human/test/test-gear.js

82 lines
2.9 KiB
JavaScript

require('@tensorflow/tfjs-node');
const fs = require('fs');
const path = require('path');
const log = require('@vladmandic/pilogger');
const Human = require('../dist/human.node.js').default;
process.env.TF_CPP_MIN_LOG_LEVEL = '2';
const humanConfig = {
backend: 'tensorflow',
face: {
detector: { enabled: true, modelPath: 'file://../human-models/models/blazeface-back.json', cropFactor: 1.6 },
mesh: { enabled: false },
iris: { enabled: false },
description: { enabled: true, modelPath: 'file://../human-models/models/faceres.json' },
gear: { enabled: true, modelPath: 'file://../human-models/models/gear.json' },
ssrnet: { enabled: true, modelPathAge: 'file://../human-models/models/age.json', modelPathGender: 'file://../human-models/models/gender.json' },
emotion: { enabled: false },
},
body: { enabled: false },
hand: { enabled: false },
object: { enabled: false },
gestures: { enabled: false },
};
const human = new Human(humanConfig);
function getImageTensor(imageFile) {
let tensor;
try {
const buffer = fs.readFileSync(imageFile);
tensor = human.tf.node.decodeImage(buffer, 3);
} catch (e) {
log.warn(`error loading image: ${imageFile}: ${e.message}`);
}
return tensor;
}
function printResult(obj) {
if (!obj || !obj.res || !obj.res.face || obj.res.face.length === 0) log.warn('no faces detected');
else obj.res.face.forEach((face, i) => log.data({ face: i, model: obj.model, image: obj.image, age: face.age, gender: face.gender, genderScore: face.genderScore, race: face.race }));
}
async function main() {
log.header();
if (process.argv.length !== 3) {
log.error('parameters: <input-image> or <input-folder> missing');
process.exit(1);
}
if (!fs.existsSync(process.argv[2])) {
log.error(`file not found: ${process.argv[2]}`);
process.exit(1);
}
const stat = fs.statSync(process.argv[2]);
const files = [];
if (stat.isFile()) files.push(process.argv[2]);
else if (stat.isDirectory()) fs.readdirSync(process.argv[2]).forEach((f) => files.push(path.join(process.argv[2], f)));
log.data('input:', files);
await human.load();
let res;
for (const f of files) {
const tensor = getImageTensor(f);
if (!tensor) continue;
human.config.face.description.enabled = true;
human.config.face.gear.enabled = false;
human.config.face.ssrnet.enabled = false;
res = await human.detect(tensor);
printResult({ model: 'faceres', image: f, res });
human.config.face.description.enabled = false;
human.config.face.gear.enabled = true;
human.config.face.ssrnet.enabled = false;
res = await human.detect(tensor);
printResult({ model: 'gear', image: f, res });
human.config.face.description.enabled = false;
human.config.face.gear.enabled = false;
human.config.face.ssrnet.enabled = true;
res = await human.detect(tensor);
printResult({ model: 'ssrnet', image: f, res });
human.tf.dispose(tensor);
}
}
main();