length-t-1]!==e-1-t)return!1;return!0}function RT(r,e,t){let n=r.length+e.length,o=[],s=0,a=0;for(let i=0;i<n;i++)t.indexOf(i)===-1?o.push(r[s++]):o.push(e[a++]);return o}function r_(r,e){let t=[],n=r.length;for(let s=0;s<n;s++)e.indexOf(s)===-1&&t.push(r[s]);let o=e.map(s=>r[s]);return[t,o]}function eo(r,e){let t=e.map(n=>1);return RT(r,t,e)}function $4(r,e,t){T(t_(e,t),()=>`${r} supports only inner-most axes for now. Got axes ${e} and rank-${t} input.`)}function n_(r,e){if(t_(r,e))return null;let t=[];for(let n=0;n<e;++n)r.indexOf(n)===-1&&t.push(n);return r.forEach(n=>t.push(n)),t}function rf(r){return r.map((e,t)=>[t,e]).sort((e,t)=>e[1]-t[1]).map(e=>e[0])}function R4(r,e){let t=[];for(let n=e-r;n<e;++n)t.push(n);return t}function F4(r,e=null,t=!1){let n=k(r,"x","logSumExp"),o=tr(e,n.shape),s=pr(n,o,!0),a=pe(n,s),i=Jt(a),l=ge(i,o),u=cr(l),c=ee(L(s,u.shape),u);if(t){let p=eo(c.shape,o);return L(c,p)}return c}var nf=S({logSumExp_:F4});function O4(r,e){let t=k(r,"a","logicalAnd","bool"),n=k(e,"b","logicalAnd","bool");Be(t.shape,n.shape);let o={a:t,b:n};return A.runKernel(Hi,o)}var xr=S({logicalAnd_:O4});function P4(r){let t={x:k(r,"x","logicalNot","bool")};return A.runKernel(jl,t)}var ba=S({logicalNot_:P4});function M4(r,e){let t=k(r,"a","logicalOr","bool"),n=k(e,"b","logicalOr","bool");Be(t.shape,n.shape);let o={a:t,b:n};return A.runKernel(Ul,o)}var cu=S({logicalOr_:M4});function L4(r,e){let t=k(r,"a","logicalXor","bool"),n=k(e,"b","logicalXor","bool");return Be(t.shape,n.shape),xr(cu(r,e),ba(xr(r,e)))}var o_=S({logicalXor_:L4});function z4(r,e,t,n,o){let s=k(r,"x","maxPool"),a=1,i=s,l=!1;s.rank===3&&(l=!0,i=L(s,[1,s.shape[0],s.shape[1],s.shape[2]])),T(i.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${i.rank}.`),T(_r(t,a),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${t} and dilations '${a}'`),o!=null&&T(ot(n),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${o} but got pad ${n}.`);let u={x:i},c={filterSize:e,strides:t,pad:n,dimRoundingMode:o},p=A.runKernel(Bo,u,c);return l?L(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var wa=S({maxPool_:z4});function B4(r,e=[1,1,1],t,n,o,s="NDHWC"){let a=k(r,"x","maxPool3d"),i=a,l=!1;a.rank===4&&(l=!0,i=L(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]])),T(i.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${i.rank}.`),T(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),o!=null&&T(ot(n),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${n}.`);let u={x:i},c={filterSize:e,strides:t,pad:n,dimRoundingMode:o,dataFormat:s},p=A.runKernel(rl,u,c);return l?L(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var of=S({maxPool3d_:B4});function V4(r,e,t,n,o=!1){let a={x:k(r,"x","maxPoolWithArgmax")},i={filterSize:e,strides:t,pad:n,includeBatchInIndex:o},l=A.runKernel(Pc,a,i);return{result:l[0],indexes:l[1]}}var s_=S({maxPoolWithArgmax_:V4});function G4(r,e){let t=k(r,"a","maximum"),n=k(e,"b","maximum");[t,n]=je(t,n),t.dtype==="bool"&&(t=oe(t,"int32"),n=oe(n,"int32")),Be(t.shape,n.shape);let o={a:t,b:n};return A.runKernel(zo,o)}var en=S({maximum_:G4});function W4(r,e=null,t=!1){let o={x:k(r,"x","mean")},s={axis:e,keepDims:t};return A.runKernel(Vo,o,s)}var dt=S({mean_:W4});function ht(r,e="float32"){if(e==="complex64"){let n=ht(r,"float32"),o=ht(r,"float32");return In(n,o)}let t=hc(nt(r),e);return A.makeTensor(t,r,e)}function Qt(r,e="float32"){if(e==="complex64"){let n=Qt(r,"float32"),o=ht(r,"float32");return In(n,o)}let t=vm(nt(r),e);return A.makeTensor(t,r,e)}function j4(r,e,{indexing:t="xy"}={}){if(t!=="xy"&&t!=="ij")throw new TypeError(`${t} is not a valid third argument to meshgrid`);if(r===void 0)return[];let n=k(r,"x","meshgrid",r instanceof Oe?r.dtype:"float32");if(e===void 0)return[n];let o=k(e,"y","meshgrid",e instanceof Oe?e.dtype:"float32"),s=nt(n.shape),a=nt(o.shape);return t==="xy"?(n=L(n,[1,-1]),o=L(o,[-1,1]),[ze(Qt([a,1],n.dtype),n),ze(o,Qt([1,s],o.dtype))]):(n=L(n,[-1,1]),o=L(o,[1,-1]),[ze(n,Qt([1,a],n.dtype)),ze(Qt([s,1],o.dtype),o)])}function U4(r,e=null,t=!1){let o={x:k(r,"x","min")},s={axis:e,keepDims:t};return A.runKernel(Go,o,s)}var ni=S({min_:U4});function H4(r,e){let t=k(r,"a","minimum"),n=k(e,"b","minimum");[t,n]=je(t,n),t.dtype==="bool"&&(t=oe(t,"int32"),n=oe(n,"int32")),Be(t.shape,n.shape);let o={a:t,b:n};return A.runKernel(Wo,o)}var bs=S({minimum_:H4});function q4(r,e,t){T(t==="reflect"||t==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${t}.`);let n=k(r,"x","mirrorPad");if(n.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");T(e.length===n.rank,()=>`Padding doesn't match input. Must be ${n.rank}. Got ${e.length}.`);let o=t==="reflect"?1:0;for(let i=0;i<n.rank;i++)T(e[i].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),T(e[i][0]>=0&&e[i][0]<=n.shape[i]-o&&e[i][1]>=0&&e[i][1]<=n.shape[i]-o,()=>`Padding in dimension ${i} cannot be greater than or equal to ${n.shape[i]-o} or less than 0 for input of shape ${n.shape}`);let s={paddings:e,mode:t},a={x:n};return A.runKernel(jo,a,s)}var sf=S({mirrorPad_:q4});function K4(r,e){let t=k(r,"a","mod"),n=k(e,"b","mod");[t,n]=je(t,n);let o={a:t,b:n};return A.runKernel(qi,o)}var af=S({mod_:K4});function X4(r){let e=k(r,"x","square"),t={};return A.runKernel("Square",{x:e},t)}var Pe=S({square_:X4});function Y4(r,e=null,t=!1){r=k(r,"x","moments");let n=tr(e,r.shape),o=dt(r,n,t),s=o.shape;t||(s=eo(o.shape,n));let a=Pe(pe(oe(r,"float32"),L(o,s))),i=dt(a,n,t);return{mean:o,variance:i}}var rp=S({moments_:Y4});function Z4(r,e,t,n){let o=k(e,"data","multiRNNCell"),s=la(t,"c","multiRNNCell"),a=la(n,"h","multiRNNCell"),i=o,l=[];for(let p=0;p<r.length;p++){let m=r[p](i,s[p],a[p]);l.push(m[0]),l.push(m[1]),i=m[1]}let u=[],c=[];for(let p=0;p<l.length;p+=2)u.push(l[p]),c.push(l[p+1]);return[u,c]}var J4=S({multiRNNCell_:Z4});function Q4(r,e,t,n=!1){let o=k(r,"logits","multinomial"),s=o.size,a=o.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(a>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${a}`);t=t||Math.random();let l={logits:a===1?L(o,[1,-1]):o},u={numSamples:e,seed:t,normalized:n},c=A.runKernel(Mc,l,u);return a===1?L(c,[c.size]):c}var i_=S({multinomial_:Q4});function eU(r,e){let t=k(r,"a","notEqual"),n=k(e,"b","notEqual");[t,n]=je(t,n),Be(t.shape,n.shape);let o={a:t,b:n};return A.runKernel(Ki,o)}var to=S({notEqual_:eU});function tU(r){let t={x:k(r,"x","onesLike")};return A.runKernel(Ws,t)}var or=S({onesLike_:tU});function rU(r,e){let t=k(r,"v1","outerProduct"),n=k(e,"v2","outerProduct");T(t.rank===1&&n.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${t.rank} and ${n.rank}.`);let o=L(t,[-1,1]),s=L(n,[1,-1]);return ze(o,s)}var nU=S({outerProduct_:rU});function oU(r,e,t=0){let n=k(r,"x","pad");if(n.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let o={paddings:e,constantValue:t},s={x:n};return A.runKernel(qo,s,o)}var Mr=S({pad_:oU});function sU(r,e,t=0){return T(e.length===2,()=>"Invalid number of paddings. Must be length of 2."),Mr(r,[e],t)}var iU=S({pad1d_:sU});function aU(r,e,t=0){return T(e.length===2&&e[0].length===2&&e[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Mr(r,e,t)}var lU=S({pad2d_:aU});function uU(r,e,t=0){return T(e.length===3&&e[0].length===2&&e[1].length===2&&e[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Mr(r,e,t)}var cU=S({pad3d_:uU});function pU(r,e,t=0){return T(e.length===4&&e[0].length===2&&e[1].length===2&&e[2].length===2&&e[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Mr(r,e,t)}var mU=S({pad4d_:pU});function fU(r,e,t){let n=k(r,"x","spaceToBatchND");T(n.rank>=1+e.length,()=>`input rank ${n.rank} should be > than [blockShape] ${e.length}`),T(t.length===e.length,()=>`paddings.shape[0] ${t.length} must be equal to [blockShape] ${e.length}`),T(n.shape.reduce((a,i,l)=>l>0&&l<=e.length?a&&(i+t[l-1][0]+t[l-1][1])%e[l-1]==0:a,!0),()=>`input spatial dimensions ${n.shape.slice(1)} with paddings ${t.toString()} must be divisible by blockShapes ${e.toString()}`);let o={x:n},s={blockShape:e,paddings:t};return A.runKernel(sl,o,s)}var _a=S({spaceToBatchND_:fU});function gU(r,e,t,n,o,s){o==null&&(o=[1,1]),s==null&&(s=1),n===0&&(n="valid");let a=k(r,"x","maxPool"),i=a,l=!1;a.rank===3&&(l=!0,i=L(a,[1,a.shape[0],a.shape[1],a.shape[2]])),T(_r(s,o),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${o}'`);let u=Pw(i.shape,e,s,o,n),c=[u.dilationHeight,u.dilationWidth],p;n==="same"?p=hU([u.filterHeight,u.filterWidth],c):p=[[0,0],[0,0]];let m=c[0]===1&&c[1]===1,[f,d]=dU([u.inHeight,u.inWidth],c,p),h=m?n:"valid",g=m?i:_a(i,c,f),b=(t==="avg"?()=>fa(g,e,s,h):()=>wa(g,e,s,h))(),w=m?b:da(b,c,d);return l?L(w,[w.shape[1],w.shape[2],w.shape[3]]):w}function dU(r,e,t){let n=t.map(c=>c[0]),o=t.map(c=>c[1]),s=r.concat(n,o),a=e.map((c,p)=>(c-s[p]%c)%c),i=o.map((c,p)=>c+a[p]),l=e.map((c,p)=>[n[p],i[p]]),u=e.map((c,p)=>[0,a[p]]);return[l,u]}function hU(r,e){let n=r.map((a,i)=>a+(a-1)*(e[i]-1)).map(a=>a-1),o=n.map(a=>Math.floor(a/2)),s=n.map((a,i)=>a-o[i]);return n.map((a,i)=>[o[i],s[i]])}var a_=S({pool_:gU});function xU(r,e){let t=k(r,"base","pow"),n=k(e,"exp","pow");[t,n]=je(t,n);let o={a:t,b:n};return A.runKernel(Ko,o)}var Lr=S({pow_:xU});function yU(r,e){let t=k(r,"x","prelu"),n=k(e,"alpha","prelu"),o={x:t,alpha:n};return A.runKernel(Xo,o)}var ka=S({prelu_:yU});function bU(r,e=null,t=!1){let n=k(r,"x","prod");n.dtype==="bool"&&(n=oe(n,"int32"));let o={x:n},s={axis:e,keepDims:t};return A.runKernel(Ji,o,s)}var pu=S({prod_:bU});function wU(r,e,t){let n=nt(r),o=null;if(t==null||t==="float32")o=new Float32Array(n);else if(t==="int32")o=new Int32Array(n);else if(t==="bool")o=new Uint8Array(n);else throw new Error(`Unknown data type ${t}`);for(let s=0;s<n;s++)o[s]=e();return A.makeTensor(o,r,t)}var _U=S({rand_:wU});var xg=pc(h_());var np=class{constructor(e,t,n,o,s){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=o,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let a=s||Math.random();this.random=xg.alea(a.toString())}nextValue(){if(!isNaN(this.nextVal)){let o=this.nextVal;return this.nextVal=NaN,o}let e,t,n=!1;for(;!n;){let o,s,a;do o=2*this.random()-1,s=2*this.random()-1,a=o*o+s*s;while(a>=1||a===0);let i=Math.sqrt(-2*Math.log(a)/a);e=this.mean+this.stdDev*o*i,t=this.mean+this.stdDev*s*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},g_=class{constructor(e,t,n,o){this.alpha=e,this.beta=1/t,this.dtype=n;let s=o||Math.random();this.randu=xg.alea(s.toString()),this.randn=new np(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,o,s,a;for(;;){do o=this.randn.nextValue(),a=1+this.c*o;while(a<=0);if(a*=a*a,e=o*o,t=1-.331*e*e,n=.5*e+this.d*(1-a+Math.log(a)),s=this.randu(),s<t||Math.log(s)<n)break}return a=1/this.beta*this.d*a,this.alpha<1&&(a*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(a)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},x_=class{constructor(e=0,t=1,n,o){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,o==null&&(o=Math.random()),typeof o=="number"&&(o=o.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=xg.alea(o)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function TU(r,e,t=1,n="float32",o){if(t==null&&(t=1),n==null&&(n="float32"),n!=="float32"&&n!=="int32")throw new Error(`Unsupported data type ${n}`);let s=new g_(e,t,n,o),a=Ce(r,n);for(let i=0;i<a.values.length;i++)a.values[i]=s.nextValue();return a.toTensor()}var AU=S({randomGamma_:TU});function EU(r,e=0,t=1,n,o){if(n!=null&&n==="bool")throw new Error(`Unsupported data type ${n}`);let s=new np(e,t,n,!1,o),a=Ce(r,n);for(let i=0;i<a.values.length;i++)a.values[i]=s.nextValue();return a.toTensor()}var yg=S({randomNormal_:EU});function DU(r,e=0,t=1,n="float32",o){let s=Ce(r,n),a=new x_(e,t,null,o);for(let i=0;i<s.values.length;i++)s.values[i]=a.nextValue();return s.toTensor()}var ws=S({randomUniform_:DU});function op(r,e,t=1,n="float32"){if(t===0)throw new Error("Cannot have a step of zero");let o={start:r,stop:e,step:t,dtype:n};return A.runKernel(nl,{},o)}function $U(r){let t={input:k(r,"input","real")};return A.runKernel(Lc,t)}var dl=S({real_:$U});function RU(r){let t={x:k(r,"x","reciprocal")};return A.runKernel(Qi,t)}var lf=S({reciprocal_:RU});function FU(r){let t={x:k(r,"x","relu")};return A.runKernel(Yo,t)}var Ar=S({relu_:FU});function OU(r){let t={x:k(r,"x","relu6")};return A.runKernel(Jo,t)}var fu=S({relu6_:OU});function PU(r,e){let n={x:k(r,"x","reverse")},o={dims:e};return A.runKernel(Qo,n,o)}var qt=S({reverse_:PU});function MU(r){let e=k(r,"x","reverse");return T(e.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${e.rank}.`),qt(e,0)}var LU=S({reverse1d_:MU});function zU(r,e){let t=k(r,"x","reverse");return T(t.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${t.rank}.`),qt(t,e)}var BU=S({reverse2d_:zU});function VU(r,e){let t=k(r,"x","reverse");return T(t.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${t.rank}.`),qt(t,e)}var GU=S({reverse3d_:VU});function WU(r,e){let t=k(r,"x","reverse");return T(t.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${t.rank}.`),qt(t,e)}var jU=S({reverse4d_:WU});function UU(r){let t={x:k(r,"x","round")};return A.runKernel(es,t)}var uf=S({round_:UU});function HU(r){let t={x:k(r,"x","rsqrt")};return A.runKernel(ts,t)}var du=S({rsqrt_:HU});function le(r,e){if((ir(r)&&e!=="string"||Array.isArray(r))&&e!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(e==="string"&&ir(r)&&!(r instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Xr(r,[],[],e)}function qU(r){let t={x:k(r,"x","selu")};return A.runKernel(ta,t)}var hu=S({selu_:qU});function KU(r,e,t,n,o,s=[1,1],a="NHWC"){let i=k(r,"x","separableConv2d"),l=k(e,"depthwiseFilter","separableConv2d"),u=k(t,"pointwiseFilter","separableConv2d"),c=i,p=!1;if(i.rank===3&&(p=!0,c=L(i,[1,i.shape[0],i.shape[1],i.shape[2]])),a==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");T(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),T(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),T(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),T(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),T(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let m=l.shape[2],f=l.shape[3];T(u.shape[2]===m*f,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${m*f}, but got ${u.shape[2]}.`);let d=hs(c,l,n,o,a,s),g=Jr(d,u,1,"valid",a);return p?L(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var cf=S({separableConv2d_:KU});async function XU(r,e){let t=k(r,"x","setdiff1d"),n=k(e,"y","setdiff1d");T(t.dtype===n.dtype,()=>`x and y should have the same dtype, but got x (${t.dtype}) and y (${n.dtype}).`),T(t.rank===1,()=>`x should be 1D tensor, but got x (${t.shape}).`),T(n.rank===1,()=>`y should be 1D tensor, but got y (${n.shape}).`);let o=await t.data(),s=await n.data(),a=new Set(s),i=0;for(let c=0;c<o.length;c++)a.has(o[c])||i++;let l=new ut([i],t.dtype),u=new ut([i],"int32");for(let c=0,p=0;c<o.length;c++)a.has(o[c])||(l.values[p]=o[c],u.values[p]=c,p++);return[l.toTensor(),u.toTensor()]}var y_=XU;function YU(r){let t={x:k(r,"x","sign")};return A.runKernel(na,t)}var pf=S({sign_:YU});function ZU(r){let t={x:k(r,"x","sin")};return A.runKernel(rs,t)}var gu=S({sin_:ZU});function JU(r){let t={x:k(r,"x","sinh")};return A.runKernel(ra,t)}var xu=S({sinh_:JU});function QU(r,e,t){let n=k(r,"x","slice1d");return T(n.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${n.rank} tensor`),Fe(n,[e],[t])}var mf=S({slice1d_:QU});function eH(r,e,t){let n=k(r,"x","slice2d");return T(n.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${n.rank} tensor`),Fe(n,e,t)}var bg=S({slice2d_:eH});function tH(r,e,t){let n=k(r,"x","slice3d");return T(n.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${n.rank} tensor`),Fe(n,e,t)}var ff=S({slice3d_:tH});function rH(r,e,t){let n=k(r,"x","slice4d");return T(n.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${n.rank} tensor`),Fe(n,e,t)}var sp=S({slice4d_:rH});function nH(r,e=-1){let t=k(r,"logits","softmax","float32");if(e===-1&&(e=t.rank-1),e!==t.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${t.rank} and dim was ${e}`);let n={logits:t},o={dim:e};return A.runKernel(is,n,o)}var va=S({softmax_:nH});function oH(r){T(r.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${r.dtype}.`);let e={input:r};return A.runKernel(Ac,e)}var Ca=S({fft_:oH});function sH(r){T(r.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${r.dtype}.`);let e={input:r};return A.runKernel(Ec,e)}var oi=S({ifft_:sH});function iH(r){let e=r.shape[r.shape.length-1],t=r.size/e,n;if(e<=2){let o=L(r,[t,e]);n=oi(o)}else{let o=[t,2*(e-1)],s=L(dl(r),[t,e]),a=L(iu(r),[t,e]),i=qt(Fe(s,[0,1],[t,e-2]),1),l=P(qt(Fe(a,[0,1],[t,e-2]),1),le(-1)),u=Qe([s,i],1),c=Qe([a,l],1),p=L(In(u,c),[o[0],o[1]]);n=oi(p)}if(n=dl(n),r.rank===3&&r.shape[0]!==0){let o=n,s=r.shape[0];n=L(n,[s,n.shape[0]/s,n.shape[1]]),o.dispose()}return n}var yu=S({irfft_:iH});function aH(r,e,t=0){let o={x:k(r,"x","split")},s={numOrSizeSplits:e,axis:t};return A.runKernel(Ks,o,s)}var mr=S({split_:aH});function lH(r,e){T(r.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${r.dtype}`);let t=r.shape[r.shape.length-1],n=r.size/t,o;if(e!=null&&e<t){let d=r.shape.map(g=>0),h=r.shape.map(g=>g);h[r.shape.length-1]=e,o=Fe(r,d,h),t=e}else if(e!=null&&e>t){let d=r.shape.map(h=>h);d[r.shape.length-1]=e-t,o=Qe([r,ht(d)],r.shape.length-1),t=e}else o=r;let s=Ie(o),a=L(In(o,s),[n,t]),i=Ca(a),l=Math.floor(t/2)+1,u=dl(i),c=iu(i),p=mr(u,[l,t-l],u.shape.length-1),m=mr(c,[l,t-l],c.shape.length-1),f=o.shape.slice();return f[o.shape.length-1]=l,L(In(p[0],m[0]),f)}var Ia=S({rfft_:lH});function uH(r){let t={x:k(r,"x","sqrt")};return A.runKernel(os,t)}var gt=S({sqrt_:uH});function cH(r,e){let t=k(r,"a","squaredDifference"),n=k(e,"b","squaredDifference");[t,n]=je(t,n),Be(t.shape,n.shape);let o={a:t,b:n},s={};return A.runKernel(as,o,s)}var bu=S({squaredDifference_:cH});function pH(r,e){let t=k(r,"x","squeeze");return L(t,qb(t.shape,e).newShape)}var Sn=S({squeeze_:pH});function mH(r,e=0){let t=la(r,"tensors","stack","string_or_numeric");T(t.length>=1,()=>"Pass at least one tensor to tf.stack"),t.length>0&&T(e<=t[0].rank,()=>"Axis must be <= rank of the tensor");let n=t,o={axis:e};return A.runKernel(js,n,o)}var Bt=S({stack_:mH});function fH(r,e=0){let n={x:k(r,"x","step")},o={alpha:e};return A.runKernel(Yn,n,o)}var _s=S({step_:fH});function dH(r,e,t,n,o=0,s=0,a=0,i=0,l=0){let c={x:k(r,"x","stridedSlice")},p={begin:e,end:t,strides:n,beginMask:o,endMask:s,ellipsisMask:a,newAxisMask:i,shrinkAxisMask:l};return A.runKernel(sa,c,p)}var df=S({stridedSlice_:dH});function hH(r){let t={x:k(r,"x","tan")};return A.runKernel(us,t)}var hf=S({tan_:hH});function Vt(r,e){Fn(r);let t=Sr(r,e);if(t.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Xr(r,null,t,e)}function si(r,e,t){if(Fn(r),e!=null&&e.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let n=Sr(r,t);if(n.length!==2&&n.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(n.length===1&&e==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Xr(r,e,n,t)}function gH(r,e,t){if(Fn(r),e!=null&&e.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let n=Sr(r,t);if(n.length!==4&&n.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(n.length===1&&e==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Xr(r,e,n,t)}function xH(r,e,t){if(Fn(r),e!=null&&e.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let n=Sr(r,t);if(n.length!==5&&n.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(n.length===1&&e==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Xr(r,e,n,t)}function yH(r,e,t){if(Fn(r),e!=null&&e.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let n=Sr(r,t);if(n.length!==6&&n.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(n.length===1&&e==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return e=e||n,Xr(r,e,n,t)}function bH(r,e=1,t=!0){let n=k(r,"x","topk");if(n.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let o=n.shape[n.shape.length-1];if(e>o)throw new Error(`'k' passed to topk() must be <= the last dimension (${o}) but got ${e}`);let s={x:n},a={k:e,sorted:t},[i,l]=A.runKernel(ia,s,a);return{values:i,indices:l}}var gf=S({topk_:bH});function wH(r,e=0,t=1,n,o){if(n!=null&&n==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new np(e,t,n,!0,o),a=Ce(r,n);for(let i=0;i<a.values.length;i++)a.values[i]=s.nextValue();return a.toTensor()}var wu=S({truncatedNormal_:wH});function _H(r,e=0){let t=k(r,"x","unique","string_or_numeric");T(t.rank>0,()=>"The input tensor must be at least 1D");let n={x:t},o={axis:e},[s,a]=A.runKernel(Wc,n,o);return{values:s,indices:a}}var ip=S({unique_:_H});function kH(r,e,t){let n=k(r,"x","unsortedSegmentSum"),o=k(e,"segmentIds","unsortedSegmentSum","int32");T(ot(t),()=>"numSegments must be of dtype int");let s={x:n,segmentIds:o},a={numSegments:t};return A.runKernel(al,s,a)}var xf=S({unsortedSegmentSum_:kH});function vH(r,e=0){let t=k(r,"x","unstack","string_or_numeric");T(e>=-t.shape.length&&e<t.shape.length,()=>`Axis = ${e} is not in [-${t.shape.length}, ${t.shape.length})`);let n={value:t},o={axis:e};return A.runKernel(Xs,n,o)}var fr=S({unstack_:vH});function b_(r,e=!0,t,n){return A.makeVariable(r,e,t,n)}function wg(r,e){let t=[];for(let s=0;s<e.length;s++)e[s]&&t.push(s);let n=Ce(r,"int32"),o=Ce([t.length,r.length],"int32");for(let s=0;s<t.length;s++){let a=n.indexToLoc(t[s]),i=s*r.length;o.values.set(a,i)}return o.toTensor()}async function CH(r){let e=k(r,"condition","whereAsync","bool"),t=await e.data(),n=wg(e.shape,t);return r!==e&&e.dispose(),n}var yf=CH;async function IH(r,e,t){let n=k(r,"tensor","boolMask"),o=k(e,"mask","boolMask","bool"),s=t==null?0:t,a=o.rank,i=n.shape;T(a>0,()=>"mask cannot be scalar"),At(i.slice(s,s+a),o.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let h=s;h<s+a;h++)l*=i[h];let u=i.slice(0,s).concat([l],i.slice(s+a)),c=L(n,u),p=L(o,[-1]),m=await yf(p),f=Sn(m,[1]),d=Qn(c,f,s);return r!==n&&n.dispose(),e!==o&&o.dispose(),f.dispose(),c.dispose(),p.dispose(),m.dispose(),d}var U0e=IH;function NH(r,e="euclidean",t=null,n=!1){r=k(r,"x","norm");let o=KT(r,e,t),s=o.shape;if(n){let a=tr(t,r.shape);s=eo(o.shape,a)}return L(o,s)}function KT(r,e,t=null){if(r.rank===0)return Nt(r);if(r.rank!==1&&t===null)return KT(L(r,[-1]),e,t);if(r.rank===1||typeof t=="number"||Array.isArray(t)&&t.length===1){if(e===1)return ge(Nt(r),t);if(e===Infinity)return pr(Nt(r),t);if(e===-Infinity)return ni(Nt(r),t);if(e==="euclidean"||e===2)return gt(ge(Lr(Nt(r),le(2,"int32")),t));throw new Error(`Error in norm: invalid ord value: ${e}`)}if(Array.isArray(t)&&t.length===2){if(e===1)return pr(ge(Nt(r),t[0]),t[1]-1);if(e===Infinity)return pr(ge(Nt(r),t[1]),t[0]);if(e===-Infinity)return ni(ge(Nt(r),t[1]),t[0]);if(e==="fro"||e==="euclidean")return gt(ge(Pe(r),t));throw new Error(`Error in norm: invalid ord value: ${e}`)}throw new Error(`Error in norm: invalid axis: ${t}`)}var ap=S({norm_:NH});function SH(r,e,t,n,o=!0){let s=k(r,"v","movingAverage"),a=k(e,"x","movingAverage"),i=k(t,"decay","movingAverage");pw(s,a),T(Kr(s.shape,a.shape),()=>"Shape mismatch in v and x");let l=le(1),u=pe(l,i),c=P(pe(a,s),u);if(o){T(n!=null,()=>"When using zeroDebias: true, step is required.");let p=k(n,"step","movingAverage");c=me(c,pe(l,Lr(i,p)))}return ee(s,c)}var xIe=S({movingAverage_:SH});function TH(r,e,t){let n=k(r,"indices","scatterND","int32"),o=k(e,"updates","scatterND");ug(o,n,t);let s={indices:n,updates:o},a={shape:t};return A.runKernel(ea,s,a)}var XT=S({scatterND_:TH});function YT(r,e,t,n){if(r.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${r.dtype}.`);if(r.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${r.shape}.`);let o=r.rank>0?r.shape[0]:1,s=r.rank>1?r.shape[1]:1;if(t.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${t.length}, should be: ${s}.`);let a=e.size;if(!(e.rank===0||e.rank===1&&a===o))throw new Error(`sparseValues has incorrect shape ${e.shape}, should be [] or [${o}]`);if(e.dtype!==n.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function AH(r,e,t,n=0){let o=k(r,"sparseIndices","sparseToDense","int32"),s=k(e,"sparseValues","sparseToDense"),a=k(n,"defaultValue","sparseToDense",s.dtype);YT(o,s,t,a);let i={sparseIndices:o,sparseValues:s,defaultValue:a},l={outputShape:t};return A.runKernel(Vc,i,l)}var _g=S({sparseToDense_:AH});function EH(r,e){let t=k(e,"indices","gatherND","int32"),o={params:k(r,"x","gatherND"),indices:t};return A.runKernel(Li,o)}var ZT=S({gatherND_:EH});function JT(r,e){if(e==null)return r.shape.slice();if(Kr(r.shape,e))return e;if(r.shape.length===e.length){let t=[];for(let n=0;n<r.shape.length;n++)e[n]==null&&r.shape[n]!=null?t.push(r.shape[n]):t.push(e[n]);return t}return e}function DH(r,e,t,n){let o=k(r,"x","dropout");if(T(o.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${o.dtype} tensor instead.`),T(e>=0&&e<1,()=>`rate must be a float in the range [0, 1), but got ${e}.`),e===0)return r instanceof Oe?o.clone():o;let s=JT(o,t),a=1-e,i=me(xs(ee(ws(s,0,1,"float32",n),a)),a);return P(o,i)}var QT=S({dropout_:DH});function e1(r){return Math.floor(Math.pow(2,Math.ceil(Math.log(r)/Math.log(2))))}function kg(r,e,t){let n=1-r%2,o=new Float32Array(r);for(let s=0;s<r;++s){let a=2*Math.PI*s/(r+n-1);o[s]=e-t*Math.cos(a)}return Vt(o,"float32")}async function $H(r,e,t=1){let n=k(r,"predictions","inTopK"),o=k(e,"targets","inTopK");T(n.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${n.rank}`),T(n.rank-1===o.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${n.rank} and targets rank ${o.rank}`),At(n.shape.slice(0,n.shape.length-1),o.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=n.shape[n.shape.length-1];T(t>0&&t<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${t}`);let a=await n.data(),i=await o.data(),[l,u]=[a.length/s,s],c=Kb("bool",l);for(let p=0;p<l;p++){let m=p*u,f=a.subarray(m,m+u),d=[];for(let h=0;h<f.length;h++)d.push({value:f[h],index:h});d.sort((h,g)=>g.value-h.value),c[p]=0;for(let h=0;h<t;h++)if(d[h].index===i[p]){c[p]=1;break}}return r!==n&&n.dispose(),e!==o&&o.dispose(),Pr(c,o.shape,"bool")}var tNe=$H;var ro={};We(ro,{conv2d:()=>t1,depthwiseConv2d:()=>r1,matMul:()=>n1});function RH(r,e,t,n,o,s="NHWC",a){let i=r;r.rank===3&&(i=L(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let l=e;l.rank===3&&(l=L(e,[1,e.shape[0],e.shape[1],e.shape[2]])),T(i.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${i.shape}.`),T(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),T(t.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${t}.`);let u=s==="NHWC"?i.shape[3]:i.shape[1],c=s==="NHWC"?l.shape[3]:l.shape[1];T(u===t[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${t[2]}.`),T(c===t[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${t[3]}).`),a!=null&&T(ot(o),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${a} but got pad ${o}.`);let p={x:i,dy:l},m={strides:n,pad:o,dataFormat:s,dimRoundingMode:a,filterShape:t};return A.runKernel(wc,p,m)}var lp=S({conv2DBackpropFilter_:RH});function _u(r,e,t){if(t==null||t==="linear")return r;if(t==="relu")return P(r,_s(e));throw new Error(`Cannot compute gradient for fused activation ${t}.`)}function ku(r,e){let t=e,n=kt(r.shape,e.shape);return n.length>0&&(t=ge(t,n)),L(t,r.shape)}function vu(r,e,t,n){if(e==="linear")return r;if(e==="relu")return Ar(r);if(e==="elu")return gs(r);if(e==="relu6")return fu(r);if(e==="prelu")return ka(r,t);if(e==="leakyrelu")return ya(r,n);throw new Error(`Unknown fused activation ${e}.`)}var Cu=(r,e)=>!(r>0)||e==="linear";function FH({x:r,filter:e,strides:t,pad:n,dataFormat:o="NHWC",dilations:s=[1,1],dimRoundingMode:a,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(l=l||"linear",Cu(A.state.gradientDepth,l)===!1){let I=Jr(r,e,t,n,o,s,a);return i!=null&&(I=ee(I,i)),vu(I,l,u,c)}let p=k(r,"x","conv2d"),m=k(e,"filter","conv2d"),f=p,d=!1;p.rank===3&&(d=!0,f=L(p,[1,p.shape[0],p.shape[1],p.shape[2]])),T(f.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${f.rank}.`),T(m.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${m.rank}.`),a!=null&&T(ot(n),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${n}.`),T(f.shape[3]===m.shape[2],()=>`Error in conv2d: depth of input (${f.shape[3]}) must match input depth for filter ${m.shape[2]}.`),T(_r(t,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${t} and dilations '${s}'`),T(o==="NHWC",()=>`Error in conv2d: got dataFormat of ${o} but only NHWC is currently supported.`);let h=eu(f.shape,m.shape,t,s,n,a),g;i!=null&&(g=k(i,"bias","fused conv2d"),[g]=je(g,p),Be(h.outShape,g.shape));let y;u!=null&&(y=k(u,"prelu weights","fused conv2d"));let b=(I,E)=>{let[$,D,O,M]=E,G=_u(I,O,l);T(Ln(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let j=ep(D.shape,G,$,t,n),U=lp(D,G,$.shape,t,n),H=[j,U];if(M!=null){let q=ku(M,G);H.push(q)}return H},w={x:f,filter:m,bias:g,preluActivationWeights:y},_={strides:t,pad:n,dataFormat:o,dilations:s,dimRoundingMode:a,activation:l,leakyreluAlpha:c};return i==null?Qr((E,$,D)=>{let O=A.runKernel(Js,w,_);return D([$,E,O]),d&&(O=L(O,[O.shape[1],O.shape[2],O.shape[3]])),{value:O,gradFunc:b}})(f,m):Qr((E,$,D,O)=>{let M=A.runKernel(Js,w,_);return O([$,E,M,D]),d&&(M=L(M,[M.shape[1],M.shape[2],M.shape[3]])),{value:M,gradFunc:b}})(f,m,g)}var t1=S({fusedConv2d_:FH});function OH(r,e,t,n,o,s=[1,1],a){let i=r;r.rank===3&&(i=L(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let l=e;l.rank===3&&(l=L(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let u={x:i,dy:l},c={strides:n,pad:o,dimRoundingMode:a,dilations:s,filterShape:t};return A.runKernel(Cc,u,c)}var vg=S({depthwiseConv2dNativeBackpropFilter_:OH});function PH(r,e,t,n,o,s=[1,1],a){let i=e,l=!1;e.rank===3&&(l=!0,i=L(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let u={dy:i,filter:t},c={strides:n,pad:o,dimRoundingMode:a,dilations:s,inputShape:r},p=A.runKernel(Ic,u,c);return l?L(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Cg=S({depthwiseConv2dNativeBackpropInput_:PH});function MH({x:r,filter:e,strides:t,pad:n,dataFormat:o="NHWC",dilations:s=[1,1],dimRoundingMode:a,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(Cu(A.state.gradientDepth,l)===!1){let I=hs(r,e,t,n,o,s,a);return i!=null&&(I=ee(I,i)),vu(I,l,u,c)}let p=k(r,"x","depthwiseConv2d"),m=k(e,"filter","depthwiseConv2d"),f=p,d=!1;p.rank===3&&(d=!0,f=L(p,[1,p.shape[0],p.shape[1],p.shape[2]])),T(f.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${f.rank}.`),T(m.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${m.rank}.`),T(f.shape[3]===m.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${f.shape[3]}) must match the inChannels dimension in filter ${m.shape[2]}.`),s==null&&(s=[1,1]),T(_r(t,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${t} and dilations '${s}'`),a!=null&&T(ot(n),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${a} but got pad ${n}.`);let h=eu(f.shape,m.shape,t,s,n,a,!0),g;i!=null&&(g=k(i,"bias","fused conv2d"),[g]=je(g,p),Be(h.outShape,g.shape));let y;u!=null&&(y=k(u,"prelu weights","fused depthwiseConv2d"));let b=(I,E)=>{T(Ln(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[$,D,O,M]=E,G=_u(I,O,l),j=Cg(D.shape,G,$,t,n,s,a),U=vg(D,G,$.shape,t,n,s,a);if(M!=null){let H=ku(g,G);return[j,U,H]}return[j,U]},w={x:f,filter:m,bias:g,preluActivationWeights:y},_={strides:t,pad:n,dataFormat:o,dilations:s,dimRoundingMode:a,activation:l,leakyreluAlpha:c};return i==null?Qr((E,$,D)=>{let O=A.runKernel(Qs,w,_);return D([$,E,O]),d&&(O=L(O,[O.shape[1],O.shape[2],O.shape[3]])),{value:O,gradFunc:b}})(f,m):Qr((E,$,D,O)=>{let M=A.runKernel(Qs,w,_);return O([$,E,M,D]),d&&(M=L(M,[M.shape[1],M.shape[2],M.shape[3]])),{value:M,gradFunc:b}})(f,m,g)}var r1=S({fusedDepthwiseConv2d_:MH});function LH({a:r,b:e,transposeA:t=!1,transposeB:n=!1,bias:o,activation:s="linear",preluActivationWeights:a,leakyreluAlpha:i}){if(Cu(A.state.gradientDepth,s)===!1){let M=ze(r,e,t,n);return o!=null&&(M=ee(M,o)),vu(M,s,a,i)}let l=k(r,"a","fused matMul"),u=k(e,"b","fused matMul");[l,u]=je(l,u);let c=t?l.shape[l.rank-2]:l.shape[l.rank-1],p=n?u.shape[u.rank-1]:u.shape[u.rank-2],m=t?l.shape[l.rank-1]:l.shape[l.rank-2],f=n?u.shape[u.rank-2]:u.shape[u.rank-1],d=l.shape.slice(0,-2),h=u.shape.slice(0,-2),g=nt(d),y=nt(h);T(l.rank>=2&&u.rank>=2&&l.rank===u.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${u.rank}.`),T(Kr(d,h),()=>`Error in fused matMul: outer dimensions (${d}) and (${h}) of Tensors with shapes ${l.shape} and ${u.shape} must match.`),T(c===p,()=>`Error in fused matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${t} and transposeB=${n} must match.`);let b=l.shape.slice(0,-2).concat([m,f]),w=t?L(l,[g,c,m]):L(l,[g,m,c]),_=n?L(u,[y,f,p]):L(u,[y,p,f]),I;o!=null&&(I=k(o,"bias","fused matMul"),[I]=je(I,l),Be(b,I.shape));let E;a!=null&&(E=k(a,"prelu weights","fused matMul"));let $=(M,G)=>{let[j,U,H,q]=G,X=_u(L(M,H.shape),H,s),ne,Y;if(!t&&!n?(ne=ze(X,U,!1,!0),Y=ze(j,X,!0,!1)):!t&&n?(ne=ze(X,U,!1,!1),Y=ze(X,j,!0,!1)):t&&!n?(ne=ze(U,X,!1,!0),Y=ze(j,X,!1,!1)):(ne=ze(U,X,!0,!0),Y=ze(X,j,!0,!0)),o!=null){let re=ku(q,X);return[ne,Y,re]}else return[ne,Y]},D={a:w,b:_,bias:I,preluActivationWeights:E},O={transposeA:t,transposeB:n,activation:s,leakyreluAlpha:i};return o==null?Qr((G,j,U)=>{let H=A.runKernel(Zs,D,O);return U([G,j,H]),{value:L(H,b),gradFunc:$}})(w,_):Qr((G,j,U,H)=>{let q=A.runKernel(Zs,D,O);return H([G,j,q,U]),{value:L(q,b),gradFunc:$}})(w,_,I)}var n1=S({fusedMatMul_:LH});function zH(r){return kg(r,.54,.46)}var o1=S({hammingWindow_:zH});function BH(r){return kg(r,.5,.5)}var Ig=S({hannWindow_:BH});function VH(r,e,t,n=!1,o=0){let s=0,a=[];for(;s+e<=r.size;)a.push(Fe(r,s,e)),s+=t;if(n)for(;s<r.size;){let i=s+e-r.size,l=Qe([Fe(r,s,e-i),xa([i],o)]);a.push(l),s+=t}return a.length===0?si([],[0,e]):L(Qe(a),[a.length,e])}var Ng=S({frame_:VH});function GH(r,e,t,n,o=Ig){n==null&&(n=e1(e));let s=Ng(r,e,t),a=P(s,o(e));return Ia(a,n)}var s1=S({stft_:GH});function WH(r,e,t,n,o="bilinear",s=0){let a=k(r,"image","cropAndResize"),i=k(e,"boxes","cropAndResize","float32"),l=k(t,"boxInd","cropAndResize","int32"),u=i.shape[0];T(a.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${a.rank}.`),T(i.rank===2&&i.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${i.shape}.`),T(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${i.shape}.`),T(n.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${n.length}.`),T(n[0]>=1&&n[1]>=1,()=>`cropSize must be atleast [1,1], but was ${n}`),T(o==="bilinear"||o==="nearest",()=>`method must be bilinear or nearest, but was ${o}`);let c={image:a,boxes:i,boxInd:l},p={method:o,extrapolationValue:s,cropSize:n};return A.runKernel(Di,c,p)}var i1=S({cropAndResize_:WH});function jH(r){let e=k(r,"image","flipLeftRight","float32");T(e.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${e.rank}.`);let t={image:e};return A.runKernel(Mi,t,{})}var a1=S({flipLeftRight_:jH});function UH(r,e,t=0,n=.5){let o=k(r,"image","rotateWithOffset","float32");T(o.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${o.rank}.`);let s={image:o},a={radians:e,fillValue:t,center:n};return A.runKernel(aa,s,a)}var l1=S({rotateWithOffset_:UH});function no(r,e,t,n,o,s){n==null&&(n=.5),o==null&&(o=Number.NEGATIVE_INFINITY),s==null&&(s=0);let a=r.shape[0];return t=Math.min(t,a),T(0<=n&&n<=1,()=>`iouThreshold must be in [0, 1], but was '${n}'`),T(r.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${r.rank}'`),T(r.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${r.shape[1]}`),T(e.rank===1,()=>"scores must be a 1D tensor"),T(e.shape[0]===a,()=>`scores has incompatible shape with boxes. Expected ${a}, but was ${e.shape[0]}`),T(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:t,iouThreshold:n,scoreThreshold:o,softNmsSigma:s}}function HH(r,e,t,n=.5,o=Number.NEGATIVE_INFINITY){let s=k(r,"boxes","nonMaxSuppression"),a=k(e,"scores","nonMaxSuppression"),i=no(s,a,t,n,o);t=i.maxOutputSize,n=i.iouThreshold,o=i.scoreThreshold;let l={maxOutputSize:t,iouThreshold:n,scoreThreshold:o};return A.runKernel(Xi,{boxes:s,scores:a},l)}var u1=S({nonMaxSuppression_:HH});function c1(r,e,t){let n=qH(r,e,t),o=n<0?-(n+1):n;r.splice(o,0,e)}function qH(r,e,t){return XH(r,e,t||KH)}function KH(r,e){return r>e?1:r<e?-1:0}function XH(r,e,t){let n=0,o=r.length,s=0,a=!1;for(;n<o;){s=n+(o-n>>>1);let i=t(e,r[s]);i>0?n=s+1:(o=s,a=!i)}return a?n:-n-1}function Sg(r,e,t,n,o){return w_(r,e,t,n,o,0)}function Tg(r,e,t,n,o,s){return w_(r,e,t,n,o,0,!1,s,!0)}function Ag(r,e,t,n,o,s){return w_(r,e,t,n,o,s,!0)}function w_(r,e,t,n,o,s,a=!1,i=!1,l=!1){let u=[];for(let g=0;g<e.length;g++)e[g]>o&&u.push({score:e[g],boxIndex:g,suppressBeginIndex:0});u.sort(p1);let c=s>0?-.5/s:0,p=[],m=[];for(;p.length<t&&u.length>0;){let g=u.pop(),{score:y,boxIndex:b,suppressBeginIndex:w}=g;if(y<o)break;let _=!1;for(let I=p.length-1;I>=w;--I){let E=YH(r,b,p[I]);if(E>=n){_=!0;break}if(g.score=g.score*ZH(n,c,E),g.score<=o)break}g.suppressBeginIndex=p.length,_||(g.score===y?(p.push(b),m.push(g.score)):g.score>o&&c1(u,g,p1))}let f=p.length,d=t-f;i&&d>0&&(p.push(...new Array(d).fill(0)),m.push(...new Array(d).fill(0)));let h={selectedIndices:p};return a&&(h.selectedScores=m),l&&(h.validOutputs=f),h}function YH(r,e,t){let n=r.subarray(e*4,e*4+4),o=r.subarray(t*4,t*4+4),s=Math.min(n[0],n[2]),a=Math.min(n[1],n[3]),i=Math.max(n[0],n[2]),l=Math.max(n[1],n[3]),u=Math.min(o[0],o[2]),c=Math.min(o[1],o[3]),p=Math.max(o[0],o[2]),m=Math.max(o[1],o[3]),f=(i-s)*(l-a),d=(p-u)*(m-c);if(f<=0||d<=0)return 0;let h=Math.max(s,u),g=Math.max(a,c),y=Math.min(i,p),b=Math.min(l,m),w=Math.max(y-h,0)*Math.max(b-g,0);return w/(f+d-w)}function ZH(r,e,t){let n=Math.exp(e*t*t);return t<=r?n:0}function p1(r,e){return r.score-e.score||r.score===e.score&&e.boxIndex-r.boxIndex}async function JH(r,e,t,n=.5,o=Number.NEGATIVE_INFINITY){let s=k(r,"boxes","nonMaxSuppressionAsync"),a=k(e,"scores","nonMaxSuppressionAsync"),i=no(s,a,t,n,o);t=i.maxOutputSize,n=i.iouThreshold,o=i.scoreThreshold;let l=await Promise.all([s.data(),a.data()]),u=l[0],c=l[1],{selectedIndices:p}=Sg(u,c,t,n,o);return s!==r&&s.dispose(),a!==e&&a.dispose(),Vt(p,"int32")}var m1=JH;function QH(r,e,t,n=.5,o=Number.NEGATIVE_INFINITY,s=0){let a=k(r,"boxes","nonMaxSuppression"),i=k(e,"scores","nonMaxSuppression"),l=no(a,i,t,n,o,s);t=l.maxOutputSize,n=l.iouThreshold,o=l.scoreThreshold,s=l.softNmsSigma;let u={boxes:a,scores:i},c={maxOutputSize:t,iouThreshold:n,scoreThreshold:o,softNmsSigma:s},p=A.runKernel(Zi,u,c);return{selectedIndices:p[0],selectedScores:p[1]}}var f1=S({nonMaxSuppressionWithScore_:QH});async function eq(r,e,t,n=.5,o=Number.NEGATIVE_INFINITY,s=0){let a=k(r,"boxes","nonMaxSuppressionAsync"),i=k(e,"scores","nonMaxSuppressionAsync"),l=no(a,i,t,n,o,s);t=l.maxOutputSize,n=l.iouThreshold,o=l.scoreThreshold,s=l.softNmsSigma;let u=await Promise.all([a.data(),i.data()]),c=u[0],p=u[1],{selectedIndices:m,selectedScores:f}=Ag(c,p,t,n,o,s);return a!==r&&a.dispose(),i!==e&&i.dispose(),{selectedIndices:Vt(m,"int32"),selectedScores:Vt(f)}}var d1=eq;function tq(r,e,t,n=.5,o=Number.NEGATIVE_INFINITY,s=!1){let a=k(r,"boxes","nonMaxSuppression"),i=k(e,"scores","nonMaxSuppression"),l=no(a,i,t,n,o,null),u=l.maxOutputSize,c=l.iouThreshold,p=l.scoreThreshold,m={boxes:a,scores:i},f={maxOutputSize:u,iouThreshold:c,scoreThreshold:p,padToMaxOutputSize:s},d=A.runKernel(Yi,m,f);return{selectedIndices:d[0],validOutputs:d[1]}}var h1=S({nonMaxSuppressionPadded_:tq});async function rq(r,e,t,n=.5,o=Number.NEGATIVE_INFINITY,s=!1){let a=k(r,"boxes","nonMaxSuppressionAsync"),i=k(e,"scores","nonMaxSuppressionAsync"),l=no(a,i,t,n,o,null),u=l.maxOutputSize,c=l.iouThreshold,p=l.scoreThreshold,[m,f]=await Promise.all([a.data(),i.data()]),{selectedIndices:d,validOutputs:h}=Tg(m,f,u,c,p,s);return a!==r&&a.dispose(),i!==e&&i.dispose(),{selectedIndices:Vt(d,"int32"),validOutputs:le(h,"int32")}}var g1=rq;function nq(r,e,t=!1,n=!1){let o=k(r,"images","resizeBilinear");T(o.rank===3||o.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${o.rank}.`),T(e.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${e}.`),T(n===!1||t===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=o,a=!1;o.rank===3&&(a=!0,s=L(o,[1,o.shape[0],o.shape[1],o.shape[2]]));let[]=e,i={images:s},l={alignCorners:t,halfPixelCenters:n,size:e},u=A.runKernel(Zo,i,l);return a?L(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var Eg=S({resizeBilinear_:nq});function oq(r,e,t=!1,n=!1){let o=k(r,"images","resizeNearestNeighbor");T(o.rank===3||o.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${o.rank}.`),T(e.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${e}.`),T(o.dtype==="float32"||o.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),T(n===!1||t===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=o,a=!1;o.rank===3&&(a=!0,s=L(o,[1,o.shape[0],o.shape[1],o.shape[2]]));let[]=e,i={images:s},l={alignCorners:t,halfPixelCenters:n,size:e},u=A.runKernel(ol,i,l);return a?L(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var Dg=S({resizeNearestNeighbor_:oq});function sq(r,e,t="nearest",n="constant",o=0,s){let a=k(r,"image","transform","float32"),i=k(e,"transforms","transform","float32");T(a.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${a.rank}.`),T(i.rank===2&&(i.shape[0]===a.shape[0]||i.shape[0]===1)&&i.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),T(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let l={image:a,transforms:i},u={interpolation:t,fillMode:n,fillValue:o,outputShape:s};return A.runKernel(Gc,l,u)}var x1=S({transform_:sq});function iq(r,e,t){T(e%1==0,()=>`bandPart(): numLower must be an integer, got ${e}.`),T(t%1==0,()=>`bandPart(): numUpper must be an integer, got ${t}.`);let n=k(r,"a","bandPart");T(n.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${n.rank}.`);let o=n.shape,[s,a]=n.shape.slice(-2);if(!(e<=s))throw new Error(`bandPart(): numLower (${e}) must not be greater than the number of rows (${s}).`);if(!(t<=a))throw new Error(`bandPart(): numUpper (${t}) must not be greater than the number of columns (${a}).`);e<0&&(e=s),t<0&&(t=a);let i=L(op(0,s,1,"int32"),[-1,1]),l=op(0,a,1,"int32"),u=pe(i,l),c=xr(Bn(u,le(+e,"int32")),dn(u,le(-t,"int32"))),p=ht([s,a],n.dtype);return L(Bt(fr(L(n,[-1,s,a])).map(m=>Dt(c,m,p))),o)}var y1=S({bandPart_:iq});function aq(r){let e;if(Array.isArray(r)){e=!1,T(r!=null&&r.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let o=r[0].shape[0];for(let s=1;s<r.length;++s)T(r[s].shape[0]===o,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${r[s].shape[0]} vs. ${o})`)}else e=!0,r=mr(r,r.shape[0],0).map(o=>Sn(o,[0]));T(r.length<=r[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${r.length}) exceeds number of dimensions (${r[0].shape[0]}).`);let t=[],n=r;for(let o=0;o<r.length;++o)t.push(A.tidy(()=>{let s=n[o];if(o>0)for(let a=0;a<o;++a){let i=P(ge(P(t[a],s)),t[a]);s=pe(s,i)}return me(s,ap(s,"euclidean"))}));return e?Bt(t,0):t}var b1=S({gramSchmidt_:aq});function lq(r,e=!1){if(T(r.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${r.rank}`),r.rank===2)return w1(r,e);{let t=r.shape.slice(0,r.shape.length-2).reduce((l,u)=>l*u),n=fr(L(r,[t,r.shape[r.shape.length-2],r.shape[r.shape.length-1]]),0),o=[],s=[];n.forEach(l=>{let[u,c]=w1(l,e);o.push(u),s.push(c)});let a=L(Bt(o,0),r.shape),i=L(Bt(s,0),r.shape);return[a,i]}}function w1(r,e=!1){return A.tidy(()=>{T(r.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${r.shape.length}D Tensor.`);let t=r.shape[0],n=r.shape[1],o=tp(t),s=Mn(r),a=si([[1]],[1,1]),i=Mn(a),l=t>=n?n:t;for(let u=0;u<l;++u){let c=s,p=i,m=o;[i,s,o]=A.tidy(()=>{let f=Fe(s,[u,u],[t-u,1]),d=ap(f),h=Fe(s,[u,u],[1,1]),g=Dt(nr(h,0),si([[-1]]),si([[1]])),y=pe(h,P(g,d)),b=me(f,y);b.shape[0]===1?i=Mn(a):i=Qe([a,Fe(b,[1,0],[b.shape[0]-1,b.shape[1]])],0);let w=qe(me(ze(g,y),d)),_=Fe(s,[u,0],[t-u,n]),I=P(w,i),E=Ue(i);if(u===0)s=pe(_,ze(I,ze(E,_)));else{let O=pe(_,ze(I,ze(E,_)));s=Qe([Fe(s,[0,0],[u,n]),O],0)}let $=Ue(I),D=Fe(o,[0,u],[t,o.shape[1]-u]);if(u===0)o=pe(D,ze(ze(D,i),$));else{let O=pe(D,ze(ze(D,i),$));o=Qe([Fe(o,[0,0],[t,u]),O],1)}return[i,s,o]}),Ae([c,p,m])}return!e&&t>n&&(o=Fe(o,[0,0],[t,n]),s=Fe(s,[0,0],[n,n])),[o,s]})}var _1=S({qr_:lq});var Gt;(function(r){r[r.NONE=0]="NONE",r[r.MEAN=1]="MEAN",r[r.SUM=2]="SUM",r[r.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(Gt||(Gt={}));function uq(r,e,t=Gt.SUM_BY_NONZERO_WEIGHTS){let n=k(r,"losses","computeWeightedLoss"),o=null;e!=null&&(o=k(e,"weights","computeWeightedLoss"));let s=o==null?n:P(n,o);if(t===Gt.NONE)return s;if(t===Gt.SUM)return ge(s);if(t===Gt.MEAN){if(o==null)return dt(s);{let a=n.size/o.size,i=me(ge(s),ge(o));return a>1?me(i,le(a)):i}}if(t===Gt.SUM_BY_NONZERO_WEIGHTS){if(o==null)return me(ge(s),le(n.size));{let a=P(o,Qt(n.shape)),i=oe(ge(to(a,le(0))),"float32");return me(ge(s),i)}}throw Error(`Unknown reduction: ${t}`)}var Er=S({computeWeightedLoss_:uq});function cq(r,e,t,n=Gt.SUM_BY_NONZERO_WEIGHTS){let o=k(r,"labels","absoluteDifference"),s=k(e,"predictions","absoluteDifference"),a=null;t!=null&&(a=k(t,"weights","absoluteDifference")),At(o.shape,s.shape,"Error in absoluteDifference: ");let i=Nt(pe(o,s));return Er(i,a,n)}var k1=S({absoluteDifference_:cq});function pq(r,e,t,n,o=Gt.SUM_BY_NONZERO_WEIGHTS){let s=k(r,"labels","cosineDistance"),a=k(e,"predictions","cosineDistance"),i=null;n!=null&&(i=k(n,"weights","cosineDistance")),At(s.shape,a.shape,"Error in cosineDistance: ");let l=le(1),u=pe(l,ge(P(s,a),t,!0));return Er(u,i,o)}var v1=S({cosineDistance_:pq});function mq(r,e,t,n=Gt.SUM_BY_NONZERO_WEIGHTS){let o=k(r,"labels","hingeLoss"),s=k(e,"predictions","hingeLoss"),a=null;t!=null&&(a=k(t,"weights","hingeLoss")),At(o.shape,s.shape,"Error in hingeLoss: ");let i=le(1);o=pe(P(le(2),o),i);let l=Ar(pe(i,P(o,s)));return Er(l,a,n)}var C1=S({hingeLoss_:mq});function fq(r,e,t,n=1,o=Gt.SUM_BY_NONZERO_WEIGHTS){let s=k(r,"labels","huberLoss"),a=k(e,"predictions","huberLoss"),i=null;t!=null&&(i=k(t,"weights","huberLoss")),At(s.shape,a.shape,"Error in huberLoss: ");let l=le(n),u=Nt(pe(a,s)),c=bs(u,l),p=pe(u,c),m=ee(P(le(.5),Pe(c)),P(l,p));return Er(m,i,o)}var I1=S({huberLoss_:fq});function dq(r,e,t,n=1e-7,o=Gt.SUM_BY_NONZERO_WEIGHTS){let s=k(r,"labels","logLoss"),a=k(e,"predictions","logLoss"),i=null;t!=null&&(i=k(t,"weights","logLoss")),At(s.shape,a.shape,"Error in logLoss: ");let l=le(1),u=le(n),c=qe(P(s,cr(ee(a,u)))),p=P(pe(l,s),cr(ee(pe(l,a),u))),m=pe(c,p);return Er(m,i,o)}var N1=S({logLoss_:dq});function hq(r,e,t,n=Gt.SUM_BY_NONZERO_WEIGHTS){let o=k(r,"labels","meanSquaredError"),s=k(e,"predictions","meanSquaredError"),a=null;t!=null&&(a=k(t,"weights","meanSquaredError")),At(o.shape,s.shape,"Error in meanSquaredError: ");let i=bu(o,s);return Er(i,a,n)}var S1=S({meanSquaredError_:hq});function gq(r,e){let t=k(r,"labels","sigmoidCrossEntropyWithLogits"),n=k(e,"logits","sigmoidCrossEntropyWithLogits");At(t.shape,n.shape,"Error in sigmoidCrossEntropyWithLogits: ");let o=Ar(n),s=P(n,t),a=lu(Jt(qe(Nt(n))));return ee(pe(o,s),a)}function xq(r,e,t,n=0,o=Gt.SUM_BY_NONZERO_WEIGHTS){let s=k(r,"multiClassLabels","sigmoidCrossEntropy"),a=k(e,"logits","sigmoidCrossEntropy"),i=null;if(t!=null&&(i=k(t,"weights","sigmoidCrossEntropy")),At(s.shape,a.shape,"Error in sigmoidCrossEntropy: "),n>0){let u=le(n),c=le(1),p=le(.5);s=ee(P(s,pe(c,u)),P(p,u))}let l=gq(s,a);return Er(l,i,o)}var T1=S({sigmoidCrossEntropy_:xq});function yq(r,e,t=-1){if(t===-1&&(t=e.rank-1),t!==e.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${e.rank} and dim was ${t}`);return Qr((o,s,a)=>{let l=nf(s,[t],!0),u=pe(oe(s,"float32"),l);a([o,u]);let c=qe(P(u,o));return{value:ge(c,[t]),gradFunc:(f,d)=>{let[h,g]=d,y=eo(f.shape,[t]);return[P(L(f,y),pe(oe(h,"float32"),Jt(g))),P(L(f,y),pe(Jt(g),oe(h,"float32")))]}}})(r,e)}function bq(r,e,t,n=0,o=Gt.SUM_BY_NONZERO_WEIGHTS){let s=k(r,"onehotLabels","softmaxCrossEntropy"),a=k(e,"logits","softmaxCrossEntropy"),i=null;if(t!=null&&(i=k(t,"weights","softmaxCrossEntropy")),At(s.shape,a.shape,"Error in softmaxCrossEntropy: "),n>0){let u=le(n),c=le(1),p=le(s.shape[1]);s=ee(P(s,pe(c,u)),me(u,p))}let l=yq(s,a);return Er(l,i,o)}var A1=S({softmaxCrossEntropy_:bq});var gFe={fft:Ca,ifft:oi,rfft:Ia,irfft:yu},xFe={hammingWindow:o1,hannWindow:Ig,frame:Ng,stft:s1},ii={flipLeftRight:a1,resizeNearestNeighbor:Dg,resizeBilinear:Eg,rotateWithOffset:l1,cropAndResize:i1,nonMaxSuppression:u1,nonMaxSuppressionAsync:m1,nonMaxSuppressionWithScore:f1,nonMaxSuppressionWithScoreAsync:d1,nonMaxSuppressionPadded:h1,nonMaxSuppressionPaddedAsync:g1,transform:x1},E1={bandPart:y1,gramSchmidt:b1,qr:_1},yFe={absoluteDifference:k1,computeWeightedLoss:Er,cosineDistance:v1,hingeLoss:C1,huberLoss:I1,logLoss:N1,meanSquaredError:S1,sigmoidCrossEntropy:T1,softmaxCrossEntropy:A1};var zr=class extends pg{minimize(e,t=!1,n){let{value:o,grads:s}=this.computeGradients(e,n);if(n!=null){let a=n.map(i=>({name:i.name,tensor:s[i.name]}));this.applyGradients(a)}else this.applyGradients(s);return Ae(s),t?o:(o.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return hg(e,t)}dispose(){this.iterations_!=null&&Ae(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:le(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(zr,Symbol.hasInstance,{value:r=>r.minimize!=null&&r.computeGradients!=null&&r.applyGradients!=null});var up=class extends zr{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=A.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,o)=>{let s=A.registeredVariables[n],a=!1;this.accumulatedGrads[o]==null&&(this.accumulatedGrads[o]={originalName:`${n}/accum_grad`,variable:V(()=>Ie(s).variable(a))}),this.accumulatedUpdates[o]==null&&(this.accumulatedUpdates[o]={originalName:`${n}/accum_var`,variable:V(()=>Ie(s).variable(a))});let i=Array.isArray(e)?e[o].tensor:e[n];if(i==null)return;let l=this.accumulatedGrads[o].variable,u=this.accumulatedUpdates[o].variable;V(()=>{let c=ee(P(l,this.rho),P(Pe(i),1-this.rho)),p=P(me(gt(ee(u,this.epsilon)),gt(ee(l,this.epsilon))),i),m=ee(P(u,this.rho),P(Pe(p),1-this.rho));l.assign(c),u.assign(m);let f=ee(P(p,-this.learningRate),s);s.assign(f)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Ae(this.accumulatedGrads.map(e=>e.variable)),Ae(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(o=>({originalName:o.name,variable:o.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};up.className="Adadelta";fn(up);var cp=class extends zr{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,o)=>{let s=A.registeredVariables[n];if(this.accumulatedGrads[o]==null){let l=!1;this.accumulatedGrads[o]={originalName:`${n}/accumulator`,variable:V(()=>xa(s.shape,this.initialAccumulatorValue).variable(l))}}let a=Array.isArray(e)?e[o].tensor:e[n];if(a==null)return;let i=this.accumulatedGrads[o].variable;V(()=>{let l=ee(i,Pe(a));i.assign(l);let u=ee(P(me(a,gt(ee(l,A.backend.epsilon()))),-this.learningRate),s);s.assign(u)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Ae(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};cp.className="Adagrad";fn(cp);var pp=class extends zr{constructor(e,t,n,o=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=o,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],V(()=>{this.accBeta1=le(t).variable(),this.accBeta2=le(n).variable()}),o==null&&(this.epsilon=A.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);V(()=>{let n=pe(1,this.accBeta1),o=pe(1,this.accBeta2);t.forEach((s,a)=>{let i=A.registeredVariables[s],l=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${s}/m`,variable:V(()=>Ie(i).variable(l))}),this.accumulatedSecondMoment[a]==null&&(this.accumulatedSecondMoment[a]={originalName:`${s}/v`,variable:V(()=>Ie(i).variable(l))});let u=Array.isArray(e)?e[a].tensor:e[s];if(u==null)return;let c=this.accumulatedFirstMoment[a].variable,p=this.accumulatedSecondMoment[a].variable,m=ee(P(c,this.beta1),P(u,1-this.beta1)),f=ee(P(p,this.beta2),P(Pe(u),1-this.beta2)),d=me(m,n),h=me(f,o);c.assign(m),p.assign(f);let g=ee(P(me(d,ee(gt(h),this.epsilon)),-this.learningRate),i);i.assign(g)}),this.accBeta1.assign(P(this.accBeta1,this.beta1)),this.accBeta2.assign(P(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Ae(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Ae(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),V(()=>{this.accBeta1.assign(Lr(this.beta1,this.iterations_+1)),this.accBeta2.assign(Lr(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(o=>({originalName:o.name,variable:o.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};pp.className="Adam";fn(pp);var mp=class extends zr{constructor(e,t,n,o=null,s=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=o,this.decay=s,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],V(()=>{this.iteration=le(0).variable(),this.accBeta1=le(t).variable()}),o==null&&(this.epsilon=A.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);V(()=>{let n=pe(1,this.accBeta1),o=me(-this.learningRate,ee(P(this.iteration,this.decay),1));t.forEach((s,a)=>{let i=A.registeredVariables[s],l=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${s}/m`,variable:Ie(i).variable(l)}),this.accumulatedWeightedInfNorm[a]==null&&(this.accumulatedWeightedInfNorm[a]={originalName:`${s}/v`,variable:Ie(i).variable(l)});let u=Array.isArray(e)?e[a].tensor:e[s];if(u==null)return;let c=this.accumulatedFirstMoment[a].variable,p=this.accumulatedWeightedInfNorm[a].variable,m=ee(P(c,this.beta1),P(u,1-this.beta1)),f=P(p,this.beta2),d=Nt(u),h=en(f,d);c.assign(m),p.assign(h);let g=ee(P(me(o,n),me(m,ee(h,this.epsilon))),i);i.assign(g)}),this.iteration.assign(ee(this.iteration,1)),this.accBeta1.assign(P(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Ae(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Ae(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};mp.className="Adamax";fn(mp);var hl=class extends zr{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,o)=>{let s=Array.isArray(e)?e[o].tensor:e[n];if(s==null)return;let a=A.registeredVariables[n];V(()=>{let i=ee(P(this.c,s),a);a.assign(i)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Et(le(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};hl.className="SGD";fn(hl);var fp=class extends hl{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=le(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,o)=>{let s=A.registeredVariables[n];if(this.accumulations[o]==null){let l=!1;this.accumulations[o]={originalName:`${n}/momentum`,variable:V(()=>Ie(s).variable(l))}}let a=this.accumulations[o].variable,i=Array.isArray(e)?e[o].tensor:e[n];i!=null&&V(()=>{let l,u=ee(P(this.m,a),i);this.useNesterov?l=ee(P(this.c,ee(i,P(u,this.m))),s):l=ee(P(this.c,u),s),a.assign(u),s.assign(l)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Ae(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};fp.className="Momentum";fn(fp);var dp=class extends zr{constructor(e,t=.9,n=0,o=null,s=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=o,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=s,o==null&&(this.epsilon=A.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,o)=>{let s=A.registeredVariables[n],a=!1;this.accumulatedMeanSquares[o]==null&&(this.accumulatedMeanSquares[o]={originalName:`${n}/rms`,variable:V(()=>Ie(s).variable(a))}),this.accumulatedMoments[o]==null&&(this.accumulatedMoments[o]={originalName:`${n}/momentum`,variable:V(()=>Ie(s).variable(a))}),this.accumulatedMeanGrads[o]==null&&this.centered&&(this.accumulatedMeanGrads[o]={originalName:`${n}/mg`,variable:V(()=>Ie(s).variable(a))});let i=Array.isArray(e)?e[o].tensor:e[n];if(i==null)return;let l=this.accumulatedMeanSquares[o].variable,u=this.accumulatedMoments[o].variable;V(()=>{let c=ee(P(l,this.decay),P(Pe(i),1-this.decay));if(this.centered){let p=this.accumulatedMeanGrads[o].variable,m=ee(P(p,this.decay),P(i,1-this.decay)),f=me(P(i,this.learningRate),gt(pe(c,ee(Pe(m),this.epsilon)))),d=ee(P(u,this.momentum),f);l.assign(c),p.assign(m),u.assign(d);let h=pe(s,d);s.assign(h)}else{let p=ee(P(l,this.decay),P(Pe(i),1-this.decay)),m=ee(P(u,this.momentum),me(P(i,this.learningRate),gt(ee(p,this.epsilon))));l.assign(p),u.assign(m);let f=pe(s,m);s.assign(f)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Ae(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Ae(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Ae(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};dp.className="RMSProp";fn(dp);var Na=class{static sgd(e){return new hl(e)}static momentum(e,t,n=!1){return new fp(e,t,n)}static rmsprop(e,t=.9,n=0,o=null,s=!1){return new dp(e,t,n,o,s)}static adam(e=.001,t=.9,n=.999,o=null){return new pp(e,t,n,o)}static adadelta(e=.001,t=.95,n=null){return new up(e,t,n)}static adamax(e=.002,t=.9,n=.999,o=null,s=0){return new mp(e,t,n,o,s)}static adagrad(e,t=.1){return new cp(e,t)}};var Iu={sgd:Na.sgd,momentum:Na.momentum,adadelta:Na.adadelta,adagrad:Na.adagrad,rmsprop:Na.rmsprop,adamax:Na.adamax,adam:Na.adam};var wq=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:r=>r())();function bf(){return new Promise(r=>wq(()=>r()))}var C={};We(C,{ERF_A1:()=>Dq,ERF_A2:()=>$q,ERF_A3:()=>Rq,ERF_A4:()=>Fq,ERF_A5:()=>Oq,ERF_P:()=>Eq,PARALLELIZE_THRESHOLD:()=>$g,SELU_SCALE:()=>k_,SELU_SCALEALPHA:()=>__,applyActivation:()=>vu,assertAndGetBroadcastShape:()=>Be,assertAxesAreInnerMostDims:()=>$4,assertParamsConsistent:()=>_q,assignToTypedArray:()=>Wq,axesAreInnerMostDims:()=>t_,calculateShapes:()=>hT,checkEinsumDimSizes:()=>Xq,combineLocations:()=>RT,complexWithEvenIndex:()=>Bq,complexWithOddIndex:()=>Vq,computeConv2DInfo:()=>eu,computeConv3DInfo:()=>DT,computeDefaultPad:()=>Lw,computeDilation2DInfo:()=>nj,computeOptimalWindowSize:()=>vq,computeOutAndReduceShapes:()=>r_,computeOutShape:()=>kq,computePool2DInfo:()=>Pw,computePool3DInfo:()=>oj,convertConv2DDataFormat:()=>ET,decodeEinsumEquation:()=>qq,eitherStridesOrDilationsAreOne:()=>_r,expandShapeToKeepDim:()=>eo,exponent:()=>Uq,exponents:()=>jq,fromStringArrayToUint8:()=>oK,fromUint8ToStringArray:()=>nK,getAxesPermutation:()=>n_,getBroadcastDims:()=>qj,getComplexWithIndex:()=>Gq,getEinsumComputePath:()=>Zq,getEinsumPermutation:()=>Kq,getFusedBiasGradient:()=>ku,getFusedDyActivation:()=>_u,getImageCenter:()=>Cq,getInnerMostAxes:()=>R4,getPermuted:()=>Nq,getReductionAxes:()=>kt,getReshaped:()=>Iq,getReshapedPermuted:()=>Sq,getSliceBeginCoords:()=>Tq,getSliceSize:()=>Aq,getUndoAxesPermutation:()=>rf,isIdentityPermutation:()=>Jq,log:()=>Mq,mergeRealAndImagArrays:()=>Lq,prepareAndValidate:()=>dT,prepareSplitSize:()=>Qq,segment_util:()=>C_,shouldFuse:()=>Cu,slice_util:()=>rr,splitRealAndImagArrays:()=>zq,tupleValuesAreOne:()=>Ln,upcastType:()=>ar,validateInput:()=>ug,validateUpdateShape:()=>Aw,warn:()=>Pq});function _q(r,e){let t=r[0].length;r.forEach((o,s)=>{T(o.length===t,()=>`Error in concat${t}D: rank of tensors[${s}] must be the same as the rank of the rest (${t})`)}),T(e>=0&&e<t,()=>`Error in concat${t}D: axis must be between 0 and ${t-1}.`);let n=r[0];r.forEach((o,s)=>{for(let a=0;a<t;a++)T(a===e||o[a]===n[a],()=>`Error in concat${t}D: Shape of tensors[${s}] (${o}) does not match the shape of the rest (${n}) along the non-concatenated axis ${s}.`)})}function kq(r,e){let t=r[0].slice();for(let n=1;n<r.length;n++)t[e]+=r[n][e];return t}var $g=30;function vq(r){return r<=$g?r:dc(r,Math.floor(Math.sqrt(r)))}function Cq(r,e,t){let n=t*(typeof r=="number"?r:r[0]),o=e*(typeof r=="number"?r:r[1]);return[n,o]}function Iq(r,e,t,n=!0){let o=[];if(n)o=o.concat(e.slice(0)),o.push(r[0]/t),o=o.concat(r.slice(1));else{o=o.concat(r[0]);let s=e.length;for(let a=0;a<s;++a)o=o.concat([r[a+1]/e[a],e[a]]);o=o.concat(r.slice(s+1))}return o}function Nq(r,e,t=!0){let n=[];if(t){n.push(e);for(let o=e+1;o<r;++o)o<=2*e?(n.push(o),n.push(o-(e+1))):n.push(o)}else{let o=[],s=[];for(let a=1;a<r;++a)a>=e*2+1||a%2==1?s.push(a):o.push(a);n.push(...o),n.push(0),n.push(...s)}return n}function Sq(r,e,t,n=!0){let o=[];n?o.push(r[0]/t):o.push(r[0]*t);for(let s=1;s<r.length;++s)s<=e.length?n?o.push(e[s-1]*r[s]):o.push(r[s]/e[s-1]):o.push(r[s]);return o}function Tq(r,e){let t=[0];for(let n=0;n<e;++n)t.push(r[n][0]);return t}function Aq(r,e,t){let n=r.slice(0,1);for(let o=0;o<t;++o)n.push(r[o+1]-e[o][0]-e[o][1]);return n}var __=1.7580993408473768,k_=1.0507009873554805;var Eq=.3275911,Dq=.254829592,$q=-.284496736,Rq=1.421413741,Fq=-1.453152027,Oq=1.061405429;function Pq(...r){W().getBool("IS_TEST")||console.warn(...r)}function Mq(...r){W().getBool("IS_TEST")||console.log(...r)}function Lq(r,e){if(r.length!==e.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${r.length}, imag: ${e.length}.`);let t=new Float32Array(r.length*2);for(let n=0;n<t.length;n+=2)t[n]=r[n/2],t[n+1]=e[n/2];return t}function zq(r){let e=new Float32Array(r.length/2),t=new Float32Array(r.length/2);for(let n=0;n<r.length;n+=2)e[n/2]=r[n],t[n/2]=r[n+1];return{real:e,imag:t}}function Bq(r){let e=Math.ceil(r.length/4),t=new Float32Array(e),n=new Float32Array(e);for(let o=0;o<r.length;o+=4)t[Math.floor(o/4)]=r[o],n[Math.floor(o/4)]=r[o+1];return{real:t,imag:n}}function Vq(r){let e=Math.floor(r.length/4),t=new Float32Array(e),n=new Float32Array(e);for(let o=2;o<r.length;o+=4)t[Math.floor(o/4)]=r[o],n[Math.floor(o/4)]=r[o+1];return{real:t,imag:n}}function Gq(r,e){let t=r[e*2],n=r[e*2+1];return{real:t,imag:n}}function Wq(r,e,t,n){r[n*2]=e,r[n*2+1]=t}function jq(r,e){let t=new Float32Array(r/2),n=new Float32Array(r/2);for(let o=0;o<Math.ceil(r/2);o++){let s=(e?2:-2)*Math.PI*(o/r);t[o]=Math.cos(s),n[o]=Math.sin(s)}return{real:t,imag:n}}function Uq(r,e,t){let n=(t?2:-2)*Math.PI*(r/e),o=Math.cos(n),s=Math.sin(n);return{real:o,imag:s}}var v_="->",Hq=/->/g,D1=",",$1="...";function qq(r,e){r=r.replace(/\s/g,"");let t=(r.length-r.replace(Hq,"").length)/v_.length;if(t<1)throw new Error("Equations without an arrow are not supported.");if(t>1)throw new Error(`Equation must contain exactly one arrow ("${v_}").`);let[n,o]=r.split(v_);T(n.indexOf($1)===-1,()=>`The ellipsis notation ("${$1}") is not supported yet.`);let s=n.split(D1),a=s.length;if(e!==a)throw new Error(`Expected ${a} input tensors, received ${e}`);if(a>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let i=[];for(let m=0;m<o.length;++m){let f=o[m];if(!s.some(d=>d.indexOf(f)!==-1))throw new Error(`Output subscripts contain the label ${f} not present in the input subscripts.`);i.indexOf(f)===-1&&i.push(f)}for(let m=0;m<n.length;++m){let f=n[m];i.indexOf(f)===-1&&f!==D1&&i.push(f)}let l=new Array(s.length);for(let m=0;m<a;++m){if(new Set(s[m].split("")).size!==s[m].length)throw new Error(`Found duplicate axes in input component ${s[m]}. Support for duplicate axes in input is not implemented yet.`);l[m]=[];for(let f=0;f<s[m].length;++f)l[m].push(i.indexOf(s[m][f]))}let u=i.length,c=o.length,p=[];for(let m=c;m<u;++m)p.push(m);return{allDims:i,summedDims:p,idDims:l}}function Kq(r,e){let t=new Array(r);t.fill(-1);for(let o=0;o<e.length;++o)t[e[o]]=o;let n=[];for(let o=0;o<r;++o)t[o]===-1&&n.push(o);return t=t.filter(o=>o!==-1),{permutationIndices:t,expandDims:n}}function Xq(r,e,t){let n=new Array(r);for(let o=0;o<t.length;++o){let s=t[o].shape;for(let a=0;a<e[o].length;++a)n[e[o][a]]===void 0?n[e[o][a]]=s[a]:T(n[e[o][a]]===s[a],()=>`Expected dimension ${n[e[o][a]]} at axis ${a} of input shaped ${JSON.stringify(s)}, but got dimension ${s[a]}`)}}function Zq(r,e){let t=r,n=[],o=0;r.length===0&&t.push(-1),o=r.length+1;for(let a=0;a<o;++a)n.push([]);let s=[];for(let a=0;a<t.length;++a){let i=t[a],l=Yq(e,i);for(let u of l)s.indexOf(u)===-1&&(n[a].push(u),s.push(u))}return{path:t,steps:n}}function Jq(r){return r.every((e,t)=>e===t)}function Yq(r,e){let t=[];for(let n=0;n<r.length;++n)(r[n].length===0||r[n].indexOf(e)!==-1||e===-1)&&t.push(n);return t}function Qq(r,e,t=0){let n=[];if(typeof e=="number")T(r.shape[t]%e==0,()=>"Number of splits must evenly divide the axis."),n=new Array(e).fill(r.shape[t]/e);else{let o=e.reduce((a,i)=>(i===-1&&(a+=1),a),0);T(o<=1,()=>"There should be only one negative value in split array.");let s=e.indexOf(-1);if(s!==-1){let a=e.reduce((i,l)=>l>0?i+l:i);e[s]=r.shape[t]-a}T(r.shape[t]===e.reduce((a,i)=>a+i),()=>"The sum of sizes must match the size of the axis dimension."),n=e}return n}var C_={};We(C_,{collectGatherOpShapeInfo:()=>rK,computeOutShape:()=>tK,segOpComputeOptimalWindowSize:()=>eK});function eK(r,e){let t=!1,n;for(r<=$g?(n=r,t=!0):n=dc(r,Math.floor(Math.sqrt(r)));!t;)n>e||n===r?t=!0:n=dc(r,n+1);return n}function tK(r,e,t){let n=[],o=r.length;for(let s=0;s<o;s++)s!==e?n.push(r[s]):n.push(t);return n}function rK(r,e,t,n){let o=e.shape.length,s=r.shape.length;if(n!==0&&(n<-o||n>o))throw new Error(`Expect batchDims in the range of [-${o}, ${o}], but got ${n}`);if(n<0&&(n+=o),n>s)throw new Error(`batchDims (${n}) must be less than rank(x) (
|
|
${s}).`);if(t<n)throw new Error(`batchDims (${n}) must be less than or equal to axis (${t}).`);for(let p=0;p<n;++p)if(r.shape[p]!==e.shape[p])throw new Error(`x.shape[${p}]: ${r.shape[p]} should be equal to indices.shape[${p}]: ${e.shape[p]}.`);let a=r.shape[t],i=[],l=1,u=1,c=1;for(let p=0;p<n;++p)i.push(r.shape[p]),l*=r.shape[p];for(let p=n;p<t;p++)i.push(r.shape[p]),u*=r.shape[p];for(let p=n;p<o;p++)i.push(e.shape[p]);for(let p=t+1;p<s;p++)i.push(r.shape[p]),c*=r.shape[p];return{batchSize:l,sliceSize:c,outerSize:u,dimSize:a,outputShape:i}}function nK(r){try{return r.map(e=>Hc(e))}catch(e){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${e}`)}}function oK(r){return r.map(e=>ll(e))}var Dr={};We(Dr,{nonMaxSuppressionV3Impl:()=>Sg,nonMaxSuppressionV4Impl:()=>Tg,nonMaxSuppressionV5Impl:()=>Ag,whereImpl:()=>wg});function te(r,e){Array.isArray(r)||(r=[r]),r.forEach(t=>{t!=null&&x.assert(t.dtype!=="complex64",()=>`${e} does not support complex64 tensors in the CPU backend.`)})}var sK=Dr.whereImpl,Nu=class extends Os{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new qa(this,ds())}nextDataId(){return Nu.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,W().get("IS_NODE")&&C.warn(`
|
|
============================
|
|
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
|
|
============================`));let o={id:this.nextDataId()};return this.data.set(o,{values:e,dtype:n,refCount:1}),o}makeTensorInfo(e,t,n){let o;if(t==="string"&&n!=null&&n.length>0&&x.isString(n[0])){let s=n.map(a=>x.encodeString(a));o=this.write(s,e,t)}else o=this.write(n,e,t);return{dataId:o,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,o,s){this.data.set(e,{values:t,dtype:o,refCount:s})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let o=this.readSync(n.real.dataId),s=this.readSync(n.imag.dataId);return C.mergeRealAndImagArrays(o,s)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(o=>x.decodeString(o))}catch(o){throw new Error("Failed to decode encoded string bytes into utf-8")}return Ce(e.shape,e.dtype,n)}makeOutput(e,t,n){let o=this.write(e,t,n);return ds().makeTensorFromDataId(o,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=x.now();return e(),{kernelMs:x.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){te([e],"where");let t=this.readSync(e.dataId);return sK(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};Nu.nextDataId=0;var Vg={};We(Vg,{addImpl:()=>N_,bincountImpl:()=>xp,bincountReduceImpl:()=>Rg,ceilImpl:()=>S_,concatImpl:()=>Su,expImpl:()=>T_,expm1Impl:()=>E_,floorImpl:()=>D_,gatherV2Impl:()=>Fg,greaterImpl:()=>$_,lessImpl:()=>R_,linSpaceImpl:()=>Og,logImpl:()=>F_,maxImpl:()=>Pg,maximumImpl:()=>O_,minimumImpl:()=>P_,multiplyImpl:()=>wf,negImpl:()=>M_,notEqualImpl:()=>L_,prodImpl:()=>z_,rangeImpl:()=>Au,rsqrtImpl:()=>B_,simpleAbsImpl:()=>I_,sliceImpl:()=>Eu,squaredDifferenceImpl:()=>V_,stridedSliceImpl:()=>Mg,subImpl:()=>G_,tileImpl:()=>Lg,topKImpl:()=>zg,transposeImpl:()=>yp,uniqueImpl:()=>Bg});function I_(r){let e=new Float32Array(r.length);for(let t=0;t<r.length;++t)e[t]=Math.abs(r[t]);return e}var iK=r=>{let{x:e}=r.inputs,t=r.backend;te(e,"abs");let n=new Float32Array(x.sizeFromShape(e.shape)),o=t.data.get(e.dataId).values;return n=I_(o),t.makeOutput(n,e.shape,"float32")},R1={kernelName:Ls,backendName:"cpu",kernelFunc:iK};function Ye(r){return(e,t,n,o,s)=>{let a=C.assertAndGetBroadcastShape(e,t),i=a.length,l=x.computeStrides(a),u=x.sizeFromShape(a),c=x.getTypedArrayFromDType(s,u),p=e.length,m=t.length,f=x.computeStrides(e),d=x.computeStrides(t),h=C.getBroadcastDims(e,a),g=C.getBroadcastDims(t,a);if(h.length+g.length===0)for(let y=0;y<c.length;++y)c[y]=r(n[y%n.length],o[y%o.length]);else for(let y=0;y<c.length;++y){let b=x.indexToLoc(y,i,l),w=b.slice(-p);h.forEach($=>w[$]=0);let _=x.locToIndex(w,p,f),I=b.slice(-m);g.forEach($=>I[$]=0);let E=x.locToIndex(I,m,d);c[y]=r(n[_],o[E])}return[c,a]}}function dr(r){let{inputs:e,backend:t}=r,{real:n,imag:o}=e,s=t.data.get(n.dataId).values,a=t.data.get(o.dataId).values,i=t.makeTensorInfo(n.shape,"complex64"),l=t.data.get(i.dataId);return l.complexTensorInfos={real:t.makeTensorInfo(n.shape,"float32",s),imag:t.makeTensorInfo(o.shape,"float32",a)},i}var F1={kernelName:bc,backendName:"cpu",kernelFunc:dr};function hp(r,e,t="float32"){if(t==="complex64"){let o=hp(r,e,"float32"),s=hp(r,e,"float32");return dr({inputs:{real:o,imag:s},backend:r})}let n=x.makeZerosTypedArray(x.sizeFromShape(e),t);return r.makeTensorInfo(e,t,n)}function $r(r){let{inputs:e,backend:t}=r,{x:n}=e;return t.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var O1={kernelName:Xn,backendName:"cpu",kernelFunc:$r};function oo(r){let{inputs:e,backend:t}=r,{input:n}=e,o=t.data.get(n.dataId).complexTensorInfos.real,s=t.data.get(o.dataId).values;return t.makeTensorInfo(o.shape,o.dtype,s)}var P1={kernelName:Lc,backendName:"cpu",kernelFunc:oo};function so(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{dtype:s}=n;if(s==="complex64"){if(o.dtype==="complex64")return $r({inputs:{x:o},backend:t});let a=hp(t,o.shape,o.dtype),i=so({inputs:{x:o},backend:t,attrs:{dtype:"float32"}}),l=dr({inputs:{real:i,imag:a},backend:t});return t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),l}if(o.dtype==="complex64"){let a=oo({inputs:{input:o},backend:t}),i=so({inputs:{x:a},backend:t,attrs:{dtype:s}});return t.disposeIntermediateTensorInfo(a),i}if(!x.hasEncodingLoss(o.dtype,s)){let a=$r({inputs:{x:o},backend:t});return{dataId:a.dataId,shape:a.shape,dtype:s}}if(s==="int32"){let a=t.data.get(o.dataId).values,i=Int32Array.from(a);return t.makeTensorInfo(o.shape,"int32",i)}if(s==="bool"){let a=t.data.get(o.dataId).values,i=x.toTypedArray([0],o.dtype),[l,u]=Ye((c,p)=>c!==p?1:0)(o.shape,[],a,i,"bool");return t.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${o.dtype} to ${s}`)}var M1={kernelName:qn,backendName:"cpu",kernelFunc:so};function et(r,e,t,n){return t==null?({inputs:o,backend:s})=>{let{a,b:i}=o,l=s;te([a,i],r);let u=l.data.get(a.dataId).values,c=l.data.get(i.dataId).values,p=n||a.dtype,[m,f]=e(a.shape,i.shape,u,c,p);return l.makeTensorInfo(f,p,m)}:({inputs:o,backend:s})=>{let{a,b:i}=o,l=s;if(a.dtype==="complex64"||i.dtype==="complex64"){let u=so({inputs:{x:a},backend:l,attrs:{dtype:"complex64"}}),c=l.data.get(u.dataId),p=c.complexTensorInfos.real,m=c.complexTensorInfos.imag,f=l.data.get(p.dataId).values,d=l.data.get(m.dataId).values,h=so({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(h.dataId),y=g.complexTensorInfos.real,b=g.complexTensorInfos.imag,w=l.data.get(y.dataId).values,_=l.data.get(b.dataId).values,[I,E,$]=t(a.shape,i.shape,f,d,w,_),D=l.makeTensorInfo($,"float32",I),O=l.makeTensorInfo($,"float32",E),M=dr({inputs:{real:D,imag:O},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(h),l.disposeIntermediateTensorInfo(D),l.disposeIntermediateTensorInfo(O),M}else{let u=l.data.get(a.dataId).values,c=l.data.get(i.dataId).values,p=n||a.dtype,[m,f]=e(a.shape,i.shape,u,c,p);return l.makeTensorInfo(f,p,m)}}}function gp(r){return(e,t,n,o,s,a)=>{let i=C.assertAndGetBroadcastShape(e,t),l=x.sizeFromShape(i),u=i.length,c=x.computeStrides(i),p=x.getTypedArrayFromDType("float32",l),m=x.getTypedArrayFromDType("float32",l),f=C.getBroadcastDims(e,i),d=C.getBroadcastDims(t,i),h=C.mergeRealAndImagArrays(n,o),g=C.mergeRealAndImagArrays(s,a),y=e.length,b=x.computeStrides(e),w=t.length,_=x.computeStrides(t);if(f.length+d.length===0)for(let I=0;I<p.length;I++){let E=I%h.length,$=I%g.length,D=r(h[E*2],h[E*2+1],g[$*2],g[$*2+1]);p[I]=D.real,m[I]=D.imag}else for(let I=0;I<p.length;I++){let E=x.indexToLoc(I,u,c),$=E.slice(-y);f.forEach(j=>$[j]=0);let D=x.locToIndex($,y,b),O=E.slice(-w);d.forEach(j=>O[j]=0);let M=x.locToIndex(O,w,_),G=r(h[D*2],h[D*2+1],g[M*2],g[M*2+1]);p[I]=G.real,m[I]=G.imag}return[p,m,i]}}var N_=Ye((r,e)=>r+e),aK=gp((r,e,t,n)=>({real:r+t,imag:e+n})),Sa=et(On,N_,aK),L1={kernelName:On,backendName:"cpu",kernelFunc:Sa};function xp(r,e,t,n,o){let s=x.sizeFromShape(n),a=x.makeZerosTypedArray(o,t);for(let i=0;i<r.length;i++){let l=r[i];if(l<0)throw new Error("Input x must be non-negative!");l>=o||(s>0?a[l]+=e[i]:a[l]+=1)}return a}function Rg(r,e,t,n=!1){let o=r.shape[0],s=r.shape[1],a=Ce([o,t],e.dtype);for(let i=0;i<o;i++)for(let l=0;l<s;l++){let u=r.get(i,l);if(u<0)throw new Error("Input x must be non-negative!");u>=t||(n?a.set(1,i,u):e.size>0?a.set(a.get(i,u)+e.get(i,l),i,u):a.set(a.get(i,u)+1,i,u))}return a}function io(r){return(e,t,n)=>{let o=x.getTypedArrayFromDType(t,e.length);for(let s=0;s<e.length;++s)o[s]=r(e[s],n);return o}}function De(r,e,t){return({inputs:n,attrs:o,backend:s})=>{let{x:a}=n;if(te(a,r),a.dtype==="string"||t==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=s,l=i.data.get(a.dataId).values,u=x.sizeFromShape(a.shape),c=t||a.dtype,p=x.getArrayFromDType(c,u);for(let m=0;m<u;++m)p[m]=e(l[m],o);return i.makeTensorInfo(a.shape,c,p)}}function ao(r,e,t){return({inputs:n,attrs:o,backend:s})=>{let{x:a}=n;if(te(a,r),a.dtype==="string"||t==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=s,l=i.data.get(a.dataId).values,u=t||a.dtype,c=e(l,u,o);return i.makeTensorInfo(a.shape,u,c)}}var S_=io(r=>Math.ceil(r)),lK=ao(Co,S_),z1={kernelName:Co,backendName:"cpu",kernelFunc:lK};function Su(r,e,t,n){let o=x.getArrayFromDType(t,x.sizeFromShape(e));if(n&&t!=="string"){let s=0;r.forEach(a=>{let i=x.sizeFromShape(a.shape);o.set(a.vals,s),s+=i})}else{let s=0;r.forEach(a=>{let i=t==="string"?C.fromUint8ToStringArray(a.vals):a.vals,l=0;for(let u=0;u<a.shape[0];++u){let c=u*e[1]+s;for(let p=0;p<a.shape[1];++p)o[c+p]=i[l++]}s+=a.shape[1]})}return o}var T_=io(r=>Math.exp(r)),A_=ao(Do,T_),B1={kernelName:Do,backendName:"cpu",kernelFunc:A_};var E_=io(r=>Math.expm1(r)),uK=ao(Pi,E_),V1={kernelName:Pi,backendName:"cpu",kernelFunc:uK};var D_=io(r=>Math.floor(r)),cK=ao($o,D_),G1={kernelName:$o,backendName:"cpu",kernelFunc:cK};function Fg(r,e,t){let n=Ce(t,r.dtype);for(let o=0;o<n.size;++o){let a=n.indexToLoc(o).slice(),i=a[0],l=a[2],u=e.locToIndex([i,l]);a[2]=e.values[u];let c=r.locToIndex(a);n.values[o]=r.values[c]}return n}var $_=Ye((r,e)=>r>e?1:0),pK=et(zi,$_,null,"bool"),W1={kernelName:zi,backendName:"cpu",kernelFunc:pK};var R_=Ye((r,e)=>r<e?1:0),mK=et(Wi,R_,null,"bool"),j1={kernelName:Wi,backendName:"cpu",kernelFunc:mK};function Og(r,e,t){let n=(e-r)/(t-1),o=x.makeZerosTypedArray(t,"float32");o[0]=r;for(let s=1;s<o.length;s++)o[s]=o[s-1]+n;return o}var F_=io(r=>Math.log(r)),fK=ao(Mo,F_),U1={kernelName:Mo,backendName:"cpu",kernelFunc:fK};function Pg(r,e,t,n){let o=x.getTypedArrayFromDType(n,x.sizeFromShape(t));for(let s=0;s<o.length;++s){let a=s*e,i=r[a];for(let l=0;l<e;++l){let u=r[a+l];u>i&&(i=u)}o[s]=i}return o}var O_=Ye((r,e)=>Math.max(r,e)),dK=et(zo,O_),H1={kernelName:zo,backendName:"cpu",kernelFunc:dK};var P_=Ye((r,e)=>Math.min(r,e)),hK=et(Wo,P_),q1={kernelName:Wo,backendName:"cpu",kernelFunc:hK};var wf=Ye((r,e)=>r*e),gK=gp((r,e,t,n)=>({real:r*t-e*n,imag:r*n+e*t})),Tu=et(Uo,wf,gK),K1={kernelName:Uo,backendName:"cpu",kernelFunc:Tu};function M_(r,e,t){let n=x.createScalarValue(-1,t);return wf([],e,n,r,t)}function xK(r){let{inputs:e,backend:t}=r,{x:n}=e;te(n,"neg");let o=t.data.get(n.dataId).values,[s,a]=M_(o,n.shape,n.dtype);return t.makeTensorInfo(a,n.dtype,s)}var X1={kernelName:Gs,backendName:"cpu",kernelFunc:xK};var L_=Ye((r,e)=>r!==e?1:0),yK=et(Ki,L_,null,"bool"),Y1={kernelName:Ki,backendName:"cpu",kernelFunc:yK};function yp(r,e,t,n,o){let s=e.length,a=x.sizeFromShape(e),i=x.computeStrides(e),l=x.computeStrides(o),u=x.getTypedArrayFromDType(t,x.sizeFromShape(o));for(let c=0;c<a;++c){let p=x.indexToLoc(c,s,i),m=new Array(p.length);for(let d=0;d<m.length;d++)m[d]=p[n[d]];let f=x.locToIndex(m,s,l);u[f]=r[c]}return u}function Kt(r){let{inputs:e,attrs:t,backend:n}=r,{x:o}=e,{perm:s}=t;te(o,"transpose");let a=o.shape.length,i=new Array(a);for(let p=0;p<i.length;p++)i[p]=o.shape[s[p]];let l=n.data.get(o.dataId).values,u=yp(l,o.shape,o.dtype,s,i);return{dataId:n.write(u,i,o.dtype),shape:i,dtype:o.dtype}}var Z1={kernelName:ps,backendName:"cpu",kernelFunc:Kt};function z_(r,e,t,n){let[o,s]=C.computeOutAndReduceShapes(r,n),a=ar(e,"int32"),i=x.makeZerosTypedArray(x.sizeFromShape(o),a),l=x.sizeFromShape(s);for(let u=0;u<i.length;++u){let c=u*l,p=1;for(let m=0;m<l;++m)p*=t[c+m];i[u]=p}return{outVals:i,outShape:o,outDtype:a}}function bK(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,keepDims:a}=n;te(o,"prod");let i=o.shape.length,l=x.parseAxisParam(s,o.shape),u=C.getAxesPermutation(l,i),c=l,p=o,m=[];u!=null&&(p=Kt({inputs:{x:o},backend:t,attrs:{perm:u}}),m.push(p),c=C.getInnerMostAxes(c.length,i));let f=t.data.get(p.dataId).values,{outVals:d,outShape:h,outDtype:g}=z_(p.shape,p.dtype,f,c),y=h;return a&&(y=C.expandShapeToKeepDim(h,l)),m.forEach(b=>t.disposeIntermediateTensorInfo(b)),t.makeTensorInfo(y,g,d)}var J1={kernelName:Ji,backendName:"cpu",kernelFunc:bK};function Au(r,e,t,n){let o=r===e,s=r<e&&t<0,a=e<r&&t>1;if(o||s||a)return x.makeZerosTypedArray(0,n);let i=Math.abs(Math.ceil((e-r)/t)),l=x.makeZerosTypedArray(i,n);e<r&&t===1&&(t=-1),l[0]=r;for(let u=1;u<l.length;u++)l[u]=l[u-1]+t;return l}var B_=io(r=>1/Math.sqrt(r)),wK=ao(ts,B_),Q1={kernelName:ts,backendName:"cpu",kernelFunc:wK};function Eu(r,e,t,n,o){let s=rr.isSliceContinous(n,e,t),a=x.sizeFromShape(t),i=x.computeStrides(n);if(s){let p=rr.computeFlatOffset(e,i);return o==="string"?r.slice(p,p+a):r.subarray(p,p+a)}let l=o==="string"?C.fromUint8ToStringArray(r):r,u=Ce(n,o,l),c=Ce(t,o);for(let p=0;p<c.size;++p){let m=c.indexToLoc(p),f=m.map((d,h)=>d+e[h]);c.set(u.get(...f),...m)}return o==="string"?C.fromStringArrayToUint8(c.values):c.values}function lo(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{begin:s,size:a}=n;te(o,"slice");let[i,l]=rr.parseSliceParams(o,s,a);rr.assertParamsValid(o,i,l);let u=t.data.get(o.dataId).values,c=Eu(u,i,l,o.shape,o.dtype);return t.makeTensorInfo(l,o.dtype,c)}var eA={kernelName:qs,backendName:"cpu",kernelFunc:lo};var V_=Ye((r,e)=>{let t=r-e;return t*t}),_K=et(as,V_),tA={kernelName:as,backendName:"cpu",kernelFunc:_K};function Mg(r,e,t,n){let o=Ce(r,e.dtype);for(let s=0;s<o.size;s++){let a=o.indexToLoc(s),i=new Array(a.length);for(let l=0;l<i.length;l++)i[l]=a[l]*t[l]+n[l];o.set(e.get(...i),...a)}return o}var G_=Ye((r,e)=>r-e),kK=gp((r,e,t,n)=>({real:r-t,imag:e-n})),_f=et(ls,G_,kK),rA={kernelName:ls,backendName:"cpu",kernelFunc:_f};function Lg(r,e){let t=new Array(r.rank);for(let o=0;o<t.length;o++)t[o]=r.shape[o]*e[o];let n=Ce(t,r.dtype);for(let o=0;o<n.values.length;++o){let s=n.indexToLoc(o),a=new Array(r.rank);for(let l=0;l<a.length;l++)a[l]=s[l]%r.shape[l];let i=r.locToIndex(a);n.values[o]=r.values[i]}return n}function zg(r,e,t,n,o){let s=e[e.length-1],[a,i]=[r.length/s,s],l=x.getTypedArrayFromDType(t,a*n),u=x.getTypedArrayFromDType("int32",a*n);for(let p=0;p<a;p++){let m=p*i,f=r.subarray(m,m+i),d=[];for(let b=0;b<f.length;b++)d.push({value:f[b],index:b});d.sort((b,w)=>w.value-b.value);let h=p*n,g=l.subarray(h,h+n),y=u.subarray(h,h+n);for(let b=0;b<n;b++)g[b]=d[b].value,y[b]=d[b].index}let c=e.slice();return c[c.length-1]=n,[Ce(c,t,l),Ce(c,"int32",u)]}function Bg(r,e,t,n){let o=x.parseAxisParam(e,t)[0],s=[1,t[0],1];for(let d=0;d<o;d++)s[0]*=t[d];s[1]=t[o];for(let d=o+1;d<t.length;d++)s[2]*=t[d];let a={},i=new Int32Array(t[o]),l=new ut(s,n,r),u=[],c=s[0]===1&&s[2]===1;for(let d=0;d<t[o];d++){let h;if(c)h=r[d].toString();else{let g=[];for(let y=0;y<s[0];y++)for(let b=0;b<s[2];b++)g.push(l.get(y,d,b));h=g.join(",")}if(a[h]!==void 0)i[d]=a[h];else{let g=Object.keys(a).length;a[h]=g,i[d]=g,u.push(d)}}let p=s.slice();p[1]=Object.keys(a).length;let m=new ut(p,n);u.forEach((d,h)=>{for(let g=0;g<s[0];g++)for(let y=0;y<s[2];y++)m.set(l.get(g,d,y),g,h,y)});let f=t.slice();return f[o]=p[1],{outputValues:m.values,outputShape:f,indices:i}}var W_="3.4.0";Jc("cpu",()=>new Nu,1);var j_=De(Ri,r=>r>=0?r:Math.exp(r)-1),nA={kernelName:Ri,backendName:"cpu",kernelFunc:j_};function U_(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{alpha:s}=n;te([o],"leakyRelu");let a=x.sizeFromShape(o.shape),i=t.data.get(o.dataId).values,l=x.getTypedArrayFromDType("float32",a);for(let u=0;u<i.length;u++)l[u]=i[u]<0?s*i[u]:i[u];return t.makeTensorInfo(o.shape,"float32",l)}var oA={kernelName:Po,backendName:"cpu",kernelFunc:U_};var vK=Ye((r,e)=>r<0?e*r:r);function H_(r){let{inputs:e,backend:t}=r,{x:n,alpha:o}=e;te([n,o],"prelu");let s=t.data.get(n.dataId).values,a=t.data.get(o.dataId).values,[i,l]=vK(n.shape,o.shape,s,a,n.dtype);return t.makeTensorInfo(l,n.dtype,i)}var sA={kernelName:Xo,backendName:"cpu",kernelFunc:H_};var q_=De(Yo,r=>Math.max(0,r)),iA={kernelName:Yo,backendName:"cpu",kernelFunc:q_};var K_=De(Jo,r=>Math.min(Math.max(0,r),6)),aA={kernelName:Jo,backendName:"cpu",kernelFunc:K_};function bp(r,e,t,n,o){if(t==="linear")return $r({inputs:{x:e},backend:r});if(t==="relu")return q_({inputs:{x:e},backend:r});if(t==="elu")return j_({inputs:{x:e},backend:r});if(t==="relu6")return K_({inputs:{x:e},backend:r});if(t==="prelu")return H_({inputs:{x:e,alpha:n},backend:r});if(t==="leakyrelu")return U_({inputs:{x:e},backend:r,attrs:{alpha:o}});throw new Error(`Activation ${t} has not been implemented for the CPU backend.`)}function Ze(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{shape:s}=n,a=x.sizeFromShape(o.shape),i=x.inferFromImplicitShape(s,a),l=x.sizeFromShape(i);x.assert(a===l,()=>`The new shape (${i}) has ${l} elements and the old shape (${o.shape}) has ${a} elements. The new shape and old shape must have the same number of elements.`),t.incRef(o.dataId);let u=t.data.get(o.dataId);if(u.complexTensorInfos!=null){let c=u.complexTensorInfos.real,p=u.complexTensorInfos.imag;c.shape=i,p.shape=i}return{dataId:o.dataId,shape:i,dtype:o.dtype}}var lA={kernelName:Us,backendName:"cpu",kernelFunc:Ze};function X_(r){let{inputs:e,backend:t,attrs:n}=r,{a:o,b:s}=e,{transposeA:a,transposeB:i}=n;te([o,s],"matMul");let l=o.shape.length,u=s.shape.length,c=a?o.shape[l-2]:o.shape[l-1],p=i?s.shape[u-1]:s.shape[u-2],m=a?o.shape[l-1]:o.shape[l-2],f=i?s.shape[u-2]:s.shape[u-1],d=o.shape.slice(0,-2),h=s.shape.slice(0,-2),g=x.sizeFromShape(d),y=x.sizeFromShape(h),b=g===y||g===1||y===1;x.assert(l>=2&&u>=2&&b,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${d}) and (${h}).`);let _=(g>y?o.shape.slice(0,-2):s.shape.slice(0,-2)).concat([m,f]);x.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${o.shape} and ${s.shape} and transposeA=${a} and transposeB=${i} must match.`);let I=a?[g,c,m]:[g,m,c],E=i?[y,f,p]:[y,p,f],$=Ze({inputs:{x:o},backend:t,attrs:{shape:I}}),D=Ze({inputs:{x:s},backend:t,attrs:{shape:E}}),O=a?$.shape[1]:$.shape[2],M=a?$.shape[2]:$.shape[1],G=i?D.shape[1]:D.shape[2],j=Math.max(g,y),U=t.data.get($.dataId).values,H=t.data.get(D.dataId).values,q=x.computeStrides($.shape),X=x.computeStrides(D.shape),[ne,Y,re]=a?[q[0],1,q[1]]:[q[0],q[1],1],[Q,ie,ce]=i?[1,X[1],X[0]]:[X[1],1,X[0]],ae=M*G,fe=Ce([j,M,G],$.dtype),de=fe.values,xe=t.blockSize;for(let we=0;we<j;we++)for(let Ee=0;Ee<M;Ee+=xe)for(let ve=0;ve<G;ve+=xe)for(let Ge=0;Ge<O;Ge+=xe){let Ke=Math.min(Ee+xe,M),at=Math.min(ve+xe,G),St=Math.min(Ge+xe,O);for(let Tt=Ee;Tt<Ke;Tt++)for(let He=ve;He<at;He++){let ct=0;for(let mt=Ge;mt<St;mt++){let Lt=Math.min(we,g-1)*ne,kn=Math.min(we,y-1)*ce,Yt=U[Lt+Tt*Y+mt*re],un=H[mt*Q+He*ie+kn];ct+=Yt*un}de[we*ae+(Tt*G+He)]+=ct}}return t.disposeIntermediateTensorInfo($),t.disposeIntermediateTensorInfo(D),t.makeTensorInfo(_,fe.dtype,fe.values)}var uA={kernelName:vo,backendName:"cpu",kernelFunc:X_};function CK(r){let{inputs:e,backend:t,attrs:n}=r,{a:o,b:s,bias:a,preluActivationWeights:i}=e,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=n,m,f,d,h=[];m=X_({inputs:{a:o,b:s},attrs:{transposeA:l,transposeB:u},backend:t}),a&&(f=Sa({inputs:{a:m,b:a},backend:t}),h.push(m),m=f),c&&(d=bp(t,m,c,i,p),h.push(m),m=d);for(let y of h)t.disposeIntermediateTensorInfo(y);return m}var cA={kernelName:Zs,backendName:"cpu",kernelFunc:CK};var IK=De(_i,r=>Math.acos(r)),pA={kernelName:_i,backendName:"cpu",kernelFunc:IK};var NK=De(ki,r=>Math.acosh(r)),mA={kernelName:ki,backendName:"cpu",kernelFunc:NK};function SK(r){let{inputs:e,backend:t}=r,n=e;te(e,"addN");let o=n.map(i=>t.data.get(i.dataId).values),s=Ce(n[0].shape,n[0].dtype),a=s.values;for(let i=0;i<n.length;i++){let l=o[i];for(let u=0;u<a.length;u++)a[u]+=l[u]}return t.makeTensorInfo(s.shape,s.dtype,s.values)}var fA={kernelName:wo,backendName:"cpu",kernelFunc:SK};function TK(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,keepDims:a}=n;te(o,"all");let i=x.parseAxisParam(s,o.shape),l=i,u=C.getAxesPermutation(l,o.shape.length),c=o;u!=null&&(c=Kt({inputs:{x:o},backend:t,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,o.shape.length)),C.assertAxesAreInnerMostDims("all",l,c.shape.length);let[p,m]=C.computeOutAndReduceShapes(c.shape,l),f=x.sizeFromShape(m),d=x.makeZerosTypedArray(x.sizeFromShape(p),c.dtype),h=t.data.get(c.dataId).values;for(let y=0;y<d.length;++y){let b=y*f,w=h[b];for(let _=0;_<f;++_){let I=h[b+_];w=w&&I}d[y]=w}u!=null&&t.disposeIntermediateTensorInfo(c);let g=t.makeTensorInfo(p,c.dtype,d);if(a){let y=C.expandShapeToKeepDim(p,i),b=Ze({inputs:{x:g},backend:t,attrs:{shape:y}});return t.disposeIntermediateTensorInfo(g),b}return g}var dA={kernelName:vi,backendName:"cpu",kernelFunc:TK};function AK(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,keepDims:a}=n;te(o,"any");let i=x.parseAxisParam(s,o.shape),l=i,u=C.getAxesPermutation(l,o.shape.length),c=o;u!=null&&(c=Kt({inputs:{x:o},backend:t,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,o.shape.length)),C.assertAxesAreInnerMostDims("any",l,c.shape.length);let[p,m]=C.computeOutAndReduceShapes(c.shape,l),f=x.sizeFromShape(m),d=x.makeZerosTypedArray(x.sizeFromShape(p),c.dtype),h=t.data.get(c.dataId).values;for(let y=0;y<d.length;++y){let b=y*f,w=h[b];for(let _=0;_<f;++_){let I=h[b+_];w=w||I}d[y]=w}u!=null&&t.disposeIntermediateTensorInfo(c);let g=t.makeTensorInfo(p,c.dtype,d);if(a){let y=C.expandShapeToKeepDim(p,i),b=Ze({inputs:{x:g},backend:t,attrs:{shape:y}});return t.disposeIntermediateTensorInfo(g),b}return g}var hA={kernelName:Ci,backendName:"cpu",kernelFunc:AK};function EK(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s}=n;te(o,"argMax");let a=x.parseAxisParam(s,o.shape),i=C.getAxesPermutation(a,o.shape.length),l=o,u=[];i!=null&&(l=Kt({inputs:{x:o},backend:t,attrs:{perm:i}}),u.push(l),a=C.getInnerMostAxes(a.length,l.shape.length)),a=[a[0]],C.assertAxesAreInnerMostDims("argMax",a,l.shape.length);let[c,p]=C.computeOutAndReduceShapes(l.shape,a),m=x.sizeFromShape(c),f=x.makeZerosTypedArray(m,"int32"),d=x.sizeFromShape(p),h=t.data.get(l.dataId).values;for(let g=0;g<f.length;++g){let y=g*d,b=h[y],w=0;for(let _=0;_<d;++_){let I=h[y+_];I>b&&(b=I,w=_)}f[g]=w}return u.forEach(g=>t.disposeIntermediateTensorInfo(g)),t.makeTensorInfo(c,"int32",f)}var gA={kernelName:_o,backendName:"cpu",kernelFunc:EK};function DK(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s}=n;te(o,"argMin");let a=x.parseAxisParam(s,o.shape),i=C.getAxesPermutation(a,o.shape.length),l=o,u=[];i!=null&&(l=Kt({inputs:{x:o},backend:t,attrs:{perm:i}}),u.push(l),a=C.getInnerMostAxes(a.length,l.shape.length)),a=[a[0]],C.assertAxesAreInnerMostDims("argMin",a,l.shape.length);let[c,p]=C.computeOutAndReduceShapes(l.shape,a),m=x.sizeFromShape(c),f=x.makeZerosTypedArray(m,"int32"),d=x.sizeFromShape(p),h=t.data.get(l.dataId).values;for(let g=0;g<f.length;++g){let y=g*d,b=h[y],w=0;for(let _=0;_<d;++_){let I=h[y+_];I<b&&(b=I,w=_)}f[g]=w}return u.forEach(g=>t.disposeIntermediateTensorInfo(g)),t.makeTensorInfo(c,"int32",f)}var xA={kernelName:Ka,backendName:"cpu",kernelFunc:DK};var $K=De(Ii,r=>Math.asin(r)),yA={kernelName:Ii,backendName:"cpu",kernelFunc:$K};var RK=De(Ni,r=>Math.asinh(r)),bA={kernelName:Ni,backendName:"cpu",kernelFunc:RK};var FK=De(Si,r=>Math.atan(r)),wA={kernelName:Si,backendName:"cpu",kernelFunc:FK};var OK=Ye((r,e)=>Math.atan2(r,e)),PK=et(Ai,OK),_A={kernelName:Ai,backendName:"cpu",kernelFunc:PK};var MK=De(Ti,r=>Math.atanh(r)),kA={kernelName:Ti,backendName:"cpu",kernelFunc:MK};function wp(r,e,t,n,o,s){let a=o.strideHeight,i=o.strideWidth,l=o.dilationHeight,u=o.dilationWidth,c=o.effectiveFilterHeight,p=o.effectiveFilterWidth,m=o.padInfo.top,f=o.padInfo.left,d=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,h=Ce(o.outShape,t),g=h.values,y=o.outShape[1]*o.outShape[2]*o.outShape[3],b=o.outShape[2]*o.outShape[3],w=o.outShape[3];for(let _=0;_<o.batchSize;++_){let I=_*y,E=_*n[0];for(let $=0;$<o.inChannels;++$)for(let D=0;D<o.outHeight;++D){let O=D*a-m,M=Math.max(0,O),G=Math.min(o.inHeight,c+O),j=I+D*b;for(let U=0;U<o.outWidth;++U){let H=U*i-f,q=Math.max(0,H),X=Math.min(o.inWidth,p+H),ne=d,Y=0,re=0;for(let ie=M;ie<G;ie+=l){let ce=E+ie*n[1];for(let ae=q;ae<X;ae+=u){let fe=ce+ae*n[2],de=r[fe+$];s==="max"&&de>ne?ne=de:s==="avg"&&(Y+=de,re++)}if(isNaN(ne))break}let Q=j+U*w+$;g[Q]=s==="avg"?Y/re:ne}}}return h}function Gg(r,e,t,n,o=!1,s=!1){let a=Ce(n.outShape,"int32"),i=n.strideHeight,l=n.strideWidth,u=n.dilationHeight,c=n.dilationWidth,p=n.effectiveFilterHeight,m=n.effectiveFilterWidth,f=n.padInfo.top,d=n.padInfo.left,h=Ce(e,t,r);for(let g=0;g<n.batchSize;++g)for(let y=0;y<n.inChannels;++y)for(let b=0;b<n.outHeight;++b){let w=b*i-f,_=w;for(;_<0;)_+=u;let I=Math.min(n.inHeight,p+w);for(let E=0;E<n.outWidth;++E){let $=E*l-d,D=$;for(;D<0;)D+=c;let O=Math.min(n.inWidth,m+$),M=Number.NEGATIVE_INFINITY,G=-1;for(let j=_;j<I;j+=u){let U=j-w;for(let H=D;H<O;H+=c){let q=H-$,X=h.get(g,j,H,y);X>M&&(M=X,o?G=s?((g*n.inHeight+j)*n.inWidth+H)*n.inChannels+y:(j*n.inWidth+H)*n.inChannels+y:G=U*m+q)}}a.set(G,g,b,E,y)}}return a}function Wg(r,e,t,n,o,s){let a=o.strideDepth,i=o.strideHeight,l=o.strideWidth,u=o.dilationDepth,c=o.dilationHeight,p=o.dilationWidth,m=o.effectiveFilterDepth,f=o.effectiveFilterHeight,d=o.effectiveFilterWidth,h=o.padInfo.front,g=o.padInfo.top,y=o.padInfo.left,b=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,w=Ce(o.outShape,t),_=w.values,I=o.outShape[1]*o.outShape[2]*o.outShape[3]*o.outShape[4],E=o.outShape[2]*o.outShape[3]*o.outShape[4],$=o.outShape[3]*o.outShape[4],D=o.outShape[4];for(let O=0;O<o.batchSize;++O){let M=O*I,G=O*n[0];for(let j=0;j<o.inChannels;++j)for(let U=0;U<o.outDepth;++U){let H=U*a-h,q=H;for(;q<0;)q+=u;let X=Math.min(o.inDepth,m+H),ne=M+U*E;for(let Y=0;Y<o.outHeight;++Y){let re=Y*i-g,Q=re;for(;Q<0;)Q+=c;let ie=Math.min(o.inHeight,f+re),ce=ne+Y*$;for(let ae=0;ae<o.outWidth;++ae){let fe=ae*l-y,de=fe;for(;de<0;)de+=p;let xe=Math.min(o.inWidth,d+fe),we=ce+ae*D,Ee=b,ve=0,Ge=0;for(let at=q;at<X;at+=u){let St=G+at*n[1];for(let Tt=Q;Tt<ie;Tt+=c){let He=St+Tt*n[2];for(let ct=de;ct<xe;ct+=p){let mt=He+ct*n[3],Lt=r[mt+j];if(s==="max"&&Lt>Ee?Ee=Lt:s==="avg"&&(ve+=Lt,Ge++),isNaN(Ee))break}if(isNaN(Ee))break}if(isNaN(Ee))break}let Ke=we+j;_[Ke]=s==="avg"?ve/Ge:Ee}}}}return w}function vA(r,e){let t=Ce(e.outShape,"int32"),n=e.strideDepth,o=e.strideHeight,s=e.strideWidth,a=e.dilationDepth,i=e.dilationHeight,l=e.dilationWidth,u=e.effectiveFilterDepth,c=e.effectiveFilterHeight,p=e.effectiveFilterWidth,m=e.padInfo.front,f=e.padInfo.top,d=e.padInfo.left;for(let h=0;h<e.batchSize;++h)for(let g=0;g<e.inChannels;++g)for(let y=0;y<e.outDepth;++y){let b=y*n-m,w=b;for(;w<0;)w+=a;let _=Math.min(e.inDepth,u+b);for(let I=0;I<e.outHeight;++I){let E=I*o-f,$=E;for(;$<0;)$+=i;let D=Math.min(e.inHeight,c+E);for(let O=0;O<e.outWidth;++O){let M=O*s-d,G=M;for(;G<0;)G+=l;let j=Math.min(e.inWidth,p+M),U=Number.NEGATIVE_INFINITY,H=-1;for(let q=w;q<_;q+=a){let X=q-b;for(let ne=$;ne<D;ne+=i){let Y=ne-E;for(let re=G;re<j;re+=l){let Q=re-M,ie=r.get(h,q,ne,re,g);ie>=U&&(U=ie,H=X*c*p+Y*c+Q)}}}t.set(H,h,y,I,O,g)}}}return t}function LK(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e;te(o,"avgPool");let{filterSize:s,strides:a,pad:i,dimRoundingMode:l}=n,u=1;x.assert(C.eitherStridesOrDilationsAreOne(a,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=C.computePool2DInfo(o.shape,s,a,u,i,l),p;if(c.filterWidth===1&&c.filterHeight===1&&x.arraysEqual(c.inShape,c.outShape))p=$r({inputs:{x:o},backend:t});else{let m=t.data.get(o.dataId).values,f=x.computeStrides(o.shape),d=wp(m,o.shape,o.dtype,f,c,"avg");p=t.makeTensorInfo(c.outShape,o.dtype,d.values)}return p}var CA={kernelName:ko,backendName:"cpu",kernelFunc:LK};function zK(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{filterSize:s,strides:a,pad:i,dimRoundingMode:l,dataFormat:u}=n;te(o,"avgPool3d");let c=C.computePool3DInfo(o.shape,s,a,1,i,l,u),p=t.data.get(o.dataId).values,m=Wg(p,o.shape,o.dtype,x.computeStrides(o.shape),c,"avg");return t.makeTensorInfo(m.shape,"float32",m.values)}var IA={kernelName:Xa,backendName:"cpu",kernelFunc:zK};function BK(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,input:s}=e,{filterSize:a,strides:i,pad:l,dimRoundingMode:u}=n;te([o,s],"avgPool3DGrad");let c=C.computePool3DInfo(s.shape,a,i,1,l,u),p=c.strideDepth,m=c.strideHeight,f=c.strideWidth,d=c.filterDepth,h=c.filterHeight,g=c.filterWidth,y=c.dilationDepth,b=c.dilationHeight,w=c.dilationWidth,_=c.effectiveFilterDepth,I=c.effectiveFilterHeight,E=c.effectiveFilterWidth,$=_-1-c.padInfo.front,D=E-1-c.padInfo.left,O=I-1-c.padInfo.top,M=Ce(s.shape,"float32"),G=1/(d*h*g),j=t.bufferSync(o);for(let U=0;U<c.batchSize;++U)for(let H=0;H<c.inChannels;++H)for(let q=0;q<c.inDepth;++q)for(let X=0;X<c.inHeight;++X)for(let ne=0;ne<c.inWidth;++ne){let Y=q-$,re=X-O,Q=ne-D,ie=0;for(let ce=0;ce<_;ce+=y){let ae=(Y+ce)/p;if(!(ae<0||ae>=c.outDepth||Math.floor(ae)!==ae))for(let fe=0;fe<I;fe+=b){let de=(re+fe)/m;if(!(de<0||de>=c.outHeight||Math.floor(de)!==de))for(let xe=0;xe<E;xe+=w){let we=(Q+xe)/f;if(we<0||we>=c.outWidth||Math.floor(we)!==we)continue;ie+=j.get(U,ae,de,we,H)}}}M.set(ie*G,U,q,X,ne,H)}return t.makeTensorInfo(M.shape,M.dtype,M.values)}var NA={kernelName:xc,backendName:"cpu",kernelFunc:BK};function VK(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,input:s}=e,a=s;te([o,s],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=n,c=C.computePool2DInfo(a.shape,i,l,1,u),p=c.strideHeight,m=c.strideWidth,f=c.filterHeight,d=c.filterWidth,h=c.dilationHeight,g=c.dilationWidth,y=c.effectiveFilterHeight,b=c.effectiveFilterWidth,w=b-1-c.padInfo.left,_=y-1-c.padInfo.top,I=Ce(a.shape,"float32"),E=1/(f*d),$=t.data.get(o.dataId).values,D=Ce(o.shape,"float32",$);for(let O=0;O<c.batchSize;++O)for(let M=0;M<c.inChannels;++M)for(let G=0;G<c.inHeight;++G)for(let j=0;j<c.inWidth;++j){let U=G-_,H=j-w,q=0;for(let X=0;X<y;X+=h){let ne=(U+X)/p;if(!(ne<0||ne>=c.outHeight||Math.floor(ne)!==ne))for(let Y=0;Y<b;Y+=g){let re=(H+Y)/m;if(re<0||re>=c.outWidth||Math.floor(re)!==re)continue;q+=D.get(O,ne,re,M)}}I.set(q*E,O,G,j,M)}return t.makeTensorInfo(I.shape,I.dtype,I.values)}var SA={kernelName:gc,backendName:"cpu",kernelFunc:VK};function GK(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,scale:s,offset:a,mean:i,variance:l}=e;x.assert(i.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),x.assert(a==null||i.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),x.assert(s==null||i.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),te([o,i,l,s,a],"batchNorm");let{varianceEpsilon:u}=n;u==null&&(u=.001);let c=t.data.get(o.dataId).values,p=t.data.get(i.dataId).values,m=t.data.get(l.dataId).values,f=s?t.data.get(s.dataId).values:new Float32Array([1]),d=a?t.data.get(a.dataId).values:new Float32Array([0]),h=new Float32Array(c.length),g=d.length,y=f.length,b=m.length,w=p.length,_=0,I=0,E=0,$=0;for(let D=0;D<c.length;++D)h[D]=d[_++]+(c[D]-p[I++])*f[E++]/Math.sqrt(m[$++]+u),_>=g&&(_=0),I>=w&&(I=0),E>=y&&(E=0),$>=b&&($=0);return t.makeTensorInfo(o.shape,o.dtype,h)}var TA={kernelName:Fo,backendName:"cpu",kernelFunc:GK};function WK(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{blockShape:s,crops:a}=n;te([o],"batchToSpaceND");let i=s.reduce((y,b)=>y*b),l=C.getReshaped(o.shape,s,i),u=C.getPermuted(l.length,s.length),c=C.getReshapedPermuted(o.shape,s,i),p=C.getSliceBeginCoords(a,s.length),m=C.getSliceSize(c,a,s.length),f=Ze({inputs:{x:o},backend:t,attrs:{shape:l}}),d=Kt({inputs:{x:f},backend:t,attrs:{perm:u}}),h=Ze({inputs:{x:d},backend:t,attrs:{shape:c}}),g=lo({inputs:{x:h},backend:t,attrs:{begin:p,size:m}});return t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(d),t.disposeIntermediateTensorInfo(h),g}var AA={kernelName:Ya,backendName:"cpu",kernelFunc:WK};function jK(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,weights:s}=e,{size:a}=n,i=t.data.get(o.dataId).values,l=t.data.get(s.dataId).values,u=xp(i,l,s.dtype,s.shape,a);return t.makeTensorInfo([a],s.dtype,u)}var EA={kernelName:yc,backendName:"cpu",kernelFunc:jK};var UK=De(Kn,(r,e)=>{let t=e;return r>t.clipValueMax?t.clipValueMax:r<t.clipValueMin?t.clipValueMin:r}),DA={kernelName:Kn,backendName:"cpu",kernelFunc:UK};var HK=r=>{let{x:e}=r.inputs,t=r.backend,n=new Float32Array(x.sizeFromShape(e.shape)),o=t.data.get(e.dataId),s=o.complexTensorInfos.real,a=o.complexTensorInfos.imag,i=t.data.get(s.dataId).values,l=t.data.get(a.dataId).values;for(let u=0;u<i.length;u++){let c=i[u],p=l[u];n[u]=Math.hypot(c,p)}return t.makeOutput(n,e.shape,"float32")},$A={kernelName:Za,backendName:"cpu",kernelFunc:HK};function ai(r){let{inputs:e,backend:t}=r,{input:n}=e,o=t.data.get(n.dataId).complexTensorInfos.imag,s=t.data.get(o.dataId).values;return t.makeTensorInfo(o.shape,o.dtype,s)}var RA={kernelName:Dc,backendName:"cpu",kernelFunc:ai};function gl(r){let{inputs:e,backend:t,attrs:n}=r,{axis:o}=n,s=x.parseAxisParam(o,e[0].shape)[0],a=C.computeOutShape(e.map(h=>h.shape),s);if(x.sizeFromShape(a)===0)return t.makeTensorInfo(a,e[0].dtype,[]);let i=e.filter(h=>x.sizeFromShape(h.shape)>0);if(i.length===1)return $r({inputs:{x:i[0]},backend:t});let l=i.map(h=>h.shape);if(C.assertParamsConsistent(l,s),i[0].dtype==="complex64"){let h=i.map(_=>oo({inputs:{input:_},backend:t})),g=i.map(_=>ai({inputs:{input:_},backend:t})),y=gl({inputs:h,backend:t,attrs:{axis:s}}),b=gl({inputs:g,backend:t,attrs:{axis:s}}),w=dr({inputs:{real:y,imag:b},backend:t});return h.forEach(_=>t.disposeIntermediateTensorInfo(_)),g.forEach(_=>t.disposeIntermediateTensorInfo(_)),t.disposeIntermediateTensorInfo(y),t.disposeIntermediateTensorInfo(b),w}let u=i.map(h=>{let g=x.sizeFromShape(h.shape.slice(s));return Ze({inputs:{x:h},backend:t,attrs:{shape:[-1,g]}})}),c=u.map(h=>({vals:t.data.get(h.dataId).values,shape:h.shape}));a=C.computeOutShape(u.map(h=>h.shape),1);let p=u[0].shape[0]===1,m=Su(c,a,e[0].dtype,p),f=C.computeOutShape(i.map(h=>h.shape),s),d=t.makeTensorInfo(f,e[0].dtype,m);return u.forEach(h=>t.disposeIntermediateTensorInfo(h)),d}var FA={kernelName:zs,backendName:"cpu",kernelFunc:gl};function Y_(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,filter:s}=e,{strides:a,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=n;te([o,s],"conv2d");let p=C.convertConv2DDataFormat(l),m=C.computeConv2DInfo(o.shape,s.shape,a,u,i,c,!1,p),f=m.filterHeight,d=m.filterWidth,h=m.dilationHeight,g=m.dilationWidth,y=m.padInfo.left,b=m.padInfo.top,w=m.dataFormat==="channelsLast",_=new ut(m.outShape,o.dtype),I=x.computeStrides(o.shape),E=x.computeStrides(s.shape),$=I[0],D=w?I[1]:I[2],O=w?I[2]:1,M=w?1:I[1],G=_.strides[0],j=w?_.strides[1]:_.strides[2],U=w?_.strides[2]:1,H=w?1:_.strides[1],q=t.data.get(o.dataId).values,X=t.data.get(s.dataId).values,ne=_.values;for(let Y=0;Y<m.batchSize;++Y){let re=Y*$,Q=Y*G;for(let ie=0;ie<m.outHeight;++ie){let ce=Q+ie*j,ae=ie*m.strideHeight-b;for(let fe=0;fe<f;++fe){let de=ae+fe*h;if(de<0||de>=m.inHeight)continue;let xe=fe*E[0],we=re+de*D;for(let Ee=0;Ee<m.outWidth;++Ee){let ve=ce+Ee*U,Ge=Ee*m.strideWidth-y;for(let Ke=0;Ke<d;++Ke){let at=Ge+Ke*g;if(at<0||at>=m.inWidth)continue;let St=xe+Ke*E[1],Tt=we+at*O,He=St;for(let ct=0;ct<m.inChannels;++ct){let mt=q[Tt+ct*M];for(let Lt=0;Lt<m.outChannels;++Lt)ne[ve+Lt*H]+=mt*X[He+Lt];He+=m.outChannels}}}}}}return t.makeTensorInfo(_.shape,_.dtype,ne)}var OA={kernelName:Io,backendName:"cpu",kernelFunc:Y_};function qK(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,dy:s}=e,{strides:a,pad:i,dataFormat:l,dimRoundingMode:u,filterShape:c}=n;te([o,s],"conv2dBackpropFilter");let p=C.convertConv2DDataFormat(l),m=C.computeConv2DInfo(o.shape,c,a,1,i,u,!1,p),{strideHeight:f,strideWidth:d,filterHeight:h,filterWidth:g}=m,y=m.dataFormat==="channelsLast",b=new ut(m.filterShape,"float32"),w=m.padInfo.left,_=m.padInfo.top,I=t.data.get(o.dataId).values,E=t.data.get(s.dataId).values,$=new ut(o.shape,o.dtype,I),D=new ut(s.shape,s.dtype,E);for(let O=0;O<h;++O){let M=Math.max(0,Math.ceil((_-O)/f)),G=Math.min(m.outHeight,(m.inHeight+_-O)/f);for(let j=0;j<g;++j){let U=Math.max(0,Math.ceil((w-j)/d)),H=Math.min(m.outWidth,(m.inWidth+w-j)/d);for(let q=0;q<m.inChannels;++q)for(let X=0;X<m.outChannels;++X){let ne=0;for(let Y=0;Y<m.batchSize;++Y)for(let re=M;re<G;++re){let Q=O+re*f-_;for(let ie=U;ie<H;++ie){let ce=j+ie*d-w;y?ne+=$.get(Y,Q,ce,q)*D.get(Y,re,ie,X):ne+=$.get(Y,q,Q,ce)*D.get(Y,X,re,ie)}}b.set(ne,O,j,q,X)}}}return t.makeTensorInfo(b.shape,b.dtype,b.values)}var PA={kernelName:wc,backendName:"cpu",kernelFunc:qK};function KK(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,filter:s}=e,{inputShape:a,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=n;te([o,s],"conv2dBackpropInput");let p=x.computeStrides(s.shape),m=x.computeStrides(o.shape),f=C.convertConv2DDataFormat(u),d=C.computeConv2DInfo(a,s.shape,i,1,l,c,!1,f),h=new ut(d.inShape,"float32"),g=h.values,y=t.data.get(o.dataId).values,b=t.data.get(s.dataId).values,[w,_,I]=p,{batchSize:E,filterHeight:$,filterWidth:D,inChannels:O,inHeight:M,inWidth:G,outChannels:j,outHeight:U,outWidth:H,strideHeight:q,strideWidth:X}=d;f=d.dataFormat;let ne=$-1-d.padInfo.top,Y=D-1-d.padInfo.left,re=f==="channelsLast",Q=h.strides[0],ie=re?h.strides[1]:h.strides[2],ce=re?h.strides[2]:1,ae=re?1:h.strides[1],fe=m[0],de=re?m[1]:m[2],xe=re?m[2]:1,we=re?1:m[1];for(let Ee=0;Ee<E;++Ee)for(let ve=0;ve<O;++ve)for(let Ge=0;Ge<M;++Ge){let Ke=Ge-ne,at=Math.max(0,Math.ceil(Ke/q)),St=Math.min(U,($+Ke)/q);for(let Tt=0;Tt<G;++Tt){let He=Tt-Y,ct=Math.max(0,Math.ceil(He/X)),mt=Math.min(H,(D+He)/X),Lt=0;for(let Yt=at;Yt<St;++Yt){let un=Yt*q-Ke;for(let Fr=ct;Fr<mt;++Fr){let Un=Fr*X-He,sr=fe*Ee+de*Yt+xe*Fr,vn=w*($-1-un)+_*(D-1-Un)+I*ve;for(let jr=0;jr<j;++jr){let wr=y[sr+we*jr],cn=b[vn+jr];Lt+=wr*cn}}}let kn=Q*Ee+ie*Ge+ce*Tt+ae*ve;g[kn]=Lt}}return t.makeTensorInfo(h.shape,h.dtype,h.values)}var MA={kernelName:No,backendName:"cpu",kernelFunc:KK};function XK(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,filter:s}=e,{strides:a,pad:i,dilations:l}=n;te([o,s],"conv3d");let u=C.computeConv3DInfo(o.shape,s.shape,a,l,i),{filterDepth:c,filterHeight:p,filterWidth:m,dilationDepth:f,dilationHeight:d,dilationWidth:h,padInfo:g}=u,y=g.front,b=g.left,w=g.top,_=new ut(u.outShape,o.dtype),I=t.data.get(o.dataId).values,E=t.data.get(s.dataId).values,$=_.values,D=x.computeStrides(o.shape),O=x.computeStrides(s.shape);for(let M=0;M<u.batchSize;++M){let G=M*D[0],j=M*_.strides[0];for(let U=0;U<u.outDepth;++U){let H=j+U*_.strides[1],q=U*u.strideDepth-y;for(let X=0;X<c;++X){let ne=q+X*f;if(ne<0||ne>=u.inDepth)continue;let Y=X*O[0],re=G+ne*D[1];for(let Q=0;Q<u.outHeight;++Q){let ie=H+Q*_.strides[2],ce=Q*u.strideHeight-w;for(let ae=0;ae<p;++ae){let fe=ce+ae*d;if(fe<0||fe>=u.inHeight)continue;let de=Y+ae*O[1],xe=re+fe*D[2];for(let we=0;we<u.outWidth;++we){let Ee=ie+we*u.outChannels,ve=we*u.strideWidth-b;for(let Ge=0;Ge<m;++Ge){let Ke=ve+Ge*h;if(Ke<0||Ke>=u.inWidth)continue;let at=de+Ge*O[2],St=xe+Ke*u.inChannels,Tt=at;for(let He=0;He<u.inChannels;++He){let ct=I[St+He];for(let mt=0;mt<u.outChannels;++mt)$[Ee+mt]+=ct*E[Tt+mt];Tt+=u.outChannels}}}}}}}}return t.makeTensorInfo(_.shape,_.dtype,_.values)}var LA={kernelName:Ja,backendName:"cpu",kernelFunc:XK};function YK(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,dy:s}=e,{strides:a,pad:i,filterShape:l}=n;te([o,s],"conv3dBackpropFilterV2");let u=x.computeStrides(o.shape),c=x.computeStrides(s.shape),p=C.computeConv3DInfo(o.shape,l,a,1,i),m=p.strideDepth,f=p.strideHeight,d=p.strideWidth,h=p.filterDepth,g=p.filterHeight,y=p.filterWidth,b=new ut(p.filterShape,"float32"),w=b.values,[_,I,E,$]=b.strides,D=t.data.get(s.dataId).values,[O,M,G,j]=c,U=t.data.get(o.dataId).values,[H,q,X,ne]=u,Y=p.padInfo.front,re=p.padInfo.left,Q=p.padInfo.top;for(let ie=0;ie<h;++ie){let ce=Math.max(0,Math.ceil((Y-ie)/m)),ae=Math.min(p.outDepth,(p.inDepth+Y-ie)/m),fe=ie*_;for(let de=0;de<g;++de){let xe=Math.max(0,Math.ceil((Q-de)/f)),we=Math.min(p.outHeight,(p.inHeight+Q-de)/f),Ee=de*I+fe;for(let ve=0;ve<y;++ve){let Ge=Math.max(0,Math.ceil((re-ve)/d)),Ke=Math.min(p.outWidth,(p.inWidth+re-ve)/d),at=ve*E+Ee;for(let St=0;St<p.inChannels;++St){let Tt=St*$+at;for(let He=0;He<p.outChannels;++He){let ct=0;for(let mt=0;mt<p.batchSize;++mt){let Lt=mt*H,kn=mt*O;for(let Yt=ce;Yt<ae;++Yt){let Fr=(ie+Yt*m-Y)*q+Lt,Un=Yt*M+kn;for(let sr=xe;sr<we;++sr){let jr=(de+sr*f-Q)*X+Fr,wr=sr*G+Un;for(let cn=Ge;cn<Ke;++cn){let Ml=(ve+cn*d-re)*ne+jr,Va=cn*j+wr;ct+=U[Ml+St]*D[Va+He]}}}}w[Tt+He]=ct}}}}}return t.makeTensorInfo(b.shape,b.dtype,b.values)}var zA={kernelName:_c,backendName:"cpu",kernelFunc:YK};function ZK(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,filter:s}=e,{pad:a,strides:i,inputShape:l}=n;te([o],"conv3dBackpropInputV2");let u=x.computeStrides(o.shape),c=x.computeStrides(s.shape),p=C.computeConv3DInfo(l,s.shape,i,1,a),m=new ut(p.inShape,"float32"),f=m.values,[d,h,g,y]=m.strides,b=t.data.get(o.dataId).values,[w,_,I,E]=u,$=t.data.get(s.dataId).values,[D,O,M,G]=c,{batchSize:j,filterDepth:U,filterHeight:H,filterWidth:q,inChannels:X,inDepth:ne,inHeight:Y,inWidth:re,outChannels:Q,outDepth:ie,outHeight:ce,outWidth:ae,strideDepth:fe,strideHeight:de,strideWidth:xe}=p,we=U-1-p.padInfo.front,Ee=H-1-p.padInfo.top,ve=q-1-p.padInfo.left;for(let Ge=0;Ge<j;++Ge)for(let Ke=0;Ke<X;++Ke)for(let at=0;at<ne;++at){let St=at-we,Tt=Math.max(0,Math.ceil(St/fe)),He=Math.min(ie,(U+St)/fe);for(let ct=0;ct<Y;++ct){let mt=ct-Ee,Lt=Math.max(0,Math.ceil(mt/de)),kn=Math.min(ce,(H+mt)/de);for(let Yt=0;Yt<re;++Yt){let un=Yt-ve,Fr=Math.max(0,Math.ceil(un/xe)),Un=Math.min(ae,(q+un)/xe),sr=0;for(let vn=Tt;vn<He;++vn){let jr=vn*fe-St;for(let wr=Lt;wr<kn;++wr){let cn=wr*de-mt;for(let Rn=Fr;Rn<Un;++Rn){let Ml=Rn*xe-un,Va=w*Ge+_*vn+I*wr+E*Rn,Fs=D*(U-1-jr)+O*(H-1-cn)+M*(q-1-Ml)+G*Ke;for(let gi=0;gi<Q;++gi){let am=b[Va+gi],Ll=$[Fs+gi];sr+=am*Ll}}}}f[d*Ge+h*at+g*ct+y*Yt+Ke]=sr}}}return t.makeTensorInfo(m.shape,m.dtype,m.values)}var BA={kernelName:kc,backendName:"cpu",kernelFunc:ZK};var JK=De(So,r=>Math.cos(r)),VA={kernelName:So,backendName:"cpu",kernelFunc:JK};var QK=De(Ei,r=>Math.cosh(r)),GA={kernelName:Ei,backendName:"cpu",kernelFunc:QK};function e6(r){let{inputs:e,backend:t,attrs:n}=r,{image:o,boxes:s,boxInd:a}=e,{cropSize:i,method:l,extrapolationValue:u}=n,[c,p,m,f]=o.shape,d=s.shape[0],[h,g]=i,y=Ce([d,h,g,f],"float32"),b=t.data.get(s.dataId).values,w=t.data.get(a.dataId).values,_=t.data.get(o.dataId).values,I=x.computeStrides(o.shape),E=x.computeStrides(y.shape);for(let $=0;$<d;$++){let D=$*4,O=b[D],M=b[D+1],G=b[D+2],j=b[D+3],U=w[$];if(U>=c)continue;let H=h>1?(G-O)*(p-1)/(h-1):0,q=g>1?(j-M)*(m-1)/(g-1):0;for(let X=0;X<h;X++){let ne=h>1?O*(p-1)+X*H:.5*(O+G)*(p-1);if(ne<0||ne>p-1){for(let Y=0;Y<g;Y++)for(let re=0;re<f;re++){let Q=re+Y*E[2]+X*E[1]+$*E[0];y.values[Q]=u}continue}if(l==="bilinear"){let Y=Math.floor(ne),re=Math.ceil(ne),Q=ne-Y;for(let ie=0;ie<g;ie++){let ce=g>1?M*(m-1)+ie*q:.5*(M+j)*(m-1);if(ce<0||ce>m-1){for(let xe=0;xe<f;xe++){let we=xe+ie*E[2]+X*E[1]+$*E[0];y.values[we]=u}continue}let ae=Math.floor(ce),fe=Math.ceil(ce),de=ce-ae;for(let xe=0;xe<f;xe++){let we=xe+ae*I[2]+Y*I[1]+U*I[0],Ee=_[we];we=xe+fe*I[2]+Y*I[1]+U*I[0];let ve=_[we];we=xe+ae*I[2]+re*I[1]+U*I[0];let Ge=_[we];we=xe+fe*I[2]+re*I[1]+U*I[0];let Ke=_[we],at=Ee+(ve-Ee)*de,St=Ge+(Ke-Ge)*de;we=xe+ie*E[2]+X*E[1]+$*E[0],y.values[we]=at+(St-at)*Q}}}else for(let Y=0;Y<g;++Y){let re=g>1?M*(m-1)+Y*q:.5*(M+j)*(m-1);if(re<0||re>m-1){for(let ce=0;ce<f;ce++){let ae=ce+Y*E[2]+X*E[1]+$*E[0];y.values[ae]=u}continue}let Q=Math.round(re),ie=Math.round(ne);for(let ce=0;ce<f;ce++){let ae=ce+Q*I[2]+ie*I[1]+U*I[0],fe=ce+Y*E[2]+X*E[1]+$*E[0];y.values[fe]=_[ae]}}}}return t.makeTensorInfo(y.shape,y.dtype,y.values)}var WA={kernelName:Di,backendName:"cpu",kernelFunc:e6};function t6(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,exclusive:a,reverse:i}=n;te(o,"cumsum");let l=C.getAxesPermutation([s],o.shape.length),u=o;l!=null&&(u=Kt({inputs:{x:o},backend:t,attrs:{perm:l}}));let c=C.getInnerMostAxes(1,o.shape.length)[0];if(c!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${c}`);let p=ar(u.dtype,"int32"),m=x.makeZerosTypedArray(x.sizeFromShape(u.shape),p),f=t.data.get(u.dataId).values,d=u.shape[u.shape.length-1],h=i?(y,b)=>y+d-b-1:(y,b)=>y+b;for(let y=0;y<f.length;y+=d)for(let b=0;b<d;b++){let w=h(y,b);if(b===0)m[w]=a?0:f[w];else{let _=h(y,b-1);m[w]=a?f[_]+m[_]:f[w]+m[_]}}let g=t.makeTensorInfo(u.shape,p,m);if(l!=null){let y=C.getUndoAxesPermutation(l),b=Kt({inputs:{x:g},backend:t,attrs:{perm:y}});return t.disposeIntermediateTensorInfo(g),t.disposeIntermediateTensorInfo(u),b}return g}var jA={kernelName:To,backendName:"cpu",kernelFunc:t6};function r6(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,weights:s}=e,{size:a,binaryOutput:i}=n;if(o.shape.length===1){let l=t.data.get(o.dataId).values,u=t.data.get(s.dataId).values,c=xp(l,u,s.dtype,s.shape,a);return t.makeTensorInfo([a],s.dtype,c)}else if(o.shape.length===2){let l=t.bufferSync(o),u=t.bufferSync(s),c=Rg(l,u,a,i);return t.makeTensorInfo(c.shape,s.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${o.shape.length}.`)}var UA={kernelName:vc,backendName:"cpu",kernelFunc:r6};function n6(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{blockSize:s,dataFormat:a}=n;x.assert(a==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${a}`),x.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let i=o.shape[0],l=o.shape[1],u=o.shape[2],c=o.shape[3],p=l*s,m=u*s,f=c/(s*s),d=t.data.get(o.dataId).values,h=new Float32Array(i*p*m*f),g=0;for(let y=0;y<i;++y)for(let b=0;b<p;++b){let w=Math.floor(b/s),_=b%s;for(let I=0;I<m;++I){let E=Math.floor(I/s),$=I%s,D=(_*s+$)*f;for(let O=0;O<f;++O){let G=O+D+c*(E+u*(w+l*y));h[g++]=d[G]}}}return t.makeTensorInfo([i,p,m,f],o.dtype,h)}var HA={kernelName:$i,backendName:"cpu",kernelFunc:n6};function Z_(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,filter:s}=e,{strides:a,pad:i,dilations:l,dimRoundingMode:u}=n;te([o,s],"depthwiseConv2DNative");let c=x.computeStrides(o.shape),p=x.computeStrides(s.shape),m=l;m==null&&(m=[1,1]),x.assert(C.eitherStridesOrDilationsAreOne(a,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${m}'`);let f=C.computeConv2DInfo(o.shape,s.shape,a,m,i,u,!0),{filterHeight:d,filterWidth:h,dilationHeight:g,dilationWidth:y,padInfo:b}=f,w=b.left,_=b.top,I=f.outChannels/f.inChannels,E=new ut(f.outShape,o.dtype),$=t.data.get(o.dataId).values,D=t.data.get(s.dataId).values,O=E.values;for(let M=0;M<f.batchSize;++M){let G=M*c[0],j=M*E.strides[0];for(let U=0;U<f.outHeight;++U){let H=j+U*E.strides[1],q=U*f.strideHeight-w;for(let X=0;X<d;++X){let ne=q+X*g;if(ne<0||ne>=f.inHeight)continue;let Y=X*p[0],re=G+ne*c[1];for(let Q=0;Q<f.outWidth;++Q){let ie=H+Q*E.strides[2],ce=Q*f.strideWidth-_;for(let ae=0;ae<h;++ae){let fe=ce+ae*y;if(fe<0||fe>=f.inWidth)continue;let de=Y+ae*p[1],xe=re+fe*f.inChannels,we=ie,Ee=de;for(let ve=0;ve<f.inChannels;++ve){let Ge=$[xe+ve];for(let Ke=0;Ke<I;++Ke)O[we+Ke]+=Ge*D[Ee+Ke];we+=I,Ee+=I}}}}}}return t.makeTensorInfo(E.shape,E.dtype,E.values)}var qA={kernelName:Ao,backendName:"cpu",kernelFunc:Z_};function o6(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,dy:s}=e,{strides:a,dilations:i,pad:l,dimRoundingMode:u,filterShape:c}=n;te([o,s],"depthwiseConv2dNativeBackpropFilter");let p=C.computeConv2DInfo(o.shape,c,a,i,l,u,!0),{strideHeight:m,strideWidth:f,filterHeight:d,filterWidth:h}=p,g=new ut(p.filterShape,"float32"),y=p.padInfo.left,b=p.padInfo.top,w=p.outChannels/p.inChannels,_=t.data.get(o.dataId).values,I=new ut(o.shape,o.dtype,_),E=t.data.get(s.dataId).values,$=new ut(s.shape,s.dtype,E);for(let D=0;D<d;++D){let O=Math.max(0,Math.ceil((b-D)/m)),M=Math.min(p.outHeight,(p.inHeight+b-D)/m);for(let G=0;G<h;++G){let j=Math.max(0,Math.ceil((y-G)/f)),U=Math.min(p.outWidth,(p.inWidth+y-G)/f);for(let H=0;H<p.outChannels;++H){let q=Math.trunc(H/w),X=H%w,ne=0;for(let Y=0;Y<p.batchSize;++Y)for(let re=O;re<M;++re){let Q=D+re*m-b;for(let ie=j;ie<U;++ie){let ce=G+ie*f-y;ne+=I.get(Y,Q,ce,q)*$.get(Y,re,ie,H)}}g.set(ne,D,G,q,X)}}}return t.makeTensorInfo(g.shape,g.dtype,g.values)}var KA={kernelName:Cc,backendName:"cpu",kernelFunc:o6};function s6(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,filter:s}=e,{strides:a,dilations:i,pad:l,dimRoundingMode:u,inputShape:c}=n;te([o,s],"depthwiseConv2DNativeBackpropInput");let p=x.computeStrides(o.shape),m=x.computeStrides(s.shape),f=C.computeConv2DInfo(c,s.shape,a,i,l,u,!0),d=new ut(f.inShape,"float32"),h=d.values,[g,y,b]=d.strides,w=t.data.get(o.dataId).values,[_,I,E]=p,$=t.data.get(s.dataId).values,[D,O,M]=m,{batchSize:G,filterHeight:j,filterWidth:U,inChannels:H,inHeight:q,inWidth:X,outChannels:ne,outHeight:Y,outWidth:re,strideHeight:Q,strideWidth:ie}=f,ce=j-1-f.padInfo.top,ae=U-1-f.padInfo.left,fe=ne/H;for(let de=0;de<G;++de)for(let xe=0;xe<H;++xe)for(let we=0;we<q;++we){let Ee=we-ce,ve=Math.max(0,Math.ceil(Ee/Q)),Ge=Math.min(Y,(j+Ee)/Q);for(let Ke=0;Ke<X;++Ke){let at=Ke-ae,St=Math.max(0,Math.ceil(at/ie)),Tt=Math.min(re,(U+at)/ie),He=0;for(let ct=ve;ct<Ge;++ct){let mt=ct*Q-Ee;for(let Lt=St;Lt<Tt;++Lt){let kn=Lt*ie-at,Yt=_*de+I*ct+E*Lt,un=D*(j-1-mt)+O*(U-1-kn)+M*xe;for(let Fr=0;Fr<fe;++Fr){let Un=xe*fe+Fr,sr=w[Yt+Un],vn=$[un+Fr];He+=sr*vn}}}h[g*de+y*we+b*Ke+xe]=He}}return t.makeTensorInfo(d.shape,d.dtype,d.values)}var XA={kernelName:Ic,backendName:"cpu",kernelFunc:s6};function i6(r){let{inputs:e,backend:t}=r,{x:n}=e,o=x.sizeFromShape(n.shape),s=t.data.get(n.dataId).values,a=Ce([o,o],n.dtype),i=a.values;for(let u=0;u<s.length;u++)i[u*o+u]=s[u];let l=[...n.shape,...n.shape];return t.makeTensorInfo(l,a.dtype,a.values)}var YA={kernelName:Nc,backendName:"cpu",kernelFunc:i6};var ZA={kernelName:Qa,backendName:"cpu",kernelFunc:({inputs:r,backend:e,attrs:t})=>{let{x:n,filter:o}=r,{strides:s,pad:a,dilations:i}=t,l=e,u=l.data.get(n.dataId).values,c=n.shape.length,p=l.data.get(o.dataId).values,m=o.shape.length,{batchSize:f,inHeight:d,inWidth:h,inChannels:g,outHeight:y,outWidth:b,padInfo:w,strideHeight:_,strideWidth:I,filterHeight:E,filterWidth:$,dilationHeight:D,dilationWidth:O,outShape:M}=C.computeDilation2DInfo(n.shape,o.shape,s,a,"NHWC",i),G=x.sizeFromShape(M),j=M.length,U=x.getArrayFromDType(n.dtype,G);for(let q=0;q<f;++q)for(let X=0;X<y;++X){let ne=X*_-w.top;for(let Y=0;Y<b;++Y){let re=Y*I-w.left;for(let Q=0;Q<g;++Q){let ie=Number.MIN_SAFE_INTEGER;for(let ae=0;ae<E;++ae){let fe=ne+ae*D;if(fe>=0&&fe<d)for(let de=0;de<$;++de){let xe=re+de*O;if(xe>=0&&xe<h){let we=x.locToIndex([q,fe,xe,Q],c,x.computeStrides(n.shape)),Ee=x.locToIndex([ae,de,Q],m,x.computeStrides(o.shape)),ve=u[we]+p[Ee];ve>ie&&(ie=ve)}}}let ce=x.locToIndex([q,X,Y,Q],j,x.computeStrides(M));U[ce]=ie}}}return{dataId:l.write(x.toTypedArray(U,n.dtype),M,n.dtype),shape:M,dtype:n.dtype}}};var JA={kernelName:Tm,backendName:"cpu",kernelFunc:({inputs:r,backend:e,attrs:t})=>{let{x:n,filter:o,dy:s}=r,{strides:a,pad:i,dilations:l}=t,u=e,c=x.toNestedArray(n.shape,u.data.get(n.dataId).values),p=x.toNestedArray(o.shape,u.data.get(o.dataId).values),{batchSize:m,inHeight:f,inWidth:d,inChannels:h,outHeight:g,outWidth:y,padInfo:b,strideHeight:w,strideWidth:_,filterHeight:I,filterWidth:E,dilationHeight:$,dilationWidth:D,outShape:O}=C.computeDilation2DInfo(n.shape,o.shape,a,i,"NHWC",l);x.assert(s.rank===O.length,()=>`Error in ${Tm}, dy must have the same rank as output ${O.length}, but got ${s.rank}`);let M=x.toNestedArray(O,u.data.get(s.dataId).values),G=x.makeZerosNestedTypedArray(o.shape,o.dtype);for(let U=0;U<m;++U)for(let H=0;H<g;++H){let q=H*w-b.top;for(let X=0;X<y;++X){let ne=X*_-b.left;for(let Y=0;Y<h;++Y){let re=Number.MIN_SAFE_INTEGER,Q=0,ie=0;for(let ce=0;ce<I;++ce){let ae=q+ce*$;if(ae>=0&&ae<f)for(let fe=0;fe<E;++fe){let de=ne+fe*D;if(de>=0&&de<d){let xe=c[U][ae][de][Y]+p[ce][fe][Y];xe>re&&(re=xe,Q=ce,ie=fe)}}}G[Q][ie][Y]+=M[U][H][X][Y]}}}return{dataId:u.write(x.toTypedArray(G,n.dtype),o.shape,o.dtype),shape:o.shape,dtype:o.dtype}}};var QA={kernelName:Sm,backendName:"cpu",kernelFunc:({inputs:r,backend:e,attrs:t})=>{let{x:n,filter:o,dy:s}=r,{strides:a,pad:i,dilations:l}=t,u=e,c=x.toNestedArray(n.shape,u.data.get(n.dataId).values),p=x.toNestedArray(o.shape,u.data.get(o.dataId).values),{batchSize:m,inHeight:f,inWidth:d,inChannels:h,outHeight:g,outWidth:y,padInfo:b,strideHeight:w,strideWidth:_,filterHeight:I,filterWidth:E,dilationHeight:$,dilationWidth:D,outShape:O}=C.computeDilation2DInfo(n.shape,o.shape,a,i,"NHWC",l);x.assert(s.rank===O.length,()=>`Error in ${Sm}, dy must have the same rank as output ${O.length}, but got ${s.rank}`);let M=x.toNestedArray(O,u.data.get(s.dataId).values),G=x.makeZerosNestedTypedArray(n.shape,n.dtype);for(let U=0;U<m;++U)for(let H=0;H<g;++H){let q=H*w-b.top;for(let X=0;X<y;++X){let ne=X*_-b.left;for(let Y=0;Y<h;++Y){let re=Number.MIN_SAFE_INTEGER,Q=q<0?0:q,ie=ne<0?0:ne;for(let ce=0;ce<I;++ce){let ae=q+ce*$;if(ae>=0&&ae<f)for(let fe=0;fe<E;++fe){let de=ne+fe*D;if(de>=0&&de<d){let xe=c[U][ae][de][Y]+p[ce][fe][Y];xe>re&&(re=xe,Q=ae,ie=de)}}}G[U][Q][ie][Y]+=M[U][H][X][Y]}}}return{dataId:u.write(x.toTypedArray(G,n.dtype),n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}};function Ta(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,keepDims:a}=n;te(o,"sum");let i;o.dtype==="bool"?i=so({inputs:{x:o},backend:t,attrs:{dtype:"int32"}}):i=$r({inputs:{x:o},backend:t});let l=i.shape.length,u=x.parseAxisParam(s,i.shape),c=C.getAxesPermutation(u,l),p=u,m=i;c!=null&&(m=Kt({inputs:{x:i},backend:t,attrs:{perm:c}}),p=C.getInnerMostAxes(p.length,l)),C.assertAxesAreInnerMostDims("sum",p,m.shape.length);let[f,d]=C.computeOutAndReduceShapes(m.shape,p),h=C.upcastType(m.dtype,"int32"),g=hp(t,f,h),y=x.sizeFromShape(d),b=t.data.get(g.dataId).values,w=t.data.get(m.dataId).values;for(let _=0;_<b.length;++_){let I=_*y,E=0;for(let $=0;$<y;++$)E+=w[I+$];b[_]=E}if(a){let _=C.expandShapeToKeepDim(g.shape,u),I=g;g=Ze({inputs:{x:g},backend:t,attrs:{shape:_}}),t.disposeIntermediateTensorInfo(I)}return t.disposeIntermediateTensorInfo(i),c!=null&&t.disposeIntermediateTensorInfo(m),g}var eE={kernelName:ss,backendName:"cpu",kernelFunc:Ta};function a6(r){let{inputs:e,backend:t,attrs:n}=r,{equation:o}=n,s=e,{allDims:a,summedDims:i,idDims:l}=C.decodeEinsumEquation(o,s.length);C.checkEinsumDimSizes(a.length,l,s);let{path:u,steps:c}=C.getEinsumComputePath(i,l),p=c.length,m=null,f=a.length,d=[];for(let h=0;h<p;++h){for(let g of c[h]){let{permutationIndices:y,expandDims:b}=C.getEinsumPermutation(f,l[g]),w;C.isIdentityPermutation(y)?w=s[g]:(w=Kt({inputs:{x:s[g]},backend:t,attrs:{perm:y}}),d.push(w));let _=w.shape.slice();for(let I=0;I<b.length;++I)_.splice(b[I],0,1);x.arraysEqual(w.shape,_)||(w=Ze({inputs:{x:w},backend:t,attrs:{shape:_}}),d.push(w)),m===null?m=w:(m=Tu({inputs:{a:w,b:m},backend:t}),d.push(m))}h<p-1&&(u[h]>=0&&(m=Ta({inputs:{x:m},backend:t,attrs:{axis:u[h]-(a.length-f),keepDims:!1}}),d.push(m)),f--)}for(let h of d)h!==m&&t.disposeIntermediateTensorInfo(h);return m}var tE={kernelName:Sc,backendName:"cpu",kernelFunc:a6};function l6(r){let{inputs:e,backend:t}=r,{dy:n,y:o}=e;te([n,o],"eluGrad");let s=new Float32Array(x.sizeFromShape(o.shape)),a=t.data.get(o.dataId).values,i=t.data.get(n.dataId).values;for(let l=0;l<a.length;++l){let u=a[l];u>=1?s[l]=i[l]:s[l]=i[l]*(u+1)}return t.makeTensorInfo(o.shape,"float32",s)}var rE={kernelName:Tc,backendName:"cpu",kernelFunc:l6};var u6=Ye((r,e)=>r===e?1:0),J_=et(Oi,u6,null,"bool"),nE={kernelName:Oi,backendName:"cpu",kernelFunc:J_};var c6=C.ERF_P,p6=C.ERF_A1,m6=C.ERF_A2,f6=C.ERF_A3,d6=C.ERF_A4,h6=C.ERF_A5,g6=De(Fi,r=>{let e=Math.sign(r),t=Math.abs(r),n=1/(1+c6*t);return e*(1-((((h6*n+d6)*n+f6)*n+m6)*n+p6)*n*Math.exp(-t*t))}),oE={kernelName:Fi,backendName:"cpu",kernelFunc:g6};function _p(r){let{inputs:e,backend:t,attrs:n}=r,{input:o}=e,{dim:s}=n,a=o.shape.length,i=o.shape.slice(),l=s;return s<0&&(x.assert(-(a+1)<=s,()=>`Axis must be in the interval [${-(a+1)}, ${a}]`),l=a+s+1),i.splice(l,0,1),Ze({inputs:{x:o},backend:t,attrs:{shape:i}})}var sE={kernelName:Bs,backendName:"cpu",kernelFunc:_p};var x6=Ye((r,e)=>r/e),kf=et(Eo,x6),vf={kernelName:Eo,backendName:"cpu",kernelFunc:kf};function jg(r,e,t){let n=r.shape,o=n[0],s=n[1],a=t.data.get(r.dataId),i=a.complexTensorInfos.real,l=a.complexTensorInfos.imag,u=[o,s],c=x.sizeFromShape(u),p=x.getTypedArrayFromDType("float32",c),m=x.getTypedArrayFromDType("float32",c);for(let g=0;g<o;g++){let y=lo({inputs:{x:i},backend:t,attrs:{begin:[g,0],size:[1,s]}}),b=lo({inputs:{x:l},backend:t,attrs:{begin:[g,0],size:[1,s]}}),w=dr({inputs:{real:y,imag:b},backend:t}),{real:_,imag:I}=y6(w,e,t),E=C.mergeRealAndImagArrays(_,I);for(let $=0;$<s;$++){let D=C.getComplexWithIndex(E,$);p[g*s+$]=D.real,m[g*s+$]=D.imag}t.disposeIntermediateTensorInfo(y),t.disposeIntermediateTensorInfo(b),t.disposeIntermediateTensorInfo(w)}let f=t.makeTensorInfo(u,"float32",p),d=t.makeTensorInfo(u,"float32",m),h=dr({inputs:{real:f,imag:d},backend:t});return t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(d),h}function y6(r,e,t){let n=x.sizeFromShape(r.shape),o=t.data.get(r.dataId),s=t.data.get(o.complexTensorInfos.real.dataId).values,a=t.data.get(o.complexTensorInfos.imag.dataId).values;if(b6(n)){let i=Q_(s,a,n,e,t),l=[r.shape[0],r.shape[1]];if(e){let u=t.makeTensorInfo(l,"float32",i.real),c=t.makeTensorInfo(l,"float32",i.imag),p=t.makeTensorInfo([],"float32",x.createScalarValue(n,"float32")),m=$r({inputs:{x:p},backend:t}),f=vf.kernelFunc({inputs:{a:u,b:p},backend:t}),d=vf.kernelFunc({inputs:{a:c,b:m},backend:t}),h=t.data.get(f.dataId).values,g=t.data.get(d.dataId).values;return t.disposeIntermediateTensorInfo(u),t.disposeIntermediateTensorInfo(c),t.disposeIntermediateTensorInfo(p),t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(d),{real:h,imag:g}}return i}else{let i=C.mergeRealAndImagArrays(s,a),l=w6(i,n,e);return C.splitRealAndImagArrays(l)}}function b6(r){return(r&r-1)==0}function Q_(r,e,t,n,o){if(t===1)return{real:r,imag:e};let s=C.mergeRealAndImagArrays(r,e),a=t/2,i=C.complexWithEvenIndex(s),l=i.real,u=i.imag,c=[l.length],p=o.makeTensorInfo(c,"float32",l),m=o.makeTensorInfo(c,"float32",u),f=dr({inputs:{real:p,imag:m},backend:o}),d=C.complexWithOddIndex(s),h=d.real,g=d.imag,y=[h.length],b=o.makeTensorInfo(y,"float32",h),w=o.makeTensorInfo(y,"float32",g),_=dr({inputs:{real:b,imag:w},backend:o}),I=Q_(l,u,a,n,o),E=I.real,$=I.imag,D=[E.length],O=o.makeTensorInfo(D,"float32",E),M=o.makeTensorInfo(D,"float32",$),G=dr({inputs:{real:O,imag:M},backend:o}),j=Q_(h,g,a,n,o),U=j.real,H=j.imag,q=[U.length],X=o.makeTensorInfo(q,"float32",U),ne=o.makeTensorInfo(q,"float32",H),Y=dr({inputs:{real:X,imag:ne},backend:o}),re=C.exponents(t,n),Q=[re.real.length],ie=o.makeTensorInfo(Q,"float32",re.real),ce=o.makeTensorInfo(Q,"float32",re.imag),ae=dr({inputs:{real:ie,imag:ce},backend:o}),fe=Tu({inputs:{a:ae,b:Y},backend:o}),de=Sa({inputs:{a:G,b:fe},backend:o}),xe=_f({inputs:{a:G,b:fe},backend:o}),we=oo({inputs:{input:de},backend:o}),Ee=oo({inputs:{input:xe},backend:o}),ve=ai({inputs:{input:de},backend:o}),Ge=ai({inputs:{input:xe},backend:o}),Ke=gl({inputs:[we,Ee],backend:o,attrs:{axis:0}}),at=gl({inputs:[ve,Ge],backend:o,attrs:{axis:0}}),St=o.data.get(Ke.dataId).values,Tt=o.data.get(at.dataId).values;return o.disposeIntermediateTensorInfo(p),o.disposeIntermediateTensorInfo(m),o.disposeIntermediateTensorInfo(f),o.disposeIntermediateTensorInfo(b),o.disposeIntermediateTensorInfo(w),o.disposeIntermediateTensorInfo(_),o.disposeIntermediateTensorInfo(O),o.disposeIntermediateTensorInfo(M),o.disposeIntermediateTensorInfo(G),o.disposeIntermediateTensorInfo(X),o.disposeIntermediateTensorInfo(ne),o.disposeIntermediateTensorInfo(Y),o.disposeIntermediateTensorInfo(ie),o.disposeIntermediateTensorInfo(ce),o.disposeIntermediateTensorInfo(ae),o.disposeIntermediateTensorInfo(fe),o.disposeIntermediateTensorInfo(de),o.disposeIntermediateTensorInfo(xe),o.disposeIntermediateTensorInfo(we),o.disposeIntermediateTensorInfo(ve),o.disposeIntermediateTensorInfo(Ee),o.disposeIntermediateTensorInfo(Ge),o.disposeIntermediateTensorInfo(Ke),o.disposeIntermediateTensorInfo(at),{real:St,imag:Tt}}function w6(r,e,t){let n=new Float32Array(e*2);for(let o=0;o<e;o++){let s=0,a=0;for(let i=0;i<e;i++){let l=C.exponent(o*i,e,t),u=C.getComplexWithIndex(r,i);s+=u.real*l.real-u.imag*l.imag,a+=u.real*l.imag+u.imag*l.real}t&&(s/=e,a/=e),C.assignToTypedArray(n,s,a,o)}return n}function _6(r){let{inputs:e,backend:t}=r,{input:n}=e,o=x.sizeFromShape(n.shape),s=n.shape[n.shape.length-1],a=o/s,i=Ze({inputs:{x:n},backend:t,attrs:{shape:[a,s]}}),l=jg(i,!1,t),u=Ze({inputs:{x:l},backend:t,attrs:{shape:n.shape}});return t.disposeIntermediateTensorInfo(i),t.disposeIntermediateTensorInfo(l),u}var iE={kernelName:Ac,backendName:"cpu",kernelFunc:_6};function Cf(r){let{backend:e,attrs:t}=r,{shape:n,value:o,dtype:s}=t,a=s||x.inferDtype(o),i=x.getArrayFromDType(a,x.sizeFromShape(n));return k6(i,o,a),e.makeTensorInfo(n,a,i)}var aE={kernelName:el,backendName:"cpu",kernelFunc:Cf};function k6(r,e,t){r.fill(e)}var lE={kernelName:Mi,backendName:"cpu",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{image:n}=r,o=t,s=x.getTypedArrayFromDType(n.dtype,x.sizeFromShape(n.shape)),[a,i,l,u]=n.shape,c=o.data.get(n.dataId).values;for(let m=0;m<a;m++){let f=m*l*i*u;for(let d=0;d<i;d++){let h=d*(l*u);for(let g=0;g<l;g++){let y=g*u;for(let b=0;b<u;b++){let _=[a,d,g,b][2],I=Math.round(l-_),E=f+h+y+b,$=c[E];if(I>=0&&I<l){let D=I*u,O=f+h+D+b;$=c[O]}s[E]=$}}}}return{dataId:o.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}};var v6=Ye((r,e)=>Math.floor(r/e)),C6=et(Ro,v6,null,"int32"),uE={kernelName:Ro,backendName:"cpu",kernelFunc:C6};function I6(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=n,h=Y_({inputs:{x:o,filter:s},backend:t,attrs:{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:m}});if(a){let g=h;h=Sa({inputs:{a:h,b:a},backend:t}),t.disposeIntermediateTensorInfo(g)}if(f){let g=h;h=bp(t,h,f,i,d),t.disposeIntermediateTensorInfo(g)}return h}var cE={kernelName:Js,backendName:"cpu",kernelFunc:I6};function N6(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=n,h=Z_({inputs:{x:o,filter:s},backend:t,attrs:{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:m}});if(a){let g=h;h=Sa({inputs:{a:h,b:a},backend:t}),t.disposeIntermediateTensorInfo(g)}if(f){let g=h;h=bp(t,h,f,i,d),t.disposeIntermediateTensorInfo(g)}return h}var pE={kernelName:Qs,backendName:"cpu",kernelFunc:N6};function S6(r){let{inputs:e,backend:t}=r,{params:n,indices:o}=e,s=x.sizeFromShape(n.shape),a=o.shape,i=a[a.length-1],[l,u,c,p]=C.prepareAndValidate(n,o);if(u===0)return t.makeTensorInfo(l,n.dtype,[]);let m=Ce([u,c],n.dtype),f=t.data.get(o.dataId).values,d=t.data.get(n.dataId).values;for(let h=0;h<u;h++){let g=[],y=0;for(let b=0;b<i;b++){let w=f[h*i+b];y+=w*p[b],g.push(w)}if(y<0||y>=s/c)throw new Error(`Invalid indices: ${g} does not index into ${n.shape}`);for(let b=0;b<c;b++)m.values[h*c+b]=d[y*c+b]}return t.makeTensorInfo(l,m.dtype,m.values)}var mE={kernelName:Li,backendName:"cpu",kernelFunc:S6};function T6(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,indices:s}=e,{axis:a,batchDims:i}=n;te([o,s],"gatherV2");let l=i;i==null&&(l=0);let u=x.sizeFromShape(s.shape),c=x.parseAxisParam(a,o.shape)[0],p=C.segment_util.collectGatherOpShapeInfo(o,s,c,l),m=Ze({inputs:{x:o},backend:t,attrs:{shape:[p.batchSize,p.outerSize,p.dimSize,p.sliceSize]}}),f=Ze({inputs:{x:s},backend:t,attrs:{shape:[p.batchSize,u/p.batchSize]}}),d=[p.batchSize,p.outerSize,u/p.batchSize,p.sliceSize],h=t.bufferSync(f),g=t.bufferSync(m),y=Fg(g,h,d);return t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f),t.makeTensorInfo(p.outputShape,y.dtype,y.values)}var fE={kernelName:Vs,backendName:"cpu",kernelFunc:T6};var A6=Ye((r,e)=>r>=e?1:0),E6=et(Oo,A6,null,"bool"),dE={kernelName:Oo,backendName:"cpu",kernelFunc:E6};function D6(r){let{inputs:e,backend:t}=r,{input:n}=e,o=x.sizeFromShape(n.shape),s=n.shape[n.shape.length-1],a=o/s,i=Ze({inputs:{x:n},backend:t,attrs:{shape:[a,s]}}),l=jg(i,!0,t),u=Ze({inputs:{x:l},backend:t,attrs:{shape:n.shape}});return t.disposeIntermediateTensorInfo(i),t.disposeIntermediateTensorInfo(l),u}var hE={kernelName:Ec,backendName:"cpu",kernelFunc:D6};var $6=De(Bi,r=>Number.isFinite(r)?1:0,"bool"),gE={kernelName:Bi,backendName:"cpu",kernelFunc:$6};var R6=De(Vi,r=>Math.abs(r)===Infinity?1:0,"bool"),xE={kernelName:Vi,backendName:"cpu",kernelFunc:R6};var F6=De(Gi,r=>Number.isNaN(r)?1:0,"bool"),yE={kernelName:Gi,backendName:"cpu",kernelFunc:F6};var O6=Ye((r,e)=>r<=e?1:0),P6=et(ji,O6,null,"bool"),bE={kernelName:ji,backendName:"cpu",kernelFunc:P6};function M6(r){let{backend:e,attrs:t}=r,{start:n,stop:o,num:s}=t,a=Og(n,o,s);return e.makeTensorInfo([a.length],"float32",a)}var wE={kernelName:$c,backendName:"cpu",kernelFunc:M6};var L6=De(Ui,r=>Math.log1p(r)),_E={kernelName:Ui,backendName:"cpu",kernelFunc:L6};var z6=Ye((r,e)=>r&&e),B6=et(Hi,z6,null,"bool"),kE={kernelName:Hi,backendName:"cpu",kernelFunc:B6};var V6=De(jl,r=>r?0:1,"bool"),vE={kernelName:jl,backendName:"cpu",kernelFunc:V6};var G6=Ye((r,e)=>r||e),W6=et(Ul,G6,null,"bool"),CE={kernelName:Ul,backendName:"cpu",kernelFunc:W6};function j6(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{depthRadius:s,bias:a,alpha:i,beta:l}=n;te(o,"LRN");let u=o.shape[3],c=u-1,p=t.data.get(o.dataId).values,m=x.sizeFromShape(o.shape),f=new Float32Array(m);function d(h){let g=h%u,y=h-g+Math.max(0,g-s),b=h-g+Math.min(g+s,c),w=0;for(;y<=b;y++){let _=p[y];w+=_*_}return w}for(let h=0;h<m;h++){let g=d(h),y=p[h]*Math.pow(a+i*g,-l);f[h]=y}return t.makeTensorInfo(o.shape,o.dtype,f)}var IE={kernelName:tl,backendName:"cpu",kernelFunc:j6};function U6(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,y:s,dy:a}=e,{depthRadius:i,bias:l,alpha:u,beta:c}=n;te(a,"LRNGrad");let p=x.sizeFromShape(a.shape),m=a.shape[3],f=t.data.get(a.dataId).values,d=t.data.get(o.dataId).values,h=t.data.get(s.dataId).values,g=new Float32Array(p),y=p;for(let b=0;b<y;b++){let w=b%m,_=b-w+Math.max(0,w-i),I=b-w+Math.min(m,w+i+1),E=0;for(let $=_;$<I;$++)E+=Math.pow(d[$],2);E=u*E+l;for(let $=_;$<I;$++){let D=-2*u*c*d[$]*h[b]/E;b===$&&(D+=Math.pow(E,-c)),D*=f[b],g[$]+=D}}return t.makeTensorInfo(a.shape,o.dtype,g)}var NE={kernelName:Rc,backendName:"cpu",kernelFunc:U6};function ek(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{reductionIndices:s,keepDims:a}=n,i=t,l=o.shape,u=l.length,c=x.parseAxisParam(s,l),p=c,m=C.getAxesPermutation(p,u),f=i.data.get(o.dataId).values;if(m!=null){let _=new Array(u);for(let I=0;I<_.length;I++)_[I]=l[m[I]];f=yp(f,l,o.dtype,m,_),p=C.getInnerMostAxes(p.length,u),l=_}te(o,"max"),C.assertAxesAreInnerMostDims("max",p,u);let[d,h]=C.computeOutAndReduceShapes(l,p),g=x.sizeFromShape(h),y=Pg(f,g,d,o.dtype),b=i.write(y,d,o.dtype),w=d;return a&&(w=C.expandShapeToKeepDim(d,c)),{dataId:b,shape:w,dtype:o.dtype}}var SE={kernelName:Lo,backendName:"cpu",kernelFunc:ek};function H6(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e;te(o,"maxPool");let{filterSize:s,strides:a,pad:i,dimRoundingMode:l}=n,u=1;x.assert(C.eitherStridesOrDilationsAreOne(a,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=C.computePool2DInfo(o.shape,s,a,u,i,l),p;if(c.filterWidth===1&&c.filterHeight===1&&x.arraysEqual(c.inShape,c.outShape))p=$r({inputs:{x:o},backend:t});else{let m=t.data.get(o.dataId).values,f=x.computeStrides(o.shape),d=wp(m,o.shape,o.dtype,f,c,"max");p=t.makeTensorInfo(c.outShape,o.dtype,d.values)}return p}var TE={kernelName:Bo,backendName:"cpu",kernelFunc:H6};function q6(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{filterSize:s,strides:a,pad:i,dimRoundingMode:l,dataFormat:u}=n;te(o,"maxPool3d");let c=C.computePool3DInfo(o.shape,s,a,1,i,l,u),p=t.data.get(o.dataId).values,m=Wg(p,o.shape,o.dtype,x.computeStrides(o.shape),c,"max");return t.makeTensorInfo(m.shape,"float32",m.values)}var AE={kernelName:rl,backendName:"cpu",kernelFunc:q6};function K6(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,input:s}=e,{filterSize:a,strides:i,pad:l,dimRoundingMode:u}=n;te([o,s],"maxPool3DGrad");let c=C.computePool3DInfo(s.shape,a,i,1,l,u),p=t.bufferSync(s),m=vA(p,c),f=c.strideDepth,d=c.strideHeight,h=c.strideWidth,g=c.dilationDepth,y=c.dilationHeight,b=c.dilationWidth,w=c.effectiveFilterDepth,_=c.effectiveFilterHeight,I=c.effectiveFilterWidth,E=w-1-c.padInfo.front,$=I-1-c.padInfo.left,D=_-1-c.padInfo.top,O=Ce(s.shape,"float32"),M=t.bufferSync(o);for(let G=0;G<c.batchSize;++G)for(let j=0;j<c.inChannels;++j)for(let U=0;U<c.inDepth;++U)for(let H=0;H<c.inHeight;++H)for(let q=0;q<c.inWidth;++q){let X=U-E,ne=H-D,Y=q-$,re=0;for(let Q=0;Q<w;Q+=g){let ie=(X+Q)/f;if(!(ie<0||ie>=c.outDepth||Math.floor(ie)!==ie))for(let ce=0;ce<_;ce+=y){let ae=(ne+ce)/d;if(!(ae<0||ae>=c.outHeight||Math.floor(ae)!==ae))for(let fe=0;fe<I;fe+=b){let de=(Y+fe)/h;if(de<0||de>=c.outWidth||Math.floor(de)!==de)continue;let xe=w*_*I-1-m.get(G,ie,ae,de,j),we=Q*_*I+ce*I+fe,Ee=xe===we?1:0;if(Ee===0)continue;re+=M.get(G,ie,ae,de,j)*Ee}}}O.set(re,G,U,H,q,j)}return t.makeTensorInfo(O.shape,O.dtype,O.values)}var EE={kernelName:Oc,backendName:"cpu",kernelFunc:K6};function X6(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,input:s,output:a}=e,i=s;te([s,a],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:p}=n,m=C.computePool2DInfo(i.shape,l,u,1,c,p),f=t.data.get(i.dataId).values,d=Ce(m.outShape,i.dtype,Gg(f,i.shape,i.dtype,m).values),h=m.strideHeight,g=m.strideWidth,y=m.dilationHeight,b=m.dilationWidth,w=m.effectiveFilterHeight,_=m.effectiveFilterWidth,I=_-1-m.padInfo.left,E=w-1-m.padInfo.top,$=Ce(i.shape,"float32"),D=t.data.get(o.dataId).values,O=Ce(o.shape,"float32",D);for(let M=0;M<m.batchSize;++M)for(let G=0;G<m.inChannels;++G)for(let j=0;j<m.inHeight;++j)for(let U=0;U<m.inWidth;++U){let H=j-E,q=U-I,X=0;for(let ne=0;ne<w;ne+=y){let Y=(H+ne)/h;if(!(Y<0||Y>=m.outHeight||Math.floor(Y)!==Y))for(let re=0;re<_;re+=b){let Q=(q+re)/g;if(Q<0||Q>=m.outWidth||Math.floor(Q)!==Q)continue;let ie=w*_-1-d.get(M,Y,Q,G),ce=ne*_+re,ae=ie===ce?1:0;if(ae===0)continue;X+=O.get(M,Y,Q,G)*ae}}$.set(X,M,j,U,G)}return t.makeTensorInfo($.shape,$.dtype,$.values)}var DE={kernelName:Fc,backendName:"cpu",kernelFunc:X6};function $E(r,e,t,n,o){let s=x.computeStrides(e),a=wp(r,e,t,s,o,"max"),i=Gg(r,e,t,o,!0,n);return[a.values,i.values]}var RE={kernelName:Pc,backendName:"cpu",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{x:n}=r,{filterSize:o,strides:s,pad:a,includeBatchInIndex:i}=e,l=t;te(n,"MaxPoolWithArgmax");let u=l.data.get(n.dataId).values,c=C.computePool2DInfo(n.shape,o,s,[1,1],a),[p,m]=$E(u,n.shape,n.dtype,i,c),f=l.write(p,c.outShape,n.dtype),d=l.write(m,c.outShape,n.dtype);return[{dataId:f,shape:c.outShape,dtype:n.dtype},{dataId:d,shape:c.outShape,dtype:"int32"}]}};function Y6(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,keepDims:a}=n,i=x.parseAxisParam(s,o.shape),u=C.computeOutAndReduceShapes(o.shape,i)[1],c=x.sizeFromShape(u),p=[],m=t.makeTensorInfo([],"float32",new Float32Array([c]));p.push(m);let f=so({inputs:{x:o},backend:t,attrs:{dtype:"float32"}});p.push(f);let d=kf({inputs:{a:f,b:m},backend:t});p.push(d);let h=Ta({inputs:{x:d},backend:t,attrs:{axis:s,keepDims:a}});return p.forEach(g=>t.disposeIntermediateTensorInfo(g)),h}var FE={kernelName:Vo,backendName:"cpu",kernelFunc:Y6};function Z6(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,keepDims:a}=n;te(o,"min");let i=x.parseAxisParam(s,o.shape),l=i,u=C.getAxesPermutation(l,o.shape.length),c=o;u!=null&&(c=Kt({inputs:{x:o},backend:t,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,o.shape.length)),C.assertAxesAreInnerMostDims("min",l,c.shape.length);let[p,m]=C.computeOutAndReduceShapes(c.shape,l),f=x.sizeFromShape(m),d=x.makeZerosTypedArray(x.sizeFromShape(p),c.dtype),h=t.data.get(c.dataId).values;for(let y=0;y<d.length;++y){let b=y*f,w=h[b];for(let _=0;_<f;++_){let I=h[b+_];I<w&&(w=I)}d[y]=w}u!=null&&t.disposeIntermediateTensorInfo(c);let g=t.makeTensorInfo(p,c.dtype,d);if(a){let y=C.expandShapeToKeepDim(p,i),b=Ze({inputs:{x:g},backend:t,attrs:{shape:y}});return t.disposeIntermediateTensorInfo(g),b}return g}var OE={kernelName:Go,backendName:"cpu",kernelFunc:Z6};function J6(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{paddings:s,mode:a}=n;te(o,"mirrorPad");let i=s.map((w,_)=>w[0]+o.shape[_]+w[1]),l=s.map(w=>w[0]),u=s.map((w,_)=>w[0]+o.shape[_]),c=a==="reflect"?0:1,p=t.data.get(o.dataId).values,m=o.shape.length,f=x.computeStrides(o.shape),d=x.sizeFromShape(i),h=i.length,g=x.computeStrides(i),y=x.getTypedArrayFromDType(o.dtype,d);for(let w=0;w<d;w++){let _=x.indexToLoc(w,h,g);for(let E=0;E<h;E++)_[E]<l[E]?_[E]=l[E]*2-_[E]-c:_[E]>=u[E]&&(_[E]=(u[E]-1)*2-_[E]+c);_=_.map((E,$)=>E-l[$]);let I=x.locToIndex(_,m,f);y[w]=p[I]}return{dataId:t.write(y,i,o.dtype),shape:i,dtype:o.dtype}}var PE={kernelName:jo,backendName:"cpu",kernelFunc:J6};var Q6=Ye((r,e)=>{let t=r%e;return r<0&&e<0||r>=0&&e>=0?t:(t+e)%e}),e5=et(qi,Q6),ME={kernelName:qi,backendName:"cpu",kernelFunc:e5};var zE=pc(h_());function tk(r){let{inputs:e,backend:t,attrs:n}=r,{logits:o}=e,{dim:s}=n,a=o.shape.length,i=s;if(i===-1&&(i=a-1),i!==a-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${a} and dim was ${i}`);let l=x.parseAxisParam([i],o.shape),u=ek({inputs:{x:o},backend:t,attrs:{reductionIndices:l,keepDims:!1}}),c=C.expandShapeToKeepDim(u.shape,l),p=Ze({inputs:{x:u},backend:t,attrs:{shape:c}}),m=_f({inputs:{a:o,b:p},backend:t}),f=A_({inputs:{x:m},backend:t}),d=Ta({inputs:{x:f},backend:t,attrs:{axis:l,keepDims:!1}}),h=Ze({inputs:{x:d},backend:t,attrs:{shape:c}}),g=kf({inputs:{a:f,b:h},backend:t});return t.disposeIntermediateTensorInfo(u),t.disposeIntermediateTensorInfo(p),t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(d),t.disposeIntermediateTensorInfo(h),g}var LE={kernelName:is,backendName:"cpu",kernelFunc:tk};function t5(r){let{inputs:e,backend:t,attrs:n}=r,{logits:o}=e,{numSamples:s,seed:a,normalized:i}=n;te(o,"multinomial");let l=i?o:tk({inputs:{logits:o},backend:t,attrs:{dim:-1}}),u=l.shape[0],c=l.shape[1],p=t.data.get(l.dataId).values,m=[u,s],f=x.makeZerosTypedArray(x.sizeFromShape(m),"int32");for(let d=0;d<u;++d){let h=d*c,g=new Float32Array(c-1);g[0]=p[h];for(let w=1;w<g.length;++w)g[w]=g[w-1]+p[h+w];let y=zE.alea(a.toString()),b=d*s;for(let w=0;w<s;++w){let _=y();f[b+w]=g.length;for(let I=0;I<g.length;I++)if(_<g[I]){f[b+w]=I;break}}}return i||t.disposeIntermediateTensorInfo(l),t.makeTensorInfo(m,"int32",f)}var BE={kernelName:Mc,backendName:"cpu",kernelFunc:t5};var r5=Dr.nonMaxSuppressionV3Impl;function n5(r){let{inputs:e,backend:t,attrs:n}=r,{boxes:o,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l}=n;te(o,"NonMaxSuppression");let u=t.data.get(o.dataId).values,c=t.data.get(s.dataId).values,{selectedIndices:p}=r5(u,c,a,i,l);return t.makeTensorInfo([p.length],"int32",new Int32Array(p))}var VE={kernelName:Xi,backendName:"cpu",kernelFunc:n5};var o5=Dr.nonMaxSuppressionV4Impl;function s5(r){let{inputs:e,backend:t,attrs:n}=r,{boxes:o,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:u}=n;te(o,"NonMaxSuppressionPadded");let c=t.data.get(o.dataId).values,p=t.data.get(s.dataId).values,{selectedIndices:m,validOutputs:f}=o5(c,p,a,i,l,u);return[t.makeTensorInfo([m.length],"int32",new Int32Array(m)),t.makeTensorInfo([],"int32",new Int32Array([f]))]}var GE={kernelName:Yi,backendName:"cpu",kernelFunc:s5};var i5=Dr.nonMaxSuppressionV5Impl;function a5(r){let{inputs:e,backend:t,attrs:n}=r,{boxes:o,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=n;te(o,"NonMaxSuppressionWithScore");let c=t.data.get(o.dataId).values,p=t.data.get(s.dataId).values,m=a,f=i,d=l,h=u,{selectedIndices:g,selectedScores:y}=i5(c,p,m,f,d,h);return[t.makeTensorInfo([g.length],"int32",new Int32Array(g)),t.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var WE={kernelName:Zi,backendName:"cpu",kernelFunc:a5};function l5(r){let{inputs:e,backend:t,attrs:n}=r,{indices:o}=e,{depth:s,onValue:a,offValue:i}=n;te(o,"oneHot");let l=x.sizeFromShape(o.shape),u=new Float32Array(l*s);u.fill(i);let c=t.data.get(o.dataId).values;for(let p=0;p<l;++p)c[p]>=0&&c[p]<s&&(u[p*s+c[p]]=a);return t.makeTensorInfo([...o.shape,s],"int32",u)}var jE={kernelName:Ho,backendName:"cpu",kernelFunc:l5};function If(r){let{inputs:e,backend:t}=r,{x:n}=e;if(n.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(n.dtype==="complex64"){let o=oo({inputs:{input:n},backend:t}),s=If({inputs:{x:o},backend:t}),a=ai({inputs:{input:n},backend:t}),i=If({inputs:{x:a},backend:t}),l=dr({inputs:{real:s,imag:i},backend:t});return t.disposeIntermediateTensorInfo(o),t.disposeIntermediateTensorInfo(s),t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),l}else return Cf({backend:t,attrs:{shape:n.shape,value:0,dtype:n.dtype}})}var UE={kernelName:Ys,backendName:"cpu",kernelFunc:If};function HE(r){let{inputs:e,backend:t}=r,{x:n}=e;if(n.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(n.dtype==="complex64"){let o=oo({inputs:{input:n},backend:t}),s=HE({inputs:{x:o},backend:t}),a=ai({inputs:{input:n},backend:t}),i=If({inputs:{x:a},backend:t}),l=dr({inputs:{real:s,imag:i},backend:t});return t.disposeIntermediateTensorInfo(o),t.disposeIntermediateTensorInfo(s),t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),l}else return Cf({backend:t,attrs:{shape:n.shape,value:1,dtype:n.dtype}})}var qE={kernelName:Ws,backendName:"cpu",kernelFunc:HE};function rk(r){let{inputs:e,backend:t,attrs:n}=r,{axis:o}=n;if(e.length===1)return _p({inputs:{input:e[0]},backend:t,attrs:{dim:o}});let s=e[0].shape,a=e[0].dtype;e.forEach(c=>{x.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),x.assert(a===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=e.map(c=>{let p=_p({inputs:{input:c},backend:t,attrs:{dim:o}});return i.push(p),p}),u=gl({inputs:l,backend:t,attrs:{axis:o}});return i.forEach(c=>t.disposeIntermediateTensorInfo(c)),u}var KE={kernelName:js,backendName:"cpu",kernelFunc:rk};function u5(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{paddings:s,constantValue:a}=n;te(o,"pad");let i=s.map((b,w)=>b[0]+o.shape[w]+b[1]),l=s.map(b=>b[0]),u=t.data.get(o.dataId).values,c=x.sizeFromShape(o.shape),p=o.shape.length,m=x.computeStrides(o.shape),f=x.sizeFromShape(i),d=i.length,h=x.computeStrides(i),g=x.getTypedArrayFromDType(o.dtype,f);a!==0&&g.fill(a);for(let b=0;b<c;b++){let _=x.indexToLoc(b,p,m).map((E,$)=>E+l[$]),I=x.locToIndex(_,d,h);g[I]=u[b]}return{dataId:t.write(g,i,o.dtype),shape:i,dtype:o.dtype}}var Ug={kernelName:qo,backendName:"cpu",kernelFunc:u5};var c5=Ye((r,e)=>Math.pow(r,e)),p5=et(Ko,c5),XE={kernelName:Ko,backendName:"cpu",kernelFunc:p5};function m5(r){let{backend:e,attrs:t}=r,{start:n,stop:o,dtype:s,step:a}=t,i=Au(n,o,a,s);return e.makeTensorInfo([i.length],s,i)}var YE={kernelName:nl,backendName:"cpu",kernelFunc:m5};var f5=De(Qi,r=>1/r),ZE={kernelName:Qi,backendName:"cpu",kernelFunc:f5};function d5(r){let{inputs:e,backend:t,attrs:n}=r,{images:o}=e,{alignCorners:s,halfPixelCenters:a,size:i}=n;te(o,"resizeBilinear");let l=x.computeStrides(o.shape),[u,c]=i,[p,m,f,d]=o.shape,h=t.data.get(o.dataId).values,g=new Float32Array(x.sizeFromShape([p,u,c,d])),y=[s&&u>1?m-1:m,s&&c>1?f-1:f],b=[s&&u>1?u-1:u,s&&c>1?c-1:c],w=0,_=y[0]/b[0],I=y[1]/b[1];for(let E=0;E<p;E++)for(let $=0;$<u;$++){let D;a?D=_*($+.5)-.5:D=_*$;let O=Math.max(0,Math.floor(D)),M=D-O,G=Math.min(m-1,Math.ceil(D)),j=E*l[0]+O*l[1],U=E*l[0]+G*l[1];for(let H=0;H<c;H++){let q;a?q=I*(H+.5)-.5:q=I*H;let X=Math.max(0,Math.floor(q)),ne=q-X,Y=Math.min(f-1,Math.ceil(q)),re=j+X*l[2],Q=U+X*l[2],ie=j+Y*l[2],ce=U+Y*l[2];for(let ae=0;ae<d;ae++){let fe=h[re+ae],de=h[Q+ae],xe=h[ie+ae],we=h[ce+ae],Ee=fe+(xe-fe)*ne,ve=de+(we-de)*ne,Ge=Ee+(ve-Ee)*M;g[w++]=Ge}}}return t.makeTensorInfo([p,u,c,d],"float32",g)}var JE={kernelName:Zo,backendName:"cpu",kernelFunc:d5};function h5(r){let{inputs:e,backend:t,attrs:n}=r,{images:o,dy:s}=e,{alignCorners:a}=n;te([s,o],"resizeBilinearGrad");let i=x.computeStrides(o.shape),[l,u,c,p]=o.shape,[,m,f]=s.shape,d=new Float32Array(l*u*c*p),h=[a&&m>1?u-1:u,a&&f>1?c-1:c],g=[a&&m>1?m-1:m,a&&f>1?f-1:f],y=h[0]/g[0],b=h[1]/g[1],w=t.data.get(s.dataId).values,_=0;for(let I=0;I<l;I++){let E=I*i[0];for(let $=0;$<m;$++){let D=$*y,O=Math.floor(D),M=Math.min(Math.ceil(D),u-1),G=E+O*i[1],j=E+M*i[1],U=D-O,H=1-U;for(let q=0;q<f;q++){let X=q*b,ne=Math.floor(X),Y=Math.min(Math.ceil(X),c-1),re=X-ne,Q=1-re,ie=G+ne*i[2],ce=G+Y*i[2],ae=j+ne*i[2],fe=j+Y*i[2],de=H*Q,xe=H*re,we=U*Q,Ee=U*re;for(let ve=0;ve<p;ve++){let Ge=w[_++];d[ie+ve]+=Ge*de,d[ce+ve]+=Ge*xe,d[ae+ve]+=Ge*we,d[fe+ve]+=Ge*Ee}}}}return t.makeTensorInfo([l,c,u,p],"float32",d)}var QE={kernelName:Bc,backendName:"cpu",kernelFunc:h5};function g5(r){let{inputs:e,backend:t,attrs:n}=r,{images:o}=e,{alignCorners:s,halfPixelCenters:a,size:i}=n;te(o,"resizeNearestNeighbor");let l=x.computeStrides(o.shape),[u,c]=i,[p,m,f,d]=o.shape,h=t.data.get(o.dataId).values,g=new Float32Array(p*u*c*d),y=[s&&u>1?m-1:m,s&&c>1?f-1:f],b=[s&&u>1?u-1:u,s&&c>1?c-1:c],w=y[0]/b[0],_=y[1]/b[1],I=0;for(let E=0;E<p;E++){let $=E*l[0];for(let D=0;D<u;D++){let O=a?w*(D+.5):w*D,M=Math.min(m-1,s?Math.round(O):Math.floor(O));a&&(M=Math.max(0,M));let G=$+M*l[1];for(let j=0;j<c;j++){let U=a?_*(j+.5):_*j,H=Math.min(f-1,s?Math.round(U):Math.floor(U));a&&(H=Math.max(0,H));let q=G+H*l[2];for(let X=0;X<d;X++){let ne=h[q+X];g[I++]=ne}}}}return t.makeTensorInfo([p,u,c,d],o.dtype,g)}var e2={kernelName:ol,backendName:"cpu",kernelFunc:g5};function x5(r){let{inputs:e,backend:t,attrs:n}=r,{images:o,dy:s}=e,{alignCorners:a}=n;te([s,o],"resizeNearestNeighborGrad");let i=x.computeStrides(o.shape),l=x.computeStrides(s.shape),[u,c,p,m]=o.shape,[,f,d]=s.shape,h=new Float32Array(u*c*p*m),g=t.data.get(s.dataId).values,y=[a&&f>1?c-1:c,a&&d>1?p-1:p],b=[a&&f>1?f-1:f,a&&d>1?d-1:d],w=y[0]/b[0],_=y[1]/b[1],I=1/w,E=1/_,$=Math.ceil(I)*2+2,D=Math.ceil(E)*2+2;for(let O=0;O<u;O++){let M=O*i[0];for(let G=0;G<c;G++){let j=M+G*i[1],U=Math.floor(G*I),H=Math.floor(U-$/2);for(let q=0;q<p;q++){let X=j+q*i[2],ne=Math.floor(q*E),Y=Math.floor(ne-D/2);for(let re=0;re<m;re++){let Q=0;for(let ie=0;ie<$;ie++){let ce=ie+H;if(ce<0||ce>=f)continue;let ae=M+ce*l[1],fe=ce*w,de=Math.min(c-1,a?Math.round(fe):Math.floor(fe));if(G===de)for(let xe=0;xe<D;xe++){let we=xe+Y;if(we<0||we>=d)continue;let Ee=ae+we*l[2],ve=we*_,Ge=Math.min(p-1,a?Math.round(ve):Math.floor(ve));q===Ge&&(Q+=g[Ee+re])}}h[X+re]=Q}}}}return t.makeTensorInfo(o.shape,o.dtype,h)}var t2={kernelName:zc,backendName:"cpu",kernelFunc:x5};function y5(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{dims:s}=n;te(o,"reverse");let a=o.shape.length,i=x.parseAxisParam(s,o.shape);if(a===0)return $r({inputs:{x:o},backend:t});let l=new ut(o.shape,o.dtype),u=t.bufferSync(o);for(let c=0;c<l.size;c++){let p=l.indexToLoc(c),m=p.slice();i.forEach(f=>m[f]=o.shape[f]-1-m[f]),l.set(u.get(...m),...p)}return t.makeTensorInfo(l.shape,l.dtype,l.values)}var r2={kernelName:Qo,backendName:"cpu",kernelFunc:y5};var n2={kernelName:aa,backendName:"cpu",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{image:n}=r,{radians:o,fillValue:s,center:a}=e,i=t,l=x.getTypedArrayFromDType(n.dtype,x.sizeFromShape(n.shape)),[u,c,p,m]=n.shape,[f,d]=C.getImageCenter(a,c,p),h=255,g=Math.sin(o),y=Math.cos(o),b=i.data.get(n.dataId).values;for(let _=0;_<u;_++){let I=_*p*c*m;for(let E=0;E<c;E++){let $=E*(p*m);for(let D=0;D<p;D++){let O=D*m;for(let M=0;M<m;M++){let G=[u,E,D,M],j=G[2],U=G[1],H=(j-f)*y-(U-d)*g,q=(j-f)*g+(U-d)*y;H=Math.round(H+f),q=Math.round(q+d);let X=s;if(typeof s!="number"&&(M===3?X=h:X=s[M]),H>=0&&H<p&&q>=0&&q<c){let Y=q*(p*m),re=H*m,Q=I+Y+re+M;X=b[Q]}let ne=I+$+O+M;l[ne]=X}}}}return{dataId:i.write(l,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}};var b5=De(es,r=>{let e=Math.floor(r);return r-e<.5?Math.floor(r):r-e>.5?Math.ceil(r):e%2==0?e:e+1}),o2={kernelName:es,backendName:"cpu",kernelFunc:b5};function Hg(r,e,t,n,o,s,a,i,l,u){let c=[n/o,o],p=r.values,m=e.values;if(n===0)return Ce(t,e.dtype);let f=Ce(c,e.dtype);f.values.fill(l);for(let d=0;d<s;d++){let h=[],g=0;for(let y=0;y<a;y++){let b=p[d*a+y];h.push(b),g+=b*i[y]}if(g<0||g>=n/o)throw new Error(`Invalid indices: ${h} does not index into ${t}`);for(let y=0;y<o;y++)u?f.values[g*o+y]+=m[d*o+y]:f.values[g*o+y]=e.rank===0?m[0]:m[d*o+y]}return f}function w5(r){let{inputs:e,backend:t,attrs:n}=r,{indices:o,updates:s}=e,{shape:a}=n,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:p}=C.calculateShapes(s,o,a),m=!0,f=t.bufferSync(o),d=t.bufferSync(s),h=Hg(f,d,a,p,u,l,i,c,0,m);return t.makeTensorInfo(a,h.dtype,h.values)}var s2={kernelName:ea,backendName:"cpu",kernelFunc:w5};function _5(r){let{inputs:e,backend:t}=r,{condition:n,t:o,e:s}=e;te([n,o,s],"select");let a=n.shape.length,i=t.data.get(n.dataId).values,l=t.data.get(o.dataId).values,u=t.data.get(s.dataId).values,c=ar(o.dtype,s.dtype),p=x.makeZerosTypedArray(x.sizeFromShape(o.shape),c),m=0,f=a===0||a>1||o.shape.length===1?1:x.sizeFromShape(o.shape.slice(1));for(let d=0;d<i.length;d++)for(let h=0;h<f;h++)i[d]===1?p[m++]=l[d]:p[m++]=u[d];return t.makeTensorInfo(o.shape,c,p)}var i2={kernelName:Hs,backendName:"cpu",kernelFunc:_5};var k5=C.SELU_SCALEALPHA,v5=C.SELU_SCALE,C5=De(ta,r=>r>=0?v5*r:k5*(Math.exp(r)-1)),a2={kernelName:ta,backendName:"cpu",kernelFunc:C5};var I5=De(ns,r=>1/(1+Math.exp(-r))),l2={kernelName:ns,backendName:"cpu",kernelFunc:I5};var N5=De(na,r=>r<0?-1:r>0?1:0),u2={kernelName:na,backendName:"cpu",kernelFunc:N5};var S5=De(rs,r=>Math.sin(r)),c2={kernelName:rs,backendName:"cpu",kernelFunc:S5};var T5=De(ra,r=>Math.sinh(r)),p2={kernelName:ra,backendName:"cpu",kernelFunc:T5};var A5=11920928955078125e-23,m2=Math.log(A5)+2,E5=De(oa,r=>{let e=r>-m2,t=r<m2,n=Math.exp(r),o;return t?o=n:e?o=r:o=Math.log(1+n),o}),f2={kernelName:oa,backendName:"cpu",kernelFunc:E5};function D5(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{blockShape:s,paddings:a}=n;te([o],"spaceToBatchND");let i=x.sizeFromShape(s),l=[[0,0]];l.push(...a);for(let E=1+s.length;E<o.shape.length;++E)l.push([0,0]);let u=Ug.kernelFunc({inputs:{x:o},backend:t,attrs:{paddings:l,constantValue:0}}),c=C.getReshaped(u.shape,s,i,!1),p=C.getPermuted(c.length,s.length,!1),m=C.getReshapedPermuted(u.shape,s,i,!1),h=Ze({inputs:{x:u},backend:t,attrs:{shape:c}}),b=Kt({inputs:{x:h},backend:t,attrs:{perm:p}}),I=Ze({inputs:{x:b},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(u),t.disposeIntermediateTensorInfo(h),t.disposeIntermediateTensorInfo(b),I}var d2={kernelName:sl,backendName:"cpu",kernelFunc:D5};function $5(r){let{inputs:e,backend:t,attrs:n}=r,{sparseIndices:o,sparseValues:s,defaultValue:a}=e,{outputShape:i}=n,{sliceRank:l,numUpdates:u,sliceSize:c,strides:p,outputSize:m}=C.calculateShapes(s,o,i),f=!1,d=t.bufferSync(o),h=t.bufferSync(s),g=t.data.get(a.dataId).values[0],y=Hg(d,h,i,m,c,u,l,p,g,f);return t.makeTensorInfo(i,y.dtype,y.values)}var h2={kernelName:Vc,backendName:"cpu",kernelFunc:$5};function R5(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{numOrSizeSplits:s,axis:a}=n,i=x.parseAxisParam(a,o.shape)[0],l=C.prepareSplitSize(o,s,i),u=new Array(o.shape.length).fill(0),c=o.shape.slice();return l.map(p=>{let m=[...c];m[i]=p;let f=lo({inputs:{x:o},backend:t,attrs:{begin:u,size:m}});return u[i]+=p,f})}var g2={kernelName:Ks,backendName:"cpu",kernelFunc:R5};var F5=De(os,r=>Math.sqrt(r)),x2={kernelName:os,backendName:"cpu",kernelFunc:F5};var y2={kernelName:il,backendName:"cpu",kernelFunc:({inputs:r,backend:e})=>{let{x:t}=r,n=e;te(t,"square");let o=n.data.get(t.dataId).values,s=new Float32Array(o.length);for(let i=0;i<o.length;++i){let l=o[i];s[i]=l*l}return{dataId:n.write(s,t.shape,t.dtype),shape:t.shape,dtype:t.dtype}}};var O5=De(Yn,(r,e)=>{let t=e;return isNaN(r)?NaN:r>0?1:t.alpha}),b2={kernelName:Yn,backendName:"cpu",kernelFunc:O5};function P5(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{begin:s,end:a,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:m}=n;te(o,"stridedSlice");let{nonStrided:f,$begin:d,$strides:h,size:g,newShape:y,outShape:b}=rr.sliceInfo(o.shape,s,a,i,l,u,c,p,m),w=Ze({inputs:{x:o},backend:t,attrs:{shape:y}}),_;if(f){let E=lo({inputs:{x:w},backend:t,attrs:{begin:d,size:g}});_=Ze({inputs:{x:E},backend:t,attrs:{shape:b}}),t.disposeIntermediateTensorInfo(E)}else if(b.some(E=>E===0))_=t.makeTensorInfo(b,o.dtype,[]);else{let E=t.bufferSync(w),$=Mg(b,E,h,d);_=t.makeTensorInfo($.shape,$.dtype,$.values)}let I=Ze({inputs:{x:_},backend:t,attrs:{shape:b}});return t.disposeIntermediateTensorInfo(w),t.disposeIntermediateTensorInfo(_),I}var w2={kernelName:sa,backendName:"cpu",kernelFunc:P5};var M5=De(us,r=>Math.tan(r)),_2={kernelName:us,backendName:"cpu",kernelFunc:M5};var L5=De(cs,r=>Math.tanh(r)),k2={kernelName:cs,backendName:"cpu",kernelFunc:L5};function z5(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{reps:s}=n;te(o,"tile");let a=Lg(t.bufferSync(o),s);return t.makeTensorInfo(a.shape,a.dtype,a.values)}var v2={kernelName:Pn,backendName:"cpu",kernelFunc:z5};function B5(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{k:s,sorted:a}=n;te(o,"topk");let i=t.data.get(o.dataId).values,[l,u]=zg(i,o.shape,o.dtype,s,a);return[t.makeTensorInfo(l.shape,l.dtype,l.values),t.makeTensorInfo(u.shape,u.dtype,u.values)]}var C2={kernelName:ia,backendName:"cpu",kernelFunc:B5};function W5(r){let{inputs:e,attrs:t,backend:n}=r,{image:o,transforms:s}=e,{interpolation:a,fillMode:i,fillValue:l,outputShape:u}=t,[c,p,m,f]=o.shape,[d,h]=u!=null?u:[p,m],g=[c,d,h,f],y=x.computeStrides(o.shape),b=y[0],w=y[1],_=y[2],I=x.getTypedArrayFromDType(o.dtype,x.sizeFromShape(g));I.fill(l);let E=n.data.get(o.dataId).values,$=n.data.get(s.dataId).values;for(let O=0;O<c;++O){let M=s.shape[0]===1?$:$.subarray(O*8,O*8+8);for(let G=0;G<d;++G)for(let j=0;j<h;++j)for(let U=0;U<f;++U){let H,q=M[6]*j+M[7]*G+1;if(q===0)continue;let X=(M[0]*j+M[1]*G+M[2])/q,ne=(M[3]*j+M[4]*G+M[5])/q,Y=I2(X,m,i),re=I2(ne,p,i);switch(a){case"nearest":H=V5(E,p,m,b,w,_,O,re,Y,U,l);break;case"bilinear":H=G5(E,p,m,b,w,_,O,re,Y,U,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${a}`)}let Q=O*b+G*w+j*_+U;I[Q]=H}return n.makeTensorInfo(g,o.dtype,I)}return{dataId:n.write(I,g,o.dtype),shape:o.shape,dtype:o.dtype}}var N2={kernelName:Gc,backendName:"cpu",kernelFunc:W5};function I2(r,e,t){switch(t){case"reflect":return j5(r,e);case"wrap":return U5(r,e);case"nearest":return q5(r,e);case"constant":default:return H5(r,e)}}function j5(r,e){let t=r;if(t<0)if(e<=1)t=0;else{let n=2*e;t<n&&(t=n*Math.trunc(-t/n)+t),t=t<-e?t+n:-t-1}else if(t>e-1)if(e<=1)t=0;else{let n=2*e;t-=n*Math.trunc(t/n),t>=e&&(t=n-t-1)}return x.clamp(0,t,e-1)}function U5(r,e){let t=r;if(t<0)if(e<=1)t=0;else{let n=e-1;t+=e*(Math.trunc(-t/n)+1)}else if(t>e-1)if(e<=1)t=0;else{let n=e-1;t-=e*Math.trunc(t/n)}return x.clamp(0,t,e-1)}function H5(r,e){return r}function q5(r,e){return x.clamp(0,r,e-1)}function Nf(r,e,t,n,o,s,a,i,l,u,c){let p=a*n+i*o+l*s+u;return 0<=i&&i<e&&0<=l&&l<t?r[p]:c}function V5(r,e,t,n,o,s,a,i,l,u,c){let p=Math.round(i),m=Math.round(l);return Nf(r,e,t,n,o,s,a,p,m,u,c)}function G5(r,e,t,n,o,s,a,i,l,u,c){let p=Math.floor(i),m=Math.floor(l),f=p+1,d=m+1,h=(d-l)*Nf(r,e,t,n,o,s,a,p,m,u,c)+(l-m)*Nf(r,e,t,n,o,s,a,p,d,u,c),g=(d-l)*Nf(r,e,t,n,o,s,a,f,m,u,c)+(l-m)*Nf(r,e,t,n,o,s,a,f,d,u,c);return(f-i)*h+(i-p)*g}function K5(r){let{inputs:e,attrs:t,backend:n}=r,{axis:o}=t,{x:s}=e;te(s,"unique");let a=n.data.get(s.dataId).values,{outputValues:i,outputShape:l,indices:u}=Bg(a,o,s.shape,s.dtype);return[n.makeTensorInfo(l,s.dtype,i),n.makeTensorInfo([u.length],"int32",u)]}var S2={kernelName:Wc,backendName:"cpu",kernelFunc:K5};function X5(r){let{inputs:e,backend:t,attrs:n}=r,{value:o}=e,{axis:s}=n;s<0&&(s+=o.shape.length);let a=o.shape.length,i=o.shape[s],l=new Array(a-1),u=0;for(let f=0;f<a;f++)f!==s&&(l[u++]=o.shape[f]);let c=new Array(a).fill(0),p=o.shape.slice();p[s]=1;let m=new Array(i);for(let f=0;f<m.length;f++){c[s]=f;let d=lo({inputs:{x:o},backend:t,attrs:{begin:c,size:p}});m[f]=Ze({inputs:{x:d},backend:t,attrs:{shape:l}}),t.disposeIntermediateTensorInfo(d)}return m}var T2={kernelName:Xs,backendName:"cpu",kernelFunc:X5};function Y5(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,segmentIds:s}=e,{numSegments:a}=n;te(o,"unsortedSegmentSum");let i=o.shape.length,l=s.shape.length,u=[],c=[],p=i-l,m=s;for(let d=0;d<p;++d){let h=_p({inputs:{input:m},backend:t,attrs:{dim:d+1}});m=h,c.push(h)}for(let d=0;d<a;++d){let h=x.createScalarValue(d,"int32"),g=t.makeTensorInfo([],"int32",h),y=J_({inputs:{a:g,b:m},backend:t}),b=so({inputs:{x:y},backend:t,attrs:{dtype:"float32"}}),w=Tu({inputs:{a:b,b:o},backend:t}),_=Ta({inputs:{x:w},backend:t,attrs:{axis:0,keepDims:!1}});u.push(_),c.push(g),c.push(y),c.push(b),c.push(w),c.push(_)}let f=rk({inputs:u,backend:t,attrs:{axis:0}});return c.forEach(d=>t.disposeIntermediateTensorInfo(d)),f}var A2={kernelName:al,backendName:"cpu",kernelFunc:Y5};var Z5=[cA,R1,pA,mA,L1,fA,dA,hA,gA,xA,yA,bA,wA,_A,kA,CA,IA,NA,SA,uA,TA,AA,EA,M1,z1,DA,F1,$A,FA,PA,MA,OA,zA,BA,LA,VA,GA,WA,jA,UA,HA,qA,KA,XA,YA,ZA,QA,JA,vf,tE,nA,rE,nE,oE,B1,sE,V1,iE,aE,lE,G1,uE,cE,pE,mE,fE,W1,dE,O1,hE,RA,gE,xE,yE,oA,j1,bE,wE,U1,_E,kE,vE,CE,IE,NE,H1,TE,AE,EE,DE,RE,SE,FE,OE,q1,PE,ME,BE,K1,X1,VE,GE,WE,Y1,jE,qE,KE,Ug,XE,sA,J1,YE,P1,ZE,iA,aA,lA,JE,QE,e2,t2,r2,n2,o2,Q1,s2,i2,a2,l2,u2,c2,p2,eA,LE,f2,d2,h2,g2,x2,y2,tA,b2,w2,rA,eE,_2,k2,v2,C2,Z1,N2,S2,T2,A2,UE];for(let r of Z5)Hl(r);var $2={};We($2,{assertNotComplex:()=>ks,bindCanvasToFramebuffer:()=>a8,bindColorTextureToFramebuffer:()=>Af,bindTextureToProgramUniformSampler:()=>xk,bindTextureUnit:()=>O2,bindVertexBufferToProgramAttribute:()=>qg,callAndCheck:()=>Ne,canBeRepresented:()=>sk,createFragmentShader:()=>ak,createFramebuffer:()=>dk,createProgram:()=>lk,createStaticIndexBuffer:()=>pk,createStaticVertexBuffer:()=>ck,createTexture:()=>mk,createVertexShader:()=>ik,getBatchDim:()=>Ea,getExtensionOrThrow:()=>kp,getFramebufferErrorMessage:()=>P2,getMaxTexturesInShader:()=>wk,getNumChannels:()=>s8,getProgramUniformLocation:()=>gk,getProgramUniformLocationOrThrow:()=>hk,getRowsCols:()=>Da,getShapeAs3D:()=>Ef,getTextureShapeFromLogicalShape:()=>yk,getWebGLDisjointQueryTimerVersion:()=>_k,getWebGLErrorMessage:()=>R2,getWebGLMaxTextureSize:()=>bk,hasExtension:()=>Tn,isCapableOfRenderingToFloatTexture:()=>vk,isDownloadFloatTextureEnabled:()=>Ck,isReshapeFree:()=>bl,isWebGLFenceEnabled:()=>Ik,isWebGLVersionEnabled:()=>Jg,linkProgram:()=>uk,resetMaxTextureSize:()=>l8,resetMaxTexturesInShader:()=>u8,unbindColorTextureFromFramebuffer:()=>Kg,unbindTextureUnit:()=>i8,validateFramebuffer:()=>vp,validateProgram:()=>Tf,validateTextureSize:()=>fk});var Du={},nk={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function ok(r,e){Du[r]=e}function Vn(r){if(!(r in Du)){let t=J5(r);if(t!==null)Du[r]=t;else return console.log("Could not get context for WebGL version",r),null}let e=Du[r];return e.isContextLost()?(delete Du[r],Vn(r)):(e.disable(e.DEPTH_TEST),e.disable(e.STENCIL_TEST),e.disable(e.BLEND),e.disable(e.DITHER),e.disable(e.POLYGON_OFFSET_FILL),e.disable(e.SAMPLE_COVERAGE),e.enable(e.SCISSOR_TEST),e.enable(e.CULL_FACE),e.cullFace(e.BACK),Du[r])}function Q5(r){if(typeof OffscreenCanvas!="undefined"&&r===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function J5(r){if(r!==1&&r!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let e=Q5(r);return e.addEventListener("webglcontextlost",t=>{t.preventDefault(),delete Du[r]},!1),r===1?e.getContext("webgl",nk)||e.getContext("experimental-webgl",nk):e.getContext("webgl2",nk)}var xl;(function(r){r[r.DENSE=0]="DENSE",r[r.SHARED_BATCH=1]="SHARED_BATCH"})(xl||(xl={}));var Rr;(function(r){r[r.RENDER=0]="RENDER",r[r.UPLOAD=1]="UPLOAD",r[r.PIXELS=2]="PIXELS",r[r.DOWNLOAD=3]="DOWNLOAD"})(Rr||(Rr={}));var kr;(function(r){r[r.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",r[r.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",r[r.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",r[r.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",r[r.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(kr||(kr={}));function $u(r,e){return[e,r]}function E2(r,e){return r*e}function yl(r){let e=x.sizeFromShape(r),t=Math.ceil(e/4);return x.sizeToSquarishShape(t)}function li(r,e){return[Math.max(1,Math.ceil(e/2)),Math.max(1,Math.ceil(r/2))]}function D2(r,e){let[t,n]=li(r,e);return t*n*4}function Sf(r,e){let t=r,n,o,s,a,i,l,u,c,p,m;return W().getNumber("WEBGL_VERSION")===2?(n=t.R32F,o=t.R16F,s=t.RGBA16F,a=t.RGBA32F,i=t.RED,u=4,c=1,p=t.HALF_FLOAT,m=t.FLOAT):(n=r.RGBA,o=r.RGBA,s=r.RGBA,a=t.RGBA,i=r.RGBA,u=4,c=4,p=e!=null?e.HALF_FLOAT_OES:null,m=r.FLOAT),l=r.RGBA,{internalFormatFloat:n,internalFormatHalfFloat:o,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:a,textureFormatFloat:i,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:c,textureTypeHalfFloat:p,textureTypeFloat:m}}function Ne(r,e){let t=e();return W().getBool("DEBUG")&&e8(r),t}function e8(r){let e=r.getError();if(e!==r.NO_ERROR)throw new Error("WebGL Error: "+R2(r,e))}var t8=596e-10,r8=65504;function sk(r){return!!(W().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||r===0||t8<Math.abs(r)&&Math.abs(r)<r8)}function R2(r,e){switch(e){case r.NO_ERROR:return"NO_ERROR";case r.INVALID_ENUM:return"INVALID_ENUM";case r.INVALID_VALUE:return"INVALID_VALUE";case r.INVALID_OPERATION:return"INVALID_OPERATION";case r.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case r.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case r.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${e}`}}function kp(r,e){return Aa(r,()=>r.getExtension(e),'Extension "'+e+'" not supported on this browser.')}function ik(r,e){let t=Aa(r,()=>r.createShader(r.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(Ne(r,()=>r.shaderSource(t,e)),Ne(r,()=>r.compileShader(t)),r.getShaderParameter(t,r.COMPILE_STATUS)===!1)throw console.log(r.getShaderInfoLog(t)),new Error("Failed to compile vertex shader.");return t}function ak(r,e){let t=Aa(r,()=>r.createShader(r.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(Ne(r,()=>r.shaderSource(t,e)),Ne(r,()=>r.compileShader(t)),r.getShaderParameter(t,r.COMPILE_STATUS)===!1)throw n8(e,r.getShaderInfoLog(t)),new Error("Failed to compile fragment shader.");return t}var o8=/ERROR: [0-9]+:([0-9]+):/g;function n8(r,e){let t=o8.exec(e);if(t==null){console.log(`Couldn't parse line number in error: ${e}`),console.log(r);return}let n=+t[1],o=r.split(`
|
|
`),s=o.length.toString().length+2,a=o.map((p,m)=>x.rightPad((m+1).toString(),s)+p),i=0;for(let p=0;p<a.length;p++)i=Math.max(a[p].length,i);let l=a.slice(0,n-1),u=a.slice(n-1,n),c=a.slice(n);console.log(l.join(`
|
|
`)),console.log(e.split(`
|
|
`)[0]),console.log(`%c ${x.rightPad(u[0],i)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(c.join(`
|
|
`))}function lk(r){return Aa(r,()=>r.createProgram(),"Unable to create WebGLProgram.")}function uk(r,e){if(Ne(r,()=>r.linkProgram(e)),r.getProgramParameter(e,r.LINK_STATUS)===!1)throw console.log(r.getProgramInfoLog(e)),new Error("Failed to link vertex and fragment shaders.")}function Tf(r,e){if(Ne(r,()=>r.validateProgram(e)),r.getProgramParameter(e,r.VALIDATE_STATUS)===!1)throw console.log(r.getProgramInfoLog(e)),new Error("Shader program validation failed.")}function ck(r,e){let t=Aa(r,()=>r.createBuffer(),"Unable to create WebGLBuffer");return Ne(r,()=>r.bindBuffer(r.ARRAY_BUFFER,t)),Ne(r,()=>r.bufferData(r.ARRAY_BUFFER,e,r.STATIC_DRAW)),t}function pk(r,e){let t=Aa(r,()=>r.createBuffer(),"Unable to create WebGLBuffer");return Ne(r,()=>r.bindBuffer(r.ELEMENT_ARRAY_BUFFER,t)),Ne(r,()=>r.bufferData(r.ELEMENT_ARRAY_BUFFER,e,r.STATIC_DRAW)),t}function s8(){return W().getNumber("WEBGL_VERSION")===2?1:4}function mk(r){return Aa(r,()=>r.createTexture(),"Unable to create WebGLTexture.")}function fk(r,e){let t=W().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(r<=0||e<=0){let n=`[${r}x${e}]`;throw new Error("Requested texture size "+n+" is invalid.")}if(r>t||e>t){let n=`[${r}x${e}]`,o=`[${t}x${t}]`;throw new Error("Requested texture size "+n+" greater than WebGL maximum on this browser / GPU "+o+".")}}function dk(r){return Aa(r,()=>r.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function qg(r,e,t,n,o,s,a){let i=r.getAttribLocation(e,t);return i===-1?!1:(Ne(r,()=>r.bindBuffer(r.ARRAY_BUFFER,n)),Ne(r,()=>r.vertexAttribPointer(i,o,r.FLOAT,!1,s,a)),Ne(r,()=>r.enableVertexAttribArray(i)),!0)}function O2(r,e,t){F2(r,t),Ne(r,()=>r.activeTexture(r.TEXTURE0+t)),Ne(r,()=>r.bindTexture(r.TEXTURE_2D,e))}function i8(r,e){F2(r,e),Ne(r,()=>r.activeTexture(r.TEXTURE0+e)),Ne(r,()=>r.bindTexture(r.TEXTURE_2D,null))}function hk(r,e,t){return Aa(r,()=>r.getUniformLocation(e,t),'uniform "'+t+'" not present in program.')}function gk(r,e,t){return r.getUniformLocation(e,t)}function xk(r,e,t,n){Ne(r,()=>O2(r,e,n)),Ne(r,()=>r.uniform1i(t,n))}function a8(r){Ne(r,()=>r.bindFramebuffer(r.FRAMEBUFFER,null)),Ne(r,()=>r.viewport(0,0,r.canvas.width,r.canvas.height)),Ne(r,()=>r.scissor(0,0,r.canvas.width,r.canvas.height))}function Af(r,e,t){Ne(r,()=>r.bindFramebuffer(r.FRAMEBUFFER,t)),Ne(r,()=>r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,e,0))}function Kg(r,e){Ne(r,()=>r.bindFramebuffer(r.FRAMEBUFFER,e)),Ne(r,()=>r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,null,0))}function vp(r){let e=r.checkFramebufferStatus(r.FRAMEBUFFER);if(e!==r.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+P2(r,e))}function P2(r,e){switch(e){case r.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case r.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case r.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case r.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${e}`}}function Aa(r,e,t){let n=Ne(r,()=>e());if(n==null)throw new Error(t);return n}function F2(r,e){let t=r.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,n=e+r.TEXTURE0;if(n<r.TEXTURE0||n>t){let o=`[gl.TEXTURE0, gl.TEXTURE${t}]`;throw new Error(`textureUnit must be in ${o}.`)}}function Ea(r,e=2){return x.sizeFromShape(r.slice(0,r.length-e))}function Da(r){if(r.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[r.length>1?r[r.length-2]:1,r[r.length-1]]}function Ef(r){let e=[1,1,1];return r.length===0||r.length===1&&r[0]===1||(e=[Ea(r),...Da(r)]),e}function yk(r,e=!1){let t=W().getNumber("WEBGL_MAX_TEXTURE_SIZE");e&&(t=t*2,r=r.map((o,s)=>s>=r.length-2?x.nearestLargerEven(r[s]):r[s]),r.length===1&&(r=[2,r[0]])),r.length!==2&&(r=x.squeezeShape(r).newShape);let n=x.sizeFromShape(r);if(r.length<=1&&n<=t)return[1,n];if(r.length===2&&r[0]<=t&&r[1]<=t)return r;if(r.length===3&&r[0]*r[1]<=t&&r[2]<=t)return[r[0]*r[1],r[2]];if(r.length===3&&r[0]<=t&&r[1]*r[2]<=t)return[r[0],r[1]*r[2]];if(r.length===4&&r[0]*r[1]*r[2]<=t&&r[3]<=t)return[r[0]*r[1]*r[2],r[3]];if(r.length===4&&r[0]<=t&&r[1]*r[2]*r[3]<=t)return[r[0],r[1]*r[2]*r[3]];if(e){let o=Ea(r),s=2,a=2;return r.length&&([s,a]=Da(r)),n=o*(s/2)*(a/2),x.sizeToSquarishShape(n).map(i=>i*2)}return x.sizeToSquarishShape(n)}function Xg(r){return r%2==0}function bl(r,e){if(r=r.slice(-2),e=e.slice(-2),x.arraysEqual(r,e)||!r.length||!e.length||r[0]===0||r[1]===0||e[0]===0||e[1]===0)return!0;if(r.length!==e.length){let t=r.slice(-1)[0],n=e.slice(-1)[0];if(t===n||Xg(t)&&Xg(n)&&(r[0]===1||e[0]===1))return!0}return r[1]===e[1]&&Xg(r[0])&&Xg(e[0])}var Yg,Zg;function bk(r){if(Yg==null){let e=Vn(r);Yg=e.getParameter(e.MAX_TEXTURE_SIZE)}return Yg}function l8(){Yg=null}function u8(){Zg=null}function wk(r){if(Zg==null){let e=Vn(r);Zg=e.getParameter(e.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Zg)}function _k(r){if(r===0)return 0;let e,t=Vn(r);return Tn(t,"EXT_disjoint_timer_query_webgl2")&&r===2?e=2:Tn(t,"EXT_disjoint_timer_query")?e=1:e=0,e}function Tn(r,e){return r.getExtension(e)!=null}function Jg(r){try{if(Vn(r)!=null)return!0}catch(e){return console.log("Error when getting WebGL context: ",e),!1}return!1}function vk(r){if(r===0)return!1;let e=Vn(r);if(r===1){if(!Tn(e,"OES_texture_float"))return!1}else if(!Tn(e,"EXT_color_buffer_float"))return!1;return kk(e)}function Ck(r){if(r===0)return!1;let e=Vn(r);if(r===1){if(!Tn(e,"OES_texture_float")||!Tn(e,"WEBGL_color_buffer_float"))return!1}else{if(Tn(e,"EXT_color_buffer_float"))return kk(e);let n="EXT_color_buffer_half_float";if(Tn(e,n)){let o=e.getExtension(n);return c8(e,o)}return!1}return kk(e)}function kk(r){let e=Sf(r),t=r.createTexture();r.bindTexture(r.TEXTURE_2D,t);let n=1,o=1;r.texImage2D(r.TEXTURE_2D,0,e.internalFormatFloat,n,o,0,e.textureFormatFloat,e.textureTypeFloat,null);let s=r.createFramebuffer();r.bindFramebuffer(r.FRAMEBUFFER,s),r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,t,0);let a=r.checkFramebufferStatus(r.FRAMEBUFFER)===r.FRAMEBUFFER_COMPLETE;return r.bindTexture(r.TEXTURE_2D,null),r.bindFramebuffer(r.FRAMEBUFFER,null),r.deleteTexture(t),r.deleteFramebuffer(s),a}function c8(r,e){let t=Sf(r,e),n=r.createTexture();r.bindTexture(r.TEXTURE_2D,n);let o=1,s=1;r.texImage2D(r.TEXTURE_2D,0,t.internalFormatHalfFloat,o,s,0,t.textureFormatFloat,t.textureTypeHalfFloat,null);let a=r.createFramebuffer();r.bindFramebuffer(r.FRAMEBUFFER,a),r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,n,0);let i=r.checkFramebufferStatus(r.FRAMEBUFFER)===r.FRAMEBUFFER_COMPLETE;return r.bindTexture(r.TEXTURE_2D,null),r.bindFramebuffer(r.FRAMEBUFFER,null),r.deleteTexture(n),r.deleteFramebuffer(a),i}function Ik(r){return r!==2?!1:Vn(r).fenceSync!=null}function ks(r,e){Array.isArray(r)||(r=[r]),r.forEach(t=>{t!=null&&x.assert(t.dtype!=="complex64",()=>`${e} does not support complex64 tensors in the WebGL backend.`)})}var Me=W();Me.registerFlag("HAS_WEBGL",()=>Me.getNumber("WEBGL_VERSION")>0);Me.registerFlag("WEBGL_VERSION",()=>Jg(2)?2:Jg(1)?1:0);Me.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Me.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Me.get("WEBGL_VERSION")===2);Me.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Me.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Me.registerFlag("WEBGL_PACK",()=>Me.getBool("HAS_WEBGL"));Me.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_CLIP",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>!0);Me.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_REDUCE",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_LAZILY_UNPACK",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_CONV_IM2COL",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>bk(Me.getNumber("WEBGL_VERSION")));Me.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>wk(Me.getNumber("WEBGL_VERSION")));Me.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let r=Me.getNumber("WEBGL_VERSION");return r===0?0:_k(r)});Me.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Me.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Yl.isMobile());Me.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>vk(Me.getNumber("WEBGL_VERSION")));Me.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Me.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Me.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Me.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>Ck(Me.getNumber("WEBGL_VERSION")));Me.registerFlag("WEBGL_FENCE_API_ENABLED",()=>Ik(Me.getNumber("WEBGL_VERSION")));Me.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Me.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Me.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,r=>{if(r<0&&r!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${r}.`)});Me.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>Yl.isMobile()&&Me.getBool("IS_CHROME")?1:-1,r=>{if(r<0&&r!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${r}.`)});function Ot(){let r,e,t,n,o,s,a,i,l,u;return W().getNumber("WEBGL_VERSION")===2?(r="#version 300 es",e="in",t="out",n="in",o="texture",s="outputColor",a="out vec4 outputColor;",i=`
|
|
bool isnan_custom(float val) {
|
|
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
|
|
}
|
|
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan_custom(val.x),
|
|
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
|
|
}
|
|
|
|
#define isnan(value) isnan_custom(value)
|
|
`,l="",u=`
|
|
#define round(value) newRound(value)
|
|
int newRound(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 newRound(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`):(r="",e="attribute",t="varying",n="varying",o="texture2D",s="gl_FragColor",a="",i=`
|
|
#define isnan(value) isnan_custom(value)
|
|
bool isnan_custom(float val) {
|
|
return (val > 0. || val < 1. || val == 0.) ? false : true;
|
|
}
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
|
|
}
|
|
`,l=`
|
|
uniform float INFINITY;
|
|
|
|
bool isinf(float val) {
|
|
return abs(val) == INFINITY;
|
|
}
|
|
bvec4 isinf(vec4 val) {
|
|
return equal(abs(val), vec4(INFINITY));
|
|
}
|
|
`,u=`
|
|
int round(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 round(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`),{version:r,attribute:e,varyingVs:t,varyingFs:n,texture2D:o,output:s,defineOutput:a,defineSpecialNaN:i,defineSpecialInf:l,defineRound:u}}function vs(r,e,t="index"){let n=x.computeStrides(e);return n.map((o,s)=>{let a=`int ${r[s]} = ${t} / ${o}`,i=s===n.length-1?`int ${r[s+1]} = ${t} - ${r[s]} * ${o}`:`index -= ${r[s]} * ${o}`;return`${a}; ${i};`}).join("")}function Cp(r){let e=x.computeStrides(r).map(t=>t.toString());return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * ${e[0]} + coords.y * ${e[1]} + coords.z;
|
|
}
|
|
`}var Qg=`
|
|
const float FLOAT_MAX = 1.70141184e38;
|
|
const float FLOAT_MIN = 1.17549435e-38;
|
|
|
|
lowp vec4 encode_float(highp float v) {
|
|
if (isnan(v)) {
|
|
return vec4(255, 255, 255, 255);
|
|
}
|
|
|
|
highp float av = abs(v);
|
|
|
|
if(av < FLOAT_MIN) {
|
|
return vec4(0.0, 0.0, 0.0, 0.0);
|
|
} else if(v > FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
|
|
} else if(v < -FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
|
|
}
|
|
|
|
highp vec4 c = vec4(0,0,0,0);
|
|
|
|
highp float e = floor(log2(av));
|
|
highp float m = exp2(fract(log2(av))) - 1.0;
|
|
|
|
c[2] = floor(128.0 * m);
|
|
m -= c[2] / 128.0;
|
|
c[1] = floor(32768.0 * m);
|
|
m -= c[1] / 32768.0;
|
|
c[0] = floor(8388608.0 * m);
|
|
|
|
highp float ebias = e + 127.0;
|
|
c[3] = floor(ebias / 2.0);
|
|
ebias -= c[3] * 2.0;
|
|
c[2] += floor(ebias) * 128.0;
|
|
|
|
c[3] += 128.0 * step(0.0, -v);
|
|
|
|
return c / 255.0;
|
|
}
|
|
`;var Nk=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=xl.DENSE;let t=yl(e),n=Ot();this.outputShape=e,this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${vs(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getA(rc.x, rc.y, rc.z);
|
|
}
|
|
|
|
${n.output} = result;
|
|
}
|
|
`}};var Sk=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=xl.DENSE;let t=yl(e),n=Ot();this.outputShape=e,this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${vs(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
|
|
}
|
|
|
|
${n.output} = result;
|
|
}
|
|
`}};var Tk=class{constructor(e){this.variableNames=["A"],this.outTexUsage=Rr.DOWNLOAD;let t=Ot();this.outputShape=e,this.userCode=`
|
|
${Qg}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}};var Ak=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=Rr.DOWNLOAD;let t=Ot();this.outputShape=e,this.userCode=`
|
|
${Qg}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}};var Ek=class{constructor(e,t,n=!1){this.variableNames=["A"];let o=Ot(),[s,a]=t;this.outputShape=e;let i="result";n&&(i="floor(result * 255. + 0.5)"),this.userCode=`
|
|
${Cp(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
int flatIndex = getFlatIndex(coords);
|
|
int offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / ${a};
|
|
int c = imod(flatIndex, ${a});
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(${a}.0, ${s}.0);
|
|
vec4 values = ${o.texture2D}(A, uv);
|
|
|
|
float result;
|
|
|
|
if(offset == 0) {
|
|
result = values[0];
|
|
} else if(offset == 1) {
|
|
result = values[1];
|
|
} else if(offset == 2) {
|
|
result = values[2];
|
|
} else {
|
|
result = values[3];
|
|
}
|
|
|
|
${o.output} = vec4(${i}, 0., 0., 0.);
|
|
}
|
|
`}};var Dk=class{constructor(e,t,n=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let o=Ot(),[s,a]=t;this.outputShape=e;let i="",l="result";n&&(l="floor(result * 255. + 0.5)");for(let u=0;u<=1;u++)for(let c=0;c<=1;c++){let p=u*2+c;i+=`
|
|
localCoords = coords;
|
|
if(localCoords[2] + ${c} < ${e[2]}) {
|
|
localCoords[2] += ${c};
|
|
if(localCoords[1] + ${u} < ${e[1]}) {
|
|
localCoords[1] += ${u};
|
|
|
|
flatIndex = getFlatIndex(localCoords);
|
|
offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
r = flatIndex / ${a};
|
|
c = imod(flatIndex, ${a});
|
|
uv = (vec2(c, r) + halfCR) / vec2(${a}.0, ${s}.0);
|
|
values = ${o.texture2D}(A, uv);
|
|
|
|
if(offset == 0) {
|
|
result[${p}] = values[0];
|
|
} else if(offset == 1) {
|
|
result[${p}] = values[1];
|
|
} else if(offset == 2) {
|
|
result[${p}] = values[2];
|
|
} else {
|
|
result[${p}] = values[3];
|
|
}
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
${Cp(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
int flatIndex, r, c, offset;
|
|
ivec3 localCoords;
|
|
vec2 uv;
|
|
vec4 values;
|
|
|
|
${i}
|
|
|
|
${o.output} = ${l};
|
|
}
|
|
`}};var M2={};We(M2,{bindVertexProgramAttributeStreams:()=>Bk,createBufferFromOutputTexture:()=>Wk,createFloat16MatrixTexture:()=>Pk,createFloat16PackedMatrixTexture:()=>zk,createFloat32MatrixTexture:()=>Ok,createIndexBuffer:()=>Fk,createPackedMatrixTexture:()=>Lk,createUnsignedBytesMatrixTexture:()=>Mk,createVertexBuffer:()=>Rk,createVertexShader:()=>$k,downloadByteEncodedFloatMatrixFromOutputTexture:()=>Uk,downloadFloat32MatrixFromBuffer:()=>jk,downloadMatrixFromPackedOutputTexture:()=>qk,downloadPackedMatrixFromBuffer:()=>Hk,getInternalFormatForFloat16MatrixTexture:()=>tx,getInternalFormatForFloat16PackedMatrixTexture:()=>ox,getInternalFormatForFloat32MatrixTexture:()=>ex,getInternalFormatForPackedMatrixTexture:()=>nx,getInternalFormatForUnsignedBytesMatrixTexture:()=>rx,uploadDenseMatrixToTexture:()=>Vk,uploadPixelDataToTexture:()=>Gk});function $k(r){let e=Ot(),t=`${e.version}
|
|
precision highp float;
|
|
${e.attribute} vec3 clipSpacePos;
|
|
${e.attribute} vec2 uv;
|
|
${e.varyingVs} vec2 resultUV;
|
|
|
|
void main() {
|
|
gl_Position = vec4(clipSpacePos, 1);
|
|
resultUV = uv;
|
|
}`;return ik(r,t)}function Rk(r){let e=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return ck(r,e)}function Fk(r){let e=new Uint16Array([0,1,2,2,1,3]);return pk(r,e)}function Df(r,e,t,n,o,s){fk(e,t);let a=mk(r),i=r.TEXTURE_2D;return Ne(r,()=>r.bindTexture(i,a)),Ne(r,()=>r.texParameteri(i,r.TEXTURE_WRAP_S,r.CLAMP_TO_EDGE)),Ne(r,()=>r.texParameteri(i,r.TEXTURE_WRAP_T,r.CLAMP_TO_EDGE)),Ne(r,()=>r.texParameteri(i,r.TEXTURE_MIN_FILTER,r.NEAREST)),Ne(r,()=>r.texParameteri(i,r.TEXTURE_MAG_FILTER,r.NEAREST)),Ne(r,()=>r.texImage2D(i,0,n,e,t,0,o,s,null)),Ne(r,()=>r.bindTexture(r.TEXTURE_2D,null)),a}function ex(r){return r.internalFormatFloat}function Ok(r,e,t,n){let[o,s]=$u(e,t);return Df(r,o,s,ex(n),n.textureFormatFloat,r.FLOAT)}function tx(r){return r.internalFormatHalfFloat}function Pk(r,e,t,n){let[o,s]=$u(e,t);return Df(r,o,s,tx(n),n.textureFormatFloat,n.textureTypeHalfFloat)}function rx(r){return r.downloadTextureFormat}function Mk(r,e,t,n){let[o,s]=$u(e,t);return Df(r,o,s,rx(n),r.RGBA,r.UNSIGNED_BYTE)}function nx(r){return r.internalFormatPackedFloat}function Lk(r,e,t,n){let[o,s]=li(e,t);return Df(r,o,s,nx(n),r.RGBA,r.FLOAT)}function ox(r){return r.internalFormatPackedHalfFloat}function zk(r,e,t,n){let[o,s]=li(e,t);return Df(r,o,s,ox(n),r.RGBA,n.textureTypeHalfFloat)}function Bk(r,e,t){let n=0,o=3*4,s=3*4+2*4;return Ne(r,()=>r.bindBuffer(r.ARRAY_BUFFER,t)),qg(r,e,"clipSpacePos",t,3,s,n)&&qg(r,e,"uv",t,2,s,o)}function Vk(r,e,t,n,o,s){Ne(r,()=>r.bindTexture(r.TEXTURE_2D,e));let a,i,l;o instanceof Uint8Array?(a=new Uint8Array(t*n*4),i=r.UNSIGNED_BYTE,l=r.RGBA):(a=new Float32Array(t*n*4),i=r.FLOAT,l=s.internalFormatPackedFloat),a.set(o),Ne(r,()=>r.texImage2D(r.TEXTURE_2D,0,l,t,n,0,r.RGBA,i,a)),Ne(r,()=>r.bindTexture(r.TEXTURE_2D,null))}function Gk(r,e,t){Ne(r,()=>r.bindTexture(r.TEXTURE_2D,e)),t.data instanceof Uint8Array?Ne(r,()=>r.texImage2D(r.TEXTURE_2D,0,r.RGBA,t.width,t.height,0,r.RGBA,r.UNSIGNED_BYTE,t.data)):Ne(r,()=>r.texImage2D(r.TEXTURE_2D,0,r.RGBA,r.RGBA,r.UNSIGNED_BYTE,t)),Ne(r,()=>r.bindTexture(r.TEXTURE_2D,null))}function Wk(r,e,t,n){let o=r.createBuffer();Ne(r,()=>r.bindBuffer(r.PIXEL_PACK_BUFFER,o));let i=4*4*e*t;return Ne(r,()=>r.bufferData(r.PIXEL_PACK_BUFFER,i,r.STREAM_READ)),Ne(r,()=>r.readPixels(0,0,t,e,r.RGBA,r.FLOAT,0)),Ne(r,()=>r.bindBuffer(r.PIXEL_PACK_BUFFER,null)),o}function jk(r,e,t){let n=r,o=new Float32Array(t);return n.bindBuffer(n.PIXEL_PACK_BUFFER,e),n.getBufferSubData(n.PIXEL_PACK_BUFFER,0,o),n.bindBuffer(n.PIXEL_PACK_BUFFER,null),o}function Uk(r,e,t,n){let[o,s]=$u(e,t),a=4,i=new Uint8Array(E2(e*t,a));return Ne(r,()=>r.readPixels(0,0,o,s,n.downloadTextureFormat,r.UNSIGNED_BYTE,i)),new Float32Array(i.buffer)}function Hk(r,e,t,n,o,s,a,i){let l=r,u=new Float32Array(D2(s,a));return l.bindBuffer(l.PIXEL_PACK_BUFFER,e),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function qk(r,e,t){let n=new Float32Array(e*t*4);return Ne(r,()=>r.readPixels(0,0,t,e,r.RGBA,r.FLOAT,n)),n}var sx=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=W().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,ok(t,e)):this.gl=Vn(t);let n="WEBGL_color_buffer_float",o="EXT_color_buffer_half_float";if(W().getNumber("WEBGL_VERSION")===1){let s="OES_texture_float",a="OES_texture_half_float";if(this.textureFloatExtension=kp(this.gl,s),Tn(this.gl,a))this.textureHalfFloatExtension=kp(this.gl,a);else if(W().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),Tn(this.gl,o))this.colorBufferHalfFloatExtension=kp(this.gl,o);else if(W().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",Tn(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(Tn(this.gl,o))this.colorBufferHalfFloatExtension=this.gl.getExtension(o);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=Rk(this.gl),this.indexBuffer=Fk(this.gl),this.framebuffer=dk(this.gl),this.textureConfig=Sf(this.gl,this.textureHalfFloatExtension)}get debug(){return W().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;Ne(e,()=>e.finish()),Ne(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Ne(e,()=>e.deleteFramebuffer(this.framebuffer)),Ne(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),Ne(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),Ne(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),Ok(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),Pk(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),Mk(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),Gk(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,o){this.throwIfDisposed(),Vk(this.gl,e,t,n,o,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),zk(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),Lk(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(Kg(this.gl,this.framebuffer),this.outputTexture=null),Ne(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>Uk(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,o,s,a){return Hk(this.gl,e,t,n,o,s,a,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return jk(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let o=Wk(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),o}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(W().getBool("WEBGL_FENCE_API_ENABLED")){let o=e,s=o.fenceSync(o.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let a=o.clientWaitSync(s,0,0);return a===o.ALREADY_SIGNALED||a===o.CONDITION_SATISFIED},t=s}else W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>qk(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=ak(t,e),o=$k(t),s=lk(t);return Ne(t,()=>t.attachShader(s,o)),Ne(t,()=>t.attachShader(s,n)),uk(t,s),this.debug&&Tf(t,s),this.vertexAttrsAreBound||(this.setProgram(s),this.vertexAttrsAreBound=Bk(t,this.program,this.vertexBuffer)),s}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&Ne(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&Tf(this.gl,this.program),Ne(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?hk(this.gl,e,t):gk(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),Ne(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),xk(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[o,s]=li(t,n);this.setOutputMatrixTextureDriver(e,o,s)}setOutputMatrixWriteRegion(e,t,n,o){this.setOutputMatrixWriteRegionDriver(n,e,o,t)}setOutputPackedMatrixWriteRegion(e,t,n,o){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&Tf(this.gl,this.program),vp(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),Ne(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),Ne(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=kp(this.gl,W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,o=this.getQueryTimerExtensionWebGL2(),s=n.createQuery();return n.beginQuery(o.TIME_ELAPSED_EXT,s),s}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await x.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,o=this.getQueryTimerExtensionWebGL2(),s=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(o.GPU_DISJOINT_EXT)),s&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),o=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),o&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=p8(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&x.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),Af(this.gl,e,this.framebuffer),this.debug&&vp(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(Af(this.gl,this.outputTexture,this.framebuffer),this.debug&&vp(this.gl)):Kg(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let o=this.gl;Af(o,e,this.framebuffer),this.debug&&vp(o),this.outputTexture=e,Ne(o,()=>o.viewport(0,0,t,n)),Ne(o,()=>o.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,o){this.throwIfDisposed(),Ne(this.gl,()=>this.gl.scissor(e,t,n,o))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function p8(r){let e=0;for(;e<r.length&&r[e]();++e);return e-1}var{getBroadcastDims:L2}=C;function z2(r,e,t,n){let o=[];r.forEach(d=>{let h=x.sizeFromShape(d.shapeInfo.logicalShape);d.shapeInfo.isUniform?o.push(`uniform float ${d.name}${h>1?`[${h}]`:""};`):(o.push(`uniform sampler2D ${d.name};`),o.push(`uniform int offset${d.name};`))});let s=o.join(`
|
|
`),a=r.map(d=>m8(d,e,n)).join(`
|
|
`),i=e.texShape,l=Ot(),u=h8(l),c,p,m=y8(l);return e.isPacked?(c=f8(e.logicalShape,i),p=x8(l)):(c=d8(e.logicalShape,i),p=g8(l)),n&&(m+=b8),[m,u,p,s,c,a,t].join(`
|
|
`)}function Ip(r){let e=r.shapeInfo.logicalShape;switch(e.length){case 0:return w8(r);case 1:return _8(r);case 2:return k8(r);case 3:return v8(r);case 4:return C8(r);case 5:return I8(r);case 6:return N8(r);default:throw new Error(`${e.length}-D input sampling is not yet supported`)}}function B2(r){switch(r.shapeInfo.logicalShape.length){case 0:return S8(r);case 1:return T8(r);case 2:return A8(r);case 3:return E8(r);default:return D8(r)}}function m8(r,e,t=!1){let n="";t?n+=B2(r):n+=Ip(r);let o=r.shapeInfo.logicalShape,s=e.logicalShape;return o.length<=s.length&&(t?n+=$8(r,e):n+=R8(r,e)),n}function f8(r,e){switch(r.length){case 0:return V2();case 1:return F8(r,e);case 2:return M8(r,e);case 3:return O8(r,e);default:return P8(r,e)}}function d8(r,e){switch(r.length){case 0:return V2();case 1:return L8(r,e);case 2:return W8(r,e);case 3:return z8(r,e);case 4:return B8(r,e);case 5:return V8(r,e);case 6:return G8(r,e);default:throw new Error(`${r.length}-D output sampling is not yet supported`)}}function h8(r){return`
|
|
float sampleTexture(sampler2D textureSampler, vec2 uv) {
|
|
return ${r.texture2D}(textureSampler, uv).r;
|
|
}
|
|
`}function g8(r){return`
|
|
void setOutput(float val) {
|
|
${r.output} = vec4(val, 0, 0, 0);
|
|
}
|
|
`}function x8(r){return`
|
|
void setOutput(vec4 val) {
|
|
${r.output} = val;
|
|
}
|
|
`}function y8(r){return`${r.version}
|
|
precision highp float;
|
|
precision highp int;
|
|
precision highp sampler2D;
|
|
${r.varyingFs} vec2 resultUV;
|
|
${r.defineOutput}
|
|
const vec2 halfCR = vec2(0.5, 0.5);
|
|
|
|
struct ivec5
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
};
|
|
|
|
struct ivec6
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
int v;
|
|
};
|
|
|
|
uniform float NAN;
|
|
${r.defineSpecialNaN}
|
|
${r.defineSpecialInf}
|
|
${r.defineRound}
|
|
|
|
int imod(int x, int y) {
|
|
return x - y * (x / y);
|
|
}
|
|
|
|
int idiv(int a, int b, float sign) {
|
|
int res = a / b;
|
|
int mod = imod(a, b);
|
|
if (sign < 0. && mod != 0) {
|
|
res -= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//Based on the work of Dave Hoskins
|
|
//https://www.shadertoy.com/view/4djSRW
|
|
#define HASHSCALE1 443.8975
|
|
float random(float seed){
|
|
vec2 p = resultUV * seed;
|
|
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
|
|
p3 += dot(p3, p3.yzx + 19.19);
|
|
return fract((p3.x + p3.y) * p3.z);
|
|
}
|
|
|
|
${j8}
|
|
${U8}
|
|
${H8}
|
|
`}var j8=`
|
|
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
|
|
int texelIndex = index / 2;
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,U8=`
|
|
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
|
|
int texNumC, int row, int col) {
|
|
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,H8=`
|
|
vec2 packedUVfrom3D(int texNumR, int texNumC,
|
|
int texelsInBatch, int texelsInLogicalRow, int b,
|
|
int row, int col) {
|
|
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,b8=`
|
|
float getChannel(vec4 frag, vec2 innerDims) {
|
|
vec2 modCoord = mod(innerDims, 2.);
|
|
return modCoord.x == 0. ?
|
|
(modCoord.y == 0. ? frag.r : frag.g) :
|
|
(modCoord.y == 0. ? frag.b : frag.a);
|
|
}
|
|
float getChannel(vec4 frag, int dim) {
|
|
float modCoord = mod(float(dim), 2.);
|
|
return modCoord == 0. ? frag.r : frag.g;
|
|
}
|
|
`;function V2(){return`
|
|
int getOutputCoords() {
|
|
return 0;
|
|
}
|
|
`}function F8(r,e){let t=[Math.ceil(e[0]/2),Math.ceil(e[1]/2)];return t[0]===1?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ${t[1]}.0);
|
|
}
|
|
`:t[1]===1?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ${t[0]}.0);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
return 2 * (resTexRC.x * ${t[1]} + resTexRC.y);
|
|
}
|
|
`}function L8(r,e){return e[0]===1?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * ${e[1]}.0);
|
|
}
|
|
`:e[1]===1?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * ${e[0]}.0);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${e[0]}, ${e[1]}));
|
|
return resTexRC.x * ${e[1]} + resTexRC.y;
|
|
}
|
|
`}function O8(r,e){let t=[Math.ceil(e[0]/2),Math.ceil(e[1]/2)],n=Math.ceil(r[2]/2),o=n*Math.ceil(r[1]/2);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
int b = index / ${o};
|
|
index -= b * ${o};
|
|
|
|
int r = 2 * (index / ${n});
|
|
int c = imod(index, ${n}) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`}function z8(r,e){let t=vs(["r","c","d"],r);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${e[0]}, ${e[1]}));
|
|
int index = resTexRC.x * ${e[1]} + resTexRC.y;
|
|
${t}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}function P8(r,e){let t=[Math.ceil(e[0]/2),Math.ceil(e[1]/2)],n=Math.ceil(r[r.length-1]/2),o=n*Math.ceil(r[r.length-2]/2),s=o,a="",i="b, r, c";for(let l=2;l<r.length-1;l++)s*=r[r.length-l-1],a=`
|
|
int b${l} = index / ${s};
|
|
index -= b${l} * ${s};
|
|
`+a,i=`b${l}, `+i;return`
|
|
ivec${r.length} getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${a}
|
|
|
|
int b = index / ${o};
|
|
index -= b * ${o};
|
|
|
|
int r = 2 * (index / ${n});
|
|
int c = imod(index, ${n}) * 2;
|
|
|
|
return ivec${r.length}(${i});
|
|
}
|
|
`}function B8(r,e){let t=vs(["r","c","d","d2"],r);return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${e[0]}, ${e[1]}));
|
|
int index = resTexRC.x * ${e[1]} + resTexRC.y;
|
|
${t}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`}function V8(r,e){let t=vs(["r","c","d","d2","d3"],r);return`
|
|
ivec5 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${e[0]},
|
|
${e[1]}));
|
|
|
|
int index = resTexRC.x * ${e[1]} + resTexRC.y;
|
|
|
|
${t}
|
|
|
|
ivec5 outShape = ivec5(r, c, d, d2, d3);
|
|
return outShape;
|
|
}
|
|
`}function G8(r,e){let t=vs(["r","c","d","d2","d3","d4"],r);return`
|
|
ivec6 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${e[0]}, ${e[1]}));
|
|
int index = resTexRC.x * ${e[1]} + resTexRC.y;
|
|
|
|
${t}
|
|
|
|
ivec6 result = ivec6(r, c, d, d2, d3, d4);
|
|
return result;
|
|
}
|
|
`}function M8(r,e){let t=[Math.ceil(e[0]/2),Math.ceil(e[1]/2)];if(x.arraysEqual(r,e))return`
|
|
ivec2 getOutputCoords() {
|
|
return 2 * ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
|
|
}
|
|
`;let n=Math.ceil(r[1]/2);return`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
int r = 2 * (index / ${n});
|
|
int c = imod(index, ${n}) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`}function W8(r,e){return x.arraysEqual(r,e)?`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(${e[0]}, ${e[1]}));
|
|
}
|
|
`:r[1]===1?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${e[0]}, ${e[1]}));
|
|
int index = resTexRC.x * ${e[1]} + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:r[0]===1?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${e[0]}, ${e[1]}));
|
|
int index = resTexRC.x * ${e[1]} + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${e[0]}, ${e[1]}));
|
|
int index = resTexRC.x * ${e[1]} + resTexRC.y;
|
|
int r = index / ${r[1]};
|
|
int c = index - r * ${r[1]};
|
|
return ivec2(r, c);
|
|
}
|
|
`}function Ru(r){return`offset${r}`}function S8(r){let e=r.name,t="get"+e.charAt(0).toUpperCase()+e.slice(1),n=Ot();return`
|
|
vec4 ${t}() {
|
|
return ${n.texture2D}(${e}, halfCR);
|
|
}
|
|
`}function w8(r){let e=r.name,t="get"+e.charAt(0).toUpperCase()+e.slice(1);if(r.shapeInfo.isUniform)return`float ${t}() {return ${e};}`;let[n,o]=r.shapeInfo.texShape;if(n===1&&o===1)return`
|
|
float ${t}() {
|
|
return sampleTexture(${e}, halfCR);
|
|
}
|
|
`;let[s,a]=r.shapeInfo.texShape,i=Ru(e);return`
|
|
float ${t}() {
|
|
vec2 uv = uvFromFlat(${s}, ${a}, ${i});
|
|
return sampleTexture(${e}, uv);
|
|
}
|
|
`}function T8(r){let e=r.name,t="get"+e.charAt(0).toUpperCase()+e.slice(1),n=r.shapeInfo.texShape,o=[Math.ceil(n[0]/2),Math.ceil(n[1]/2)],s=Ot();return`
|
|
vec4 ${t}(int index) {
|
|
vec2 uv = packedUVfrom1D(
|
|
${o[0]}, ${o[1]}, index);
|
|
return ${s.texture2D}(${e}, uv);
|
|
}
|
|
`}function _8(r){let e=r.name,t="get"+e.charAt(0).toUpperCase()+e.slice(1);if(r.shapeInfo.isUniform)return`
|
|
float ${t}(int index) {
|
|
${Np(r)}
|
|
}
|
|
`;let n=r.shapeInfo.texShape,o=n[0],s=n[1];if(s===1&&o===1)return`
|
|
float ${t}(int index) {
|
|
return sampleTexture(${e}, halfCR);
|
|
}
|
|
`;let a=Ru(e);return s===1?`
|
|
float ${t}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${a}) + 0.5) / ${o}.0);
|
|
return sampleTexture(${e}, uv);
|
|
}
|
|
`:o===1?`
|
|
float ${t}(int index) {
|
|
vec2 uv = vec2((float(index + ${a}) + 0.5) / ${s}.0, 0.5);
|
|
return sampleTexture(${e}, uv);
|
|
}
|
|
`:`
|
|
float ${t}(int index) {
|
|
vec2 uv = uvFromFlat(${o}, ${s}, index + ${a});
|
|
return sampleTexture(${e}, uv);
|
|
}
|
|
`}function A8(r){let e=r.shapeInfo.logicalShape,t=r.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),o=r.shapeInfo.texShape,s=o[0],a=o[1],i=Ot();if(o!=null&&x.arraysEqual(e,o))return`
|
|
vec4 ${n}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${a}.0, ${s}.0);
|
|
|
|
return ${i.texture2D}(${t}, uv);
|
|
}
|
|
`;let l=[Math.ceil(o[0]/2),Math.ceil(o[1]/2)],u=Math.ceil(e[1]/2);return`
|
|
vec4 ${n}(int row, int col) {
|
|
vec2 uv = packedUVfrom2D(${u}, ${l[0]}, ${l[1]}, row, col);
|
|
return ${i.texture2D}(${t}, uv);
|
|
}
|
|
`}function k8(r){let e=r.shapeInfo.logicalShape,t=r.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),o=r.shapeInfo.texShape;if(o!=null&&x.arraysEqual(e,o)){let p=o[0],m=o[1];return`
|
|
float ${n}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${m}.0, ${p}.0);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`}let{newShape:s,keptDims:a}=x.squeezeShape(e),i=s;if(i.length<e.length){let p=Sp(r,i),m=["row","col"];return`
|
|
${Ip(p)}
|
|
float ${n}(int row, int col) {
|
|
return ${n}(${Tp(m,a)});
|
|
}
|
|
`}if(r.shapeInfo.isUniform)return`
|
|
float ${n}(int row, int col) {
|
|
int index = round(dot(vec2(row, col), vec2(${e[1]}, 1)));
|
|
${Np(r)}
|
|
}
|
|
`;let l=o[0],u=o[1],c=Ru(t);return u===1?`
|
|
float ${n}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${c}), vec3(${e[1]}, 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / ${l}.0);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`:l===1?`
|
|
float ${n}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${c}), vec3(${e[1]}, 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / ${u}.0, 0.5);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`:`
|
|
float ${n}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${e[1]} + col + ${c};
|
|
vec2 uv = uvFromFlat(${l}, ${u}, index);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`}function E8(r){let e=r.shapeInfo.logicalShape,t=r.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),o=r.shapeInfo.texShape,s=[Math.ceil(o[0]/2),Math.ceil(o[1]/2)];if(e[0]===1){let p=e.slice(1),m=[1,2],f=Sp(r,p),d=["b","row","col"];return`
|
|
${B2(f)}
|
|
vec4 ${n}(int b, int row, int col) {
|
|
return ${n}(${Tp(d,m)});
|
|
}
|
|
`}let a=s[0],i=s[1],l=Math.ceil(e[2]/2),u=l*Math.ceil(e[1]/2),c=Ot();return`
|
|
vec4 ${n}(int b, int row, int col) {
|
|
vec2 uv = packedUVfrom3D(
|
|
${a}, ${i}, ${u}, ${l}, b, row, col);
|
|
return ${c.texture2D}(${t}, uv);
|
|
}
|
|
`}function v8(r){let e=r.shapeInfo.logicalShape,t=r.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),o=e[1]*e[2],s=e[2],{newShape:a,keptDims:i}=x.squeezeShape(e),l=a;if(l.length<e.length){let d=Sp(r,l),h=["row","col","depth"];return`
|
|
${Ip(d)}
|
|
float ${n}(int row, int col, int depth) {
|
|
return ${n}(${Tp(h,i)});
|
|
}
|
|
`}if(r.shapeInfo.isUniform)return`
|
|
float ${n}(int row, int col, int depth) {
|
|
int index = round(dot(vec3(row, col, depth),
|
|
vec3(${o}, ${s}, 1)));
|
|
${Np(r)}
|
|
}
|
|
`;let u=r.shapeInfo.texShape,c=u[0],p=u[1],m=r.shapeInfo.flatOffset;if(p===o&&m==null)return`
|
|
float ${n}(int row, int col, int depth) {
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(${s}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${p}.0, ${c}.0);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`;if(p===s&&m==null)return`
|
|
float ${n}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${e[1]}, 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}.0, ${c}.0);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`;let f=Ru(t);return`
|
|
float ${n}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${o} + col * ${s} + depth + ${f};
|
|
vec2 uv = uvFromFlat(${c}, ${p}, index);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`}function D8(r){let e=r.shapeInfo.logicalShape,t=e.length,n=r.name,o="get"+n.charAt(0).toUpperCase()+n.slice(1),s=r.shapeInfo.texShape,a=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],i=a[0],l=a[1],u=Math.ceil(e[t-1]/2),c=u*Math.ceil(e[t-2]/2),p="int b, int row, int col",m=`b * ${c} + (row / 2) * ${u} + (col / 2)`;for(let d=2;d<t-1;d++)p=`int b${d}, `+p,c*=e[t-d-1],m=`b${d} * ${c} + `+m;let f=Ot();return`
|
|
vec4 ${o}(${p}) {
|
|
int index = ${m};
|
|
int texR = index / ${l};
|
|
int texC = index - texR * ${l};
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${l}, ${i});
|
|
return ${f.texture2D}(${n}, uv);
|
|
}
|
|
`}function C8(r){let e=r.shapeInfo.logicalShape,t=r.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),o=e[3],s=e[2]*o,a=e[1]*s,{newShape:i,keptDims:l}=x.squeezeShape(e);if(i.length<e.length){let d=Sp(r,i),h=["row","col","depth","depth2"];return`
|
|
${Ip(d)}
|
|
float ${n}(int row, int col, int depth, int depth2) {
|
|
return ${n}(${Tp(h,l)});
|
|
}
|
|
`}if(r.shapeInfo.isUniform)return`
|
|
float ${n}(int row, int col, int depth, int depth2) {
|
|
int index = round(dot(vec4(row, col, depth, depth2),
|
|
vec4(${a}, ${s}, ${o}, 1)));
|
|
${Np(r)}
|
|
}
|
|
`;let u=r.shapeInfo.flatOffset,c=r.shapeInfo.texShape,p=c[0],m=c[1];if(m===a&&u==null)return`
|
|
float ${n}(int row, int col, int depth, int depth2) {
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(${s}, ${o}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${m}.0, ${p}.0);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`;if(m===o&&u==null)return`
|
|
float ${n}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${e[1]*e[2]}, ${e[2]}, 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${m}.0, ${p}.0);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`;let f=Ru(t);return`
|
|
float ${n}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${a} + col * ${s} +
|
|
depth * ${o} + depth2;
|
|
vec2 uv = uvFromFlat(${p}, ${m}, index + ${f});
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`}function I8(r){let e=r.shapeInfo.logicalShape,t=r.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),o=e[4],s=e[3]*o,a=e[2]*s,i=e[1]*a,{newShape:l,keptDims:u}=x.squeezeShape(e);if(l.length<e.length){let h=Sp(r,l),g=["row","col","depth","depth2","depth3"];return`
|
|
${Ip(h)}
|
|
float ${n}(int row, int col, int depth, int depth2, int depth3) {
|
|
return ${n}(${Tp(g,u)});
|
|
}
|
|
`}if(r.shapeInfo.isUniform)return`
|
|
float ${n}(int row, int col, int depth, int depth2, int depth3) {
|
|
float index = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${i}, ${a}, ${s}, ${o})) +
|
|
depth3;
|
|
${Np(r)}
|
|
}
|
|
`;let c=r.shapeInfo.flatOffset,p=r.shapeInfo.texShape,m=p[0],f=p[1];if(f===i&&c==null)return`
|
|
float ${n}(int row, int col, int depth, int depth2, int depth3) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${a}, ${s}, ${o}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${m}.0);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`;if(f===o&&c==null)return`
|
|
float ${n}(int row, int col, int depth, int depth2, int depth3) {
|
|
float texR = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${e[1]*e[2]*e[3]},
|
|
${e[2]*e[3]}, ${e[3]}, 1));
|
|
int texC = depth3;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${m}.0);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`;let d=Ru(t);return`
|
|
float ${n}(int row, int col, int depth, int depth2, int depth3) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${i} + col * ${a} + depth * ${s} +
|
|
depth2 * ${o} + depth3 + ${d};
|
|
vec2 uv = uvFromFlat(${m}, ${f}, index);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`}function N8(r){let e=r.shapeInfo.logicalShape,t=r.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),{newShape:o,keptDims:s}=x.squeezeShape(e);if(o.length<e.length){let g=Sp(r,o),y=["row","col","depth","depth2","depth3","depth4"];return`
|
|
${Ip(g)}
|
|
float ${n}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
return ${n}(${Tp(y,s)});
|
|
}
|
|
`}let a=e[5],i=e[4]*a,l=e[3]*i,u=e[2]*l,c=e[1]*u;if(r.shapeInfo.isUniform)return`
|
|
float ${n}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int index = round(dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${c}, ${u}, ${l}, ${i})) +
|
|
dot(
|
|
vec2(depth3, depth4),
|
|
vec2(${a}, 1)));
|
|
${Np(r)}
|
|
}
|
|
`;let p=r.shapeInfo.flatOffset,m=r.shapeInfo.texShape,f=m[0],d=m[1];if(d===c&&p==null)return`
|
|
float ${n}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${u}, ${l}, ${i}, ${a})) +
|
|
float(depth4);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${d}.0, ${f}.0);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`;if(d===a&&p==null)return`
|
|
float ${n}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
float texR = dot(vec4(row, col, depth, depth2),
|
|
vec4(${e[1]*e[2]*e[3]*e[4]},
|
|
${e[2]*e[3]*e[4]},
|
|
${e[3]*e[4]},
|
|
${e[4]})) + float(depth3);
|
|
int texC = depth4;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${d}.0, ${f}.0);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`;let h=Ru(t);return`
|
|
float ${n}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${c} + col * ${u} + depth * ${l} +
|
|
depth2 * ${i} + depth3 * ${a} + depth4 + ${h};
|
|
vec2 uv = uvFromFlat(${f}, ${d}, index);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`}function Np(r){let e=r.name,t=x.sizeFromShape(r.shapeInfo.logicalShape);return t<2?`return ${e};`:`
|
|
for (int i = 0; i < ${t}; i++) {
|
|
if (i == index) {
|
|
return ${e}[i];
|
|
}
|
|
}
|
|
`}function $8(r,e){let t=r.name,n=t.charAt(0).toUpperCase()+t.slice(1),o="get"+n+"AtOutCoords",s=r.shapeInfo.logicalShape.length,a=e.logicalShape.length,i=L2(r.shapeInfo.logicalShape,e.logicalShape),l=Ve(a),u=a-s,c,p=["x","y","z","w","u","v"];s===0?c="":a<2&&i.length>=1?c="coords = 0;":c=i.map(b=>`coords.${p[b+u]} = 0;`).join(`
|
|
`);let m="";a<2&&s>0?m="coords":m=r.shapeInfo.logicalShape.map((b,w)=>`coords.${p[w+u]}`).join(", ");let f="return outputValue;",h=x.sizeFromShape(r.shapeInfo.logicalShape)===1,y=x.sizeFromShape(e.logicalShape)===1;if(s===1&&!h&&!y)f=`
|
|
return vec4(outputValue.xy, outputValue.xy);
|
|
`;else if(h&&!y)a===1?f=`
|
|
return vec4(outputValue.x, outputValue.x, 0., 0.);
|
|
`:f=`
|
|
return vec4(outputValue.x);
|
|
`;else if(i.length){let b=s-2,w=s-1;i.indexOf(b)>-1&&i.indexOf(w)>-1?f="return vec4(outputValue.x);":i.indexOf(b)>-1?f="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":i.indexOf(w)>-1&&(f="return vec4(outputValue.xx, outputValue.zz);")}return`
|
|
vec4 ${o}() {
|
|
${l} coords = getOutputCoords();
|
|
${c}
|
|
vec4 outputValue = get${n}(${m});
|
|
${f}
|
|
}
|
|
`}function R8(r,e){let t=r.name,n=t.charAt(0).toUpperCase()+t.slice(1),o="get"+n+"AtOutCoords",s=e.texShape,a=r.shapeInfo.texShape,i=r.shapeInfo.logicalShape.length,l=e.logicalShape.length;if(!r.shapeInfo.isUniform&&i===l&&r.shapeInfo.flatOffset==null&&x.arraysEqual(a,s))return`
|
|
float ${o}() {
|
|
return sampleTexture(${t}, resultUV);
|
|
}
|
|
`;let u=Ve(l),c=L2(r.shapeInfo.logicalShape,e.logicalShape),p=l-i,m,f=["x","y","z","w","u","v"];i===0?m="":l<2&&c.length>=1?m="coords = 0;":m=c.map(h=>`coords.${f[h+p]} = 0;`).join(`
|
|
`);let d="";return l<2&&i>0?d="coords":d=r.shapeInfo.logicalShape.map((h,g)=>`coords.${f[g+p]}`).join(", "),`
|
|
float ${o}() {
|
|
${u} coords = getOutputCoords();
|
|
${m}
|
|
return get${n}(${d});
|
|
}
|
|
`}function Ve(r){if(r<=1)return"int";if(r===2)return"ivec2";if(r===3)return"ivec3";if(r===4)return"ivec4";if(r===5)return"ivec5";if(r===6)return"ivec6";throw Error(`GPU for rank ${r} is not yet supported`)}function Sp(r,e){let t=JSON.parse(JSON.stringify(r));return t.shapeInfo.logicalShape=e,t}function Tp(r,e){return e.map(t=>r[t]).join(", ")}function G2(r,e,t,n){let o=e.userCode,s=t.map((f,d)=>{let h={logicalShape:f.shape,texShape:f.isUniform?null:f.texData.texShape,isUniform:f.isUniform,isPacked:f.isUniform?!1:f.texData.isPacked,flatOffset:null};return f.texData!=null&&f.texData.slice!=null&&f.texData.slice.flatOffset>0&&(h.flatOffset=f.texData.slice.flatOffset),{name:e.variableNames[d],shapeInfo:h}}),a=s.map(f=>f.shapeInfo),i={logicalShape:n.shape,texShape:n.texData.texShape,isUniform:!1,isPacked:n.texData.isPacked,flatOffset:null},l=z2(s,i,o,e.packedInputs),u=r.createProgram(l),c=null,p=r.getUniformLocation(u,"NAN",!1);W().getNumber("WEBGL_VERSION")===1&&(c=r.getUniformLocation(u,"INFINITY",!1));let m={};for(let f=0;f<e.variableNames.length;f++){let d=e.variableNames[f],h=!1;m[d]=r.getUniformLocation(u,d,h),m[`offset${d}`]=r.getUniformLocation(u,`offset${d}`,h)}return{program:e,source:l,webGLProgram:u,uniformLocations:m,inShapeInfos:a,outShapeInfo:i,infLoc:c,nanLoc:p}}function W2(r,e){if(r.length!==e.length)throw Error(`Binary was compiled with ${r.length} inputs, but was executed with ${e.length} inputs`);r.forEach((t,n)=>{let o=t.logicalShape,s=e[n],a=s.shape;if(!x.arraysEqual(o,a))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${o} and ${a} must match`);if(t.isUniform&&s.isUniform)return;let i=t.texShape,l=s.isUniform?null:s.texData.texShape;if(!x.arraysEqual(i,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${i} and ${l} must match`)})}function j2(r,e,t,n,o){W2(e.inShapeInfos,t),W2([e.outShapeInfo],[n]);let s=n.texData.texture,a=n.texData.texShape;n.texData.isPacked?r.setOutputPackedMatrixTexture(s,a[0],a[1]):r.setOutputMatrixTexture(s,a[0],a[1]),r.setProgram(e.webGLProgram),W().getNumber("WEBGL_VERSION")===1&&e.infLoc!==null&&r.gl.uniform1f(e.infLoc,Infinity),e.nanLoc!==null&&r.gl.uniform1f(e.nanLoc,NaN),t.forEach((i,l)=>{let u=e.program.variableNames[l],c=e.uniformLocations[u],p=e.uniformLocations[`offset${u}`];if(c!=null){if(i.isUniform){if(x.sizeFromShape(i.shape)<2)r.gl.uniform1f(c,i.uniformValues[0]);else{let m=i.uniformValues;m instanceof Float32Array||(m=new Float32Array(m)),r.gl.uniform1fv(c,m)}return}i.texData.slice!=null&&p!=null&&r.gl.uniform1i(p,i.texData.slice.flatOffset),r.setInputMatrixTexture(i.texData.texture,c,l)}}),o!=null&&o(r,e.webGLProgram),r.executeProgram()}function U2(r,e,t){let n="";e.concat(t).forEach(a=>{let i=a.texData!=null&&a.texData.slice!=null&&a.texData.slice.flatOffset>0,l=a.isUniform?"uniform":a.texData.texShape;n+=`${a.shape}_${l}_${i}`});let o=r.userCode,s=r.constructor.name;return s+="_"+n+"_"+o,s}var{addImpl:H2,bincountImpl:ix,bincountReduceImpl:q2,ceilImpl:K2,concatImpl:X2,expImpl:Y2,expm1Impl:Z2,floorImpl:J2,gatherV2Impl:Q2,greaterImpl:eD,lessImpl:tD,linSpaceImpl:rD,logImpl:nD,maxImpl:oD,maximumImpl:sD,minimumImpl:iD,multiplyImpl:aD,negImpl:lD,prodImpl:uD,rangeImpl:cD,rsqrtImpl:pD,simpleAbsImpl:ax,sliceImpl:mD,stridedSliceImpl:fD,subImpl:dD,tileImpl:hD,topKImpl:gD,transposeImpl:Fu,uniqueImpl:xD}=Vg;function Kk(r,e){return["x","y","z","w","u","v"].slice(0,e).map(t=>`${r}.${t}`)}function Wt(r,e){return e===1?[r]:Kk(r,e)}function yD(r,e){if(r===1)return"rc";let t="";for(let n=0;n<r;n++)t+=e[n],n<r-1&&(t+=",");return t}var Xk=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
|
|
void main() {
|
|
setOutput(vec4(getA(), 0., 0., 0.));
|
|
}
|
|
`;else{let n=Wt("rc",t),o=Ve(t),s=q8(t,e,n),a=K8(t,e[e.length-1],e[e.length-2],n),i=X8(e,n);this.userCode=`
|
|
void main() {
|
|
${o} rc = getOutputCoords();
|
|
|
|
if(${s}) {
|
|
setOutput(vec4(0));
|
|
} else {
|
|
${a}
|
|
|
|
setOutput(vec4(${i}));
|
|
}
|
|
}
|
|
`}}};function Y8(r,e){let t=[];for(let n=0;n<=1;n++)for(let o=0;o<=1;o++){let s=`${n===0?"r":"rp1"}, ${o===0?"c":"cp1"}`;for(let a=2;a<r;a++)s=`${e[e.length-1-a]},`+s;t.push(s)}return t}function q8(r,e,t){if(r===1)return`rc > ${e[0]}`;let n="";for(let o=r-2;o<r;o++)n+=`${t[o]} >= ${e[o]}`,o<r-1&&(n+="||");return n}function K8(r,e,t,n){if(r===1)return"";let o=n.slice(-2);return`
|
|
int r = ${o[0]};
|
|
int c = ${o[1]};
|
|
int rp1 = r + 1;
|
|
int cp1 = c + 1;
|
|
|
|
bool cEdge = cp1 >= ${e};
|
|
bool rEdge = rp1 >= ${t};
|
|
`}function X8(r,e){let t=r.length,n=Y8(t,e);return t===1?`getA(rc),
|
|
rc + 1 >= ${r[0]} ? 0. : getA(rc + 1),
|
|
0, 0`:`getA(${n[0]}),
|
|
cEdge ? 0. : getA(${n[1]}),
|
|
rEdge ? 0. : getA(${n[2]}),
|
|
rEdge || cEdge ? 0. : getA(${n[3]})`}var $f=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let n="";for(let o=0;o<4;o++){let s="thisRC = rc;";o%2==1&&(s+="thisRC.z += 1;"),o>1&&(s+="thisRC.y += 1;"),n+=`
|
|
${s}
|
|
${o>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
|
|
int flatIndex = getFlatIndex(thisRC);
|
|
|
|
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
|
|
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
|
|
|
|
result[${o}] =
|
|
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
|
|
${o>0?"}":""}
|
|
`}this.userCode=`
|
|
${Z8(t)}
|
|
${Cp(e)}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
ivec3 thisRC;
|
|
int rows = ${e[1]};
|
|
int cols = ${e[2]};
|
|
|
|
${n}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function Z8(r){return`
|
|
ivec3 inputCoordsFromReshapedOutCoords(int index) {
|
|
${vs(["r","c","d"],r)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}var Yk=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let o=wD(t,n),s=_D(e,o,n);s in this.freeTextures||(this.freeTextures[s]=[]),s in this.usedTextures||(this.usedTextures[s]=[]);let a=bD(e,o,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[s].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=a,this.log();let l=this.freeTextures[s].shift();return this.usedTextures[s].push(l),l}let i;return o===kr.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):o===kr.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):o===kr.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):o===kr.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):o===kr.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[s].push(i),this.numUsedTextures++,this._numBytesAllocated+=a,this.log(),i}releaseTexture(e,t,n,o){if(this.freeTextures==null)return;let s=wD(n,o),a=_D(t,s,o);a in this.freeTextures||(this.freeTextures[a]=[]);let i=bD(t,s,this.gpgpu.gl,this.gpgpu.textureConfig,o),l=W().get("WEBGL_DELETE_TEXTURE_THRESHOLD");l!==-1&&this._numBytesAllocated>l?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=i):(this.freeTextures[a].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let u=this.usedTextures[a],c=u.indexOf(e);if(c<0)throw new Error("Cannot release a texture that was never provided by this texture manager");u.splice(c,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function J8(r,e){let t=r;if(e===t.R32F)return 4;if(e===t.R16F)return 2;if(e===t.RGBA32F)return 16;if(e===r.RGBA)return 16;if(e===t.RGBA16F)return 8;throw new Error(`Unknown internal format ${e}`)}function bD(r,e,t,n,o){let s=Q8(e,n),a;if(o){let[l,u]=li(r[0],r[1]);a=l*u}else{let[l,u]=$u(r[0],r[1]);a=l*u}let i=J8(t,s);return a*i}function Q8(r,e){switch(r){case kr.PACKED_2X2_FLOAT32:return nx(e);case kr.PACKED_2X2_FLOAT16:return ox(e);case kr.UNPACKED_FLOAT32:return ex(e);case kr.UNPACKED_FLOAT16:return tx(e);case kr.PACKED_4X1_UNSIGNED_BYTE:return rx(e);default:throw new Error(`Unknown physical texture type ${r}`)}}function eX(r){return W().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?r?kr.PACKED_2X2_FLOAT32:kr.UNPACKED_FLOAT32:r?kr.PACKED_2X2_FLOAT16:kr.UNPACKED_FLOAT16}function wD(r,e){if(r===Rr.UPLOAD)return kr.PACKED_2X2_FLOAT32;if(r===Rr.RENDER||r==null)return eX(e);if(r===Rr.DOWNLOAD||r===Rr.PIXELS)return kr.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${r}`)}function _D(r,e,t){return`${r[0]}_${r[1]}_${e}_${t}`}var hn=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.userCode=`
|
|
float unaryOperation(float x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
float y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},yr="if (isnan(x)) return x;",kD="return x;",Zk="return abs(x);";var vD="return (x >= 0.0) ? x : (exp(x) - 1.0);",CD=yr+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,ID=yr+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,Rf="return x;";var ND="return x;",SD=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,TD=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,AD=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,Cs=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
|
|
vec4 unaryOperation(vec4 x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
vec4 x = getAAtOutCoords();
|
|
vec4 y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}};var Jk=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=Wt("rc",t),o=Ve(t),s=yD(t,n),a=n.slice(-2),i=t<=1?"rc":`vec2(${a.join(",")})`;this.userCode=`
|
|
void main() {
|
|
${o} rc = getOutputCoords();
|
|
vec4 packedInput = getA(${s});
|
|
|
|
setOutput(getChannel(packedInput, ${i}));
|
|
}
|
|
`}};var tX=Dr.whereImpl,rX=1e-7,nX=1e-4,lx={};function oX(r){return r in lx||(lx[r]={}),lx[r]}var sX=128,iX=600;function aX(){return W().global.screen==null?1024:W().global.screen.height*W().global.screen.width*window.devicePixelRatio*iX/1024/1024}var Ou=class extends Os{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!W().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=Vn(W().getNumber("WEBGL_VERSION"));this.binaryCache=oX(W().getNumber("WEBGL_VERSION")),this.gpgpu=new sx(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new Yk(this.gpgpu),this.numMBBeforeWarning=aX(),this.texData=new qa(this,ds())}nextDataId(){return Ou.nextDataId++}numDataIds(){return this.texData.numDataIds()+(this.cpuBackend?this.cpuBackend.numDataIds():0)-this.pendingDeletes}write(e,t,n){if((W().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||W().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let o={id:this.nextDataId()};return this.texData.set(o,{shape:t,dtype:n,values:e,usage:Rr.UPLOAD,refCount:1}),o}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,o,s){if(W().getBool("DEBUG")&&this.checkNumericalProblems(t),o==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:o,values:t,usage:Rr.UPLOAD,refCount:s})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:o,complexTensorInfos:s,slice:a,shape:i,isPacked:l}=t;if(a!=null){let m;l?m=new Cs(i,Rf):m=new hn(i,Rf);let f=this.runWebGLProgram(m,[{dataId:e,shape:i,dtype:o}],o),d=this.readSync(f.dataId);return this.disposeIntermediateTensorInfo(f),d}if(n!=null)return this.convertAndCacheOnCPU(e);if(o==="string")return n;let u=this.activeTimers!=null,c;u&&(c=x.now());let p;if(o==="complex64"){let m=this.readSync(s.real.dataId),f=this.readSync(s.imag.dataId);p=C.mergeRealAndImagArrays(m,f)}else p=this.getValuesFromTexture(e);return u&&(this.downloadWaitMs+=x.now()-c),this.convertAndCacheOnCPU(e,p)}async read(e){if(this.pendingRead.has(e)){let d=this.pendingRead.get(e);return new Promise(h=>d.push(h))}let t=this.texData.get(e),{values:n,shape:o,slice:s,dtype:a,complexTensorInfos:i,isPacked:l}=t;if(s!=null){let d;l?d=new Cs(o,Rf):d=new hn(o,Rf);let h=this.runWebGLProgram(d,[{dataId:e,shape:o,dtype:a}],a),g=this.read(h.dataId);return this.disposeIntermediateTensorInfo(h),g}if(n!=null)return this.convertAndCacheOnCPU(e);if(!W().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&W().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let u=null,c;if(a!=="complex64"&&W().get("WEBGL_BUFFER_SUPPORTED")){c=this.decode(e);let d=this.texData.get(c.dataId);u=this.gpgpu.createBufferFromTexture(d.texture,...yl(o))}this.pendingRead.set(e,[]),a!=="complex64"&&await this.gpgpu.createAndWaitForFence();let p;if(a==="complex64"){let d=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),h=d[0],g=d[1];p=C.mergeRealAndImagArrays(h,g)}else if(u==null)p=this.getValuesFromTexture(e);else{let d=x.sizeFromShape(o);p=this.gpgpu.downloadFloat32MatrixFromBuffer(u,d)}c!=null&&this.disposeIntermediateTensorInfo(c);let m=this.convertAndCacheOnCPU(e,p),f=this.pendingRead.get(e);return this.pendingRead.delete(e),f.forEach(d=>d(m)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&ds().removeDataId(e,this),this.pendingDeletes--),m}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(o=>x.decodeString(o))}catch(o){throw new Error("Failed to decode encoded string bytes into utf-8")}return Ce(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!sk(n))throw W().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:o}=this.texData.get(e),s=x.sizeFromShape(t);if(W().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let m=this.decode(e),f=this.texData.get(m.dataId),d=this.gpgpu.downloadMatrixFromPackedTexture(f.texture,...yl(t)).subarray(0,s);return this.disposeIntermediateTensorInfo(m),d}let a=W().getBool("WEBGL_PACK")&&o===!0,i=a?Ef(t):t,l=a?new Ak(i):new Tk(i),u=this.runWebGLProgram(l,[{shape:i,dtype:n,dataId:e}],"float32"),c=this.texData.get(u.dataId),p=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(c.texture,c.texShape[0],c.texShape[1]).subarray(0,s);return this.disposeIntermediateTensorInfo(u),p}timerAvailable(){return W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}async time(e){let t=this.activeTimers,n=[],o=!1;this.programTimersStack==null?(this.programTimersStack=n,o=!0):this.activeTimers.push(n),this.activeTimers=n,e();let s=x.flatten(this.activeTimers.map(l=>l.query)).filter(l=>l!=null),a=x.flatten(this.activeTimers.map(l=>l.name)).filter(l=>l!=null);this.activeTimers=t,o&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let l=await Promise.all(s);i.kernelMs=x.sum(l),i.getExtraProfileInfo=()=>l.map((u,c)=>({name:a[c],ms:u})).map(u=>`${u.name}: ${u.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:x.now(),endMs:null}}endTimer(e){return W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=x.now(),e)}async getQueryTime(e){if(W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:o,usage:s,isPacked:a,slice:i}=this.texData.get(e),l=i&&i.origDataId||e,u=this.dataRefCount.get(l);u>1?this.dataRefCount.set(l,u-1):(this.dataRefCount.delete(l),t!=null&&(this.numBytesInGPU-=this.computeBytes(o,n),this.textureManager.releaseTexture(t,o,s,a)));let c=this.texData.get(e);c.texture=null,c.texShape=null,c.isPacked=!1,c.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=sX){return W().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&x.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){C.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return tX(e.shape,t)}packedUnaryOp(e,t,n){let o=new Cs(e.shape,t),s=this.compileAndRun(o,[e],n);return ds().makeTensorFromDataId(s.dataId,s.shape,s.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let o=ax(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,o)}if(W().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,Zk,e.dtype);let t=new hn(e.shape,Zk),n=this.compileAndRun(t,[e]);return ds().makeTensorFromDataId(n.dataId,n.shape,n.dtype)}makeTensorInfo(e,t,n){let o;if(t==="string"&&n!=null&&n.length>0&&x.isString(n[0])){let s=n.map(a=>x.encodeString(a));o=this.write(s,e,t)}else o=this.write(n,e,t);return this.texData.get(o).usage=null,{dataId:o,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:o}=this.makeTensorInfo(e,t,n);return ds().makeTensorFromDataId(o,e,t,this)}unpackTensor(e){let t=new Jk(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new Xk(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[Ea(e.shape),...Da(e.shape)],o={dtype:e.dtype,shape:n,dataId:e.dataId},s=[Ea(t),...Da(t)],a=new $f(s,n),i=!0,l=this.runWebGLProgram(a,[o],e.dtype,null,i);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:o,dtype:s}=t,a=Ef(o),i;n?i=new Sk(a):i=new Nk(a);let l=!0,u=this.runWebGLProgram(i,[{shape:a,dtype:s,dataId:e}],s,null,l);return{dtype:s,shape:o,dataId:u.dataId}}runWebGLProgram(e,t,n,o,s=!1){let a=this.makeTensorInfo(e.outputShape,n),i=this.texData.get(a.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===xl.DENSE){let g=yl(e.outputShape);i.texShape=g.map(y=>y*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),x.sizeFromShape(a.shape)===0)return i.values=x.getTypedArrayFromDType(a.dtype,0),a;let l=[],u=t.map(g=>{if(g.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let y=this.texData.get(g.dataId);if(y.texture==null){if(!e.packedInputs&&x.sizeFromShape(g.shape)<=W().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:g.shape,texData:null,isUniform:!0,uniformValues:y.values};e.packedInputs&&(y.isPacked=!0,y.shape=g.shape)}else if(!!y.isPacked!=!!e.packedInputs)g=y.isPacked?this.unpackTensor(g):this.packTensor(g),l.push(g),y=this.texData.get(g.dataId);else if(y.isPacked&&!bl(y.shape,g.shape)){let b=g,w=g.shape;g.shape=y.shape,g=this.packedReshape(g,w),l.push(g),y=this.texData.get(g.dataId),b.shape=w}return this.uploadToGPU(g.dataId),{shape:g.shape,texData:y,isUniform:!1}});this.uploadToGPU(a.dataId);let c={shape:a.shape,texData:i,isUniform:!1},p=U2(e,u,c),m=this.getAndSaveBinary(p,()=>G2(this.gpgpu,e,u,c)),f=this.activeTimers!=null,d;f&&(d=this.startTimer()),j2(this.gpgpu,m,u,c,o),l.forEach(g=>this.disposeIntermediateTensorInfo(g)),f&&(d=this.endTimer(d),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(d)}));let h=W().get("WEBGL_FLUSH_THRESHOLD");if(h>0){let g=x.now();g-this.lastGlFlushTime>h&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=g)}if(!W().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&s===!1){let g=this.unpackTensor(a);return this.disposeIntermediateTensorInfo(a),g}return a}compileAndRun(e,t,n,o,s=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,o,s)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(W().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(t=>{this.gpgpu.deleteProgram(this.binaryCache[t].webGLProgram),delete this.binaryCache[t]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=V(()=>{if(!W().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=W().getBool("DEBUG");W().set("DEBUG",!1);let t=this.abs(le(1e-8)).dataSync()[0];if(W().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?rX:nX}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:o,values:s,texture:a,usage:i,isPacked:l}=t;if(a!=null)return;let u=this.activeTimers!=null,c;u&&(c=x.now());let p=t.texShape;if(p==null&&(p=yk(n,l),t.texShape=p),s!=null){let m=Ef(n),f,d=p[1],h=p[0],g=s instanceof Uint8Array;l?([d,h]=li(p[0],p[1]),f=new Dk(m,[h,d],g)):f=new Ek(m,[h,d],g);let y=this.makeTensorInfo([h,d],o);g?this.texData.get(y.dataId).usage=Rr.PIXELS:this.texData.get(y.dataId).usage=Rr.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(y.dataId),d,h,s);let b=!0,w=this.runWebGLProgram(f,[y],o,null,b),_=this.texData.get(w.dataId);t.texture=_.texture,t.texShape=_.texShape,t.isPacked=_.isPacked,t.usage=_.usage,this.disposeIntermediateTensorInfo(y),this.texData.delete(w.dataId),t.values=null,u&&(this.uploadWaitMs+=x.now()-c)}else{let m=this.acquireTexture(p,i,o,l);t.texture=m}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:o}=n;return this.releaseGPUData(e),t!=null&&(n.values=lX(t,o)),n.values}acquireTexture(e,t,n,o){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let s=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${s} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,o)}computeBytes(e,t){return e[0]*e[1]*x.bytesPerElement(t)}};Ou.nextDataId=0;function lX(r,e){if(e==="float32"||e==="complex64")return r;if(e==="int32"||e==="bool"){let t=e==="int32"?new Int32Array(r.length):new Uint8Array(r.length);for(let n=0;n<t.length;++n)t[n]=Math.round(r[n]);return t}else throw new Error(`Unknown dtype ${e}`)}var Qk="3.4.0";function ED(){W().set("WEBGL_FORCE_F16_TEXTURES",!0)}Yl.isBrowser()&&Jc("webgl",()=>new Ou,2);var IXe={forceHalfFloat:ED};var ux=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`;var uo=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOperation(float a, float b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float a = getAAtOutCoords();
|
|
float b = getBAtOutCoords();
|
|
setOutput(binaryOperation(a, b));
|
|
}
|
|
`}};var wl=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`;var Is=class{constructor(e,t,n,o=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=C.assertAndGetBroadcastShape(t,n);let s=this.outputShape.length,a="";if(o)if(s===0||x.sizeFromShape(this.outputShape)===1)a=`
|
|
result.y = 0.;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else if(a=`
|
|
${Ve(s)} coords = getOutputCoords();
|
|
`,s===1)a+=`
|
|
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else{let l=Wt("coords",s);a+=`
|
|
bool nextRowOutOfBounds =
|
|
(${l[s-2]} + 1) >= ${this.outputShape[s-2]};
|
|
bool nextColOutOfBounds =
|
|
(${l[s-1]} + 1) >= ${this.outputShape[s-1]};
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`}this.userCode=`
|
|
vec4 binaryOperation(vec4 a, vec4 b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
vec4 a = getAAtOutCoords();
|
|
vec4 b = getBAtOutCoords();
|
|
|
|
vec4 result = binaryOperation(a, b);
|
|
${a}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function jt(r){let{inputs:e,backend:t}=r,{x:n}=e;return t.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var DD={kernelName:Xn,backendName:"webgl",kernelFunc:jt};function gn(r){let{inputs:e,backend:t}=r,{real:n,imag:o}=e,s=t.makeTensorInfo(n.shape,"complex64"),a=t.texData.get(s.dataId),i=jt({inputs:{x:n},backend:t}),l=jt({inputs:{x:o},backend:t});return a.complexTensorInfos={real:i,imag:l},s}var $D={kernelName:bc,backendName:"webgl",kernelFunc:gn};var ev="return (a < 0.) ? b * a : a;",tv=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function uX(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{alpha:s}=n,a=t.makeTensorInfo([],"float32",x.createScalarValue(s,"float32")),i=W().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Is(tv,o.shape,a.shape):new uo(ev,o.shape,a.shape),l=t.runWebGLProgram(i,[o,a],o.dtype);return t.disposeIntermediateTensorInfo(a),l}var RD={kernelName:Po,backendName:"webgl",kernelFunc:uX};var rv="return (a < 0.) ? b * a : a;",nv=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function cX(r){let{inputs:e,backend:t}=r,{x:n,alpha:o}=e,s=W().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Is(nv,n.shape,o.shape):new uo(rv,n.shape,o.shape);return t.runWebGLProgram(s,[n,o],n.dtype)}var FD={kernelName:Xo,backendName:"webgl",kernelFunc:cX};var cx="if (isnan(x)) return x;",OD=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,PD=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`;function _e({opSnippet:r,packedOpSnippet:e,cpuKernelImpl:t,dtype:n}){return({inputs:o,backend:s})=>{let{x:a}=o,i=s,l=n||a.dtype;if(i.shouldExecuteOnCPU([a])&&t!=null){let p=i.texData.get(a.dataId),m=t(p.values,l);return i.makeTensorInfo(a.shape,l,m)}let u=W().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&e!=null,c;return u?c=new Cs(a.shape,e):c=new hn(a.shape,r),i.runWebGLProgram(c,[a],l)}}function st({opSnippet:r,packedOpSnippet:e,checkOutOfBounds:t=!1,supportsComplex:n=!1,cpuKernelImpl:o,dtype:s}){return({inputs:a,backend:i})=>{let{a:l,b:u}=a,c=i;if(n&&l.dtype==="complex64"){let d=c.texData.get(l.dataId),h=c.texData.get(u.dataId),[g,y]=[[d.complexTensorInfos.real,h.complexTensorInfos.real],[d.complexTensorInfos.imag,h.complexTensorInfos.imag]].map(w=>{let[_,I]=w,E={dataId:_.dataId,dtype:_.dtype,shape:l.shape},$={dataId:I.dataId,dtype:I.dtype,shape:u.shape},D=new uo(r,l.shape,u.shape);return c.runWebGLProgram(D,[E,$],ar(_.dtype,I.dtype))}),b=gn({inputs:{real:g,imag:y},backend:c});return c.disposeIntermediateTensorInfo(g),c.disposeIntermediateTensorInfo(y),b}let p=s||ar(l.dtype,u.dtype);if(c.shouldExecuteOnCPU([l,u])&&o!=null){let d=c.texData.get(l.dataId),h=c.texData.get(u.dataId),[g,y]=o(l.shape,u.shape,d.values,h.values,p),b=c.makeTensorInfo(y,p),w=c.texData.get(b.dataId);return w.values=g,b}let m=W().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&e!=null,f;return m?f=new Is(e,l.shape,u.shape,t):f=new uo(r,l.shape,u.shape),c.runWebGLProgram(f,[l,u],p)}}function _l(r,e=!1){if(r==="linear")return e?ND:kD;if(r==="relu")return e?TD:CD;if(r==="elu")return e?SD:vD;if(r==="relu6")return e?AD:ID;if(r==="prelu")return e?nv:rv;if(r==="leakyrelu")return e?tv:ev;throw new Error(`Activation ${r} has not been implemented for the WebGL backend.`)}var Ff=class{constructor(e,t,n,o=!1,s=!1,a=!1,i=null,l=!1,u=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n;let c=o?e[1]:e[2],p=Math.ceil(c/2),m=o?"i * 2, rc.y":"rc.y, i * 2",f=s?"rc.z, i * 2":"i * 2, rc.z",d=o?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],h=s?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],g="",y="";i&&(l?g=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${i}
|
|
}`:u?g=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${i}
|
|
}`:g=`vec4 activation(vec4 x) {
|
|
${i}
|
|
}`,y="result = activation(result);");let b=a?"result += getBiasAtOutCoords();":"";a&&this.variableNames.push("bias"),l&&this.variableNames.push("preluActivationWeights"),u&&this.variableNames.push("leakyreluAlpha");let w="rc.x",_="rc.x";e[0]<t[0]?w=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(_=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
|
|
${g}
|
|
|
|
const float sharedDimension = ${p}.0;
|
|
|
|
vec4 dot2x2ARowBCol(ivec3 rc) {
|
|
vec4 result = vec4(0);
|
|
for (int i = 0; i < ${p}; i++) {
|
|
int batchA = ${w};
|
|
int batchB = ${_};
|
|
vec4 a = getMatrixA(batchA, ${m});
|
|
vec4 b = getMatrixB(batchB, ${f});
|
|
|
|
// These swizzled products need to be separately added.
|
|
// See: https://github.com/tensorflow/tfjs/issues/1735
|
|
result += (${d[0]} * ${h[0]});
|
|
result += (${d[1]} * ${h[1]});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
vec4 result = dot2x2ARowBCol(rc);
|
|
|
|
${b}
|
|
|
|
${y}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};var ov={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},px=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOpComplex(
|
|
float areal, float aimag, float breal, float bimag) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float areal = getARealAtOutCoords();
|
|
float aimag = getAImagAtOutCoords();
|
|
float breal = getBRealAtOutCoords();
|
|
float bimag = getBImagAtOutCoords();
|
|
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
`}};var MD="return a * b;";function Of(r){let{inputs:e,backend:t}=r,{a:n,b:o}=e,s=C.upcastType(n.dtype,o.dtype);if(n.dtype==="complex64"){let i=t.texData.get(n.dataId),l=t.texData.get(o.dataId),u=new px(ov.REAL,n.shape,o.shape),c=new px(ov.IMAG,n.shape,o.shape),p=[{dataId:i.complexTensorInfos.real.dataId,dtype:i.complexTensorInfos.real.dtype,shape:n.shape},{dataId:i.complexTensorInfos.imag.dataId,dtype:i.complexTensorInfos.imag.dtype,shape:n.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:o.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:o.shape}],m=t.runWebGLProgram(u,p,"float32"),f=t.runWebGLProgram(c,p,"float32"),d=gn({inputs:{real:m,imag:f},backend:t});return t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f),d}if(t.shouldExecuteOnCPU([n,o])){let i=t.texData.get(n.dataId),l=t.texData.get(o.dataId),[u,c]=aD(n.shape,o.shape,i.values,l.values,s),p=t.makeTensorInfo(c,s),m=t.texData.get(p.dataId);return m.values=u,p}let a;return W().getBool("WEBGL_PACK_BINARY_OPERATIONS")?a=new Is(MD,n.shape,o.shape):a=new uo(MD,n.shape,o.shape),t.runWebGLProgram(a,[n,o],s)}var LD={kernelName:Uo,backendName:"webgl",kernelFunc:Of};function zD(r,e,t){let n=[Ea(r.shape),...Da(r.shape)],o={dtype:r.dtype,shape:n,dataId:r.dataId},s=[Ea(e),...Da(e)],a=new $f(s,n),i=!0,l=t.runWebGLProgram(a,[o],r.dtype,null,i);return{dataId:l.dataId,shape:e,dtype:l.dtype}}function ue(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{shape:s}=n,a=t,i=x.sizeFromShape(o.shape),l=x.inferFromImplicitShape(s,i),u=x.sizeFromShape(l);x.assert(i===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${o.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`);let c=a.texData.get(o.dataId);return c.isPacked&&!bl(o.shape,l)&&!(c.texture!==null&&bl(c.shape,l))?zD(o,l,a):(a.incRef(o.dataId),{dataId:o.dataId,shape:l,dtype:o.dtype})}var BD={kernelName:Us,backendName:"webgl",kernelFunc:ue};var mx=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:o,inSize:s,outSize:a}=e;this.outputShape=[o,a];let i=Math.floor(n/4)*4,l=n%4,u="sumValue += dot(values, ones);";if(t!=null){let p=1/t;u=`sumValue += dot(values * ${x.isInt(p)?p.toPrecision(2):p}, ones);`}let c="";s%n>0&&(c=`
|
|
if (inIdx < 0 || inIdx >= ${s}) {
|
|
return 0.0;
|
|
}
|
|
`),this.userCode=`
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${c}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${i}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${u}
|
|
}
|
|
|
|
int inIdx = inOffset + ${i};
|
|
if (${l===1}) {
|
|
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
|
|
|
|
${u}
|
|
} else if (${l===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1), 0.0, 0.0);
|
|
|
|
${u}
|
|
} else if (${l===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2), 0.0);
|
|
|
|
${u}
|
|
}
|
|
setOutput(sumValue);
|
|
}
|
|
`}};var sv=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:o,inSize:s,outSize:a}=e;this.outputShape=[o,a];let i="0.0",l="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",l="min"):t==="max"&&(i="-1.0 / 1e-20",l="max");let u=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?u="sumValue":t==="prod"?u="prodValue":t==="all"?u="allValue":t==="any"&&(u="anyValue");let c=Math.floor(n/4)*4,p=n%4,m=`
|
|
if (${t==="sum"}) {
|
|
sumValue += dot(values, ones);
|
|
} else if (${t==="prod"}) {
|
|
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
|
|
prodValue *= tmp[0] * tmp[1];
|
|
} else {
|
|
minMaxValue = ${l}(values, minMaxValue);
|
|
}
|
|
`,f="vec4";t==="all"?(i="1.0",m=`
|
|
bool reducedAllValue = all(values);
|
|
float floatedReducedAllValue = float(reducedAllValue);
|
|
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
|
|
`,f="bvec4"):t==="any"&&(i="0.0",m=`
|
|
bool reducedAnyValue = any(values);
|
|
float floatedReducedAnyValue = float(reducedAnyValue);
|
|
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
|
|
`,f="bvec4");let d="";s%n>0&&(d=`
|
|
if (inIdx < 0 || inIdx >= ${s}) {
|
|
return initializationValue;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${i};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${d}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
vec4 minMaxValue = vec4(${i});
|
|
float prodValue = 1.0;
|
|
float sumValue = 0.0;
|
|
float allValue = 1.0;
|
|
float anyValue = 0.0;
|
|
|
|
for (int i = 0; i < ${c}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
${f} values = ${f}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${m}
|
|
}
|
|
|
|
int inIdx = inOffset + ${c};
|
|
if (${p===1}) {
|
|
${f} values = ${f}(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${m}
|
|
} else if (${p===2}) {
|
|
${f} values = ${f}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${m}
|
|
} else if (${p===3}) {
|
|
${f} values = ${f}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
${m}
|
|
}
|
|
setOutput(${u});
|
|
}
|
|
`}};function pX(r){let e=[];for(;e.length===0||e[e.length-1].outSize!==1;){let t=e.length?e[e.length-1].outSize:r[1],n=C.computeOptimalWindowSize(t);e.push({inSize:t,windowSize:n,outSize:Math.ceil(t/n)})}return e}function An(r,e,t,n){let o=pX(r.shape),s=r;for(let a=0;a<o.length;a++){let{inSize:i,windowSize:l,outSize:u}=o[a],c,p;t==="mean"?c=a===0?new mx({windowSize:l,inSize:i,batchSize:r.shape[0],outSize:u},i):new mx({windowSize:l,inSize:i,batchSize:r.shape[0],outSize:u}):c=new sv({windowSize:l,inSize:i,batchSize:r.shape[0],outSize:u},t),p=s,s=n.runWebGLProgram(c,[s],e),p.dataId!==r.dataId&&n.disposeIntermediateTensorInfo(p)}return s}var iv=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];this.outputShape=n,this.rank=n.length;let o=Ve(this.rank),s=mX(t);this.userCode=`
|
|
void main() {
|
|
${o} resRC = getOutputCoords();
|
|
setOutput(getA(${s}));
|
|
}
|
|
`}};function mX(r){let e=r.length;if(e>6)throw Error(`Transpose for rank ${e} is not yet supported`);let t=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],n=new Array(e);for(let o=0;o<r.length;o++)n[r[o]]=t[o];return n.join()}var av=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let c=0;c<n.length;c++)n[c]=e[t[c]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let o=Ve(this.rank),s=Kk("rc",this.rank),a=new Array(this.rank);for(let c=0;c<t.length;c++)a[t[c]]=s[c];let i=`vec2(${a.slice(-2).join()})`,l=`++${s[this.rank-1]} < ${n[this.rank-1]}`,u=`getChannel(getA(${a.join()}), ${i})`;this.userCode=`
|
|
void main() {
|
|
${o} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result[0] = ${u};
|
|
if(${l}) {
|
|
result[1] = ${u};
|
|
}
|
|
--${s[this.rank-1]};
|
|
if(++${s[this.rank-2]} < ${n[this.rank-2]}) {
|
|
result[2] = ${u};
|
|
if(${l}) {
|
|
result[3] = ${u};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function kl(r,e,t){let n=W().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new av(r.shape,e):new iv(r.shape,e);return t.runWebGLProgram(n,[r],r.dtype)}function VD(r,e,t,n){let o=e,s=r.shape.length,a=x.parseAxisParam(o,r.shape),i=a,l=C.getAxesPermutation(i,s),u=l!=null,c=r;u&&(c=kl(r,l,n),i=C.getInnerMostAxes(i.length,s)),C.assertAxesAreInnerMostDims("sum",i,s);let[p,m]=C.computeOutAndReduceShapes(c.shape,i),f=p;t&&(f=C.expandShapeToKeepDim(p,a));let d=x.sizeFromShape(m),g=x.sizeFromShape(r.shape)/d,y=ue({inputs:{x:c},attrs:{shape:[g,d]},backend:n}),b=Kl(r.dtype),w=An(y,b,"sum",n),_=ue({inputs:{x:w},attrs:{shape:f},backend:n});return n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(w),u&&n.disposeIntermediateTensorInfo(c),_}function Pu(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,keepDims:a}=n;return VD(o,s,a,t)}var GD={kernelName:ss,backendName:"webgl",kernelFunc:Pu};function $t(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{perm:s}=n,a=t,i=o.shape.length,l=new Array(i);for(let c=0;c<l.length;c++)l[c]=o.shape[s[c]];let u;if(a.shouldExecuteOnCPU([o])){let p=a.texData.get(o.dataId).values,m=Fu(p,o.shape,o.dtype,s,l);u=a.makeTensorInfo(l,o.dtype);let f=a.texData.get(u.dataId);f.values=m}else u=kl(o,s,a);return u}var WD={kernelName:ps,backendName:"webgl",kernelFunc:$t};var lv=1e3;function Mu({a:r,b:e,transposeA:t,transposeB:n,backend:o,bias:s=null,preluActivationWeights:a=null,leakyreluAlpha:i=0,activation:l=null}){let u=r.shape.length,c=e.shape.length,p=t?r.shape[u-2]:r.shape[u-1],m=n?e.shape[c-1]:e.shape[c-2],f=t?r.shape[u-1]:r.shape[u-2],d=n?e.shape[c-2]:e.shape[c-1],h=r.shape.slice(0,-2),g=e.shape.slice(0,-2),y=x.sizeFromShape(h),b=x.sizeFromShape(g),w=y===b||y===1||b===1;x.assert(u>=2&&c>=2&&w,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${h}) and (${g}).`);let I=(y>b?r.shape.slice(0,-2):e.shape.slice(0,-2)).concat([f,d]);x.assert(p===m,()=>`Error in matMul: inner shapes (${p}) and (${m}) of Tensors with shapes ${r.shape} and ${e.shape} and transposeA=${t} and transposeB=${n} must match.`);let E=t?[y,p,f]:[y,f,p],$=n?[b,d,m]:[b,m,d],D=ue({inputs:{x:r},backend:o,attrs:{shape:E}}),O=ue({inputs:{x:e},backend:o,attrs:{shape:$}}),M=[D,O],G=Math.max(y,b),j=t?D.shape[1]:D.shape[2],U=s!=null,H=a!=null,q=l==="leakyrelu",X=l!=null?_l(l,!0):null,ne=U||H||q||X!=null,Y;if((f===1||d===1)&&j>lv&&ne===!1){let Q=D,ie=O;t&&(Q=$t({inputs:{x:D},backend:o,attrs:{perm:[0,2,1]}}),M.push(Q)),n&&(ie=$t({inputs:{x:O},backend:o,attrs:{perm:[0,2,1]}}),M.push(ie));let ce=d!==1,ae=d===1,fe=Q;ce&&(fe=ue({inputs:{x:Q},backend:o,attrs:{shape:[G,j,1]}}),M.push(fe));let de=d===1?2:1,xe=ie;ae&&(xe=ue({inputs:{x:ie},backend:o,attrs:{shape:[G,1,j]}}),M.push(xe));let we=Of({inputs:{a:fe,b:xe},backend:o});Y=Pu({inputs:{x:we},backend:o,attrs:{axis:de,keepDims:!0}}),M.push(we)}else{let Q=ar(r.dtype,e.dtype),ie=new Ff(E,$,[G,f,d],t,n,U,X,H,q),ce=[D,O];if(s!=null&&ce.push(s),H&&ce.push(a),q){let ae=o.makeTensorInfo([],"float32",x.createScalarValue(i,"float32"));ce.push(ae),M.push(ae)}Y=o.runWebGLProgram(ie,ce,Q)}let re=ue({inputs:{x:Y},backend:o,attrs:{shape:I}});M.push(Y);for(let Q of M)o.disposeIntermediateTensorInfo(Q);return re}function fX(r){let{inputs:e,backend:t,attrs:n}=r,{a:o,b:s,bias:a,preluActivationWeights:i}=e,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=n;return Mu({a:o,b:s,transposeA:l,transposeB:u,backend:t,bias:a,preluActivationWeights:i,leakyreluAlpha:p,activation:c})}var jD={kernelName:Zs,backendName:"webgl",kernelFunc:fX};var UD="return abs(x);";function dX(r){let{inputs:e,backend:t}=r,{x:n}=e;if(t.shouldExecuteOnCPU([n])&&n.dtype!=="complex64"){let s=t.texData.get(n.dataId),a=ax(s.values);return t.makeTensorInfo(n.shape,n.dtype,a)}let o;return W().getBool("WEBGL_PACK_UNARY_OPERATIONS")?o=new Cs(n.shape,UD):o=new hn(n.shape,UD),t.runWebGLProgram(o,[n],n.dtype)}var HD={kernelName:Ls,backendName:"webgl",kernelFunc:dX};var hX=yr+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return acos(x);
|
|
`,gX=_e({opSnippet:hX}),qD={kernelName:_i,backendName:"webgl",kernelFunc:gX};var xX=yr+`
|
|
if (x < 1.0) return NAN;
|
|
return log(x + sqrt(x * x - 1.0));`,yX=_e({opSnippet:xX}),KD={kernelName:ki,backendName:"webgl",kernelFunc:yX};var XD="return a + b;",bX=st({opSnippet:XD,packedOpSnippet:XD,supportsComplex:!0,cpuKernelImpl:H2}),YD={kernelName:On,backendName:"webgl",kernelFunc:bX};var uv=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((s,a)=>`T${a}`);let n=[];this.variableNames.forEach(s=>{n.push(`float v${s} = get${s}AtOutCoords();`)});let o=this.variableNames.map(s=>`v${s}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
float result = ${o};
|
|
setOutput(result);
|
|
}
|
|
`}};var cv=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((s,a)=>`T${a}`);let n=[];this.variableNames.forEach(s=>{n.push(`vec4 v${s} = get${s}AtOutCoords();`)});let o=this.variableNames.map(s=>`v${s}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
vec4 result = ${o};
|
|
setOutput(result);
|
|
}
|
|
`}};function fx(r){let{inputs:e,backend:t}=r,n=e;if(n.length===1)return jt({inputs:{x:n[0]},backend:t});if(n.length>W().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let l=Math.floor(n.length/2),u=fx({inputs:n.slice(0,l),backend:t}),c=fx({inputs:n.slice(l),backend:t});return fx({inputs:[u,c],backend:t})}let o=n.map(l=>l.dtype).reduce((l,u)=>ar(l,u)),s=n.map(l=>l.shape),i=W().getBool("WEBGL_PACK")?new cv(n[0].shape,s):new uv(n[0].shape,s);return t.runWebGLProgram(i,n,o)}var ZD={kernelName:wo,backendName:"webgl",kernelFunc:fx};function wX(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,keepDims:a}=n,i=o.shape.length,l=x.parseAxisParam(s,o.shape),u=l,c=C.getAxesPermutation(u,i),p=o;c!=null&&(p=$t({inputs:{x:o},backend:t,attrs:{perm:c}}),u=C.getInnerMostAxes(u.length,i)),C.assertAxesAreInnerMostDims("all",u,i);let[m,f]=C.computeOutAndReduceShapes(p.shape,u),d=x.sizeFromShape(f),h=ue({inputs:{x:p},backend:t,attrs:{shape:[-1,d]}}),g=An(h,h.dtype,"all",t),y;if(a){let b=C.expandShapeToKeepDim(m,l);y=ue({inputs:{x:g},backend:t,attrs:{shape:b}})}else y=ue({inputs:{x:g},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(h),t.disposeIntermediateTensorInfo(g),c!=null&&t.disposeIntermediateTensorInfo(p),y}var JD={kernelName:vi,backendName:"webgl",kernelFunc:wX};function _X(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,keepDims:a}=n,i=o.shape.length,l=x.parseAxisParam(s,o.shape),u=l,c=C.getAxesPermutation(u,i),p=o;c!=null&&(p=$t({inputs:{x:o},backend:t,attrs:{perm:c}}),u=C.getInnerMostAxes(u.length,i)),C.assertAxesAreInnerMostDims("any",u,i);let[m,f]=C.computeOutAndReduceShapes(p.shape,u),d=x.sizeFromShape(f),h=ue({inputs:{x:p},backend:t,attrs:{shape:[-1,d]}}),g=An(h,h.dtype,"any",t),y;if(a){let b=C.expandShapeToKeepDim(m,l);y=ue({inputs:{x:g},backend:t,attrs:{shape:b}})}else y=ue({inputs:{x:g},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(h),t.disposeIntermediateTensorInfo(g),c!=null&&t.disposeIntermediateTensorInfo(p),y}var QD={kernelName:Ci,backendName:"webgl",kernelFunc:_X};var pv=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:o,batchSize:s,outSize:a}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[s,a];let i=t==="max"?">":"<",l=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${o};
|
|
|
|
int bestIndex = inOffset;
|
|
float bestValue = getA(batch, bestIndex);
|
|
|
|
for (int i = 0; i < ${o}; i++) {
|
|
int inIdx = ${l};
|
|
float candidate = getA(batch, inIdx);
|
|
if (candidate ${i} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = inIdx;
|
|
}
|
|
}
|
|
setOutput(float(bestIndex));
|
|
}
|
|
`}};var mv=class{constructor(e,t,n,o){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,x.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let s=e[e.length-1],a=Math.ceil(s/t);this.outputShape=e.slice(0,-1),a>1&&this.outputShape.push(a),o||this.variableNames.push("bestIndicesA");let i=this.outputShape,l=i.length,u=Ve(l),c=Wt("coords",l),p,m;if(a===1){m=l+1;let D=Ve(m);p=`
|
|
${D} sourceLocR = ${D}(${c.join()}, 0);
|
|
++${c[l-1]};
|
|
${D} sourceLocG = ${D}(${c.join()}, 0);
|
|
++${c[l-2]};
|
|
${D} sourceLocA = ${D}(${c.join()}, 0);
|
|
--${c[l-1]};
|
|
${D} sourceLocB = ${D}(${c.join()}, 0);
|
|
--${c[l-2]};`}else m=l,p=`
|
|
${u} sourceLocR = coords;
|
|
++${c[l-1]};
|
|
${u} sourceLocG = coords;
|
|
++${c[l-2]};
|
|
${u} sourceLocA = coords;
|
|
--${c[l-1]};
|
|
${u} sourceLocB = coords;
|
|
--${c[l-2]};`;let f=["x","y","z","w","u","v"].slice(0,m),d="."+f[m-1],h=f.map(D=>"int "+D),g=Wt("sourceLocR",m-1).concat("inIdx.r"),y=Wt("sourceLocG",m-1).concat("inIdx.g"),b=Wt("sourceLocB",m-1).concat("inIdx.b"),w=Wt("sourceLocA",m-1).concat("inIdx.a"),_=n==="max"?"greaterThan":"lessThan",I=o?"":`
|
|
inIdx = round(vec4(getBestIndicesAChannel(${g.join()}),
|
|
getBestIndicesAChannel(${y.join()}),
|
|
getBestIndicesAChannel(${b.join()}),
|
|
getBestIndicesAChannel(${w.join()})));`,E=`vec4(
|
|
getAChannel(${g.join()}),
|
|
hasNextCol ? getAChannel(${y.join()}) : 0.,
|
|
hasNextRow ? getAChannel(${b.join()}) : 0.,
|
|
hasNextRow && hasNextCol ? getAChannel(${w.join()}) : 0.)`,$=o?"":`
|
|
float getBestIndicesAChannel(${h.join()}) {
|
|
return getChannel(getBestIndicesA(${f.join()}),
|
|
vec2(${f.slice(-2).join()}));
|
|
}`;this.userCode=`
|
|
float getAChannel(${h.join()}) {
|
|
return getChannel(getA(${f.join()}),
|
|
vec2(${f.slice(-2).join()}));
|
|
}
|
|
${$}
|
|
void main() {
|
|
${u} coords = getOutputCoords();
|
|
bool hasNextCol = ${c[l-1]} < ${i[l-1]-1};
|
|
bool hasNextRow = ${c[l-2]} < ${i[l-2]-1};
|
|
${p}
|
|
ivec4 srcIdx = ivec4(sourceLocR${d}, sourceLocG${d},
|
|
sourceLocB${d}, sourceLocA${d}) * ${t};
|
|
ivec4 inIdx = srcIdx;
|
|
vec4 bestIndex = vec4(inIdx);
|
|
vec4 bestValue = ${E};
|
|
|
|
for (int i = 0; i < ${t}; i++) {
|
|
inIdx = srcIdx;
|
|
${I}
|
|
vec4 candidate = ${E};
|
|
bvec4 nan = isnan(candidate);
|
|
bvec4 replace = bvec4(
|
|
vec4(${_}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
|
|
|
|
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
|
|
replace.y ? candidate.y : bestValue.y,
|
|
replace.z ? candidate.z : bestValue.z,
|
|
replace.w ? candidate.w : bestValue.w);
|
|
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
|
|
srcIdx++;
|
|
}
|
|
setOutput(bestIndex);
|
|
}
|
|
`}};function e$(r,e,t,n=null){let o=e.shape[0],s=e.shape[1];n!=null&&(o=n.shape[0],s=n.shape[1]);let a=C.computeOptimalWindowSize(s),i={windowSize:a,inSize:s,batchSize:o,outSize:Math.ceil(s/a)},l=new pv(i,t,n==null),u=[e];n!=null&&u.push(n);let c=r.runWebGLProgram(l,u,"int32");if(c.shape[1]===1)return c;let p=e$(r,e,t,c);return r.disposeIntermediateTensorInfo(c),p}function t$(r,e,t,n=null){let o=n!=null?n.shape:e.shape,s=o[o.length-1],a=C.computeOptimalWindowSize(s),i=new mv(o,a,t,n==null),l=n==null?[e]:[e,n],u=r.runWebGLProgram(i,l,"int32");if(u.shape.length===e.shape.length){let c=t$(r,e,t,u);return r.disposeIntermediateTensorInfo(u),c}return u}function dx(r,e,t,n){let o=[t];if(C.assertAxesAreInnerMostDims("arg"+n.charAt(0).toUpperCase()+n.slice(1),o,e.shape.length),!W().getBool("WEBGL_PACK_REDUCE")||e.shape.length<=2){let s=[],[a,i]=C.computeOutAndReduceShapes(e.shape,o),l=x.sizeFromShape(i),u=ue({inputs:{x:e},backend:r,attrs:{shape:[-1,l]}});s.push(u);let c=e$(r,u,n);s.push(c);let p=ue({inputs:{x:c},backend:r,attrs:{shape:a}});return s.forEach(m=>r.disposeIntermediateTensorInfo(m)),p}return t$(r,e,n)}function kX(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s}=n,a=x.parseAxisParam(s,o.shape),i=C.getAxesPermutation(a,o.shape.length),l=o,u=[];i!=null&&(l=$t({inputs:{x:o},backend:t,attrs:{perm:i}}),u.push(l),a=C.getInnerMostAxes(a.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMax",[a[0]],l.shape.length);let c=dx(t,l,a[0],"max");return u.forEach(p=>t.disposeIntermediateTensorInfo(p)),c}var r$={kernelName:_o,backendName:"webgl",kernelFunc:kX};function vX(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s}=n,a=x.parseAxisParam(s,o.shape),i=C.getAxesPermutation(a,o.shape.length),l=o,u=[];i!=null&&(l=$t({inputs:{x:o},backend:t,attrs:{perm:i}}),u.push(l),a=C.getInnerMostAxes(a.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMin",[a[0]],l.shape.length);let c=dx(t,l,a[0],"min");return u.forEach(p=>t.disposeIntermediateTensorInfo(p)),c}var n$={kernelName:Ka,backendName:"webgl",kernelFunc:vX};var CX=yr+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return asin(x);
|
|
`,IX=_e({opSnippet:CX}),o$={kernelName:Ii,backendName:"webgl",kernelFunc:IX};var NX=yr+"return log(x + sqrt(x * x + 1.0));",SX=_e({opSnippet:NX}),s$={kernelName:Ni,backendName:"webgl",kernelFunc:SX};var TX=yr+`
|
|
return atan(x);
|
|
`,AX=_e({opSnippet:TX}),i$={kernelName:Si,backendName:"webgl",kernelFunc:AX};var EX=OD+`
|
|
return atan(a, b);
|
|
`,DX=`
|
|
vec4 result = atan(a, b);
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+PD+`
|
|
return result;
|
|
`,$X=st({opSnippet:EX,packedOpSnippet:DX}),a$={kernelName:Ai,backendName:"webgl",kernelFunc:$X};var RX=yr+`
|
|
if ((x < -1.0) || (x > 1.0)) return NAN;
|
|
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,FX=_e({opSnippet:RX}),l$={kernelName:Ti,backendName:"webgl",kernelFunc:FX};var ui=class{constructor(e,t,n,o=!1,s=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,i=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,c=e.dilationWidth,p=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.top,d=e.padInfo.left;this.outputShape=e.outShape;let h=t==="avg",g=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,y=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,b="0.0";if(h||(b="-1.0 / 1e-20"),n){let D=">=";this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${l});
|
|
const ivec2 pads = ivec2(${f}, ${d});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
float avgValue = 0.0;
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${u}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${m};
|
|
wC += ${c}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xR, xC, d);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${D} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${o?s?g:y:`wR * ${m} + wC`};
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let w="max",_=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(_="avgValue / count");let I=Math.floor(a/4)*4,E=a%4,$=`
|
|
if (${h}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${w}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${l});
|
|
const ivec2 pads = ivec2(${f}, ${d});
|
|
const float initializationValue = ${b};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xR, int xC, int d) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xR, xC, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${b});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${u}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${I}; wC += 4) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${c}, d),
|
|
getValue(batch, xR, xC + 2 * ${c}, d),
|
|
getValue(batch, xR, xC + 3 * ${c}, d)
|
|
);
|
|
|
|
${$}
|
|
}
|
|
|
|
int xC = xCCorner + ${I};
|
|
if (${E===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${$}
|
|
} else if (${E===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${c}, d),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${$}
|
|
} else if (${E===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${c}, d),
|
|
getValue(batch, xR, xC + 2 * ${c}, d),
|
|
initializationValue
|
|
);
|
|
|
|
${$}
|
|
}
|
|
}
|
|
setOutput(${_});
|
|
}
|
|
`}},Lu=class{constructor(e,t,n,o=!1,s=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,i=e.strideDepth,l=e.strideHeight,u=e.strideWidth,c=e.dilationDepth,p=e.dilationHeight,m=e.dilationWidth,f=e.effectiveFilterDepth,d=e.effectiveFilterHeight,h=e.effectiveFilterWidth,g=e.padInfo.front,y=e.padInfo.top,b=e.padInfo.left;this.outputShape=e.outShape;let w=t==="avg",_="0.0";if(w||(_="-1.0 / 1e-20"),n){let M=">=";this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${l}, ${u});
|
|
const ivec3 pads = ivec3(${g}, ${y}, ${b});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
|
|
for (int wD = 0; wD < ${f};
|
|
wD += ${c}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${d};
|
|
wR += ${p}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${h};
|
|
wC += ${m}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xD, xR, xC, ch);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${M} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${o?s?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${d} * ${h} +
|
|
wR * ${h} + wC`};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let I="max",E=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(E="avgValue / count");let $=Math.floor(a/4)*4,D=a%4,O=`
|
|
if (${w}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${I}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${l}, ${u});
|
|
const ivec3 pads = ivec3(${g}, ${y}, ${b});
|
|
const float initializationValue = ${_};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xD, int xR, int xC, int ch) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xD, xR, xC, ch);
|
|
}
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${_});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wD = 0; wD < ${f};
|
|
wD += ${c}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${d};
|
|
wR += ${p}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${$}; wC += 4) {
|
|
int xC = xCCorner + wC * ${m};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${m}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${m}, ch),
|
|
getValue(batch, xD, xR, xC + 3 * ${m}, ch)
|
|
);
|
|
|
|
${O}
|
|
}
|
|
|
|
int xC = xCCorner + ${$};
|
|
if (${D===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${O}
|
|
} else if (${D===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${m}, ch),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${O}
|
|
} else if (${D===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${m}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${m}, ch),
|
|
initializationValue
|
|
);
|
|
|
|
${O}
|
|
}
|
|
}
|
|
setOutput(${E});
|
|
}
|
|
}
|
|
`}};function OX(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e;ks(o,"avgPool");let{filterSize:s,strides:a,pad:i,dimRoundingMode:l}=n,u=1;x.assert(C.eitherStridesOrDilationsAreOne(a,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=C.computePool2DInfo(o.shape,s,a,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&x.arraysEqual(c.inShape,c.outShape))return jt({inputs:{x:o},backend:t});let p=new ui(c,"avg",!1);return t.runWebGLProgram(p,[o],"float32")}var u$={kernelName:ko,backendName:"webgl",kernelFunc:OX};function PX(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{filterSize:s,strides:a,pad:i,dimRoundingMode:l,dataFormat:u}=n,c=[1,1,1],p=C.computePool3DInfo(o.shape,s,a,c,i,l,u),m=new Lu(p,"avg",!1);return t.runWebGLProgram(m,[o],"float32")}var c$={kernelName:Xa,backendName:"webgl",kernelFunc:PX};var fv=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,o=e.strideHeight,s=e.strideWidth,a=e.dilationHeight,i=e.dilationWidth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,c=l-1-e.padInfo.top,p=u-1-e.padInfo.left,m=1/(t*n);this.userCode=`
|
|
const ivec2 pads = ivec2(${c}, ${p});
|
|
const float avgMultiplier = float(${m});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${l};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${o}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${u};
|
|
wC+= ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${s}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},dv=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,o=e.filterWidth,s=e.strideDepth,a=e.strideHeight,i=e.strideWidth,l=e.dilationDepth,u=e.dilationHeight,c=e.dilationWidth,p=e.effectiveFilterDepth,m=e.effectiveFilterHeight,f=e.effectiveFilterWidth,d=p-1-e.padInfo.front,h=m-1-e.padInfo.top,g=f-1-e.padInfo.left,y=1/(t*n*o);this.userCode=`
|
|
const ivec3 pads = ivec3(${d}, ${h}, ${g});
|
|
const float avgMultiplier = float(${y});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${p};
|
|
wD += ${l}) {
|
|
float dyD = float(dyDCorner + wD) / ${s}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${m};
|
|
wR += ${u}) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${f};
|
|
wC += ${c}) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function MX(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,input:s}=e,a=s,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=n,p=[1,1,1],m=C.computePool3DInfo(a.shape,i,l,p,u,c),f=new dv(m);return t.runWebGLProgram(f,[o],a.dtype)}var p$={kernelName:xc,backendName:"webgl",kernelFunc:MX};function LX(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,input:s}=e,a=s;ks([o,s],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=n,c=C.computePool2DInfo(a.shape,i,l,1,u),p=new fv(c);return t.runWebGLProgram(p,[o],a.dtype)}var m$={kernelName:gc,backendName:"webgl",kernelFunc:LX};function zX(r){let{inputs:e,backend:t,attrs:n}=r,{a:o,b:s}=e,{transposeA:a,transposeB:i}=n;return Mu({a:o,b:s,transposeA:a,transposeB:i,backend:t})}var f$={kernelName:vo,backendName:"webgl",kernelFunc:zX};var hv=class{constructor(e,t,n,o,s,a){this.outputShape=[],this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,n);let i="0.0";o!=null&&(C.assertAndGetBroadcastShape(e,o),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let l="1.0";s!=null&&(C.assertAndGetBroadcastShape(e,s),this.variableNames.push("scale"),l="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float x = getXAtOutCoords();
|
|
float mean = getMeanAtOutCoords();
|
|
float variance = getVarianceAtOutCoords();
|
|
float offset = ${i};
|
|
float scale = ${l};
|
|
float inv = scale * inversesqrt(variance + float(${a}));
|
|
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
|
|
}
|
|
`}};var gv=class{constructor(e,t,n,o,s,a){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";o!=null&&(C.assertAndGetBroadcastShape(e,o),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let l="vec4(1.0)";s!=null&&(C.assertAndGetBroadcastShape(e,s),this.variableNames.push("scale"),l="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 offset = ${i};
|
|
vec4 scale = ${l};
|
|
|
|
vec4 x = getXAtOutCoords();
|
|
vec4 mean = getMeanAtOutCoords();
|
|
vec4 variance = getVarianceAtOutCoords();
|
|
|
|
vec4 inv = scale * inversesqrt(variance + vec4(${a}));
|
|
|
|
setOutput((x - mean) * inv + offset);
|
|
}
|
|
`}};var BX=({inputs:r,backend:e,attrs:t})=>{let{x:n,mean:o,variance:s,offset:a,scale:i}=r;x.assert(o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),x.assert(a==null||o.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),x.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=t;l==null&&(l=.001);let u=[n,o,s],c=null;a!=null&&(c=a.shape,u.push(a));let p=null;i!=null&&(p=i.shape,u.push(i));let m=W().getBool("WEBGL_PACK_NORMALIZATION")?new gv(n.shape,o.shape,s.shape,c,p,l):new hv(n.shape,o.shape,s.shape,c,p,l);return e.runWebGLProgram(m,u,u[0].dtype)},d$={kernelName:Fo,backendName:"webgl",kernelFunc:BX};var xv=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=Ve(this.rank),n=`uniform int start[${this.rank}];`,o=VX(this.rank),s,a=e.map((i,l)=>`sourceLoc.${yv[l]} = start[${l}] + coords.${yv[l]};`);s=`
|
|
${t} sourceLoc;
|
|
${t} coords = getOutputCoords();
|
|
${a.join(`
|
|
`)}
|
|
`,this.userCode=`
|
|
${n}
|
|
void main() {
|
|
${s}
|
|
setOutput(getSource(${o}));
|
|
}
|
|
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}},yv=["x","y","z","w","u","v"];function VX(r){if(r===1)return"sourceLoc";if(r<=6)return yv.slice(0,r).map(e=>"sourceLoc."+e).join(",");throw Error(`Slicing for rank ${r} is not yet supported`)}var bv=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length;let t=Ve(this.rank),n=Wt("coords",this.rank),o=Wt("sourceLoc",this.rank),s=this.rank===1?"sourceLoc":`vec2(${o.slice(-2).join()})`,a=`getChannel(getSource(${o.join()}), ${s})`,i=`
|
|
result.x = ${a};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${o[this.rank-1]};
|
|
result.y = ${a};
|
|
--${o[this.rank-1]};
|
|
}
|
|
`,l=this.rank===1?"":`
|
|
--${n[this.rank-1]};
|
|
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
|
|
++${o[this.rank-2]};
|
|
result.z = ${a};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${o[this.rank-1]};
|
|
result.w = ${a};
|
|
}
|
|
}
|
|
`,u=this.rank<=4?`sourceLoc = coords +
|
|
${t}(${e.map((c,p)=>`start[${p}]`).join()});`:e.map((c,p)=>`${o[p]} = ${n[p]} + start[${p}];`).join(`
|
|
`);this.userCode=`
|
|
uniform int start[${this.rank}];
|
|
void main() {
|
|
${t} coords = getOutputCoords();
|
|
${t} sourceLoc;
|
|
${u}
|
|
vec4 result = vec4(0.);
|
|
${i}
|
|
${l}
|
|
setOutput(result);
|
|
}
|
|
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}};function GX(r,e,t,n){let o=n.texData.get(r.dataId),s=n.makeTensorInfo(t,r.dtype),a=n.texData.get(s.dataId);Object.assign(a,o),a.refCount=1,a.shape=t,a.dtype=r.dtype;let i=rr.computeFlatOffset(e,x.computeStrides(r.shape));o.slice&&(i+=o.slice.flatOffset),a.slice={flatOffset:i,origDataId:o.slice&&o.slice.origDataId||r.dataId};let l=n.dataRefCount.get(a.slice.origDataId)||1;return n.dataRefCount.set(a.slice.origDataId,l+1),s}function $a(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{begin:s,size:a}=n,[i,l]=rr.parseSliceParams(o,s,a);if(rr.assertParamsValid(o,i,l),x.sizeFromShape(l)===0)return t.makeTensorInfo(l,o.dtype,[]);if(t.shouldExecuteOnCPU([o])||o.dtype==="string"){let p=t.texData.get(o.dataId),m=mD(p.values,i,l,o.shape,o.dtype);return t.makeTensorInfo(l,o.dtype,m)}let{isPacked:u}=t.texData.get(o.dataId),c=rr.isSliceContinous(o.shape,i,l);if(u||!c){let p=W().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new bv(l):new xv(l),m=p.getCustomSetupFunc(i);return t.runWebGLProgram(p,[o],o.dtype,m)}return t.uploadToGPU(o.dataId),GX(o,i,l,t)}var h$={kernelName:qs,backendName:"webgl",kernelFunc:$a};var WX=r=>{let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{blockShape:s,crops:a}=n;x.assert(o.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let i=s.reduce((b,w)=>b*w),l=C.getReshaped(o.shape,s,i),u=C.getPermuted(l.length,s.length),c=C.getReshapedPermuted(o.shape,s,i),p=C.getSliceBeginCoords(a,s.length),m=C.getSliceSize(c,a,s.length),f=[],d=ue({inputs:{x:o},backend:t,attrs:{shape:l}}),h=$t({inputs:{x:d},backend:t,attrs:{perm:u}}),g=ue({inputs:{x:h},backend:t,attrs:{shape:c}}),y=$a({inputs:{x:g},backend:t,attrs:{begin:p,size:m}});return f.push(d),f.push(h),f.push(g),f.forEach(b=>t.disposeIntermediateTensorInfo(b)),y},g$={kernelName:Ya,backendName:"webgl",kernelFunc:WX};function jX(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,weights:s}=e,{size:a}=n,i=t.readSync(o.dataId),l=t.readSync(s.dataId),u=ix(i,l,s.dtype,s.shape,a);return t.makeTensorInfo([a],s.dtype,u)}var x$={kernelName:yc,backendName:"webgl",kernelFunc:jX};var UX="return float(a != b);",wv=st({opSnippet:UX,dtype:"bool"}),y$={kernelName:Ki,backendName:"webgl",kernelFunc:wv};function Ra(r){let{inputs:e,backend:t}=r,{input:n}=e,o=t.texData.get(n.dataId);return jt({inputs:{x:o.complexTensorInfos.real},backend:t})}var b$={kernelName:Lc,backendName:"webgl",kernelFunc:Ra};var HX="return float(int(x));";function w$(r,e){let t=new hn(r.shape,HX),n=e.runWebGLProgram(t,[r],"int32");return{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}function _v(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{dtype:s}=n;if(s==="complex64"){if(o.dtype==="complex64")return jt({inputs:{x:o},backend:t});let a=ht(o.shape),i=_v({inputs:{x:o},backend:t,attrs:{dtype:"float32"}}),l=gn({inputs:{real:i,imag:a},backend:t});return a.dispose(),t.disposeIntermediateTensorInfo(i),l}if(o.dtype==="complex64"){let a=Ra({inputs:{input:o},backend:t}),i=_v({inputs:{x:a},backend:t,attrs:{dtype:s}});return t.disposeIntermediateTensorInfo(a),i}if(!x.hasEncodingLoss(o.dtype,s)){let a=jt({inputs:{x:o},backend:t});return{dataId:a.dataId,shape:a.shape,dtype:s}}if(s==="int32")return w$(o,t);if(s==="bool"){let a=t.makeTensorInfo([],"bool",x.getTypedArrayFromDType("bool",1)),l=wv({inputs:{a:o,b:a},backend:t});return t.disposeIntermediateTensorInfo(a),l}throw new Error(`Error in Cast: failed to cast ${o.dtype} to ${s}`)}var _$={kernelName:qn,backendName:"webgl",kernelFunc:_v};var k$="return ceil(x);",qX=_e({opSnippet:k$,packedOpSnippet:k$,cpuKernelImpl:K2}),v$={kernelName:Co,backendName:"webgl",kernelFunc:qX};var kv=class{constructor(e){this.variableNames=["A"],this.outputShape=e,this.userCode=`
|
|
uniform float minVal;
|
|
uniform float maxVal;
|
|
|
|
void main() {
|
|
float value = getAAtOutCoords();
|
|
if (isnan(value)) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, minVal, maxVal));
|
|
}
|
|
`}getCustomSetupFunc(e,t){return(n,o)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(o,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(o,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}};var vv=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
|
|
uniform float minVal;
|
|
uniform float maxVal;
|
|
|
|
void main() {
|
|
vec4 value = getAAtOutCoords();
|
|
|
|
if (any(isnan(value))) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
|
|
}
|
|
`}getCustomSetupFunc(e,t){return(n,o)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(o,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(o,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}};function KX(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{clipValueMin:s,clipValueMax:a}=n,i;W().getBool("WEBGL_PACK_CLIP")?i=new vv(o.shape):i=new kv(o.shape);let l=i.getCustomSetupFunc(s,a);return t.runWebGLProgram(i,[o],o.dtype,l)}var C$={kernelName:Kn,backendName:"webgl",kernelFunc:KX};var Cv=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float re = abs(getRealAtOutCoords());
|
|
float im = abs(getImagAtOutCoords());
|
|
float mx = max(re, im);
|
|
|
|
// sadly the length function in glsl is not underflow-safe
|
|
// (at least not on Intel GPUs). So the safe solution is
|
|
// to ensure underflow-safety in all cases.
|
|
setOutput(
|
|
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
|
|
);
|
|
}
|
|
`}};function I$(r,e){return{dataId:e.dataId,dtype:e.dtype,shape:r.shape}}function XX(r){let{inputs:e,backend:t}=r,{x:n}=e,o=t.texData.get(n.dataId),s=new Cv(n.shape),a=[I$(n,o.complexTensorInfos.real),I$(n,o.complexTensorInfos.imag)];return t.runWebGLProgram(s,a,a[0].dtype)}var N$={kernelName:Za,backendName:"webgl",kernelFunc:XX};var Iv=class{constructor(e){this.outputShape=[],this.outputShape=C.computeOutShape(e,1),this.variableNames=e.map((a,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let a=1;a<t.length;a++)t[a]=t[a-1]+e[a][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let a=1;a<t.length;a++){let i=t[a-1];n.push(`else if (yC < ${t[a]}) setOutput(getT${a}(yR, yC-${i}));`)}let o=t.length,s=t[t.length-1];n.push(`else setOutput(getT${o}(yR, yC-${s}));`),this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int yR = coords.x;
|
|
int yC = coords.y;
|
|
|
|
${n.join(`
|
|
`)}
|
|
}
|
|
`}};var Nv=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=C.computeOutShape(e,t);let n=this.outputShape,o=n.length,s=Ve(o),a=Wt("coords",o),i=["x","y","z","w","u","v"].slice(0,o);this.variableNames=e.map((h,g)=>`T${g}`);let l=new Array(e.length-1);l[0]=e[0][t];for(let h=1;h<l.length;h++)l[h]=l[h-1]+e[h][t];let u=i[t],c=i.slice(-2),p=i.join(),m=`if (${u} < ${l[0]}) {
|
|
return getChannel(
|
|
getT0(${p}), vec2(${c.join()}));
|
|
}`;for(let h=1;h<l.length;h++){let g=l[h-1];m+=`
|
|
if (${u} < ${l[h]} && ${u} >= ${l[h-1]}) {
|
|
return getChannel(
|
|
getT${h}(${hx(i,u,g)}),
|
|
vec2(${hx(c,u,g)}));
|
|
}`}let f=l.length,d=l[l.length-1];m+=`
|
|
return getChannel(
|
|
getT${f}(${hx(i,u,d)}),
|
|
vec2(${hx(c,u,d)}));`,this.userCode=`
|
|
float getValue(${i.map(h=>"int "+h)}) {
|
|
${m}
|
|
}
|
|
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
vec4 result = vec4(getValue(${a}), 0., 0., 0.);
|
|
|
|
${a[o-1]} = ${a[o-1]} + 1;
|
|
if (${a[o-1]} < ${n[o-1]}) {
|
|
result.g = getValue(${a});
|
|
}
|
|
|
|
${a[o-2]} = ${a[o-2]} + 1;
|
|
if (${a[o-2]} < ${n[o-2]}) {
|
|
result.a = getValue(${a});
|
|
}
|
|
|
|
${a[o-1]} = ${a[o-1]} - 1;
|
|
if (${a[o-2]} < ${n[o-2]} &&
|
|
${a[o-1]} < ${n[o-1]}) {
|
|
result.b = getValue(${a});
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function hx(r,e,t){let n=r.indexOf(e);return r.map((s,a)=>a===n?`${s} - ${t}`:s).join()}function zu(r){let{inputs:e,backend:t}=r,{input:n}=e,o=t.texData.get(n.dataId);return jt({inputs:{x:o.complexTensorInfos.imag},backend:t})}var S$={kernelName:Dc,backendName:"webgl",kernelFunc:zu};function Bu(r,e,t){let n=r[0].dtype;if(n==="complex64"){let u=r.map(d=>Ra({inputs:{input:d},backend:t})),c=r.map(d=>zu({inputs:{input:d},backend:t})),p=Bu(u,e,t),m=Bu(c,e,t),f=gn({inputs:{real:p,imag:m},backend:t});return u.forEach(d=>t.disposeIntermediateTensorInfo(d)),c.forEach(d=>t.disposeIntermediateTensorInfo(d)),t.disposeIntermediateTensorInfo(p),t.disposeIntermediateTensorInfo(m),f}if(n==="string"){let{tensors2D:u,outShape:c}=T$(r,e,t),p=u.map(g=>({vals:t.readSync(g.dataId),shape:g.shape})),m=u[0].shape[0]===1,f=X2(p,c,n,m),d=C.computeOutShape(r.map(g=>g.shape),e),h=t.makeTensorInfo(d,n,f);return u.forEach(g=>t.disposeIntermediateTensorInfo(g)),h}if(r.length>W().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let u=Math.floor(r.length/2),c=Bu(r.slice(0,u),e,t),p=Bu(r.slice(u),e,t),m=Bu([c,p],e,t);return t.disposeIntermediateTensorInfo(c),t.disposeIntermediateTensorInfo(p),m}if(W().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&r[0].shape.length>1){let u=new Nv(r.map(c=>c.shape),e);return t.runWebGLProgram(u,r,n)}let{tensors2D:o,outShape:s}=T$(r,e,t),a=new Iv(o.map(u=>u.shape)),i=t.runWebGLProgram(a,o,n);o.forEach(u=>t.disposeIntermediateTensorInfo(u));let l=ue({inputs:{x:i},attrs:{shape:s},backend:t});return t.disposeIntermediateTensorInfo(i),l}function T$(r,e,t){let n=C.computeOutShape(r.map(s=>s.shape),e);return{tensors2D:r.map(s=>ue({inputs:{x:s},attrs:{shape:[-1,x.sizeFromShape(s.shape.slice(e))]},backend:t})),outShape:n}}function Sv(r){let{inputs:e,backend:t,attrs:n}=r,{axis:o}=n,s=x.parseAxisParam(o,e[0].shape)[0],a=C.computeOutShape(e.map(u=>u.shape),s);if(x.sizeFromShape(a)===0)return t.makeTensorInfo(a,e[0].dtype,[]);let i=e.filter(u=>x.sizeFromShape(u.shape)>0);if(i.length===1)return jt({inputs:{x:i[0]},backend:t});let l=i.map(u=>u.shape);return C.assertParamsConsistent(l,s),Bu(i,s,t)}var A$={kernelName:zs,backendName:"webgl",kernelFunc:Sv};var Pf=class{constructor(e,t=!1,n=null,o=!1,s=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.padInfo.top,i=e.padInfo.left,l=e.strideHeight,u=e.strideWidth,c=e.dilationHeight,p=e.dilationWidth,m=e.filterHeight,f=e.filterWidth,d=Math.floor(e.inChannels/4)*4,h=e.inChannels%4,g=e.dataFormat==="channelsLast",y=g?1:2,b=g?2:3,w=g?3:1,_="",I="";n&&(o?_=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:s?_=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:_=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,I="result = activation(result);");let E=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${_}
|
|
|
|
const ivec2 strides = ivec2(${l}, ${u});
|
|
const ivec2 pads = ivec2(${a}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d2 = coords[${w}];
|
|
|
|
ivec2 xRCCorner =
|
|
ivec2(coords[${y}], coords[${b}]) * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${m}; wR++) {
|
|
int xR = xRCorner + wR * ${c};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${f}; wC++) {
|
|
int xC = xCCorner + wC * ${p};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${d}; d1 += 4) {
|
|
vec4 wValues = vec4(
|
|
getW(wR, wC, d1, d2),
|
|
getW(wR, wC, d1 + 1, d2),
|
|
getW(wR, wC, d1 + 2, d2),
|
|
getW(wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
if (${g}) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xR, xC, d1),
|
|
getX(batch, xR, xC, d1 + 1),
|
|
getX(batch, xR, xC, d1 + 2),
|
|
getX(batch, xR, xC, d1 + 3)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec4 xValues = vec4(
|
|
getX(batch, d1, xR, xC),
|
|
getX(batch, d1 + 1, xR, xC),
|
|
getX(batch, d1 + 2, xR, xC),
|
|
getX(batch, d1 + 3, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
|
|
if (${h===1}) {
|
|
|
|
if (${g}) {
|
|
dotProd +=
|
|
getX(batch, xR, xC, ${d}) *
|
|
getW(wR, wC, ${d}, d2);
|
|
} else {
|
|
dotProd +=
|
|
getX(batch, ${d}, xR, xC) *
|
|
getW(wR, wC, ${d}, d2);
|
|
}
|
|
|
|
} else if (${h===2}) {
|
|
vec2 wValues = vec2(
|
|
getW(wR, wC, ${d}, d2),
|
|
getW(wR, wC, ${d} + 1, d2)
|
|
);
|
|
|
|
if (${g}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xR, xC, ${d}),
|
|
getX(batch, xR, xC, ${d} + 1)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec2 xValues = vec2(
|
|
getX(batch, ${d}, xR, xC),
|
|
getX(batch, ${d} + 1, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
} else if (${h===3}) {
|
|
vec3 wValues = vec3(
|
|
getW(wR, wC, ${d}, d2),
|
|
getW(wR, wC, ${d} + 1, d2),
|
|
getW(wR, wC, ${d} + 2, d2)
|
|
);
|
|
|
|
if (${g}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xR, xC, ${d}),
|
|
getX(batch, xR, xC, ${d} + 1),
|
|
getX(batch, xR, xC, ${d} + 2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec3 xValues = vec3(
|
|
getX(batch, ${d}, xR, xC),
|
|
getX(batch, ${d} + 1, xR, xC),
|
|
getX(batch, ${d} + 2, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${E}
|
|
${I}
|
|
setOutput(result);
|
|
}
|
|
`}},Tv=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,o=e.padInfo.left,s=e.strideDepth,a=e.strideHeight,i=e.strideWidth,l=e.dilationDepth,u=e.dilationHeight,c=e.dilationWidth,p=e.filterDepth,m=e.filterHeight,f=e.filterWidth,d=Math.floor(e.inChannels/4)*4,h=e.inChannels%4;this.userCode=`
|
|
const ivec3 strides = ivec3(${s}, ${a}, ${i});
|
|
const ivec3 pads = ivec3(${t}, ${n}, ${o});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d2 = coords.u;
|
|
|
|
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xFCorner = xFRCCorner.x;
|
|
int xRCorner = xFRCCorner.y;
|
|
int xCCorner = xFRCCorner.z;
|
|
|
|
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
|
|
// y(yF, yR, yC, d2). ? = to be determined. : = across all
|
|
// values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${p}; wF++) {
|
|
int xF = xFCorner + wF * ${l};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${m}; wR++) {
|
|
int xR = xRCorner + wR * ${u};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${f}; wC++) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${d}; d1 += 4) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xF, xR, xC, d1),
|
|
getX(batch, xF, xR, xC, d1 + 1),
|
|
getX(batch, xF, xR, xC, d1 + 2),
|
|
getX(batch, xF, xR, xC, d1 + 3)
|
|
);
|
|
vec4 wValues = vec4(
|
|
getW(wF, wR, wC, d1, d2),
|
|
getW(wF, wR, wC, d1 + 1, d2),
|
|
getW(wF, wR, wC, d1 + 2, d2),
|
|
getW(wF, wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
if (${h===1}) {
|
|
dotProd +=
|
|
getX(batch, xF, xR, xC, ${d}) *
|
|
getW(wF, wR, wC, ${d}, d2);
|
|
} else if (${h===2}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xF, xR, xC, ${d}),
|
|
getX(batch, xF, xR, xC, ${d} + 1)
|
|
);
|
|
vec2 wValues = vec2(
|
|
getW(wF, wR, wC, ${d}, d2),
|
|
getW(wF, wR, wC, ${d} + 1, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else if (${h===3}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xF, xR, xC, ${d}),
|
|
getX(batch, xF, xR, xC, ${d} + 1),
|
|
getX(batch, xF, xR, xC, ${d} + 2)
|
|
);
|
|
vec3 wValues = vec3(
|
|
getW(wF, wR, wC, ${d}, d2),
|
|
getW(wF, wR, wC, ${d} + 1, d2),
|
|
getW(wF, wR, wC, ${d} + 2, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};var Av=class{constructor(e,t,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:o,inChannels:s,strideWidth:a,strideHeight:i,padInfo:l,outWidth:u,dilationWidth:c,dilationHeight:p,dataFormat:m}=n,{left:f,top:d}=l,h=s*o,g=Ot(),y=m==="channelsLast",b=y?0:1,w=y?1:2,_="";for(let I=0;I<=1;I++)for(let E=0;E<=1;E++)_+=`
|
|
blockIndex = rc.y + ${E};
|
|
pos = rc.x + ${I};
|
|
|
|
if(blockIndex < ${e[1]} && pos < ${e[0]}) {
|
|
offsetY = int(blockIndex / (${u})) * ${i} - ${d};
|
|
d0 = offsetY + ${p} * (pos / ${h});
|
|
|
|
if(d0 < ${t[b]} && d0 >= 0) {
|
|
|
|
offsetX = int(mod(float(blockIndex), ${u}.) * ${a}. - ${f}.);
|
|
d1 = offsetX + ${c} * (int(mod(float(pos), ${h}.) / ${s}.));
|
|
|
|
if(d1 < ${t[w]} && d1 >= 0) {
|
|
|
|
ch = int(mod(float(pos), ${s}.));
|
|
|
|
if (${y}) {
|
|
innerDims = vec2(d1, ch);
|
|
result[${I*2+E}] = getChannel(
|
|
getA(d0, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
} else {
|
|
innerDims = vec2(d0, d1);
|
|
result[${I*2+E}] = getChannel(
|
|
getA(ch, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`;this.userCode=`
|
|
void main() {
|
|
ivec2 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0);
|
|
|
|
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
|
|
vec2 innerDims;
|
|
|
|
${_}
|
|
|
|
${g.output} = result;
|
|
}
|
|
`}};function gx({x:r,filter:e,convInfo:t,backend:n,bias:o=null,preluActivationWeights:s=null,leakyreluAlpha:a=0,activation:i=null}){let l=r.shape,u=n.texData.get(r.dataId),c=t.inChannels,p=l[0]*l[1]*l[2],m=t.outChannels,f=t.dataFormat==="channelsLast",d=!1,h=!1,g,y=[],b=(p===1||m===1)&&c>lv,w=l[2]%2!=0&&!!u.isPacked;if(b||!W().getBool("WEBGL_LAZILY_UNPACK")||!W().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!w){let _=f?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],I=ue({inputs:{x:r},backend:n,attrs:{shape:[1,_,t.inChannels]}}),E=ue({inputs:{x:e},backend:n,attrs:{shape:[1,t.inChannels,t.outChannels]}}),$=Mu({a:I,b:E,transposeA:d,transposeB:h,backend:n,bias:o,activation:i,preluActivationWeights:s,leakyreluAlpha:a});g=ue({inputs:{x:$},backend:n,attrs:{shape:t.outShape}}),y.push(I),y.push(E),y.push($)}else{let _=f?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),I={dataId:r.dataId,shape:[1,_,t.inChannels],dtype:r.dtype},E=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,x.assert(bl(u.shape,I.shape),()=>`packed reshape ${u.shape} to ${I.shape} isn't free`);let $=ue({inputs:{x:e},backend:n,attrs:{shape:[1,t.inChannels,t.outChannels]}});y.push($);let D=Mu({a:I,b:$,backend:n,transposeA:d,transposeB:h,bias:o,activation:i,preluActivationWeights:s,leakyreluAlpha:a}),O=n.texData.get(D.dataId);x.assert(O.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=E,O.shape=t.outShape,g=jt({inputs:{x:D},backend:n}),g.shape=t.outShape,y.push(D)}for(let _ of y)n.disposeIntermediateTensorInfo(_);return g}function xx({x:r,filter:e,convInfo:t,backend:n,bias:o=null,preluActivationWeights:s=null,leakyreluAlpha:a=0,activation:i=null}){let{filterWidth:l,filterHeight:u,inChannels:c,outWidth:p,outHeight:m,dataFormat:f}=t,d=f==="channelsLast",h=l*u*c,g=m*p,y=[h,g],b=!0,w=!1,_=[],I=ue({inputs:{x:r},backend:n,attrs:{shape:r.shape.slice(1)}}),E=ue({inputs:{x:e},backend:n,attrs:{shape:[1,h,x.sizeFromShape(e.shape)/h]}});_.push(I),_.push(E);let $=new Av(y,I.shape,t),D=n.runWebGLProgram($,[I],"float32"),O=ue({inputs:{x:D},backend:n,attrs:{shape:[1,y[0],y[1]]}});_.push(D),_.push(O);let M=o!=null,G=s!=null,j=i==="leakyrelu",U=i?_l(i,!0):null,H=new Ff(O.shape,E.shape,[1,g,t.outChannels],b,w,M,U,G,j),q=[O,E];if(o&&q.push(o),G&&q.push(s),j){let re=n.makeTensorInfo([],"float32",x.createScalarValue(a,"float32"));q.push(re),_.push(re)}let X=n.runWebGLProgram(H,q,"float32"),ne=d?[1,m,p,t.outChannels]:[1,t.outChannels,m,p],Y=ue({inputs:{x:X},backend:n,attrs:{shape:ne}});_.push(X);for(let re of _)n.disposeIntermediateTensorInfo(re);return Y}function YX(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,filter:s}=e,{strides:a,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=n,p=C.convertConv2DDataFormat(l),m=C.computeConv2DInfo(o.shape,s.shape,a,u,i,c,!1,p),f;if(m.filterHeight===1&&m.filterWidth===1&&m.dilationHeight===1&&m.dilationWidth===1&&m.strideHeight===1&&m.strideWidth===1&&(m.padInfo.type==="SAME"||m.padInfo.type==="VALID"))f=gx({x:o,filter:s,convInfo:m,backend:t});else if(W().getBool("WEBGL_CONV_IM2COL")&&o.shape[0]===1)f=xx({x:o,filter:s,convInfo:m,backend:t});else{let h=new Pf(m);f=t.runWebGLProgram(h,[o,s],"float32")}let d=ue({inputs:{x:f},backend:t,attrs:{shape:m.outShape}});return t.disposeIntermediateTensorInfo(f),d}var E$={kernelName:Io,backendName:"webgl",kernelFunc:YX};var Ev=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,o=e.padInfo.top,s=e.padInfo.left,a=e.dataFormat==="channelsLast";this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int d2 = coords.w;
|
|
|
|
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${o};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${s};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
if (${a}) {
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
} else {
|
|
float dyValue = getDy(b, d2, yR, yC);
|
|
float xValue = getX(b, d1, xR, xC);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},Dv=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,o=e.strideHeight,s=e.strideWidth,a=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,l=n-1-e.padInfo.left,u=a?1:2,c=a?2:3,p=a?3:1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${l});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[${p}];
|
|
|
|
ivec2 dyCorner = ivec2(coords[${u}], coords[${c}]) - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${o}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${s}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
|
|
if (${a}) {
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
} else {
|
|
float xValue = getDy(batch, d2, idyR, idyC);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},$v=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,o=e.strideWidth,s=e.padInfo.front,a=e.padInfo.top,i=e.padInfo.left;this.userCode=`
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int wF = coords.x;
|
|
int wR = coords.y;
|
|
int wC = coords.z;
|
|
int d1 = coords.w;
|
|
int d2 = coords.u;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yF = 0; yF < ${e.outDepth}; yF++) {
|
|
int xF = wF + yF * ${t} - ${s};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${n} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${o} - ${i};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yF, yR, yC, d2);
|
|
float xValue = getX(b, xF, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},Rv=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,o=e.filterWidth,s=e.strideDepth,a=e.strideHeight,i=e.strideWidth,l=t-1-e.padInfo.front,u=n-1-e.padInfo.top,c=o-1-e.padInfo.left;this.userCode=`
|
|
const ivec3 pads = ivec3(${l}, ${u}, ${c});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.u;
|
|
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyFCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${t}; wF++) {
|
|
float dyF = float(dyFCorner + wF) / ${s}.0;
|
|
|
|
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyF = int(dyF);
|
|
|
|
int wFPerm = ${t} - 1 - wF;
|
|
|
|
for (int wR = 0; wR < ${n}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${n} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${o}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${o} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
float xValue = getDy(batch, idyF, idyR, idyC, d2);
|
|
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function ZX(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,dy:s}=e,{strides:a,pad:i,dataFormat:l,dimRoundingMode:u,filterShape:c}=n,p=C.convertConv2DDataFormat(l),m=C.computeConv2DInfo(o.shape,c,a,1,i,u,!1,p),f=new Ev(m);return t.runWebGLProgram(f,[o,s],"float32")}var D$={kernelName:wc,backendName:"webgl",kernelFunc:ZX};function JX(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,filter:s}=e,{inputShape:a,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=n,p=C.convertConv2DDataFormat(u),m=C.computeConv2DInfo(a,s.shape,i,1,l,c,!1,p),f=new Dv(m);return t.runWebGLProgram(f,[o,s],"float32")}var $$={kernelName:No,backendName:"webgl",kernelFunc:JX};function QX(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,filter:s}=e,{strides:a,pad:i,dilations:l}=n,u=C.computeConv3DInfo(o.shape,s.shape,a,l,i),c=new Tv(u);return t.runWebGLProgram(c,[o,s],"float32")}var R$={kernelName:Ja,backendName:"webgl",kernelFunc:QX};function e7(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,dy:s}=e,{strides:a,pad:i,filterShape:l}=n,u=C.computeConv3DInfo(o.shape,l,a,1,i),c=new $v(u);return t.runWebGLProgram(c,[o,s],"float32")}var F$={kernelName:_c,backendName:"webgl",kernelFunc:e7};function t7(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,filter:s}=e,{pad:a,strides:i,inputShape:l}=n,u=C.computeConv3DInfo(l,s.shape,i,1,a),c=new Rv(u);return t.runWebGLProgram(c,[o,s],"float32")}var O$={kernelName:kc,backendName:"webgl",kernelFunc:t7};var r7=cx+`
|
|
return cos(x);
|
|
`,n7=_e({opSnippet:r7}),P$={kernelName:So,backendName:"webgl",kernelFunc:n7};var o7=`
|
|
float e2x = exp(-x);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,s7=_e({opSnippet:o7}),M$={kernelName:Ei,backendName:"webgl",kernelFunc:s7};var Fv=class{constructor(e,t,n,o,s){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[a,i,l,u]=e,[c]=t,[p,m]=n;this.outputShape=[c,p,m,u];let f=o==="bilinear"?1:0,[d,h]=[`${i-1}.0`,`${l-1}.0`],[g,y,b]=p>1?[`${(i-1)/(p-1)}`,"(y2-y1) * height_ratio",`y1*${d} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${d}`],[w,_,I]=m>1?[`${(l-1)/(m-1)}`,"(x2-x1) * width_ratio",`x1*${h} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${h}`];this.userCode=`
|
|
const float height_ratio = float(${g});
|
|
const float width_ratio = float(${w});
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int y = coords[1];
|
|
int x = coords[2];
|
|
int d = coords[3];
|
|
|
|
// get box vals
|
|
float y1 = getBoxes(b,0);
|
|
float x1 = getBoxes(b,1);
|
|
float y2 = getBoxes(b,2);
|
|
float x2 = getBoxes(b,3);
|
|
|
|
// get image in batch index
|
|
int bInd = round(getBoxInd(b));
|
|
if(bInd < 0 || bInd >= ${a}) {
|
|
return;
|
|
}
|
|
|
|
float height_scale = ${y};
|
|
float width_scale = ${_};
|
|
|
|
float in_y = ${b};
|
|
if( in_y < 0.0 || in_y > ${d} ) {
|
|
setOutput(float(${s}));
|
|
return;
|
|
}
|
|
float in_x = ${I};
|
|
if( in_x < 0.0 || in_x > ${h} ) {
|
|
setOutput(float(${s}));
|
|
return;
|
|
}
|
|
|
|
vec2 sourceFracIndexCR = vec2(in_x,in_y);
|
|
if(${f} == 1) {
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
|
|
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
|
|
|
|
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
|
|
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
float newValue = top + (bottom - top) * fracCR.y;
|
|
setOutput(newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestCR = ivec2(floor(
|
|
sourceFracIndexCR + vec2(0.5,0.5)));
|
|
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutput(newValue);
|
|
}
|
|
}
|
|
`}};var i7=r=>{let{inputs:e,backend:t,attrs:n}=r,{image:o,boxes:s,boxInd:a}=e,{cropSize:i,method:l,extrapolationValue:u}=n,c=new Fv(o.shape,s.shape,i,l,u);return t.runWebGLProgram(c,[o,s,a],"float32")},L$={kernelName:Di,backendName:"webgl",kernelFunc:i7};var yx=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=e;let o=e.length,s=t?"0.0":`getX(${z$(o,"coords")})`,a=e[e.length-1],i="",l="";t?(i=n?`end != ${a-1}`:"end != 0",l=n?"end + 1":"end - 1"):(i=n?`end + pow2 < ${a}`:"end >= pow2",l=n?"end + pow2":"end - pow2"),this.userCode=`
|
|
uniform float index;
|
|
void main() {
|
|
${Ve(o)} coords = getOutputCoords();
|
|
int end = ${B$(o,"coords")};
|
|
float val = ${s};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${i}) {
|
|
int idx = ${l};
|
|
${B$(o,"coords")} = idx;
|
|
val += getX(${z$(o,"coords")});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.index==null&&(this.index=t.getUniformLocation(n,"index")),t.gl.uniform1f(this.index,e)}}};function z$(r,e){if(r===1)return`${e}`;if(r===2)return`${e}.x, ${e}.y`;if(r===3)return`${e}.x, ${e}.y, ${e}.z`;if(r===4)return`${e}.x, ${e}.y, ${e}.z, ${e}.w`;throw Error(`Cumulative sum for rank ${r} is not yet supported`)}function B$(r,e){if(r===1)return`${e}`;if(r===2)return`${e}.y`;if(r===3)return`${e}.z`;if(r===4)return`${e}.w`;throw Error(`Cumulative sum for rank ${r} is not yet supported`)}function a7(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,exclusive:a,reverse:i}=n,l=o.shape.length,u=C.getAxesPermutation([s],l),c=o;u!=null&&(c=$t({inputs:{x:o},backend:t,attrs:{perm:u}}));let p=C.getInnerMostAxes(1,l)[0];if(p!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${o.shape.length-1} but got axis=${s}`);let m=c.shape[p],f=jt({inputs:{x:c},backend:t});for(let d=0;d<=Math.ceil(Math.log2(m))-1;d++){let h=new yx(c.shape,!1,i),g=h.getCustomSetupFunc(d),y=f;f=t.runWebGLProgram(h,[f],f.dtype,g),t.disposeIntermediateTensorInfo(y)}if(a){let d=new yx(c.shape,a,i),h=f;f=t.runWebGLProgram(d,[f],f.dtype),t.disposeIntermediateTensorInfo(h)}if(u!=null){let d=C.getUndoAxesPermutation(u),h=$t({inputs:{x:f},backend:t,attrs:{perm:d}});return t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(c),h}return f}var V$={kernelName:To,backendName:"webgl",kernelFunc:a7};function l7(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,weights:s}=e,{size:a,binaryOutput:i}=n;if(o.shape.length===1){let l=t.readSync(o.dataId),u=t.readSync(s.dataId),c=ix(l,u,s.dtype,s.shape,a);return t.makeTensorInfo([a],s.dtype,c)}else if(o.shape.length===2){let l=t.bufferSync(o),u=t.bufferSync(s),c=q2(l,u,a,i);return t.makeTensorInfo(c.shape,s.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${o.shape.length}.`)}var G$={kernelName:vc,backendName:"webgl",kernelFunc:l7};var Ov=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int h = ${this.getHeightCoordString()};
|
|
int w = ${this.getWidthCoordString()};
|
|
int d = ${this.getDepthCoordString()};
|
|
|
|
int in_h = h / ${t};
|
|
int offset_h = imod(h, ${t});
|
|
int in_w = w / ${t};
|
|
int offset_w = imod(w, ${t});
|
|
int offset_d = (offset_h * ${t} + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
int in_d = d + offset_d;
|
|
|
|
float result = ${this.getInputSamplingString()};
|
|
setOutput(result);
|
|
}
|
|
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function u7(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{blockSize:s,dataFormat:a}=n;x.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let i=o.shape[0],l=a==="NHWC"?o.shape[1]:o.shape[2],u=a==="NHWC"?o.shape[2]:o.shape[3],c=a==="NHWC"?o.shape[3]:o.shape[1],p=l*s,m=u*s,f=c/(s*s),d=a==="NHWC"?[i,p,m,f]:[i,f,p,m],h=new Ov(d,s,a);return t.runWebGLProgram(h,[o],o.dtype)}var W$={kernelName:$i,backendName:"webgl",kernelFunc:u7};var Mf=class{constructor(e,t=!1,n=null,o=!1,s=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.inHeight,i=e.inWidth,l=e.padInfo.top,u=e.padInfo.left,c=e.strideHeight,p=e.strideWidth,m=e.dilationHeight,f=e.dilationWidth,d=e.filterHeight,h=e.filterWidth,g=e.outChannels/e.inChannels,y="",b="";n&&(o?y=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:s?y=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:y=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,b="result = activation(result);");let w=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${y}
|
|
|
|
const ivec2 strides = ivec2(${c}, ${p});
|
|
const ivec2 pads = ivec2(${l}, ${u});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${g};
|
|
int q = d2 - d1 * ${g};
|
|
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
|
|
for (int wR = 0; wR < ${d}; wR++) {
|
|
int xR = xRCorner + wR * ${m};
|
|
|
|
if (xR < 0 || xR >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${h}; wC++) {
|
|
int xC = xCCorner + wC * ${f};
|
|
|
|
if (xC < 0 || xC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float xVal = getX(batch, xR, xC, d1);
|
|
float wVal = getW(wR, wC, d1, q);
|
|
dotProd += xVal * wVal;
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${w}
|
|
${b}
|
|
setOutput(result);
|
|
}
|
|
`}};var Lf=class{constructor(e,t=!1,n=null,o=!1,s=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let a=e.outChannels/e.inChannels,i=e.inHeight,l=e.inWidth,u=e.padInfo.top,c=e.padInfo.left,p=e.strideHeight,m=e.strideWidth,f=e.dilationHeight,d=e.dilationWidth,h=e.filterHeight,g=e.filterWidth,y=g,b=`
|
|
int xR; int xC; int xCOffset;
|
|
vec4 wTexel; vec4 previous; vec4 final;`;for(let E=0;E<g;E++)b+=`
|
|
vec4 xTexelC${E*2};
|
|
vec4 xC${E};`;for(let E=0;E<h;E++){for(let $=0;$<g;$++)b+=`
|
|
xTexelC${$*2} = vec4(0.0);
|
|
xC${$} = vec4(0.0);`;b+=`
|
|
xR = xRCorner + ${E*f};
|
|
if (xR >=0 && xR < ${i}) {
|
|
`;for(let $=0;$<y/2+1;$++){let D=$*2;if(b+=`
|
|
xC = xCCorner + ${D*d};
|
|
`,m===1){if(D<g&&(c%2==1?(b+=`
|
|
xCOffset = xC + 1;
|
|
if (xCOffset >= 0 && xCOffset < ${l}) {
|
|
xTexelC${D} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= ${l}) {
|
|
xTexelC${D}.zw = vec2(0.0);
|
|
}
|
|
}
|
|
`,d===1&&D>0?b+=`
|
|
xC${D} = vec4(xTexelC${D-2}.zw, xTexelC${D}.xy);
|
|
`:b+=`
|
|
xCOffset = xC + 1 - 2;
|
|
|
|
if (xCOffset >= 0 && xCOffset < ${l}) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= ${l}) {
|
|
previous.zw = vec2(0.0);
|
|
}
|
|
|
|
xC${D} = vec4(previous.zw, xTexelC${D}.xy);
|
|
} else {
|
|
xC${D} = vec4(0.0, 0.0, xTexelC${D}.xy);
|
|
}
|
|
`):b+=`
|
|
if (xC >= 0 && xC < ${l}) {
|
|
xTexelC${D} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= ${l}) {
|
|
xTexelC${D}.zw = vec2(0.0);
|
|
}
|
|
}
|
|
|
|
xC${D} = xTexelC${D};
|
|
`,D+1<g)){let O=c%2==0?x.nearestLargerEven(d):d;d%2==0&&c%2==1||d%2!=0&&c%2!=1?(b+=`
|
|
xCOffset = xC + ${c%2} + ${O};
|
|
|
|
if (xCOffset >= 0 && xCOffset < ${l}) {
|
|
xTexelC${D+2} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= ${l}) {
|
|
xTexelC${D+2}.zw = vec2(0.0);
|
|
}
|
|
}
|
|
`,d>1&&(b+=`
|
|
xCOffset -= 2;
|
|
if (xCOffset >= 0 && xCOffset < ${l}) {
|
|
xTexelC${D} = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
`),b+=`
|
|
xC${D+1} = vec4(xTexelC${D}.zw, xTexelC${D+2}.xy);
|
|
`):O===1?b+=`
|
|
xC${D+1} = xTexelC${D};
|
|
`:b+=`
|
|
xCOffset = xC + ${O};
|
|
|
|
if (xCOffset >= 0 && xCOffset < ${l}) {
|
|
xTexelC${D+2} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= ${l}) {
|
|
xTexelC${D+2}.zw = vec2(0.0);
|
|
}
|
|
}
|
|
|
|
xC${D+1} = xTexelC${D+2};
|
|
`}}else D<g&&(c%2==1?(b+=`
|
|
xCOffset = xC + 1 - ${m};
|
|
if(xCOffset >= 0 && xCOffset < ${l}) {
|
|
xTexelC${D} = getX(batch, xR, xCOffset, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= ${l}) {
|
|
xTexelC${D}.zw = vec2(0.0);
|
|
}
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < ${l}) {
|
|
xTexelC${D+2} = getX(batch, xR, xC + 1, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xC + 2 >= ${l}) {
|
|
xTexelC${D+2}.zw = vec2(0.0);
|
|
}
|
|
}
|
|
|
|
xC${D} = vec4(xTexelC${D}.zw, xTexelC${D+2}.zw);
|
|
`,D+1<g&&(b+=`
|
|
final = vec4(0.0);
|
|
xCOffset = xC + 1 + ${m};
|
|
if(xCOffset >= 0 && xCOffset < ${l}) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xC${D+1} = vec4(xTexelC${D+2}.xy, final.xy);
|
|
`)):(b+=`
|
|
if(xC >= 0 && xC < ${l}) {
|
|
xTexelC${D} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= ${l}) {
|
|
xTexelC${D}.zw = vec2(0.0);
|
|
}
|
|
}
|
|
|
|
xCOffset = xC + ${m};
|
|
if(xCOffset >= 0 && xCOffset < ${l}) {
|
|
xTexelC${D+2} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= ${l}) {
|
|
xTexelC${D+2}.zw = vec2(0.);
|
|
}
|
|
}
|
|
|
|
xC${D} = vec4(
|
|
xTexelC${D}.xy, xTexelC${D+2}.xy);
|
|
`,D+1<g&&(b+=`
|
|
xC${D+1} = vec4(xTexelC${D}.zw, xTexelC${D+2}.zw);
|
|
`)));D<g&&(b+=`
|
|
wTexel = getW(${E}, ${D}, d1, q);
|
|
dotProd += xC${D} * vec4(wTexel.xz, wTexel.xz);
|
|
`,D+1<g&&(b+=`
|
|
wTexel = getW(${E}, ${D+1}, d1, q);
|
|
dotProd += xC${D+1} * vec4(wTexel.xz, wTexel.xz);
|
|
`))}b+=`
|
|
}
|
|
`}let w="",_="";n&&(o?w=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:s?w=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:w=`vec4 activation(vec4 x) {
|
|
${n}
|
|
}`,_="result = activation(result);");let I=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${w}
|
|
|
|
const ivec2 strides = ivec2(${p}, ${m});
|
|
const ivec2 pads = ivec2(${u}, ${c});
|
|
|
|
void main() {
|
|
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${a};
|
|
int q = d2 - d1 * ${a};
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
|
|
vec4 dotProd = vec4(0.000000000000001);
|
|
|
|
${b}
|
|
|
|
vec4 result = dotProd - vec4(0.000000000000001);
|
|
${I}
|
|
${_}
|
|
setOutput(result);
|
|
}
|
|
`}};function c7(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,filter:s}=e,{strides:a,pad:i,dilations:l,dimRoundingMode:u}=n,c=l;c==null&&(c=[1,1]),x.assert(C.eitherStridesOrDilationsAreOne(a,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${c}'`);let p=C.computeConv2DInfo(o.shape,s.shape,a,c,i,u,!0),m;return W().getBool("WEBGL_PACK_DEPTHWISECONV")&&p.strideWidth<=2&&p.outChannels/p.inChannels==1?m=new Lf(p):m=new Mf(p),t.runWebGLProgram(m,[o,s],"float32")}var j$={kernelName:Ao,backendName:"webgl",kernelFunc:c7};var Pv=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,o=e.padInfo.top,s=e.padInfo.left,a=e.outChannels/e.inChannels;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int dm = coords.w;
|
|
int d2 = d1 * ${a} + dm;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
// TO DO: Vec4 over the batch size
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${o};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${s};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},Mv=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,o=e.strideHeight,s=e.strideWidth,a=t-1-e.padInfo.top,i=n-1-e.padInfo.left,l=e.outChannels/e.inChannels;this.userCode=`
|
|
const ivec2 pads = ivec2(${a}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[3];
|
|
ivec2 dyCorner = coords.yz - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${o}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${s}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
// TO DO: Vec4 over the channelMul
|
|
for (int dm = 0; dm < ${l}; dm++) {
|
|
int d2 = d1 * ${l} + dm;
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, dm);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function p7(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,dy:s}=e,{strides:a,dilations:i,pad:l,dimRoundingMode:u,filterShape:c}=n,p=C.computeConv2DInfo(o.shape,c,a,i,l,u,!0),m=new Pv(p);return t.runWebGLProgram(m,[o,s],"float32")}var U$={kernelName:Cc,backendName:"webgl",kernelFunc:p7};function m7(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,filter:s}=e,{strides:a,dilations:i,pad:l,dimRoundingMode:u,inputShape:c}=n,p=C.computeConv2DInfo(c,s.shape,a,i,l,u,!0),m=new Mv(p);return t.runWebGLProgram(m,[o,s],"float32")}var H$={kernelName:Ic,backendName:"webgl",kernelFunc:m7};var Lv=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
|
|
setOutput(val);
|
|
}
|
|
`}};function f7(r){let{inputs:e,backend:t}=r,{x:n}=e,o=[...n.shape,...n.shape],s=x.sizeFromShape(n.shape),a=ue({inputs:{x:n},backend:t,attrs:{shape:[s]}}),i=new Lv(s),l=t.runWebGLProgram(i,[a],a.dtype),u=ue({inputs:{x:l},backend:t,attrs:{shape:o}});return t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(l),u}var q$={kernelName:Nc,backendName:"webgl",kernelFunc:f7};var zv=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:o,strideHeight:s,strideWidth:a,filterHeight:i,filterWidth:l,dilationHeight:u,dilationWidth:c}=e,{top:p,left:m}=o;this.userCode=`
|
|
const ivec2 strides = ivec2(${s}, ${a});
|
|
const ivec2 pads = ivec2(${p}, ${m});
|
|
const float neg_infinity = -3.4e38;
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.w;
|
|
ivec2 outTopLeftCorner =
|
|
coords.yz * strides - pads;
|
|
int hBeg = outTopLeftCorner.x;
|
|
int wBeg = outTopLeftCorner.y;
|
|
|
|
float curVal = neg_infinity;
|
|
for (int h = 0; h < ${i}; h++) {
|
|
int hIn = hBeg + h * ${u};
|
|
|
|
if (hIn >= 0 && hIn < ${t}) {
|
|
for (int w = 0; w < ${l}; w++) {
|
|
int wIn = wBeg + w * ${c};
|
|
|
|
if (wIn >= 0 && wIn < ${n}) {
|
|
float xVal = getX(batch, hIn, wIn, d1);
|
|
float wVal = getW(h, w, d1);
|
|
|
|
float val = xVal + wVal;
|
|
if (val > curVal) {
|
|
curVal = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = curVal;
|
|
setOutput(result);
|
|
}
|
|
`}};function d7(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,filter:s}=e,{strides:a,pad:i,dilations:l}=n,u=C.computeDilation2DInfo(o.shape,s.shape,a,i,"NHWC",l),c,p=new zv(u);c=t.runWebGLProgram(p,[o,s],"float32");let m=ue({inputs:{x:c},backend:t,attrs:{shape:u.outShape}});return t.disposeIntermediateTensorInfo(c),m}var K$={kernelName:Qa,backendName:"webgl",kernelFunc:d7};function h7(r){let{inputs:e,backend:t,attrs:n}=r,{equation:o}=n,s=e,{allDims:a,summedDims:i,idDims:l}=C.decodeEinsumEquation(o,s.length);C.checkEinsumDimSizes(a.length,l,s);let{path:u,steps:c}=C.getEinsumComputePath(i,l),p=c.length,m=null,f=a.length,d=[];for(let h=0;h<p;++h){for(let g of c[h]){let{permutationIndices:y,expandDims:b}=C.getEinsumPermutation(f,l[g]),w;C.isIdentityPermutation(y)?w=s[g]:(w=$t({inputs:{x:s[g]},backend:t,attrs:{perm:y}}),d.push(w));let _=w.shape.slice();for(let I=0;I<b.length;++I)_.splice(b[I],0,1);x.arraysEqual(w.shape,_)||(w=ue({inputs:{x:w},backend:t,attrs:{shape:_}}),d.push(w)),m===null?m=w:(m=Of({inputs:{a:w,b:m},backend:t}),d.push(m))}h<p-1&&(u[h]>=0&&(m=Pu({inputs:{x:m},backend:t,attrs:{axis:u[h]-(a.length-f),keepDims:!1}}),d.push(m)),f--)}for(let h of d)h!==m&&t.disposeIntermediateTensorInfo(h);return m}var X$={kernelName:Sc,backendName:"webgl",kernelFunc:h7};var g7="return (x >= 0.0) ? x : (exp(x) - 1.0);",x7=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,y7=_e({opSnippet:g7,packedOpSnippet:x7}),Y$={kernelName:Ri,backendName:"webgl",kernelFunc:y7};var b7="return (b >= 1.0) ? a : a * (b + 1.0);",w7=`
|
|
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
|
|
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
|
|
`,_7=r=>{let{inputs:e,backend:t}=r,{dy:n,y:o}=e,s=W().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Is(w7,n.shape,o.shape):new uo(b7,n.shape,o.shape);return t.runWebGLProgram(s,[n,o],n.dtype)},Z$={kernelName:Tc,backendName:"webgl",kernelFunc:_7};var k7=`
|
|
return vec4(equal(a, b));
|
|
`,v7="return float(a == b);",C7=st({opSnippet:v7,packedOpSnippet:k7,dtype:"bool"}),J$={kernelName:Oi,backendName:"webgl",kernelFunc:C7};var I7=`
|
|
// Error function is calculated approximately with elementary function.
|
|
// See "Handbook of Mathematical Functions with Formulas,
|
|
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
|
|
float p = ${C.ERF_P};
|
|
float a1 = ${C.ERF_A1};
|
|
float a2 = ${C.ERF_A2};
|
|
float a3 = ${C.ERF_A3};
|
|
float a4 = ${C.ERF_A4};
|
|
float a5 = ${C.ERF_A5};
|
|
|
|
float sign = sign(x);
|
|
x = abs(x);
|
|
float t = 1.0 / (1.0 + p * x);
|
|
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
|
|
`,N7=_e({opSnippet:I7}),Q$={kernelName:Fi,backendName:"webgl",kernelFunc:N7};var eR="return exp(x);",Bv=_e({opSnippet:eR,packedOpSnippet:eR,cpuKernelImpl:Y2}),tR={kernelName:Do,backendName:"webgl",kernelFunc:Bv};function bx(r){let{inputs:e,attrs:t,backend:n}=r,{dim:o}=t,{input:s}=e,a=s.shape.length,i=s.shape.slice(),l=o;return o<0&&(x.assert(-(a+1)<=o,()=>`Axis must be in the interval [${-(a+1)}, ${a}]`),l=a+o+1),i.splice(l,0,1),ue({inputs:{x:s},backend:n,attrs:{shape:i}})}var rR={kernelName:Bs,backendName:"webgl",kernelFunc:bx};var nR="return exp(x) - 1.0;",S7=_e({opSnippet:nR,packedOpSnippet:nR,cpuKernelImpl:Z2}),oR={kernelName:Pi,backendName:"webgl",kernelFunc:S7};var wx=class{constructor(e,t,n){this.variableNames=["real","imag"];let o=t[1];this.outputShape=t;let s=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,a=n?`${o}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
|
|
const float exponentMultiplier = ${s};
|
|
|
|
float unaryOpComplex(float real, float expR, float imag, float expI) {
|
|
${i}
|
|
}
|
|
|
|
float mulMatDFT(int batch, int index) {
|
|
float indexRatio = float(index) / float(${o});
|
|
float exponentMultiplierTimesIndexRatio =
|
|
exponentMultiplier * indexRatio;
|
|
|
|
float result = 0.0;
|
|
|
|
for (int i = 0; i < ${o}; i++) {
|
|
// x = (-2|2 * PI / N) * index * i;
|
|
float x = exponentMultiplierTimesIndexRatio * float(i);
|
|
float expR = cos(x);
|
|
float expI = sin(x);
|
|
float real = getReal(batch, i);
|
|
float imag = getImag(batch, i);
|
|
|
|
result +=
|
|
unaryOpComplex(real, expR, imag, expI) / ${a};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
setOutput(mulMatDFT(coords[0], coords[1]));
|
|
}
|
|
`}};function _x(r,e,t){let n=t.texData.get(r.dataId),o=x.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],a=o/s,i=ue({inputs:{x:r},backend:t,attrs:{shape:[a,s]}}),l=i.shape,u=new wx("real",l,e),c=new wx("imag",l,e),p=[{dataId:n.complexTensorInfos.real.dataId,dtype:n.complexTensorInfos.real.dtype,shape:l},{dataId:n.complexTensorInfos.imag.dataId,dtype:n.complexTensorInfos.imag.dtype,shape:l}],m=t.runWebGLProgram(u,p,"float32"),f=t.runWebGLProgram(c,p,"float32"),d=gn({inputs:{real:m,imag:f},backend:t});t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f);let h=ue({inputs:{x:d},backend:t,attrs:{shape:r.shape}});return t.disposeIntermediateTensorInfo(i),t.disposeIntermediateTensorInfo(d),h}function T7(r){let{inputs:e,backend:t}=r,{input:n}=e;return _x(n,!1,t)}var sR={kernelName:Ac,backendName:"webgl",kernelFunc:T7};var Vv=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.outputShape=e,this.userCode=`
|
|
uniform float value;
|
|
void main() {
|
|
// Input can be obtained from uniform value.
|
|
setOutput(value);
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}};function zf(r){let{backend:e,attrs:t}=r,{shape:n,value:o}=t,{dtype:s}=t;if(s=s||x.inferDtype(o),s==="string"){let a=x.getArrayFromDType(s,x.sizeFromShape(n));return a.fill(o),e.makeTensorInfo(n,s,a)}else{let a=new Vv(n,o),i=a.getCustomSetupFunc(o);return e.runWebGLProgram(a,[],s,i)}}var iR={kernelName:el,backendName:"webgl",kernelFunc:zf};var Gv=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
|
|
int coordX = ${t} - x;
|
|
float outputValue;
|
|
if(coordX >= 0 && coordX < ${t}) {
|
|
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
|
|
} else {
|
|
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}};var aR={kernelName:Mi,backendName:"webgl",kernelFunc:({inputs:r,backend:e})=>{let{image:t}=r,n=e,o=new Gv(t.shape);return n.runWebGLProgram(o,[t],t.dtype)}};var lR="return floor(x);",A7=_e({opSnippet:lR,packedOpSnippet:lR,cpuKernelImpl:J2}),uR={kernelName:$o,backendName:"webgl",kernelFunc:A7};var E7=`
|
|
float s = sign(a) * sign(b);
|
|
int ia = round(a);
|
|
int ib = round(b);
|
|
if (ib != 0) {
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
return float(idiv(ia, ib, s));
|
|
} else {
|
|
return NAN;
|
|
}
|
|
`,D7=`
|
|
ivec4 ia = round(a);
|
|
ivec4 ib = round(b);
|
|
bvec4 cond = notEqual(ib, ivec4(0));
|
|
ivec4 result = ivec4(0);
|
|
vec4 s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
result[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
result[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
result[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
result[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4(result);
|
|
`,$7=st({opSnippet:E7,packedOpSnippet:D7,dtype:"int32"}),cR={kernelName:Ro,backendName:"webgl",kernelFunc:$7};var Wv=class{constructor(e){this.variableNames=["A"];let t=Ot(),[n,o]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${o}.0, ${n}.0);
|
|
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
setOutput(floor(value * 255.0 + 0.5));
|
|
}
|
|
`}};var jv=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=Ot(),[n,o]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for(int row=0; row<=1; row++) {
|
|
for(int col=0; col<=1; col++) {
|
|
texC = coords[1] + row;
|
|
depth = coords[2] + col;
|
|
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${o}.0, ${n}.0);
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
result[row * 2 + col] = floor(value * 255.0 + 0.5);
|
|
}
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}};var pR={kernelName:Am,backendName:"webgl",kernelFunc:R7},Ap;function R7(r){let{inputs:e,backend:t,attrs:n}=r,{pixels:o}=e,{numChannels:s}=n,a=typeof HTMLVideoElement!="undefined"&&o instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&o instanceof HTMLImageElement,[l,u]=a?[o.videoWidth,o.videoHeight]:[o.width,o.height],c=[u,l],p=[u,l,s];(i||a)&&(Ap==null&&(Ap=document.createElement("canvas").getContext("2d")),Ap.canvas.width=l,Ap.canvas.height=u,Ap.drawImage(o,0,0,l,u),o=Ap.canvas);let m=t.makeTensorInfo(c,"int32");t.texData.get(m.dataId).usage=Rr.PIXELS,t.gpgpu.uploadPixelDataToTexture(t.getTexture(m.dataId),o);let f=W().getBool("WEBGL_PACK")?new jv(p):new Wv(p),d=t.runWebGLProgram(f,[m],"int32");return t.disposeData(m.dataId),d}function F7(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=n,h=C.convertConv2DDataFormat(c),g=C.computeConv2DInfo(o.shape,s.shape,l,p,u,m,!1,h),y,b=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))y=gx({x:o,filter:s,convInfo:g,backend:t,bias:a,activation:f,preluActivationWeights:i,leakyreluAlpha:d});else if(W().getBool("WEBGL_CONV_IM2COL")&&o.shape[0]===1)y=xx({x:o,filter:s,convInfo:g,backend:t,bias:a,activation:f,preluActivationWeights:i,leakyreluAlpha:d});else{let _=a!=null,I=i!=null,E=f==="leakyrelu",$=f?_l(f,!1):null,D=new Pf(g,_,$,I,E),O=[o,s];if(a&&O.push(a),i&&O.push(i),E){let M=t.makeTensorInfo([],"float32",x.createScalarValue(d,"float32"));O.push(M),b.push(M)}y=t.runWebGLProgram(D,O,"float32")}let w=ue({inputs:{x:y},backend:t,attrs:{shape:g.outShape}});return b.push(y),b.forEach(_=>t.disposeIntermediateTensorInfo(_)),w}var mR={kernelName:Js,backendName:"webgl",kernelFunc:F7};function O7(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dilations:c,dimRoundingMode:p,activation:m,leakyreluAlpha:f}=n,d=[],h=c;h==null&&(h=[1,1]),x.assert(C.eitherStridesOrDilationsAreOne(l,h),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${h}'`);let g=C.computeConv2DInfo(o.shape,s.shape,l,h,u,p,!0),y=W().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels==1,b=m?_l(m,y):null,w=[o,s],_=a!=null,I=i!=null,E=m==="leakyrelu";if(_&&w.push(a),I&&w.push(i),E){let O=t.makeTensorInfo([],"float32",x.createScalarValue(f,"float32"));w.push(O),d.push(O)}let $;y?$=new Lf(g,_,b,I,E):$=new Mf(g,_,b,I,E);let D=t.runWebGLProgram($,w,"float32");return d.forEach(O=>t.disposeIntermediateTensorInfo(O)),D}var fR={kernelName:Qs,backendName:"webgl",kernelFunc:O7};var Uv=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let o=Ve(t.length),s=Ve(n.length),a=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
|
|
${o} strides = ${o}(${this.strides});
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
int flattenIndex = 0;
|
|
for (int j = 0; j < ${this.sliceDim}; j++) {
|
|
int index = round(getIndices(coords[0], j));
|
|
flattenIndex += index * ${a};
|
|
}
|
|
setOutput(getX(flattenIndex, coords[1]));
|
|
}
|
|
`}};function P7(r){let{inputs:e,backend:t}=r,{params:n,indices:o}=e,s=o.shape,a=s[s.length-1],[i,l,u,c]=C.prepareAndValidate(n,o),p=ue({inputs:{x:o},backend:t,attrs:{shape:[l,a]}}),m=ue({inputs:{x:n},backend:t,attrs:{shape:[x.sizeFromShape(n.shape)/u,u]}}),f=new Uv(a,c,[l,u]),d=t.runWebGLProgram(f,[m,p],m.dtype),h=ue({inputs:{x:d},backend:t,attrs:{shape:i}});return t.disposeIntermediateTensorInfo(p),t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(d),h}var dR={kernelName:Li,backendName:"webgl",kernelFunc:P7};var Hv=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=Ve(this.rank),o=M7(e,2);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
setOutput(getA(${o}));
|
|
}
|
|
`}};function M7(r,e){let t=["resRC.x","resRC.y","resRC.z","resRC.w"],n=[];for(let o=0;o<r.length;o++)o===2?n.push("int(getIndices(resRC.x, resRC.z))"):n.push(`${t[o]}`);return n.join()}function L7(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,indices:s}=e,{axis:a,batchDims:i}=n,l=x.parseAxisParam(a,o.shape)[0],u=C.segment_util.collectGatherOpShapeInfo(o,s,l,i),c=x.sizeFromShape(s.shape),p=[],m=ue({inputs:{x:o},backend:t,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),f=ue({inputs:{x:s},backend:t,attrs:{shape:[u.batchSize,c/u.batchSize]}});p.push(m),p.push(f);let d=[u.batchSize,u.outerSize,c/u.batchSize,u.sliceSize];if(t.shouldExecuteOnCPU([o,s])||o.dtype==="string"){let b=t.bufferSync(f),w=t.bufferSync(m),_=Q2(w,b,d);return p.forEach(I=>t.disposeIntermediateTensorInfo(I)),t.makeTensorInfo(u.outputShape,_.dtype,_.values)}let h=new Hv(m.shape,d),g=t.runWebGLProgram(h,[m,f],m.dtype);p.push(g);let y=ue({inputs:{x:g},backend:t,attrs:{shape:u.outputShape}});return p.forEach(b=>t.disposeIntermediateTensorInfo(b)),y}var hR={kernelName:Vs,backendName:"webgl",kernelFunc:L7};var z7="return float(a > b);",B7=`
|
|
return vec4(greaterThan(a, b));
|
|
`,V7=st({opSnippet:z7,packedOpSnippet:B7,cpuKernelImpl:eD,dtype:"bool"}),gR={kernelName:zi,backendName:"webgl",kernelFunc:V7};var G7="return float(a >= b);",W7=`
|
|
return vec4(greaterThanEqual(a, b));
|
|
`,j7=st({opSnippet:G7,packedOpSnippet:W7,dtype:"bool"}),xR={kernelName:Oo,backendName:"webgl",kernelFunc:j7};function U7(r){let{inputs:e,backend:t}=r,{input:n}=e;return _x(n,!0,t)}var yR={kernelName:Ec,backendName:"webgl",kernelFunc:U7};var H7="return float(!isnan(x) && !isinf(x));",q7=_e({opSnippet:H7,dtype:"bool"}),bR={kernelName:Bi,backendName:"webgl",kernelFunc:q7};var K7="return float(isinf(x));",X7=_e({opSnippet:K7,dtype:"bool"}),wR={kernelName:Vi,backendName:"webgl",kernelFunc:X7};var Y7="return float(isnan(x));",Z7=_e({opSnippet:Y7,dtype:"bool"}),_R={kernelName:Gi,backendName:"webgl",kernelFunc:Z7};var J7="return float(a < b);",Q7=`
|
|
return vec4(lessThan(a, b));
|
|
`,eY=st({opSnippet:J7,packedOpSnippet:Q7,cpuKernelImpl:tD,dtype:"bool"}),kR={kernelName:Wi,backendName:"webgl",kernelFunc:eY};var tY="return float(a <= b);",rY=`
|
|
return vec4(lessThanEqual(a, b));
|
|
`,nY=st({opSnippet:tY,packedOpSnippet:rY,dtype:"bool"}),vR={kernelName:ji,backendName:"webgl",kernelFunc:nY};function oY(r){let{backend:e,attrs:t}=r,{start:n,stop:o,num:s}=t,a=rD(n,o,s);return e.makeTensorInfo([a.length],"float32",a)}var CR={kernelName:$c,backendName:"webgl",kernelFunc:oY};var sY=`if (x < 0.0) return NAN;
|
|
return log(x);`,iY=`
|
|
vec4 result = log(x);
|
|
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
|
|
result.r = isNaN.r == 1.0 ? NAN : result.r;
|
|
result.g = isNaN.g == 1.0 ? NAN : result.g;
|
|
result.b = isNaN.b == 1.0 ? NAN : result.b;
|
|
result.a = isNaN.a == 1.0 ? NAN : result.a;
|
|
|
|
return result;
|
|
`,aY=_e({opSnippet:sY,packedOpSnippet:iY,cpuKernelImpl:nD}),IR={kernelName:Mo,backendName:"webgl",kernelFunc:aY};var lY="return log(1.0 + x);",uY=_e({opSnippet:lY}),NR={kernelName:Ui,backendName:"webgl",kernelFunc:uY};var cY="return float(a >= 1.0 && b >= 1.0);",pY=`
|
|
return vec4(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) *
|
|
vec4(greaterThanEqual(b, vec4(1.0))));
|
|
`,mY=st({opSnippet:cY,packedOpSnippet:pY,dtype:"bool"}),SR={kernelName:Hi,backendName:"webgl",kernelFunc:mY};var fY="return float(!(x >= 1.0));",dY=_e({opSnippet:fY}),TR={kernelName:jl,backendName:"webgl",kernelFunc:dY};var hY="return float(a >= 1.0 || b >= 1.0);",gY=`
|
|
return min(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) +
|
|
vec4(greaterThanEqual(b, vec4(1.0))),
|
|
vec4(1.0));
|
|
`,xY=st({opSnippet:hY,packedOpSnippet:gY,dtype:"bool"}),AR={kernelName:Ul,backendName:"webgl",kernelFunc:xY};var qv=class{constructor(e,t,n,o,s){this.variableNames=["x"],this.outputShape=[];let a=t,i=e[3]-1;this.outputShape=e;let l,u=`float(${n}) + float(${o}) * sum`;s===.5?l=`inversesqrt(${u})`:s===1?l=`1.0/(${u})`:l=`exp(log(${u}) * float(-${s}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
int d = coords[3];
|
|
float x = getX(b, r, c, d);
|
|
float sum = 0.0;
|
|
for (int j = -${a}; j <= ${a}; j++) {
|
|
int idx = d + j;
|
|
if (idx >= 0 && idx <= ${i}) {
|
|
float z = getX(b, r, c, idx);
|
|
sum += z * z;
|
|
}
|
|
}
|
|
float val = x * ${l};
|
|
setOutput(val);
|
|
}
|
|
`}};var Kv=class{constructor(e,t,n,o,s){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let a=t,i=e[3]-1;this.outputShape=e;let l,u=`float(${n}) + float(${o}) * sum`;s===.5?l=`inversesqrt(${u})`:s===1?l=`1.0/(${u})`:l=`exp(log(${u}) * float(-${s}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords.x;
|
|
int r = coords.y;
|
|
int c = coords.z;
|
|
int d = coords.w;
|
|
|
|
bool hasNextCol = d < ${this.outputShape[3]};
|
|
bool hasNextRow = c < ${this.outputShape[2]};
|
|
|
|
vec4 sum = vec4(0.);
|
|
vec4 xFragAtOutputCoords = getX(b, r, c, d);
|
|
|
|
vec4 xAtOutputCoords = vec4(
|
|
getChannel(xFragAtOutputCoords, vec2(c, d)),
|
|
hasNextCol ?
|
|
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
|
|
hasNextRow ?
|
|
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
|
|
);
|
|
|
|
int firstChannel = d - ${a};
|
|
vec2 cache = vec2(0.);
|
|
if(firstChannel >= 0){
|
|
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
|
|
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
|
|
if(hasNextRow){
|
|
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
|
|
}
|
|
}
|
|
|
|
ivec2 depth = ivec2(d, d + 1);
|
|
for (int j = - ${a}; j <= ${a}; j++) {
|
|
ivec2 idx = depth + j;
|
|
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
|
|
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
|
|
|
|
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
|
|
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
|
|
|
|
if(depthInRange || depthPlusOneInRange){
|
|
vec4 z = vec4(0.);
|
|
vec4 xFragAtCurrentDepth;
|
|
z.xz = cache.xy;
|
|
if(depthPlusOneInRange && hasNextCol){
|
|
xFragAtCurrentDepth = idx.y != d ?
|
|
getX(b, r, c, idx.y) : xFragAtOutputCoords;
|
|
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
|
|
if(hasNextRow){
|
|
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
|
|
}
|
|
}
|
|
cache.xy = z.yw;
|
|
sum += z * z;
|
|
}
|
|
}
|
|
vec4 result = xAtOutputCoords * ${l};
|
|
setOutput(result);
|
|
}
|
|
`}};var yY=r=>{let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{depthRadius:s,bias:a,alpha:i,beta:l}=n,u=W().getBool("WEBGL_PACK_NORMALIZATION")?new Kv(o.shape,s,a,i,l):new qv(o.shape,s,a,i,l);return t.runWebGLProgram(u,[o],o.dtype)},ER={kernelName:tl,backendName:"webgl",kernelFunc:yY};var Xv=class{constructor(e,t,n,o,s){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=o,this.beta=s,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float result = 0.0;
|
|
for (int d = 0; d < ${this.depth}; ++d) {
|
|
int depthBegin = int(max(0.0, float(d - ${t})));
|
|
int depthEnd = int(min(float(${this.depth}),
|
|
float(d + ${t} + 1)));
|
|
|
|
const int MIN_DEPTH_BEGIN = 0;
|
|
const int MAX_DEPTH_END = ${this.depth};
|
|
|
|
float norm = 0.0;
|
|
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd) {
|
|
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
norm = float(${o}) * norm + float(${n});
|
|
|
|
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd){
|
|
float dyi = -2.0 * float(${o})
|
|
* float(${s})
|
|
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
|
|
/ norm;
|
|
if (k == d) {
|
|
dyi += pow(norm, -1.0 * ${s});
|
|
}
|
|
if (k == coords[3]) {
|
|
dyi *= getDy(b, r, c, d);
|
|
result += dyi;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};var bY=r=>{let{inputs:e,backend:t,attrs:n}=r,{x:o,y:s,dy:a}=e,{depthRadius:i,bias:l,alpha:u,beta:c}=n,p=new Xv(o.shape,i,l,u,c);return t.runWebGLProgram(p,[o,s,a],o.dtype)},DR={kernelName:Rc,backendName:"webgl",kernelFunc:bY};function $R(r,e,t,n){let o=x.sizeFromShape(e),a=x.sizeFromShape(r.shape)/o,i=ue({inputs:{x:r},attrs:{shape:[a,o]},backend:n}),l=An(i,r.dtype,"max",n),u=ue({inputs:{x:l},attrs:{shape:t},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}function Yv(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{reductionIndices:s,keepDims:a}=n,i=o.shape.length,l=x.parseAxisParam(s,o.shape),u=l,c=C.getAxesPermutation(u,i),p=c!=null,m=t.shouldExecuteOnCPU([o]),f=o;if(p){if(m){let w=t.texData.get(f.dataId).values,_=new Array(i);for(let $=0;$<_.length;$++)_[$]=o.shape[c[$]];let I=Fu(w,o.shape,o.dtype,c,_);f=t.makeTensorInfo(_,o.dtype);let E=t.texData.get(f.dataId);E.values=I}else f=kl(o,c,t);u=C.getInnerMostAxes(u.length,i)}C.assertAxesAreInnerMostDims("max",u,i);let[d,h]=C.computeOutAndReduceShapes(f.shape,u),g=d;a&&(g=C.expandShapeToKeepDim(d,l));let y;if(m){let w=t.texData.get(f.dataId).values,_=oD(w,x.sizeFromShape(h),g,o.dtype);y=t.makeTensorInfo(g,o.dtype);let I=t.texData.get(y.dataId);I.values=_}else y=$R(f,h,g,t);return p&&t.disposeIntermediateTensorInfo(f),y}var RR={kernelName:Lo,backendName:"webgl",kernelFunc:Yv};var wY=ux+`
|
|
return max(a, b);
|
|
`,_Y=`
|
|
vec4 result = vec4(max(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+wl+`
|
|
return result;
|
|
`,kY=st({opSnippet:wY,packedOpSnippet:_Y,cpuKernelImpl:sD}),FR={kernelName:zo,backendName:"webgl",kernelFunc:kY};function vY(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e;ks(o,"maxPool");let{filterSize:s,strides:a,pad:i,dimRoundingMode:l}=n,u=1;x.assert(C.eitherStridesOrDilationsAreOne(a,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=C.computePool2DInfo(o.shape,s,a,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&x.arraysEqual(c.inShape,c.outShape))return jt({inputs:{x:o},backend:t});let p=new ui(c,"max",!1);return t.runWebGLProgram(p,[o],o.dtype)}var OR={kernelName:Bo,backendName:"webgl",kernelFunc:vY};function CY(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{filterSize:s,strides:a,pad:i,dataFormat:l,dimRoundingMode:u}=n,c=[1,1,1],p=C.computePool3DInfo(o.shape,s,a,c,i,u,l),m=new Lu(p,"max",!1);return t.runWebGLProgram(m,[o],o.dtype)}var PR={kernelName:rl,backendName:"webgl",kernelFunc:CY};var Zv=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,o=e.dilationHeight,s=e.effectiveFilterHeight,a=e.effectiveFilterWidth,i=s-1-e.padInfo.top,l=a-1-e.padInfo.left,u=s*a-1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${l});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${s};
|
|
wR += ${o}) {
|
|
float dyR = float(dyRCorner + wR) / ${t}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${a}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${n}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
int maxPosValue = ${u} - int(getMaxPos(b, idyR, idyC, d));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue = wR * ${a} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},Jv=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,o=e.strideWidth,s=e.dilationDepth,a=e.dilationHeight,i=e.dilationWidth,l=e.effectiveFilterDepth,u=e.effectiveFilterHeight,c=e.effectiveFilterWidth,p=l-1-e.padInfo.front,m=u-1-e.padInfo.top,f=c-1-e.padInfo.left,d=l*u*c-1;this.userCode=`
|
|
const ivec3 pads = ivec3(${p}, ${m}, ${f});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${l};
|
|
wD += ${s}) {
|
|
float dyD = float(dyDCorner + wD) / ${t}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${u};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${c};
|
|
wC += ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${o}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
int maxPosValue = ${d} -
|
|
int(getMaxPos(batch, idyD, idyR, idyC, ch));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue =
|
|
wD * ${u} * ${c} +
|
|
wR * ${c} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function IY(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,input:s}=e,a=s,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=n,p=[1,1,1],m=C.computePool3DInfo(a.shape,i,l,p,u,c),f=new Lu(m,"max",!0),d=t.runWebGLProgram(f,[a],a.dtype),h=new Jv(m),g=t.runWebGLProgram(h,[o,d],a.dtype);return t.disposeIntermediateTensorInfo(d),g}var MR={kernelName:Oc,backendName:"webgl",kernelFunc:IY};function NY(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,input:s,output:a}=e,i=s;ks([s,a],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:p}=n,m=C.computePool2DInfo(i.shape,l,u,1,c,p),f=!0,d=new ui(m,"max",f),h=t.runWebGLProgram(d,[i],i.dtype),g=new Zv(m),y=t.runWebGLProgram(g,[o,h],i.dtype);return t.disposeIntermediateTensorInfo(h),y}var LR={kernelName:Fc,backendName:"webgl",kernelFunc:NY};function zR(r,e,t,n){let o=new ui(t,"max",!1),s=n.runWebGLProgram(o,[r],"float32");o=new ui(t,"max",!0,!0,e);let a=n.runWebGLProgram(o,[r],"float32");return[s,a]}var BR={kernelName:Pc,backendName:"webgl",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{x:n}=r,{filterSize:o,strides:s,pad:a,includeBatchInIndex:i}=e,l=t;x.assert(n.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${n.shape.length}.`);let u=[1,1];x.assert(C.eitherStridesOrDilationsAreOne(s,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${u}'`);let c=C.computePool2DInfo(n.shape,o,s,u,a),[p,m]=zR(n,i,c,l);return[p,m]}};function VR(r,e,t,n){let o=x.sizeFromShape(e),a=x.sizeFromShape(r.shape)/o,i=ue({inputs:{x:r},attrs:{shape:[a,o]},backend:n}),l=An(i,"float32","mean",n),u=ue({inputs:{x:l},attrs:{shape:t},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var GR={kernelName:Vo,backendName:"webgl",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{x:n}=r,{keepDims:o,axis:s}=e,a=t,i=n.shape.length,l=x.parseAxisParam(s,n.shape),u=l,c=C.getAxesPermutation(u,i),p=c!=null,m=a.shouldExecuteOnCPU([n]),f=[],d=n;if(p){if(m){let _=a.texData.get(d.dataId).values,I=new Array(i);for(let D=0;D<I.length;D++)I[D]=n.shape[c[D]];let E=Fu(_,n.shape,n.dtype,c,I);d=a.makeTensorInfo(I,n.dtype);let $=a.texData.get(d.dataId);$.values=E}else d=kl(n,c,a);f.push(d),u=C.getInnerMostAxes(u.length,i)}C.assertAxesAreInnerMostDims("sum",u,i);let[h,g]=C.computeOutAndReduceShapes(d.shape,u),y=h;o&&(y=C.expandShapeToKeepDim(h,l));let b=VR(d,g,y,a);for(let w of f)a.disposeIntermediateTensorInfo(w);return b}};function SY(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,keepDims:a}=n,i=o.shape.length,l=x.parseAxisParam(s,o.shape),u=l,c=C.getAxesPermutation(u,i),p=o;c!=null&&(p=$t({inputs:{x:o},backend:t,attrs:{perm:c}}),u=C.getInnerMostAxes(u.length,o.shape.length)),C.assertAxesAreInnerMostDims("min",u,i);let[m,f]=C.computeOutAndReduceShapes(p.shape,u),d=x.sizeFromShape(f),h=ue({inputs:{x:p},backend:t,attrs:{shape:[-1,d]}}),g=An(h,h.dtype,"min",t),y;if(a){let b=C.expandShapeToKeepDim(m,l);y=ue({inputs:{x:g},backend:t,attrs:{shape:b}})}else y=ue({inputs:{x:g},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(h),t.disposeIntermediateTensorInfo(g),c!=null&&t.disposeIntermediateTensorInfo(p),y}var WR={kernelName:Go,backendName:"webgl",kernelFunc:SY};var TY=ux+`
|
|
return min(a, b);
|
|
`,AY=`
|
|
vec4 result = vec4(min(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+wl+`
|
|
return result;
|
|
`,EY=st({opSnippet:TY,packedOpSnippet:AY,cpuKernelImpl:iD}),jR={kernelName:Wo,backendName:"webgl",kernelFunc:EY};var Qv=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((c,p)=>c[0]+e[p]+c[1]);let o=e.length,s=Ve(o),a=t.map(c=>c[0]).join(","),i=t.map((c,p)=>c[0]+e[p]).join(","),l=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,o),u=n==="reflect"?0:1;if(o===1){this.userCode=`
|
|
int start = ${a};
|
|
int end = ${i};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start) {
|
|
outC = start * 2 - outC - ${u};
|
|
} else if(outC >= end) {
|
|
outC = (end - 1) * 2 - outC + ${u};
|
|
}
|
|
setOutput(getX(outC - start));
|
|
}
|
|
`;return}this.userCode=`
|
|
${s} start = ${s}(${a});
|
|
${s} end = ${s}(${i});
|
|
|
|
void main() {
|
|
${s} outC = getOutputCoords();
|
|
for (int i = 0; i < ${o}; i++) {
|
|
if (outC[i] < start[i]) {
|
|
outC[i] = start[i] * 2 - outC[i] - ${u};
|
|
} else if(outC[i] >= end[i]) {
|
|
outC[i] = (end[i] - 1) * 2 - outC[i] + ${u};
|
|
}
|
|
}
|
|
${s} coords = outC - start;
|
|
setOutput(getX(${l}));
|
|
}
|
|
`}};var eC=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((d,h)=>d[0]+e[h]+d[1]);let o=e.length,s=Ve(o),a=t.map(d=>d[0]).join(","),i=t.map((d,h)=>d[0]+e[h]).join(","),l=Wt("rc",o),u=Wt("source",o),c=`${l[o-1]} < ${this.outputShape[o-1]}`,p=o===1?"source":`vec2(${u.slice(-2).join()})`,m=n==="reflect"?0:1,f="";if(o===1){let d=`
|
|
${s} source = rc;
|
|
if (source < start) {
|
|
source = start * 2 - source - ${m};
|
|
} else if (source >= end) {
|
|
source = (end - 1) * 2 - source + ${m};
|
|
}
|
|
source -= start;
|
|
`;f=`
|
|
${s} rc = outputLoc;
|
|
${d}
|
|
result[0] = getChannel(getX(${u.join()}), ${p});
|
|
${l[o-1]} += 1;
|
|
if(${c}) {
|
|
${d}
|
|
result[1] = getChannel(getX(${u.join()}), ${p});
|
|
}
|
|
`}else{let d=`
|
|
${s} source = rc;
|
|
${s} lt = ${s}(lessThan(source, start));
|
|
${s} gte = ${s}(greaterThanEqual(source, end));
|
|
${s} orig = 1 - (lt + gte);
|
|
source = orig * source +
|
|
lt * (start * 2 - source - ${m}) +
|
|
gte * ((end - 1) * 2 - source + ${m});
|
|
source -= start;
|
|
`;f=`
|
|
${s} rc = outputLoc;
|
|
${d}
|
|
result[0] = getChannel(getX(${u.join()}), ${p});
|
|
${l[o-1]} += 1;
|
|
if(${c}) {
|
|
${d}
|
|
result[1] = getChannel(getX(${u.join()}), ${p});
|
|
}
|
|
rc = outputLoc;
|
|
${l[o-2]} += 1;
|
|
if(${l[o-2]} < ${this.outputShape[o-2]}) {
|
|
${d}
|
|
result[2] = getChannel(getX(${u.join()}), ${p});
|
|
${l[o-1]} += 1;
|
|
if(${c}) {
|
|
${d}
|
|
result[3] = getChannel(getX(${u.join()}), ${p});
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
const ${s} start = ${s}(${a});
|
|
const ${s} end = ${s}(${i});
|
|
|
|
void main() {
|
|
${s} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${f}
|
|
setOutput(result);
|
|
}
|
|
`}};var DY=({inputs:r,backend:e,attrs:t})=>{let{x:n}=r,{paddings:o,mode:s}=t,a=W().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new eC(n.shape,o,s):new Qv(n.shape,o,s);return e.runWebGLProgram(a,[n],n.dtype)},UR={kernelName:jo,backendName:"webgl",kernelFunc:DY};var $Y=`if (b == 0.0) return NAN;
|
|
return mod(a, b);`,RY=`
|
|
vec4 result = mod(a, b);
|
|
vec4 isNaN = vec4(equal(b, vec4(0.0)));
|
|
`+wl+`
|
|
return result;
|
|
`,FY=st({opSnippet:$Y,packedOpSnippet:RY}),HR={kernelName:qi,backendName:"webgl",kernelFunc:FY};var tC=class{constructor(e,t,n){this.variableNames=["probs"],this.outputShape=[e,n],this.userCode=`
|
|
uniform float seed;
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
|
|
float r = random(seed);
|
|
float cdf = 0.0;
|
|
|
|
for (int i = 0; i < ${t-1}; i++) {
|
|
cdf += getProbs(batch, i);
|
|
|
|
if (r < cdf) {
|
|
setOutput(float(i));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If no other event happened, last event happened.
|
|
setOutput(float(${t-1}));
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.seedLoc==null&&(this.seedLoc=t.getUniformLocation(n,"seed")),t.gl.uniform1f(this.seedLoc,e)}}};var OY=`
|
|
if (a == b) {
|
|
return 1.0;
|
|
};
|
|
return a / b;`,PY=`
|
|
// vec4 one = vec4(equal(a, b));
|
|
// return one + (vec4(1.0) - one) * a / b;
|
|
vec4 result = a / b;
|
|
if(a.x == b.x) {
|
|
result.x = 1.;
|
|
}
|
|
if(a.y == b.y) {
|
|
result.y = 1.;
|
|
}
|
|
if(a.z == b.z) {
|
|
result.z = 1.;
|
|
}
|
|
if(a.w == b.w) {
|
|
result.w = 1.;
|
|
}
|
|
|
|
return result;
|
|
`,rC=st({opSnippet:OY,packedOpSnippet:PY,checkOutOfBounds:!0}),qR={kernelName:Eo,backendName:"webgl",kernelFunc:rC};var KR="return a - b;",nC=st({opSnippet:KR,packedOpSnippet:KR,supportsComplex:!0,cpuKernelImpl:dD}),XR={kernelName:ls,backendName:"webgl",kernelFunc:nC};function oC(r){let{inputs:e,backend:t,attrs:n}=r,{logits:o}=e,{dim:s}=n,a=x.parseAxisParam([s],o.shape),i=Yv({inputs:{x:o},backend:t,attrs:{reductionIndices:a,keepDims:!1}}),l=C.expandShapeToKeepDim(i.shape,a),u=ue({inputs:{x:i},backend:t,attrs:{shape:l}}),c=nC({inputs:{a:o,b:u},backend:t}),p=Bv({inputs:{x:c},backend:t}),m=Pu({inputs:{x:p},backend:t,attrs:{axis:a,keepDims:!1}}),f=ue({inputs:{x:m},backend:t,attrs:{shape:l}}),d=rC({inputs:{a:p,b:f},backend:t});return t.disposeIntermediateTensorInfo(i),t.disposeIntermediateTensorInfo(u),t.disposeIntermediateTensorInfo(c),t.disposeIntermediateTensorInfo(p),t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f),d}var YR={kernelName:is,backendName:"webgl",kernelFunc:oC};function MY(r){let{inputs:e,backend:t,attrs:n}=r,{logits:o}=e,{numSamples:s,seed:a,normalized:i}=n,l=i?o:oC({inputs:{logits:o},backend:t,attrs:{dim:o.shape.length-1}}),u=l.shape[0],c=l.shape[1],p=new tC(u,c,s),m=p.getCustomSetupFunc(a),f=t.runWebGLProgram(p,[l],"int32",m);return i||t.disposeIntermediateTensorInfo(l),f}var ZR={kernelName:Mc,backendName:"webgl",kernelFunc:MY};var JR="return -x;";function LY(r){let{inputs:e,backend:t}=r,{x:n}=e;if(t.shouldExecuteOnCPU([n])){let s=t.texData.get(n.dataId),[a,i]=lD(s.values,n.shape,n.dtype);return t.makeTensorInfo(i,n.dtype,a)}let o;return W().getBool("WEBGL_PACK_UNARY_OPERATIONS")?o=new Cs(n.shape,JR):o=new hn(n.shape,JR),t.runWebGLProgram(o,[n],n.dtype)}var QR={kernelName:Gs,backendName:"webgl",kernelFunc:LY};var zY=Dr.nonMaxSuppressionV3Impl;function BY(r){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:e,backend:t,attrs:n}=r,{boxes:o,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l}=n,u=t.readSync(o.dataId),c=t.readSync(s.dataId),{selectedIndices:p}=zY(u,c,a,i,l);return t.makeTensorInfo([p.length],"int32",new Int32Array(p))}var eF={kernelName:Xi,backendName:"webgl",kernelFunc:BY};var VY=Dr.nonMaxSuppressionV4Impl;function GY(r){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:e,backend:t,attrs:n}=r,{boxes:o,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:u}=n,c=t.readSync(o.dataId),p=t.readSync(s.dataId),{selectedIndices:m,validOutputs:f}=VY(c,p,a,i,l,u);return[t.makeTensorInfo([m.length],"int32",new Int32Array(m)),t.makeTensorInfo([],"int32",new Int32Array([f]))]}var tF={kernelName:Yi,backendName:"webgl",kernelFunc:GY};var WY=Dr.nonMaxSuppressionV5Impl;function jY(r){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:e,backend:t,attrs:n}=r,{boxes:o,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=n,c=t.readSync(o.dataId),p=t.readSync(s.dataId),m=a,f=i,d=l,h=u,{selectedIndices:g,selectedScores:y}=WY(c,p,m,f,d,h);return[t.makeTensorInfo([g.length],"int32",new Int32Array(g)),t.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var rF={kernelName:Zi,backendName:"webgl",kernelFunc:jY};var sC=class{constructor(e,t,n,o){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int index = round(getIndices(coords.x));
|
|
setOutput(mix(float(${o}), float(${n}),
|
|
float(index == coords.y)));
|
|
}
|
|
`}};var UY=r=>{let{inputs:e,backend:t,attrs:n}=r,{indices:o}=e,{depth:s,onValue:a,offValue:i}=n,l=x.sizeFromShape(o.shape),u=new sC(l,s,a,i),c=ue({inputs:{x:o},backend:t,attrs:{shape:[l]}}),p=t.runWebGLProgram(u,[c],o.dtype);t.disposeIntermediateTensorInfo(c);let m=[...o.shape,s],f=ue({inputs:{x:p},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(p),f},nF={kernelName:Ho,backendName:"webgl",kernelFunc:UY};function Bf(r){let{inputs:e,backend:t}=r,{x:n}=e;if(n.dtype==="complex64"){let o=Ra({inputs:{input:n},backend:t}),s=Bf({inputs:{x:o},backend:t}),a=zu({inputs:{input:n},backend:t}),i=Bf({inputs:{x:a},backend:t}),l=gn({inputs:{real:s,imag:i},backend:t});return t.disposeIntermediateTensorInfo(o),t.disposeIntermediateTensorInfo(s),t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),l}else return zf({attrs:{shape:n.shape,dtype:n.dtype,value:n.dtype==="string"?"":0},backend:t})}var oF={kernelName:Ys,backendName:"webgl",kernelFunc:Bf};function sF(r){let{inputs:e,backend:t}=r,{x:n}=e;if(n.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(n.dtype==="complex64"){let o=Ra({inputs:{input:n},backend:t}),s=sF({inputs:{x:o},backend:t}),a=zu({inputs:{input:n},backend:t}),i=Bf({inputs:{x:a},backend:t}),l=gn({inputs:{real:s,imag:i},backend:t});return t.disposeIntermediateTensorInfo(o),t.disposeIntermediateTensorInfo(s),t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),l}else return zf({attrs:{shape:n.shape,dtype:n.dtype,value:1},backend:t})}var iF={kernelName:Ws,backendName:"webgl",kernelFunc:sF};function HY(r){let{inputs:e,backend:t,attrs:n}=r,{axis:o}=n;if(e.length===1)return bx({inputs:{input:e[0]},backend:t,attrs:{dim:o}});let s=e[0].shape,a=e[0].dtype;e.forEach(c=>{x.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),x.assert(a===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=e.map(c=>{let p=bx({inputs:{input:c},backend:t,attrs:{dim:o}});return i.push(p),p}),u=Sv({inputs:l,backend:t,attrs:{axis:o}});return i.forEach(c=>t.disposeIntermediateTensorInfo(c)),u}var aF={kernelName:js,backendName:"webgl",kernelFunc:HY};var iC=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((u,c)=>u[0]+e[c]+u[1]);let o=e.length,s=Ve(o),a=t.map(u=>u[0]).join(","),i=t.map((u,c)=>u[0]+e[c]).join(","),l=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,o);if(o===1){this.userCode=`
|
|
int start = ${a};
|
|
int end = ${i};
|
|
uniform float value;
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start || outC >= end) {
|
|
setOutput(value);
|
|
} else {
|
|
setOutput(getX(outC - start));
|
|
}
|
|
}
|
|
`;return}this.userCode=`
|
|
${s} start = ${s}(${a});
|
|
${s} end = ${s}(${i});
|
|
uniform float value;
|
|
|
|
void main() {
|
|
${s} outC = getOutputCoords();
|
|
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
|
|
setOutput(value);
|
|
} else {
|
|
${s} coords = outC - start;
|
|
setOutput(getX(${l}));
|
|
}
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}};var aC=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,g)=>h[0]+e[g]+h[1]);let o=e.length,s=Ve(o),a=t.map(h=>h[0]).join(","),i=t.map((h,g)=>h[0]+e[g]).join(","),l=Wt("rc",o),u=Wt("source",o),c=`${l[o-1]} < ${this.outputShape[o-1]}`,p=o===1?"source":`vec2(${u.slice(-2).join()})`,m=[`${s} rc = outputLoc;`,`${l[o-1]} += 1;
|
|
if(${c}) {
|
|
`,o===1?"":`}
|
|
rc = outputLoc;
|
|
${l[o-2]} += 1;
|
|
if(${l[o-2]} < ${this.outputShape[o-2]}) {`,o===1?"":` ${l[o-1]} += 1;
|
|
if(${c}) {`],f=o===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",d="";for(let h=0,g=o===1?2:4;h<g;h++)d+=`
|
|
${m[h]}
|
|
if (${f}) {
|
|
result[${h}] = float(value);
|
|
} else {
|
|
${s} source = rc - start;
|
|
result[${h}] = getChannel(getX(${u.join()}), ${p});
|
|
}
|
|
`;d+=o===1?"} ":"}}",this.userCode=`
|
|
const ${s} start = ${s}(${a});
|
|
const ${s} end = ${s}(${i});
|
|
uniform float value;
|
|
|
|
void main() {
|
|
${s} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${d}
|
|
setOutput(result);
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}};var lC=r=>{let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{paddings:s,constantValue:a}=n,i=W().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new aC(o.shape,s,a):new iC(o.shape,s,a),l=i.getCustomSetupFunc(a);return t.runWebGLProgram(i,[o],o.dtype,l)},lF={kernelName:qo,backendName:"webgl",kernelFunc:lC};var qY=`
|
|
if(a < 0.0 && floor(b) < b){
|
|
return NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
return (round(mod(b, 2.0)) != 1) ?
|
|
pow(abs(a), b) : sign(a) * pow(abs(a), b);
|
|
`,KY=`
|
|
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
|
|
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
|
|
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
|
|
vec4 result = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
bvec4 isExpZero = equal(b, vec4(0.0));
|
|
result.r = isExpZero.r ? 1.0 : result.r;
|
|
result.g = isExpZero.g ? 1.0 : result.g;
|
|
result.b = isExpZero.b ? 1.0 : result.b;
|
|
result.a = isExpZero.a ? 1.0 : result.a;
|
|
|
|
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
|
|
`+wl+`
|
|
return result;
|
|
`,XY=st({opSnippet:qY,packedOpSnippet:KY}),uF={kernelName:Ko,backendName:"webgl",kernelFunc:XY};function YY(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,keepDims:a}=n,i=o.shape.length,l=[],u=x.parseAxisParam(s,o.shape),c=u,p=C.getAxesPermutation(c,i),m=o;p!=null&&(m=$t({inputs:{x:o},backend:t,attrs:{perm:p}}),c=C.getInnerMostAxes(c.length,i),l.push(m)),C.assertAxesAreInnerMostDims("prod",c,i);let f;if(t.shouldExecuteOnCPU([m])){let d=t.texData.get(m.dataId).values,{outVals:h,outShape:g,outDtype:y}=uD(m.shape,m.dtype,d,c);f=t.makeTensorInfo(g,y,h)}else{let[d,h]=C.computeOutAndReduceShapes(m.shape,c),g=x.sizeFromShape(h),y=ue({inputs:{x:m},backend:t,attrs:{shape:[-1,g]}}),b=Kl(o.dtype),w=An(y,b,"prod",t);f=ue({inputs:{x:w},backend:t,attrs:{shape:d}}),l.push(y),l.push(w)}if(a){l.push(f);let d=C.expandShapeToKeepDim(f.shape,u);f=ue({inputs:{x:f},backend:t,attrs:{shape:d}})}return l.forEach(d=>t.disposeIntermediateTensorInfo(d)),f}var cF={kernelName:Ji,backendName:"webgl",kernelFunc:YY};var uC=r=>{let{backend:e,attrs:t}=r,{start:n,stop:o,step:s,dtype:a}=t,i=cD(n,o,s,a);return e.makeTensorInfo([i.length],a,i)},pF={kernelName:nl,backendName:"webgl",kernelFunc:uC};var ZY="return 1.0 / x;",JY=_e({opSnippet:ZY}),mF={kernelName:Qi,backendName:"webgl",kernelFunc:JY};var QY=yr+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,e9=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,t9=_e({opSnippet:QY,packedOpSnippet:e9}),fF={kernelName:Yo,backendName:"webgl",kernelFunc:t9};var r9=yr+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,n9=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,o9=_e({opSnippet:r9,packedOpSnippet:n9}),dF={kernelName:Jo,backendName:"webgl",kernelFunc:o9};var cC=class{constructor(e,t,n,o,s){this.variableNames=["A"],this.outputShape=[];let[a,i,l,u]=e;this.outputShape=[a,t,n,u];let c=[o&&t>1?i-1:i,o&&n>1?l-1:l],p=[o&&t>1?t-1:t,o&&n>1?n-1:n],m;s?m="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":m="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${c[0]/p[0]},
|
|
${c[1]/p[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${l}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${m};
|
|
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
|
|
ivec2 sourceCeilRC = ivec2(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
float newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};var pC=class{constructor(e,t,n,o,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,i,l,u]=e;this.outputShape=[a,t,n,u];let c=[o&&t>1?i-1:i,o&&n>1?l-1:l],p=[o&&t>1?t-1:t,o&&n>1?n-1:n],m;s?m="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":m="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${c[0]/p[0]},
|
|
${c[1]/p[1]},
|
|
${c[1]/p[1]});
|
|
const vec3 inputShapeRC = vec3(${i}.0, ${l}.0,
|
|
${l}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${m};
|
|
|
|
// Compute the four integer indices.
|
|
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
|
|
ivec3 sourceCeilRC = ivec3(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${u-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
// In parallel, construct four corners for all four components in
|
|
// packed 2x2 cell.
|
|
vec4 topLeft = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomLeft = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 topRight = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomRight = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
|
|
|
|
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
|
|
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
|
|
vec4 newValue = mix(top, bottom, fracRC.x);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function s9(r){let{inputs:e,backend:t,attrs:n}=r,{images:o}=e,{alignCorners:s,halfPixelCenters:a,size:i}=n,[l,u]=i,c=W().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new pC(o.shape,l,u,s,a):new cC(o.shape,l,u,s,a);return t.runWebGLProgram(c,[o],"float32")}var hF={kernelName:Zo,backendName:"webgl",kernelFunc:s9};var mC=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,o,s]=t,[,a,i]=e,l=[n&&a>1?o-1:o,n&&i>1?s-1:s],u=[n&&a>1?a-1:a,n&&i>1?i-1:i],c=l[0]/u[0],p=l[1]/u[1],m=1/c,f=1/p,d=Math.ceil(m)*2+2,h=Math.ceil(f)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${c});
|
|
const float widthScale = float(${p});
|
|
|
|
const float invHeightScale = float(${m});
|
|
const float invWidthScale = float(${f});
|
|
|
|
const int winHeight = int(${d});
|
|
const int winWidth = int(${h});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(startRLerp - float(winHeight / 2));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(startCLerp - float(winWidth / 2));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float dxR = float(dyR) * heightScale;
|
|
int topDxRIndex = int(floor(dxR));
|
|
int bottomDxRIndex = int(min(ceil(dxR), ${o-1}.0));
|
|
float dxRLerp = dxR - float(topDxRIndex);
|
|
float inverseDxRLerp = 1.0 - dxRLerp;
|
|
|
|
float dxC = float(dyC) * widthScale;
|
|
int leftDxCIndex = int(floor(dxC));
|
|
int rightDxCIndex = int(min(ceil(dxC), ${s-1}.0));
|
|
float dxCLerp = dxC - float(leftDxCIndex);
|
|
float inverseDxCLerp = 1.0 - dxCLerp;
|
|
|
|
if (r == topDxRIndex && c == leftDxCIndex) {
|
|
// topLeft
|
|
accumulator +=
|
|
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == topDxRIndex && c == rightDxCIndex) {
|
|
// topRight
|
|
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == leftDxCIndex) {
|
|
// bottomLeft
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == rightDxCIndex) {
|
|
// bottomRight
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function i9(r){let{inputs:e,backend:t,attrs:n}=r,{images:o,dy:s}=e,{alignCorners:a}=n,i=new mC(s.shape,o.shape,a);return t.runWebGLProgram(i,[s],s.dtype)}var gF={kernelName:Bc,backendName:"webgl",kernelFunc:i9};var fC=class{constructor(e,t,n,o,s){this.variableNames=["A"],this.outputShape=[];let[a,i,l,u]=e;this.outputShape=[a,t,n,u];let c=[o&&t>1?i-1:i,o&&n>1?l-1:l],p=[o&&t>1?t-1:t,o&&n>1?n-1:n],m=o?"0.5":"0.0",f;s?f="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":f="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${c[0]/p[0]},
|
|
${c[1]/p[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${l}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${f};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestRC = ivec2(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${m})));
|
|
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function a9(r){let{inputs:e,backend:t,attrs:n}=r,{images:o}=e,{alignCorners:s,halfPixelCenters:a,size:i}=n,[l,u]=i,c=new fC(o.shape,l,u,s,a);return t.runWebGLProgram(c,[o],o.dtype)}var xF={kernelName:ol,backendName:"webgl",kernelFunc:a9};var dC=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,o,s]=t,[,a,i]=e,l=[n&&a>1?o-1:o,n&&i>1?s-1:s],u=[n&&a>1?a-1:a,n&&i>1?i-1:i],c=l[0]/u[0],p=l[1]/u[1],m=1/c,f=1/p,d=Math.ceil(m)*2+2,h=Math.ceil(f)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${c});
|
|
const float widthScale = float(${p});
|
|
|
|
const float invHeightScale = float(${m});
|
|
const float invWidthScale = float(${f});
|
|
|
|
const int winHeight = int(${d});
|
|
const int winWidth = int(${h});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float sourceFracRow =
|
|
float(${l[0]}) *
|
|
(float(dyR) / float(${u[0]}));
|
|
|
|
float sourceFracCol =
|
|
float(${l[1]}) *
|
|
(float(dyC) / float(${u[1]}));
|
|
|
|
int sourceNearestRow = int(min(
|
|
float(int(${o}) - 1),
|
|
${n} ? float(round(sourceFracRow)) :
|
|
float(floor(sourceFracRow))));
|
|
|
|
int sourceNearestCol = int(min(
|
|
float(int(${s}) - 1),
|
|
${n} ? float(round(sourceFracCol)) :
|
|
float(floor(sourceFracCol))));
|
|
|
|
if (r == sourceNearestRow && c == sourceNearestCol) {
|
|
accumulator += getDy(b, dyR, dyC, d);
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function l9(r){let{inputs:e,backend:t,attrs:n}=r,{images:o,dy:s}=e,{alignCorners:a}=n,i=new dC(s.shape,o.shape,a);return t.runWebGLProgram(i,[s],s.dtype)}var yF={kernelName:zc,backendName:"webgl",kernelFunc:l9};var hC=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
|
|
void main() {
|
|
int coord = getOutputCoords();
|
|
setOutput(getX(${e[0]} - coord - 1));
|
|
}
|
|
`;return}let o=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,s=e.map((i,l)=>o(l)).join(","),a=Ve(n);this.userCode=`
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
setOutput(getX(${s}));
|
|
}
|
|
`}};var gC=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let o=Wt("rc",n),s=`${o[n-1]} + 1 < ${this.outputShape[n-1]}`,a=`${o[n-2]} + 1 < ${this.outputShape[n-2]}`,i=Ve(n);n===1?this.userCode=`
|
|
void main(){
|
|
int rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = getChannel(getX(${e[0]} - rc - 1),
|
|
${e[0]} - rc - 1);
|
|
if(${s}){
|
|
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
|
|
${e[0]} - (rc + 1) - 1);
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`:this.userCode=`
|
|
void main() {
|
|
${i} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = ${l(o.slice())};
|
|
if(${s}){
|
|
result.g = ${u(o.slice())};
|
|
}
|
|
if(${a}) {
|
|
result.b = ${c(o.slice())};
|
|
if(${s}) {
|
|
result.a = ${p(o.slice())};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`;function l(d){return m(d)}function u(d){return d[n-1]="("+d[n-1]+" + 1)",m(d)}function c(d){return d[n-2]="("+d[n-2]+" + 1)",m(d)}function p(d){return d[n-1]="("+d[n-1]+" + 1)",d[n-2]="("+d[n-2]+" + 1)",m(d)}function m(d){let h=e.map((b,w)=>f(w,d)),g=h.join(","),y=h.slice(-2).join(",");return`getChannel(getX(${g}), vec2(${y}))`}function f(d,h){return t.indexOf(d)!==-1&&e[d]!==1?`${e[d]} - ${h[d]} - 1`:`${h[d]}`}}};function u9(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{dims:s}=n,a=o.shape.length,i=x.parseAxisParam(s,o.shape);if(a===0)return jt({inputs:{x:o},backend:t});let l=W().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new gC(o.shape,i):new hC(o.shape,i);return t.runWebGLProgram(l,[o],o.dtype)}var bF={kernelName:Qo,backendName:"webgl",kernelFunc:u9};var xC=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[];let n=e[1],o=e[2];this.outputShape=e;let s="";typeof t=="number"?s=`float outputValue = ${t.toFixed(2)};`:s=`
|
|
vec3 fill = vec3(${t.join(",")});
|
|
float outputValue = fill[coords[3]];`,this.userCode=`
|
|
uniform vec4 params;
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
float coordXFloat = (float(x) - params[0]) * params[3] -
|
|
(float(y) - params[1]) * params[2];
|
|
float coordYFloat = (float(x) - params[0]) * params[2] +
|
|
(float(y) - params[1]) * params[3];
|
|
int coordX = int(round(coordXFloat + params[0]));
|
|
int coordY = int(round(coordYFloat + params[1]));
|
|
${s}
|
|
if(coordX >= 0 && coordX < ${o} && coordY >= 0 && coordY < ${n}) {
|
|
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}getCustomSetupFunc(e,t,n,o){return(s,a)=>{this.paramsLoc==null&&(this.paramsLoc=s.getUniformLocationNoThrow(a,"params")),s.gl.uniform4f(this.paramsLoc,e,t,n,o)}}};var wF={kernelName:aa,backendName:"webgl",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{image:n}=r,{radians:o,fillValue:s,center:a}=e,i=t,l=new xC(n.shape,s),[u,c]=C.getImageCenter(a,n.shape[1],n.shape[2]),p=l.getCustomSetupFunc(u,c,Math.sin(o),Math.cos(o));return i.runWebGLProgram(l,[n],n.dtype,p)}};var c9=`
|
|
// OpenGL ES does not support round function.
|
|
// The algorithm is based on banker's rounding.
|
|
float base = floor(x);
|
|
if ((x - base) < 0.5) {
|
|
return floor(x);
|
|
} else if ((x - base) > 0.5) {
|
|
return ceil(x);
|
|
} else {
|
|
if (mod(base, 2.0) == 0.0) {
|
|
return base;
|
|
} else {
|
|
return base + 1.0;
|
|
}
|
|
}
|
|
`,p9=_e({opSnippet:c9}),_F={kernelName:es,backendName:"webgl",kernelFunc:p9};var m9="return inversesqrt(x);",f9=_e({opSnippet:m9,cpuKernelImpl:pD}),kF={kernelName:ts,backendName:"webgl",kernelFunc:f9};var Vf=class{constructor(e,t,n,o,s,a,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=a;let l=Ve(s.length),u=Ve(a.length),c="";n===1?c="i":n===2&&(c="i, j");let p=`getIndices(${c})`,m="";o===1?m="i":o===2&&(m="i, coords[1]");let f=`getUpdates(${m})`,d=t>1?"strides[j]":"strides";this.userCode=`
|
|
${l} strides = ${l}(${s});
|
|
|
|
void main() {
|
|
${u} coords = getOutputCoords();
|
|
float sum = 0.0;
|
|
bool found = false;
|
|
for (int i = 0; i < ${e}; i++) {
|
|
int flattenedIndex = 0;
|
|
for (int j = 0; j < ${t}; j++) {
|
|
int index = round(${p});
|
|
flattenedIndex += index * ${d};
|
|
}
|
|
if (flattenedIndex == coords[0]) {
|
|
sum += ${f};
|
|
found = true;
|
|
}
|
|
}
|
|
setOutput(mix(getDefaultValue(), sum, float(found)));
|
|
}
|
|
`}};function d9(r){let{inputs:e,backend:t,attrs:n}=r,{indices:o,updates:s}=e,{shape:a}=n,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:p}=C.calculateShapes(s,o,a),m=[p/u,u];if(p===0)return t.makeTensorInfo(a,o.dtype);let f=ue({inputs:{x:o},backend:t,attrs:{shape:[l,i]}}),d=ue({inputs:{x:s},backend:t,attrs:{shape:[l,u]}}),h=t.makeTensorInfo([],"float32",new Float32Array([0])),g=new Vf(l,i,f.shape.length,d.shape.length,c,m),y=t.runWebGLProgram(g,[d,f,h],d.dtype),b=ue({inputs:{x:y},backend:t,attrs:{shape:a}});return t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(d),t.disposeIntermediateTensorInfo(y),t.disposeIntermediateTensorInfo(h),b}var vF={kernelName:ea,backendName:"webgl",kernelFunc:d9};var yC=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let o,s;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)s="resRC",o="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],l=[],u=[];for(let c=0;c<t.length;c++)u.push(`${i[c]}`),c<e&&l.push(`${i[c]}`);o=l.join(),s=u.join()}let a=Ve(n);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
float cVal = getC(${o});
|
|
if (cVal >= 1.0) {
|
|
setOutput(getA(${s}));
|
|
} else {
|
|
setOutput(getB(${s}));
|
|
}
|
|
}
|
|
`}};function h9(r){let{inputs:e,backend:t}=r,{condition:n,t:o,e:s}=e,a=new yC(n.shape.length,o.shape,o.shape.length);return t.runWebGLProgram(a,[n,o,s],ar(o.dtype,s.dtype))}var CF={kernelName:Hs,backendName:"webgl",kernelFunc:h9};var g9=`
|
|
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
|
|
// see: https://arxiv.org/abs/1706.02515
|
|
float scaleAlpha = ${C.SELU_SCALEALPHA};
|
|
float scale = ${C.SELU_SCALE};
|
|
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
|
|
`,x9=_e({opSnippet:g9}),IF={kernelName:ta,backendName:"webgl",kernelFunc:x9};var y9="return 1.0 / (1.0 + exp(-1.0 * x));",b9=_e({opSnippet:y9}),NF={kernelName:ns,backendName:"webgl",kernelFunc:b9};var w9=`
|
|
if (isnan(x)) { return 0.0; }
|
|
return sign(x);
|
|
`,_9=_e({opSnippet:w9}),SF={kernelName:na,backendName:"webgl",kernelFunc:_9};var k9=cx+`
|
|
return sin(x);
|
|
`,v9=_e({opSnippet:k9}),TF={kernelName:rs,backendName:"webgl",kernelFunc:v9};var C9=`
|
|
float e2x = exp(x);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,I9=_e({opSnippet:C9}),AF={kernelName:ra,backendName:"webgl",kernelFunc:I9};var N9=`
|
|
float epsilon = 1.1920928955078125e-7;
|
|
float threshold = log(epsilon) + 2.0;
|
|
|
|
bool too_large = x > -threshold;
|
|
bool too_small = x < threshold;
|
|
|
|
float result;
|
|
float exp_x = exp(x);
|
|
|
|
if (too_large){
|
|
result = x;
|
|
}
|
|
else if (too_small){
|
|
result = exp_x;
|
|
}
|
|
else{
|
|
result = log(exp_x + 1.0);
|
|
}
|
|
return result;
|
|
`,S9=_e({opSnippet:N9}),EF={kernelName:oa,backendName:"webgl",kernelFunc:S9};var T9=r=>{let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{blockShape:s,paddings:a}=n;x.assert(o.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let i=s.reduce((y,b)=>y*b),l=[[0,0]];l.push(...a);for(let y=1+s.length;y<o.shape.length;++y)l.push([0,0]);let u=[],c=lC({inputs:{x:o},backend:t,attrs:{paddings:l,constantValue:0}}),p=C.getReshaped(c.shape,s,i,!1),m=C.getPermuted(p.length,s.length,!1),f=C.getReshapedPermuted(c.shape,s,i,!1),d=ue({inputs:{x:c},backend:t,attrs:{shape:p}}),h=$t({inputs:{x:d},backend:t,attrs:{perm:m}}),g=ue({inputs:{x:h},backend:t,attrs:{shape:f}});return u.push(c),u.push(d),u.push(h),u.forEach(y=>t.disposeIntermediateTensorInfo(y)),g},DF={kernelName:sl,backendName:"webgl",kernelFunc:T9};function A9(r){let{inputs:e,backend:t,attrs:n}=r,{sparseIndices:o,sparseValues:s,defaultValue:a}=e,{outputShape:i}=n,{sliceRank:l,numUpdates:u,strides:c,outputSize:p}=C.calculateShapes(s,o,i),m=!1,f=new Vf(u,l,o.shape.length,s.shape.length,c,[p,1],m),d=t.runWebGLProgram(f,[s,o,a],s.dtype),h=ue({inputs:{x:d},backend:t,attrs:{shape:i}});return t.disposeIntermediateTensorInfo(d),h}var $F={kernelName:Vc,backendName:"webgl",kernelFunc:A9};function E9(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{numOrSizeSplits:s,axis:a}=n,i=x.parseAxisParam(a,o.shape)[0],l=C.prepareSplitSize(o,s,i),u=o.shape.length,c=new Array(u).fill(0),p=o.shape.slice();return l.map(m=>{let f=[...p];f[i]=m;let d=$a({inputs:{x:o},backend:t,attrs:{begin:c,size:f}});return c[i]+=m,d})}var RF={kernelName:Ks,backendName:"webgl",kernelFunc:E9};var D9="return sqrt(x);",$9=_e({opSnippet:D9}),FF={kernelName:os,backendName:"webgl",kernelFunc:$9};var R9="return x * x;",F9=_e({opSnippet:R9}),OF={kernelName:il,backendName:"webgl",kernelFunc:F9};var PF="return (a - b) * (a - b);",O9=st({opSnippet:PF,packedOpSnippet:PF}),MF={kernelName:as,backendName:"webgl",kernelFunc:O9};function P9({inputs:r,attrs:e,backend:t}){let{x:n}=r,o=yr+`
|
|
return x > 0.0 ? 1.0 : float(${e.alpha});
|
|
`,s=new hn(n.shape,o);return t.runWebGLProgram(s,[n],n.dtype)}var LF={kernelName:Yn,backendName:"webgl",kernelFunc:P9};var bC=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let o=n.length,s=Ve(n.length),a=Ve(n.length),i="";if(o===1)i="coords * strides + begin";else{let l=0;i=n.map((u,c)=>(l++,n.length===1?`coords * strides[${c}] + begin[${c}]`:`coords[${l-1}] * strides[${c}] + begin[${c}]`)).join(",")}this.userCode=`
|
|
${s} begin = ${s}(${e});
|
|
${s} strides = ${s}(${t});
|
|
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
setOutput(getX(${i}));
|
|
}
|
|
`}};function M9(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{begin:s,end:a,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:m}=n,{nonStrided:f,$begin:d,$strides:h,size:g,newShape:y,outShape:b}=rr.sliceInfo(o.shape,s,a,i,l,u,c,p,m),w=ue({inputs:{x:o},backend:t,attrs:{shape:y}}),_;if(f){let E=$a({inputs:{x:w},backend:t,attrs:{begin:d,size:g}});_=ue({inputs:{x:E},backend:t,attrs:{shape:b}}),t.disposeIntermediateTensorInfo(E)}else if(b.some(E=>E===0))_=t.makeTensorInfo(b,o.dtype,[]);else if(t.shouldExecuteOnCPU([w])){let D=t.texData.get(w.dataId).values,O=Ce(w.shape,w.dtype,D),M=fD(b,O,h,d);_=t.makeTensorInfo(b,w.dtype,M.values)}else{let $=new bC(d,h,b);_=t.runWebGLProgram($,[w],w.dtype)}let I=ue({inputs:{x:_},backend:t,attrs:{shape:b}});return t.disposeIntermediateTensorInfo(w),t.disposeIntermediateTensorInfo(_),I}var zF={kernelName:sa,backendName:"webgl",kernelFunc:M9};var L9="return tan(x);",z9=_e({opSnippet:L9}),BF={kernelName:us,backendName:"webgl",kernelFunc:z9};var B9=`
|
|
float e2x = exp(-2.0 * abs(x));
|
|
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,V9=_e({opSnippet:B9}),VF={kernelName:cs,backendName:"webgl",kernelFunc:V9};var wC=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[a]*t[a];this.outputShape=n,this.rank=n.length;let o=Ve(this.rank),s=G9(e);this.userCode=`
|
|
void main() {
|
|
${o} resRC = getOutputCoords();
|
|
setOutput(getA(${s}));
|
|
}
|
|
`}};function G9(r){let e=r.length;if(e>5)throw Error(`Tile for rank ${e} is not yet supported`);if(e===1)return`imod(resRC, ${r[0]})`;let t=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],n=[];for(let o=0;o<r.length;o++)n.push(`imod(${t[o]}, ${r[o]})`);return n.join()}function _C(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{reps:s}=n;if(o.dtype==="string"){let u=t.readSync(o.dataId).map(m=>x.decodeString(m)),c=Ce(o.shape,o.dtype,u),p=hD(c,s);return t.makeTensorInfo(p.shape,p.dtype,p.values)}let a=new wC(o.shape,s);return t.runWebGLProgram(a,[o],o.dtype)}var GF={kernelName:Pn,backendName:"webgl",kernelFunc:_C};function W9(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{k:s,sorted:a}=n,i=t.readSync(o.dataId),[l,u]=gD(i,o.shape,o.dtype,s,a);return[t.makeTensorInfo(l.shape,l.dtype,l.values),t.makeTensorInfo(u.shape,u.dtype,u.values)]}var WF={kernelName:ia,backendName:"webgl",kernelFunc:W9};var kC=class{constructor(e,t,n,o,s,a){this.variableNames=["Image","Transforms"],this.outputShape=a;let i=n==="nearest"?1:2,l;switch(o){case"constant":l=1;break;case"reflect":l=2;break;case"wrap":l=3;break;case"nearest":l=4;break;default:l=1;break}this.userCode=`
|
|
float mapCoord(float outCoord, float len) {
|
|
float inCoord = outCoord;
|
|
if(${l} == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
inCoord -= sz2 * float(int(float(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${l} == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord -= len * float(int(float(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${l} == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
} else {
|
|
return outCoord;
|
|
}
|
|
}
|
|
|
|
float readWithFillValue(int batch, int coordY, int coordX,
|
|
int channel) {
|
|
float outputValue;
|
|
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = float(${s});
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
float outputValue;
|
|
int batch = coords[0];
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
int channel = coords[3];
|
|
float xf = float(x);
|
|
float yf = float(y);
|
|
float a1 = getTransforms(batch, 0);
|
|
float a2 = getTransforms(batch, 1);
|
|
float a3 = getTransforms(batch, 2);
|
|
float b1 = getTransforms(batch, 3);
|
|
float b2 = getTransforms(batch, 4);
|
|
float b3 = getTransforms(batch, 5);
|
|
float c1 = getTransforms(batch, 6);
|
|
float c2 = getTransforms(batch, 7);
|
|
float projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = float(${s});
|
|
} else {
|
|
float inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
float inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
float mapX = mapCoord(inX, float(${t}));
|
|
float mapY = mapCoord(inY, float(${e}));
|
|
|
|
if (${i} == 1) {
|
|
int coordY = int(round(mapY));
|
|
int coordX = int(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
float yFloor = floor(mapY);
|
|
float xFloor = floor(mapX);
|
|
float yCeil = yFloor + 1.0;
|
|
float xCeil = xFloor + 1.0;
|
|
float valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
|
|
float valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}};function j9(r){let{inputs:e,backend:t,attrs:n}=r,{image:o,transforms:s}=e,{interpolation:a,fillMode:i,fillValue:l,outputShape:u}=n,[c,p,m,f]=o.shape,[d,h]=u!=null?u:[p,m],g=[c,d,h,f],y=new kC(p,m,a,i,l,g);return t.runWebGLProgram(y,[o,s],"float32")}var jF={kernelName:Gc,backendName:"webgl",kernelFunc:j9};function U9(r){let{inputs:e,attrs:t,backend:n}=r,{axis:o}=t,{x:s}=e;ks(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let a=n.readSync(s.dataId),{outputValues:i,outputShape:l,indices:u}=xD(a,o,s.shape,s.dtype);return[n.makeTensorInfo(l,s.dtype,i),n.makeTensorInfo([u.length],"int32",u)]}var UF={kernelName:Wc,backendName:"webgl",kernelFunc:U9};function H9(r){let{inputs:e,backend:t,attrs:n}=r,{value:o}=e,{axis:s}=n;s<0&&(s+=o.shape.length);let a=o,i=a.shape.length,l=o.shape[s],u=new Array(i-1),c=0;for(let h=0;h<i;h++)h!==s&&(u[c++]=a.shape[h]);let p=[],m=new Array(i).fill(0),f=a.shape.slice();f[s]=1;let d=new Array(l);for(let h=0;h<d.length;h++){m[s]=h;let g=$a({inputs:{x:a},backend:t,attrs:{begin:m,size:f}}),y=ue({inputs:{x:g},backend:t,attrs:{shape:u}});d[h]=y,p.push(g)}return p.forEach(h=>t.disposeIntermediateTensorInfo(h)),d}var HF={kernelName:Xs,backendName:"webgl",kernelFunc:H9};var vC=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,o=e.batchSize,s=e.inSize,a=e.numSegments,i=a*Math.ceil(s/n);this.outputShape=[o,i];let l="0.0",u="sumValue",c=Math.floor(n/4)*4,p=n%4,m=`
|
|
sumValue += dot(values, segFilter);
|
|
`,f="";s%n>0&&(f=`
|
|
if (inIdx < 0 || inIdx >= ${s}) {
|
|
return initializationValue;
|
|
}
|
|
`);let d="";s%n>0&&(d=`
|
|
if (inIdx < 0 || inIdx >= ${s}) {
|
|
return -1.0;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${l};
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${f}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
float getSegmentIdAtIndex(int inIdx) {
|
|
${d}
|
|
return getSegmentIds(inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = int(floor(float(outIdx) / float(
|
|
${a})) * float(${n}));
|
|
int currentSeg = int(mod(float(outIdx), float(${a})));
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${c}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
|
|
);
|
|
|
|
${m}
|
|
}
|
|
|
|
int inIdx = inOffset + ${c};
|
|
if (${p===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${m}
|
|
} else if (${p===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${m}
|
|
} else if (${p===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
0
|
|
);
|
|
|
|
${m}
|
|
}
|
|
setOutput(${u});
|
|
}
|
|
`}};function q9(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,segmentIds:s}=e,{numSegments:a}=n,i=o.shape.length,l=[],u=0,c=C.getAxesPermutation([u],i),p=o;c!=null&&(p=$t({inputs:{x:o},backend:t,attrs:{perm:c}}),l.push(p),u=C.getInnerMostAxes(1,i)[0]);let m=C.segment_util.computeOutShape(p.shape,u,a),f=x.sizeFromShape([p.shape[u]]),d=ue({inputs:{x:p},backend:t,attrs:{shape:[-1,f]}});l.push(d);let h=Kl(o.dtype),g=(_,I,E,$,D)=>{let O=_.shape[0],M=_.shape[1],G=C.segment_util.segOpComputeOptimalWindowSize(M,D),j={windowSize:G,inSize:M,batchSize:O,numSegments:D},U=new vC(j,I),H=t.compileAndRun(U,[_,E],$);if(l.push(H),H.shape[1]===D)return H;let q=uC({backend:t,attrs:{start:0,stop:D,step:1,dtype:"float32"}}),X=_C({inputs:{x:q},backend:t,attrs:{reps:[M/G]}});return l.push(q),l.push(X),g(H,I,X,$,D)},y=g(d,"unsortedSegmentSum",s,h,a),b=ue({inputs:{x:y},backend:t,attrs:{shape:m}}),w=b;if(c!=null){l.push(b);let _=C.getUndoAxesPermutation(c);w=$t({inputs:{x:w},backend:t,attrs:{perm:_}})}return l.forEach(_=>t.disposeIntermediateTensorInfo(_)),w}var qF={kernelName:al,backendName:"webgl",kernelFunc:q9};var K9=[ER,DR,jD,HD,qD,KD,YD,ZD,JD,QD,r$,n$,o$,s$,a$,i$,l$,c$,u$,p$,m$,f$,d$,g$,x$,_$,v$,C$,N$,$D,A$,D$,$$,E$,F$,O$,R$,P$,M$,L$,V$,G$,W$,U$,H$,j$,q$,K$,X$,Y$,Z$,J$,Q$,tR,rR,oR,sR,iR,aR,uR,cR,pR,mR,fR,dR,hR,gR,xR,DD,yR,S$,bR,wR,_R,RD,kR,vR,CR,NR,IR,SR,TR,AR,RR,PR,OR,MR,LR,BR,FR,GR,WR,jR,UR,HR,ZR,LD,QR,eF,tF,rF,y$,nF,iF,aF,lF,uF,FD,cF,pF,b$,qR,mF,dF,fF,BD,hF,gF,xF,yF,bF,wF,_F,kF,vF,CF,IF,NF,SF,TF,AF,h$,YR,EF,DF,$F,RF,FF,OF,MF,LF,zF,XR,GD,BF,VF,GF,WF,jF,WD,UF,HF,qF,oF];for(let r of K9)Hl(r);var Rt;(function(r){r[r.float32=0]="float32",r[r.int32=1]="int32",r[r.bool=2]="bool",r[r.string=3]="string",r[r.complex64=4]="complex64"})(Rt||(Rt={}));var vl;(function(r){r[r.linear=0]="linear",r[r.relu=1]="relu",r[r.relu6=2]="relu6",r[r.prelu=3]="prelu",r[r.leakyrelu=4]="leakyrelu"})(vl||(vl={}));var KF;function X9(r){KF=r.wasm.cwrap(Zs,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function Y9(r){let{inputs:e,backend:t,attrs:n}=r,{a:o,b:s,bias:a,preluActivationWeights:i}=e;if(o.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=n,m=t.dataIdMap.get(o.dataId).id,f=t.dataIdMap.get(s.dataId).id,d=0;if(a!=null){let D=t.dataIdMap.get(a.dataId);if(D.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${D.shape.length}.`);d=D.id}let h=i==null?0:t.dataIdMap.get(i.dataId).id,g=vl[c];if(g==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?o.shape[2]:o.shape[1],b=u?s.shape[1]:s.shape[2],w=o.shape[0],_=t.makeOutput([w,y,b],o.dtype),I=t.dataIdMap.get(_.dataId).id,E=new Uint8Array(new Int32Array(o.shape).buffer),$=new Uint8Array(new Int32Array(s.shape).buffer);return KF(m,E,o.shape.length,f,$,s.shape.length,l,u,g,d,h,p||0,I),_}var XF={kernelName:Zs,backendName:"wasm",setupFunc:X9,kernelFunc:Y9};function xt(r){let e;function t(o){e=o.wasm.cwrap(r,null,["number","number"])}function n(o){let{backend:s,inputs:{x:a}}=o,i=s.dataIdMap.get(a.dataId).id,l=s.makeOutput(a.shape,a.dtype),u=s.dataIdMap.get(l.dataId).id;return x.sizeFromShape(l.shape)===0||e(i,u),l}return{kernelName:r,backendName:"wasm",setupFunc:t,kernelFunc:n}}var YF=xt(Ls);function yt(r,e,t){let n;function o(a){n=a.wasm.cwrap(r,null,["number","array","number","number","array","number","number","number"])}function s(a){let{backend:i,inputs:l}=a,{a:u,b:c}=l,p=i.dataIdMap.get(u.dataId).id,m=i.dataIdMap.get(c.dataId).id,f=t!=null?t:u.dtype,d=C.assertAndGetBroadcastShape(u.shape,c.shape),h=i.makeOutput(d,f);if(x.sizeFromShape(d)===0)return h;let g=new Uint8Array(new Int32Array(u.shape).buffer),y=new Uint8Array(new Int32Array(c.shape).buffer),b=i.dataIdMap.get(h.dataId).id,w=()=>n(p,g,u.shape.length,m,y,c.shape.length,Rt[u.dtype],b);if(e&&u.dtype==="float32")return w(),h;let _=C.getBroadcastDims(u.shape,d),I=C.getBroadcastDims(c.shape,d),E=_.every((D,O)=>D===O),$=I.every((D,O)=>D===O);if(E&&$)return w(),h;throw new Error(`Broadcasting along outer dims is not yet supported for ${u.dtype} ${r}.`)}return{kernelName:r,backendName:"wasm",setupFunc:o,kernelFunc:s}}var Z9=!0,ZF=yt(On,Z9);var JF;function J9(r){JF=r.wasm.cwrap(wo,null,["array","number","number","number"])}function Q9(r){let{inputs:e,backend:t}=r,n=t.makeOutput(e[0].shape,e[0].dtype);if(x.sizeFromShape(n.shape)===0)return n;let o=e.map(i=>t.dataIdMap.get(i.dataId).id),s=new Uint8Array(new Int32Array(o).buffer),a=t.dataIdMap.get(n.dataId).id;return JF(s,o.length,Rt[n.dtype],a),n}var QF={kernelName:wo,backendName:"wasm",setupFunc:J9,kernelFunc:Q9};function Vu(r){let{inputs:{x:e},backend:t}=r,n=t.makeOutput(e.shape,e.dtype),o=t.typedArrayFromHeap(e);return t.typedArrayFromHeap(n).set(o),n}var eO={kernelName:Xn,backendName:"wasm",kernelFunc:Vu};var tO;function eZ(r){tO=r.wasm.cwrap(ps,null,["number","array","number","number","number","array","number"])}function Ep(r){let{inputs:e,backend:t,attrs:n}=r,[o,s]=rZ(e.x.shape,n.perm),a=!0;for(let d=0;d<s.length;d++)s[d]!==d&&(a=!1);let i=tZ(e.x.shape,n.perm),l={dataId:e.x.dataId,shape:o,dtype:e.x.dtype};if(a){let d=Vu({inputs:e,backend:t});return d.shape=i,d}let u=t.makeOutput(i,l.dtype),c=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(u.dataId).id,m=new Uint8Array(new Int32Array(s).buffer),f=new Uint8Array(new Int32Array(l.shape).buffer);return tO(c,f,l.shape.length,Rt[l.dtype],p,m,s.length),u}function tZ(r,e){let t=new Array(r.length);for(let n=0;n<t.length;n++)t[n]=r[e[n]];return t}function rZ(r,e){let t=[],n=[];for(let o=0;o<r.length;++o)r[o]!==1&&t.push(r[o]),r[e[o]]!==1&&n.push(e[o]);for(let o=0;o<n.length;++o){let s=-1;for(let a=0;a<n.length;++a)n[a]>=o&&(s===-1||n[s]>n[a])&&(s=a);n[s]=o}return[t,n]}var rO={kernelName:ps,backendName:"wasm",kernelFunc:Ep,setupFunc:eZ};function tn(r,e,t){let n=r.shape,o=r.shape.length,s=x.parseAxisParam(e,n),a=s,i=C.getAxesPermutation(a,o),l=null,u=!1;if(i!=null){let c=new Array(o);for(let f=0;f<c.length;f++)c[f]=n[i[f]];a=C.getInnerMostAxes(a.length,o),l=Ep({inputs:{x:r},attrs:{perm:i},backend:t});let p=t.dataIdMap.get(r.dataId).id;t.dataIdMap.get(l.dataId).id!==p&&(u=!0)}return{transposed:l,originalAxes:s,axes:a,inputWasTransposed:u}}var nO;function nZ(r){nO=r.wasm.cwrap(vi,null,["number, number, number"])}function oZ(r){let{backend:e,inputs:t,attrs:n}=r,{axis:o,keepDims:s}=n,{x:a}=t,l=e.dataIdMap.get(a.dataId).id,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=tn(a,o,e);if(f){let w=e.dataIdMap.get(c.dataId).id;u=c,l=w}let d=u.shape.length;C.assertAxesAreInnerMostDims("all",p,d);let[h,g]=C.computeOutAndReduceShapes(u.shape,p),y=x.sizeFromShape(g),b=e.makeOutput(h,a.dtype);if(x.sizeFromShape(u.shape)!==0){let w=e.dataIdMap.get(b.dataId).id;nO(l,y,w)}if(f&&e.disposeData(c.dataId),s){let w=C.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var oO={kernelName:vi,backendName:"wasm",setupFunc:nZ,kernelFunc:oZ};var sO;function sZ(r){sO=r.wasm.cwrap(Ci,null,["number, number, number"])}function iZ(r){let{backend:e,inputs:t,attrs:n}=r,{axis:o,keepDims:s}=n,{x:a}=t,l=e.dataIdMap.get(a.dataId).id,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=tn(a,o,e);if(f){let w=e.dataIdMap.get(c.dataId).id;u=c,l=w}let d=u.shape.length;C.assertAxesAreInnerMostDims("any",p,d);let[h,g]=C.computeOutAndReduceShapes(u.shape,p),y=x.sizeFromShape(g),b=e.makeOutput(h,a.dtype);if(x.sizeFromShape(u.shape)!==0){let w=e.dataIdMap.get(b.dataId).id;sO(l,y,w)}if(f&&e.disposeData(c.dataId),s){let w=C.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var iO={kernelName:Ci,backendName:"wasm",setupFunc:sZ,kernelFunc:iZ};var aO;function aZ(r){aO=r.wasm.cwrap(_o,null,["number","number","number","number","number"])}function lZ(r){let{backend:e,inputs:t,attrs:n}=r,{axis:o}=n,{x:s}=t,a=e.dataIdMap.get(s.dataId).id,i=a,l=s,{transposed:u,axes:c,inputWasTransposed:p}=tn(s,o,e);if(p){let y=e.dataIdMap.get(u.dataId).id;y!==a&&(l=u,i=y)}let m=l.shape.slice(0,-1),f=e.makeOutput(m,"int32"),d=e.dataIdMap.get(f.dataId).id,h=x.sizeFromShape(f.shape),g=l.shape[c[0]];return aO(i,Rt[l.dtype],h,g,d),p&&e.disposeData(u.dataId),f}var lO={kernelName:_o,backendName:"wasm",kernelFunc:lZ,setupFunc:aZ};var uO;function uZ(r){uO=r.wasm.cwrap(ko,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function cZ(r){let{inputs:e,attrs:t,backend:n}=r,o=e.x,s=n.dataIdMap.get(o.dataId).id,{filterSize:a,strides:i,pad:l,dimRoundingMode:u}=t,c=C.computePool2DInfo(o.shape,a,i,1,l,u),p=c.filterHeight,m=c.filterWidth,f=c.padInfo.top,d=c.padInfo.right,h=c.padInfo.bottom,g=c.padInfo.left,y=c.strideHeight,b=c.strideWidth,w=c.inChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);if(c.dilationWidth!==1||c.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${c.dilationHeight}, ${c.dilationWidth}].`);let _=n.makeOutput(c.outShape,"float32"),I=n.dataIdMap.get(_.dataId).id;return uO(s,o.shape[0],o.shape[1],o.shape[2],p,m,f,d,h,g,y,b,w,I),_}var cO={kernelName:ko,backendName:"wasm",setupFunc:uZ,kernelFunc:cZ};function Br(r){let{inputs:e,attrs:t}=r,{x:n}=e,{shape:o}=t,s=x.sizeFromShape(n.shape),a=x.inferFromImplicitShape(o,s);return x.assert(s===x.sizeFromShape(a),()=>`new shape: ${a}, old shape: ${n.shape}. New shape and old shape must have the same number of elements.`),r.backend.incRef(n.dataId),{dataId:n.dataId,shape:a,dtype:n.dtype}}var pO={kernelName:Us,backendName:"wasm",kernelFunc:Br};var mO;function pZ(r){mO=r.wasm.cwrap(vo,null,["number","array","number","number","array","number","number","number","number"])}function mZ(r){let{inputs:e,backend:t,attrs:n}=r,{a:o,b:s}=e,{transposeA:a,transposeB:i}=n;if(o.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=o.shape.length,u=s.shape.length,c=a?o.shape[l-2]:o.shape[l-1],p=i?s.shape[u-1]:s.shape[u-2],m=a?o.shape[l-1]:o.shape[l-2],f=i?s.shape[u-2]:s.shape[u-1],d=o.shape.slice(0,-2),h=s.shape.slice(0,-2),g=x.sizeFromShape(d),y=x.sizeFromShape(h),b=g===y||g===1||y===1;x.assert(l>=2&&u>=2&&b,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${d}) and (${h}).`);let _=(g>y?o.shape.slice(0,-2):s.shape.slice(0,-2)).concat([m,f]);x.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${o.shape} and ${s.shape} and transposeA=${a} and transposeB=${i} must match.`);let I=a?[g,c,m]:[g,m,c],E=i?[y,f,p]:[y,p,f],$=Br({inputs:{x:o},backend:t,attrs:{shape:I}}),D=Br({inputs:{x:s},backend:t,attrs:{shape:E}}),O=t.dataIdMap.get($.dataId).id,M=t.dataIdMap.get(D.dataId).id,G=a?$.shape[2]:$.shape[1],j=i?D.shape[1]:D.shape[2],U=Math.max(g,y),H=t.makeOutput([U,G,j],$.dtype),q=t.dataIdMap.get(H.dataId).id,X=new Uint8Array(new Int32Array($.shape).buffer),ne=new Uint8Array(new Int32Array(D.shape).buffer);return mO(O,X,$.shape.length,M,ne,D.shape.length,a,i,q),t.disposeData($.dataId),t.disposeData(D.dataId),H.shape=_,H}var fO={kernelName:vo,backendName:"wasm",setupFunc:pZ,kernelFunc:mZ};function Gu(r){let{inputs:{x:e},attrs:{dtype:t},backend:n}=r,o=n.makeOutput(e.shape,t),s=n.typedArrayFromHeap(e);return n.typedArrayFromHeap(o).set(s),o}var dO={kernelName:qn,backendName:"wasm",kernelFunc:Gu};var hO=xt(Co);var gO;function fZ(r){gO=r.wasm.cwrap(Kn,null,["number","number","number","number"])}function dZ(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{clipValueMin:s,clipValueMax:a}=n,i=t.dataIdMap.get(o.dataId).id,l=t.makeOutput(o.shape,o.dtype),u=t.dataIdMap.get(l.dataId).id;return gO(i,s,a,u),l}var xO={kernelName:Kn,backendName:"wasm",setupFunc:fZ,kernelFunc:dZ};function CC(r){let{inputs:e,backend:t}=r,n=x.parseAxisParam(r.attrs.axis,e[0].shape)[0],o=C.computeOutShape(e.map(f=>f.shape),n),s=e.filter(f=>x.sizeFromShape(f.shape)>0);if(s.length===1)return Vu({inputs:{x:s[0]},backend:t});let a=t.makeOutput(o,e[0].dtype);if(x.sizeFromShape(o)===0)return a;let i=s.map(f=>f.shape);if(C.assertParamsConsistent(i,n),s[0].dtype==="string"){let f=s.map(w=>{let _=x.sizeFromShape(w.shape.slice(n));return Br({inputs:{x:w},backend:t,attrs:{shape:[-1,_]}})}),d=f.map(w=>({vals:t.readSync(w.dataId),shape:w.shape}));o=C.computeOutShape(f.map(w=>w.shape),1);let h=f[0].shape[0]===1,g=Su(d,o,e[0].dtype,h),y=C.computeOutShape(s.map(w=>w.shape),n);a.shape=y;let b=t.dataIdMap.get(a.dataId);return b.stringBytes=C.fromStringArrayToUint8(g),f.forEach(w=>t.disposeData(w.dataId)),a}let l=x.sizeFromShape(s[0].shape.slice(0,n)),u=0,c=s.map(f=>{let d=x.sizeFromShape(f.shape.slice(n));return u+=d,d}),p=s.map(f=>t.typedArrayFromHeap(f)),m=t.typedArrayFromHeap(a);for(let f=0;f<l;f++){let d=f*u;for(let h=0;h<p.length;h++){let g=c[h],y=f*g,b=p[h].subarray(y,y+g);m.set(b,d),d+=g}}return a}var yO={kernelName:zs,backendName:"wasm",kernelFunc:CC};var bO;function hZ(r){bO=r.wasm.cwrap(Io,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function gZ(r){let{inputs:e,attrs:t,backend:n}=r,{x:o,filter:s}=e,a=n.dataIdMap.get(o.dataId).id,i=n.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:p,dataFormat:m}=t,f=C.convertConv2DDataFormat(m),d=C.computeConv2DInfo(o.shape,s.shape,l,u,c,p,!1,f),h=d.filterHeight,g=d.filterWidth,y=d.padInfo.top,b=d.padInfo.right,w=d.padInfo.bottom,_=d.padInfo.left,I=d.dilationHeight,E=d.dilationWidth,$=d.strideHeight,D=d.strideWidth,O=d.inChannels,M=d.outChannels,G=d.padInfo.type==="SAME"?1:0;if(d.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${d.dataFormat}'. Please use 'channelsLast'.`);let j=n.makeOutput(d.outShape,"float32"),U=n.dataIdMap.get(j.dataId).id;return bO(a,o.shape[0],o.shape[1],o.shape[2],i,h,g,y,b,w,_,G,I,E,$,D,O,M,U),j}var wO={kernelName:Io,backendName:"wasm",setupFunc:hZ,kernelFunc:gZ};var _O;function xZ(r){_O=r.wasm.cwrap(No,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function yZ(r){let{backend:e,inputs:t,attrs:n}=r,{dy:o,filter:s}=t,{strides:a,pad:i,dataFormat:l,dimRoundingMode:u,inputShape:c}=n,p=1,m=C.convertConv2DDataFormat(l),f=C.computeConv2DInfo(c,s.shape,a,p,i,u,!1,m),{batchSize:d,filterHeight:h,filterWidth:g,inChannels:y,inHeight:b,inWidth:w,outChannels:_,outHeight:I,outWidth:E,strideHeight:$,strideWidth:D}=f,O=h-1-f.padInfo.top,M=g-1-f.padInfo.left,G=f.dataFormat==="channelsLast",j=x.computeStrides(f.inShape),U=x.computeStrides(o.shape),[H,q,X]=x.computeStrides(s.shape),ne=j[0],Y=G?j[1]:j[2],re=G?j[2]:1,Q=G?1:j[1],ie=U[0],ce=G?U[1]:U[2],ae=G?U[2]:1,fe=G?1:U[1],de=e.makeOutput(f.inShape,"float32"),xe=e.dataIdMap.get(de.dataId).id,we=e.dataIdMap.get(o.dataId).id,Ee=e.dataIdMap.get(s.dataId).id;return _O(we,Ee,d,h,g,b,w,y,I,E,_,$,D,O,M,H,q,X,ne,Y,re,Q,ie,ce,ae,fe,xe),de}var kO={kernelName:No,backendName:"wasm",setupFunc:xZ,kernelFunc:yZ};var vO=xt(So);var IC;(function(r){r[r.bilinear=0]="bilinear",r[r.nearest=1]="nearest"})(IC||(IC={}));var CO;function bZ(r){CO=r.wasm.cwrap(Di,null,["number","number","number","number","array","number","number","number","number","number"])}function wZ(r){let{backend:e,inputs:t,attrs:n}=r,{method:o,extrapolationValue:s,cropSize:a}=n,{image:i,boxes:l,boxInd:u}=t,c=l.shape[0],[p,m]=a,f=[c,p,m,i.shape[3]],d=e.dataIdMap.get(i.dataId),h;i.dtype!=="float32"&&(h=Gu({backend:e,inputs:{x:i},attrs:{dtype:"float32"}}),d=e.dataIdMap.get(h.dataId));let g=d.id,y=e.dataIdMap.get(l.dataId).id,b=e.dataIdMap.get(u.dataId).id,w=e.makeOutput(f,"float32"),_=e.dataIdMap.get(w.dataId).id,I=new Uint8Array(new Int32Array(i.shape).buffer);return CO(g,y,b,c,I,p,m,IC[o],s,_),h!=null&&e.disposeData(h.dataId),w}var IO={kernelName:Di,backendName:"wasm",setupFunc:bZ,kernelFunc:wZ};var NO;function _Z(r){NO=r.wasm.cwrap(To,null,["number","number","number","number","number","number"])}function kZ(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,exclusive:a,reverse:i}=n,l=o.shape.length;x.assert(o.dtype==="float32"||o.dtype==="int32",()=>`cumsum does not support ${o.dtype} tensors in the WASM backend`);let u=C.getAxesPermutation([s],l),c=o;u!==null&&(c=Ep({inputs:{x:o},attrs:{perm:u},backend:t}));let p=C.getInnerMostAxes(1,l)[0];C.assertAxesAreInnerMostDims("cumsum",[p],l);let m=t.makeOutput(c.shape,c.dtype),f=c.shape[p],d=t.dataIdMap.get(c.dataId).id,h=t.dataIdMap.get(m.dataId).id;NO(d,a?1:0,i?1:0,f,h,Rt[o.dtype]);let g=m;if(u!==null){let y=C.getUndoAxesPermutation(u);g=Ep({inputs:{x:m},attrs:{perm:y},backend:t}),t.disposeData(c.dataId),t.disposeData(m.dataId)}return g}var SO={kernelName:To,backendName:"wasm",setupFunc:_Z,kernelFunc:kZ};var TO;function vZ(r){TO=r.wasm.cwrap($i,null,["number","number","number","array","number","array","array","number","number"])}function CZ(r){let{backend:e,inputs:t,attrs:n}=r,{x:o}=t,{blockSize:s,dataFormat:a}=n;x.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let i=o.shape[0],l=a==="NHWC"?o.shape[1]:o.shape[2],u=a==="NHWC"?o.shape[2]:o.shape[3],c=a==="NHWC"?o.shape[3]:o.shape[1],p=l*s,m=u*s,f=c/(s*s),d=a==="NHWC"?[i,p,m,f]:[i,f,p,m],h=e.makeOutput(d,"float32"),y=e.dataIdMap.get(o.dataId).id,b=new Uint8Array(new Int32Array(x.computeStrides(o.shape)).buffer),w=new Uint8Array(new Int32Array(d).buffer),_=new Uint8Array(new Int32Array(x.computeStrides(d)).buffer),I=e.dataIdMap.get(h.dataId).id;return TO(y,s,a==="NHWC"?1:0,b,o.shape.length-1,w,_,d.length,I),h}var AO={kernelName:$i,backendName:"wasm",setupFunc:vZ,kernelFunc:CZ};var EO;function IZ(r){EO=r.wasm.cwrap(Ao,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function NZ(r){let{inputs:e,attrs:t,backend:n}=r,{x:o,filter:s}=e,a=n.dataIdMap.get(o.dataId).id,i=n.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:p}=t,m=u==null?[1,1]:u,f=C.computeConv2DInfo(o.shape,s.shape,l,m,c,p,!0),d=f.filterHeight,h=f.filterWidth,g=f.padInfo.top,y=f.padInfo.right,b=f.padInfo.bottom,w=f.padInfo.left,_=f.dilationHeight,I=f.dilationWidth,E=f.strideHeight,$=f.strideWidth,D=f.inChannels,O=f.outChannels,M=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let G=n.makeOutput(f.outShape,"float32"),j=n.dataIdMap.get(G.dataId).id;return EO(a,o.shape[0],o.shape[1],o.shape[2],i,d,h,g,y,b,w,M,_,I,E,$,D,O,j),G}var DO={kernelName:Ao,backendName:"wasm",setupFunc:IZ,kernelFunc:NZ};var SZ=!1,$O=yt(Oi,SZ,"bool");var RO=xt(Do);function kx(r){let{inputs:e,attrs:t,backend:n}=r,{input:o}=e,{dim:s}=t,a=o.shape.length,i=o.shape.slice(),l=s;return s<0&&(x.assert(-(a+1)<=s,()=>`Axis must be in the interval [${-(a+1)}, ${a}]`),l=a+s+1),i.splice(l,0,1),Br({inputs:{x:o},backend:n,attrs:{shape:i}})}var FO={kernelName:Bs,backendName:"wasm",kernelFunc:kx};function TZ(r){let{attrs:{shape:e,value:t,dtype:n},backend:o}=r,s=o.makeOutput(e,n);return o.typedArrayFromHeap(s).fill(t),s}var OO={kernelName:el,backendName:"wasm",kernelFunc:TZ};var PO;function AZ(r){PO=r.wasm.cwrap(Mi,null,["number","number","number","number","number","number"])}function EZ(r){let{inputs:e,backend:t}=r,{image:n}=e,o=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(n.dataId).id,a=t.dataIdMap.get(o.dataId).id,[i,l,u,c]=n.shape;return PO(s,i,l,u,c,a),o}var MO={kernelName:Mi,backendName:"wasm",kernelFunc:EZ,setupFunc:AZ};var LO=xt($o);var DZ=!1,zO=yt(Ro,DZ);var BO;function $Z(r){BO=r.wasm.cwrap(Fo,null,["number","number","number","number","number","number","number"])}function RZ(r){let{backend:e,inputs:t,attrs:n}=r,{varianceEpsilon:o}=n,{x:s,mean:a,variance:i,offset:l,scale:u}=t,c=e.dataIdMap.get(s.dataId).id,p=e.dataIdMap.get(a.dataId).id,m=e.dataIdMap.get(i.dataId).id,f=l!=null?e.dataIdMap.get(l.dataId).id:0,d=u!=null?e.dataIdMap.get(u.dataId).id:0,h=e.makeOutput(s.shape,s.dtype);if(x.sizeFromShape(s.shape)===0)return h;let g=e.dataIdMap.get(h.dataId).id;return BO(c,p,m,f,d,o,g),h}var VO={kernelName:Fo,backendName:"wasm",setupFunc:$Z,kernelFunc:RZ};var GO;function FZ(r){GO=r.wasm.cwrap(Js,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function OZ(r){let{inputs:e,attrs:t,backend:n}=r,{x:o,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dilations:c,dataFormat:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=t,h=C.computeConv2DInfo(o.shape,s.shape,l,c,u,m),g=vl[f];if(g==null)throw new Error(`${f} activation not yet supported for FusedConv2D in the wasm backend.`);let y=n.dataIdMap.get(o.dataId).id,b=n.dataIdMap.get(s.dataId).id,w=h.outChannels,_=0;if(a!=null){let ae=n.dataIdMap.get(a.dataId);if(ae.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${ae.shape.length}.`);if(ae.shape[0]!==w)throw new Error(`FusedConv2D bias shape (${ae.shape}) does not match the number of output channels (${w})`);_=ae.id}let I=h.filterHeight,E=h.filterWidth,$=h.padInfo.top,D=h.padInfo.right,O=h.padInfo.bottom,M=h.padInfo.left,G=h.dilationHeight,j=h.dilationWidth,U=h.strideHeight,H=h.strideWidth,q=h.inChannels,X=h.padInfo.type==="SAME"?1:0,ne=h.batchSize,Y=h.inHeight,re=h.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let Q=n.makeOutput(h.outShape,"float32"),ie=n.dataIdMap.get(Q.dataId).id,ce=i==null?0:n.dataIdMap.get(i.dataId).id;return GO(y,ne,Y,re,b,I,E,_,$,D,O,M,X,G,j,U,H,q,w,g,ce,d||0,ie),Q}var WO={kernelName:Js,backendName:"wasm",setupFunc:FZ,kernelFunc:OZ};var jO;function PZ(r){jO=r.wasm.cwrap(Qs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function MZ(r){let{inputs:e,attrs:t,backend:n}=r,{x:o,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dilations:c,dataFormat:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=t,h=C.computeConv2DInfo(o.shape,s.shape,l,c,u,m,!0),g=vl[f];if(g==null)throw new Error(`${f} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=n.dataIdMap.get(o.dataId).id,b=n.dataIdMap.get(s.dataId).id,w=h.outChannels,_=0;if(a!=null){let ae=n.dataIdMap.get(a.dataId);if(ae.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${ae.shape.length}.`);if(ae.shape[0]!==w)throw new Error(`FusedDepthwiseConv2D bias shape (${ae.shape}) does not match the number of output channels (${w})`);_=ae.id}let I=h.filterHeight,E=h.filterWidth,$=h.padInfo.top,D=h.padInfo.right,O=h.padInfo.bottom,M=h.padInfo.left,G=h.dilationHeight,j=h.dilationWidth,U=h.strideHeight,H=h.strideWidth,q=h.inChannels,X=h.padInfo.type==="SAME"?1:0,ne=h.batchSize,Y=h.inHeight,re=h.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let Q=n.makeOutput(h.outShape,"float32"),ie=n.dataIdMap.get(Q.dataId).id,ce=i==null?0:n.dataIdMap.get(i.dataId).id;return jO(y,ne,Y,re,b,I,E,_,$,D,O,M,X,G,j,U,H,q,w,g,ce,d||0,ie),Q}var UO={kernelName:Qs,backendName:"wasm",setupFunc:PZ,kernelFunc:MZ};var HO;function LZ(r){HO=r.wasm.cwrap(Li,null,["number","number","number","number","number","number","array","number"])}function zZ(r){let{backend:e,inputs:t}=r,{params:n,indices:o}=t,[s,a,i,l]=ag.prepareAndValidate(n,o),u=e.makeOutput(s,n.dtype);if(a===0)return u;let c=o.shape,p=c[c.length-1],f=e.dataIdMap.get(n.dataId).id,h=e.dataIdMap.get(o.dataId).id,g=new Uint8Array(new Int32Array(l).buffer),y=e.dataIdMap.get(u.dataId).id;return HO(f,Rt[n.dtype],h,a,p,i,g,y),u}var qO={kernelName:Li,backendName:"wasm",setupFunc:LZ,kernelFunc:zZ};var KO;function BZ(r){KO=r.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function VZ(r){let{backend:e,inputs:t,attrs:n}=r,{x:o,indices:s}=t,{axis:a,batchDims:i}=n,l=x.parseAxisParam(a,o.shape)[0],u=C.segment_util.collectGatherOpShapeInfo(o,s,l,i),c=Br({inputs:{x:o},attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]},backend:e}),p=x.sizeFromShape(s.shape),m=Br({inputs:{x:s},attrs:{shape:[u.batchSize,p/u.batchSize]},backend:e}),f=[u.batchSize,u.outerSize,p/u.batchSize,u.sliceSize],d=e.makeOutput(f,o.dtype);if(x.sizeFromShape(o.shape)===0)return d;let h=c.shape.length-1,y=e.dataIdMap.get(c.dataId).id,w=e.dataIdMap.get(m.dataId).id,_=e.dataIdMap.get(d.dataId).id,I=new Uint8Array(new Int32Array(x.computeStrides(c.shape)).buffer),E=new Uint8Array(new Int32Array(x.computeStrides(f)).buffer);return KO(y,Rt[o.dtype],I,h,w,u.batchSize,E,_),e.disposeData(c.dataId),e.disposeData(m.dataId),d.shape=u.outputShape,d}var XO={kernelName:Vs,backendName:"wasm",setupFunc:BZ,kernelFunc:VZ};var GZ=!1,YO=yt(zi,GZ,"bool");var WZ=!1,ZO=yt(Oo,WZ,"bool");var JO;function jZ(r){JO=r.wasm.cwrap(Po,null,["number","number","number"])}function UZ(r){let{inputs:{x:e},attrs:{alpha:t},backend:n}=r,o=n.dataIdMap.get(e.dataId).id,s=n.makeOutput(e.shape,e.dtype);if(x.sizeFromShape(e.shape)!==0){let a=n.dataIdMap.get(s.dataId).id;JO(o,t,a)}return s}var QO={kernelName:Po,backendName:"wasm",setupFunc:jZ,kernelFunc:UZ};var HZ=!1,eP=yt(Wi,HZ,"bool");var qZ=!1,tP=yt(ji,qZ,"bool");var rP=xt(Mo);var KZ=!1,nP=yt(Hi,KZ,"bool");var oP;function XZ(r){oP=r.wasm.cwrap(Lo,null,["number, number, number"])}function YZ(r){let{backend:e,inputs:t,attrs:n}=r,{reductionIndices:o,keepDims:s}=n,{x:a}=t,l=e.dataIdMap.get(a.dataId).id,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=tn(a,o,e);if(f){let w=e.dataIdMap.get(c.dataId).id;u=c,l=w}let d=u.shape.length;C.assertAxesAreInnerMostDims("max",p,d);let[h,g]=C.computeOutAndReduceShapes(u.shape,p),y=x.sizeFromShape(g),b=e.makeOutput(h,a.dtype);if(x.sizeFromShape(u.shape)!==0){let w=e.dataIdMap.get(b.dataId).id;oP(l,y,w)}if(f&&e.disposeData(c.dataId),s){let w=C.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var sP={kernelName:Lo,backendName:"wasm",setupFunc:XZ,kernelFunc:YZ};var ZZ=!1,iP=yt(zo,ZZ);var aP;function JZ(r){aP=r.wasm.cwrap(Bo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function QZ(r){let{inputs:e,attrs:t,backend:n}=r,o=e.x,s=n.dataIdMap.get(o.dataId).id,{filterSize:a,strides:i,pad:l,dimRoundingMode:u}=t,c=C.computePool2DInfo(o.shape,a,i,1,l,u),p=c.filterHeight,m=c.filterWidth,f=c.padInfo.top,d=c.padInfo.right,h=c.padInfo.bottom,g=c.padInfo.left,y=c.dilationHeight,b=c.dilationWidth,w=c.strideHeight,_=c.strideWidth,I=c.inChannels,E=c.outChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let $=n.makeOutput(c.outShape,"float32"),D=n.dataIdMap.get($.dataId).id;return aP(s,o.shape[0],o.shape[1],o.shape[2],p,m,f,d,h,g,y,b,w,_,I,E,D),$}var lP={kernelName:Bo,backendName:"wasm",setupFunc:JZ,kernelFunc:QZ};var uP;function eJ(r){uP=r.wasm.cwrap(Vo,null,["number, number, number"])}function tJ(r){let{backend:e,inputs:t,attrs:n}=r,{axis:o,keepDims:s}=n,{x:a}=t,i=e.dataIdMap.get(a.dataId).id,l=i,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=tn(a,o,e),d=p;if(f){let _=e.dataIdMap.get(c.dataId).id;_!==i&&(u=c,l=_,d=C.getInnerMostAxes(d.length,u.shape.length))}C.assertAxesAreInnerMostDims("mean",d,u.shape.length);let[h,g]=C.computeOutAndReduceShapes(u.shape,d),y=x.sizeFromShape(g),b=u;u.dtype!=="float32"&&(b=Gu({backend:e,inputs:{x:u},attrs:{dtype:"float32"}}),l=e.dataIdMap.get(b.dataId).id);let w=e.makeOutput(h,"float32");if(x.sizeFromShape(u.shape)!==0){let _=e.dataIdMap.get(w.dataId).id;uP(l,y,_)}if(f&&e.disposeData(c.dataId),s){let _=C.expandShapeToKeepDim(w.shape,m);w.shape=_}return u.dtype!=="float32"&&e.disposeData(b.dataId),w}var cP={kernelName:Vo,backendName:"wasm",setupFunc:eJ,kernelFunc:tJ};var pP;function rJ(r){pP=r.wasm.cwrap(Go,null,["number, number, number"])}function nJ(r){let{backend:e,inputs:t,attrs:n}=r,{axis:o,keepDims:s}=n,{x:a}=t,i=e.dataIdMap.get(a.dataId).id,l=i,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=tn(a,o,e);if(f){let w=e.dataIdMap.get(c.dataId).id;w!==i&&(u=c,l=w)}let d=u.shape.length;C.assertAxesAreInnerMostDims("min",p,d);let[h,g]=C.computeOutAndReduceShapes(u.shape,p),y=x.sizeFromShape(g),b=e.makeOutput(h,u.dtype);if(x.sizeFromShape(u.shape)!==0){let w=e.dataIdMap.get(b.dataId).id;pP(l,y,w)}if(f&&e.disposeData(c.dataId),s){let w=C.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var mP={kernelName:Go,backendName:"wasm",setupFunc:rJ,kernelFunc:nJ};var oJ=!1,fP=yt(Wo,oJ);var NC;(function(r){r[r.reflect=0]="reflect",r[r.symmetric=1]="symmetric"})(NC||(NC={}));var dP;function sJ(r){dP=r.wasm.cwrap(jo,null,["number","array","number","number","array","array","number","number"])}function iJ(r){let{inputs:{x:e},backend:t,attrs:{paddings:n,mode:o}}=r,s=n.map((d,h)=>d[0]+e.shape[h]+d[1]),a=t.dataIdMap.get(e.dataId).id,i=t.makeOutput(s,e.dtype),l=t.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(e.shape).buffer),c=n.map(d=>d[0]),p=n.map(d=>d[1]),m=new Uint8Array(new Int32Array(c).buffer),f=new Uint8Array(new Int32Array(p).buffer);return dP(a,u,e.shape.length,Rt[e.dtype],m,f,NC[o],l),i}var hP={kernelName:jo,backendName:"wasm",kernelFunc:iJ,setupFunc:sJ};var aJ=!0,gP=yt(Uo,aJ);var xP=xt(Gs);function Dp(r,e){let t=new Int32Array(r.wasm.HEAPU8.buffer,e,4),n=t[0],o=t[1],s=t[2],a=t[3];return r.wasm._free(e),{pSelectedIndices:n,selectedSize:o,pSelectedScores:s,pValidOutputs:a}}var yP;function lJ(r){yP=r.wasm.cwrap(Xi,"number",["number","number","number","number","number"])}function uJ(r){let{backend:e,inputs:t,attrs:n}=r,{iouThreshold:o,maxOutputSize:s,scoreThreshold:a}=n,{boxes:i,scores:l}=t,u=e.dataIdMap.get(i.dataId).id,c=e.dataIdMap.get(l.dataId).id,p=yP(u,c,s,o,a),{pSelectedIndices:m,selectedSize:f,pSelectedScores:d,pValidOutputs:h}=Dp(e,p);return e.wasm._free(d),e.wasm._free(h),e.makeOutput([f],"int32",m)}var bP={kernelName:Xi,backendName:"wasm",setupFunc:lJ,kernelFunc:uJ};var wP;function cJ(r){wP=r.wasm.cwrap(Yi,"number",["number","number","number","number","number","bool"])}function pJ(r){let{backend:e,inputs:t,attrs:n}=r,{iouThreshold:o,maxOutputSize:s,scoreThreshold:a,padToMaxOutputSize:i}=n,{boxes:l,scores:u}=t,c=e.dataIdMap.get(l.dataId).id,p=e.dataIdMap.get(u.dataId).id,m=wP(c,p,s,o,a,i),{pSelectedIndices:f,selectedSize:d,pSelectedScores:h,pValidOutputs:g}=Dp(e,m);e.wasm._free(h);let y=e.makeOutput([d],"int32",f),b=e.makeOutput([],"int32",g);return[y,b]}var _P={kernelName:Yi,backendName:"wasm",setupFunc:cJ,kernelFunc:pJ};var kP;function mJ(r){kP=r.wasm.cwrap(Zi,"number",["number","number","number","number","number","number"])}function fJ(r){let{backend:e,inputs:t,attrs:n}=r,{iouThreshold:o,maxOutputSize:s,scoreThreshold:a,softNmsSigma:i}=n,{boxes:l,scores:u}=t,c=e.dataIdMap.get(l.dataId).id,p=e.dataIdMap.get(u.dataId).id,m=kP(c,p,s,o,a,i),{pSelectedIndices:f,selectedSize:d,pSelectedScores:h,pValidOutputs:g}=Dp(e,m);e.wasm._free(g);let y=e.makeOutput([d],"int32",f),b=e.makeOutput([d],"float32",h);return[y,b]}var vP={kernelName:Zi,backendName:"wasm",setupFunc:mJ,kernelFunc:fJ};var dJ=!1,CP=yt(Ki,dJ,"bool");var IP;function hJ(r){IP=r.wasm.cwrap(Ho,null,["number","number","number","number","number"])}function gJ(r){let{inputs:e,backend:t,attrs:n}=r,{indices:o}=e,{depth:s,onValue:a,offValue:i}=n,l=t.makeOutput([...o.shape,s],"int32"),u=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(o.dataId).id;return IP(p,s,a,i,u),l}var NP={kernelName:Ho,backendName:"wasm",setupFunc:hJ,kernelFunc:gJ};function xJ(r){let{inputs:{x:e},backend:t}=r,n=t.makeOutput(e.shape,e.dtype);return t.typedArrayFromHeap(n).fill(1),n}var SP={kernelName:Ws,backendName:"wasm",kernelFunc:xJ};function yJ(r){let{inputs:e,backend:t,attrs:n}=r,{axis:o}=n;if(e.length===1)return kx({inputs:{input:e[0]},backend:t,attrs:{dim:o}});let s=e[0].shape,a=e[0].dtype;e.forEach(c=>{x.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),x.assert(a===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=e.map(c=>{let p=kx({inputs:{input:c},backend:t,attrs:{dim:o}});return i.push(p),p}),u=CC({inputs:l,backend:t,attrs:{axis:o}});return i.forEach(c=>t.disposeData(c.dataId)),u}var TP={kernelName:js,backendName:"wasm",kernelFunc:yJ};var AP;function bJ(r){AP=r.wasm.cwrap(qo,null,["number","array","number","number","array","array","number","number"])}function wJ(r){let{inputs:{x:e},backend:t,attrs:{paddings:n,constantValue:o}}=r,s=n.map((d,h)=>d[0]+e.shape[h]+d[1]),a=t.dataIdMap.get(e.dataId).id,i=t.makeOutput(s,e.dtype),l=t.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(e.shape).buffer),c=n.map(d=>d[0]),p=n.map(d=>d[1]),m=new Uint8Array(new Int32Array(c).buffer),f=new Uint8Array(new Int32Array(p).buffer);return AP(a,u,e.shape.length,Rt[e.dtype],m,f,o,l),i}var EP={kernelName:qo,backendName:"wasm",kernelFunc:wJ,setupFunc:bJ};var _J=!1,DP=yt(Ko,_J);var $P;function kJ(r){$P=r.wasm.cwrap(Xo,null,["number","number","number"])}function vJ(r){let{inputs:e,backend:t}=r,{x:n,alpha:o}=e,s=t.dataIdMap.get(n.dataId).id,a=t.dataIdMap.get(o.dataId).id,i=t.makeOutput(n.shape,"float32"),l=t.dataIdMap.get(i.dataId).id;return $P(s,a,l),i}var RP={kernelName:Xo,backendName:"wasm",setupFunc:kJ,kernelFunc:vJ};var FP;function CJ(r){FP=r.wasm.cwrap(Ji,null,["number","number","number","number"])}function IJ(r){let{backend:e,inputs:t,attrs:n}=r,{axis:o,keepDims:s}=n,{x:a}=t,i=e.dataIdMap.get(a.dataId).id,l=i,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=tn(a,o,e),d=p;if(f){let w=e.dataIdMap.get(c.dataId).id;w!==i&&(u=c,l=w,d=C.getInnerMostAxes(d.length,u.shape.length))}C.assertAxesAreInnerMostDims("prod",d,u.shape.length);let[h,g]=C.computeOutAndReduceShapes(u.shape,d),y=x.sizeFromShape(g),b=e.makeOutput(h,u.dtype);if(x.sizeFromShape(u.shape)!==0){let w=e.dataIdMap.get(b.dataId).id;FP(l,y,Rt[b.dtype],w)}if(f&&e.disposeData(c.dataId),s){let w=C.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var OP={kernelName:Ji,backendName:"wasm",setupFunc:CJ,kernelFunc:IJ};var NJ=r=>{let{backend:e,attrs:t}=r,{start:n,stop:o,step:s,dtype:a}=t,i=Au(n,o,s,a),l=e.makeOutput([i.length],a);return e.typedArrayFromHeap(l).set(i),l},PP={kernelName:nl,backendName:"wasm",kernelFunc:NJ};var SJ=!0,MP=yt(Eo,SJ);var LP=xt(Yo);var zP=xt(Jo);var BP;function TJ(r){BP=r.wasm.cwrap(Zo,null,["number","number","number","number","number","number","number","number","number","number"])}function AJ(r){let{backend:e,inputs:t,attrs:n}=r,{images:o}=t,{alignCorners:s,halfPixelCenters:a,size:i}=n,[l,u]=i,[c,p,m,f]=o.shape,d=[c,l,u,f],h=e.dataIdMap.get(o.dataId),g;h.dtype!=="float32"&&(g=Gu({backend:e,inputs:{x:o},attrs:{dtype:"float32"}}),h=e.dataIdMap.get(g.dataId));let y=h.id,b=e.makeOutput(d,"float32");if(x.sizeFromShape(o.shape)===0)return b;let w=e.dataIdMap.get(b.dataId).id;return BP(y,c,p,m,f,l,u,s?1:0,a?1:0,w),g!=null&&e.disposeData(g.dataId),b}var VP={kernelName:Zo,backendName:"wasm",setupFunc:TJ,kernelFunc:AJ};var GP;function EJ(r){GP=r.wasm.cwrap(Qo,null,["number","array","number","array","number","number"])}function DJ(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{dims:s}=n,a=x.parseAxisParam(s,o.shape);if(o.shape.length===0)return Vu({inputs:{x:o},backend:t});let i=t.makeOutput(o.shape,o.dtype),l=t.dataIdMap.get(o.dataId).id,u=t.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(a).buffer),p=new Uint8Array(new Int32Array(o.shape).buffer);GP(l,c,a.length,p,o.shape.length,u);let m=Br({inputs:{x:i},attrs:{shape:o.shape},backend:t});return t.disposeData(i.dataId),m}var WP={kernelName:Qo,backendName:"wasm",kernelFunc:DJ,setupFunc:EJ};var jP;function $J(r){jP=r.wasm.cwrap(aa,null,["number","number","number","number","number","number","number","number","array","number","number"])}function RJ(r){let{inputs:e,backend:t,attrs:n}=r,{image:o}=e,{radians:s,fillValue:a,center:i}=n,l=t.makeOutput(o.shape,o.dtype),u=t.dataIdMap.get(o.dataId).id,c=t.dataIdMap.get(l.dataId).id,[p,m,f,d]=o.shape,[h,g]=C.getImageCenter(i,m,f),y=a===0,b=255,w=typeof a=="number"?[a,a,a,y?0:b]:[...a,b],_=new Uint8Array(new Int32Array(w).buffer);return jP(u,p,m,f,d,s,h,g,_,w.length,c),l}var UP={kernelName:aa,backendName:"wasm",kernelFunc:RJ,setupFunc:$J};var HP=xt(es);var qP=xt(ts);var KP;function FJ(r){KP=r.wasm.cwrap(ea,null,["number","number","number","number","number","number","array","number","number"])}function OJ(r){let{backend:e,inputs:t,attrs:n}=r,{indices:o,updates:s}=t,{shape:a}=n,i=e.makeOutput(a,s.dtype);if(x.sizeFromShape(a)===0)return i;let{sliceRank:l,numUpdates:u,sliceSize:c,strides:p,outputSize:m}=lg.calculateShapes(s,o,a),d=e.dataIdMap.get(o.dataId).id,g=e.dataIdMap.get(s.dataId).id,y=new Uint8Array(new Int32Array(p).buffer),b=e.dataIdMap.get(i.dataId).id;return KP(d,g,Rt[s.dtype],l,u,c,y,m,b),i}var XP={kernelName:ea,backendName:"wasm",setupFunc:FJ,kernelFunc:OJ};var YP;function PJ(r){YP=r.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function MJ(r){let{inputs:e,backend:t}=r,{condition:n,t:o,e:s}=e,a=t.dataIdMap.get(n.dataId).id,i=t.dataIdMap.get(o.dataId).id,l=t.dataIdMap.get(s.dataId).id,u=t.makeOutput(o.shape,o.dtype),c=t.dataIdMap.get(u.dataId).id,p=n.shape.length,m=o.shape.length,f=p===0||p>1||m===1?1:x.sizeFromShape(o.shape.slice(1));return YP(a,i,l,f,c),u}var ZP={kernelName:Hs,backendName:"wasm",kernelFunc:MJ,setupFunc:PJ};var JP;function LJ(r){JP=r.wasm.cwrap(ns,null,["number","number"])}function zJ(r){let{backend:e,inputs:{x:t}}=r,n=e.dataIdMap.get(t.dataId).id,o=e.makeOutput(t.shape,t.dtype),s=e.dataIdMap.get(o.dataId).id;return x.sizeFromShape(o.shape)===0||JP(n,s),o}var QP={kernelName:"Sigmoid",backendName:"wasm",setupFunc:LJ,kernelFunc:zJ};var eM=xt(rs);function Wu(r){let{inputs:{x:e},attrs:{begin:t,size:n},backend:o}=r,[s,a]=rr.parseSliceParams(e,t,n),i=rr.isSliceContinous(e.shape,s,a),l=o.readSync(e.dataId),u=o.makeOutput(a,e.dtype),c=x.computeStrides(e.shape),p=o.dataIdMap.get(u.dataId);if(i){let d=rr.computeFlatOffset(s,c);return e.dtype==="string"?p.stringBytes=l.slice(d,d+x.sizeFromShape(a)):o.typedArrayFromHeap(u).set(l.subarray(d,d+x.sizeFromShape(a))),u}if(e.dtype==="string"){let d=Eu(l,s,a,e.shape,e.dtype);return p.stringBytes=d,u}let m=o.typedArrayFromHeap(u),f=e.shape.length;if(f===2)BJ(l,c[0],m,s,a);else if(f===3)VJ(l,c[0],c[1],m,s,a);else if(f===4)GJ(l,c[0],c[1],c[2],m,s,a);else{let d=Eu(l,s,a,e.shape,e.dtype);m.set(d)}return u}function BJ(r,e,t,n,o){let s=0,a=n[0],i=n[1],l=a+o[0];for(let u=a;u<l;u++){let c=u*e+i;t.set(r.subarray(c,c+o[1]),s),s+=o[1]}}function VJ(r,e,t,n,o,s){let a=0,i=o[0],l=o[1],u=o[2],c=i+s[0],p=l+s[1];for(let m=i;m<c;m++)for(let f=l;f<p;f++){let d=m*e+f*t+u;n.set(r.subarray(d,d+s[2]),a),a+=s[2]}}function GJ(r,e,t,n,o,s,a){let i=0,l=s[0],u=s[1],c=s[2],p=l+a[0],m=u+a[1],f=c+a[2],d=s[3];for(let h=l;h<p;h++)for(let g=u;g<m;g++)for(let y=c;y<f;y++){let b=h*e+g*t+y*n+d;o.set(r.subarray(b,b+a[3]),i),i+=a[3]}}var tM={kernelName:qs,backendName:"wasm",kernelFunc:Wu};var rM;function WJ(r){rM=r.wasm.cwrap(is,null,["number","number","number","number"])}function jJ(r){let{backend:e,inputs:{logits:t},attrs:{dim:n}}=r,o=e.dataIdMap.get(t.dataId).id,s=e.makeOutput(t.shape,t.dtype),a=e.dataIdMap.get(s.dataId).id,i=t.shape[n],l=x.sizeFromShape(t.shape)/i;return x.sizeFromShape(s.shape)===0||rM(o,a,i,l),s}var nM={kernelName:is,backendName:"wasm",setupFunc:WJ,kernelFunc:jJ};function UJ(r){let{inputs:e,attrs:t,backend:n}=r,{x:o}=e,{numOrSizeSplits:s,axis:a}=t,i=x.parseAxisParam(a,o.shape)[0],l=C.prepareSplitSize(o,s,i),u=new Array(o.shape.length).fill(0),c=o.shape.slice();return l.map(p=>{let m=[...c];m[i]=p;let f=Wu({inputs:{x:o},attrs:{begin:u,size:m},backend:n});return u[i]+=p,f})}var oM={kernelName:Ks,backendName:"wasm",kernelFunc:UJ};var sM=xt(os);var iM=xt(il);var HJ=!0,aM=yt(as,HJ);var lM;function qJ(r){lM=r.wasm.cwrap(Yn,null,["number","number","number"])}function KJ(r){let{backend:e,inputs:t,attrs:n}=r,{alpha:o}=n,{x:s}=t,a=e.dataIdMap.get(s.dataId).id,i=e.makeOutput(s.shape,s.dtype),l=e.dataIdMap.get(i.dataId).id;return lM(a,o,l),i}var uM={kernelName:Yn,backendName:"wasm",setupFunc:qJ,kernelFunc:KJ};var cM;function XJ(r){cM=r.wasm.cwrap(sa,null,["number","array","number","array","array","array","array","array","number","number"])}function YJ(r){let{backend:e,inputs:t,attrs:n}=r,{x:o}=t,{begin:s,end:a,strides:i}=n;i==null&&(i=new Array(s.length));let{beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:m}=n,f=C.slice_util.maskToAxes(c);if(f.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(c!==0&&p!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(c!==0&&m!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let d=o.shape.length-s.length,h=C.slice_util.maskToAxes(p),g=o.shape.slice();h.forEach(G=>{s[G]=0,a[G]=1,g.splice(G,0,1)});let y=Br({inputs:{x:o},attrs:{shape:g},backend:e}),{begin:b,end:w,strides:_}=C.slice_util.getNormalizedAxes(y.shape,f,d,s,a,i,l,u,c);s=b,a=w,i=_;let I=C.slice_util.maskToAxes(m);I.forEach(G=>{a[G]=s[G]+1,i[G]=1});let E=C.slice_util.computeOutShape(s,a,i),$=E.filter((G,j)=>I.indexOf(j)===-1);if(i.every(G=>G===1)){let G=Wu({inputs:{x:y},attrs:{begin:s,size:E},backend:e});e.disposeData(y.dataId);let j=Br({inputs:{x:G},attrs:{shape:$},backend:e});return e.disposeData(G.dataId),j}let O=e.makeOutput($,"float32");if(!$.some(G=>G===0)){let G=e.dataIdMap.get(y.dataId).id,j=new Uint8Array(new Int32Array(x.computeStrides(y.shape)).buffer),U=new Uint8Array(new Int32Array(s).buffer),H=new Uint8Array(new Int32Array(a).buffer),q=new Uint8Array(new Int32Array(i).buffer),X=new Uint8Array(new Int32Array($).buffer),ne=new Uint8Array(new Int32Array(x.computeStrides($)).buffer),Y=e.dataIdMap.get(O.dataId).id;cM(G,j,y.shape.length,U,H,q,X,ne,$.length,Y)}e.disposeData(y.dataId);let M=Br({inputs:{x:O},attrs:{shape:$},backend:e});return e.disposeData(O.dataId),M}var pM={kernelName:sa,backendName:"wasm",setupFunc:XJ,kernelFunc:YJ};var ZJ=!0,mM=yt(ls,ZJ);var fM;function JJ(r){fM=r.wasm.cwrap(ss,null,["number, number, number"])}function QJ(r){let{backend:e,inputs:t,attrs:n}=r,{axis:o,keepDims:s}=n,{x:a}=t,i=e.dataIdMap.get(a.dataId).id,l=i,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=tn(a,o,e),d=p;if(f){let w=e.dataIdMap.get(c.dataId).id;w!==i&&(u=c,l=w,d=C.getInnerMostAxes(d.length,u.shape.length))}C.assertAxesAreInnerMostDims("sum",d,u.shape.length);let[h,g]=C.computeOutAndReduceShapes(u.shape,d),y=x.sizeFromShape(g),b=e.makeOutput(h,u.dtype);if(x.sizeFromShape(u.shape)!==0){let w=e.dataIdMap.get(b.dataId).id;fM(l,y,w)}if(f&&e.disposeData(c.dataId),s){let w=C.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var dM={kernelName:ss,backendName:"wasm",setupFunc:JJ,kernelFunc:QJ};var hM=xt(us);var gM=xt(cs);var xM;function eQ(r){xM=r.wasm.cwrap(Pn,null,["number","array","number","array","number","number"])}function tQ(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,s=t.dataIdMap.get(o.dataId).id,{reps:a}=n,i=new Array(o.shape.length);for(let m=0;m<i.length;m++)i[m]=o.shape[m]*a[m];let l=new Uint8Array(new Int32Array(o.shape).buffer),u=new Uint8Array(new Int32Array(i).buffer),c=t.makeOutput(i,o.dtype),p=t.dataIdMap.get(c.dataId).id;return xM(s,l,o.shape.length,u,i.length,Rt[c.dtype],p),c}var yM={kernelName:Pn,backendName:"wasm",setupFunc:eQ,kernelFunc:tQ};var bM;function rQ(r){bM=r.wasm.cwrap(ia,null,["number","array","number","number","number","bool","number","number"])}var nQ=({inputs:r,backend:e,attrs:t})=>{let{x:n}=r,{k:o,sorted:s}=t,a=e.dataIdMap.get(n.dataId).id,i=new Uint8Array(new Int32Array(n.shape).buffer),l=n.shape.slice();l[l.length-1]=o;let u=e.makeOutput(l,n.dtype),c=e.dataIdMap.get(u.dataId).id,p=e.makeOutput(l,"int32"),m=e.dataIdMap.get(p.dataId).id;return bM(a,i,n.shape.length,Rt[n.dtype],o,s,c,m),[u,p]},wM={kernelName:ia,backendName:"wasm",setupFunc:rQ,kernelFunc:nQ};function oQ(r){let{inputs:e,backend:t,attrs:n}=r,{value:o}=e,{axis:s}=n;s<0&&(s+=o.shape.length);let a=o.shape[s],i=o.shape.length,l=new Array(i-1),u=0;for(let f=0;f<i;f++)f!==s&&(l[u++]=o.shape[f]);let c=new Array(a),p=new Array(i).fill(0),m=o.shape.slice();m[s]=1;for(let f=0;f<c.length;f++)p[s]=f,c[f]=Wu({inputs:{x:o},attrs:{begin:p,size:m},backend:t});return c.map(({dataId:f,dtype:d})=>({dataId:f,dtype:d,shape:l}))}var _M={kernelName:Xs,backendName:"wasm",kernelFunc:oQ};function sQ(r){let{inputs:{x:e},backend:t}=r,n=t.makeOutput(e.shape,e.dtype);return t.typedArrayFromHeap(n).fill(0),n}var kM={kernelName:Ys,backendName:"wasm",kernelFunc:sQ};var iQ=[YF,ZF,QF,oO,iO,lO,cO,fO,dO,hO,xO,yO,wO,kO,vO,IO,SO,AO,DO,$O,RO,FO,OO,MO,LO,zO,XF,VO,WO,UO,qO,XO,YO,ZO,eO,QO,eP,tP,rP,nP,sP,iP,lP,cP,mP,fP,hP,gP,xP,bP,_P,vP,CP,NP,SP,TP,EP,DP,RP,OP,PP,MP,LP,zP,pO,VP,WP,UP,qP,HP,XP,ZP,QP,eM,tM,nM,oM,sM,iM,aM,uM,pM,mM,dM,hM,gM,yM,wM,rO,_M,kM];for(let r of iQ)Hl(r);var SC=W();SC.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));SC.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(SC.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(r){return!1}});var $C=pc(IM());var NM='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModule(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}';var TM=pc(SM());var Ix=class extends Os{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new qa(this,ds())}write(e,t,n){let o={id:this.dataIdNextNumber++};return this.move(o,e,t,n,1),o}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=x.now();return e(),{kernelMs:x.now()-t}}move(e,t,n,o,s){let a=this.dataIdNextNumber++;if(o==="string"){let c=t;this.dataIdMap.set(e,{id:a,stringBytes:c,shape:n,dtype:o,memoryOffset:null,refCount:s});return}let i=x.sizeFromShape(n),l=i*x.bytesPerElement(o),u=this.wasm._malloc(l);this.dataIdMap.set(e,{id:a,memoryOffset:u,shape:n,dtype:o,refCount:s}),this.wasm.tfjs.registerTensor(a,i,u),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,l),u)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:o,stringBytes:s}=this.dataIdMap.get(e);if(n==="string")return s;let a=this.wasm.HEAPU8.slice(t,t+x.sizeFromShape(o)*x.bytesPerElement(n));return aQ(a.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let o;if(n==null)o=this.write(null,e,t);else{let s=this.dataIdNextNumber++;o={id:s},this.dataIdMap.set(o,{id:s,memoryOffset:n,shape:e,dtype:t,refCount:1});let a=x.sizeFromShape(e);this.wasm.tfjs.registerTensor(s,a,n)}return{dataId:o,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let o=this.wasm.HEAPU8.buffer,{memoryOffset:s}=this.dataIdMap.get(n),a=x.sizeFromShape(e);switch(t){case"float32":return new Float32Array(o,s,a);case"int32":return new Int32Array(o,s,a);case"bool":return new Uint8Array(o,s,a);default:throw new Error(`Unknown dtype ${t}`)}}};function lQ(r){return(e,t)=>(x.fetch(r,{credentials:"same-origin"}).then(n=>{n.ok||e.env.a(`failed to load wasm binary file at '${r}'`),n.arrayBuffer().then(o=>{WebAssembly.instantiate(o,e).then(s=>{t(s.instance)})})}),{})}function AM(r,e,t){if(Nx!=null)return Nx;let n="tfjs-backend-wasm.wasm";return r&&e?n="tfjs-backend-wasm-threaded-simd.wasm":r&&(n="tfjs-backend-wasm-simd.wasm"),Gf!=null&&Gf[n]!=null?Gf[n]:t+n}async function EM(){let[r,e]=await Promise.all([W().getAsync("WASM_HAS_SIMD_SUPPORT"),W().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((t,n)=>{let o={};o.locateFile=(i,l)=>{if(i.endsWith(".worker.js")){let u=NM,c=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(c)}return i.endsWith(".wasm")?AM(r,e,Wf!=null?Wf:l):l+i},RC&&(o.instantiateWasm=lQ(AM(r,e,Wf!=null?Wf:"")));let s=!1;o.onAbort=()=>{if(s||jf)return;jf=!0,n({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})};let a;e&&r&&Nx==null?(o.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+$C.default.toString()],{type:"text/javascript"}),a=(0,$C.default)(o)):a=(0,TM.default)(o),a.then(i=>{s=!0,jf=!1;let l=null;i.tfjs={init:i.cwrap("init",null,[]),registerTensor:i.cwrap("register_tensor",null,["number","number","number"]),disposeData:i.cwrap("dispose_data",l,["number"]),dispose:i.cwrap("dispose",l,[])},t({wasm:i})})})}function aQ(r,e){switch(e){case"float32":return new Float32Array(r);case"int32":return new Int32Array(r);case"bool":return new Uint8Array(r);default:throw new Error(`Unknown dtype ${e}`)}}var uQ=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Nx=null,Wf=null,Gf={},jf=!1,RC=!1;function cQ(r,e=!1){if(Fw("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),jf)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Nx=r,RC=e}function pQ(r,e=!1){if(jf)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof r=="string")Wf=r;else{Gf=r;let t=uQ.filter(n=>Gf[n]==null);if(t.length>0)throw new Error(`There were no entries found for the following binaries: ${t.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}RC=e}var FC="3.4.0";var mQ=2;Jc("wasm",async()=>{let{wasm:r}=await EM();return new Ix(r)},mQ);F().prototype.abs=function(){return this.throwIfDisposed(),Nt(this)};F().prototype.acos=function(){return this.throwIfDisposed(),Lm(this)};F().prototype.acosh=function(){return this.throwIfDisposed(),zm(this)};F().prototype.add=function(r){return this.throwIfDisposed(),ee(this,r)};F().prototype.all=function(r,e){return this.throwIfDisposed(),Ql(this,r,e)};F().prototype.any=function(r,e){return this.throwIfDisposed(),ml(this,r,e)};F().prototype.argMax=function(r){return this.throwIfDisposed(),fl(this,r)};F().prototype.argMin=function(r){return this.throwIfDisposed(),Bm(this,r)};F().prototype.asScalar=function(){return this.throwIfDisposed(),T(this.size===1,()=>"The array must have only 1 element."),L(this,[])};F().prototype.asType=function(r){return this.throwIfDisposed(),oe(this,r)};F().prototype.as1D=function(){return this.throwIfDisposed(),L(this,[this.size])};F().prototype.as2D=function(r,e){return this.throwIfDisposed(),L(this,[r,e])};F().prototype.as3D=function(r,e,t){return this.throwIfDisposed(),L(this,[r,e,t])};F().prototype.as4D=function(r,e,t,n){return this.throwIfDisposed(),L(this,[r,e,t,n])};F().prototype.as5D=function(r,e,t,n,o){return this.throwIfDisposed(),L(this,[r,e,t,n,o])};F().prototype.asin=function(){return this.throwIfDisposed(),Vm(this)};F().prototype.asinh=function(){return this.throwIfDisposed(),Gm(this)};F().prototype.atan=function(){return this.throwIfDisposed(),Wm(this)};F().prototype.atan2=function(r){return this.throwIfDisposed(),jm(this,r)};F().prototype.atanh=function(){return this.throwIfDisposed(),Um(this)};F().prototype.avgPool=function(r,e,t,n){return this.throwIfDisposed(),fa(this,r,e,t,n)};F().prototype.batchToSpaceND=function(r,e){return this.throwIfDisposed(),da(this,r,e)};F().prototype.batchNorm=function(r,e,t,n,o){return this.throwIfDisposed(),Jn(this,r,e,t,n,o)};F().prototype.broadcastTo=function(r){return this.throwIfDisposed(),ha(this,r)};F().prototype.cast=function(r){return this.throwIfDisposed(),oe(this,r)};F().prototype.ceil=function(){return this.throwIfDisposed(),qm(this)};F().prototype.clipByValue=function(r,e){return this.throwIfDisposed(),lr(this,r,e)};F().prototype.concat=function(r,e){return this.throwIfDisposed(),r instanceof Oe&&(r=[r]),Qe([this,...r],e)};F().prototype.conv1d=function(r,e,t,n,o,s){return this.throwIfDisposed(),ru(this,r,e,t,n,o,s)};F().prototype.conv2dTranspose=function(r,e,t,n,o){return this.throwIfDisposed(),nu(this,r,e,t,n,o)};F().prototype.conv2d=function(r,e,t,n,o,s){return this.throwIfDisposed(),Jr(this,r,e,t,n,o,s)};F().prototype.cos=function(){return this.throwIfDisposed(),ga(this)};F().prototype.cosh=function(){return this.throwIfDisposed(),ou(this)};F().prototype.cumsum=function(r,e,t){return this.throwIfDisposed(),su(this,r,e,t)};F().prototype.depthToSpace=function(r,e){return this.throwIfDisposed(),Xm(this,r,e)};F().prototype.depthwiseConv2d=function(r,e,t,n,o,s){return this.throwIfDisposed(),hs(this,r,e,t,n,o,s)};F().prototype.dilation2d=function(r,e,t,n,o){return this.throwIfDisposed(),Ym(this,r,e,t,n,o)};F().prototype.divNoNan=function(r){return this.throwIfDisposed(),Zm(this,r)};F().prototype.div=function(r){return this.throwIfDisposed(),me(this,r)};F().prototype.dot=function(r){return this.throwIfDisposed(),Xw(this,r)};F().prototype.elu=function(){return this.throwIfDisposed(),gs(this)};F().prototype.equal=function(r){return this.throwIfDisposed(),Nn(this,r)};F().prototype.erf=function(){return this.throwIfDisposed(),Jm(this)};F().prototype.exp=function(){return this.throwIfDisposed(),Jt(this)};F().prototype.expandDims=function(r){return this.throwIfDisposed(),ur(this,r)};F().prototype.expm1=function(){return this.throwIfDisposed(),Qm(this)};F().prototype.fft=function(){return this.throwIfDisposed(),Ca(this)};F().prototype.flatten=function(){return this.throwIfDisposed(),L(this,[this.size])};F().prototype.floor=function(){return this.throwIfDisposed(),xs(this)};F().prototype.floorDiv=function(r){return this.throwIfDisposed(),Jl(this,r)};F().prototype.gather=function(r,e){return this.throwIfDisposed(),Qn(this,r,e)};F().prototype.greaterEqual=function(r){return this.throwIfDisposed(),dn(this,r)};F().prototype.greater=function(r){return this.throwIfDisposed(),nr(this,r)};F().prototype.ifft=function(){return this.throwIfDisposed(),oi(this)};F().prototype.irfft=function(){return this.throwIfDisposed(),yu(this)};F().prototype.isFinite=function(){return this.throwIfDisposed(),Zw(this)};F().prototype.isInf=function(){return this.throwIfDisposed(),Jw(this)};F().prototype.isNaN=function(){return this.throwIfDisposed(),ef(this)};F().prototype.leakyRelu=function(r){return this.throwIfDisposed(),ya(this,r)};F().prototype.lessEqual=function(r){return this.throwIfDisposed(),Bn(this,r)};F().prototype.less=function(r){return this.throwIfDisposed(),au(this,r)};F().prototype.localResponseNormalization=function(r,e,t,n){return this.throwIfDisposed(),tf(this,r,e,t,n)};F().prototype.logSigmoid=function(){return this.throwIfDisposed(),e_(this)};F().prototype.logSoftmax=function(r){return this.throwIfDisposed(),uu(this,r)};F().prototype.logSumExp=function(r,e){return this.throwIfDisposed(),nf(this,r,e)};F().prototype.log=function(){return this.throwIfDisposed(),cr(this)};F().prototype.log1p=function(){return this.throwIfDisposed(),lu(this)};F().prototype.logicalAnd=function(r){return this.throwIfDisposed(),xr(this,r)};F().prototype.logicalNot=function(){return this.throwIfDisposed(),ba(this)};F().prototype.logicalOr=function(r){return this.throwIfDisposed(),cu(this,r)};F().prototype.logicalXor=function(r){return this.throwIfDisposed(),o_(this,r)};F().prototype.matMul=function(r,e,t){return this.throwIfDisposed(),ze(this,r,e,t)};F().prototype.maxPool=function(r,e,t,n){return this.throwIfDisposed(),wa(this,r,e,t,n)};F().prototype.max=function(r,e){return this.throwIfDisposed(),pr(this,r,e)};F().prototype.maximum=function(r){return this.throwIfDisposed(),en(this,r)};F().prototype.mean=function(r,e){return this.throwIfDisposed(),dt(this,r,e)};F().prototype.min=function(r,e){return this.throwIfDisposed(),ni(this,r,e)};F().prototype.minimum=function(r){return this.throwIfDisposed(),bs(this,r)};F().prototype.mirrorPad=function(r,e){return this.throwIfDisposed(),sf(this,r,e)};F().prototype.mod=function(r){return this.throwIfDisposed(),af(this,r)};F().prototype.mul=function(r){return this.throwIfDisposed(),P(this,r)};F().prototype.neg=function(){return this.throwIfDisposed(),qe(this)};F().prototype.norm=function(r,e,t){return this.throwIfDisposed(),ap(this,r,e,t)};F().prototype.notEqual=function(r){return this.throwIfDisposed(),to(this,r)};F().prototype.oneHot=function(r,e=1,t=0){return this.throwIfDisposed(),fs(this,r,e,t)};F().prototype.onesLike=function(){return this.throwIfDisposed(),or(this)};F().prototype.pad=function(r,e){return this.throwIfDisposed(),Mr(this,r,e)};F().prototype.pool=function(r,e,t,n,o){return this.throwIfDisposed(),a_(this,r,e,t,n,o)};F().prototype.pow=function(r){return this.throwIfDisposed(),Lr(this,r)};F().prototype.prelu=function(r){return this.throwIfDisposed(),ka(this,r)};F().prototype.prod=function(r,e){return this.throwIfDisposed(),pu(this,r,e)};F().prototype.reciprocal=function(){return this.throwIfDisposed(),lf(this)};F().prototype.relu=function(){return this.throwIfDisposed(),Ar(this)};F().prototype.relu6=function(){return this.throwIfDisposed(),fu(this)};F().prototype.reshapeAs=function(r){return this.throwIfDisposed(),L(this,r.shape)};F().prototype.reshape=function(r){return this.throwIfDisposed(),L(this,r)};F().prototype.resizeBilinear=function(r,e,t){return this.throwIfDisposed(),Eg(this,r,e,t)};F().prototype.resizeNearestNeighbor=function(r,e,t){return this.throwIfDisposed(),Dg(this,r,e,t)};F().prototype.reverse=function(r){return this.throwIfDisposed(),qt(this,r)};F().prototype.rfft=function(){return this.throwIfDisposed(),Ia(this)};F().prototype.round=function(){return this.throwIfDisposed(),uf(this)};F().prototype.rsqrt=function(){return this.throwIfDisposed(),du(this)};F().prototype.selu=function(){return this.throwIfDisposed(),hu(this)};F().prototype.separableConv2d=function(r,e,t,n,o,s){return this.throwIfDisposed(),cf(this,r,e,t,n,o,s)};F().prototype.sigmoid=function(){return this.throwIfDisposed(),Zr(this)};F().prototype.sign=function(){return this.throwIfDisposed(),pf(this)};F().prototype.sin=function(){return this.throwIfDisposed(),gu(this)};F().prototype.sinh=function(){return this.throwIfDisposed(),xu(this)};F().prototype.slice=function(r,e){return this.throwIfDisposed(),Fe(this,r,e)};F().prototype.softmax=function(r){return this.throwIfDisposed(),va(this,r)};F().prototype.softplus=function(){return this.throwIfDisposed(),ys(this)};F().prototype.spaceToBatchND=function(r,e){return this.throwIfDisposed(),_a(this,r,e)};F().prototype.split=function(r,e){return this.throwIfDisposed(),mr(this,r,e)};F().prototype.sqrt=function(){return this.throwIfDisposed(),gt(this)};F().prototype.square=function(){return this.throwIfDisposed(),Pe(this)};F().prototype.squaredDifference=function(r){return this.throwIfDisposed(),bu(this,r)};F().prototype.squeeze=function(r){return this.throwIfDisposed(),Sn(this,r)};F().prototype.stack=function(r,e){this.throwIfDisposed();let t=r instanceof Oe?[this,r]:[this,...r];return Bt(t,e)};F().prototype.step=function(r){return this.throwIfDisposed(),_s(this,r)};F().prototype.stridedSlice=function(r,e,t,n,o,s,a,i){return this.throwIfDisposed(),df(this,r,e,t,n,o,s,a,i)};F().prototype.sub=function(r){return this.throwIfDisposed(),pe(this,r)};F().prototype.sum=function(r,e){return this.throwIfDisposed(),ge(this,r,e)};F().prototype.tan=function(){return this.throwIfDisposed(),hf(this)};F().prototype.tanh=function(){return this.throwIfDisposed(),ri(this)};F().prototype.tile=function(r){return this.throwIfDisposed(),zn(this,r)};F().prototype.toBool=function(){return this.throwIfDisposed(),oe(this,"bool")};F().prototype.toFloat=function(){return this.throwIfDisposed(),oe(this,"float32")};F().prototype.toInt=function(){return this.throwIfDisposed(),oe(this,"int32")};F().prototype.topk=function(r,e){return this.throwIfDisposed(),gf(this,r,e)};F().prototype.transpose=function(r){return this.throwIfDisposed(),Ue(this,r)};F().prototype.unique=function(r){return this.throwIfDisposed(),ip(this,r)};F().prototype.unsortedSegmentSum=function(r,e){return this.throwIfDisposed(),xf(this,r,e)};F().prototype.unstack=function(r){return this.throwIfDisposed(),fr(this,r)};F().prototype.where=function(r,e){return this.throwIfDisposed(),Dt(r,this,e)};F().prototype.zerosLike=function(){return this.throwIfDisposed(),Ie(this)};var Sx={kernelName:Ls,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(r,_s(oe(t,"float32"),-1))}}};var DM={kernelName:_i,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>{let n=Pe(oe(t,"float32")),o=gt(pe(le(1),n));return qe(me(r,o))}}}};var $M={kernelName:ki,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>{let n=gt(pe(Pe(oe(t,"float32")),1));return me(r,n)}}}};var RM={kernelName:On,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,n]=e,o=Be(t.shape,n.shape);return{a:()=>{let i=r,l=kt(t.shape,o);return l.length>0&&(i=ge(i,l)),L(i,t.shape)},b:()=>{let i=r,l=kt(n.shape,o);return l.length>0&&(i=ge(i,l)),L(i,n.shape)}}}};var FM={kernelName:wo,saveAllInputs:!0,gradFunc:(r,e)=>{let t={};return e.forEach((n,o)=>{t[o]=()=>r.clone()}),t}};var OM={kernelName:_o,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>Ie(t)}}};var PM={kernelName:Ka,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>Ie(t)}}};var MM={kernelName:Ii,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>me(r,gt(pe(le(1),Pe(oe(t,"float32")))))}}};var LM={kernelName:Ni,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>{let n=gt(ee(le(1),Pe(oe(t,"float32"))));return me(r,n)}}}};var zM={kernelName:Ai,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,n]=e,o=Be(t.shape,n.shape);return{a:()=>{let i=ee(Pe(t),Pe(n)),l=P(r,me(n,i)),u=kt(t.shape,o);return u.length>0&&(l=ge(l,u)),L(l,t.shape)},b:()=>{let i=ee(Pe(t),Pe(n)),l=qe(P(r,me(t,i))),u=kt(n.shape,o);return u.length>0&&(l=ge(l,u)),L(l,n.shape)}}}};var BM={kernelName:Si,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>me(r,ee(Pe(oe(t,"float32")),1))}}};var VM={kernelName:Ti,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>me(r,pe(le(1),Pe(oe(t,"float32"))))}}};function fQ(r,e,t,n,o,s){let a=k(r,"dy","avgPool3dGrad"),i=k(e,"input","avgPool3dGrad"),l=a,u=i,c=!1;i.rank===4&&(c=!0,l=L(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]]),u=L(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),T(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),T(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),s!=null&&T(ot(o),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${s} but got pad ${o}.`);let p={dy:l,input:u},m={filterSize:t,strides:n,pad:o,dimRoundingMode:s},f=A.runKernel(xc,p,m);return c?L(f,[f.shape[1],f.shape[2],f.shape[3],f.shape[4]]):f}var GM=S({avgPool3dGrad_:fQ});var WM={kernelName:Xa,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[n]=e,{filterSize:o,strides:s,pad:a,dimRoundingMode:i}=t;return{x:()=>GM(r,n,o,s,a,i)}}};function dQ(r,e,t,n,o){let s=k(r,"dy","avgPoolGrad"),a=k(e,"input","avgPoolGrad");T(a.rank===s.rank,()=>`Rank of input (${a.rank}) does not match rank of dy (${s.rank})`);let i=a,l=s,u=!1;a.rank===3&&(u=!0,i=L(a,[1,a.shape[0],a.shape[1],a.shape[2]]),l=L(s,[1,s.shape[0],s.shape[1],s.shape[2]])),T(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),T(i.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${i.rank}.`);let c={dy:l,input:i},p={filterSize:t,strides:n,pad:o},m=A.runKernel(gc,c,p);return u?L(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var jM=S({avgPoolGrad_:dQ});var UM={kernelName:ko,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[n]=e,{filterSize:o,strides:s,pad:a}=t;return{x:()=>jM(r,n,o,s,a)}}};var HM={kernelName:vo,inputsToSave:["a","b"],gradFunc:(r,e,t)=>{let[n,o]=e,{transposeA:s,transposeB:a}=t;return!s&&!a?{a:()=>ze(r,o,!1,!0),b:()=>ze(n,r,!0,!1)}:!s&&a?{a:()=>ze(r,o,!1,!1),b:()=>ze(r,n,!0,!1)}:s&&!a?{a:()=>ze(o,r,!1,!0),b:()=>ze(n,r,!1,!1)}:{a:()=>ze(o,r,!0,!0),b:()=>ze(r,n,!0,!0)}}};var qM={kernelName:Ya,gradFunc:(r,e,t)=>{let{blockShape:n,crops:o}=t;return{x:()=>_a(r,n,o)}}};var KM={kernelName:bS,gradFunc:(r,e,t)=>{let n=t,o=n.inputShape,s=n.shape,a=Array.from(s);for(let l=o.length-1;l>=0;l--)if(o[l]===s[l])a[l]=1;else if(o[l]!==1)throw new Error(`broadcastTo(): [${o}] cannot be broadcast to [${s}].`);let i=[];for(let l=0;l<a.length;l++)a[l]>1&&i.push(l);return{x:()=>ge(r,i,!0)}}};var XM={kernelName:qn,gradFunc:r=>({x:()=>r.clone()})};var YM={kernelName:Co,gradFunc:r=>({x:()=>Ie(r)})};var ZM={kernelName:Kn,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[n]=e,{clipValueMin:o,clipValueMax:s}=t;return{x:()=>Dt(xr(dn(n,o),Bn(n,s)),r,Ie(r))}}};var JM={kernelName:Za,inputsToSave:["x"],gradFunc:Sx.gradFunc};var QM={kernelName:zs,saveAllInputs:!0,gradFunc:(r,e,t)=>{let n=e.map(l=>l.shape),{axis:o}=t,s=tr(o,e[0].shape)[0],a=n.map(l=>l[s]);return mr(r,a,s).map(l=>()=>l)}};var eL={kernelName:Io,inputsToSave:["x","filter"],gradFunc:(r,e,t)=>{let[n,o]=e,{dilations:s,strides:a,pad:i,dataFormat:l}=t;return T(Ln(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>ep(n.shape,r,o,a,i,l),filter:()=>lp(n,r,o.shape,a,i,l)}}};var tL={kernelName:No,inputsToSave:["dy","filter"],gradFunc:(r,e,t)=>{let[n,o]=e,{strides:s,pad:a,dataFormat:i,dimRoundingMode:l}=t;return{dy:()=>Jr(r,o,s,a,i,1,l),filter:()=>lp(r,n,o.shape,s,a,i,l)}}};function hQ(r,e,t,n,o){let s=r;r.rank===4&&(s=L(r,[1,r.shape[0],r.shape[1],r.shape[2],r.shape[3]]));let a=e;a.rank===4&&(a=L(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]])),T(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),T(a.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${a.shape}.`),T(t.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${t}.`),T(s.shape[4]===t[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${t[3]}.`),T(a.shape[4]===t[4],()=>`Error in conv3dDerFilter: depth of dy (${a.shape[4]}) must match output depth for filter (${t[4]}).`);let i={x:s,dy:a},l={strides:n,pad:o,filterShape:t};return A.runKernel(_c,i,l)}var rL=S({conv3DBackpropFilter_:hQ});var nL={kernelName:Ja,inputsToSave:["x","filter"],gradFunc:(r,e,t)=>{let{dilations:n,strides:o,pad:s}=t;T(Ln(n),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${n}'`);let[a,i]=e;return{x:()=>fg(a.shape,r,i,o,s),filter:()=>rL(a,r,i.shape,o,s)}}};var oL={kernelName:So,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(qe(gu(oe(t,"float32"))),r)}}};var sL={kernelName:Ei,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(xu(oe(t,"float32")),r)}}};var iL={kernelName:To,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[n]=e,{axis:o,exclusive:s,reverse:a}=t;return{x:()=>{let i=n_([o],n.rank),l=su(r,o,s,!a);return i!=null&&(l=Ue(l,i)),l}}}};var aL={kernelName:Ao,inputsToSave:["x","filter"],gradFunc:(r,e,t)=>{let{dilations:n,strides:o,pad:s,dimRoundingMode:a}=t,i=n==null?[1,1]:n;T(Ln(i),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${i}'`);let[l,u]=e;return T(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),T(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),T(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),T(_r(o,i),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${i}'.`),a!=null&&T(ot(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${s}.`),{x:()=>Cg(l.shape,r,u,o,s,n,a),filter:()=>vg(l,r,u.shape,o,s,n,a)}}};var lL={kernelName:Qa,inputsToSave:["x","filter"],gradFunc:(r,e,t)=>{let[n,o]=e,s={x:n,filter:o,dy:r},a={x:n,filter:o,dy:r};return{x:()=>A.runKernel(Sm,s,t),filter:()=>A.runKernel(Tm,a,t)}}};var uL={kernelName:Ri,outputsToSave:[!0],gradFunc:(r,e)=>{let[t]=e,n={dy:r,y:t};return{x:()=>A.runKernel(Tc,n)}}};var cL={kernelName:Fi,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e,n=P(Jt(qe(Pe(t))),2/Math.sqrt(Math.PI));return{x:()=>P(r,n)}}};var pL={kernelName:Do,outputsToSave:[!0],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(r,t)}}};var mL={kernelName:Bs,inputsToSave:["input"],gradFunc:(r,e)=>{let[t]=e;return{input:()=>L(r,t.shape)}}};var fL={kernelName:Pi,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(r,Jt(t))}}};var dL={kernelName:$o,gradFunc:r=>({x:()=>Ie(r)})};var hL={kernelName:Ro,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,n]=e,o=Be(t.shape,n.shape);return{a:()=>{let i=me(r,oe(n,"float32")),l=kt(t.shape,o);return l.length>0?L(ge(i,l),t.shape):i},b:()=>{let i=P(r,oe(t,"float32")),l=kt(n.shape,o);l.length>0&&(i=L(ge(i,l),n.shape));let u=Pe(n);return qe(me(i,oe(u,"float32")))}}}};var gL={kernelName:Fo,inputsToSave:["x","mean","variance","scale"],gradFunc:(r,e,t)=>{let{varianceEpsilon:n}=t,[o,s,a,i]=e,l=i==null?le(1):i,u=kt(s.shape,o.shape),c=[];if(s.rank===1){for(let _=0;_<o.shape.length-1;++_)c.push(o.shape[_]);c.push(1)}let p=pe(o,s),m=P(r,l),f=du(ee(a,le(n))),d=P(P(P(f,f),f),le(-.5));return{x:()=>s.rank===1?L(P(P(r,zn(L(f,[1,1,1,s.shape[0]]),c)),l),o.shape):L(P(P(r,f),l),o.shape),mean:()=>{let _=P(P(f,le(-1)),m);return s.rank===1&&(_=ge(_,u)),L(_,s.shape)},variance:()=>{let _=P(P(d,p),m);return s.rank===1&&(_=ge(_,u)),L(_,s.shape)},scale:()=>{let _=P(p,f),I=P(r,_);return s.rank===1&&(I=ge(I,u)),L(I,s.shape)},offset:()=>{let _=r;return s.rank===1&&(_=ge(_,u)),L(_,s.shape)}}}};var bL={kernelName:Vs,inputsToSave:["x","indices"],gradFunc:(r,e,t)=>{let[n,o]=e,{axis:s}=t,a=tr(s,n.shape)[0];return{x:()=>{let l=n.shape,u=o.size,c=l.slice(0,a),p=c.length,m=l.slice(s,l.length).slice(1),f=m.length,d=xL(0,p),h=xL(p+1,p+1+f),g=yL([c,[u],m]),y=L(r,g),b=L(o,[u]),w=yL([[p],d,h]),_=Ue(y,w),I=xf(_,b,n.shape[a]),E=rf(w);return I=Ue(I,E),I},indices:()=>o}}};function xL(r,e){let t=[];for(let n=r;n<e;++n)t.push(n);return t}function yL(r){let e=[];for(let t=0;t<r.length;++t)for(let n=0;n<r[t].length;++n)e.push(r[t][n]);return e}var wL={kernelName:Oo,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,n]=e;return{a:()=>Ie(t),b:()=>Ie(n)}}};var _L={kernelName:Xn,gradFunc:r=>({x:()=>oe(r,"float32")})};var kL={kernelName:Bi,gradFunc:r=>({x:()=>Ie(r)})};var vL={kernelName:Vi,gradFunc:r=>({x:()=>Ie(r)})};var CL={kernelName:Gi,gradFunc:r=>({x:()=>Ie(r)})};var IL={kernelName:Po,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[n]=e,{alpha:o}=t,s=nr(n,0);return{x:()=>Dt(s,r,P(r,o))}}};var NL={kernelName:Ui,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>me(r,ee(t,1))}}};var SL={kernelName:Mo,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>me(r,oe(t,"float32"))}}};var TL={kernelName:wS,inputsToSave:[],outputsToSave:[!0],gradFunc:(r,e,t)=>{let[n]=e,{axis:o}=t;return{logits:()=>{let s=!0,a=Jt(n);return pe(r,P(ge(r,o,s),a))}}}};function gQ(r,e,t,n=5,o=1,s=1,a=.5){let i={x:r,y:e,dy:t},l={depthRadius:n,bias:o,alpha:s,beta:a};return A.runKernel(Rc,i,l)}var AL=S({localResponseNormalizationBackprop_:gQ});var EL={kernelName:tl,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,e,t)=>{let[n,o]=e,{depthRadius:s,bias:a,alpha:i,beta:l}=t;return{x:()=>AL(n,o,r,s,a,i,l)}}};function Tx(r,e,t,n){return e.rank<t.rank&&(e=L(e,eo(e.shape,n))),r.rank<t.rank&&(r=L(r,eo(r.shape,n))),{x:()=>P(r,oe(Nn(t,e),r.dtype))}}var OC={kernelName:Lo,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,e,t)=>{let n=t,{reductionIndices:o}=n,s=e[0],a=e[1],i=tr(o,s.shape),l=Tx(r,a,s,i);return{x:()=>l.x()}}};var DL={kernelName:zo,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,n]=e;return{a:()=>P(r,oe(dn(t,n),"float32")),b:()=>P(r,oe(au(t,n),"float32"))}}};function xQ(r,e,t,n,o,s,a){let i=k(r,"dy","maxPool3dGrad"),l=k(e,"input","maxPool3dGrad"),u=k(t,"output","maxPool3dGrad"),c=i,p=l,m=u,f=!1;l.rank===4&&(f=!0,c=L(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),p=L(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),m=L(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),T(c.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${c.rank}.`),T(p.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${p.rank}.`),T(m.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${m.rank}.`),a!=null&&T(ot(s),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${a} but got pad ${s}.`);let d={dy:c,input:p,output:m},h={filterSize:n,strides:o,pad:s,dimRoundingMode:a},g=A.runKernel(Oc,d,h);return f?L(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var $L=S({maxPool3dGrad_:xQ});var RL={kernelName:rl,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,e,t)=>{let[n,o]=e,{filterSize:s,strides:a,pad:i,dimRoundingMode:l}=t;return{x:()=>$L(r,n,o,s,a,i,l)}}};function yQ(r,e,t,n,o,s,a){let i=k(r,"dy","maxPoolGrad"),l=k(e,"input","maxPoolGrad"),u=k(t,"output","maxPoolGrad");T(l.rank===i.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${i.rank})`),T(i.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${i.rank}.`),T(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),a!=null&&T(ot(s),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${a} but got pad ${s}.`);let c={dy:i,input:l,output:u},p={filterSize:n,strides:o,pad:s,dimRoundingMode:a};return A.runKernel(Fc,c,p)}var FL=S({maxPoolGrad_:yQ});var OL={kernelName:Bo,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,e,t)=>{let[n,o]=e,{filterSize:s,strides:a,pad:i}=t;return{x:()=>FL(r,n,o,s,a,i)}}};var PL={kernelName:Vo,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[n]=e,{axis:o}=t,s=tr(o,n.shape),i=r_(n.shape,s)[1],l=nt(i);return{x:()=>{let c=n.shape.slice();s.forEach(f=>{c[f]=1});let p=L(r,c);return me(P(p,Qt(n.shape,"float32")),l)}}}};var ML={kernelName:Go,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,e,t)=>{let n=t,{axis:o}=n,[s,a]=e,i=tr(o,s.shape),l=Tx(r,a,s,i);return{x:()=>l.x()}}};var LL={kernelName:Wo,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,n]=e;return{a:()=>P(r,oe(Bn(t,n),"float32")),b:()=>P(r,oe(nr(t,n),"float32"))}}};var zL={kernelName:jo,inputsToSave:["x"],gradFunc:(r,e,t)=>{let n=e[0],{paddings:o}=t,s=o.map(a=>a[0]);return{x:()=>Fe(r,s,n.shape)}}};var BL={kernelName:qi,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,n]=e,o=Be(t.shape,n.shape);return{a:()=>{let i=kt(t.shape,o);return i.length>0?L(ge(r,i),t.shape):r},b:()=>{let i=P(r,qe(xs(me(t,n)))),l=kt(n.shape,o);return l.length>0?L(ge(i,l),n.shape):i}}}};var VL={kernelName:Uo,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,n]=e,o=Be(t.shape,n.shape);return{a:()=>{let i=P(r,oe(n,"float32")),l=kt(t.shape,o);return l.length>0?L(ge(i,l),t.shape):i},b:()=>{let i=P(r,oe(t,"float32")),l=kt(n.shape,o);return l.length>0?L(ge(i,l),n.shape):i}}}};var GL={kernelName:Gs,gradFunc:r=>({x:()=>qe(r)})};var WL={kernelName:Ho,inputsToSave:["indices"],gradFunc:(r,e)=>{let t=e[0];return{indices:()=>ht(t.shape,"float32")}}};var jL={kernelName:Ws,gradFunc:r=>({x:()=>Ie(r)})};var UL={kernelName:js,saveAllInputs:!0,gradFunc:(r,e,t)=>{let{axis:n}=t;return fr(r,n).map(s=>()=>s)}};var PC={kernelName:qo,inputsToSave:["x"],gradFunc:(r,e,t)=>{let n=e[0],{paddings:o}=t,s=o.map(a=>a[0]);return{x:()=>Fe(r,s,n.shape)}}};var HL={kernelName:Ko,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(r,e)=>{let[t,n,o]=e,s=t,a=n,i=Be(s.shape,a.shape);return{a:()=>{let c=oe(a,"float32"),p=P(r,P(c,Lr(s,pe(c,le(1))))),m=kt(s.shape,i);return m.length>0&&(p=ge(p,m)),L(p,s.shape)},b:()=>{let c=nr(s,0),p=Dt(c,cr(s),Ie(s)),m=P(r,P(o,p)),f=kt(a.shape,i);return f.length>0&&(m=ge(m,f)),L(m,a.shape)}}}};var qL={kernelName:Xo,inputsToSave:["x","alpha"],gradFunc:(r,e)=>{let[t,n]=e,o=nr(t,0);return{x:()=>Dt(o,r,P(r,n)),alpha:()=>{let s=Dt(o,Ie(r),P(r,t)),a=kt(n.shape,r.shape);return a.length>0&&(s=ge(s,a)),L(s,n.shape)}}}};var KL={kernelName:Eo,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,n]=e,o=Be(t.shape,n.shape);return{a:()=>{let i=me(r,oe(n,"float32")),l=kt(t.shape,o);return l.length>0?L(ge(i,l),t.shape):i},b:()=>{let i=P(r,oe(t,"float32")),l=kt(n.shape,o);l.length>0&&(i=L(ge(i,l),n.shape));let u=Pe(n);return qe(me(i,oe(u,"float32")))}}}};var XL={kernelName:Qi,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>me(r,qe(Pe(t)))}}};var YL={kernelName:Jo,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e,n=P(Bn(t,6),_s(t));return{x:()=>P(r,oe(n,"float32"))}}};var ZL={kernelName:Yo,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(r,oe(_s(t),"float32"))}}};var JL={kernelName:Us,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>L(r,t.shape)}}};var QL={kernelName:Zo,inputsToSave:["images"],gradFunc:(r,e,t)=>{let[n]=e,o={dy:r,images:n};return{images:()=>A.runKernel(Bc,o,t)}}};var ez={kernelName:ol,inputsToSave:["images"],gradFunc:(r,e,t)=>{let[n]=e,o={dy:r,images:n};return{images:()=>A.runKernel(zc,o,t)}}};var tz={kernelName:Qo,gradFunc:(r,e,t)=>{let{dims:n}=t,o=tr(n,r.shape);return{x:()=>qt(r,o)}}};var rz={kernelName:es,gradFunc:r=>({x:()=>Ie(r)})};var nz={kernelName:ts,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>qe(me(r,P(Lr(t,1.5),2)))}}};var oz={kernelName:Hs,inputsToSave:["condition"],gradFunc:(r,e)=>{let[t]=e;return{condition:()=>oe(Ie(t),"float32"),t:()=>P(r,oe(t,r.dtype)),e:()=>P(r,oe(ba(t),r.dtype))}}};var sz={kernelName:ta,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>{let n=nr(t,le(0)),o=le(__),s=le(k_),a=P(r,s),i=P(P(r,o),Jt(oe(t,"float32")));return Dt(n,a,i)}}}};var iz={kernelName:ns,outputsToSave:[!0],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(r,P(t,pe(le(1),t)))}}};var az={kernelName:na,gradFunc:r=>({x:()=>Ie(r)})};var lz={kernelName:rs,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(ga(oe(t,"float32")),r)}}};var uz={kernelName:ra,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(ou(oe(t,"float32")),r)}}};var cz={kernelName:qs,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[n]=e,{begin:o,size:s}=t,a=n.shape,[i,l]=Ew(n,o,s),u=[];for(let c=0;c<r.rank;c++)u.push([i[c],a[c]-i[c]-l[c]]);return{x:()=>Mr(r,u)}}};var pz={kernelName:is,outputsToSave:[!0],gradFunc:(r,e,t)=>{let[n]=e,{dim:o}=t,s=!0,a=P(r,n);return{logits:()=>pe(a,P(ge(a,[o],s),n))}}};var mz={kernelName:oa,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(r,Zr(t))}}};var MC={kernelName:sl,gradFunc:(r,e,t)=>{let{blockShape:n,paddings:o}=t;return{x:()=>da(r,n,o)}}};var LC={kernelName:Ks,gradFunc:(r,e,t)=>{let{axis:n}=t;return{x:()=>Qe(r,n)}}};var fz={kernelName:os,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>me(r,P(gt(oe(t,"float32")),2))}}};var dz={kernelName:il,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(r,P(oe(t,"float32"),2))}}};var hz={kernelName:as,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,n]=e,o=le(2);return{a:()=>P(r,P(o,pe(t,n))),b:()=>P(r,P(o,pe(n,t)))}}};var gz={kernelName:Yn,gradFunc:r=>({x:()=>Ie(r)})};var xz={kernelName:ls,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,n]=e,o=Be(t.shape,n.shape);return{a:()=>{let i=r,l=kt(t.shape,o);return l.length>0&&(i=ge(i,l)),L(i,t.shape)},b:()=>{let i=r,l=kt(n.shape,o);return l.length>0&&(i=ge(i,l)),L(qe(i),n.shape)}}}};var yz={kernelName:ss,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[n]=e,o=n.shape.slice(),{axis:s}=t;tr(s,n.shape).forEach(u=>{o[u]=1});let i=L(r,o),l=P(i,Qt(n.shape,"float32"));return{x:()=>l}}};var bz={kernelName:us,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>me(r,Pe(ga(t)))}}};var wz={kernelName:cs,outputsToSave:[!0],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(pe(le(1),Pe(t)),r)}}};var _z={kernelName:Pn,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[n]=e,{reps:o}=t;return{x:()=>{let a=Ie(n);if(n.rank===1)for(let i=0;i<o[0];++i)a=ee(a,Fe(r,[i*n.shape[0]],[n.shape[0]]));else if(n.rank===2)for(let i=0;i<o[0];++i)for(let l=0;l<o[1];++l)a=ee(a,Fe(r,[i*n.shape[0],l*n.shape[1]],[n.shape[0],n.shape[1]]));else if(n.rank===3)for(let i=0;i<o[0];++i)for(let l=0;l<o[1];++l)for(let u=0;u<o[2];++u)a=ee(a,Fe(r,[i*n.shape[0],l*n.shape[1],u*n.shape[2]],[n.shape[0],n.shape[1],n.shape[2]]));else if(n.rank===4)for(let i=0;i<o[0];++i)for(let l=0;l<o[1];++l)for(let u=0;u<o[2];++u)for(let c=0;c<o[3];++c)a=ee(a,Fe(r,[i*n.shape[0],l*n.shape[1],u*n.shape[2],c*n.shape[3]],[n.shape[0],n.shape[1],n.shape[2],n.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${n.rank} tensors yet.`);return a}}}};var kz={kernelName:ps,gradFunc:(r,e,t)=>{let n=t,{perm:o}=n,s=rf(o);return{x:()=>Ue(r,s)}}};var vz={kernelName:Xs,gradFunc:(r,e,t)=>{let n=t,{axis:o}=n;return{value:()=>Bt(r,o)}}};var Cz={kernelName:al,inputsToSave:["segmentIds"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>bQ(r,t)}}};function bQ(r,e){let t=en(e,Ie(e)),n=Qn(r,t),o=dn(e,le(0,"int32")),s=n.rank-o.rank;for(let i=0;i<s;++i)o=ur(o,i+1);o=xr(o,Qt(n.shape,"bool"));let a=Ie(n);return Dt(o,n,a)}var Iz={kernelName:Ys,gradFunc:r=>({x:()=>Ie(r)})};var wQ=[Sx,DM,$M,RM,FM,OM,PM,MM,LM,zM,BM,VM,WM,UM,HM,qM,KM,XM,YM,ZM,JM,QM,tL,eL,nL,oL,sL,iL,aL,lL,KL,uL,cL,pL,mL,fL,hL,dL,gL,bL,wL,_L,kL,vL,CL,IL,NL,SL,TL,EL,OC,OC,DL,RL,OL,PL,ML,LL,zL,BL,VL,GL,WL,jL,UL,PC,PC,HL,qL,XL,YL,ZL,JL,QL,ez,tz,rz,nz,oz,sz,iz,az,lz,uz,cz,pz,mz,MC,MC,LC,LC,fz,hz,dz,gz,xz,yz,bz,wz,_z,kz,vz,Cz,Iz];for(let r of wQ)_S(r);var Dz={};We(Dz,{maxNorm:()=>kQ,minMaxNorm:()=>IQ,nonNeg:()=>CQ,unitNorm:()=>vQ});var zC;function er(){return zC==null&&(zC=AT().epsilon()),zC}function rn(){return"channelsLast"}var En=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,En.prototype)}},Vr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Vr.prototype)}},z=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,z.prototype)}},Se=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Se.prototype)}},Uf=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Uf.prototype)}};function co(r,e){if(Array.isArray(r)){let t=[];for(let n=0;n<e;n++)t=t.concat(r);return t}else{let t=new Array(e);return t.fill(r),t}}function Gn(r,e){if(!r)throw new Uf(e)}function BC(r,e){let t=0;for(let n of r)n===e&&t++;return t}function br(r){return r.length===1?r[0]:r}function bt(r){return Array.isArray(r)?r:[r]}function po(r){let t=r.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function Fa(r){return r.length<=1||r.indexOf("_")===-1?r:r.replace(/[_]+(\w|$)/g,(e,t)=>t.toUpperCase())}var mo={};function Rp(r){if(r==null)return null;let e={};return e.className=r.getClassName(),e.config=r.getConfig(),e}function VC(r){if(!(r==null||typeof r!="object"))if(Array.isArray(r))r.forEach(e=>VC(e));else{let e=Object.keys(r);for(let t of e){let n=r[t];n!=null&&typeof n=="object"&&(!Array.isArray(n)&&n.type==="ndarray"&&typeof n.value=="number"?r[t]=n.value:VC(n))}}}function ci(r,e={},t={},n="object",o=!1){if(typeof r=="string"){let s=r,a;if(s in t)a=t[s];else if(s in mo)a=mo[s];else if(a=e[s],a==null)throw new z(`Unknown ${n}: ${r}. This may be due to one of the following reasons:
|
|
1. The ${n} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${n} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return a}else{let s=r;if(s.className==null||s.config==null)throw new z(`${n}: Improper config format: ${JSON.stringify(s)}.
|
|
'className' and 'config' must set.`);let a=s.className,i,l;if(a in t?[i,l]=t[a]:a in mo?[i,l]=mo.className:a in e&&([i,l]=e[a]),i==null)throw new z(`Unknown ${n}: ${a}. This may be due to one of the following reasons:
|
|
1. The ${n} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${n} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let f of Object.keys(mo))u[f]=mo[f];for(let f of Object.keys(t))u[f]=t[f];let c=s.config;c.customObjects=u;let p=Object.assign({},mo);for(let f of Object.keys(t))mo[f]=t[f];VC(s.config);let m=l(i,s.config,t,o);return mo=Object.assign({},p),m}else{let u=Object.assign({},mo);for(let p of Object.keys(t))mo[p]=t[p];let c=new i(s.config);return mo=Object.assign({},u),c}}}function _Q(r,e){return r<e?-1:r>e?1:0}function Hf(r,e){return-1*_Q(r,e)}function fo(r){if(r==null)return r;let e=[];for(let t of r)e.indexOf(t)===-1&&e.push(t);return e}function Nz(r){if(r==null)throw new z(`Invalid value in obj: ${JSON.stringify(r)}`);for(let e in r)if(r.hasOwnProperty(e))return!1;return!0}function pi(r,e,t){if(t!=null&&r.indexOf(t)<0)throw new z(`${t} is not a valid ${e}. Valid values are ${r} or null/undefined.`)}function Ax(r,e,t=0,n=Infinity){return Gn(t>=0),Gn(n>=t),Array.isArray(r)&&r.length>=t&&r.length<=n&&r.every(o=>typeof o===e)}function Ut(r,e){Array.isArray(r)?(x.assert(r.length>0,()=>`${e} is unexpectedly an empty array.`),r.forEach((t,n)=>Ut(t,`element ${n+1} of ${e}`))):x.assert(Number.isInteger(r)&&r>0,()=>`Expected ${e} to be a positive integer, but got ${Sz(r)}.`)}function Sz(r){return r===null?"null":Array.isArray(r)?"["+r.map(e=>Sz(e)).join(",")+"]":typeof r=="string"?`"${r}"`:`${r}`}function Tz(r,e){let t=x.now(),n;return(...s)=>{let a=x.now();return a-t<e||(t=a,n=r(...s)),n}}function Ex(r){return r==="relu"?"relu":r==="linear"?"linear":r==="elu"?"elu":null}function GC(r,e){return V(()=>gt(ge(P(r,r),e,!0)))}var Fp=class extends J.Serializable{getConfig(){return{}}},qf=class extends Fp{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return V(()=>{let t=GC(e,this.axis),n=lr(t,0,this.maxValue);return P(e,me(n,ee(er(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};qf.className="MaxNorm";J.registerClass(qf);var Kf=class extends Fp{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return V(()=>me(e,ee(er(),GC(e,this.axis))))}getConfig(){return{axis:this.axis}}};Kf.className="UnitNorm";J.registerClass(Kf);var Xf=class extends Fp{apply(e){return Ar(e)}};Xf.className="NonNeg";J.registerClass(Xf);var Yf=class extends Fp{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return V(()=>{let t=GC(e,this.axis),n=ee(P(this.rate,lr(t,this.minValue,this.maxValue)),P(1-this.rate,t));return P(e,me(n,ee(er(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};Yf.className="MinMaxNorm";J.registerClass(Yf);var Az={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Pt(r){return Rp(r)}function Ez(r,e={}){return ci(r,J.SerializationMap.getMap().classNameMap,e,"constraint")}function Mt(r){if(r==null)return null;if(typeof r=="string"){let t={className:r in Az?Az[r]:r,config:{}};return Ez(t)}else return r instanceof Fp?r:Ez(r)}function kQ(r){return new qf(r)}function vQ(r){return new Kf(r)}function CQ(){return new Xf}function IQ(r){return new Yf(r)}var Jz={};We(Jz,{constant:()=>RQ,glorotNormal:()=>BQ,glorotUniform:()=>zQ,heNormal:()=>VQ,heUniform:()=>GQ,identity:()=>MQ,leCunNormal:()=>WQ,leCunUniform:()=>jQ,ones:()=>$Q,orthogonal:()=>UQ,randomNormal:()=>OQ,randomUniform:()=>FQ,truncatedNormal:()=>PQ,varianceScaling:()=>LQ,zeros:()=>DQ});var $z=["channelsFirst","channelsLast"],Rz=["nearest","bilinear"],Fz=["valid","same","causal"],Oz=["max","avg"],Pz=["sum","mul","concat","ave"];var Op=new Map;function Ft(r){pi($z,"DataFormat",r)}function Mz(r){pi(Rz,"InterpolationFormat",r)}function nn(r){pi(Fz,"PaddingMode",r)}function WC(r){pi(Oz,"PoolMode",r)}var Zf=[],Lz="/";function Ns(r,e){Zf.push(r);try{let t=e();return Zf.pop(),t}catch(t){throw Zf.pop(),t}}function NQ(){return Zf.length===0?"":Zf.join(Lz)+Lz}function Dx(r){if(!zz(r))throw new Error("Not a valid tensor name: '"+r+"'");return NQ()+r}function $x(r){if(!zz(r))throw new Error("Not a valid tensor name: '"+r+"'");Op.has(r)||Op.set(r,0);let e=Op.get(r);if(Op.set(r,Op.get(r)+1),e>0){let t=`${r}_${e}`;return Op.set(t,1),t}else return r}var SQ=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function zz(r){return!!r.match(SQ)}function Bz(r){return r===parseInt(r.toString(),10)}function ho(r,e,t){e==null&&(e=0),t==null&&(t=r.length);let n=1;for(let o=e;o<t;++o)n*=r[o];return n}function Vz(r){return r=Array.isArray(r)?new Float32Array(r):r,Vt(r)}function ju(r){return ni(Vz(r)).dataSync()[0]}function Ss(r){return pr(Vz(r)).dataSync()[0]}function Gr(r,e){if(e<r)throw new z(`end (${e}) < begin (${r}) is forbidden.`);let t=[];for(let n=r;n<e;++n)t.push(n);return t}function Oa(r,e){return r.asType(e)}function Pa(r,e=-1){let t=r.shape.slice();return e<0&&(e=t.length+e+1),t.splice(e,0,1),r.reshape(t)}function Gz(r,e){return V(()=>{if(r.shape.length!==2)throw new z(`repeat() expects a rank-2 tensor, but received a rank-${r.shape.length} tensor.`);let t=Pa(r,1);return Rx(t,[1,e,1])})}function Wz(r){let e=[ho(r.shape)];return r.reshape(e)}function jz(r){if(r.rank<=1)throw new z(`batchFlatten requires a minimum rank of 2. Got rank: ${r.rank}.`);let e=[r.shape[0],ho(r.shape,1)];return r.reshape(e)}function Ma(r,e,t){return V(()=>{switch(r.rank){case 1:return mf(r,e,t);case 2:return bg(r,[e,0],[t,r.shape[1]]);case 3:return ff(r,[e,0,0],[t,r.shape[1],r.shape[2]]);case 4:return sp(r,[e,0,0,0],[t,r.shape[1],r.shape[2],r.shape[3]]);case 5:return Fe(r,[e,0,0,0,0],[t,r.shape[1],r.shape[2],r.shape[3],r.shape[4]]);case 6:return Fe(r,[e,0,0,0,0,0],[t,r.shape[1],r.shape[2],r.shape[3],r.shape[4],r.shape[5]]);default:throw new z(`sliceAlongFirstAxis() received an unsupported tensor rank: ${r.rank}`)}})}function jC(r,e,t){return V(()=>{switch(r.rank){case 1:return mf(r,e,t);case 2:return bg(r,[0,e],[r.shape[0],t]);case 3:return ff(r,[0,0,e],[r.shape[0],r.shape[1],t]);case 4:return sp(r,[0,0,0,e],[r.shape[0],r.shape[1],r.shape[2],t]);default:throw new z(`sliceAlongLastAxis() received an unsupported tensor rank: ${r.rank}`)}})}function Jf(r,e,t,n){return V(()=>{switch(r.rank){case 1:return mf(r,e,t);case 2:switch(n){case 1:return Ma(r,e,t);case 2:return jC(r,e,t);default:throw new z(`The axis is not within the rank of the tensor ${n}`)}case 3:switch(n){case 1:return Ma(r,e,t);case 2:return ff(r,[0,e,0],[r.shape[0],t,r.shape[2]]);case 3:return jC(r,e,t);default:throw new z(`The axis is not within the rank of the tensor ${n}`)}case 4:switch(n){case 1:return Ma(r,e,t);case 2:return sp(r,[0,e,0,0],[r.shape[0],t,r.shape[2],r.shape[3]]);case 3:return sp(r,[0,0,e,0],[r.shape[0],r.shape[1],t,r.shape[3]]);case 4:return jC(r,e,t);default:throw new z(`The axis is not within the rank of the tensor ${n}`)}default:throw new z(`sliceAlongLastAxis() received an unsupported tensor rank: ${r.rank}`)}})}function Pp(r,e=-1){let t;return e<0&&(t=r[0].rank,t!==0?e=t:e=0),e===r[0].rank&&(e=-1),Qe(r,e)}function UC(r,e){switch(r.rank){case 1:return Ww([r,e]);case 2:return jw([r,e],0);case 3:return Uw([r,e],0);case 4:return Hw([r,e],0);default:throw new z(`concatAlongFirstAxis() received an unsupported tensor rank: ${r.rank}`)}}function Rx(r,e){if(Array.isArray(e)||(e=[e]),r.rank!==e.length)throw new z(`The length of input n (${e.length}) does not match the number of dimensions in input x (${r.rank})`);return zn(r,e)}function Mp(r,e=0,t=1,n,o){return yg(r,e,t,n,o)}function go(r,e,t,n){if(r.rank<2||e.rank<2)throw new Se(`dot requires both inputs to be rank >= 2 but got x shape = ${r.shape} and y shape = ${e.shape}`);if(e.rank>=3){let o=r.shape.slice(-1)[0],s=e.shape.slice(-2)[0];if(o!==s)throw new Se(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${r.shape} and y shape = ${e.shape}`)}if(r.rank===2&&e.rank===2){let o=!1,s=!1;return ro.matMul({a:r,b:e,transposeA:o,transposeB:s,bias:n?HC(r.rank,n,rn()):null,activation:t})}else{let o=r.shape.slice(),s=o.pop();r=r.reshape([-1,s]);let a=e.shape.slice(),i=a.pop(),l=a.pop(),u=[...a,i],c=Array.from({length:e.rank},(d,h)=>h===0?e.rank-2:h<=e.rank-2?h-1:h);e=e.transpose(c).reshape([l,-1]);let p=[...o,...u],m=!1,f=!1;return ro.matMul({a:r,b:e,transposeA:m,transposeB:f,bias:n?HC(r.rank,n,rn()):null,activation:t}).reshape(p)}}function Fx(r,e,t){return V(()=>(Array.isArray(e)?e=Vt(e,"int32"):e=e.toInt(),Qn(r,e,t)))}function Uu(r){return P(r,r)}function HC(r,e,t){let n=e.shape;if(e.rank!==1&&e.rank!==r)throw new z(`Unexpected bias dimensions: ${e.rank}; expected it to be 1 or ${r}`);if(r===5){if(t==="channelsFirst")return n.length===1?e.reshape([1,n[0],1,1,1]):e.reshape([1,n[3],n[0],n[1],n[2]]);if(t==="channelsLast")return n.length===1?e.reshape([1,1,1,1,n[0]]):e.reshape([1].concat(n))}else if(r===4){if(t==="channelsFirst")return n.length===1?e.reshape([1,n[0],1,1]):e.reshape([1,n[2],n[0],n[1]]);if(t==="channelsLast")return n.length===1?e.reshape([1,1,1,n[0]]):e.reshape([1].concat(n))}else if(r===3){if(t==="channelsFirst")return n.length===1?e.reshape([1,n[0],1]):e.reshape([1,n[1],n[0]]);if(t==="channelsLast")return n.length===1?e.reshape([1,1,n[0]]):e.reshape([1].concat(n))}else if(r<3)return e;throw new z(`Unsupported input rank by biasAdd: ${e.rank}`)}function on(r,e,t){return V(()=>(t==null&&(t=rn()),Ft(t),r.add(HC(r.rank,e,t))))}function Uz(r,e=1){if(e!==1)throw new Se(`Support for alpha values other than 1 (${e}) is not implemented yet.`);return gs(r)}function Hz(r){return V(()=>me(r,Nt(r).add(1)))}function Ox(r,e,t,n){return V(()=>QT(r,e,t,n))}function qz(r){return V(()=>{let e=ee(.5,P(.2,r));return lr(e,0,1)})}function Cl(r,e,t=!1){return t?r():e()}var Kz=["fanIn","fanOut","fanAvg"],Xz=["normal","uniform","truncatedNormal"];function TQ(r){pi(Kz,"FanMode",r)}function AQ(r){pi(Xz,"Distribution",r)}var xn=class extends J.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},Qf=class extends xn{apply(e,t){return ht(e,t)}};Qf.className="Zeros";J.registerClass(Qf);var Hu=class extends xn{apply(e,t){return Qt(e,t)}};Hu.className="Ones";J.registerClass(Hu);var ed=class extends xn{constructor(e){super();if(typeof e!="object")throw new z(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new z(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return V(()=>P(le(this.value),Qt(e,t)))}getConfig(){return{value:this.value}}};ed.className="Constant";J.registerClass(ed);var td=class extends xn{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return ws(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};td.className="RandomUniform";J.registerClass(td);var rd=class extends xn{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Se(`randomNormal does not support dType ${t}.`);return Mp(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};rd.className="RandomNormal";J.registerClass(rd);var nd=class extends xn{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Se(`truncatedNormal does not support dType ${t}.`);return wu(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};nd.className="TruncatedNormal";J.registerClass(nd);var od=class extends xn{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return V(()=>{if(e.length!==2||e[0]!==e[1])throw new z("Identity matrix initializer can only be used for 2D square matrices.");return P(this.gain,tp(e[0]))})}getConfig(){return{gain:this.gain}}};od.className="Identity";J.registerClass(od);function EQ(r,e="channelsLast"){let t,n;if(Ft(e),r.length===2)t=r[0],n=r[1];else if([3,4,5].indexOf(r.length)!==-1){if(e==="channelsFirst"){let o=ho(r,2);t=r[1]*o,n=r[0]*o}else if(e==="channelsLast"){let o=ho(r,0,r.length-2);t=r[r.length-2]*o,n=r[r.length-1]*o}}else{let o=ho(r);t=Math.sqrt(o),n=Math.sqrt(o)}return[t,n]}var Wr=class extends xn{constructor(e){super();if(e.scale<0)throw new z(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,TQ(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,AQ(this.distribution),this.seed=e.seed}apply(e,t){let n=EQ(e),o=n[0],s=n[1],a=this.scale;if(this.mode==="fanIn"?a/=Math.max(1,o):this.mode==="fanOut"?a/=Math.max(1,s):a/=Math.max(1,(o+s)/2),this.distribution==="normal"){let i=Math.sqrt(a);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Se(`${this.getClassName()} does not support dType ${t}.`);return wu(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*a);return ws(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Wr.className="VarianceScaling";J.registerClass(Wr);var Lp=class extends Wr{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Wr.className}};Lp.className="GlorotUniform";J.registerClass(Lp);var zp=class extends Wr{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Wr.className}};zp.className="GlorotNormal";J.registerClass(zp);var Bp=class extends Wr{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Wr.className}};Bp.className="HeNormal";J.registerClass(Bp);var Vp=class extends Wr{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Wr.className}};Vp.className="HeUniform";J.registerClass(Vp);var Gp=class extends Wr{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Wr.className}};Gp.className="LeCunNormal";J.registerClass(Gp);var Wp=class extends Wr{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Wr.className}};Wp.className="LeCunNormal";J.registerClass(Wp);var sd=class extends xn{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Se("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return V(()=>{if(e.length<2)throw new Se("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,o=Mp(n,0,1,"float32"),s=E1.gramSchmidt(o);return e[0]>e[1]&&(s=s.transpose()),P(this.gain,s)})}getConfig(){return{gain:this.gain,seed:this.seed}}};sd.className="Orthogonal";J.registerClass(sd);var Yz={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function Zz(r,e={}){return ci(r,J.SerializationMap.getMap().classNameMap,e,"initializer")}function vt(r){return Rp(r)}function pt(r){if(typeof r=="string"){let e=r in Yz?Yz[r]:r;if(e==="GlorotNormal")return new zp;if(e==="GlorotUniform")return new Lp;if(e==="HeNormal")return new Bp;if(e==="HeUniform")return new Vp;if(e==="LeCunNormal")return new Gp;if(e==="LeCunUniform")return new Wp;{let t={};return t.className=e,t.config={},Zz(t)}}else return r instanceof xn?r:Zz(r)}function DQ(){return new Qf}function $Q(){return new Hu}function RQ(r){return new ed(r)}function FQ(r){return new td(r)}function OQ(r){return new rd(r)}function PQ(r){return new nd(r)}function MQ(r){return new od(r)}function LQ(r){return new Wr(r)}function zQ(r){return new Lp(r)}function BQ(r){return new zp(r)}function VQ(r){return new Bp(r)}function GQ(r){return new Vp(r)}function WQ(r){return new Gp(r)}function jQ(r){return new Wp(r)}function UQ(r){return new sd(r)}var A3={};We(A3,{Layer:()=>Le,RNN:()=>Dn,RNNCell:()=>Rl,activation:()=>dte,add:()=>vte,alphaDropout:()=>ire,average:()=>Cte,averagePooling1d:()=>$0,averagePooling2d:()=>R0,averagePooling3d:()=>F0,avgPool1d:()=>Rte,avgPool2d:()=>Ote,avgPool3d:()=>Mte,avgPooling1d:()=>Fte,avgPooling2d:()=>Pte,avgPooling3d:()=>Lte,batchNormalization:()=>Ete,bidirectional:()=>Jte,concatenate:()=>Ite,conv1d:()=>ste,conv2d:()=>ite,conv2dTranspose:()=>ate,conv3d:()=>lte,conv3dTranspose:()=>ute,convLstm2d:()=>Kte,convLstm2dCell:()=>Xte,cropping2D:()=>pte,dense:()=>hte,depthwiseConv2d:()=>fte,dot:()=>Ate,dropout:()=>gte,elu:()=>Qee,embedding:()=>kte,flatten:()=>yte,gaussianDropout:()=>sre,gaussianNoise:()=>ore,globalAveragePooling1d:()=>zte,globalAveragePooling2d:()=>Bte,globalMaxPool1d:()=>ere,globalMaxPool2d:()=>tre,globalMaxPooling1d:()=>E3,globalMaxPooling2d:()=>D3,gru:()=>Gte,gruCell:()=>Wte,input:()=>s0,inputLayer:()=>Jee,layerNormalization:()=>Dte,leakyReLU:()=>tte,lstm:()=>jte,lstmCell:()=>Ute,masking:()=>are,maxPool1d:()=>rre,maxPool2d:()=>nre,maxPooling1d:()=>$3,maxPooling2d:()=>R3,maxPooling3d:()=>Vte,maximum:()=>Nte,minimum:()=>Ste,multiply:()=>Tte,permute:()=>_te,prelu:()=>rte,reLU:()=>ete,repeatVector:()=>bte,reshape:()=>wte,rnn:()=>Yte,separableConv2d:()=>cte,simpleRNN:()=>Hte,simpleRNNCell:()=>qte,softmax:()=>nte,spatialDropout1d:()=>xte,stackedRNNCells:()=>Zte,thresholdedReLU:()=>ote,timeDistributed:()=>Qte,upSampling2d:()=>mte,zeroPadding2d:()=>$te});var HQ=0;function Px(){return HQ++}var Mx={};function Il(r=""){return r in Mx||(Mx[r]=0),Mx[r]+=1,r+Mx[r].toString()}function Lx(r){return Array.isArray(r)&&Array.isArray(r[0])}function jp(r){return r.length===0?[]:Array.isArray(r[0])?r:[r]}function Re(r){let e;if(Array.isArray(r)){if(r.length!==1)throw new z(`Expected Tensor length to be 1; got ${r.length}`);e=r[0]}else e=r;return e}function Xe(r){if(Array.isArray(r)&&Array.isArray(r[0])){if(r.length===1)return r=r,r[0];throw new z(`Expected exactly 1 Shape; got ${r.length}`)}else return r}function Up(r){let e=0;for(let t of r)t.shape.length===0?e+=1:e+=t.shape.reduce((n,o)=>n*o);return e}var Qz="Variable",zx=class{constructor(e,t="float32",n=Qz,o=!0,s=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=Px(),n=n==null?Qz:n,this.originalName=Dx(n),this.name=$x(this.originalName),this.trainable_=o,this.constraint=s,this.val=b_(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),qQ(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function qQ(r,e){if(r.shape.toString()!==e.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(r.shape)+" vs. "+JSON.stringify(e.shape))}function id(r){return r.map(e=>e.read())}function Hp(r){r.forEach(e=>{e[0].write(e[1])})}var Ct=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},sn=class{constructor(e,t,n,o,s,a,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=o,this.callArgs=s,this.outputTensorIndex=i,this.id=Px(),a!=null&&(this.originalName=Dx(a),this.name=$x(this.originalName)),this.rank=t.length}},KQ=0,Nl=class{constructor(e,t){this.callArgs=t,this.id=KQ++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},XQ=0,Le=class extends J.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=XQ++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=po(n)+"_"+Il(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let s=null;e.batchSize!=null&&(s=e.batchSize),n=[s].concat(e.inputShape)}this.batchInputShape=n;let o=e.dtype;o==null&&(o=e.inputDType),o==null&&(o="float32"),this.dtype=o}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Vr(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new z(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return br(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return br(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new En(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new En(`Layer ${this.name} is not connected, no input to return.`);return br(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new En(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new En(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return br(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=bt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=bt(this.inputSpec);if(e.length!==t.length)throw new z(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let o=e[n],s=t[n];if(s==null)continue;let a=o.rank;if(s.ndim!=null&&a!==s.ndim)throw new z(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${s.ndim}, found ndim=${a}`);if(s.maxNDim!=null&&a>s.maxNDim)throw new z(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${s.maxNDim}, found ndim=${a}`);if(s.minNDim!=null&&a<s.minNDim)throw new z(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${s.minNDim}, found ndim=${a}.`);if(s.dtype!=null&&o.dtype!==s.dtype)throw new z(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${s.dtype}, found dtype=${o.dtype}.`);if(s.axes){let i=o.shape;for(let l in s.axes){let u=Number(l),c=s.axes[l],p=u>=0?i[u]:i[i.length+u];if(c!=null&&[c,null].indexOf(p)===-1)throw new z(`Input ${n} is incompatible with layer ${this.name}: expected axis ${u} of input shape to have value ${c} but got shape ${i}.`)}}if(s.shape!=null)for(let i=0;i<s.shape.length;++i){let l=s.shape[i],u=o.shape[i];if(l!=null&&u!=null&&l!==u)throw new z(`Input ${n} is incompatible with layer ${this.name}: expected shape=${s.shape}, found shape=${o.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=bt(e),o=!0;for(let a of n)if(!(a instanceof sn)){o=!1;break}let s=!0;for(let a of n)if(a instanceof sn){s=!1;break}if(o===s)throw new z("Arguments to apply() must be all SymbolicTensors or all Tensors");return Ns(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let a=[];for(let i of bt(e))a.push(i.shape);this.build(br(a)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&s&&(this._refCount=1)}if(this.assertInputCompatibility(e),s){let a=this.call(e,t),i=bt(a),l=[];for(let u of i)n.indexOf(u)!==-1&&(u=u.clone()),l.push(u);if(a=br(l),this.activityRegularizer!=null)throw new Se("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return a}else{let a=YQ(e),i=this.computeOutputShape(a),l,u=ZQ(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?a[0]:a),i!=null&&i.length>0&&Array.isArray(i[0])?l=i.map((c,p)=>new sn(u,c,this,bt(e),t,this.name,p)):l=new sn(u,i,this,bt(e),t,this.name),this.addInboundNode(e,l,null,null,a,i,t),this._refCount++,this.activityRegularizer!=null)throw new Se("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return l}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,o)=>{n!=null&&e[o]!=null&&e[o]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new En(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new En(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Vr(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Up(this.weights)}build(e){this.built=!0}getWeights(e=!1){return id(e?this.trainableWeights:this.weights)}setWeights(e){V(()=>{let t=this.weights;if(t.length!==e.length)throw new z(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],o=id(t);for(let s=0;s<o.length;++s){let a=o[s],i=t[s],l=e[s];if(!x.arraysEqual(a.shape,l.shape))throw new z(`Layer weight shape ${a.shape} not compatible with provided weight shape ${l.shape}`);n.push([i,l])}Hp(n)})}addWeight(e,t,n,o,s,a,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new z(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(o=pt("zeros"));let l=o.apply(t,n),u=new zx(l,n,e,a,i);return l.dispose(),s!=null&&this.addLoss(()=>s.apply(u.read())),a==null&&(a=!0),a?this._trainableWeights.push(u):this._nonTrainableWeights.push(u),u}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=bt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,o,s,a,i=null){let l=bt(e);t=bt(t),n=bt(n),o=bt(o),s=jp(s),a=jp(a);let u=[],c=[],p=[];for(let m of l)u.push(m.sourceLayer),c.push(m.nodeIndex),p.push(m.tensorIndex);new Nl({outboundLayer:this,inboundLayers:u,nodeIndices:c,tensorIndices:p,inputTensors:l,outputTensors:t,inputMasks:n,outputMasks:o,inputShapes:s,outputShapes:a},i);for(let m=0;m<t.length;m++)t[m].sourceLayer=this,t[m].nodeIndex=this.inboundNodes.length-1,t[m].tensorIndex=m}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function YQ(r){r=bt(r);let e=[];for(let t of r)e.push(t.shape);return br(e)}function ZQ(r){return"float32"}function qC(r,e,t){if((e==null||t!=null&&t>0)&&(e=r.sourceLayer,t=r.nodeIndex),e.inboundNodes.length===0)return[r];{let n=e.inboundNodes[t];if(n.inboundLayers.length===0)return n.inputTensors;{let o=[];for(let s=0;s<n.inboundLayers.length;s++){let a=n.inputTensors[s],i=n.inboundLayers[s],l=n.nodeIndices[s],u=qC(a,i,l);for(let c of u)o.indexOf(c)===-1&&o.push(c)}return o}}}var mi=class extends Le{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:Il("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new z("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new z("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new z("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let o=new sn(this.dtype,this.batchInputShape,this,[],{},this.name);o.nodeIndex=0,o.tensorIndex=0,new Nl({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[o],outputTensors:[o],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new z(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};mi.className="InputLayer";J.registerClass(mi);function Bx(r){if(r.batchShape==null&&r.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(r.batchShape!=null&&r.shape!=null)throw new z("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let e=r.batchShape;r.shape!=null&&e==null&&(e=[null].concat(r.shape));let t=r.dtype;return t==null&&(t="float32"),new mi({batchInputShape:e,name:r.name,dtype:t,sparse:r.sparse}).inboundNodes[0].outputTensors[0]}async function fi(r){if(r==null)return;let e=[],t=[],n=[];for(let o in r){let s=r[o];if(typeof s!="number"){let a=s;e.push(a.data()),t.push(o),n.push(a)}}if(e.length>0){let o=await Promise.all(e);for(let s=0;s<o.length;++s)r[t[s]]=o[s][0];Ae(n)}}function Vx(r){if(r!=null)for(let e in r){let t=r[e];typeof t!="number"&&t.dispose()}}var e3;(function(r){r[r.SILENT=0]="SILENT",r[r.VERBOSE=1]="VERBOSE"})(e3||(e3={}));var JQ=125,Sl=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},KC=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},t3=class extends Sl{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let o in t){let s=t[o];if(typeof s=="number")this.totals.hasOwnProperty(o)||(this.totals[o]=0),this.totals[o]=this.totals[o]+s*n;else{let a;o in this.totals?a=this.totals[o]:this.totals[o]=0;let i=V(()=>ee(this.totals[o],P(s,n)));this.totals[o]=i,a!=null&&a.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:V(()=>{let o=P(me(1,this.seen),this.totals[n]);t[n]=o,this.totals[n].dispose(),Et(t[n])}))}},XC=class extends Sl{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let s in this.history){let a=this.history[s];for(let i=0;i<a.length;++i)if(typeof a[i]!="number"){let l=a[i];e.push(l.data()),t.push(s),n.push(i)}}let o=await Promise.all(e);for(let s=0;s<o.length;++s)this.history[t[s]][n[s]].dispose(),this.history[t[s]][n[s]]=o[s][0]}},YC=class extends Sl{constructor(e,t){super();if(this.currentEpoch=0,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=JQ),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");x.isNumber(this.yieldEvery)&&(this.maybeWait=Tz(this.maybeWait.bind(this),this.yieldEvery)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let o=[];this.yield!=null&&(await fi(n),o.push(this.yield(e,t,n))),o.push(bf()),await Promise.all(o)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await fi(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await fi(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(bf()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await fi(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await fi(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(bf()):x.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await fi(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await fi(e),await this.trainEnd(e))}};function Gx(r,e){return r==null&&(r={}),r instanceof Sl?[r]:Array.isArray(r)&&r[0]instanceof Sl?r:bt(r).map(n=>new YC(n,e))}var yn=class{constructor(){}static registerCallbackConstructor(e,t){x.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),yn.checkForDuplicate(t),yn.constructors[e]==null&&(yn.constructors[e]=[]),yn.constructors[e].push(t)}static checkForDuplicate(e){for(let t in yn.constructors)yn.constructors[+t].forEach(o=>{if(o===e)throw new z("Duplicate callback constructor.")})}static clear(){yn.constructors={}}static createCallbacks(e){let t=[];for(let n in yn.constructors){let o=+n;e>=o&&t.push(...yn.constructors[o])}return t.map(n=>new n)}};yn.constructors={};function Wx(r,e,t,n,o,s,a,i,l){let u=new XC,c=[new t3,...yn.createCallbacks(e)];r!=null&&c.push(...r),c.push(u);let p=new KC(c);return p.setParams({epochs:t,initialEpoch:n,samples:o,steps:s,batchSize:a,verbose:e,doValidation:i,metrics:l}),{callbackList:p,history:u}}function an(r,e={},t=!1){return ci(r,J.SerializationMap.getMap().classNameMap,e,"layer",t)}function ad(r,e){return V(()=>{r.dtype!=="float32"&&(r=r.asType("float32"));let t=ge(Uu(r),e,!0),n=xa(t.shape,er()),o=gt(en(t,n));return me(r,o)})}function di(r,e){return V(()=>dt(Uu(pe(e,r)),-1))}function qp(r,e){return V(()=>dt(Nt(pe(e,r)),-1))}function Tl(r,e){return V(()=>{let t=pe(r,e),n=lr(Nt(r),er(),Number.MAX_VALUE),o=Nt(me(t,n));return P(100,dt(o,-1))})}function QQ(r,e){return V(()=>{let t=lr(e,er(),Number.MAX_VALUE),n=cr(ee(1,t)),o=lr(r,er(),Number.MAX_VALUE),s=cr(ee(1,o));return dt(Uu(pe(n,s)),-1)})}function eee(r,e){return V(()=>{let t=en(0,pe(1,P(r,e)));return dt(Uu(t),-1)})}function tee(r,e){return V(()=>{let t=en(0,pe(1,P(r,e)));return dt(t,-1)})}function ree(r,e){return V(()=>{let t=ge(P(r,e),-1),n=pr(P(pe(1,r),e),-1);return en(0,ee(1,pe(n,t)))})}function nee(r,e){return V(()=>{let t=Math.log(2),n=pe(e,r),o=pe(ee(n,ys(P(-2,n))),t);return dt(o,-1)})}function qu(r,e,t=!1){return V(()=>{if(t)e=va(e);else{let n=ge(e,e.shape.length-1,!0);e=me(e,n)}return e=lr(e,er(),1-er()),qe(ge(P(r.toFloat(),cr(e)),e.shape.length-1))})}function Kp(r,e,t=!1){return V(()=>{let n=xs(Wz(r)).toInt();e=lr(e,er(),1-er());let o=e.shape,s=fs(n,o[o.length-1]).reshape(o);return qu(s,e,t)})}function oee(r,e){if(!x.arraysEqual(r.shape,e.shape))throw new z(`logits and labels must have the same shape, but got shapes ${JSON.stringify(r.shape)} and ${JSON.stringify(e.shape)}`);return V(()=>{let t=e.relu(),n=e.abs().neg();return t.sub(e.mul(r)).add(n.exp().log1p())})}function Xp(r,e){return V(()=>{let t;return t=lr(e,er(),1-er()),t=cr(me(t,pe(1,t))),dt(oee(r,t),-1)})}function see(r,e){return V(()=>{let t=lr(r,er(),1),n=lr(e,er(),1);return ge(P(r,cr(me(t,n))),-1)})}function iee(r,e){return V(()=>{let t=cr(ee(er(),e));return dt(pe(e,P(r,t)),-1)})}function ld(r,e){return V(()=>{let t=ad(r,-1),n=ad(e,-1),o=P(t,n);return qe(ge(o,-1))})}var ud={meanSquaredError:di,meanAbsoluteError:qp,meanAbsolutePercentageError:Tl,meanSquaredLogarithmicError:QQ,squaredHinge:eee,hinge:tee,categoricalHinge:ree,logcosh:nee,categoricalCrossentropy:qu,sparseCategoricalCrossentropy:Kp,binaryCrossentropy:Xp,kullbackLeiblerDivergence:see,poisson:iee,cosineProximity:ld};function jx(r){if(typeof r=="string"){if(r in ud)return ud[r];let e=`Unknown loss ${r}`;throw r.toLowerCase().includes("softmaxcrossentropy")&&(e=`Unknown loss ${r}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new z(e)}else return r}function cd(r,e){return V(()=>{let t=P(.5,or(e)),n=Oa(nr(e,t),r.dtype);return dt(Nn(r,n),-1)})}function pd(r,e){return V(()=>Oa(Nn(fl(r,-1),fl(e,-1)),"float32"))}function r3(r,e){return V(()=>xr(r.equal(1),e.equal(1)).sum().cast("float32"))}function aee(r,e){return V(()=>xr(r.equal(1),e.equal(0)).sum().cast("float32"))}function lee(r,e){return V(()=>xr(r.equal(0),e.equal(1)).sum().cast("float32"))}function ZC(r,e){return V(()=>{let t=r3(r,e),n=lee(r,e),o=t.add(n);return Dt(nr(o,0),t.div(o),0).cast("float32")})}function n3(r,e){return V(()=>{let t=r3(r,e),n=aee(r,e),o=t.add(n);return Dt(nr(o,0),t.div(o),0).cast("float32")})}function Ux(r,e){return Xp(r,e)}function Hx(r,e){return r.rank===e.rank&&(r=r.squeeze([r.rank-1])),e=e.argMax(-1),e.dtype!==r.dtype&&(e=e.asType(r.dtype)),Nn(r,e).asType("float32")}var uee=di,cee=di,pee=qp,mee=qp,fee=Tl,dee=Tl,md=qu,hee=ld,JC=Kp,qx={binaryAccuracy:cd,categoricalAccuracy:pd,precision:ZC,categoricalCrossentropy:md,sparseCategoricalCrossentropy:JC,mse:uee,MSE:cee,mae:pee,MAE:mee,mape:fee,MAPE:dee,cosine:hee};function o3(r){if(typeof r=="string"&&r in qx)return qx[r];if(typeof r!="string"&&r!=null)return r;throw new z(`Unknown metric ${r}`)}function fd(r){if(Gn(r!==null,`Unknown LossOrMetricFn ${r}`),typeof r=="string")return r;{let e;for(let t of Object.keys(ud))if(ud[t]===r){e=t;break}if(e!==void 0)return e;for(let t of Object.keys(qx))if(qx[t]===r){e=t;break}return e!==void 0?e:r.name}}function s3(r){let e={Adagrad:()=>Iu.adagrad(.01),Adadelta:()=>Iu.adadelta(1,.95,er()),Adam:()=>Iu.adam(.001,.9,.999,er()),Adamax:()=>Iu.adamax(.002,.9,.999,er(),0),RMSProp:()=>Iu.rmsprop(.001,.9,0,er()),SGD:()=>Iu.sgd(.01)};if(e.adagrad=e.Adagrad,e.adadelta=e.Adadelta,e.adam=e.Adam,e.adamax=e.Adamax,e.rmsprop=e.RMSProp,e.sgd=e.SGD,r in e)return e[r]();throw new z(`Unknown Optimizer ${r}`)}var i3=1*1024*1024;function e0(r,e,t=!1){if(r==null||typeof r!="object"||Object.getPrototypeOf(r)!==Object.prototype||!QC(r))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(t){let n=JSON.stringify(r);n.length>i3&&console.warn(`User-defined metadata of model "${e}" is too large in size (length=${n.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${i3}.`)}}function QC(r){if(r===null)return!0;if(typeof r=="object")if(Object.getPrototypeOf(r)===Object.prototype){let e=Object.keys(r);for(let t of e)if(typeof t!="string"||!QC(r[t]))return!1;return!0}else if(Array.isArray(r)){for(let e of r)if(!QC(e))return!1;return!0}else return!1;else{let e=typeof r;return e==="string"||e==="number"||e==="boolean"}}function a3(r,e,t,n=console.log){let o=xee(r),s=["Layer (type)","Output shape","Param #"];o?(e=e||65,t=t||[.45,.85,1]):(e=e||98,t=t||[.33,.55,.67,1]),t[t.length-1]<=1&&(t=t.map(c=>Math.floor(e*c)));let a;if(!o){s.push("Receives inputs"),a=[];for(let c in r.nodesByDepth)a.push(...r.nodesByDepth[c])}n("_".repeat(e)),Kx(s,t,n),n("=".repeat(e));let i=r.layers;for(let c=0;c<i.length;++c)o?yee(i[c],t,n):bee(i[c],t,a,n),n((c===i.length-1?"=":"_").repeat(e));r.checkTrainableWeightsConsistency();let l=gee(r),u=Up(r.nonTrainableWeights);n(`Total params: ${l+u}`),n(`Trainable params: ${l}`),n(`Non-trainable params: ${u}`),n("_".repeat(e))}function gee(r){let e;return r.collectedTrainableWeights!=null?e=Up(r.collectedTrainableWeights):e=Up(r.trainableWeights),e}function xee(r){let e=!0,t=[],n=[];for(let o in r.nodesByDepth)t.push(r.nodesByDepth[o]);for(let o of t){if(o.length>1||o.length===1&&o[0].inboundLayers.length>1){e=!1;break}n.push(...o)}if(e)for(let o of r.layers){let s=!1;for(let a of o.inboundNodes)if(n.indexOf(a)!==-1)if(s){e=!1;break}else s=!0;if(!e)break}return e}function Kx(r,e,t=console.log){let n="";for(let o=0;o<r.length;++o)o>0&&(n=n.slice(0,n.length-1)+" "),n+=r[o],n=n.slice(0,e[o]),n+=" ".repeat(e[o]-n.length);t(n)}function yee(r,e,t){let n;try{n=JSON.stringify(r.outputShape)}catch(i){n="multiple"}let o=r.name,s=r.getClassName(),a=[`${o} (${s})`,n,r.countParams().toString()];Kx(a,e,t)}function bee(r,e,t,n){let o;try{o=JSON.stringify(r.outputShape)}catch(c){o="multiple"}let s=[];for(let c of r.inboundNodes)if(!(t!=null&&t.length>0&&t.indexOf(c)===-1))for(let p=0;p<c.inboundLayers.length;++p){let m=c.inboundLayers[p].name,f=c.nodeIndices[p],d=c.tensorIndices[p];s.push(`${m}[${f}][${d}]`)}let a=r.name,i=r.getClassName(),l=s.length===0?"":s[0],u=[`${a} (${i})`,o,r.countParams().toString(),l];Kx(u,e,n);for(let c=1;c<s.length;++c)Kx(["","","",s[c]],e,n)}function l3(r,e,t){return(r==="inboundNodes"||r==="outputLayers"||r==="inputLayers")&&e===0&&typeof t=="string"}function Ku(r,e){if(r===null)return null;if(typeof r=="string")return Fa(r);if(typeof r=="number"||typeof r=="boolean")return r;if(r instanceof Array){let t=[],n=r.length;for(let o=0;o<n;++o){let s=r[o];l3(e,o,s)?t.push(s):t.push(Ku(s,e))}return t}else{let t={};for(let n of Object.keys(r)){let o=r[n];if(n==="name"&&typeof o=="string")t[n]=o;else{let s=Fa(n);t[s]=Ku(o,s)}}return t}}function Xx(r,e){if(r==null)return null;if(typeof r=="string")return po(r);if(typeof r=="number"||typeof r=="boolean")return r;if(r instanceof Array){let t=[],n=r.length;for(let o=0;o<n;++o){let s=r[o];l3(e,o,s)?t.push(s):t.push(Xx(s,e))}return t}else{let t={};for(let n of Object.keys(r)){let o=r[n],s=po(n);(n==="name"||n==="className")&&typeof o=="string"?t[s]=o:t[s]=Xx(o,n)}return t}}var dd="3.4.0";function wee(r,e){if(r.dtype==null||r.dtype===e.dtype)return e;try{return oe(e,r.dtype)}catch(t){throw new z(`The dtype of the feed (${e.dtype}) can not be cast to the dtype of the key '${r.name}' (${r.dtype}).`)}}var Ts=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof Ts)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=wee(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new z(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof sn){if(this.id2Value[e.id]==null)throw new z(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new z(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof sn){if(this.id2Value[e.id]==null)throw new z(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new z(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&Ae(this.id2Mask)}},t0={},u3={};function Xu(r,e,t,n){let o=t==null?!1:t.training,s=Array.isArray(r),a=s?r:[r],i=a.map(d=>d.name),l=[],u=e.names();for(let d of i)u.indexOf(d)!==-1?l.push(e.getValue(d)):l.push(null);n!=null&&(n.maxNumTensors=-Infinity,n.minNumTensors=Infinity);let c=i.join(",")+"|"+e.names().join(","),p,m;if(t0[c]==null){let d=_ee(a,e);p=d.sorted,m=d.recipientCounts,t0[c]=p,u3[c]=m}p=t0[c],m={},o||Object.assign(m,u3[c]);let f=new Ts(e);for(let d=0;d<p.length;++d){if(n!=null){let O=Mm().numTensors;O>n.maxNumTensors&&(n.maxNumTensors=O),O<n.minNumTensors&&(n.minNumTensors=O)}let h=p[d],g=h.sourceLayer;if(g instanceof mi)continue;let y=[],b=[],w=[],_=!1;for(let O of h.inputs){let M=f.getValue(O),G=f.getMask(O);y.push(M),b.push(G),G!=null&&(_=!0),o||(m[O.name]--,m[O.name]===0&&!e.hasKey(O)&&i.indexOf(O.name)===-1&&!M.isDisposed&&O.sourceLayer.stateful!==!0&&w.push(M))}_&&(t=t||{},t.mask=b[0]);let I=bt(g.apply(y,t)),E=null;g.supportsMasking&&(E=g.computeMask(y,b));let $=kee(h),D=Array.isArray($)?$:[$];for(let O=0;O<D.length;++O){f.hasKey(D[O])||f.add(D[O],I[O],Array.isArray(E)?E[0]:E);let M=i.indexOf(D[O].name);M!==-1&&(l[M]=I[O])}o||Ae(w)}return f.disposeMasks(),s?l:l[0]}function _ee(r,e){x.assert(r!=null&&r.length>0,()=>"Expected at least one fetch, got none");let t=[],n={};if(r.length===1){let o=c3(r[0],e);t=o.sorted,n=o.recipientMap}else{let o=new Set;for(let s of r){let{sorted:a,recipientMap:i}=c3(s,e);for(let l of a)o.has(l.name)||(t.push(l),o.add(l.name));for(let l in i)n[l]==null&&(n[l]=new Set),i[l].forEach(u=>n[l].add(u))}}return{sorted:t,recipientCounts:vee(n)}}function vee(r){let e={};for(let t in r)e[t]=r[t].size;return e}function c3(r,e){let t=new Set,n=[],o={};for(let i of e.names())t.add(i);let s=[],a=[];for(s.push(r);s.length>0;){let i=s[s.length-1];if(t.has(i.name)){s.pop();continue}let l=a[a.length-1]===s.length-1;if(i.inputs.length===0||l)s.pop(),n.push(i),t.add(i.name),l&&a.pop();else{a.push(s.length-1);for(let u of i.inputs)o[u.name]==null&&(o[u.name]=new Set),o[u.name].add(i.name),!t.has(u.name)&&s.push(u)}}return{sorted:n,recipientMap:o}}function kee(r){let e;if(r.sourceLayer.inboundNodes.length===1)e=r.sourceLayer.output;else{let t=null;for(let n=0;n<r.sourceLayer.inboundNodes.length;++n)for(let o of r.sourceLayer.inboundNodes[n].outputTensors)if(o.id===r.id){t=n;break}e=r.sourceLayer.getOutputAt(t)}return e}var Wn=class extends Le{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let b=this.getClassName().toLowerCase();this.name=Il(b)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],fo(this.inputs).length!==this.inputs.length)throw new z(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(b=>b.name)}`);fo(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(b=>b.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let b of this.outputs){let w=b.sourceLayer,_=b.nodeIndex,I=b.tensorIndex;this.outputLayers.push(w),this.outputLayersNodeIndices.push(_),this.outputLayersTensorIndices.push(I)}for(let b of this.inputs){let w=b.sourceLayer,_=b.nodeIndex,I=b.tensorIndex;Gn(_===0,"input layer has >1 nodes"),Gn(I===0,"input layer has >1 tensors"),this.inputLayers.push(w),this.inputLayersNodeIndices.push(_),this.inputLayersTensorIndices.push(I)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let b=0;b<this.inputLayers.length;b++){let w=this.inputLayers[b];if(!(w instanceof mi))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${b} (0-based) originates from layer type ${w.getClassName()}.`);this.inputNames.push(w.name),this.feedInputShapes.push(w.batchInputShape),this.feedInputNames.push(w.name)}for(let b of this.outputLayers)this.outputNames.push(b.name);this.internalInputShapes=this.inputs.map(b=>b.shape),this.internalOutputShapes=this.outputs.map(b=>b.shape);let t={},n={},o={},s={},a={},i=[],l=(b,w,_,I,E,$)=>{(I==null||E==null||$==null)&&(I=b.sourceLayer,E=b.nodeIndex,$=b.tensorIndex);let D=I.inboundNodes[E];if(_.indexOf(D)!==-1)throw new Vr(`The tensor ${b.name} at layer "${I.name}" is part of a cycle.`);if(w.indexOf(D)!==-1)return;this.containerNodes.add(Wn.nodeKey(I,E)),I.id in a||(a[I.id]=Object.keys(a).length),_.indexOf(D)===-1&&_.push(D);let O=D.inboundLayers.length;for(let M=0;M<O;M++){let G=D.inputTensors[M],j=D.inboundLayers[M],U=D.nodeIndices[M],H=D.tensorIndices[M];l(G,w,_,j,U,H)}for(w.push(D);_.indexOf(D)>=0;)_.splice(_.indexOf(D),1);i.push(D)},u=[],c=[];for(let b of this.outputs)l(b,u,c);let p=i.slice().reverse();for(let b of p){n[b.id]=b,b.id in t||(t[b.id]=0);let w=t[b.id],_=o[b.outboundLayer.id]==null?0:o[b.outboundLayer.id];w=Math.max(w,_),o[b.outboundLayer.id]=w,s[b.outboundLayer.id]=b.outboundLayer,t[b.id]=w;for(let I=0;I<b.inboundLayers.length;I++){let E=b.inboundLayers[I],$=b.nodeIndices[I],D=E.inboundNodes[$],O=t[D.id]==null?0:t[D.id];t[D.id]=Math.max(w+1,O),n[D.id]=D}}let m={};for(let b in t){let w=t[b];w in m||(m[w]=[]),m[w].push(n[b])}let f={};for(let b in o){let w=o[b];w in f||(f[w]=[]),f[w].push(s[b])}let d=Object.keys(f).map(b=>parseInt(b,10)).sort(Hf);this.layers=[];for(let b of d){let w=f[b];w.sort((_,I)=>{let E=a[_.id],$=a[I.id];return E<$?-1:E>$?1:0});for(let _ of w)_ instanceof Wn&&this.internalContainerRefs.push(_),this.layers.push(_)}this.layersByDepth=f,d=Object.keys(m).map(b=>parseInt(b,10)).sort(Hf);let h=this.inputs.slice(),g=[];for(let b of d)for(let w of m[b]){let _=w.outboundLayer;if(_!=null){for(let I of w.inputTensors)if(h.indexOf(I)===-1)throw new Vr(`Graph disconnected: cannot obtain value for tensor ${I} at layer "${_.name}". The following previous layers were accessed without issue: ${g}`);for(let I of w.outputTensors)h.push(I);g.push(_.name)}}this.nodesByDepth=m;let y=this.layers.map(b=>b.name);for(let b of y){let w=y.filter(_=>_===b).length;if(w!==1)throw new Vr(`The name "${b}" is used ${w} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(y))}this.outboundNodes=[],this.inboundNodes=[],new Nl({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(b=>null),outputMasks:this.outputs.map(b=>null),inputShapes:this.inputs.map(b=>b.shape),outputShapes:this.outputs.map(b=>b.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new z("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},o=0;for(let a of this.layers)for(let i of a.weights){if(n[i.originalName]!=null)throw new z(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,o++}let s=[];for(let a in e){let i=a;if(n[a]==null){let l=a.split("/");i=l.slice(0,-2).concat([l[l.length-1]]).join("/")}if(n[i]!=null)s.push([n[i],e[a]]);else if(t)throw new z(`Provided weight data has no target variable: ${a}`);delete n[i]}if(t){let a=[];for(let i in n)a.push(i);if(a.length>0)throw new z(`${a.length} of ${o} weights are not set: ${a}`)}Hp(s)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${dd}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=Xx(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return V(()=>{e=bt(e);let n=new Ts;for(let o=0;o<this.inputs.length;++o)n.add(this.inputs[o],e[o]);return Xu(this.outputs,n,t)})}computeMask(e,t){return V(()=>{e=bt(e);let n;return t==null?n=co(null,e.length):n=bt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=jp(e);if(t.length!==this.inputLayers.length)throw new z(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;i<t.length;i++){let l=this.inputLayers[i],u=t[i],c=l.name+"_0_0";n[c]=u}let o=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(Hf);if(o.length>1)for(let i of o){let l=this.nodesByDepth[i];for(let u of l){let c=u.outboundLayer;if(this.inputLayers.map(h=>h.id).indexOf(c.id)!==-1)continue;let p=[];for(let h=0;h<u.inboundLayers.length;h++){let g=u.inboundLayers[h],y=u.nodeIndices[h],b=u.tensorIndices[h],w=`${g.name}_${y}_${b}`,_=n[w];p.push(_)}let m=c.computeOutputShape(br(p)),f=jp(m),d=c.inboundNodes.indexOf(u);for(let h=0;h<f.length;h++){let g=`${c.name}_${d}_${h}`;n[g]=f[h]}}}let s=[],a=[];for(let i=0;i<this.outputLayers.length;i++){let l=this.outputLayers[i],u=this.outputLayersNodeIndices[i],c=this.outputLayersTensorIndices[i],p=`${l.name}_${u}_${c}`;a.push(p)}for(let i=0;i<a.length;i++){let l=a[i];Gn(l in n),s.push(n[l])}return br(s)}runInternalGraph(e,t){t==null&&(t=co(null,e.length));let n={};for(let l=0;l<this.inputs.length;++l){let u=this.inputs[l],c=e[l],p=t[l];n[u.id]=[c,p]}let o=Object.keys(this.nodesByDepth).map(l=>parseInt(l,10)).sort(Hf);for(let l of o){let u=this.nodesByDepth[l];for(let c of u){let p=c.outboundLayer,m=c.inputTensors,f=c.outputTensors,d=new Array;for(let h of m)h.id in n&&d.push(n[h.id]);if(d.length===m.length){let h={},g,y,b,w;if(c.callArgs!=null&&(h=c.callArgs),d.length===1){let[_,I]=d[0];h.mask==null&&(h.mask=I),b=bt(p.call(_,h)),w=bt(p.computeMask(_,I)),g=[_],y=[I]}else g=d.map(_=>_[0]),y=d.map(_=>_[1]),h.mask==null&&(h.mask=y),b=bt(p.call(g,h)),w=bt(p.computeMask(g,y));if(p.activityRegularizer)throw new Se("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let _=0;_<f.length;++_){let I=f[_],E=b[_],$=w[_];n[I.id]=[E,$]}}}}let s=[],a=[],i=[];for(let l of this.outputs){Gn(l.id in n,`Could not compute output ${l.name} : ${l.id}`);let[u,c]=n[l.id];i.push(u.shape),s.push(u),a.push(c)}return[s,a,i]}buildNodeConversionMap(e){let t={},n;for(let o of this.layers){n=o instanceof Wn?1:0;for(let s=0;s<o.inboundNodes.length;s++){let a=Wn.nodeKey(o,s);this.containerNodes.has(a)&&(t[a]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new z(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new z("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new z(`No such layer: ${e}`)}calculateLosses(){return V(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let o=Wn.nodeKey(t,n);this.containerNodes.has(o)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let a of this.layers){let i=a.getClassName(),l=a.getConfig(),u=[];for(let p=0;p<a.inboundNodes.length;p++){let m=a.inboundNodes[p],f=Wn.nodeKey(a,p),d={};if(this.containerNodes.has(f)){if(m.callArgs)try{JSON.stringify(m.callArgs),d=m.callArgs}catch(h){console.warn(`Layer ${a.name} was passed non-serializable keyword arguments: ${m.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),d={}}if(m.inboundLayers.length>0){let h=[];for(let g=0;g<m.inboundLayers.length;g++){let y=m.inboundLayers[g],b=m.nodeIndices[g],w=m.tensorIndices[g],_=Wn.nodeKey(y,b),I=t[_];I==null&&(I=0),h.push([y.name,I,w,d])}u.push(h)}}}let c={};c.name=a.name,c.className=i,c.config=l,c.inboundNodes=u,n.push(c)}e.layers=n;let o=[];for(let a=0;a<this.inputLayers.length;a++){let i=this.inputLayers[a],l=this.inputLayersNodeIndices[a],u=Wn.nodeKey(i,l);if(!this.containerNodes.has(u))continue;let c=t[u];c==null&&(c=0);let p=this.inputLayersTensorIndices[a];o.push([i.name,c,p])}e.inputLayers=o;let s=[];for(let a=0;a<this.outputLayers.length;a++){let i=this.outputLayers[a],l=this.outputLayersNodeIndices[a],u=Wn.nodeKey(i,l);if(!this.containerNodes.has(u))continue;let c=t[u];c==null&&(c=0);let p=this.outputLayersTensorIndices[a];s.push([i.name,c,p])}return e.outputLayers=s,e}static fromConfig(e,t,n={},o=!1){let s={},a={};function i(g,y){g.name in a?a[g.name].push(y):a[g.name]=[y]}function l(g,y){let b=[],w;for(let _ of y){let I=_[0],E=_[1],$=_[2];if(w=_[3]==null?{}:_[3],!(I in s)){i(g,y);return}let D=s[I];if(D.inboundNodes.length<=E){i(g,y);return}let O=D.inboundNodes[E];b.push(O.outputTensors[$])}b.length>0&&g.apply(br(b),w)}function u(g){let y=g.name,b=an(g,t.customObjects!=null?t.customObjects:{});b.setFastWeightInitDuringBuild(o),s[y]=b,g.inboundNodes.forEach(_=>{if(!(_ instanceof Array))throw new z(`Corrupted configuration, expected array for nodeData: ${_}`);i(b,_)})}let c=t.name,p=t.layers;for(let g of p)u(g);for(;!Nz(a);)for(let g of p){let y=s[g.name];if(y.name in a){let b=a[y.name];delete a[y.name];for(let w of b)l(y,w)}}let m=[],f=[],d=t.inputLayers;for(let g of d){let y=g[0],b=g[1],w=g[2];Gn(y in s);let I=s[y].inboundNodes[b].outputTensors;m.push(I[w])}let h=t.outputLayers;for(let g of h){let y=g[0],b=g[1],w=g[2];Gn(y in s);let I=s[y].inboundNodes[b].outputTensors;f.push(I[w])}return new e({inputs:m,outputs:f,name:c})}get stateful(){if(this._stateful)throw new z("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){V(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function Cee(r,e,t){let n=e.length;if(r==null||Array.isArray(r)&&r.length===0)return e.map(o=>null);if(n===1)return Array.isArray(r)&&r.length===1?r:typeof r=="object"&&e[0]in r?[r[e[0]]]:[r];if(Array.isArray(r)){if(r.length!==n)throw new Error(`Provided ${t} is an array of ${r.length} element(s), but the model has ${n} outputs. Make sure a set of weights is provided for each model output.`);return r}else if(typeof r=="object"&&Object.keys(r).length>0&&typeof r[Object.keys(r)[0]]=="object"){let o=[];return e.forEach(s=>{s in r?o.push(r[s]):o.push(null)}),o}else throw new Error(`The model has multiple (${n}) outputs, so ${t} must be either an array with ${n} elements or an object with ${e} keys. Provided ${t} not understood: ${JSON.stringify(r)}`)}function Yx(r,e){return Cee(r,e,"classWeight")}async function Zx(r,e,t,n){if(e!=null||n!=null)throw new Error("Support sampleWeight is not implemented yet");if(t!=null){let o=V(()=>{if(r.shape.length===1)return r.clone();if(r.shape.length===2)if(r.shape[1]>1){let i=1;return r.argMax(i)}else{if(r.shape[1]===1)return r.reshape([r.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${r.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${r.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await o.data());Ae(o);let a=[];return s.forEach(i=>{if(t[i]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${i} exists in the data but not in classWeight`);a.push(t[i])}),Vt(a,"float32")}else return null}function p3(r,e){return P(r,e)}var Iee=32;function f3(r,e){let t,n,o=e;t=o.xs,n=o.ys,x.assert(t!=null&&n!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${e}`);let s=m3("input",r.inputNames,t),a=m3("output",r.outputNames,n),i=s[0].shape[0];x.assert(s.length===r.inputs.length,()=>`LayersModel has ${r.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(r.inputNames)})`),x.assert(a.length===r.outputs.length,()=>`LayersModel has ${r.outputs.length} outputs, but the dataset provides ${a.length} outputs. (Expected output keys: ${JSON.stringify(r.outputNames)})`);for(let l=0;l<s.length;l++)x.assert(s[l].shape[0]===i,()=>`Batch size mismatch: input ${r.inputNames[l]} has ${s[l].shape[0]}; expected ${i} based on input ${r.inputNames[0]}.`);for(let l=0;l<a.length;l++)x.assert(a[l].shape[0]===i,()=>`Batch size mismatch: output ${r.outputNames[l]} has ${a[l].shape[0]}; expected ${i} based on input ${r.inputNames[0]}.`);return{xs:s,ys:a}}function m3(r,e,t){if(t instanceof Oe)return[t];if(Array.isArray(t))return x.assert(t.length===e.length,()=>`Received an array of ${t.length} Tensors, but expected ${e.length} to match the ${r} keys ${e}.`),t;{let n=[];for(let o of e){if(t[o]==null)throw new z(`The feature data generated by the dataset lacks the required ${r} key '${o}'.`);n.push(t[o])}return n}}function Nee(r){if(r.length===3)throw new Se("Validation with sample weights is not implemented yet.");return{xs:r[0],ys:r[1]}}async function h3(r,e,t){let n=t.batchesPerEpoch!=null;if(x.assert(r.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),x.assert(t!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),x.assert(t.epochs!=null&&t.epochs>0&&Number.isInteger(t.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${t.epochs}`),x.assert(!n||t.batchesPerEpoch>0&&Number.isInteger(t.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${t.batchesPerEpoch}`),x.assert(t.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),r.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");r.isTraining=!0;try{let o=t.validationData!=null,s,a;if(o)if(d3(t.validationData))x.assert(t.validationBatches==null||t.validationBatches>0&&Number.isInteger(t.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${t.validationBatches}`);else{let g=Nee(t.validationData);s=g.xs,a=g.ys}let i=r.makeTrainFunction(),l=r.getDedupedMetricsNames(),u;o?u=l.slice().concat(l.map(g=>"val_"+g)):u=l.slice();let c=Gx(t.callbacks,t.yieldEvery),p=t.verbose==null?1:t.verbose,{callbackList:m,history:f}=Wx(c,p,t.epochs,null,null,See(e,t),null,o,u);m.setModel(r),r.history=f,await m.onTrainBegin(),r.stopTraining_=!1;let d=t.initialEpoch==null?0:t.initialEpoch,h=await e.iterator();for(;d<t.epochs;){let g={};await m.onEpochBegin(d);let y=0,b=0;for(n||(h=await e.iterator());n?y<t.batchesPerEpoch:!0;){let w=await h.next();if(n&&w.done){console.warn(`You provided \`batchesPerEpoch\` as ${t.batchesPerEpoch}, but your dataset iterator ran out of data after ${y} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${t.batchesPerEpoch*t.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(w.value!=null){let{xs:_,ys:I}=f3(r,w.value),E={};E.batch=b,E.size=_[0].shape[0],await m.onBatchBegin(b,E);let $=[];if(t.classWeight!=null){let M=Yx(t.classWeight,r.outputNames);for(let G=0;G<M.length;++G)$.push(await Zx(I[G],null,M[G]))}let D=_.concat(I).concat($),O=i(D);Ae(D);for(let M=0;M<l.length;++M){let G=l[M],j=O[M];E[G]=j,Et(j)}await m.onBatchEnd(b,E),Vx(E),b++,y++}if(n?y>=t.batchesPerEpoch:w.done){if(o){let _;d3(t.validationData)?_=bt(await r.evaluateDataset(t.validationData,{batches:t.validationBatches})):_=bt(r.evaluate(s,a,{batchSize:t.validationBatchSize==null?Iee:t.validationBatchSize,verbose:0}));for(let I=0;I<r.metricsNames.length;++I)g[`val_${r.metricsNames[I]}`]=_[I]}break}if(r.stopTraining_)break}if(await m.onEpochEnd(d,g),d++,r.stopTraining_)break}return await m.onTrainEnd(),await r.history.syncData(),r.history}finally{r.isTraining=!1}}function See(r,e){let t=null;return e.batchesPerEpoch!=null?t=e.batchesPerEpoch:Number.isFinite(r.size)&&(t=r.size),t}function d3(r){return typeof r.iterator=="function"}function Tee(r){return typeof r.next=="function"}async function g3(r,e,t){t=t||{};let n=t.batches!=null,o=r.testFunction,s=[];if(t.verbose>0)throw new Se("Verbose mode is not implemented yet.");x.assert(!n||t.batches>0&&Number.isInteger(t.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(t.batches)}`);let a=Tee(e)?e:await e.iterator(),i=0,l=0;for(;n?l<t.batches:!0;){let u=await a.next();if(s=V(()=>{if(u.value){let{xs:c,ys:p}=f3(r,u.value),m=c.concat(p),f=V(()=>o(m));if(Ae(m),l===0)for(let h=0;h<f.length;++h)s.push(le(0));let d=m[0].shape[0];for(let h=0;h<f.length;++h){let g=f[h],y=s[h];s[h]=V(()=>ee(s[h],P(d,g))),l>0&&Ae(y)}Ae(f),i+=d,++l}return s}),u.done){n&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${t.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<s.length;++u){let c=s[u];s[u]=me(s[u],i),Ae(c)}return br(s)}function Jx(r){x.assert(r>0&&Number.isInteger(r),()=>`batchSize is required to be a positive integer, but got ${r}`)}function Yp(r,e,t){return r==null?[null]:Array.isArray(r)?r.map(n=>Ma(n,e,t-e)):Ma(r,e,t-e)}function Qx(r,e){return V(()=>r==null?null:Array.isArray(r)?r.map(t=>Qx(t,e)):Fx(r,e.dtype==="int32"?e:e.toInt()))}function ey(r,e){let t=[],n=0,o=null;for(;n<r;)o=n+e,o>=r&&(o=r),t.push([n,o]),n=o;return t}async function Aee(r,e,t,n,o,s,a,i,l,u,c,p,m,f,d){o==null&&(o=32),s==null&&(s=1),c==null&&(c=!0),m==null&&(m=0);let h=!1;if(l!=null&&u!=null&&(h=!0),d!=null&&(h=!0,f==null))throw new z("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=r.checkNumSamples(t,o,f,"steps_per_epoch"),y;g!=null&&(y=Gr(0,g)),a==null&&(a=1);let{callbackList:b,history:w}=Wx(i,a,s,m,g,f,o,h,p);b.setModel(r),r.history=w,await b.onTrainBegin(),r.stopTraining_=!1;for(let _=m;_<s;++_){await b.onEpochBegin(_);let I={};if(f!=null)throw new Se("stepsPerEpoch mode is not implemented yet.");{if(c==="batch")throw new Se("batch shuffling is not implemneted yet");c&&x.shuffle(y);let E=Vt(y),$=ey(g,o);for(let D=0;D<$.length;++D){let O={};if(await b.onBatchBegin(D,O),V(()=>{let M=$[D][0],G=$[D][1],j=Ma(E,M,G-M);O.batch=D,O.size=G-M;let U=Qx(t,j),H=e(U);for(let q=0;q<n.length;++q){let X=n[q],ne=H[q];O[X]=ne,Et(ne)}if(D===$.length-1&&h){let q=r.testLoop(l,u,o);for(let X=0;X<n.length;++X){let ne=n[X],Y=q[X];Et(Y),I["val_"+ne]=Y}}}),await b.onBatchEnd(D,O),Vx(O),r.stopTraining_)break}E.dispose()}if(await b.onEpochEnd(_,I),r.stopTraining_)break}return await b.onTrainEnd(),await r.history.syncData(),r.history}async function x3(r,e,t,n={}){if(r.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");r.isTraining=!0;let o,s,a,i,l,u,c;try{let p=n.batchSize==null?32:n.batchSize;Jx(p);let m=!1,f=await r.standardizeUserData(e,t,n.sampleWeight,n.classWeight,m,p);o=f[0],s=f[1],c=f[2];let d=!1,h;if(n.validationData!=null&&n.validationData.length>0){if(d=!0,n.validationData.length===2)a=n.validationData[0],i=n.validationData[1];else throw n.validationData.length===3?new Se("validationData including sample weights is not supported yet."):new z(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${n.validationData} is invalid.`);let $=!0,D=await r.standardizeUserData(a,i,null,null,$,p);l=D[0],u=D[1],h=l.concat(u)}else if(n.validationSplit!=null&&n.validationSplit>0&&n.validationSplit<1){d=!0;let $=Math.floor(o[0].shape[0]*(1-n.validationSplit)),D=o[0].shape[0];l=Yp(o,$,D),o=Yp(o,0,$),u=Yp(s,$,D),s=Yp(s,0,$),h=l.concat(u)}else n.validationSteps!=null&&(d=!0);let g=o.concat(s).concat(c);r.checkTrainableWeightsConsistency();let y=r.makeTrainFunction(),b=r.getDedupedMetricsNames(),w,_;d?(r.makeTestFunction(),w=r.testFunction,_=b.slice().concat(b.map($=>"val_"+$))):(w=null,h=[],_=b.slice());let I=Gx(n.callbacks,n.yieldEvery);return await Aee(r,y,g,b,p,n.epochs,n.verbose,I,w,h,n.shuffle,_,n.initialEpoch,null,null)}finally{r.isTraining=!1,Al(o,e),Al(s,t),Al(l,a),Al(u,i),c!=null&&Ae(c)}}function r0(r){let e=[];r instanceof Oe&&(r=[r]);for(let t=0;t<r.length;++t){let n=r[t];if(n.rank===1)e.push(Pa(n,1));else{if(n.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");e.push(n)}}return e}function Al(r,e){if(r==null)return;let t=[];if(e instanceof Oe)t.push(e.id);else if(Array.isArray(e))e.forEach(o=>t.push(o.id));else if(e!=null)for(let o in e){let s=e[o];t.push(s.id)}let n=[];if(r instanceof Oe)t.indexOf(r.id)===-1&&n.push(r);else if(Array.isArray(r))r.forEach(o=>{t.indexOf(o.id)===-1&&n.push(o)});else if(r!=null)for(let o in r){let s=r[o];t.indexOf(s.id)===-1&&n.push(s)}n.forEach(o=>{o.isDisposed||o.dispose()})}function Eee(r){return r instanceof Oe}function n0(r){return Array.isArray(r)}function y3(r){return!Eee(r)&&!n0(r)}function b3(r,e,t,n=!0,o=""){if(e==null||e.length===0){if(r!=null){let a=!1;if(n0(r)&&r.length>0)a=!0;else if(y3(r)){for(let i in r)if(r.hasOwnProperty(i)){a=!0;break}}else a=!0;if(a)throw new z(`Error when checking model ${o} expected no data, but got ${r}`)}return[]}if(r==null)return e.map(a=>null);let s;if(y3(r)){r=r,s=[];for(let a of e){if(r[a]==null)throw new z(`No data provided for "${a}". Need data for each key in: ${e}`);s.push(r[a])}}else if(n0(r)){if(r=r,r.length!==e.length)throw new z(`Error when checking model ${o}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${e.length} Tensor(s), but instead got the following list of Tensor(s): ${r}`);s=r}else{if(r=r,e.length>1)throw new z(`The model ${o} expects ${e.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${r.shape}`);s=[r]}if(s=r0(s),t!=null)for(let a=0;a<e.length;++a){if(t[a]==null)continue;let i=s[a];if(i.shape.length!==t[a].length)throw new z(`Error when checking ${o}: expected ${e[a]} to have ${t[a].length} dimension(s). but got array with shape ${i.shape}`);for(let l=0;l<t[a].length;++l){if(l===0&&!n)continue;let u=i.shape[l],c=t[a][l];if(c!=null&&c>=0&&u!==c)throw new z(`Error when checking ${o}: expected ${e[a]} to have shape [${t[a]}], but got array with shape [${i.shape}].`)}}return s}function Dee(r,e,t){let n=fo(r.map(s=>s.shape[0]));n.sort();let o=fo(e.map(s=>s.shape[0]));if(o.sort(),n.length>1)throw new z(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(r.map(s=>s.shape))}`);if(o.length>1)throw new z(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(n.length>0&&o.length>0&&!x.arraysEqual(n,o))throw new z(`Input Tensors should have the same number of samples as target Tensors. Found ${n[0]} input sample(s) and ${o[0]} target sample(s).`)}function $ee(r,e,t){let n=[di,Xp,qu];for(let o=0;o<r.length;++o){let s=r[o],a=e[o],i=t[o];if(a!=null){if(a===qu&&s.shape[s.shape.length-1]===1)throw new z(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(n.indexOf(a)!==-1){let l=s.shape.slice(1),u=i.slice(1);for(let c=0;c<l.length;++c){let p=l[c],m=u[c];if(m!=null&&p!==m)throw new z(`A target Tensor with shape ${s.shape} was passed for an output of shape ${i}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function w3(r,e,t,n=!0,o=""){let s;if(Array.isArray(r)){if(r.length!==e.length)throw new z(`Error when checking model ${o}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${e.length} Tensor(s), but instead got ${r.length} Tensors(s).`);s=r}else{if(e.length>1)throw new z(`The model expects ${e.length} ${o} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(r.shape)}.`);s=[r]}if(t!=null)for(let a=0;a<e.length;++a){if(t[a]==null)continue;let i=s[a];if(i.shape.length!==t[a].length)throw new z(`Error when checking ${o}: expected ${e[a]} to have ${t[a].length} dimension(s), but got array with shape ${JSON.stringify(i.shape)}`);for(let l=0;l<t[a].length;++l){if(l===0&&!n)continue;let u=i.shape[l],c=t[a][l];if(c!=null&&c!==u)throw new z(`Error when checking ${o}: expected ${e[a]} to have shape ${JSON.stringify(t[a])} but got array with shape ${JSON.stringify(i.shape)}.`)}}}function Ree(r,e){if(r==null||Array.isArray(r)&&r.length===0)return e.map(n=>[]);let t;if(typeof r=="string"||typeof r=="function")t=[r];else if(Array.isArray(r)||typeof r=="object")t=r;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${r}`);if(Array.isArray(t))return e.map(n=>t);{let n=[];for(let o of e){let s=t.hasOwnProperty(o)?t[o]:[];Array.isArray(s)||(s=[s]),n.push(s)}return n}}var Fee="layers-model",jn=class extends Wn{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new z("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");a3(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=s3(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof zr))throw new z("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let a in e.loss)if(this.outputNames.indexOf(a)===-1)throw new z(`Unknown entry in loss dictionary: "${a}". Only expected the following keys: ${this.outputNames}`);for(let a of this.outputNames)e.loss[a]==null&&console.warn(`Output "${a}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${a} during training`),t.push(jx(e.loss[a]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new z(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(i=>jx(i))}else{let a=jx(e.loss);this.outputs.forEach(i=>{t.push(a)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let a=0;a<this.outputs.length;++a){let i=this.internalOutputShapes[a],l=this.outputNames[a];this.feedOutputNames.push(l),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[a])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],Ns("loss",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let i=this.lossFunctions[a];this.outputs.length>1&&(this.metricsTensors.push([i,a]),this.metricsNames.push(this.outputNames[a]+"_loss"))}});let o=Ree(e.metrics,this.outputNames),s=(a,i,l)=>{this.outputNames.length>1&&(i=this.outputNames[a]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([l,a])};Ns("metric",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let i=o[a];(u=>{let c="",p,m,f;for(let d of u){if(typeof d=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(d)!==-1){let g=this.internalOutputShapes[a];g[g.length-1]===1||this.lossFunctions[a]===Xp?["accuracy","acc"].indexOf(d)!==-1?m=cd:["crossentropy","ce"].indexOf(d)!==-1&&(m=Ux):this.lossFunctions[a]===Kp?["accuracy","acc"].indexOf(d)!==-1?m=Hx:["crossentropy","ce"].indexOf(d)!==-1&&(m=JC):["accuracy","acc"].indexOf(d)!==-1?m=pd:["crossentropy","ce"].indexOf(d)!==-1&&(m=md);let y;["accuracy","acc"].indexOf(d)!==-1?y="acc":["crossentropy","ce"].indexOf(d)!==-1&&(y="ce"),f=m,p=c+y}else f=o3(d),p=c+fd(d);let h;Ns(p,()=>{h=f}),s(a,p,h)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let o=n.batchSize==null?32:n.batchSize;Jx(o);let s=!0,a=this.standardizeUserDataXY(e,t,s,o);try{let i=a[0].concat(a[1]);this.makeTestFunction();let l=this.testFunction,u=this.testLoop(l,i,o,n.verbose,n.steps);return br(u)}finally{Al(a[0],e),Al(a[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),g3(this,e,t)}checkNumSamples(e,t,n,o="steps"){let s;if(n!=null){if(s=null,t!=null)throw new z(`If ${o} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?s=e[0].shape[0]:s=e.shape[0];else throw new z(`Either the input data should have a defined shape, or ${o} shoud be specified.`);return s}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new z("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),o=n?t:[t],s=this.retrieveSymbolicTensors(o),a=new Ts;if(e instanceof Oe&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new z(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let l=0;l<this.inputs.length;++l)a.add(this.inputs[l],e[l])}else for(let l of this.inputs){let u=e[l.name];if(u==null)throw new z(`No value is provided for the model's input ${l.name}`);a.add(l,u)}let i=Xu(s,a);return n?i:i[0]}retrieveSymbolicTensors(e){let t=co(null,e.length),n=e.length;for(let o of this.layers){let s=Array.isArray(o.output)?o.output:[o.output],a=s.map(i=>i.name);for(let i=0;i<e.length;++i){let l=a.indexOf(e[i]);if(l!==-1&&(t[i]=s[l],n--),n===0)break}if(n===0)break}if(n>0){let o=[];throw t.forEach((s,a)=>{s==null&&o.push(e[a])}),new z(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(o)}`)}return t}predictLoop(e,t=32,n=!1){return V(()=>{let o=this.checkNumSamples(e);if(n)throw new Se("Verbose predictLoop() is not implemented yet.");let s=ey(o,t),a=this.outputs.map(i=>[]);for(let i=0;i<s.length;++i)V(()=>{let u=s[i][0],c=s[i][1],p=Yp(e,u,c),m=[];if(Array.isArray(p))for(let d=0;d<p.length;++d)m.push({key:this.inputs[d],value:p[d]});else m.push({key:this.inputs[0],value:p});let f=new Ts(m);return Xu(this.outputs,f)}).forEach((u,c)=>a[c].push(u));return br(a.map(i=>Qe(i,0)))})}predict(e,t={}){let n=r0(e);w3(n,this.inputNames,this.feedInputShapes,!1);try{let o=t.batchSize==null?32:t.batchSize;return Jx(o),this.predictLoop(n,o)}finally{Al(n,e)}}predictOnBatch(e){w3(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,o){if(this.optimizer_==null)throw new Vr("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let s=[];for(let a=0;a<this.feedOutputShapes.length;++a){let i=this.feedOutputShapes[a];this.feedLossFns[a]===Kp?s.push(i.slice(0,i.length-1).concat([1])):s.push(i)}if(e=b3(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=b3(t,this.feedOutputNames,s,!1,"target"),Dee(e,t,null),$ee(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&o!=null&&o>0&&e[0].shape[0]%o!=0)throw new z(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${o}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,o,s=!0,a){let[i,l]=this.standardizeUserDataXY(e,t,s,a);if(n!=null)throw new Error("sample weight is not supported yet.");let u=null;if(o!=null){let c=Yx(o,this.outputNames);u=[];for(let p=0;p<c.length;++p)u.push(await Zx(l[p],null,c[p]))}return[i,l,u]}testLoop(e,t,n,o=0,s){return V(()=>{let a=this.checkNumSamples(t,n,s,"steps"),i=[];if(o>0)throw new Se("Verbose mode is not implemented yet.");if(s!=null)throw new Se("steps mode in testLoop() is not implemented yet");{let l=ey(a,n),u=Vt(Gr(0,a));for(let c=0;c<l.length;++c){let p=l[c][0],m=l[c][1],f=Ma(u,p,m-p),d=Qx(t,f),h=e(d);if(c===0)for(let g=0;g<h.length;++g)i.push(le(0));for(let g=0;g<h.length;++g){let y=h[g];i[g]=ee(i[g],P(m-p,y))}}for(let c=0;c<i.length;++c)i[c]=me(i[c],a)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let o=e[n],s=o;BC(e,o)>1&&(s+=`_${BC(e.slice(0,n),o)}`),t.push(s)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),o=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),a=[],i=()=>{let p=[];for(let h=0;h<this.inputs.length;++h)p.push({key:this.inputs[h],value:n[h]});let m=new Ts(p),f=Xu(this.outputs,m,{training:!0}),d;for(let h=0;h<this.lossFunctions.length;++h){let y=this.lossFunctions[h](o[h],f[h]);s[h]!=null&&(y=p3(y,s[h]));let b=dt(y);t.push(b),h===0?d=y:d=ee(d,y)}for(let h=0;h<this.metricsTensors.length;++h){let g;if(this.outputs.length>1&&h<this.outputs.length)g=t[h];else{let y=this.metricsTensors[h][0],b=this.metricsTensors[h][1];g=dt(y(o[b],f[b]))}Et(g),a.push(g)}return d=dt(d),this.calculateLosses().forEach(h=>{d=ee(d,h)}),d},l=this.collectedTrainableWeights.map(p=>p.read()),u=!0;return[this.optimizer_.minimize(i,u,l)].concat(a)}}makeTestFunction(){this.testFunction=e=>V(()=>{let t=[],n,o=e.slice(0,this.inputs.length),s=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=[];for(let u=0;u<this.inputs.length;++u)a.push({key:this.inputs[u],value:o[u]});let i=new Ts(a),l=Xu(this.outputs,i);for(let u=0;u<this.lossFunctions.length;++u){let c=this.lossFunctions[u],p=dt(c(s[u],l[u]));u===0?n=p:n=ee(n,p),t.push(n)}for(let u=0;u<this.metricsTensors.length;++u){let c=this.metricsTensors[u][0],p=this.metricsTensors[u][1],m=dt(c(s[p],l[p]));t.push(m)}return t})}async fit(e,t,n={}){return x3(this,e,t,n)}async fitDataset(e,t){return h3(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),o=n[0],s=n[1],i=this.makeTrainFunction()(o.concat(s)),l=[];for(let u of i){let c=await u.data();l.push(c[0])}return Ae(i),br(l)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,o=n?this.trainableWeights:this.weights,s=this.getWeights(n);for(let a=0;a<o.length;++a)n&&!o[a].trainable||t.push({name:o[a].originalName,tensor:s[a]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=Mm().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-Mm().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=po(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>po(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let o of t)if(typeof n[o]=="string")e[o]=po(n[o]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[po(fd(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>po(fd(e)));{let e={};for(let t in this.metrics)e[t]=po(fd(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Ku(e.optimizer_config),n=an(t),o;if(typeof e.loss=="string")o=Fa(e.loss);else if(Array.isArray(e.loss))o=e.loss.map(a=>Fa(a));else if(e.loss!=null){o={};for(let a in e.loss)o[a]=Fa(e.loss[a])}let s;if(Array.isArray(e.metrics))s=e.metrics.map(a=>Fa(a));else if(e.metrics!=null){s={};for(let a in e.metrics)s[a]=Fa(e.metrics[a])}this.compile({loss:o,metrics:s,optimizer:n})}async save(e,t){if(typeof e=="string"){let u=Tr.getSaveHandlers(e);if(u.length===0)throw new z(`Cannot find any save handlers for URL '${e}'`);if(u.length>1)throw new z(`Found more than one (${u.length}) save handlers for URL '${e}'`);e=u[0]}if(e.save==null)throw new z("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await Tr.encodeWeights(this.getNamedWeights(t)),o=!1,s=null,i={modelTopology:this.toJSON(s,o),format:Fee,generatedBy:`TensorFlow.js tfjs-layers v${dd}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){i.trainingConfig=this.getTrainingConfig();let u="optimizer",{data:c,specs:p}=await Tr.encodeWeights(await this.optimizer.getWeights(),u);n.specs.push(...p),n.data=Tr.concatenateArrayBuffers([n.data,c])}if(this.userDefinedMetadata!=null){let u=!0;e0(this.userDefinedMetadata,this.name,u),i.userDefinedMetadata=this.userDefinedMetadata}return i.weightData=n.data,i.weightSpecs=n.specs,e.save(i)}setUserDefinedMetadata(e){e0(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};jn.className="Model";J.registerClass(jn);var o0=class extends jn{};o0.className="Functional";J.registerClass(o0);async function _3(r,e){"modelTopology"in r||(r={modelTopology:r}),r=r;let t=r.modelTopology;t.model_config!=null&&(t=t.model_config);let n=Ku(t),o=an(n,e);if(r.weightsManifest!=null){let s=await Tr.loadWeights(r.weightsManifest,r.pathPrefix,o.weights.map(i=>i.originalName)),a={};for(let i of o.weights)a[i.originalName]=s[i.originalName];o.loadWeights(a),Ae(s)}return o}async function k3(r,e){if(e==null&&(e={}),typeof r=="string"){let t=Tr.getLoadHandlers(r,e);if(t.length===0)t.push(Tr.browserHTTPRequest(r,e));else if(t.length>1)throw new z(`Found more than one (${t.length}) load handlers for URL '${r}'`);r=t[0]}return Oee(r,void 0,e)}async function Oee(r,e,t){if(t==null&&(t={}),r.load==null)throw new z("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let n=await r.load(),o=n.modelTopology;o.model_config!=null&&(o=o.model_config);let s=t.strict==null?!0:t.strict,a=n.weightData!=null&&n.weightSpecs!=null&&s,i=an(Ku(o),e,a),l=n.trainingConfig;if(l!=null&&i.loadTrainingConfig(l),n.userDefinedMetadata!=null&&i.setUserDefinedMetadata(n.userDefinedMetadata),n.weightData!=null){if(n.weightSpecs==null)throw new z("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:c}=Pee(n.weightData,n.weightSpecs);i.loadWeights(u,s),i.optimizer!=null&&c.length>0&&await i.optimizer.setWeights(c),Ae(u),Ae(c.map(p=>p.tensor))}return i}function Pee(r,e){let t=Tr.decodeWeights(r,e),n={},o=[];return e.forEach(s=>{s.group==="optimizer"?o.push({name:s.name,tensor:t[s.name]}):n[s.name]=t[s.name]}),{modelWeights:n,optimizerWeights:o}}var La=class extends jn{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:Il("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(n=>n<0))throw new z(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof La||e instanceof jn,n;if(t){if(n=e,n.outputs.length!==1)throw new z("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new z("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new z("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let o=Bx({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(o)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new z(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new z("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=qC(this.outputs[0])}this.inboundNodes=[],new Nl({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:co(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(o=>o.shape),outputShapes:this.outputs[0].shape})}else{let o=e.apply(this.outputs[0]);if(Array.isArray(o))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[o],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(Xe(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new jn({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new Vr("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new Vr("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new Vr("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new Vr("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},o=!1){let s,a={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new z("Legacy serialization format not supported yet.");s=t}else x.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),s=t.layers,delete t.layers,a=t;let i=new e(a);if(!(i instanceof La))throw new Se(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let l of s){let c=an(l,void 0,o);o&&c.setFastWeightInitDuringBuild(!0),i.add(c)}return i}set stopTraining(e){if(this.model==null)throw new z("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new z("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};La.className="Sequential";J.registerClass(La);function Mee(r){return new jn(r)}function Lee(r){return new La(r)}function zee(r,e){return e==null&&(e={}),k3(r,e)}function s0(r){return Bx(r)}function Bee(r,e){yn.registerCallbackConstructor(r,e)}var bn=class extends J.Serializable{getConfig(){return{}}},i0=class extends bn{apply(e,t=1){return Uz(e,t)}};i0.className="elu";J.registerClass(i0);var a0=class extends bn{apply(e){return hu(e)}};a0.className="selu";J.registerClass(a0);var l0=class extends bn{apply(e){return Ar(e)}};l0.className="relu";J.registerClass(l0);var u0=class extends bn{apply(e){return V(()=>bs(6,Ar(e)))}};u0.className="relu6";J.registerClass(u0);var c0=class extends bn{apply(e){return e}};c0.className="linear";J.registerClass(c0);var p0=class extends bn{apply(e){return Zr(e)}};p0.className="sigmoid";J.registerClass(p0);var m0=class extends bn{apply(e){return qz(e)}};m0.className="hardSigmoid";J.registerClass(m0);var f0=class extends bn{apply(e){return ys(e)}};f0.className="softplus";J.registerClass(f0);var d0=class extends bn{apply(e){return Hz(e)}};d0.className="softsign";J.registerClass(d0);var h0=class extends bn{apply(e){return ri(e)}};h0.className="tanh";J.registerClass(h0);var hd=class extends bn{apply(e,t=-1){return va(e,t)}};hd.className="softmax";J.registerClass(hd);var g0=class extends bn{apply(e,t=-1){return uu(e,t)}};g0.className="logSoftmax";J.registerClass(g0);var x0=class extends bn{apply(e,t=1){return V(()=>Zr(e.mul(t)).mul(e))}};x0.className="swish";J.registerClass(x0);function As(r){return r.getClassName()}function y0(r,e={}){return ci(r,J.SerializationMap.getMap().classNameMap,e,"activation")}function Es(r){if(r==null){let e={};return e.className="linear",e.config={},y0(e)}if(typeof r=="string"){let e={};return e.className=r,e.config={},y0(e)}else return r instanceof bn?r:y0(r)}function b0(r){if(r!=null&&typeof r!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${r}`)}var w0=class extends J.Serializable{},Yu=class extends w0{constructor(e){super();b0(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return V(()=>{let t=ht([1]);return this.hasL1&&(t=ee(t,ge(P(this.l1,Nt(e))))),this.hasL2&&(t=ee(t,ge(P(this.l2,Uu(e))))),t.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Yu.className="L1L2";J.registerClass(Yu);function v3(r){return b0(r),new Yu({l1:r!=null?r.l1:null,l2:0})}function C3(r){return b0(r),new Yu({l2:r!=null?r.l2:null,l1:0})}var I3={l1l2:"L1L2"};function it(r){return Rp(r)}function N3(r,e={}){return ci(r,J.SerializationMap.getMap().classNameMap,e,"regularizer")}function wt(r){if(r==null)return null;if(typeof r=="string"){let t={className:r in I3?I3[r]:r,config:{}};return N3(t)}else return r instanceof w0?r:N3(r)}var gd=class extends Le{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Re(e);let n=Ar(e);return this.maxValue!=null&&(n=lr(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};gd.className="ReLU";J.registerClass(gd);var xd=class extends Le{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Re(e);return ya(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};xd.className="LeakyReLU";J.registerClass(xd);var yd=class extends Le{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=pt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=wt(e.alphaRegularizer),this.alphaConstraint=Mt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new z(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=Xe(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let o of this.sharedAxes)t[o-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let o=1;o<e.length;++o)n[o]=e[o];this.inputSpec=[new Ct({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=Re(e),ka(e,this.alpha.read())}getConfig(){let e={alphaInitializer:vt(this.alphaInitializer),alphaRegularizer:it(this.alphaRegularizer),alphaConstraint:Pt(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};yd.className="PReLU";J.registerClass(yd);var bd=class extends Le{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Se(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Re(e);return gs(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};bd.className="ELU";J.registerClass(bd);var wd=class extends Le{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=Re(e);return n.mul(Oa(n.greater(this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};wd.className="ThresholdedReLU";J.registerClass(wd);var _d=class extends Le{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new hd().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=Re(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};_d.className="Softmax";J.registerClass(_d);function El(r,e,t){if(typeof r=="number")return co(r,e);if(r.length!==e)throw new z(`The ${t} argument must be an integer or tuple of ${e} integers. Received: ${r.length} elements.`);for(let n=0;n<e;++n){let o=r[n];if(!Bz(o))throw new z(`The ${t} argument must be an integer or tuple of ${e} integers. Received: ${JSON.stringify(r)} including a non-integer number ${o}`)}return r}function wn(r,e,t,n,o=1){if(r==null)return r;let s=e+(e-1)*(o-1),a;return t==="same"?a=r:a=r-s+1,Math.floor((a+n-1)/n)}function Ds(r,e,t,n){if(r==null)return null;if(n==="valid")r=r*e+Ss([t-e,0]);else if(n==="same")r=r*e;else throw new z(`Unsupport padding mode: ${n}.`);return r}function kd(r,e){return V(()=>(Ft(e),e==="channelsFirst"?Ue(r,[0,2,3,1]):r))}function _0(r,e){return V(()=>(Ft(e),e==="channelsFirst"?Ue(r,[0,2,3,4,1]):r))}function Vee(r,e,t,n=1,o="valid",s,a=1){return V(()=>{if(s==null&&(s=rn()),Ft(s),r.shape.length!==3)throw new z(`The input of a conv1dWithBias operation should be 3, but is ${r.shape.length} instead.`);if(e.shape.length!==3)throw new z(`The kernel for a conv1dWithBias operation should be 3, but is ${e.shape.length} instead`);if(t!=null&&t.shape.length!==1)throw new z(`The bias for a conv1dWithBias operation should be 1, but is ${e.shape.length} instead`);if(s==="channelsFirst"&&(r=Ue(r,[0,2,1])),o==="causal")throw new Se("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let i=ru(r,e,n,o==="same"?"same":"valid","NWC",a);return t!=null&&(i=on(i,t)),i})}function S3(r,e,t,n=[1,1],o="valid",s,a,i=null){return V(()=>{if(s==null&&(s=rn()),Ft(s),r.rank!==3&&r.rank!==4)throw new z(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${r.rank}.`);if(e.rank!==3&&e.rank!==4)throw new z(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${r.rank}.`);let l=kd(r,s);if(o==="causal")throw new Se("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=ro.conv2d({x:l,filter:e,strides:n,pad:o==="same"?"same":"valid",dilations:a,dataFormat:"NHWC",bias:t,activation:i}),s==="channelsFirst"&&(l=Ue(l,[0,3,1,2])),l})}function Gee(r,e,t,n=[1,1,1],o="valid",s,a){return V(()=>{if(s==null&&(s=rn()),Ft(s),r.rank!==4&&r.rank!==5)throw new z(`conv3dWithBias expects input to be of rank 4 or 5, but received ${r.rank}.`);if(e.rank!==4&&e.rank!==5)throw new z(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${r.rank}.`);let i=_0(r,s);if(o==="causal")throw new Se("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return i=Km(i,e,n,o==="same"?"same":"valid","NDHWC",a),t!=null&&(i=on(i,t)),s==="channelsFirst"&&(i=Ue(i,[0,4,1,2,3])),i})}var Zp=class extends Le{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",Zp.verifyArgs(t),this.rank=e,Ut(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Se(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=El(t.kernelSize,e,"kernelSize"),this.strides=El(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,nn(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Ft(this.dataFormat),this.activation=Es(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=pt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Mt(t.biasConstraint),this.biasRegularizer=wt(t.biasRegularizer),this.activityRegularizer=wt(t.activityRegularizer),this.dilationRate=El(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new z(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new z(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new z(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Gn("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!Ax(e.kernelSize,"number",1,3))throw new z(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:As(this.activation),useBias:this.useBias,biasInitializer:vt(this.biasInitializer),biasRegularizer:it(this.biasRegularizer),activityRegularizer:it(this.activityRegularizer),biasConstraint:Pt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Zu=class extends Zp{constructor(e,t){super(e,t);this.kernel=null,Zu.verifyArgs(t),this.filters=t.filters,Ut(this.filters,"filters"),this.kernelInitializer=pt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Mt(t.kernelConstraint),this.kernelRegularizer=wt(t.kernelRegularizer)}build(e){e=Xe(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new z(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],o=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",o,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return V(()=>{e=Re(e);let n,o=this.bias==null?null:this.bias.read(),s=Ex(this.activation.getClassName());if(s!=null&&this.rank===2)n=S3(e,this.kernel.read(),o,this.strides,this.padding,this.dataFormat,this.dilationRate,s);else{if(this.rank===1)n=Vee(e,this.kernel.read(),o,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=S3(e,this.kernel.read(),o,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=Gee(e,this.kernel.read(),o,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Se("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=Xe(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let s=0;s<n.length;++s){let a=wn(n[s],this.kernelSize[s],this.padding,this.strides[s],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[s]);t.push(a)}let o=[e[0]];return this.dataFormat==="channelsLast"?(o=o.concat(t),o.push(this.filters)):(o.push(this.filters),o=o.concat(t)),o}getConfig(){let e={filters:this.filters,kernelInitializer:vt(this.kernelInitializer),kernelRegularizer:it(this.kernelRegularizer),kernelConstraint:Pt(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new z(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},Dl=class extends Zu{constructor(e){super(2,e);Dl.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Ax(e.kernelSize,"number",1,2))throw new z(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};Dl.className="Conv2D";J.registerClass(Dl);var $l=class extends Zu{constructor(e){super(3,e);$l.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new z(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};$l.className="Conv3D";J.registerClass($l);var vd=class extends Dl{constructor(e){super(e);if(this.inputSpec=[new Ct({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new z(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=Xe(e),e.length!==4)throw new z("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new z("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],o=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",o,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Ct({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return V(()=>{let n=Re(e);if(n.shape.length!==4)throw new z(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let o=n.shape,s=o[0],a,i;this.dataFormat==="channelsFirst"?(a=2,i=3):(a=1,i=2);let l=o[a],u=o[i],c=this.kernelSize[0],p=this.kernelSize[1],m=this.strides[0],f=this.strides[1],d=Ds(l,m,c,this.padding),h=Ds(u,f,p,this.padding),g=[s,d,h,this.filters];this.dataFormat!=="channelsLast"&&(n=Ue(n,[0,2,3,1]));let y=nu(n,this.kernel.read(),g,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(y=Ue(y,[0,3,1,2])),this.bias!=null&&(y=on(y,this.bias.read(),this.dataFormat)),this.activation!=null&&(y=this.activation.apply(y)),y})}computeOutputShape(e){e=Xe(e);let t=e.slice(),n,o,s;this.dataFormat==="channelsFirst"?(n=1,o=2,s=3):(n=3,o=1,s=2);let a=this.kernelSize[0],i=this.kernelSize[1],l=this.strides[0],u=this.strides[1];return t[n]=this.filters,t[o]=Ds(t[o],l,a,this.padding),t[s]=Ds(t[s],u,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};vd.className="Conv2DTranspose";J.registerClass(vd);var Cd=class extends $l{constructor(e){super(e);if(this.inputSpec=[new Ct({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new z(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=Xe(e),e.length!==5)throw new z("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new z("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],o=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",o,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Ct({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return V(()=>{let n=Re(e);if(n.shape.length!==5)throw new z(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let o=n.shape,s=o[0],a,i,l;this.dataFormat==="channelsFirst"?(l=2,a=3,i=4):(l=1,a=2,i=3);let u=o[l],c=o[a],p=o[i],m=this.kernelSize[0],f=this.kernelSize[1],d=this.kernelSize[2],h=this.strides[0],g=this.strides[1],y=this.strides[2],b=Ds(u,h,m,this.padding),w=Ds(c,g,f,this.padding),_=Ds(p,y,d,this.padding),I=[s,b,w,_,this.filters];this.dataFormat!=="channelsLast"&&(n=Ue(n,[0,2,3,4,1]));let E=qw(n,this.kernel.read(),I,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(E=Ue(E,[0,4,1,2,3])),this.bias!==null&&(E=on(E,this.bias.read(),this.dataFormat)),this.activation!==null&&(E=this.activation.apply(E)),E})}computeOutputShape(e){e=Xe(e);let t=e.slice(),n,o,s,a;this.dataFormat==="channelsFirst"?(n=1,o=2,s=3,a=4):(n=4,o=1,s=2,a=3);let i=this.kernelSize[0],l=this.kernelSize[1],u=this.kernelSize[2],c=this.strides[0],p=this.strides[1],m=this.strides[2];return t[n]=this.filters,t[o]=Ds(t[o],c,i,this.padding),t[s]=Ds(t[s],p,l,this.padding),t[a]=Ds(t[a],m,u,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Cd.className="Conv3DTranspose";J.registerClass(Cd);var k0=class extends Zu{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new z("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new z("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new z(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=pt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=wt(t.depthwiseRegularizer),this.depthwiseConstraint=Mt(t.depthwiseConstraint),this.pointwiseInitializer=pt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=wt(t.pointwiseRegularizer),this.pointwiseConstraint=Mt(t.pointwiseConstraint)}build(e){if(e=Xe(e),e.length<this.rank+2)throw new z(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new z(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],o=this.kernelSize.concat([n,this.depthMultiplier]),s=[];for(let i=0;i<this.rank;++i)s.push(1);s.push(n*this.depthMultiplier,this.filters);let a=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",o,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,a,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",s,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,a,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,a,this.biasConstraint):this.bias=null,this.inputSpec=[new Ct({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return V(()=>{e=Re(e);let n;if(this.rank===1)throw new Se("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Ue(e,[0,2,3,1])),n=cf(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=on(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Ue(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=vt(this.depthwiseInitializer),e.pointwiseInitializer=vt(this.pointwiseInitializer),e.depthwiseRegularizer=it(this.depthwiseRegularizer),e.pointwiseRegularizer=it(this.pointwiseRegularizer),e.depthwiseConstraint=Pt(this.depthwiseConstraint),e.pointwiseConstraint=Pt(this.pointwiseConstraint),e}};k0.className="SeparableConv";var Id=class extends k0{constructor(e){super(2,e)}};Id.className="SeparableConv2D";J.registerClass(Id);var Ju=class extends Zu{constructor(e){super(1,e);Ju.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Ax(e.kernelSize,"number",1,1))throw new z(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};Ju.className="Conv1D";J.registerClass(Ju);var Nd=class extends Le{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return V(()=>{if(e=Re(e),this.dataFormat==="channelsLast"){let n=Jf(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Jf(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=Jf(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Jf(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Nd.className="Cropping2D";J.registerClass(Nd);var Sd=class extends Le{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ft(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,Mz(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return V(()=>{let n=Re(e),o=n.shape;if(this.dataFormat==="channelsFirst"){n=Ue(n,[0,2,3,1]);let s=this.size[0]*o[2],a=this.size[1]*o[3],i=this.interpolation==="nearest"?n.resizeNearestNeighbor([s,a]):n.resizeBilinear([s,a]);return Ue(i,[0,3,1,2])}else{let s=this.size[0]*o[1],a=this.size[1]*o[2];return this.interpolation==="nearest"?n.resizeNearestNeighbor([s,a]):n.resizeBilinear([s,a])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Sd.className="UpSampling2D";J.registerClass(Sd);function Wee(r,e,t=[1,1],n="valid",o,s){return V(()=>{o==null&&(o=rn()),Ft(o);let a=kd(r,o);if(r.rank!==4)throw new z(`Input for depthwiseConv2d is required to be 4-D, but is instead ${r.rank}-D`);if(e.rank!==4)throw new z(`depthwiseKernel is required to be 4-D, but is instead ${e.rank}-D`);return a=hs(a,e,t,n==="same"?"same":"valid","NHWC",s),o==="channelsFirst"&&(a=Ue(a,[0,3,1,2])),a})}var Td=class extends Zp{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=pt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Mt(e.depthwiseConstraint),this.depthwiseRegularizer=wt(e.depthwiseRegularizer)}build(e){if(e=Xe(e),e.length<4)throw new z(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new z(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],o=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",o,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return V(()=>{e=Re(e);let n=Wee(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=on(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=Xe(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],o=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,s=wn(t,this.kernelSize[0],this.padding,this.strides[0]),a=wn(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],o,s,a]:[e[0],s,a,o]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=vt(this.depthwiseInitializer),e.depthwiseRegularizer=it(this.depthwiseRegularizer),e.depthwiseConstraint=Pt(this.depthwiseRegularizer),e}};Td.className="DepthwiseConv2D";J.registerClass(Td);function v0(r,e,t,n){if(Array.isArray(r)){if(e!=null||t!=null)throw new z("When inputs is an array, neither initialState or constants should be provided");n!=null&&(t=r.slice(r.length-n,r.length),r=r.slice(0,r.length-n)),r.length>1&&(e=r.slice(1,r.length)),r=r[0]}function o(s){return s==null||Array.isArray(s)?s:[s]}return e=o(e),t=o(t),{inputs:r,initialState:e,constants:t}}function C0(r,e,t,n=!1,o,s,a=!1,i=!1){return V(()=>{let l=e.shape.length;if(l<3)throw new z(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(Gr(2,l));if(e=Ue(e,u),s!=null)throw new Se("The rnn() functoin of the deeplearn.js backend does not support constants yet.");a&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),o!=null&&(o=o.asType("bool").asType("float32"),o.rank===l-1&&(o=ur(o,-1)),o=Ue(o,u)),n&&(e=qt(e,0),o!=null&&(o=qt(o,0)));let c=[],p,m=t,f=e.shape[0],d=fr(e),h;o!=null&&(h=fr(o));for(let y=0;y<f;++y){let b=d[y],w=V(()=>r(b,m));if(o==null)p=w[0],m=w[1];else{let _=V(()=>{let I=h[y],E=or(I).sub(I),$=w[0].mul(I).add(m[0].mul(E)),D=m.map((O,M)=>w[1][M].mul(I).add(O.mul(E)));return{output:$,newStates:D}});p=_.output,m=_.newStates}i&&c.push(p)}let g;return i&&(g=Bt(c,1)),[p,g,m]})}var Dn=class extends Le{constructor(e){super(e);let t;if(e.cell==null)throw new z("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new Jp({cells:e.cell}):t=e.cell,t.stateSize==null)throw new z("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Ct({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Gr(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){Lx(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],o;if(this.returnSequences?o=[e[0],e[1],n]:o=[e[0],n],this.returnState){let s=[];for(let a of t)s.push([e[0],a]);return[o].concat(s)}else return o}computeMask(e,t){return V(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let o=this.states.map(s=>null);return[n].concat(o)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new Se("Constants support is not implemented in RNN yet.");Lx(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,o=e.slice(2);this.inputSpec[0]=new Ct({shape:[n,null,...o]});let s=[e[0]].concat(e.slice(2));if(t!=null)throw new Se("Constants support is not implemented in RNN yet.");this.cell.build(s);let a;if(Array.isArray(this.cell.stateSize)?a=this.cell.stateSize:a=[this.cell.stateSize],this.stateSpec!=null){if(!x.arraysEqual(this.stateSpec.map(i=>i.shape[i.shape.length-1]),a))throw new z(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=a.map(i=>new Ct({shape:[null,i]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){V(()=>{if(!this.stateful)throw new En("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new z("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(o=>ht([n,o])):this.states_=[ht([n,this.cell.stateSize])];else if(e==null)Ae(this.states_),this.keptStates!=null&&(Ae(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(o=>ht([n,o])):this.states_[0]=ht([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new z(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Ae(this.states_);for(let o=0;o<this.states_.length;++o){let s=e[o],a=Array.isArray(this.cell.stateSize)?this.cell.stateSize[o]:this.cell.stateSize,i=[n,a];if(!x.arraysEqual(s.shape,i))throw new z(`State ${o} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${s.shape}`);this.states_[o]=s}}this.states_=this.states_.map(o=>Et(o.clone()))})}apply(e,t){let n=t==null?null:t.initialState,o=t==null?null:t.constants;t==null&&(t={});let s=v0(e,n,o,this.numConstants);e=s.inputs,n=s.initialState,o=s.constants;let a=[],i=[];if(n!=null){t.initialState=n,a=a.concat(n),this.stateSpec=[];for(let u of n)this.stateSpec.push(new Ct({shape:u.shape}));i=i.concat(this.stateSpec)}if(o!=null&&(t.constants=o,a=a.concat(o),this.numConstants=o.length),a[0]instanceof sn){let u=[e].concat(a),c=this.inputSpec.concat(i),p=this.inputSpec;this.inputSpec=c;let m=super.apply(u,t);return this.inputSpec=p,m}else return super.apply(e,t)}call(e,t){return V(()=>{let n=t==null?null:t.mask,o=t==null?null:t.training,s=t==null?null:t.initialState;e=Re(e),s==null&&(this.stateful?s=this.states_:s=this.getInitialState(e));let a=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(s.length!==a)throw new z(`RNN Layer has ${a} state(s) but was passed ${s.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:o},u=C0((d,h)=>{let g=this.cell.call([d].concat(h),i);return[g[0],g.slice(1)]},e,s,this.goBackwards,n,null,this.unroll,this.returnSequences),c=u[0],p=u[1],m=u[2];this.stateful&&this.resetStates(m,o);let f=this.returnSequences?p:c;return this.returnState?[f].concat(m):f})}getInitialState(e){return V(()=>{let t=ht(e.shape);return t=ge(t,[1,2]),t=Pa(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?Rx(t,[1,n]):t):this.cell.stateSize>1?[Rx(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===Dn.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let o=t.cell,s=an(o,n);return new e(Object.assign(t,{cell:s}))}};Dn.className="RNN";J.registerClass(Dn);var Rl=class extends Le{},Qp=class extends Rl{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Ut(this.units,"units"),this.activation=Es(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=pt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=pt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=pt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=wt(e.kernelRegularizer),this.recurrentRegularizer=wt(e.recurrentRegularizer),this.biasRegularizer=wt(e.biasRegularizer),this.kernelConstraint=Mt(e.kernelConstraint),this.recurrentConstraint=Mt(e.recurrentConstraint),this.biasConstraint=Mt(e.biasConstraint),this.dropout=ju([1,Ss([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=ju([1,Ss([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=Xe(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return V(()=>{if(e=e,e.length!==2)throw new z(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let o=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=za({ones:()=>or(e),rate:this.dropout,training:o})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=za({ones:()=>or(n),rate:this.recurrentDropout,training:o}));let s,a=this.dropoutMask,i=this.recurrentDropoutMask;a!=null?s=go(P(e,a),this.kernel.read()):s=go(e,this.kernel.read()),this.bias!=null&&(s=on(s,this.bias.read())),i!=null&&(n=P(n,i));let l=ee(s,go(n,this.recurrentKernel.read()));return this.activation!=null&&(l=this.activation.apply(l)),[l,l]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:As(this.activation),useBias:this.useBias,kernelInitializer:vt(this.kernelInitializer),recurrentInitializer:vt(this.recurrentInitializer),biasInitializer:vt(this.biasInitializer),kernelRegularizer:it(this.kernelRegularizer),recurrentRegularizer:it(this.recurrentRegularizer),biasRegularizer:it(this.biasRegularizer),activityRegularizer:it(this.activityRegularizer),kernelConstraint:Pt(this.kernelConstraint),recurrentConstraint:Pt(this.recurrentConstraint),biasConstraint:Pt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};Qp.className="SimpleRNNCell";J.registerClass(Qp);var Ad=class extends Dn{constructor(e){e.cell=new Qp(e),super(e)}call(e,t){return V(()=>{this.cell.dropoutMask!=null&&(Ae(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ae(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,o=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:n,training:o,initialState:s})})}static fromConfig(e,t){return new e(t)}};Ad.className="SimpleRNN";J.registerClass(Ad);var em=class extends Rl{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new z("GRUCell does not support reset_after parameter set to true.");this.units=e.units,Ut(this.units,"units"),this.activation=Es(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Es(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=pt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=pt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=pt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=wt(e.kernelRegularizer),this.recurrentRegularizer=wt(e.recurrentRegularizer),this.biasRegularizer=wt(e.biasRegularizer),this.kernelConstraint=Mt(e.kernelConstraint),this.recurrentConstraint=Mt(e.recurrentConstraint),this.biasConstraint=Mt(e.biasConstraint),this.dropout=ju([1,Ss([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=ju([1,Ss([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=Xe(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return V(()=>{if(e=e,e.length!==2)throw new z(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,o=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=za({ones:()=>or(e),rate:this.dropout,training:n,count:3})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=za({ones:()=>or(o),rate:this.recurrentDropout,training:n,count:3}));let s=this.dropoutMask,a=this.recurrentDropoutMask,i,l,u;0<this.dropout&&this.dropout<1&&(e=P(e,s[0]));let c=go(e,this.kernel.read());this.useBias&&(c=on(c,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(o=P(o,a[0]));let p=this.recurrentKernel.read(),[m,f]=mr(p,[2*this.units,this.units],p.rank-1),d=go(o,m),[h,g,y]=mr(c,3,c.rank-1),[b,w]=mr(d,2,d.rank-1);i=this.recurrentActivation.apply(ee(h,b)),l=this.recurrentActivation.apply(ee(g,w));let _=go(P(l,o),f);u=this.activation.apply(ee(y,_));let I=ee(P(i,o),P(ee(1,qe(i)),u));return[I,I]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:As(this.activation),recurrentActivation:As(this.recurrentActivation),useBias:this.useBias,kernelInitializer:vt(this.kernelInitializer),recurrentInitializer:vt(this.recurrentInitializer),biasInitializer:vt(this.biasInitializer),kernelRegularizer:it(this.kernelRegularizer),recurrentRegularizer:it(this.recurrentRegularizer),biasRegularizer:it(this.biasRegularizer),activityRegularizer:it(this.activityRegularizer),kernelConstraint:Pt(this.kernelConstraint),recurrentConstraint:Pt(this.recurrentConstraint),biasConstraint:Pt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};em.className="GRUCell";J.registerClass(em);var Ed=class extends Dn{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new em(e),super(e)}call(e,t){return V(()=>{this.cell.dropoutMask!=null&&(Ae(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ae(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,o=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:n,training:o,initialState:s})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Ed.className="GRU";J.registerClass(Ed);var Fl=class extends Rl{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Ut(this.units,"units"),this.activation=Es(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Es(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=pt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=pt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=pt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=wt(e.kernelRegularizer),this.recurrentRegularizer=wt(e.recurrentRegularizer),this.biasRegularizer=wt(e.biasRegularizer),this.kernelConstraint=Mt(e.kernelConstraint),this.recurrentConstraint=Mt(e.recurrentConstraint),this.biasConstraint=Mt(e.biasConstraint),this.dropout=ju([1,Ss([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=ju([1,Ss([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=Xe(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let o;if(this.useBias){if(this.unitForgetBias){let s=this.biasInitializer,a=this.units;o=new(t=class extends xn{apply(l,u){let c=s.apply([a]),p=new Hu().apply([a]),m=s.apply([a*2]);return UC(UC(c,p),m)}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,o,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return V(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new z(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let o=e[1],s=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=za({ones:()=>or(e),rate:this.dropout,training:n,count:4})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=za({ones:()=>or(o),rate:this.recurrentDropout,training:n,count:4}));let a=this.dropoutMask,i=this.recurrentDropoutMask,l,u,c,p;0<this.dropout&&this.dropout<1&&(e=P(e,a[0]));let m=go(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(o=P(o,i[0])),m=ee(m,go(o,this.recurrentKernel.read())),this.useBias&&(m=on(m,this.bias.read()));let[f,d,h,g]=mr(m,4,m.rank-1);l=this.recurrentActivation.apply(f),u=this.recurrentActivation.apply(d),c=ee(P(u,s),P(l,this.activation.apply(h))),p=this.recurrentActivation.apply(g);let y=P(p,this.activation.apply(c));return[y,y,c]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:As(this.activation),recurrentActivation:As(this.recurrentActivation),useBias:this.useBias,kernelInitializer:vt(this.kernelInitializer),recurrentInitializer:vt(this.recurrentInitializer),biasInitializer:vt(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:it(this.kernelRegularizer),recurrentRegularizer:it(this.recurrentRegularizer),biasRegularizer:it(this.biasRegularizer),activityRegularizer:it(this.activityRegularizer),kernelConstraint:Pt(this.kernelConstraint),recurrentConstraint:Pt(this.recurrentConstraint),biasConstraint:Pt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};Fl.className="LSTMCell";J.registerClass(Fl);var Dd=class extends Dn{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Fl(e),super(e)}call(e,t){return V(()=>{this.cell.dropoutMask!=null&&(Ae(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ae(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,o=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:n,training:o,initialState:s})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Dd.className="LSTM";J.registerClass(Dd);var Jp=class extends Rl{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return V(()=>{e=e;let n=e.slice(1),o=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?o.push(n.splice(0,i.stateSize.length)):o.push(n.splice(0,1));o.reverse();let s=[],a;for(let i=0;i<this.cells.length;++i){let l=this.cells[i];n=o[i],i===0?a=[e[0]].concat(n):a=[a[0]].concat(n),a=l.call(a,t),s.push(a.slice(1))}n=[];for(let i of s.slice().reverse())n.push(...i);return[a[0]].concat(n)})}build(e){Lx(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,o)=>{Ns(`RNNCell_${o}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=s=>({className:s.getClassName(),config:s.getConfig()}),o={cells:this.cells.map(t)};return Object.assign({},e,o)}static fromConfig(e,t,n={}){let o=[];for(let s of t.cells)o.push(an(s,n));return new e({cells:o})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return id(e)}setWeights(e){let t=[];for(let n of this.cells){let o=n.weights.length,s=e.splice(o);for(let a=0;a<n.weights.length;++a)t.push([n.weights[a],s[a]])}Hp(t)}};Jp.className="StackedRNNCells";J.registerClass(Jp);function za(r){let{ones:e,rate:t,training:n=!1,count:o=1}=r,s=()=>Ox(e(),t),a=()=>Cl(s,e,n);return!o||o<=1?Et(a().clone()):Array(o).fill(void 0).map(a).map(l=>Et(l.clone()))}var jee=function(r,e){var t={};for(var n in r)Object.prototype.hasOwnProperty.call(r,n)&&e.indexOf(n)<0&&(t[n]=r[n]);if(r!=null&&typeof Object.getOwnPropertySymbols=="function")for(var o=0,n=Object.getOwnPropertySymbols(r);o<n.length;o++)e.indexOf(n[o])<0&&Object.prototype.propertyIsEnumerable.call(r,n[o])&&(t[n[o]]=r[n[o]]);return t};var I0=class extends Dn{constructor(e){if(e.unroll)throw new Se("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Se("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new Ct({ndim:5})]}call(e,t){return V(()=>{if(this.cell.dropoutMask!=null&&(Ae(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ae(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new z("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,o=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:n,training:o,initialState:s})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return V(()=>{let{stateSize:t}=this.cell,n=e.shape,o=this.computeSingleOutputShape(n),s=[o[0],...o.slice(2)],a=ht(s);return Array.isArray(t)?Array(t.length).fill(a):[a]})}resetStates(e,t=!1){V(()=>{if(!this.stateful)throw new En("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,o=this.computeSingleOutputShape(n),s=[o[0],...o.slice(2)];if(n[0]==null)throw new z("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>ht(s)):this.states_=[ht(s)];else if(e==null)Ae(this.states_),this.keptStates!=null&&(Ae(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>ht(s)):this.states_[0]=ht(s);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new z(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Ae(this.states_);for(let i=0;i<this.states_.length;++i){let l=e[i],u=s;if(!x.arraysEqual(l.shape,u))throw new z(`State ${i} is incompatible with layer ${this.name}: expected shape=${u}, received shape=${l.shape}`);this.states_[i]=l}}this.states_=this.states_.map(i=>Et(i.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:o,padding:s,strides:a,dilationRate:i}=this.cell,l=t==="channelsFirst",u=e[l?3:2],c=e[l?4:3],p=wn(u,o[0],s,a[0],i[0]),m=wn(c,o[1],s,a[1],i[1]);return[...e.slice(0,2),...l?[n,p,m]:[p,m,n]]}};I0.className="ConvRNN2D";var tm=class extends Fl{constructor(e){let{filters:t,kernelSize:n,strides:o,padding:s,dataFormat:a,dilationRate:i}=e;super(Object.assign({},e,{units:t}));this.filters=t,Ut(this.filters,"filters"),this.kernelSize=El(n,2,"kernelSize"),this.kernelSize.forEach(l=>Ut(l,"kernelSize")),this.strides=El(o||1,2,"strides"),this.strides.forEach(l=>Ut(l,"strides")),this.padding=s||"valid",nn(this.padding),this.dataFormat=a||"channelsLast",Ft(this.dataFormat),this.dilationRate=El(i||1,2,"dilationRate"),this.dilationRate.forEach(l=>Ut(l,"dilationRate"))}build(e){var t;e=Xe(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new z(`The channel dimension of the input should be defined. Found ${e[n]}`);let o=e[n],s=4,a=this.kernelSize.concat([o,this.filters*s]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*s]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let l;if(this.unitForgetBias){let u=this.biasInitializer,c=this.filters;l=new(t=class extends xn{apply(m,f){let d=u.apply([c]),h=Qt([c]),g=u.apply([c*2]);return Pp([d,h,g])}},t.className="CustomInit",t)}else l=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*s],null,l,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return V(()=>{if(e.length!==3)throw new z(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,o=e[0],s=e[1],a=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=za({ones:()=>or(o),rate:this.dropout,training:n,count:i}));let l=this.dropoutMask,u=(Q,ie,ce)=>!ie||!ie[ce]?Q:P(ie[ce],Q),c=u(o,l,0),p=u(o,l,1),m=u(o,l,2),f=u(o,l,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=za({ones:()=>or(s),rate:this.recurrentDropout,training:n,count:i}));let d=this.recurrentDropoutMask,h=u(s,d,0),g=u(s,d,1),y=u(s,d,2),b=u(s,d,3),w=3,[_,I,E,$]=mr(this.kernel.read(),i,w),[D,O,M,G]=this.useBias?mr(this.bias.read(),i):[null,null,null,null];c=this.inputConv(c,_,D,this.padding),p=this.inputConv(p,I,O,this.padding),m=this.inputConv(m,E,M,this.padding),f=this.inputConv(f,$,G,this.padding);let[j,U,H,q]=mr(this.recurrentKernel.read(),i,w);h=this.recurrentConv(h,j),g=this.recurrentConv(g,U),y=this.recurrentConv(y,H),b=this.recurrentConv(b,q);let X=this.recurrentActivation.apply(ee(c,h)),ne=this.recurrentActivation.apply(ee(p,g)),Y=ee(P(ne,a),P(X,this.activation.apply(ee(m,y)))),re=P(this.recurrentActivation.apply(ee(f,b)),this.activation.apply(Y));return[re,re,Y]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=jee(e,["units"]),o={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,o)}inputConv(e,t,n,o){let s=Jr(e,t,this.strides,o||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?on(s,n,this.dataFormat):s}recurrentConv(e,t){return Jr(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};tm.className="ConvLSTM2DCell";J.registerClass(tm);var $d=class extends I0{constructor(e){let t=new tm(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};$d.className="ConvLSTM2D";J.registerClass($d);var rm=class extends Le{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let o=0;o<this.noiseShape.length;++o)n.push(this.noiseShape[o]==null?t[o]:this.noiseShape[o]);return n}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=Re(e);if(0<this.rate&&this.rate<1){let o=t.training==null?!1:t.training,s=this.getNoiseShape(n);return Cl(()=>Ox(n,this.rate,s,this.seed),()=>n,o)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};rm.className="Dropout";J.registerClass(rm);var Rd=class extends rm{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};Rd.className="SpatialDropout1D";J.registerClass(Rd);var Fd=class extends Le{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,Ut(this.units,"units"),this.activation=Es(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=pt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=pt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Mt(e.kernelConstraint),this.biasConstraint=Mt(e.biasConstraint),this.kernelRegularizer=wt(e.kernelRegularizer),this.biasRegularizer=wt(e.biasRegularizer),this.activityRegularizer=wt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=Xe(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=Xe(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=Re(e),o=Ex(this.activation.getClassName()),s;return o!=null?s=go(n,this.kernel.read(),o,this.bias?this.bias.read():null):(s=go(n,this.kernel.read()),this.bias!=null&&(s=on(s,this.bias.read())),this.activation!=null&&(s=this.activation.apply(s))),s})}getConfig(){let e={units:this.units,activation:As(this.activation),useBias:this.useBias,kernelInitializer:vt(this.kernelInitializer),biasInitializer:vt(this.biasInitializer),kernelRegularizer:it(this.kernelRegularizer),biasRegularizer:it(this.biasRegularizer),activityRegularizer:it(this.activityRegularizer),kernelConstraint:Pt(this.kernelConstraint),biasConstraint:Pt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Fd.className="Dense";J.registerClass(Fd);var Od=class extends Le{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=Xe(e);for(let t of e.slice(1))if(t==null)throw new z(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],ho(e,1)]}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=Re(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let o=[0];for(let s=2;s<n.rank;++s)o.push(s);o.push(1),n=n.transpose(o)}return jz(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};Od.className="Flatten";J.registerClass(Od);var Pd=class extends Le{constructor(e){super(e);this.supportsMasking=!0,this.activation=Es(e.activation)}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=Re(e);return this.activation.apply(n)})}getConfig(){let e={activation:As(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};Pd.className="Activation";J.registerClass(Pd);var Md=class extends Le{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return V(()=>(e=Re(e),Gz(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};Md.className="RepeatVector";J.registerClass(Md);var Ld=class extends Le{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",o=t.slice(),s=1,a=null;for(let l=0;l<o.length;++l){let u=o[l];if(this.isUnknown(u))if(a===null)a=l;else throw new z("Can only specifiy one unknown dimension.");else s*=u}let i=ho(e);if(a!==null){if(s===0||i%s!=0)throw new z(n);o[a]=i/s}else if(i!==s)throw new z(n);return o}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=Re(e),o=n.shape,s=o.slice(0,1).concat(this.fixUnknownDimension(o.slice(1),this.targetShape));return n.reshape(s)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};Ld.className="Reshape";J.registerClass(Ld);var zd=class extends Le{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=Gr(1,e.dims.length+1);if(!x.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Ct({ndim:this.dims.length+1})]}computeOutputShape(e){e=Xe(e);let t=e.slice();return this.dims.forEach((n,o)=>{t[o+1]=e[n]}),t}call(e,t){return Ue(Re(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};zd.className="Permute";J.registerClass(zd);var Bd=class extends Le{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Re(e),o=-1;return ml(to(n,this.maskValue),o)}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=Re(e),o=-1,s=!0,a=ml(to(n,this.maskValue),o,s);return n.mul(a.asType(n.dtype))})}};Bd.className="Masking";J.registerClass(Bd);var Vd=class extends Le{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(bt(e.inputLength))}this.inputDim=e.inputDim,Ut(this.inputDim,"inputDim"),this.outputDim=e.outputDim,Ut(this.outputDim,"outputDim"),this.embeddingsInitializer=pt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=wt(e.embeddingsRegularizer),this.activityRegularizer=wt(e.activityRegularizer),this.embeddingsConstraint=Mt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return V(()=>this.maskZero?(e=Re(e),to(e,Ie(e))):null)}computeOutputShape(e){if(e=Xe(e),this.inputLength==null)return[...e,this.outputDim];let t=bt(this.inputLength);if(t.length!==e.length-1)throw new z(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let o=0;o<t.length;++o){let s=t[o],a=e[o+1];if(s!=null&&a!=null&&s!==a)throw new z(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);s==null&&(t[n]=a),n++}}return[e[0],...t,this.outputDim]}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=Re(e);return n.dtype!=="int32"&&(n=Oa(n,"int32")),Fx(this.embeddings.read(),n.as1D()).reshape(Xe(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:vt(this.embeddingsInitializer),embeddingsRegularizer:it(this.embeddingsRegularizer),activityRegularizer:it(this.activityRegularizer),embeddingsConstraint:Pt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};Vd.className="Embedding";J.registerClass(Vd);var Ol=class extends Le{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new Se}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let o=0;o<t.length;++o){let s=e[e.length-t.length+o],a=t[o];if(s==null||a==null||s<0||a<0)n.push(null);else if(s===1)n.push(a);else if(a===1)n.push(s);else{if(s!==a)throw new z("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(s)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[Xe(e)]),e=e,e.length<2)throw new z(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let s of e)s!=null&&s[0]!==null&&t.push(s[0]);if(t=fo(t),t.length>1)throw new z(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let s=1;s<e.length;++s){let a=e[s]==null?null:e[s].slice(1);n=this.computeElementwiseOpOutputShape(n,a)}let o=e.map(s=>s.length);e.indexOf(null)===-1&&fo(o).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return V(()=>{if(e=e,this.reshapeRequired){let n=[],o=e.map(s=>s.rank);if(o.indexOf(null)===-1){let s=Ss(o);for(let a of e){let i=a.rank;for(let l=0;l<s-i;++l)a=Pa(a,1);n.push(a)}return this.mergeFunction(n)}else{let s=!1;for(let l of e){let u=l.rank;if(u==null){let c=l.shape,p=c[0],m=c.slice(1).concat([p]),f=l.reshape([p].concat(ho(c.slice(1))));f=Ue(f,[1,0]),f=f.reshape(m),n.push(f),s=!0}else if(u>1){let c=Gr(1,u).concat([0]);n.push(Ue(l,c)),s=!0}else n.push(l)}let a=this.mergeFunction(n),i=a.rank;if(s){if(i==null){let l=a.shape,u=l.length,c=l[u-1],p=[c].concat(l.slice(0,l.length-1));a=Ue(a.reshape([-1,c]),[1,0]).reshape(p)}else if(i>1){let l=[i-1].concat(Gr(0,i-1));a=Ue(a,l)}}return a}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let o=1;o<e.length;++o){let s=e[o]==null?null:e[o].slice(1);t=this.computeElementwiseOpOutputShape(t,s)}let n=[];for(let o of e)o!=null&&o[0]!==null&&n.push(o[0]);return n=fo(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return V(()=>{if(t==null)return null;if(!Array.isArray(t))throw new z("`mask` should be an Array");if(!Array.isArray(e))throw new z("`inputs` should be an Array");if(t.length!==e.length)throw new z(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(o=>o==null))return null;t=t.map(o=>o==null?o:ur(o,0));let n=t[0];for(let o=1;o<t.length-1;++o)n=xr(n,t[o]);return n})}},Gd=class extends Ol{constructor(e){super(e)}mergeFunction(e){return V(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=ee(t,e[n]);return t})}};Gd.className="Add";J.registerClass(Gd);var Wd=class extends Ol{constructor(e){super(e)}mergeFunction(e){return V(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=P(t,e[n]);return t})}};Wd.className="Multiply";J.registerClass(Wd);var jd=class extends Ol{constructor(e){super(e)}mergeFunction(e){return V(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=ee(t,e[n]);return P(1/e.length,t)})}};jd.className="Average";J.registerClass(jd);var Ud=class extends Ol{constructor(e){super(e)}mergeFunction(e){return V(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=en(t,e[n]);return t})}};Ud.className="Maximum";J.registerClass(Ud);var Hd=class extends Ol{constructor(e){super(e)}mergeFunction(e){return V(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=bs(t,e[n]);return t})}};Hd.className="Minimum";J.registerClass(Hd);var qd=class extends Ol{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new z("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let o of e)if(o!=null){t=!1;break}if(t)return;let n=[];for(let o=0;o<e.length;++o){let s=e[o].slice();s.splice(this.axis,1);let a=!1;for(let i of n)if(x.arraysEqual(i,s)){a=!0;break}a||n.push(s)}if(n.length>1)throw new z("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return V(()=>Pp(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new z("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),o=this.axis<0?n.length+this.axis:this.axis;for(let s of t.slice(1)){if(n[o]==null||s[o]==null){n[o]=null;break}n[o]+=s[o]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new z("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new z("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new z(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return V(()=>{let n=!0;if(t.forEach(a=>{if(a!=null){n=!1;return}}),n)return null;let o=[];for(let a=0;a<e.length;++a)t[a]==null?o.push(or(e[a]).asType("bool")):t[a].rank<e[a].rank?o.push(ur(t[a],-1)):o.push(t[a]);let s=Qe(o,this.axis);return Ql(s,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};qd.className="Concatenate";J.registerClass(qd);function Kd(r,e){for(;r<0;)r+=e;return r}function Uee(r,e,t){if(r.shape.length>3||e.shape.length>3)throw new Se("batchDot is not implemented for tensors of 4D or higher rank yet");if(x.assert(r.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${r.shape.length}`),x.assert(r.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${e.shape.length}`),typeof t=="number"&&(t=[t,t]),r.dtype==="complex64"||e.dtype==="complex64")throw new Se("batchDot is not implemented for complex64-type Tensors yet.");let n=r.shape.length,o=e.shape.length;t==null&&(t=[n-1,o-2]);let s=t;return V(()=>{let a;if(n>o){a=n-o;let l=[];for(let u=0;u<a;++u)l.push(1);e=e.reshape(e.shape.concat(l))}else if(o>n){a=o-n;let l=[];for(let u=0;u<a;++u)l.push(1);r=r.reshape(r.shape.concat(l))}else a=0;let i;if(r.shape.length===2&&e.shape.length===2)s[0]===s[1]?i=r.mul(e).sum(s[0]):i=r.transpose([1,0]).mul(e).sum(s[1]);else{let l=s[0]!==r.shape.length-1,u=s[1]===e.shape.length-1;i=r.matMul(e,l,u)}if(a>0){let l;n>o?l=n+o-3:l=n-1;let u=[];for(let c=l;c<l+a;++c)u.push(c);i=i.squeeze(u)}return i.shape.length===1&&(i=i.expandDims(1)),i})}var Xd=class extends Ol{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){x.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Se("Dot layer does not support tensors of 4D or higher rank yet.");let o=this.interpretAxes(t,n);if(t[o[0]]!==n[o[1]])throw new z(`Dimension incompatibility: ${t[o[0]]} !== ${n[o[1]]}`)}mergeFunction(e){if(e.length!==2)throw new z(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],o;return Array.isArray(this.axes)?o=this.axes.map((s,a)=>Kd(s,e[a].shape.length)):o=[Kd(this.axes,t.shape.length),Kd(this.axes,n.shape.length)],this.normalize&&(t=ad(t,o[0]),n=ad(n,o[1])),Uee(t,n,o)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Kd(this.axes,e.length),Kd(this.axes,t.length)],n}computeOutputShape(e){x.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Se("Dot layer does not support tensors of 4D or higher rank yet.");let o=this.interpretAxes(t,n);t.splice(o[0],1),n.splice(o[1],1),n.splice(0,1);let s=t.concat(n);return s.length===1&&s.push(1),s}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};Xd.className="Dot";J.registerClass(Xd);var Yd=class extends Le{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=Re(e);return Cl(()=>Mp(n.shape,0,this.stddev).add(n),()=>n,t.training||!1)})}};Yd.className="GaussianNoise";J.registerClass(Yd);var Zd=class extends Le{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=Re(e);return this.rate>0&&this.rate<1?Cl(()=>{let s=Math.sqrt(this.rate/(1-this.rate));return n.mul(Mp(n.shape,1,s))},()=>n,t.training||!1):n})}};Zd.className="GaussianDropout";J.registerClass(Zd);var Jd=class extends Le{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Re(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return V(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return Cl(()=>{let s=Re(e),a=1.6732632423543772,i=1.0507009873554805,l=-a*i,u=dn(ws(n),this.rate);u=Oa(u,"float32");let c=((1-this.rate)*(1+this.rate*l**2))**-.5,p=-c*l*this.rate;return s.mul(u).add(u.add(-1).mul(l)).mul(c).add(p)},()=>Re(e),t.training||!1)}return e})}};Jd.className="AlphaDropout";J.registerClass(Jd);function Qd(r,e,t,n,o,s=.001){let a;if(r.rank===2)a=zw(r,e,t,n,o,s);else if(r.rank===3)a=Bw(r,e,t,n,o,s);else if(r.rank===4)a=Vw(r,e,t,n,o,s);else throw new Se(`batchNormalization is not implemented for array of rank ${r.rank} yet`);return a}function Hee(r,e,t,n,o=.001){return V(()=>{let s=rp(r,n),a=s.mean,i=s.variance;return[Qd(r,a,i,t,e,o),a,i]})}function qee(r,e,t,n,o=.001){return V(()=>{let s=rp(r,n),a=s.mean,i=s.variance,l=[];for(let d of Gr(0,r.rank))n.indexOf(d)!==-1?l.push(1):l.push(r.shape[d]);let u=a.reshape(l),c=i.reshape(l),p=e==null?null:e.reshape(l),m=t==null?null:t.reshape(l);return[Qd(r,u,c,m,p,o),a,i]})}function Kee(r,e,t,n,o=.001){return x.arraysEqual(n.slice().sort(),Gr(0,r.rank-1))?Hee(r,e,t,n,o):qee(r,e,t,n,o)}var eh=class extends Le{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=pt(e.betaInitializer||"zeros"),this.gammaInitializer=pt(e.gammaInitializer||"ones"),this.movingMeanInitializer=pt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=pt(e.movingVarianceInitializer||"ones"),this.betaConstraint=Mt(e.betaConstraint),this.gammaConstraint=Mt(e.gammaConstraint),this.betaRegularizer=wt(e.betaRegularizer),this.gammaRegularizer=wt(e.gammaRegularizer)}build(e){e=Xe(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new z(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Ct({ndim:e.length,axes:{[t]:n}})];let o=[n];this.scale&&(this.gamma=this.addWeight("gamma",o,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",o,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",o,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",o,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return V(()=>{let n=t.training==null?!1:t.training,o=Re(e),s=o.shape,a=s.length,i=Gr(0,a),l=this.axis>=0?this.axis:this.axis+a;i.splice(l,1);let u=co(1,a);u[l]=s[l];let c=i.slice();c.sort();let p=!x.arraysEqual(c,Gr(0,a).slice(0,a-1)),m=()=>{if(p){let b=this.movingMean.read().reshape(u),w=this.movingVariance.read().reshape(u),_=this.center?this.beta.read().reshape(u):null,I=this.scale?this.gamma.read().reshape(u):null;return Qd(o,b,w,_,I,this.epsilon)}else return Qd(o,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return m();let[f,d,h]=Kee(o,this.gamma.read(),this.beta.read(),i,this.epsilon),g=(b,w,_)=>{V(()=>{let I=1-_,E=b.read(),$=E.sub(w).mul(I);b.write(E.sub($))})};return(()=>{g(this.movingMean,d,this.momentum),g(this.movingVariance,h,this.momentum)})(),f})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:vt(this.betaInitializer),gammaInitializer:vt(this.gammaInitializer),movingMeanInitializer:vt(this.movingMeanInitializer),movingVarianceInitializer:vt(this.movingVarianceInitializer),betaRegularizer:it(this.betaRegularizer),gammaRegularizer:it(this.gammaRegularizer),betaConstraint:Pt(this.betaConstraint),gammaConstraint:Pt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};eh.className="BatchNormalization";J.registerClass(eh);var th=class extends Le{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=pt(e.betaInitializer||"zeros"),this.gammaInitializer=pt(e.gammaInitializer||"ones"),this.betaRegularizer=wt(e.betaRegularizer),this.gammaRegularizer=wt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=Xe(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let s=0;s<this.axis.length;++s)this.axis[s]<0&&(this.axis[s]+=t);for(let s of this.axis)if(s<0||s>=t)throw new Error(`Invalid axis: ${s}`);if(this.axis.length!==fo(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(s=>e[s]),o=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,o):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,o):this.beta=null,this.built=!0}call(e,t){let n=Re(e),o=n.shape,s=o.length;return V(()=>{let a=!0,{mean:i,variance:l}=rp(n,this.axis,a),u=co(1,s);for(let h of this.axis)u[h]=o[h];let c=h=>h!=null&&h.shape.length!==s&&this.axis!==[s-1]?h.reshape(u):h,p=c(this.gamma.read()),m=c(this.beta.read()),f=[],d=[];for(let h=0;h<s;++h)this.axis.indexOf(h)!==-1?(f.push(o[h]),d.push(1)):(f.push(1),d.push(o[h]));return i=i.tile(f),l=l.tile(f),p=p.tile(d),m=m.tile(d),Qd(n,i,l,m,p,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:vt(this.betaInitializer),gammaInitializer:vt(this.gammaInitializer),betaRegularizer:it(this.betaRegularizer),gammaRegularizer:it(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};th.className="LayerNormalization";J.registerClass(th);function Xee(r,e,t){return V(()=>{if(r.rank!==4)throw new z(`temporalPadding expects input tensor to be 4-D, but received a ${r.rank}-D tensor.`);if(e==null&&(e=[[1,1],[1,1]]),e.length!==2||e[0].length!==2||e[1].length!==2)throw new z("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(t==null&&(t=rn()),t!=="channelsLast"&&t!=="channelsFirst")throw new z(`Unknown data format: ${t}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let n;return t==="channelsFirst"?n=[[0,0],[0,0],e[0],e[1]]:n=[[0,0],e[0],e[1],[0,0]],Mr(r,n)})}var rh=class extends Le{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?rn():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new z(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new z(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new z(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Ct({ndim:4})]}computeOutputShape(e){e=Xe(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return V(()=>Xee(Re(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};rh.className="ZeroPadding2D";J.registerClass(rh);function ty(r,e,t,n,o,s){return V(()=>{Ft(o),WC(s),nn(n),t==null&&(t=[1,1]),n==null&&(n="valid"),o==null&&(o=rn()),s==null&&(s="max"),r=kd(r,o);let a,i=n==="same"?"same":"valid";return s==="max"?a=wa(r,e,t,i):a=fa(r,e,t,i),o==="channelsFirst"&&(a=Ue(a,[0,3,1,2])),a})}function T3(r,e,t,n,o,s){return V(()=>{Ft(o),WC(s),nn(n),t==null&&(t=[1,1,1]),n==null&&(n="valid"),o==null&&(o=rn()),s==null&&(s="max"),r=_0(r,o);let a,i=n==="same"?"same":"valid";return s==="max"?a=of(r,e,t,i):a=Hm(r,e,t,i),o==="channelsFirst"&&(a=Ue(a,[0,4,1,2,3])),a})}var N0=class extends Le{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new z(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(Ut(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new z(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);Ut(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,nn(this.padding),this.inputSpec=[new Ct({ndim:3})]}computeOutputShape(e){e=Xe(e);let t=wn(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return V(()=>{this.invokeCallHook(e,t),e=Pa(Re(e),2);let n=this.poolingFunction(Re(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return Sn(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},nh=class extends N0{constructor(e){super(e)}poolingFunction(e,t,n,o,s){return Ft(s),nn(o),ty(e,t,n,o,s,"max")}};nh.className="MaxPooling1D";J.registerClass(nh);var oh=class extends N0{constructor(e){super(e)}poolingFunction(e,t,n,o,s){return Ft(s),nn(o),ty(e,t,n,o,s,"avg")}};oh.className="AveragePooling1D";J.registerClass(oh);var S0=class extends Le{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new z(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];Ut(this.poolSize,"poolSize"),Ut(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ft(this.dataFormat),nn(this.padding),this.inputSpec=[new Ct({ndim:4})]}computeOutputShape(e){e=Xe(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=wn(t,this.poolSize[0],this.padding,this.strides[0]),n=wn(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return V(()=>(this.invokeCallHook(e,t),this.poolingFunction(Re(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},sh=class extends S0{constructor(e){super(e)}poolingFunction(e,t,n,o,s){return Ft(s),nn(o),ty(e,t,n,o,s,"max")}};sh.className="MaxPooling2D";J.registerClass(sh);var ih=class extends S0{constructor(e){super(e)}poolingFunction(e,t,n,o,s){return Ft(s),nn(o),ty(e,t,n,o,s,"avg")}};ih.className="AveragePooling2D";J.registerClass(ih);var T0=class extends Le{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new z(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];Ut(this.poolSize,"poolSize"),Ut(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ft(this.dataFormat),nn(this.padding),this.inputSpec=[new Ct({ndim:5})]}computeOutputShape(e){e=Xe(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],o=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=wn(t,this.poolSize[0],this.padding,this.strides[0]),n=wn(n,this.poolSize[1],this.padding,this.strides[1]),o=wn(o,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,o]:[e[0],t,n,o,e[4]]}call(e,t){return V(()=>(this.invokeCallHook(e,t),this.poolingFunction(Re(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},ah=class extends T0{constructor(e){super(e)}poolingFunction(e,t,n,o,s){return Ft(s),nn(o),T3(e,t,n,o,s,"max")}};ah.className="MaxPooling3D";J.registerClass(ah);var lh=class extends T0{constructor(e){super(e)}poolingFunction(e,t,n,o,s){return Ft(s),nn(o),T3(e,t,n,o,s,"avg")}};lh.className="AveragePooling3D";J.registerClass(lh);var A0=class extends Le{constructor(e){super(e);this.inputSpec=[new Ct({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Se}},uh=class extends A0{constructor(e){super(e||{})}call(e,t){return V(()=>{let n=Re(e);return dt(n,1)})}};uh.className="GlobalAveragePooling1D";J.registerClass(uh);var ch=class extends A0{constructor(e){super(e||{})}call(e,t){return V(()=>{let n=Re(e);return pr(n,1)})}};ch.className="GlobalMaxPooling1D";J.registerClass(ch);var E0=class extends Le{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ft(this.dataFormat),this.inputSpec=[new Ct({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Se}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},ph=class extends E0{call(e,t){return V(()=>{let n=Re(e);return this.dataFormat==="channelsLast"?dt(n,[1,2]):dt(n,[2,3])})}};ph.className="GlobalAveragePooling2D";J.registerClass(ph);var mh=class extends E0{call(e,t){return V(()=>{let n=Re(e);return this.dataFormat==="channelsLast"?pr(n,[1,2]):pr(n,[2,3])})}};mh.className="GlobalMaxPooling2D";J.registerClass(mh);var D0=class extends Le{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let o=t.layer,s=an(o,n);delete t.layer;let a={layer:s};return Object.assign(a,t),new e(a)}},fh=class extends D0{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=Xe(e),e.length<3)throw new z(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=Xe(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),o=e[1];return[n[0],o].concat(n.slice(1))}call(e,t){return V(()=>(e=Re(e),C0((a,i)=>[Re(this.layer.call(a,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};fh.className="TimeDistributed";J.registerClass(fh);function Yee(r){pi(Pz,"BidirectionalMergeMode",r)}var Zee="concat",dh=class extends D0{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=an(n),t.goBackwards=t.goBackwards!==!0;let o={};if(o.className=e.layer.getClassName(),o.config=t,this.backwardLayer=an(o),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?Zee:e.mergeMode,Yee(this.mergeMode),e.weights)throw new Se("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,o,s;return this.returnState&&(s=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,o=[n]):this.mergeMode==null?o=[n,n.slice()]:o=[n],this.returnState?this.mergeMode==null?o.concat(s).concat(s.slice()):[n].concat(s).concat(s.slice()):br(o)}apply(e,t){let n=t==null?null:t.initialState,o=t==null?null:t.constants;t==null&&(t={});let s=v0(e,n,o,this.numConstants);if(e=s.inputs,n=s.initialState,o=s.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&o==null)return super.apply(e,t);let a=[],i=[];if(n!=null){let u=n.length;if(u%2>0)throw new z("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,a.push(...n);let c=n.map(p=>new Ct({shape:p.shape}));this.forwardLayer.stateSpec=c.slice(0,u/2),this.backwardLayer.stateSpec=c.slice(u/2),i.push(...c)}if(o!=null)throw new Se("Support for constants in Bidirectional layers is not implemented yet.");let l=a[0]instanceof sn;for(let u of a)if(u instanceof sn!==l)throw new z("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(l){let u=[e].concat(a),c=this.inputSpec.concat(i),p=this.inputSpec;this.inputSpec=c;let m=super.apply(u,t);return this.inputSpec=p,m}else return super.apply(e,t)}call(e,t){return V(()=>{let n=t.initialState,o,s;if(n==null)o=this.forwardLayer.call(e,t),s=this.backwardLayer.call(e,t);else{let l=n.slice(0,n.length/2),u=n.slice(n.length/2);o=this.forwardLayer.call(e,Object.assign(t,{initialState:l})),s=this.backwardLayer.call(e,Object.assign(t,{initialState:u}))}let a;this.returnState&&(Array.isArray(o)&&(a=o.slice(1).concat(s.slice(1))),o=o[0],s=s[0]),this.returnSequences&&(s=qt(s,1));let i;return this.mergeMode==="concat"?i=Pp([o,s]):this.mergeMode==="sum"?i=ee(o,s):this.mergeMode==="ave"?i=P(.5,ee(o,s)):this.mergeMode==="mul"?i=P(o,s):this.mergeMode==null&&(i=[o,s]),this.returnState?this.mergeMode==null?i.concat(a):[i].concat(a):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Ns(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Ns(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let s=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(s).concat(s):[n].concat(s).concat(s)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=an(t.layer);if(delete t.layer,t.numConstants!=null)throw new Se("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let o=t;return o.layer=n,new e(o)}};dh.className="Bidirectional";J.registerClass(dh);function Jee(r){return new mi(r)}function Qee(r){return new bd(r)}function ete(r){return new gd(r)}function tte(r){return new xd(r)}function rte(r){return new yd(r)}function nte(r){return new _d(r)}function ote(r){return new wd(r)}function ste(r){return new Ju(r)}function ite(r){return new Dl(r)}function ate(r){return new vd(r)}function lte(r){return new $l(r)}function ute(r){return new Cd(r)}function cte(r){return new Id(r)}function pte(r){return new Nd(r)}function mte(r){return new Sd(r)}function fte(r){return new Td(r)}function dte(r){return new Pd(r)}function hte(r){return new Fd(r)}function gte(r){return new rm(r)}function xte(r){return new Rd(r)}function yte(r){return new Od(r)}function bte(r){return new Md(r)}function wte(r){return new Ld(r)}function _te(r){return new zd(r)}function kte(r){return new Vd(r)}function vte(r){return new Gd(r)}function Cte(r){return new jd(r)}function Ite(r){return new qd(r)}function Nte(r){return new Ud(r)}function Ste(r){return new Hd(r)}function Tte(r){return new Wd(r)}function Ate(r){return new Xd(r)}function Ete(r){return new eh(r)}function Dte(r){return new th(r)}function $te(r){return new rh(r)}function $0(r){return new oh(r)}function Rte(r){return $0(r)}function Fte(r){return $0(r)}function R0(r){return new ih(r)}function Ote(r){return R0(r)}function Pte(r){return R0(r)}function F0(r){return new lh(r)}function Mte(r){return F0(r)}function Lte(r){return F0(r)}function zte(r){return new uh(r)}function Bte(r){return new ph(r)}function E3(r){return new ch(r)}function D3(r){return new mh(r)}function $3(r){return new nh(r)}function R3(r){return new sh(r)}function Vte(r){return new ah(r)}function Gte(r){return new Ed(r)}function Wte(r){return new em(r)}function jte(r){return new Dd(r)}function Ute(r){return new Fl(r)}function Hte(r){return new Ad(r)}function qte(r){return new Qp(r)}function Kte(r){return new $d(r)}function Xte(r){return new tm(r)}function Yte(r){return new Dn(r)}function Zte(r){return new Jp(r)}function Jte(r){return new dh(r)}function Qte(r){return new fh(r)}var ere=E3,tre=D3,rre=$3,nre=R3;function ore(r){return new Yd(r)}function sre(r){return new Zd(r)}function ire(r){return new Jd(r)}function are(r){return new Bd(r)}var F3={};We(F3,{MAPE:()=>yre,MSE:()=>_re,binaryAccuracy:()=>lre,binaryCrossentropy:()=>ure,categoricalAccuracy:()=>pre,categoricalCrossentropy:()=>mre,cosineProximity:()=>hre,mape:()=>bre,meanAbsoluteError:()=>gre,meanAbsolutePercentageError:()=>xre,meanSquaredError:()=>wre,mse:()=>kre,precision:()=>fre,recall:()=>dre,sparseCategoricalAccuracy:()=>cre});function lre(r,e){return cd(r,e)}function ure(r,e){return Ux(r,e)}function cre(r,e){return Hx(r,e)}function pre(r,e){return pd(r,e)}function mre(r,e){return md(r,e)}function fre(r,e){return ZC(r,e)}function dre(r,e){return n3(r,e)}function hre(r,e){return ld(r,e)}function gre(r,e){return qp(r,e)}function xre(r,e){return Tl(r,e)}function yre(r,e){return Tl(r,e)}function bre(r,e){return Tl(r,e)}function wre(r,e){return di(r,e)}function _re(r,e){return di(r,e)}function kre(r,e){return di(r,e)}var O3={};We(O3,{modelFromJSON:()=>_3});var P3={};We(P3,{l1:()=>Cre,l1l2:()=>vre,l2:()=>Ire});function vre(r){return new Yu(r)}function Cre(r){return v3(r)}function Ire(r){return C3(r)}var O0=class extends Sl{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof jn))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function ry(r,e){return r<e}function M3(r,e){return r>e}var P0=class extends O0{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new Se("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=ry:this.mode==="max"?this.monitorFunc=M3:this.monitor.indexOf("acc")!==-1?this.monitorFunc=M3:this.monitorFunc=ry,this.monitorFunc===ry&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===ry?Infinity:-Infinity}async onEpochEnd(e,t){await fi(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function Nre(r){return new P0(r)}var Sre={earlyStopping:Nre};var xo;(function(r){r[r.DT_INVALID=0]="DT_INVALID",r[r.DT_FLOAT=1]="DT_FLOAT",r[r.DT_DOUBLE=2]="DT_DOUBLE",r[r.DT_INT32=3]="DT_INT32",r[r.DT_UINT8=4]="DT_UINT8",r[r.DT_INT16=5]="DT_INT16",r[r.DT_INT8=6]="DT_INT8",r[r.DT_STRING=7]="DT_STRING",r[r.DT_COMPLEX64=8]="DT_COMPLEX64",r[r.DT_INT64=9]="DT_INT64",r[r.DT_BOOL=10]="DT_BOOL",r[r.DT_QINT8=11]="DT_QINT8",r[r.DT_QUINT8=12]="DT_QUINT8",r[r.DT_QINT32=13]="DT_QINT32",r[r.DT_BFLOAT16=14]="DT_BFLOAT16",r[r.DT_FLOAT_REF=101]="DT_FLOAT_REF",r[r.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",r[r.DT_INT32_REF=103]="DT_INT32_REF",r[r.DT_UINT8_REF=104]="DT_UINT8_REF",r[r.DT_INT16_REF=105]="DT_INT16_REF",r[r.DT_INT8_REF=106]="DT_INT8_REF",r[r.DT_STRING_REF=107]="DT_STRING_REF",r[r.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",r[r.DT_INT64_REF=109]="DT_INT64_REF",r[r.DT_BOOL_REF=110]="DT_BOOL_REF",r[r.DT_QINT8_REF=111]="DT_QINT8_REF",r[r.DT_QUINT8_REF=112]="DT_QUINT8_REF",r[r.DT_QINT32_REF=113]="DT_QINT32_REF",r[r.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(xo||(xo={}));var L3;(function(r){let e;(function(t){t[t.LEGACY=0]="LEGACY",t[t.V1=1]="V1",t[t.V2=2]="V2"})(e=r.CheckpointFormatVersion||(r.CheckpointFormatVersion={}))})(L3||(L3={}));var M0={};function Tre(r,e){let t={tfOpName:r,category:"custom",inputs:[],attrs:[],customExecutor:e};M0[r]=t}function ny(r){return M0[r]}function Are(r){delete M0[r]}function v(r,e,t,n,o){let s=e.inputParams[r];if(s&&s.inputIndexStart!==void 0){let i=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?i+1:s.inputIndexEnd;if(s.type==="tensor")return hr(e.inputNames[s.inputIndexStart],t,n,o);if(s.type==="tensors")return e.inputNames.slice(i,l).map(m=>hr(m,t,n,o));let u=hr(e.inputNames.slice(i)[0],t,n,o),c=u.dataSync();return s.type==="number"?c[0]:x.toNestedArray(u.shape,c)}let a=e.attrParams[r];return a&&a.value}function hr(r,e,t,n){let[o,s]=ln(r);if(n!=null){let i=n.getHashTableHandleByName(o);if(i!=null)return i}let a=t.currentContextIds.find(i=>!!e[oy(o,i)]);return a!==void 0?e[oy(o,a)][s]:void 0}function z3(r,e,t){return e[oy(r,t.currentContextId)]}function $s(r,e){let[t,n]=ln(r);return[oy(t,e&&e.currentContextId),n]}function oy(r,e){return e?`${r}-${e}`:r}function ln(r){let e=r.split(":");return e.length===1?[r,0]:[e[0],Number(e[e.length-1])]}function hh(r,e,t){let n=v("pad",r,e,t);if(n==="explicit"){n=v("explicitPaddings",r,e,t);let o=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)o[s][0]=n[s*2],o[s][1]=n[s*2+1];return o}return n}function Rs(r){return r.kept?r:Mn(r)}var L0={};We(L0,{json:()=>Ere});var Ere=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var z0={};We(z0,{json:()=>Dre});var Dre=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var B0={};We(B0,{json:()=>$re});var $re=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}];var V0={};We(V0,{json:()=>Rre});var Rre=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}];var G0={};We(G0,{json:()=>Fre});var Fre=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}];var W0={};We(W0,{json:()=>Ore});var Ore=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var j0={};We(j0,{json:()=>Pre});var Pre=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}];var U0={};We(U0,{json:()=>Mre});var Mre=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}];var H0={};We(H0,{json:()=>Lre});var Lre=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}];var q0={};We(q0,{json:()=>zre});var zre=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}];var K0={};We(K0,{json:()=>Bre});var Bre=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var X0={};We(X0,{json:()=>Vre});var Vre=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}];var Y0={};We(Y0,{json:()=>Gre});var Gre=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}];var Z0={};We(Z0,{json:()=>Wre});var Wre=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}];var J0={};We(J0,{json:()=>jre});var jre=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}];var Q0={};We(Q0,{json:()=>Ure});var Ure=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}];var eI={};We(eI,{json:()=>Hre});var Hre=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}];var sy=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[L0,z0,B0,V0,G0,W0,j0,K0,q0,U0,X0,Y0,Z0,J0,Q0,eI,H0],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,o)=>(n[o.tfOpName]=o,n),{})}transformGraph(e,t={}){let n=e.node,o=[],s=[],a=[],i=n.reduce((h,g)=>(h[g.name]=this.mapNode(g),g.op.startsWith("Placeholder")?o.push(h[g.name]):g.op==="Const"?s.push(h[g.name]):(g.input==null||g.input.length===0)&&a.push(h[g.name]),h),{}),l=[],u=[],c={},p={};t!=null&&(c=this.mapSignatureEntries(t.inputs),p=this.mapSignatureEntries(t.outputs));let m=Object.keys(i);m.forEach(h=>{let g=i[h];g.inputNames.forEach(y=>{let[b]=$s(y);g.inputs.push(i[b]),i[b].children.push(g)})}),Object.keys(p).length===0?m.forEach(h=>{let g=i[h];g.children.length===0&&u.push(g)}):Object.keys(p).forEach(h=>{let[g]=$s(h),y=i[g];y!=null&&(y.signatureKey=p[h],u.push(y))}),Object.keys(c).length>0?Object.keys(c).forEach(h=>{let[g]=$s(h),y=i[g];y&&(y.signatureKey=c[h],l.push(y))}):l=o;let f={};e.library!=null&&e.library.function!=null&&(f=e.library.function.reduce((h,g)=>(h[g.signature.name]=this.mapFunction(g),h),{}));let d={nodes:i,inputs:l,outputs:u,weights:s,placeholders:o,signature:t,functions:f};return a.length>0&&(d.initNodes=a),d}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=ny(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(o=>o.startsWith("^")?o.substr(1):o),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((o,s)=>(o[s.name]={type:s.type,inputIndexStart:s.start,inputIndexEnd:s.end},o),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((o,s)=>{let a=s.type,i;switch(s.type){case"string":i=iy(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=iy(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"string[]":i=fy(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=fy(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"number":i=ly(e.attr,s.tfName,s.defaultValue||0),i===void 0&&!!s.tfDeprecatedName&&(i=ly(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"number[]":i=my(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=my(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"bool":i=ay(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=ay(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"bool[]":i=hy(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=hy(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"shape":i=py(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=py(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"shape[]":i=dy(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=dy(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"dtype":i=uy(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=uy(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"dtype[]":i=cy(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=cy(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"func":i=B3(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=B3(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${s.type} for op: ${e.op}`)}return o[s.name]={value:i,type:a},o},{})),n}mapFunction(e){let t=e.nodeDef,n=[],o=[],s={};t!=null&&(s=t.reduce((p,m)=>(p[m.name]=this.mapNode(m),m.op==="Const"&&o.push(p[m.name]),p),{}));let a=[],i=[];e.signature.inputArg.forEach(p=>{let[m]=$s(p.name),f={name:m,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:tI(p.type),type:"dtype"}},children:[]};f.signatureKey=p.name,a.push(f),s[m]=f}),Object.keys(s).forEach(p=>{let m=s[p];m.inputNames.forEach(f=>{let[d]=$s(f);m.inputs.push(s[d]),s[d].children.push(m)})});let u=e.ret;e.signature.outputArg.forEach(p=>{let[m,f]=$s(u[p.name]),d=s[m];d!=null&&(d.defaultOutput=f,i.push(d))});let c=this.mapArgsToSignature(e);return{nodes:s,inputs:a,outputs:i,weights:o,placeholders:n,signature:c}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function qre(r){let e=W().global;if(typeof e.atob!="undefined")return e.atob(r);if(typeof Buffer!="undefined")return new Buffer(r,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function V3(r,e){let t=Array.isArray(r)?String.fromCharCode.apply(null,r):qre(r);return e?t:t.toLowerCase()}function iy(r,e,t,n=!1){let o=r[e];return o!=null?V3(o.s,n):t}function ay(r,e,t){let n=r[e];return n?n.b:t}function ly(r,e,t){let n=r[e]||{},o=n.i!=null?n.i:n.f!=null?n.f:t;return typeof o=="number"?o:parseInt(o,10)}function tI(r){switch(typeof r=="string"&&(r=xo[r]),r){case xo.DT_FLOAT:return"float32";case xo.DT_INT32:case xo.DT_INT64:case xo.DT_INT8:case xo.DT_UINT8:return"int32";case xo.DT_BOOL:return"bool";case xo.DT_DOUBLE:return"float32";case xo.DT_STRING:return"string";default:return null}}function B3(r,e,t){let n=r[e];return n&&n.func?n.func.name:t}function uy(r,e,t){let n=r[e];return n&&n.type?tI(n.type):t}function cy(r,e,t){let n=r[e];return n&&n.list&&n.list.type?n.list.type.map(o=>tI(o)):t}function G3(r){if(!r.unknownRank)return r.dim!=null?r.dim.map(e=>typeof e.size=="number"?e.size:parseInt(e.size,10)):[]}function py(r,e,t){let n=r[e];return n&&n.shape?G3(n.shape):t}function my(r,e,t){let n=r[e];return n?((n.list.f&&n.list.f.length?n.list.f:n.list.i)||[]).map(o=>typeof o=="number"?o:parseInt(o,10)):t}function fy(r,e,t,n=!1){let o=r[e];return o&&o.list&&o.list.s?o.list.s.map(s=>V3(s,n)):t}function dy(r,e,t){let n=r[e];return n&&n.list&&n.list.shape?n.list.shape.map(o=>G3(o)):t}function hy(r,e,t){let n=r[e];return n&&n.list&&n.list.b?n.list.b:t}var rI=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(o=>this.getInput(o)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((o,s)=>(o[s]=this.getAttr(s),o),{}))}getInput(e){return hr(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return hr(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return ly(this.node.rawAttrs,e,t);if(n.s!=null)return iy(this.node.rawAttrs,e,t);if(n.b!=null)return ay(this.node.rawAttrs,e,t);if(n.shape!=null)return py(this.node.rawAttrs,e,t);if(n.type!=null)return uy(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return my(this.node.rawAttrs,e,t);if(n.list.s!=null)return fy(this.node.rawAttrs,e,t);if(n.list.shape!=null)return dy(this.node.rawAttrs,e,t);if(n.list.b!=null)return hy(this.node.rawAttrs,e,t);if(n.list.type!=null)return cy(this.node.rawAttrs,e,t)}return t}};var W3=(r,e,t)=>{switch(r.op){case"BiasAdd":case"AddV2":case"Add":return[ee(v("a",r,e,t),v("b",r,e,t))];case"AddN":return[Ow(v("tensors",r,e,t))];case"FloorMod":case"Mod":return[af(v("a",r,e,t),v("b",r,e,t))];case"Mul":return[P(v("a",r,e,t),v("b",r,e,t))];case"RealDiv":case"Div":return[me(v("a",r,e,t),v("b",r,e,t))];case"DivNoNan":return[Zm(v("a",r,e,t),v("b",r,e,t))];case"FloorDiv":return[Jl(v("a",r,e,t),v("b",r,e,t))];case"Sub":return[pe(v("a",r,e,t),v("b",r,e,t))];case"Minimum":return[bs(v("a",r,e,t),v("b",r,e,t))];case"Maximum":return[en(v("a",r,e,t),v("b",r,e,t))];case"Pow":return[Lr(v("a",r,e,t),v("b",r,e,t))];case"SquaredDifference":return[bu(v("a",r,e,t),v("b",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var j3=(r,e,t)=>{switch(r.op){case"Abs":case"ComplexAbs":return[Nt(v("x",r,e,t))];case"Acos":return[Lm(v("x",r,e,t))];case"Acosh":return[zm(v("x",r,e,t))];case"Asin":return[Vm(v("x",r,e,t))];case"Asinh":return[Gm(v("x",r,e,t))];case"Atan":return[Wm(v("x",r,e,t))];case"Atan2":return[jm(v("x",r,e,t),v("y",r,e,t))];case"Atanh":return[Um(v("x",r,e,t))];case"Ceil":return[qm(v("x",r,e,t))];case"Complex":return[In(v("real",r,e,t),v("imag",r,e,t))];case"Cos":return[ga(v("x",r,e,t))];case"Cosh":return[ou(v("x",r,e,t))];case"Elu":return[gs(v("x",r,e,t))];case"Erf":return[Jm(v("x",r,e,t))];case"Exp":return[Jt(v("x",r,e,t))];case"Expm1":return[Qm(v("x",r,e,t))];case"Floor":return[xs(v("x",r,e,t))];case"Log":return[cr(v("x",r,e,t))];case"Log1p":return[lu(v("x",r,e,t))];case"Imag":return[iu(v("x",r,e,t))];case"Neg":return[qe(v("x",r,e,t))];case"Reciprocal":return[lf(v("x",r,e,t))];case"Real":return[dl(v("x",r,e,t))];case"Relu":return[Ar(v("x",r,e,t))];case"Round":return[uf(v("x",r,e,t))];case"Selu":return[hu(v("x",r,e,t))];case"Sigmoid":return[Zr(v("x",r,e,t))];case"Sin":return[gu(v("x",r,e,t))];case"Sign":return[pf(v("x",r,e,t))];case"Sinh":return[xu(v("x",r,e,t))];case"Softplus":return[ys(v("x",r,e,t))];case"Sqrt":return[gt(v("x",r,e,t))];case"Square":return[Pe(v("x",r,e,t))];case"Tanh":return[ri(v("x",r,e,t))];case"Tan":return[hf(v("x",r,e,t))];case"ClipByValue":return[lr(v("x",r,e,t),v("clipValueMin",r,e,t),v("clipValueMax",r,e,t))];case"Relu6":return[fu(v("x",r,e,t))];case"Rsqrt":return[du(hr(r.inputNames[0],e,t))];case"Prod":return[pu(v("x",r,e,t),v("axes",r,e,t))];case"LeakyRelu":return[ya(v("x",r,e,t),v("alpha",r,e,t))];case"Prelu":return[ka(v("x",r,e,t),v("alpha",r,e,t))];case"IsNan":return[ef(hr(r.inputNames[0],e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function $n(r,e,t=""){if(!(typeof r=="number"||typeof e=="number")){x.assert(r.length===e.length,()=>t+` Shapes ${r} and ${e} must match`);for(let n=0;n<r.length;n++){let o=r[n],s=e[n];x.assert(o<0||s<0||o===s,()=>t+` Shapes ${r} and ${e} must match`)}}}function U3(r){return!(typeof r=="number"||r.some(e=>e<0))}function nm(r,e,t){let n=gy(r,t),o=!U3(n);if(o&&e.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${n}`);if(o&&e.forEach(s=>{n=gy(s.shape,n)}),!U3(n))throw new Error(`Non-fully-defined elementShape: ${n}`);return n}function gy(r,e){if(typeof r=="number")return e;if(typeof e=="number")return r;if(r.length!==e.length)throw new Error(`Incompatible ranks during merge: ${r} vs. ${e}`);let t=[];for(let n=0;n<r.length;++n){let o=r[n],s=e[n];if(o>=0&&s>=0&&o!==s)throw new Error(`Incompatible shape during merge: ${r} vs. ${e}`);t[n]=o>=0?o:s}return t}var nI=class{constructor(e,t,n,o,s,a,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=o,this.identicalElementShapes=s,this.dynamicSize=a,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=le(0),Et(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
|
|
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),$n(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Et(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,o)=>this.write(n,t[o]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let o=0;o<this.size();o++)e.push(o)}if(e.length===0)return Pr([],[0].concat(this.elementShape));let n=this.readMany(e);return $n(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),Bt(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return Pr([],[0].concat(this.elementShape));let t=[];for(let o=0;o<this.size();o++)t.push(o);let n=this.readMany(t);return $n(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),Qe(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,fr(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,o=e.map(l=>(n+=l,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let s=n===0?0:t.size/n,a=[];V(()=>{t=L(t,[1,n,s]);for(let l=0;l<e.length;++l){let u=l===0?0:o[l-1],c=[0,u,0],p=[1,e[l],s];a[l]=L(Fe(t,c,p),this.elementShape)}return a});let i=[];for(let l=0;l<e.length;l++)i[l]=l;this.writeMany(i,a)}};var Qu=class{constructor(e,t,n,o=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(s=>{if(n!==s.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${s.dtype}`);$n(t,s.shape,"TensorList shape mismatch: "),Et(s)}),this.idTensor=le(0),this.maxNumElements=o,Et(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Qu([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);$n(e,this.elementShape,"TensorList shape mismatch: ");let o=nm(this.elementShape,this.tensors,e);return V(()=>{let s=this.tensors.map(a=>L(a,o));return Bt(s,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=nm(this.elementShape,this.tensors,e),o=this.tensors.pop();return $n(o.shape,e,"TensorList shape mismatch: "),L(o,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if($n(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Et(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);$n(this.tensors[e].shape,t,"TensorList shape mismatch: ");let o=nm(this.elementShape,this.tensors,t);return L(this.tensors[e],o)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);$n(this.elementShape,t.shape,"TensorList shape mismatch: "),Et(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);$n(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let o=nm(this.elementShape,this.tensors,n);return e.length===0?Pr([],[0].concat(o)):V(()=>{let s=e.map(a=>L(this.tensors[a],o));return Bt(s,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);$n(this.elementShape,t,"TensorList shape mismatch: ");let n=nm(this.elementShape,this.tensors,t);return this.size()===0?Pr([],[0].concat(n)):V(()=>{let o=this.tensors.map(s=>L(s,n));return Qe(o,0)})}};function H3(r,e,t){let n=r.dtype;if(r.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${r.shape}`);if(r.dtype!==t)throw new Error(`Invalid data types; op elements ${r.dtype}, but list elements ${t}`);let o=r.shape.slice(1);$n(o,e,"TensorList shape mismatch: ");let s=fr(r);return new Qu(s,e,n)}function q3(r,e,t){return new Qu([],r,e,t)}function K3(r,e,t,n){if(e.length!==r.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${r.shape[0]}`);let o=Math.max(...e);if(n!=null&&n!==-1&&o>=n)throw new Error(`Max index must be < array size (${o} vs. ${n})`);let s=new Qu([],t,r.dtype,n),a=fr(r,0);return e.forEach((i,l)=>{s.setItem(i,a[l])}),s}function X3(r,e,t){let n=0,o=e.map(c=>(n+=c,n));if(n!==r.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${r.shape}`);let s=r.shape.slice(1),a=gy(s,t),i=n===0?0:r.size/n,l=V(()=>{let c=[];r=L(r,[1,n,i]);for(let p=0;p<e.length;++p){let m=p===0?0:o[p-1],f=[0,m,0],d=[1,e[p],i];c[p]=L(Fe(r,f,d),a)}return r.dispose(),c}),u=new Qu([],t,r.dtype,e.length);for(let c=0;c<l.length;c++)u.setItem(c,l[c]);return u}var Y3=async(r,e,t)=>{switch(r.op){case"If":case"StatelessIf":{let n=v("thenBranch",r,e,t),o=v("elseBranch",r,e,t),s=v("cond",r,e,t),a=v("args",r,e,t);return(await s.data())[0]?t.functionMap[n].executeFunctionAsync(a,t.tensorArrayMap,t.tensorListMap):t.functionMap[o].executeFunctionAsync(a,t.tensorArrayMap,t.tensorListMap)}case"While":case"StatelessWhile":{let n=v("body",r,e,t),o=v("cond",r,e,t),s=v("args",r,e,t),a=await t.functionMap[o].executeFunctionAsync(s,t.tensorArrayMap,t.tensorListMap),i=s.map(c=>c.id),l=await a[0].data();a.forEach(c=>{!c.kept&&i.indexOf(c.id)===-1&&c.dispose()});let u=s;for(;l[0];){let c=u;u=await t.functionMap[n].executeFunctionAsync(u,t.tensorArrayMap,t.tensorListMap);let p=u.map(f=>f.id);c.forEach(f=>{!f.kept&&i.indexOf(f.id)===-1&&p.indexOf(f.id)===-1&&f.dispose()});let m=await t.functionMap[o].executeFunctionAsync(u,t.tensorArrayMap,t.tensorListMap);l=await m[0].data(),m.forEach(f=>{!f.kept&&i.indexOf(f.id)===-1&&p.indexOf(f.id)===-1&&f.dispose()})}return u}case"LoopCond":{let n=v("pred",r,e,t);return[Rs(n)]}case"Switch":{let n=v("pred",r,e,t),o=v("data",r,e,t);return o.kept||(o=Rs(o)),(await n.data())[0]?[void 0,o]:[o,void 0]}case"Merge":{let n=r.inputNames.find(o=>hr(o,e,t)!==void 0);if(n){let o=hr(n,e,t);return[Rs(o)]}return}case"Enter":{let n=v("frameName",r,e,t),o=v("tensor",r,e,t);return t.enterFrame(n),[Rs(o)]}case"Exit":{let n=v("tensor",r,e,t);return t.exitFrame(),[Rs(n)]}case"NextIteration":{let n=v("tensor",r,e,t);return t.nextIteration(),[Rs(n)]}case"TensorArrayV3":{let n=v("size",r,e,t),o=v("dtype",r,e,t),s=v("elementShape",r,e,t),a=v("dynamicSize",r,e,t),i=v("clearAfterRead",r,e,t),l=v("identicalElementShapes",r,e,t),u=v("name",r,e,t),c=new nI(u,o,n,s,l,a,i);return t.addTensorArray(c),[c.idTensor,le(1)]}case"TensorArrayWriteV3":{let n=v("tensorArrayId",r,e,t),o=v("index",r,e,t),s=v("tensor",r,e,t),a=t.getTensorArray(n.id);return a.write(o,s),[a.idTensor]}case"TensorArrayReadV3":{let n=v("tensorArrayId",r,e,t),o=v("index",r,e,t);return[t.getTensorArray(n.id).read(o)]}case"TensorArrayGatherV3":{let n=v("tensorArrayId",r,e,t),o=v("indices",r,e,t),s=v("dtype",r,e,t);return[t.getTensorArray(n.id).gather(o,s)]}case"TensorArrayScatterV3":{let n=v("tensorArrayId",r,e,t),o=v("indices",r,e,t),s=v("tensor",r,e,t),a=t.getTensorArray(n.id);return a.scatter(o,s),[a.idTensor]}case"TensorArrayConcatV3":{let n=v("tensorArrayId",r,e,t),o=t.getTensorArray(n.id),s=v("dtype",r,e,t);return[o.concat(s)]}case"TensorArraySplitV3":{let n=v("tensorArrayId",r,e,t),o=v("tensor",r,e,t),s=v("lengths",r,e,t),a=t.getTensorArray(n.id);return a.split(s,o),[a.idTensor]}case"TensorArraySizeV3":{let n=v("tensorArrayId",r,e,t),o=t.getTensorArray(n.id);return[le(o.size(),"int32")]}case"TensorArrayCloseV3":{let n=v("tensorArrayId",r,e,t),o=t.getTensorArray(n.id);return o.clearAndClose(),[o.idTensor]}case"TensorListSetItem":{let n=v("tensorListId",r,e,t),o=v("index",r,e,t),s=v("tensor",r,e,t),a=t.getTensorList(n.id);return a.setItem(o,s),[a.idTensor]}case"TensorListGetItem":{let n=v("tensorListId",r,e,t),o=v("index",r,e,t),s=v("elementShape",r,e,t),a=v("elementDType",r,e,t);return[t.getTensorList(n.id).getItem(o,s,a)]}case"TensorListScatterV2":case"TensorListScatter":{let n=v("indices",r,e,t),o=v("tensor",r,e,t),s=v("elementShape",r,e,t),a=v("numElements",r,e,t),i=K3(o,n,s,a);return t.addTensorList(i),[i.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let n=v("elementShape",r,e,t),o=v("elementDType",r,e,t),s;r.op==="TensorListReserve"?s="numElements":s="maxNumElements";let a=v(s,r,e,t),i=q3(n,o,a);return t.addTensorList(i),[i.idTensor]}case"TensorListGather":{let n=v("tensorListId",r,e,t),o=v("indices",r,e,t),s=v("elementShape",r,e,t),a=v("elementDType",r,e,t);return[t.getTensorList(n.id).gather(o,a,s)]}case"TensorListStack":{let n=v("tensorListId",r,e,t),o=v("elementShape",r,e,t),s=v("elementDType",r,e,t),a=v("numElements",r,e,t);return[t.getTensorList(n.id).stack(o,s,a)]}case"TensorListFromTensor":{let n=v("tensor",r,e,t),o=v("elementShape",r,e,t),s=v("elementDType",r,e,t),a=H3(n,o,s);return t.addTensorList(a),[a.idTensor]}case"TensorListConcat":{let n=v("tensorListId",r,e,t),o=t.getTensorList(n.id),s=v("dtype",r,e,t),a=v("elementShape",r,e,t);return[o.concat(s,a)]}case"TensorListPushBack":{let n=v("tensorListId",r,e,t),o=v("tensor",r,e,t),s=t.getTensorList(n.id);return s.pushBack(o),[s.idTensor]}case"TensorListPopBack":{let n=v("tensorListId",r,e,t),o=v("elementShape",r,e,t),s=v("elementDType",r,e,t);return[t.getTensorList(n.id).popBack(o,s)]}case"TensorListSplit":{let n=v("tensor",r,e,t),o=v("elementShape",r,e,t),s=v("lengths",r,e,t),a=X3(n,s,o);return t.addTensorList(a),[a.idTensor]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};function Z3(r,e,t){let[n,o]=v("fusedOps",r,e,t),s=n==="biasadd",a=o==="prelu",i=n==="fusedbatchnorm",l=v("numArgs",r,e,t);if(s){if(a&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!a&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(i)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let u=v("strides",r,e,t),c=hh(r,e,t),p=v("dataFormat",r,e,t).toUpperCase(),m=v("dilations",r,e,t),[f,d]=v("args",r,e,t),h=v("leakyreluAlpha",r,e,t);return{stride:u,pad:c,dataFormat:p,dilations:m,biasArg:f,preluArg:d,activationFunc:o,leakyreluAlpha:h}}var J3=(r,e,t)=>{switch(r.op){case"Conv1D":{let n=v("stride",r,e,t),o=v("pad",r,e,t),s=v("dataFormat",r,e,t).toUpperCase(),a=v("dilation",r,e,t);return[ru(v("x",r,e,t),v("filter",r,e,t),n,o,s,a)]}case"Conv2D":{let n=v("strides",r,e,t),o=hh(r,e,t),s=v("dataFormat",r,e,t).toUpperCase(),a=v("dilations",r,e,t);return[Jr(v("x",r,e,t),v("filter",r,e,t),[n[1],n[2]],o,s,[a[1],a[2]])]}case"_FusedConv2D":{let{stride:n,pad:o,dataFormat:s,dilations:a,biasArg:i,preluArg:l,activationFunc:u,leakyreluAlpha:c}=Z3(r,e,t);return[ro.conv2d({x:v("x",r,e,t),filter:v("filter",r,e,t),strides:[n[1],n[2]],pad:o,dataFormat:s,dilations:[a[1],a[2]],bias:i,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"FusedDepthwiseConv2dNative":{let{stride:n,pad:o,dataFormat:s,dilations:a,biasArg:i,preluArg:l,activationFunc:u,leakyreluAlpha:c}=Z3(r,e,t);return[ro.depthwiseConv2d({x:v("x",r,e,t),filter:v("filter",r,e,t),strides:[n[1],n[2]],pad:o,dataFormat:s,dilations:[a[1],a[2]],bias:i,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let n=v("outputShape",r,e,t),o=v("strides",r,e,t),s=hh(r,e,t);return[nu(v("x",r,e,t),v("filter",r,e,t),n,[o[1],o[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let n=v("strides",r,e,t),o=hh(r,e,t),s=v("dilations",r,e,t),a=v("dataFormat",r,e,t).toUpperCase();return[hs(v("input",r,e,t),v("filter",r,e,t),[n[1],n[2]],o,a,[s[1],s[2]])]}case"Conv3D":{let n=v("strides",r,e,t),o=v("pad",r,e,t),s=v("dataFormat",r,e,t).toUpperCase(),a=v("dilations",r,e,t);return[Km(v("x",r,e,t),v("filter",r,e,t),[n[1],n[2],n[3]],o,s,[a[1],a[2],a[3]])]}case"AvgPool":{let n=v("strides",r,e,t),o=v("pad",r,e,t),s=v("kernelSize",r,e,t);return[fa(v("x",r,e,t),[s[1],s[2]],[n[1],n[2]],o)]}case"MaxPool":{let n=v("strides",r,e,t),o=v("pad",r,e,t),s=v("kernelSize",r,e,t);return[wa(v("x",r,e,t),[s[1],s[2]],[n[1],n[2]],o)]}case"MaxPoolWithArgmax":{let n=v("strides",r,e,t),o=v("pad",r,e,t),s=v("kernelSize",r,e,t),a=v("includeBatchInIndex",r,e,t),{result:i,indexes:l}=s_(v("x",r,e,t),[s[1],s[2]],[n[1],n[2]],o,a);return[i,l]}case"AvgPool3D":{let n=v("strides",r,e,t),o=v("pad",r,e,t),s=v("kernelSize",r,e,t);return[Hm(v("x",r,e,t),[s[1],s[2],s[3]],[n[1],n[2],n[3]],o)]}case"MaxPool3D":{let n=v("strides",r,e,t),o=v("pad",r,e,t),s=v("kernelSize",r,e,t);return[of(v("x",r,e,t),[s[1],s[2],s[3]],[n[1],n[2],n[3]],o)]}case"Dilation2D":{let n=v("strides",r,e,t),o=v("pad",r,e,t),s=v("dilations",r,e,t),a=n[1],i=n[2],l=s[1],u=s[2];return[Ym(v("x",r,e,t),v("filter",r,e,t),[a,i],o,[l,u],"NHWC")]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var Q3=(r,e,t)=>{switch(r.op){case"Fill":{let n=v("shape",r,e,t),o=v("dtype",r,e,t),s=v("value",r,e,t);return[xa(n,s,o)]}case"LinSpace":{let n=v("start",r,e,t),o=v("stop",r,e,t),s=v("num",r,e,t);return[Qw(n,o,s)]}case"Multinomial":{let n=v("logits",r,e,t),o=v("numSamples",r,e,t),s=v("seed",r,e,t);return[i_(n,o,s)]}case"OneHot":{let n=v("indices",r,e,t),o=v("depth",r,e,t),s=v("onValue",r,e,t),a=v("offValue",r,e,t);return[fs(n,o,s,a)]}case"Ones":return[Qt(v("shape",r,e,t),v("dtype",r,e,t))];case"OnesLike":return[or(v("x",r,e,t))];case"RandomUniform":return[ws(v("shape",r,e,t),v("minval",r,e,t),v("maxval",r,e,t),v("dtype",r,e,t))];case"Range":{let n=v("start",r,e,t),o=v("stop",r,e,t),s=v("step",r,e,t);return[op(n,o,s,v("dtype",r,e,t))]}case"TruncatedNormal":{let n=v("shape",r,e,t),o=v("mean",r,e,t),s=v("stdDev",r,e,t),a=v("seed",r,e,t);return[wu(n,o,s,v("dtype",r,e,t),a)]}case"Zeros":return[ht(v("shape",r,e,t),v("dtype",r,e,t))];case"ZerosLike":return[Ie(v("x",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function oI(r,e,t){let n=v("boxes",r,e,t),o=v("scores",r,e,t),s=v("maxOutputSize",r,e,t),a=v("iouThreshold",r,e,t),i=v("scoreThreshold",r,e,t),l=v("softNmsSigma",r,e,t);return{boxes:n,scores:o,maxOutputSize:s,iouThreshold:a,scoreThreshold:i,softNmsSigma:l}}var eB=async(r,e,t)=>{switch(r.op){case"NonMaxSuppressionV5":{let{boxes:n,scores:o,maxOutputSize:s,iouThreshold:a,scoreThreshold:i,softNmsSigma:l}=oI(r,e,t),u=await ii.nonMaxSuppressionWithScoreAsync(n,o,s,a,i,l);return[u.selectedIndices,u.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:n,scores:o,maxOutputSize:s,iouThreshold:a,scoreThreshold:i}=oI(r,e,t),l=v("padToMaxOutputSize",r,e,t),u=await ii.nonMaxSuppressionPaddedAsync(n,o,s,a,i,l);return[u.selectedIndices,u.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:n,scores:o,maxOutputSize:s,iouThreshold:a,scoreThreshold:i}=oI(r,e,t);return[await ii.nonMaxSuppressionAsync(n,o,s,a,i)]}case"Where":{let n=oe(v("condition",r,e,t),"bool"),o=[await yf(n)];return n.dispose(),o}case"ListDiff":return y_(v("x",r,e,t),v("y",r,e,t));default:throw TypeError(`Node type ${r.op} is not implemented`)}};var tB=(r,e,t)=>{switch(r.op){case"TopKV2":{let n=v("x",r,e,t),o=v("k",r,e,t),s=v("sorted",r,e,t),a=gf(n,o,s);return[a.values,a.indices]}case"Unique":{let n=v("x",r,e,t),o=ip(n);return[o.values,o.indices]}case"UniqueV2":{let n=v("x",r,e,t),o=v("axis",r,e,t),s=ip(n,o);return[s.values,s.indices]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var rB=(r,e,t)=>{switch(r.op){case"Const":return e[r.name];case"PlaceholderWithDefault":let n=v("default",r,e,t);return[hr(r.name,e,t)||n];case"Placeholder":return[hr(r.name,e,t)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let u=v("x",r,e,t);return[Rs(u)]}case"IdentityN":return v("x",r,e,t).map(u=>Rs(u));case"Snapshot":let o=v("x",r,e,t);return[Rs(o)];case"Shape":return[Vt(v("x",r,e,t).shape,"int32")];case"ShapeN":return v("x",r,e,t).map(u=>Vt(u.shape));case"Size":return[le(v("x",r,e,t).size,"int32")];case"Rank":return[le(v("x",r,e,t).rank,"int32")];case"NoOp":return[le(1)];case"Print":let s=v("x",r,e,t),a=v("data",r,e,t),i=v("message",r,e,t),l=v("summarize",r,e,t);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(i);for(let u=0;u<a.length;u++)console.log(Array.prototype.slice.call(a[u].dataSync()).slice(0,l));return[s];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var sI=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=le(0),this.tensorMap=new Map,Et(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return le(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(o=>o.dispose()),this.tensorMap.clear(),V(()=>{let o=fr(t),s=n.length,a=o.length;x.assert(s===a,()=>`The number of elements doesn't match, keys has ${s} elements, the values has ${a} elements.`);for(let i=0;i<s;i++){let l=n[i],u=o[i];Et(u),this.tensorMap.set(l,u)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return V(()=>{let o=[];for(let s=0;s<n.length;s++){let a=n[s],i=this.findWithDefault(a,t);o.push(i)}return Bt(o)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}};var nB=async(r,e,t,n)=>{switch(r.op){case"HashTable":case"HashTableV2":{let o=v("keyDType",r,e,t),s=v("valueDType",r,e,t),a=new sI(o,s);return n.addHashTable(r.name,a),[a.handle]}case"LookupTableImport":case"LookupTableImportV2":{let o=v("tableHandle",r,e,t,n),s=v("keys",r,e,t),a=v("values",r,e,t);return[await n.getHashTableById(o.id).import(s,a)]}case"LookupTableFind":case"LookupTableFindV2":{let o=v("tableHandle",r,e,t,n),s=v("keys",r,e,t),a=v("defaultValue",r,e,t);return[await n.getHashTableById(o.id).find(s,a)]}case"LookupTableSize":case"LookupTableSizeV2":{let o=v("tableHandle",r,e,t,n);return[n.getHashTableById(o.id).tensorSize()]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var oB=(r,e,t)=>{switch(r.op){case"ResizeBilinear":{let n=v("images",r,e,t),o=v("size",r,e,t),s=v("alignCorners",r,e,t),a=v("halfPixelCenters",r,e,t);return[ii.resizeBilinear(n,[o[0],o[1]],s,a)]}case"ResizeNearestNeighbor":{let n=v("images",r,e,t),o=v("size",r,e,t),s=v("alignCorners",r,e,t),a=v("halfPixelCenters",r,e,t);return[ii.resizeNearestNeighbor(n,[o[0],o[1]],s,a)]}case"CropAndResize":{let n=v("image",r,e,t),o=v("boxes",r,e,t),s=v("boxInd",r,e,t),a=v("cropSize",r,e,t),i=v("method",r,e,t),l=v("extrapolationValue",r,e,t);return[ii.cropAndResize(n,o,s,a,i,l)]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var sB=(r,e,t)=>{switch(r.op){case"Equal":return[Nn(v("a",r,e,t),v("b",r,e,t))];case"NotEqual":return[to(v("a",r,e,t),v("b",r,e,t))];case"Greater":return[nr(v("a",r,e,t),v("b",r,e,t))];case"GreaterEqual":return[dn(v("a",r,e,t),v("b",r,e,t))];case"Less":return[au(v("a",r,e,t),v("b",r,e,t))];case"LessEqual":return[Bn(v("a",r,e,t),v("b",r,e,t))];case"LogicalAnd":return[xr(v("a",r,e,t),v("b",r,e,t))];case"LogicalNot":return[ba(v("a",r,e,t))];case"LogicalOr":return[cu(v("a",r,e,t),v("b",r,e,t))];case"Select":case"SelectV2":return[Dt(v("condition",r,e,t),v("a",r,e,t),v("b",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var iB=(r,e,t)=>{switch(r.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[ze(v("a",r,e,t),v("b",r,e,t),v("transposeA",r,e,t),v("transposeB",r,e,t))];case"Einsum":return[Yw(v("equation",r,e,t),...v("tensors",r,e,t))];case"Transpose":return[Ue(v("x",r,e,t),v("perm",r,e,t))];case"_FusedMatMul":let[n,o]=v("fusedOps",r,e,t),s=n==="biasadd",a=o==="prelu",i=v("numArgs",r,e,t),l=v("leakyreluAlpha",r,e,t);if(s){if(a&&i!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!a&&i!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[u,c]=v("args",r,e,t);return[ro.matMul({a:v("a",r,e,t),b:v("b",r,e,t),transposeA:v("transposeA",r,e,t),transposeB:v("transposeB",r,e,t),bias:u,activation:o,preluActivationWeights:c,leakyreluAlpha:l})];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var aB=(r,e,t)=>{switch(r.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[Jn(v("x",r,e,t),v("mean",r,e,t),v("variance",r,e,t),v("offset",r,e,t),v("scale",r,e,t),v("epsilon",r,e,t))];case"FusedBatchNormV3":return[Jn(v("x",r,e,t),v("mean",r,e,t),v("variance",r,e,t),v("offset",r,e,t),v("scale",r,e,t),v("epsilon",r,e,t))];case"LRN":return[tf(v("x",r,e,t),v("radius",r,e,t),v("bias",r,e,t),v("alpha",r,e,t),v("beta",r,e,t))];case"Softmax":return[va(v("x",r,e,t))];case"LogSoftmax":return[uu(v("x",r,e,t))];case"SparseToDense":return[_g(v("sparseIndices",r,e,t),v("outputShape",r,e,t),v("sparseValues",r,e,t),v("defaultValue",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var lB=(r,e,t)=>{switch(r.op){case"Max":{let a=v("axis",r,e,t),i=v("keepDims",r,e,t);return[pr(v("x",r,e,t),a,i)]}case"Mean":{let a=v("axis",r,e,t),i=v("keepDims",r,e,t);return[dt(v("x",r,e,t),a,i)]}case"Min":{let a=v("axis",r,e,t),i=v("keepDims",r,e,t);return[ni(v("x",r,e,t),a,i)]}case"Sum":{let a=v("axis",r,e,t),i=v("keepDims",r,e,t);return[ge(v("x",r,e,t),a,i)]}case"All":{let a=v("axis",r,e,t),i=v("keepDims",r,e,t);return[Ql(v("x",r,e,t),a,i)]}case"Any":{let a=v("axis",r,e,t),i=v("keepDims",r,e,t);return[ml(v("x",r,e,t),a,i)]}case"ArgMax":{let a=v("axis",r,e,t);return[fl(v("x",r,e,t),a)]}case"ArgMin":{let a=v("axis",r,e,t);return[Bm(v("x",r,e,t),a)]}case"Prod":{let a=v("axis",r,e,t),i=v("keepDims",r,e,t);return[pu(v("x",r,e,t),a,i)]}case"Cumsum":{let a=v("axis",r,e,t),i=v("exclusive",r,e,t),l=v("reverse",r,e,t);return[su(v("x",r,e,t),a,i,l)]}case"Bincount":let n=v("x",r,e,t),o=v("weights",r,e,t),s=v("size",r,e,t);return[Gw(n,o,s)];case"DenseBincount":{let a=v("x",r,e,t),i=v("weights",r,e,t),l=v("size",r,e,t),u=v("binaryOutput",r,e,t);return[Kw(a,i,l,u)]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var uB=(r,e,t)=>{switch(r.op){case"ConcatV2":case"Concat":{let n=v("n",r,e,t),o=v("axis",r,e,t),s=v("tensors",r,e,t);return s=s.slice(0,n),[Qe(s,o)]}case"Gather":{let n=v("x",r,e,t),o=v("indices",r,e,t);return[Qn(n,oe(o,"int32"),0)]}case"GatherV2":{let n=v("axis",r,e,t),o=v("batchDims",r,e,t),s=v("x",r,e,t),a=v("indices",r,e,t);return[Qn(s,oe(a,"int32"),n,o)]}case"Reverse":{let n=v("dims",r,e,t),o=[];for(let a=0;a<n.length;a++)n[a]&&o.push(a);let s=v("x",r,e,t);return[qt(s,o)]}case"ReverseV2":{let n=v("axis",r,e,t),o=v("x",r,e,t);return[qt(o,n)]}case"Slice":{let n=v("begin",r,e,t),o=v("size",r,e,t);return[Fe(v("x",r,e,t),n,o)]}case"StridedSlice":{let n=v("begin",r,e,t),o=v("end",r,e,t),s=v("strides",r,e,t),a=v("beginMask",r,e,t),i=v("endMask",r,e,t),l=v("ellipsisMask",r,e,t),u=v("newAxisMask",r,e,t),c=v("shrinkAxisMask",r,e,t),p=v("x",r,e,t);return[df(p,n,o,s,a,i,l,u,c)]}case"Pack":return V(()=>{let n=v("axis",r,e,t),o=v("tensors",r,e,t),s=o[0].shape,a=Sn(o[0]).shape,i=o.map(l=>{let u=x.arraysEqual(l.shape,s);if(!u&&!x.arraysEqual(Sn(l).shape,a))throw new Error("the input tensors shape does not match");return u?l:L(l,s)});return[Bt(i,n)]});case"Unpack":{let n=v("axis",r,e,t),o=v("tensor",r,e,t);return fr(o,n)}case"Tile":{let n=v("reps",r,e,t);return[zn(v("x",r,e,t),n)]}case"Split":case"SplitV":{let n=v("axis",r,e,t),o=v("numOrSizeSplits",r,e,t),s=v("x",r,e,t);return mr(s,o,n)}case"ScatterNd":{let n=v("indices",r,e,t),o=v("values",r,e,t),s=v("shape",r,e,t);return[XT(n,o,s)]}case"GatherNd":{let n=v("x",r,e,t),o=v("indices",r,e,t);return[ZT(n,o)]}case"SparseToDense":{let n=v("sparseIndices",r,e,t),o=v("outputShape",r,e,t),s=v("sparseValues",r,e,t),a=v("defaultValue",r,e,t);return[_g(n,s,o,s.dtype===a.dtype?a:oe(a,s.dtype))]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var cB=(r,e,t)=>{switch(r.op){case"FFT":return[Ca(v("x",r,e,t))];case"IFFT":return[oi(v("x",r,e,t))];case"RFFT":return[Ia(v("x",r,e,t))];case"IRFFT":return[yu(v("x",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var pB=(r,e,t)=>{switch(r.op){case"Cast":return[oe(v("x",r,e,t),v("dtype",r,e,t))];case"ExpandDims":{let n=v("axis",r,e,t);return[ur(v("x",r,e,t),n)]}case"Squeeze":{let n=v("axis",r,e,t);return[Sn(v("x",r,e,t),n)]}case"Reshape":return[L(v("x",r,e,t),v("shape",r,e,t))];case"MirrorPad":return[sf(v("x",r,e,t),v("padding",r,e,t),v("mode",r,e,t))];case"PadV2":case"Pad":return[Mr(v("x",r,e,t),v("padding",r,e,t),v("constantValue",r,e,t))];case"SpaceToBatchND":{let n=v("blockShape",r,e,t),o=v("paddings",r,e,t);return[_a(v("x",r,e,t),n,o)]}case"BatchToSpaceND":{let n=v("blockShape",r,e,t),o=v("crops",r,e,t);return[da(v("x",r,e,t),n,o)]}case"DepthToSpace":{let n=v("blockSize",r,e,t),o=v("dataFormat",r,e,t).toUpperCase();return[Xm(v("x",r,e,t),n,o)]}case"BroadcastTo":return[ha(v("x",r,e,t),v("shape",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function iI(r,e,t,n){let o=((s,a,i)=>{switch(s.category){case"arithmetic":return V(()=>W3(s,a,i));case"basic_math":return V(()=>j3(s,a,i));case"control":return Y3(s,a,i);case"convolution":return V(()=>J3(s,a,i));case"creation":return V(()=>Q3(s,a,i));case"dynamic":return eB(s,a,i);case"evaluation":return V(()=>tB(s,a,i));case"image":return V(()=>oB(s,a,i));case"graph":return V(()=>rB(s,a,i));case"logical":return V(()=>sB(s,a,i));case"matrices":return V(()=>iB(s,a,i));case"normalization":return V(()=>aB(s,a,i));case"reduction":return V(()=>lB(s,a,i));case"slice_join":return V(()=>uB(s,a,i));case"spectral":return V(()=>cB(s,a,i));case"transformation":return V(()=>pB(s,a,i));case"hash_table":return nB(s,a,i,n);case"custom":let l=ny(s.op);if(l&&l.customExecutor)return l.customExecutor(new rI(s,a,i));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(r,e,t);return x.isPromise(o)?o.then(s=>[].concat(s)):[].concat(o)}var xy=class{constructor(e={},t={},n={},o={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=o,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function lI(r,e,t,n){let o=new Set,s=[],a=null,i=null,l=new Set,u=Object.keys(r).map(m=>ln(m)[0]),c=[];n!=null&&(c=n.map(m=>ln(m.name)[0]));let p=[...e];for(;p.length>0;){let m=p.pop();if((aI(m)||Kre(m)||Xre(m))&&a==null&&(a=m,i=a.children.map(f=>f.name).filter(f=>o.has(f))),o.add(m.name),t[m.name]==null&&u.indexOf(m.name)===-1&&c.indexOf(m.name)===-1){if(m.inputs.length===0){s.push(m.name);continue}m.inputs.forEach(f=>{l.has(f.name)||(l.add(f.name),p.push(f))})}}return{inputs:r,outputs:e,usedNodes:o,missingInputs:s,dynamicNode:a,syncInputs:i}}function mB(r,e,t){let{usedNodes:n,inputs:o}=t,s=[],a=Object.keys(o).map(c=>ln(c)[0]).map(c=>r.nodes[c]),i=r.initNodes;a.forEach(c=>{n.has(c.name)&&s.push(c)}),r.weights.forEach(c=>{n.has(c.name)&&s.push(c)}),i!=null&&i.forEach(c=>{n.has(c.name)&&s.push(c)});let l=new Set,u=[];for(;s.length>0;){let c=s.pop();l.add(c.name),e[c.name]||u.push(c),c.children.forEach(p=>{!l.has(p.name)&&n.has(p.name)&&p.inputs.every(m=>l.has(m.name))&&s.push(p)})}return u}var Yre=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],Zre=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],Jre=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function aI(r){return Yre.indexOf(r.op)>=0}function Kre(r){return Zre.indexOf(r.op)>=0}function Xre(r){return Jre.indexOf(r.op)>=0}var om=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new om(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(o=>o.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(s=>s.name).sort(),o=t.map(s=>s.name).sort();return n.join(this.SEPERATOR)+"--"+o.join(this.SEPERATOR)}compile(e,t){let n=lI(e,t,this.weightMap,this._initNodes),{missingInputs:o,dynamicNode:s,syncInputs:a}=n;if(s!=null)throw new Error(`This execution contains the node '${s.name}', which has the dynamic op '${s.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${a}]`);if(o.length>0){let i=t.map(u=>u.name),l=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${l}]. Missing the following inputs: [${o}]`)}return mB(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let o=n.map(p=>this.graph.nodes[ln(p)[0]]),s=t.map(p=>ln(p)[0]),a=s.map(p=>this.graph.nodes[p]);a.length===0&&(a=this._outputs);let i=this.getCompilationKey(o,a),l=this.compiledMap.get(i);l==null&&(l=this.compile(e,a),this.compiledMap.set(i,l));let u={},c={};return V(()=>{let p=new xy(this.weightMap,u,c,this.functionExecutorMap),m=Object.assign({},this.weightMap);Object.keys(e).forEach(h=>{let[g,y]=ln(h),b=[];b[y]=e[h],m[g]=b});let f=this.getFrozenTensorIds(m),d={};for(let h=0;h<l.length;h++){let g=l[h];if(!m[g.name]){let y=iI(g,m,p,this._resourceManager);if(x.isPromise(y))throw new Error(`The execution of the op '${g.op}' returned a promise. Please use model.executeAsync() instead.`);m[g.name]=y,this.checkTensorForDisposal(g.name,g,m,p,f,s,d)}}return this.parent==null&&p.dispose(f),t.map(h=>hr(h,m,p))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(o=>o.id)));return new Set(t)}checkTensorForDisposal(e,t,n,o,s,a,i){t.category==="control"||a.indexOf(e)!==-1||(n[e].forEach(l=>{l!=null&&(i[l.id]=(i[l.id]||0)+t.children.length)}),t.inputs.forEach(l=>{if(l.category!=="control"){let u=z3(l.name,n,o);u!=null&&u.forEach(c=>{if(c&&!c.kept&&!s.has(c.id)){let p=i[c.id];p===1?(c.dispose(),delete i[c.id]):p!=null&&i[c.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,o={},s={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let a=new xy(this.weightMap,o,s,this.functionExecutorMap),i=await this.executeWithControlFlow(e,a,t,n),l=t.map(m=>hr(m,i,a)),u=l.map(m=>m.id),c=Object.keys(e).map(m=>e[m].id),p=new Set([...u,...c,...this.weightIds]);return Object.keys(i).forEach(m=>{i[m].forEach(d=>{d&&!d.kept&&!d.isDisposed&&!p.has(d.id)&&d.dispose()})}),this.parent==null&&a.dispose(p),l}async executeFunctionAsync(e,t,n){let o=e.reduce((s,a,i)=>(s[this.inputs[i].name]=a,s),{});return this._executeAsync(o,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,o){let s=Object.keys(e),a=s.map(w=>this.graph.nodes[ln(w)[0]]),i=n.map(w=>ln(w)[0]),l=i.map(w=>this.graph.nodes[w]);l.length===0&&(l=this._outputs);let{usedNodes:u,missingInputs:c,dynamicNode:p,syncInputs:m}=lI(e,l,this.weightMap,this._initNodes),f=[...a,...this.graph.weights,...this._initNodes||[]].map(w=>({node:w,contexts:t.currentContext})),d=Object.assign({},this.weightMap);Object.keys(e).forEach(w=>{let[_,I]=ln(w),E=[];E[I]=e[w],d[_]=E});let h={},g=this.getFrozenTensorIds(d),y={};for(;f.length>0;){let w=this.processStack(a,f,t,d,y,g,i,h,u);await Promise.all(w)}p==null&&!o&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let b=l.filter(w=>!aI(w)&&!hr(w.name,d,t)).map(w=>w.name);if(b.length>0){let w="";throw p!=null&&(w=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${m}]`),new Error(`Cannot compute the outputs [${b}] from the provided inputs [${s}]. Consider providing the following inputs: [${c}]. ${w}`)}return d}processStack(e,t,n,o,s,a,i,l,u){let c=[];for(;t.length>0;){let p=t.pop();n.currentContext=p.contexts;let m="";if(p.node.op==="Enter"&&v("isConstant",p.node,o,n)&&([m]=$s(p.node.name,n)),o[p.node.name]==null){let f=iI(p.node,o,n,this._resourceManager);m||([m]=$s(p.node.name,n));let d=n.currentContext;x.isPromise(f)?c.push(f.then(h=>(o[m]=h,n.currentContext=d,this.checkTensorForDisposal(m,p.node,o,n,a,i,l),this.processChildNodes(p.node,t,n,o,s,u),h))):(o[m]=f,this.checkTensorForDisposal(m,p.node,o,n,a,i,l),this.processChildNodes(p.node,t,n,o,s,u))}else this.processChildNodes(p.node,t,n,o,s,u)}return c}processChildNodes(e,t,n,o,s,a){e.children.forEach(i=>{let[l]=$s(i.name,n);s[l]||!a.has(i.name)||(i.op==="Merge"?i.inputNames.some(u=>!!hr(u,o,n))&&(s[l]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(u=>!!hr(u,o,n))&&(s[l]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[o]=ln(t),s=this.graph.nodes[o];if(s.attrParams.shape&&s.attrParams.shape.value){let a=s.attrParams.shape.value,i=a.length===n.shape.length&&n.shape.every((l,u)=>a[u]===-1||a[u]===l);x.assert(i,()=>`The shape of dict['${s.name}'] provided in model.execute(dict) must be [${a}], but was [${n.shape}]`)}s.attrParams.dtype&&s.attrParams.dtype.value&&x.assert(n.dtype===s.attrParams.dtype.value,()=>`The dtype of dict['${s.name}'] provided in model.execute(dict) must be ${s.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let o=this._signature.inputs[n];t[o.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[o]=ln(n);return this.graph.nodes[o]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=ln(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}};var uI=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}};var Qre="?tfjs-format=file",ene="model.json",cI=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new uI}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=Tr.browserHTTPRequest(e,this.loadOptions);else{let t=Tr.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(Tr.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let o=Tr.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new om(sy.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(o),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let s=sy.Instance.transformGraph(e.modelInitializer);this.initializer=new om(s),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=Tr.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Oe)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,o)=>(t[n]=e[o],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function tne(r,e={}){if(r==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");e==null&&(e={}),e.fromTFHub&&r.load==null&&(r.endsWith("/")||(r=r+"/"),r=`${r}${ene}${Qre}`);let t=new cI(r,e);return await t.load(),t}var rne="3.4.0";var II={};We(II,{CSVDataset:()=>wh,Dataset:()=>hi,FileDataSource:()=>Ih,TextLineDataset:()=>yh,URLDataSource:()=>Nh,array:()=>XB,csv:()=>sV,func:()=>iV,generator:()=>aV,microphone:()=>uV,version_data:()=>cV,webcam:()=>lV,zip:()=>YB});var KB=pc(xI());var RB=pc(xI());function TB(r,e){return by(r,e)}function by(r,e,t=new Map,n=new Set){if(r==null)return null;if(n.has(r))throw new Error("Circular references are not supported.");if(t.has(r))return t.get(r);let o=e(r);if(o.recurse&&o.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(o.recurse)if(Pl(r)){let s=Array.isArray(r)?[]:{};n.add(r);for(let a in r){let i=r[a],l=by(i,e,t,n);s[a]=l}return n.delete(r),s}else throw new Error(`Can't recurse into non-iterable type: ${r}`);else return t.set(r,o.value),o.value}function EB(r,e=yI){return AB(r,e)}function AB(r,e,t=new Set){let n=r[0];if(t.has(n))throw new Error("Circular references are not supported.");let o=e(r);if(o.recurse&&o.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(o.recurse)if(Pl(n)){let s=Array.isArray(n)?[]:{};t.add(n);for(let a in n){let i=r.map(u=>u[a]),l=AB(i,e,t);s[a]=l}return t.delete(n),s}else throw new Error(`Can't recurse into non-iterable type: ${n}`);else return o.value}function yI(r){return r===null?null:Pl(r[0])?{value:null,recurse:!0}:{value:r,recurse:!1}}async function wy(r,e){let t=new Map;by(r,e,t);for(let o of Array.from(t.keys())){let s=t.get(o);if(x.isPromise(s)){let a=await s;t.set(o,a)}}return by(r,e,t)}function Pl(r){return r!=null&&!ArrayBuffer.isView(r)&&(Array.isArray(r)||typeof r=="object"&&!(r instanceof Oe))}function DB(r){return r==null||une(r)||Array.isArray(r)||typeof r=="object"&&r instanceof Oe||x.isTypedArray(r)}function une(r){return r===null||typeof r!="object"&&typeof r!="function"}function $B(r){return TB(r,cne)}function cne(r){return r instanceof Oe?{value:r.clone(),recurse:!1}:Pl(r)?{value:null,recurse:!0}:{value:r,recurse:!1}}var gh=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}};var sm=class extends gh{constructor(){super(sm.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let o=0;o<n;o++)t[o]=this.get(this.wrap(this.begin+o));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};sm.INITIAL_CAPACITY=32;function bI(r){return new FB(r)}function xh(r){return new OB(r)}function PB(r,e){return new wI(r,e)}function LB(r,e=Ba.FAIL){return new MB(r,e)}var Xt=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new UB(this,e)}filter(e){return new WB(this,e)}map(e){return new jB(this,e)}mapAsync(e){return new _I(this,e)}serialMapAsync(e){return new _I(this,e).serial()}flatmap(e){return new HB(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new GB(this,e,t)}columnMajorBatch(e,t=!0,n=yI){return this.rowMajorBatch(e,t).map(s=>EB(s,n))}concatenate(e,t){return new wI(bI([this,e]),t)}take(e){return e<0||e==null?this:new VB(this,e)}skip(e){return e<0||e==null?this:new BB(this,e)}prefetch(e){return new kI(this,e)}shuffle(e,t){return new qB(this,e,t)}serial(){return new zB(this)}},FB=class extends Xt{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:$B(e),done:!1}}},OB=class extends Xt{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},zB=class extends Xt{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},BB=class extends Xt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;Ae(e.value)}return this.upstream.next()}},VB=class extends Xt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},GB=class extends Xt{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},WB=class extends Xt{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Ae(e.value)}}},jB=class extends Xt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Zn.getTensorsInContainer(e.value),n=this.transform(e.value),o=Zn.getTensorsInContainer(n);for(let s of t)Zn.isTensorInList(s,o)||s.dispose();return{value:n,done:!1}}},UB=class extends Xt{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},_I=class extends Xt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Zn.getTensorsInContainer(e.value),n=await this.transform(e.value),o=Zn.getTensorsInContainer(n);for(let s of t)Zn.isTensorInList(s,o)||s.dispose();return{value:n,done:!1}}},im=class extends Xt{constructor(){super();this.outputQueue=new sm,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},HB=class extends im{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=Zn.getTensorsInContainer(e.value),n=this.transform(e.value),o=Zn.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let s of t)Zn.isTensorInList(s,o)||s.dispose();return!0}},wI=class extends Xt{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},Ba;(function(r){r[r.FAIL=0]="FAIL",r[r.SHORTEST=1]="SHORTEST",r[r.LONGEST=2]="LONGEST"})(Ba||(Ba={}));var MB=class extends Xt{constructor(e,t=Ba.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function o(a){return a instanceof Xt?{value:a.next().then(l=>(t++,l.done&&n++,l.value)),recurse:!1}:{value:null,recurse:!0}}let s=await wy(this.iterators,o);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case Ba.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case Ba.SHORTEST:return{value:null,done:!0};case Ba.LONGEST:default:}return this.count++,{value:s,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},kI=class extends Xt{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new gh(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},qB=class extends kI{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=RB.alea(n||x.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}};var hi=class{constructor(){this.size=null}batch(e,t=!0){let n=this;x.assert(e>0,()=>`batchSize needs to be positive, but it is
|
|
${e}`);let o;return this.size===Infinity||this.size==null?o=this.size:t?o=Math.ceil(this.size/e):o=Math.floor(this.size/e),_n(async()=>(await n.iterator()).columnMajorBatch(e,t,pne),o)}concatenate(e){let t=this,n;return this.size===Infinity||e.size===Infinity?n=Infinity:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,_n(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===Infinity?n=Infinity:n=null,_n(async()=>(await t.iterator()).filter(o=>V(()=>e(o))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return _n(async()=>(await t.iterator()).map(n=>V(()=>e(n))),this.size)}mapAsync(e){let t=this;return _n(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return _n(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=Infinity:n=null,_n(async()=>{let o=xh(async()=>({value:await t.iterator(),done:!1}));return PB(o.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,_n(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let o=this,s=KB.alea(t||x.now().toString());return _n(async()=>{let a=s.int32();return n&&(a+=s.int32()),(await o.iterator()).shuffle(e,a.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,_n(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};hi.MAX_BUFFER_SIZE=1e4;function _n(r,e=null){return new class extends hi{constructor(){super(...arguments);this.size=e}async iterator(){return r()}}}function XB(r){return _n(async()=>bI(r),r.length)}function YB(r){if(!Pl(r))throw new Error("The argument to zip() must be an object or array.");let e;if(Array.isArray(r))for(let t=0;t<r.length;t++)e=e==null?r[t].size:Math.min(e,r[t].size);else if(r instanceof Object)for(let t in r)e=e==null?r[t].size:Math.min(e,r[t].size);return _n(async()=>{let t=await wy(r,n=>{if(n instanceof hi)return{value:n.iterator(),recurse:!1};if(Pl(n))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return LB(t,Ba.SHORTEST)},e)}function pne(r){if(r===null)return null;let e=r[0];return DB(e)?{value:mne(r),recurse:!1}:{value:null,recurse:!0}}function mne(r){if(r.length===0)throw new Error("Can't make a batch of zero elements.");return r[0]instanceof Oe?Bt(r):Pr(r)}var yh=class extends hi{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
|
|
`).map(o=>(o.endsWith("\r")&&(o=o.slice(0,-1)),o))}};var _y='"',bh=Symbol("out"),ZB=Symbol("field"),ky=Symbol("quote"),vI=Symbol("quoteafterquote"),JB=Symbol("quoteinquote"),wh=class extends hi{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new yh(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(x.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&x.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((o,s)=>(o[s]=o[s]+1||1,o),{}),n=Object.keys(t).filter(o=>t[o]>1);if(x.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let o of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(o)===-1)throw new Error('The key "'+o+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let t=await(await this.base.iterator()).next();if(t.done)throw new Error("No data was found for CSV parsing.");let n=t.value;return this.parseRow(n,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},o={};for(let s=0;s<this.fullColumnNames.length;s++){let a=this.fullColumnNames[s],i=this.columnConfigs?this.columnConfigs[a]:null;if(!(this.configuredColumnsOnly&&!i)){let l=t[s],u=null;if(l==="")if(i&&i.default!==void 0)u=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${a} is empty in this line: ${e}`);u=void 0}else{let c=Number(l);if(isNaN(c))i&&i.dtype==="bool"?u=this.getBoolean(l):u=l;else if(!i||!i.dtype)u=c;else switch(i.dtype){case"float32":u=c;break;case"int32":u=Math.floor(c);break;case"bool":u=this.getBoolean(l);break;default:u=c}}i&&i.isLabel?o[a]=u:n[a]=u}}return Object.keys(o).length===0?n:{xs:n,ys:o}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],o=0,s=e.length,a=bh;for(let i=0;i<s;i++)switch(a){case bh:switch(e.charAt(i)){case _y:o=i+1,a=ky;break;case this.delimiter:if(o=i+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),a=bh;break;default:a=ZB,o=i;break}break;case ZB:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(o,i)),a=bh,o=i+1;break;default:}break;case ky:switch(e.charAt(i)){case _y:a=vI;break;default:}break;case vI:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(o,i-1)),a=bh,o=i+1;break;case _y:a=ky;break;default:a=JB;break}break;case JB:switch(e.charAt(i)){case _y:a=ky;break;default:}break;default:}if(a===vI?n.push(e.substring(o,s-1)):n.push(e.substring(o)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}};var _h=class extends Xt{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(W().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new _h(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let o=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(o,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let o=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(o,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(o=>{let s=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&o({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(s),o({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((o,s)=>n.set(o,s*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(x.sizeFromShape(t));return n.set(e,n.length-e.length),Pr(n,t)}};var kh=class extends Xt{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Vt([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,o=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,s=(1-n)/2,a=(1-o)/2,i=s+n,l=o+a;this.cropBox=si([a,s,l,i],[1,4])}else this.cropBox=si([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(W().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new kh(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&x.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=ig.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return V(()=>{let t=ur(oe(e,"float32"),0),n;n=ii.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let o=n.shape;return L(n,o.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(t=>t.stop());try{this.webcamVideoElement.srcObject=null}catch(t){console.log(t),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}};var vh=class{};var vy=class extends Xt{split(e){return new QB(this,e)}},QB=class extends vy{constructor(e,t){super();this.upstream=e,this.impl=new eV(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},eV=class extends im{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}};var CI=class extends Xt{decodeUTF8(){return new rV(this)}},rV=class extends vy{constructor(e){super();this.upstream=e,this.impl=new nV(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},nV=class extends im{constructor(e){super();if(this.upstream=e,W().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=tV();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return W().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}};var Ch=class extends CI{constructor(e,t={}){super();this.file=e,this.options=t,x.assert(e instanceof Uint8Array||(W().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((t,n)=>{let o=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)t(new Uint8Array(this.file.slice(this.offset,o)));else{let s=new FileReader;s.onload=i=>{let l=s.result;if(l instanceof ArrayBuffer&&(l=new Uint8Array(l)),!(l instanceof Uint8Array))return n(new TypeError("FileReader returned unknown type."));t(l)},s.onabort=i=>n(new Error("Aborted")),s.onerror=i=>n(new Error(i.type));let a=this.file.slice(this.offset,o);s.readAsArrayBuffer(a)}this.offset=o}),done:!1}}};async function oV(r,e={}){let t,n;typeof r=="string"?t=r:(t=r.url,n=fne(r));let o=await x.fetch(t,n);if(o.ok){let s=new Uint8Array(await o.arrayBuffer());return new Ch(s,e)}else throw new Error(o.statusText)}var fne=r=>({method:r.method,headers:r.headers,body:r.body,mode:r.mode,credentials:r.credentials,cache:r.cache,redirect:r.redirect,referrer:r.referrer,integrity:r.integrity});function Cy(r){return typeof r=="string"&&r.substr(0,7)==="file://"}var Ih=class extends vh{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(Cy(this.input)&&W().get("IS_NODE")){let e=require("fs");this.input=e.readFileSync(this.input.substr(7))}return new Ch(this.input,this.options)}};var Nh=class extends vh{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return Cy(this.url)?new Ih(this.url,this.fileOptions).iterator():oV(this.url,this.fileOptions)}};function sV(r,e={}){return new wh(new Nh(r),e)}function iV(r){let e=xh(r);return _n(async()=>e)}function aV(r){return _n(async()=>{let e=await r();return xh(()=>e.next())})}async function lV(r,e){return kh.create(r,e)}async function uV(r){return _h.create(r)}var cV="3.4.0";var QWt={tfjs:(ym==null?void 0:ym.version)||void 0,"tfjs-core":(bm==null?void 0:bm.version)||void 0,"tfjs-data":(wm==null?void 0:wm.version)||void 0,"tfjs-layers":(_m==null?void 0:_m.version)||void 0,"tfjs-converter":(km==null?void 0:km.version)||void 0,"tfjs-backend-cpu":W_||void 0,"tfjs-backend-webgl":Qk||void 0,"tfjs-backend-wasm":FC||void 0};export{Ls as Abs,_i as Acos,ki as Acosh,up as AdadeltaOptimizer,cp as AdagradOptimizer,pp as AdamOptimizer,mp as AdamaxOptimizer,On as Add,wo as AddN,vi as All,Ci as Any,_o as ArgMax,Ka as ArgMin,Ii as Asin,Ni as Asinh,Si as Atan,Ai as Atan2,Ti as Atanh,ko as AvgPool,Xa as AvgPool3D,xc as AvgPool3DGrad,gc as AvgPoolGrad,Ix as BackendWasm,vo as BatchMatMul,Ya as BatchToSpaceND,yc as Bincount,bS as BroadcastTo,O0 as Callback,KC as CallbackList,qn as Cast,Co as Ceil,Kn as ClipByValue,bc as Complex,Za as ComplexAbs,zs as Concat,Io as Conv2D,wc as Conv2DBackpropFilter,No as Conv2DBackpropInput,Ja as Conv3D,_c as Conv3DBackpropFilterV2,kc as Conv3DBackpropInputV2,So as Cos,Ei as Cosh,Di as CropAndResize,To as Cumsum,YC as CustomCallback,qa as DataStorage,vc as DenseBincount,$i as DepthToSpace,Ao as DepthwiseConv2dNative,Cc as DepthwiseConv2dNativeBackpropFilter,Ic as DepthwiseConv2dNativeBackpropInput,Nc as Diag,Qa as Dilation2D,Tm as Dilation2DBackpropFilter,Sm as Dilation2DBackpropInput,Qb as ENV,P0 as EarlyStopping,Sc as Einsum,Ri as Elu,Tc as EluGrad,Yh as Environment,Oi as Equal,Fi as Erf,Do as Exp,Bs as ExpandDims,Pi as Expm1,Ac as FFT,el as Fill,Mi as FlipLeftRight,$o as Floor,Ro as FloorDiv,Am as FromPixels,Fo as FusedBatchNorm,Js as FusedConv2D,Qs as FusedDepthwiseConv2D,sx as GPGPUContext,Li as GatherNd,Vs as GatherV2,cI as GraphModel,zi as Greater,Oo as GreaterEqual,XC as History,Ec as IFFT,Xn as Identity,Dc as Imag,Ct as InputSpec,Bi as IsFinite,Vi as IsInf,Gi as IsNan,Os as KernelBackend,tl as LRN,Rc as LRNGrad,zx as LayerVariable,jn as LayersModel,Po as LeakyRelu,Wi as Less,ji as LessEqual,$c as LinSpace,Mo as Log,Ui as Log1p,wS as LogSoftmax,Hi as LogicalAnd,jl as LogicalNot,Ul as LogicalOr,Nu as MathBackendCPU,Ou as MathBackendWebGL,Lo as Max,Bo as MaxPool,rl as MaxPool3D,Oc as MaxPool3DGrad,Fc as MaxPoolGrad,Pc as MaxPoolWithArgmax,zo as Maximum,Vo as Mean,Go as Min,Wo as Minimum,jo as MirrorPad,qi as Mod,fp as MomentumOptimizer,Mc as Multinomial,Uo as Multiply,Gs as Neg,Xi as NonMaxSuppressionV3,Yi as NonMaxSuppressionV4,Zi as NonMaxSuppressionV5,Ki as NotEqual,FS as OP_SCOPE_SUFFIX,Ho as OneHot,Ws as OnesLike,zr as Optimizer,js as Pack,qo as PadV2,_ne as Pool,Ko as Pow,Xo as Prelu,Ji as Prod,dp as RMSPropOptimizer,Dn as RNN,nl as Range,iw as Rank,Lc as Real,Eo as RealDiv,Qi as Reciprocal,Gt as Reduction,Yo as Relu,Jo as Relu6,Us as Reshape,Zo as ResizeBilinear,Bc as ResizeBilinearGrad,ol as ResizeNearestNeighbor,zc as ResizeNearestNeighborGrad,Qo as Reverse,aa as RotateWithOffset,es as Round,ts as Rsqrt,hl as SGDOptimizer,ea as ScatterNd,Hs as Select,ta as Selu,La as Sequential,ns as Sigmoid,na as Sign,rs as Sin,ra as Sinh,qs as Slice,is as Softmax,oa as Softplus,sl as SpaceToBatchND,Vc as SparseToDense,Ks as SplitV,os as Sqrt,il as Square,as as SquaredDifference,Yn as Step,sa as StridedSlice,ls as Sub,ss as Sum,sn as SymbolicTensor,us as Tan,cs as Tanh,Oe as Tensor,ut as TensorBuffer,Pn as Tile,ia as TopK,Gc as Transform,ps as Transpose,Wc as Unique,Xs as Unpack,al as UnsortedSegmentSum,ul as Variable,Ys as ZerosLike,Zs as _FusedMatMul,Nt as abs,Lm as acos,zm as acosh,ee as add,Ow as addN,Ql as all,ml as any,fl as argMax,Bm as argMin,Vm as asin,Gm as asinh,Wm as atan,jm as atan2,Um as atanh,fa as avgPool,Hm as avgPool3d,AT as backend,C as backend_util,xj as basicLSTMCell,Jn as batchNorm,zw as batchNorm2d,Bw as batchNorm3d,Vw as batchNorm4d,da as batchToSpaceND,Gw as bincount,U0e as booleanMaskAsync,ha as broadcastTo,ig as browser,Ce as buffer,Sre as callbacks,oe as cast,qm as ceil,lr as clipByValue,Mn as clone,In as complex,Qe as concat,Ww as concat1d,jw as concat2d,Uw as concat3d,Hw as concat4d,Dz as constraints,ru as conv1d,Jr as conv2d,nu as conv2dTranspose,Km as conv3d,qw as conv3dTranspose,Sne as copyRegisteredKernels,ga as cos,ou as cosh,kg as cosineWindow,su as cumsum,Qr as customGrad,II as data,Kw as denseBincount,Fw as deprecationWarn,Xm as depthToSpace,hs as depthwiseConv2d,Are as deregisterOp,Yl as device_util,Uj as diag,Ym as dilation2d,oae as disableDeprecationWarnings,Ae as dispose,sae as disposeVariables,me as div,Zm as divNoNan,Xw as dot,QT as dropout,Yw as einsum,gs as elu,nae as enableDebugMode,rae as enableProdMode,e1 as enclosingPowerOfTwo,ds as engine,W as env,Nn as equal,Jm as erf,Jt as exp,ur as expandDims,Qm as expm1,tp as eye,Ca as fft,xa as fill,pae as findBackend,mae as findBackendFactory,xs as floor,Jl as floorDiv,ED as forceHalfFloat,ro as fused,Qn as gather,ZT as gatherND,ag as gather_util,uae as getBackend,nw as getGradient,Dm as getKernel,Zh as getKernelsForBackend,M2 as gpgpu_util,_4 as grad,k4 as grads,nr as greater,dn as greaterEqual,oi as ifft,iu as imag,ii as image,tNe as inTopKAsync,Jz as initializers,s0 as input,Tr as io,yu as irfft,Zw as isFinite,Jw as isInf,ef as isNaN,Et as keep,Dr as kernel_impls,A3 as layers,ya as leakyRelu,au as less,Bn as lessEqual,E1 as linalg,Qw as linspace,tne as loadGraphModel,zee as loadLayersModel,tf as localResponseNormalization,cr as log,lu as log1p,e_ as logSigmoid,uu as logSoftmax,nf as logSumExp,xr as logicalAnd,ba as logicalNot,cu as logicalOr,o_ as logicalXor,yFe as losses,ze as matMul,mT as math,pr as max,wa as maxPool,of as maxPool3d,s_ as maxPoolWithArgmax,en as maximum,dt as mean,Mm as memory,j4 as meshgrid,F3 as metrics,ni as min,bs as minimum,sf as mirrorPad,af as mod,Mee as model,O3 as models,rp as moments,xIe as movingAverage,P as mul,J4 as multiRNNCell,i_ as multinomial,qe as neg,bf as nextFrame,ap as norm,to as notEqual,fs as oneHot,Qt as ones,or as onesLike,S as op,nU as outerProduct,Mr as pad,iU as pad1d,lU as pad2d,cU as pad3d,mU as pad4d,a_ as pool,Lr as pow,ka as prelu,Cw as print,pu as prod,iae as profile,_U as rand,AU as randomGamma,yg as randomNormal,ws as randomUniform,op as range,lae as ready,dl as real,lf as reciprocal,Jc as registerBackend,Bee as registerCallbackConstructor,_S as registerGradient,Hl as registerKernel,Tre as registerOp,P3 as regularizers,Ar as relu,fu as relu6,cae as removeBackend,L as reshape,qt as reverse,LU as reverse1d,BU as reverse2d,GU as reverse3d,jU as reverse4d,Ia as rfft,uf as round,du as rsqrt,le as scalar,XT as scatterND,lg as scatter_util,hu as selu,cf as separableConv2d,Lee as sequential,J as serialization,zW as setBackend,fae as setPlatform,cQ as setWasmPath,pQ as setWasmPaths,ok as setWebGLContext,y_ as setdiff1dAsync,Vg as shared,Zr as sigmoid,pf as sign,xFe as signal,gu as sin,xu as sinh,Fe as slice,mf as slice1d,bg as slice2d,ff as slice3d,sp as slice4d,rr as slice_util,va as softmax,ys as softplus,_a as spaceToBatchND,_g as sparseToDense,gFe as spectral,mr as split,gt as sqrt,Pe as square,bu as squaredDifference,Sn as squeeze,Bt as stack,_s as step,df as stridedSlice,pe as sub,ge as sum,Kl as sumOutType,hf as tan,ri as tanh,Pr as tensor,Vt as tensor1d,si as tensor2d,Tw as tensor3d,gH as tensor4d,xH as tensor5d,yH as tensor6d,Zn as tensor_util,NT as test_util,V as tidy,zn as tile,aae as time,gf as topk,Iu as train,Ue as transpose,wu as truncatedNormal,ip as unique,Nne as unregisterGradient,Ine as unregisterKernel,xf as unsortedSegmentSum,fr as unstack,ar as upcastType,x as util,v4 as valueAndGrad,C4 as valueAndGrads,b_ as variable,hg as variableGrads,QWt as version,rne as version_converter,LW as version_core,W_ as version_cpu,dd as version_layers,FC as version_wasm,Qk as version_webgl,IXe as webgl,$2 as webgl_util,Dt as where,yf as whereAsync,ht as zeros,Ie as zerosLike};
|
|
/**
|
|
* @license
|
|
* Copyright 2017 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/** @license See the LICENSE file. */
|
|
//# sourceMappingURL=tfjs.esm.js.map
|