mirror of https://github.com/vladmandic/human
8054 lines
1.6 MiB
8054 lines
1.6 MiB
/*
|
|
Human
|
|
homepage: <https://github.com/vladmandic/human>
|
|
author: <https://github.com/vladmandic>'
|
|
*/
|
|
|
|
var Human=(()=>{var Pc=Object.defineProperty;var EE=Object.getOwnPropertyDescriptor;var RE=Object.getOwnPropertyNames;var ME=Object.prototype.hasOwnProperty;var FE=(e,t,r)=>t in e?Pc(e,t,{enumerable:!0,configurable:!0,writable:!0,value:r}):e[t]=r;var gs=(e,t)=>{for(var r in t)Pc(e,r,{get:t[r],enumerable:!0})},$E=(e,t,r,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let a of RE(t))!ME.call(e,a)&&a!==r&&Pc(e,a,{get:()=>t[a],enumerable:!(n=EE(t,a))||n.enumerable});return e};var PE=e=>$E(Pc({},"__esModule",{value:!0}),e);var fe=(e,t,r)=>(FE(e,typeof t!="symbol"?t+"":t,r),r),k3=(e,t,r)=>{if(!t.has(e))throw TypeError("Cannot "+r)};var rp=(e,t,r)=>(k3(e,t,"read from private field"),r?r.call(e):t.get(e)),np=(e,t,r)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,r)},ap=(e,t,r,n)=>(k3(e,t,"write to private field"),n?n.call(e,r):t.set(e,r),r);var FAe={};gs(FAe,{Human:()=>t3,default:()=>t3,defaults:()=>ys,draw:()=>K5,env:()=>ce,match:()=>e3,models:()=>Q0});function ie(...e){let t=new Date,r=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(r,"Human:",...e)}function I3(e,t){let r=e.endsWith("/")?"":"/",a=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${r}${t}`;if(!a.toLocaleLowerCase().includes(".json"))throw new Error(`modelpath error: expecting json file: ${a}`);return a}var oe=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function By(e,t,r="config",n=[]){for(let a of Object.keys(t))if(typeof t[a]=="object")By(e[a],t[a],a,n);else{let s=e&&typeof e[a]!="undefined";s||n.push({reason:"unknown property",where:`${r}.${a} = ${t[a]}`});let i=e&&typeof e[a]==typeof t[a];s&&!i&&n.push({reason:"property type mismatch",where:`${r}.${a} = ${t[a]}`,expected:typeof e[a]})}return t.debug&&r==="config"&&n.length>0&&ie("invalid configuration",n),n}function kr(...e){let t=r=>r&&typeof r=="object";return e.reduce((r,n)=>(Object.keys(n||{}).forEach(a=>{let s=r[a],i=n[a];Array.isArray(s)&&Array.isArray(i)?r[a]=s.concat(...i):t(s)&&t(i)?r[a]=kr(s,i):r[a]=i}),r),{})}var ys={backend:"",modelBasePath:"",cacheModels:!0,wasmPath:"",wasmPlatformFetch:!1,debug:!0,async:!0,warmup:"full",cacheSensitivity:.7,skipAllowed:!1,deallocate:!1,filter:{enabled:!0,equalization:!1,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:1,skipFrames:99,skipTime:2500,minConfidence:.2,iouThreshold:.1,mask:!1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},iris:{enabled:!0,modelPath:"iris.json"},emotion:{enabled:!0,minConfidence:.1,skipFrames:99,skipTime:1500,modelPath:"emotion.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:99,skipTime:3e3,minConfidence:.1},antispoof:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"antispoof.json"},liveness:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"liveness.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",maxDetected:-1,minConfidence:.3,skipFrames:1,skipTime:200},hand:{enabled:!0,rotation:!0,skipFrames:99,skipTime:1e3,minConfidence:.5,iouThreshold:.2,maxDetected:-1,landmarks:!0,detector:{modelPath:"handtrack.json"},skeleton:{modelPath:"handlandmark-full.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:99,skipTime:2e3},segmentation:{enabled:!1,modelPath:"selfie.json",blur:8}};var Ue={};gs(Ue,{Abs:()=>_o,Acos:()=>Eu,Acosh:()=>Ru,AdadeltaOptimizer:()=>Rm,AdagradOptimizer:()=>Mm,AdamOptimizer:()=>Fm,AdamaxOptimizer:()=>$m,Add:()=>qa,AddN:()=>Gs,All:()=>Mu,Any:()=>Fu,ArgMax:()=>js,ArgMin:()=>$u,Asin:()=>Pu,Asinh:()=>_u,Atan:()=>zu,Atan2:()=>Du,Atanh:()=>Ou,AvgPool:()=>Hs,AvgPool3D:()=>Lp,AvgPool3DGrad:()=>Df,AvgPoolGrad:()=>Of,BackendWasm:()=>QT,BatchMatMul:()=>qs,BatchToSpaceND:()=>zo,Bincount:()=>Lf,BroadcastArgs:()=>Bf,BroadcastTo:()=>kw,Callback:()=>Y4,CallbackList:()=>Y7,Cast:()=>Ks,Ceil:()=>Xs,ClipByValue:()=>Ka,Complex:()=>Bp,ComplexAbs:()=>Wp,Concat:()=>Oo,Conv2D:()=>Zs,Conv2DBackpropFilter:()=>Wf,Conv2DBackpropInput:()=>Ys,Conv3D:()=>Vp,Conv3DBackpropFilterV2:()=>Vf,Conv3DBackpropInputV2:()=>Uf,Cos:()=>Js,Cosh:()=>Qs,CropAndResize:()=>Lo,Cumprod:()=>Lu,Cumsum:()=>Do,CustomCallback:()=>Q7,DataStorage:()=>Dp,DenseBincount:()=>Gf,DepthToSpace:()=>Bo,DepthwiseConv2dNative:()=>ei,DepthwiseConv2dNativeBackpropFilter:()=>jf,DepthwiseConv2dNativeBackpropInput:()=>Hf,Diag:()=>qf,Dilation2D:()=>Up,Dilation2DBackpropFilter:()=>lf,Dilation2DBackpropInput:()=>of,ENV:()=>ga,EarlyStopping:()=>J4,Einsum:()=>Gp,Elu:()=>ri,EluGrad:()=>Kf,Environment:()=>vw,Equal:()=>Wo,Erf:()=>Bu,Exp:()=>ni,ExpandDims:()=>Vo,Expm1:()=>Uo,FFT:()=>Xf,Fill:()=>Wu,FlipLeftRight:()=>Go,Floor:()=>ai,FloorDiv:()=>si,FromPixels:()=>Sp,FusedBatchNorm:()=>ii,FusedConv2D:()=>Es,FusedDepthwiseConv2D:()=>Rs,GPGPUContext:()=>hu,GatherNd:()=>Ho,GatherV2:()=>jo,GraphModel:()=>a0,Greater:()=>qo,GreaterEqual:()=>oi,History:()=>J7,IFFT:()=>Zf,Identity:()=>li,Imag:()=>jp,InputSpec:()=>qt,IsFinite:()=>Vu,IsInf:()=>Uu,IsNan:()=>Gu,KernelBackend:()=>Nu,LRN:()=>qp,LRNGrad:()=>Jf,LayerVariable:()=>q7,LayersModel:()=>ja,LeakyRelu:()=>ui,Less:()=>Ko,LessEqual:()=>Xo,LinSpace:()=>Yf,Log:()=>di,Log1p:()=>ju,LogSoftmax:()=>Iw,LogicalAnd:()=>Zo,LogicalNot:()=>Hu,LogicalOr:()=>Hp,MathBackendCPU:()=>Wx,MathBackendWebGL:()=>Ch,Max:()=>pi,MaxPool:()=>ci,MaxPool3D:()=>Kp,MaxPool3DGrad:()=>em,MaxPoolGrad:()=>Qf,MaxPoolWithArgmax:()=>tm,Maximum:()=>hi,Mean:()=>fi,Min:()=>mi,Minimum:()=>gi,MirrorPad:()=>yi,Mod:()=>qu,MomentumOptimizer:()=>Pm,Multinomial:()=>rm,Multiply:()=>Ai,Neg:()=>Yo,NonMaxSuppressionV3:()=>Qo,NonMaxSuppressionV4:()=>Ku,NonMaxSuppressionV5:()=>el,NotEqual:()=>Jo,OP_SCOPE_SUFFIX:()=>Lw,OneHot:()=>rl,OnesLike:()=>tl,Optimizer:()=>Ja,OptimizerConstructors:()=>xs,Pack:()=>nl,PadV2:()=>xi,Pool:()=>SR,Pow:()=>bi,Prelu:()=>vi,Prod:()=>al,RMSPropOptimizer:()=>_m,RNN:()=>Qa,Range:()=>Xu,Rank:()=>Ew,Real:()=>Xp,RealDiv:()=>ti,Reciprocal:()=>Zu,Reduction:()=>N7,Relu:()=>wi,Relu6:()=>Ii,Reshape:()=>sl,ResizeBilinear:()=>ki,ResizeBilinearGrad:()=>am,ResizeNearestNeighbor:()=>Yu,ResizeNearestNeighborGrad:()=>nm,Reverse:()=>il,RotateWithOffset:()=>bl,Round:()=>ol,Rsqrt:()=>Si,SGDOptimizer:()=>fh,ScatterNd:()=>ll,Select:()=>ul,Selu:()=>Ju,Sequential:()=>Xm,Sigmoid:()=>Ni,Sign:()=>Qu,Sin:()=>Ti,Sinh:()=>pl,Slice:()=>dl,Softmax:()=>Ri,Softplus:()=>ed,SpaceToBatchND:()=>hl,SparseFillEmptyRows:()=>Zp,SparseReshape:()=>td,SparseSegmentMean:()=>Yp,SparseSegmentSum:()=>Jp,SparseToDense:()=>Qp,SplitV:()=>cl,Sqrt:()=>Ci,Square:()=>rd,SquaredDifference:()=>Mi,Step:()=>_i,StridedSlice:()=>fl,StringNGrams:()=>eh,StringSplit:()=>sm,StringToHashBucketFast:()=>im,Sub:()=>Fi,Sum:()=>Ei,SymbolicTensor:()=>oa,Tan:()=>ml,Tanh:()=>$i,Tensor:()=>rt,TensorBuffer:()=>rr,Tile:()=>Xa,TopK:()=>gl,Transform:()=>yl,Transpose:()=>Pi,Unique:()=>om,Unpack:()=>Al,UnsortedSegmentSum:()=>th,Variable:()=>Cp,ZerosLike:()=>xl,_FusedMatMul:()=>Cs,abs:()=>er,acos:()=>Ak,acosh:()=>xk,add:()=>le,addN:()=>um,all:()=>N2,any:()=>ff,argMax:()=>Nn,argMin:()=>bk,asin:()=>vk,asinh:()=>wk,atan:()=>kk,atan2:()=>Ik,atanh:()=>Sk,avgPool:()=>dm,avgPool3d:()=>E2,backend:()=>Un,backend_util:()=>N,basicLSTMCell:()=>h$,batchNorm:()=>gu,batchNorm2d:()=>Ek,batchNorm3d:()=>Rk,batchNorm4d:()=>Mk,batchToSpaceND:()=>pm,bincount:()=>R2,booleanMaskAsync:()=>Sz,broadcastArgs:()=>Fk,broadcastTo:()=>bp,broadcast_util:()=>vl,browser:()=>$n,buffer:()=>We,callbacks:()=>JG,cast:()=>me,ceil:()=>$k,clipByValue:()=>hn,clone:()=>Lr,complex:()=>Ms,concat:()=>kt,concat1d:()=>Pk,concat2d:()=>ad,concat3d:()=>_k,concat4d:()=>zk,constraints:()=>P7,conv1d:()=>M2,conv2d:()=>$s,conv2dTranspose:()=>$2,conv3d:()=>P2,conv3dTranspose:()=>Dk,copyRegisteredKernels:()=>ER,cos:()=>hm,cosh:()=>_2,cosineWindow:()=>sA,cumprod:()=>Lk,cumsum:()=>z2,customGrad:()=>Ra,data:()=>k6,denseBincount:()=>Bk,deprecationWarn:()=>I2,depthToSpace:()=>Wk,depthwiseConv2d:()=>uh,deregisterOp:()=>tj,device_util:()=>sh,diag:()=>U$,dilation2d:()=>Vk,disableDeprecationWarnings:()=>CF,dispose:()=>re,disposeVariables:()=>EF,div:()=>pe,divNoNan:()=>Uk,dot:()=>Z$,dropout:()=>A7,einsum:()=>Gk,elu:()=>dh,enableDebugMode:()=>NF,enableProdMode:()=>k2,enclosingPowerOfTwo:()=>x7,engine:()=>Ar,env:()=>Y,equal:()=>Cn,erf:()=>jk,exp:()=>En,expandDims:()=>Ht,expm1:()=>Hk,eye:()=>O2,fft:()=>km,fill:()=>sd,findBackend:()=>T2,findBackendFactory:()=>$F,floor:()=>ph,floorDiv:()=>oh,forceHalfFloat:()=>jS,fused:()=>zs,gather:()=>yu,gatherND:()=>y7,gather_util:()=>g2,getBackend:()=>an,getGradient:()=>n1,getKernel:()=>uf,getKernelsForBackend:()=>Ca,getThreadsCount:()=>Q1e,gpgpu_util:()=>wS,grad:()=>vP,grads:()=>wP,greater:()=>cn,greaterEqual:()=>kl,ifft:()=>Fp,imag:()=>cm,image:()=>Ie,inTopKAsync:()=>zz,initializers:()=>D7,input:()=>c4,io:()=>Sr,irfft:()=>eA,isFinite:()=>pP,isInf:()=>cP,isNaN:()=>qk,keep:()=>hr,kernel_impls:()=>jn,layers:()=>j7,leakyRelu:()=>fm,less:()=>D2,lessEqual:()=>Il,linalg:()=>C7,linspace:()=>Kk,loadGraphModel:()=>aH,loadLayersModel:()=>uU,localResponseNormalization:()=>Xk,log:()=>Rn,log1p:()=>mm,logSigmoid:()=>CP,logSoftmax:()=>L2,logSumExp:()=>e7,logicalAnd:()=>ha,logicalNot:()=>ym,logicalOr:()=>V2,logicalXor:()=>BP,losses:()=>bD,matMul:()=>Je,math:()=>Qw,max:()=>fr,maxPool:()=>Am,maxPool3d:()=>U2,maxPoolWithArgmax:()=>t7,maximum:()=>Za,mean:()=>Bt,memory:()=>cf,meshgrid:()=>HP,metrics:()=>K4,min:()=>Ps,minimum:()=>hh,mirrorPad:()=>r7,mod:()=>od,model:()=>oU,models:()=>X4,moments:()=>xm,movingAverage:()=>Cz,mul:()=>L,multiRNNCell:()=>e_,multinomial:()=>n7,neg:()=>zt,nextFrame:()=>lA,norm:()=>nA,notEqual:()=>Au,oneHot:()=>Rp,ones:()=>pn,onesLike:()=>Mn,op:()=>W,outerProduct:()=>s_,pad:()=>Gn,pad1d:()=>l_,pad2d:()=>d_,pad3d:()=>h_,pad4d:()=>f_,pool:()=>x_,pow:()=>_s,prelu:()=>vm,print:()=>Xw,prod:()=>G2,profile:()=>RF,rand:()=>I_,randomGamma:()=>C_,randomNormal:()=>a7,randomUniform:()=>ld,range:()=>xu,ready:()=>nd,real:()=>Mp,reciprocal:()=>s7,registerBackend:()=>wl,registerCallbackConstructor:()=>dU,registerGradient:()=>Sw,registerKernel:()=>Vn,registerOp:()=>ej,regularizers:()=>Z4,relu:()=>$a,relu6:()=>q2,removeBackend:()=>FF,reshape:()=>G,reverse:()=>Fn,reverse1d:()=>O_,reverse2d:()=>L_,reverse3d:()=>W_,reverse4d:()=>U_,rfft:()=>Im,round:()=>K2,rsqrt:()=>X2,scalar:()=>Se,scatterND:()=>g7,scatter_util:()=>y2,selu:()=>Z2,separableConv2d:()=>i7,sequential:()=>lU,serialization:()=>ue,setBackend:()=>S2,setPlatform:()=>PF,setThreadsCount:()=>J1e,setWasmPath:()=>Y1e,setWasmPaths:()=>kb,setWebGLContext:()=>o0,setdiff1dAsync:()=>o7,shared:()=>s0,sigmoid:()=>Tr,sign:()=>l7,signal:()=>xD,sin:()=>Y2,sinh:()=>J2,slice:()=>Pe,slice1d:()=>wm,slice2d:()=>Q2,slice3d:()=>Sl,slice4d:()=>To,slice_util:()=>_t,softmax:()=>ud,softplus:()=>id,spaceToBatchND:()=>bm,sparse:()=>pp,sparseToDense:()=>aA,spectral:()=>AD,split:()=>Kt,sqrt:()=>Cr,square:()=>At,squaredDifference:()=>tA,squeeze:()=>et,stack:()=>sr,step:()=>ch,stridedSlice:()=>u7,string:()=>Kc,sub:()=>he,sum:()=>ke,sumOutType:()=>ah,tan:()=>d7,tanh:()=>mu,tensor:()=>ct,tensor1d:()=>St,tensor2d:()=>ua,tensor3d:()=>tk,tensor4d:()=>mz,tensor5d:()=>gz,tensor6d:()=>yz,tensor_util:()=>la,test_util:()=>mk,tidy:()=>K,tile:()=>Dn,time:()=>MF,topk:()=>p7,train:()=>lo,transpose:()=>nt,truncatedNormal:()=>Sm,unique:()=>g1,unregisterGradient:()=>CR,unregisterKernel:()=>NR,unsortedSegmentSum:()=>h7,unstack:()=>en,upcastType:()=>Nr,util:()=>v,valueAndGrad:()=>kP,valueAndGrads:()=>IP,variable:()=>c7,variableGrads:()=>Zk,version:()=>Oh,version_converter:()=>sH,version_core:()=>w2,version_cpu:()=>jq,version_layers:()=>MA,version_wasm:()=>e2e,version_webgl:()=>mte,webgl:()=>gte,webgl_util:()=>HI,webgpu:()=>K8,where:()=>Br,whereAsync:()=>rA,zeros:()=>Wt,zerosLike:()=>at});var _E=Object.create,$f=Object.defineProperty,zE=Object.getOwnPropertyDescriptor,uw=Object.getOwnPropertyNames,OE=Object.getPrototypeOf,DE=Object.prototype.hasOwnProperty,LE=e=>$f(e,"__esModule",{value:!0}),ir=(e,t)=>function(){return t||(0,e[uw(e)[0]])((t={exports:{}}).exports,t),t.exports},Le=(e,t)=>{for(var r in t)$f(e,r,{get:t[r],enumerable:!0})},BE=(e,t,r,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let a of uw(t))!DE.call(e,a)&&(r||a!=="default")&&$f(e,a,{get:()=>t[a],enumerable:!(n=zE(t,a))||n.enumerable});return e},$o=(e,t)=>BE(LE($f(e!=null?_E(OE(e)):{},"default",!t&&e&&e.__esModule?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),WE=ir({"src/node_modules/long/src/long.js"(e,t){t.exports=n;var r=null;try{r=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(I){}function n(I,O,z){this.low=I|0,this.high=O|0,this.unsigned=!!z}n.prototype.__isLong__,Object.defineProperty(n.prototype,"__isLong__",{value:!0});function a(I){return(I&&I.__isLong__)===!0}n.isLong=a;var s={},i={};function o(I,O){var z,j,X;return O?(I>>>=0,(X=0<=I&&I<256)&&(j=i[I],j)?j:(z=u(I,(I|0)<0?-1:0,!0),X&&(i[I]=z),z)):(I|=0,(X=-128<=I&&I<128)&&(j=s[I],j)?j:(z=u(I,I<0?-1:0,!1),X&&(s[I]=z),z))}n.fromInt=o;function l(I,O){if(isNaN(I))return O?b:x;if(O){if(I<0)return b;if(I>=g)return R}else{if(I<=-y)return _;if(I+1>=y)return E}return I<0?l(-I,O).neg():u(I%m|0,I/m|0,O)}n.fromNumber=l;function u(I,O,z){return new n(I,O,z)}n.fromBits=u;var d=Math.pow;function h(I,O,z){if(I.length===0)throw Error("empty string");if(I==="NaN"||I==="Infinity"||I==="+Infinity"||I==="-Infinity")return x;if(typeof O=="number"?(z=O,O=!1):O=!!O,z=z||10,z<2||36<z)throw RangeError("radix");var j;if((j=I.indexOf("-"))>0)throw Error("interior hyphen");if(j===0)return h(I.substring(1),O,z).neg();for(var X=l(d(z,8)),D=x,Q=0;Q<I.length;Q+=8){var V=Math.min(8,I.length-Q),ee=parseInt(I.substring(Q,Q+V),z);if(V<8){var J=l(d(z,V));D=D.mul(J).add(l(ee))}else D=D.mul(X),D=D.add(l(ee))}return D.unsigned=O,D}n.fromString=h;function p(I,O){return typeof I=="number"?l(I,O):typeof I=="string"?h(I,O):u(I.low,I.high,typeof O=="boolean"?O:I.unsigned)}n.fromValue=p;var c=1<<16,f=1<<24,m=c*c,g=m*m,y=g/2,A=o(f),x=o(0);n.ZERO=x;var b=o(0,!0);n.UZERO=b;var w=o(1);n.ONE=w;var T=o(1,!0);n.UONE=T;var S=o(-1);n.NEG_ONE=S;var E=u(-1,2147483647,!1);n.MAX_VALUE=E;var R=u(-1,-1,!0);n.MAX_UNSIGNED_VALUE=R;var _=u(0,-2147483648,!1);n.MIN_VALUE=_;var M=n.prototype;M.toInt=function(){return this.unsigned?this.low>>>0:this.low},M.toNumber=function(){return this.unsigned?(this.high>>>0)*m+(this.low>>>0):this.high*m+(this.low>>>0)},M.toString=function(I){if(I=I||10,I<2||36<I)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(_)){var O=l(I),z=this.div(O),j=z.mul(O).sub(this);return z.toString(I)+j.toInt().toString(I)}else return"-"+this.neg().toString(I);for(var X=l(d(I,6),this.unsigned),D=this,Q="";;){var V=D.div(X),ee=D.sub(V.mul(X)).toInt()>>>0,J=ee.toString(I);if(D=V,D.isZero())return J+Q;for(;J.length<6;)J="0"+J;Q=""+J+Q}},M.getHighBits=function(){return this.high},M.getHighBitsUnsigned=function(){return this.high>>>0},M.getLowBits=function(){return this.low},M.getLowBitsUnsigned=function(){return this.low>>>0},M.getNumBitsAbs=function(){if(this.isNegative())return this.eq(_)?64:this.neg().getNumBitsAbs();for(var I=this.high!=0?this.high:this.low,O=31;O>0&&(I&1<<O)==0;O--);return this.high!=0?O+33:O+1},M.isZero=function(){return this.high===0&&this.low===0},M.eqz=M.isZero,M.isNegative=function(){return!this.unsigned&&this.high<0},M.isPositive=function(){return this.unsigned||this.high>=0},M.isOdd=function(){return(this.low&1)===1},M.isEven=function(){return(this.low&1)===0},M.equals=function(I){return a(I)||(I=p(I)),this.unsigned!==I.unsigned&&this.high>>>31===1&&I.high>>>31===1?!1:this.high===I.high&&this.low===I.low},M.eq=M.equals,M.notEquals=function(I){return!this.eq(I)},M.neq=M.notEquals,M.ne=M.notEquals,M.lessThan=function(I){return this.comp(I)<0},M.lt=M.lessThan,M.lessThanOrEqual=function(I){return this.comp(I)<=0},M.lte=M.lessThanOrEqual,M.le=M.lessThanOrEqual,M.greaterThan=function(I){return this.comp(I)>0},M.gt=M.greaterThan,M.greaterThanOrEqual=function(I){return this.comp(I)>=0},M.gte=M.greaterThanOrEqual,M.ge=M.greaterThanOrEqual,M.compare=function(I){if(a(I)||(I=p(I)),this.eq(I))return 0;var O=this.isNegative(),z=I.isNegative();return O&&!z?-1:!O&&z?1:this.unsigned?I.high>>>0>this.high>>>0||I.high===this.high&&I.low>>>0>this.low>>>0?-1:1:this.sub(I).isNegative()?-1:1},M.comp=M.compare,M.negate=function(){return!this.unsigned&&this.eq(_)?_:this.not().add(w)},M.neg=M.negate,M.add=function(I){a(I)||(I=p(I));var O=this.high>>>16,z=this.high&65535,j=this.low>>>16,X=this.low&65535,D=I.high>>>16,Q=I.high&65535,V=I.low>>>16,ee=I.low&65535,J=0,se=0,Z=0,ae=0;return ae+=X+ee,Z+=ae>>>16,ae&=65535,Z+=j+V,se+=Z>>>16,Z&=65535,se+=z+Q,J+=se>>>16,se&=65535,J+=O+D,J&=65535,u(Z<<16|ae,J<<16|se,this.unsigned)},M.subtract=function(I){return a(I)||(I=p(I)),this.add(I.neg())},M.sub=M.subtract,M.multiply=function(I){if(this.isZero())return x;if(a(I)||(I=p(I)),r){var O=r.mul(this.low,this.high,I.low,I.high);return u(O,r.get_high(),this.unsigned)}if(I.isZero())return x;if(this.eq(_))return I.isOdd()?_:x;if(I.eq(_))return this.isOdd()?_:x;if(this.isNegative())return I.isNegative()?this.neg().mul(I.neg()):this.neg().mul(I).neg();if(I.isNegative())return this.mul(I.neg()).neg();if(this.lt(A)&&I.lt(A))return l(this.toNumber()*I.toNumber(),this.unsigned);var z=this.high>>>16,j=this.high&65535,X=this.low>>>16,D=this.low&65535,Q=I.high>>>16,V=I.high&65535,ee=I.low>>>16,J=I.low&65535,se=0,Z=0,ae=0,de=0;return de+=D*J,ae+=de>>>16,de&=65535,ae+=X*J,Z+=ae>>>16,ae&=65535,ae+=D*ee,Z+=ae>>>16,ae&=65535,Z+=j*J,se+=Z>>>16,Z&=65535,Z+=X*ee,se+=Z>>>16,Z&=65535,Z+=D*V,se+=Z>>>16,Z&=65535,se+=z*J+j*ee+X*V+D*Q,se&=65535,u(ae<<16|de,se<<16|Z,this.unsigned)},M.mul=M.multiply,M.divide=function(I){if(a(I)||(I=p(I)),I.isZero())throw Error("division by zero");if(r){if(!this.unsigned&&this.high===-2147483648&&I.low===-1&&I.high===-1)return this;var O=(this.unsigned?r.div_u:r.div_s)(this.low,this.high,I.low,I.high);return u(O,r.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?b:x;var z,j,X;if(this.unsigned){if(I.unsigned||(I=I.toUnsigned()),I.gt(this))return b;if(I.gt(this.shru(1)))return T;X=b}else{if(this.eq(_)){if(I.eq(w)||I.eq(S))return _;if(I.eq(_))return w;var D=this.shr(1);return z=D.div(I).shl(1),z.eq(x)?I.isNegative()?w:S:(j=this.sub(I.mul(z)),X=z.add(j.div(I)),X)}else if(I.eq(_))return this.unsigned?b:x;if(this.isNegative())return I.isNegative()?this.neg().div(I.neg()):this.neg().div(I).neg();if(I.isNegative())return this.div(I.neg()).neg();X=x}for(j=this;j.gte(I);){z=Math.max(1,Math.floor(j.toNumber()/I.toNumber()));for(var Q=Math.ceil(Math.log(z)/Math.LN2),V=Q<=48?1:d(2,Q-48),ee=l(z),J=ee.mul(I);J.isNegative()||J.gt(j);)z-=V,ee=l(z,this.unsigned),J=ee.mul(I);ee.isZero()&&(ee=w),X=X.add(ee),j=j.sub(J)}return X},M.div=M.divide,M.modulo=function(I){if(a(I)||(I=p(I)),r){var O=(this.unsigned?r.rem_u:r.rem_s)(this.low,this.high,I.low,I.high);return u(O,r.get_high(),this.unsigned)}return this.sub(this.div(I).mul(I))},M.mod=M.modulo,M.rem=M.modulo,M.not=function(){return u(~this.low,~this.high,this.unsigned)},M.and=function(I){return a(I)||(I=p(I)),u(this.low&I.low,this.high&I.high,this.unsigned)},M.or=function(I){return a(I)||(I=p(I)),u(this.low|I.low,this.high|I.high,this.unsigned)},M.xor=function(I){return a(I)||(I=p(I)),u(this.low^I.low,this.high^I.high,this.unsigned)},M.shiftLeft=function(I){return a(I)&&(I=I.toInt()),(I&=63)===0?this:I<32?u(this.low<<I,this.high<<I|this.low>>>32-I,this.unsigned):u(0,this.low<<I-32,this.unsigned)},M.shl=M.shiftLeft,M.shiftRight=function(I){return a(I)&&(I=I.toInt()),(I&=63)===0?this:I<32?u(this.low>>>I|this.high<<32-I,this.high>>I,this.unsigned):u(this.high>>I-32,this.high>=0?0:-1,this.unsigned)},M.shr=M.shiftRight,M.shiftRightUnsigned=function(I){if(a(I)&&(I=I.toInt()),I&=63,I===0)return this;var O=this.high;if(I<32){var z=this.low;return u(z>>>I|O<<32-I,O>>>I,this.unsigned)}else return I===32?u(O,0,this.unsigned):u(O>>>I-32,0,this.unsigned)},M.shru=M.shiftRightUnsigned,M.shr_u=M.shiftRightUnsigned,M.toSigned=function(){return this.unsigned?u(this.low,this.high,!1):this},M.toUnsigned=function(){return this.unsigned?this:u(this.low,this.high,!0)},M.toBytes=function(I){return I?this.toBytesLE():this.toBytesBE()},M.toBytesLE=function(){var I=this.high,O=this.low;return[O&255,O>>>8&255,O>>>16&255,O>>>24,I&255,I>>>8&255,I>>>16&255,I>>>24]},M.toBytesBE=function(){var I=this.high,O=this.low;return[I>>>24,I>>>16&255,I>>>8&255,I&255,O>>>24,O>>>16&255,O>>>8&255,O&255]},n.fromBytes=function(I,O,z){return z?n.fromBytesLE(I,O):n.fromBytesBE(I,O)},n.fromBytesLE=function(I,O){return new n(I[0]|I[1]<<8|I[2]<<16|I[3]<<24,I[4]|I[5]<<8|I[6]<<16|I[7]<<24,O)},n.fromBytesBE=function(I,O){return new n(I[4]<<24|I[5]<<16|I[6]<<8|I[7],I[0]<<24|I[1]<<16|I[2]<<8|I[3],O)}}}),VE=ir({"(disabled):src/node_modules/node-fetch/browser.js"(){}}),UE=ir({"(disabled):util"(){}}),GE=ir({"src/node_modules/seedrandom/lib/alea.js"(e,t){(function(r,n,a){function s(u){var d=this,h=l();d.next=function(){var p=2091639*d.s0+d.c*23283064365386963e-26;return d.s0=d.s1,d.s1=d.s2,d.s2=p-(d.c=p|0)},d.c=1,d.s0=h(" "),d.s1=h(" "),d.s2=h(" "),d.s0-=h(u),d.s0<0&&(d.s0+=1),d.s1-=h(u),d.s1<0&&(d.s1+=1),d.s2-=h(u),d.s2<0&&(d.s2+=1),h=null}function i(u,d){return d.c=u.c,d.s0=u.s0,d.s1=u.s1,d.s2=u.s2,d}function o(u,d){var h=new s(u),p=d&&d.state,c=h.next;return c.int32=function(){return h.next()*4294967296|0},c.double=function(){return c()+(c()*2097152|0)*11102230246251565e-32},c.quick=c,p&&(typeof p=="object"&&i(p,h),c.state=function(){return i(h,{})}),c}function l(){var u=4022871197,d=function(h){h=String(h);for(var p=0;p<h.length;p++){u+=h.charCodeAt(p);var c=.02519603282416938*u;u=c>>>0,c-=u,c*=u,u=c>>>0,c-=u,u+=c*4294967296}return(u>>>0)*23283064365386963e-26};return d}n&&n.exports?n.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),jE=ir({"src/node_modules/seedrandom/lib/xor128.js"(e,t){(function(r,n,a){function s(l){var u=this,d="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var p=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^p^p>>>8},l===(l|0)?u.x=l:d+=l;for(var h=0;h<d.length+64;h++)u.x^=d.charCodeAt(h)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var d=new s(l),h=u&&u.state,p=function(){return(d.next()>>>0)/4294967296};return p.double=function(){do var c=d.next()>>>11,f=(d.next()>>>0)/4294967296,m=(c+f)/(1<<21);while(m===0);return m},p.int32=d.next,p.quick=p,h&&(typeof h=="object"&&i(h,d),p.state=function(){return i(d,{})}),p}n&&n.exports?n.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),HE=ir({"src/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(r,n,a){function s(l){var u=this,d="";u.next=function(){var p=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(p^p<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:d+=l;for(var h=0;h<d.length+64;h++)u.x^=d.charCodeAt(h)|0,h==d.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var d=new s(l),h=u&&u.state,p=function(){return(d.next()>>>0)/4294967296};return p.double=function(){do var c=d.next()>>>11,f=(d.next()>>>0)/4294967296,m=(c+f)/(1<<21);while(m===0);return m},p.int32=d.next,p.quick=p,h&&(typeof h=="object"&&i(h,d),p.state=function(){return i(d,{})}),p}n&&n.exports?n.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),qE=ir({"src/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(r,n,a){function s(l){var u=this;u.next=function(){var h=u.x,p=u.i,c,f,m;return c=h[p],c^=c>>>7,f=c^c<<24,c=h[p+1&7],f^=c^c>>>10,c=h[p+3&7],f^=c^c>>>3,c=h[p+4&7],f^=c^c<<7,c=h[p+7&7],c=c^c<<13,f^=c^c<<9,h[p]=f,u.i=p+1&7,f};function d(h,p){var c,f,m=[];if(p===(p|0))f=m[0]=p;else for(p=""+p,c=0;c<p.length;++c)m[c&7]=m[c&7]<<15^p.charCodeAt(c)+m[c+1&7]<<13;for(;m.length<8;)m.push(0);for(c=0;c<8&&m[c]===0;++c);for(c==8?f=m[7]=-1:f=m[c],h.x=m,h.i=0,c=256;c>0;--c)h.next()}d(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var d=new s(l),h=u&&u.state,p=function(){return(d.next()>>>0)/4294967296};return p.double=function(){do var c=d.next()>>>11,f=(d.next()>>>0)/4294967296,m=(c+f)/(1<<21);while(m===0);return m},p.int32=d.next,p.quick=p,h&&(h.x&&i(h,d),p.state=function(){return i(d,{})}),p}n&&n.exports?n.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),KE=ir({"src/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(r,n,a){function s(l){var u=this;u.next=function(){var h=u.w,p=u.X,c=u.i,f,m;return u.w=h=h+1640531527|0,m=p[c+34&127],f=p[c=c+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=p[c]=m^f,u.i=c,m+(h^h>>>16)|0};function d(h,p){var c,f,m,g,y,A=[],x=128;for(p===(p|0)?(f=p,p=null):(p=p+"\0",f=0,x=Math.max(x,p.length)),m=0,g=-32;g<x;++g)p&&(f^=p.charCodeAt((g+32)%p.length)),g===0&&(y=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,g>=0&&(y=y+1640531527|0,c=A[g&127]^=f+y,m=c==0?m+1:0);for(m>=128&&(A[(p&&p.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=A[m+34&127],c=A[m=m+1&127],f^=f<<13,c^=c<<17,f^=f>>>15,c^=c>>>12,A[m]=f^c;h.w=y,h.X=A,h.i=m}d(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var d=new s(l),h=u&&u.state,p=function(){return(d.next()>>>0)/4294967296};return p.double=function(){do var c=d.next()>>>11,f=(d.next()>>>0)/4294967296,m=(c+f)/(1<<21);while(m===0);return m},p.int32=d.next,p.quick=p,h&&(h.X&&i(h,d),p.state=function(){return i(d,{})}),p}n&&n.exports?n.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),XE=ir({"src/node_modules/seedrandom/lib/tychei.js"(e,t){(function(r,n,a){function s(l){var u=this,d="";u.next=function(){var p=u.b,c=u.c,f=u.d,m=u.a;return p=p<<25^p>>>7^c,c=c-f|0,f=f<<24^f>>>8^m,m=m-p|0,u.b=p=p<<20^p>>>12^c,u.c=c=c-f|0,u.d=f<<16^c>>>16^m,u.a=m-p|0},u.a=0,u.b=0,u.c=-1640531527,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):d+=l;for(var h=0;h<d.length+20;h++)u.b^=d.charCodeAt(h)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var d=new s(l),h=u&&u.state,p=function(){return(d.next()>>>0)/4294967296};return p.double=function(){do var c=d.next()>>>11,f=(d.next()>>>0)/4294967296,m=(c+f)/(1<<21);while(m===0);return m},p.int32=d.next,p.quick=p,h&&(typeof h=="object"&&i(h,d),p.state=function(){return i(d,{})}),p}n&&n.exports?n.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),ZE=ir({"(disabled):crypto"(){}}),YE=ir({"src/node_modules/seedrandom/seedrandom.js"(e,t){(function(r,n,a){var s=256,i=6,o=52,l="random",u=a.pow(s,i),d=a.pow(2,o),h=d*2,p=s-1,c;function f(w,T,S){var E=[];T=T==!0?{entropy:!0}:T||{};var R=A(y(T.entropy?[w,b(n)]:w==null?x():w,3),E),_=new m(E),M=function(){for(var I=_.g(i),O=u,z=0;I<d;)I=(I+z)*s,O*=s,z=_.g(1);for(;I>=h;)I/=2,O/=2,z>>>=1;return(I+z)/O};return M.int32=function(){return _.g(4)|0},M.quick=function(){return _.g(4)/4294967296},M.double=M,A(b(_.S),n),(T.pass||S||function(I,O,z,j){return j&&(j.S&&g(j,_),I.state=function(){return g(_,{})}),z?(a[l]=I,O):I})(M,R,"global"in T?T.global:this==a,T.state)}function m(w){var T,S=w.length,E=this,R=0,_=E.i=E.j=0,M=E.S=[];for(S||(w=[S++]);R<s;)M[R]=R++;for(R=0;R<s;R++)M[R]=M[_=p&_+w[R%S]+(T=M[R])],M[_]=T;(E.g=function(I){for(var O,z=0,j=E.i,X=E.j,D=E.S;I--;)O=D[j=p&j+1],z=z*s+D[p&(D[j]=D[X=p&X+O])+(D[X]=O)];return E.i=j,E.j=X,z})(s)}function g(w,T){return T.i=w.i,T.j=w.j,T.S=w.S.slice(),T}function y(w,T){var S=[],E=typeof w,R;if(T&&E=="object")for(R in w)try{S.push(y(w[R],T-1))}catch(_){}return S.length?S:E=="string"?w:w+"\0"}function A(w,T){for(var S=w+"",E,R=0;R<S.length;)T[p&R]=p&(E^=T[p&R]*19)+S.charCodeAt(R++);return b(T)}function x(){try{var w;return c&&(w=c.randomBytes)?w=w(s):(w=new Uint8Array(s),(r.crypto||r.msCrypto).getRandomValues(w)),b(w)}catch(E){var T=r.navigator,S=T&&T.plugins;return[+new Date,r,S,r.screen,b(n)]}}function b(w){return String.fromCharCode.apply(0,w)}if(A(a.random(),n),typeof t=="object"&&t.exports){t.exports=f;try{c=ZE()}catch(w){}}else typeof define=="function"&&define.amd?define(function(){return f}):a["seed"+l]=f})(typeof self!="undefined"?self:e,[],Math)}}),Pf=ir({"src/node_modules/seedrandom/index.js"(e,t){var r=GE(),n=jE(),a=HE(),s=qE(),i=KE(),o=XE(),l=YE();l.alea=r,l.xor128=n,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}}),dw=ir({"(disabled):src/node_modules/string_decoder/index.js"(){}}),n2=ir({"(disabled):fs"(){}}),nf=ir({"(disabled):path"(){}}),JE=ir({"(disabled):worker_threads"(){}}),QE=ir({"(disabled):perf_hooks"(){}}),eR=ir({"(disabled):os"(){}}),tR=ir({"src/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.js"(e,t){var r=(()=>{var n=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(n=n||__filename),function(a){a=a||{};function s(){return $e.buffer!=$r&&Jn($e.buffer),Qh}function i(){return $e.buffer!=$r&&Jn($e.buffer),ec}function o(){return $e.buffer!=$r&&Jn($e.buffer),jd}function l(){return $e.buffer!=$r&&Jn($e.buffer),tc}function u(){return $e.buffer!=$r&&Jn($e.buffer),rc}function d(){return $e.buffer!=$r&&Jn($e.buffer),nc}function h(){return $e.buffer!=$r&&Jn($e.buffer),ac}var p=typeof a!="undefined"?a:{},c,f;p.ready=new Promise(function(C,$){c=C,f=$});var m;typeof process!="undefined"&&process.listeners&&(m={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var g=Object.assign({},p),y=[],A="./this.program",x=(C,$)=>{throw $},b=typeof window=="object",w=typeof importScripts=="function",T=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",S=p.ENVIRONMENT_IS_PTHREAD||!1,E="";function R(C){return p.locateFile?p.locateFile(C,E):E+C}var _,M,I,O;function z(C){C instanceof ep||J("exiting due to exception: "+C)}var j,X,D;if(T){w?E=nf().dirname(E)+"/":E=__dirname+"/",D=()=>{X||(j=n2(),X=nf())},_=function($,U){return D(),$=X.normalize($),j.readFileSync($,U?void 0:"utf8")},I=$=>{var U=_($,!0);return U.buffer||(U=new Uint8Array(U)),U},M=($,U,te)=>{D(),$=X.normalize($),j.readFile($,function(ge,xe){ge?te(ge):U(xe.buffer)})},process.argv.length>1&&(A=process.argv[1].replace(/\\/g,"/")),y=process.argv.slice(2),process.on("uncaughtException",function($){if(!($ instanceof ep))throw $}),process.on("unhandledRejection",function($){throw $}),x=($,U)=>{if(eo())throw process.exitCode=$,U;z(U),process.exit($)},p.inspect=function(){return"[Emscripten Module object]"};let C;try{C=JE()}catch($){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),$}global.Worker=C.Worker}else(b||w)&&(w?E=self.location.href:typeof document!="undefined"&&document.currentScript&&(E=document.currentScript.src),typeof n!="undefined"&&n&&(E=n),E.indexOf("blob:")!==0?E=E.substr(0,E.replace(/[?#].*/,"").lastIndexOf("/")+1):E="",T||(_=C=>{var $=new XMLHttpRequest;return $.open("GET",C,!1),$.send(null),$.responseText},w&&(I=C=>{var $=new XMLHttpRequest;return $.open("GET",C,!1),$.responseType="arraybuffer",$.send(null),new Uint8Array($.response)}),M=(C,$,U)=>{var te=new XMLHttpRequest;te.open("GET",C,!0),te.responseType="arraybuffer",te.onload=()=>{if(te.status==200||te.status==0&&te.response){$(te.response);return}U()},te.onerror=U,te.send(null)}),O=C=>document.title=C);T&&typeof performance=="undefined"&&(global.performance=QE().performance);var Q=console.log.bind(console),V=console.warn.bind(console);T&&(D(),Q=C=>j.writeSync(1,C+`
|
|
`),V=C=>j.writeSync(2,C+`
|
|
`));var ee=p.print||Q,J=p.printErr||V;Object.assign(p,g),g=null,p.arguments&&(y=p.arguments),p.thisProgram&&(A=p.thisProgram),p.quit&&(x=p.quit);var se=4;function Z(C){Z.shown||(Z.shown={}),Z.shown[C]||(Z.shown[C]=1,J(C))}function ae(C,$){if(typeof WebAssembly.Function=="function"){for(var U={i:"i32",j:"i64",f:"f32",d:"f64"},te={parameters:[],results:$[0]=="v"?[]:[U[$[0]]]},ge=1;ge<$.length;++ge)te.parameters.push(U[$[ge]]);return new WebAssembly.Function(te,C)}var xe=[1,0,1,96],Ne=$.slice(0,1),_e=$.slice(1),$t={i:127,j:126,f:125,d:124};xe.push(_e.length);for(var ge=0;ge<_e.length;++ge)xe.push($t[_e[ge]]);Ne=="v"?xe.push(0):xe=xe.concat([1,$t[Ne]]),xe[1]=xe.length-2;var ra=new Uint8Array([0,97,115,109,1,0,0,0].concat(xe,[2,7,1,1,101,1,102,0,0,7,5,1,1,102,0,0])),na=new WebAssembly.Module(ra),$c=new WebAssembly.Instance(na,{e:{f:C}}),tp=$c.exports.f;return tp}var de=[],Ae;function be(){if(de.length)return de.pop();try{wn.grow(1)}catch(C){throw C instanceof RangeError?"Unable to grow wasm table. Set ALLOW_TABLE_GROWTH.":C}return wn.length-1}function Ee(C,$){for(var U=C;U<C+$;U++){var te=Hl(U);te&&Ae.set(te,U)}}var Me=0,De=C=>{Me=C},Be=Atomics.load,Ze=Atomics.store,ot=Atomics.compareExchange,dt;p.wasmBinary&&(dt=p.wasmBinary);var pt=p.noExitRuntime||!0;typeof WebAssembly!="object"&&Ul("no native wasm support detected");var $e,vt,yt=!1,Fr;function ur(C,$){C||Ul($)}function Xr(C){var $=p["_"+C];return $}function Jt(C,$,U,te,ge){var xe={string:function(kn){var Ql=0;if(kn!=null&&kn!==0){var w3=(kn.length<<2)+1;Ql=Jl(w3),Ji(kn,Ql,w3)}return Ql},array:function(kn){var Ql=Jl(kn.length);return La(kn,Ql),Ql}};function Ne(kn){return $==="string"?vn(kn):$==="boolean"?Boolean(kn):kn}var _e=Xr(C),$t=[],ra=0;if(te)for(var na=0;na<te.length;na++){var $c=xe[U[na]];$c?(ra===0&&(ra=Dy()),$t[na]=$c(te[na])):$t[na]=te[na]}var tp=_e.apply(null,$t);function CE(kn){return ra!==0&&Ec(ra),Ne(kn)}return tp=CE(tp),tp}function dr(C,$,U,te){U=U||[];var ge=U.every(function(Ne){return Ne==="number"}),xe=$!=="string";return xe&&ge&&!te?Xr(C):function(){return Jt(C,$,U,arguments,te)}}var Yn=1;function Zr(C){var $=new TextDecoder(C);this.decode=U=>(U.buffer instanceof SharedArrayBuffer&&(U=new Uint8Array(U)),$.decode.call($,U))}var Qt=typeof TextDecoder!="undefined"?new Zr("utf8"):void 0;function bn(C,$,U){for(var te=$+U,ge=$;C[ge]&&!(ge>=te);)++ge;if(ge-$>16&&C.subarray&&Qt)return Qt.decode(C.subarray($,ge));for(var xe="";$<ge;){var Ne=C[$++];if(!(Ne&128)){xe+=String.fromCharCode(Ne);continue}var _e=C[$++]&63;if((Ne&224)==192){xe+=String.fromCharCode((Ne&31)<<6|_e);continue}var $t=C[$++]&63;if((Ne&240)==224?Ne=(Ne&15)<<12|_e<<6|$t:Ne=(Ne&7)<<18|_e<<12|$t<<6|C[$++]&63,Ne<65536)xe+=String.fromCharCode(Ne);else{var ra=Ne-65536;xe+=String.fromCharCode(55296|ra>>10,56320|ra&1023)}}return xe}function vn(C,$){return C?bn(i(),C,$):""}function ps(C,$,U,te){if(!(te>0))return 0;for(var ge=U,xe=U+te-1,Ne=0;Ne<C.length;++Ne){var _e=C.charCodeAt(Ne);if(_e>=55296&&_e<=57343){var $t=C.charCodeAt(++Ne);_e=65536+((_e&1023)<<10)|$t&1023}if(_e<=127){if(U>=xe)break;$[U++]=_e}else if(_e<=2047){if(U+1>=xe)break;$[U++]=192|_e>>6,$[U++]=128|_e&63}else if(_e<=65535){if(U+2>=xe)break;$[U++]=224|_e>>12,$[U++]=128|_e>>6&63,$[U++]=128|_e&63}else{if(U+3>=xe)break;$[U++]=240|_e>>18,$[U++]=128|_e>>12&63,$[U++]=128|_e>>6&63,$[U++]=128|_e&63}}return $[U]=0,U-ge}function Ji(C,$,U){return ps(C,i(),$,U)}function Jh(C){for(var $=0,U=0;U<C.length;++U){var te=C.charCodeAt(U);te>=55296&&te<=57343&&(te=65536+((te&1023)<<10)|C.charCodeAt(++U)&1023),te<=127?++$:te<=2047?$+=2:te<=65535?$+=3:$+=4}return $}var hs=typeof TextDecoder!="undefined"?new Zr("utf-16le"):void 0;function La(C,$){s().set(C,$)}function Gd(C,$,U){for(var te=0;te<C.length;++te)s()[$++>>0]=C.charCodeAt(te);U||(s()[$>>0]=0)}function Wl(C,$){return C%$>0&&(C+=$-C%$),C}var $r,Qh,ec,jd,tc,rc,r3,nc,ac;S&&($r=p.buffer);function Jn(C){$r=C,p.HEAP8=Qh=new Int8Array(C),p.HEAP16=jd=new Int16Array(C),p.HEAP32=rc=new Int32Array(C),p.HEAPU8=ec=new Uint8Array(C),p.HEAPU16=tc=new Uint16Array(C),p.HEAPU32=r3=new Uint32Array(C),p.HEAPF32=nc=new Float32Array(C),p.HEAPF64=ac=new Float64Array(C)}var sc=p.INITIAL_MEMORY||16777216;if(S)$e=p.wasmMemory,$r=p.buffer;else if(p.wasmMemory)$e=p.wasmMemory;else if($e=new WebAssembly.Memory({initial:sc/65536,maximum:32768,shared:!0}),!($e.buffer instanceof SharedArrayBuffer))throw J("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),T&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");$e&&($r=$e.buffer),sc=$r.byteLength,Jn($r);var wn,Vl=[],cs=[],ug=[],ic=[],Qi=!1,dg=!1,oc=0;function eo(){return pt||oc>0}function Pr(){if(p.preRun)for(typeof p.preRun=="function"&&(p.preRun=[p.preRun]);p.preRun.length;)n3(p.preRun.shift());hc(Vl)}function Hd(){Qi=!0,!S&&hc(cs)}function pg(){S||(ze.terminateAllThreads(),dg=!0)}function hg(){if(!S){if(p.postRun)for(typeof p.postRun=="function"&&(p.postRun=[p.postRun]);p.postRun.length;)qd(p.postRun.shift());hc(ic)}}function n3(C){Vl.unshift(C)}function a3(C){cs.unshift(C)}function qd(C){ic.unshift(C)}var fs=0,lc=null,Qn=null;function Kd(C){fs++,p.monitorRunDependencies&&p.monitorRunDependencies(fs)}function s3(C){if(fs--,p.monitorRunDependencies&&p.monitorRunDependencies(fs),fs==0&&(lc!==null&&(clearInterval(lc),lc=null),Qn)){var $=Qn;Qn=null,$()}}p.preloadedImages={},p.preloadedAudios={};function Ul(C){S?postMessage({cmd:"onAbort",arg:C}):p.onAbort&&p.onAbort(C),C="Aborted("+C+")",J(C),yt=!0,Fr=1,C+=". Build with -s ASSERTIONS=1 for more info.";var $=new WebAssembly.RuntimeError(C);throw f($),$}var cg="data:application/octet-stream;base64,";function uc(C){return C.startsWith(cg)}function dc(C){return C.startsWith("file://")}var _r;_r="tfjs-backend-wasm-threaded-simd.wasm",uc(_r)||(_r=R(_r));function pc(C){try{if(C==_r&&dt)return new Uint8Array(dt);if(I)return I(C);throw"both async and sync fetching of the wasm failed"}catch($){Ul($)}}function Gl(){if(!dt&&(b||w)){if(typeof fetch=="function"&&!dc(_r))return fetch(_r,{credentials:"same-origin"}).then(function(C){if(!C.ok)throw"failed to load wasm binary file at '"+_r+"'";return C.arrayBuffer()}).catch(function(){return pc(_r)});if(M)return new Promise(function(C,$){M(_r,function(U){C(new Uint8Array(U))},$)})}return Promise.resolve().then(function(){return pc(_r)})}function fg(){var C={env:Ic,wasi_snapshot_preview1:Ic};function $(Ne,_e){var $t=Ne.exports;if(p.asm=$t,vg(p.asm.emscripten_tls_init),wn=p.asm.__indirect_function_table,a3(p.asm.__wasm_call_ctors),vt=_e,!S){var ra=ze.unusedWorkers.length;ze.unusedWorkers.forEach(function(na){ze.loadWasmModuleToWorker(na,function(){--ra||s3("wasm-instantiate")})})}}S||Kd("wasm-instantiate");function U(Ne){$(Ne.instance,Ne.module)}function te(Ne){return Gl().then(function(_e){return WebAssembly.instantiate(_e,C)}).then(function(_e){return _e}).then(Ne,function(_e){J("failed to asynchronously prepare wasm: "+_e),Ul(_e)})}function ge(){return!dt&&typeof WebAssembly.instantiateStreaming=="function"&&!uc(_r)&&!dc(_r)&&typeof fetch=="function"?fetch(_r,{credentials:"same-origin"}).then(function(Ne){var _e=WebAssembly.instantiateStreaming(Ne,C);return _e.then(U,function($t){return J("wasm streaming compile failed: "+$t),J("falling back to ArrayBuffer instantiation"),te(U)})}):te(U)}if(p.instantiateWasm)try{var xe=p.instantiateWasm(C,$);return xe}catch(Ne){return J("Module.instantiateWasm callback failed with error: "+Ne),!1}return ge().catch(f),{}}var i3,o3,mg={};function hc(C){for(;C.length>0;){var $=C.shift();if(typeof $=="function"){$(p);continue}var U=$.func;typeof U=="number"?$.arg===void 0?Hl(U)():Hl(U)($.arg):U($.arg===void 0?null:$.arg)}}function jl(C){var $=Dy(),U=C();return Ec($),U}function z9(C){return C}function l3(C){var $=/\b_Z[\w\d_]+/g;return C.replace($,function(U){var te=U;return U===te?U:te+" ["+U+"]"})}function gg(C){u()[C>>2]=0;var $=ze.pthreads[C];delete ze.pthreads[C],$.worker.terminate(),Oy(C),ze.runningWorkers.splice(ze.runningWorkers.indexOf($.worker),1),$.worker.pthread=void 0}function yg(C){var $=ze.pthreads[C];$.worker.postMessage({cmd:"cancel"})}function cc(C){var $=ze.pthreads[C];if($){u()[C>>2]=0;var U=$.worker;ze.returnWorkerToPool(U)}}function fc(C){SE(C)}function Ag(C){if(C instanceof ep||C=="unwind")return Fr;x(1,C)}var ze={unusedWorkers:[],runningWorkers:[],tlsInitFunctions:[],init:function(){S?ze.initWorker():ze.initMainThread()},initMainThread:function(){for(var C=8,$=0;$<C;++$)ze.allocateUnusedWorker()},initWorker:function(){pt=!1},pthreads:{},setExitStatus:function(C){Fr=C},terminateAllThreads:function(){for(var C in ze.pthreads){var $=ze.pthreads[C];$&&$.worker&&ze.returnWorkerToPool($.worker)}for(var U=0;U<ze.unusedWorkers.length;++U){var te=ze.unusedWorkers[U];te.terminate()}ze.unusedWorkers=[]},returnWorkerToPool:function(C){ze.runWithoutMainThreadQueuedCalls(function(){delete ze.pthreads[C.pthread.threadInfoStruct],ze.unusedWorkers.push(C),ze.runningWorkers.splice(ze.runningWorkers.indexOf(C),1),Oy(C.pthread.threadInfoStruct),C.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(C){u()[v3>>2]=0;try{C()}finally{u()[v3>>2]=1}},receiveObjectTransfer:function(C){},threadInit:function(){for(var C in ze.tlsInitFunctions)ze.tlsInitFunctions[C]()},loadWasmModuleToWorker:function(C,$){C.onmessage=U=>{var te=U.data,ge=te.cmd;if(C.pthread&&(ze.currentProxiedOperationCallerThread=C.pthread.threadInfoStruct),te.targetThread&&te.targetThread!=Cc()){var xe=ze.pthreads[te.targetThread];xe?xe.worker.postMessage(te,te.transferList):J('Internal error! Worker sent a message "'+ge+'" to target pthread '+te.targetThread+", but that thread no longer exists!"),ze.currentProxiedOperationCallerThread=void 0;return}ge==="processQueuedMainThreadWork"?g3():ge==="spawnThread"?gc(te):ge==="cleanupThread"?cc(te.thread):ge==="killThread"?gg(te.thread):ge==="cancelThread"?yg(te.thread):ge==="loaded"?(C.loaded=!0,$&&$(C),C.runPthread&&(C.runPthread(),delete C.runPthread)):ge==="print"?ee("Thread "+te.threadId+": "+te.text):ge==="printErr"?J("Thread "+te.threadId+": "+te.text):ge==="alert"?alert("Thread "+te.threadId+": "+te.text):te.target==="setimmediate"?C.postMessage(te):ge==="onAbort"?p.onAbort&&p.onAbort(te.arg):J("worker sent an unknown command "+ge),ze.currentProxiedOperationCallerThread=void 0},C.onerror=U=>{var te="worker sent an error!";throw J(te+" "+U.filename+":"+U.lineno+": "+U.message),U},T&&(C.on("message",function(U){C.onmessage({data:U})}),C.on("error",function(U){C.onerror(U)}),C.on("detachedExit",function(){})),C.postMessage({cmd:"load",urlOrBlob:p.mainScriptUrlOrBlob||n,wasmMemory:$e,wasmModule:vt})},allocateUnusedWorker:function(){var C=R("tfjs-backend-wasm-threaded-simd.worker.js");ze.unusedWorkers.push(new Worker(C))},getNewWorker:function(){return ze.unusedWorkers.length==0&&(ze.allocateUnusedWorker(),ze.loadWasmModuleToWorker(ze.unusedWorkers[0])),ze.unusedWorkers.pop()}};function xg(){var C=Cc(),$=u()[C+44>>2],U=u()[C+48>>2],te=$-U;b3($,te),Ec($)}p.establishStackSpace=xg;function mc(C){if(S)return no(1,0,C);try{fc(C)}catch($){Ag($)}}var to=[];function Hl(C){var $=to[C];return $||(C>=to.length&&(to.length=C+1),to[C]=$=wn.get(C)),$}function bg(C,$){return Hl(C)($)}p.invokeEntryPoint=bg;function u3(){var C=new Error;if(!C.stack){try{throw new Error}catch($){C=$}if(!C.stack)return"(no stack trace available)"}return C.stack.toString()}function vg(C,$,U){ze.tlsInitFunctions.push(C)}function d3(C,$){wn.set(C,$),to[C]=$}var ro;T?ro=()=>{var C=process.hrtime();return C[0]*1e3+C[1]/1e6}:S?ro=()=>performance.now()-p.__performance_now_clock_drift:ro=()=>performance.now();var wg=!0;function kg(C){return u()[m3()>>2]=C,C}function Ig(C,$){var U;if(C===0)U=Date.now();else if((C===1||C===4)&&wg)U=ro();else return kg(28),-1;return u()[$>>2]=U/1e3|0,u()[$+4>>2]=U%1e3*1e3*1e3|0,0}function Sg(C,$){return Ig(C,$)}function Tg(C){y3(C,!w,1,!b),ze.threadInit()}function Ng(C){S?postMessage({cmd:"cleanupThread",thread:C}):cc(C)}function gc(C){var $=ze.getNewWorker();if(!$)return 6;ze.runningWorkers.push($);var U=ze.pthreads[C.pthread_ptr]={worker:$,threadInfoStruct:C.pthread_ptr};$.pthread=U;var te={cmd:"run",start_routine:C.startRoutine,arg:C.arg,threadInfoStruct:C.pthread_ptr};return $.runPthread=()=>{te.time=performance.now(),$.postMessage(te,C.transferList)},$.loaded&&($.runPthread(),delete $.runPthread),0}function Cg(C,$,U,te){if(typeof SharedArrayBuffer=="undefined")return J("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;var ge=[],xe=0;if(S&&(ge.length===0||xe))return A3(687865856,C,$,U,te);if(xe)return xe;var Ne={startRoutine:U,pthread_ptr:C,arg:te,transferList:ge};return S?(Ne.cmd="spawnThread",postMessage(Ne,ge),0):gc(Ne)}function Eg(){return 2097152}function Rg(C,$){if(C==$)postMessage({cmd:"processQueuedMainThreadWork"});else if(S)postMessage({targetThread:C,cmd:"processThreadQueue"});else{var U=ze.pthreads[C],te=U&&U.worker;if(!te)return;te.postMessage({cmd:"processThreadQueue"})}return 1}function Mg(){Ul("")}function Fg(){T||w||Z("Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread")}function yc(){return 2147483648}function $g(C,$,U){i().copyWithin(C,$,$+U)}function Pg(){return T?eR().cpus().length:navigator.hardwareConcurrency}function no(C,$){var U=arguments.length-2,te=arguments;return jl(function(){for(var ge=U,xe=Jl(ge*8),Ne=xe>>3,_e=0;_e<U;_e++){var $t=te[2+_e];h()[Ne+_e]=$t}return x3(C,ge,xe,$)})}var Xd=[];function _g(C,$,U){Xd.length=$;for(var te=U>>3,ge=0;ge<$;ge++)Xd[ge]=h()[te+ge];var xe=C<0,Ne=xe?mg[-C-1]:ey[C];return Ne.apply(null,Xd)}function zg(C){try{return $e.grow(C-$r.byteLength+65535>>>16),Jn($e.buffer),1}catch($){}}function Og(C){var $=i().length;if(C=C>>>0,C<=$)return!1;var U=yc();if(C>U)return!1;for(var te=1;te<=4;te*=2){var ge=$*(1+.2/te);ge=Math.min(ge,C+100663296);var xe=Math.min(U,Wl(Math.max(C,ge),65536)),Ne=zg(xe);if(Ne)return!0}return!1}var Ke={inEventHandler:0,removeAllEventListeners:function(){for(var C=Ke.eventHandlers.length-1;C>=0;--C)Ke._removeHandler(C);Ke.eventHandlers=[],Ke.deferredCalls=[]},registerRemoveEventListeners:function(){Ke.removeEventListenersRegistered||(ug.push(Ke.removeAllEventListeners),Ke.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(C,$,U){function te(Ne,_e){if(Ne.length!=_e.length)return!1;for(var $t in Ne)if(Ne[$t]!=_e[$t])return!1;return!0}for(var ge in Ke.deferredCalls){var xe=Ke.deferredCalls[ge];if(xe.targetFunction==C&&te(xe.argsList,U))return}Ke.deferredCalls.push({targetFunction:C,precedence:$,argsList:U}),Ke.deferredCalls.sort(function(Ne,_e){return Ne.precedence<_e.precedence})},removeDeferredCalls:function(C){for(var $=0;$<Ke.deferredCalls.length;++$)Ke.deferredCalls[$].targetFunction==C&&(Ke.deferredCalls.splice($,1),--$)},canPerformEventHandlerRequests:function(){return Ke.inEventHandler&&Ke.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(Ke.canPerformEventHandlerRequests())for(var C=0;C<Ke.deferredCalls.length;++C){var $=Ke.deferredCalls[C];Ke.deferredCalls.splice(C,1),--C,$.targetFunction.apply(null,$.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(C,$){for(var U=0;U<Ke.eventHandlers.length;++U)Ke.eventHandlers[U].target==C&&(!$||$==Ke.eventHandlers[U].eventTypeString)&&Ke._removeHandler(U--)},_removeHandler:function(C){var $=Ke.eventHandlers[C];$.target.removeEventListener($.eventTypeString,$.eventListenerFunc,$.useCapture),Ke.eventHandlers.splice(C,1)},registerOrRemoveHandler:function(C){var $=function(te){++Ke.inEventHandler,Ke.currentEventHandler=C,Ke.runDeferredCalls(),C.handlerFunc(te),Ke.runDeferredCalls(),--Ke.inEventHandler};if(C.callbackfunc)C.eventListenerFunc=$,C.target.addEventListener(C.eventTypeString,$,C.useCapture),Ke.eventHandlers.push(C),Ke.registerRemoveEventListeners();else for(var U=0;U<Ke.eventHandlers.length;++U)Ke.eventHandlers[U].target==C.target&&Ke.eventHandlers[U].eventTypeString==C.eventTypeString&&Ke._removeHandler(U--)},queueEventHandlerOnThread_iiii:function(C,$,U,te,ge){jl(function(){var xe=Jl(12);u()[xe>>2]=U,u()[xe+4>>2]=te,u()[xe+8>>2]=ge,zy(C,637534208,$,te,xe)})},getTargetThreadForEventCallback:function(C){switch(C){case 1:return 0;case 2:return ze.currentProxiedOperationCallerThread;default:return C}},getNodeNameForTarget:function(C){return C?C==window?"#window":C==screen?"#screen":C&&C.nodeName?C.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function Dg(C){var $=Jh(C)+1,U=_y($);return Ji(C,U,$),U}function Lg(C,$,U,te){jl(function(){var ge=Jl(12),xe=0;$&&(xe=Dg($)),u()[ge>>2]=xe,u()[ge+4>>2]=U,u()[ge+8>>2]=te,zy(C,657457152,0,xe,ge)})}function Bg(C,$,U,te){$=$?vn($):"",Lg(C,$,U,te)}function Wg(C){return C>2?vn(C):C}var Vg=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function Ug(C){C=Wg(C);var $=Vg[C]||(typeof document!="undefined"?document.querySelector(C):void 0);return $}function Zd(C){return Ug(C)}function Ac(C,$,U){var te=Zd(C);if(!te)return-4;if(te.canvasSharedPtr&&(u()[te.canvasSharedPtr>>2]=$,u()[te.canvasSharedPtr+4>>2]=U),te.offscreenCanvas||!te.controlTransferredOffscreen){te.offscreenCanvas&&(te=te.offscreenCanvas);var ge=!1;if(te.GLctxObject&&te.GLctxObject.GLctx){var xe=te.GLctxObject.GLctx.getParameter(2978);ge=xe[0]===0&&xe[1]===0&&xe[2]===te.width&&xe[3]===te.height}te.width=$,te.height=U,ge&&te.GLctxObject.GLctx.viewport(0,0,$,U)}else if(te.canvasSharedPtr){var Ne=u()[te.canvasSharedPtr+8>>2];return Bg(Ne,C,$,U),1}else return-4;return 0}function xc(C,$,U){return S?no(2,1,C,$,U):Ac(C,$,U)}function Gg(C,$,U){var te=Zd(C);return te?Ac(C,$,U):xc(C,$,U)}function jg(){throw"unwind"}function Hg(C){var $=C.getExtension("ANGLE_instanced_arrays");if($)return C.vertexAttribDivisor=function(U,te){$.vertexAttribDivisorANGLE(U,te)},C.drawArraysInstanced=function(U,te,ge,xe){$.drawArraysInstancedANGLE(U,te,ge,xe)},C.drawElementsInstanced=function(U,te,ge,xe,Ne){$.drawElementsInstancedANGLE(U,te,ge,xe,Ne)},1}function qg(C){var $=C.getExtension("OES_vertex_array_object");if($)return C.createVertexArray=function(){return $.createVertexArrayOES()},C.deleteVertexArray=function(U){$.deleteVertexArrayOES(U)},C.bindVertexArray=function(U){$.bindVertexArrayOES(U)},C.isVertexArray=function(U){return $.isVertexArrayOES(U)},1}function Kg(C){var $=C.getExtension("WEBGL_draw_buffers");if($)return C.drawBuffers=function(U,te){$.drawBuffersWEBGL(U,te)},1}function Xg(C){return!!(C.multiDrawWebgl=C.getExtension("WEBGL_multi_draw"))}var Ft={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},queries:[],stringCache:{},unpackAlignment:4,recordError:function(C){Ft.lastError||(Ft.lastError=C)},getNewId:function(C){for(var $=Ft.counter++,U=C.length;U<$;U++)C[U]=null;return $},getSource:function(C,$,U,te){for(var ge="",xe=0;xe<$;++xe){var Ne=te?u()[te+xe*4>>2]:-1;ge+=vn(u()[U+xe*4>>2],Ne<0?void 0:Ne)}return ge},createContext:function(C,$){C.getContextSafariWebGL2Fixed||(C.getContextSafariWebGL2Fixed=C.getContext,C.getContext=function(ge,xe){var Ne=C.getContextSafariWebGL2Fixed(ge,xe);return ge=="webgl"==Ne instanceof WebGLRenderingContext?Ne:null});var U=C.getContext("webgl",$);if(!U)return 0;var te=Ft.registerContext(U,$);return te},registerContext:function(C,$){var U=_y(8);u()[U+4>>2]=Cc();var te={handle:U,attributes:$,version:$.majorVersion,GLctx:C};return C.canvas&&(C.canvas.GLctxObject=te),Ft.contexts[U]=te,(typeof $.enableExtensionsByDefault=="undefined"||$.enableExtensionsByDefault)&&Ft.initExtensions(te),U},makeContextCurrent:function(C){return Ft.currentContext=Ft.contexts[C],p.ctx=kc=Ft.currentContext&&Ft.currentContext.GLctx,!(C&&!kc)},getContext:function(C){return Ft.contexts[C]},deleteContext:function(C){Ft.currentContext===Ft.contexts[C]&&(Ft.currentContext=null),typeof Ke=="object"&&Ke.removeAllHandlersOnTarget(Ft.contexts[C].GLctx.canvas),Ft.contexts[C]&&Ft.contexts[C].GLctx.canvas&&(Ft.contexts[C].GLctx.canvas.GLctxObject=void 0),f3(Ft.contexts[C].handle),Ft.contexts[C]=null},initExtensions:function(C){if(C||(C=Ft.currentContext),!C.initExtensionsDone){C.initExtensionsDone=!0;var $=C.GLctx;Hg($),qg($),Kg($),$.disjointTimerQueryExt=$.getExtension("EXT_disjoint_timer_query"),Xg($);var U=$.getSupportedExtensions()||[];U.forEach(function(te){!te.includes("lose_context")&&!te.includes("debug")&&$.getExtension(te)})}}},Zg=["default","low-power","high-performance"];function Yg(C,$){var U=$>>2,te=u()[U+6],ge={alpha:!!u()[U+0],depth:!!u()[U+1],stencil:!!u()[U+2],antialias:!!u()[U+3],premultipliedAlpha:!!u()[U+4],preserveDrawingBuffer:!!u()[U+5],powerPreference:Zg[te],failIfMajorPerformanceCaveat:!!u()[U+7],majorVersion:u()[U+8],minorVersion:u()[U+9],enableExtensionsByDefault:u()[U+10],explicitSwapControl:u()[U+11],proxyContextToMainThread:u()[U+12],renderViaOffscreenBackBuffer:u()[U+13]},xe=Zd(C);if(!xe||ge.explicitSwapControl)return 0;var Ne=Ft.createContext(xe,ge);return Ne}function Jg(C,$){return Yg(C,$)}var ql={mappings:{},buffers:[null,[],[]],printChar:function(C,$){var U=ql.buffers[C];$===0||$===10?((C===1?ee:J)(bn(U,0)),U.length=0):U.push($)},varargs:void 0,get:function(){ql.varargs+=4;var C=u()[ql.varargs-4>>2];return C},getStr:function(C){var $=vn(C);return $},get64:function(C,$){return C}};function bc(C){return S?no(3,1,C):0}function vc(C,$,U,te,ge){if(S)return no(4,1,C,$,U,te,ge)}function wc(C,$,U,te){if(S)return no(5,1,C,$,U,te);for(var ge=0,xe=0;xe<U;xe++){var Ne=u()[$>>2],_e=u()[$+4>>2];$+=8;for(var $t=0;$t<_e;$t++)ql.printChar(C,i()[Ne+$t]);ge+=_e}return u()[te>>2]=ge,0}function Qg(C){De(C)}ze.init();var kc,ey=[null,mc,xc,bc,vc,wc],p3=!1,Ic={__clock_gettime:Sg,__emscripten_init_main_thread_js:Tg,__emscripten_thread_cleanup:Ng,__pthread_create_js:Cg,_emscripten_default_pthread_stack_size:Eg,_emscripten_notify_thread_queue:Rg,abort:Mg,emscripten_check_blocking_allowed:Fg,emscripten_get_heap_max:yc,emscripten_get_now:ro,emscripten_memcpy_big:$g,emscripten_num_logical_cores:Pg,emscripten_receive_on_main_thread_js:_g,emscripten_resize_heap:Og,emscripten_set_canvas_element_size:Gg,emscripten_unwind_to_js_event_loop:jg,emscripten_webgl_create_context:Jg,exit:fc,fd_close:bc,fd_seek:vc,fd_write:wc,memory:$e||p.wasmMemory,setTempRet0:Qg},h3=fg(),ty=p.___wasm_call_ctors=function(){return(ty=p.___wasm_call_ctors=p.asm.__wasm_call_ctors).apply(null,arguments)},ry=p._init=function(){return(ry=p._init=p.asm.init).apply(null,arguments)},ny=p._init_with_threads_count=function(){return(ny=p._init_with_threads_count=p.asm.init_with_threads_count).apply(null,arguments)},ay=p._get_threads_count=function(){return(ay=p._get_threads_count=p.asm.get_threads_count).apply(null,arguments)},sy=p._register_tensor=function(){return(sy=p._register_tensor=p.asm.register_tensor).apply(null,arguments)},iy=p._dispose_data=function(){return(iy=p._dispose_data=p.asm.dispose_data).apply(null,arguments)},oy=p._dispose=function(){return(oy=p._dispose=p.asm.dispose).apply(null,arguments)},ly=p._Abs=function(){return(ly=p._Abs=p.asm.Abs).apply(null,arguments)},uy=p._Add=function(){return(uy=p._Add=p.asm.Add).apply(null,arguments)},dy=p._AddN=function(){return(dy=p._AddN=p.asm.AddN).apply(null,arguments)},py=p._All=function(){return(py=p._All=p.asm.All).apply(null,arguments)},hy=p._Any=function(){return(hy=p._Any=p.asm.Any).apply(null,arguments)},cy=p._ArgMax=function(){return(cy=p._ArgMax=p.asm.ArgMax).apply(null,arguments)},fy=p._AvgPool=function(){return(fy=p._AvgPool=p.asm.AvgPool).apply(null,arguments)},my=p._BatchMatMul=function(){return(my=p._BatchMatMul=p.asm.BatchMatMul).apply(null,arguments)},gy=p._Ceil=function(){return(gy=p._Ceil=p.asm.Ceil).apply(null,arguments)},yy=p._ClipByValue=function(){return(yy=p._ClipByValue=p.asm.ClipByValue).apply(null,arguments)},Ay=p._Conv2D=function(){return(Ay=p._Conv2D=p.asm.Conv2D).apply(null,arguments)},xy=p._Conv2DBackpropInput=function(){return(xy=p._Conv2DBackpropInput=p.asm.Conv2DBackpropInput).apply(null,arguments)},by=p._Cos=function(){return(by=p._Cos=p.asm.Cos).apply(null,arguments)},vy=p._Cosh=function(){return(vy=p._Cosh=p.asm.Cosh).apply(null,arguments)},wy=p._CropAndResize=function(){return(wy=p._CropAndResize=p.asm.CropAndResize).apply(null,arguments)},ky=p._Cumprod=function(){return(ky=p._Cumprod=p.asm.Cumprod).apply(null,arguments)},Iy=p._Cumsum=function(){return(Iy=p._Cumsum=p.asm.Cumsum).apply(null,arguments)},Sy=p._DepthToSpace=function(){return(Sy=p._DepthToSpace=p.asm.DepthToSpace).apply(null,arguments)},Ty=p._DepthwiseConv2dNative=function(){return(Ty=p._DepthwiseConv2dNative=p.asm.DepthwiseConv2dNative).apply(null,arguments)},Ny=p._Elu=function(){return(Ny=p._Elu=p.asm.Elu).apply(null,arguments)},Cy=p._Equal=function(){return(Cy=p._Equal=p.asm.Equal).apply(null,arguments)},Ey=p._Exp=function(){return(Ey=p._Exp=p.asm.Exp).apply(null,arguments)},Ry=p._FlipLeftRight=function(){return(Ry=p._FlipLeftRight=p.asm.FlipLeftRight).apply(null,arguments)},Sc=p._Floor=function(){return(Sc=p._Floor=p.asm.Floor).apply(null,arguments)},Tc=p._FloorDiv=function(){return(Tc=p._FloorDiv=p.asm.FloorDiv).apply(null,arguments)},Yd=p._FusedBatchNorm=function(){return(Yd=p._FusedBatchNorm=p.asm.FusedBatchNorm).apply(null,arguments)},My=p._FusedConv2D=function(){return(My=p._FusedConv2D=p.asm.FusedConv2D).apply(null,arguments)},Fy=p._FusedDepthwiseConv2D=function(){return(Fy=p._FusedDepthwiseConv2D=p.asm.FusedDepthwiseConv2D).apply(null,arguments)},Kl=p._Gather=function(){return(Kl=p._Gather=p.asm.Gather).apply(null,arguments)},Jd=p._GatherNd=function(){return(Jd=p._GatherNd=p.asm.GatherNd).apply(null,arguments)},Qd=p._Greater=function(){return(Qd=p._Greater=p.asm.Greater).apply(null,arguments)},c3=p._GreaterEqual=function(){return(c3=p._GreaterEqual=p.asm.GreaterEqual).apply(null,arguments)},Xl=p._LeakyRelu=function(){return(Xl=p._LeakyRelu=p.asm.LeakyRelu).apply(null,arguments)},Zl=p._Less=function(){return(Zl=p._Less=p.asm.Less).apply(null,arguments)},$y=p._LessEqual=function(){return($y=p._LessEqual=p.asm.LessEqual).apply(null,arguments)},H=p._Log=function(){return(H=p._Log=p.asm.Log).apply(null,arguments)},ne=p._LogicalAnd=function(){return(ne=p._LogicalAnd=p.asm.LogicalAnd).apply(null,arguments)},ye=p._Max=function(){return(ye=p._Max=p.asm.Max).apply(null,arguments)},Re=p._MaxPool=function(){return(Re=p._MaxPool=p.asm.MaxPool).apply(null,arguments)},lt=p._Maximum=function(){return(lt=p._Maximum=p.asm.Maximum).apply(null,arguments)},ht=p._Mean=function(){return(ht=p._Mean=p.asm.Mean).apply(null,arguments)},Ye=p._Min=function(){return(Ye=p._Min=p.asm.Min).apply(null,arguments)},He=p._Minimum=function(){return(He=p._Minimum=p.asm.Minimum).apply(null,arguments)},jt=p._MirrorPad=function(){return(jt=p._MirrorPad=p.asm.MirrorPad).apply(null,arguments)},ea=p._Multiply=function(){return(ea=p._Multiply=p.asm.Multiply).apply(null,arguments)},ta=p._Neg=function(){return(ta=p._Neg=p.asm.Neg).apply(null,arguments)},Yl=p._NonMaxSuppressionV3=function(){return(Yl=p._NonMaxSuppressionV3=p.asm.NonMaxSuppressionV3).apply(null,arguments)},ao=p._NonMaxSuppressionV4=function(){return(ao=p._NonMaxSuppressionV4=p.asm.NonMaxSuppressionV4).apply(null,arguments)},Py=p._NonMaxSuppressionV5=function(){return(Py=p._NonMaxSuppressionV5=p.asm.NonMaxSuppressionV5).apply(null,arguments)},Yr=p._NotEqual=function(){return(Yr=p._NotEqual=p.asm.NotEqual).apply(null,arguments)},ms=p._OneHot=function(){return(ms=p._OneHot=p.asm.OneHot).apply(null,arguments)},Nc=p._PadV2=function(){return(Nc=p._PadV2=p.asm.PadV2).apply(null,arguments)},O9=p._Pow=function(){return(O9=p._Pow=p.asm.Pow).apply(null,arguments)},D9=p._Prelu=function(){return(D9=p._Prelu=p.asm.Prelu).apply(null,arguments)},L9=p._Prod=function(){return(L9=p._Prod=p.asm.Prod).apply(null,arguments)},B9=p._RealDiv=function(){return(B9=p._RealDiv=p.asm.RealDiv).apply(null,arguments)},W9=p._Relu=function(){return(W9=p._Relu=p.asm.Relu).apply(null,arguments)},V9=p._Relu6=function(){return(V9=p._Relu6=p.asm.Relu6).apply(null,arguments)},U9=p._ResizeBilinear=function(){return(U9=p._ResizeBilinear=p.asm.ResizeBilinear).apply(null,arguments)},G9=p._Reverse=function(){return(G9=p._Reverse=p.asm.Reverse).apply(null,arguments)},j9=p._RotateWithOffset=function(){return(j9=p._RotateWithOffset=p.asm.RotateWithOffset).apply(null,arguments)},H9=p._Round=function(){return(H9=p._Round=p.asm.Round).apply(null,arguments)},q9=p._Rsqrt=function(){return(q9=p._Rsqrt=p.asm.Rsqrt).apply(null,arguments)},K9=p._ScatterNd=function(){return(K9=p._ScatterNd=p.asm.ScatterNd).apply(null,arguments)},X9=p._SelectV2=function(){return(X9=p._SelectV2=p.asm.SelectV2).apply(null,arguments)},Z9=p._Sigmoid=function(){return(Z9=p._Sigmoid=p.asm.Sigmoid).apply(null,arguments)},Y9=p._Sin=function(){return(Y9=p._Sin=p.asm.Sin).apply(null,arguments)},J9=p._Softmax=function(){return(J9=p._Softmax=p.asm.Softmax).apply(null,arguments)},Q9=p._SparseFillEmptyRows=function(){return(Q9=p._SparseFillEmptyRows=p.asm.SparseFillEmptyRows).apply(null,arguments)},eE=p._SparseReshape=function(){return(eE=p._SparseReshape=p.asm.SparseReshape).apply(null,arguments)},tE=p._SparseSegmentReduction=function(){return(tE=p._SparseSegmentReduction=p.asm.SparseSegmentReduction).apply(null,arguments)},rE=p._Sqrt=function(){return(rE=p._Sqrt=p.asm.Sqrt).apply(null,arguments)},nE=p._Square=function(){return(nE=p._Square=p.asm.Square).apply(null,arguments)},aE=p._SquaredDifference=function(){return(aE=p._SquaredDifference=p.asm.SquaredDifference).apply(null,arguments)},sE=p._Step=function(){return(sE=p._Step=p.asm.Step).apply(null,arguments)},iE=p._StridedSlice=function(){return(iE=p._StridedSlice=p.asm.StridedSlice).apply(null,arguments)},oE=p._Sub=function(){return(oE=p._Sub=p.asm.Sub).apply(null,arguments)},lE=p._Sum=function(){return(lE=p._Sum=p.asm.Sum).apply(null,arguments)},uE=p._Tan=function(){return(uE=p._Tan=p.asm.Tan).apply(null,arguments)},dE=p._Tanh=function(){return(dE=p._Tanh=p.asm.Tanh).apply(null,arguments)},pE=p._Tile=function(){return(pE=p._Tile=p.asm.Tile).apply(null,arguments)},hE=p._TopK=function(){return(hE=p._TopK=p.asm.TopK).apply(null,arguments)},cE=p._Transform=function(){return(cE=p._Transform=p.asm.Transform).apply(null,arguments)},fE=p._Transpose=function(){return(fE=p._Transpose=p.asm.Transpose).apply(null,arguments)},mE=p.__FusedMatMul=function(){return(mE=p.__FusedMatMul=p.asm._FusedMatMul).apply(null,arguments)},_y=p._malloc=function(){return(_y=p._malloc=p.asm.malloc).apply(null,arguments)},f3=p._free=function(){return(f3=p._free=p.asm.free).apply(null,arguments)},gE=p._emscripten_tls_init=function(){return(gE=p._emscripten_tls_init=p.asm.emscripten_tls_init).apply(null,arguments)},m3=p.___errno_location=function(){return(m3=p.___errno_location=p.asm.__errno_location).apply(null,arguments)},Cc=p._pthread_self=function(){return(Cc=p._pthread_self=p.asm.pthread_self).apply(null,arguments)},g3=p._emscripten_main_thread_process_queued_calls=function(){return(g3=p._emscripten_main_thread_process_queued_calls=p.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},yE=p.__emscripten_thread_crashed=function(){return(yE=p.__emscripten_thread_crashed=p.asm._emscripten_thread_crashed).apply(null,arguments)},y3=p.__emscripten_thread_init=function(){return(y3=p.__emscripten_thread_init=p.asm._emscripten_thread_init).apply(null,arguments)},AE=p._emscripten_current_thread_process_queued_calls=function(){return(AE=p._emscripten_current_thread_process_queued_calls=p.asm.emscripten_current_thread_process_queued_calls).apply(null,arguments)},xE=p._emscripten_main_browser_thread_id=function(){return(xE=p._emscripten_main_browser_thread_id=p.asm.emscripten_main_browser_thread_id).apply(null,arguments)},bE=p._emscripten_sync_run_in_main_thread_2=function(){return(bE=p._emscripten_sync_run_in_main_thread_2=p.asm.emscripten_sync_run_in_main_thread_2).apply(null,arguments)},A3=p._emscripten_sync_run_in_main_thread_4=function(){return(A3=p._emscripten_sync_run_in_main_thread_4=p.asm.emscripten_sync_run_in_main_thread_4).apply(null,arguments)},x3=p._emscripten_run_in_main_runtime_thread_js=function(){return(x3=p._emscripten_run_in_main_runtime_thread_js=p.asm.emscripten_run_in_main_runtime_thread_js).apply(null,arguments)},zy=p._emscripten_dispatch_to_thread_=function(){return(zy=p._emscripten_dispatch_to_thread_=p.asm.emscripten_dispatch_to_thread_).apply(null,arguments)},Oy=p.__emscripten_thread_free_data=function(){return(Oy=p.__emscripten_thread_free_data=p.asm._emscripten_thread_free_data).apply(null,arguments)},vE=p.__emscripten_thread_exit=function(){return(vE=p.__emscripten_thread_exit=p.asm._emscripten_thread_exit).apply(null,arguments)},wE=p._memalign=function(){return(wE=p._memalign=p.asm.memalign).apply(null,arguments)},b3=p._emscripten_stack_set_limits=function(){return(b3=p._emscripten_stack_set_limits=p.asm.emscripten_stack_set_limits).apply(null,arguments)},Dy=p.stackSave=function(){return(Dy=p.stackSave=p.asm.stackSave).apply(null,arguments)},Ec=p.stackRestore=function(){return(Ec=p.stackRestore=p.asm.stackRestore).apply(null,arguments)},Jl=p.stackAlloc=function(){return(Jl=p.stackAlloc=p.asm.stackAlloc).apply(null,arguments)},kE=p.dynCall_iijjiiii=function(){return(kE=p.dynCall_iijjiiii=p.asm.dynCall_iijjiiii).apply(null,arguments)},IE=p.dynCall_jiji=function(){return(IE=p.dynCall_jiji=p.asm.dynCall_jiji).apply(null,arguments)},v3=p.__emscripten_allow_main_runtime_queued_calls=21456;p.cwrap=dr,p.keepRuntimeAlive=eo,p.PThread=ze,p.PThread=ze,p.wasmMemory=$e,p.ExitStatus=ep;var Rc;function ep(C){this.name="ExitStatus",this.message="Program terminated with exit("+C+")",this.status=C}Qn=function C(){Rc||Ly(),Rc||(Qn=C)};function Ly(C){if(C=C||y,fs>0)return;if(S){c(p),Hd(),postMessage({cmd:"loaded"});return}if(Pr(),fs>0)return;function $(){Rc||(Rc=!0,p.calledRun=!0,!yt&&(Hd(),c(p),p.onRuntimeInitialized&&p.onRuntimeInitialized(),hg()))}p.setStatus?(p.setStatus("Running..."),setTimeout(function(){setTimeout(function(){p.setStatus("")},1),$()},1)):$()}p.run=Ly;function SE(C,$){if(Fr=C,!$&&S)throw mc(C),"unwind";eo()||pg(),TE(C)}function TE(C){Fr=C,eo()||(ze.terminateAllThreads(),p.onExit&&p.onExit(C),yt=!0),x(C,new ep(C))}if(p.preInit)for(typeof p.preInit=="function"&&(p.preInit=[p.preInit]);p.preInit.length>0;)p.preInit.pop()();Ly();var Mc;m&&(Mc={uncaughtException:process.listeners("uncaughtException").filter(function(C){return!m.uncaughtException.indexOf(C)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(C){return!m.unhandledRejection.indexOf(C)>-1})});var Fc;if(typeof WasmBackendModule!="undefined")Fc=WasmBackendModule;else if(typeof a!="undefined")Fc=a;else throw new Error("Could not find wasm module in post.js");if(Mc){var NE=Fc._dispose;Fc._dispose=function(){NE(),Mc.uncaughtException.forEach(function(C){process.removeListener("uncaughtException",C)}),Mc.unhandledRejection.forEach(function(C){process.removeListener("unhandledRejection",C)})}}return a.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=r:typeof define=="function"&&define.amd?define([],function(){return r}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=r)}}),rR=ir({"src/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js"(e,t){var r=(()=>{var n=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(n=n||__filename),function(a){a=a||{};var s=typeof a!="undefined"?a:{},i,o;s.ready=new Promise(function(H,ne){i=H,o=ne});var l;typeof process!="undefined"&&process.listeners&&(l={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var u=Object.assign({},s),d=[],h="./this.program",p=(H,ne)=>{throw ne},c=typeof window=="object",f=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g="";function y(H){return s.locateFile?s.locateFile(H,g):g+H}var A,x,b,w;function T(H){H instanceof Jd||M("exiting due to exception: "+H)}var S,E,R;m?(f?g=nf().dirname(g)+"/":g=__dirname+"/",R=()=>{E||(S=n2(),E=nf())},A=function(H,ne){return R(),H=E.normalize(H),S.readFileSync(H,ne?void 0:"utf8")},b=H=>{var ne=A(H,!0);return ne.buffer||(ne=new Uint8Array(ne)),ne},x=(H,ne,ye)=>{R(),H=E.normalize(H),S.readFile(H,function(Re,lt){Re?ye(Re):ne(lt.buffer)})},process.argv.length>1&&(h=process.argv[1].replace(/\\/g,"/")),d=process.argv.slice(2),process.on("uncaughtException",function(H){if(!(H instanceof Jd))throw H}),process.on("unhandledRejection",function(H){throw H}),p=(H,ne)=>{if(jd())throw process.exitCode=H,ne;T(ne),process.exit(H)},s.inspect=function(){return"[Emscripten Module object]"}):(c||f)&&(f?g=self.location.href:typeof document!="undefined"&&document.currentScript&&(g=document.currentScript.src),n&&(g=n),g.indexOf("blob:")!==0?g=g.substr(0,g.replace(/[?#].*/,"").lastIndexOf("/")+1):g="",A=H=>{var ne=new XMLHttpRequest;return ne.open("GET",H,!1),ne.send(null),ne.responseText},f&&(b=H=>{var ne=new XMLHttpRequest;return ne.open("GET",H,!1),ne.responseType="arraybuffer",ne.send(null),new Uint8Array(ne.response)}),x=(H,ne,ye)=>{var Re=new XMLHttpRequest;Re.open("GET",H,!0),Re.responseType="arraybuffer",Re.onload=()=>{if(Re.status==200||Re.status==0&&Re.response){ne(Re.response);return}ye()},Re.onerror=ye,Re.send(null)},w=H=>document.title=H);var _=s.print||console.log.bind(console),M=s.printErr||console.warn.bind(console);Object.assign(s,u),u=null,s.arguments&&(d=s.arguments),s.thisProgram&&(h=s.thisProgram),s.quit&&(p=s.quit);var I=4;function O(H){O.shown||(O.shown={}),O.shown[H]||(O.shown[H]=1,M(H))}function z(H,ne){if(typeof WebAssembly.Function=="function"){for(var ye={i:"i32",j:"i64",f:"f32",d:"f64"},Re={parameters:[],results:ne[0]=="v"?[]:[ye[ne[0]]]},lt=1;lt<ne.length;++lt)Re.parameters.push(ye[ne[lt]]);return new WebAssembly.Function(Re,H)}var ht=[1,0,1,96],Ye=ne.slice(0,1),He=ne.slice(1),jt={i:127,j:126,f:125,d:124};ht.push(He.length);for(var lt=0;lt<He.length;++lt)ht.push(jt[He[lt]]);Ye=="v"?ht.push(0):ht=ht.concat([1,jt[Ye]]),ht[1]=ht.length-2;var ea=new Uint8Array([0,97,115,109,1,0,0,0].concat(ht,[2,7,1,1,101,1,102,0,0,7,5,1,1,102,0,0])),ta=new WebAssembly.Module(ea),Yl=new WebAssembly.Instance(ta,{e:{f:H}}),ao=Yl.exports.f;return ao}var j=[],X;function D(){if(j.length)return j.pop();try{hs.grow(1)}catch(H){throw H instanceof RangeError?"Unable to grow wasm table. Set ALLOW_TABLE_GROWTH.":H}return hs.length-1}function Q(H,ne){for(var ye=H;ye<H+ne;ye++){var Re=Kd(ye);Re&&X.set(Re,ye)}}var V=0,ee=H=>{V=H},J;s.wasmBinary&&(J=s.wasmBinary);var se=s.noExitRuntime||!0;typeof WebAssembly!="object"&&Qi("no native wasm support detected");var Z,ae=!1,de;function Ae(H,ne){H||Qi(ne)}function be(H){var ne=s["_"+H];return ne}function Ee(H,ne,ye,Re,lt){var ht={string:function(Yr){var ms=0;if(Yr!=null&&Yr!==0){var Nc=(Yr.length<<2)+1;ms=Yd(Nc),pt(Yr,ms,Nc)}return ms},array:function(Yr){var ms=Yd(Yr.length);return yt(Yr,ms),ms}};function Ye(Yr){return ne==="string"?ot(Yr):ne==="boolean"?Boolean(Yr):Yr}var He=be(H),jt=[],ea=0;if(Re)for(var ta=0;ta<Re.length;ta++){var Yl=ht[ye[ta]];Yl?(ea===0&&(ea=Sc()),jt[ta]=Yl(Re[ta])):jt[ta]=Re[ta]}var ao=He.apply(null,jt);function Py(Yr){return ea!==0&&Tc(ea),Ye(Yr)}return ao=Py(ao),ao}function Me(H,ne,ye,Re){ye=ye||[];var lt=ye.every(function(Ye){return Ye==="number"}),ht=ne!=="string";return ht&<&&!Re?be(H):function(){return Ee(H,ne,ye,arguments,Re)}}var De=1,Be=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function Ze(H,ne,ye){for(var Re=ne+ye,lt=ne;H[lt]&&!(lt>=Re);)++lt;if(lt-ne>16&&H.subarray&&Be)return Be.decode(H.subarray(ne,lt));for(var ht="";ne<lt;){var Ye=H[ne++];if(!(Ye&128)){ht+=String.fromCharCode(Ye);continue}var He=H[ne++]&63;if((Ye&224)==192){ht+=String.fromCharCode((Ye&31)<<6|He);continue}var jt=H[ne++]&63;if((Ye&240)==224?Ye=(Ye&15)<<12|He<<6|jt:Ye=(Ye&7)<<18|He<<12|jt<<6|H[ne++]&63,Ye<65536)ht+=String.fromCharCode(Ye);else{var ea=Ye-65536;ht+=String.fromCharCode(55296|ea>>10,56320|ea&1023)}}return ht}function ot(H,ne){return H?Ze(dr,H,ne):""}function dt(H,ne,ye,Re){if(!(Re>0))return 0;for(var lt=ye,ht=ye+Re-1,Ye=0;Ye<H.length;++Ye){var He=H.charCodeAt(Ye);if(He>=55296&&He<=57343){var jt=H.charCodeAt(++Ye);He=65536+((He&1023)<<10)|jt&1023}if(He<=127){if(ye>=ht)break;ne[ye++]=He}else if(He<=2047){if(ye+1>=ht)break;ne[ye++]=192|He>>6,ne[ye++]=128|He&63}else if(He<=65535){if(ye+2>=ht)break;ne[ye++]=224|He>>12,ne[ye++]=128|He>>6&63,ne[ye++]=128|He&63}else{if(ye+3>=ht)break;ne[ye++]=240|He>>18,ne[ye++]=128|He>>12&63,ne[ye++]=128|He>>6&63,ne[ye++]=128|He&63}}return ne[ye]=0,ye-lt}function pt(H,ne,ye){return dt(H,dr,ne,ye)}function $e(H){for(var ne=0,ye=0;ye<H.length;++ye){var Re=H.charCodeAt(ye);Re>=55296&&Re<=57343&&(Re=65536+((Re&1023)<<10)|H.charCodeAt(++ye)&1023),Re<=127?++ne:Re<=2047?ne+=2:Re<=65535?ne+=3:ne+=4}return ne}var vt=typeof TextDecoder!="undefined"?new TextDecoder("utf-16le"):void 0;function yt(H,ne){Jt.set(H,ne)}function Fr(H,ne,ye){for(var Re=0;Re<H.length;++Re)Jt[ne++>>0]=H.charCodeAt(Re);ye||(Jt[ne>>0]=0)}function ur(H,ne){return H%ne>0&&(H+=ne-H%ne),H}var Xr,Jt,dr,Yn,Zr,Qt,bn,vn,ps;function Ji(H){Xr=H,s.HEAP8=Jt=new Int8Array(H),s.HEAP16=Yn=new Int16Array(H),s.HEAP32=Qt=new Int32Array(H),s.HEAPU8=dr=new Uint8Array(H),s.HEAPU16=Zr=new Uint16Array(H),s.HEAPU32=bn=new Uint32Array(H),s.HEAPF32=vn=new Float32Array(H),s.HEAPF64=ps=new Float64Array(H)}var Jh=s.INITIAL_MEMORY||16777216,hs,La=[],Gd=[],Wl=[],$r=!1,Qh=!1,ec=0;function jd(){return se||ec>0}function tc(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)ac(s.preRun.shift());qd(La)}function rc(){$r=!0,qd(Gd)}function r3(){Qh=!0}function nc(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)sc(s.postRun.shift());qd(Wl)}function ac(H){La.unshift(H)}function Jn(H){Gd.unshift(H)}function sc(H){Wl.unshift(H)}var wn=0,Vl=null,cs=null;function ug(H){wn++,s.monitorRunDependencies&&s.monitorRunDependencies(wn)}function ic(H){if(wn--,s.monitorRunDependencies&&s.monitorRunDependencies(wn),wn==0&&(Vl!==null&&(clearInterval(Vl),Vl=null),cs)){var ne=cs;cs=null,ne()}}s.preloadedImages={},s.preloadedAudios={};function Qi(H){s.onAbort&&s.onAbort(H),H="Aborted("+H+")",M(H),ae=!0,de=1,H+=". Build with -s ASSERTIONS=1 for more info.";var ne=new WebAssembly.RuntimeError(H);throw o(ne),ne}var dg="data:application/octet-stream;base64,";function oc(H){return H.startsWith(dg)}function eo(H){return H.startsWith("file://")}var Pr;Pr="tfjs-backend-wasm.wasm",oc(Pr)||(Pr=y(Pr));function Hd(H){try{if(H==Pr&&J)return new Uint8Array(J);if(b)return b(H);throw"both async and sync fetching of the wasm failed"}catch(ne){Qi(ne)}}function pg(){if(!J&&(c||f)){if(typeof fetch=="function"&&!eo(Pr))return fetch(Pr,{credentials:"same-origin"}).then(function(H){if(!H.ok)throw"failed to load wasm binary file at '"+Pr+"'";return H.arrayBuffer()}).catch(function(){return Hd(Pr)});if(x)return new Promise(function(H,ne){x(Pr,function(ye){H(new Uint8Array(ye))},ne)})}return Promise.resolve().then(function(){return Hd(Pr)})}function hg(){var H={env:jl,wasi_snapshot_preview1:jl};function ne(Ye,He){var jt=Ye.exports;s.asm=jt,Z=s.asm.memory,Ji(Z.buffer),hs=s.asm.__indirect_function_table,Jn(s.asm.__wasm_call_ctors),ic("wasm-instantiate")}ug("wasm-instantiate");function ye(Ye){ne(Ye.instance)}function Re(Ye){return pg().then(function(He){return WebAssembly.instantiate(He,H)}).then(function(He){return He}).then(Ye,function(He){M("failed to asynchronously prepare wasm: "+He),Qi(He)})}function lt(){return!J&&typeof WebAssembly.instantiateStreaming=="function"&&!oc(Pr)&&!eo(Pr)&&typeof fetch=="function"?fetch(Pr,{credentials:"same-origin"}).then(function(Ye){var He=WebAssembly.instantiateStreaming(Ye,H);return He.then(ye,function(jt){return M("wasm streaming compile failed: "+jt),M("falling back to ArrayBuffer instantiation"),Re(ye)})}):Re(ye)}if(s.instantiateWasm)try{var ht=s.instantiateWasm(H,ne);return ht}catch(Ye){return M("Module.instantiateWasm callback failed with error: "+Ye),!1}return lt().catch(o),{}}var n3,a3;function qd(H){for(;H.length>0;){var ne=H.shift();if(typeof ne=="function"){ne(s);continue}var ye=ne.func;typeof ye=="number"?ne.arg===void 0?Kd(ye)():Kd(ye)(ne.arg):ye(ne.arg===void 0?null:ne.arg)}}function fs(H){return H}function lc(H){var ne=/\b_Z[\w\d_]+/g;return H.replace(ne,function(ye){var Re=ye;return ye===Re?ye:Re+" ["+ye+"]"})}var Qn=[];function Kd(H){var ne=Qn[H];return ne||(H>=Qn.length&&(Qn.length=H+1),Qn[H]=ne=hs.get(H)),ne}function s3(){var H=new Error;if(!H.stack){try{throw new Error}catch(ne){H=ne}if(!H.stack)return"(no stack trace available)"}return H.stack.toString()}function Ul(H,ne){hs.set(H,ne),Qn[H]=ne}function cg(){Qi("")}function uc(H,ne,ye){dr.copyWithin(H,ne,ne+ye)}function dc(){return 2147483648}function _r(H){try{return Z.grow(H-Xr.byteLength+65535>>>16),Ji(Z.buffer),1}catch(ne){}}function pc(H){var ne=dr.length;H=H>>>0;var ye=dc();if(H>ye)return!1;for(var Re=1;Re<=4;Re*=2){var lt=ne*(1+.2/Re);lt=Math.min(lt,H+100663296);var ht=Math.min(ye,ur(Math.max(H,lt),65536)),Ye=_r(ht);if(Ye)return!0}return!1}var Gl={mappings:{},buffers:[null,[],[]],printChar:function(H,ne){var ye=Gl.buffers[H];ne===0||ne===10?((H===1?_:M)(Ze(ye,0)),ye.length=0):ye.push(ne)},varargs:void 0,get:function(){Gl.varargs+=4;var H=Qt[Gl.varargs-4>>2];return H},getStr:function(H){var ne=ot(H);return ne},get64:function(H,ne){return H}};function fg(H){return 0}function i3(H,ne,ye,Re,lt){}function o3(H,ne,ye,Re){for(var lt=0,ht=0;ht<ye;ht++){var Ye=Qt[ne>>2],He=Qt[ne+4>>2];ne+=8;for(var jt=0;jt<He;jt++)Gl.printChar(H,dr[Ye+jt]);lt+=He}return Qt[Re>>2]=lt,0}function mg(H){ee(H)}var hc=!1,jl={abort:cg,emscripten_memcpy_big:uc,emscripten_resize_heap:pc,fd_close:fg,fd_seek:i3,fd_write:o3,setTempRet0:mg},z9=hg(),l3=s.___wasm_call_ctors=function(){return(l3=s.___wasm_call_ctors=s.asm.__wasm_call_ctors).apply(null,arguments)},gg=s._init=function(){return(gg=s._init=s.asm.init).apply(null,arguments)},yg=s._init_with_threads_count=function(){return(yg=s._init_with_threads_count=s.asm.init_with_threads_count).apply(null,arguments)},cc=s._get_threads_count=function(){return(cc=s._get_threads_count=s.asm.get_threads_count).apply(null,arguments)},fc=s._register_tensor=function(){return(fc=s._register_tensor=s.asm.register_tensor).apply(null,arguments)},Ag=s._dispose_data=function(){return(Ag=s._dispose_data=s.asm.dispose_data).apply(null,arguments)},ze=s._dispose=function(){return(ze=s._dispose=s.asm.dispose).apply(null,arguments)},xg=s._Abs=function(){return(xg=s._Abs=s.asm.Abs).apply(null,arguments)},mc=s._Add=function(){return(mc=s._Add=s.asm.Add).apply(null,arguments)},to=s._AddN=function(){return(to=s._AddN=s.asm.AddN).apply(null,arguments)},Hl=s._All=function(){return(Hl=s._All=s.asm.All).apply(null,arguments)},bg=s._Any=function(){return(bg=s._Any=s.asm.Any).apply(null,arguments)},u3=s._ArgMax=function(){return(u3=s._ArgMax=s.asm.ArgMax).apply(null,arguments)},vg=s._AvgPool=function(){return(vg=s._AvgPool=s.asm.AvgPool).apply(null,arguments)},d3=s._BatchMatMul=function(){return(d3=s._BatchMatMul=s.asm.BatchMatMul).apply(null,arguments)},ro=s._Ceil=function(){return(ro=s._Ceil=s.asm.Ceil).apply(null,arguments)},wg=s._ClipByValue=function(){return(wg=s._ClipByValue=s.asm.ClipByValue).apply(null,arguments)},kg=s._Conv2D=function(){return(kg=s._Conv2D=s.asm.Conv2D).apply(null,arguments)},Ig=s._Conv2DBackpropInput=function(){return(Ig=s._Conv2DBackpropInput=s.asm.Conv2DBackpropInput).apply(null,arguments)},Sg=s._Cos=function(){return(Sg=s._Cos=s.asm.Cos).apply(null,arguments)},Tg=s._Cosh=function(){return(Tg=s._Cosh=s.asm.Cosh).apply(null,arguments)},Ng=s._CropAndResize=function(){return(Ng=s._CropAndResize=s.asm.CropAndResize).apply(null,arguments)},gc=s._Cumprod=function(){return(gc=s._Cumprod=s.asm.Cumprod).apply(null,arguments)},Cg=s._Cumsum=function(){return(Cg=s._Cumsum=s.asm.Cumsum).apply(null,arguments)},Eg=s._DepthToSpace=function(){return(Eg=s._DepthToSpace=s.asm.DepthToSpace).apply(null,arguments)},Rg=s._DepthwiseConv2dNative=function(){return(Rg=s._DepthwiseConv2dNative=s.asm.DepthwiseConv2dNative).apply(null,arguments)},Mg=s._Elu=function(){return(Mg=s._Elu=s.asm.Elu).apply(null,arguments)},Fg=s._Equal=function(){return(Fg=s._Equal=s.asm.Equal).apply(null,arguments)},yc=s._Exp=function(){return(yc=s._Exp=s.asm.Exp).apply(null,arguments)},$g=s._FlipLeftRight=function(){return($g=s._FlipLeftRight=s.asm.FlipLeftRight).apply(null,arguments)},Pg=s._Floor=function(){return(Pg=s._Floor=s.asm.Floor).apply(null,arguments)},no=s._FloorDiv=function(){return(no=s._FloorDiv=s.asm.FloorDiv).apply(null,arguments)},Xd=s._FusedBatchNorm=function(){return(Xd=s._FusedBatchNorm=s.asm.FusedBatchNorm).apply(null,arguments)},_g=s._FusedConv2D=function(){return(_g=s._FusedConv2D=s.asm.FusedConv2D).apply(null,arguments)},zg=s._FusedDepthwiseConv2D=function(){return(zg=s._FusedDepthwiseConv2D=s.asm.FusedDepthwiseConv2D).apply(null,arguments)},Og=s._Gather=function(){return(Og=s._Gather=s.asm.Gather).apply(null,arguments)},Ke=s._GatherNd=function(){return(Ke=s._GatherNd=s.asm.GatherNd).apply(null,arguments)},Dg=s._Greater=function(){return(Dg=s._Greater=s.asm.Greater).apply(null,arguments)},Lg=s._GreaterEqual=function(){return(Lg=s._GreaterEqual=s.asm.GreaterEqual).apply(null,arguments)},Bg=s._LeakyRelu=function(){return(Bg=s._LeakyRelu=s.asm.LeakyRelu).apply(null,arguments)},Wg=s._Less=function(){return(Wg=s._Less=s.asm.Less).apply(null,arguments)},Vg=s._LessEqual=function(){return(Vg=s._LessEqual=s.asm.LessEqual).apply(null,arguments)},Ug=s._Log=function(){return(Ug=s._Log=s.asm.Log).apply(null,arguments)},Zd=s._LogicalAnd=function(){return(Zd=s._LogicalAnd=s.asm.LogicalAnd).apply(null,arguments)},Ac=s._Max=function(){return(Ac=s._Max=s.asm.Max).apply(null,arguments)},xc=s._MaxPool=function(){return(xc=s._MaxPool=s.asm.MaxPool).apply(null,arguments)},Gg=s._Maximum=function(){return(Gg=s._Maximum=s.asm.Maximum).apply(null,arguments)},jg=s._Mean=function(){return(jg=s._Mean=s.asm.Mean).apply(null,arguments)},Hg=s._Min=function(){return(Hg=s._Min=s.asm.Min).apply(null,arguments)},qg=s._Minimum=function(){return(qg=s._Minimum=s.asm.Minimum).apply(null,arguments)},Kg=s._MirrorPad=function(){return(Kg=s._MirrorPad=s.asm.MirrorPad).apply(null,arguments)},Xg=s._Multiply=function(){return(Xg=s._Multiply=s.asm.Multiply).apply(null,arguments)},Ft=s._Neg=function(){return(Ft=s._Neg=s.asm.Neg).apply(null,arguments)},Zg=s._NonMaxSuppressionV3=function(){return(Zg=s._NonMaxSuppressionV3=s.asm.NonMaxSuppressionV3).apply(null,arguments)},Yg=s._NonMaxSuppressionV4=function(){return(Yg=s._NonMaxSuppressionV4=s.asm.NonMaxSuppressionV4).apply(null,arguments)},Jg=s._NonMaxSuppressionV5=function(){return(Jg=s._NonMaxSuppressionV5=s.asm.NonMaxSuppressionV5).apply(null,arguments)},ql=s._NotEqual=function(){return(ql=s._NotEqual=s.asm.NotEqual).apply(null,arguments)},bc=s._OneHot=function(){return(bc=s._OneHot=s.asm.OneHot).apply(null,arguments)},vc=s._PadV2=function(){return(vc=s._PadV2=s.asm.PadV2).apply(null,arguments)},wc=s._Pow=function(){return(wc=s._Pow=s.asm.Pow).apply(null,arguments)},Qg=s._Prelu=function(){return(Qg=s._Prelu=s.asm.Prelu).apply(null,arguments)},kc=s._Prod=function(){return(kc=s._Prod=s.asm.Prod).apply(null,arguments)},ey=s._RealDiv=function(){return(ey=s._RealDiv=s.asm.RealDiv).apply(null,arguments)},p3=s._Relu=function(){return(p3=s._Relu=s.asm.Relu).apply(null,arguments)},Ic=s._Relu6=function(){return(Ic=s._Relu6=s.asm.Relu6).apply(null,arguments)},h3=s._ResizeBilinear=function(){return(h3=s._ResizeBilinear=s.asm.ResizeBilinear).apply(null,arguments)},ty=s._Reverse=function(){return(ty=s._Reverse=s.asm.Reverse).apply(null,arguments)},ry=s._RotateWithOffset=function(){return(ry=s._RotateWithOffset=s.asm.RotateWithOffset).apply(null,arguments)},ny=s._Round=function(){return(ny=s._Round=s.asm.Round).apply(null,arguments)},ay=s._Rsqrt=function(){return(ay=s._Rsqrt=s.asm.Rsqrt).apply(null,arguments)},sy=s._ScatterNd=function(){return(sy=s._ScatterNd=s.asm.ScatterNd).apply(null,arguments)},iy=s._SelectV2=function(){return(iy=s._SelectV2=s.asm.SelectV2).apply(null,arguments)},oy=s._Sigmoid=function(){return(oy=s._Sigmoid=s.asm.Sigmoid).apply(null,arguments)},ly=s._Sin=function(){return(ly=s._Sin=s.asm.Sin).apply(null,arguments)},uy=s._Softmax=function(){return(uy=s._Softmax=s.asm.Softmax).apply(null,arguments)},dy=s._SparseFillEmptyRows=function(){return(dy=s._SparseFillEmptyRows=s.asm.SparseFillEmptyRows).apply(null,arguments)},py=s._SparseReshape=function(){return(py=s._SparseReshape=s.asm.SparseReshape).apply(null,arguments)},hy=s._SparseSegmentReduction=function(){return(hy=s._SparseSegmentReduction=s.asm.SparseSegmentReduction).apply(null,arguments)},cy=s._Sqrt=function(){return(cy=s._Sqrt=s.asm.Sqrt).apply(null,arguments)},fy=s._Square=function(){return(fy=s._Square=s.asm.Square).apply(null,arguments)},my=s._SquaredDifference=function(){return(my=s._SquaredDifference=s.asm.SquaredDifference).apply(null,arguments)},gy=s._Step=function(){return(gy=s._Step=s.asm.Step).apply(null,arguments)},yy=s._StridedSlice=function(){return(yy=s._StridedSlice=s.asm.StridedSlice).apply(null,arguments)},Ay=s._Sub=function(){return(Ay=s._Sub=s.asm.Sub).apply(null,arguments)},xy=s._Sum=function(){return(xy=s._Sum=s.asm.Sum).apply(null,arguments)},by=s._Tan=function(){return(by=s._Tan=s.asm.Tan).apply(null,arguments)},vy=s._Tanh=function(){return(vy=s._Tanh=s.asm.Tanh).apply(null,arguments)},wy=s._Tile=function(){return(wy=s._Tile=s.asm.Tile).apply(null,arguments)},ky=s._TopK=function(){return(ky=s._TopK=s.asm.TopK).apply(null,arguments)},Iy=s._Transform=function(){return(Iy=s._Transform=s.asm.Transform).apply(null,arguments)},Sy=s._Transpose=function(){return(Sy=s._Transpose=s.asm.Transpose).apply(null,arguments)},Ty=s.__FusedMatMul=function(){return(Ty=s.__FusedMatMul=s.asm._FusedMatMul).apply(null,arguments)},Ny=s._malloc=function(){return(Ny=s._malloc=s.asm.malloc).apply(null,arguments)},Cy=s._free=function(){return(Cy=s._free=s.asm.free).apply(null,arguments)},Ey=s.___errno_location=function(){return(Ey=s.___errno_location=s.asm.__errno_location).apply(null,arguments)},Ry=s._emscripten_main_thread_process_queued_calls=function(){return(Ry=s._emscripten_main_thread_process_queued_calls=s.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},Sc=s.stackSave=function(){return(Sc=s.stackSave=s.asm.stackSave).apply(null,arguments)},Tc=s.stackRestore=function(){return(Tc=s.stackRestore=s.asm.stackRestore).apply(null,arguments)},Yd=s.stackAlloc=function(){return(Yd=s.stackAlloc=s.asm.stackAlloc).apply(null,arguments)},My=s.dynCall_iijjiiii=function(){return(My=s.dynCall_iijjiiii=s.asm.dynCall_iijjiiii).apply(null,arguments)},Fy=s.dynCall_jiji=function(){return(Fy=s.dynCall_jiji=s.asm.dynCall_jiji).apply(null,arguments)};s.cwrap=Me;var Kl;function Jd(H){this.name="ExitStatus",this.message="Program terminated with exit("+H+")",this.status=H}cs=function H(){Kl||Qd(),Kl||(cs=H)};function Qd(H){if(H=H||d,wn>0||(tc(),wn>0))return;function ne(){Kl||(Kl=!0,s.calledRun=!0,!ae&&(rc(),i(s),s.onRuntimeInitialized&&s.onRuntimeInitialized(),nc()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),ne()},1)):ne()}s.run=Qd;function c3(H){de=H,jd()||(s.onExit&&s.onExit(H),ae=!0),p(H,new Jd(H))}if(s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();Qd();var Xl;l&&(Xl={uncaughtException:process.listeners("uncaughtException").filter(function(H){return!l.uncaughtException.indexOf(H)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(H){return!l.unhandledRejection.indexOf(H)>-1})});var Zl;if(typeof a!="undefined")Zl=a;else if(typeof WasmBackendModuleThreadedSimd!="undefined")Zl=WasmBackendModuleThreadedSimd;else throw new Error("Could not find wasm module in post.js");if(Xl){var $y=Zl._dispose;Zl._dispose=function(){$y(),Xl.uncaughtException.forEach(function(H){process.removeListener("uncaughtException",H)}),Xl.unhandledRejection.forEach(function(H){process.removeListener("unhandledRejection",H)})}}return a.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=r:typeof define=="function"&&define.amd?define([],function(){return r}):typeof e=="object"&&(e.WasmBackendModule=r)}}),nR=1e-7,aR=1e-4,Dp=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},Nu=class{refCount(e){return In("refCount")}incRef(e){return In("incRef")}timerAvailable(){return!0}time(e){return In("time")}read(e){return In("read")}readSync(e){return In("readSync")}readToGPU(e,t){return In("readToGPU")}numDataIds(){return In("numDataIds")}disposeData(e,t){return In("disposeData")}write(e,t,r){return In("write")}move(e,t,r,n,a){return In("move")}memory(){return In("memory")}floatPrecision(){return In("floatPrecision")}epsilon(){return this.floatPrecision()===32?nR:aR}dispose(){return In("dispose")}};function In(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function pw(e){let t=e.length,r=0;for(;t>0;)r=Math.random()*t|0,t--,af(e,t,r)}function sR(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let r=e.length,n=0;for(;r>0;)n=Math.random()*r|0,r--,af(e,r,n),af(t,r,n)}function Ip(e,t,r){return Math.max(e,Math.min(t,r))}function iR(e){return e%2===0?e:e+1}function af(e,t,r){let n=e[t];e[t]=e[r],e[r]=n}function oR(e){let t=0;for(let r=0;r<e.length;r++)t+=e[r];return t}function lR(e,t){let r=Math.random();return t*r+(1-r)*e}function uR(e,t){let r=0;for(let n=0;n<e.length;n++){let a=Number(e[n])-Number(t[n]);r+=a*a}return r}function P(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function Wr(e,t,r=""){P(Us(e,t),()=>r+` Shapes ${e} and ${t} must match`)}function Po(e){P(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function wo(e,t=[],r=!1){if(t==null&&(t=[]),Array.isArray(e)||Ir(e)&&!r)for(let n=0;n<e.length;++n)wo(e[n],t,r);else t.push(e);return t}function Tt(e){if(e.length===0)return 1;let t=e[0];for(let r=1;r<e.length;r++)t*=e[r];return t}function dR(e){return e.length===0}function Us(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let r=0;r<e.length;r++)if(e[r]!==t[r])return!1;return!0}function cu(e){return e%1===0}function pR(e){if(Math.tanh!=null)return Math.tanh(e);if(e===1/0)return 1;if(e===-1/0)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function hR(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function cR(e){let t=new Uint32Array(e);for(let r=0;r<e;++r)t[r]=r;return pw(t),t}function xp(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function fR(e,t=n=>0,r){return new Promise((n,a)=>{let s=0,i=()=>{if(e()){n();return}s++;let o=t(s);if(r!=null&&s>=r){a();return}setTimeout(i,o)};i()})}function mR(e,t){let r=1,n=-1;for(let s=0;s<e.length;++s)if(e[s]>=0)r*=e[s];else if(e[s]===-1){if(n!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${n} and dim ${s}`);n=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(n===-1){if(t>0&&t!==r)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(r===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%r!==0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${r}`);let a=e.slice();return a[n]=t/r,a}function Wn(e,t){let r=t.length;return e=e==null?t.map((n,a)=>a):[].concat(e),P(e.every(n=>n>=-r&&n<r),()=>`All values in axis param must be in range [-${r}, ${r}) but got axis ${e}`),P(e.every(n=>cu(n)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(n=>n<0?r+n:n)}function hw(e,t){let r=[],n=[],a=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||a?null:Wn(t,e).sort(),i=0;for(let o=0;o<e.length;++o){if(s!=null){if(s[i]===o&&e[o]!==1)throw new Error(`Can't squeeze axis ${o} since its dim '${e[o]}' is not 1`);(s[i]==null||s[i]>o)&&e[o]===1&&(r.push(e[o]),n.push(o)),s[i]<=o&&i++}e[o]!==1&&(r.push(e[o]),n.push(o))}return{newShape:r,keptDims:n}}function cw(e,t){let r=null;if(e==null||e==="float32")r=new Float32Array(t);else if(e==="int32")r=new Int32Array(t);else if(e==="bool")r=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return r}function fw(e,t){let r=null;if(e==null||e==="float32")r=new Float32Array(t);else if(e==="int32")r=new Int32Array(t);else if(e==="bool")r=new Uint8Array(t);else if(e==="string")r=new Array(t);else throw new Error(`Unknown data type ${e}`);return r}function mw(e,t){for(let r=0;r<e.length;r++){let n=e[r];if(isNaN(n)||!isFinite(n))throw Error(`A tensor of type ${t} being uploaded contains ${n}.`)}}function gw(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function gR(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function Ir(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray}function r1(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function yw(e){if(e==null)return 0;let t=0;return e.forEach(r=>t+=r.length),t}function ws(e){return typeof e=="string"||e instanceof String}function Aw(e){return typeof e=="boolean"}function xw(e){return typeof e=="number"}function _f(e){return Array.isArray(e)?_f(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray?"int32":xw(e)?"float32":ws(e)?"string":Aw(e)?"bool":"float32"}function Ns(e){return!!(e&&e.constructor&&e.call&&e.apply)}function sf(e,t){for(let r=t;r<e;++r)if(e%r===0)return r;return e}function Cu(e){let t=e.length;if(t<2)return[];let r=new Array(t-1);r[t-2]=e[t-1];for(let n=t-3;n>=0;--n)r[n]=r[n+1]*e[n+1];return r}function bw(e,t,r,n=!1){let a=new Array;if(t.length===1){let s=t[0]*(n?2:1);for(let i=0;i<s;i++)a[i]=r[e+i]}else{let s=t[0],i=t.slice(1),o=i.reduce((l,u)=>l*u)*(n?2:1);for(let l=0;l<s;l++)a[l]=bw(e+l*o,i,r,n)}return a}function lu(e,t,r=!1){if(e.length===0)return t[0];let n=e.reduce((a,s)=>a*s)*(r?2:1);if(n===0)return[];if(n!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${r?" for a complex tensor":""}.`);return bw(0,e,t,r)}function a2(e,t){let r=zf(e,t);for(let n=0;n<r.length;n++)r[n]=1;return r}function zf(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function yR(e,t){let r=e.reduce((n,a)=>n*a,1);if(t==null||t==="float32")return lu(e,new Float32Array(r));if(t==="int32")return lu(e,new Int32Array(r));if(t==="bool")return lu(e,new Uint8Array(r));throw new Error(`Unknown data type ${t}`)}function s2(e){e.forEach(t=>{P(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function AR(e,t,r){if(t===0)return 0;if(t===1)return e[0];let n=e[e.length-1];for(let a=0;a<e.length-1;++a)n+=r[a]*e[a];return n}function xR(e,t,r){if(t===0)return[];if(t===1)return[e];let n=new Array(t);for(let a=0;a<n.length-1;++a)n[a]=Math.floor(e/r[a]),e-=n[a]*r[a];return n[n.length-1]=e,n}function i2(e){return e&&e.then&&typeof e.then=="function"}var S3="tfjsflags",vw=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=bR,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&(Y().getBool("IS_TEST")||Y().getBool("PROD")||console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${e}.`)),this.platformName=e,this.platform=t}registerFlag(e,t,r){if(this.flagRegistry[e]={evaluationFn:t,setHook:r},this.urlFlags[e]!=null){let n=this.urlFlags[e];Y().getBool("IS_TEST")||Y().getBool("PROD")||console.warn(`Setting feature override from URL ${e}: ${n}.`),this.set(e,n)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(i2(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);S3 in e&&e[S3].split(",").forEach(t=>{let[r,n]=t.split(":");this.urlFlags[r]=wR(r,n)})}};function bR(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(r,...n)=>(vR(t,n[0],n[1]),n.join("="))),t}function vR(e,t,r){e[decodeURIComponent(t)]=decodeURIComponent(r||"")}function wR(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function Y(){return ga}var ga=null;function kR(e){ga=e}var Wy;function ww(){if(Wy==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");Wy=e}return Wy}function IR(){let e=ww();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function o2(e,t){let r=IR();if(r.has(e))return r.get(e);{let n=t();return r.set(e,n),r.get(e)}}var _o="Abs",Eu="Acos",Ru="Acosh",qa="Add",Gs="AddN",Mu="All",Fu="Any",js="ArgMax",$u="ArgMin",Pu="Asin",_u="Asinh",zu="Atan",Ou="Atanh",Du="Atan2",Hs="AvgPool",Of="AvgPoolGrad",Lp="AvgPool3D",Df="AvgPool3DGrad",qs="BatchMatMul",zo="BatchToSpaceND",Lf="Bincount",kw="BroadcastTo",Bf="BroadcastArgs",Ks="Cast",Xs="Ceil",Ka="ClipByValue",Bp="Complex",Wp="ComplexAbs",Oo="Concat",Zs="Conv2D",Wf="Conv2DBackpropFilter",Ys="Conv2DBackpropInput",Vp="Conv3D",Vf="Conv3DBackpropFilterV2",Uf="Conv3DBackpropInputV2",Js="Cos",Qs="Cosh",Lu="Cumprod",Do="Cumsum",Lo="CropAndResize",Gf="DenseBincount",Bo="DepthToSpace",ei="DepthwiseConv2dNative",jf="DepthwiseConv2dNativeBackpropFilter",Hf="DepthwiseConv2dNativeBackpropInput",qf="Diag",Up="Dilation2D",of="Dilation2DBackpropInput",lf="Dilation2DBackpropFilter",ti="RealDiv",Gp="Einsum",ri="Elu",Kf="EluGrad",Bu="Erf",Wo="Equal",ni="Exp",Vo="ExpandDims",Uo="Expm1",Xf="FFT",Wu="Fill",Go="FlipLeftRight",ai="Floor",si="FloorDiv",ii="FusedBatchNorm",jo="GatherV2",Ho="GatherNd",qo="Greater",oi="GreaterEqual",li="Identity",Zf="IFFT",jp="Imag",Vu="IsFinite",Uu="IsInf",Gu="IsNan",ui="LeakyRelu",Ko="Less",Xo="LessEqual",Yf="LinSpace",di="Log",ju="Log1p",Zo="LogicalAnd",Hu="LogicalNot",Hp="LogicalOr",Iw="LogSoftmax",qp="LRN",Jf="LRNGrad",pi="Max",hi="Maximum",ci="MaxPool",Qf="MaxPoolGrad",Kp="MaxPool3D",em="MaxPool3DGrad",tm="MaxPoolWithArgmax",fi="Mean",mi="Min",gi="Minimum",yi="MirrorPad",qu="Mod",rm="Multinomial",Ai="Multiply",Yo="Neg",Jo="NotEqual",Qo="NonMaxSuppressionV3",Ku="NonMaxSuppressionV4",el="NonMaxSuppressionV5",tl="OnesLike",rl="OneHot",nl="Pack",xi="PadV2",SR="Pool",bi="Pow",vi="Prelu",al="Prod",Xu="Range",Xp="Real",Zu="Reciprocal",wi="Relu",sl="Reshape",Yu="ResizeNearestNeighbor",nm="ResizeNearestNeighborGrad",ki="ResizeBilinear",am="ResizeBilinearGrad",Ii="Relu6",il="Reverse",ol="Round",Si="Rsqrt",ll="ScatterNd",ul="Select",Ju="Selu",dl="Slice",Ti="Sin",pl="Sinh",Qu="Sign",Ni="Sigmoid",ed="Softplus",Ci="Sqrt",Ei="Sum",hl="SpaceToBatchND",cl="SplitV",Ri="Softmax",Zp="SparseFillEmptyRows",td="SparseReshape",Yp="SparseSegmentMean",Jp="SparseSegmentSum",Qp="SparseToDense",Mi="SquaredDifference",rd="Square",fl="StridedSlice",eh="StringNGrams",sm="StringSplit",im="StringToHashBucketFast",Fi="Sub",ml="Tan",$i="Tanh",Xa="Tile",gl="TopK",yl="Transform",Pi="Transpose",om="Unique",Al="Unpack",th="UnsortedSegmentSum",xl="ZerosLike",_i="Step",Sp="FromPixels",bl="RotateWithOffset",Cs="_FusedMatMul",Es="FusedConv2D",Rs="FusedDepthwiseConv2D";function vs(...e){Y().getBool("IS_TEST")||Y().getBool("PROD")||console.warn(...e)}function TR(...e){Y().getBool("IS_TEST")||Y().getBool("PROD")||console.log(...e)}var fu=o2("kernelRegistry",()=>new Map),Tp=o2("gradRegistry",()=>new Map);function uf(e,t){let r=l2(e,t);return fu.get(r)}function n1(e){return Tp.get(e)}function Ca(e){let t=fu.entries(),r=[];for(;;){let{done:n,value:a}=t.next();if(n)break;let[s,i]=a,[o]=s.split("_");o===e&&r.push(i)}return r}function Vn(e){let{kernelName:t,backendName:r}=e,n=l2(t,r);fu.has(n)&&vs(`The kernel '${t}' for backend '${r}' is already registered`),fu.set(n,e)}function Sw(e){let{kernelName:t}=e;Tp.has(t)&&Y().getBool("DEBUG")&&vs(`Overriding the gradient for '${t}'`),Tp.set(t,e)}function NR(e,t){let r=l2(e,t);if(!fu.has(r))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);fu.delete(r)}function CR(e){if(!Tp.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Tp.delete(e)}function ER(e,t){Ca(e).forEach(r=>{let n=Object.assign({},r,{backendName:t});Vn(n)})}function l2(e,t){return`${t}_${e}`}var v={};Le(v,{arraysEqual:()=>Us,assert:()=>P,assertNonNegativeIntegerDimensions:()=>s2,assertNonNull:()=>Po,assertShapesMatch:()=>Wr,bytesFromStringArray:()=>yw,bytesPerElement:()=>r1,checkConversionForErrors:()=>mw,clamp:()=>Ip,computeStrides:()=>Cu,createScalarValue:()=>_R,createShuffledIndices:()=>cR,decodeString:()=>df,distSquared:()=>uR,encodeString:()=>nh,fetch:()=>OR,fingerPrint64:()=>PR,flatten:()=>wo,getArrayFromDType:()=>fw,getTypedArrayFromDType:()=>cw,hasEncodingLoss:()=>gR,hexToLong:()=>rh,indexToLoc:()=>xR,inferDtype:()=>_f,inferFromImplicitShape:()=>mR,isBoolean:()=>Aw,isFunction:()=>Ns,isInt:()=>cu,isNumber:()=>xw,isPromise:()=>i2,isScalarShape:()=>dR,isString:()=>ws,isTypedArray:()=>Ir,isValidDtype:()=>gw,locToIndex:()=>AR,makeOnesTypedArray:()=>a2,makeZerosNestedTypedArray:()=>yR,makeZerosTypedArray:()=>zf,nearestDivisor:()=>sf,nearestLargerEven:()=>iR,now:()=>Np,parseAxisParam:()=>Wn,randUniform:()=>lR,repeatedTry:()=>fR,rightPad:()=>xp,shuffle:()=>pw,shuffleCombo:()=>sR,sizeFromShape:()=>Tt,sizeToSquarishShape:()=>hR,squeezeShape:()=>hw,sum:()=>oR,swap:()=>af,tanh:()=>pR,toNestedArray:()=>lu,toTypedArray:()=>lm});var T3=$o(WE()),po=T3.default||T3;function rh(e){return po.fromString(e,!0,16)}var Tw=rh("c3a5c85c97cb3127"),oo=rh("b492b66fbe98f273"),zr=rh("9ae16a3b2f90404f");function a1(e){return e.xor(e.shru(47))}function Nw(e,t,r){let n=e.slice(t,t+r);return po.fromBytes(Array.from(n),!0,!0)}function wt(e,t){return Nw(e,t,8)}function N3(e,t){return Nw(e,t,4)}function pr(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function Is(e,t,r=rh("9ddfea08eb382d69")){let n=e.xor(t).mul(r);n=n.xor(n.shru(47));let a=t.xor(n).mul(r);return a=a.xor(a.shru(47)),a=a.mul(r),a}function RR(e,t,r,n,a,s){a=a.add(e),s=pr(s.add(a).add(n),21);let i=a;return a=a.add(t),a=a.add(r),s=s.add(pr(a,44)),[a.add(n),s.add(i)]}function _c(e,t,r,n){return RR(wt(e,t),wt(e,t+8),wt(e,t+16),wt(e,t+24),r,n)}function MR(e,t=e.length){if(t>=8){let r=zr.add(t*2),n=wt(e,0).add(zr),a=wt(e,t-8),s=pr(a,37).mul(r).add(n),i=pr(n,25).add(a).mul(r);return Is(s,i,r)}if(t>=4){let r=zr.add(t*2),n=N3(e,0);return Is(n.shl(3).add(t),N3(e,t-4),r)}if(t>0){let r=e[0],n=e[t>>1],a=e[t-1],s=r+(n<<8),i=t+(a<<2);return a1(zr.mul(s).xor(Tw.mul(i))).mul(zr)}return zr}function FR(e,t=e.length){let r=zr.add(t*2),n=wt(e,0).mul(oo),a=wt(e,8),s=wt(e,t-8).mul(r),i=wt(e,t-16).mul(zr);return Is(pr(n.add(a),43).add(pr(s,30)).add(i),n.add(pr(a.add(zr),18)).add(s),r)}function $R(e,t=e.length){let r=zr.add(t*2),n=wt(e,0).mul(zr),a=wt(e,8),s=wt(e,t-8).mul(r),i=wt(e,t-16).mul(zr),o=pr(n.add(a),43).add(pr(s,30)).add(i),l=Is(o,n.add(pr(a.add(zr),18)).add(s),r),u=wt(e,16).mul(r),d=wt(e,24),h=o.add(wt(e,t-32)).mul(r),p=l.add(wt(e,t-24)).mul(r);return Is(pr(u.add(d),43).add(pr(h,30)).add(p),u.add(pr(d.add(n),18)).add(h),r)}function PR(e,t=e.length){let r=po.fromNumber(81,!0);if(t<=32)return t<=16?MR(e,t):FR(e,t);if(t<=64)return $R(e,t);let n=r,a=r.mul(oo).add(113),s=a1(a.mul(zr).add(113)).mul(zr),i=[po.UZERO,po.UZERO],o=[po.UZERO,po.UZERO];n=n.mul(zr).add(wt(e,0));let l=0,u=(t-1>>6)*64,d=u+(t-1&63)-63;do n=pr(n.add(a).add(i[0]).add(wt(e,l+8)),37).mul(oo),a=pr(a.add(i[1]).add(wt(e,l+48)),42).mul(oo),n=n.xor(o[1]),a=a.add(i[0]).add(wt(e,l+40)),s=pr(s.add(o[0]),33).mul(oo),i=_c(e,l,i[1].mul(oo),n.add(o[0])),o=_c(e,l+32,s.add(o[1]),a.add(wt(e,l+16))),[s,n]=[n,s],l+=64;while(l!==u);let h=oo.add(s.and(255).shl(1));return l=d,o[0]=o[0].add(t-1&63),i[0]=i[0].add(o[0]),o[0]=o[0].add(i[0]),n=pr(n.add(a).add(i[0]).add(wt(e,l+8)),37).mul(h),a=pr(a.add(i[1]).add(wt(e,l+48)),42).mul(h),n=n.xor(o[1].mul(9)),a=a.add(i[0].mul(9).add(wt(e,l+40))),s=pr(s.add(o[0]),33).mul(h),i=_c(e,l,i[1].mul(h),n.add(o[0])),o=_c(e,l+32,s.add(o[1]),a.add(wt(e,l+16))),[s,n]=[n,s],Is(Is(i[0],o[0],h).add(a1(a).mul(Tw)).add(s),Is(i[1],o[1],h).add(n),h)}function _R(e,t){return t==="string"?nh(e):lm([e],t)}function zR(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function lm(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=wo(e)),Y().getBool("DEBUG")&&mw(e,t),zR(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let r=new Uint8Array(e.length);for(let n=0;n<r.length;++n)Math.round(e[n])!==0&&(r[n]=1);return r}else throw new Error(`Unknown data type ${t}`)}function Np(){return Y().platform.now()}function OR(e,t){return Y().platform.fetch(e,t)}function nh(e,t="utf-8"){return t=t||"utf-8",Y().platform.encode(e,t)}function df(e,t="utf-8"){return t=t||"utf-8",Y().platform.decode(e,t)}var DR=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new BR)}profileKernel(e,t,r){let n,a=()=>{n=r()},s,i=Np();if(this.backendTimer.timerAvailable())s=this.backendTimer.time(a);else{a();for(let o of n)o.dataSync();s=Promise.resolve({kernelMs:Np()-i})}if(Y().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let o=0;o<n.length;o++){let l=n[o];l.data().then(u=>{LR(u,l.dtype,e)})}return{kernelName:e,outputs:n,inputs:t,timeMs:s.then(o=>o.kernelMs),extraInfo:s.then(o=>o.getExtraProfileInfo!=null?o.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:r,timeMs:n,inputs:a,extraInfo:s}=e;r.forEach(i=>{Promise.all([i.data(),n,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],a,o[2])})})}};function LR(e,t,r){if(t!=="float32")return!1;for(let n=0;n<e.length;n++){let a=e[n];if(isNaN(a)||!isFinite(a))return console.warn(`Found ${a} in the result of '${r}'`),!0}return!1}var BR=class{logKernelProfile(e,t,r,n,a,s){let i=typeof n=="number"?xp(`${n}ms`,9):n.error,o=xp(e,25),l=t.rank,u=t.size,d=xp(t.shape.toString(),14),h="";for(let p in a){let c=a[p];if(c!=null){let f=c.shape||t.shape,m=f.length;h+=`${p}: ${m}D ${m>0?f:""} `}}console.log(`%c${o} %c${i} %c${l}D ${d} %c${u} %c${h} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function WR(e,t,r){let n={},a={};for(let l=0;l<t.length;l++)n[t[l].id]=!0;for(let l=0;l<e.length;l++){let u=e[l],d=u.inputs;for(let h in d){let p=d[h],c=!1;for(let f=0;f<t.length;f++)if(n[p.id]){u.outputs.forEach(m=>n[m.id]=!0),c=!0,a[u.id]=!0;break}if(c)break}}let s={};s[r.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let u=e[l],d=u.inputs;for(let h=0;h<u.outputs.length;h++)if(s[u.outputs[h].id]){for(let p in d)s[d[p].id]=!0,i[u.id]=!0;break}}let o=[];for(let l=0;l<e.length;l++){let u=e[l];if(a[u.id]&&i[u.id]){let d={};for(let p in u.inputs){let c=u.inputs[p];n[c.id]&&(d[p]=c)}let h=Object.assign({},u);h.inputs=d,h.outputs=u.outputs,o.push(h)}}return o}function VR(e,t,r,n){for(let a=t.length-1;a>=0;a--){let s=t[a],i=[];if(s.outputs.forEach(l=>{let u=e[l.id];u!=null?i.push(u):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let u=r(()=>o[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let d=s.inputs[l];if(!Us(u.shape,d.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${d.shape}'`);if(e[d.id]==null)e[d.id]=u;else{let h=e[d.id];e[d.id]=n(h,u),h.dispose()}}}}var C3=20,sp=3,Vy=7;function UR(e,t,r,n){let a=Cu(t),s=GR(e,t,r,a),i=t.length,o=Hc(e,t,r,a,s),l=["Tensor"];return n&&(l.push(` dtype: ${r}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(u=>" "+u).join(`
|
|
`)),l.join(`
|
|
`)}function GR(e,t,r,n){let a=Tt(t),s=n[n.length-1],i=new Array(s).fill(0),o=t.length,l=r==="complex64"?dp(e):e;if(o>1)for(let u=0;u<a/s;u++){let d=u*s;for(let h=0;h<s;h++)i[h]=Math.max(i[h],up(l[d+h],0,r).length)}return i}function up(e,t,r){let n;return Array.isArray(e)?n=`${parseFloat(e[0].toFixed(Vy))} + ${parseFloat(e[1].toFixed(Vy))}j`:ws(e)?n=`'${e}'`:r==="bool"?n=Cw(e):n=parseFloat(e.toFixed(Vy)).toString(),xp(n,t)}function Cw(e){return e===0?"false":"true"}function Hc(e,t,r,n,a,s=!0){let i=r==="complex64"?2:1,o=t[0],l=t.length;if(l===0){if(r==="complex64"){let m=dp(e);return[up(m[0],0,r)]}return r==="bool"?[Cw(e[0])]:[e[0].toString()]}if(l===1){if(o>C3){let g=sp*i,y=Array.from(e.slice(0,g)),A=Array.from(e.slice((o-sp)*i,o*i));return r==="complex64"&&(y=dp(y),A=dp(A)),["["+y.map((x,b)=>up(x,a[b],r)).join(", ")+", ..., "+A.map((x,b)=>up(x,a[o-sp+b],r)).join(", ")+"]"]}let m=r==="complex64"?dp(e):Array.from(e);return["["+m.map((g,y)=>up(g,a[y],r)).join(", ")+"]"]}let u=t.slice(1),d=n.slice(1),h=n[0]*i,p=[];if(o>C3){for(let m=0;m<sp;m++){let g=m*h,y=g+h;p.push(...Hc(e.slice(g,y),u,r,d,a,!1))}p.push("...");for(let m=o-sp;m<o;m++){let g=m*h,y=g+h;p.push(...Hc(e.slice(g,y),u,r,d,a,m===o-1))}}else for(let m=0;m<o;m++){let g=m*h,y=g+h;p.push(...Hc(e.slice(g,y),u,r,d,a,m===o-1))}let c=l===2?",":"";p[0]="["+p[0]+c;for(let m=1;m<p.length-1;m++)p[m]=" "+p[m]+c;let f=`,
|
|
`;for(let m=2;m<l;m++)f+=`
|
|
`;return p[p.length-1]=" "+p[p.length-1]+"]"+(s?"":f),p}function dp(e){let t=[];for(let r=0;r<e.length;r+=2)t.push([e[r],e[r+1]]);return t}var rr=class{constructor(e,t,r){if(this.dtype=t,this.shape=e.slice(),this.size=Tt(e),r!=null){let n=r.length;P(n===this.size,()=>`Length of values '${n}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=r||fw(t,this.size),this.strides=Cu(e)}set(e,...t){t.length===0&&(t=[0]),P(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let r=this.locToIndex(t);this.values[r]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let n of e){if(n<0||n>=this.shape[t]){let a=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(a)}t++}let r=e[e.length-1];for(let n=0;n<e.length-1;++n)r+=this.strides[n]*e[n];return this.values[r]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let r=0;r<e.length-1;++r)t+=this.strides[r]*e[r];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let r=0;r<t.length-1;++r)t[r]=Math.floor(e/this.strides[r]),e-=t[r]*this.strides[r];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return aa().makeTensor(this.values,this.shape,this.dtype)}},aa=null,su=null,jR=null;function HR(e){aa=e}function qR(e){su=e}function KR(e){jR=e}var rt=class{constructor(e,t,r,n){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=Tt(e),this.strides=Cu(e),this.dataId=r,this.id=n,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return su.buffer(this.shape,this.dtype,e)}bufferSync(){return su.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return lu(this.shape,e,this.dtype==="complex64")}arraySync(){return lu(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=aa().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(r=>df(r))}catch(r){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataToGPU(e){return this.throwIfDisposed(),aa().readToGPU(this.dataId,e)}dataSync(){this.throwIfDisposed();let e=aa().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>df(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await aa().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(aa().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return su.print(this,e)}clone(){return this.throwIfDisposed(),su.clone(this)}toString(e=!1){let t=this.dataSync();return UR(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),su.cast(this,e)}variable(e=!0,t,r){return this.throwIfDisposed(),aa().makeVariable(this,e,t,r)}};Object.defineProperty(rt,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function XR(){return o2("Tensor",()=>rt)}XR();var Cp=class extends rt{constructor(e,t,r,n){super(e.shape,e.dtype,e.dataId,n),this.trainable=t,this.name=r}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!Us(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);aa().disposeTensor(this),this.dataId=e.dataId,aa().incRef(this,null)}dispose(){aa().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(Cp,Symbol.hasInstance,{value:e=>e instanceof rt&&e.assign!=null&&e.assign instanceof Function});var la={};Le(la,{assertTypesMatch:()=>Pw,getTensorsInContainer:()=>u2,isTensorInList:()=>YR,makeTypesMatch:()=>Ot});var Ew=(e=>(e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6",e))(Ew||{}),Rw=(e=>(e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64",e))(Rw||{}),Mw=(e=>(e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64",e))(Mw||{}),Fw=(e=>(e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64",e))(Fw||{}),$w=(e=>(e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64",e))($w||{}),ZR={float32:Fw,int32:Rw,bool:Mw,complex64:$w};function Nr(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return ZR[e][t]}function ah(e){return Nr(e,"int32")}function Ot(e,t){if(e.dtype===t.dtype)return[e,t];let r=Nr(e.dtype,t.dtype);return[e.cast(r),t.cast(r)]}function Pw(e,t){P(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function YR(e,t){return t.some(r=>r.id===e.id)}function u2(e){let t=[];return _w(e,t,new Set),t}function _w(e,t,r){if(e==null)return;if(e instanceof rt){t.push(e);return}if(!JR(e))return;let n=e;for(let a in n){let s=n[a];r.has(s)||(r.add(s),_w(s,t,r))}}function JR(e){return Array.isArray(e)||typeof e=="object"}function Uy(e){return e.kernelName!=null}var E3=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},s1=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new E3}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let r=e[t];if(await this.initializeBackend(r).success){await this.setBackend(r);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,r=1){return e in this.registryFactory?(vs(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:r},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:r}=this.initializeBackend(e);if(!(r?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new DR(this.backendInstance),!0}setupRegisteredKernels(){Ca(this.backendName).forEach(e=>{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){Ca(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let r=t.factory();if(r&&!(r instanceof Nu)&&typeof r.then=="function"){let n=++this.pendingBackendInitId,a=r.then(s=>n<this.pendingBackendInitId?!1:(this.registry[e]=s,this.pendingBackendInit=null,!0)).catch(s=>(n<this.pendingBackendInitId||(this.pendingBackendInit=null,vs(`Initialization of backend ${e} failed`),vs(s.stack||s.message)),!1));return this.pendingBackendInit=a,{success:a,asyncInit:!0}}else return this.registry[e]=r,{success:!0,asyncInit:!1}}catch(r){return vs(`Initialization of backend ${e} failed`),vs(r.stack||r.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let r=e[t],{success:n,asyncInit:a}=this.initializeBackend(r);if(a||n)return{name:r,asyncInit:a}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let r=this.state.tensorInfo.get(t),n=r.backend,a=this.readSync(t),s=n.refCount(t);n.disposeData(t,!0),r.backend=e,e.move(t,a,r.shape,r.dtype,s),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let r=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");r=e}let n;return this.scopedRun(()=>this.startScope(r),()=>this.endScope(n),()=>(n=t(),n instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),n))}scopedRun(e,t,r){e();try{let n=r();return t(),n}catch(n){throw t(),n}}nextTensorId(){return s1.nextTensorId++}nextVariableId(){return s1.nextVariableId++}clone(e){let t=B.runKernel(li,{x:e}),r={x:e},n=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return B.runKernel(Ks,o,l)}}),a=[];return this.addTapeNode(this.state.activeScope.name,r,[t],n,a,{}),t}runKernel(e,t,r){if(this.backendName==null&&this.backend,uf(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:r})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,r){let n=this.backend.numDataIds(),a=0;r.forEach(o=>{a+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=n-t-a-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,r=[],n=this.isTapeOn(),a=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=Uy(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(Uy(e)){let{kernelName:c,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let g=uf(c,this.backendName);P(g!=null,()=>`Cannot find registered kernel '${c}' for backend '${this.backendName}'`),i=()=>{let y=this.backend.numDataIds();o=g.kernelFunc({inputs:f,attrs:m,backend:this.backend});let A=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(c,y,A);let x=A.map(b=>{if(b.rank!=null)return b;let{dataId:w,shape:T,dtype:S}=b;return this.makeTensorFromDataId(w,T,S)});if(n){let b=this.getTensorsForGradient(c,f,x);r=this.saveTensorsForBackwardMode(b)}return x}}else{let{forwardFunc:c}=e,f=m=>{!n||(r=m.map(g=>this.keep(this.clone(g))))};i=()=>{let m=this.backend.numDataIds();o=this.tidy(()=>c(this.backend,f));let g=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,m,g),g}}let{inputs:u,attrs:d}=e,h=Uy(e)?null:e.backwardsFunc,p;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(p=this.profiler.profileKernel(l,u,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(p),t=p.outputs)}),n&&this.addTapeNode(l,u,t,h,r,d),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-a,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(c=>u[c]!=null?u[c].shape:null),outputShapes:t.map(c=>c.shape),kernelTimeMs:p.timeMs,extraInfo:p.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,r){let n=n1(e);if(n!=null){let a=n.inputsToSave||[],s=n.outputsToSave||[],i;n.saveAllInputs?(P(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=a.map(l=>t[l]);let o=r.filter((l,u)=>s[u]);return i.concat(o)}return[]}makeTensor(e,t,r,n){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");r=r||"float32",n=n||this.backend;let a=e;r==="string"&&ws(e[0])&&(a=e.map(o=>nh(o)));let s=n.write(a,t,r),i=new rt(t,r,s,this.nextTensorId());if(this.trackTensor(i,n),r==="string"){let o=this.state.tensorInfo.get(s),l=yw(a);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,r,n){r=r||"float32";let a=new rt(t,r,e,this.nextTensorId());return this.trackTensor(a,n),a}makeVariable(e,t=!0,r,n){r=r||this.nextVariableId().toString(),n!=null&&n!==e.dtype&&(e=e.cast(n));let a=new Cp(e,t,r,this.nextTensorId());if(this.state.registeredVariables[a.name]!=null)throw new Error(`Variable with name ${a.name} was already registered`);return this.state.registeredVariables[a.name]=a,this.incRef(a,this.backend),a}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let r=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(r=e.size*r1(e.dtype)),this.state.numBytes+=r,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:r})),e instanceof Cp||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let r=e.size*r1(e.dtype);this.state.numBytes-=r}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,r=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(n=>n.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-r;for(let n of this.state.activeProfile.kernels)n.kernelTimeMs=await n.kernelTimeMs,n.extraInfo=await n.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,r,n,a,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:r,saved:a},o=n1(e);o!=null&&(n=o.gradFunc),n!=null&&(i.gradient=l=>(l=l.map((u,d)=>{if(u==null){let h=r[d],p=zf(h.size,h.dtype);return this.makeTensor(p,h.shape,h.dtype)}return u}),n(l.length>1?l:l[0],a,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=u2(e),r=new Set(t.map(a=>a.id));for(let a=0;a<this.state.activeScope.track.length;a++){let s=this.state.activeScope.track[a];!s.kept&&!r.has(s.id)&&s.dispose()}let n=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(a=>{!a.kept&&a.scopeId===n.id&&this.track(a)})}gradients(e,t,r,n=!1){if(P(t.length>0,()=>"gradients() received an empty list of xs."),r!=null&&r.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${r.dtype}'`);let a=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));P(a instanceof rt,()=>"The result y returned by f() must be a tensor.");let s=WR(this.state.activeTape,t,a);if(!n&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[a.id]=r==null?QR(a.shape):r,VR(i,s,l=>this.tidy(l),eM);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:a,grads:o}})}customGrad(e){return P(Ns(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{P(t.every(i=>i instanceof rt),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let r,n={};t.forEach((i,o)=>{n[o]=i});let a=(i,o)=>(r=e(...t,o),P(r.value instanceof rt,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),P(Ns(r.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),r.value),s=(i,o)=>{let l=r.gradFunc(i,o),u=Array.isArray(l)?l:[l];P(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),P(u.every(h=>h instanceof rt),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let d={};return u.forEach((h,p)=>{d[p]=()=>h}),d};return this.runKernelFunc({forwardFunc:a,backwardsFunc:s,inputs:n})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}readToGPU(e,t){return this.state.tensorInfo.get(e).backend.readToGPU(e,t)}async time(e){let t=Np(),r=await this.backend.time(e);return r.wallMs=Np()-t,r}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new E3;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}},d2=s1;d2.nextTensorId=0;d2.nextVariableId=0;function QR(e){let t=a2(Tt(e),"float32");return B.makeTensor(t,e,"float32")}function zw(){let e=ww();if(e._tfengine==null){let t=new vw(e);e._tfengine=new d2(t)}return kR(e._tfengine.ENV),HR(()=>e._tfengine),e._tfengine}var B=zw();function eM(e,t){let r={a:e,b:t};return B.runKernel(qa,r)}var sh={};Le(sh,{isBrowser:()=>Ow,isMobile:()=>nM,mockIsMobile:()=>rM});function tM(){return typeof navigator!="undefined"&&navigator!=null}var i1;function rM(e){i1=e}function nM(e){if(i1!==void 0)return i1;if(e||tM()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let r=e;return r.userAgentData&&r.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function Ow(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Ln=Y();Ln.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Ln.registerFlag("IS_BROWSER",()=>Ow());Ln.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Ln.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Ln.registerFlag("PROD",()=>!1);Ln.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Ln.getBool("DEBUG"));Ln.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Ln.registerFlag("IS_TEST",()=>!1);Ln.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);Ln.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);Ln.registerFlag("ENGINE_COMPILE_ONLY",()=>!1);function Ea(e,t){let r=e;if(Ir(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let n=[];for(;Array.isArray(r)||Ir(r)&&t!=="string";)n.push(r.length),r=r[0];return Array.isArray(e)&&Y().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&Dw(e,n,[]),n}function Dw(e,t,r){if(r=r||[],!Array.isArray(e)&&!Ir(e)){P(t.length===0,()=>`Element arr[${r.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}P(t.length>0,()=>`Element arr[${r.join("][")}] should be a primitive, but is an array of ${e.length} elements`),P(e.length===t[0],()=>`Element arr[${r.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let n=t.slice(1);for(let a=0;a<e.length;++a)Dw(e[a],n,r.concat(a))}function R3(e,t,r,n){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${r}' passed to '${n}' must be ${e} tensor, but got ${t} tensor`)}}function F(e,t,r,n="numeric"){if(e instanceof rt)return R3(n,e.dtype,t,r),e;let a=_f(e);if(a!=="string"&&["bool","int32","float32"].indexOf(n)>=0&&(a=n),R3(n,a,t,r),e==null||!Ir(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${r}' must be a Tensor or TensorLike, but got '${o}'`)}let s=Ea(e,a);!Ir(e)&&!Array.isArray(e)&&(e=[e]);let i=a!=="string"?lm(e,a):wo(e,[],!0);return B.makeTensor(i,s,a)}function Ep(e,t,r,n="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${r} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,s)=>F(a,`${t}[${s}]`,r,n))}var Lw="__op";function W(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let r=t[0],n=e[r];r.endsWith("_")&&(r=r.substring(0,r.length-1)),r=r+Lw;let a=(...s)=>{B.startScope(r);try{let i=n(...s);return i2(i)&&console.error("Cannot return a Promise inside of tidy."),B.endScope(i),i}catch(i){throw B.endScope(null),i}};return Object.defineProperty(a,"name",{value:r,configurable:!0}),a}function aM(e,t){let r=F(e,"real","complex"),n=F(t,"imag","complex");Wr(r.shape,n.shape,`real and imag shapes, ${r.shape} and ${n.shape}, must match in call to tf.complex().`);let a={real:r,imag:n};return B.runKernel(Bp,a)}var Ms=W({complex_:aM});function zi(e,t,r,n){if(n==null&&(n=_f(e)),n==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!Ir(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){s2(t);let a=Tt(t),s=Tt(r);P(a===s,()=>`Based on the provided shape, [${t}], the tensor should have ${a} values but has ${s}`);for(let i=0;i<r.length;++i){let o=r[i],l=i===r.length-1?o!==Tt(t.slice(i)):!0;P(r[i]===t[i]||!l,()=>`Error creating a new Tensor. Inferred shape (${r}) does not match the provided shape (${t}). `)}}return!Ir(e)&&!Array.isArray(e)&&(e=[e]),t=t||r,e=n!=="string"?lm(e,n):wo(e,[],!0),B.makeTensor(e,t,n)}function ct(e,t,r){let n=Ea(e,r);return zi(e,t,n,r)}var o1={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},pf=4;async function sM(e,t){let r=[],n=[],a=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i<a.length;++i){let o=a[i],l=Array.isArray(e)?e[i].tensor:e[o];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${o}': ${l.dtype}`);let u={name:o,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let d=new Promise(async h=>{let p=await l.bytes(),c=p.reduce((g,y)=>g+y.length,0)+pf*p.length,f=new Uint8Array(c),m=0;for(let g=0;g<p.length;g++){let y=p[g],A=new Uint8Array(new Uint32Array([y.length]).buffer);f.set(A,m),m+=pf,f.set(y,m),m+=y.length}h(f)});n.push(d)}else n.push(l.data());t!=null&&(u.group=t),r.push(u)}let s=await Promise.all(n);return{data:iM(s),specs:r}}function Bw(e,t){let r={},n,a=0;for(let s of t){let i=s.name,o=s.dtype,l=s.shape,u=Tt(l),d;if("quantization"in s){let h=s.quantization;if(h.dtype==="uint8"||h.dtype==="uint16"){if(!("min"in h&&"scale"in h))throw new Error(`Weight ${s.name} with quantization ${h.dtype} doesn't have corresponding metadata min and scale.`)}else if(h.dtype==="float16"){if(o!=="float32")throw new Error(`Weight ${s.name} is quantized with ${h.dtype} which only supports weights of type float32 not ${o}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${h.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let p=o1[h.dtype],c=e.slice(a,a+u*p),f=h.dtype==="uint8"?new Uint8Array(c):new Uint16Array(c);if(o==="float32")if(h.dtype==="uint8"||h.dtype==="uint16"){d=new Float32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];d[m]=g*h.scale+h.min}}else if(h.dtype==="float16")n===void 0&&(n=hM()),d=n(f);else throw new Error(`Unsupported quantization type ${h.dtype} for weight type float32.`);else if(o==="int32"){if(h.dtype!=="uint8"&&h.dtype!=="uint16")throw new Error(`Unsupported quantization type ${h.dtype} for weight type int32.`);d=new Int32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];d[m]=Math.round(g*h.scale+h.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);a+=u*p}else if(o==="string"){let h=Tt(s.shape);d=[];for(let p=0;p<h;p++){let c=new Uint32Array(e.slice(a,a+pf))[0];a+=pf;let f=new Uint8Array(e.slice(a,a+c));d.push(f),a+=c}}else{let h=o1[o],p=e.slice(a,a+u*h);if(o==="float32")d=new Float32Array(p);else if(o==="int32")d=new Int32Array(p);else if(o==="bool")d=new Uint8Array(p);else if(o==="complex64"){d=new Float32Array(p);let c=new Float32Array(d.length/2),f=new Float32Array(d.length/2);for(let y=0;y<c.length;y++)c[y]=d[y*2],f[y]=d[y*2+1];let m=ct(c,l,"float32"),g=ct(f,l,"float32");r[i]=Ms(m,g),m.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);a+=u*h}o!=="complex64"&&(r[i]=ct(d,l,o))}return r}function iM(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,r=[];e.forEach(s=>{if(t+=s.byteLength,r.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let n=new Uint8Array(t),a=0;return r.forEach(s=>{n.set(new Uint8Array(s.buffer),a),a+=s.byteLength}),n.buffer}var p2=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function M3(e){return p2?Buffer.byteLength(e):new Blob([e]).size}function oM(e){if(p2)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),r="";for(let n=0,a=t.length;n<a;n++)r+=String.fromCharCode(t[n]);return btoa(r)}function lM(e){if(p2){let n=Buffer.from(e,"base64");return n.buffer.slice(n.byteOffset,n.byteOffset+n.byteLength)}let t=atob(e),r=new Uint8Array(t.length);for(let n=0;n<t.length;++n)r.set([t.charCodeAt(n)],n);return r.buffer}function h2(e){if(e.length===1)return e[0];let t=0;e.forEach(a=>{t+=a.byteLength});let r=new Uint8Array(t),n=0;return e.forEach(a=>{r.set(new Uint8Array(a),n),n+=a.byteLength}),r.buffer}function F3(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let r=e.split(t);return r[r.length-1]}function Ww(e,t){let r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),e.trainingConfig!=null&&(r.trainingConfig=e.trainingConfig),r}async function c2(e,t){let r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(r.trainingConfig=e.trainingConfig),e.weightsManifest!=null){let[n,a]=await t(e.weightsManifest);r.weightSpecs=n,r.weightData=a}return e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),r}function ih(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:M3(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:M3(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function uM(){let e=r=>{let n=r<<13,a=0;for(;(n&8388608)===0;)a-=8388608,n<<=1;return n&=-8388609,a+=947912704,n|a},t=new Uint32Array(2048);t[0]=0;for(let r=1;r<1024;r++)t[r]=e(r);for(let r=1024;r<2048;r++)t[r]=939524096+(r-1024<<13);return t}function dM(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function pM(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function hM(){let e=uM(),t=dM(),r=pM();return n=>{let a=new ArrayBuffer(4*n.length),s=new Uint32Array(a);for(let i=0;i<n.length;i++){let o=n[i],l=e[r[o>>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(a)}}var Lt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Lt.instance==null&&(Lt.instance=new Lt),Lt.instance}static registerSaveRouter(e){Lt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Lt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Lt.getHandlers(e,"save")}static getLoadHandlers(e,t){return Lt.getHandlers(e,"load",t)}static getHandlers(e,t,r){let n=[];return(t==="load"?Lt.getInstance().loadRouters:Lt.getInstance().saveRouters).forEach(a=>{let s=a(e,r);s!==null&&n.push(s)}),n}},cM=e=>Lt.registerSaveRouter(e),fM=e=>Lt.registerLoadRouter(e),mM=e=>Lt.getSaveHandlers(e),gM=(e,t)=>Lt.getLoadHandlers(e,t),l1="tensorflowjs",u1=1,mo="models_store",ks="model_info_store";function Vw(){if(!Y().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function d1(e){let t=e.result;t.createObjectStore(mo,{keyPath:"modelPath"}),t.createObjectStore(ks,{keyPath:"modelPath"})}var ko=class{constructor(e){if(this.indexedDB=Vw(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((r,n)=>{let a=this.indexedDB.open(l1,u1);a.onupgradeneeded=()=>d1(a),a.onsuccess=()=>{let s=a.result;if(t==null){let i=s.transaction(mo,"readonly"),o=i.objectStore(mo).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),n(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));r(o.result.modelArtifacts)},o.onerror=l=>(s.close(),n(o.error)),i.oncomplete=()=>s.close()}else{let i=ih(t),o=s.transaction(ks,"readwrite"),l=o.objectStore(ks),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),d;u.onsuccess=()=>{d=s.transaction(mo,"readwrite");let h=d.objectStore(mo).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});h.onsuccess=()=>r({modelArtifactsInfo:i}),h.onerror=p=>{l=o.objectStore(ks);let c=l.delete(this.modelPath);c.onsuccess=()=>(s.close(),n(h.error)),c.onerror=f=>(s.close(),n(h.error))}},u.onerror=h=>(s.close(),n(u.error)),o.oncomplete=()=>{d==null?s.close():d.oncomplete=()=>s.close()}}},a.onerror=s=>n(a.error)})}};ko.URL_SCHEME="indexeddb://";var Uw=e=>Y().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ko.URL_SCHEME)?yM(e.slice(ko.URL_SCHEME.length)):null;Lt.registerSaveRouter(Uw);Lt.registerLoadRouter(Uw);function yM(e){return new ko(e)}function AM(e){return e.startsWith(ko.URL_SCHEME)?e.slice(ko.URL_SCHEME.length):e}var xM=class{constructor(){this.indexedDB=Vw()}async listModels(){return new Promise((e,t)=>{let r=this.indexedDB.open(l1,u1);r.onupgradeneeded=()=>d1(r),r.onsuccess=()=>{let n=r.result,a=n.transaction(ks,"readonly"),s=a.objectStore(ks).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(n.close(),t(s.error)),a.oncomplete=()=>n.close()},r.onerror=n=>t(r.error)})}async removeModel(e){return e=AM(e),new Promise((t,r)=>{let n=this.indexedDB.open(l1,u1);n.onupgradeneeded=()=>d1(n),n.onsuccess=()=>{let a=n.result,s=a.transaction(ks,"readwrite"),i=s.objectStore(ks),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return a.close(),r(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=i.delete(e),d=()=>{l=a.transaction(mo,"readwrite");let h=l.objectStore(mo).delete(e);h.onsuccess=()=>t(o.result.modelArtifactsInfo),h.onerror=p=>r(o.error)};u.onsuccess=d,u.onerror=h=>(d(),a.close(),r(o.error))}},o.onerror=u=>(a.close(),r(o.error)),s.oncomplete=()=>{l==null?a.close():l.oncomplete=()=>a.close()}},n.onerror=a=>r(n.error)})}},Ua="/",iu="tensorflowjs_models",Gw="info",bM="model_topology",vM="weight_specs",wM="weight_data",kM="model_metadata";function jw(e){return{info:[iu,e,Gw].join(Ua),topology:[iu,e,bM].join(Ua),weightSpecs:[iu,e,vM].join(Ua),weightData:[iu,e,wM].join(Ua),modelMetadata:[iu,e,kM].join(Ua)}}function Hw(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function IM(e){let t=e.split(Ua);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(Ua)}function SM(e){return e.startsWith(Io.URL_SCHEME)?e.slice(Io.URL_SCHEME.length):e}var Io=class{constructor(e){if(!Y().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=jw(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),r=JSON.stringify(e.weightSpecs),n=ih(e);try{this.LS.setItem(this.keys.info,JSON.stringify(n)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,r),this.LS.setItem(this.keys.weightData,oM(e.weightData));let a={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(a)),{modelArtifactsInfo:n}}catch(a){throw Hw(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${n.modelTopologyBytes}, weightSpecsBytes=${n.weightSpecsBytes}, weightDataBytes=${n.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},r=JSON.parse(this.LS.getItem(this.keys.topology));if(r==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=r;let n=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(n==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=n;let a=this.LS.getItem(this.keys.modelMetadata);if(a!=null){let i=JSON.parse(a);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer),i.trainingConfig!=null&&(t.trainingConfig=i.trainingConfig)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=lM(s),t}};Io.URL_SCHEME="localstorage://";var qw=e=>Y().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Io.URL_SCHEME)?TM(e.slice(Io.URL_SCHEME.length)):null;Lt.registerSaveRouter(qw);Lt.registerLoadRouter(qw);function TM(e){return new Io(e)}var NM=class{constructor(){P(Y().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),P(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=iu+Ua,r=Ua+Gw;for(let n=0;n<this.LS.length;++n){let a=this.LS.key(n);if(a.startsWith(t)&&a.endsWith(r)){let s=IM(a);e[s]=JSON.parse(this.LS.getItem(a))}}return e}async removeModel(e){e=SM(e);let t=jw(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let r=JSON.parse(this.LS.getItem(t.info));return Hw(t),r}},uu="://",Sn=class{constructor(){this.managers={}}static getInstance(){return Sn.instance==null&&(Sn.instance=new Sn),Sn.instance}static registerManager(e,t){P(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(uu)&&(e=e.slice(0,e.indexOf(uu))),P(e.length>0,()=>"scheme must not be an empty string.");let r=Sn.getInstance();P(r.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),r.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function qc(e){if(e.indexOf(uu)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Sn.getSchemes().join(",")}`);return{scheme:e.split(uu)[0],path:e.split(uu)[1]}}async function Kw(e,t,r=!1){P(e!==t,()=>`Old path and new path are the same: '${e}'`);let n=Lt.getLoadHandlers(e);P(n.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),P(n.length<2,()=>`Copying failed because more than one (${n.length}) load handlers for source URL ${e}.`);let a=n[0],s=Lt.getSaveHandlers(t);P(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),P(s.length<2,()=>`Copying failed because more than one (${n.length}) save handlers for destination URL ${t}.`);let i=s[0],o=qc(e).scheme,l=qc(e).path,u=o===qc(e).scheme,d=await a.load();r&&u&&await Sn.getManager(o).removeModel(l);let h=await i.save(d);return r&&!u&&await Sn.getManager(o).removeModel(l),h.modelArtifactsInfo}async function CM(){let e=Sn.getSchemes(),t={};for(let r of e){let n=await Sn.getManager(r).listModels();for(let a in n){let s=r+uu+a;t[s]=n[a]}}return t}async function EM(e){let t=qc(e);return Sn.getManager(t.scheme).removeModel(t.path)}async function RM(e,t){return Kw(e,t,!1)}async function MM(e,t){return Kw(e,t,!0)}var FM=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(Y().get("IS_BROWSER")){Y().setPlatform("browser",new FM);try{Sn.registerManager(Io.URL_SCHEME,new NM)}catch(e){}try{Sn.registerManager(ko.URL_SCHEME,new xM)}catch(e){}}var $M={importFetch:()=>VE()},Gy,PM=class{constructor(){this.util=UE(),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return Y().global.fetch!=null?Y().global.fetch(e,t):(Gy==null&&(Gy=$M.importFetch()),Gy(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};Y().get("IS_NODE")&&!Y().get("IS_BROWSER")&&Y().setPlatform("node",new PM);function We(e,t="float32",r){return t=t||"float32",s2(e),new rr(e,t,r)}function _M(e,t){let r=F(e,"x","cast");if(!gw(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&r.dtype!=="string"||t!=="string"&&r.dtype==="string")throw new Error("Only strings can be casted to strings");let n={x:r},a={dtype:t};return B.runKernel(Ks,n,a)}var me=W({cast_:_M});function zM(e){let t={x:F(e,"x","clone","string_or_numeric")};return B.runKernel(li,t)}var Lr=W({clone_:zM});function Xw(e,t=!1){console.log(e.toString(t))}zw();var OM={buffer:We,cast:me,clone:Lr,print:Xw};qR(OM);var Sr={};Le(Sr,{browserFiles:()=>GM,browserHTTPRequest:()=>XM,concatenateArrayBuffers:()=>h2,copyModel:()=>RM,decodeWeights:()=>Bw,encodeWeights:()=>sM,fromMemory:()=>YM,getLoadHandlers:()=>gM,getModelArtifactsForJSON:()=>c2,getModelArtifactsInfoForJSON:()=>ih,getSaveHandlers:()=>mM,http:()=>m2,isHTTPScheme:()=>h1,listModels:()=>CM,loadWeights:()=>jM,moveModel:()=>MM,registerLoadRouter:()=>fM,registerSaveRouter:()=>cM,removeModel:()=>EM,weightsLoaderFactory:()=>Yw,withSaveHandler:()=>JM});var DM="model",LM=".json",BM=".weights.bin";function $3(e){return new Promise(t=>setTimeout(t)).then(e)}var p1=class{constructor(e){if(!Y().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(p1.URL_SCHEME)&&(e=e.slice(p1.URL_SCHEME.length)),(e==null||e.length===0)&&(e=DM),this.modelJsonFileName=e+LM,this.weightDataFileName=e+BM}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let r=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],n=Ww(e,r),a=window.URL.createObjectURL(new Blob([JSON.stringify(n)],{type:"application/json"})),s=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(s.download=this.modelJsonFileName,s.href=a,await $3(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await $3(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:ih(e)}}}},hf=p1;hf.URL_SCHEME="downloads://";var WM=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let r=new FileReader;r.onload=n=>{let a=JSON.parse(n.target.result),s=a.modelTopology;if(s==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(a.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:s});return}let i=c2(a,o=>this.loadWeights(o));e(i)},r.onerror=n=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),r.readAsText(this.jsonFile)})}loadWeights(e){let t=[],r=[];for(let s of e)t.push(...s.weights),r.push(...s.paths);let n=this.checkManifestAndWeightFiles(e),a=r.map(s=>this.loadWeightsFile(s,n[s]));return Promise.all(a).then(s=>[t,h2(s)])}loadWeightsFile(e,t){return new Promise((r,n)=>{let a=new FileReader;a.onload=s=>{let i=s.target.result;r(i)},a.onerror=s=>n(`Failed to weights data from file of path '${e}'.`),a.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],r=this.weightsFiles.map(a=>F3(a.name)),n={};for(let a of e)a.paths.forEach(s=>{let i=F3(s);if(t.indexOf(i)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${i}'`);if(t.push(i),r.indexOf(i)===-1)throw new Error(`Weight file with basename '${i}' is not provided.`);n[s]=this.weightsFiles[r.indexOf(i)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return n}},VM=e=>Y().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(hf.URL_SCHEME)?UM(e.slice(hf.URL_SCHEME.length)):null;Lt.registerSaveRouter(VM);function UM(e="model"){return new hf(e)}function GM(e){return new WM(e)}function P3(e,t,r,n){i(e),r=r==null?0:r,n=n==null?1:n,o(r,n);let a=0,s=l=>(l.then(u=>{let d=r+ ++a/e.length*(n-r);return t(d),u}),l);function i(l){P(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,u){P(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),P(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),P(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(s))}async function Zw(e,t){t==null&&(t={});let r=t.fetchFunc==null?Y().platform.fetch:t.fetchFunc,n=e.map(u=>r(u,t.requestInit,{isBinary:!0})),a=0,s=.5,i=(t.onProgress==null?await Promise.all(n):await P3(n,t.onProgress,a,s)).map(u=>u.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await P3(i,t.onProgress,o,l)}async function jM(e,t="",r,n){return Yw(a=>Zw(a,{requestInit:n}))(e,t,r)}function Yw(e){return async(t,r="",n)=>{let a=t.map(()=>!1),s={},i=n!=null?n.map(()=>!1):[],o=[];if(t.forEach((c,f)=>{let m=0;c.weights.forEach(g=>{let y="quantization"in g?g.quantization.dtype:g.dtype,A=o1[y]*Tt(g.shape),x=()=>{a[f]=!0,s[f]==null&&(s[f]=[]),s[f].push({manifestEntry:g,groupOffset:m,sizeBytes:A})};n!=null?n.forEach((b,w)=>{b===g.name&&(x(),i[w]=!0)}):x(),o.push(g.name),m+=A})}),!i.every(c=>c)){let c=n.filter((f,m)=>!i[m]);throw new Error(`Could not find weights in manifest with names: ${c.join(", ")}.
|
|
Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=a.reduce((c,f,m)=>(f&&c.push(m),c),[]),u=[];l.forEach(c=>{t[c].paths.forEach(f=>{let m=r+(r.endsWith("/")?"":"/")+f;u.push(m)})});let d=await e(u),h={},p=0;return l.forEach(c=>{let f=t[c].paths.length,m=0;for(let x=0;x<f;x++)m+=d[p+x].byteLength;let g=new ArrayBuffer(m),y=new Uint8Array(g),A=0;for(let x=0;x<f;x++){let b=new Uint8Array(d[p+x]);y.set(b,A),A+=b.byteLength}s[c].forEach(x=>{let b=g.slice(x.groupOffset,x.groupOffset+x.sizeBytes),w=Bw(b,[x.manifestEntry]);for(let T in w)h[T]=w[T]}),p+=f}),h}}var HM="application/octet-stream",qM="application/json",f2=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(P(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=Y().platform.fetch,P(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&P(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let r=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],n=Ww(e,r);t.body.append("model.json",new Blob([JSON.stringify(n)],{type:qM}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:HM}),"model.weights.bin");let a=await this.fetch(this.path,t);if(a.ok)return{modelArtifactsInfo:ih(e),responses:[a]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${a.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(a){let s=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?s+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":s+=" Please make sure the server is serving valid JSON for this request.",new Error(s)}let r=t.modelTopology,n=t.weightsManifest;if(r==null&&n==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return c2(t,a=>this.loadWeights(a))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[r,n]=KM(t),a=this.weightPathPrefix||r,s=[];for(let u of e)s.push(...u.weights);let i=[],o=[];for(let u of e)for(let d of u.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(d)):i.push(a+d+n);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await Zw(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,h2(l)]}};f2.URL_SCHEME_REGEX=/^https?:\/\//;function KM(e){let t=e.lastIndexOf("/"),r=e.lastIndexOf("?"),n=e.substring(0,t),a=r>t?e.substring(r):"";return[n+"/",a]}function h1(e){return e.match(f2.URL_SCHEME_REGEX)!=null}var Jw=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let r=!0;if(Array.isArray(e)?r=e.every(n=>h1(n)):r=h1(e),r)return m2(e,t)}return null};Lt.registerSaveRouter(Jw);Lt.registerLoadRouter(Jw);function m2(e,t){return new f2(e,t)}function XM(e,t){return m2(e,t)}var jy=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},ZM=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function YM(e,t,r,n){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new jy(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new jy({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new jy({modelTopology:e,weightSpecs:t,weightData:r,trainingConfig:n}))}function JM(e){return new ZM(e)}var Qw={};Le(Qw,{confusionMatrix:()=>nF});function QM(e,t,r=!1,n=!1){let a=F(e,"a","matMul"),s=F(t,"b","matMul");[a,s]=Ot(a,s);let i={a,b:s},o={transposeA:r,transposeB:n};return B.runKernel(qs,i,o)}var Je=W({matMul_:QM});function eF(e,t,r=1,n=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:F(e,"indices","oneHot","int32")},s={depth:t,onValue:r,offValue:n};return B.runKernel(rl,a,s)}var Rp=W({oneHot_:eF});function tF(e,t){let r=F(e,"x","transpose");if(t==null&&(t=r.shape.map((s,i)=>i).reverse()),P(r.rank===t.length,()=>`Error in transpose: rank of input ${r.rank} must match length of perm ${t}.`),t.forEach(s=>{P(s>=0&&s<r.rank,()=>`All entries in 'perm' must be between 0 and ${r.rank-1} but got ${t}`)}),r.rank<=1)return r.clone();let n={x:r},a={perm:t};return B.runKernel(Pi,n,a)}var nt=W({transpose_:tF});function rF(e,t,r){let n=F(e,"labels","confusionMatrix"),a=F(t,"predictions","confusionMatrix");P(r==null||r>0&&Number.isInteger(r),()=>`If provided, numClasses must be a positive integer, but got ${r}`),P(n.rank===1,()=>`Expected the rank of labels to be 1, but got ${n.rank}`),P(a.rank===1,()=>`Expected the rank of predictions to be 1, but got ${a.rank}`),P(n.shape[0]===a.shape[0],()=>`Mismatch in the number of examples: ${n.shape[0]} vs. ${a.shape[0]}. Labels and predictions should have the same number of elements.`),P(r>0&&Number.isInteger(r),()=>`numClasses is required to be a positive integer, but got ${r}`);let s=Rp(me(n,"int32"),r),i=Rp(me(a,"int32"),r),o=nt(s),l=Je(o,i);return me(l,"int32")}var nF=W({confusionMatrix_:rF}),vl={};Le(vl,{assertAndGetBroadcastShape:()=>bt,getBroadcastDims:()=>ek,getReductionAxes:()=>Xt});function ek(e,t){let r=e.length,n=[];for(let a=0;a<r;a++){let s=r-1-a,i=e[s]||1;(t[t.length-1-a]||1)>1&&i===1&&n.unshift(s)}return n}function Xt(e,t){let r=[];for(let n=0;n<t.length;n++){let a=e[e.length-n-1],s=t.length-n-1,i=t[s];(a==null||a===1&&i>1)&&r.unshift(s)}return r}function bt(e,t){let r=[],n=Math.max(e.length,t.length);for(let a=0;a<n;a++){let s=e[e.length-a-1];s==null&&(s=1);let i=t[t.length-a-1];if(i==null&&(i=1),s===1)r.unshift(i);else if(i===1)r.unshift(s);else if(s!==i){let o=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(o)}else r.unshift(s)}return r}var $n={};Le($n,{fromPixels:()=>dF,fromPixelsAsync:()=>lF,toPixels:()=>uF});function tk(e,t,r){if(Po(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let n=Ea(e,r);if(n.length!==3&&n.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return zi(e,t,n,r)}var so;function rk(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let r=!1,n=!1,a=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)r=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)n=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)a=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(a&&a&&e.readyState<2)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.");if(uf(Sp,B.backendName)!=null){let p={pixels:e},c={numChannels:t};return B.runKernel(Sp,p,c)}let[l,u]=a?[e.videoWidth,e.videoHeight]:[e.width,e.height],d;if(i)d=e.getContext("2d").getImageData(0,0,l,u).data;else if(n||r)d=e.data;else if(s||a||o){if(so==null)if(typeof document=="undefined")if(typeof OffscreenCanvas!="undefined"&&typeof OffscreenCanvasRenderingContext2D!="undefined")so=new OffscreenCanvas(1,1).getContext("2d");else throw new Error("Cannot parse input in current context. Reason: OffscreenCanvas Context2D rendering is not supported.");else so=document.createElement("canvas").getContext("2d");so.canvas.width=l,so.canvas.height=u,so.drawImage(e,0,0,l,u),d=so.getImageData(0,0,l,u).data}let h;if(t===4)h=new Int32Array(d);else{let p=l*u;h=new Int32Array(p*t);for(let c=0;c<p;c++)for(let f=0;f<t;++f)h[c*t+f]=d[c*4+f]}return tk(h,[u,l,t],"int32")}function aF(e){return e!=null&&e.data instanceof Uint8Array}function sF(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function iF(e){return e!=null&&e.width!==0&&e.height!==0}function oF(e){return sF()&&!(e instanceof ImageBitmap)&&iF(e)&&!aF(e)}async function lF(e,t=3){let r=null;if(Y().getBool("WRAP_TO_IMAGEBITMAP")&&oF(e)){let n;try{n=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(a){n=null}n!=null&&n.width===e.width&&n.height===e.height?r=n:r=e}else r=e;return rk(r,t)}async function uF(e,t){let r=F(e,"img","toPixels");if(!(e instanceof rt)){let u=r;r=me(u,"int32"),u.dispose()}if(r.rank!==2&&r.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${r.rank}.`);let[n,a]=r.shape.slice(0,2),s=r.rank===2?1:r.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(r.dtype!=="float32"&&r.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${r.dtype}. Please use float32 or int32 tensors.`);let i=await r.data(),o=r.dtype==="float32"?255:1,l=new Uint8ClampedArray(a*n*4);for(let u=0;u<n*a;++u){let d=[0,0,0,255];for(let p=0;p<s;p++){let c=i[u*s+p];if(r.dtype==="float32"){if(c<0||c>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${c}.`)}else if(r.dtype==="int32"&&(c<0||c>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${c}.`);s===1?(d[0]=c*o,d[1]=c*o,d[2]=c*o):d[p]=c*o}let h=u*4;l[h+0]=Math.round(d[0]),l[h+1]=Math.round(d[1]),l[h+2]=Math.round(d[2]),l[h+3]=Math.round(d[3])}if(t!=null){t.width=a,t.height=n;let u=t.getContext("2d"),d=new ImageData(l,a,n);u.putImageData(d,0,0)}return r!==e&&r.dispose(),l}var dF=W({fromPixels_:rk}),g2={};Le(g2,{prepareAndValidate:()=>nk});function nk(e,t){let r=e.shape.length,n=t.shape.length;if(r<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${r}.`);if(n<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${n}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[n-1]>r)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[n-1]} vs. ${r}`);if(Tt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let a=t.shape,s=a[a.length-1],i=1;for(let h=0;h<a.length-1;++h)i*=a[h];let o=e.shape,l=a.slice();l.pop();let u=1;for(let h=s;h<r;++h)u*=o[h],l.push(o[h]);let d=[...Cu(e.shape).map(h=>h/u),1].slice(0,s);return[l,i,u,d]}var y2={};Le(y2,{calculateShapes:()=>ak,validateInput:()=>x2,validateUpdateShape:()=>A2});function A2(e,t,r){let n=t.rank>1?t.shape[t.rank-1]:1,a=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${r.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${n}, and batchDim: ${a}.`;if(r.rank<a)throw new Error(s+` update.rank < ${a}. `);if(e.length<n+(r.rank-a))throw new Error(s+` Output shape length < ${n+(r.rank-a)}`);if(r.rank!==a+e.length-n)throw new Error(s+` update.rank != ${a+e.length-n}`);for(let i=0;i<a;++i)if(r.shape[i]!==t.shape[i])throw new Error(s+` updates.shape[${i}] (${r.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<r.rank-a;++i)if(r.shape[i+a]!==e[i+n])throw new Error(s+` updates.shape[${i+a}] (${r.shape[i+a]}) != shape[${i+a}] (${e[i+a]})`)}function x2(e,t,r){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(r.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${r}`);if(r.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}A2(r,t,e)}function ak(e,t,r){let n=t.shape.length,a=n>1?t.shape[n-1]:1,s=r.length,i=1;for(let h=a;h<s;++h)i*=r[h];let o=a<1?1:a,l=Tt(t.shape)/o,u=[...Cu(r.slice(0,a)),1],d=Tt(r);return{sliceRank:a,numUpdates:l,sliceSize:i,strides:u,outputSize:d}}var _t={};Le(_t,{assertParamsValid:()=>hF,computeFlatOffset:()=>yF,computeOutShape:()=>fF,getNormalizedAxes:()=>mF,isSliceContinous:()=>gF,maskToAxes:()=>cF,parseSliceParams:()=>ck,sliceInfo:()=>AF,startForAxis:()=>pk,startIndicesWithElidedDims:()=>lk,stopForAxis:()=>hk,stopIndicesWithElidedDims:()=>uk,stridesForAxis:()=>dk,stridesWithElidedDims:()=>sk});var c1=-2,pF=-1;function hF(e,t,r){let n=e.shape.length;P(n===t.length,()=>`Error in slice${n}D: Length of begin ${t} must match the rank of the array (${n}).`),P(n===r.length,()=>`Error in slice${n}D: Length of size ${r} must match the rank of the array (${n}).`);for(let a=0;a<n;++a)P(t[a]+r[a]<=e.shape[a],()=>`Error in slice${n}D: begin[${a}] + size[${a}] (${t[a]+r[a]}) would overflow input.shape[${a}] (${e.shape[a]})`)}function cF(e){let t=[],r=0;for(;e>0;)e&1&&t.push(r),e/=2,r++;return t}function fF(e,t,r){let n=[];for(let a=0;a<e.length;a++)n[a]=Math.ceil((t[a]-e[a])/r[a]);return n}function sk(e,t,r,n){let a=[...e];for(let s=a.length;s<n.length;s++)a.push(1);for(let s=0;s<r;s++)s===0?a[t]=1:(a.splice(t,0,1),a.pop());return a}function ik(e,t,r){return r<=e?r:r-(t-1)}function ok(e,t){let r=[];for(let n=0;n<e;n++)r.push(t+n);return r}function mF(e,t,r,n,a,s,i,o,l){let u=e.length,d=new Array(u),h=new Array(u),p=new Array(u);if(t.length&&r>0){let c=t[0],f=r+1;d=lk(i,c,f,n,e),h=uk(o,c,f,a,e),p=sk(s,c,f,e)}else for(let c=0;c<u;c++)d[c]=pk(i,n,s,e,c,l),h[c]=hk(o,a,s,e,c,l),p[c]=dk(s,c,l);return{begin:d,end:h,strides:p}}function lk(e,t,r,n,a){let s=[...a],i=ok(r,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=0;else{let l=ik(t,r,o),u=n[l];e&1<<l&&(u=0),s[o]=u}return s}function uk(e,t,r,n,a){let s=[...a],i=ok(r,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=ik(t,r,o),u=n[l];e&1<<l&&(u=Number.MAX_SAFE_INTEGER),s[o]=u}for(let o=0;o<s.length;o++){let l=a[o];s[o]<0&&(s[o]+=l),s[o]=Ip(0,s[o],a[o])}return s}function dk(e,t,r){let n=e[t];return(r&1<<t||n==null)&&(n=1),n}function pk(e,t,r,n,a,s){let i=t[a],o=r[a]||1;(e&1<<a||s&1<<a||i==null)&&(o>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=n[a];return i<0&&(i+=l),i=Ip(0,i,l-1),i}function hk(e,t,r,n,a,s){let i=t[a],o=r[a]||1;(e&1<<a||s&1<<a||i==null)&&(o>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=n[a];return i<0&&(i+=l),o>0?i=Ip(0,i,l):i=Ip(-1,i,l-1),i}function gF(e,t,r){let n=r.length;for(let a=0;a<r.length;a++)if(r[a]>1){n=a;break}for(let a=n+1;a<r.length;a++)if(t[a]>0||r[a]!==e[a])return!1;return!0}function yF(e,t){let r=e.length>0?e[e.length-1]:1;for(let n=0;n<e.length-1;n++)r+=e[n]*t[n];return r}function ck(e,t,r){let n,a=e.shape.length;typeof t=="number"?n=[t,...new Array(a-1).fill(0)]:t.length<a?n=t.concat(new Array(a-t.length).fill(0)):n=t.slice(),n.forEach(i=>{P(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return r==null?s=new Array(a).fill(-1):typeof r=="number"?s=[r,...new Array(a-1).fill(-1)]:r.length<a?s=r.concat(new Array(a-r.length).fill(-1)):s=r,s=s.map((i,o)=>i>=0?i:(P(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-n[o])),[n,s]}function AF(e,t,r,n,a,s,i,o,l){let u;if(n==null?(u=new Array(t.length),u.fill(1)):u=n,i!=null&&(i&i-1)!==0)throw new Error("Multiple ellipses in slice is not allowed.");let d=!1,h={dims:u.length,numAddAxisAfterEllipsis:0,begin:t.slice(),end:r.slice(),strides:u.slice(),beginMask:a,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};for(let A=0;A<h.dims;A++)d&&(1<<A&o)!==0&&h.numAddAxisAfterEllipsis++,1<<A&i&&(d=!0);d||(h.ellipsisMask|=1<<h.dims,h.dims++);let p={dims:e.length,beginMask:0,endMask:0,beginValid:!1,endValid:!1};xF(h,p);let c=!0,f=!0,m=!0,g=[],y=[];for(let A=0;A<e.length;++A){if(p.strides[A]===0)throw Error(`strides[${A}] must be non-zero`);let x=!!(p.shrinkAxisMask&1<<A),b=e[A];if(b===-1){g.push(x?1:-1);continue}let w=[p.beginMask&1<<A,p.endMask&1<<A],T=[p.strides[A]>0?0:-1,p.strides[A]>0?b:b-1];if(x&&p.strides[A]<=0)throw Error("only stride 1 allowed on non-range indexing.");m=m&&p.strides[A]===1;let S=!!(p.beginMask&1<<A&&p.endMask&1<<A);if(p.beginValid&&p.endValid){if(x){let M=p.begin[A]<0?b+p.begin[A]:p.begin[A];if(p.begin[A]=M,p.end[A]=p.begin[A]+1,M<0||M>=b)throw Error(`slice index ${p.begin[A]} of dimension ${A} out of bounds.`)}else p.begin[A]=_3(p.begin[A],0,p.strides[A],b,w,T),p.end[A]=_3(p.end[A],1,p.strides[A],b,w,T);let _=p.strides[A]===1&&p.begin[A]===0&&p.end[A]===b;c=c&&_,f=f&&(A===0&&p.strides[A]===1||_)}else c=c&&p.strides[A]===1&&S,f=f&&(A===0&&p.strides[A]===1||S);let E,R=!1;if(p.beginValid&&p.endValid?(E=p.end[A]-p.begin[A],R=!0):x?(E=1,R=!0):S&&b>=0&&(p.strides[A]<0?E=-b:E=b,R=!0),R){let _;E===0||E<0!=p.strides[A]<0?_=0:_=Math.trunc(E/p.strides[A])+(E%p.strides[A]!==0?1:0),g.push(_)}else g.push(-1)}for(let A=0;A<p.finalShapeGatherIndices.length;++A){let x=p.finalShapeGatherIndices[A];x>=0?y.push(g[x]):x===c1&&y.push(1)}return{finalShapeSparse:y.filter((A,x)=>p.finalShapeGatherIndices[x]!==c1),finalShape:y,isIdentity:c,sliceDim0:f,isSimpleSlice:m,begin:p.begin,end:p.end,strides:p.strides}}function xF(e,t){t.beginMask=0,t.endMask=0,t.shrinkAxisMask=0;let r=0;t.beginValid=e.begin!=null,t.endValid=e.end!=null,t.begin=new Array(t.dims),t.end=new Array(t.dims),t.strides=new Array(t.dims),t.finalShapeGatherIndices=[],t.finalShapeGatherIndicesSparse=[],t.inputShapeGatherIndicesSparse=new Array(t.dims);for(let n=0;n<e.dims;n++)if(1<<n&e.ellipsisMask){let a=Math.min(t.dims-(e.dims-n)+1+e.numAddAxisAfterEllipsis,t.dims);for(;r<a;r++)t.begin[r]=0,t.end[r]=0,t.strides[r]=1,t.beginMask|=1<<r,t.endMask|=1<<r,t.finalShapeGatherIndices.push(r),t.finalShapeGatherIndicesSparse.push(-1),t.inputShapeGatherIndicesSparse[r]=n}else if(1<<n&e.newAxisMask)t.finalShapeGatherIndices.push(c1),t.finalShapeGatherIndicesSparse.push(-1);else{if(r===t.begin.length)throw Error(`Index out of range using input dim ${r}; input has only ${t.dims} dims, ${t.begin.length}.`);e.begin!=null&&(t.begin[r]=e.begin[n]),e.end!=null&&(t.end[r]=e.end[n]),t.strides[r]=e.strides[n],e.beginMask&1<<n&&(t.beginMask|=1<<r),e.endMask&1<<n&&(t.endMask|=1<<r),e.shrinkAxisMask&1<<n?(t.finalShapeGatherIndices.push(pF),t.finalShapeGatherIndicesSparse.push(-1),t.shrinkAxisMask|=1<<r):(t.finalShapeGatherIndices.push(r),t.finalShapeGatherIndicesSparse.push(n)),t.inputShapeGatherIndicesSparse[r]=n,r++}}function _3(e,t,r,n,a,s){if(a[t])return r>0?s[t]:s[t+1&1];{let i=e<0?n+e:e;return i<s[0]?s[0]:i>s[1]?s[1]:i}}var ue={};Le(ue,{Serializable:()=>fk,SerializationMap:()=>ho,registerClass:()=>Oi});var fk=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},ho=class{constructor(){this.classNameMap={}}static getMap(){return ho.instance==null&&(ho.instance=new ho),ho.instance}static register(e){ho.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function Oi(e){P(e.className!=null,()=>"Class being registered does not have the static className property defined."),P(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),P(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),ho.register(e)}var mk={};Le(mk,{TEST_EPSILON_FLOAT16:()=>gk,encodeStrings:()=>yk,expectArrayBuffersEqual:()=>TF,expectArraysClose:()=>vF,expectArraysEqual:()=>kF,expectNumbersClose:()=>IF,expectPromiseToFail:()=>wF,expectValuesInRange:()=>SF,testEpsilon:()=>b2});var bF=.001,gk=.1;function vF(e,t,r){return r==null&&(r=b2()),f1(e,t,(n,a)=>v2(n,a,r))}function b2(){return B.backend.floatPrecision()===32?bF:gk}function f1(e,t,r){let n=!0;if((Ir(e)||Ir(t))&&(n=!1),Ir(e)&&Ir(t)&&(n=!0),n){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=Ea(e),o=Ea(t);if(!Us(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let a=Ir(e)?e:wo(e),s=Ir(t)?t:wo(t);if(a.length!==s.length)throw new Error(`Arrays have different lengths actual: ${a.length} vs expected: ${s.length}.
|
|
Actual: ${a}.
|
|
Expected: ${s}.`);for(let i=0;i<s.length;++i){let o=a[i],l=s[i];if(!r(o,l))throw new Error(`Arrays differ: actual[${i}] = ${o}, expected[${i}] = ${l}.
|
|
Actual: ${a}.
|
|
Expected: ${s}.`)}}function wF(e,t){e().then(()=>t.fail(),()=>t())}function kF(e,t){let r=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return ws(e)||ws(e[0])||ws(t)||ws(t[0])?f1(e,r,(n,a)=>n==a):f1(e,t,(n,a)=>v2(n,a,0))}function IF(e,t,r){if(r==null&&(r=b2()),!v2(e,t,r))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function v2(e,t,r){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>r)}function SF(e,t,r){for(let n=0;n<e.length;n++)if(e[n]<t||e[n]>r)throw new Error(`Value out of range:${e[n]} low: ${t}, high: ${r}`)}function TF(e,t){let r=new Float32Array(e),n=new Float32Array(t);if(r.length!==n.length)throw new Error(`Expected ArrayBuffer to be of length ${n.length}, but it was ${r.length}`);for(let a=0;a<n.length;a++)if(r[a]!==n[a])throw new Error(`Expected ArrayBuffer value at ${a} to be ${n[a]} but got ${r[a]} instead`)}function yk(e){for(let t=0;t<e.length;t++){let r=e[t];Array.isArray(r)?yk(r):e[t]=nh(r)}return e}var w2="0.0.0";function k2(){Y().set("PROD",!0)}function NF(){Y().set("DEBUG",!0)}function CF(){Y().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function I2(e){Y().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}KR(I2);function EF(){B.disposeVariables()}function Ar(){return B}function cf(){return B.memory()}function RF(e){return B.profile(e)}function K(e,t){return B.tidy(e,t)}function re(e){u2(e).forEach(t=>t.dispose())}function hr(e){return B.keep(e)}function MF(e){return B.time(e)}function S2(e){return B.setBackend(e)}function nd(){return B.ready()}function an(){return B.backendName}function FF(e){B.removeBackend(e)}function T2(e){return B.findBackend(e)}function $F(e){return B.findBackendFactory(e)}function wl(e,t,r=1){return B.registerBackend(e,t,r)}function Un(){return B.backend}function PF(e,t){Y().setPlatform(e,t)}function _F(e,t){let r=F(e,"a","add"),n=F(t,"b","add");[r,n]=Ot(r,n);let a={a:r,b:n};return B.runKernel(qa,a)}var le=W({add_:_F});function zF(e,t){let r=F(e,"a","floorDiv"),n=F(t,"b","floorDiv");[r,n]=Ot(r,n);let a={a:r,b:n};return B.runKernel(si,a)}var oh=W({floorDiv_:zF});function OF(e,t){let r=F(e,"a","div"),n=F(t,"b","div");if([r,n]=Ot(r,n),r.dtype==="int32"&&n.dtype==="int32")return oh(r,n);let a={a:r,b:n},s={};return B.runKernel(ti,a,s)}var pe=W({div_:OF});function DF(e,t){let r=F(e,"a","mul"),n=F(t,"b","mul");[r,n]=Ot(r,n);let a={a:r,b:n};return B.runKernel(Ai,a)}var L=W({mul_:DF});function LF(e){let t=F(e,"x","abs");if(t.dtype==="complex64"){let r={x:t};return B.runKernel(Wp,r)}else{let r={x:t};return B.runKernel(_o,r)}}var er=W({abs_:LF});function BF(e){let t={x:F(e,"x","acos")};return B.runKernel(Eu,t)}var Ak=W({acos_:BF});function WF(e){let t={x:F(e,"x","acosh")};return B.runKernel(Ru,t)}var xk=W({acosh_:WF});function VF(e){P(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),P(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((a,s)=>F(a,`tensors${s}`,"addN")),r=t[0];t.forEach(a=>{if(a.dtype!==r.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(a=>{if(!Us(a.shape,r.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let n=t;return B.runKernel(Gs,n)}var um=W({addN_:VF});function UF(e,t=null,r=!1){let n={x:F(e,"x","all","bool")},a={axis:t,keepDims:r};return B.runKernel(Mu,n,a)}var N2=W({all_:UF});function GF(e,t=null,r=!1){let n={x:F(e,"x","any","bool")},a={axis:t,keepDims:r};return B.runKernel(Fu,n,a)}var ff=W({any_:GF});function jF(e,t=0){let r={x:F(e,"x","argMax")},n={axis:t};return B.runKernel(js,r,n)}var Nn=W({argMax_:jF});function HF(e,t=0){let r={x:F(e,"x","argMin")},n={axis:t};return B.runKernel($u,r,n)}var bk=W({argMin_:HF});function qF(e){let t={x:F(e,"x","asin")};return B.runKernel(Pu,t)}var vk=W({asin_:qF});function KF(e){let t={x:F(e,"x","asinh")};return B.runKernel(_u,t)}var wk=W({asinh_:KF});function XF(e){let t={x:F(e,"x","atan")};return B.runKernel(zu,t)}var kk=W({atan_:XF});function ZF(e,t){let r=F(e,"a","atan2"),n=F(t,"b","atan2");[r,n]=Ot(r,n);let a={a:r,b:n};return B.runKernel(Du,a)}var Ik=W({atan2_:ZF});function YF(e){let t={x:F(e,"x","atanh")};return B.runKernel(Ou,t)}var Sk=W({atanh_:YF});function JF(e,t,r,n,a="NHWC",s){let i=e[3],o=[...t,i],l=Ck(a);return lh(e,o,r,s,n,null,null,l)}function Tk(e,t,r,n,a,s,i="channelsLast"){let[o,l]=mf(t),u;if(i==="channelsLast")u=[o,l,e[3],e[3]];else if(i==="channelsFirst")u=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return lh(e,u,r,n,a,s,!1,i)}function QF(e,t,r,n,a,s,i="NDHWC"){let[o,l,u]=m1(t),d,h;if(i==="NDHWC")h="channelsLast",d=[o,l,u,e[4],e[4]];else if(i==="NCDHW")h="channelsFirst",d=[o,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Nk(e,d,r,n,a,!1,h,s)}function lh(e,t,r,n,a,s,i=!1,o="channelsLast"){let[l,u,d,h]=[-1,-1,-1,-1];if(o==="channelsLast")[l,u,d,h]=e;else if(o==="channelsFirst")[l,h,u,d]=e;else throw new Error(`Unknown dataFormat ${o}`);let[p,c,,f]=t,[m,g]=mf(r),[y,A]=mf(n),x=du(p,y),b=du(c,A),{padInfo:w,outHeight:T,outWidth:S}=r$(a,u,d,m,g,x,b,s,o),E=i?f*h:f,R;return o==="channelsFirst"?R=[l,E,T,S]:o==="channelsLast"&&(R=[l,T,S,E]),{batchSize:l,dataFormat:o,inHeight:u,inWidth:d,inChannels:h,outHeight:T,outWidth:S,outChannels:E,padInfo:w,strideHeight:m,strideWidth:g,filterHeight:p,filterWidth:c,effectiveFilterHeight:x,effectiveFilterWidth:b,dilationHeight:y,dilationWidth:A,inShape:e,outShape:R,filterShape:t}}function Nk(e,t,r,n,a,s=!1,i="channelsLast",o){let[l,u,d,h,p]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,u,d,h,p]=e;else if(i==="channelsFirst")[l,p,u,d,h]=e;else throw new Error(`Unknown dataFormat ${i}`);let[c,f,m,,g]=t,[y,A,x]=m1(r),[b,w,T]=m1(n),S=du(c,b),E=du(f,w),R=du(m,T),{padInfo:_,outDepth:M,outHeight:I,outWidth:O}=n$(a,u,d,h,y,A,x,S,E,R,o),z=s?g*p:g,j;return i==="channelsFirst"?j=[l,z,M,I,O]:i==="channelsLast"&&(j=[l,M,I,O,z]),{batchSize:l,dataFormat:i,inDepth:u,inHeight:d,inWidth:h,inChannels:p,outDepth:M,outHeight:I,outWidth:O,outChannels:z,padInfo:_,strideDepth:y,strideHeight:A,strideWidth:x,filterDepth:c,filterHeight:f,filterWidth:m,effectiveFilterDepth:S,effectiveFilterHeight:E,effectiveFilterWidth:R,dilationDepth:b,dilationHeight:w,dilationWidth:T,inShape:e,outShape:j,filterShape:t}}function e$(e,t,r,n,a){n==null&&(n=C2(e,t,r));let s=e[0],i=e[1],o=Ao((s-t+2*n)/r+1,a),l=Ao((i-t+2*n)/r+1,a);return[o,l]}function t$(e,t,r,n,a,s){a==null&&(a=C2(e,t,n));let i=e[0],o=e[1],l=e[2],u=Ao((i-t+2*a)/n+1,s),d=Ao((o-t+2*a)/n+1,s),h=Ao((l-t+2*a)/n+1,s);return[u,d,h,r]}function C2(e,t,r,n=1){let a=du(t,n);return Math.floor((e[0]*(r-1)-r+a)/2)}function mf(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function m1(e){return typeof e=="number"?[e,e,e]:e}function du(e,t){return t<=1?e:e+(e-1)*(t-1)}function r$(e,t,r,n,a,s,i,o,l){let u,d,h;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let p=e$([t,r],s,n,e,o);d=p[0],h=p[1]}else if(e==="same"){d=Math.ceil(t/n),h=Math.ceil(r/a);let p=Math.max(0,(d-1)*n+s-t),c=Math.max(0,(h-1)*a+i-r),f=Math.floor(p/2),m=p-f,g=Math.floor(c/2),y=c-g;u={top:f,bottom:m,left:g,right:y,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},d=Math.ceil((t-s+1)/n),h=Math.ceil((r-i+1)/a);else if(typeof e=="object"){let p=l==="channelsLast"?e[1][0]:e[2][0],c=l==="channelsLast"?e[1][1]:e[2][1],f=l==="channelsLast"?e[2][0]:e[3][0],m=l==="channelsLast"?e[2][1]:e[3][1];u={top:p,bottom:c,left:f,right:m,type:p===0&&c===0&&f===0&&m===0?"VALID":"EXPLICIT"},d=Ao((t-s+p+c)/n+1,o),h=Ao((r-i+f+m)/a+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:d,outWidth:h}}function n$(e,t,r,n,a,s,i,o,l,u,d){let h,p,c,f;if(typeof e=="number"){h={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let m=t$([t,r,n,1],o,1,a,e,d);p=m[0],c=m[1],f=m[2]}else if(e==="same"){p=Math.ceil(t/a),c=Math.ceil(r/s),f=Math.ceil(n/i);let m=(p-1)*a+o-t,g=(c-1)*s+l-r,y=(f-1)*i+u-n,A=Math.floor(m/2),x=m-A,b=Math.floor(g/2),w=g-b,T=Math.floor(y/2),S=y-T;h={top:b,bottom:w,left:T,right:S,front:A,back:x,type:"SAME"}}else if(e==="valid")h={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},p=Math.ceil((t-o+1)/a),c=Math.ceil((r-l+1)/s),f=Math.ceil((n-u+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:h,outDepth:p,outHeight:c,outWidth:f}}function Ao(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function Fs(e){let[t,r,n]=mf(e);return t===1&&r===1&&n===1}function Fa(e,t){return Fs(e)||Fs(t)}function Ck(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function Vr(e,t,r){if(r!=null){if(typeof t=="string")throw Error(`Error in ${e}: pad must be an integer when using dimRoundingMode ${r} but got pad ${t}.`);if(typeof t=="number")P(cu(t),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${r} but got pad ${t}.`);else if(typeof t=="object")t.forEach(n=>{n.forEach(a=>{P(cu(a),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${r} but got pad ${a}.`)})});else throw Error(`Error in ${e}: Unknown padding parameter: ${t}`)}}function a$(e,t){let r={x:F(e,"x","reshape","string_or_numeric")},n={shape:t};return B.runKernel(sl,r,n)}var G=W({reshape_:a$});function s$(e,t,r,n,a){let s=F(e,"x","avgPool","float32"),i=1;P(Fa(r,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${r} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=G(s,[1,s.shape[0],s.shape[1],s.shape[2]])),P(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),Vr("avgPool",n,a);let u={x:o},d={filterSize:t,strides:r,pad:n,dimRoundingMode:a},h=B.runKernel(Hs,u,d);return h=me(h,s.dtype),l?G(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var dm=W({avgPool_:s$});function i$(e,t,r,n,a,s="NDHWC"){let i=F(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=G(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),P(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),P(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),Vr("avgPool3d",n,a);let u={x:o},d={filterSize:t,strides:r,pad:n,dimRoundingMode:a,dataFormat:s},h=B.runKernel(Lp,u,d);return h=me(h,o.dtype),l?G(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var E2=W({avgPool3d_:i$});function o$(e,t=0){P(e.length>=1,()=>"Pass at least one tensor to concat");let r=Ep(e,"tensors","concat","string_or_numeric");if(r[0].dtype==="complex64"&&r.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${s.dtype}. `)}),r.length===1)return Lr(r[0]);let n=r,a={axis:t};return B.runKernel(Oo,n,a)}var kt=W({concat_:o$});function l$(e){let t={x:F(e,"x","sigmoid","float32")};return B.runKernel(Ni,t)}var Tr=W({sigmoid_:l$});function u$(e,t,r){let n=F(e,"x","slice","string_or_numeric");if(n.rank===0)throw new Error("Slicing scalar is not possible");let a={x:n},s={begin:t,size:r};return B.runKernel(dl,a,s)}var Pe=W({slice_:u$});function d$(e){let t={x:F(e,"x","tanh","float32")};return B.runKernel($i,t)}var mu=W({tanh_:d$});function p$(e,t,r,n,a,s){let i=F(e,"forgetBias","basicLSTMCell"),o=F(t,"lstmKernel","basicLSTMCell"),l=F(r,"lstmBias","basicLSTMCell"),u=F(n,"data","basicLSTMCell"),d=F(a,"c","basicLSTMCell"),h=F(s,"h","basicLSTMCell"),p=kt([u,h],1),c=Je(p,o),f=le(c,l),m=f.shape[0],g=f.shape[1]/4,y=[m,g],A=Pe(f,[0,0],y),x=Pe(f,[0,g],y),b=Pe(f,[0,g*2],y),w=Pe(f,[0,g*3],y),T=le(L(Tr(A),mu(x)),L(d,Tr(le(i,b)))),S=L(mu(T),Tr(w));return[T,S]}var h$=W({basicLSTMCell_:p$});function c$(e,t,r){let n=F(e,"x","batchToSpaceND"),a=t.reduce((o,l)=>o*l);P(n.rank>=1+t.length,()=>`input rank is ${n.rank} but should be > than blockShape.length ${t.length}`),P(r.length===t.length,()=>`crops.length is ${r.length} but should be equal to blockShape.length ${t.length}`),P(n.shape[0]%a===0,()=>`input tensor batch is ${n.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${a}`);let s={x:n},i={blockShape:t,crops:r};return B.runKernel(zo,s,i)}var pm=W({batchToSpaceND_:c$});function f$(e){let t;return e.rank===0||e.rank===1?t=G(e,[1,1,1,e.size]):e.rank===2?t=G(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=G(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function m$(e,t,r,n,a,s){s==null&&(s=.001);let i=F(e,"x","batchNorm"),o=F(t,"mean","batchNorm"),l=F(r,"variance","batchNorm"),u;a!=null&&(u=F(a,"scale","batchNorm"));let d;n!=null&&(d=F(n,"offset","batchNorm")),P(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),P(d==null||o.rank===d.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),P(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let h={x:f$(i),scale:u,offset:d,mean:o,variance:l},p={varianceEpsilon:s},c=B.runKernel(ii,h,p);return G(c,i.shape)}var gu=W({batchNorm_:m$});function g$(e,t,r,n,a,s){let i=F(e,"x","batchNorm"),o=F(t,"mean","batchNorm"),l=F(r,"variance","batchNorm"),u;a!=null&&(u=F(a,"scale","batchNorm"));let d;return n!=null&&(d=F(n,"offset","batchNorm")),P(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),P(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),P(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&P(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),d!=null&&P(d.rank===2||d.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${d.rank}.`),gu(i,o,l,d,u,s)}var Ek=W({batchNorm2d_:g$});function y$(e,t,r,n,a,s){let i=F(e,"x","batchNorm"),o=F(t,"mean","batchNorm"),l=F(r,"variance","batchNorm"),u;a!=null&&(u=F(a,"scale","batchNorm"));let d;return n!=null&&(d=F(n,"offset","batchNorm")),P(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),P(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),P(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&P(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),d!=null&&P(d.rank===3||d.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${d.rank}.`),gu(i,o,l,d,u,s)}var Rk=W({batchNorm3d_:y$});function A$(e,t,r,n,a,s){let i=F(e,"x","batchNorm"),o=F(t,"mean","batchNorm"),l=F(r,"variance","batchNorm"),u;a!=null&&(u=F(a,"scale","batchNorm"));let d;return n!=null&&(d=F(n,"offset","batchNorm")),P(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),P(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),P(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&P(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),d!=null&&P(d.rank===4||d.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${d.rank}.`),gu(i,o,l,d,u,s)}var Mk=W({batchNorm4d_:A$});function x$(e,t,r){let n=F(e,"x","bincount"),a=F(t,"weights","bincount");P(n.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${n.dtype}`),P(r>=0,()=>`size must be non-negative, but got ${r}.`),P(a.size===n.size||a.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${n.shape}, weights shape: ${a.shape}.`);let s={x:n,weights:a},i={size:r};return B.runKernel(Lf,s,i)}var R2=W({bincount_:x$});function b$(e,t){let r=F(e,"s0","broadcastArgs","int32"),n=F(t,"s1","broadcastArgs","int32");if(r.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${r.rank}`);if(n.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${n.rank}`);let a={s0:r,s1:n};return B.runKernel(Bf,a)}var Fk=W({broadcastArgs_:b$});function v$(e,t){let r=F(e,"broadcastTo","x"),n=r.shape;if(t.some(l=>!(l>0)||l%1!==0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<r.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${r.rank}.`);if(t.length>r.rank){let l=r.shape.slice();for(;l.length<t.length;)l.unshift(1);r=G(r,l)}let a=r.shape,s=Array.from(t);for(let l=t.length-1;l>=0;l--)if(a[l]===t[l])s[l]=1;else if(r.shape[l]!==1)throw new Error(`broadcastTo(): [${n}] cannot be broadcast to [${t}].`);if(s.map((l,u)=>l>1?u:-1).filter(l=>l>=0).length===0)return Lr(r);let i={x:r},o={reps:s};return B.runKernel(Xa,i,o)}var bp=W({broadcastTo_:v$});function w$(e){let t={x:F(e,"x","ceil","float32")};return B.runKernel(Xs,t)}var $k=W({ceil_:w$});function k$(e,t,r){let n=F(e,"x","clipByValue");P(t<=r,()=>`Error in clip: min (${t}) must be less than or equal to max (${r}).`);let a={x:n},s={clipValueMin:t,clipValueMax:r};return B.runKernel(Ka,a,s)}var hn=W({clipByValue_:k$});function I$(e){return kt(e,0)}var Pk=W({concat1d_:I$});function S$(e,t){return kt(e,t)}var ad=W({concat2d_:S$});function T$(e,t){return kt(e,t)}var _k=W({concat3d_:T$});function N$(e,t){return kt(e,t)}var zk=W({concat4d_:N$});function C$(e,t,r,n,a="NHWC",s=[1,1],i){let o=F(e,"x","conv2d","float32"),l=F(t,"filter","conv2d","float32"),u=o,d=!1;o.rank===3&&(d=!0,u=G(o,[1,o.shape[0],o.shape[1],o.shape[2]])),P(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),P(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),Vr("conv2d",n,i);let h=a==="NHWC"?u.shape[3]:u.shape[1];P(h===l.shape[2],()=>`Error in conv2d: depth of input (${h}) must match input depth for filter ${l.shape[2]}.`),P(Fa(r,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${r} and dilations '${s}'`);let p={x:u,filter:l},c={strides:r,pad:n,dataFormat:a,dilations:s,dimRoundingMode:i},f=B.runKernel(Zs,p,c);return d?G(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var $s=W({conv2d_:C$});function E$(e,t,r,n,a="NWC",s=1,i){let o=F(e,"x","conv1d"),l=F(t,"filter","conv1d"),u=o,d=!1;o.rank===2&&(d=!0,u=G(o,[1,o.shape[0],o.shape[1]])),P(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),P(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),Vr("conv1d",n,i),P(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),P(Fa(r,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${r} and dilation '${s}'`),P(a==="NWC",()=>`Error in conv1d: got dataFormat of ${a} but only NWC is currently supported.`);let h=G(l,[1,l.shape[0],l.shape[1],l.shape[2]]),p=G(u,[u.shape[0],1,u.shape[1],u.shape[2]]),c=$s(p,h,[1,r],n,"NHWC",[1,s],i);return d?G(c,[c.shape[2],c.shape[3]]):G(c,[c.shape[0],c.shape[2],c.shape[3]])}var M2=W({conv1d_:E$});function R$(e,t,r,n,a,s="NHWC",i){P(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,u=!1;t.rank===3&&(u=!0,l=G(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),P(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),P(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),P(r.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${r.rank}`);let d=s==="NHWC"?o[3]:o[1],h=s==="NHWC"?l.shape[3]:l.shape[1];P(d===r.shape[2],()=>`Error in conv2dDerInput: depth of input (${d}) must match input depth for filter ${r.shape[2]}.`),P(h===r.shape[3],()=>`Error in conv2dDerInput: depth of output (${h}) must match output depth for filter ${r.shape[3]}.`),Vr("conv2dDerInput",a,i);let p={dy:l,filter:r},c={strides:n,pad:a,dataFormat:s,dimRoundingMode:i,inputShape:o},f=B.runKernel(Ys,p,c);return u?G(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var F2=W({conv2DBackpropInput_:R$});function M$(e,t,r,n,a,s){let i=F(e,"x","conv2dTranspose"),o=F(t,"filter","conv2dTranspose");return F2(r,i,o,n,a,"NHWC",s)}var $2=W({conv2dTranspose_:M$});function F$(e,t,r,n,a="NDHWC",s=[1,1,1]){let i=F(e,"x","conv3d"),o=F(t,"filter","conv3d"),l=i,u=!1;i.rank===4&&(u=!0,l=G(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),P(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),P(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),P(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),P(Fa(r,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${r} and dilations '${s}'`),P(a==="NDHWC",()=>`Error in conv3d: got dataFormat of ${a} but only NDHWC is currently supported.`);let d={x:l,filter:o},h={strides:r,pad:n,dataFormat:a,dilations:s},p=B.runKernel(Vp,d,h);return u?G(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var P2=W({conv3d_:F$});function $$(e,t,r,n,a){P(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=G(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],u=i.shape[4];P(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),P(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),P(r.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${r.rank}`),P(l===r.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${r.shape[3]}.`),P(u===r.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${r.shape[4]}.`);let d={dy:i,filter:r},h={pad:a,strides:n,inputShape:s},p=B.runKernel(Uf,d,h);return o?G(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var Ok=W({conv3DBackpropInput_:$$});function P$(e,t,r,n,a){let s=F(e,"x","conv3dTranspose"),i=F(t,"filter","conv3dTranspose");return Ok(r,s,i,n,a)}var Dk=W({conv3dTranspose_:P$});function _$(e){let t={x:F(e,"x","cos","float32")};return B.runKernel(Js,t)}var hm=W({cos_:_$});function z$(e){let t={x:F(e,"x","cosh","float32")};return B.runKernel(Qs,t)}var _2=W({cosh_:z$});function O$(e,t=0,r=!1,n=!1){let a={x:F(e,"x","cumprod")},s={axis:t,exclusive:r,reverse:n};return B.runKernel(Lu,a,s)}var Lk=W({cumprod_:O$});function D$(e,t=0,r=!1,n=!1){let a={x:F(e,"x","cumsum")},s={axis:t,exclusive:r,reverse:n};return B.runKernel(Do,a,s)}var z2=W({cumsum_:D$});function L$(e,t,r,n=!1){let a=F(e,"x","denseBincount"),s=F(t,"weights","denseBincount");P(a.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${a.dtype}`),P(a.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${a.rank}.`),P(r>=0,()=>`size must be non-negative, but got ${r}.`),P(s.size===a.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${a.shape}, weights shape: ${s.shape}.`);let i={x:a,weights:s},o={size:r,binaryOutput:n};return B.runKernel(Gf,i,o)}var Bk=W({denseBincount_:L$});function B$(e,t,r="NHWC"){let n=F(e,"x","depthToSpace","float32"),a=r==="NHWC"?n.shape[1]:n.shape[2],s=r==="NHWC"?n.shape[2]:n.shape[3],i=r==="NHWC"?n.shape[3]:n.shape[1];P(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`),P(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${a} and ${t} for depthToSpace with input shape
|
|
${n.shape}`),P(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${s} and ${t} for depthToSpace with input shape
|
|
${n.shape}`),P(i%(t*t)===0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${n.shape}`);let o={x:n},l={blockSize:t,dataFormat:r};return B.runKernel(Bo,o,l)}var Wk=W({depthToSpace_:B$});function W$(e,t,r,n,a="NHWC",s=[1,1],i){let o=F(e,"x","depthwiseConv2d","float32"),l=F(t,"filter","depthwiseConv2d","float32"),u=o,d=!1;o.rank===3&&(d=!0,u=G(o,[1,o.shape[0],o.shape[1],o.shape[2]])),P(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),P(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),P(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),Vr("depthwiseConv2d",n,i);let h={x:u,filter:l},p={strides:r,pad:n,dataFormat:a,dilations:s,dimRoundingMode:i},c=B.runKernel(ei,h,p);return d?G(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var uh=W({depthwiseConv2d_:W$});function V$(e){let t={x:F(e,"x","diag")};return B.runKernel(qf,t)}var U$=W({diag_:V$});function G$(e,t,r,n,a=[1,1],s="NHWC"){let i=F(e,"x","dilation2d"),o=F(t,"filter","dilation2d");P(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),P(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),P(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,u=!1;i.rank===3&&(l=G(i,[1,i.shape[0],i.shape[1],i.shape[2]]),u=!0);let d={x:l,filter:o},h={strides:r,pad:n,dilations:a},p=B.runKernel(Up,d,h);return u?G(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Vk=W({dilation2d_:G$});function j$(e,t){let r=F(e,"a","equal","string_or_numeric"),n=F(t,"b","equal","string_or_numeric");[r,n]=Ot(r,n),bt(r.shape,n.shape);let a={a:r,b:n};return B.runKernel(Wo,a)}var Cn=W({equal_:j$});function H$(e,t,r){let n=F(t,"a","where"),a=F(r,"b","where"),s=F(e,"condition","where","bool"),i=bt(bt(s.shape,n.shape),a.shape),o=bp(s,i),l=bp(n,i),u=bp(a,i),d={condition:o,t:l,e:u};return B.runKernel(ul,d)}var Br=W({where_:H$});function q$(e){let t={x:F(e,"x","zerosLike")};return B.runKernel(xl,t)}var at=W({zerosLike_:q$});function K$(e,t){let r=F(e,"a","div"),n=F(t,"b","div");[r,n]=Ot(r,n);let a=pe(r,n),s=at(a),i=Cn(n,s);return Br(i,s,a)}var Uk=W({divNoNan_:K$});function X$(e,t){let r=F(e,"t1","dot"),n=F(t,"t2","dot");P((r.rank===1||r.rank===2)&&(n.rank===1||n.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${r.rank} and ${n.rank}.`);let a=r.rank===1?r.size:r.shape[1],s=n.rank===1?n.size:n.shape[0];if(P(a===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${a} and ${s}.`),r.rank===1&&n.rank===1){let i=G(r,[1,-1]),o=G(n,[-1,1]),l=Je(i,o);return G(l,[])}else if(r.rank===1&&n.rank===2){let i=G(r,[1,-1]),o=G(n,[n.shape[0],n.shape[1]]),l=Je(i,o);return G(l,[l.size])}else if(r.rank===2&&n.rank===1){let i=G(n,[-1,1]),o=Je(r,i);return G(o,[o.size])}else{let i=G(n,[n.shape[0],n.shape[1]]);return Je(r,i)}}var Z$=W({dot_:X$});function Y$(e,...t){let r=t.map((a,s)=>F(a,`tensors${s}`,"einsum")),n={equation:e};return B.runKernel(Gp,r,n)}var Gk=W({einsum_:Y$});function J$(e){let t={x:F(e,"x","elu","float32")};return B.runKernel(ri,t)}var dh=W({elu_:J$});function Q$(e){let t=F(e,"x","erf");P(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=me(t,"float32"));let r={x:t};return B.runKernel(Bu,r)}var jk=W({erf_:Q$});function eP(e){let t={x:F(e,"x","exp")};return B.runKernel(ni,t)}var En=W({exp_:eP});function tP(e,t=0){let r=F(e,"x","expandDims","string_or_numeric");P(t<=r.rank,()=>"Axis must be <= rank of the tensor");let n={input:r},a={dim:t};return B.runKernel(Vo,n,a)}var Ht=W({expandDims_:tP});function rP(e){let t={x:F(e,"x","expm1")};return B.runKernel(Uo,t)}var Hk=W({expm1_:rP});function nP(e,t){let r=F(e,"x","tile","string_or_numeric");P(r.rank===t.length,()=>`Error in transpose: rank of input ${r.rank} must match length of reps ${t}.`);let n={x:r},a={reps:t};return B.runKernel(Xa,n,a)}var Dn=W({tile_:nP});function aP(e,t,r,n="float32"){t==null&&(t=e);let a=We([e,t],n),s=e<=t?e:t;for(let o=0;o<s;++o)a.set(1,o,o);let i=G(a.toTensor(),[e,t]);if(r==null)return i;if(r.length===1)return Dn(Ht(i,0),[r[0],1,1]);if(r.length===2)return Dn(Ht(Ht(i,0),0),[r[0],r[1],1,1]);if(r.length===3)return Dn(Ht(Ht(Ht(i,0),0),0),[r[0],r[1],r[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${r.length}D.`)}var O2=W({eye_:aP});function sd(e,t,r){let n={shape:e,value:t,dtype:r};return B.runKernel(Wu,{},n)}function sP(e){let t={x:F(e,"x","floor","float32")};return B.runKernel(ai,t)}var ph=W({floor_:sP});function iP(e,t,r=0,n=0){let a=F(e,"x","gather"),s=F(t,"indices","gather","int32"),i={x:a,indices:s},o={axis:r,batchDims:n};return B.runKernel(jo,i,o)}var yu=W({gather_:iP});function oP(e,t){let r=F(e,"a","greater","string_or_numeric"),n=F(t,"b","greater","string_or_numeric");[r,n]=Ot(r,n),bt(r.shape,n.shape);let a={a:r,b:n};return B.runKernel(qo,a)}var cn=W({greater_:oP});function lP(e,t){let r=F(e,"a","greaterEqual","string_or_numeric"),n=F(t,"b","greaterEqual","string_or_numeric");[r,n]=Ot(r,n),bt(r.shape,n.shape);let a={a:r,b:n};return B.runKernel(oi,a)}var kl=W({greaterEqual_:lP});function uP(e){let t={input:F(e,"input","imag")};return B.runKernel(jp,t)}var cm=W({imag_:uP});function dP(e){let t={x:F(e,"x","isFinite")};return B.runKernel(Vu,t)}var pP=W({isFinite_:dP});function hP(e){let t={x:F(e,"x","isInf")};return B.runKernel(Uu,t)}var cP=W({isInf_:hP});function fP(e){let t={x:F(e,"x","isNaN")};return B.runKernel(Gu,t)}var qk=W({isNaN_:fP});function mP(e,t=.2){let r={x:F(e,"x","leakyRelu")},n={alpha:t};return B.runKernel(ui,r,n)}var fm=W({leakyRelu_:mP});function gP(e,t){let r=F(e,"a","less","string_or_numeric"),n=F(t,"b","less","string_or_numeric");[r,n]=Ot(r,n),bt(r.shape,n.shape);let a={a:r,b:n};return B.runKernel(Ko,a)}var D2=W({less_:gP});function yP(e,t){let r=F(e,"a","lessEqual","string_or_numeric"),n=F(t,"b","lessEqual","string_or_numeric");[r,n]=Ot(r,n),bt(r.shape,n.shape);let a={a:r,b:n};return B.runKernel(Xo,a)}var Il=W({lessEqual_:yP});function Kk(e,t,r){if(r<=0)throw new Error("The number of values should be positive.");let n={start:e,stop:t,num:r};return B.runKernel(Yf,{},n)}function AP(e,t=5,r=1,n=1,a=.5){let s=F(e,"x","localResponseNormalization");P(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
|
|
rank ${s.rank}.`),P(cu(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=G(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},u={depthRadius:t,bias:r,alpha:n,beta:a},d=B.runKernel(qp,l,u);return o?G(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Xk=W({localResponseNormalization_:AP});function xP(e){let t={x:F(e,"x","log","float32")};return B.runKernel(di,t)}var Rn=W({log_:xP});function bP(e){let t={x:F(e,"x","log1p")};return B.runKernel(ju,t)}var mm=W({log1p_:bP});function vP(e){return P(Ns(e),()=>"The f passed in grad(f) must be a function"),(t,r)=>{let n=F(t,"x","tf.grad","string_or_numeric"),a=r!=null?F(r,"dy","tf.grad"):null;return B.tidy(()=>{let{value:s,grads:i}=B.gradients(()=>e(n),[n],a);return a!=null&&Wr(s.shape,a.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),gm(i),i[0]})}}function wP(e){return P(Ns(e),()=>"The f passed in grads(f) must be a function"),(t,r)=>{P(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let n=Ep(t,"args","tf.grads","string_or_numeric"),a=r!=null?F(r,"dy","tf.grads"):null;return B.tidy(()=>{let{value:s,grads:i}=B.gradients(()=>e(...n),n,a);return a!=null&&Wr(s.shape,a.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),gm(i),i})}}function kP(e){return P(Ns(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,r)=>{P(t instanceof rt,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),P(r==null||r instanceof rt,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:n,value:a}=B.gradients(()=>e(t),[t],r);return gm(n),{grad:n[0],value:a}}}function IP(e){return P(Ns(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,r)=>{P(Array.isArray(t)&&t.every(a=>a instanceof rt),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),P(r==null||r instanceof rt,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let n=B.gradients(()=>e(...t),t,r);return r!=null&&Wr(n.value.shape,r.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),gm(n.grads),n}}function Zk(e,t){P(Ns(e),()=>"The f passed in variableGrads(f) must be a function"),P(t==null||Array.isArray(t)&&t.every(u=>u instanceof Cp),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let r=t!=null;if(!r){t=[];for(let u in B.registeredVariables)t.push(B.registeredVariables[u])}let n=r?t.filter(u=>!u.trainable):null,a=t.length;t=t.filter(u=>u.trainable),P(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${a} variables is trainable.`);let s=!0,{value:i,grads:o}=B.gradients(e,t,null,s);P(o.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),P(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((u,d)=>{o[d]!=null&&(l[u.name]=o[d])}),n!=null&&n.forEach(u=>l[u.name]=null),{value:i,grads:l}}function Ra(e){return B.customGrad(e)}function gm(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
|
|
the f you passed encloses all operations that lead from x to y.`)}function SP(e){let t={x:F(e,"x","neg")};return B.runKernel(Yo,t)}var zt=W({neg_:SP});function TP(e){let t={x:F(e,"x","softplus")};return B.runKernel(ed,t)}var id=W({softplus_:TP});function NP(e){let t=F(e,"x","logSigmoid");return Ra(r=>({value:zt(id(zt(r))),gradFunc:n=>L(n,Tr(zt(r)))}))(t)}var CP=W({logSigmoid_:NP});function EP(e,t=null,r=!1){let n={x:F(e,"x","max")},a={reductionIndices:t,keepDims:r};return B.runKernel(pi,n,a)}var fr=W({max_:EP});function RP(e,t){let r=F(e,"a","sub"),n=F(t,"b","sub");[r,n]=Ot(r,n);let a={a:r,b:n};return B.runKernel(Fi,a)}var he=W({sub_:RP});function MP(e,t=null,r=!1){let n=F(e,"x","sum");n.dtype==="bool"&&(n=me(n,"int32"));let a={x:n},s={axis:t,keepDims:r};return B.runKernel(Ei,a,s)}var ke=W({sum_:MP});function FP(e,t=-1){let r=F(e,"logits","logSoftmax");if(t===-1&&(t=r.rank-1),t!==r.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${r.rank} and axis was ${t}`);return Ra((n,a)=>{let s=fr(n,t,!0),i=he(n,s),o=he(me(i,"float32"),Rn(ke(En(i),t,!0)));return a([o]),{value:o,gradFunc:(l,u)=>{let[d]=u,h=!0,p=En(d);return he(l,L(ke(l,t,h),p))}}})(r)}var L2=W({logSoftmax_:FP});function B2(e,t){for(let r=0;r<e.length;++r)if(e[e.length-r-1]!==t-1-r)return!1;return!0}function Yk(e,t,r){let n=e.length+t.length,a=[],s=0,i=0;for(let o=0;o<n;o++)r.indexOf(o)===-1?a.push(e[s++]):a.push(t[i++]);return a}function Jk(e,t){let r=[],n=e.length;for(let s=0;s<n;s++)t.indexOf(s)===-1&&r.push(e[s]);let a=t.map(s=>e[s]);return[r,a]}function So(e,t){let r=t.map(n=>1);return Yk(e,r,t)}function $P(e,t,r){P(B2(t,r),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${r} input.`)}function Qk(e,t){if(B2(e,t))return null;let r=[];for(let n=0;n<t;++n)e.indexOf(n)===-1&&r.push(n);return e.forEach(n=>r.push(n)),r}function W2(e){return e.map((t,r)=>[r,t]).sort((t,r)=>t[1]-r[1]).map(t=>t[0])}function PP(e,t){let r=[];for(let n=t-e;n<t;++n)r.push(n);return r}function _P(e,t=null,r=!1){let n=F(e,"x","logSumExp"),a=Wn(t,n.shape),s=fr(n,a,!0),i=he(n,s),o=En(i),l=ke(o,a),u=Rn(l),d=le(G(s,u.shape),u);if(r){let h=So(d.shape,a);return G(d,h)}return d}var e7=W({logSumExp_:_P});function zP(e,t){let r=F(e,"a","logicalAnd","bool"),n=F(t,"b","logicalAnd","bool");bt(r.shape,n.shape);let a={a:r,b:n};return B.runKernel(Zo,a)}var ha=W({logicalAnd_:zP});function OP(e){let t={x:F(e,"x","logicalNot","bool")};return B.runKernel(Hu,t)}var ym=W({logicalNot_:OP});function DP(e,t){let r=F(e,"a","logicalOr","bool"),n=F(t,"b","logicalOr","bool");bt(r.shape,n.shape);let a={a:r,b:n};return B.runKernel(Hp,a)}var V2=W({logicalOr_:DP});function LP(e,t){let r=F(e,"a","logicalXor","bool"),n=F(t,"b","logicalXor","bool");return bt(r.shape,n.shape),ha(V2(e,t),ym(ha(e,t)))}var BP=W({logicalXor_:LP});function WP(e,t,r,n,a){let s=F(e,"x","maxPool"),i=1,o=s,l=!1;s.rank===3&&(l=!0,o=G(s,[1,s.shape[0],s.shape[1],s.shape[2]])),P(o.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),P(Fa(r,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${r} and dilations '${i}'`),Vr("maxPool",n,a);let u={x:o},d={filterSize:t,strides:r,pad:n,dimRoundingMode:a},h=B.runKernel(ci,u,d);return l?G(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Am=W({maxPool_:WP});function VP(e,t=[1,1,1],r,n,a,s="NDHWC"){let i=F(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=G(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),P(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),P(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),Vr("maxPool3d",n,a);let u={x:o},d={filterSize:t,strides:r,pad:n,dimRoundingMode:a,dataFormat:s},h=B.runKernel(Kp,u,d);return l?G(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var U2=W({maxPool3d_:VP});function UP(e,t,r,n,a=!1){let s={x:F(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:r,pad:n,includeBatchInIndex:a},o=B.runKernel(tm,s,i);return{result:o[0],indexes:o[1]}}var t7=W({maxPoolWithArgmax_:UP});function GP(e,t){let r=F(e,"a","maximum"),n=F(t,"b","maximum");[r,n]=Ot(r,n),r.dtype==="bool"&&(r=me(r,"int32"),n=me(n,"int32")),bt(r.shape,n.shape);let a={a:r,b:n};return B.runKernel(hi,a)}var Za=W({maximum_:GP});function jP(e,t=null,r=!1){let n={x:F(e,"x","mean")},a={axis:t,keepDims:r};return B.runKernel(fi,n,a)}var Bt=W({mean_:jP});function Wt(e,t="float32"){if(t==="complex64"){let n=Wt(e,"float32"),a=Wt(e,"float32");return Ms(n,a)}let r=zf(Tt(e),t);return B.makeTensor(r,e,t)}function pn(e,t="float32"){if(t==="complex64"){let n=pn(e,"float32"),a=Wt(e,"float32");return Ms(n,a)}let r=a2(Tt(e),t);return B.makeTensor(r,e,t)}function HP(e,t,{indexing:r="xy"}={}){if(r!=="xy"&&r!=="ij")throw new TypeError(`${r} is not a valid third argument to meshgrid`);if(e===void 0)return[];let n=F(e,"x","meshgrid",e instanceof rt?e.dtype:"float32");if(t===void 0)return[n];let a=F(t,"y","meshgrid",t instanceof rt?t.dtype:"float32"),s=Tt(n.shape),i=Tt(a.shape);return r==="xy"?(n=G(n,[1,-1]),a=G(a,[-1,1]),[Je(pn([i,1],n.dtype),n),Je(a,pn([1,s],a.dtype))]):(n=G(n,[-1,1]),a=G(a,[1,-1]),[Je(n,pn([1,i],n.dtype)),Je(pn([s,1],a.dtype),a)])}function qP(e,t=null,r=!1){let n={x:F(e,"x","min")},a={axis:t,keepDims:r};return B.runKernel(mi,n,a)}var Ps=W({min_:qP});function KP(e,t){let r=F(e,"a","minimum"),n=F(t,"b","minimum");[r,n]=Ot(r,n),r.dtype==="bool"&&(r=me(r,"int32"),n=me(n,"int32")),bt(r.shape,n.shape);let a={a:r,b:n};return B.runKernel(gi,a)}var hh=W({minimum_:KP});function XP(e,t,r){P(r==="reflect"||r==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${r}.`);let n=F(e,"x","mirrorPad");if(n.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");P(t.length===n.rank,()=>`Padding doesn't match input. Must be ${n.rank}. Got ${t.length}.`);let a=r==="reflect"?1:0;for(let o=0;o<n.rank;o++)P(t[o].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),P(t[o][0]>=0&&t[o][0]<=n.shape[o]-a&&t[o][1]>=0&&t[o][1]<=n.shape[o]-a,()=>`Padding in dimension ${o} cannot be greater than or equal to ${n.shape[o]-a} or less than 0 for input of shape ${n.shape}`);let s={paddings:t,mode:r},i={x:n};return B.runKernel(yi,i,s)}var r7=W({mirrorPad_:XP});function ZP(e,t){let r=F(e,"a","mod"),n=F(t,"b","mod");[r,n]=Ot(r,n);let a={a:r,b:n};return B.runKernel(qu,a)}var od=W({mod_:ZP});function YP(e){let t=F(e,"x","square"),r={};return B.runKernel("Square",{x:t},r)}var At=W({square_:YP});function JP(e,t=null,r=!1){e=F(e,"x","moments");let n=Wn(t,e.shape),a=Bt(e,n,r),s=a.shape;r||(s=So(a.shape,n));let i=At(he(me(e,"float32"),G(a,s))),o=Bt(i,n,r);return{mean:a,variance:o}}var xm=W({moments_:JP});function QP(e,t,r,n){let a=F(t,"data","multiRNNCell"),s=Ep(r,"c","multiRNNCell"),i=Ep(n,"h","multiRNNCell"),o=a,l=[];for(let h=0;h<e.length;h++){let p=e[h](o,s[h],i[h]);l.push(p[0]),l.push(p[1]),o=p[1]}let u=[],d=[];for(let h=0;h<l.length;h+=2)u.push(l[h]),d.push(l[h+1]);return[u,d]}var e_=W({multiRNNCell_:QP});function t_(e,t,r,n=!1){let a=F(e,"logits","multinomial"),s=a.size,i=a.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);r=r||Math.random();let o={logits:i===1?G(a,[1,-1]):a},l={numSamples:t,seed:r,normalized:n},u=B.runKernel(rm,o,l);return i===1?G(u,[u.size]):u}var n7=W({multinomial_:t_});function r_(e,t){let r=F(e,"a","notEqual","string_or_numeric"),n=F(t,"b","notEqual","string_or_numeric");[r,n]=Ot(r,n),bt(r.shape,n.shape);let a={a:r,b:n};return B.runKernel(Jo,a)}var Au=W({notEqual_:r_});function n_(e){let t={x:F(e,"x","onesLike")};return B.runKernel(tl,t)}var Mn=W({onesLike_:n_});function a_(e,t){let r=F(e,"v1","outerProduct"),n=F(t,"v2","outerProduct");P(r.rank===1&&n.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${r.rank} and ${n.rank}.`);let a=G(r,[-1,1]),s=G(n,[1,-1]);return Je(a,s)}var s_=W({outerProduct_:a_});function i_(e,t,r=0){let n=F(e,"x","pad");if(n.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let a={paddings:t,constantValue:r},s={x:n};return B.runKernel(xi,s,a)}var Gn=W({pad_:i_});function o_(e,t,r=0){return P(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),Gn(e,[t],r)}var l_=W({pad1d_:o_});function u_(e,t,r=0){return P(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Gn(e,t,r)}var d_=W({pad2d_:u_});function p_(e,t,r=0){return P(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Gn(e,t,r)}var h_=W({pad3d_:p_});function c_(e,t,r=0){return P(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Gn(e,t,r)}var f_=W({pad4d_:c_});function m_(e,t,r){let n=F(e,"x","spaceToBatchND");P(n.rank>=1+t.length,()=>`input rank ${n.rank} should be > than [blockShape] ${t.length}`),P(r.length===t.length,()=>`paddings.shape[0] ${r.length} must be equal to [blockShape] ${t.length}`),P(n.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+r[l-1][0]+r[l-1][1])%t[l-1]===0:i,!0),()=>`input spatial dimensions ${n.shape.slice(1)} with paddings ${r.toString()} must be divisible by blockShapes ${t.toString()}`);let a={x:n},s={blockShape:t,paddings:r};return B.runKernel(hl,a,s)}var bm=W({spaceToBatchND_:m_});function g_(e,t,r,n,a,s,i){a==null&&(a=[1,1]),s==null&&(s=1),n===0&&(n="valid");let o=F(e,"x","maxPool"),l=o,u=!1;o.rank===3&&(u=!0,l=G(o,[1,o.shape[0],o.shape[1],o.shape[2]])),P(Fa(s,a),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${a}'`);let d=Tk(l.shape,t,s,a,n),h=[d.dilationHeight,d.dilationWidth],p;n==="same"?p=A_([d.filterHeight,d.filterWidth],h):p=[[0,0],[0,0]];let c=h[0]===1&&h[1]===1,[f,m]=y_([d.inHeight,d.inWidth],h,p),g=c?n:"valid",y=c?l:bm(l,h,f),A=(r==="avg"?()=>dm(y,t,s,g,i):()=>Am(y,t,s,g,i))(),x=c?A:pm(A,h,m);return u?G(x,[x.shape[1],x.shape[2],x.shape[3]]):x}function y_(e,t,r){let n=r.map(d=>d[0]),a=r.map(d=>d[1]),s=e.concat(n,a),i=t.map((d,h)=>(d-s[h]%d)%d),o=a.map((d,h)=>d+i[h]),l=t.map((d,h)=>[n[h],o[h]]),u=t.map((d,h)=>[0,i[h]]);return[l,u]}function A_(e,t){let r=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),n=r.map(s=>Math.floor(s/2)),a=r.map((s,i)=>s-n[i]);return r.map((s,i)=>[n[i],a[i]])}var x_=W({pool_:g_});function b_(e,t){let r=F(e,"base","pow"),n=F(t,"exp","pow");[r,n]=Ot(r,n);let a={a:r,b:n};return B.runKernel(bi,a)}var _s=W({pow_:b_});function v_(e,t){let r=F(e,"x","prelu"),n=F(t,"alpha","prelu"),a={x:r,alpha:n};return B.runKernel(vi,a)}var vm=W({prelu_:v_});function w_(e,t=null,r=!1){let n=F(e,"x","prod");n.dtype==="bool"&&(n=me(n,"int32"));let a={x:n},s={axis:t,keepDims:r};return B.runKernel(al,a,s)}var G2=W({prod_:w_});function k_(e,t,r){let n=Tt(e),a=null;if(r==null||r==="float32")a=new Float32Array(n);else if(r==="int32")a=new Int32Array(n);else if(r==="bool")a=new Uint8Array(n);else throw new Error(`Unknown data type ${r}`);for(let s=0;s<n;s++)a[s]=t();return B.makeTensor(a,e,r)}var I_=W({rand_:k_}),j2=$o(Pf()),H2=class{constructor(e,t,r,n,a){this.mean=e,this.stdDev=t,this.dtype=r,this.nextVal=NaN,this.truncated=n,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let s=a||Math.random();this.random=j2.alea(s.toString())}nextValue(){if(!isNaN(this.nextVal)){let n=this.nextVal;return this.nextVal=NaN,n}let e,t,r=!1;for(;!r;){let n,a,s;do n=2*this.random()-1,a=2*this.random()-1,s=n*n+a*a;while(s>=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*n*i,t=this.mean+this.stdDev*a*i,(!this.truncated||this.isValidTruncated(e))&&(r=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},S_=class{constructor(e,t,r,n){this.alpha=e,this.beta=1/t,this.dtype=r;let a=n||Math.random();this.randu=j2.alea(a.toString()),this.randn=new H2(0,1,r,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,r,n,a,s;for(;;){do n=this.randn.nextValue(),s=1+this.c*n;while(s<=0);if(s*=s*s,e=n*n,t=1-.331*e*e,r=.5*e+this.d*(1-s+Math.log(s)),a=this.randu(),a<t||Math.log(a)<r)break}return s=1/this.beta*this.d*s,this.alpha<1&&(s*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(s)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},T_=class{constructor(e=0,t=1,r,n){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=r,n==null&&(n=Math.random()),typeof n=="number"&&(n=n.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=j2.alea(n)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function N_(e,t,r=1,n="float32",a){if(r==null&&(r=1),n==null&&(n="float32"),n!=="float32"&&n!=="int32")throw new Error(`Unsupported data type ${n}`);let s=new S_(t,r,n,a),i=We(e,n);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var C_=W({randomGamma_:N_});function E_(e,t=0,r=1,n,a){if(n!=null&&n==="bool")throw new Error(`Unsupported data type ${n}`);let s=new H2(t,r,n,!1,a),i=We(e,n);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var a7=W({randomNormal_:E_});function R_(e,t=0,r=1,n="float32",a){let s=We(e,n),i=new T_(t,r,null,a);for(let o=0;o<s.values.length;o++)s.values[o]=i.nextValue();return s.toTensor()}var ld=W({randomUniform_:R_});function xu(e,t,r=1,n="float32"){if(r===0)throw new Error("Cannot have a step of zero");let a={start:e,stop:t,step:r,dtype:n};return B.runKernel(Xu,{},a)}function M_(e){let t={input:F(e,"input","real")};return B.runKernel(Xp,t)}var Mp=W({real_:M_});function F_(e){let t={x:F(e,"x","reciprocal")};return B.runKernel(Zu,t)}var s7=W({reciprocal_:F_});function $_(e){let t={x:F(e,"x","relu")};return B.runKernel(wi,t)}var $a=W({relu_:$_});function P_(e){let t={x:F(e,"x","relu6")};return B.runKernel(Ii,t)}var q2=W({relu6_:P_});function __(e,t){let r={x:F(e,"x","reverse")},n={dims:t};return B.runKernel(il,r,n)}var Fn=W({reverse_:__});function z_(e){let t=F(e,"x","reverse");return P(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Fn(t,0)}var O_=W({reverse1d_:z_});function D_(e,t){let r=F(e,"x","reverse");return P(r.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${r.rank}.`),Fn(r,t)}var L_=W({reverse2d_:D_});function B_(e,t){let r=F(e,"x","reverse");return P(r.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${r.rank}.`),Fn(r,t)}var W_=W({reverse3d_:B_});function V_(e,t){let r=F(e,"x","reverse");return P(r.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${r.rank}.`),Fn(r,t)}var U_=W({reverse4d_:V_});function G_(e){let t={x:F(e,"x","round")};return B.runKernel(ol,t)}var K2=W({round_:G_});function j_(e){let t={x:F(e,"x","rsqrt","float32")};return B.runKernel(Si,t)}var X2=W({rsqrt_:j_});function Se(e,t){if((Ir(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&Ir(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return zi(e,[],[],t)}function H_(e){let t={x:F(e,"x","selu")};return B.runKernel(Ju,t)}var Z2=W({selu_:H_});function q_(e,t,r,n,a,s=[1,1],i="NHWC"){let o=F(e,"x","separableConv2d"),l=F(t,"depthwiseFilter","separableConv2d"),u=F(r,"pointwiseFilter","separableConv2d"),d=o,h=!1;if(o.rank===3&&(h=!0,d=G(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");P(d.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${d.rank}.`),P(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),P(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),P(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),P(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let p=l.shape[2],c=l.shape[3];P(u.shape[2]===p*c,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${p*c}, but got ${u.shape[2]}.`);let f=uh(d,l,n,a,i,s),m=$s(f,u,1,"valid",i);return h?G(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var i7=W({separableConv2d_:q_});async function K_(e,t){let r=F(e,"x","setdiff1d"),n=F(t,"y","setdiff1d");P(r.dtype===n.dtype,()=>`x and y should have the same dtype, but got x (${r.dtype}) and y (${n.dtype}).`),P(r.rank===1,()=>`x should be 1D tensor, but got x (${r.shape}).`),P(n.rank===1,()=>`y should be 1D tensor, but got y (${n.shape}).`);let a=await r.data(),s=await n.data(),i=new Set(s),o=0;for(let d=0;d<a.length;d++)i.has(a[d])||o++;let l=new rr([o],r.dtype),u=new rr([o],"int32");for(let d=0,h=0;d<a.length;d++)i.has(a[d])||(l.values[h]=a[d],u.values[h]=d,h++);return[l.toTensor(),u.toTensor()]}var o7=K_;function X_(e){let t={x:F(e,"x","sign")};return B.runKernel(Qu,t)}var l7=W({sign_:X_});function Z_(e){let t={x:F(e,"x","sin","float32")};return B.runKernel(Ti,t)}var Y2=W({sin_:Z_});function Y_(e){let t={x:F(e,"x","sinh")};return B.runKernel(pl,t)}var J2=W({sinh_:Y_});function J_(e,t,r){let n=F(e,"x","slice1d");return P(n.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${n.rank} tensor`),Pe(n,[t],[r])}var wm=W({slice1d_:J_});function Q_(e,t,r){let n=F(e,"x","slice2d");return P(n.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${n.rank} tensor`),Pe(n,t,r)}var Q2=W({slice2d_:Q_});function ez(e,t,r){let n=F(e,"x","slice3d");return P(n.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${n.rank} tensor`),Pe(n,t,r)}var Sl=W({slice3d_:ez});function tz(e,t,r){let n=F(e,"x","slice4d");return P(n.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${n.rank} tensor`),Pe(n,t,r)}var To=W({slice4d_:tz});function rz(e,t=-1){let r=F(e,"logits","softmax","float32");if(t===-1&&(t=r.rank-1),t!==r.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${r.rank} and dim was ${t}`);let n={logits:r},a={dim:t};return B.runKernel(Ri,n,a)}var ud=W({softmax_:rz});function nz(e){P(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return B.runKernel(Xf,t)}var km=W({fft_:nz});function az(e){P(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return B.runKernel(Zf,t)}var Fp=W({ifft_:az});function sz(e){let t=e.shape[e.shape.length-1],r=e.size/t,n;if(t<=2){let a=G(e,[r,t]);n=Fp(a)}else{let a=[r,2*(t-1)],s=G(Mp(e),[r,t]),i=G(cm(e),[r,t]),o=Fn(Pe(s,[0,1],[r,t-2]),1),l=L(Fn(Pe(i,[0,1],[r,t-2]),1),Se(-1)),u=kt([s,o],1),d=kt([i,l],1),h=G(Ms(u,d),[a[0],a[1]]);n=Fp(h)}if(n=Mp(n),e.rank===3&&e.shape[0]!==0){let a=n,s=e.shape[0];n=G(n,[s,n.shape[0]/s,n.shape[1]]),a.dispose()}return n}var eA=W({irfft_:sz});function iz(e,t,r=0){let n={x:F(e,"x","split")},a={numOrSizeSplits:t,axis:r};return B.runKernel(cl,n,a)}var Kt=W({split_:iz});function oz(e,t){P(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let r=e.shape[e.shape.length-1],n=e.size/r,a;if(t!=null&&t<r){let f=e.shape.map(g=>0),m=e.shape.map(g=>g);m[e.shape.length-1]=t,a=Pe(e,f,m),r=t}else if(t!=null&&t>r){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-r,a=kt([e,Wt(f)],e.shape.length-1),r=t}else a=e;let s=at(a),i=G(Ms(a,s),[n,r]),o=km(i),l=Math.floor(r/2)+1,u=Mp(o),d=cm(o),h=Kt(u,[l,r-l],u.shape.length-1),p=Kt(d,[l,r-l],d.shape.length-1),c=a.shape.slice();return c[a.shape.length-1]=l,G(Ms(h[0],p[0]),c)}var Im=W({rfft_:oz});function lz(e){let t={x:F(e,"x","sqrt","float32")};return B.runKernel(Ci,t)}var Cr=W({sqrt_:lz});function uz(e,t){let r=F(e,"a","squaredDifference"),n=F(t,"b","squaredDifference");[r,n]=Ot(r,n),bt(r.shape,n.shape);let a={a:r,b:n},s={};return B.runKernel(Mi,a,s)}var tA=W({squaredDifference_:uz});function dz(e,t){let r=F(e,"x","squeeze");return G(r,hw(r.shape,t).newShape)}var et=W({squeeze_:dz});function pz(e,t=0){let r=Ep(e,"tensors","stack","string_or_numeric");P(r.length>=1,()=>"Pass at least one tensor to tf.stack"),r.length>0&&P(t<=r[0].rank,()=>"Axis must be <= rank of the tensor");let n=r,a={axis:t};return B.runKernel(nl,n,a)}var sr=W({stack_:pz});function hz(e,t=0){let r={x:F(e,"x","step")},n={alpha:t};return B.runKernel(_i,r,n)}var ch=W({step_:hz});function cz(e,t,r,n,a=0,s=0,i=0,o=0,l=0){let u={x:F(e,"x","stridedSlice","string_or_numeric")},d={begin:t,end:r,strides:n,beginMask:a,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return B.runKernel(fl,u,d)}var u7=W({stridedSlice_:cz});function fz(e){let t={x:F(e,"x","tan","float32")};return B.runKernel(ml,t)}var d7=W({tan_:fz});function St(e,t){Po(e);let r=Ea(e,t);if(r.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return zi(e,null,r,t)}function ua(e,t,r){if(Po(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let n=Ea(e,r);if(n.length!==2&&n.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return zi(e,t,n,r)}function mz(e,t,r){if(Po(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let n=Ea(e,r);if(n.length!==4&&n.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return zi(e,t,n,r)}function gz(e,t,r){if(Po(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let n=Ea(e,r);if(n.length!==5&&n.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return zi(e,t,n,r)}function yz(e,t,r){if(Po(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let n=Ea(e,r);if(n.length!==6&&n.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||n,zi(e,t,n,r)}function Az(e,t=1,r=!0){let n=F(e,"x","topk");if(n.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let a=n.shape[n.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>a)throw new Error(`'k' passed to topk() must be <= the last dimension (${a}) but got ${t}`);let s={x:n},i={k:t,sorted:r},[o,l]=B.runKernel(gl,s,i);return{values:o,indices:l}}var p7=W({topk_:Az});function xz(e,t=0,r=1,n,a){if(n!=null&&n==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new H2(t,r,n,!0,a),i=We(e,n);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var Sm=W({truncatedNormal_:xz});function bz(e,t=0){let r=F(e,"x","unique","string_or_numeric");P(r.rank>0,()=>"The input tensor must be at least 1D");let n={x:r},a={axis:t},[s,i]=B.runKernel(om,n,a);return{values:s,indices:i}}var g1=W({unique_:bz});function vz(e,t,r){let n=F(e,"x","unsortedSegmentSum"),a=F(t,"segmentIds","unsortedSegmentSum","int32");P(cu(r),()=>"numSegments must be of dtype int");let s={x:n,segmentIds:a},i={numSegments:r};return B.runKernel(th,s,i)}var h7=W({unsortedSegmentSum_:vz});function wz(e,t=0){let r=F(e,"x","unstack","string_or_numeric");P(t>=-r.shape.length&&t<r.shape.length,()=>`Axis = ${t} is not in [-${r.shape.length}, ${r.shape.length})`);let n={value:r},a={axis:t};return B.runKernel(Al,n,a)}var en=W({unstack_:wz});function c7(e,t=!0,r,n){return B.makeVariable(e,t,r,n)}function f7(e,t){let r=[];for(let s=0;s<t.length;s++)t[s]&&r.push(s);let n=We(e,"int32"),a=We([r.length,e.length],"int32");for(let s=0;s<r.length;s++){let i=n.indexToLoc(r[s]),o=s*e.length;a.values.set(i,o)}return a.toTensor()}async function kz(e){let t=F(e,"condition","whereAsync","bool"),r=await t.data(),n=f7(t.shape,r);return e!==t&&t.dispose(),n}var rA=kz;async function Iz(e,t,r){let n=F(e,"tensor","boolMask"),a=F(t,"mask","boolMask","bool"),s=r==null?0:r,i=a.rank,o=n.shape;P(i>0,()=>"mask cannot be scalar"),Wr(o.slice(s,s+i),a.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let m=s;m<s+i;m++)l*=o[m];let u=o.slice(0,s).concat([l],o.slice(s+i)),d=G(n,u),h=G(a,[-1]),p=await rA(h),c=et(p,[1]),f=yu(d,c,s);return e!==n&&n.dispose(),t!==a&&a.dispose(),c.dispose(),d.dispose(),h.dispose(),p.dispose(),f}var Sz=Iz;function Tz(e,t="euclidean",r=null,n=!1){e=F(e,"x","norm");let a=m7(e,t,r),s=a.shape;if(n){let i=Wn(r,e.shape);s=So(a.shape,i)}return G(a,s)}function m7(e,t,r=null){if(e.rank===0)return er(e);if(e.rank!==1&&r===null)return m7(G(e,[-1]),t,r);if(e.rank===1||typeof r=="number"||Array.isArray(r)&&r.length===1){if(t===1)return ke(er(e),r);if(t===1/0)return fr(er(e),r);if(t===-1/0)return Ps(er(e),r);if(t==="euclidean"||t===2)return Cr(ke(_s(er(e),Se(2,"int32")),r));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(r)&&r.length===2){if(t===1)return fr(ke(er(e),r[0]),r[1]-1);if(t===1/0)return fr(ke(er(e),r[1]),r[0]);if(t===-1/0)return Ps(ke(er(e),r[1]),r[0]);if(t==="fro"||t==="euclidean")return Cr(ke(At(e),r));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${r}`)}var nA=W({norm_:Tz});function Nz(e,t,r,n,a=!0){let s=F(e,"v","movingAverage"),i=F(t,"x","movingAverage"),o=F(r,"decay","movingAverage");Pw(s,i),P(Us(s.shape,i.shape),()=>"Shape mismatch in v and x");let l=Se(1),u=he(l,o),d=L(he(i,s),u);if(a){P(n!=null,()=>"When using zeroDebias: true, step is required.");let h=F(n,"step","movingAverage");d=pe(d,he(l,_s(o,h)))}return le(s,d)}var Cz=W({movingAverage_:Nz});function Ez(e,t,r){let n=F(e,"indices","scatterND","int32"),a=F(t,"updates","scatterND");x2(a,n,r);let s={indices:n,updates:a},i={shape:r};return B.runKernel(ll,s,i)}var g7=W({scatterND_:Ez});function Rz(e,t,r,n){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let a=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(r.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${r.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===a))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${a}]`);if(t.dtype!==n.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function Mz(e,t,r,n=0){let a=F(e,"sparseIndices","sparseToDense","int32"),s=F(t,"sparseValues","sparseToDense"),i=F(n,"defaultValue","sparseToDense",s.dtype);Rz(a,s,r,i);let o={sparseIndices:a,sparseValues:s,defaultValue:i},l={outputShape:r};return B.runKernel(Qp,o,l)}var aA=W({sparseToDense_:Mz});function Fz(e,t){let r=F(t,"indices","gatherND","int32"),n={params:F(e,"x","gatherND","string_or_numeric"),indices:r};return B.runKernel(Ho,n)}var y7=W({gatherND_:Fz});function $z(e,t){if(t==null)return e.shape.slice();if(Us(e.shape,t))return t;if(e.shape.length===t.length){let r=[];for(let n=0;n<e.shape.length;n++)t[n]==null&&e.shape[n]!=null?r.push(e.shape[n]):r.push(t[n]);return r}return t}function Pz(e,t,r,n){let a=F(e,"x","dropout");if(P(a.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${a.dtype} tensor instead.`),P(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof rt?a.clone():a;let s=$z(a,r),i=1-t,o=pe(ph(le(ld(s,0,1,"float32",n),i)),i);return L(a,o)}var A7=W({dropout_:Pz});function x7(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function sA(e,t,r){let n=1-e%2,a=new Float32Array(e);for(let s=0;s<e;++s){let i=2*Math.PI*s/(e+n-1);a[s]=t-r*Math.cos(i)}return St(a,"float32")}async function _z(e,t,r=1){let n=F(e,"predictions","inTopK"),a=F(t,"targets","inTopK");P(n.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${n.rank}`),P(n.rank-1===a.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${n.rank} and targets rank ${a.rank}`),Wr(n.shape.slice(0,n.shape.length-1),a.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=n.shape[n.shape.length-1];P(r>0&&r<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${r}`);let i=await n.data(),o=await a.data(),[l,u]=[i.length/s,s],d=cw("bool",l);for(let h=0;h<l;h++){let p=h*u,c=i.subarray(p,p+u),f=[];for(let m=0;m<c.length;m++)f.push({value:c[m],index:m});f.sort((m,g)=>g.value-m.value),d[h]=0;for(let m=0;m<r;m++)if(f[m].index===o[h]){d[h]=1;break}}return e!==n&&n.dispose(),t!==a&&a.dispose(),ct(d,a.shape,"bool")}var zz=_z,zs={};Le(zs,{conv2d:()=>Lz,depthwiseConv2d:()=>Uz,matMul:()=>jz});function Oz(e,t,r,n,a,s="NHWC",i){let o=e;e.rank===3&&(o=G(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=G(t,[1,t.shape[0],t.shape[1],t.shape[2]])),P(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),P(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),P(r.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${r}.`);let u=s==="NHWC"?o.shape[3]:o.shape[1],d=s==="NHWC"?l.shape[3]:l.shape[1];P(u===r[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${r[2]}.`),P(d===r[3],()=>`Error in conv2dDerFilter: depth of dy (${d}) must match output depth for filter (${r[3]}).`),Vr("conv2dDerFilter",a,i);let h={x:o,dy:l},p={strides:n,pad:a,dataFormat:s,dimRoundingMode:i,filterShape:r};return B.runKernel(Wf,h,p)}var iA=W({conv2DBackpropFilter_:Oz});function Tm(e,t,r){if(r==null||r==="linear")return e;if(r==="relu")return L(e,ch(t));throw new Error(`Cannot compute gradient for fused activation ${r}.`)}function Nm(e,t){let r=t,n=Xt(e.shape,t.shape);return n.length>0&&(r=ke(r,n)),G(r,e.shape)}function Cm(e,t,r,n){if(t==="linear")return e;if(t==="relu")return $a(e);if(t==="elu")return dh(e);if(t==="relu6")return q2(e);if(t==="prelu")return vm(e,r);if(t==="leakyrelu")return fm(e,n);if(t==="sigmoid")return Tr(e);throw new Error(`Unknown fused activation ${t}.`)}var Em=(e,t)=>!(e>0)||t==="linear";function Dz({x:e,filter:t,strides:r,pad:n,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:d}){if(l=l||"linear",Em(B.state.gradientDepth,l)===!1){let w=$s(e,t,r,n,a,s,i);return o!=null&&(w=le(w,o)),Cm(w,l,u,d)}let h=F(e,"x","conv2d","float32"),p=F(t,"filter","conv2d","float32"),c=h,f=!1;h.rank===3&&(f=!0,c=G(h,[1,h.shape[0],h.shape[1],h.shape[2]])),P(c.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${c.rank}.`),P(p.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${p.rank}.`),Vr("fused conv2d",n,i),P(c.shape[3]===p.shape[2],()=>`Error in conv2d: depth of input (${c.shape[3]}) must match input depth for filter ${p.shape[2]}.`),P(Fa(r,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${r} and dilations '${s}'`),P(a==="NHWC",()=>`Error in conv2d: got dataFormat of ${a} but only NHWC is currently supported.`);let m=lh(c.shape,p.shape,r,s,n,i),g;o!=null&&(g=F(o,"bias","fused conv2d"),[g]=Ot(g,h),bt(m.outShape,g.shape));let y;u!=null&&(y=F(u,"prelu weights","fused conv2d"));let A=(w,T)=>{let[S,E,R,_]=T,M=Tm(w,R,l);P(Fs(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let I=F2(E.shape,M,S,r,n),O=iA(E,M,S.shape,r,n),z=[I,O];if(_!=null){let j=Nm(_,M);z.push(j)}return z},x={x:c,filter:p,bias:g,preluActivationWeights:y},b={strides:r,pad:n,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:d};return o==null?Ra((w,T,S)=>{let E=B.runKernel(Es,x,b);return S([T,w,E]),f&&(E=G(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:A}})(c,p):Ra((w,T,S,E)=>{let R=B.runKernel(Es,x,b);return E([T,w,R,S]),f&&(R=G(R,[R.shape[1],R.shape[2],R.shape[3]])),{value:R,gradFunc:A}})(c,p,g)}var Lz=W({fusedConv2d_:Dz});function Bz(e,t,r,n,a,s=[1,1],i){let o=e;e.rank===3&&(o=G(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=G(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:o,dy:l},d={strides:n,pad:a,dimRoundingMode:i,dilations:s,filterShape:r};return B.runKernel(jf,u,d)}var b7=W({depthwiseConv2dNativeBackpropFilter_:Bz});function Wz(e,t,r,n,a,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=G(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:o,filter:r},d={strides:n,pad:a,dimRoundingMode:i,dilations:s,inputShape:e},h=B.runKernel(Hf,u,d);return l?G(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var v7=W({depthwiseConv2dNativeBackpropInput_:Wz});function Vz({x:e,filter:t,strides:r,pad:n,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:d}){if(Em(B.state.gradientDepth,l)===!1){let w=uh(e,t,r,n,a,s,i);return o!=null&&(w=le(w,o)),Cm(w,l,u,d)}let h=F(e,"x","depthwiseConv2d","float32"),p=F(t,"filter","depthwiseConv2d","float32"),c=h,f=!1;h.rank===3&&(f=!0,c=G(h,[1,h.shape[0],h.shape[1],h.shape[2]])),P(c.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${c.rank}.`),P(p.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${p.rank}.`),P(c.shape[3]===p.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${c.shape[3]}) must match the inChannels dimension in filter ${p.shape[2]}.`),s==null&&(s=[1,1]),P(Fa(r,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${s}'`),Vr("fused depthwiseConv2d",n,i);let m=lh(c.shape,p.shape,r,s,n,i,!0),g;o!=null&&(g=F(o,"bias","fused conv2d"),[g]=Ot(g,h),bt(m.outShape,g.shape));let y;u!=null&&(y=F(u,"prelu weights","fused depthwiseConv2d"));let A=(w,T)=>{P(Fs(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[S,E,R,_]=T,M=Tm(w,R,l),I=v7(E.shape,M,S,r,n,s,i),O=b7(E,M,S.shape,r,n,s,i);if(_!=null){let z=Nm(g,M);return[I,O,z]}return[I,O]},x={x:c,filter:p,bias:g,preluActivationWeights:y},b={strides:r,pad:n,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:d};return o==null?Ra((w,T,S)=>{let E=B.runKernel(Rs,x,b);return S([T,w,E]),f&&(E=G(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:A}})(c,p):Ra((w,T,S,E)=>{let R=B.runKernel(Rs,x,b);return E([T,w,R,S]),f&&(R=G(R,[R.shape[1],R.shape[2],R.shape[3]])),{value:R,gradFunc:A}})(c,p,g)}var Uz=W({fusedDepthwiseConv2d_:Vz});function Gz({a:e,b:t,transposeA:r=!1,transposeB:n=!1,bias:a,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(Em(B.state.gradientDepth,s)===!1){let _=Je(e,t,r,n);return a!=null&&(_=le(_,a)),Cm(_,s,i,o)}let l=F(e,"a","fused matMul"),u=F(t,"b","fused matMul");[l,u]=Ot(l,u);let d=r?l.shape[l.rank-2]:l.shape[l.rank-1],h=n?u.shape[u.rank-1]:u.shape[u.rank-2],p=r?l.shape[l.rank-1]:l.shape[l.rank-2],c=n?u.shape[u.rank-2]:u.shape[u.rank-1],f=l.shape.slice(0,-2),m=u.shape.slice(0,-2),g=Tt(f),y=Tt(m);P(d===h,()=>`Error in fused matMul: inner shapes (${d}) and (${h}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${r} and transposeB=${n} must match.`);let A=bt(l.shape.slice(0,-2),u.shape.slice(0,-2)).concat([p,c]),x=r?G(l,[g,d,p]):G(l,[g,p,d]),b=n?G(u,[y,c,h]):G(u,[y,h,c]),w;a!=null&&(w=F(a,"bias","fused matMul"),[w]=Ot(w,l),bt(A,w.shape));let T;i!=null&&(T=F(i,"prelu weights","fused matMul"));let S=(_,M)=>{let[I,O,z,j]=M,X=Tm(G(_,z.shape),z,s),D,Q;if(!r&&!n?(D=Je(X,O,!1,!0),Q=Je(I,X,!0,!1)):!r&&n?(D=Je(X,O,!1,!1),Q=Je(X,I,!0,!1)):r&&!n?(D=Je(O,X,!1,!0),Q=Je(I,X,!1,!1)):(D=Je(O,X,!0,!0),Q=Je(X,I,!0,!0)),a!=null){let V=Nm(j,X);return[D,Q,V]}else return[D,Q]},E={a:x,b,bias:w,preluActivationWeights:T},R={transposeA:r,transposeB:n,activation:s,leakyreluAlpha:o};return a==null?Ra((_,M,I)=>{let O=B.runKernel(Cs,E,R);return I([_,M,O]),{value:G(O,A),gradFunc:S}})(x,b):Ra((_,M,I,O)=>{let z=B.runKernel(Cs,E,R);return O([_,M,z,I]),{value:G(z,A),gradFunc:S}})(x,b,w)}var jz=W({fusedMatMul_:Gz});function Hz(e){return sA(e,.54,.46)}var qz=W({hammingWindow_:Hz});function Kz(e){return sA(e,.5,.5)}var w7=W({hannWindow_:Kz});function Xz(e,t,r,n=!1,a=0){let s=0,i=[];for(;s+t<=e.size;)i.push(Pe(e,s,t)),s+=r;if(n)for(;s<e.size;){let o=s+t-e.size,l=kt([Pe(e,s,t-o),sd([o],a)]);i.push(l),s+=r}return i.length===0?ua([],[0,t]):G(kt(i),[i.length,t])}var k7=W({frame_:Xz});function Zz(e,t,r,n,a=w7){n==null&&(n=x7(t));let s=k7(e,t,r),i=L(s,a(t));return Im(i,n)}var Yz=W({stft_:Zz});function Jz(e,t,r,n,a="bilinear",s=0){let i=F(e,"image","cropAndResize"),o=F(t,"boxes","cropAndResize","float32"),l=F(r,"boxInd","cropAndResize","int32"),u=o.shape[0];P(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),P(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${o.shape}.`),P(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${o.shape}.`),P(n.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${n.length}.`),P(n[0]>=1&&n[1]>=1,()=>`cropSize must be atleast [1,1], but was ${n}`),P(a==="bilinear"||a==="nearest",()=>`method must be bilinear or nearest, but was ${a}`);let d={image:i,boxes:o,boxInd:l},h={method:a,extrapolationValue:s,cropSize:n};return B.runKernel(Lo,d,h)}var Qz=W({cropAndResize_:Jz});function eO(e){let t=F(e,"image","flipLeftRight","float32");P(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let r={image:t};return B.runKernel(Go,r,{})}var tO=W({flipLeftRight_:eO});function rO(e){let t=F(e,"image","grayscaleToRGB"),r=t.rank-1,n=t.shape[r];P(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),P(n===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${n}.`);let a=new Array(t.rank);return a.fill(1,0,r),a[r]=3,Dn(t,a)}var nO=W({grayscaleToRGB_:rO});function aO(e,t,r=0,n=.5){let a=F(e,"image","rotateWithOffset","float32");P(a.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${a.rank}.`);let s={image:a},i={radians:t,fillValue:r,center:n};return B.runKernel(bl,s,i)}var sO=W({rotateWithOffset_:aO});function dd(e,t,r,n,a,s){n==null&&(n=.5),a==null&&(a=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return r=Math.min(r,i),P(0<=n&&n<=1,()=>`iouThreshold must be in [0, 1], but was '${n}'`),P(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),P(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),P(t.rank===1,()=>"scores must be a 1D tensor"),P(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),P(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:r,iouThreshold:n,scoreThreshold:a,softNmsSigma:s}}function iO(e,t,r,n=.5,a=Number.NEGATIVE_INFINITY){let s=F(e,"boxes","nonMaxSuppression","float32"),i=F(t,"scores","nonMaxSuppression","float32"),o=dd(s,i,r,n,a);r=o.maxOutputSize,n=o.iouThreshold,a=o.scoreThreshold;let l={maxOutputSize:r,iouThreshold:n,scoreThreshold:a};return B.runKernel(Qo,{boxes:s,scores:i},l)}var oO=W({nonMaxSuppression_:iO});function lO(e,t,r){let n=uO(e,t,r),a=n<0?-(n+1):n;e.splice(a,0,t)}function uO(e,t,r){return pO(e,t,r||dO)}function dO(e,t){return e>t?1:e<t?-1:0}function pO(e,t,r){let n=0,a=e.length,s=0,i=!1;for(;n<a;){s=n+(a-n>>>1);let o=r(t,e[s]);o>0?n=s+1:(a=s,i=!o)}return i?n:-n-1}function I7(e,t,r,n,a){return oA(e,t,r,n,a,0)}function S7(e,t,r,n,a,s){return oA(e,t,r,n,a,0,!1,s,!0)}function T7(e,t,r,n,a,s){return oA(e,t,r,n,a,s,!0)}function oA(e,t,r,n,a,s,i=!1,o=!1,l=!1){let u=[];for(let g=0;g<t.length;g++)t[g]>a&&u.push({score:t[g],boxIndex:g,suppressBeginIndex:0});u.sort(z3);let d=s>0?-.5/s:0,h=[],p=[];for(;h.length<r&&u.length>0;){let g=u.pop(),{score:y,boxIndex:A,suppressBeginIndex:x}=g;if(y<a)break;let b=!1;for(let w=h.length-1;w>=x;--w){let T=hO(e,A,h[w]);if(T>=n){b=!0;break}if(g.score=g.score*cO(n,d,T),g.score<=a)break}g.suppressBeginIndex=h.length,b||(g.score===y?(h.push(A),p.push(g.score)):g.score>a&&lO(u,g,z3))}let c=h.length,f=r-c;o&&f>0&&(h.push(...new Array(f).fill(0)),p.push(...new Array(f).fill(0)));let m={selectedIndices:h};return i&&(m.selectedScores=p),l&&(m.validOutputs=c),m}function hO(e,t,r){let n=e.subarray(t*4,t*4+4),a=e.subarray(r*4,r*4+4),s=Math.min(n[0],n[2]),i=Math.min(n[1],n[3]),o=Math.max(n[0],n[2]),l=Math.max(n[1],n[3]),u=Math.min(a[0],a[2]),d=Math.min(a[1],a[3]),h=Math.max(a[0],a[2]),p=Math.max(a[1],a[3]),c=(o-s)*(l-i),f=(h-u)*(p-d);if(c<=0||f<=0)return 0;let m=Math.max(s,u),g=Math.max(i,d),y=Math.min(o,h),A=Math.min(l,p),x=Math.max(y-m,0)*Math.max(A-g,0);return x/(c+f-x)}function cO(e,t,r){let n=Math.exp(t*r*r);return r<=e?n:0}function z3(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function fO(e,t,r,n=.5,a=Number.NEGATIVE_INFINITY){let s=F(e,"boxes","nonMaxSuppressionAsync"),i=F(t,"scores","nonMaxSuppressionAsync"),o=dd(s,i,r,n,a);r=o.maxOutputSize,n=o.iouThreshold,a=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),u=l[0],d=l[1],{selectedIndices:h}=I7(u,d,r,n,a);return s!==e&&s.dispose(),i!==t&&i.dispose(),St(h,"int32")}var mO=fO;function gO(e,t,r,n=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=F(e,"boxes","nonMaxSuppression"),o=F(t,"scores","nonMaxSuppression"),l=dd(i,o,r,n,a,s);r=l.maxOutputSize,n=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let u={boxes:i,scores:o},d={maxOutputSize:r,iouThreshold:n,scoreThreshold:a,softNmsSigma:s},h=B.runKernel(el,u,d);return{selectedIndices:h[0],selectedScores:h[1]}}var yO=W({nonMaxSuppressionWithScore_:gO});async function AO(e,t,r,n=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=F(e,"boxes","nonMaxSuppressionAsync"),o=F(t,"scores","nonMaxSuppressionAsync"),l=dd(i,o,r,n,a,s);r=l.maxOutputSize,n=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let u=await Promise.all([i.data(),o.data()]),d=u[0],h=u[1],{selectedIndices:p,selectedScores:c}=T7(d,h,r,n,a,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:St(p,"int32"),selectedScores:St(c)}}var xO=AO;function bO(e,t,r,n=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=F(e,"boxes","nonMaxSuppression"),o=F(t,"scores","nonMaxSuppression"),l=dd(i,o,r,n,a,null),u=l.maxOutputSize,d=l.iouThreshold,h=l.scoreThreshold,p={boxes:i,scores:o},c={maxOutputSize:u,iouThreshold:d,scoreThreshold:h,padToMaxOutputSize:s},f=B.runKernel(Ku,p,c);return{selectedIndices:f[0],validOutputs:f[1]}}var vO=W({nonMaxSuppressionPadded_:bO});async function wO(e,t,r,n=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=F(e,"boxes","nonMaxSuppressionAsync"),o=F(t,"scores","nonMaxSuppressionAsync"),l=dd(i,o,r,n,a,null),u=l.maxOutputSize,d=l.iouThreshold,h=l.scoreThreshold,[p,c]=await Promise.all([i.data(),o.data()]),{selectedIndices:f,validOutputs:m}=S7(p,c,u,d,h,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:St(f,"int32"),validOutputs:Se(m,"int32")}}var kO=wO;function IO(e,t,r=!1,n=!1){let a=F(e,"images","resizeBilinear");P(a.rank===3||a.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${a.rank}.`),P(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),P(n===!1||r===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=G(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:r,halfPixelCenters:n,size:t},u=B.runKernel(ki,o,l);return i?G(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var SO=W({resizeBilinear_:IO});function TO(e,t,r=!1,n=!1){let a=F(e,"images","resizeNearestNeighbor");P(a.rank===3||a.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${a.rank}.`),P(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),P(a.dtype==="float32"||a.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),P(n===!1||r===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=G(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:r,halfPixelCenters:n,size:t},u=B.runKernel(Yu,o,l);return i?G(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var NO=W({resizeNearestNeighbor_:TO});function CO(e,t="binary",r=!1,n=.5){let a=F(e,"image","threshold"),s=.2989,i=.587,o=.114,l=a.shape[0]*a.shape[1],u=L(St([n]),255),d,h,p,c;if(P(a.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${a.rank}.`),P(a.shape[2]===3||a.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${a.shape[2]}.`),P(a.dtype==="int32"||a.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${a.dtype}.`),P(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),a.shape[2]===3){[d,h,p]=Kt(a,[1,1,1],-1);let m=L(d,s),g=L(h,i),y=L(p,o);c=le(le(m,g),y)}else c=e;if(t==="otsu"){let m=R2(me(K2(c),"int32"),ct([]),256);u=EO(m,l)}let f=r?Il(c,u):cn(c,u);return me(L(f,255),"int32")}function EO(e,t){let r=St([-1]),n=St([0]),a=St([0]),s,i,o,l,u,d;for(let h=0;h<e.size-1;h++){s=Pe(e,0,h+1),i=Pe(e,h+1),u=pe(ke(s),t),d=pe(ke(i),t);let p=ke(L(s,xu(0,s.size)));o=pe(p,ke(s));let c=sd(i.shape,s.size),f=le(xu(0,i.size),c),m=L(i,f);l=pe(ke(m),ke(i));let g=he(o,l),y=he(o,l),A=L(u,d);a=L(L(A,g),y);let x=cn(a,n);n=Br(x,a,n),r=Br(x,St([h]),r)}return r}var RO=W({threshold_:CO});function MO(e,t,r="nearest",n="constant",a=0,s){let i=F(e,"image","transform","float32"),o=F(t,"transforms","transform","float32");P(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),P(o.rank===2&&(o.shape[0]===i.shape[0]||o.shape[0]===1)&&o.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),P(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let l={image:i,transforms:o},u={interpolation:r,fillMode:n,fillValue:a,outputShape:s};return B.runKernel(yl,l,u)}var FO=W({transform_:MO});function $O(e,t,r){P(t%1===0,()=>`bandPart(): numLower must be an integer, got ${t}.`),P(r%1===0,()=>`bandPart(): numUpper must be an integer, got ${r}.`);let n=F(e,"a","bandPart");P(n.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${n.rank}.`);let a=n.shape,[s,i]=n.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(r<=i))throw new Error(`bandPart(): numUpper (${r}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),r<0&&(r=i);let o=G(xu(0,s,1,"int32"),[-1,1]),l=xu(0,i,1,"int32"),u=he(o,l),d=ha(Il(u,Se(+t,"int32")),kl(u,Se(-r,"int32"))),h=Wt([s,i],n.dtype);return G(sr(en(G(n,[-1,s,i])).map(p=>Br(d,p,h))),a)}var PO=W({bandPart_:$O});function _O(e){let t;if(Array.isArray(e)){t=!1,P(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let a=e[0].shape[0];for(let s=1;s<e.length;++s)P(e[s].shape[0]===a,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${a})`)}else t=!0,e=Kt(e,e.shape[0],0).map(a=>et(a,[0]));P(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let r=[],n=e;for(let a=0;a<e.length;++a)r.push(B.tidy(()=>{let s=n[a];if(a>0)for(let i=0;i<a;++i){let o=L(ke(L(r[i],s)),r[i]);s=he(s,o)}return pe(s,nA(s,"euclidean"))}));return t?sr(r,0):r}var zO=W({gramSchmidt_:_O});function OO(e,t=!1){if(P(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return O3(e,t);{let r=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),n=en(G(e,[r,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),a=[],s=[];n.forEach(l=>{let[u,d]=O3(l,t);a.push(u),s.push(d)});let i=G(sr(a,0),e.shape),o=G(sr(s,0),e.shape);return[i,o]}}function O3(e,t=!1){return B.tidy(()=>{P(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let r=e.shape[0],n=e.shape[1],a=O2(r),s=Lr(e),i=ua([[1]],[1,1]),o=Lr(i),l=r>=n?n:r;for(let u=0;u<l;++u){let d=s,h=o,p=a;[o,s,a]=B.tidy(()=>{let c=Pe(s,[u,u],[r-u,1]),f=nA(c),m=Pe(s,[u,u],[1,1]),g=Br(cn(m,0),ua([[-1]]),ua([[1]])),y=he(m,L(g,f)),A=pe(c,y);A.shape[0]===1?o=Lr(i):o=kt([i,Pe(A,[1,0],[A.shape[0]-1,A.shape[1]])],0);let x=zt(pe(Je(g,y),f)),b=Pe(s,[u,0],[r-u,n]),w=L(x,o),T=nt(o);if(u===0)s=he(b,Je(w,Je(T,b)));else{let R=he(b,Je(w,Je(T,b)));s=kt([Pe(s,[0,0],[u,n]),R],0)}let S=nt(w),E=Pe(a,[0,u],[r,a.shape[1]-u]);if(u===0)a=he(E,Je(Je(E,o),S));else{let R=he(E,Je(Je(E,o),S));a=kt([Pe(a,[0,0],[r,u]),R],1)}return[o,s,a]}),re([d,h,p])}return!t&&r>n&&(a=Pe(a,[0,0],[r,n]),s=Pe(s,[0,0],[n,n])),[a,s]})}var DO=W({qr_:OO}),N7=(e=>(e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS",e))(N7||{});function LO(e,t,r=3){let n=F(e,"losses","computeWeightedLoss"),a=null;t!=null&&(a=F(t,"weights","computeWeightedLoss"));let s=a==null?n:L(n,a);if(r===0)return s;if(r===2)return ke(s);if(r===1){if(a==null)return Bt(s);{let i=n.size/a.size,o=pe(ke(s),ke(a));return i>1?pe(o,Se(i)):o}}if(r===3){if(a==null)return pe(ke(s),Se(n.size));{let i=L(a,pn(n.shape)),o=me(ke(Au(i,Se(0))),"float32");return pe(ke(s),o)}}throw Error(`Unknown reduction: ${r}`)}var Ya=W({computeWeightedLoss_:LO});function BO(e,t,r,n=3){let a=F(e,"labels","absoluteDifference"),s=F(t,"predictions","absoluteDifference"),i=null;r!=null&&(i=F(r,"weights","absoluteDifference")),Wr(a.shape,s.shape,"Error in absoluteDifference: ");let o=er(he(a,s));return Ya(o,i,n)}var WO=W({absoluteDifference_:BO});function VO(e,t,r,n,a=3){let s=F(e,"labels","cosineDistance"),i=F(t,"predictions","cosineDistance"),o=null;n!=null&&(o=F(n,"weights","cosineDistance")),Wr(s.shape,i.shape,"Error in cosineDistance: ");let l=Se(1),u=he(l,ke(L(s,i),r,!0));return Ya(u,o,a)}var UO=W({cosineDistance_:VO});function GO(e,t,r,n=3){let a=F(e,"labels","hingeLoss"),s=F(t,"predictions","hingeLoss"),i=null;r!=null&&(i=F(r,"weights","hingeLoss")),Wr(a.shape,s.shape,"Error in hingeLoss: ");let o=Se(1);a=he(L(Se(2),a),o);let l=$a(he(o,L(a,s)));return Ya(l,i,n)}var jO=W({hingeLoss_:GO});function HO(e,t,r,n=1,a=3){let s=F(e,"labels","huberLoss"),i=F(t,"predictions","huberLoss"),o=null;r!=null&&(o=F(r,"weights","huberLoss")),Wr(s.shape,i.shape,"Error in huberLoss: ");let l=Se(n),u=er(he(i,s)),d=hh(u,l),h=he(u,d),p=le(L(Se(.5),At(d)),L(l,h));return Ya(p,o,a)}var qO=W({huberLoss_:HO});function KO(e,t,r,n=1e-7,a=3){let s=F(e,"labels","logLoss"),i=F(t,"predictions","logLoss"),o=null;r!=null&&(o=F(r,"weights","logLoss")),Wr(s.shape,i.shape,"Error in logLoss: ");let l=Se(1),u=Se(n),d=zt(L(s,Rn(le(i,u)))),h=L(he(l,s),Rn(le(he(l,i),u))),p=he(d,h);return Ya(p,o,a)}var XO=W({logLoss_:KO});function ZO(e,t,r,n=3){let a=F(e,"labels","meanSquaredError"),s=F(t,"predictions","meanSquaredError"),i=null;r!=null&&(i=F(r,"weights","meanSquaredError")),Wr(a.shape,s.shape,"Error in meanSquaredError: ");let o=tA(a,s);return Ya(o,i,n)}var YO=W({meanSquaredError_:ZO});function JO(e,t){let r=F(e,"labels","sigmoidCrossEntropyWithLogits"),n=F(t,"logits","sigmoidCrossEntropyWithLogits");Wr(r.shape,n.shape,"Error in sigmoidCrossEntropyWithLogits: ");let a=$a(n),s=L(n,r),i=mm(En(zt(er(n))));return le(he(a,s),i)}function QO(e,t,r,n=0,a=3){let s=F(e,"multiClassLabels","sigmoidCrossEntropy"),i=F(t,"logits","sigmoidCrossEntropy"),o=null;if(r!=null&&(o=F(r,"weights","sigmoidCrossEntropy")),Wr(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),n>0){let u=Se(n),d=Se(1),h=Se(.5);s=le(L(s,he(d,u)),L(h,u))}let l=JO(s,i);return Ya(l,o,a)}var eD=W({sigmoidCrossEntropy_:QO});function tD(e,t,r=-1){if(r===-1&&(r=t.rank-1),r!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${r}`);return Ra((n,a,s)=>{let i=e7(a,[r],!0),o=he(me(a,"float32"),i);s([n,o]);let l=zt(L(o,n));return{value:ke(l,[r]),gradFunc:(u,d)=>{let[h,p]=d,c=So(u.shape,[r]);return[L(G(u,c),he(me(h,"float32"),En(p))),L(G(u,c),he(En(p),me(h,"float32")))]}}})(e,t)}function rD(e,t,r,n=0,a=3){let s=F(e,"onehotLabels","softmaxCrossEntropy"),i=F(t,"logits","softmaxCrossEntropy"),o=null;if(r!=null&&(o=F(r,"weights","softmaxCrossEntropy")),Wr(s.shape,i.shape,"Error in softmaxCrossEntropy: "),n>0){let u=Se(n),d=Se(1),h=Se(s.shape[1]);s=le(L(s,he(d,u)),pe(u,h))}let l=tD(s,i);return Ya(l,o,a)}var nD=W({softmaxCrossEntropy_:rD});function aD(e,t,r,n){let a=F(e,"indices","sparseFillEmptyRows","int32"),s=F(t,"values","sparseFillEmptyRows"),i=F(r,"denseShape","sparseFillEmptyRows","int32"),o=F(n,"defaultValue","sparseFillEmptyRows",s.dtype);if(a.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
|
|
${a.shape}`);if(s.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${s.shape}`);if(i.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${i.shape}`);if(o.rank!==0)throw new Error(`Default value should be a scalar but received shape ${o.shape}`);let l={indices:a,values:s,denseShape:i,defaultValue:o},u=B.runKernel(Zp,l);return{outputIndices:u[0],outputValues:u[1],emptyRowIndicator:u[2],reverseIndexMap:u[3]}}var sD=W({sparseFillEmptyRows_:aD});function iD(e,t,r){let n=F(e,"inputIndices","sparseReshape","int32"),a=F(t,"inputShape","sparseReshape","int32"),s=F(r,"newShape","sparseReshape","int32");if(n.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
|
|
${n.shape}`);if(a.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${a.shape}`);if(s.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${s.shape}`);let i={inputIndices:n,inputShape:a,newShape:s},o=B.runKernel(td,i);return{outputIndices:o[0],outputShape:o[1]}}var oD=W({sparseReshape_:iD});function lD(e,t,r){let n=F(e,"data","sparseSegmentMean"),a=F(t,"indices","sparseSegmentMean","int32"),s=F(r,"segmentIds","sparseSegmentMean","int32");if(n.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(a.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${a.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${s.shape}`);let i={data:n,indices:a,segmentIds:s};return B.runKernel(Yp,i)}var uD=W({sparseSegmentMean_:lD});function dD(e,t,r){let n=F(e,"data","sparseSegmentSum"),a=F(t,"indices","sparseSegmentSum","int32"),s=F(r,"segmentIds","sparseSegmentSum","int32");if(n.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(a.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${a.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${s.shape}`);let i={data:n,indices:a,segmentIds:s};return B.runKernel(Jp,i)}var pD=W({sparseSegmentSum_:dD});function hD(e,t,r,n,a,s,i,o){let l=F(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let u=F(t,"dataSplits","stringNGrams");if(u.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let d={separator:r,nGramWidths:n,leftPad:a,rightPad:s,padWidth:i,preserveShortSequences:o},h={data:l,dataSplits:u},p=B.runKernel(eh,h,d);return{nGrams:p[0],nGramsSplits:p[1]}}var cD=W({stringNGrams_:hD});function fD(e,t,r=!0){let n=F(e,"input","stringSplit","string"),a=F(t,"delimiter","stringSplit","string");if(n.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${n.shape}`);if(a.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${a.shape}`);let s={skipEmpty:r},i={input:n,delimiter:a},o=B.runKernel(sm,i,s);return{indices:o[0],values:o[1],shape:o[2]}}var mD=W({stringSplit_:fD});function gD(e,t){let r=F(e,"input","stringToHashBucketFast","string"),n={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let a={input:r};return B.runKernel(im,a,n)}var yD=W({stringToHashBucketFast_:gD}),AD={fft:km,ifft:Fp,rfft:Im,irfft:eA},xD={hammingWindow:qz,hannWindow:w7,frame:k7,stft:Yz},Ie={flipLeftRight:tO,grayscaleToRGB:nO,resizeNearestNeighbor:NO,resizeBilinear:SO,rotateWithOffset:sO,cropAndResize:Qz,nonMaxSuppression:oO,nonMaxSuppressionAsync:mO,nonMaxSuppressionWithScore:yO,nonMaxSuppressionWithScoreAsync:xO,nonMaxSuppressionPadded:vO,nonMaxSuppressionPaddedAsync:kO,threshold:RO,transform:FO},C7={bandPart:PO,gramSchmidt:zO,qr:DO},bD={absoluteDifference:WO,computeWeightedLoss:Ya,cosineDistance:UO,hingeLoss:jO,huberLoss:qO,logLoss:XO,meanSquaredError:YO,sigmoidCrossEntropy:eD,softmaxCrossEntropy:nD},pp={sparseFillEmptyRows:sD,sparseReshape:oD,sparseSegmentMean:uD,sparseSegmentSum:pD},Kc={stringNGrams:cD,stringSplit:mD,stringToHashBucketFast:yD},Ja=class extends fk{minimize(e,t=!1,r){let{value:n,grads:a}=this.computeGradients(e,r);if(r!=null){let s=r.map(i=>({name:i.name,tensor:a[i.name]}));this.applyGradients(s)}else this.applyGradients(a);return re(a),t?n:(n.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return Zk(e,t)}dispose(){this.iterations_!=null&&re(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:Se(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Ja,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var Rm=class extends Ja{constructor(e,t,r=null){super(),this.learningRate=e,this.rho=t,this.epsilon=r,this.accumulatedGrads=[],this.accumulatedUpdates=[],r==null&&(this.epsilon=B.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,r)=>{let n=B.registeredVariables[t],a=!1;this.accumulatedGrads[r]==null&&(this.accumulatedGrads[r]={originalName:`${t}/accum_grad`,variable:K(()=>at(n).variable(a))}),this.accumulatedUpdates[r]==null&&(this.accumulatedUpdates[r]={originalName:`${t}/accum_var`,variable:K(()=>at(n).variable(a))});let s=Array.isArray(e)?e[r].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[r].variable,o=this.accumulatedUpdates[r].variable;K(()=>{let l=le(L(i,this.rho),L(At(s),1-this.rho)),u=L(pe(Cr(le(o,this.epsilon)),Cr(le(i,this.epsilon))),s),d=le(L(o,this.rho),L(At(u),1-this.rho));i.assign(l),o.assign(d);let h=le(L(u,-this.learningRate),n);n.assign(h)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(re(this.accumulatedGrads.map(e=>e.variable)),re(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,r=!1;this.accumulatedGrads=e.slice(0,t).map(n=>({originalName:n.name,variable:n.tensor.variable(r)})),this.accumulatedUpdates=e.slice(t,t*2).map(n=>({originalName:n.name,variable:n.tensor.variable(r)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};Rm.className="Adadelta";Oi(Rm);var Mm=class extends Ja{constructor(e,t=.1){super(),this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,r)=>{let n=B.registeredVariables[t];this.accumulatedGrads[r]==null&&(this.accumulatedGrads[r]={originalName:`${t}/accumulator`,variable:K(()=>sd(n.shape,this.initialAccumulatorValue).variable(!1))});let a=Array.isArray(e)?e[r].tensor:e[t];if(a==null)return;let s=this.accumulatedGrads[r].variable;K(()=>{let i=le(s,At(a));s.assign(i);let o=le(L(pe(a,Cr(le(i,B.backend.epsilon()))),-this.learningRate),n);n.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&re(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(r=>({originalName:r.name,variable:r.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};Mm.className="Adagrad";Oi(Mm);var Fm=class extends Ja{constructor(e,t,r,n=null){super(),this.learningRate=e,this.beta1=t,this.beta2=r,this.epsilon=n,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],K(()=>{this.accBeta1=Se(t).variable(),this.accBeta2=Se(r).variable()}),n==null&&(this.epsilon=B.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(r=>r.name):Object.keys(e);K(()=>{let r=he(1,this.accBeta1),n=he(1,this.accBeta2);t.forEach((a,s)=>{let i=B.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:K(()=>at(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${a}/v`,variable:K(()=>at(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,d=this.accumulatedSecondMoment[s].variable,h=le(L(u,this.beta1),L(l,1-this.beta1)),p=le(L(d,this.beta2),L(At(l),1-this.beta2)),c=pe(h,r),f=pe(p,n);u.assign(h),d.assign(p);let m=le(L(pe(c,le(Cr(f),this.epsilon)),-this.learningRate),i);i.assign(m)}),this.accBeta1.assign(L(this.accBeta1,this.beta1)),this.accBeta2.assign(L(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&re(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&re(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),K(()=>{this.accBeta1.assign(_s(this.beta1,this.iterations_+1)),this.accBeta2.assign(_s(this.beta2,this.iterations_+1))});let t=e.length/2,r=!1;this.accumulatedFirstMoment=e.slice(0,t).map(n=>({originalName:n.name,variable:n.tensor.variable(r)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(n=>({originalName:n.name,variable:n.tensor.variable(r)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};Fm.className="Adam";Oi(Fm);var $m=class extends Ja{constructor(e,t,r,n=null,a=0){super(),this.learningRate=e,this.beta1=t,this.beta2=r,this.epsilon=n,this.decay=a,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],K(()=>{this.iteration=Se(0).variable(),this.accBeta1=Se(t).variable()}),n==null&&(this.epsilon=B.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(r=>r.name):Object.keys(e);K(()=>{let r=he(1,this.accBeta1),n=pe(-this.learningRate,le(L(this.iteration,this.decay),1));t.forEach((a,s)=>{let i=B.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:at(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${a}/v`,variable:at(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,d=this.accumulatedWeightedInfNorm[s].variable,h=le(L(u,this.beta1),L(l,1-this.beta1)),p=L(d,this.beta2),c=er(l),f=Za(p,c);u.assign(h),d.assign(f);let m=le(L(pe(n,r),pe(h,le(f,this.epsilon))),i);i.assign(m)}),this.iteration.assign(le(this.iteration,1)),this.accBeta1.assign(L(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&re(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&re(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};$m.className="Adamax";Oi($m);var fh=class extends Ja{constructor(e){super(),this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,r)=>{let n=Array.isArray(e)?e[r].tensor:e[t];if(n==null)return;let a=B.registeredVariables[t];K(()=>{let s=le(L(this.c,n),a);a.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=hr(Se(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};fh.className="SGD";Oi(fh);var Pm=class extends fh{constructor(e,t,r=!1){super(e),this.learningRate=e,this.momentum=t,this.useNesterov=r,this.accumulations=[],this.m=Se(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,r)=>{let n=B.registeredVariables[t];this.accumulations[r]==null&&(this.accumulations[r]={originalName:`${t}/momentum`,variable:K(()=>at(n).variable(!1))});let a=this.accumulations[r].variable,s=Array.isArray(e)?e[r].tensor:e[t];s!=null&&K(()=>{let i,o=le(L(this.m,a),s);this.useNesterov?i=le(L(this.c,le(s,L(o,this.m))),n):i=le(L(this.c,o),n),a.assign(o),n.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&re(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(r=>({originalName:r.name,variable:r.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};Pm.className="Momentum";Oi(Pm);var _m=class extends Ja{constructor(e,t=.9,r=0,n=null,a=!1){if(super(),this.learningRate=e,this.decay=t,this.momentum=r,this.epsilon=n,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=a,n==null&&(this.epsilon=B.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,r)=>{let n=B.registeredVariables[t],a=!1;this.accumulatedMeanSquares[r]==null&&(this.accumulatedMeanSquares[r]={originalName:`${t}/rms`,variable:K(()=>at(n).variable(a))}),this.accumulatedMoments[r]==null&&(this.accumulatedMoments[r]={originalName:`${t}/momentum`,variable:K(()=>at(n).variable(a))}),this.accumulatedMeanGrads[r]==null&&this.centered&&(this.accumulatedMeanGrads[r]={originalName:`${t}/mg`,variable:K(()=>at(n).variable(a))});let s=Array.isArray(e)?e[r].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[r].variable,o=this.accumulatedMoments[r].variable;K(()=>{let l=le(L(i,this.decay),L(At(s),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[r].variable,d=le(L(u,this.decay),L(s,1-this.decay)),h=pe(L(s,this.learningRate),Cr(he(l,le(At(d),this.epsilon)))),p=le(L(o,this.momentum),h);i.assign(l),u.assign(d),o.assign(p);let c=he(n,p);n.assign(c)}else{let u=le(L(i,this.decay),L(At(s),1-this.decay)),d=le(L(o,this.momentum),pe(L(s,this.learningRate),Cr(le(u,this.epsilon))));i.assign(u),o.assign(d);let h=he(n,d);n.assign(h)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&re(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&re(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&re(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,r=!1;this.accumulatedMeanSquares=e.slice(0,t).map(n=>({originalName:n.name,variable:n.tensor.variable(r)})),this.accumulatedMoments=e.slice(t,t*2).map(n=>({originalName:n.name,variable:n.tensor.variable(r)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(n=>({originalName:n.name,variable:n.tensor.variable(r)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};_m.className="RMSProp";Oi(_m);var xs=class{static sgd(e){return new fh(e)}static momentum(e,t,r=!1){return new Pm(e,t,r)}static rmsprop(e,t=.9,r=0,n=null,a=!1){return new _m(e,t,r,n,a)}static adam(e=.001,t=.9,r=.999,n=null){return new Fm(e,t,r,n)}static adadelta(e=.001,t=.95,r=null){return new Rm(e,t,r)}static adamax(e=.002,t=.9,r=.999,n=null,a=0){return new $m(e,t,r,n,a)}static adagrad(e,t=.1){return new Mm(e,t)}},lo={sgd:xs.sgd,momentum:xs.momentum,adadelta:xs.adadelta,adagrad:xs.adagrad,rmsprop:xs.rmsprop,adamax:xs.adamax,adam:xs.adam},vD=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function lA(){return new Promise(e=>vD(()=>e()))}var N={};Le(N,{ERF_A1:()=>FD,ERF_A2:()=>$D,ERF_A3:()=>PD,ERF_A4:()=>_D,ERF_A5:()=>zD,ERF_P:()=>MD,PARALLELIZE_THRESHOLD:()=>uA,SELU_SCALE:()=>R7,SELU_SCALEALPHA:()=>E7,applyActivation:()=>Cm,assertAndGetBroadcastShape:()=>bt,assertAxesAreInnerMostDims:()=>$P,assertParamsConsistent:()=>wD,assignToTypedArray:()=>VD,axesAreInnerMostDims:()=>B2,calculateShapes:()=>ak,checkEinsumDimSizes:()=>KD,checkPadOnDimRoundingMode:()=>Vr,combineLocations:()=>Yk,complexWithEvenIndex:()=>LD,complexWithOddIndex:()=>BD,computeConv2DInfo:()=>lh,computeConv3DInfo:()=>Nk,computeDefaultPad:()=>C2,computeDilation2DInfo:()=>JF,computeOptimalWindowSize:()=>ID,computeOutAndReduceShapes:()=>Jk,computeOutShape:()=>kD,computePool2DInfo:()=>Tk,computePool3DInfo:()=>QF,convertConv2DDataFormat:()=>Ck,decodeEinsumEquation:()=>HD,eitherStridesOrDilationsAreOne:()=>Fa,expandShapeToKeepDim:()=>So,exponent:()=>GD,exponents:()=>UD,fromStringArrayToUint8:()=>mL,fromUint8ToStringArray:()=>fL,getAxesPermutation:()=>Qk,getBroadcastDims:()=>ek,getComplexWithIndex:()=>WD,getEinsumComputePath:()=>XD,getEinsumPermutation:()=>qD,getFusedBiasGradient:()=>Nm,getFusedDyActivation:()=>Tm,getImageCenter:()=>SD,getInnerMostAxes:()=>PP,getPermuted:()=>ND,getReductionAxes:()=>Xt,getReshaped:()=>TD,getReshapedPermuted:()=>CD,getSliceBeginCoords:()=>ED,getSliceSize:()=>RD,getSparseFillEmptyRowsIndicesDenseShapeMismatch:()=>QD,getSparseFillEmptyRowsNegativeIndexErrorMessage:()=>eL,getSparseFillEmptyRowsOutOfRangeIndexErrorMessage:()=>tL,getSparseReshapeEmptyTensorZeroOutputDimErrorMessage:()=>aL,getSparseReshapeInputOutputMismatchErrorMessage:()=>iL,getSparseReshapeInputOutputMultipleErrorMessage:()=>sL,getSparseReshapeMultipleNegativeOneOutputDimErrorMessage:()=>rL,getSparseReshapeNegativeOutputDimErrorMessage:()=>nL,getSparseSegmentReductionIndicesOutOfRangeErrorMessage:()=>dL,getSparseSegmentReductionNegativeSegmentIdsErrorMessage:()=>oL,getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage:()=>lL,getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage:()=>uL,getUndoAxesPermutation:()=>W2,isIdentityPermutation:()=>ZD,log:()=>TR,mergeRealAndImagArrays:()=>OD,prepareAndValidate:()=>nk,prepareSplitSize:()=>JD,segment_util:()=>M7,shouldFuse:()=>Em,slice_util:()=>_t,splitRealAndImagArrays:()=>DD,tupleValuesAreOne:()=>Fs,upcastType:()=>Nr,validateInput:()=>x2,validateUpdateShape:()=>A2,warn:()=>vs});function wD(e,t){let r=e[0].length;e.forEach((a,s)=>{P(a.length===r,()=>`Error in concat${r}D: rank of tensors[${s}] must be the same as the rank of the rest (${r})`)}),P(t>=0&&t<r,()=>`Error in concat${r}D: axis must be between 0 and ${r-1}.`);let n=e[0];e.forEach((a,s)=>{for(let i=0;i<r;i++)P(i===t||a[i]===n[i],()=>`Error in concat${r}D: Shape of tensors[${s}] (${a}) does not match the shape of the rest (${n}) along the non-concatenated axis ${s}.`)})}function kD(e,t){let r=e[0].slice();for(let n=1;n<e.length;n++)r[t]+=e[n][t];return r}var uA=30;function ID(e){return e<=uA?e:sf(e,Math.floor(Math.sqrt(e)))}function SD(e,t,r){let n=r*(typeof e=="number"?e:e[0]),a=t*(typeof e=="number"?e:e[1]);return[n,a]}function TD(e,t,r,n=!0){let a=[];if(n)a=a.concat(t.slice(0)),a.push(e[0]/r),a=a.concat(e.slice(1));else{a=a.concat(e[0]);let s=t.length;for(let i=0;i<s;++i)a=a.concat([e[i+1]/t[i],t[i]]);a=a.concat(e.slice(s+1))}return a}function ND(e,t,r=!0){let n=[];if(r){n.push(t);for(let a=t+1;a<e;++a)a<=2*t?(n.push(a),n.push(a-(t+1))):n.push(a)}else{let a=[],s=[];for(let i=1;i<e;++i)i>=t*2+1||i%2===1?s.push(i):a.push(i);n.push(...a),n.push(0),n.push(...s)}return n}function CD(e,t,r,n=!0){let a=[];n?a.push(e[0]/r):a.push(e[0]*r);for(let s=1;s<e.length;++s)s<=t.length?n?a.push(t[s-1]*e[s]):a.push(e[s]/t[s-1]):a.push(e[s]);return a}function ED(e,t){let r=[0];for(let n=0;n<t;++n)r.push(e[n][0]);return r}function RD(e,t,r){let n=e.slice(0,1);for(let a=0;a<r;++a)n.push(e[a+1]-t[a][0]-t[a][1]);return n}var E7=1.7580993408473768,R7=1.0507009873554805,MD=.3275911,FD=.254829592,$D=-.284496736,PD=1.421413741,_D=-1.453152027,zD=1.061405429;function OD(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let r=new Float32Array(e.length*2);for(let n=0;n<r.length;n+=2)r[n]=e[n/2],r[n+1]=t[n/2];return r}function DD(e){let t=new Float32Array(e.length/2),r=new Float32Array(e.length/2);for(let n=0;n<e.length;n+=2)t[n/2]=e[n],r[n/2]=e[n+1];return{real:t,imag:r}}function LD(e){let t=Math.ceil(e.length/4),r=new Float32Array(t),n=new Float32Array(t);for(let a=0;a<e.length;a+=4)r[Math.floor(a/4)]=e[a],n[Math.floor(a/4)]=e[a+1];return{real:r,imag:n}}function BD(e){let t=Math.floor(e.length/4),r=new Float32Array(t),n=new Float32Array(t);for(let a=2;a<e.length;a+=4)r[Math.floor(a/4)]=e[a],n[Math.floor(a/4)]=e[a+1];return{real:r,imag:n}}function WD(e,t){let r=e[t*2],n=e[t*2+1];return{real:r,imag:n}}function VD(e,t,r,n){e[n*2]=t,e[n*2+1]=r}function UD(e,t){let r=new Float32Array(e/2),n=new Float32Array(e/2);for(let a=0;a<Math.ceil(e/2);a++){let s=(t?2:-2)*Math.PI*(a/e);r[a]=Math.cos(s),n[a]=Math.sin(s)}return{real:r,imag:n}}function GD(e,t,r){let n=(r?2:-2)*Math.PI*(e/t),a=Math.cos(n),s=Math.sin(n);return{real:a,imag:s}}var Hy="->",jD=/->/g,D3=",",L3="...";function HD(e,t){e=e.replace(/\s/g,"");let r=(e.length-e.replace(jD,"").length)/Hy.length;if(r<1)throw new Error("Equations without an arrow are not supported.");if(r>1)throw new Error(`Equation must contain exactly one arrow ("${Hy}").`);let[n,a]=e.split(Hy);P(n.indexOf(L3)===-1,()=>`The ellipsis notation ("${L3}") is not supported yet.`);let s=n.split(D3),i=s.length;if(t!==i)throw new Error(`Expected ${i} input tensors, received ${t}`);if(i>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let o=[];for(let p=0;p<a.length;++p){let c=a[p];if(!s.some(f=>f.indexOf(c)!==-1))throw new Error(`Output subscripts contain the label ${c} not present in the input subscripts.`);o.indexOf(c)===-1&&o.push(c)}for(let p=0;p<n.length;++p){let c=n[p];o.indexOf(c)===-1&&c!==D3&&o.push(c)}let l=new Array(s.length);for(let p=0;p<i;++p){if(new Set(s[p].split("")).size!==s[p].length)throw new Error(`Found duplicate axes in input component ${s[p]}. Support for duplicate axes in input is not implemented yet.`);l[p]=[];for(let c=0;c<s[p].length;++c)l[p].push(o.indexOf(s[p][c]))}let u=o.length,d=a.length,h=[];for(let p=d;p<u;++p)h.push(p);return{allDims:o,summedDims:h,idDims:l}}function qD(e,t){let r=new Array(e);r.fill(-1);for(let a=0;a<t.length;++a)r[t[a]]=a;let n=[];for(let a=0;a<e;++a)r[a]===-1&&n.push(a);return r=r.filter(a=>a!==-1),{permutationIndices:r,expandDims:n}}function KD(e,t,r){let n=new Array(e);for(let a=0;a<r.length;++a){let s=r[a].shape;for(let i=0;i<t[a].length;++i)n[t[a][i]]===void 0?n[t[a][i]]=s[i]:P(n[t[a][i]]===s[i],()=>`Expected dimension ${n[t[a][i]]} at axis ${i} of input shaped ${JSON.stringify(s)}, but got dimension ${s[i]}`)}}function XD(e,t){let r=e,n=[],a=0;e.length===0&&r.push(-1),a=e.length+1;for(let i=0;i<a;++i)n.push([]);let s=[];for(let i=0;i<r.length;++i){let o=r[i],l=YD(t,o);for(let u of l)s.indexOf(u)===-1&&(n[i].push(u),s.push(u))}return{path:r,steps:n}}function ZD(e){return e.every((t,r)=>t===r)}function YD(e,t){let r=[];for(let n=0;n<e.length;++n)(e[n].length===0||e[n].indexOf(t)!==-1||t===-1)&&r.push(n);return r}function JD(e,t,r=0){let n=[];if(typeof t=="number")P(e.shape[r]%t===0,()=>"Number of splits must evenly divide the axis."),n=new Array(t).fill(e.shape[r]/t);else{let a=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);P(a<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[r]-i}P(e.shape[r]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),n=t}return n}function QD(e){return`Received SparseTensor with denseShape[0] = 0 but
|
|
indices.shape[0] = ${e}`}function eL(e,t){return`indices(${e}, 0) is invalid: ${t} < 0`}function tL(e,t,r){return`indices(${e}, 0) is invalid: ${t} >= ${r}`}function rL(e,t){return`only one output dimension may be -1, not both ${e} and ${t}`}function nL(e,t){return`size ${e} must be non-negative, not ${t}`}function aL(){return"reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero"}function sL(e,t){let r=Tt(e),n=Tt(t);return`Input to reshape is a SparseTensor with ${r}
|
|
dense values, but the requested shape requires a multiple of ${n}. inputShape=${e} outputShape= ${t}`}function iL(e,t){let r=Tt(e),n=Tt(t);return`Input to reshape is a tensor with ${r} dense values, but the requested shape has ${n}. inputShape=${e} outputShape=${t}`}function oL(){return"segment ids must be >= 0"}function lL(){return"segment ids are not increasing"}function uL(e,t){return`Segment id ${e} out of range [0, ${t}), possibly because segmentIds input is not sorted.`}function dL(e,t,r){return`Bad: indices[${e}] == ${t} out of range [0, ${r})`}var M7={};Le(M7,{collectGatherOpShapeInfo:()=>cL,computeOutShape:()=>hL,segOpComputeOptimalWindowSize:()=>pL});function pL(e,t){let r=!1,n;for(e<=uA?(n=e,r=!0):n=sf(e,Math.floor(Math.sqrt(e)));!r;)n>t||n===e?r=!0:n=sf(e,n+1);return n}function hL(e,t,r){let n=[],a=e.length;for(let s=0;s<a;s++)s!==t?n.push(e[s]):n.push(r);return n}function cL(e,t,r,n){let a=t.shape.length,s=e.shape.length;if(n!==0&&(n<-a||n>a))throw new Error(`Expect batchDims in the range of [-${a}, ${a}], but got ${n}`);if(n<0&&(n+=a),n>s)throw new Error(`batchDims (${n}) must be less than rank(x) (
|
|
${s}).`);if(r<n)throw new Error(`batchDims (${n}) must be less than or equal to axis (${r}).`);for(let h=0;h<n;++h)if(e.shape[h]!==t.shape[h])throw new Error(`x.shape[${h}]: ${e.shape[h]} should be equal to indices.shape[${h}]: ${t.shape[h]}.`);let i=e.shape[r],o=[],l=1,u=1,d=1;for(let h=0;h<n;++h)o.push(e.shape[h]),l*=e.shape[h];for(let h=n;h<r;h++)o.push(e.shape[h]),u*=e.shape[h];for(let h=n;h<a;h++)o.push(t.shape[h]);for(let h=r+1;h<s;h++)o.push(e.shape[h]),d*=e.shape[h];return{batchSize:l,sliceSize:d,outerSize:u,dimSize:i,outputShape:o}}function fL(e){try{return e.map(t=>df(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function mL(e){return e.map(t=>nh(t))}var jn={};Le(jn,{nonMaxSuppressionV3Impl:()=>I7,nonMaxSuppressionV4Impl:()=>S7,nonMaxSuppressionV5Impl:()=>T7,whereImpl:()=>f7});var F7={kernelName:_o,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(e,ch(me(r,"float32"),-1))}}},gL={kernelName:Eu,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>{let n=At(me(r,"float32")),a=Cr(he(Se(1),n));return zt(pe(e,a))}}}},yL={kernelName:Ru,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>{let n=Cr(he(At(me(r,"float32")),1));return pe(e,n)}}}},AL={kernelName:qa,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t,a=bt(r.shape,n.shape);return{a:()=>{let s=e,i=Xt(r.shape,a);return i.length>0&&(s=ke(s,i)),G(s,r.shape)},b:()=>{let s=e,i=Xt(n.shape,a);return i.length>0&&(s=ke(s,i)),G(s,n.shape)}}}},xL={kernelName:Gs,saveAllInputs:!0,gradFunc:(e,t)=>{let r={};return t.forEach((n,a)=>{r[a]=()=>e.clone()}),r}},bL={kernelName:js,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>at(r)}}},vL={kernelName:$u,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>at(r)}}},wL={kernelName:Pu,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>pe(e,Cr(he(Se(1),At(me(r,"float32")))))}}},kL={kernelName:_u,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>{let n=Cr(le(Se(1),At(me(r,"float32"))));return pe(e,n)}}}},IL={kernelName:Du,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t,a=bt(r.shape,n.shape);return{a:()=>{let s=le(At(r),At(n)),i=L(e,pe(n,s)),o=Xt(r.shape,a);return o.length>0&&(i=ke(i,o)),G(i,r.shape)},b:()=>{let s=le(At(r),At(n)),i=zt(L(e,pe(r,s))),o=Xt(n.shape,a);return o.length>0&&(i=ke(i,o)),G(i,n.shape)}}}},SL={kernelName:zu,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>pe(e,le(At(me(r,"float32")),1))}}},TL={kernelName:Ou,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>pe(e,he(Se(1),At(me(r,"float32"))))}}};function NL(e,t,r,n,a,s){let i=F(e,"dy","avgPool3dGrad"),o=F(t,"input","avgPool3dGrad"),l=i,u=o,d=!1;o.rank===4&&(d=!0,l=G(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),u=G(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),P(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),P(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),Vr("avgPool3dGrad",a,s);let h={dy:l,input:u},p={filterSize:r,strides:n,pad:a,dimRoundingMode:s},c=B.runKernel(Df,h,p);return d?G(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var CL=W({avgPool3dGrad_:NL}),EL={kernelName:Lp,inputsToSave:["x"],gradFunc:(e,t,r)=>{let[n]=t,{filterSize:a,strides:s,pad:i,dimRoundingMode:o}=r;return{x:()=>CL(e,n,a,s,i,o)}}};function RL(e,t,r,n,a){let s=F(e,"dy","avgPoolGrad"),i=F(t,"input","avgPoolGrad");P(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,u=!1;i.rank===3&&(u=!0,o=G(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=G(s,[1,s.shape[0],s.shape[1],s.shape[2]])),P(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),P(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let d={dy:l,input:o},h={filterSize:r,strides:n,pad:a},p=B.runKernel(Of,d,h);return u?G(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var ML=W({avgPoolGrad_:RL}),FL={kernelName:Hs,inputsToSave:["x"],gradFunc:(e,t,r)=>{let[n]=t,{filterSize:a,strides:s,pad:i}=r;return{x:()=>ML(e,n,a,s,i)}}},$L={kernelName:qs,inputsToSave:["a","b"],gradFunc:(e,t,r)=>{let[n,a]=t,{transposeA:s,transposeB:i}=r;return!s&&!i?{a:()=>Je(e,a,!1,!0),b:()=>Je(n,e,!0,!1)}:!s&&i?{a:()=>Je(e,a,!1,!1),b:()=>Je(e,n,!0,!1)}:s&&!i?{a:()=>Je(a,e,!1,!0),b:()=>Je(n,e,!1,!1)}:{a:()=>Je(a,e,!0,!0),b:()=>Je(e,n,!0,!0)}}},PL={kernelName:zo,gradFunc:(e,t,r)=>{let{blockShape:n,crops:a}=r;return{x:()=>bm(e,n,a)}}},_L={kernelName:kw,gradFunc:(e,t,r)=>{let n=r,a=n.inputShape,s=n.shape,i=Array.from(s);for(let l=a.length-1;l>=0;l--)if(a[l]===s[l])i[l]=1;else if(a[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l<i.length;l++)i[l]>1&&o.push(l);return{x:()=>ke(e,o,!0)}}},zL={kernelName:Ks,gradFunc:e=>({x:()=>e.clone()})},OL={kernelName:Xs,gradFunc:e=>({x:()=>at(e)})},DL={kernelName:Ka,inputsToSave:["x"],gradFunc:(e,t,r)=>{let[n]=t,{clipValueMin:a,clipValueMax:s}=r;return{x:()=>Br(ha(kl(n,a),Il(n,s)),e,at(e))}}},LL={kernelName:Wp,inputsToSave:["x"],gradFunc:F7.gradFunc},BL={kernelName:Oo,saveAllInputs:!0,gradFunc:(e,t,r)=>{let n=t.map(o=>o.shape),{axis:a}=r,s=Wn(a,t[0].shape)[0],i=n.map(o=>o[s]);return Kt(e,i,s).map(o=>()=>o)}},WL={kernelName:Zs,inputsToSave:["x","filter"],gradFunc:(e,t,r)=>{let[n,a]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=r;return P(Fs(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>F2(n.shape,e,a,i,o,l),filter:()=>iA(n,e,a.shape,i,o,l)}}},VL={kernelName:Ys,inputsToSave:["dy","filter"],gradFunc:(e,t,r)=>{let[n,a]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=r;return{dy:()=>$s(e,a,s,i,o,1,l),filter:()=>iA(e,n,a.shape,s,i,o,l)}}};function UL(e,t,r,n,a){let s=e;e.rank===4&&(s=G(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=G(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),P(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),P(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),P(r.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${r}.`),P(s.shape[4]===r[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${r[3]}.`),P(i.shape[4]===r[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${r[4]}).`);let o={x:s,dy:i},l={strides:n,pad:a,filterShape:r};return B.runKernel(Vf,o,l)}var GL=W({conv3DBackpropFilter_:UL}),jL={kernelName:Vp,inputsToSave:["x","filter"],gradFunc:(e,t,r)=>{let{dilations:n,strides:a,pad:s}=r;P(Fs(n),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${n}'`);let[i,o]=t;return{x:()=>Ok(i.shape,e,o,a,s),filter:()=>GL(i,e,o.shape,a,s)}}},HL={kernelName:Js,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(zt(Y2(me(r,"float32"))),e)}}},qL={kernelName:Qs,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(J2(me(r,"float32")),e)}}},KL={kernelName:Do,inputsToSave:["x"],gradFunc:(e,t,r)=>{let[n]=t,{axis:a,exclusive:s,reverse:i}=r;return{x:()=>{let o=Qk([a],n.rank),l=z2(e,a,s,!i);return o!=null&&(l=nt(l,o)),l}}}},XL={kernelName:ei,inputsToSave:["x","filter"],gradFunc:(e,t,r)=>{let{dilations:n,strides:a,pad:s,dimRoundingMode:i}=r,o=n==null?[1,1]:n;P(Fs(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,u]=t;return P(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),P(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),P(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),P(Fa(a,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${o}'.`),Vr("depthwiseConv2d",s,i),{x:()=>v7(l.shape,e,u,a,s,o,i),filter:()=>b7(l,e,u.shape,a,s,o,i)}}},ZL={kernelName:Up,inputsToSave:["x","filter"],gradFunc:(e,t,r)=>{let[n,a]=t,s={x:n,filter:a,dy:e},i={x:n,filter:a,dy:e};return{x:()=>B.runKernel(of,s,r),filter:()=>B.runKernel(lf,i,r)}}},YL={kernelName:ri,outputsToSave:[!0],gradFunc:(e,t)=>{let[r]=t,n={dy:e,y:r};return{x:()=>B.runKernel(Kf,n)}}},JL={kernelName:Bu,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t,n=L(En(zt(At(r))),2/Math.sqrt(Math.PI));return{x:()=>L(e,n)}}},QL={kernelName:ni,outputsToSave:[!0],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(e,r)}}},eB={kernelName:Vo,inputsToSave:["input"],gradFunc:(e,t)=>{let[r]=t;return{input:()=>G(e,r.shape)}}},tB={kernelName:Uo,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(e,En(r))}}},rB={kernelName:ai,gradFunc:e=>({x:()=>at(e)})},nB={kernelName:si,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t,a=bt(r.shape,n.shape);return{a:()=>{let s=pe(e,me(n,"float32")),i=Xt(r.shape,a);return i.length>0?G(ke(s,i),r.shape):s},b:()=>{let s=L(e,me(r,"float32")),i=Xt(n.shape,a);i.length>0&&(s=G(ke(s,i),n.shape));let o=At(n);return zt(pe(s,me(o,"float32")))}}}},aB={kernelName:ii,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,r)=>{let{varianceEpsilon:n}=r,[a,s,i,o]=t,l=o==null?Se(1):o,u=Xt(s.shape,a.shape),d=[];if(s.rank===1){for(let m=0;m<a.shape.length-1;++m)d.push(a.shape[m]);d.push(1)}let h=he(a,s),p=L(e,l),c=X2(le(i,Se(n))),f=L(L(L(c,c),c),Se(-.5));return{x:()=>s.rank===1?G(L(L(e,Dn(G(c,[1,1,1,s.shape[0]]),d)),l),a.shape):G(L(L(e,c),l),a.shape),mean:()=>{let m=L(L(c,Se(-1)),p);return s.rank===1&&(m=ke(m,u)),G(m,s.shape)},variance:()=>{let m=L(L(f,h),p);return s.rank===1&&(m=ke(m,u)),G(m,s.shape)},scale:()=>{let m=L(h,c),g=L(e,m);return s.rank===1&&(g=ke(g,u)),G(g,s.shape)},offset:()=>{let m=e;return s.rank===1&&(m=ke(m,u)),G(m,s.shape)}}}},sB={kernelName:jo,inputsToSave:["x","indices"],gradFunc:(e,t,r)=>{let[n,a]=t,{axis:s}=r,i=Wn(s,n.shape)[0];return{x:()=>{let o=n.shape,l=a.size,u=o.slice(0,i),d=u.length,h=o.slice(s,o.length).slice(1),p=h.length,c=B3(0,d),f=B3(d+1,d+1+p),m=W3([u,[l],h]),g=G(e,m),y=G(a,[l]),A=W3([[d],c,f]),x=nt(g,A),b=h7(x,y,n.shape[i]),w=W2(A);return b=nt(b,w),b},indices:()=>a}}};function B3(e,t){let r=[];for(let n=e;n<t;++n)r.push(n);return r}function W3(e){let t=[];for(let r=0;r<e.length;++r)for(let n=0;n<e[r].length;++n)t.push(e[r][n]);return t}var iB={kernelName:oi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t;return{a:()=>at(r),b:()=>at(n)}}},oB={kernelName:li,gradFunc:e=>({x:()=>me(e,"float32")})},lB={kernelName:Vu,gradFunc:e=>({x:()=>at(e)})},uB={kernelName:Uu,gradFunc:e=>({x:()=>at(e)})},dB={kernelName:Gu,gradFunc:e=>({x:()=>at(e)})},pB={kernelName:ui,inputsToSave:["x"],gradFunc:(e,t,r)=>{let[n]=t,{alpha:a}=r,s=cn(n,0);return{x:()=>Br(s,e,L(e,a))}}},hB={kernelName:ju,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>pe(e,le(r,1))}}},cB={kernelName:di,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>pe(e,me(r,"float32"))}}},fB={kernelName:Iw,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,r)=>{let[n]=t,{axis:a}=r;return{logits:()=>{let s=En(n);return he(e,L(ke(e,a,!0),s))}}}};function mB(e,t,r,n=5,a=1,s=1,i=.5){let o={x:e,y:t,dy:r},l={depthRadius:n,bias:a,alpha:s,beta:i};return B.runKernel(Jf,o,l)}var gB=W({localResponseNormalizationBackprop_:mB}),yB={kernelName:qp,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,r)=>{let[n,a]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r;return{x:()=>gB(n,a,e,s,i,o,l)}}};function $7(e,t,r,n){return t.rank<r.rank&&(t=G(t,So(t.shape,n))),e.rank<r.rank&&(e=G(e,So(e.shape,n))),{x:()=>L(e,me(Cn(r,t),e.dtype))}}var V3={kernelName:pi,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,r)=>{let n=r,{reductionIndices:a}=n,s=t[0],i=t[1],o=Wn(a,s.shape),l=$7(e,i,s,o);return{x:()=>l.x()}}},AB={kernelName:hi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t;return{a:()=>L(e,me(kl(r,n),"float32")),b:()=>L(e,me(D2(r,n),"float32"))}}};function xB(e,t,r,n,a,s,i){let o=F(e,"dy","maxPool3dGrad"),l=F(t,"input","maxPool3dGrad"),u=F(r,"output","maxPool3dGrad"),d=o,h=l,p=u,c=!1;l.rank===4&&(c=!0,d=G(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),h=G(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),p=G(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),P(d.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${d.rank}.`),P(h.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${h.rank}.`),P(p.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${p.rank}.`),Vr("maxPool3dGrad",s,i);let f={dy:d,input:h,output:p},m={filterSize:n,strides:a,pad:s,dimRoundingMode:i},g=B.runKernel(em,f,m);return c?G(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var bB=W({maxPool3dGrad_:xB}),vB={kernelName:Kp,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,r)=>{let[n,a]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r;return{x:()=>bB(e,n,a,s,i,o,l)}}};function wB(e,t,r,n,a,s,i){let o=F(e,"dy","maxPoolGrad"),l=F(t,"input","maxPoolGrad"),u=F(r,"output","maxPoolGrad");P(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),P(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),P(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),Vr("maxPoolGrad",s,i);let d={dy:o,input:l,output:u},h={filterSize:n,strides:a,pad:s,dimRoundingMode:i};return B.runKernel(Qf,d,h)}var kB=W({maxPoolGrad_:wB}),IB={kernelName:ci,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,r)=>{let[n,a]=t,{filterSize:s,strides:i,pad:o}=r;return{x:()=>kB(e,n,a,s,i,o)}}},SB={kernelName:fi,inputsToSave:["x"],gradFunc:(e,t,r)=>{let[n]=t,{axis:a}=r,s=Wn(a,n.shape),i=Jk(n.shape,s)[1],o=Tt(i);return{x:()=>{let l=n.shape.slice();s.forEach(d=>{l[d]=1});let u=G(e,l);return pe(L(u,pn(n.shape,"float32")),o)}}}},TB={kernelName:mi,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,r)=>{let n=r,{axis:a}=n,[s,i]=t,o=Wn(a,s.shape),l=$7(e,i,s,o);return{x:()=>l.x()}}},NB={kernelName:gi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t;return{a:()=>L(e,me(Il(r,n),"float32")),b:()=>L(e,me(cn(r,n),"float32"))}}},CB={kernelName:yi,inputsToSave:["x"],gradFunc:(e,t,r)=>{let n=t[0],{paddings:a}=r,s=a.map(i=>i[0]);return{x:()=>Pe(e,s,n.shape)}}},EB={kernelName:qu,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t,a=bt(r.shape,n.shape);return{a:()=>{let s=Xt(r.shape,a);return s.length>0?G(ke(e,s),r.shape):e},b:()=>{let s=L(e,zt(ph(pe(r,n)))),i=Xt(n.shape,a);return i.length>0?G(ke(s,i),n.shape):s}}}},RB={kernelName:Ai,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t,a=bt(r.shape,n.shape);return{a:()=>{let s=L(e,me(n,"float32")),i=Xt(r.shape,a);return i.length>0?G(ke(s,i),r.shape):s},b:()=>{let s=L(e,me(r,"float32")),i=Xt(n.shape,a);return i.length>0?G(ke(s,i),n.shape):s}}}},MB={kernelName:Yo,gradFunc:e=>({x:()=>zt(e)})},FB={kernelName:rl,inputsToSave:["indices"],gradFunc:(e,t)=>{let r=t[0];return{indices:()=>Wt(r.shape,"float32")}}},$B={kernelName:tl,gradFunc:e=>({x:()=>at(e)})},PB={kernelName:nl,saveAllInputs:!0,gradFunc:(e,t,r)=>{let{axis:n}=r;return en(e,n).map(a=>()=>a)}},U3={kernelName:xi,inputsToSave:["x"],gradFunc:(e,t,r)=>{let n=t[0],{paddings:a}=r,s=a.map(i=>i[0]);return{x:()=>Pe(e,s,n.shape)}}},_B={kernelName:bi,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[r,n,a]=t,s=r,i=n,o=bt(s.shape,i.shape);return{a:()=>{let l=me(i,"float32"),u=L(e,L(l,_s(s,he(l,Se(1))))),d=Xt(s.shape,o);return d.length>0&&(u=ke(u,d)),G(u,s.shape)},b:()=>{let l=cn(s,0),u=Br(l,Rn(s),at(s)),d=L(e,L(a,u)),h=Xt(i.shape,o);return h.length>0&&(d=ke(d,h)),G(d,i.shape)}}}},zB={kernelName:vi,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[r,n]=t,a=cn(r,0);return{x:()=>Br(a,e,L(e,n)),alpha:()=>{let s=Br(a,at(e),L(e,r)),i=Xt(n.shape,e.shape);return i.length>0&&(s=ke(s,i)),G(s,n.shape)}}}},OB={kernelName:ti,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t,a=bt(r.shape,n.shape);return{a:()=>{let s=pe(e,me(n,"float32")),i=Xt(r.shape,a);return i.length>0?G(ke(s,i),r.shape):s},b:()=>{let s=L(e,me(r,"float32")),i=Xt(n.shape,a);i.length>0&&(s=G(ke(s,i),n.shape));let o=At(n);return zt(pe(s,me(o,"float32")))}}}},DB={kernelName:Zu,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>pe(e,zt(At(r)))}}},LB={kernelName:Ii,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t,n=L(Il(r,6),ch(r));return{x:()=>L(e,me(n,"float32"))}}},BB={kernelName:wi,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(e,me(ch(r),"float32"))}}},WB={kernelName:sl,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>G(e,r.shape)}}},VB={kernelName:ki,inputsToSave:["images"],gradFunc:(e,t,r)=>{let[n]=t,a={dy:e,images:n};return{images:()=>B.runKernel(am,a,r)}}},UB={kernelName:Yu,inputsToSave:["images"],gradFunc:(e,t,r)=>{let[n]=t,a={dy:e,images:n};return{images:()=>B.runKernel(nm,a,r)}}},GB={kernelName:il,gradFunc:(e,t,r)=>{let{dims:n}=r,a=Wn(n,e.shape);return{x:()=>Fn(e,a)}}},jB={kernelName:ol,gradFunc:e=>({x:()=>at(e)})},HB={kernelName:Si,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>zt(pe(e,L(_s(r,1.5),2)))}}},qB={kernelName:ul,inputsToSave:["condition"],gradFunc:(e,t)=>{let[r]=t;return{condition:()=>me(at(r),"float32"),t:()=>L(e,me(r,e.dtype)),e:()=>L(e,me(ym(r),e.dtype))}}},KB={kernelName:Ju,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>{let n=cn(r,Se(0)),a=Se(E7),s=Se(R7),i=L(e,s),o=L(L(e,a),En(me(r,"float32")));return Br(n,i,o)}}}},XB={kernelName:Ni,outputsToSave:[!0],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(e,L(r,he(Se(1),r)))}}},ZB={kernelName:Qu,gradFunc:e=>({x:()=>at(e)})},YB={kernelName:Ti,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(hm(me(r,"float32")),e)}}},JB={kernelName:pl,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(_2(me(r,"float32")),e)}}},QB={kernelName:dl,inputsToSave:["x"],gradFunc:(e,t,r)=>{let[n]=t,{begin:a,size:s}=r,i=n.shape,[o,l]=ck(n,a,s),u=[];for(let d=0;d<e.rank;d++)u.push([o[d],i[d]-o[d]-l[d]]);return{x:()=>Gn(e,u)}}},eW={kernelName:Ri,outputsToSave:[!0],gradFunc:(e,t,r)=>{let[n]=t,{dim:a}=r,s=!0,i=L(e,n);return{logits:()=>he(i,L(ke(i,[a],s),n))}}},tW={kernelName:ed,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(e,Tr(r))}}},G3={kernelName:hl,gradFunc:(e,t,r)=>{let{blockShape:n,paddings:a}=r;return{x:()=>pm(e,n,a)}}},j3={kernelName:cl,gradFunc:(e,t,r)=>{let{axis:n}=r;return{x:()=>kt(e,n)}}},rW={kernelName:Ci,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>pe(e,L(Cr(me(r,"float32")),2))}}},nW={kernelName:rd,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(e,L(me(r,"float32"),2))}}},aW={kernelName:Mi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t,a=Se(2);return{a:()=>L(e,L(a,he(r,n))),b:()=>L(e,L(a,he(n,r)))}}},sW={kernelName:_i,gradFunc:e=>({x:()=>at(e)})},iW={kernelName:Fi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t,a=bt(r.shape,n.shape);return{a:()=>{let s=e,i=Xt(r.shape,a);return i.length>0&&(s=ke(s,i)),G(s,r.shape)},b:()=>{let s=e,i=Xt(n.shape,a);return i.length>0&&(s=ke(s,i)),G(zt(s),n.shape)}}}},oW={kernelName:Ei,inputsToSave:["x"],gradFunc:(e,t,r)=>{let[n]=t,a=n.shape.slice(),{axis:s}=r;Wn(s,n.shape).forEach(l=>{a[l]=1});let i=G(e,a),o=L(i,pn(n.shape,"float32"));return{x:()=>o}}},lW={kernelName:ml,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>pe(e,At(hm(r)))}}},uW={kernelName:$i,outputsToSave:[!0],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(he(Se(1),At(r)),e)}}},dW={kernelName:Xa,inputsToSave:["x"],gradFunc:(e,t,r)=>{let[n]=t,{reps:a}=r;return{x:()=>{let s=at(n);if(n.rank===1)for(let i=0;i<a[0];++i)s=le(s,Pe(e,[i*n.shape[0]],[n.shape[0]]));else if(n.rank===2)for(let i=0;i<a[0];++i)for(let o=0;o<a[1];++o)s=le(s,Pe(e,[i*n.shape[0],o*n.shape[1]],[n.shape[0],n.shape[1]]));else if(n.rank===3)for(let i=0;i<a[0];++i)for(let o=0;o<a[1];++o)for(let l=0;l<a[2];++l)s=le(s,Pe(e,[i*n.shape[0],o*n.shape[1],l*n.shape[2]],[n.shape[0],n.shape[1],n.shape[2]]));else if(n.rank===4)for(let i=0;i<a[0];++i)for(let o=0;o<a[1];++o)for(let l=0;l<a[2];++l)for(let u=0;u<a[3];++u)s=le(s,Pe(e,[i*n.shape[0],o*n.shape[1],l*n.shape[2],u*n.shape[3]],[n.shape[0],n.shape[1],n.shape[2],n.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${n.rank} tensors yet.`);return s}}}},pW={kernelName:Pi,gradFunc:(e,t,r)=>{let n=r,{perm:a}=n,s=W2(a);return{x:()=>nt(e,s)}}},hW={kernelName:Al,gradFunc:(e,t,r)=>{let n=r,{axis:a}=n;return{value:()=>sr(e,a)}}},cW={kernelName:th,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>fW(e,r)}}};function fW(e,t){let r=Za(t,at(t)),n=yu(e,r),a=kl(t,Se(0,"int32")),s=n.rank-a.rank;for(let o=0;o<s;++o)a=Ht(a,o+1);a=ha(a,pn(n.shape,"bool"));let i=at(n);return Br(a,n,i)}var mW={kernelName:xl,gradFunc:e=>({x:()=>at(e)})},gW=[F7,gL,yL,AL,xL,bL,vL,wL,kL,IL,SL,TL,EL,FL,$L,PL,_L,zL,OL,DL,LL,BL,VL,WL,jL,HL,qL,KL,XL,ZL,OB,YL,JL,QL,eB,tB,nB,rB,aB,sB,iB,oB,lB,uB,dB,pB,hB,cB,fB,yB,V3,V3,AB,vB,IB,SB,TB,NB,CB,EB,RB,MB,FB,$B,PB,U3,U3,_B,zB,DB,LB,BB,WB,VB,UB,GB,jB,HB,qB,KB,XB,ZB,YB,JB,QB,eW,tW,G3,G3,j3,j3,rW,aW,nW,sW,iW,oW,lW,uW,dW,pW,hW,cW,mW];for(let e of gW)Sw(e);var P7={};Le(P7,{maxNorm:()=>bW,minMaxNorm:()=>kW,nonNeg:()=>wW,unitNorm:()=>vW});var qy;function tr(){return qy==null&&(qy=Un().epsilon()),qy}function ca(){return"channelsLast"}var Ba=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Ba.prototype)}},ia=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,ia.prototype)}},q=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,q.prototype)}},Ve=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Ve.prototype)}},_7=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,_7.prototype)}};function No(e,t){if(Array.isArray(e)){let r=[];for(let n=0;n<t;n++)r=r.concat(e);return r}else{let r=new Array(t);return r.fill(e),r}}function Ia(e,t){if(!e)throw new _7(t)}function H3(e,t){let r=0;for(let n of e)n===t&&r++;return r}function Jr(e){return e.length===1?e[0]:e}function It(e){return Array.isArray(e)?e:[e]}function Wa(e){let t=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function co(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,r)=>r.toUpperCase())}var zn={};function dA(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function y1(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>y1(t));else{let t=Object.keys(e);for(let r of t){let n=e[r];n!=null&&typeof n=="object"&&(!Array.isArray(n)&&n.type==="ndarray"&&typeof n.value=="number"?e[r]=n.value:y1(n))}}}function mh(e,t={},r={},n="object",a=!1){if(typeof e=="string"){let s=e,i;if(s in r)i=r[s];else if(s in zn)i=zn[s];else if(i=t[s],i==null)throw new q(`Unknown ${n}: ${e}. This may be due to one of the following reasons:
|
|
1. The ${n} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${n} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new q(`${n}: Improper config format: ${JSON.stringify(s)}.
|
|
'className' and 'config' must set.`);let i=s.className,o,l;if(i in r?[o,l]=r[i]:i in zn?[o,l]=zn.className:i in t&&([o,l]=t[i]),o==null)throw new q(`Unknown ${n}: ${i}. This may be due to one of the following reasons:
|
|
1. The ${n} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${n} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let c of Object.keys(zn))u[c]=zn[c];for(let c of Object.keys(r))u[c]=r[c];let d=s.config;d.customObjects=u;let h={...zn};for(let c of Object.keys(r))zn[c]=r[c];y1(s.config);let p=l(o,s.config,r,a);return zn={...h},p}else{let u={...zn};for(let h of Object.keys(r))zn[h]=r[h];let d=new o(s.config);return zn={...u},d}}}function yW(e,t){return e<t?-1:e>t?1:0}function zc(e,t){return-1*yW(e,t)}function Ss(e){if(e==null)return e;let t=[];for(let r of e)t.indexOf(r)===-1&&t.push(r);return t}function AW(e){if(e==null)throw new q(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function Tl(e,t,r){if(r!=null&&e.indexOf(r)<0)throw new q(`${r} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function pA(e,t,r=0,n=1/0){return Ia(r>=0),Ia(n>=r),Array.isArray(e)&&e.length>=r&&e.length<=n&&e.every(a=>typeof a===t)}function cr(e,t){Array.isArray(e)?(v.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((r,n)=>cr(r,`element ${n+1} of ${t}`))):v.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${z7(e)}.`)}function z7(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>z7(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function xW(e,t,r){let n=r!=null?r():v.now(),a;return(...s)=>{let i=r!=null?r():v.now();return i-n<t||(n=i,a=e(...s)),a}}function O7(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function hA(e,t){return K(()=>Cr(ke(L(e,e),t,!0)))}var gh=class extends ue.Serializable{getConfig(){return{}}},cA=class extends gh{constructor(e){super(),this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return K(()=>{let t=hA(e,this.axis),r=hn(t,0,this.maxValue);return L(e,pe(r,le(tr(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};cA.className="MaxNorm";ue.registerClass(cA);var fA=class extends gh{constructor(e){super(),this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return K(()=>pe(e,le(tr(),hA(e,this.axis))))}getConfig(){return{axis:this.axis}}};fA.className="UnitNorm";ue.registerClass(fA);var mA=class extends gh{apply(e){return $a(e)}};mA.className="NonNeg";ue.registerClass(mA);var gA=class extends gh{constructor(e){super(),this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return K(()=>{let t=hA(e,this.axis),r=le(L(this.rate,hn(t,this.minValue,this.maxValue)),L(1-this.rate,t));return L(e,pe(r,le(tr(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};gA.className="MinMaxNorm";ue.registerClass(gA);var q3={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function nr(e){return dA(e)}function K3(e,t={}){return mh(e,ue.SerializationMap.getMap().classNameMap,t,"constraint")}function ar(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in q3?q3[e]:e,config:{}};return K3(t)}else return e instanceof gh?e:K3(e)}function bW(e){return new cA(e)}function vW(e){return new fA(e)}function wW(){return new mA}function kW(e){return new gA(e)}var D7={};Le(D7,{constant:()=>HW,glorotNormal:()=>QW,glorotUniform:()=>JW,heNormal:()=>eV,heUniform:()=>tV,identity:()=>ZW,leCunNormal:()=>rV,leCunUniform:()=>nV,ones:()=>jW,orthogonal:()=>aV,randomNormal:()=>KW,randomUniform:()=>qW,truncatedNormal:()=>XW,varianceScaling:()=>YW,zeros:()=>GW});var IW=["channelsFirst","channelsLast"],SW=["nearest","bilinear"],TW=["valid","same","causal"],NW=["max","avg"],CW=["sum","mul","concat","ave"],eu=new Map;function Ut(e){Tl(IW,"DataFormat",e)}function EW(e){Tl(SW,"InterpolationFormat",e)}function Pn(e){Tl(TW,"PaddingMode",e)}function L7(e){Tl(NW,"PoolMode",e)}var vp=[],X3="/";function xo(e,t){vp.push(e);try{let r=t();return vp.pop(),r}catch(r){throw vp.pop(),r}}function RW(){return vp.length===0?"":vp.join(X3)+X3}function B7(e){if(!V7(e))throw new Error("Not a valid tensor name: '"+e+"'");return RW()+e}function W7(e){if(!V7(e))throw new Error("Not a valid tensor name: '"+e+"'");eu.has(e)||eu.set(e,0);let t=eu.get(e);if(eu.set(e,eu.get(e)+1),t>0){let r=`${e}_${t}`;return eu.set(r,1),r}else return e}var MW=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function V7(e){return!!e.match(MW)}function FW(e){return e===parseInt(e.toString(),10)}function Ts(e,t,r){t==null&&(t=0),r==null&&(r=e.length);let n=1;for(let a=t;a<r;++a)n*=e[a];return n}function bu(e){if(e.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let r=0;r<e.length;r++){let n=e[r];n<t&&(t=n)}return t}function Os(e){if(e.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let r=0;r<e.length;r++){let n=e[r];n>t&&(t=n)}return t}function fa(e,t){if(t<e)throw new q(`end (${t}) < begin (${e}) is forbidden.`);let r=[];for(let n=e;n<t;++n)r.push(n);return r}function zm(e,t){return me(e,t)}function yh(e,t=-1){let r=e.shape.slice();return t<0&&(t=r.length+t+1),r.splice(t,0,1),G(e,r)}function $W(e,t){return K(()=>{if(e.shape.length!==2)throw new q(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let r=yh(e,1);return A1(r,[1,t,1])})}function PW(e){let t=[Ts(e.shape)];return G(e,t)}function _W(e){if(e.rank<=1)throw new q(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],Ts(e.shape,1)];return G(e,t)}function bo(e,t,r){return K(()=>{switch(e.rank){case 1:return wm(e,t,r);case 2:return Q2(e,[t,0],[r,e.shape[1]]);case 3:return Sl(e,[t,0,0],[r,e.shape[1],e.shape[2]]);case 4:return To(e,[t,0,0,0],[r,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Pe(e,[t,0,0,0,0],[r,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Pe(e,[t,0,0,0,0,0],[r,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new q(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Ky(e,t,r){return K(()=>{switch(e.rank){case 1:return wm(e,t,r);case 2:return Q2(e,[0,t],[e.shape[0],r]);case 3:return Sl(e,[0,0,t],[e.shape[0],e.shape[1],r]);case 4:return To(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],r]);default:throw new q(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Oc(e,t,r,n){return K(()=>{switch(e.rank){case 1:return wm(e,t,r);case 2:switch(n){case 1:return bo(e,t,r);case 2:return Ky(e,t,r);default:throw new q(`The axis is not within the rank of the tensor ${n}`)}case 3:switch(n){case 1:return bo(e,t,r);case 2:return Sl(e,[0,t,0],[e.shape[0],r,e.shape[2]]);case 3:return Ky(e,t,r);default:throw new q(`The axis is not within the rank of the tensor ${n}`)}case 4:switch(n){case 1:return bo(e,t,r);case 2:return To(e,[0,t,0,0],[e.shape[0],r,e.shape[2],e.shape[3]]);case 3:return To(e,[0,0,t,0],[e.shape[0],e.shape[1],r,e.shape[3]]);case 4:return Ky(e,t,r);default:throw new q(`The axis is not within the rank of the tensor ${n}`)}default:throw new q(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function yA(e,t=-1){let r;return t<0&&(r=e[0].rank,r!==0?t=r:t=0),t===e[0].rank&&(t=-1),kt(e,t)}function Z3(e,t){switch(e.rank){case 1:return Pk([e,t]);case 2:return ad([e,t],0);case 3:return _k([e,t],0);case 4:return zk([e,t],0);default:throw new q(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function A1(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new q(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Dn(e,t)}function Om(e,t=0,r=1,n,a){return a7(e,t,r,n,a)}function Na(e,t,r,n){if(e.rank<2||t.rank<2)throw new Ve(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let a=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(a!==s)throw new Ve(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2)return zs.matMul({a:e,b:t,transposeA:!1,transposeB:!1,bias:n?x1(e.rank,n,ca()):null,activation:r});{let a=e.shape.slice(),s=a.pop();e=G(e,[-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),u=[...i,o],d=Array.from({length:t.rank},(f,m)=>m===0?t.rank-2:m<=t.rank-2?m-1:m);t=G(nt(t,d),[l,-1]);let h=[...a,...u],p=!1,c=!1;return G(zs.matMul({a:e,b:t,transposeA:p,transposeB:c,bias:n?x1(e.rank,n,ca()):null,activation:r}),h)}}function U7(e,t,r){return K(()=>(Array.isArray(t)?t=St(t,"int32"):t=me(t,"int32"),yu(e,t,r)))}function Ah(e){return L(e,e)}function x1(e,t,r){let n=t.shape;if(t.rank!==1&&t.rank!==e)throw new q(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(r==="channelsFirst")return n.length===1?G(t,[1,n[0],1,1,1]):G(t,[1,n[3],n[0],n[1],n[2]]);if(r==="channelsLast")return n.length===1?G(t,[1,1,1,1,n[0]]):G(t,[1].concat(n))}else if(e===4){if(r==="channelsFirst")return n.length===1?G(t,[1,n[0],1,1]):G(t,[1,n[2],n[0],n[1]]);if(r==="channelsLast")return n.length===1?G(t,[1,1,1,n[0]]):G(t,[1].concat(n))}else if(e===3){if(r==="channelsFirst")return n.length===1?G(t,[1,n[0],1]):G(t,[1,n[1],n[0]]);if(r==="channelsLast")return n.length===1?G(t,[1,1,n[0]]):G(t,[1].concat(n))}else if(e<3)return t;throw new q(`Unsupported input rank by biasAdd: ${t.rank}`)}function ya(e,t,r){return K(()=>(r==null&&(r=ca()),Ut(r),le(e,x1(e.rank,t,r))))}function zW(e,t=1){if(t!==1)throw new Ve(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return dh(e)}function OW(e){return K(()=>pe(e,le(er(e),1)))}function G7(e,t,r,n){return K(()=>A7(e,t,r,n))}function DW(e){return K(()=>{let t=le(.5,L(.2,e));return hn(t,0,1)})}function xh(e,t,r=!1){return r?e():t()}var LW=["fanIn","fanOut","fanAvg"],BW=["normal","uniform","truncatedNormal"];function WW(e){Tl(LW,"FanMode",e)}function VW(e){Tl(BW,"Distribution",e)}var Hn=class extends ue.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},AA=class extends Hn{apply(e,t){return Wt(e,t)}};AA.className="Zeros";ue.registerClass(AA);var Dm=class extends Hn{apply(e,t){return pn(e,t)}};Dm.className="Ones";ue.registerClass(Dm);var xA=class extends Hn{constructor(e){if(super(),typeof e!="object")throw new q(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new q(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return K(()=>L(Se(this.value),pn(e,t)))}getConfig(){return{value:this.value}}};xA.className="Constant";ue.registerClass(xA);var bA=class extends Hn{constructor(e){super(),this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return ld(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};bA.className="RandomUniform";ue.registerClass(bA);var vA=class extends Hn{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Ve(`randomNormal does not support dType ${t}.`);return Om(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};vA.className="RandomNormal";ue.registerClass(vA);var wA=class extends Hn{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Ve(`truncatedNormal does not support dType ${t}.`);return Sm(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};wA.className="TruncatedNormal";ue.registerClass(wA);var kA=class extends Hn{constructor(e){super(),this.gain=e.gain!=null?e.gain:1}apply(e,t){return K(()=>{if(e.length!==2||e[0]!==e[1])throw new q("Identity matrix initializer can only be used for 2D square matrices.");return L(this.gain,O2(e[0]))})}getConfig(){return{gain:this.gain}}};kA.className="Identity";ue.registerClass(kA);function UW(e,t="channelsLast"){let r,n;if(Ut(t),e.length===2)r=e[0],n=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let a=Ts(e,2);r=e[1]*a,n=e[0]*a}else if(t==="channelsLast"){let a=Ts(e,0,e.length-2);r=e[e.length-2]*a,n=e[e.length-1]*a}}else{let a=Ts(e);r=Math.sqrt(a),n=Math.sqrt(a)}return[r,n]}var tn=class extends Hn{constructor(e){if(super(),e.scale<0)throw new q(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,WW(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,VW(this.distribution),this.seed=e.seed}apply(e,t){let r=UW(e),n=r[0],a=r[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,n):this.mode==="fanOut"?s/=Math.max(1,a):s/=Math.max(1,(n+a)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Ve(`${this.getClassName()} does not support dType ${t}.`);return Sm(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return ld(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};tn.className="VarianceScaling";ue.registerClass(tn);var Lm=class extends tn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return tn.className}};Lm.className="GlorotUniform";ue.registerClass(Lm);var Bm=class extends tn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return tn.className}};Bm.className="GlorotNormal";ue.registerClass(Bm);var Wm=class extends tn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return tn.className}};Wm.className="HeNormal";ue.registerClass(Wm);var Vm=class extends tn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return tn.className}};Vm.className="HeUniform";ue.registerClass(Vm);var Um=class extends tn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return tn.className}};Um.className="LeCunNormal";ue.registerClass(Um);var Gm=class extends tn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return tn.className}};Gm.className="LeCunNormal";ue.registerClass(Gm);var IA=class extends Hn{constructor(e){if(super(),this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Ve("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return K(()=>{if(e.length<2)throw new Ve("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let r=e[0]>e[1]?[e[1],e[0]]:e,n=Om(r,0,1,"float32"),a=C7.gramSchmidt(n);return e[0]>e[1]&&(a=nt(a)),L(this.gain,a)})}getConfig(){return{gain:this.gain,seed:this.seed}}};IA.className="Orthogonal";ue.registerClass(IA);var Y3={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function J3(e,t={}){return mh(e,ue.SerializationMap.getMap().classNameMap,t,"initializer")}function Pt(e){return dA(e)}function Et(e){if(typeof e=="string"){let t=e in Y3?Y3[e]:e;if(t==="GlorotNormal")return new Bm;if(t==="GlorotUniform")return new Lm;if(t==="HeNormal")return new Wm;if(t==="HeUniform")return new Vm;if(t==="LeCunNormal")return new Um;if(t==="LeCunUniform")return new Gm;{let r={};return r.className=t,r.config={},J3(r)}}else return e instanceof Hn?e:J3(e)}function GW(){return new AA}function jW(){return new Dm}function HW(e){return new xA(e)}function qW(e){return new bA(e)}function KW(e){return new vA(e)}function XW(e){return new wA(e)}function ZW(e){return new kA(e)}function YW(e){return new tn(e)}function JW(e){return new Lm(e)}function QW(e){return new Bm(e)}function eV(e){return new Wm(e)}function tV(e){return new Vm(e)}function rV(e){return new Um(e)}function nV(e){return new Gm(e)}function aV(e){return new IA(e)}var j7={};Le(j7,{Layer:()=>st,RNN:()=>Qa,RNNCell:()=>wh,activation:()=>LU,add:()=>KU,alphaDropout:()=>MG,average:()=>XU,averagePooling1d:()=>Px,averagePooling2d:()=>_x,averagePooling3d:()=>zx,avgPool1d:()=>aG,avgPool2d:()=>iG,avgPool3d:()=>lG,avgPooling1d:()=>sG,avgPooling2d:()=>oG,avgPooling3d:()=>uG,batchNormalization:()=>tG,bidirectional:()=>kG,concatenate:()=>ZU,conv1d:()=>RU,conv2d:()=>MU,conv2dTranspose:()=>FU,conv3d:()=>$U,conv3dTranspose:()=>PU,convLstm2d:()=>xG,convLstm2dCell:()=>bG,cropping2D:()=>zU,dense:()=>BU,depthwiseConv2d:()=>DU,dot:()=>eG,dropout:()=>WU,elu:()=>IU,embedding:()=>qU,flatten:()=>UU,gaussianDropout:()=>RG,gaussianNoise:()=>EG,globalAveragePooling1d:()=>dG,globalAveragePooling2d:()=>pG,globalMaxPool1d:()=>SG,globalMaxPool2d:()=>TG,globalMaxPooling1d:()=>G4,globalMaxPooling2d:()=>j4,gru:()=>cG,gruCell:()=>fG,input:()=>c4,inputLayer:()=>kU,layerNormalization:()=>rG,leakyReLU:()=>TU,lstm:()=>mG,lstmCell:()=>gG,masking:()=>FG,maxPool1d:()=>NG,maxPool2d:()=>CG,maxPooling1d:()=>H4,maxPooling2d:()=>q4,maxPooling3d:()=>hG,maximum:()=>YU,minimum:()=>JU,multiply:()=>QU,permute:()=>HU,prelu:()=>NU,reLU:()=>SU,repeatVector:()=>GU,reshape:()=>jU,rnn:()=>vG,separableConv2d:()=>_U,simpleRNN:()=>yG,simpleRNNCell:()=>AG,softmax:()=>CU,spatialDropout1d:()=>VU,stackedRNNCells:()=>wG,thresholdedReLU:()=>EU,timeDistributed:()=>IG,upSampling2d:()=>OU,zeroPadding2d:()=>nG});var sV=0;function H7(){return sV++}var Dc={};function jm(e=""){return e in Dc||(Dc[e]=0),Dc[e]+=1,e+Dc[e].toString()}function b1(e){return Array.isArray(e)&&Array.isArray(e[0])}function gf(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Ge(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new q(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function ft(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new q(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function yf(e){let t=0;for(let r of e)r.shape.length===0?t+=1:t+=r.shape.reduce((n,a)=>n*a);return t}var Q3="Variable",q7=class{constructor(e,t="float32",r=Q3,n=!0,a=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=H7(),r=r==null?Q3:r,this.originalName=B7(r),this.name=W7(this.originalName),this.trainable_=n,this.constraint=a,this.val=c7(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),iV(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function iV(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function v1(e){return e.map(t=>t.read())}function SA(e){e.forEach(t=>{t[0].write(t[1])})}var qt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},oa=class{constructor(e,t,r,n,a,s,i){this.dtype=e,this.shape=t,this.sourceLayer=r,this.inputs=n,this.callArgs=a,this.outputTensorIndex=i,this.id=H7(),s!=null&&(this.originalName=B7(s),this.name=W7(this.originalName)),this.rank=t.length}},oV=0,Hm=class{constructor(e,t){this.callArgs=t,this.id=oV++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let r of e.inboundLayers)r!=null&&r.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},lV=0,st=class extends ue.Serializable{constructor(e={}){super(),this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=lV++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let r=this.getClassName();t=Wa(r)+"_"+jm(r)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let r;if(e.batchInputShape!=null)r=e.batchInputShape;else if(e.inputShape!=null){let a=null;e.batchSize!=null&&(a=e.batchSize),r=[a].concat(e.inputShape)}this.batchInputShape=r;let n=e.dtype;n==null&&(n=e.inputDType),n==null&&(n="float32"),this.dtype=n}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new ia(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new q(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return Jr(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return Jr(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new Ba(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new Ba(`Layer ${this.name} is not connected, no input to return.`);return Jr(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new Ba(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new Ba(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return Jr(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=It(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=It(this.inputSpec);if(e.length!==t.length)throw new q(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let r=0;r<e.length;r++){let n=e[r],a=t[r];if(a==null)continue;let s=n.rank;if(a.ndim!=null&&s!==a.ndim)throw new q(`Input ${r} is incompatible with layer ${this.name}: expected ndim=${a.ndim}, found ndim=${s}`);if(a.maxNDim!=null&&s>a.maxNDim)throw new q(`Input ${r} is incompatible with layer ${this.name}: expected max_ndim=${a.maxNDim}, found ndim=${s}`);if(a.minNDim!=null&&s<a.minNDim)throw new q(`Input ${r} is incompatible with layer ${this.name}: expected min_ndim=${a.minNDim}, found ndim=${s}.`);if(a.dtype!=null&&n.dtype!==a.dtype)throw new q(`Input ${r} is incompatible with layer ${this.name} : expected dtype=${a.dtype}, found dtype=${n.dtype}.`);if(a.axes){let i=n.shape;for(let o in a.axes){let l=Number(o),u=a.axes[o],d=l>=0?i[l]:i[i.length+l];if(u!=null&&[u,null].indexOf(d)===-1)throw new q(`Input ${r} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${u} but got shape ${i}.`)}}if(a.shape!=null)for(let i=0;i<a.shape.length;++i){let o=a.shape[i],l=n.shape[i];if(o!=null&&l!=null&&o!==l)throw new q(`Input ${r} is incompatible with layer ${this.name}: expected shape=${a.shape}, found shape=${n.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let r=It(e),n=!0;for(let s of r)if(!(s instanceof oa)){n=!1;break}let a=!0;for(let s of r)if(s instanceof oa){a=!1;break}if(n===a)throw new q("Arguments to apply() must be all SymbolicTensors or all Tensors");return xo(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of It(e))s.push(i.shape);this.build(Jr(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&a&&(this._refCount=1)}if(this.assertInputCompatibility(e),a){let s=this.call(e,t),i=It(s),o=[];for(let l of i)r.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=Jr(o),this.activityRegularizer!=null)throw new Ve("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=uV(e),i=this.computeOutputShape(s),o,l=dV(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((u,d)=>new oa(l,u,this,It(e),t,this.name,d)):o=new oa(l,i,this,It(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new Ve("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((r,n)=>{r!=null&&e[n]!=null&&e[n]!==r&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new Ba(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let r=JSON.stringify(t.outputShapes);e.indexOf(r)===-1&&e.push(r)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new Ba(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new ia(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return yf(this.weights)}build(e){this.built=!0}getWeights(e=!1){return v1(e?this.trainableWeights:this.weights)}setWeights(e){K(()=>{let t=this.weights;if(t.length!==e.length)throw new q(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let r=[],n=v1(t);for(let a=0;a<n.length;++a){let s=n[a],i=t[a],o=e[a];if(!v.arraysEqual(s.shape,o.shape))throw new q(`Layer weight shape ${s.shape} not compatible with provided weight shape ${o.shape}`);r.push([i,o])}SA(r)})}addWeight(e,t,r,n,a,s,i,o){if(this._addedWeightNames.indexOf(e)!==-1)throw new q(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),r==null&&(r="float32"),this.fastWeightInitDuringBuild&&(n=o!=null?o():Et("zeros"));let l=n.apply(t,r),u=new q7(l,r,e,s,i);return l.dispose(),a!=null&&this.addLoss(()=>a.apply(u.read())),s==null&&(s=!0),s?this._trainableWeights.push(u):this._nonTrainableWeights.push(u),u}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=It(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(r=>{if(r!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,r,n,a,s,i=null){let o=It(e);t=It(t),r=It(r),n=It(n),a=gf(a),s=gf(s);let l=[],u=[],d=[];for(let h of o)l.push(h.sourceLayer),u.push(h.nodeIndex),d.push(h.tensorIndex);new Hm({outboundLayer:this,inboundLayers:l,nodeIndices:u,tensorIndices:d,inputTensors:o,outputTensors:t,inputMasks:r,outputMasks:n,inputShapes:a,outputShapes:s},i);for(let h=0;h<t.length;h++)t[h].sourceLayer=this,t[h].nodeIndex=this.inboundNodes.length-1,t[h].tensorIndex=h}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount===0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function uV(e){e=It(e);let t=[];for(let r of e)t.push(r.shape);return Jr(t)}function dV(e){return"float32"}function K7(e,t,r){if((t==null||r!=null&&r>0)&&(t=e.sourceLayer,r=e.nodeIndex),t.inboundNodes.length===0)return[e];{let n=t.inboundNodes[r];if(n.inboundLayers.length===0)return n.inputTensors;{let a=[];for(let s=0;s<n.inboundLayers.length;s++){let i=n.inputTensors[s],o=n.inboundLayers[s],l=n.nodeIndices[s],u=K7(i,o,l);for(let d of u)a.indexOf(d)===-1&&a.push(d)}return a}}}var pd=class extends st{constructor(e){if(super({dtype:e.dtype,name:e.name!=null?e.name:jm("input").toString()}),e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new q("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new q("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new q("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let r=e.dtype||"float32";this.batchInputShape=t,this.dtype=r,this.inputSpec=[{shape:t}];let n=new oa(this.dtype,this.batchInputShape,this,[],{},this.name);n.nodeIndex=0,n.tensorIndex=0,new Hm({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[n],outputTensors:[n],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new q(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};pd.className="InputLayer";ue.registerClass(pd);function X7(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new q("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let r=e.dtype;return r==null&&(r="float32"),new pd({batchInputShape:t,name:e.name,dtype:r,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}async function bs(e){if(e==null)return;let t=[],r=[],n=[];for(let a in e){let s=e[a];if(typeof s!="number"){let i=s;t.push(i.data()),r.push(a),n.push(i)}}if(t.length>0){let a=await Promise.all(t);for(let s=0;s<a.length;++s)e[r[s]]=a[s][0];re(n)}}function Z7(e){if(e!=null)for(let t in e){let r=e[t];typeof r!="number"&&r.dispose()}}var pV=125,vu=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},Y7=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let r of this.callbacks)await r.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let r of this.callbacks)await r.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let r of this.callbacks)await r.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let r of this.callbacks)await r.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},hV=class extends vu{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let r=t.size==null?0:t.size;this.seen+=r;for(let n in t){let a=t[n];if(typeof a=="number")this.totals.hasOwnProperty(n)||(this.totals[n]=0),this.totals[n]=this.totals[n]+a*r;else{let s;n in this.totals?s=this.totals[n]:this.totals[n]=0;let i=K(()=>le(this.totals[n],L(a,r)));this.totals[n]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let r of this.params.metrics)this.totals[r]!=null&&(typeof this.totals[r]=="number"?t[r]=this.totals[r]/this.seen:K(()=>{let n=L(pe(1,this.seen),this.totals[r]);t[r]=n,this.totals[r].dispose(),hr(t[r])}))}},J7=class extends vu{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let r in t)this.history[r]==null&&(this.history[r]=[]),this.history[r].push(t[r])}async syncData(){let e=[],t=[],r=[];for(let a in this.history){let s=this.history[a];for(let i=0;i<s.length;++i)if(typeof s[i]!="number"){let o=s[i];e.push(o.data()),t.push(a),r.push(i)}}let n=await Promise.all(e);for(let a=0;a<n.length;++a)this.history[t[a]][r[a]].dispose(),this.history[t[a]][r[a]]=n[a][0]}},Q7=class extends vu{constructor(e,t){if(super(),this.currentEpoch=0,this.nowFunc=e.nowFunc,this.nextFrameFunc=e.nextFrameFunc||lA,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=pV),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");v.isNumber(this.yieldEvery)&&(this.maybeWait=xW(this.maybeWait.bind(this),this.yieldEvery,this.nowFunc)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,r){let n=[];this.yield!=null&&(await bs(r),n.push(this.yield(e,t,r))),n.push(this.nextFrameFunc()),await Promise.all(n)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await bs(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let r=[];this.epochEnd!=null&&(await bs(t),r.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&r.push(this.nextFrameFunc()),await Promise.all(r)}async onBatchBegin(e,t){this.batchBegin!=null&&(await bs(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let r=[];this.batchEnd!=null&&(await bs(t),r.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?r.push(this.nextFrameFunc()):v.isNumber(this.yieldEvery)&&r.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(r)}async onTrainBegin(e){this.trainBegin!=null&&(await bs(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await bs(e),await this.trainEnd(e))}};function e4(e,t){return e==null&&(e={}),e instanceof vu?[e]:Array.isArray(e)&&e[0]instanceof vu?e:It(e).map(r=>new Q7(r,t))}var wa=class{constructor(){}static registerCallbackConstructor(e,t){v.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),wa.checkForDuplicate(t),wa.constructors[e]==null&&(wa.constructors[e]=[]),wa.constructors[e].push(t)}static checkForDuplicate(e){for(let t in wa.constructors)wa.constructors[+t].forEach(r=>{if(r===e)throw new q("Duplicate callback constructor.")})}static clear(){wa.constructors={}}static createCallbacks(e){let t=[];for(let r in wa.constructors){let n=+r;e>=n&&t.push(...wa.constructors[n])}return t.map(r=>new r)}},TA=wa;TA.constructors={};function t4(e,t,r,n,a,s,i,o,l){let u=new J7,d=[new hV,...TA.createCallbacks(t)];e!=null&&d.push(...e),d.push(u);let h=new Y7(d);return h.setParams({epochs:r,initialEpoch:n,samples:a,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:h,history:u}}function da(e,t={},r=!1){return mh(e,ue.SerializationMap.getMap().classNameMap,t,"layer",r)}function Af(e,t){return K(()=>{e.dtype!=="float32"&&(e=me(e,"float32"));let r=ke(Ah(e),t,!0),n=sd(r.shape,tr()),a=Cr(Za(r,n));return pe(e,a)})}function Nl(e,t){return K(()=>Bt(Ah(he(t,e)),-1))}function qm(e,t){return K(()=>Bt(er(he(t,e)),-1))}function hd(e,t){return K(()=>{let r=he(e,t),n=hn(er(e),tr(),Number.MAX_VALUE),a=er(pe(r,n));return L(100,Bt(a,-1))})}function cV(e,t){return K(()=>{let r=hn(t,tr(),Number.MAX_VALUE),n=Rn(le(1,r)),a=hn(e,tr(),Number.MAX_VALUE),s=Rn(le(1,a));return Bt(Ah(he(n,s)),-1)})}function fV(e,t){return K(()=>{let r=Za(0,he(1,L(e,t)));return Bt(Ah(r),-1)})}function mV(e,t){return K(()=>{let r=Za(0,he(1,L(e,t)));return Bt(r,-1)})}function gV(e,t){return K(()=>{let r=ke(L(e,t),-1),n=fr(L(he(1,e),t),-1);return Za(0,le(1,he(n,r)))})}function yV(e,t){return K(()=>{let r=Math.log(2),n=he(t,e),a=he(le(n,id(L(-2,n))),r);return Bt(a,-1)})}function $p(e,t,r=!1){return K(()=>{if(r)t=ud(t);else{let n=ke(t,t.shape.length-1,!0);t=pe(t,n)}return t=hn(t,tr(),1-tr()),zt(ke(L(me(e,"float32"),Rn(t)),t.shape.length-1))})}function xf(e,t,r=!1){return K(()=>{let n=me(ph(PW(e)),"int32");t=hn(t,tr(),1-tr());let a=t.shape,s=G(Rp(n,a[a.length-1]),a);return $p(s,t,r)})}function AV(e,t){if(!v.arraysEqual(e.shape,t.shape))throw new q(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return K(()=>{let r=$a(t),n=zt(er(t));return le(he(r,L(t,e)),mm(En(n)))})}function Km(e,t){return K(()=>{let r;return r=hn(t,tr(),1-tr()),r=Rn(pe(r,he(1,r))),Bt(AV(e,r),-1)})}function xV(e,t){return K(()=>{let r=hn(e,tr(),1),n=hn(t,tr(),1);return ke(L(e,Rn(pe(r,n))),-1)})}function bV(e,t){return K(()=>{let r=Rn(le(tr(),t));return Bt(he(t,L(e,r)),-1)})}function NA(e,t){return K(()=>{let r=Af(e,-1),n=Af(t,-1),a=L(r,n);return zt(ke(a,-1))})}var bf={meanSquaredError:Nl,meanAbsoluteError:qm,meanAbsolutePercentageError:hd,meanSquaredLogarithmicError:cV,squaredHinge:fV,hinge:mV,categoricalHinge:gV,logcosh:yV,categoricalCrossentropy:$p,sparseCategoricalCrossentropy:xf,binaryCrossentropy:Km,kullbackLeiblerDivergence:xV,poisson:bV,cosineProximity:NA};function Xy(e){if(typeof e=="string"){if(e in bf)return bf[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new q(t)}else return e}function CA(e,t){return K(()=>{let r=L(.5,Mn(t)),n=zm(cn(t,r),e.dtype);return Bt(Cn(e,n),-1)})}function EA(e,t){return K(()=>zm(Cn(Nn(e,-1),Nn(t,-1)),"float32"))}function r4(e,t){return K(()=>me(ke(ha(Cn(e,1),Cn(t,1))),"float32"))}function vV(e,t){return K(()=>me(ke(ha(Cn(e,1),Cn(t,0))),"float32"))}function wV(e,t){return K(()=>me(ke(ha(Cn(e,0),Cn(t,1))),"float32"))}function n4(e,t){return K(()=>{let r=r4(e,t),n=wV(e,t),a=le(r,n);return me(Br(cn(a,0),pe(r,a),0),"float32")})}function kV(e,t){return K(()=>{let r=r4(e,t),n=vV(e,t),a=le(r,n);return me(Br(cn(a,0),pe(r,a),0),"float32")})}function a4(e,t){return Km(e,t)}function s4(e,t){return e.rank===t.rank&&(e=et(e,[e.rank-1])),t=Nn(t,-1),t.dtype!==e.dtype&&(t=me(t,e.dtype)),me(Cn(e,t),"float32")}var IV=Nl,SV=Nl,TV=qm,NV=qm,CV=hd,EV=hd,RA=$p,RV=NA,i4=xf,vf={binaryAccuracy:CA,categoricalAccuracy:EA,precision:n4,categoricalCrossentropy:RA,sparseCategoricalCrossentropy:i4,mse:IV,MSE:SV,mae:TV,MAE:NV,mape:CV,MAPE:EV,cosine:RV};function MV(e){if(typeof e=="string"&&e in vf)return vf[e];if(typeof e!="string"&&e!=null)return e;throw new q(`Unknown metric ${e}`)}function Lc(e){if(Ia(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let r of Object.keys(bf))if(bf[r]===e){t=r;break}if(t!==void 0)return t;for(let r of Object.keys(vf))if(vf[r]===e){t=r;break}return t!==void 0?t:e.name}}function FV(e){let t={Adagrad:()=>lo.adagrad(.01),Adadelta:()=>lo.adadelta(1,.95,tr()),Adam:()=>lo.adam(.001,.9,.999,tr()),Adamax:()=>lo.adamax(.002,.9,.999,tr(),0),RMSProp:()=>lo.rmsprop(.001,.9,0,tr()),SGD:()=>lo.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new q(`Unknown Optimizer ${e}`)}var ev=1*1024*1024;function tv(e,t,r=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!w1(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(r){let n=JSON.stringify(e);n.length>ev&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${n.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${ev}.`)}}function w1(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let r of t)if(typeof r!="string"||!w1(e[r]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!w1(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function $V(e,t,r,n=console.log){let a=_V(e),s=["Layer (type)","Input Shape","Output shape","Param #"];a?(t=t||90,r=r||[.32,.61,.89,1]):(t=t||115,r=r||[.24,.48,.7,.8,1]),r[r.length-1]<=1&&(r=r.map(d=>Math.floor(t*d)));let i;if(!a){s.push("Receives inputs"),i=[];for(let d in e.nodesByDepth)i.push(...e.nodesByDepth[d])}n("_".repeat(t)),wf(s,r,n),n("=".repeat(t));let o=e.layers;for(let d=0;d<o.length;++d)a?zV(o[d],r,n):OV(o[d],r,i,n),n((d===o.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=PV(e),u=yf(e.nonTrainableWeights);n(`Total params: ${l+u}`),n(`Trainable params: ${l}`),n(`Non-trainable params: ${u}`),n("_".repeat(t))}function PV(e){let t;return e.collectedTrainableWeights!=null?t=yf(e.collectedTrainableWeights):t=yf(e.trainableWeights),t}function _V(e){let t=!0,r=[],n=[];for(let a in e.nodesByDepth)r.push(e.nodesByDepth[a]);for(let a of r){if(a.length>1||a.length===1&&a[0].inboundLayers.length>1){t=!1;break}n.push(...a)}if(t)for(let a of e.layers){let s=!1;for(let i of a.inboundNodes)if(n.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function wf(e,t,r=console.log){let n="";for(let a=0;a<e.length;++a)a>0&&(n=n.slice(0,n.length-1)+" "),n+=e[a],n=n.slice(0,t[a]),n+=" ".repeat(t[a]-n.length);r(n)}function zV(e,t,r){let n,a;try{a=e.inboundNodes.map(l=>JSON.stringify(l.inputShapes)).join(",")}catch(l){a="multiple"}try{n=JSON.stringify(e.outputShape)}catch(l){n="multiple"}let s=e.name,i=e.getClassName(),o=[`${s} (${i})`,a,n,e.countParams().toString()];wf(o,t,r)}function OV(e,t,r,n){let a,s;try{s=e.inboundNodes.map(h=>JSON.stringify(h.inputShapes)).join(",")}catch(h){s="multiple"}try{a=JSON.stringify(e.outputShape)}catch(h){a="multiple"}let i=[];for(let h of e.inboundNodes)if(!(r!=null&&r.length>0&&r.indexOf(h)===-1))for(let p=0;p<h.inboundLayers.length;++p){let c=h.inboundLayers[p].name,f=h.nodeIndices[p],m=h.tensorIndices[p];i.push(`${c}[${f}][${m}]`)}let o=e.name,l=e.getClassName(),u=i.length===0?"":i[0],d=[`${o} (${l})`,s,a,e.countParams().toString(),u];wf(d,t,n);for(let h=1;h<i.length;++h)wf(["","","","",i[h]],t,n)}function o4(e,t,r){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof r=="string"}function Pp(e,t){if(e===null)return null;if(typeof e=="string")return co(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let r=[],n=e.length;for(let a=0;a<n;++a){let s=e[a];o4(t,a,s)?r.push(s):r.push(Pp(s,t))}return r}else{let r={};for(let n of Object.keys(e)){let a=e[n];if(n==="name"&&typeof a=="string")r[n]=a;else{let s=co(n);r[s]=Pp(a,s)}}return r}}function k1(e,t){if(e==null)return null;if(typeof e=="string")return Wa(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let r=[],n=e.length;for(let a=0;a<n;++a){let s=e[a];o4(t,a,s)?r.push(s):r.push(k1(s,t))}return r}else{let r={};for(let n of Object.keys(e)){let a=e[n],s=Wa(n);(n==="name"||n==="className")&&typeof a=="string"?r[s]=a:r[s]=k1(a,n)}return r}}var MA="0.0.0";function DV(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return me(t,e.dtype)}catch(r){throw new q(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var go=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof go)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,r){if(this.id2Value[e.id]==null)this.id2Value[e.id]=DV(e,t),this.name2Id[e.name]=e.id,r!=null&&(this.id2Mask[e.id]=r);else throw new q(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof oa){if(this.id2Value[e.id]==null)throw new q(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new q(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof oa){if(this.id2Value[e.id]==null)throw new q(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new q(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&re(this.id2Mask)}},Zy={},rv={};function hp(e,t,r,n){let a=r==null?!1:r.training,s=Array.isArray(e),i=s?e:[e],o=i.map(f=>f.name),l=[],u=t.names();for(let f of o)u.indexOf(f)!==-1?l.push(t.getValue(f)):l.push(null);n!=null&&(n.maxNumTensors=-1/0,n.minNumTensors=1/0);let d=o.join(",")+"|"+t.names().join(","),h,p;if(Zy[d]==null){let f=LV(i,t);h=f.sorted,p=f.recipientCounts,Zy[d]=h,rv[d]=p}h=Zy[d],p={},a||Object.assign(p,rv[d]);let c=new go(t);for(let f=0;f<h.length;++f){if(n!=null){let R=cf().numTensors;R>n.maxNumTensors&&(n.maxNumTensors=R),R<n.minNumTensors&&(n.minNumTensors=R)}let m=h[f],g=m.sourceLayer;if(g instanceof pd)continue;let y=[],A=[],x=[],b=!1;for(let R of m.inputs){let _=c.getValue(R),M=c.getMask(R);y.push(_),A.push(M),M!=null&&(b=!0),a||(p[R.name]--,p[R.name]===0&&!t.hasKey(R)&&o.indexOf(R.name)===-1&&!_.isDisposed&&R.sourceLayer.stateful!==!0&&x.push(_))}b&&(r=r||{},r.mask=A[0]);let w=It(g.apply(y,r)),T=null;g.supportsMasking&&(T=g.computeMask(y,A));let S=WV(m),E=Array.isArray(S)?S:[S];for(let R=0;R<E.length;++R){c.hasKey(E[R])||c.add(E[R],w[R],Array.isArray(T)?T[0]:T);let _=o.indexOf(E[R].name);_!==-1&&(l[_]=w[R])}a||re(x)}return c.disposeMasks(),s?l:l[0]}function LV(e,t){v.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let r=[],n={};if(e.length===1){let a=nv(e[0],t);r=a.sorted,n=a.recipientMap}else{let a=new Set;for(let s of e){let{sorted:i,recipientMap:o}=nv(s,t);for(let l of i)a.has(l.name)||(r.push(l),a.add(l.name));for(let l in o)n[l]==null&&(n[l]=new Set),o[l].forEach(u=>n[l].add(u))}}return{sorted:r,recipientCounts:BV(n)}}function BV(e){let t={};for(let r in e)t[r]=e[r].size;return t}function nv(e,t){let r=new Set,n=[],a={};for(let o of t.names())r.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(r.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),n.push(o),r.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let u of o.inputs)a[u.name]==null&&(a[u.name]=new Set),a[u.name].add(o.name),!r.has(u.name)&&s.push(u)}}return{sorted:n,recipientMap:a}}function WV(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let r=null;for(let n=0;n<e.sourceLayer.inboundNodes.length;++n)for(let a of e.sourceLayer.inboundNodes[n].outputTensors)if(a.id===e.id){r=n;break}t=e.sourceLayer.getOutputAt(r)}return t}var ka=class extends st{constructor(e){if(super({}),this.containerNodes=new Set,this.name=e.name,this.name==null){let y=this.getClassName().toLowerCase();this.name=jm(y)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],Ss(this.inputs).length!==this.inputs.length)throw new q(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(y=>y.name)}`);Ss(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let A=y.sourceLayer,x=y.nodeIndex,b=y.tensorIndex;this.outputLayers.push(A),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(b)}for(let y of this.inputs){let A=y.sourceLayer,x=y.nodeIndex,b=y.tensorIndex;Ia(x===0,"input layer has >1 nodes"),Ia(b===0,"input layer has >1 tensors"),this.inputLayers.push(A),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(b)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;y<this.inputLayers.length;y++){let A=this.inputLayers[y];if(!(A instanceof pd))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${y} (0-based) originates from layer type ${A.getClassName()}.`);this.inputNames.push(A.name),this.feedInputShapes.push(A.batchInputShape),this.feedInputNames.push(A.name)}for(let y of this.outputLayers)this.outputNames.push(y.name);this.internalInputShapes=this.inputs.map(y=>y.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},r={},n={},a={},s={},i=[],o=(y,A,x,b,w,T)=>{(b==null||w==null||T==null)&&(b=y.sourceLayer,w=y.nodeIndex,T=y.tensorIndex);let S=b.inboundNodes[w];if(x.indexOf(S)!==-1)throw new ia(`The tensor ${y.name} at layer "${b.name}" is part of a cycle.`);if(A.indexOf(S)!==-1)return;this.containerNodes.add(ka.nodeKey(b,w)),b.id in s||(s[b.id]=Object.keys(s).length),x.indexOf(S)===-1&&x.push(S);let E=S.inboundLayers.length;for(let R=0;R<E;R++){let _=S.inputTensors[R],M=S.inboundLayers[R],I=S.nodeIndices[R],O=S.tensorIndices[R];o(_,A,x,M,I,O)}for(A.push(S);x.indexOf(S)>=0;)x.splice(x.indexOf(S),1);i.push(S)},l=[],u=[];for(let y of this.outputs)o(y,l,u);let d=i.slice().reverse();for(let y of d){r[y.id]=y,y.id in t||(t[y.id]=0);let A=t[y.id],x=n[y.outboundLayer.id]==null?0:n[y.outboundLayer.id];A=Math.max(A,x),n[y.outboundLayer.id]=A,a[y.outboundLayer.id]=y.outboundLayer,t[y.id]=A;for(let b=0;b<y.inboundLayers.length;b++){let w=y.inboundLayers[b],T=y.nodeIndices[b],S=w.inboundNodes[T],E=t[S.id]==null?0:t[S.id];t[S.id]=Math.max(A+1,E),r[S.id]=S}}let h={};for(let y in t){let A=t[y];A in h||(h[A]=[]),h[A].push(r[y])}let p={};for(let y in n){let A=n[y];A in p||(p[A]=[]),p[A].push(a[y])}let c=Object.keys(p).map(y=>parseInt(y,10)).sort(zc);this.layers=[];for(let y of c){let A=p[y];A.sort((x,b)=>{let w=s[x.id],T=s[b.id];return w<T?-1:w>T?1:0});for(let x of A)x instanceof ka&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=p,c=Object.keys(h).map(y=>parseInt(y,10)).sort(zc);let f=this.inputs.slice(),m=[];for(let y of c)for(let A of h[y]){let x=A.outboundLayer;if(x!=null){for(let b of A.inputTensors)if(f.indexOf(b)===-1)throw new ia(`Graph disconnected: cannot obtain value for tensor ${b} at layer "${x.name}". The following previous layers were accessed without issue: ${m}`);for(let b of A.outputTensors)f.push(b);m.push(x.name)}}this.nodesByDepth=h;let g=this.layers.map(y=>y.name);for(let y of g){let A=g.filter(x=>x===y).length;if(A!==1)throw new ia(`The name "${y}" is used ${A} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new Hm({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount===0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(r=>r.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new q("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let r of this.layers)t.push(...r.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let r={},n=0;for(let s of this.layers)for(let i of s.weights){if(r[i.originalName]!=null)throw new q(`Duplicate weight name: ${i.originalName}`);r[i.originalName]=i,n++}let a=[];for(let s in e){let i=s;if(r[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(r[i]!=null)a.push([r[i],e[s]]);else if(t)throw new q(`Provided weight data has no target variable: ${s}`);delete r[i]}if(t){let s=[];for(let i in r)s.push(i);if(s.length>0)throw new q(`${s.length} of ${n} weights are not set: ${s}`)}SA(a)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${MA}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let r=k1(this.updatedConfig());return t?JSON.stringify(r):r}call(e,t){return K(()=>{e=It(e);let r=new go;for(let n=0;n<this.inputs.length;++n)r.add(this.inputs[n],e[n]);return hp(this.outputs,r,t)})}computeMask(e,t){return K(()=>{e=It(e);let r;return t==null?r=No(null,e.length):r=It(t),this.runInternalGraph(e,r)[1]})}computeOutputShape(e){let t=gf(e);if(t.length!==this.inputLayers.length)throw new q(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let r={};for(let i=0;i<t.length;i++){let o=this.inputLayers[i],l=t[i],u=o.name+"_0_0";r[u]=l}let n=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(zc);if(n.length>1)for(let i of n){let o=this.nodesByDepth[i];for(let l of o){let u=l.outboundLayer;if(this.inputLayers.map(f=>f.id).indexOf(u.id)!==-1)continue;let d=[];for(let f=0;f<l.inboundLayers.length;f++){let m=l.inboundLayers[f],g=l.nodeIndices[f],y=l.tensorIndices[f],A=`${m.name}_${g}_${y}`,x=r[A];d.push(x)}let h=u.computeOutputShape(Jr(d)),p=gf(h),c=u.inboundNodes.indexOf(l);for(let f=0;f<p.length;f++){let m=`${u.name}_${c}_${f}`;r[m]=p[f]}}}let a=[],s=[];for(let i=0;i<this.outputLayers.length;i++){let o=this.outputLayers[i],l=this.outputLayersNodeIndices[i],u=this.outputLayersTensorIndices[i],d=`${o.name}_${l}_${u}`;s.push(d)}for(let i=0;i<s.length;i++){let o=s[i];Ia(o in r),a.push(r[o])}return Jr(a)}runInternalGraph(e,t){t==null&&(t=No(null,e.length));let r={};for(let o=0;o<this.inputs.length;++o){let l=this.inputs[o],u=e[o],d=t[o];r[l.id]=[u,d]}let n=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(zc);for(let o of n){let l=this.nodesByDepth[o];for(let u of l){let d=u.outboundLayer,h=u.inputTensors,p=u.outputTensors,c=new Array;for(let f of h)f.id in r&&c.push(r[f.id]);if(c.length===h.length){let f={},m,g,y,A;if(u.callArgs!=null&&(f=u.callArgs),c.length===1){let[x,b]=c[0];f.mask==null&&(f.mask=b),y=It(d.call(x,f)),A=It(d.computeMask(x,b)),m=[x],g=[b]}else m=c.map(x=>x[0]),g=c.map(x=>x[1]),f.mask==null&&(f.mask=g),y=It(d.call(m,f)),A=It(d.computeMask(m,g));if(d.activityRegularizer)throw new Ve("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x<p.length;++x){let b=p[x],w=y[x],T=A[x];r[b.id]=[w,T]}}}}let a=[],s=[],i=[];for(let o of this.outputs){Ia(o.id in r,`Could not compute output ${o.name} : ${o.id}`);let[l,u]=r[o.id];i.push(l.shape),a.push(l),s.push(u)}return[a,s,i]}buildNodeConversionMap(e){let t={},r;for(let n of this.layers){r=n instanceof ka?1:0;for(let a=0;a<n.inboundNodes.length;a++){let s=ka.nodeKey(n,a);this.containerNodes.has(s)&&(t[s]=r,r+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new q(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new q("Provide either a layer name or layer index");for(let r of this.layers)if(r.name===e)return r;throw new q(`No such layer: ${e}`)}calculateLosses(){return K(()=>{let e=[];for(let t of this.layers)for(let r=0;r<t.inboundNodes.length;++r){let n=ka.nodeKey(t,r);this.containerNodes.has(n)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),r=[];for(let s of this.layers){let i=s.getClassName(),o=s.getConfig(),l=[];for(let d=0;d<s.inboundNodes.length;d++){let h=s.inboundNodes[d],p=ka.nodeKey(s,d),c={};if(this.containerNodes.has(p)){if(h.callArgs)try{JSON.stringify(h.callArgs),c=h.callArgs}catch(f){console.warn(`Layer ${s.name} was passed non-serializable keyword arguments: ${h.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),c={}}if(h.inboundLayers.length>0){let f=[];for(let m=0;m<h.inboundLayers.length;m++){let g=h.inboundLayers[m],y=h.nodeIndices[m],A=h.tensorIndices[m],x=ka.nodeKey(g,y),b=t[x];b==null&&(b=0),f.push([g.name,b,A,c])}l.push(f)}}}let u={};u.name=s.name,u.className=i,u.config=o,u.inboundNodes=l,r.push(u)}e.layers=r;let n=[];for(let s=0;s<this.inputLayers.length;s++){let i=this.inputLayers[s],o=this.inputLayersNodeIndices[s],l=ka.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let d=this.inputLayersTensorIndices[s];n.push([i.name,u,d])}e.inputLayers=n;let a=[];for(let s=0;s<this.outputLayers.length;s++){let i=this.outputLayers[s],o=this.outputLayersNodeIndices[s],l=ka.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let d=this.outputLayersTensorIndices[s];a.push([i.name,u,d])}return e.outputLayers=a,e}static fromConfig(e,t,r={},n=!1){let a={},s={};function i(m,g){m.name in s?s[m.name].push(g):s[m.name]=[g]}function o(m,g){let y=[],A;for(let x of g){let b=x[0],w=x[1],T=x[2];if(A=x[3]==null?{}:x[3],!(b in a)){i(m,g);return}let S=a[b];if(S.inboundNodes.length<=w){i(m,g);return}let E=S.inboundNodes[w];y.push(E.outputTensors[T])}y.length>0&&m.apply(Jr(y),A)}function l(m){let g=m.name,y=da(m,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(n),a[g]=y,m.inboundNodes.forEach(A=>{if(!(A instanceof Array))throw new q(`Corrupted configuration, expected array for nodeData: ${A}`);i(y,A)})}let u=t.name,d=t.layers;for(let m of d)l(m);for(;!AW(s);)for(let m of d){let g=a[m.name];if(g.name in s){let y=s[g.name];delete s[g.name];for(let A of y)o(g,A)}}let h=[],p=[],c=t.inputLayers;for(let m of c){let g=m[0],y=m[1],A=m[2];Ia(g in a);let x=a[g].inboundNodes[y].outputTensors;h.push(x[A])}let f=t.outputLayers;for(let m of f){let g=m[0],y=m[1],A=m[2];Ia(g in a);let x=a[g].inboundNodes[y].outputTensors;p.push(x[A])}return new e({inputs:h,outputs:p,name:u})}get stateful(){if(this._stateful)throw new q("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){K(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function VV(e,t,r){let n=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>null);if(n===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==n)throw new Error(`Provided ${r} is an array of ${e.length} element(s), but the model has ${n} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let a=[];return t.forEach(s=>{s in e?a.push(e[s]):a.push(null)}),a}else throw new Error(`The model has multiple (${n}) outputs, so ${r} must be either an array with ${n} elements or an object with ${t} keys. Provided ${r} not understood: ${JSON.stringify(e)}`)}function l4(e,t){return VV(e,t,"classWeight")}async function u4(e,t,r,n){if(t!=null||n!=null)throw new Error("Support sampleWeight is not implemented yet");if(r!=null){let a=K(()=>{if(e.shape.length===1)return Lr(e);if(e.shape.length===2){if(e.shape[1]>1)return Nn(e,1);if(e.shape[1]===1)return G(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await a.data());re(a);let i=[];return s.forEach(o=>{if(r[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(r[o])}),St(i,"float32")}else return null}function UV(e,t){return L(e,t)}var GV=32;function d4(e,t){let r,n,a=t;r=a.xs,n=a.ys,v.assert(r!=null&&n!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=av("input",e.inputNames,r),i=av("output",e.outputNames,n),o=s[0].shape[0];v.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),v.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<s.length;l++)v.assert(s[l].shape[0]===o,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l<i.length;l++)v.assert(i[l].shape[0]===o,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function av(e,t,r){if(r instanceof rt)return[r];if(Array.isArray(r))return v.assert(r.length===t.length,()=>`Received an array of ${r.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),r;{let n=[];for(let a of t){if(r[a]==null)throw new q(`The feature data generated by the dataset lacks the required ${e} key '${a}'.`);n.push(r[a])}return n}}function jV(e){if(e.length===3)throw new Ve("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function HV(e,t,r){let n=r.batchesPerEpoch!=null;if(v.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),v.assert(r!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),v.assert(r.epochs!=null&&r.epochs>0&&Number.isInteger(r.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${r.epochs}`),v.assert(!n||r.batchesPerEpoch>0&&Number.isInteger(r.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${r.batchesPerEpoch}`),v.assert(r.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let a=r.validationData!=null,s,i;if(a)if(sv(r.validationData))v.assert(r.validationBatches==null||r.validationBatches>0&&Number.isInteger(r.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${r.validationBatches}`);else{let g=jV(r.validationData);s=g.xs,i=g.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),u;a?u=l.slice().concat(l.map(g=>"val_"+g)):u=l.slice();let d=e4(r.callbacks,r.yieldEvery),h=r.verbose==null?1:r.verbose,{callbackList:p,history:c}=t4(d,h,r.epochs,null,null,qV(t,r),null,a,u);p.setModel(e),e.history=c,await p.onTrainBegin(),e.stopTraining_=!1;let f=r.initialEpoch==null?0:r.initialEpoch,m=await t.iterator();for(;f<r.epochs;){let g={};await p.onEpochBegin(f);let y=0,A=0;for(n||(m=await t.iterator());!n||y<r.batchesPerEpoch;){let x=await m.next();if(n&&x.done){console.warn(`You provided \`batchesPerEpoch\` as ${r.batchesPerEpoch}, but your dataset iterator ran out of data after ${y} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${r.batchesPerEpoch*r.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(x.value!=null){let{xs:b,ys:w}=d4(e,x.value),T={};T.batch=A,T.size=b[0].shape[0],await p.onBatchBegin(A,T);let S=[];if(r.classWeight!=null){let _=l4(r.classWeight,e.outputNames);for(let M=0;M<_.length;++M)S.push(await u4(w[M],null,_[M]))}let E=b.concat(w).concat(S),R=o(E);re(E);for(let _=0;_<l.length;++_){let M=l[_],I=R[_];T[M]=I,hr(I)}await p.onBatchEnd(A,T),Z7(T),A++,y++}if(n?y>=r.batchesPerEpoch:x.done){if(a){let b;sv(r.validationData)?b=It(await e.evaluateDataset(r.validationData,{batches:r.validationBatches})):b=It(e.evaluate(s,i,{batchSize:r.validationBatchSize==null?GV:r.validationBatchSize,verbose:0}));for(let w=0;w<e.metricsNames.length;++w)g[`val_${e.metricsNames[w]}`]=b[w]}break}if(e.stopTraining_)break}if(await p.onEpochEnd(f,g),f++,e.stopTraining_)break}return await p.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function qV(e,t){let r=null;return t.batchesPerEpoch!=null?r=t.batchesPerEpoch:Number.isFinite(e.size)&&(r=e.size),r}function sv(e){return typeof e.iterator=="function"}function KV(e){return typeof e.next=="function"}async function XV(e,t,r){r=r||{};let n=r.batches!=null,a=e.testFunction,s=[];if(r.verbose>0)throw new Ve("Verbose mode is not implemented yet.");v.assert(!n||r.batches>0&&Number.isInteger(r.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(r.batches)}`);let i=KV(t)?t:await t.iterator(),o=0,l=0;for(;!n||l<r.batches;){let u=await i.next();if(s=K(()=>{if(u.value){let{xs:d,ys:h}=d4(e,u.value),p=d.concat(h),c=K(()=>a(p));if(re(p),l===0)for(let m=0;m<c.length;++m)s.push(Se(0));let f=p[0].shape[0];for(let m=0;m<c.length;++m){let g=c[m],y=s[m];s[m]=K(()=>le(s[m],L(f,g))),l>0&&re(y)}re(c),o+=f,++l}return s}),u.done){n&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${r.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<s.length;++u){let d=s[u];s[u]=pe(s[u],o),re(d)}return Jr(s)}function I1(e){v.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function cp(e,t,r){return e==null?[null]:Array.isArray(e)?e.map(n=>bo(n,t,r-t)):bo(e,t,r-t)}function FA(e,t){return K(()=>e==null?null:Array.isArray(e)?e.map(r=>FA(r,t)):U7(e,t.dtype==="int32"?t:me(t,"int32")))}function S1(e,t){let r=[],n=0,a=null;for(;n<e;)a=n+t,a>=e&&(a=e),r.push([n,a]),n=a;return r}async function ZV(e,t,r,n,a,s,i,o,l,u,d,h,p,c,f){a==null&&(a=32),s==null&&(s=1),d==null&&(d=!0),p==null&&(p=0);let m=!1;if(l!=null&&u!=null&&(m=!0),f!=null&&(m=!0,c==null))throw new q("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(r,a,c,"steps_per_epoch"),y;g!=null&&(y=fa(0,g)),i==null&&(i=1);let{callbackList:A,history:x}=t4(o,i,s,p,g,c,a,m,h);A.setModel(e),e.history=x,await A.onTrainBegin(),e.stopTraining_=!1;for(let b=p;b<s;++b){await A.onEpochBegin(b);let w={};if(c!=null)throw new Ve("stepsPerEpoch mode is not implemented yet.");{if(d==="batch")throw new Ve("batch shuffling is not implemneted yet");d&&v.shuffle(y);let T=St(y),S=S1(g,a);for(let E=0;E<S.length;++E){let R={};if(await A.onBatchBegin(E,R),K(()=>{let _=S[E][0],M=S[E][1],I=bo(T,_,M-_);R.batch=E,R.size=M-_;let O=FA(r,I),z=t(O);for(let j=0;j<n.length;++j){let X=n[j],D=z[j];R[X]=D,hr(D)}if(E===S.length-1&&m){let j=e.testLoop(l,u,a);for(let X=0;X<n.length;++X){let D=n[X],Q=j[X];hr(Q),w["val_"+D]=Q}}}),await A.onBatchEnd(E,R),Z7(R),e.stopTraining_)break}T.dispose()}if(await A.onEpochEnd(b,w),e.stopTraining_)break}return await A.onTrainEnd(),await e.history.syncData(),e.history}async function YV(e,t,r,n={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let a,s,i,o,l,u,d,h,p;try{let c=n.batchSize==null?32:n.batchSize;I1(c);let f=!1,m=await e.standardizeUserData(t,r,n.sampleWeight,n.classWeight,f,c);a=m[0],s=m[1],p=m[2];let g=!1,y;if(n.validationData!=null&&n.validationData.length>0){if(g=!0,n.validationData.length===2)l=n.validationData[0],u=n.validationData[1];else throw n.validationData.length===3?new Ve("validationData including sample weights is not supported yet."):new q(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${n.validationData} is invalid.`);let E=!0,R=await e.standardizeUserData(l,u,null,null,E,c);d=R[0],h=R[1],y=d.concat(h)}else if(n.validationSplit!=null&&n.validationSplit>0&&n.validationSplit<1){g=!0;let E=Math.floor(a[0].shape[0]*(1-n.validationSplit)),R=a[0].shape[0];d=cp(a,E,R),i=a,a=cp(a,0,E),h=cp(s,E,R),o=s,s=cp(s,0,E),y=d.concat(h)}else n.validationSteps!=null&&(g=!0);let A=a.concat(s).concat(p);e.checkTrainableWeightsConsistency();let x=e.makeTrainFunction(),b=e.getDedupedMetricsNames(),w,T;g?(e.makeTestFunction(),w=e.testFunction,T=b.slice().concat(b.map(E=>"val_"+E))):(w=null,y=[],T=b.slice());let S=e4(n.callbacks,n.yieldEvery);return await ZV(e,x,A,b,c,n.epochs,n.verbose,S,w,y,n.shuffle,T,n.initialEpoch,null,null)}finally{e.isTraining=!1,sa(a,t),sa(s,r),sa(i,t),sa(o,r),sa(d,l),sa(h,u),p!=null&&re(p)}}function p4(e){let t=[];e instanceof rt&&(e=[e]);for(let r=0;r<e.length;++r){let n=e[r];if(n.rank===1)t.push(yh(n,1));else{if(n.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(n)}}return t}function sa(e,t){if(e==null)return;let r=[];if(t instanceof rt)r.push(t.id);else if(Array.isArray(t))t.forEach(a=>r.push(a.id));else if(t!=null)for(let a in t){let s=t[a];r.push(s.id)}let n=[];if(e instanceof rt)r.indexOf(e.id)===-1&&n.push(e);else if(Array.isArray(e))e.forEach(a=>{r.indexOf(a.id)===-1&&n.push(a)});else if(e!=null)for(let a in e){let s=e[a];r.indexOf(s.id)===-1&&n.push(s)}n.forEach(a=>{a.isDisposed||a.dispose()})}function JV(e){return e instanceof rt}function T1(e){return Array.isArray(e)}function iv(e){return!JV(e)&&!T1(e)}function ov(e,t,r,n=!0,a=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(T1(e)&&e.length>0)i=!0;else if(iv(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new q(`Error when checking model ${a} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(iv(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new q(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(T1(e)){if(e=e,e.length!==t.length)throw new q(`Error when checking model ${a}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new q(`The model ${a} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=p4(s),r!=null)for(let i=0;i<t.length;++i){if(r[i]==null)continue;let o=s[i];if(o.shape.length!==r[i].length)throw new q(`Error when checking ${a}: expected ${t[i]} to have ${r[i].length} dimension(s). but got array with shape ${o.shape}`);for(let l=0;l<r[i].length;++l){if(l===0&&!n)continue;let u=o.shape[l],d=r[i][l];if(d!=null&&d>=0&&u!==d)throw new q(`${a} expected a batch of elements where each example has shape [${r[i].slice(1,r[i].length)}] (i.e.,tensor shape [*,${r[i].slice(1,r[i].length)}]) but the ${a} received an input with ${o.shape[0]} examples, each with shape [${o.shape.slice(1,o.shape.length)}] (tensor shape [${o.shape}])`)}}return s}function QV(e,t,r){let n=Ss(e.map(s=>s.shape[0]));n.sort();let a=Ss(t.map(s=>s.shape[0]));if(a.sort(),n.length>1)throw new q(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(a.length>1)throw new q(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(n.length>0&&a.length>0&&!v.arraysEqual(n,a))throw new q(`Input Tensors should have the same number of samples as target Tensors. Found ${n[0]} input sample(s) and ${a[0]} target sample(s).`)}function eU(e,t,r){let n=[Nl,Km,$p];for(let a=0;a<e.length;++a){let s=e[a],i=t[a],o=r[a];if(i!=null){if(i===$p&&s.shape[s.shape.length-1]===1)throw new q(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(n.indexOf(i)!==-1){let l=s.shape.slice(1),u=o.slice(1);for(let d=0;d<l.length;++d){let h=l[d],p=u[d];if(p!=null&&h!==p)throw new q(`A target Tensor with shape ${s.shape} was passed for an output of shape ${o}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function lv(e,t,r,n=!0,a=""){let s;if(Array.isArray(e)){if(e.length!==t.length)throw new q(`Error when checking model ${a}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);s=e}else{if(t.length>1)throw new q(`The model expects ${t.length} ${a} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(r!=null)for(let i=0;i<t.length;++i){if(r[i]==null)continue;let o=s[i];if(o.shape.length!==r[i].length)throw new q(`Error when checking ${a}: expected ${t[i]} to have ${r[i].length} dimension(s), but got array with shape ${JSON.stringify(o.shape)}`);for(let l=0;l<r[i].length;++l){if(l===0&&!n)continue;let u=o.shape[l],d=r[i][l];if(d!=null&&d!==u)throw new q(`Error when checking ${a}: expected ${t[i]} to have shape ${JSON.stringify(r[i])} but got array with shape ${JSON.stringify(o.shape)}.`)}}}function tU(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(n=>[]);let r;if(typeof e=="string"||typeof e=="function")r=[e];else if(Array.isArray(e)||typeof e=="object")r=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(r))return t.map(n=>r);{let n=[];for(let a of t){let s=r.hasOwnProperty(a)?r[a]:[];Array.isArray(s)||(s=[s]),n.push(s)}return n}}var rU="layers-model",ja=class extends ka{constructor(e){super(e),this.isTraining=!1}summary(e,t,r=console.log){if(!this.built)throw new q("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");$V(this,e,t,r)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=FV(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof Ja))throw new q("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new q(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(Xy(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new q(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>Xy(s))}else{let s=Xy(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s<this.outputs.length;++s){let i=this.internalOutputShapes[s],o=this.outputNames[s];this.feedOutputNames.push(o),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[s])}let r=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],xo("loss",()=>{for(let s=0;s<this.outputs.length;++s){if(r.indexOf(s)!==-1)continue;let i=this.lossFunctions[s];this.outputs.length>1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let n=tU(e.metrics,this.outputNames),a=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};xo("metric",()=>{for(let s=0;s<this.outputs.length;++s){if(r.indexOf(s)!==-1)continue;let i=n[s];(o=>{let l="",u,d,h;for(let p of o){if(typeof p=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(p)!==-1){let f=this.internalOutputShapes[s];f[f.length-1]===1||this.lossFunctions[s]===Km?["accuracy","acc"].indexOf(p)!==-1?d=CA:["crossentropy","ce"].indexOf(p)!==-1&&(d=a4):this.lossFunctions[s]===xf?["accuracy","acc"].indexOf(p)!==-1?d=s4:["crossentropy","ce"].indexOf(p)!==-1&&(d=i4):["accuracy","acc"].indexOf(p)!==-1?d=EA:["crossentropy","ce"].indexOf(p)!==-1&&(d=RA);let m;["accuracy","acc"].indexOf(p)!==-1?m="acc":["crossentropy","ce"].indexOf(p)!==-1&&(m="ce"),h=d,u=l+m}else h=MV(p),u=l+Lc(p);let c;xo(u,()=>{c=h}),a(s,u,c)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,r={}){let n=r.batchSize==null?32:r.batchSize;I1(n);let a=!0,s=this.standardizeUserDataXY(e,t,a,n);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,n,r.verbose,r.steps);return Jr(l)}finally{sa(s[0],e),sa(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),XV(this,e,t)}checkNumSamples(e,t,r,n="steps"){let a;if(r!=null){if(a=null,t!=null)throw new q(`If ${n} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?a=e[0].shape[0]:a=e.shape[0];else throw new q(`Either the input data should have a defined shape, or ${n} shoud be specified.`);return a}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new q("`outputs` is an empty Array, which is not allowed.");let r=Array.isArray(t),n=r?t:[t],a=this.retrieveSymbolicTensors(n),s=new go;if(e instanceof rt&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new q(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;o<this.inputs.length;++o)s.add(this.inputs[o],e[o])}else for(let o of this.inputs){let l=e[o.name];if(l==null)throw new q(`No value is provided for the model's input ${o.name}`);s.add(o,l)}let i=hp(a,s);return r?i:i[0]}retrieveSymbolicTensors(e){let t=No(null,e.length),r=e.length;for(let n of this.layers){let a=Array.isArray(n.output)?n.output:[n.output],s=a.map(i=>i.name);for(let i=0;i<e.length;++i){let o=s.indexOf(e[i]);if(o!==-1&&(t[i]=a[o],r--),r===0)break}if(r===0)break}if(r>0){let n=[];throw t.forEach((a,s)=>{a==null&&n.push(e[s])}),new q(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(n)}`)}return t}predictLoop(e,t=32,r=!1){return K(()=>{let n=this.checkNumSamples(e);if(r)throw new Ve("Verbose predictLoop() is not implemented yet.");let a=S1(n,t),s=this.outputs.map(i=>[]);for(let i=0;i<a.length;++i)K(()=>{let o=a[i][0],l=a[i][1],u=cp(e,o,l),d=[];if(Array.isArray(u))for(let p=0;p<u.length;++p)d.push({key:this.inputs[p],value:u[p]});else d.push({key:this.inputs[0],value:u});let h=new go(d);return hp(this.outputs,h)}).forEach((o,l)=>s[l].push(o));return Jr(s.map(i=>kt(i,0)))})}predict(e,t={}){let r=p4(e);lv(r,this.inputNames,this.feedInputShapes,!1);try{let n=t.batchSize==null?32:t.batchSize;return I1(n),this.predictLoop(r,n)}finally{sa(r,e)}}predictOnBatch(e){lv(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,r=!0,n){if(this.optimizer_==null)throw new ia("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let a=[];for(let s=0;s<this.feedOutputShapes.length;++s){let i=this.feedOutputShapes[s];this.feedLossFns[s]===xf?a.push(i.slice(0,i.length-1).concat([1])):a.push(i)}if(e=ov(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=ov(t,this.feedOutputNames,a,!1,"target"),QV(e,t,null),eU(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&n!=null&&n>0&&e[0].shape[0]%n!==0)throw new q(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${n}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,r,n,a=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,a,s);if(r!=null)throw new Error("sample weight is not supported yet.");let l=null;if(n!=null){let u=l4(n,this.outputNames);l=[];for(let d=0;d<u.length;++d)l.push(await u4(o[d],null,u[d]))}return[i,o,l]}testLoop(e,t,r,n=0,a){return K(()=>{let s=this.checkNumSamples(t,r,a,"steps"),i=[];if(n>0)throw new Ve("Verbose mode is not implemented yet.");if(a!=null)throw new Ve("steps mode in testLoop() is not implemented yet");{let o=S1(s,r),l=St(fa(0,s));for(let u=0;u<o.length;++u){let d=o[u][0],h=o[u][1],p=bo(l,d,h-d),c=FA(t,p),f=e(c);if(u===0)for(let m=0;m<f.length;++m)i.push(Se(0));for(let m=0;m<f.length;++m){let g=f[m];i[m]=le(i[m],L(h-d,g))}}for(let u=0;u<i.length;++u)i[u]=pe(i[u],s)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let r=0;r<e.length;++r){let n=e[r],a=n;H3(e,n)>1&&(a+=`_${H3(e.slice(0,r),n)}`),t.push(a)}return t}makeTrainFunction(){return e=>{let t=[],r=e.slice(0,this.inputs.length),n=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let u=[];for(let c=0;c<this.inputs.length;++c)u.push({key:this.inputs[c],value:r[c]});let d=new go(u),h=hp(this.outputs,d,{training:!0}),p;for(let c=0;c<this.lossFunctions.length;++c){let f=this.lossFunctions[c](n[c],h[c]);a[c]!=null&&(f=UV(f,a[c]));let m=Bt(f);t.push(m),c===0?p=f:p=le(p,f)}for(let c=0;c<this.metricsTensors.length;++c){let f;if(this.outputs.length>1&&c<this.outputs.length)f=t[c];else{let m=this.metricsTensors[c][0],g=this.metricsTensors[c][1];f=Bt(m(n[g],h[g]))}hr(f),s.push(f)}return p=Bt(p),this.calculateLosses().forEach(c=>{p=le(p,c)}),p},o=this.collectedTrainableWeights.map(u=>u.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>K(()=>{let t=[],r,n=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;l<this.inputs.length;++l)s.push({key:this.inputs[l],value:n[l]});let i=new go(s),o=hp(this.outputs,i);for(let l=0;l<this.lossFunctions.length;++l){let u=this.lossFunctions[l],d=Bt(u(a[l],o[l]));l===0?r=d:r=le(r,d),t.push(r)}for(let l=0;l<this.metricsTensors.length;++l){let u=this.metricsTensors[l][0],d=this.metricsTensors[l][1],h=Bt(u(a[d],o[d]));t.push(h)}return t})}async fit(e,t,r={}){return YV(this,e,t,r)}async fitDataset(e,t){return HV(this,e,t)}async trainOnBatch(e,t){let r=await this.standardizeUserData(e,t),n=r[0],a=r[1],s=this.makeTrainFunction()(n.concat(a)),i=[];for(let o of s){let l=await o.data();i.push(l[0])}return re(s),sa(r[0],e),sa(r[1],t),Jr(i)}getNamedWeights(e){let t=[],r=e!=null&&e.trainableOnly,n=r?this.trainableWeights:this.weights,a=this.getWeights(r);for(let s=0;s<n.length;++s)r&&!n[s].trainable||t.push({name:n[s].originalName,tensor:a[s]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=cf().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-cf().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=Wa(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>Wa(t))}else{let t=Object.keys(this.loss);e={};let r=this.loss;for(let n of t)if(typeof r[n]=="string")e[n]=Wa(r[n]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[Wa(Lc(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>Wa(Lc(e)));{let e={};for(let t in this.metrics)e[t]=Wa(Lc(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Pp(e.optimizer_config),r=da(t),n;if(typeof e.loss=="string")n=co(e.loss);else if(Array.isArray(e.loss))n=e.loss.map(s=>co(s));else if(e.loss!=null){n={};for(let s in e.loss)n[s]=co(e.loss[s])}let a;if(Array.isArray(e.metrics))a=e.metrics.map(s=>co(s));else if(e.metrics!=null){a={};for(let s in e.metrics)a[s]=co(e.metrics[s])}this.compile({loss:n,metrics:a,optimizer:r})}async save(e,t){if(typeof e=="string"){let i=Sr.getSaveHandlers(e);if(i.length===0)throw new q(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new q(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new q("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let r=await Sr.encodeWeights(this.getNamedWeights(t)),n=!1,a=null,s={modelTopology:this.toJSON(a,n),format:rU,generatedBy:`TensorFlow.js tfjs-layers v${MA}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await Sr.encodeWeights(await this.optimizer.getWeights(),i);r.specs.push(...l),r.data=Sr.concatenateArrayBuffers([r.data,o])}return this.userDefinedMetadata!=null&&(tv(this.userDefinedMetadata,this.name,!0),s.userDefinedMetadata=this.userDefinedMetadata),s.weightData=r.data,s.weightSpecs=r.specs,e.save(s)}setUserDefinedMetadata(e){tv(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};ja.className="Model";ue.registerClass(ja);var h4=class extends ja{};h4.className="Functional";ue.registerClass(h4);async function nU(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let r=e.modelTopology;r.model_config!=null&&(r=r.model_config);let n=Pp(r),a=da(n,t);if(e.weightsManifest!=null){let s=await Sr.loadWeights(e.weightsManifest,e.pathPrefix,a.weights.map(o=>o.originalName)),i={};for(let o of a.weights)i[o.originalName]=s[o.originalName];a.loadWeights(i),re(s)}return a}async function aU(e,t){if(t==null&&(t={}),typeof e=="string"){let r=Sr.getLoadHandlers(e,t);if(r.length===0)r.push(Sr.browserHTTPRequest(e,t));else if(r.length>1)throw new q(`Found more than one (${r.length}) load handlers for URL '${e}'`);e=r[0]}return sU(e,void 0,t)}async function sU(e,t,r){if(r==null&&(r={}),e.load==null)throw new q("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let n=await e.load(),a=n.modelTopology;a.model_config!=null&&(a=a.model_config);let s=r.strict==null?!0:r.strict,i=n.weightData!=null&&n.weightSpecs!=null&&s,o=da(Pp(a),t,i),l=n.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),n.userDefinedMetadata!=null&&o.setUserDefinedMetadata(n.userDefinedMetadata),n.weightData!=null){if(n.weightSpecs==null)throw new q("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:d}=iU(n.weightData,n.weightSpecs);o.loadWeights(u,s),o.optimizer!=null&&d.length>0&&await o.optimizer.setWeights(d),re(u),re(d.map(h=>h.tensor))}return o}function iU(e,t){let r=Sr.decodeWeights(e,t),n={},a=[];return t.forEach(s=>{s.group==="optimizer"?a.push({name:s.name,tensor:r[s.name]}):n[s.name]=r[s.name]}),{modelWeights:n,optimizerWeights:a}}var N1=class extends ja{constructor(e){if(super({inputs:[],outputs:[]}),e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:jm("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new q(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof N1||e instanceof ja,r;if(t){if(r=e,r.outputs.length!==1)throw new q("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(r.inputs.length!==1)throw new q("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new q("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let n=X7({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(n)}if(t)this.outputs=r.outputs,this.inputs=r.inputs;else{if(e.inboundNodes.length!==1)throw new q(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new q("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=K7(this.outputs[0])}this.inboundNodes=[],new Hm({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:No(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(n=>n.shape),outputShapes:this.outputs[0].shape})}else{let n=e.apply(this.outputs[0]);if(Array.isArray(n))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[n],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(ft(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new ja({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,r=console.log){this.built||this.build(),super.summary(e,t,r)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,r={}){if(!this.built)throw new ia("The model needs to be compiled before being used.");return this.model.evaluate(e,t,r)}async evaluateDataset(e,t){if(!this.built)throw new ia("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,r={}){if(!this.built)throw new ia("The model needs to be compiled before being used.");return this.model.fit(e,t,r)}async fitDataset(e,t){if(!this.built)throw new ia("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,r={},n=!1){let a,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new q("Legacy serialization format not supported yet.");a=t}else v.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),a=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof N1))throw new Ve(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of a){let l=da(o,void 0,n);n&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new q("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new q("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let r={};r.className=t.getClassName(),r.config=t.getConfig(),e.push(r)}return{name:this.name,layers:e}}},Xm=N1;Xm.className="Sequential";ue.registerClass(Xm);function oU(e){return new ja(e)}function lU(e){return new Xm(e)}function uU(e,t){return t==null&&(t={}),aU(e,t)}function c4(e){return X7(e)}function dU(e,t){TA.registerCallbackConstructor(e,t)}var sn=class extends ue.Serializable{getConfig(){return{}}},f4=class extends sn{apply(e,t=1){return zW(e,t)}};f4.className="elu";ue.registerClass(f4);var m4=class extends sn{apply(e){return Z2(e)}};m4.className="selu";ue.registerClass(m4);var g4=class extends sn{apply(e){return $a(e)}};g4.className="relu";ue.registerClass(g4);var y4=class extends sn{apply(e){return K(()=>hh(6,$a(e)))}};y4.className="relu6";ue.registerClass(y4);var A4=class extends sn{apply(e){return e}};A4.className="linear";ue.registerClass(A4);var x4=class extends sn{apply(e){return Tr(e)}};x4.className="sigmoid";ue.registerClass(x4);var b4=class extends sn{apply(e){return DW(e)}};b4.className="hardSigmoid";ue.registerClass(b4);var v4=class extends sn{apply(e){return id(e)}};v4.className="softplus";ue.registerClass(v4);var w4=class extends sn{apply(e){return OW(e)}};w4.className="softsign";ue.registerClass(w4);var k4=class extends sn{apply(e){return mu(e)}};k4.className="tanh";ue.registerClass(k4);var $A=class extends sn{apply(e,t=-1){return ud(e,t)}};$A.className="softmax";ue.registerClass($A);var I4=class extends sn{apply(e,t=-1){return L2(e,t)}};I4.className="logSoftmax";ue.registerClass(I4);var S4=class extends sn{apply(e,t=1){return K(()=>L(Tr(L(e,t)),e))}};S4.className="swish";ue.registerClass(S4);var T4=class extends sn{apply(e){return K(()=>L(e,mu(id(e))))}};T4.className="mish";ue.registerClass(T4);function Ds(e){return e.getClassName()}function Yy(e,t={}){return mh(e,ue.SerializationMap.getMap().classNameMap,t,"activation")}function Ls(e){if(e==null){let t={};return t.className="linear",t.config={},Yy(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},Yy(t)}else return e instanceof sn?e:Yy(e)}function PA(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var N4=class extends ue.Serializable{},bh=class extends N4{constructor(e){super(),PA(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return K(()=>{let t=Wt([1]);return this.hasL1&&(t=le(t,ke(L(this.l1,er(e))))),this.hasL2&&(t=le(t,ke(L(this.l2,Ah(e))))),G(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};bh.className="L1L2";ue.registerClass(bh);function pU(e){return PA(e),new bh({l1:e!=null?e.l1:null,l2:0})}function hU(e){return PA(e),new bh({l2:e!=null?e.l2:null,l1:0})}var uv={l1l2:"L1L2"};function xt(e){return dA(e)}function dv(e,t={}){return mh(e,ue.SerializationMap.getMap().classNameMap,t,"regularizer")}function Rt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in uv?uv[e]:e,config:{}};return dv(t)}else return e instanceof N4?e:dv(e)}var _A=class extends st{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Ge(e);let r=$a(e);return this.maxValue!=null&&(r=hn(r,0,this.maxValue)),r}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};_A.className="ReLU";ue.registerClass(_A);var zA=class extends st{constructor(e){super(e==null?{}:e),this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let r=Ge(e);return fm(r,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};zA.className="LeakyReLU";ue.registerClass(zA);var OA=class extends st{constructor(e){if(super(e==null?{}:e),this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=Et(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=Rt(e.alphaRegularizer),this.alphaConstraint=ar(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new q(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=ft(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let n of this.sharedAxes)t[n-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let r={};if(this.sharedAxes!=null)for(let n=1;n<e.length;++n)r[n]=e[n];this.inputSpec=[new qt({ndim:e.length,axes:r})],this.built=!0}call(e,t){return e=Ge(e),vm(e,this.alpha.read())}getConfig(){let e={alphaInitializer:Pt(this.alphaInitializer),alphaRegularizer:xt(this.alphaRegularizer),alphaConstraint:nr(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};OA.className="PReLU";ue.registerClass(OA);var DA=class extends st{constructor(e){if(super(e==null?{}:e),this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Ve(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let r=Ge(e);return dh(r)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};DA.className="ELU";ue.registerClass(DA);var LA=class extends st{constructor(e){super(e==null?{}:e),this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let r=Ge(e);return L(r,me(cn(r,this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};LA.className="ThresholdedReLU";ue.registerClass(LA);var BA=class extends st{constructor(e){super(e==null?{}:e),this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new $A().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let r=Ge(e);return this.softmax(r,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};BA.className="Softmax";ue.registerClass(BA);function pu(e,t,r){if(typeof e=="number")return No(e,t);if(e.length!==t)throw new q(`The ${r} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let n=0;n<t;++n){let a=e[n];if(!FW(a))throw new q(`The ${r} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${a}`)}return e}function pa(e,t,r,n,a=1){if(e==null)return e;let s=t+(t-1)*(a-1),i;return r==="same"?i=e:i=e-s+1,Math.floor((i+n-1)/n)}function Sa(e,t,r,n){if(e==null)return null;if(n==="valid")e=e*t+Os([r-t,0]);else if(n==="same")e=e*t;else throw new q(`Unsupport padding mode: ${n}.`);return e}function WA(e,t){return K(()=>(Ut(t),t==="channelsFirst"?nt(e,[0,2,3,1]):e))}function C4(e,t){return K(()=>(Ut(t),t==="channelsFirst"?nt(e,[0,2,3,4,1]):e))}function cU(e,t,r,n=1,a="valid",s,i=1){return K(()=>{if(s==null&&(s=ca()),Ut(s),e.shape.length!==3)throw new q(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new q(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(r!=null&&r.shape.length!==1)throw new q(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=nt(e,[0,2,1])),a==="causal")throw new Ve("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=M2(e,t,n,a==="same"?"same":"valid","NWC",i);return r!=null&&(o=ya(o,r)),o})}function pv(e,t,r,n=[1,1],a="valid",s,i,o=null){return K(()=>{if(s==null&&(s=ca()),Ut(s),e.rank!==3&&e.rank!==4)throw new q(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new q(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=WA(e,s);if(a==="causal")throw new Ve("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=zs.conv2d({x:l,filter:t,strides:n,pad:a==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:r,activation:o}),s==="channelsFirst"&&(l=nt(l,[0,3,1,2])),l})}function fU(e,t,r,n=[1,1,1],a="valid",s,i){return K(()=>{if(s==null&&(s=ca()),Ut(s),e.rank!==4&&e.rank!==5)throw new q(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new q(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=C4(e,s);if(a==="causal")throw new Ve("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=P2(o,t,n,a==="same"?"same":"valid","NDHWC",i),r!=null&&(o=ya(o,r)),s==="channelsFirst"&&(o=nt(o,[0,4,1,2,3])),o})}var VA=class extends st{constructor(e,t){if(super(t),this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",VA.verifyArgs(t),this.rank=e,cr(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Ve(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=pu(t.kernelSize,e,"kernelSize"),this.strides=pu(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,Pn(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Ut(this.dataFormat),this.activation=Ls(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=Et(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=ar(t.biasConstraint),this.biasRegularizer=Rt(t.biasRegularizer),this.activityRegularizer=Rt(t.activityRegularizer),this.dilationRate=pu(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new q(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new q(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new q(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Ia("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!pA(e.kernelSize,"number",1,3))throw new q(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:Ds(this.activation),useBias:this.useBias,biasInitializer:Pt(this.biasInitializer),biasRegularizer:xt(this.biasRegularizer),activityRegularizer:xt(this.activityRegularizer),biasConstraint:nr(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},vh=class extends VA{constructor(e,t){super(e,t),this.kernel=null,vh.verifyArgs(t),this.filters=t.filters,cr(this.filters,"filters"),this.kernelInitializer=Et(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=ar(t.kernelConstraint),this.kernelRegularizer=Rt(t.kernelRegularizer)}build(e){e=ft(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new q(`The channel dimension of the input should be defined. Found ${e[t]}`);let r=e[t],n=this.kernelSize.concat([r,this.filters]);this.kernel=this.addWeight("kernel",n,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:r}}],this.built=!0}call(e,t){return K(()=>{e=Ge(e);let r,n=this.bias==null?null:this.bias.read(),a=O7(this.activation.getClassName());if(a!=null&&this.rank===2)r=pv(e,this.kernel.read(),n,this.strides,this.padding,this.dataFormat,this.dilationRate,a);else{if(this.rank===1)r=cU(e,this.kernel.read(),n,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)r=pv(e,this.kernel.read(),n,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)r=fU(e,this.kernel.read(),n,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Ve("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(r=this.activation.apply(r))}return r})}computeOutputShape(e){e=ft(e);let t=[],r=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let a=0;a<r.length;++a){let s=pa(r[a],this.kernelSize[a],this.padding,this.strides[a],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[a]);t.push(s)}let n=[e[0]];return this.dataFormat==="channelsLast"?(n=n.concat(t),n.push(this.filters)):(n.push(this.filters),n=n.concat(t)),n}getConfig(){let e={filters:this.filters,kernelInitializer:Pt(this.kernelInitializer),kernelRegularizer:xt(this.kernelRegularizer),kernelConstraint:nr(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new q(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},E4=class extends vh{constructor(e){super(2,e),E4.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!pA(e.kernelSize,"number",1,2))throw new q(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}},Zm=E4;Zm.className="Conv2D";ue.registerClass(Zm);var R4=class extends vh{constructor(e){super(3,e),R4.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new q(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}},Ym=R4;Ym.className="Conv3D";ue.registerClass(Ym);var UA=class extends Zm{constructor(e){if(super(e),this.inputSpec=[new qt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new q(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=ft(e),e.length!==4)throw new q("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new q("The channel dimension of the inputs should be defined. Found `None`.");let r=e[t],n=this.kernelSize.concat([this.filters,r]);this.kernel=this.addWeight("kernel",n,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new qt({ndim:4,axes:{[t]:r}})],this.built=!0}call(e,t){return K(()=>{let r=Ge(e);if(r.shape.length!==4)throw new q(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${r.shape.length}`);let n=r.shape,a=n[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=n[s],l=n[i],u=this.kernelSize[0],d=this.kernelSize[1],h=this.strides[0],p=this.strides[1],c=Sa(o,h,u,this.padding),f=Sa(l,p,d,this.padding),m=[a,c,f,this.filters];this.dataFormat!=="channelsLast"&&(r=nt(r,[0,2,3,1]));let g=$2(r,this.kernel.read(),m,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=nt(g,[0,3,1,2])),this.bias!=null&&(g=ya(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=ft(e);let t=e.slice(),r,n,a;this.dataFormat==="channelsFirst"?(r=1,n=2,a=3):(r=3,n=1,a=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[r]=this.filters,t[n]=Sa(t[n],o,s,this.padding),t[a]=Sa(t[a],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};UA.className="Conv2DTranspose";ue.registerClass(UA);var GA=class extends Ym{constructor(e){if(super(e),this.inputSpec=[new qt({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new q(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=ft(e),e.length!==5)throw new q("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new q("The channel dimension of the inputs should be defined. Found `None`.");let r=e[t],n=this.kernelSize.concat([this.filters,r]);this.kernel=this.addWeight("kernel",n,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new qt({ndim:5,axes:{[t]:r}})],this.built=!0}call(e,t){return K(()=>{let r=Ge(e);if(r.shape.length!==5)throw new q(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${r.shape.length}`);let n=r.shape,a=n[0],s,i,o;this.dataFormat==="channelsFirst"?(o=2,s=3,i=4):(o=1,s=2,i=3);let l=n[o],u=n[s],d=n[i],h=this.kernelSize[0],p=this.kernelSize[1],c=this.kernelSize[2],f=this.strides[0],m=this.strides[1],g=this.strides[2],y=Sa(l,f,h,this.padding),A=Sa(u,m,p,this.padding),x=Sa(d,g,c,this.padding),b=[a,y,A,x,this.filters];this.dataFormat!=="channelsLast"&&(r=nt(r,[0,2,3,4,1]));let w=Dk(r,this.kernel.read(),b,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(w=nt(w,[0,4,1,2,3])),this.bias!==null&&(w=ya(w,this.bias.read(),this.dataFormat)),this.activation!==null&&(w=this.activation.apply(w)),w})}computeOutputShape(e){e=ft(e);let t=e.slice(),r,n,a,s;this.dataFormat==="channelsFirst"?(r=1,n=2,a=3,s=4):(r=4,n=1,a=2,s=3);let i=this.kernelSize[0],o=this.kernelSize[1],l=this.kernelSize[2],u=this.strides[0],d=this.strides[1],h=this.strides[2];return t[r]=this.filters,t[n]=Sa(t[n],u,i,this.padding),t[a]=Sa(t[a],d,o,this.padding),t[s]=Sa(t[s],h,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};GA.className="Conv3DTranspose";ue.registerClass(GA);var M4=class extends vh{constructor(e,t){if(super(e,t),this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new q("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new q("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new q(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=Et(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=Rt(t.depthwiseRegularizer),this.depthwiseConstraint=ar(t.depthwiseConstraint),this.pointwiseInitializer=Et(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=Rt(t.pointwiseRegularizer),this.pointwiseConstraint=ar(t.pointwiseConstraint)}build(e){if(e=ft(e),e.length<this.rank+2)throw new q(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new q(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let r=e[t],n=this.kernelSize.concat([r,this.depthMultiplier]),a=[];for(let i=0;i<this.rank;++i)a.push(1);a.push(r*this.depthMultiplier,this.filters);let s=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",n,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,s,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",a,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,s,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,s,this.biasConstraint):this.bias=null,this.inputSpec=[new qt({ndim:this.rank+2,axes:{[t]:r}})],this.built=!0}call(e,t){return K(()=>{e=Ge(e);let r;if(this.rank===1)throw new Ve("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=nt(e,[0,2,3,1])),r=i7(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(r=ya(r,this.bias.read(),this.dataFormat)),this.activation!=null&&(r=this.activation.apply(r)),this.dataFormat==="channelsFirst"&&(r=nt(r,[0,3,1,2])),r})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Pt(this.depthwiseInitializer),e.pointwiseInitializer=Pt(this.pointwiseInitializer),e.depthwiseRegularizer=xt(this.depthwiseRegularizer),e.pointwiseRegularizer=xt(this.pointwiseRegularizer),e.depthwiseConstraint=nr(this.depthwiseConstraint),e.pointwiseConstraint=nr(this.pointwiseConstraint),e}};M4.className="SeparableConv";var jA=class extends M4{constructor(e){super(2,e)}};jA.className="SeparableConv2D";ue.registerClass(jA);var F4=class extends vh{constructor(e){super(1,e),F4.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!pA(e.kernelSize,"number",1,1))throw new q(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}},HA=F4;HA.className="Conv1D";ue.registerClass(HA);var qA=class extends st{constructor(e){super(e),typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return K(()=>{if(e=Ge(e),this.dataFormat==="channelsLast"){let r=Oc(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Oc(r,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let r=Oc(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Oc(r,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};qA.className="Cropping2D";ue.registerClass(qA);var KA=class extends st{constructor(e){super(e),this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ut(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,EW(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],r=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,r]}else{let t=e[1]==null?null:this.size[0]*e[1],r=e[2]==null?null:this.size[1]*e[2];return[e[0],t,r,e[3]]}}call(e,t){return K(()=>{let r=Ge(e),n=r.shape;if(this.dataFormat==="channelsFirst"){r=nt(r,[0,2,3,1]);let a=this.size[0]*n[2],s=this.size[1]*n[3],i=this.interpolation==="nearest"?Ie.resizeNearestNeighbor(r,[a,s]):Ie.resizeBilinear(r,[a,s]);return nt(i,[0,3,1,2])}else{let a=this.size[0]*n[1],s=this.size[1]*n[2];return this.interpolation==="nearest"?Ie.resizeNearestNeighbor(r,[a,s]):Ie.resizeBilinear(r,[a,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};KA.className="UpSampling2D";ue.registerClass(KA);function mU(e,t,r=[1,1],n="valid",a,s){return K(()=>{a==null&&(a=ca()),Ut(a);let i=WA(e,a);if(e.rank!==4)throw new q(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new q(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=uh(i,t,r,n==="same"?"same":"valid","NHWC",s),a==="channelsFirst"&&(i=nt(i,[0,3,1,2])),i})}var XA=class extends VA{constructor(e){super(2,e),this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=Et(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=ar(e.depthwiseConstraint),this.depthwiseRegularizer=Rt(e.depthwiseRegularizer)}build(e){if(e=ft(e),e.length<4)throw new q(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new q(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let r=e[t],n=[this.kernelSize[0],this.kernelSize[1],r,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",n,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[r*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return K(()=>{e=Ge(e);let r=mU(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(r=ya(r,this.bias.read(),this.dataFormat)),this.activation!=null&&(r=this.activation.apply(r)),r})}computeOutputShape(e){e=ft(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],r=this.dataFormat==="channelsFirst"?e[3]:e[2],n=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,a=pa(t,this.kernelSize[0],this.padding,this.strides[0]),s=pa(r,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],n,a,s]:[e[0],a,s,n]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Pt(this.depthwiseInitializer),e.depthwiseRegularizer=xt(this.depthwiseRegularizer),e.depthwiseConstraint=nr(this.depthwiseRegularizer),e}};XA.className="DepthwiseConv2D";ue.registerClass(XA);function $4(e,t,r,n){if(Array.isArray(e)){if(t!=null||r!=null)throw new q("When inputs is an array, neither initialState or constants should be provided");n!=null&&(r=e.slice(e.length-n,e.length),e=e.slice(0,e.length-n)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function a(s){return s==null||Array.isArray(s)?s:[s]}return t=a(t),r=a(r),{inputs:e,initialState:t,constants:r}}function P4(e,t,r,n=!1,a,s,i=!1,o=!1){return K(()=>{let l=t.shape.length;if(l<3)throw new q(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(fa(2,l));if(t=nt(t,u),s!=null)throw new Ve("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),a!=null&&(a=me(me(a,"bool"),"float32"),a.rank===l-1&&(a=Ht(a,-1)),a=nt(a,u)),n&&(t=Fn(t,0),a!=null&&(a=Fn(a,0)));let d=[],h,p=r,c=t.shape[0],f=en(t),m;a!=null&&(m=en(a));for(let y=0;y<c;++y){let A=f[y],x=K(()=>e(A,p));if(a==null)h=x[0],p=x[1];else{let b=K(()=>{let w=m[y],T=he(Mn(w),w),S=le(L(x[0],w),L(p[0],T)),E=p.map((R,_)=>le(L(x[1][_],w),L(R,T)));return{output:S,newStates:E}});h=b.output,p=b.newStates}o&&d.push(h)}let g;return o&&(g=sr(d,1)),[h,g,p]})}var _4=class extends st{constructor(e){super(e);let t;if(e.cell==null)throw new q("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new e0({cells:e.cell}):t=e.cell,t.stateSize==null)throw new q("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new qt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return fa(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){b1(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let r=t[0],n;if(this.returnSequences?n=[e[0],e[1],r]:n=[e[0],r],this.returnState){let a=[];for(let s of t)a.push([e[0],s]);return[n].concat(a)}else return n}computeMask(e,t){return K(()=>{Array.isArray(t)&&(t=t[0]);let r=this.returnSequences?t:null;if(this.returnState){let n=this.states.map(a=>null);return[r].concat(n)}else return r})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let r=0;r<e;++r)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){if(this.numConstants!=null)throw new Ve("Constants support is not implemented in RNN yet.");b1(e)&&(e=e[0]),e=e;let t=this.stateful?e[0]:null,r=e.slice(2);this.inputSpec[0]=new qt({shape:[t,null,...r]});let n=[e[0]].concat(e.slice(2));this.cell.build(n);let a;if(Array.isArray(this.cell.stateSize)?a=this.cell.stateSize:a=[this.cell.stateSize],this.stateSpec!=null){if(!v.arraysEqual(this.stateSpec.map(s=>s.shape[s.shape.length-1]),a))throw new q(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=a.map(s=>new qt({shape:[null,s]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){K(()=>{if(!this.stateful)throw new Ba("Cannot call resetStates() on an RNN Layer that is not stateful.");let r=this.inputSpec[0].shape[0];if(r==null)throw new q("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(n=>Wt([r,n])):this.states_=[Wt([r,this.cell.stateSize])];else if(e==null)re(this.states_),this.keptStates!=null&&(re(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(n=>Wt([r,n])):this.states_[0]=Wt([r,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new q(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):re(this.states_);for(let n=0;n<this.states_.length;++n){let a=e[n],s=Array.isArray(this.cell.stateSize)?this.cell.stateSize[n]:this.cell.stateSize,i=[r,s];if(!v.arraysEqual(a.shape,i))throw new q(`State ${n} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${a.shape}`);this.states_[n]=a}}this.states_=this.states_.map(n=>hr(n.clone()))})}apply(e,t){let r=t==null?null:t.initialState,n=t==null?null:t.constants;t==null&&(t={});let a=$4(e,r,n,this.numConstants);e=a.inputs,r=a.initialState,n=a.constants;let s=[],i=[];if(r!=null){t.initialState=r,s=s.concat(r),this.stateSpec=[];for(let o of r)this.stateSpec.push(new qt({shape:o.shape}));i=i.concat(this.stateSpec)}if(n!=null&&(t.constants=n,s=s.concat(n),this.numConstants=n.length),s[0]instanceof oa){let o=[e].concat(s),l=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=l;let d=super.apply(o,t);return this.inputSpec=u,d}else return super.apply(e,t)}call(e,t){return K(()=>{let r=t==null?null:t.mask,n=t==null?null:t.training,a=t==null?null:t.initialState;e=Ge(e),a==null&&(this.stateful?a=this.states_:a=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(a.length!==s)throw new q(`RNN Layer has ${s} state(s) but was passed ${a.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:n},o=P4((p,c)=>{let f=this.cell.call([p].concat(c),i);return[f[0],f.slice(1)]},e,a,this.goBackwards,r,null,this.unroll,this.returnSequences),l=o[0],u=o[1],d=o[2];this.stateful&&this.resetStates(d,n);let h=this.returnSequences?u:l;return this.returnState?[h].concat(d):h})}getInitialState(e){return K(()=>{let t=Wt(e.shape);return t=ke(t,[1,2]),t=yh(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(r=>r>1?A1(t,[1,r]):t):this.cell.stateSize>1?[A1(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let r=this.cell.getConfig();return this.getClassName()===_4.className&&(t.cell={className:this.cell.getClassName(),config:r}),{...r,...e,...t}}static fromConfig(e,t,r={}){let n=t.cell,a=da(n,r);return new e(Object.assign(t,{cell:a}))}},Qa=_4;Qa.className="RNN";ue.registerClass(Qa);var wh=class extends st{},Jm=class extends wh{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,cr(this.units,"units"),this.activation=Ls(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Et(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Et(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Et(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Rt(e.kernelRegularizer),this.recurrentRegularizer=Rt(e.recurrentRegularizer),this.biasRegularizer=Rt(e.biasRegularizer),this.kernelConstraint=ar(e.kernelConstraint),this.recurrentConstraint=ar(e.recurrentConstraint),this.biasConstraint=ar(e.biasConstraint),this.dropout=bu([1,Os([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=bu([1,Os([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=ft(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return K(()=>{if(e=e,e.length!==2)throw new q(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let r=e[1];e=e[0];let n=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Bs({ones:()=>Mn(e),rate:this.dropout,training:n,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Bs({ones:()=>Mn(r),rate:this.recurrentDropout,training:n,dropoutFunc:this.dropoutFunc}));let a,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?a=Na(L(e,s),this.kernel.read()):a=Na(e,this.kernel.read()),this.bias!=null&&(a=ya(a,this.bias.read())),i!=null&&(r=L(r,i));let o=le(a,Na(r,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Ds(this.activation),useBias:this.useBias,kernelInitializer:Pt(this.kernelInitializer),recurrentInitializer:Pt(this.recurrentInitializer),biasInitializer:Pt(this.biasInitializer),kernelRegularizer:xt(this.kernelRegularizer),recurrentRegularizer:xt(this.recurrentRegularizer),biasRegularizer:xt(this.biasRegularizer),activityRegularizer:xt(this.activityRegularizer),kernelConstraint:nr(this.kernelConstraint),recurrentConstraint:nr(this.recurrentConstraint),biasConstraint:nr(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return{...e,...t}}};Jm.className="SimpleRNNCell";ue.registerClass(Jm);var ZA=class extends Qa{constructor(e){e.cell=new Jm(e),super(e)}call(e,t){return K(()=>{this.cell.dropoutMask!=null&&(re(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(re(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let r=t==null?null:t.mask,n=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:r,training:n,initialState:a})})}static fromConfig(e,t){return new e(t)}};ZA.className="SimpleRNN";ue.registerClass(ZA);var Qm=class extends wh{constructor(e){if(super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new q("GRUCell does not support reset_after parameter set to true.");this.units=e.units,cr(this.units,"units"),this.activation=Ls(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Ls(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Et(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Et(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Et(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Rt(e.kernelRegularizer),this.recurrentRegularizer=Rt(e.recurrentRegularizer),this.biasRegularizer=Rt(e.biasRegularizer),this.kernelConstraint=ar(e.kernelConstraint),this.recurrentConstraint=ar(e.recurrentConstraint),this.biasConstraint=ar(e.biasConstraint),this.dropout=bu([1,Os([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=bu([1,Os([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=ft(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return K(()=>{if(e=e,e.length!==2)throw new q(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let r=t.training==null?!1:t.training,n=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Bs({ones:()=>Mn(e),rate:this.dropout,training:r,count:3,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Bs({ones:()=>Mn(n),rate:this.recurrentDropout,training:r,count:3,dropoutFunc:this.dropoutFunc}));let a=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0<this.dropout&&this.dropout<1&&(e=L(e,a[0]));let u=Na(e,this.kernel.read());this.useBias&&(u=ya(u,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(n=L(n,s[0]));let d=this.recurrentKernel.read(),[h,p]=Kt(d,[2*this.units,this.units],d.rank-1),c=Na(n,h),[f,m,g]=Kt(u,3,u.rank-1),[y,A]=Kt(c,2,c.rank-1);i=this.recurrentActivation.apply(le(f,y)),o=this.recurrentActivation.apply(le(m,A));let x=Na(L(o,n),p);l=this.activation.apply(le(g,x));let b=le(L(i,n),L(le(1,zt(i)),l));return[b,b]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Ds(this.activation),recurrentActivation:Ds(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Pt(this.kernelInitializer),recurrentInitializer:Pt(this.recurrentInitializer),biasInitializer:Pt(this.biasInitializer),kernelRegularizer:xt(this.kernelRegularizer),recurrentRegularizer:xt(this.recurrentRegularizer),biasRegularizer:xt(this.biasRegularizer),activityRegularizer:xt(this.activityRegularizer),kernelConstraint:nr(this.kernelConstraint),recurrentConstraint:nr(this.recurrentConstraint),biasConstraint:nr(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return{...e,...t}}};Qm.className="GRUCell";ue.registerClass(Qm);var YA=class extends Qa{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Qm(e),super(e)}call(e,t){return K(()=>{this.cell.dropoutMask!=null&&(re(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(re(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let r=t==null?null:t.mask,n=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:r,training:n,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};YA.className="GRU";ue.registerClass(YA);var kh=class extends wh{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,cr(this.units,"units"),this.activation=Ls(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Ls(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Et(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Et(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Et(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=Rt(e.kernelRegularizer),this.recurrentRegularizer=Rt(e.recurrentRegularizer),this.biasRegularizer=Rt(e.biasRegularizer),this.kernelConstraint=ar(e.kernelConstraint),this.recurrentConstraint=ar(e.recurrentConstraint),this.biasConstraint=ar(e.biasConstraint),this.dropout=bu([1,Os([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=bu([1,Os([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=ft(e);let r=e[e.length-1];this.kernel=this.addWeight("kernel",[r,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let n;if(this.useBias){if(this.unitForgetBias){let a=this.biasInitializer,s=this.units;n=new(t=class extends Hn{apply(i,o){let l=a.apply([s]),u=new Dm().apply([s]),d=a.apply([s*2]);return Z3(Z3(l,u),d)}},t.className="CustomInit",t)}else n=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,n,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return K(()=>{let r=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new q(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=e[1],a=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Bs({ones:()=>Mn(e),rate:this.dropout,training:r,count:4,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Bs({ones:()=>Mn(n),rate:this.recurrentDropout,training:r,count:4,dropoutFunc:this.dropoutFunc}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,u,d;0<this.dropout&&this.dropout<1&&(e=L(e,s[0]));let h=Na(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(n=L(n,i[0])),h=le(h,Na(n,this.recurrentKernel.read())),this.useBias&&(h=ya(h,this.bias.read()));let[p,c,f,m]=Kt(h,4,h.rank-1);o=this.recurrentActivation.apply(p),l=this.recurrentActivation.apply(c),u=le(L(l,a),L(o,this.activation.apply(f))),d=this.recurrentActivation.apply(m);let g=L(d,this.activation.apply(u));return[g,g,u]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Ds(this.activation),recurrentActivation:Ds(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Pt(this.kernelInitializer),recurrentInitializer:Pt(this.recurrentInitializer),biasInitializer:Pt(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:xt(this.kernelRegularizer),recurrentRegularizer:xt(this.recurrentRegularizer),biasRegularizer:xt(this.biasRegularizer),activityRegularizer:xt(this.activityRegularizer),kernelConstraint:nr(this.kernelConstraint),recurrentConstraint:nr(this.recurrentConstraint),biasConstraint:nr(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return{...e,...t}}};kh.className="LSTMCell";ue.registerClass(kh);var JA=class extends Qa{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new kh(e),super(e)}call(e,t){return K(()=>{this.cell.dropoutMask!=null&&(re(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(re(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let r=t==null?null:t.mask,n=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:r,training:n,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};JA.className="LSTM";ue.registerClass(JA);var e0=class extends wh{constructor(e){super(e),this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return K(()=>{e=e;let r=e.slice(1),n=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?n.push(r.splice(0,i.stateSize.length)):n.push(r.splice(0,1));n.reverse();let a=[],s;for(let i=0;i<this.cells.length;++i){let o=this.cells[i];r=n[i],i===0?s=[e[0]].concat(r):s=[s[0]].concat(r),s=o.call(s,t),a.push(s.slice(1))}r=[];for(let i of a.slice().reverse())r.push(...i);return[s[0]].concat(r)})}build(e){b1(e)&&(e=e[0]),e=e;let t;this.cells.forEach((r,n)=>{xo(`RNNCell_${n}`,()=>{r.build(e),Array.isArray(r.stateSize)?t=r.stateSize[0]:t=r.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=n=>({className:n.getClassName(),config:n.getConfig()}),r={cells:this.cells.map(t)};return{...e,...r}}static fromConfig(e,t,r={}){let n=[];for(let a of t.cells)n.push(da(a,r));return new e({cells:n})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let r of this.cells)t.push(...r.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return v1(e)}setWeights(e){let t=[];for(let r of this.cells){let n=r.weights.length,a=e.splice(n);for(let s=0;s<r.weights.length;++s)t.push([r.weights[s],a[s]])}SA(t)}};e0.className="StackedRNNCells";ue.registerClass(e0);function Bs(e){let{ones:t,rate:r,training:n=!1,count:a=1,dropoutFunc:s}=e,i=()=>s!=null?s(t(),r):G7(t(),r),o=()=>xh(i,t,n);return!a||a<=1?hr(o().clone()):Array(a).fill(void 0).map(o).map(l=>hr(l.clone()))}var z4=class extends Qa{constructor(e){if(e.unroll)throw new Ve("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Ve("It is not possible at the moment to stack convolutional cells.");super(e),this.inputSpec=[new qt({ndim:5})]}call(e,t){return K(()=>{if(this.cell.dropoutMask!=null&&(re(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(re(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new q("ConvRNN2D cell does not support constants");let r=t==null?null:t.mask,n=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:r,training:n,initialState:a})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return K(()=>{let{stateSize:t}=this.cell,r=e.shape,n=this.computeSingleOutputShape(r),a=[n[0],...n.slice(2)],s=Wt(a);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){K(()=>{if(!this.stateful)throw new Ba("Cannot call resetStates() on an RNN Layer that is not stateful.");let r=this.inputSpec[0].shape,n=this.computeSingleOutputShape(r),a=[n[0],...n.slice(2)];if(r[0]==null)throw new q("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Wt(a)):this.states_=[Wt(a)];else if(e==null)re(this.states_),this.keptStates!=null&&(re(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Wt(a)):this.states_[0]=Wt(a);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new q(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):re(this.states_);for(let s=0;s<this.states_.length;++s){let i=e[s],o=a;if(!v.arraysEqual(i.shape,o))throw new q(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${i.shape}`);this.states_[s]=i}}this.states_=this.states_.map(s=>hr(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:r,kernelSize:n,padding:a,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],u=e[o?4:3],d=pa(l,n[0],a,s[0],i[0]),h=pa(u,n[1],a,s[1],i[1]);return[...e.slice(0,2),...o?[r,d,h]:[d,h,r]]}};z4.className="ConvRNN2D";var t0=class extends kh{constructor(e){let{filters:t,kernelSize:r,strides:n,padding:a,dataFormat:s,dilationRate:i}=e;super({...e,units:t}),this.filters=t,cr(this.filters,"filters"),this.kernelSize=pu(r,2,"kernelSize"),this.kernelSize.forEach(o=>cr(o,"kernelSize")),this.strides=pu(n||1,2,"strides"),this.strides.forEach(o=>cr(o,"strides")),this.padding=a||"valid",Pn(this.padding),this.dataFormat=s||"channelsLast",Ut(this.dataFormat),this.dilationRate=pu(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>cr(o,"dilationRate"))}build(e){var t;e=ft(e);let r=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[r]==null)throw new q(`The channel dimension of the input should be defined. Found ${e[r]}`);let n=e[r],a=4,s=this.kernelSize.concat([n,this.filters*a]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*a]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,u=this.filters;o=new(t=class extends Hn{apply(d,h){let p=l.apply([u]),c=pn([u]),f=l.apply([u*2]);return yA([p,c,f])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*a],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return K(()=>{if(e.length!==3)throw new q(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let r=t.training||!1,n=e[0],a=e[1],s=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Bs({ones:()=>Mn(n),rate:this.dropout,training:r,count:i,dropoutFunc:this.dropoutFunc}));let o=this.dropoutMask,l=(V,ee,J)=>!ee||!ee[J]?V:L(ee[J],V),u=l(n,o,0),d=l(n,o,1),h=l(n,o,2),p=l(n,o,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Bs({ones:()=>Mn(a),rate:this.recurrentDropout,training:r,count:i,dropoutFunc:this.dropoutFunc}));let c=this.recurrentDropoutMask,f=l(a,c,0),m=l(a,c,1),g=l(a,c,2),y=l(a,c,3),A=3,[x,b,w,T]=Kt(this.kernel.read(),i,A),[S,E,R,_]=this.useBias?Kt(this.bias.read(),i):[null,null,null,null];u=this.inputConv(u,x,S,this.padding),d=this.inputConv(d,b,E,this.padding),h=this.inputConv(h,w,R,this.padding),p=this.inputConv(p,T,_,this.padding);let[M,I,O,z]=Kt(this.recurrentKernel.read(),i,A);f=this.recurrentConv(f,M),m=this.recurrentConv(m,I),g=this.recurrentConv(g,O),y=this.recurrentConv(y,z);let j=this.recurrentActivation.apply(le(u,f)),X=this.recurrentActivation.apply(le(d,m)),D=le(L(X,s),L(j,this.activation.apply(le(h,g)))),Q=L(this.recurrentActivation.apply(le(p,y)),this.activation.apply(D));return[Q,Q,D]})}getConfig(){let{units:e,...t}=super.getConfig(),r={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return{...t,...r}}inputConv(e,t,r,n){let a=$s(e,t,this.strides,n||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return r?ya(a,r,this.dataFormat):a}recurrentConv(e,t){return $s(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};t0.className="ConvLSTM2DCell";ue.registerClass(t0);var QA=class extends z4{constructor(e){let t=new t0(e);super({...e,cell:t})}static fromConfig(e,t){return new e(t)}};QA.className="ConvLSTM2D";ue.registerClass(QA);var r0=class extends st{constructor(e){super(e),this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,r=[];for(let n=0;n<this.noiseShape.length;++n)r.push(this.noiseShape[n]==null?t[n]:this.noiseShape[n]);return r}call(e,t){return K(()=>{this.invokeCallHook(e,t);let r=Ge(e);if(0<this.rate&&this.rate<1){let n=t.training==null?!1:t.training,a=this.getNoiseShape(r);return xh(()=>G7(r,this.rate,a,this.seed),()=>r,n)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};r0.className="Dropout";ue.registerClass(r0);var ex=class extends r0{constructor(e){super(e),this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};ex.className="SpatialDropout1D";ue.registerClass(ex);var tx=class extends st{constructor(e){if(super(e),this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,cr(this.units,"units"),this.activation=Ls(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=Et(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=Et(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=ar(e.kernelConstraint),this.biasConstraint=ar(e.biasConstraint),this.kernelRegularizer=Rt(e.kernelRegularizer),this.biasRegularizer=Rt(e.biasRegularizer),this.activityRegularizer=Rt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=ft(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=ft(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return K(()=>{this.invokeCallHook(e,t);let r=Ge(e),n=O7(this.activation.getClassName()),a;return n!=null?a=Na(r,this.kernel.read(),n,this.bias?this.bias.read():null):(a=Na(r,this.kernel.read()),this.bias!=null&&(a=ya(a,this.bias.read())),this.activation!=null&&(a=this.activation.apply(a))),a})}getConfig(){let e={units:this.units,activation:Ds(this.activation),useBias:this.useBias,kernelInitializer:Pt(this.kernelInitializer),biasInitializer:Pt(this.biasInitializer),kernelRegularizer:xt(this.kernelRegularizer),biasRegularizer:xt(this.biasRegularizer),activityRegularizer:xt(this.activityRegularizer),kernelConstraint:nr(this.kernelConstraint),biasConstraint:nr(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};tx.className="Dense";ue.registerClass(tx);var rx=class extends st{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=ft(e);for(let t of e.slice(1))if(t==null)throw new q(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Ts(e,1)]}call(e,t){return K(()=>{this.invokeCallHook(e,t);let r=Ge(e);if(this.dataFormat==="channelsFirst"&&r.rank>1){let n=[0];for(let a=2;a<r.rank;++a)n.push(a);n.push(1),r=nt(r,n)}return _W(r)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};rx.className="Flatten";ue.registerClass(rx);var nx=class extends st{constructor(e){super(e),this.supportsMasking=!0,this.activation=Ls(e.activation)}call(e,t){return K(()=>{this.invokeCallHook(e,t);let r=Ge(e);return this.activation.apply(r)})}getConfig(){let e={activation:Ds(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};nx.className="Activation";ue.registerClass(nx);var ax=class extends st{constructor(e){super(e),this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return K(()=>(e=Ge(e),$W(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};ax.className="RepeatVector";ue.registerClass(ax);var sx=class extends st{constructor(e){super(e),this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let r="Total size of new array must be unchanged.",n=t.slice(),a=1,s=null;for(let o=0;o<n.length;++o){let l=n[o];if(this.isUnknown(l))if(s===null)s=o;else throw new q("Can only specifiy one unknown dimension.");else a*=l}let i=Ts(e);if(s!==null){if(a===0||i%a!==0)throw new q(r);n[s]=i/a}else if(i!==a)throw new q(r);return n}computeOutputShape(e){let t=!1;for(let r=0;r<e.length;++r)if(this.isUnknown(e[r])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return K(()=>{this.invokeCallHook(e,t);let r=Ge(e),n=r.shape,a=n.slice(0,1).concat(this.fixUnknownDimension(n.slice(1),this.targetShape));return G(r,a)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};sx.className="Reshape";ue.registerClass(sx);var ix=class extends st{constructor(e){if(super(e),e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=fa(1,e.dims.length+1);if(!v.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new qt({ndim:this.dims.length+1})]}computeOutputShape(e){e=ft(e);let t=e.slice();return this.dims.forEach((r,n)=>{t[n+1]=e[r]}),t}call(e,t){return nt(Ge(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};ix.className="Permute";ue.registerClass(ix);var ox=class extends st{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let r=Ge(e),n=-1;return ff(Au(r,this.maskValue),n)}call(e,t){return K(()=>{this.invokeCallHook(e,t);let r=Ge(e),n=-1,a=!0,s=ff(Au(r,this.maskValue),n,a);return L(r,me(s,r.dtype))})}};ox.className="Masking";ue.registerClass(ox);var lx=class extends st{constructor(e){if(super(e),this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(It(e.inputLength))}this.inputDim=e.inputDim,cr(this.inputDim,"inputDim"),this.outputDim=e.outputDim,cr(this.outputDim,"outputDim"),this.embeddingsInitializer=Et(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=Rt(e.embeddingsRegularizer),this.activityRegularizer=Rt(e.activityRegularizer),this.embeddingsConstraint=ar(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return K(()=>this.maskZero?(e=Ge(e),Au(e,at(e))):null)}computeOutputShape(e){if(e=ft(e),this.inputLength==null)return[...e,this.outputDim];let t=It(this.inputLength);if(t.length!==e.length-1)throw new q(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let r=0;for(let n=0;n<t.length;++n){let a=t[n],s=e[n+1];if(a!=null&&s!=null&&a!==s)throw new q(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);a==null&&(t[r]=s),r++}}return[e[0],...t,this.outputDim]}call(e,t){return K(()=>{this.invokeCallHook(e,t);let r=Ge(e);r.dtype!=="int32"&&(r=zm(r,"int32"));let n=U7(this.embeddings.read(),G(r,[r.size]));return G(n,ft(this.computeOutputShape(r.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Pt(this.embeddingsInitializer),embeddingsRegularizer:xt(this.embeddingsRegularizer),activityRegularizer:xt(this.activityRegularizer),embeddingsConstraint:nr(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};lx.className="Embedding";ue.registerClass(lx);var Cl=class extends st{constructor(e){super(e||{}),this.supportsMasking=!0}mergeFunction(e){throw new Ve}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let r=e.slice(0,e.length-t.length);for(let n=0;n<t.length;++n){let a=e[e.length-t.length+n],s=t[n];if(a==null||s==null||a<0||s<0)r.push(null);else if(a===1)r.push(s);else if(s===1)r.push(a);else{if(a!==s)throw new q("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));r.push(a)}}return r}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[ft(e)]),e=e,e.length<2)throw new q(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let a of e)a!=null&&a[0]!==null&&t.push(a[0]);if(t=Ss(t),t.length>1)throw new q(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let r=e[0]==null?null:e[0].slice(1);for(let a=1;a<e.length;++a){let s=e[a]==null?null:e[a].slice(1);r=this.computeElementwiseOpOutputShape(r,s)}let n=e.map(a=>a.length);e.indexOf(null)===-1&&Ss(n).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return K(()=>{if(e=e,this.reshapeRequired){let r=[],n=e.map(a=>a.rank);if(n.indexOf(null)===-1){let a=Os(n);for(let s of e){let i=s.rank;for(let o=0;o<a-i;++o)s=yh(s,1);r.push(s)}return this.mergeFunction(r)}else{let a=!1;for(let o of e){let l=o.rank;if(l==null){let u=o.shape,d=u[0],h=u.slice(1).concat([d]),p=G(o,[d].concat(Ts(u.slice(1))));p=nt(p,[1,0]),p=G(p,h),r.push(p),a=!0}else if(l>1){let u=fa(1,l).concat([0]);r.push(nt(o,u)),a=!0}else r.push(o)}let s=this.mergeFunction(r),i=s.rank;if(a){if(i==null){let o=s.shape,l=o.length,u=o[l-1],d=[u].concat(o.slice(0,o.length-1));s=G(nt(G(s,[-1,u]),[1,0]),d)}else if(i>1){let o=[i-1].concat(fa(0,i-1));s=nt(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let n=1;n<e.length;++n){let a=e[n]==null?null:e[n].slice(1);t=this.computeElementwiseOpOutputShape(t,a)}let r=[];for(let n of e)n!=null&&n[0]!==null&&r.push(n[0]);return r=Ss(r),r.length===1?t=r.concat(t):t=[null].concat(t),t}computeMask(e,t){return K(()=>{if(t==null)return null;if(!Array.isArray(t))throw new q("`mask` should be an Array");if(!Array.isArray(e))throw new q("`inputs` should be an Array");if(t.length!==e.length)throw new q(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(n=>n==null))return null;t=t.map(n=>n==null?n:Ht(n,0));let r=t[0];for(let n=1;n<t.length-1;++n)r=ha(r,t[n]);return r})}},ux=class extends Cl{constructor(e){super(e)}mergeFunction(e){return K(()=>{let t=e[0].clone();for(let r=1;r<e.length;++r)t=le(t,e[r]);return t})}};ux.className="Add";ue.registerClass(ux);var dx=class extends Cl{constructor(e){super(e)}mergeFunction(e){return K(()=>{let t=e[0].clone();for(let r=1;r<e.length;++r)t=L(t,e[r]);return t})}};dx.className="Multiply";ue.registerClass(dx);var px=class extends Cl{constructor(e){super(e)}mergeFunction(e){return K(()=>{let t=e[0].clone();for(let r=1;r<e.length;++r)t=le(t,e[r]);return L(1/e.length,t)})}};px.className="Average";ue.registerClass(px);var hx=class extends Cl{constructor(e){super(e)}mergeFunction(e){return K(()=>{let t=e[0];for(let r=1;r<e.length;++r)t=Za(t,e[r]);return t})}};hx.className="Maximum";ue.registerClass(hx);var cx=class extends Cl{constructor(e){super(e)}mergeFunction(e){return K(()=>{let t=e[0];for(let r=1;r<e.length;++r)t=hh(t,e[r]);return t})}};cx.className="Minimum";ue.registerClass(cx);var fx=class extends Cl{constructor(e){super(e),this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new q("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let n of e)if(n!=null){t=!1;break}if(t)return;let r=[];for(let n=0;n<e.length;++n){let a=e[n].slice();a.splice(this.axis,1);let s=!1;for(let i of r)if(v.arraysEqual(i,a)){s=!0;break}s||r.push(a)}if(r.length>1)throw new q("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return K(()=>yA(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new q("A `Concatenate` layer should be called on a list of inputs.");let t=e,r=t[0].slice(),n=this.axis<0?r.length+this.axis:this.axis;for(let a of t.slice(1)){if(r[n]==null||a[n]==null){r[n]=null;break}r[n]+=a[n]}return r}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new q("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new q("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new q(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return K(()=>{let r=!0;if(t.forEach(s=>{if(s!=null){r=!1;return}}),r)return null;let n=[];for(let s=0;s<e.length;++s)t[s]==null?n.push(me(Mn(e[s]),"bool")):t[s].rank<e[s].rank?n.push(Ht(t[s],-1)):n.push(t[s]);let a=kt(n,this.axis);return N2(a,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};fx.className="Concatenate";ue.registerClass(fx);function ip(e,t){for(;e<0;)e+=t;return e}function gU(e,t,r){if(e.shape.length>3||t.shape.length>3)throw new Ve("batchDot is not implemented for tensors of 4D or higher rank yet");if(v.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),v.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof r=="number"&&(r=[r,r]),e.dtype==="complex64"||t.dtype==="complex64")throw new Ve("batchDot is not implemented for complex64-type Tensors yet.");let n=e.shape.length,a=t.shape.length;r==null&&(r=[n-1,a-2]);let s=r;return K(()=>{let i;if(n>a){i=n-a;let l=[];for(let u=0;u<i;++u)l.push(1);t=G(t,t.shape.concat(l))}else if(a>n){i=a-n;let l=[];for(let u=0;u<i;++u)l.push(1);e=G(e,e.shape.concat(l))}else i=0;let o;if(e.shape.length===2&&t.shape.length===2)s[0]===s[1]?o=ke(L(e,t),s[0]):o=ke(L(nt(e,[1,0]),t),s[1]);else{let l=s[0]!==e.shape.length-1,u=s[1]===t.shape.length-1;o=Je(e,t,l,u)}if(i>0){let l;n>a?l=n+a-3:l=n-1;let u=[];for(let d=l;d<l+i;++d)u.push(d);o=et(o,u)}return o.shape.length===1&&(o=Ht(o,1)),o})}var mx=class extends Cl{constructor(e){super(e),this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],r=e[1];if(t.length>3||r.length>3)throw new Ve("Dot layer does not support tensors of 4D or higher rank yet.");let n=this.interpretAxes(t,r);if(t[n[0]]!==r[n[1]])throw new q(`Dimension incompatibility: ${t[n[0]]} !== ${r[n[1]]}`)}mergeFunction(e){if(e.length!==2)throw new q(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],r=e[1],n;return Array.isArray(this.axes)?n=this.axes.map((a,s)=>ip(a,e[s].shape.length)):n=[ip(this.axes,t.shape.length),ip(this.axes,r.shape.length)],this.normalize&&(t=Af(t,n[0]),r=Af(r,n[1])),gU(t,r,n)}interpretAxes(e,t){let r;return Array.isArray(this.axes)?r=this.axes:r=[ip(this.axes,e.length),ip(this.axes,t.length)],r}computeOutputShape(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),r=e[1].slice();if(t.length>3||r.length>3)throw new Ve("Dot layer does not support tensors of 4D or higher rank yet.");let n=this.interpretAxes(t,r);t.splice(n[0],1),r.splice(n[1],1),r.splice(0,1);let a=t.concat(r);return a.length===1&&a.push(1),a}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};mx.className="Dot";ue.registerClass(mx);var gx=class extends st{constructor(e){super(e),this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return K(()=>{this.invokeCallHook(e,t);let r=Ge(e);return xh(()=>le(Om(r.shape,0,this.stddev),r),()=>r,t.training||!1)})}};gx.className="GaussianNoise";ue.registerClass(gx);var yx=class extends st{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return K(()=>{this.invokeCallHook(e,t);let r=Ge(e);return this.rate>0&&this.rate<1?xh(()=>{let n=Math.sqrt(this.rate/(1-this.rate));return L(r,Om(r.shape,1,n))},()=>r,t.training||!1):r})}};yx.className="GaussianDropout";ue.registerClass(yx);var Ax=class extends st{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Ge(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return K(()=>{if(this.rate<1&&this.rate>0){let r=this._getNoiseShape(e);return xh(()=>{let n=Ge(e),a=1.6732632423543772,s=1.0507009873554805,i=-a*s,o=kl(ld(r),this.rate);o=zm(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,u=-l*i*this.rate,d=le(L(n,o),L(le(o,-1),i));return le(L(d,l),u)},()=>Ge(e),t.training||!1)}return e})}};Ax.className="AlphaDropout";ue.registerClass(Ax);function _p(e,t,r,n,a,s=.001){let i;if(e.rank===2)i=Ek(e,t,r,n,a,s);else if(e.rank===3)i=Rk(e,t,r,n,a,s);else if(e.rank===4)i=Mk(e,t,r,n,a,s);else throw new Ve(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function yU(e,t,r,n,a=.001){return K(()=>{let s=xm(e,n),i=s.mean,o=s.variance;return[_p(e,i,o,r,t,a),i,o]})}function AU(e,t,r,n,a=.001){return K(()=>{let s=xm(e,n),i=s.mean,o=s.variance,l=[];for(let c of fa(0,e.rank))n.indexOf(c)!==-1?l.push(1):l.push(e.shape[c]);let u=G(i,l),d=G(o,l),h=t==null?null:G(t,l),p=r==null?null:G(r,l);return[_p(e,u,d,p,h,a),i,o]})}function xU(e,t,r,n,a=.001){return v.arraysEqual(n.slice().sort(),fa(0,e.rank-1))?yU(e,t,r,n,a):AU(e,t,r,n,a)}var xx=class extends st{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Et(e.betaInitializer||"zeros"),this.gammaInitializer=Et(e.gammaInitializer||"ones"),this.movingMeanInitializer=Et(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=Et(e.movingVarianceInitializer||"ones"),this.betaConstraint=ar(e.betaConstraint),this.gammaConstraint=ar(e.gammaConstraint),this.betaRegularizer=Rt(e.betaRegularizer),this.gammaRegularizer=Rt(e.gammaRegularizer)}build(e){e=ft(e);let t=this.axis>=0?this.axis:this.axis+e.length,r=e[t];if(r==null)throw new q(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new qt({ndim:e.length,axes:{[t]:r}})];let n=[r];this.scale&&(this.gamma=this.addWeight("gamma",n,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",n,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",n,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",n,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return K(()=>{let r=t.training==null?!1:t.training,n=Ge(e),a=n.shape,s=a.length,i=fa(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=No(1,s);l[o]=a[o];let u=i.slice();u.sort();let d=!v.arraysEqual(u,fa(0,s).slice(0,s-1)),h=()=>{if(d){let g=G(this.movingMean.read(),l),y=G(this.movingVariance.read(),l),A=this.center?G(this.beta.read(),l):null,x=this.scale?G(this.gamma.read(),l):null;return _p(n,g,y,A,x,this.epsilon)}else return _p(n,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!r)return h();let[p,c,f]=xU(n,this.gamma.read(),this.beta.read(),i,this.epsilon),m=(g,y,A)=>{K(()=>{let x=1-A,b=g.read(),w=L(he(b,y),x);g.write(he(b,w))})};return m(this.movingMean,c,this.momentum),m(this.movingVariance,f,this.momentum),p})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Pt(this.betaInitializer),gammaInitializer:Pt(this.gammaInitializer),movingMeanInitializer:Pt(this.movingMeanInitializer),movingVarianceInitializer:Pt(this.movingVarianceInitializer),betaRegularizer:xt(this.betaRegularizer),gammaRegularizer:xt(this.gammaRegularizer),betaConstraint:nr(this.betaConstraint),gammaConstraint:nr(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};xx.className="BatchNormalization";ue.registerClass(xx);var bx=class extends st{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Et(e.betaInitializer||"zeros"),this.gammaInitializer=Et(e.gammaInitializer||"ones"),this.betaRegularizer=Rt(e.betaRegularizer),this.gammaRegularizer=Rt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=ft(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let a=0;a<this.axis.length;++a)this.axis[a]<0&&(this.axis[a]+=t);for(let a of this.axis)if(a<0||a>=t)throw new Error(`Invalid axis: ${a}`);if(this.axis.length!==Ss(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let r=this.axis.map(a=>e[a]),n=!0;this.scale?this.gamma=this.addWeight("gamma",r,"float32",this.gammaInitializer,this.gammaRegularizer,n):this.gamma=null,this.center?this.beta=this.addWeight("beta",r,"float32",this.betaInitializer,this.betaRegularizer,n):this.beta=null,this.built=!0}call(e,t){let r=Ge(e),n=r.shape,a=n.length;return K(()=>{let{mean:s,variance:i}=xm(r,this.axis,!0),o=No(1,a);for(let c of this.axis)o[c]=n[c];let l=c=>c!=null&&c.shape.length!==a?G(c,o):c,u=l(this.gamma.read()),d=l(this.beta.read()),h=[],p=[];for(let c=0;c<a;++c)this.axis.indexOf(c)!==-1?(h.push(n[c]),p.push(1)):(h.push(1),p.push(n[c]));return s=Dn(s,h),i=Dn(i,h),u=Dn(u,p),d=Dn(d,p),_p(r,s,i,d,u,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Pt(this.betaInitializer),gammaInitializer:Pt(this.gammaInitializer),betaRegularizer:xt(this.betaRegularizer),gammaRegularizer:xt(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};bx.className="LayerNormalization";ue.registerClass(bx);function bU(e,t,r){return K(()=>{if(e.rank!==4)throw new q(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new q("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(r==null&&(r=ca()),r!=="channelsLast"&&r!=="channelsFirst")throw new q(`Unknown data format: ${r}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let n;return r==="channelsFirst"?n=[[0,0],[0,0],t[0],t[1]]:n=[[0,0],t[0],t[1],[0,0]],Gn(e,n)})}var vx=class extends st{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?ca():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new q(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,r;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],r=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new q(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new q(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);r=e.padding[1]}this.padding=[t,r]}this.inputSpec=[new qt({ndim:4})]}computeOutputShape(e){e=ft(e);let t,r;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?r=e[3]+this.padding[1][0]+this.padding[1][1]:r=null,[e[0],e[1],t,r]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?r=e[2]+this.padding[1][0]+this.padding[1][1]:r=null,[e[0],t,r,e[3]])}call(e,t){return K(()=>bU(Ge(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};vx.className="ZeroPadding2D";ue.registerClass(vx);function n0(e,t,r,n,a,s){return K(()=>{Ut(a),L7(s),Pn(n),r==null&&(r=[1,1]),n==null&&(n="valid"),a==null&&(a=ca()),s==null&&(s="max"),e=WA(e,a);let i,o=n==="same"?"same":"valid";return s==="max"?i=Am(e,t,r,o):i=dm(e,t,r,o),a==="channelsFirst"&&(i=nt(i,[0,3,1,2])),i})}function O4(e,t,r,n,a,s){return K(()=>{Ut(a),L7(s),Pn(n),r==null&&(r=[1,1,1]),n==null&&(n="valid"),a==null&&(a=ca()),s==null&&(s="max"),e=C4(e,a);let i,o=n==="same"?"same":"valid";return s==="max"?i=U2(e,t,r,o):i=E2(e,t,r,o),a==="channelsFirst"&&(i=nt(i,[0,4,1,2,3])),i})}var D4=class extends st{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new q(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(cr(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new q(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);cr(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,Pn(this.padding),this.inputSpec=[new qt({ndim:3})]}computeOutputShape(e){e=ft(e);let t=pa(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return K(()=>{this.invokeCallHook(e,t),e=yh(Ge(e),2);let r=this.poolingFunction(Ge(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return et(r,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},wx=class extends D4{constructor(e){super(e)}poolingFunction(e,t,r,n,a){return Ut(a),Pn(n),n0(e,t,r,n,a,"max")}};wx.className="MaxPooling1D";ue.registerClass(wx);var kx=class extends D4{constructor(e){super(e)}poolingFunction(e,t,r,n,a){return Ut(a),Pn(n),n0(e,t,r,n,a,"avg")}};kx.className="AveragePooling1D";ue.registerClass(kx);var L4=class extends st{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new q(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];cr(this.poolSize,"poolSize"),cr(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ut(this.dataFormat),Pn(this.padding),this.inputSpec=[new qt({ndim:4})]}computeOutputShape(e){e=ft(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],r=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=pa(t,this.poolSize[0],this.padding,this.strides[0]),r=pa(r,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,r]:[e[0],t,r,e[3]]}call(e,t){return K(()=>(this.invokeCallHook(e,t),this.poolingFunction(Ge(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Ix=class extends L4{constructor(e){super(e)}poolingFunction(e,t,r,n,a){return Ut(a),Pn(n),n0(e,t,r,n,a,"max")}};Ix.className="MaxPooling2D";ue.registerClass(Ix);var Sx=class extends L4{constructor(e){super(e)}poolingFunction(e,t,r,n,a){return Ut(a),Pn(n),n0(e,t,r,n,a,"avg")}};Sx.className="AveragePooling2D";ue.registerClass(Sx);var B4=class extends st{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new q(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];cr(this.poolSize,"poolSize"),cr(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ut(this.dataFormat),Pn(this.padding),this.inputSpec=[new qt({ndim:5})]}computeOutputShape(e){e=ft(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],r=this.dataFormat==="channelsFirst"?e[3]:e[2],n=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=pa(t,this.poolSize[0],this.padding,this.strides[0]),r=pa(r,this.poolSize[1],this.padding,this.strides[1]),n=pa(n,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,r,n]:[e[0],t,r,n,e[4]]}call(e,t){return K(()=>(this.invokeCallHook(e,t),this.poolingFunction(Ge(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Tx=class extends B4{constructor(e){super(e)}poolingFunction(e,t,r,n,a){return Ut(a),Pn(n),O4(e,t,r,n,a,"max")}};Tx.className="MaxPooling3D";ue.registerClass(Tx);var Nx=class extends B4{constructor(e){super(e)}poolingFunction(e,t,r,n,a){return Ut(a),Pn(n),O4(e,t,r,n,a,"avg")}};Nx.className="AveragePooling3D";ue.registerClass(Nx);var W4=class extends st{constructor(e){super(e),this.inputSpec=[new qt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Ve}},Cx=class extends W4{constructor(e){super(e||{})}call(e,t){return K(()=>{let r=Ge(e);return Bt(r,1)})}};Cx.className="GlobalAveragePooling1D";ue.registerClass(Cx);var Ex=class extends W4{constructor(e){super(e||{})}call(e,t){return K(()=>{let r=Ge(e);return fr(r,1)})}};Ex.className="GlobalMaxPooling1D";ue.registerClass(Ex);var V4=class extends st{constructor(e){super(e),this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ut(this.dataFormat),this.inputSpec=[new qt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Ve}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Rx=class extends V4{call(e,t){return K(()=>{let r=Ge(e);return this.dataFormat==="channelsLast"?Bt(r,[1,2]):Bt(r,[2,3])})}};Rx.className="GlobalAveragePooling2D";ue.registerClass(Rx);var Mx=class extends V4{call(e,t){return K(()=>{let r=Ge(e);return this.dataFormat==="channelsLast"?fr(r,[1,2]):fr(r,[2,3])})}};Mx.className="GlobalMaxPooling2D";ue.registerClass(Mx);var U4=class extends st{constructor(e){super(e),this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,r={}){let n=t.layer,a=da(n,r);delete t.layer;let s={layer:a};return Object.assign(s,t),new e(s)}},Fx=class extends U4{constructor(e){super(e),this.supportsMasking=!0}build(e){if(e=ft(e),e.length<3)throw new q(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=ft(e);let t=[e[0]].concat(e.slice(2)),r=this.layer.computeOutputShape(t),n=e[1];return[r[0],n].concat(r.slice(1))}call(e,t){return K(()=>(e=Ge(e),P4((r,n)=>[Ge(this.layer.call(r,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};Fx.className="TimeDistributed";ue.registerClass(Fx);function vU(e){Tl(CW,"BidirectionalMergeMode",e)}var wU="concat",$x=class extends U4{constructor(e){super(e);let t=e.layer.getConfig(),r={};r.className=e.layer.getClassName(),r.config=t,this.forwardLayer=da(r),t.goBackwards=t.goBackwards!==!0;let n={};if(n.className=e.layer.getClassName(),n.config=t,this.backwardLayer=da(n),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?wU:e.mergeMode,vU(this.mergeMode),e.weights)throw new Ve("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,r=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,r)),this.backwardLayer.setWeights(e.slice(r))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let r,n,a;return this.returnState&&(a=t.slice(1)),r=t[0],r=r,this.mergeMode==="concat"?(r[r.length-1]*=2,n=[r]):this.mergeMode==null?n=[r,r.slice()]:n=[r],this.returnState?this.mergeMode==null?n.concat(a).concat(a.slice()):[r].concat(a).concat(a.slice()):Jr(n)}apply(e,t){let r=t==null?null:t.initialState,n=t==null?null:t.constants;t==null&&(t={});let a=$4(e,r,n,this.numConstants);if(e=a.inputs,r=a.initialState,n=a.constants,Array.isArray(e)&&(r=e.slice(1),e=e[0]),(r==null||r.length===0)&&n==null)return super.apply(e,t);let s=[],i=[];if(r!=null){let l=r.length;if(l%2>0)throw new q("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=r,s.push(...r);let u=r.map(d=>new qt({shape:d.shape}));this.forwardLayer.stateSpec=u.slice(0,l/2),this.backwardLayer.stateSpec=u.slice(l/2),i.push(...u)}if(n!=null)throw new Ve("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof oa;for(let l of s)if(l instanceof oa!==o)throw new q("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),u=this.inputSpec.concat(i),d=this.inputSpec;this.inputSpec=u;let h=super.apply(l,t);return this.inputSpec=d,h}else return super.apply(e,t)}call(e,t){return K(()=>{let r=t.initialState,n,a;if(r==null)n=this.forwardLayer.call(e,t),a=this.backwardLayer.call(e,t);else{let o=r.slice(0,r.length/2),l=r.slice(r.length/2);n=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),a=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(n)&&(s=n.slice(1).concat(a.slice(1))),n=n[0],a=a[0]),this.returnSequences&&(a=Fn(a,1));let i;return this.mergeMode==="concat"?i=yA([n,a]):this.mergeMode==="sum"?i=le(n,a):this.mergeMode==="ave"?i=L(.5,le(n,a)):this.mergeMode==="mul"?i=L(n,a):this.mergeMode==null&&(i=[n,a]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){xo(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),xo(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let r;if(this.returnSequences?this.mergeMode==null?r=[t,t]:r=t:this.mergeMode==null?r=[null,null]:r=null,this.returnState){let n=this.forwardLayer.states.map(a=>null);return Array.isArray(r)?r.concat(n).concat(n):[r].concat(n).concat(n)}else return r}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let r=da(t.layer);if(delete t.layer,t.numConstants!=null)throw new Ve("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let n=t;return n.layer=r,new e(n)}};$x.className="Bidirectional";ue.registerClass($x);function kU(e){return new pd(e)}function IU(e){return new DA(e)}function SU(e){return new _A(e)}function TU(e){return new zA(e)}function NU(e){return new OA(e)}function CU(e){return new BA(e)}function EU(e){return new LA(e)}function RU(e){return new HA(e)}function MU(e){return new Zm(e)}function FU(e){return new UA(e)}function $U(e){return new Ym(e)}function PU(e){return new GA(e)}function _U(e){return new jA(e)}function zU(e){return new qA(e)}function OU(e){return new KA(e)}function DU(e){return new XA(e)}function LU(e){return new nx(e)}function BU(e){return new tx(e)}function WU(e){return new r0(e)}function VU(e){return new ex(e)}function UU(e){return new rx(e)}function GU(e){return new ax(e)}function jU(e){return new sx(e)}function HU(e){return new ix(e)}function qU(e){return new lx(e)}function KU(e){return new ux(e)}function XU(e){return new px(e)}function ZU(e){return new fx(e)}function YU(e){return new hx(e)}function JU(e){return new cx(e)}function QU(e){return new dx(e)}function eG(e){return new mx(e)}function tG(e){return new xx(e)}function rG(e){return new bx(e)}function nG(e){return new vx(e)}function Px(e){return new kx(e)}function aG(e){return Px(e)}function sG(e){return Px(e)}function _x(e){return new Sx(e)}function iG(e){return _x(e)}function oG(e){return _x(e)}function zx(e){return new Nx(e)}function lG(e){return zx(e)}function uG(e){return zx(e)}function dG(e){return new Cx(e)}function pG(e){return new Rx(e)}function G4(e){return new Ex(e)}function j4(e){return new Mx(e)}function H4(e){return new wx(e)}function q4(e){return new Ix(e)}function hG(e){return new Tx(e)}function cG(e){return new YA(e)}function fG(e){return new Qm(e)}function mG(e){return new JA(e)}function gG(e){return new kh(e)}function yG(e){return new ZA(e)}function AG(e){return new Jm(e)}function xG(e){return new QA(e)}function bG(e){return new t0(e)}function vG(e){return new Qa(e)}function wG(e){return new e0(e)}function kG(e){return new $x(e)}function IG(e){return new Fx(e)}var SG=G4,TG=j4,NG=H4,CG=q4;function EG(e){return new gx(e)}function RG(e){return new yx(e)}function MG(e){return new Ax(e)}function FG(e){return new ox(e)}var K4={};Le(K4,{MAPE:()=>UG,MSE:()=>HG,binaryAccuracy:()=>$G,binaryCrossentropy:()=>PG,categoricalAccuracy:()=>zG,categoricalCrossentropy:()=>OG,cosineProximity:()=>BG,mape:()=>GG,meanAbsoluteError:()=>WG,meanAbsolutePercentageError:()=>VG,meanSquaredError:()=>jG,mse:()=>qG,precision:()=>DG,recall:()=>LG,sparseCategoricalAccuracy:()=>_G});function $G(e,t){return CA(e,t)}function PG(e,t){return a4(e,t)}function _G(e,t){return s4(e,t)}function zG(e,t){return EA(e,t)}function OG(e,t){return RA(e,t)}function DG(e,t){return n4(e,t)}function LG(e,t){return kV(e,t)}function BG(e,t){return NA(e,t)}function WG(e,t){return qm(e,t)}function VG(e,t){return hd(e,t)}function UG(e,t){return hd(e,t)}function GG(e,t){return hd(e,t)}function jG(e,t){return Nl(e,t)}function HG(e,t){return Nl(e,t)}function qG(e,t){return Nl(e,t)}var X4={};Le(X4,{modelFromJSON:()=>nU});var Z4={};Le(Z4,{l1:()=>XG,l1l2:()=>KG,l2:()=>ZG});function KG(e){return new bh(e)}function XG(e){return pU(e)}function ZG(e){return hU(e)}var Y4=class extends vu{constructor(){super(...arguments),this.model=null}setModel(e){if(!(e instanceof ja))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function Bc(e,t){return e<t}function hv(e,t){return e>t}var J4=class extends Y4{constructor(e){if(super(),e==null&&(e={}),e.restoreBestWeights)throw new Ve("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=Bc:this.mode==="max"?this.monitorFunc=hv:this.monitor.indexOf("acc")!==-1?this.monitorFunc=hv:this.monitorFunc=Bc,this.monitorFunc===Bc&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Bc?1/0:-1/0}async onEpochEnd(e,t){await bs(t);let r=this.getMonitorValue(t);r!=null&&(this.monitorFunc(r-this.minDelta,this.best)?(this.best=r,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function YG(e){return new J4(e)}var JG={earlyStopping:YG},QG=Y();QG.registerFlag("KEEP_INTERMEDIATE_TENSORS",()=>!1,e=>{e&&console.warn("Keep intermediate tensors is ON. This will print the values of all intermediate tensors during model inference. Not all models support this mode. For details, check e2e/benchmarks/ model_config.js. This significantly impacts performance.")});var Q4=(e=>(e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_QINT16=15]="DT_QINT16",e[e.DT_QUINT16=16]="DT_QUINT16",e[e.DT_UINT16=17]="DT_UINT16",e[e.DT_COMPLEX128=18]="DT_COMPLEX128",e[e.DT_HALF=19]="DT_HALF",e[e.DT_RESOURCE=20]="DT_RESOURCE",e[e.DT_VARIANT=21]="DT_VARIANT",e[e.DT_UINT32=22]="DT_UINT32",e[e.DT_UINT64=23]="DT_UINT64",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF",e[e.DT_QINT16_REF=115]="DT_QINT16_REF",e[e.DT_QUINT16_REF=116]="DT_QUINT16_REF",e[e.DT_UINT16_REF=117]="DT_UINT16_REF",e[e.DT_COMPLEX128_REF=118]="DT_COMPLEX128_REF",e[e.DT_HALF_REF=119]="DT_HALF_REF",e[e.DT_RESOURCE_REF=120]="DT_RESOURCE_REF",e[e.DT_VARIANT_REF=121]="DT_VARIANT_REF",e[e.DT_UINT32_REF=122]="DT_UINT32_REF",e[e.DT_UINT64_REF=123]="DT_UINT64_REF",e))(Q4||{}),cv;(e=>{let t;(r=>{r[r.LEGACY=0]="LEGACY",r[r.V1=1]="V1",r[r.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(cv||(cv={}));var Ox={};function ej(e,t){let r={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};Ox[e]=r}function e6(e){return Ox[e]}function tj(e){delete Ox[e]}function k(e,t,r,n,a){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return Or(t.inputNames[s.inputIndexStart],r,n,a);if(s.type==="tensors")return t.inputNames.slice(o,l).map(h=>Or(h,r,n,a));let u=Or(t.inputNames.slice(o)[0],r,n,a),d=u.dataSync();return s.type==="number"?d[0]:v.toNestedArray(u.shape,d)}let i=t.attrParams[e];return i&&i.value}function Or(e,t,r,n){let[a,s]=un(e);if(n!=null){let o=n.getHashTableHandleByName(a);if(o!=null)return o}let i=r.currentContextIds.find(o=>!!t[kf(a,o)]);return i!==void 0?t[kf(a,i)][s]:void 0}function rj(e,t,r){return t[kf(e,r.currentContextId)]}function Ta(e,t){let[r,n,a]=un(e);return[kf(r,t&&t.currentContextId),n,a]}function kf(e,t){return t?`${e}-${t}`:e}function un(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let r=t[0],n=t.length===3?t[1]:void 0,a=Number(t[t.length-1]);return[r,a,n]}function Xc(e,t,r){let n=k("pad",e,t,r);if(n==="explicit"){n=k("explicitPaddings",e,t,r);let a=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)a[s][0]=n[s*2],a[s][1]=n[s*2+1];return a}return n}function Va(e){return e.kept?e:Lr(e)}var t6={};Le(t6,{json:()=>nj});var nj=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],r6={};Le(r6,{json:()=>aj});var aj=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],n6={};Le(n6,{json:()=>sj});var sj=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListLength",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}]},{tfOpName:"TensorListResize",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"size",type:"number"}]}],a6={};Le(a6,{json:()=>ij});var ij=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],s6={};Le(s6,{json:()=>oj});var oj=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],i6={};Le(i6,{json:()=>lj});var lj=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],o6={};Le(o6,{json:()=>uj});var uj=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],l6={};Le(l6,{json:()=>dj});var dj=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],u6={};Le(u6,{json:()=>pj});var pj=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],d6={};Le(d6,{json:()=>hj});var hj=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]},{tfOpName:"ImageProjectiveTransformV3",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"transforms",type:"tensor"},{start:2,name:"outputShape",type:"number[]"},{start:3,name:"fillValue",type:"number"}],attrs:[{tfName:"interpolation",name:"interpolation",type:"string"},{tfName:"fill_mode",name:"fillMode",type:"string"}]}],p6={};Le(p6,{json:()=>cj});var cj=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],h6={};Le(h6,{json:()=>fj});var fj=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],c6={};Le(c6,{json:()=>mj});var mj=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],f6={};Le(f6,{json:()=>gj});var gj=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumprod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],m6={};Le(m6,{json:()=>yj});var yj=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],g6={};Le(g6,{json:()=>Aj});var Aj=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],y6={};Le(y6,{json:()=>xj});var xj=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],A6={};Le(A6,{json:()=>bj});var bj=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],x6={};Le(x6,{json:()=>vj});var vj=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}],fv=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[t6,r6,n6,a6,s6,i6,o6,l6,u6,d6,p6,h6,c6,f6,m6,g6,y6,A6,x6],t=[].concat(...e.map(r=>r.json));this.opMappers=t.reduce((r,n)=>(r[n.tfOpName]=n,r),{})}transformGraph(e,t={}){let r=e.node,n=[],a=[],s=[],i=r.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?n.push(f[m.name]):m.op==="Const"?a.push(f[m.name]):(m.input==null||m.input.length===0)&&s.push(f[m.name]),f),{}),o=[],l=[],u={},d={};t!=null&&(u=this.mapSignatureEntries(t.inputs),d=this.mapSignatureEntries(t.outputs));let h=Object.keys(i);h.forEach(f=>{let m=i[f];m.inputNames.forEach((g,y)=>{let[A,,x]=Ta(g),b=i[A];if(b.outputs!=null){let w=b.outputs.indexOf(x);if(w!==-1){let T=`${A}:${w}`;m.inputNames[y]=T}}m.inputs.push(b),b.children.push(m)})}),Object.keys(d).length===0?h.forEach(f=>{let m=i[f];m.children.length===0&&l.push(m)}):Object.keys(d).forEach(f=>{let[m]=Ta(f),g=i[m];g!=null&&(g.signatureKey=d[f],l.push(g))}),Object.keys(u).length>0?Object.keys(u).forEach(f=>{let[m]=Ta(f),g=i[m];g&&(g.signatureKey=u[f],o.push(g))}):o=n;let p={};e.library!=null&&e.library.function!=null&&(p=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let c={nodes:i,inputs:o,outputs:l,weights:a,placeholders:n,signature:t,functions:p};return s.length>0&&(c.initNodes=s),c}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,r)=>(t[e[r].name]=r,t),{})}mapNode(e){let t=e6(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let r={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(n=>n.startsWith("^")?n.slice(1):n),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(r.inputParams=t.inputs.reduce((n,a)=>(n[a.name]={type:a.type,inputIndexStart:a.start,inputIndexEnd:a.end},n),{})),t.attrs!=null&&(r.attrParams=t.attrs.reduce((n,a)=>{let s=a.type,i;switch(a.type){case"string":i=C1(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=C1(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"string[]":i=_1(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=_1(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number":i=R1(e.attr,a.tfName,a.defaultValue||0),i===void 0&&!!a.tfDeprecatedName&&(i=R1(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number[]":i=P1(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=P1(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool":i=E1(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=E1(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool[]":i=O1(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=O1(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape":i=$1(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=$1(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape[]":i=z1(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=z1(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype":i=M1(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=M1(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype[]":i=F1(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=F1(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"func":i=mv(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=mv(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${a.type} for op: ${e.op}`)}return n[a.name]={value:i,type:s},n},{})),r}mapFunction(e){let t=e.nodeDef,r=[],n=[],a={};t!=null&&(a=t.reduce((u,d)=>(u[d.name]=this.mapNode(d),d.op==="Const"&&n.push(u[d.name]),u),{}));let s=[],i=[];e.signature.inputArg.forEach(u=>{let[d]=Ta(u.name),h={name:d,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:Dx(u.type),type:"dtype"}},children:[]};h.signatureKey=u.name,s.push(h),a[d]=h}),Object.keys(a).forEach(u=>{let d=a[u];d.inputNames.forEach((h,p)=>{let[c,,f]=Ta(h),m=a[c];if(m.outputs!=null){let g=m.outputs.indexOf(f);if(g!==-1){let y=`${c}:${g}`;d.inputNames[p]=y}}d.inputs.push(m),m.children.push(d)})});let o=e.ret;e.signature.outputArg.forEach(u=>{let[d,h]=Ta(o[u.name]),p=a[d];p!=null&&(p.defaultOutput=h,i.push(p))});let l=this.mapArgsToSignature(e);return{nodes:a,inputs:s,outputs:i,weights:n,placeholders:r,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,r)=>(t[r.name]=this.mapArgToTensorInfo(r),t),{}),outputs:e.signature.outputArg.reduce((t,r)=>(t[r.name]=this.mapArgToTensorInfo(r,e.ret),t),{})}}mapArgToTensorInfo(e,t){let r=e.name;return t!=null&&(r=t[r]),{name:r,dtype:e.type}}};function wj(e){let t=Y().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function b6(e,t){let r=Array.isArray(e)?String.fromCharCode.apply(null,e):wj(e);return t?r:r.toLowerCase()}function C1(e,t,r,n=!1){let a=e[t];return a!=null?b6(a.s,n):r}function E1(e,t,r){let n=e[t];return n?n.b:r}function R1(e,t,r){let n=e[t]||{},a=n.i!=null?n.i:n.f!=null?n.f:r;return typeof a=="number"?a:parseInt(a,10)}function Dx(e){switch(typeof e=="string"&&(e=Q4[e]),e){case 1:case 19:return"float32";case 3:case 9:case 6:case 4:return"int32";case 10:return"bool";case 2:return"float32";case 7:return"string";default:return null}}function mv(e,t,r){let n=e[t];return n&&n.func?n.func.name:r}function M1(e,t,r){let n=e[t];return n&&n.type?Dx(n.type):r}function F1(e,t,r){let n=e[t];return n&&n.list&&n.list.type?n.list.type.map(a=>Dx(a)):r}function v6(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function $1(e,t,r){let n=e[t];return n&&n.shape?v6(n.shape):r}function P1(e,t,r){let n=e[t];return n?((n.list.f&&n.list.f.length?n.list.f:n.list.i)||[]).map(a=>typeof a=="number"?a:parseInt(a,10)):r}function _1(e,t,r,n=!1){let a=e[t];return a&&a.list&&a.list.s?a.list.s.map(s=>b6(s,n)):r}function z1(e,t,r){let n=e[t];return n&&n.list&&n.list.shape?n.list.shape.map(a=>v6(a)):r}function O1(e,t,r){let n=e[t];return n&&n.list&&n.list.b?n.list.b:r}var kj=class{constructor(e,t,r){this.node=e,this.tensorMap=t,this.context=r,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(n=>this.getInput(n)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((n,a)=>(n[a]=this.getAttr(a),n),{}))}getInput(e){return Or(e,this.tensorMap,this.context)}getAttr(e,t){let r=this.node.rawAttrs[e];if(r.tensor!=null)return Or(e,this.tensorMap,this.context);if(r.i!=null||r.f!=null)return R1(this.node.rawAttrs,e,t);if(r.s!=null)return C1(this.node.rawAttrs,e,t);if(r.b!=null)return E1(this.node.rawAttrs,e,t);if(r.shape!=null)return $1(this.node.rawAttrs,e,t);if(r.type!=null)return M1(this.node.rawAttrs,e,t);if(r.list!=null){if(r.list.i!=null||r.list.f!=null)return P1(this.node.rawAttrs,e,t);if(r.list.s!=null)return _1(this.node.rawAttrs,e,t);if(r.list.shape!=null)return z1(this.node.rawAttrs,e,t);if(r.list.b!=null)return O1(this.node.rawAttrs,e,t);if(r.list.type!=null)return F1(this.node.rawAttrs,e,t)}return t}},Ij=(e,t,r)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[le(k("a",e,t,r),k("b",e,t,r))];case"AddN":return[um(k("tensors",e,t,r))];case"FloorMod":case"Mod":return[od(k("a",e,t,r),k("b",e,t,r))];case"Mul":return[L(k("a",e,t,r),k("b",e,t,r))];case"RealDiv":case"Div":return[pe(k("a",e,t,r),k("b",e,t,r))];case"DivNoNan":return[Uk(k("a",e,t,r),k("b",e,t,r))];case"FloorDiv":return[oh(k("a",e,t,r),k("b",e,t,r))];case"Sub":return[he(k("a",e,t,r),k("b",e,t,r))];case"Minimum":return[hh(k("a",e,t,r),k("b",e,t,r))];case"Maximum":return[Za(k("a",e,t,r),k("b",e,t,r))];case"Pow":return[_s(k("a",e,t,r),k("b",e,t,r))];case"SquaredDifference":return[tA(k("a",e,t,r),k("b",e,t,r))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Sj=(e,t,r)=>{switch(e.op){case"Abs":case"ComplexAbs":return[er(k("x",e,t,r))];case"Acos":return[Ak(k("x",e,t,r))];case"Acosh":return[xk(k("x",e,t,r))];case"Asin":return[vk(k("x",e,t,r))];case"Asinh":return[wk(k("x",e,t,r))];case"Atan":return[kk(k("x",e,t,r))];case"Atan2":return[Ik(k("x",e,t,r),k("y",e,t,r))];case"Atanh":return[Sk(k("x",e,t,r))];case"Ceil":return[$k(k("x",e,t,r))];case"Complex":return[Ms(k("real",e,t,r),k("imag",e,t,r))];case"Cos":return[hm(k("x",e,t,r))];case"Cosh":return[_2(k("x",e,t,r))];case"Elu":return[dh(k("x",e,t,r))];case"Erf":return[jk(k("x",e,t,r))];case"Exp":return[En(k("x",e,t,r))];case"Expm1":return[Hk(k("x",e,t,r))];case"Floor":return[ph(k("x",e,t,r))];case"Log":return[Rn(k("x",e,t,r))];case"Log1p":return[mm(k("x",e,t,r))];case"Imag":return[cm(k("x",e,t,r))];case"Neg":return[zt(k("x",e,t,r))];case"Reciprocal":return[s7(k("x",e,t,r))];case"Real":return[Mp(k("x",e,t,r))];case"Relu":return[$a(k("x",e,t,r))];case"Round":return[K2(k("x",e,t,r))];case"Selu":return[Z2(k("x",e,t,r))];case"Sigmoid":return[Tr(k("x",e,t,r))];case"Sin":return[Y2(k("x",e,t,r))];case"Sign":return[l7(k("x",e,t,r))];case"Sinh":return[J2(k("x",e,t,r))];case"Softplus":return[id(k("x",e,t,r))];case"Sqrt":return[Cr(k("x",e,t,r))];case"Square":return[At(k("x",e,t,r))];case"Tanh":return[mu(k("x",e,t,r))];case"Tan":return[d7(k("x",e,t,r))];case"ClipByValue":return[hn(k("x",e,t,r),k("clipValueMin",e,t,r),k("clipValueMax",e,t,r))];case"Relu6":return[q2(k("x",e,t,r))];case"Rsqrt":return[X2(Or(e.inputNames[0],t,r))];case"Prod":return[G2(k("x",e,t,r),k("axes",e,t,r))];case"LeakyRelu":return[fm(k("x",e,t,r),k("alpha",e,t,r))];case"Prelu":return[vm(k("x",e,t,r),k("alpha",e,t,r))];case"IsNan":return[qk(Or(e.inputNames[0],t,r))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function On(e,t,r=""){if(!(typeof e=="number"||typeof t=="number")){v.assert(e.length===t.length,()=>r+` Shapes ${e} and ${t} must match`);for(let n=0;n<e.length;n++){let a=e[n],s=t[n];v.assert(a<0||s<0||a===s,()=>r+` Shapes ${e} and ${t} must match`)}}}function gv(e){return!(typeof e=="number"||e.some(t=>t<0))}function op(e,t,r){let n=D1(e,r),a=!gv(n);if(a&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${n}`);if(a&&t.forEach(s=>{n=D1(s.shape,n)}),!gv(n))throw new Error(`Non-fully-defined elementShape: ${n}`);return n}function D1(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let r=[];for(let n=0;n<e.length;++n){let a=e[n],s=t[n];if(a>=0&&s>=0&&a!==s)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);r[n]=a>=0?a:s}return r}var Tj=class{constructor(e,t,r,n,a,s,i){this.name=e,this.dtype=t,this.maxSize=r,this.elementShape=n,this.identicalElementShapes=a,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=Se(0),hr(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let r=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
|
|
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),On(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),r.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(r.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);r.tensor=t,hr(t),r.written=!0,this.tensors[e]=r}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((r,n)=>this.write(r,t[n]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let n=0;n<this.size();n++)e.push(n)}if(e.length===0)return ct([],[0].concat(this.elementShape));let r=this.readMany(e);return On(this.elementShape,r[0].shape,"TensorArray shape mismatch: "),sr(r,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return ct([],[0].concat(this.elementShape));let t=[];for(let n=0;n<this.size();n++)t.push(n);let r=this.readMany(t);return On(this.elementShape,r[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${r[0].shape})`),kt(r,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let r=Math.max(...e);if(!this.dynamicSize&&r>=this.maxSize)throw new Error(`Max index must be < array size (${r} vs. ${this.maxSize})`);this.writeMany(e,en(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let r=0,n=e.map(o=>(r+=o,r));if(r!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${r}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let a=r===0?0:t.size/r,s=[];K(()=>{t=G(t,[1,r,a]);for(let o=0;o<e.length;++o){let l=o===0?0:n[o-1],u=[0,l,0],d=[1,e[o],a];s[o]=G(Pe(t,u,d),this.elementShape)}return s});let i=[];for(let o=0;o<e.length;o++)i[o]=o;this.writeMany(i,s)}},wu=class{constructor(e,t,r,n=-1){this.tensors=e,this.elementShape=t,this.elementDtype=r,e!=null&&e.forEach(a=>{if(r!==a.dtype)throw new Error(`Invalid data types; op elements ${r}, but list elements ${a.dtype}`);On(t,a.shape,"TensorList shape mismatch: "),hr(a)}),this.idTensor=Se(0),this.maxNumElements=n,hr(this.idTensor)}get id(){return this.idTensor.id}copy(){return new wu([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,r=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(r!==-1&&this.tensors.length!==r)throw new Error(`Operation expected a list with ${r} elements but got a list with ${this.tensors.length} elements.`);On(e,this.elementShape,"TensorList shape mismatch: ");let n=op(this.elementShape,this.tensors,e);return K(()=>{let a=this.tensors.map(s=>G(s,n));return sr(a,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let r=op(this.elementShape,this.tensors,e),n=this.tensors.pop();return On(n.shape,e,"TensorList shape mismatch: "),G(n,r)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(On(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");hr(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);let t=new wu([],this.elementShape,this.elementDtype,this.maxNumElements);t.tensors.length=e;for(let r=0;r<Math.min(this.tensors.length,e);++r)t.tensors[r]=this.tensors[r];return t}getItem(e,t,r){if(r!==this.elementDtype)throw new Error(`Invalid data types; op elements ${r}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);On(this.tensors[e].shape,t,"TensorList shape mismatch: ");let n=op(this.elementShape,this.tensors,t);return G(this.tensors[e],n)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);On(this.elementShape,t.shape,"TensorList shape mismatch: "),hr(t),this.tensors[e]=t}gather(e,t,r){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);On(this.elementShape,r,"TensorList shape mismatch: "),e=e.slice(0,this.size());let n=op(this.elementShape,this.tensors,r);return e.length===0?ct([],[0].concat(n)):K(()=>{let a=e.map(s=>G(this.tensors[s],n));return sr(a,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);On(this.elementShape,t,"TensorList shape mismatch: ");let r=op(this.elementShape,this.tensors,t);return this.size()===0?ct([],[0].concat(r)):K(()=>{let n=this.tensors.map(a=>G(a,r));return kt(n,0)})}};function Nj(e,t,r){let n=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==r)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${r}`);let a=e.shape.slice(1);On(a,t,"TensorList shape mismatch: ");let s=en(e);return new wu(s,t,n)}function Cj(e,t,r){return new wu([],e,t,r)}function Ej(e,t,r,n){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let a=Math.max(...t);if(n!=null&&n!==-1&&a>=n)throw new Error(`Max index must be < array size (${a} vs. ${n})`);let s=new wu([],r,e.dtype,n),i=en(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function Rj(e,t,r){let n=0,a=t.map(d=>(n+=d,n));if(n!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${e.shape}`);let s=e.shape.slice(1),i=D1(s,r),o=n===0?0:e.size/n,l=K(()=>{let d=[];e=G(e,[1,n,o]);for(let h=0;h<t.length;++h){let p=h===0?0:a[h-1],c=[0,p,0],f=[1,t[h],o];d[h]=G(Pe(e,c,f),i)}return e.dispose(),d}),u=new wu([],r,e.dtype,t.length);for(let d=0;d<l.length;d++)u.setItem(d,l[d]);return u}var Mj=async(e,t,r)=>{switch(e.op){case"If":case"StatelessIf":{let n=k("thenBranch",e,t,r),a=k("elseBranch",e,t,r),s=k("cond",e,t,r),i=k("args",e,t,r);return(await s.data())[0]?r.functionMap[n].executeFunctionAsync(i,r.tensorArrayMap,r.tensorListMap):r.functionMap[a].executeFunctionAsync(i,r.tensorArrayMap,r.tensorListMap)}case"While":case"StatelessWhile":{let n=k("body",e,t,r),a=k("cond",e,t,r),s=k("args",e,t,r),i=await r.functionMap[a].executeFunctionAsync(s,r.tensorArrayMap,r.tensorListMap),o=s.map(d=>d.id),l=await i[0].data();i.forEach(d=>{!d.kept&&o.indexOf(d.id)===-1&&d.dispose()});let u=s;for(;l[0];){let d=u;u=await r.functionMap[n].executeFunctionAsync(u,r.tensorArrayMap,r.tensorListMap);let h=u.map(c=>c.id);d.forEach(c=>{!c.kept&&o.indexOf(c.id)===-1&&h.indexOf(c.id)===-1&&c.dispose()});let p=await r.functionMap[a].executeFunctionAsync(u,r.tensorArrayMap,r.tensorListMap);l=await p[0].data(),p.forEach(c=>{!c.kept&&o.indexOf(c.id)===-1&&h.indexOf(c.id)===-1&&c.dispose()})}return u}case"LoopCond":{let n=k("pred",e,t,r);return[Va(n)]}case"Switch":{let n=k("pred",e,t,r),a=k("data",e,t,r);return a.kept||(a=Va(a)),(await n.data())[0]?[void 0,a]:[a,void 0]}case"Merge":{let n=e.inputNames.find(a=>Or(a,t,r)!==void 0);if(n){let a=Or(n,t,r);return[Va(a)]}return}case"Enter":{let n=k("frameName",e,t,r),a=k("tensor",e,t,r);return r.enterFrame(n),[Va(a)]}case"Exit":{let n=k("tensor",e,t,r);return r.exitFrame(),[Va(n)]}case"NextIteration":{let n=k("tensor",e,t,r);return r.nextIteration(),[Va(n)]}case"TensorArrayV3":{let n=k("size",e,t,r),a=k("dtype",e,t,r),s=k("elementShape",e,t,r),i=k("dynamicSize",e,t,r),o=k("clearAfterRead",e,t,r),l=k("identicalElementShapes",e,t,r),u=k("name",e,t,r),d=new Tj(u,a,n,s,l,i,o);return r.addTensorArray(d),[d.idTensor,Se(1)]}case"TensorArrayWriteV3":{let n=k("tensorArrayId",e,t,r),a=k("index",e,t,r),s=k("tensor",e,t,r),i=r.getTensorArray(n.id);return i.write(a,s),[i.idTensor]}case"TensorArrayReadV3":{let n=k("tensorArrayId",e,t,r),a=k("index",e,t,r);return[r.getTensorArray(n.id).read(a)]}case"TensorArrayGatherV3":{let n=k("tensorArrayId",e,t,r),a=k("indices",e,t,r),s=k("dtype",e,t,r);return[r.getTensorArray(n.id).gather(a,s)]}case"TensorArrayScatterV3":{let n=k("tensorArrayId",e,t,r),a=k("indices",e,t,r),s=k("tensor",e,t,r),i=r.getTensorArray(n.id);return i.scatter(a,s),[i.idTensor]}case"TensorArrayConcatV3":{let n=k("tensorArrayId",e,t,r),a=r.getTensorArray(n.id),s=k("dtype",e,t,r);return[a.concat(s)]}case"TensorArraySplitV3":{let n=k("tensorArrayId",e,t,r),a=k("tensor",e,t,r),s=k("lengths",e,t,r),i=r.getTensorArray(n.id);return i.split(s,a),[i.idTensor]}case"TensorArraySizeV3":{let n=k("tensorArrayId",e,t,r),a=r.getTensorArray(n.id);return[Se(a.size(),"int32")]}case"TensorArrayCloseV3":{let n=k("tensorArrayId",e,t,r),a=r.getTensorArray(n.id);return a.clearAndClose(),[a.idTensor]}case"TensorListSetItem":{let n=k("tensorListId",e,t,r),a=k("index",e,t,r),s=k("tensor",e,t,r),i=r.getTensorList(n.id);return i.setItem(a,s),[i.idTensor]}case"TensorListGetItem":{let n=k("tensorListId",e,t,r),a=k("index",e,t,r),s=k("elementShape",e,t,r),i=k("elementDType",e,t,r);return[r.getTensorList(n.id).getItem(a,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let n=k("indices",e,t,r),a=k("tensor",e,t,r),s=k("elementShape",e,t,r),i=k("numElements",e,t,r),o=Ej(a,n,s,i);return r.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let n=k("elementShape",e,t,r),a=k("elementDType",e,t,r),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=k(s,e,t,r),o=Cj(n,a,i);return r.addTensorList(o),[o.idTensor]}case"TensorListGather":{let n=k("tensorListId",e,t,r),a=k("indices",e,t,r),s=k("elementShape",e,t,r),i=k("elementDType",e,t,r);return[r.getTensorList(n.id).gather(a,i,s)]}case"TensorListStack":{let n=k("tensorListId",e,t,r),a=k("elementShape",e,t,r),s=k("elementDType",e,t,r),i=k("numElements",e,t,r);return[r.getTensorList(n.id).stack(a,s,i)]}case"TensorListFromTensor":{let n=k("tensor",e,t,r),a=k("elementShape",e,t,r),s=k("elementDType",e,t,r),i=Nj(n,a,s);return r.addTensorList(i),[i.idTensor]}case"TensorListConcat":{let n=k("tensorListId",e,t,r),a=r.getTensorList(n.id),s=k("dtype",e,t,r),i=k("elementShape",e,t,r);return[a.concat(s,i)]}case"TensorListPushBack":{let n=k("tensorListId",e,t,r),a=k("tensor",e,t,r),s=r.getTensorList(n.id);return s.pushBack(a),[s.idTensor]}case"TensorListPopBack":{let n=k("tensorListId",e,t,r),a=k("elementShape",e,t,r),s=k("elementDType",e,t,r);return[r.getTensorList(n.id).popBack(a,s)]}case"TensorListSplit":{let n=k("tensor",e,t,r),a=k("elementShape",e,t,r),s=k("lengths",e,t,r),i=Rj(n,s,a);return r.addTensorList(i),[i.idTensor]}case"TensorListLength":{let n=k("tensorListId",e,t,r),a=r.getTensorList(n.id);return[Se(a.size(),"int32")]}case"TensorListResize":{let n=k("tensorListId",e,t,r),a=k("size",e,t,r),s=r.getTensorList(n.id).resize(a);return r.addTensorList(s),[s.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function yv(e,t,r){let[n,a]=k("fusedOps",e,t,r),s=n==="biasadd",i=!s,o=a==="prelu",l=n==="fusedbatchnorm",u=k("numArgs",e,t,r);if(s){if(o&&u!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&s&&u!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let d=k("strides",e,t,r),h=Xc(e,t,r),p=k("dataFormat",e,t,r).toUpperCase(),c=k("dilations",e,t,r),[f,m]=k("args",e,t,r);i&&(m=f,f=void 0);let g=k("leakyreluAlpha",e,t,r);return{stride:d,pad:h,dataFormat:p,dilations:c,biasArg:f,preluArg:m,activationFunc:a,leakyreluAlpha:g}}var Fj=(e,t,r)=>{switch(e.op){case"Conv1D":{let n=k("stride",e,t,r),a=k("pad",e,t,r),s=k("dataFormat",e,t,r).toUpperCase(),i=k("dilation",e,t,r);return[M2(k("x",e,t,r),k("filter",e,t,r),n,a,s,i)]}case"Conv2D":{let n=k("strides",e,t,r),a=Xc(e,t,r),s=k("dataFormat",e,t,r).toUpperCase(),i=k("dilations",e,t,r);return[$s(k("x",e,t,r),k("filter",e,t,r),[n[1],n[2]],a,s,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:n,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:u,leakyreluAlpha:d}=yv(e,t,r);return[zs.conv2d({x:k("x",e,t,r),filter:k("filter",e,t,r),strides:[n[1],n[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:u,preluActivationWeights:l,leakyreluAlpha:d})]}case"FusedDepthwiseConv2dNative":{let{stride:n,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:u,leakyreluAlpha:d}=yv(e,t,r);return[zs.depthwiseConv2d({x:k("x",e,t,r),filter:k("filter",e,t,r),strides:[n[1],n[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:u,preluActivationWeights:l,leakyreluAlpha:d})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let n=k("outputShape",e,t,r),a=k("strides",e,t,r),s=Xc(e,t,r);return[$2(k("x",e,t,r),k("filter",e,t,r),n,[a[1],a[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let n=k("strides",e,t,r),a=Xc(e,t,r),s=k("dilations",e,t,r),i=k("dataFormat",e,t,r).toUpperCase();return[uh(k("input",e,t,r),k("filter",e,t,r),[n[1],n[2]],a,i,[s[1],s[2]])]}case"Conv3D":{let n=k("strides",e,t,r),a=k("pad",e,t,r),s=k("dataFormat",e,t,r).toUpperCase(),i=k("dilations",e,t,r);return[P2(k("x",e,t,r),k("filter",e,t,r),[n[1],n[2],n[3]],a,s,[i[1],i[2],i[3]])]}case"AvgPool":{let n=k("strides",e,t,r),a=k("pad",e,t,r),s=k("kernelSize",e,t,r);return[dm(k("x",e,t,r),[s[1],s[2]],[n[1],n[2]],a)]}case"MaxPool":{let n=k("strides",e,t,r),a=k("pad",e,t,r),s=k("kernelSize",e,t,r);return[Am(k("x",e,t,r),[s[1],s[2]],[n[1],n[2]],a)]}case"MaxPoolWithArgmax":{let n=k("strides",e,t,r),a=k("pad",e,t,r),s=k("kernelSize",e,t,r),i=k("includeBatchInIndex",e,t,r),{result:o,indexes:l}=t7(k("x",e,t,r),[s[1],s[2]],[n[1],n[2]],a,i);return[o,l]}case"AvgPool3D":{let n=k("strides",e,t,r),a=k("pad",e,t,r),s=k("kernelSize",e,t,r);return[E2(k("x",e,t,r),[s[1],s[2],s[3]],[n[1],n[2],n[3]],a)]}case"MaxPool3D":{let n=k("strides",e,t,r),a=k("pad",e,t,r),s=k("kernelSize",e,t,r);return[U2(k("x",e,t,r),[s[1],s[2],s[3]],[n[1],n[2],n[3]],a)]}case"Dilation2D":{let n=k("strides",e,t,r),a=k("pad",e,t,r),s=k("dilations",e,t,r),i=n[1],o=n[2],l=s[1],u=s[2];return[Vk(k("x",e,t,r),k("filter",e,t,r),[i,o],a,[l,u],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},$j=(e,t,r)=>{switch(e.op){case"Fill":{let n=k("shape",e,t,r),a=k("dtype",e,t,r),s=k("value",e,t,r);return[sd(n,s,a)]}case"LinSpace":{let n=k("start",e,t,r),a=k("stop",e,t,r),s=k("num",e,t,r);return[Kk(n,a,s)]}case"Multinomial":{let n=k("logits",e,t,r),a=k("numSamples",e,t,r),s=k("seed",e,t,r);return[n7(n,a,s)]}case"OneHot":{let n=k("indices",e,t,r),a=k("depth",e,t,r),s=k("onValue",e,t,r),i=k("offValue",e,t,r);return[Rp(n,a,s,i)]}case"Ones":return[pn(k("shape",e,t,r),k("dtype",e,t,r))];case"OnesLike":return[Mn(k("x",e,t,r))];case"RandomUniform":return[ld(k("shape",e,t,r),k("minval",e,t,r),k("maxval",e,t,r),k("dtype",e,t,r))];case"Range":{let n=k("start",e,t,r),a=k("stop",e,t,r),s=k("step",e,t,r);return[xu(n,a,s,k("dtype",e,t,r))]}case"TruncatedNormal":{let n=k("shape",e,t,r),a=k("mean",e,t,r),s=k("stdDev",e,t,r),i=k("seed",e,t,r);return[Sm(n,a,s,k("dtype",e,t,r),i)]}case"Zeros":return[Wt(k("shape",e,t,r),k("dtype",e,t,r))];case"ZerosLike":return[at(k("x",e,t,r))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Jy(e,t,r){let n=k("boxes",e,t,r),a=k("scores",e,t,r),s=k("maxOutputSize",e,t,r),i=k("iouThreshold",e,t,r),o=k("scoreThreshold",e,t,r),l=k("softNmsSigma",e,t,r);return{boxes:n,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var Pj=async(e,t,r)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:n,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}=Jy(e,t,r),u=await Ie.nonMaxSuppressionWithScoreAsync(n,a,s,i,o,l);return[u.selectedIndices,u.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:n,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=Jy(e,t,r),l=k("padToMaxOutputSize",e,t,r),u=await Ie.nonMaxSuppressionPaddedAsync(n,a,s,i,o,l);return[u.selectedIndices,u.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:n,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=Jy(e,t,r);return[await Ie.nonMaxSuppressionAsync(n,a,s,i,o)]}case"Where":{let n=me(k("condition",e,t,r),"bool"),a=[await rA(n)];return n.dispose(),a}case"ListDiff":return o7(k("x",e,t,r),k("y",e,t,r));default:throw TypeError(`Node type ${e.op} is not implemented`)}},_j=(e,t,r)=>{switch(e.op){case"TopKV2":{let n=k("x",e,t,r),a=k("k",e,t,r),s=k("sorted",e,t,r),i=p7(n,a,s);return[i.values,i.indices]}case"Unique":{let n=k("x",e,t,r),a=g1(n);return[a.values,a.indices]}case"UniqueV2":{let n=k("x",e,t,r),a=k("axis",e,t,r),s=g1(n,a);return[s.values,s.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},zj=(e,t,r)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let n=k("default",e,t,r);return[Or(e.name,t,r)||n];case"Placeholder":return[Or(e.name,t,r)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let u=k("x",e,t,r);return[Va(u)]}case"IdentityN":return k("x",e,t,r).map(u=>Va(u));case"Snapshot":let a=k("x",e,t,r);return[Va(a)];case"Shape":return[St(k("x",e,t,r).shape,"int32")];case"ShapeN":return k("x",e,t,r).map(u=>St(u.shape));case"Size":return[Se(k("x",e,t,r).size,"int32")];case"Rank":return[Se(k("x",e,t,r).rank,"int32")];case"NoOp":return[Se(1)];case"Print":let s=k("x",e,t,r),i=k("data",e,t,r),o=k("message",e,t,r),l=k("summarize",e,t,r);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(o);for(let u=0;u<i.length;u++)console.log(Array.prototype.slice.call(i[u].dataSync()).slice(0,l));return[s];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Oj=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=Se(0),this.tensorMap=new Map,hr(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return Se(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let r=await e.data();return this.tensorMap.forEach(n=>n.dispose()),this.tensorMap.clear(),K(()=>{let n=en(t),a=r.length,s=n.length;v.assert(a===s,()=>`The number of elements doesn't match, keys has ${a} elements, the values has ${s} elements.`);for(let i=0;i<a;i++){let o=r[i],l=n[i];hr(l),this.tensorMap.set(o,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let r=await e.data();return K(()=>{let n=[];for(let a=0;a<r.length;a++){let s=r[a],i=this.findWithDefault(s,t);n.push(i)}return sr(n)})}findWithDefault(e,t){let r=this.tensorMap.get(e);return r!=null?r:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},Dj=async(e,t,r,n)=>{switch(e.op){case"HashTable":case"HashTableV2":{let a=k("keyDType",e,t,r),s=k("valueDType",e,t,r),i=new Oj(a,s);return n.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let a=k("tableHandle",e,t,r,n),s=k("keys",e,t,r),i=k("values",e,t,r);return[await n.getHashTableById(a.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let a=k("tableHandle",e,t,r,n),s=k("keys",e,t,r),i=k("defaultValue",e,t,r);return[await n.getHashTableById(a.id).find(s,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let a=k("tableHandle",e,t,r,n);return[n.getHashTableById(a.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Lj=(e,t,r)=>{switch(e.op){case"ResizeBilinear":{let n=k("images",e,t,r),a=k("size",e,t,r),s=k("alignCorners",e,t,r),i=k("halfPixelCenters",e,t,r);return[Ie.resizeBilinear(n,[a[0],a[1]],s,i)]}case"ResizeNearestNeighbor":{let n=k("images",e,t,r),a=k("size",e,t,r),s=k("alignCorners",e,t,r),i=k("halfPixelCenters",e,t,r);return[Ie.resizeNearestNeighbor(n,[a[0],a[1]],s,i)]}case"CropAndResize":{let n=k("image",e,t,r),a=k("boxes",e,t,r),s=k("boxInd",e,t,r),i=k("cropSize",e,t,r),o=k("method",e,t,r),l=k("extrapolationValue",e,t,r);return[Ie.cropAndResize(n,a,s,i,o,l)]}case"ImageProjectiveTransformV3":{let n=k("images",e,t,r),a=k("transforms",e,t,r),s=k("outputShape",e,t,r),i=k("fillValue",e,t,r),o=k("interpolation",e,t,r),l=k("fillMode",e,t,r);return[Ie.transform(n,a,o.toLowerCase(),l.toLowerCase(),i,s)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Bj=(e,t,r)=>{switch(e.op){case"Equal":return[Cn(k("a",e,t,r),k("b",e,t,r))];case"NotEqual":return[Au(k("a",e,t,r),k("b",e,t,r))];case"Greater":return[cn(k("a",e,t,r),k("b",e,t,r))];case"GreaterEqual":return[kl(k("a",e,t,r),k("b",e,t,r))];case"Less":return[D2(k("a",e,t,r),k("b",e,t,r))];case"LessEqual":return[Il(k("a",e,t,r),k("b",e,t,r))];case"LogicalAnd":return[ha(k("a",e,t,r),k("b",e,t,r))];case"LogicalNot":return[ym(k("a",e,t,r))];case"LogicalOr":return[V2(k("a",e,t,r),k("b",e,t,r))];case"Select":case"SelectV2":return[Br(k("condition",e,t,r),k("a",e,t,r),k("b",e,t,r))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Wj=(e,t,r)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[Je(k("a",e,t,r),k("b",e,t,r),k("transposeA",e,t,r),k("transposeB",e,t,r))];case"Einsum":return[Gk(k("equation",e,t,r),...k("tensors",e,t,r))];case"Transpose":return[nt(k("x",e,t,r),k("perm",e,t,r))];case"_FusedMatMul":let[n,a]=k("fusedOps",e,t,r),s=n==="biasadd",i=a==="prelu",o=k("numArgs",e,t,r),l=k("leakyreluAlpha",e,t,r);if(s){if(i&&o!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&o!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[u,d]=k("args",e,t,r);return[zs.matMul({a:k("a",e,t,r),b:k("b",e,t,r),transposeA:k("transposeA",e,t,r),transposeB:k("transposeB",e,t,r),bias:u,activation:a,preluActivationWeights:d,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Vj=(e,t,r)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[gu(k("x",e,t,r),k("mean",e,t,r),k("variance",e,t,r),k("offset",e,t,r),k("scale",e,t,r),k("epsilon",e,t,r))];case"FusedBatchNormV3":return[gu(k("x",e,t,r),k("mean",e,t,r),k("variance",e,t,r),k("offset",e,t,r),k("scale",e,t,r),k("epsilon",e,t,r))];case"LRN":return[Xk(k("x",e,t,r),k("radius",e,t,r),k("bias",e,t,r),k("alpha",e,t,r),k("beta",e,t,r))];case"Softmax":return[ud(k("x",e,t,r))];case"LogSoftmax":return[L2(k("x",e,t,r))];case"SparseToDense":return[aA(k("sparseIndices",e,t,r),k("outputShape",e,t,r),k("sparseValues",e,t,r),k("defaultValue",e,t,r))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Uj=(e,t,r)=>{switch(e.op){case"Max":{let i=k("axis",e,t,r),o=k("keepDims",e,t,r);return[fr(k("x",e,t,r),i,o)]}case"Mean":{let i=k("axis",e,t,r),o=k("keepDims",e,t,r);return[Bt(k("x",e,t,r),i,o)]}case"Min":{let i=k("axis",e,t,r),o=k("keepDims",e,t,r);return[Ps(k("x",e,t,r),i,o)]}case"Sum":{let i=k("axis",e,t,r),o=k("keepDims",e,t,r);return[ke(k("x",e,t,r),i,o)]}case"All":{let i=k("axis",e,t,r),o=k("keepDims",e,t,r);return[N2(k("x",e,t,r),i,o)]}case"Any":{let i=k("axis",e,t,r),o=k("keepDims",e,t,r);return[ff(k("x",e,t,r),i,o)]}case"ArgMax":{let i=k("axis",e,t,r);return[Nn(k("x",e,t,r),i)]}case"ArgMin":{let i=k("axis",e,t,r);return[bk(k("x",e,t,r),i)]}case"Prod":{let i=k("axis",e,t,r),o=k("keepDims",e,t,r);return[G2(k("x",e,t,r),i,o)]}case"Cumprod":{let i=k("axis",e,t,r),o=k("exclusive",e,t,r),l=k("reverse",e,t,r);return[Lk(k("x",e,t,r),i,o,l)]}case"Cumsum":{let i=k("axis",e,t,r),o=k("exclusive",e,t,r),l=k("reverse",e,t,r);return[z2(k("x",e,t,r),i,o,l)]}case"Bincount":let n=k("x",e,t,r),a=k("weights",e,t,r),s=k("size",e,t,r);return[R2(n,a,s)];case"DenseBincount":{let i=k("x",e,t,r),o=k("weights",e,t,r),l=k("size",e,t,r),u=k("binaryOutput",e,t,r);return[Bk(i,o,l,u)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Gj=(e,t,r)=>{switch(e.op){case"ConcatV2":case"Concat":{let n=k("n",e,t,r),a=k("axis",e,t,r),s=k("tensors",e,t,r);return s=s.slice(0,n),[kt(s,a)]}case"Gather":{let n=k("x",e,t,r),a=k("indices",e,t,r);return[yu(n,me(a,"int32"),0)]}case"GatherV2":{let n=k("axis",e,t,r),a=k("batchDims",e,t,r),s=k("x",e,t,r),i=k("indices",e,t,r);return[yu(s,me(i,"int32"),n,a)]}case"Reverse":{let n=k("dims",e,t,r),a=[];for(let i=0;i<n.length;i++)n[i]&&a.push(i);let s=k("x",e,t,r);return[Fn(s,a)]}case"ReverseV2":{let n=k("axis",e,t,r),a=k("x",e,t,r);return[Fn(a,n)]}case"Slice":{let n=k("begin",e,t,r),a=k("size",e,t,r);return[Pe(k("x",e,t,r),n,a)]}case"StridedSlice":{let n=k("begin",e,t,r),a=k("end",e,t,r),s=k("strides",e,t,r),i=k("beginMask",e,t,r),o=k("endMask",e,t,r),l=k("ellipsisMask",e,t,r),u=k("newAxisMask",e,t,r),d=k("shrinkAxisMask",e,t,r),h=k("x",e,t,r);return[u7(h,n,a,s,i,o,l,u,d)]}case"Pack":return K(()=>{let n=k("axis",e,t,r),a=k("tensors",e,t,r),s=a[0].shape,i=et(a[0]).shape,o=a.map(l=>{let u=v.arraysEqual(l.shape,s);if(!u&&!v.arraysEqual(et(l).shape,i))throw new Error("the input tensors shape does not match");return u?l:G(l,s)});return[sr(o,n)]});case"Unpack":{let n=k("axis",e,t,r),a=k("tensor",e,t,r);return en(a,n)}case"Tile":{let n=k("reps",e,t,r);return[Dn(k("x",e,t,r),n)]}case"Split":case"SplitV":{let n=k("axis",e,t,r),a=k("numOrSizeSplits",e,t,r),s=k("x",e,t,r);return Kt(s,a,n)}case"ScatterNd":{let n=k("indices",e,t,r),a=k("values",e,t,r),s=k("shape",e,t,r);return[g7(n,a,s)]}case"GatherNd":{let n=k("x",e,t,r),a=k("indices",e,t,r);return[y7(n,a)]}case"SparseToDense":{let n=k("sparseIndices",e,t,r),a=k("outputShape",e,t,r),s=k("sparseValues",e,t,r),i=k("defaultValue",e,t,r);return[aA(n,s,a,s.dtype===i.dtype?i:me(i,s.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},jj=(e,t,r)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:n,outputValues:a,emptyRowIndicator:s,reverseIndexMap:i}=pp.sparseFillEmptyRows(k("indices",e,t,r),k("values",e,t,r),k("denseShape",e,t,r),k("defaultValue",e,t,r));return[n,a,s,i]}case"SparseReshape":{let{outputIndices:n,outputShape:a}=pp.sparseReshape(k("inputIndices",e,t,r),k("inputShape",e,t,r),k("newShape",e,t,r));return[n,a]}case"SparseSegmentMean":return[pp.sparseSegmentMean(k("data",e,t,r),k("indices",e,t,r),k("segmentIds",e,t,r))];case"SparseSegmentSum":return[pp.sparseSegmentSum(k("data",e,t,r),k("indices",e,t,r),k("segmentIds",e,t,r))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Hj=(e,t,r)=>{switch(e.op){case"FFT":return[km(k("x",e,t,r))];case"IFFT":return[Fp(k("x",e,t,r))];case"RFFT":return[Im(k("x",e,t,r))];case"IRFFT":return[eA(k("x",e,t,r))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},qj=(e,t,r)=>{switch(e.op){case"StringNGrams":{let{nGrams:n,nGramsSplits:a}=Kc.stringNGrams(k("data",e,t,r),k("dataSplits",e,t,r),k("separator",e,t,r),k("nGramWidths",e,t,r),k("leftPad",e,t,r),k("rightPad",e,t,r),k("padWidth",e,t,r),k("preserveShortSequences",e,t,r));return[n,a]}case"StringSplit":{let{indices:n,values:a,shape:s}=Kc.stringSplit(k("input",e,t,r),k("delimiter",e,t,r),k("skipEmpty",e,t,r));return[n,a,s]}case"StringToHashBucketFast":return[Kc.stringToHashBucketFast(k("input",e,t,r),k("numBuckets",e,t,r))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Kj=(e,t,r)=>{switch(e.op){case"Cast":return[me(k("x",e,t,r),k("dtype",e,t,r))];case"ExpandDims":{let n=k("axis",e,t,r);return[Ht(k("x",e,t,r),n)]}case"Squeeze":{let n=k("axis",e,t,r);return[et(k("x",e,t,r),n)]}case"Reshape":return[G(k("x",e,t,r),k("shape",e,t,r))];case"MirrorPad":return[r7(k("x",e,t,r),k("padding",e,t,r),k("mode",e,t,r))];case"PadV2":case"Pad":return[Gn(k("x",e,t,r),k("padding",e,t,r),k("constantValue",e,t,r))];case"SpaceToBatchND":{let n=k("blockShape",e,t,r),a=k("paddings",e,t,r);return[bm(k("x",e,t,r),n,a)]}case"BatchToSpaceND":{let n=k("blockShape",e,t,r),a=k("crops",e,t,r);return[pm(k("x",e,t,r),n,a)]}case"DepthToSpace":{let n=k("blockSize",e,t,r),a=k("dataFormat",e,t,r).toUpperCase();return[Wk(k("x",e,t,r),n,a)]}case"BroadcastTo":return[bp(k("x",e,t,r),k("shape",e,t,r))];case"BroadcastArgs":return[Fk(k("s0",e,t,r),k("s1",e,t,r))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Av(e,t,r,n){let a=((s,i,o)=>{switch(s.category){case"arithmetic":return K(()=>Ij(s,i,o));case"basic_math":return K(()=>Sj(s,i,o));case"control":return Mj(s,i,o);case"convolution":return K(()=>Fj(s,i,o));case"creation":return K(()=>$j(s,i,o));case"dynamic":return Pj(s,i,o);case"evaluation":return K(()=>_j(s,i,o));case"image":return K(()=>Lj(s,i,o));case"graph":return K(()=>zj(s,i,o));case"logical":return K(()=>Bj(s,i,o));case"matrices":return K(()=>Wj(s,i,o));case"normalization":return K(()=>Vj(s,i,o));case"reduction":return K(()=>Uj(s,i,o));case"slice_join":return K(()=>Gj(s,i,o));case"sparse":return K(()=>jj(s,i,o));case"spectral":return K(()=>Hj(s,i,o));case"string":return K(()=>qj(s,i,o));case"transformation":return K(()=>Kj(s,i,o));case"hash_table":return Dj(s,i,o,n);case"custom":let l=e6(s.op);if(l&&l.customExecutor)return l.customExecutor(new kj(s,i,o));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,r);return v.isPromise(a)?a.then(s=>[].concat(s)):[].concat(a)}var xv=class{constructor(e={},t={},r={},n={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=r,this.functionMap=n,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let r=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(r))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function bv(e,t,r,n){let a=new Set,s=[],i=null,o=null,l=new Set,u=Object.keys(e).map(p=>un(p)[0]),d=[];n!=null&&(d=n.map(p=>un(p.name)[0]));let h=[...t];for(;h.length>0;){let p=h.pop();if((w6(p)||Qj(p)||eH(p))&&i==null&&(i=p,o=i.children.map(c=>c.name).filter(c=>a.has(c))),a.add(p.name),r[p.name]==null&&u.indexOf(p.name)===-1&&d.indexOf(p.name)===-1){if(p.inputs.length===0){s.push(p.name);continue}p.inputs.forEach(c=>{l.has(c.name)||(l.add(c.name),h.push(c))})}}return{inputs:e,outputs:t,usedNodes:a,missingInputs:s,dynamicNode:i,syncInputs:o}}function Xj(e,t,r){let{usedNodes:n,inputs:a}=r,s=[],i=Object.keys(a).map(d=>un(d)[0]).map(d=>e.nodes[d]),o=e.initNodes;i.forEach(d=>{n.has(d.name)&&s.push(d)}),e.weights.forEach(d=>{n.has(d.name)&&s.push(d)}),o!=null&&o.forEach(d=>{n.has(d.name)&&s.push(d)});let l=new Set,u=[];for(;s.length>0;){let d=s.pop();l.add(d.name),t[d.name]||u.push(d),d.children.forEach(h=>{!l.has(h.name)&&n.has(h.name)&&h.inputs.every(p=>l.has(p.name))&&s.push(h)})}return u}var Zj=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],Yj=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],Jj=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function w6(e){return Zj.indexOf(e.op)>=0}function Qj(e){return Yj.indexOf(e.op)>=0}function eH(e){return Jj.indexOf(e.op)>=0}var L1=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this.intermediateTensors={},this.keepTensorForDebug=!1,this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(r=>{this._functionExecutorMap[r]=new L1(e.functions[r],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(r=>e[r].map(n=>n.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let r=e.map(a=>a.name).sort(),n=t.map(a=>a.name).sort();return r.join(this.SEPERATOR)+"--"+n.join(this.SEPERATOR)}compile(e,t){let r=bv(e,t,this.weightMap,this._initNodes),{missingInputs:n,dynamicNode:a,syncInputs:s}=r;if(a!=null)throw new Error(`This execution contains the node '${a.name}', which has the dynamic op '${a.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(n.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${n}]`)}return Xj(this.graph,this.weightMap,r)}execute(e,t){e=this.mapInputs(e);let r=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let n=r.map(d=>this.graph.nodes[un(d)[0]]),a=t.map(d=>un(d)[0]),s=a.map(d=>this.graph.nodes[d]);this.resetIntermediateTensors(),s.length===0&&(s=this._outputs);let i=this.getCompilationKey(n,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let l={},u={};return K(()=>{let d=new xv(this.weightMap,l,u,this.functionExecutorMap),h={...this.weightMap};Object.keys(e).forEach(f=>{let[m,g]=un(f),y=[];y[g]=e[f],h[m]=y});let p=this.getFrozenTensorIds(h),c={};for(let f=0;f<o.length;f++){let m=o[f];if(!h[m.name]){let g=Av(m,h,d,this._resourceManager);if(v.isPromise(g))throw new Error(`The execution of the op '${m.op}' returned a promise. Please use model.executeAsync() instead.`);h[m.name]=g,this.checkTensorForDisposal(m.name,m,h,d,p,a,c)}}return this.parent==null&&d.dispose(p),t.map(f=>Or(f,h,d))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(r=>e[r]).map(r=>r.map(n=>n.id)));return new Set(t)}checkTensorForDisposal(e,t,r,n,a,s,i){t.category==="control"||s.indexOf(e)!==-1||(r[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=rj(o.name,r,n);l!=null&&l.forEach(u=>{if(u&&!u.kept&&!a.has(u.id)){let d=i[u.id];if(d===1){if(!this.keepTensorForDebug)u.dispose();else{let[h,p]=Ta(t.name,n);this.intermediateTensors[h]?this.intermediateTensors[h][p]=u:(this.intermediateTensors[h]=[],this.intermediateTensors[h][p]=u)}delete i[u.id]}else d!=null&&i[u.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}disposeIntermediateTensors(){!this.intermediateTensors||(Object.keys(this.intermediateTensors).forEach(e=>this.intermediateTensors[e].forEach(t=>t.dispose())),this.disposeTensorsMap())}disposeTensorsMap(){!this.tensorsMap||Object.keys(this.tensorsMap).forEach(e=>{this.tensorsMap[e].forEach(t=>{t&&!t.kept&&!t.isDisposed&&!this.keepIds.has(t.id)&&t.dispose()})})}getIntermediateTensors(){return this.tensorsMap}resetIntermediateTensors(){for(let e in this.intermediateTensors)this.intermediateTensors[e].forEach(t=>t.dispose()),delete this.intermediateTensors[e]}async _executeAsync(e,t,r=!1,n={},a={}){r||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));try{this.keepTensorForDebug=Y().getBool("KEEP_INTERMEDIATE_TENSORS")}catch(u){console.warn(u.message)}this.resetIntermediateTensors();let s=new xv(this.weightMap,n,a,this.functionExecutorMap);this.tensorsMap=await this.executeWithControlFlow(e,s,t,r);let i=t.map(u=>Or(u,this.tensorsMap,s)),o=i.map(u=>u.id),l=Object.keys(e).map(u=>e[u].id);return this.keepIds=new Set([...o,...l,...this.weightIds]),this.keepTensorForDebug||this.disposeTensorsMap(),this.parent==null&&s.dispose(this.keepIds),i}async executeFunctionAsync(e,t,r){let n=e.reduce((a,s,i)=>(a[this.inputs[i].name]=s,a),{});return this._executeAsync(n,this.outputNodes,!0,t,r)}async executeWithControlFlow(e,t,r,n){let a=Object.keys(e),s=a.map(A=>this.graph.nodes[un(A)[0]]),i=r.map(A=>un(A)[0]),o=i.map(A=>this.graph.nodes[A]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:u,dynamicNode:d,syncInputs:h}=bv(e,o,this.weightMap,this._initNodes),p=[...s,...this.graph.weights,...this._initNodes||[]].map(A=>({node:A,contexts:t.currentContext})),c={...this.weightMap};Object.keys(e).forEach(A=>{let[x,b]=un(A),w=[];w[b]=e[A],c[x]=w});let f={},m=this.getFrozenTensorIds(c),g={};for(;p.length>0;){let A=this.processStack(s,p,t,c,g,m,i,f,l);await Promise.all(A)}d==null&&!n&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=o.filter(A=>!w6(A)&&!Or(A.name,c,t)).map(A=>A.name);if(y.length>0){let A="";throw d!=null&&(A=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${h}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${a}]. Consider providing the following inputs: [${u}]. ${A}`)}return c}processStack(e,t,r,n,a,s,i,o,l){let u=[];for(;t.length>0;){let d=t.pop();r.currentContext=d.contexts;let h="";if(d.node.op==="Enter"&&k("isConstant",d.node,n,r)&&([h]=Ta(d.node.name,r)),n[d.node.name]==null){let p=Av(d.node,n,r,this._resourceManager);h||([h]=Ta(d.node.name,r));let c=r.currentContext;v.isPromise(p)?u.push(p.then(f=>(n[h]=f,r.currentContext=c,this.checkTensorForDisposal(h,d.node,n,r,s,i,o),this.processChildNodes(d.node,t,r,n,a,l),f))):(n[h]=p,this.checkTensorForDisposal(h,d.node,n,r,s,i,o),this.processChildNodes(d.node,t,r,n,a,l))}else this.processChildNodes(d.node,t,r,n,a,l)}return u}processChildNodes(e,t,r,n,a,s){e.children.forEach(i=>{let[o]=Ta(i.name,r);a[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!Or(l,n,r))&&(a[o]=!0,t.push({contexts:r.currentContext,node:i})):i.inputNames.every(l=>!!Or(l,n,r))&&(a[o]=!0,t.push({contexts:r.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let r=e[t],[n]=un(t),a=this.graph.nodes[n];if(a.attrParams.shape&&a.attrParams.shape.value){let s=a.attrParams.shape.value,i=s.length===r.shape.length&&r.shape.every((o,l)=>s[l]===-1||s[l]===o);v.assert(i,()=>`The shape of dict['${a.name}'] provided in model.execute(dict) must be [${s}], but was [${r.shape}]`)}a.attrParams.dtype&&a.attrParams.dtype.value&&v.assert(r.dtype===a.attrParams.dtype.value,()=>`The dtype of dict['${a.name}'] provided in model.execute(dict) must be ${a.attrParams.dtype.value}, but was ${r.dtype}`)})}mapInputs(e){let t={};for(let r in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[r]!=null){let n=this._signature.inputs[r];t[n.name]=e[r]}else t[r]=e[r];return t}checkInputs(e){let t=Object.keys(e).filter(r=>{let[n]=un(r);return this.graph.nodes[n]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[r]=un(t);if(!this.graph.nodes[r])throw new Error(`The output '${t}' is not found in the graph`)})}},tH=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},rH="?tfjs-format=file",nH="model.json",a0=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new tH}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=Sr.browserHTTPRequest(e,this.loadOptions);else{let t=Sr.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(Sr.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,r;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?r=this.artifacts.userDefinedMetadata.signature:r=this.artifacts.signature,this.signature=r,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let n=Sr.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new L1(fv.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(n),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let a=fv.Instance.transformGraph(e.modelInitializer);this.initializer=new L1(a),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let r=Sr.getSaveHandlers(e);if(r.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(r.length>1)throw new Error(`Found more than one (${r.length}) save handlers for URL '${e}'`);e=r[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof rt)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,r,n)=>(t[r]=e[n],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let r=this.executor.execute(e,t);return r.length>1?r:r[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let r=await this.executor.executeAsync(e,t);return r.length>1?r:r[0]}getIntermediateTensors(){return this.executor.getIntermediateTensors()}disposeIntermediateTensors(){this.executor.disposeIntermediateTensors()}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,r)=>(t[r]=[e[r]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function aH(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${nH}${rH}`);let r=new a0(e,t);return await r.load(),r}var sH="0.0.0",k6={};Le(k6,{CSVDataset:()=>_6,Dataset:()=>cd,FileDataSource:()=>V6,TextLineDataset:()=>P6,URLDataSource:()=>U6,array:()=>CH,csv:()=>LH,func:()=>BH,generator:()=>WH,microphone:()=>UH,version_data:()=>GH,webcam:()=>VH,zip:()=>EH});var iH=$o(Pf()),oH=$o(Pf());function lH(e,t){return If(e,t)}function If(e,t,r=new Map,n=new Set){if(e==null)return null;if(typeof Blob=="function"&&e instanceof Blob)return e.slice();if(n.has(e))throw new Error("Circular references are not supported.");if(r.has(e))return r.get(e);let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(a.recurse)if(ku(e)){let s=Array.isArray(e)?[]:{};n.add(e);for(let i in e){let o=e[i],l=If(o,t,r,n);s[i]=l}return n.delete(e),e.__proto__&&(s.__proto__=e.__proto__),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return r.set(e,a.value),a.value}function uH(e,t=S6){return I6(e,t)}function I6(e,t,r=new Set){let n=e[0];if(r.has(n))throw new Error("Circular references are not supported.");let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(a.recurse)if(ku(n)){let s=Array.isArray(n)?[]:{};r.add(n);for(let i in n){let o=e.map(u=>u[i]),l=I6(o,t,r);s[i]=l}return r.delete(n),s}else throw new Error(`Can't recurse into non-iterable type: ${n}`);else return a.value}function S6(e){return e===null?null:ku(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function T6(e,t){let r=new Map;If(e,t,r);for(let n of Array.from(r.keys())){let a=r.get(n);if(v.isPromise(a)){let s=await a;r.set(n,s)}}return If(e,t,r)}function ku(e){let t=!1;if(Y().get("IS_BROWSER"))t=e instanceof TextDecoder;else{let{StringDecoder:r}=dw();t=e instanceof r}return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof rt)&&!(e instanceof Promise)&&!t)}function dH(e){return e==null||pH(e)||Array.isArray(e)||typeof e=="object"&&e instanceof rt||v.isTypedArray(e)}function pH(e){return e===null||typeof e!="object"&&typeof e!="function"}function hH(e){return lH(e,cH)}function cH(e){return e instanceof rt?{value:e.clone(),recurse:!1}:ku(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var N6=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),r=this.get(t);return this.set(t,this.pop()),r}},C6=class extends N6{constructor(){super(C6.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),r=this.length();for(let n=0;n<r;n++)t[n]=this.get(this.wrap(this.begin+n));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=r}},E6=C6;E6.INITIAL_CAPACITY=32;function R6(e){return new gH(e)}function Lx(e){return new yH(e)}function fH(e,t){return new M6(e,t)}function mH(e,t=F6.FAIL){return new TH(e,t)}var gr=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],r=await e.next();for(;!r.done;)t.push(r.value),r=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),r=e(t.value);for(;!t.done&&r;)t=await this.next(),r=e(t.value)}handleErrors(e){return new IH(this,e)}filter(e){return new wH(this,e)}map(e){return new kH(this,e)}mapAsync(e){return new vv(this,e)}serialMapAsync(e){return new vv(this,e).serial()}flatmap(e){return new SH(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new vH(this,e,t)}columnMajorBatch(e,t=!0,r=S6){return this.rowMajorBatch(e,t).map(n=>uH(n,r))}concatenate(e,t){return new M6(R6([this,e]),t)}take(e){return e<0||e==null?this:new bH(this,e)}skip(e){return e<0||e==null?this:new xH(this,e)}prefetch(e){return new $6(this,e)}shuffle(e,t){return new NH(this,e,t)}serial(){return new AH(this)}},gH=class extends gr{constructor(e){super(),this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:hH(e),done:!1}}},yH=class extends gr{constructor(e){super(),this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},AH=class extends gr{constructor(e){super(),this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},xH=class extends gr{constructor(e,t){super(),this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;re(e.value)}return this.upstream.next()}},bH=class extends gr{constructor(e,t){super(),this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},vH=class extends gr{constructor(e,t,r=!0){super(),this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=r,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},wH=class extends gr{constructor(e,t){super(),this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;re(e.value)}}},kH=class extends gr{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=la.getTensorsInContainer(e.value),r=this.transform(e.value),n=la.getTensorsInContainer(r);for(let a of t)la.isTensorInList(a,n)||a.dispose();return{value:r,done:!1}}},IH=class extends gr{constructor(e,t){super(),this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},vv=class extends gr{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=la.getTensorsInContainer(e.value),r=await this.transform(e.value),n=la.getTensorsInContainer(r);for(let a of t)la.isTensorInList(a,n)||a.dispose();return{value:r,done:!1}}},Bx=class extends gr{constructor(){super(),this.outputQueue=new E6,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},SH=class extends Bx{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=la.getTensorsInContainer(e.value),r=this.transform(e.value),n=la.getTensorsInContainer(r);this.outputQueue.pushAll(r);for(let a of t)la.isTensorInList(a,n)||a.dispose();return!0}},M6=class extends gr{constructor(e,t){super(),this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let r=await this.moreIterators.next();if(r.done)return{value:null,done:!0};this.iterator=r.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},F6=(e=>(e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST",e))(F6||{}),TH=class extends gr{constructor(e,t=0){super(),this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,r=0;function n(s){return s instanceof gr?{value:s.next().then(i=>(t++,i.done&&r++,i.value)),recurse:!1}:{value:null,recurse:!0}}let a=await T6(this.iterators,n);if(t===r)return{value:null,done:!0};if(r>0)switch(this.mismatchMode){case 0:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case 1:return{value:null,done:!0};case 2:default:}return this.count++,{value:a,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},$6=class extends gr{constructor(e,t){super(),this.upstream=e,this.bufferSize=t,this.buffer=new N6(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},NH=class extends $6{constructor(e,t,r){super(e,t),this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=oH.alea(r||v.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},cd=class{constructor(){this.size=null}batch(e,t=!0){let r=this;v.assert(e>0,()=>`batchSize needs to be positive, but it is
|
|
${e}`);let n;return this.size===1/0||this.size==null?n=this.size:t?n=Math.ceil(this.size/e):n=Math.floor(this.size/e),ln(async()=>(await r.iterator()).columnMajorBatch(e,t,RH),n)}concatenate(e){let t=this,r;return this.size===1/0||e.size===1/0?r=1/0:this.size!=null&&e.size!=null?r=this.size+e.size:r=null,ln(async()=>(await t.iterator()).concatenate(await e.iterator()),r)}filter(e){let t=this,r;return this.size===1/0?r=1/0:r=null,ln(async()=>(await t.iterator()).filter(n=>K(()=>e(n))),r)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return ln(async()=>(await t.iterator()).map(r=>K(()=>e(r))),this.size)}mapAsync(e){let t=this;return ln(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return ln(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,r;return this.size!=null&&e>0?r=this.size*e:e===0?r=0:this.size!=null&&(e===void 0||e<0)?r=1/0:r=null,ln(async()=>{let n=Lx(async()=>({value:await t.iterator(),done:!1}));return fH(n.take(e))},r)}skip(e){let t=this,r;return this.size!=null&&e>=0&&this.size>=e?r=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?r=0:r=null,ln(async()=>(await t.iterator()).skip(e),r)}shuffle(e,t,r=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let n=this,a=iH.alea(t||v.now().toString());return ln(async()=>{let s=a.int32();return r&&(s+=a.int32()),(await n.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,r;return this.size!=null&&this.size>e?r=e:this.size!=null&&this.size<=e?r=this.size:r=null,ln(async()=>(await t.iterator()).take(e),r)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};cd.MAX_BUFFER_SIZE=1e4;function ln(e,t=null){return new class extends cd{constructor(){super(...arguments),this.size=t}async iterator(){return e()}}}function CH(e){return ln(async()=>R6(e),e.length)}function EH(e){if(!ku(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let r=0;r<e.length;r++)t=t==null?e[r].size:Math.min(t,e[r].size);else if(e instanceof Object)for(let r in e)t=t==null?e[r].size:Math.min(t,e[r].size);return ln(async()=>{let r=await T6(e,n=>{if(n instanceof cd)return{value:n.iterator(),recurse:!1};if(ku(n))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return mH(r,1)},t)}function RH(e){if(e===null)return null;let t=e[0];return dH(t)?{value:MH(e),recurse:!1}:{value:null,recurse:!0}}function MH(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof rt?sr(e):ct(e)}var P6=class extends cd{constructor(e){super(),this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
|
|
`).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},Wc='"',lp=Symbol("out"),wv=Symbol("field"),Vc=Symbol("quote"),Qy=Symbol("quoteafterquote"),kv=Symbol("quoteinquote"),_6=class extends cd{constructor(e,t){super(),this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new P6(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(v.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&v.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((n,a)=>(n[a]=n[a]+1||1,n),{}),r=Object.keys(t).filter(n=>t[n]>1);if(v.assert(r.length===0,()=>"Duplicate column names found: "+r.toString()),this.columnConfigs){for(let n of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(n)===-1)throw new Error('The key "'+n+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),r={},n={};for(let a=0;a<this.fullColumnNames.length;a++){let s=this.fullColumnNames[a],i=this.columnConfigs?this.columnConfigs[s]:null;if(!(this.configuredColumnsOnly&&!i)){let o=t[a],l=null;if(o==="")if(i&&i.default!==void 0)l=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${s} is empty in this line: ${e}`);l=void 0}else{let u=Number(o);if(isNaN(u))i&&i.dtype==="bool"?l=this.getBoolean(o):l=o;else if(!i||!i.dtype)l=u;else switch(i.dtype){case"float32":l=u;break;case"int32":l=Math.floor(u);break;case"bool":l=this.getBoolean(o);break;default:l=u}}i&&i.isLabel?n[s]=l:r[s]=l}}return Object.keys(n).length===0?r:{xs:r,ys:n}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let r=[],n=0,a=e.length,s=lp;for(let i=0;i<a;i++)switch(s){case lp:switch(e.charAt(i)){case Wc:n=i+1,s=Vc;break;case this.delimiter:if(n=i+1,this.delimiter===" "&&this.delimWhitespace)break;r.push(""),s=lp;break;default:s=wv,n=i;break}break;case wv:switch(e.charAt(i)){case this.delimiter:r.push(e.substring(n,i)),s=lp,n=i+1;break;default:}break;case Vc:switch(e.charAt(i)){case Wc:s=Qy;break;default:}break;case Qy:switch(e.charAt(i)){case this.delimiter:r.push(e.substring(n,i-1)),s=lp,n=i+1;break;case Wc:s=Vc;break;default:s=kv;break}break;case kv:switch(e.charAt(i)){case Wc:s=Vc;break;default:}break;default:}if(s===Qy?r.push(e.substring(n,a-1)):r.push(e.substring(n)),t&&r.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${r}`);return r}},z6=class extends gr{constructor(e){super(),this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(!Y().get("IS_BROWSER"))throw new Error("microphone API is only supported in browser environment.");let t=new z6(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(r){throw new Error(`Error thrown while initializing video stream: ${r.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,r=await this.getAudioData();if(this.includeSpectrogram){let n=this.flattenQueue(r.freqDataQueue);e=this.getTensorFromAudioDataArray(n,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let n=this.flattenQueue(r.timeDataQueue);t=this.getTensorFromAudioDataArray(n,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],r=0;return new Promise(n=>{let a=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&n({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++r===this.numFrames&&(clearInterval(a),n({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,r=new Float32Array(e.length*t);return e.forEach((n,a)=>r.set(n,a*t)),r}getTensorFromAudioDataArray(e,t){let r=new Float32Array(v.sizeFromShape(t));return r.set(e,r.length-e.length),ct(r,t)}},O6=class extends gr{constructor(e,t){if(super(),this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=St([0],"int32"),this.webcamConfig.centerCrop){let r=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,n=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,a=(1-r)/2,s=(1-n)/2,i=a+r,o=n+s;this.cropBox=ua([s,a,o,i],[1,4])}else this.cropBox=ua([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(!Y().get("IS_BROWSER"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let r=new O6(e,t);return await r.start(),r}async start(){this.webcamConfig.facingMode&&v.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=$n.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return K(()=>{let t=Ht(me(e,"float32"),0),r;r=Ie.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let n=r.shape;return G(r,n.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},D6=class{},L6=class extends gr{split(e){return new FH(this,e)}},FH=class extends L6{constructor(e,t){super(),this.upstream=e,this.impl=new $H(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},$H=class extends Bx{constructor(e,t){super(),this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let r of t.slice(0,-1))this.outputQueue.push(r);return this.carryover=t[t.length-1],!0}},PH=class extends gr{decodeUTF8(){return new _H(this)}},_H=class extends L6{constructor(e){super(),this.upstream=e,this.impl=new zH(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},zH=class extends Bx{constructor(e){if(super(),this.upstream=e,Y().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=dw();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let r;return Y().get("IS_BROWSER")?r=this.decoder.decode(t,{stream:!0}):r=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(r),!0}},B6=class extends PH{constructor(e,t={}){super(),this.file=e,this.options=t,v.assert(e instanceof Uint8Array||(Y().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let r=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,r)));else{let n=new FileReader;n.onload=s=>{let i=n.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},n.onabort=s=>t(new Error("Aborted")),n.onerror=s=>t(new Error(s.type));let a=this.file.slice(this.offset,r);n.readAsArrayBuffer(a)}this.offset=r}),done:!1}}};async function OH(e,t={},r){let n,a;typeof e=="string"?n=e:(n=e.url,a=DH(e));let s=await(r||v.fetch)(n,a);if(s.ok){let i=new Uint8Array(await s.arrayBuffer());return new B6(i,t)}else throw new Error(s.statusText)}var DH=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function W6(e){return typeof e=="string"&&e.slice(0,7)==="file://"}var V6=class extends D6{constructor(e,t={}){super(),this.input=e,this.options=t}async iterator(){if(W6(this.input)&&Y().get("IS_NODE")){let e=n2();this.input=e.readFileSync(this.input.slice(7))}return new B6(this.input,this.options)}},U6=class extends D6{constructor(e,t={}){super(),this.url=e,this.fileOptions=t}async iterator(){return W6(this.url)?new V6(this.url,this.fileOptions).iterator():OH(this.url,this.fileOptions)}};function LH(e,t={}){return new _6(new U6(e),t)}function BH(e){let t=Lx(e);return ln(async()=>t)}function WH(e){return ln(async()=>{let t=await e();return Lx(()=>t.next())})}async function VH(e,t){return O6.create(e,t)}async function UH(e){return z6.create(e)}var GH="0.0.0";function Te(e,t){Array.isArray(e)||(e=[e]),e.forEach(r=>{r!=null&&v.assert(r.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var jH=jn.whereImpl,G6=class extends Nu{constructor(){super(),this.blockSize=48,this.firstUse=!0,this.data=new Dp(this,Ar())}nextDataId(){return G6.nextDataId++}write(e,t,r){this.firstUse&&(this.firstUse=!1,Y().get("IS_NODE")&&N.warn(`
|
|
============================
|
|
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
|
|
============================`));let n={id:this.nextDataId()};return this.data.set(n,{values:e,dtype:r,refCount:1}),n}makeTensorInfo(e,t,r){let n;if(t==="string"&&r!=null&&r.length>0&&v.isString(r[0])){let a=r.map(s=>v.encodeString(s));n=this.write(a,e,t)}else n=this.write(r,e,t);return{dataId:n,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,r,n,a){this.data.set(e,{values:t,dtype:n,refCount:a})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:r}=this.data.get(e);if(t==="complex64"){let n=this.readSync(r.real.dataId),a=this.readSync(r.imag.dataId);return N.mergeRealAndImagArrays(n,a)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),r=t;if(e.dtype==="string")try{r=t.map(n=>v.decodeString(n))}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,r)}makeOutput(e,t,r){let n=this.write(e,t,r);return Ar().makeTensorFromDataId(n,t,r,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:r}=this.data.get(e);r!=null&&(this.disposeData(r.real.dataId,!0),this.disposeData(r.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){Te([e],"where");let t=this.readSync(e.dataId);return jH(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}},Wx=G6;Wx.nextDataId=0;var s0={};Le(s0,{addImpl:()=>H6,bincountImpl:()=>Ux,bincountReduceImpl:()=>q6,ceilImpl:()=>K6,concatImpl:()=>Gx,equalImpl:()=>X6,expImpl:()=>Y6,expm1Impl:()=>Q6,floorImpl:()=>eI,gatherNdImpl:()=>tI,gatherV2Impl:()=>rI,greaterEqualImpl:()=>aI,greaterImpl:()=>nI,lessEqualImpl:()=>iI,lessImpl:()=>sI,linSpaceImpl:()=>oI,logImpl:()=>lI,maxImpl:()=>uI,maximumImpl:()=>dI,minimumImpl:()=>pI,multiplyImpl:()=>jx,negImpl:()=>hI,notEqualImpl:()=>cI,prodImpl:()=>fI,rangeImpl:()=>qx,rsqrtImpl:()=>mI,sigmoidImpl:()=>$q,simpleAbsImpl:()=>j6,sliceImpl:()=>Tf,sparseFillEmptyRowsImpl:()=>yI,sparseReshapeImpl:()=>AI,sparseSegmentReductionImpl:()=>Kx,sqrtImpl:()=>zq,squaredDifferenceImpl:()=>xI,stridedSliceImpl:()=>bI,stringNGramsImpl:()=>vI,stringSplitImpl:()=>wI,stringToHashBucketFastImpl:()=>kI,subImpl:()=>II,tileImpl:()=>SI,topKImpl:()=>NI,transposeImpl:()=>Hx,uniqueImpl:()=>CI});function j6(e){let t=new Float32Array(e.length);for(let r=0;r<e.length;++r)t[r]=Math.abs(e[r]);return t}var HH=e=>{let{x:t}=e.inputs,r=e.backend;Te(t,"abs");let n=new Float32Array(v.sizeFromShape(t.shape)),a=r.data.get(t.dataId).values;return n=j6(a),r.makeOutput(n,t.shape,t.dtype)},qH={kernelName:_o,backendName:"cpu",kernelFunc:HH};function Zt(e){return(t,r,n,a,s)=>{let i=N.assertAndGetBroadcastShape(t,r),o=i.length,l=v.computeStrides(i),u=v.sizeFromShape(i),d=v.getTypedArrayFromDType(s,u),h=t.length,p=r.length,c=v.computeStrides(t),f=v.computeStrides(r),m=N.getBroadcastDims(t,i),g=N.getBroadcastDims(r,i);if(m.length+g.length===0)for(let y=0;y<d.length;++y)d[y]=e(n[y%n.length],a[y%a.length]);else for(let y=0;y<d.length;++y){let A=v.indexToLoc(y,o,l),x=A.slice(-h);m.forEach(S=>x[S]=0);let b=v.locToIndex(x,h,c),w=A.slice(-p);g.forEach(S=>w[S]=0);let T=v.locToIndex(w,p,f);d[y]=e(n[b],a[T])}return[d,i]}}function dn(e){let{inputs:t,backend:r}=e,{real:n,imag:a}=t,s=r.data.get(n.dataId).values,i=r.data.get(a.dataId).values,o=r.makeTensorInfo(n.shape,"complex64"),l=r.data.get(o.dataId);return l.complexTensorInfos={real:r.makeTensorInfo(n.shape,"float32",s),imag:r.makeTensorInfo(a.shape,"float32",i)},o}var KH={kernelName:Bp,backendName:"cpu",kernelFunc:dn};function Sf(e,t,r="float32"){if(r==="complex64"){let a=Sf(e,t,"float32"),s=Sf(e,t,"float32");return dn({inputs:{real:a,imag:s},backend:e})}let n=v.makeZerosTypedArray(v.sizeFromShape(t),r);return e.makeTensorInfo(t,r,n)}function Ma(e){let{inputs:t,backend:r}=e,{x:n}=t;return r.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var XH={kernelName:li,backendName:"cpu",kernelFunc:Ma};function Co(e){let{inputs:t,backend:r}=e,{input:n}=t,a=r.data.get(n.dataId).complexTensorInfos.real,s=r.data.get(a.dataId).values;return r.makeTensorInfo(a.shape,a.dtype,s)}var ZH={kernelName:Xp,backendName:"cpu",kernelFunc:Co};function Ws(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{dtype:s}=n;if(s==="complex64"){if(a.dtype==="complex64")return Ma({inputs:{x:a},backend:r});let i=Sf(r,a.shape,a.dtype),o=Ws({inputs:{x:a},backend:r,attrs:{dtype:"float32"}}),l=dn({inputs:{real:o,imag:i},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=Co({inputs:{input:a},backend:r}),o=Ws({inputs:{x:i},backend:r,attrs:{dtype:s}});return r.disposeIntermediateTensorInfo(i),o}if(!v.hasEncodingLoss(a.dtype,s)){let i=Ma({inputs:{x:a},backend:r});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=r.data.get(a.dataId).values,o=Int32Array.from(i);return r.makeTensorInfo(a.shape,"int32",o)}if(s==="bool"){let i=r.data.get(a.dataId).values,o=v.toTypedArray([0],a.dtype),[l,u]=Zt((d,h)=>d!==h?1:0)(a.shape,[],i,o,"bool");return r.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var YH={kernelName:Ks,backendName:"cpu",kernelFunc:Ws};function yr(e,t,r,n){return r==null?({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;Te([i,o],e);let u=l.data.get(i.dataId).values,d=l.data.get(o.dataId).values,h=i.dtype==="string"?N.fromUint8ToStringArray(u):u,p=i.dtype==="string"?N.fromUint8ToStringArray(d):d,c=n||i.dtype,[f,m]=t(i.shape,o.shape,h,p,c);return l.makeTensorInfo(m,c,f)}:({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let u=Ws({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),d=l.data.get(u.dataId),h=d.complexTensorInfos.real,p=d.complexTensorInfos.imag,c=l.data.get(h.dataId).values,f=l.data.get(p.dataId).values,m=Ws({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(m.dataId),y=g.complexTensorInfos.real,A=g.complexTensorInfos.imag,x=l.data.get(y.dataId).values,b=l.data.get(A.dataId).values,[w,T,S]=r(i.shape,o.shape,c,f,x,b),E=l.makeTensorInfo(S,"float32",w),R=l.makeTensorInfo(S,"float32",T),_=dn({inputs:{real:E,imag:R},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(m),l.disposeIntermediateTensorInfo(E),l.disposeIntermediateTensorInfo(R),_}else{let u=l.data.get(i.dataId).values,d=l.data.get(o.dataId).values,h=n||i.dtype,[p,c]=t(i.shape,o.shape,u,d,h);return l.makeTensorInfo(c,h,p)}}}function Vx(e){return(t,r,n,a,s,i)=>{let o=N.assertAndGetBroadcastShape(t,r),l=v.sizeFromShape(o),u=o.length,d=v.computeStrides(o),h=v.getTypedArrayFromDType("float32",l),p=v.getTypedArrayFromDType("float32",l),c=N.getBroadcastDims(t,o),f=N.getBroadcastDims(r,o),m=N.mergeRealAndImagArrays(n,a),g=N.mergeRealAndImagArrays(s,i),y=t.length,A=v.computeStrides(t),x=r.length,b=v.computeStrides(r);if(c.length+f.length===0)for(let w=0;w<h.length;w++){let T=w%m.length,S=w%g.length,E=e(m[T*2],m[T*2+1],g[S*2],g[S*2+1]);h[w]=E.real,p[w]=E.imag}else for(let w=0;w<h.length;w++){let T=v.indexToLoc(w,u,d),S=T.slice(-y);c.forEach(I=>S[I]=0);let E=v.locToIndex(S,y,A),R=T.slice(-x);f.forEach(I=>R[I]=0);let _=v.locToIndex(R,x,b),M=e(m[E*2],m[E*2+1],g[_*2],g[_*2+1]);h[w]=M.real,p[w]=M.imag}return[h,p,o]}}var H6=Zt((e,t)=>e+t),JH=Vx((e,t,r,n)=>({real:e+r,imag:t+n})),Ih=yr(qa,H6,JH),QH={kernelName:qa,backendName:"cpu",kernelFunc:Ih};function Ux(e,t,r,n,a){let s=v.sizeFromShape(n),i=v.makeZerosTypedArray(a,r);for(let o=0;o<e.length;o++){let l=e[o];if(l<0)throw new Error("Input x must be non-negative!");l>=a||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function q6(e,t,r,n=!1){let a=e.shape[0],s=e.shape[1],i=We([a,r],t.dtype);for(let o=0;o<a;o++)for(let l=0;l<s;l++){let u=e.get(o,l);if(u<0)throw new Error("Input x must be non-negative!");u>=r||(n?i.set(1,o,u):t.size>0?i.set(i.get(o,u)+t.get(o,l),o,u):i.set(i.get(o,u)+1,o,u))}return i}function Di(e){return(t,r,n)=>{let a=v.getTypedArrayFromDType(r,t.length);for(let s=0;s<t.length;++s)a[s]=e(t[s],n);return a}}function mt(e,t,r){return({inputs:n,attrs:a,backend:s})=>{let{x:i}=n;if(Te(i,e),i.dtype==="string"||r==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=v.sizeFromShape(i.shape),d=r||i.dtype,h=v.getArrayFromDType(d,u);for(let p=0;p<u;++p)h[p]=t(l[p],a);return o.makeTensorInfo(i.shape,d,h)}}function fd(e,t,r){return({inputs:n,attrs:a,backend:s})=>{let{x:i}=n;if(Te(i,e),i.dtype==="string"||r==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=r||i.dtype,d=t(l,u,a);return o.makeTensorInfo(i.shape,u,d)}}var K6=Di(e=>Math.ceil(e)),eq=fd(Xs,K6),tq={kernelName:Xs,backendName:"cpu",kernelFunc:eq};function Gx(e,t,r,n){let a=v.getArrayFromDType(r,v.sizeFromShape(t));if(n&&r!=="string"){let s=0;e.forEach(i=>{let o=v.sizeFromShape(i.shape);a.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=r==="string"?N.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let u=0;u<i.shape[0];++u){let d=u*t[1]+s;for(let h=0;h<i.shape[1];++h)a[d+h]=o[l++]}s+=i.shape[1]})}return a}var X6=Zt((e,t)=>e===t?1:0),Z6=yr(Wo,X6,null,"bool"),rq={kernelName:Wo,backendName:"cpu",kernelFunc:Z6},Y6=Di(e=>Math.exp(e)),J6=fd(ni,Y6,"float32"),nq={kernelName:ni,backendName:"cpu",kernelFunc:J6},Q6=Di(e=>Math.expm1(e)),aq=fd(Uo,Q6),sq={kernelName:Uo,backendName:"cpu",kernelFunc:aq},eI=Di(e=>Math.floor(e)),iq=fd(ai,eI),oq={kernelName:ai,backendName:"cpu",kernelFunc:iq};function tI(e,t,r,n,a,s,i,o,l){let u=We([n,s],r);for(let d=0;d<n;d++){let h=[],p=0;for(let c=0;c<a;c++){let f=e[d*a+c];p+=f*i[c],h.push(f)}if(p<0||p>=l/s)throw new Error(`Invalid indices: ${h} does not index into ${o}`);for(let c=0;c<s;c++)u.values[d*s+c]=t.get(...t.indexToLoc(p*s+c))}return u}function rI(e,t,r){let n=We(r,e.dtype);for(let a=0;a<n.size;++a){let s=n.indexToLoc(a).slice(),i=s[0],o=s[2],l=t.locToIndex([i,o]);s[2]=t.values[l];let u=e.locToIndex(s);0<=u&&u<e.values.length&&(n.values[a]=e.values[u])}return n}var nI=Zt((e,t)=>e>t?1:0),lq=yr(qo,nI,null,"bool"),uq={kernelName:qo,backendName:"cpu",kernelFunc:lq},aI=Zt((e,t)=>e>=t?1:0),dq=yr(oi,aI,null,"bool"),pq={kernelName:oi,backendName:"cpu",kernelFunc:dq},sI=Zt((e,t)=>e<t?1:0),hq=yr(Ko,sI,null,"bool"),cq={kernelName:Ko,backendName:"cpu",kernelFunc:hq},iI=Zt((e,t)=>e<=t?1:0),fq=yr(Xo,iI,null,"bool"),mq={kernelName:Xo,backendName:"cpu",kernelFunc:fq};function oI(e,t,r){let n=(t-e)/(r-1),a=v.makeZerosTypedArray(r,"float32");a[0]=e;for(let s=1;s<a.length;s++)a[s]=a[s-1]+n;return a}var lI=Di(e=>Math.log(e)),gq=fd(di,lI),yq={kernelName:di,backendName:"cpu",kernelFunc:gq};function uI(e,t,r,n){let a=v.getTypedArrayFromDType(n,v.sizeFromShape(r));for(let s=0;s<a.length;++s){let i=s*t,o=e[i];for(let l=0;l<t;++l){let u=e[i+l];(Number.isNaN(u)||u>o)&&(o=u)}a[s]=o}return a}var dI=Zt((e,t)=>Math.max(e,t)),Aq=yr(hi,dI),xq={kernelName:hi,backendName:"cpu",kernelFunc:Aq},pI=Zt((e,t)=>Math.min(e,t)),bq=yr(gi,pI),vq={kernelName:gi,backendName:"cpu",kernelFunc:bq},jx=Zt((e,t)=>e*t),wq=Vx((e,t,r,n)=>({real:e*r-t*n,imag:e*n+t*r})),i0=yr(Ai,jx,wq),kq={kernelName:Ai,backendName:"cpu",kernelFunc:i0};function hI(e,t,r){let n=v.createScalarValue(-1,r);return jx([],t,n,e,r)}function Iq(e){let{inputs:t,backend:r}=e,{x:n}=t;Te(n,"neg");let a=r.data.get(n.dataId).values,[s,i]=hI(a,n.shape,n.dtype);return r.makeTensorInfo(i,n.dtype,s)}var Sq={kernelName:Yo,backendName:"cpu",kernelFunc:Iq},cI=Zt((e,t)=>e!==t?1:0),Tq=yr(Jo,cI,null,"bool"),Nq={kernelName:Jo,backendName:"cpu",kernelFunc:Tq};function Hx(e,t,r,n,a){let s=t.length,i=v.sizeFromShape(t),o=v.computeStrides(t),l=v.computeStrides(a),u=v.getTypedArrayFromDType(r,v.sizeFromShape(a));for(let d=0;d<i;++d){let h=v.indexToLoc(d,s,o),p=new Array(h.length);for(let f=0;f<p.length;f++)p[f]=h[n[f]];let c=v.locToIndex(p,s,l);u[c]=e[d]}return u}function rn(e){let{inputs:t,attrs:r,backend:n}=e,{x:a}=t,{perm:s}=r;Te(a,"transpose");let i=a.shape.length,o=new Array(i);for(let d=0;d<o.length;d++)o[d]=a.shape[s[d]];let l=n.data.get(a.dataId).values,u=Hx(l,a.shape,a.dtype,s,o);return{dataId:n.write(u,o,a.dtype),shape:o,dtype:a.dtype}}var Cq={kernelName:Pi,backendName:"cpu",kernelFunc:rn};function fI(e,t,r,n){let[a,s]=N.computeOutAndReduceShapes(e,n),i=Nr(t,"int32"),o=v.makeZerosTypedArray(v.sizeFromShape(a),i),l=v.sizeFromShape(s);for(let u=0;u<o.length;++u){let d=u*l,h=1;for(let p=0;p<l;++p)h*=r[d+p];o[u]=h}return{outVals:o,outShape:a,outDtype:i}}function Eq(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n;Te(a,"prod");let o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=N.getAxesPermutation(l,o),d=l,h=a,p=[];u!=null&&(h=rn({inputs:{x:a},backend:r,attrs:{perm:u}}),p.push(h),d=N.getInnerMostAxes(d.length,o));let c=r.data.get(h.dataId).values,{outVals:f,outShape:m,outDtype:g}=fI(h.shape,h.dtype,c,d),y=m;return i&&(y=N.expandShapeToKeepDim(m,l)),p.forEach(A=>r.disposeIntermediateTensorInfo(A)),r.makeTensorInfo(y,g,f)}var Rq={kernelName:al,backendName:"cpu",kernelFunc:Eq};function qx(e,t,r,n){let a=e===t,s=e<t&&r<0,i=t<e&&r>1;if(a||s||i)return v.makeZerosTypedArray(0,n);let o=Math.abs(Math.ceil((t-e)/r)),l=v.makeZerosTypedArray(o,n);t<e&&r===1&&(r=-1),l[0]=e;for(let u=1;u<l.length;u++)l[u]=l[u-1]+r;return l}var mI=Di(e=>1/Math.sqrt(e)),Mq=fd(Si,mI),Fq={kernelName:Si,backendName:"cpu",kernelFunc:Mq},$q=Di(e=>1/(1+Math.exp(-e))),gI=mt(Ni,e=>1/(1+Math.exp(-e))),Pq={kernelName:Ni,backendName:"cpu",kernelFunc:gI};function Tf(e,t,r,n,a){let s=_t.isSliceContinous(n,t,r),i=v.sizeFromShape(r),o=v.computeStrides(n);if(s){let h=_t.computeFlatOffset(t,o);return a==="string"?e.slice(h,h+i):e.subarray(h,h+i)}let l=a==="string"?N.fromUint8ToStringArray(e):e,u=We(n,a,l),d=We(r,a);for(let h=0;h<d.size;++h){let p=d.indexToLoc(h),c=p.map((f,m)=>f+t[m]);d.set(u.get(...c),...p)}return a==="string"?N.fromStringArrayToUint8(d.values):d.values}function Eo(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{begin:s,size:i}=n;Te(a,"slice");let[o,l]=_t.parseSliceParams(a,s,i);_t.assertParamsValid(a,o,l);let u=r.data.get(a.dataId).values,d=Tf(u,o,l,a.shape,a.dtype);return r.makeTensorInfo(l,a.dtype,d)}var _q={kernelName:dl,backendName:"cpu",kernelFunc:Eo};function yI(e,t,r,n,a,s,i){let o=t[0],l=s[0],u=new Array(l),d=new Array(o),h=t[1];if(l===0){if(o!==0)throw new Error(N.getSparseFillEmptyRowsIndicesDenseShapeMismatch(o));let g=v.getArrayFromDType(r,0),y=v.getArrayFromDType(a,0);return[g,[0,h],y,u,d]}let p=!0,c=0,f=new Array(l).fill(0);for(let g=0;g<o;++g){let y=e[g*h];if(y<0)throw new Error(N.getSparseFillEmptyRowsNegativeIndexErrorMessage(g,y));if(y>=l)throw new Error(N.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(g,y,l));++f[y],p=p&&y>=c,c=y}let m=!0;for(let g=0;g<l;++g){let y=f[g]===0;u[g]=y,m=m&&!y,f[g]=Math.max(f[g],1),g>0&&(f[g]+=f[g-1])}if(m&&p){let g=e,y=n;for(let A=0;A<o;++A)d[A]=A;return[g,[o,h],y,u,d]}else{let g=f[l-1],y=v.getArrayFromDType(r,g*h),A=v.getArrayFromDType(a,g),x=new Array(l).fill(0);for(let b=0;b<o;++b){let w=e[b*h],T=x[w],S=(w===0?0:f[w-1])+T;x[w]++;for(let E=0;E<h;++E)y[S*h+E]=e[b*h+E];A[S]=n[b],d[b]=S}for(let b=0;b<l;++b)if(x[b]===0){let w=b===0?0:f[b-1];y[w*h+0]=b;for(let T=1;T<h;++T)y[w*h+T]=0;A[w]=i}return[y,[g,h],A,u,d]}}function AI(e,t,r,n,a){let s=v.sizeFromShape(n),i=t[0],o=a.length,l=[],u=1,d=-1;for(let m=0;m<o;++m){let g=a[m];if(g===-1){if(d!==-1)throw new Error(N.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(d,m));d=m,l.push(1)}else{if(g<0)throw new Error(N.getSparseReshapeNegativeOutputDimErrorMessage(m,g));u*=g,l.push(g)}}if(d!==-1){if(u<=0)throw new Error(N.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage());let m=Math.trunc(s/u);if(u*m!==s)throw new Error(N.getSparseReshapeInputOutputMultipleErrorMessage(n,l));l[d]=m}if(v.sizeFromShape(l)!==s)throw new Error(N.getSparseReshapeInputOutputMismatchErrorMessage(n,l));let h=n.length,p=[];if(h>0){p[h-1]=1;for(let m=h-2;m>=0;--m)p[m]=p[m+1]*n[m+1]}let c=[];if(o>0){c[o-1]=1;for(let m=o-2;m>=0;--m)c[m]=c[m+1]*l[m+1]}let f=v.getArrayFromDType(r,i*o);for(let m=0;m<i;++m){let g=0;for(let y=0;y<h;++y)g+=e[m*h+y]*p[y];for(let y=0;y<o;++y)f[m*o+y]=Math.trunc(g/c[y]),g%=c[y]}return[f,[i,o],l]}function Kx(e,t,r,n,a,s=!1,i=0){let o=n.length,l=[t[0],e.length/t[0]],u=l[1],d=o>0?a[o-1]+1:0;if(d<0)throw new Error(N.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let h=t.slice();h[0]=d;let p=h.reduce((A,x)=>A*x,1),c=v.getArrayFromDType(r,p);if(o===0)return d>0&&c.fill(i),[c,h];if(d<=0)throw new Error(N.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let f=0,m=1,g=0,y=a[f];for(;;){let A=0;if(m<o){if(A=a[m],y===A){++m;continue}if(y>=A)throw new Error(N.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage())}if(y<0||y>=d)throw new Error(N.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(y,d));y>g&&c.fill(i,g*u,y*u);for(let x=f;x<m;++x){let b=n[x];if(b<0||b>=l[0])throw new Error(N.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(x,n[x],l[0]));for(let w=0;w<u;w++)c[y*u+w]+=e[b*u+w]}if(s)for(let x=0;x<u;x++)c[y*u+x]/=m-f;if(f=m,++m,g=y+1,y=A,m>o)break}return g<d&&c.fill(i,g*u,d*u),[c,h]}var zq=Di(e=>Math.sqrt(e)),Oq=mt(Ci,e=>Math.sqrt(e)),Dq={kernelName:Ci,backendName:"cpu",kernelFunc:Oq},xI=Zt((e,t)=>{let r=e-t;return r*r}),Lq=yr(Mi,xI),Bq={kernelName:Mi,backendName:"cpu",kernelFunc:Lq};function bI(e,t,r,n){let a=We(e,t.dtype);for(let s=0;s<a.size;s++){let i=a.indexToLoc(s),o=new Array(i.length);for(let l=0;l<o.length;l++)o[l]=i[l]*r[l]+n[l];a.set(t.get(...o),...i)}return a}var Wq=class{constructor(e,t,r,n,a,s){this.separator=v.encodeString(e),this.nGramWidths=t,this.leftPad=v.encodeString(r),this.rightPad=v.encodeString(n),this.padWidth=a,this.preserveShort=s}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let r=this.getPadWidth(t);return Math.max(0,e+2*r-t+1)}createNGrams(e,t,r,n,a,s){for(let i=0;i<a;++i){let o=this.getPadWidth(s),l=Math.max(0,o-i),u=Math.max(0,o-(a-(i+1))),d=s-(l+u),h=t+(l>0?0:i-o),p=0;p+=l*this.leftPad.length;for(let g=0;g<d;++g)p+=e[h+g].length;p+=u*this.rightPad.length,p+=(l+u+d-1)*this.separator.length,r[n+i]=new Uint8Array(p);let c=r[n+i],f=0,m=g=>g.forEach(y=>c[f++]=y);for(let g=0;g<l;++g)m(this.leftPad),m(this.separator);for(let g=0;g<d-1;++g)m(e[h+g]),m(this.separator);if(d>0){m(e[h+d-1]);for(let g=0;g<u;++g)m(this.separator),m(this.rightPad)}else{for(let g=0;g<u-1;++g)m(this.rightPad),m(this.separator);m(this.rightPad)}}}compute(e,t){let r=e.length,n=t.length;if(n>0){let o=t[0];if(o!==0)throw new Error(`First split value must be 0, got ${o}`);for(let l=1;l<n;++l){let u=t[l]>=o;if(u=u&&t[l]<=r,!u)throw new Error(`Invalid split value ${t[l]}, must be in [${o}, ${r}]`);o=t[l]}if(o!==r)throw new Error(`Last split value must be data size. Expected ${r}, got ${o}`)}let a=n-1,s=v.getArrayFromDType("int32",n);if(r===0||n===0){let o=new Array(r);for(let l=0;l<=a;++l)s[l]=0;return[o,s]}s[0]=0;for(let o=1;o<=a;++o){let l=t[o]-t[o-1],u=0;this.nGramWidths.forEach(d=>{u+=this.getNumNGrams(l,d)}),this.preserveShort&&l>0&&u===0&&(u=1),s[o]=s[o-1]+u}let i=new Array(s[a]);for(let o=0;o<a;++o){let l=t[o],u=s[o];if(this.nGramWidths.forEach(d=>{let h=t[o+1]-t[o],p=this.getNumNGrams(h,d);this.createNGrams(e,l,i,u,p,d),u+=p}),this.preserveShort&&u===s[o]){let d=t[o+1]-t[o];if(d===0)continue;let h=d+2*this.padWidth,p=1;this.createNGrams(e,l,i,u,p,h)}}return[i,s]}};function vI(e,t,r,n,a,s,i,o){return new Wq(r,n,a,s,i,o).compute(e,t)}function Vq(e,t,r,n){if(!e.length)return;if(t.length===0){for(let s=0;s<e.length;++s)n.push(e.subarray(s,s+1));return}if(t.length===1){let s=t[0],i=e.indexOf(s);for(;i!==-1;){let o=e.subarray(0,i);(!r||o.length!==0)&&n.push(o),e=e.subarray(i+1),i=e.indexOf(s)}(!r||e.length!==0)&&n.push(e);return}let a=0;for(let s=0;s<e.length+1;s++)if(s===e.length||t.indexOf(e[s])!==-1){let i=e.subarray(a,s);(!r||i.length!==0)&&n.push(i),a=s+1}}function wI(e,t,r){let n=e.length,a=[],s=0,i=0,o=new Array(n);for(let p=0;p<n;++p){let c=a.length;Vq(e[p],t,r,a);let f=a.length-c;o[p]=f,s+=f,i=Math.max(i,f)}let l=v.getArrayFromDType("int32",s*2),u=new Array(s),d=[n,i],h=0;for(let p=0;p<n;++p)for(let c=0;c<o[p];++c)l[h*2]=p,l[h*2+1]=c,u[h]=a[h],++h;return[l,u,d]}function kI(e,t){let r=v.getArrayFromDType("int32",e.length);for(let n=0;n<e.length;++n)r[n]=v.fingerPrint64(e[n]).modulo(t).getLowBitsUnsigned();return r}var II=Zt((e,t)=>e-t),Uq=Vx((e,t,r,n)=>({real:e-r,imag:t-n})),Xx=yr(Fi,II,Uq),Gq={kernelName:Fi,backendName:"cpu",kernelFunc:Xx};function SI(e,t){let r=new Array(e.rank);for(let a=0;a<r.length;a++)r[a]=e.shape[a]*t[a];let n=We(r,e.dtype);for(let a=0;a<n.values.length;++a){let s=n.indexToLoc(a),i=new Array(e.rank);for(let l=0;l<i.length;l++)i[l]=s[l]%e.shape[l];let o=e.locToIndex(i);n.values[a]=e.values[o]}return n}var fp=(e,t)=>{let r=t.value-e.value;return r===0?e.index-t.index:r};function TI(e,t,r=0,n=e.length-1){for(;n>r;){if(n-r>600){let o=n-r+1,l=t-r+1,u=Math.log(o),d=.5*Math.exp(2*u/3),h=.5*Math.sqrt(u*d*(o-d)/o)*Math.sign(l-o/2),p=Math.max(r,Math.floor(t-l*d/o+h)),c=Math.min(n,Math.floor(t+(o-l)*d/o+h));TI(e,t,p,c)}let a=e[t],s=r,i=n;for(v.swap(e,r,t),fp(e[n],a)>0&&v.swap(e,r,n);s<i;){for(v.swap(e,s,i),s++,i--;fp(e[s],a)<0;)s=s+1;for(;fp(e[i],a)>0;)i=i-1}fp(e[r],a)===0?v.swap(e,r,i):(i=i+1,v.swap(e,i,n)),i<=t&&(r=i+1),t<=i&&(n=i-1)}}function NI(e,t,r,n,a){let s=t[t.length-1],[i,o]=[e.length/s,s],l=v.getTypedArrayFromDType(r,i*n),u=v.getTypedArrayFromDType("int32",i*n);for(let h=0;h<i;h++){let p=h*o,c=e.subarray(p,p+o),f=new Array(c.length);c.forEach((A,x)=>f[x]={value:A,index:x}),n<f.length&&(TI(f,n),f=f.slice(0,n)),a&&f.sort(fp);let m=h*n,g=l.subarray(m,m+n),y=u.subarray(m,m+n);for(let A=0;A<n;A++)g[A]=f[A].value,y[A]=f[A].index}let d=t.slice();return d[d.length-1]=n,[We(d,r,l),We(d,"int32",u)]}function CI(e,t,r,n){let a=v.parseAxisParam(t,r)[0],s=[1,r[0],1];for(let f=0;f<a;f++)s[0]*=r[f];s[1]=r[a];for(let f=a+1;f<r.length;f++)s[2]*=r[f];let i={},o=new Int32Array(r[a]),l=new rr(s,n,e),u=[],d=s[0]===1&&s[2]===1;for(let f=0;f<r[a];f++){let m;if(d)m=e[f].toString();else{let g=[];for(let y=0;y<s[0];y++)for(let A=0;A<s[2];A++)g.push(l.get(y,f,A));m=g.join(",")}if(i[m]!==void 0)o[f]=i[m];else{let g=Object.keys(i).length;i[m]=g,o[f]=g,u.push(f)}}let h=s.slice();h[1]=Object.keys(i).length;let p=new rr(h,n);u.forEach((f,m)=>{for(let g=0;g<s[0];g++)for(let y=0;y<s[2];y++)p.set(l.get(g,f,y),g,m,y)});let c=r.slice();return c[a]=h[1],{outputValues:p.values,outputShape:c,indices:o}}var jq="0.0.0";wl("cpu",()=>new Wx,1);var EI=mt(ri,e=>e>=0?e:Math.exp(e)-1),Hq={kernelName:ri,backendName:"cpu",kernelFunc:EI};function RI(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{alpha:s}=n;Te([a],"leakyRelu");let i=v.sizeFromShape(a.shape),o=r.data.get(a.dataId).values,l=v.getTypedArrayFromDType("float32",i);for(let u=0;u<o.length;u++)l[u]=o[u]<0?s*o[u]:o[u];return r.makeTensorInfo(a.shape,"float32",l)}var qq={kernelName:ui,backendName:"cpu",kernelFunc:RI},Kq=Zt((e,t)=>e<0?t*e:e);function MI(e){let{inputs:t,backend:r}=e,{x:n,alpha:a}=t;Te([n,a],"prelu");let s=r.data.get(n.dataId).values,i=r.data.get(a.dataId).values,[o,l]=Kq(n.shape,a.shape,s,i,"float32");return r.makeTensorInfo(l,"float32",o)}var Xq={kernelName:vi,backendName:"cpu",kernelFunc:MI},FI=mt(wi,e=>Math.max(0,e)),Zq={kernelName:wi,backendName:"cpu",kernelFunc:FI},$I=mt(Ii,e=>Math.min(Math.max(0,e),6)),Yq={kernelName:Ii,backendName:"cpu",kernelFunc:$I};function Zx(e,t,r,n,a){if(r==="linear")return Ma({inputs:{x:t},backend:e});if(r==="relu")return FI({inputs:{x:t},backend:e});if(r==="elu")return EI({inputs:{x:t},backend:e});if(r==="relu6")return $I({inputs:{x:t},backend:e});if(r==="prelu")return MI({inputs:{x:t,alpha:n},backend:e});if(r==="leakyrelu")return RI({inputs:{x:t},backend:e,attrs:{alpha:a}});if(r==="sigmoid")return gI({inputs:{x:t},backend:e});throw new Error(`Activation ${r} has not been implemented for the CPU backend.`)}function Mt(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{shape:s}=n,i=v.sizeFromShape(a.shape),o=v.inferFromImplicitShape(s,i),l=v.sizeFromShape(o);v.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${a.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),r.incRef(a.dataId);let u=r.data.get(a.dataId);if(u.complexTensorInfos!=null){let d=u.complexTensorInfos.real,h=u.complexTensorInfos.imag;d.shape=o,h.shape=o}return{dataId:a.dataId,shape:o,dtype:a.dtype}}var Jq={kernelName:sl,backendName:"cpu",kernelFunc:Mt};function PI(e){let{inputs:t,backend:r,attrs:n}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=n;Te([a,s],"matMul");let l=a.shape.length,u=s.shape.length,d=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[u-1]:s.shape[u-2],p=i?a.shape[l-1]:a.shape[l-2],c=o?s.shape[u-2]:s.shape[u-1],f=a.shape.slice(0,-2),m=s.shape.slice(0,-2),g=v.sizeFromShape(f),y=v.sizeFromShape(m),A=vl.assertAndGetBroadcastShape(a.shape.slice(0,-2),s.shape.slice(0,-2)).concat([p,c]);v.assert(d===h,()=>`Error in matMul: inner shapes (${d}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,d,p]:[g,p,d],b=o?[y,c,h]:[y,h,c],w=Mt({inputs:{x:a},backend:r,attrs:{shape:x}}),T=Mt({inputs:{x:s},backend:r,attrs:{shape:b}}),S=i?w.shape[1]:w.shape[2],E=i?w.shape[2]:w.shape[1],R=o?T.shape[1]:T.shape[2],_=Math.max(g,y),M=r.data.get(w.dataId).values,I=r.data.get(T.dataId).values,O=v.computeStrides(w.shape),z=v.computeStrides(T.shape),[j,X,D]=i?[O[0],1,O[1]]:[O[0],O[1],1],[Q,V,ee]=o?[1,z[1],z[0]]:[z[1],1,z[0]],J=E*R,se=We([_,E,R],w.dtype),Z=se.values,ae=r.blockSize;for(let de=0;de<_;de++)for(let Ae=0;Ae<E;Ae+=ae)for(let be=0;be<R;be+=ae)for(let Ee=0;Ee<S;Ee+=ae){let Me=Math.min(Ae+ae,E),De=Math.min(be+ae,R),Be=Math.min(Ee+ae,S);for(let Ze=Ae;Ze<Me;Ze++)for(let ot=be;ot<De;ot++){let dt=0;for(let pt=Ee;pt<Be;pt++){let $e=Math.min(de,g-1)*j,vt=Math.min(de,y-1)*ee,yt=M[$e+Ze*X+pt*D],Fr=I[pt*Q+ot*V+vt];dt+=yt*Fr}Z[de*J+(Ze*R+ot)]+=dt}}return r.disposeIntermediateTensorInfo(w),r.disposeIntermediateTensorInfo(T),r.makeTensorInfo(A,se.dtype,se.values)}var Qq={kernelName:qs,backendName:"cpu",kernelFunc:PI};function eK(e){let{inputs:t,backend:r,attrs:n}=e,{a,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:d,leakyreluAlpha:h}=n,p,c,f,m=[];p=PI({inputs:{a,b:s},attrs:{transposeA:l,transposeB:u},backend:r}),i&&(c=Ih({inputs:{a:p,b:i},backend:r}),m.push(p),p=c),d&&(f=Zx(r,p,d,o,h),m.push(p),p=f);for(let g of m)r.disposeIntermediateTensorInfo(g);return p}var tK={kernelName:Cs,backendName:"cpu",kernelFunc:eK},rK=mt(Eu,e=>Math.acos(e)),nK={kernelName:Eu,backendName:"cpu",kernelFunc:rK},aK=mt(Ru,e=>Math.acosh(e)),sK={kernelName:Ru,backendName:"cpu",kernelFunc:aK};function iK(e){let{inputs:t,backend:r}=e,n=t;Te(t,"addN");let a=n.map(o=>r.data.get(o.dataId).values),s=We(n[0].shape,n[0].dtype),i=s.values;for(let o=0;o<n.length;o++){let l=a[o];for(let u=0;u<i.length;u++)i[u]+=l[u]}return r.makeTensorInfo(s.shape,s.dtype,s.values)}var oK={kernelName:Gs,backendName:"cpu",kernelFunc:iK};function lK(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n;Te(a,"all");let o=v.parseAxisParam(s,a.shape),l=o,u=N.getAxesPermutation(l,a.shape.length),d=a;u!=null&&(d=rn({inputs:{x:a},backend:r,attrs:{perm:u}}),l=N.getInnerMostAxes(l.length,a.shape.length)),N.assertAxesAreInnerMostDims("all",l,d.shape.length);let[h,p]=N.computeOutAndReduceShapes(d.shape,l),c=v.sizeFromShape(p),f=v.makeZerosTypedArray(v.sizeFromShape(h),d.dtype),m=r.data.get(d.dataId).values;for(let y=0;y<f.length;++y){let A=y*c,x=m[A];for(let b=0;b<c;++b){let w=m[A+b];x=x&&w}f[y]=x}u!=null&&r.disposeIntermediateTensorInfo(d);let g=r.makeTensorInfo(h,d.dtype,f);if(i){let y=N.expandShapeToKeepDim(h,o),A=Mt({inputs:{x:g},backend:r,attrs:{shape:y}});return r.disposeIntermediateTensorInfo(g),A}return g}var uK={kernelName:Mu,backendName:"cpu",kernelFunc:lK};function dK(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n;Te(a,"any");let o=v.parseAxisParam(s,a.shape),l=o,u=N.getAxesPermutation(l,a.shape.length),d=a;u!=null&&(d=rn({inputs:{x:a},backend:r,attrs:{perm:u}}),l=N.getInnerMostAxes(l.length,a.shape.length)),N.assertAxesAreInnerMostDims("any",l,d.shape.length);let[h,p]=N.computeOutAndReduceShapes(d.shape,l),c=v.sizeFromShape(p),f=v.makeZerosTypedArray(v.sizeFromShape(h),d.dtype),m=r.data.get(d.dataId).values;for(let y=0;y<f.length;++y){let A=y*c,x=m[A];for(let b=0;b<c;++b){let w=m[A+b];x=x||w}f[y]=x}u!=null&&r.disposeIntermediateTensorInfo(d);let g=r.makeTensorInfo(h,d.dtype,f);if(i){let y=N.expandShapeToKeepDim(h,o),A=Mt({inputs:{x:g},backend:r,attrs:{shape:y}});return r.disposeIntermediateTensorInfo(g),A}return g}var pK={kernelName:Fu,backendName:"cpu",kernelFunc:dK};function hK(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s}=n;Te(a,"argMax");let i=v.parseAxisParam(s,a.shape),o=N.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=rn({inputs:{x:a},backend:r,attrs:{perm:o}}),u.push(l),i=N.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],N.assertAxesAreInnerMostDims("argMax",i,l.shape.length);let[d,h]=N.computeOutAndReduceShapes(l.shape,i),p=v.sizeFromShape(d),c=v.makeZerosTypedArray(p,"int32"),f=v.sizeFromShape(h),m=r.data.get(l.dataId).values;for(let g=0;g<c.length;++g){let y=g*f,A=m[y],x=0;for(let b=0;b<f;++b){let w=m[y+b];w>A&&(A=w,x=b)}c[g]=x}return u.forEach(g=>r.disposeIntermediateTensorInfo(g)),r.makeTensorInfo(d,"int32",c)}var cK={kernelName:js,backendName:"cpu",kernelFunc:hK};function fK(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s}=n;Te(a,"argMin");let i=v.parseAxisParam(s,a.shape),o=N.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=rn({inputs:{x:a},backend:r,attrs:{perm:o}}),u.push(l),i=N.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],N.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[d,h]=N.computeOutAndReduceShapes(l.shape,i),p=v.sizeFromShape(d),c=v.makeZerosTypedArray(p,"int32"),f=v.sizeFromShape(h),m=r.data.get(l.dataId).values;for(let g=0;g<c.length;++g){let y=g*f,A=m[y],x=0;for(let b=0;b<f;++b){let w=m[y+b];w<A&&(A=w,x=b)}c[g]=x}return u.forEach(g=>r.disposeIntermediateTensorInfo(g)),r.makeTensorInfo(d,"int32",c)}var mK={kernelName:$u,backendName:"cpu",kernelFunc:fK},gK=mt(Pu,e=>Math.asin(e)),yK={kernelName:Pu,backendName:"cpu",kernelFunc:gK},AK=mt(_u,e=>Math.asinh(e)),xK={kernelName:_u,backendName:"cpu",kernelFunc:AK},bK=mt(zu,e=>Math.atan(e)),vK={kernelName:zu,backendName:"cpu",kernelFunc:bK},wK=Zt((e,t)=>Math.atan2(e,t)),kK=yr(Du,wK),IK={kernelName:Du,backendName:"cpu",kernelFunc:kK},SK=mt(Ou,e=>Math.atanh(e)),TK={kernelName:Ou,backendName:"cpu",kernelFunc:SK};function Yx(e,t,r,n,a,s){let i=a.strideHeight,o=a.strideWidth,l=a.dilationHeight,u=a.dilationWidth,d=a.effectiveFilterHeight,h=a.effectiveFilterWidth,p=a.padInfo.top,c=a.padInfo.left,f=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=We(a.outShape,r),g=m.values,y=a.outShape[1]*a.outShape[2]*a.outShape[3],A=a.outShape[2]*a.outShape[3],x=a.outShape[3];for(let b=0;b<a.batchSize;++b){let w=b*y,T=b*n[0];for(let S=0;S<a.inChannels;++S)for(let E=0;E<a.outHeight;++E){let R=E*i-p,_=Math.max(0,R),M=Math.min(a.inHeight,d+R),I=w+E*A;for(let O=0;O<a.outWidth;++O){let z=O*o-c,j=Math.max(0,z),X=Math.min(a.inWidth,h+z),D=f,Q=0,V=0;for(let J=_;J<M;J+=l){let se=T+J*n[1];for(let Z=j;Z<X;Z+=u){let ae=se+Z*n[2],de=e[ae+S];s==="max"&&de>D?D=de:s==="avg"&&(Q+=de,V++)}if(isNaN(D))break}let ee=I+O*x+S;g[ee]=s==="avg"?Q/V:D}}}return m}function _I(e,t,r,n,a=!1,s=!1){let i=We(n.outShape,"int32"),o=n.strideHeight,l=n.strideWidth,u=n.dilationHeight,d=n.dilationWidth,h=n.effectiveFilterHeight,p=n.effectiveFilterWidth,c=n.padInfo.top,f=n.padInfo.left,m=We(t,r,e);for(let g=0;g<n.batchSize;++g)for(let y=0;y<n.inChannels;++y)for(let A=0;A<n.outHeight;++A){let x=A*o-c,b=x;for(;b<0;)b+=u;let w=Math.min(n.inHeight,h+x);for(let T=0;T<n.outWidth;++T){let S=T*l-f,E=S;for(;E<0;)E+=d;let R=Math.min(n.inWidth,p+S),_=Number.NEGATIVE_INFINITY,M=-1;for(let I=b;I<w;I+=u){let O=I-x;for(let z=E;z<R;z+=d){let j=z-S,X=m.get(g,I,z,y);X>_&&(_=X,a?M=s?((g*n.inHeight+I)*n.inWidth+z)*n.inChannels+y:(I*n.inWidth+z)*n.inChannels+y:M=O*p+j)}}i.set(M,g,A,T,y)}}return i}function zI(e,t,r,n,a,s){let i=a.strideDepth,o=a.strideHeight,l=a.strideWidth,u=a.dilationDepth,d=a.dilationHeight,h=a.dilationWidth,p=a.effectiveFilterDepth,c=a.effectiveFilterHeight,f=a.effectiveFilterWidth,m=a.padInfo.front,g=a.padInfo.top,y=a.padInfo.left,A=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=We(a.outShape,r),b=x.values,w=a.outShape[1]*a.outShape[2]*a.outShape[3]*a.outShape[4],T=a.outShape[2]*a.outShape[3]*a.outShape[4],S=a.outShape[3]*a.outShape[4],E=a.outShape[4];for(let R=0;R<a.batchSize;++R){let _=R*w,M=R*n[0];for(let I=0;I<a.inChannels;++I)for(let O=0;O<a.outDepth;++O){let z=O*i-m,j=z;for(;j<0;)j+=u;let X=Math.min(a.inDepth,p+z),D=_+O*T;for(let Q=0;Q<a.outHeight;++Q){let V=Q*o-g,ee=V;for(;ee<0;)ee+=d;let J=Math.min(a.inHeight,c+V),se=D+Q*S;for(let Z=0;Z<a.outWidth;++Z){let ae=Z*l-y,de=ae;for(;de<0;)de+=h;let Ae=Math.min(a.inWidth,f+ae),be=se+Z*E,Ee=A,Me=0,De=0;for(let Ze=j;Ze<X;Ze+=u){let ot=M+Ze*n[1];for(let dt=ee;dt<J;dt+=d){let pt=ot+dt*n[2];for(let $e=de;$e<Ae;$e+=h){let vt=pt+$e*n[3],yt=e[vt+I];if(s==="max"&&yt>Ee?Ee=yt:s==="avg"&&(Me+=yt,De++),isNaN(Ee))break}if(isNaN(Ee))break}if(isNaN(Ee))break}let Be=be+I;b[Be]=s==="avg"?Me/De:Ee}}}}return x}function NK(e,t){let r=We(t.outShape,"int32"),n=t.strideDepth,a=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,d=t.effectiveFilterHeight,h=t.effectiveFilterWidth,p=t.padInfo.front,c=t.padInfo.top,f=t.padInfo.left;for(let m=0;m<t.batchSize;++m)for(let g=0;g<t.inChannels;++g)for(let y=0;y<t.outDepth;++y){let A=y*n-p,x=A;for(;x<0;)x+=i;let b=Math.min(t.inDepth,u+A);for(let w=0;w<t.outHeight;++w){let T=w*a-c,S=T;for(;S<0;)S+=o;let E=Math.min(t.inHeight,d+T);for(let R=0;R<t.outWidth;++R){let _=R*s-f,M=_;for(;M<0;)M+=l;let I=Math.min(t.inWidth,h+_),O=Number.NEGATIVE_INFINITY,z=-1;for(let j=x;j<b;j+=i){let X=j-A;for(let D=S;D<E;D+=o){let Q=D-T;for(let V=M;V<I;V+=l){let ee=V-_,J=e.get(m,j,D,V,g);J>=O&&(O=J,z=X*d*h+Q*d+ee)}}}r.set(z,m,y,w,R,g)}}}return r}function CK(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t;Te(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n,u=1;v.assert(N.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let d=N.computePool2DInfo(a.shape,s,i,u,o,l),h;if(d.filterWidth===1&&d.filterHeight===1&&v.arraysEqual(d.inShape,d.outShape))h=Ma({inputs:{x:a},backend:r});else{let p=r.data.get(a.dataId).values,c=v.computeStrides(a.shape),f=Yx(p,a.shape,a.dtype,c,d,"avg");h=r.makeTensorInfo(d.outShape,a.dtype,f.values)}return h}var EK={kernelName:Hs,backendName:"cpu",kernelFunc:CK};function RK(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=n;Te(a,"avgPool3d");let d=N.computePool3DInfo(a.shape,s,i,1,o,l,u),h=r.data.get(a.dataId).values,p=zI(h,a.shape,a.dtype,v.computeStrides(a.shape),d,"avg");return r.makeTensorInfo(p.shape,"float32",p.values)}var MK={kernelName:Lp,backendName:"cpu",kernelFunc:RK};function FK(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n;Te([a,s],"avgPool3DGrad");let d=N.computePool3DInfo(s.shape,i,o,1,l,u),h=d.strideDepth,p=d.strideHeight,c=d.strideWidth,f=d.filterDepth,m=d.filterHeight,g=d.filterWidth,y=d.dilationDepth,A=d.dilationHeight,x=d.dilationWidth,b=d.effectiveFilterDepth,w=d.effectiveFilterHeight,T=d.effectiveFilterWidth,S=b-1-d.padInfo.front,E=T-1-d.padInfo.left,R=w-1-d.padInfo.top,_=We(s.shape,"float32"),M=1/(f*m*g),I=r.bufferSync(a);for(let O=0;O<d.batchSize;++O)for(let z=0;z<d.inChannels;++z)for(let j=0;j<d.inDepth;++j)for(let X=0;X<d.inHeight;++X)for(let D=0;D<d.inWidth;++D){let Q=j-S,V=X-R,ee=D-E,J=0;for(let se=0;se<b;se+=y){let Z=(Q+se)/h;if(!(Z<0||Z>=d.outDepth||Math.floor(Z)!==Z))for(let ae=0;ae<w;ae+=A){let de=(V+ae)/p;if(!(de<0||de>=d.outHeight||Math.floor(de)!==de))for(let Ae=0;Ae<T;Ae+=x){let be=(ee+Ae)/c;be<0||be>=d.outWidth||Math.floor(be)!==be||(J+=I.get(O,Z,de,be,z))}}}_.set(J*M,O,j,X,D,z)}return r.makeTensorInfo(_.shape,_.dtype,_.values)}var $K={kernelName:Df,backendName:"cpu",kernelFunc:FK};function PK(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,input:s}=t,i=s;Te([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=n,d=N.computePool2DInfo(i.shape,o,l,1,u),h=d.strideHeight,p=d.strideWidth,c=d.filterHeight,f=d.filterWidth,m=d.dilationHeight,g=d.dilationWidth,y=d.effectiveFilterHeight,A=d.effectiveFilterWidth,x=A-1-d.padInfo.left,b=y-1-d.padInfo.top,w=We(i.shape,"float32"),T=1/(c*f),S=r.data.get(a.dataId).values,E=We(a.shape,"float32",S);for(let R=0;R<d.batchSize;++R)for(let _=0;_<d.inChannels;++_)for(let M=0;M<d.inHeight;++M)for(let I=0;I<d.inWidth;++I){let O=M-b,z=I-x,j=0;for(let X=0;X<y;X+=m){let D=(O+X)/h;if(!(D<0||D>=d.outHeight||Math.floor(D)!==D))for(let Q=0;Q<A;Q+=g){let V=(z+Q)/p;V<0||V>=d.outWidth||Math.floor(V)!==V||(j+=E.get(R,D,V,_))}}w.set(j*T,R,M,I,_)}return r.makeTensorInfo(w.shape,w.dtype,w.values)}var _K={kernelName:Of,backendName:"cpu",kernelFunc:PK};function zK(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,scale:s,offset:i,mean:o,variance:l}=t;v.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),Te([a,o,l,s,i],"batchNorm");let{varianceEpsilon:u}=n;u==null&&(u=.001);let d=r.data.get(a.dataId).values,h=r.data.get(o.dataId).values,p=r.data.get(l.dataId).values,c=s?r.data.get(s.dataId).values:new Float32Array([1]),f=i?r.data.get(i.dataId).values:new Float32Array([0]),m=new Float32Array(d.length),g=f.length,y=c.length,A=p.length,x=h.length,b=0,w=0,T=0,S=0;for(let E=0;E<d.length;++E)m[E]=f[b++]+(d[E]-h[w++])*c[T++]/Math.sqrt(p[S++]+u),b>=g&&(b=0),w>=x&&(w=0),T>=y&&(T=0),S>=A&&(S=0);return r.makeTensorInfo(a.shape,a.dtype,m)}var OK={kernelName:ii,backendName:"cpu",kernelFunc:zK};function DK(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockShape:s,crops:i}=n;Te([a],"batchToSpaceND");let o=s.reduce((y,A)=>y*A),l=N.getReshaped(a.shape,s,o),u=N.getPermuted(l.length,s.length),d=N.getReshapedPermuted(a.shape,s,o),h=N.getSliceBeginCoords(i,s.length),p=N.getSliceSize(d,i,s.length),c=Mt({inputs:{x:a},backend:r,attrs:{shape:l}}),f=rn({inputs:{x:c},backend:r,attrs:{perm:u}}),m=Mt({inputs:{x:f},backend:r,attrs:{shape:d}}),g=Eo({inputs:{x:m},backend:r,attrs:{begin:h,size:p}});return r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(f),r.disposeIntermediateTensorInfo(m),g}var LK={kernelName:zo,backendName:"cpu",kernelFunc:DK};function BK(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,weights:s}=t,{size:i}=n,o=r.data.get(a.dataId).values,l=r.data.get(s.dataId).values,u=Ux(o,l,s.dtype,s.shape,i);return r.makeTensorInfo([i],s.dtype,u)}var WK={kernelName:Lf,backendName:"cpu",kernelFunc:BK};function VK(e){let{inputs:t,backend:r}=e,{s0:n,s1:a}=t,s=r.data.get(n.dataId).values,i=r.data.get(a.dataId).values,o=N.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return r.makeTensorInfo([o.length],"int32",Int32Array.from(o))}var UK={kernelName:Bf,backendName:"cpu",kernelFunc:VK},GK=mt(Ka,(e,t)=>{let r=t;return e>r.clipValueMax?r.clipValueMax:e<r.clipValueMin?r.clipValueMin:e}),jK={kernelName:Ka,backendName:"cpu",kernelFunc:GK},HK=e=>{let{x:t}=e.inputs,r=e.backend,n=new Float32Array(v.sizeFromShape(t.shape)),a=r.data.get(t.dataId),s=a.complexTensorInfos.real,i=a.complexTensorInfos.imag,o=r.data.get(s.dataId).values,l=r.data.get(i.dataId).values;for(let u=0;u<o.length;u++){let d=o[u],h=l[u];n[u]=Math.hypot(d,h)}return r.makeOutput(n,t.shape,"float32")},qK={kernelName:Wp,backendName:"cpu",kernelFunc:HK};function Iu(e){let{inputs:t,backend:r}=e,{input:n}=t,a=r.data.get(n.dataId).complexTensorInfos.imag,s=r.data.get(a.dataId).values;return r.makeTensorInfo(a.shape,a.dtype,s)}var KK={kernelName:jp,backendName:"cpu",kernelFunc:Iu};function Su(e){let{inputs:t,backend:r,attrs:n}=e,{axis:a}=n,s=v.parseAxisParam(a,t[0].shape)[0],i=N.computeOutShape(t.map(m=>m.shape),s);if(v.sizeFromShape(i)===0)return r.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(m=>v.sizeFromShape(m.shape)>0);if(o.length===1)return Ma({inputs:{x:o[0]},backend:r});let l=o.map(m=>m.shape);if(N.assertParamsConsistent(l,s),o[0].dtype==="complex64"){let m=o.map(b=>Co({inputs:{input:b},backend:r})),g=o.map(b=>Iu({inputs:{input:b},backend:r})),y=Su({inputs:m,backend:r,attrs:{axis:s}}),A=Su({inputs:g,backend:r,attrs:{axis:s}}),x=dn({inputs:{real:y,imag:A},backend:r});return m.forEach(b=>r.disposeIntermediateTensorInfo(b)),g.forEach(b=>r.disposeIntermediateTensorInfo(b)),r.disposeIntermediateTensorInfo(y),r.disposeIntermediateTensorInfo(A),x}let u=o.map(m=>{let g=v.sizeFromShape(m.shape.slice(s));return Mt({inputs:{x:m},backend:r,attrs:{shape:[-1,g]}})}),d=u.map(m=>({vals:r.data.get(m.dataId).values,shape:m.shape}));i=N.computeOutShape(u.map(m=>m.shape),1);let h=u[0].shape[0]===1,p=Gx(d,i,t[0].dtype,h),c=N.computeOutShape(o.map(m=>m.shape),s),f=r.makeTensorInfo(c,t[0].dtype,p);return u.forEach(m=>r.disposeIntermediateTensorInfo(m)),f}var XK={kernelName:Oo,backendName:"cpu",kernelFunc:Su};function OI(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:d}=n;Te([a,s],"conv2d");let h=N.convertConv2DDataFormat(l),p=N.computeConv2DInfo(a.shape,s.shape,i,u,o,d,!1,h),c=p.filterHeight,f=p.filterWidth,m=p.dilationHeight,g=p.dilationWidth,y=p.padInfo.left,A=p.padInfo.top,x=p.dataFormat==="channelsLast",b=new rr(p.outShape,a.dtype),w=v.computeStrides(a.shape),T=v.computeStrides(s.shape),S=w[0],E=x?w[1]:w[2],R=x?w[2]:1,_=x?1:w[1],M=b.strides[0],I=x?b.strides[1]:b.strides[2],O=x?b.strides[2]:1,z=x?1:b.strides[1],j=r.data.get(a.dataId).values,X=r.data.get(s.dataId).values,D=b.values;for(let Q=0;Q<p.batchSize;++Q){let V=Q*S,ee=Q*M;for(let J=0;J<p.outHeight;++J){let se=ee+J*I,Z=J*p.strideHeight-A;for(let ae=0;ae<c;++ae){let de=Z+ae*m;if(de<0||de>=p.inHeight)continue;let Ae=ae*T[0],be=V+de*E;for(let Ee=0;Ee<p.outWidth;++Ee){let Me=se+Ee*O,De=Ee*p.strideWidth-y;for(let Be=0;Be<f;++Be){let Ze=De+Be*g;if(Ze<0||Ze>=p.inWidth)continue;let ot=Ae+Be*T[1],dt=be+Ze*R,pt=ot;for(let $e=0;$e<p.inChannels;++$e){let vt=j[dt+$e*_];for(let yt=0;yt<p.outChannels;++yt)D[Me+yt*z]+=vt*X[pt+yt];pt+=p.outChannels}}}}}}return r.makeTensorInfo(b.shape,b.dtype,D)}var ZK={kernelName:Zs,backendName:"cpu",kernelFunc:OI};function YK(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:d}=n;Te([a,s],"conv2dBackpropFilter");let h=N.convertConv2DDataFormat(l),p=N.computeConv2DInfo(a.shape,d,i,1,o,u,!1,h),{strideHeight:c,strideWidth:f,filterHeight:m,filterWidth:g}=p,y=p.dataFormat==="channelsLast",A=new rr(p.filterShape,"float32"),x=p.padInfo.left,b=p.padInfo.top,w=r.data.get(a.dataId).values,T=r.data.get(s.dataId).values,S=new rr(a.shape,a.dtype,w),E=new rr(s.shape,s.dtype,T);for(let R=0;R<m;++R){let _=Math.max(0,Math.ceil((b-R)/c)),M=Math.min(p.outHeight,(p.inHeight+b-R)/c);for(let I=0;I<g;++I){let O=Math.max(0,Math.ceil((x-I)/f)),z=Math.min(p.outWidth,(p.inWidth+x-I)/f);for(let j=0;j<p.inChannels;++j)for(let X=0;X<p.outChannels;++X){let D=0;for(let Q=0;Q<p.batchSize;++Q)for(let V=_;V<M;++V){let ee=R+V*c-b;for(let J=O;J<z;++J){let se=I+J*f-x;y?D+=S.get(Q,ee,se,j)*E.get(Q,V,J,X):D+=S.get(Q,j,ee,se)*E.get(Q,X,V,J)}}A.set(D,R,I,j,X)}}}return r.makeTensorInfo(A.shape,A.dtype,A.values)}var JK={kernelName:Wf,backendName:"cpu",kernelFunc:YK};function QK(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:d}=n;Te([a,s],"conv2dBackpropInput");let h=v.computeStrides(s.shape),p=v.computeStrides(a.shape),c=N.convertConv2DDataFormat(u),f=N.computeConv2DInfo(i,s.shape,o,1,l,d,!1,c),m=new rr(f.inShape,"float32"),g=m.values,y=r.data.get(a.dataId).values,A=r.data.get(s.dataId).values,[x,b,w]=h,{batchSize:T,filterHeight:S,filterWidth:E,inChannels:R,inHeight:_,inWidth:M,outChannels:I,outHeight:O,outWidth:z,strideHeight:j,strideWidth:X}=f;c=f.dataFormat;let D=S-1-f.padInfo.top,Q=E-1-f.padInfo.left,V=c==="channelsLast",ee=m.strides[0],J=V?m.strides[1]:m.strides[2],se=V?m.strides[2]:1,Z=V?1:m.strides[1],ae=p[0],de=V?p[1]:p[2],Ae=V?p[2]:1,be=V?1:p[1];for(let Ee=0;Ee<T;++Ee)for(let Me=0;Me<R;++Me)for(let De=0;De<_;++De){let Be=De-D,Ze=Math.max(0,Math.ceil(Be/j)),ot=Math.min(O,(S+Be)/j);for(let dt=0;dt<M;++dt){let pt=dt-Q,$e=Math.max(0,Math.ceil(pt/X)),vt=Math.min(z,(E+pt)/X),yt=0;for(let ur=Ze;ur<ot;++ur){let Xr=ur*j-Be;for(let Jt=$e;Jt<vt;++Jt){let dr=Jt*X-pt,Yn=ae*Ee+de*ur+Ae*Jt,Zr=x*(S-1-Xr)+b*(E-1-dr)+w*Me;for(let Qt=0;Qt<I;++Qt){let bn=y[Yn+be*Qt],vn=A[Zr+Qt];yt+=bn*vn}}}let Fr=ee*Ee+J*De+se*dt+Z*Me;g[Fr]=yt}}return r.makeTensorInfo(m.shape,m.dtype,m.values)}var eX={kernelName:Ys,backendName:"cpu",kernelFunc:QK};function tX(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=n;Te([a,s],"conv3d");let u=N.computeConv3DInfo(a.shape,s.shape,i,l,o),{filterDepth:d,filterHeight:h,filterWidth:p,dilationDepth:c,dilationHeight:f,dilationWidth:m,padInfo:g}=u,y=g.front,A=g.left,x=g.top,b=new rr(u.outShape,a.dtype),w=r.data.get(a.dataId).values,T=r.data.get(s.dataId).values,S=b.values,E=v.computeStrides(a.shape),R=v.computeStrides(s.shape);for(let _=0;_<u.batchSize;++_){let M=_*E[0],I=_*b.strides[0];for(let O=0;O<u.outDepth;++O){let z=I+O*b.strides[1],j=O*u.strideDepth-y;for(let X=0;X<d;++X){let D=j+X*c;if(D<0||D>=u.inDepth)continue;let Q=X*R[0],V=M+D*E[1];for(let ee=0;ee<u.outHeight;++ee){let J=z+ee*b.strides[2],se=ee*u.strideHeight-x;for(let Z=0;Z<h;++Z){let ae=se+Z*f;if(ae<0||ae>=u.inHeight)continue;let de=Q+Z*R[1],Ae=V+ae*E[2];for(let be=0;be<u.outWidth;++be){let Ee=J+be*u.outChannels,Me=be*u.strideWidth-A;for(let De=0;De<p;++De){let Be=Me+De*m;if(Be<0||Be>=u.inWidth)continue;let Ze=de+De*R[2],ot=Ae+Be*u.inChannels,dt=Ze;for(let pt=0;pt<u.inChannels;++pt){let $e=w[ot+pt];for(let vt=0;vt<u.outChannels;++vt)S[Ee+vt]+=$e*T[dt+vt];dt+=u.outChannels}}}}}}}}return r.makeTensorInfo(b.shape,b.dtype,b.values)}var rX={kernelName:Vp,backendName:"cpu",kernelFunc:tX};function nX(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,dy:s}=t,{strides:i,pad:o,filterShape:l}=n;Te([a,s],"conv3dBackpropFilterV2");let u=v.computeStrides(a.shape),d=v.computeStrides(s.shape),h=N.computeConv3DInfo(a.shape,l,i,1,o),p=h.strideDepth,c=h.strideHeight,f=h.strideWidth,m=h.filterDepth,g=h.filterHeight,y=h.filterWidth,A=new rr(h.filterShape,"float32"),x=A.values,[b,w,T,S]=A.strides,E=r.data.get(s.dataId).values,[R,_,M,I]=d,O=r.data.get(a.dataId).values,[z,j,X,D]=u,Q=h.padInfo.front,V=h.padInfo.left,ee=h.padInfo.top;for(let J=0;J<m;++J){let se=Math.max(0,Math.ceil((Q-J)/p)),Z=Math.min(h.outDepth,(h.inDepth+Q-J)/p),ae=J*b;for(let de=0;de<g;++de){let Ae=Math.max(0,Math.ceil((ee-de)/c)),be=Math.min(h.outHeight,(h.inHeight+ee-de)/c),Ee=de*w+ae;for(let Me=0;Me<y;++Me){let De=Math.max(0,Math.ceil((V-Me)/f)),Be=Math.min(h.outWidth,(h.inWidth+V-Me)/f),Ze=Me*T+Ee;for(let ot=0;ot<h.inChannels;++ot){let dt=ot*S+Ze;for(let pt=0;pt<h.outChannels;++pt){let $e=0;for(let vt=0;vt<h.batchSize;++vt){let yt=vt*z,Fr=vt*R;for(let ur=se;ur<Z;++ur){let Xr=(J+ur*p-Q)*j+yt,Jt=ur*_+Fr;for(let dr=Ae;dr<be;++dr){let Yn=(de+dr*c-ee)*X+Xr,Zr=dr*M+Jt;for(let Qt=De;Qt<Be;++Qt){let bn=(Me+Qt*f-V)*D+Yn,vn=Qt*I+Zr;$e+=O[bn+ot]*E[vn+pt]}}}}x[dt+pt]=$e}}}}}return r.makeTensorInfo(A.shape,A.dtype,A.values)}var aX={kernelName:Vf,backendName:"cpu",kernelFunc:nX};function sX(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,filter:s}=t,{pad:i,strides:o,inputShape:l}=n;Te([a],"conv3dBackpropInputV2");let u=v.computeStrides(a.shape),d=v.computeStrides(s.shape),h=N.computeConv3DInfo(l,s.shape,o,1,i),p=new rr(h.inShape,"float32"),c=p.values,[f,m,g,y]=p.strides,A=r.data.get(a.dataId).values,[x,b,w,T]=u,S=r.data.get(s.dataId).values,[E,R,_,M]=d,{batchSize:I,filterDepth:O,filterHeight:z,filterWidth:j,inChannels:X,inDepth:D,inHeight:Q,inWidth:V,outChannels:ee,outDepth:J,outHeight:se,outWidth:Z,strideDepth:ae,strideHeight:de,strideWidth:Ae}=h,be=O-1-h.padInfo.front,Ee=z-1-h.padInfo.top,Me=j-1-h.padInfo.left;for(let De=0;De<I;++De)for(let Be=0;Be<X;++Be)for(let Ze=0;Ze<D;++Ze){let ot=Ze-be,dt=Math.max(0,Math.ceil(ot/ae)),pt=Math.min(J,(O+ot)/ae);for(let $e=0;$e<Q;++$e){let vt=$e-Ee,yt=Math.max(0,Math.ceil(vt/de)),Fr=Math.min(se,(z+vt)/de);for(let ur=0;ur<V;++ur){let Xr=ur-Me,Jt=Math.max(0,Math.ceil(Xr/Ae)),dr=Math.min(Z,(j+Xr)/Ae),Yn=0;for(let Zr=dt;Zr<pt;++Zr){let Qt=Zr*ae-ot;for(let bn=yt;bn<Fr;++bn){let vn=bn*de-vt;for(let ps=Jt;ps<dr;++ps){let Ji=ps*Ae-Xr,Jh=x*De+b*Zr+w*bn+T*ps,hs=E*(O-1-Qt)+R*(z-1-vn)+_*(j-1-Ji)+M*Be;for(let La=0;La<ee;++La){let Gd=A[Jh+La],Wl=S[hs+La];Yn+=Gd*Wl}}}}c[f*De+m*Ze+g*$e+y*ur+Be]=Yn}}}return r.makeTensorInfo(p.shape,p.dtype,p.values)}var iX={kernelName:Uf,backendName:"cpu",kernelFunc:sX},oX=mt(Js,e=>Math.cos(e)),lX={kernelName:Js,backendName:"cpu",kernelFunc:oX},uX=mt(Qs,e=>Math.cosh(e)),dX={kernelName:Qs,backendName:"cpu",kernelFunc:uX};function pX(e){let{inputs:t,backend:r,attrs:n}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=n,[d,h,p,c]=a.shape,f=s.shape[0],[m,g]=o,y=We([f,m,g,c],"float32"),A=r.data.get(s.dataId).values,x=r.data.get(i.dataId).values,b=r.data.get(a.dataId).values,w=v.computeStrides(a.shape),T=v.computeStrides(y.shape);for(let S=0;S<f;S++){let E=S*4,R=A[E],_=A[E+1],M=A[E+2],I=A[E+3],O=x[S];if(O>=d)continue;let z=m>1?(M-R)*(h-1)/(m-1):0,j=g>1?(I-_)*(p-1)/(g-1):0;for(let X=0;X<m;X++){let D=m>1?R*(h-1)+X*z:.5*(R+M)*(h-1);if(D<0||D>h-1){for(let Q=0;Q<g;Q++)for(let V=0;V<c;V++){let ee=V+Q*T[2]+X*T[1]+S*T[0];y.values[ee]=u}continue}if(l==="bilinear"){let Q=Math.floor(D),V=Math.ceil(D),ee=D-Q;for(let J=0;J<g;J++){let se=g>1?_*(p-1)+J*j:.5*(_+I)*(p-1);if(se<0||se>p-1){for(let Ae=0;Ae<c;Ae++){let be=Ae+J*T[2]+X*T[1]+S*T[0];y.values[be]=u}continue}let Z=Math.floor(se),ae=Math.ceil(se),de=se-Z;for(let Ae=0;Ae<c;Ae++){let be=Ae+Z*w[2]+Q*w[1]+O*w[0],Ee=b[be];be=Ae+ae*w[2]+Q*w[1]+O*w[0];let Me=b[be];be=Ae+Z*w[2]+V*w[1]+O*w[0];let De=b[be];be=Ae+ae*w[2]+V*w[1]+O*w[0];let Be=b[be],Ze=Ee+(Me-Ee)*de,ot=De+(Be-De)*de;be=Ae+J*T[2]+X*T[1]+S*T[0],y.values[be]=Ze+(ot-Ze)*ee}}}else for(let Q=0;Q<g;++Q){let V=g>1?_*(p-1)+Q*j:.5*(_+I)*(p-1);if(V<0||V>p-1){for(let se=0;se<c;se++){let Z=se+Q*T[2]+X*T[1]+S*T[0];y.values[Z]=u}continue}let ee=Math.round(V),J=Math.round(D);for(let se=0;se<c;se++){let Z=se+ee*w[2]+J*w[1]+O*w[0],ae=se+Q*T[2]+X*T[1]+S*T[0];y.values[ae]=b[Z]}}}}return r.makeTensorInfo(y.shape,y.dtype,y.values)}var hX={kernelName:Lo,backendName:"cpu",kernelFunc:pX};function cX(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=n;Te(a,"cumprod");let l=N.getAxesPermutation([s],a.shape.length),u=a;l!=null&&(u=rn({inputs:{x:a},backend:r,attrs:{perm:l}}));let d=N.getInnerMostAxes(1,a.shape.length)[0];if(d!==u.shape.length-1)throw new Error(`backend.cumprod in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${d}`);let h=Nr(u.dtype,"int32"),p=v.makeOnesTypedArray(v.sizeFromShape(u.shape),h),c=r.data.get(u.dataId).values,f=u.shape[u.shape.length-1],m=o?(y,A)=>y+f-A-1:(y,A)=>y+A;for(let y=0;y<c.length;y+=f)for(let A=0;A<f;A++){let x=m(y,A);if(A===0)p[x]=i?1:c[x];else{let b=m(y,A-1);p[x]=i?c[b]*p[b]:c[x]*p[b]}}let g=r.makeTensorInfo(u.shape,h,p);if(l!=null){let y=N.getUndoAxesPermutation(l),A=rn({inputs:{x:g},backend:r,attrs:{perm:y}});return r.disposeIntermediateTensorInfo(g),r.disposeIntermediateTensorInfo(u),A}return g}var fX={kernelName:Lu,backendName:"cpu",kernelFunc:cX};function mX(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=n;Te(a,"cumsum");let l=N.getAxesPermutation([s],a.shape.length),u=a;l!=null&&(u=rn({inputs:{x:a},backend:r,attrs:{perm:l}}));let d=N.getInnerMostAxes(1,a.shape.length)[0];if(d!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${d}`);let h=Nr(u.dtype,"int32"),p=v.makeZerosTypedArray(v.sizeFromShape(u.shape),h),c=r.data.get(u.dataId).values,f=u.shape[u.shape.length-1],m=o?(y,A)=>y+f-A-1:(y,A)=>y+A;for(let y=0;y<c.length;y+=f)for(let A=0;A<f;A++){let x=m(y,A);if(A===0)p[x]=i?0:c[x];else{let b=m(y,A-1);p[x]=i?c[b]+p[b]:c[x]+p[b]}}let g=r.makeTensorInfo(u.shape,h,p);if(l!=null){let y=N.getUndoAxesPermutation(l),A=rn({inputs:{x:g},backend:r,attrs:{perm:y}});return r.disposeIntermediateTensorInfo(g),r.disposeIntermediateTensorInfo(u),A}return g}var gX={kernelName:Do,backendName:"cpu",kernelFunc:mX};function yX(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,weights:s}=t,{size:i,binaryOutput:o}=n;if(a.shape.length===1){let l=r.data.get(a.dataId).values,u=r.data.get(s.dataId).values,d=Ux(l,u,s.dtype,s.shape,i);return r.makeTensorInfo([i],s.dtype,d)}else if(a.shape.length===2){let l=r.bufferSync(a),u=r.bufferSync(s),d=q6(l,u,i,o);return r.makeTensorInfo(d.shape,s.dtype,d.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${a.shape.length}.`)}var AX={kernelName:Gf,backendName:"cpu",kernelFunc:yX};function xX(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockSize:s,dataFormat:i}=n;v.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`);let o=a.shape[0],l=a.shape[1],u=a.shape[2],d=a.shape[3],h=l*s,p=u*s,c=d/(s*s),f=r.data.get(a.dataId).values,m=new Float32Array(o*h*p*c),g=0;for(let y=0;y<o;++y)for(let A=0;A<h;++A){let x=Math.floor(A/s),b=A%s;for(let w=0;w<p;++w){let T=Math.floor(w/s),S=w%s,E=(b*s+S)*c;for(let R=0;R<c;++R){let _=R+E+d*(T+u*(x+l*y));m[g++]=f[_]}}}return r.makeTensorInfo([o,h,p,c],a.dtype,m)}var bX={kernelName:Bo,backendName:"cpu",kernelFunc:xX};function DI(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=n;Te([a,s],"depthwiseConv2DNative");let d=v.computeStrides(a.shape),h=v.computeStrides(s.shape),p=l;p==null&&(p=[1,1]),v.assert(N.eitherStridesOrDilationsAreOne(i,p),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${p}'`);let c=N.computeConv2DInfo(a.shape,s.shape,i,p,o,u,!0),{filterHeight:f,filterWidth:m,dilationHeight:g,dilationWidth:y,padInfo:A}=c,x=A.left,b=A.top,w=c.outChannels/c.inChannels,T=new rr(c.outShape,a.dtype),S=r.data.get(a.dataId).values,E=r.data.get(s.dataId).values,R=T.values;for(let _=0;_<c.batchSize;++_){let M=_*d[0],I=_*T.strides[0];for(let O=0;O<c.outHeight;++O){let z=I+O*T.strides[1],j=O*c.strideHeight-b;for(let X=0;X<f;++X){let D=j+X*g;if(D<0||D>=c.inHeight)continue;let Q=X*h[0],V=M+D*d[1];for(let ee=0;ee<c.outWidth;++ee){let J=z+ee*T.strides[2],se=ee*c.strideWidth-x;for(let Z=0;Z<m;++Z){let ae=se+Z*y;if(ae<0||ae>=c.inWidth)continue;let de=Q+Z*h[1],Ae=V+ae*c.inChannels,be=J,Ee=de;for(let Me=0;Me<c.inChannels;++Me){let De=S[Ae+Me];for(let Be=0;Be<w;++Be)R[be+Be]+=De*E[Ee+Be];be+=w,Ee+=w}}}}}}return r.makeTensorInfo(T.shape,T.dtype,T.values)}var vX={kernelName:ei,backendName:"cpu",kernelFunc:DI};function wX(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:d}=n;Te([a,s],"depthwiseConv2dNativeBackpropFilter");let h=N.computeConv2DInfo(a.shape,d,i,o,l,u,!0),{strideHeight:p,strideWidth:c,filterHeight:f,filterWidth:m}=h,g=new rr(h.filterShape,"float32"),y=h.padInfo.left,A=h.padInfo.top,x=h.outChannels/h.inChannels,b=r.data.get(a.dataId).values,w=new rr(a.shape,a.dtype,b),T=r.data.get(s.dataId).values,S=new rr(s.shape,s.dtype,T);for(let E=0;E<f;++E){let R=Math.max(0,Math.ceil((A-E)/p)),_=Math.min(h.outHeight,(h.inHeight+A-E)/p);for(let M=0;M<m;++M){let I=Math.max(0,Math.ceil((y-M)/c)),O=Math.min(h.outWidth,(h.inWidth+y-M)/c);for(let z=0;z<h.outChannels;++z){let j=Math.trunc(z/x),X=z%x,D=0;for(let Q=0;Q<h.batchSize;++Q)for(let V=R;V<_;++V){let ee=E+V*p-A;for(let J=I;J<O;++J){let se=M+J*c-y;D+=w.get(Q,ee,se,j)*S.get(Q,V,J,z)}}g.set(D,E,M,j,X)}}}return r.makeTensorInfo(g.shape,g.dtype,g.values)}var kX={kernelName:jf,backendName:"cpu",kernelFunc:wX};function IX(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:d}=n;Te([a,s],"depthwiseConv2DNativeBackpropInput");let h=v.computeStrides(a.shape),p=v.computeStrides(s.shape),c=N.computeConv2DInfo(d,s.shape,i,o,l,u,!0),f=new rr(c.inShape,"float32"),m=f.values,[g,y,A]=f.strides,x=r.data.get(a.dataId).values,[b,w,T]=h,S=r.data.get(s.dataId).values,[E,R,_]=p,{batchSize:M,filterHeight:I,filterWidth:O,inChannels:z,inHeight:j,inWidth:X,outChannels:D,outHeight:Q,outWidth:V,strideHeight:ee,strideWidth:J}=c,se=I-1-c.padInfo.top,Z=O-1-c.padInfo.left,ae=D/z;for(let de=0;de<M;++de)for(let Ae=0;Ae<z;++Ae)for(let be=0;be<j;++be){let Ee=be-se,Me=Math.max(0,Math.ceil(Ee/ee)),De=Math.min(Q,(I+Ee)/ee);for(let Be=0;Be<X;++Be){let Ze=Be-Z,ot=Math.max(0,Math.ceil(Ze/J)),dt=Math.min(V,(O+Ze)/J),pt=0;for(let $e=Me;$e<De;++$e){let vt=$e*ee-Ee;for(let yt=ot;yt<dt;++yt){let Fr=yt*J-Ze,ur=b*de+w*$e+T*yt,Xr=E*(I-1-vt)+R*(O-1-Fr)+_*Ae;for(let Jt=0;Jt<ae;++Jt){let dr=Ae*ae+Jt,Yn=x[ur+dr],Zr=S[Xr+Jt];pt+=Yn*Zr}}}m[g*de+y*be+A*Be+Ae]=pt}}return r.makeTensorInfo(f.shape,f.dtype,f.values)}var SX={kernelName:Hf,backendName:"cpu",kernelFunc:IX};function TX(e){let{inputs:t,backend:r}=e,{x:n}=t,a=v.sizeFromShape(n.shape),s=r.data.get(n.dataId).values,i=We([a,a],n.dtype),o=i.values;for(let u=0;u<s.length;u++)o[u*a+u]=s[u];let l=[...n.shape,...n.shape];return r.makeTensorInfo(l,i.dtype,i.values)}var NX={kernelName:qf,backendName:"cpu",kernelFunc:TX},CX={kernelName:Up,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:r})=>{let{x:n,filter:a}=e,{strides:s,pad:i,dilations:o}=r,l=t,u=l.data.get(n.dataId).values,d=n.shape.length,h=l.data.get(a.dataId).values,p=a.shape.length,{batchSize:c,inHeight:f,inWidth:m,inChannels:g,outHeight:y,outWidth:A,padInfo:x,strideHeight:b,strideWidth:w,filterHeight:T,filterWidth:S,dilationHeight:E,dilationWidth:R,outShape:_}=N.computeDilation2DInfo(n.shape,a.shape,s,i,"NHWC",o),M=v.sizeFromShape(_),I=_.length,O=v.getArrayFromDType(n.dtype,M);for(let z=0;z<c;++z)for(let j=0;j<y;++j){let X=j*b-x.top;for(let D=0;D<A;++D){let Q=D*w-x.left;for(let V=0;V<g;++V){let ee=Number.MIN_SAFE_INTEGER;for(let se=0;se<T;++se){let Z=X+se*E;if(Z>=0&&Z<f)for(let ae=0;ae<S;++ae){let de=Q+ae*R;if(de>=0&&de<m){let Ae=v.locToIndex([z,Z,de,V],d,v.computeStrides(n.shape)),be=v.locToIndex([se,ae,V],p,v.computeStrides(a.shape)),Ee=u[Ae]+h[be];Ee>ee&&(ee=Ee)}}}let J=v.locToIndex([z,j,D,V],I,v.computeStrides(_));O[J]=ee}}}return{dataId:l.write(v.toTypedArray(O,n.dtype),_,n.dtype),shape:_,dtype:n.dtype}}},EX={kernelName:lf,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:r})=>{let{x:n,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=r,u=t,d=v.toNestedArray(n.shape,u.data.get(n.dataId).values),h=v.toNestedArray(a.shape,u.data.get(a.dataId).values),{batchSize:p,inHeight:c,inWidth:f,inChannels:m,outHeight:g,outWidth:y,padInfo:A,strideHeight:x,strideWidth:b,filterHeight:w,filterWidth:T,dilationHeight:S,dilationWidth:E,outShape:R}=N.computeDilation2DInfo(n.shape,a.shape,i,o,"NHWC",l);v.assert(s.rank===R.length,()=>`Error in ${lf}, dy must have the same rank as output ${R.length}, but got ${s.rank}`);let _=v.toNestedArray(R,u.data.get(s.dataId).values),M=v.makeZerosNestedTypedArray(a.shape,a.dtype);for(let I=0;I<p;++I)for(let O=0;O<g;++O){let z=O*x-A.top;for(let j=0;j<y;++j){let X=j*b-A.left;for(let D=0;D<m;++D){let Q=Number.MIN_SAFE_INTEGER,V=0,ee=0;for(let J=0;J<w;++J){let se=z+J*S;if(se>=0&&se<c)for(let Z=0;Z<T;++Z){let ae=X+Z*E;if(ae>=0&&ae<f){let de=d[I][se][ae][D]+h[J][Z][D];de>Q&&(Q=de,V=J,ee=Z)}}}M[V][ee][D]+=_[I][O][j][D]}}}return{dataId:u.write(v.toTypedArray(M,n.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},RX={kernelName:of,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:r})=>{let{x:n,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=r,u=t,d=v.toNestedArray(n.shape,u.data.get(n.dataId).values),h=v.toNestedArray(a.shape,u.data.get(a.dataId).values),{batchSize:p,inHeight:c,inWidth:f,inChannels:m,outHeight:g,outWidth:y,padInfo:A,strideHeight:x,strideWidth:b,filterHeight:w,filterWidth:T,dilationHeight:S,dilationWidth:E,outShape:R}=N.computeDilation2DInfo(n.shape,a.shape,i,o,"NHWC",l);v.assert(s.rank===R.length,()=>`Error in ${of}, dy must have the same rank as output ${R.length}, but got ${s.rank}`);let _=v.toNestedArray(R,u.data.get(s.dataId).values),M=v.makeZerosNestedTypedArray(n.shape,n.dtype);for(let I=0;I<p;++I)for(let O=0;O<g;++O){let z=O*x-A.top;for(let j=0;j<y;++j){let X=j*b-A.left;for(let D=0;D<m;++D){let Q=Number.MIN_SAFE_INTEGER,V=z<0?0:z,ee=X<0?0:X;for(let J=0;J<w;++J){let se=z+J*S;if(se>=0&&se<c)for(let Z=0;Z<T;++Z){let ae=X+Z*E;if(ae>=0&&ae<f){let de=d[I][se][ae][D]+h[J][Z][D];de>Q&&(Q=de,V=se,ee=ae)}}}M[I][V][ee][D]+=_[I][O][j][D]}}}return{dataId:u.write(v.toTypedArray(M,n.dtype),n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}};function Sh(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n;Te(a,"sum");let o;a.dtype==="bool"?o=Ws({inputs:{x:a},backend:r,attrs:{dtype:"int32"}}):o=Ma({inputs:{x:a},backend:r});let l=o.shape.length,u=v.parseAxisParam(s,o.shape),d=N.getAxesPermutation(u,l),h=u,p=o;d!=null&&(p=rn({inputs:{x:o},backend:r,attrs:{perm:d}}),h=N.getInnerMostAxes(h.length,l)),N.assertAxesAreInnerMostDims("sum",h,p.shape.length);let[c,f]=N.computeOutAndReduceShapes(p.shape,h),m=N.upcastType(p.dtype,"int32"),g=Sf(r,c,m),y=v.sizeFromShape(f),A=r.data.get(g.dataId).values,x=r.data.get(p.dataId).values;for(let b=0;b<A.length;++b){let w=b*y,T=0;for(let S=0;S<y;++S)T+=x[w+S];A[b]=T}if(i){let b=N.expandShapeToKeepDim(g.shape,u),w=g;g=Mt({inputs:{x:g},backend:r,attrs:{shape:b}}),r.disposeIntermediateTensorInfo(w)}return r.disposeIntermediateTensorInfo(o),d!=null&&r.disposeIntermediateTensorInfo(p),g}var MX={kernelName:Ei,backendName:"cpu",kernelFunc:Sh};function FX(e){let{inputs:t,backend:r,attrs:n}=e,{equation:a}=n,s=t,{allDims:i,summedDims:o,idDims:l}=N.decodeEinsumEquation(a,s.length);N.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:d}=N.getEinsumComputePath(o,l),h=d.length,p=null,c=i.length,f=[];for(let m=0;m<h;++m){for(let g of d[m]){let{permutationIndices:y,expandDims:A}=N.getEinsumPermutation(c,l[g]),x;N.isIdentityPermutation(y)?x=s[g]:(x=rn({inputs:{x:s[g]},backend:r,attrs:{perm:y}}),f.push(x));let b=x.shape.slice();for(let w=0;w<A.length;++w)b.splice(A[w],0,1);v.arraysEqual(x.shape,b)||(x=Mt({inputs:{x},backend:r,attrs:{shape:b}}),f.push(x)),p===null?p=x:(p=i0({inputs:{a:x,b:p},backend:r}),f.push(p))}m<h-1&&(u[m]>=0&&(p=Sh({inputs:{x:p},backend:r,attrs:{axis:u[m]-(i.length-c),keepDims:!1}}),f.push(p)),c--)}for(let m of f)m!==p&&r.disposeIntermediateTensorInfo(m);return p}var $X={kernelName:Gp,backendName:"cpu",kernelFunc:FX};function PX(e){let{inputs:t,backend:r}=e,{dy:n,y:a}=t;Te([n,a],"eluGrad");let s=new Float32Array(v.sizeFromShape(a.shape)),i=r.data.get(a.dataId).values,o=r.data.get(n.dataId).values;for(let l=0;l<i.length;++l){let u=i[l];u>=1?s[l]=o[l]:s[l]=o[l]*(u+1)}return r.makeTensorInfo(a.shape,"float32",s)}var _X={kernelName:Kf,backendName:"cpu",kernelFunc:PX},zX=N.ERF_P,OX=N.ERF_A1,DX=N.ERF_A2,LX=N.ERF_A3,BX=N.ERF_A4,WX=N.ERF_A5,VX=mt(Bu,e=>{let t=Math.sign(e),r=Math.abs(e),n=1/(1+zX*r);return t*(1-((((WX*n+BX)*n+LX)*n+DX)*n+OX)*n*Math.exp(-r*r))}),UX={kernelName:Bu,backendName:"cpu",kernelFunc:VX};function Nf(e){let{inputs:t,backend:r,attrs:n}=e,{input:a}=t,{dim:s}=n,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(v.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),Mt({inputs:{x:a},backend:r,attrs:{shape:o}})}var GX={kernelName:Vo,backendName:"cpu",kernelFunc:Nf},jX=Zt((e,t)=>e/t),Jx=yr(ti,jX),B1={kernelName:ti,backendName:"cpu",kernelFunc:Jx};function LI(e,t,r){let n=e.shape,a=n[0],s=n[1],i=r.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,u=[a,s],d=v.sizeFromShape(u),h=v.getTypedArrayFromDType("float32",d),p=v.getTypedArrayFromDType("float32",d);for(let g=0;g<a;g++){let y=Eo({inputs:{x:o},backend:r,attrs:{begin:[g,0],size:[1,s]}}),A=Eo({inputs:{x:l},backend:r,attrs:{begin:[g,0],size:[1,s]}}),x=dn({inputs:{real:y,imag:A},backend:r}),{real:b,imag:w}=HX(x,t,r),T=N.mergeRealAndImagArrays(b,w);for(let S=0;S<s;S++){let E=N.getComplexWithIndex(T,S);h[g*s+S]=E.real,p[g*s+S]=E.imag}r.disposeIntermediateTensorInfo(y),r.disposeIntermediateTensorInfo(A),r.disposeIntermediateTensorInfo(x)}let c=r.makeTensorInfo(u,"float32",h),f=r.makeTensorInfo(u,"float32",p),m=dn({inputs:{real:c,imag:f},backend:r});return r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(f),m}function HX(e,t,r){let n=v.sizeFromShape(e.shape),a=r.data.get(e.dataId),s=r.data.get(a.complexTensorInfos.real.dataId).values,i=r.data.get(a.complexTensorInfos.imag.dataId).values;if(qX(n)){let o=W1(s,i,n,t,r),l=[e.shape[0],e.shape[1]];if(t){let u=r.makeTensorInfo(l,"float32",o.real),d=r.makeTensorInfo(l,"float32",o.imag),h=r.makeTensorInfo([],"float32",v.createScalarValue(n,"float32")),p=Ma({inputs:{x:h},backend:r}),c=B1.kernelFunc({inputs:{a:u,b:h},backend:r}),f=B1.kernelFunc({inputs:{a:d,b:p},backend:r}),m=r.data.get(c.dataId).values,g=r.data.get(f.dataId).values;return r.disposeIntermediateTensorInfo(u),r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(f),{real:m,imag:g}}return o}else{let o=N.mergeRealAndImagArrays(s,i),l=KX(o,n,t);return N.splitRealAndImagArrays(l)}}function qX(e){return(e&e-1)===0}function W1(e,t,r,n,a){if(r===1)return{real:e,imag:t};let s=N.mergeRealAndImagArrays(e,t),i=r/2,o=N.complexWithEvenIndex(s),l=o.real,u=o.imag,d=[l.length],h=a.makeTensorInfo(d,"float32",l),p=a.makeTensorInfo(d,"float32",u),c=dn({inputs:{real:h,imag:p},backend:a}),f=N.complexWithOddIndex(s),m=f.real,g=f.imag,y=[m.length],A=a.makeTensorInfo(y,"float32",m),x=a.makeTensorInfo(y,"float32",g),b=dn({inputs:{real:A,imag:x},backend:a}),w=W1(l,u,i,n,a),T=w.real,S=w.imag,E=[T.length],R=a.makeTensorInfo(E,"float32",T),_=a.makeTensorInfo(E,"float32",S),M=dn({inputs:{real:R,imag:_},backend:a}),I=W1(m,g,i,n,a),O=I.real,z=I.imag,j=[O.length],X=a.makeTensorInfo(j,"float32",O),D=a.makeTensorInfo(j,"float32",z),Q=dn({inputs:{real:X,imag:D},backend:a}),V=N.exponents(r,n),ee=[V.real.length],J=a.makeTensorInfo(ee,"float32",V.real),se=a.makeTensorInfo(ee,"float32",V.imag),Z=dn({inputs:{real:J,imag:se},backend:a}),ae=i0({inputs:{a:Z,b:Q},backend:a}),de=Ih({inputs:{a:M,b:ae},backend:a}),Ae=Xx({inputs:{a:M,b:ae},backend:a}),be=Co({inputs:{input:de},backend:a}),Ee=Co({inputs:{input:Ae},backend:a}),Me=Iu({inputs:{input:de},backend:a}),De=Iu({inputs:{input:Ae},backend:a}),Be=Su({inputs:[be,Ee],backend:a,attrs:{axis:0}}),Ze=Su({inputs:[Me,De],backend:a,attrs:{axis:0}}),ot=a.data.get(Be.dataId).values,dt=a.data.get(Ze.dataId).values;return a.disposeIntermediateTensorInfo(h),a.disposeIntermediateTensorInfo(p),a.disposeIntermediateTensorInfo(c),a.disposeIntermediateTensorInfo(A),a.disposeIntermediateTensorInfo(x),a.disposeIntermediateTensorInfo(b),a.disposeIntermediateTensorInfo(R),a.disposeIntermediateTensorInfo(_),a.disposeIntermediateTensorInfo(M),a.disposeIntermediateTensorInfo(X),a.disposeIntermediateTensorInfo(D),a.disposeIntermediateTensorInfo(Q),a.disposeIntermediateTensorInfo(J),a.disposeIntermediateTensorInfo(se),a.disposeIntermediateTensorInfo(Z),a.disposeIntermediateTensorInfo(ae),a.disposeIntermediateTensorInfo(de),a.disposeIntermediateTensorInfo(Ae),a.disposeIntermediateTensorInfo(be),a.disposeIntermediateTensorInfo(Me),a.disposeIntermediateTensorInfo(Ee),a.disposeIntermediateTensorInfo(De),a.disposeIntermediateTensorInfo(Be),a.disposeIntermediateTensorInfo(Ze),{real:ot,imag:dt}}function KX(e,t,r){let n=new Float32Array(t*2);for(let a=0;a<t;a++){let s=0,i=0;for(let o=0;o<t;o++){let l=N.exponent(a*o,t,r),u=N.getComplexWithIndex(e,o);s+=u.real*l.real-u.imag*l.imag,i+=u.real*l.imag+u.imag*l.real}r&&(s/=t,i/=t),N.assignToTypedArray(n,s,i,a)}return n}function XX(e){let{inputs:t,backend:r}=e,{input:n}=t,a=v.sizeFromShape(n.shape),s=n.shape[n.shape.length-1],i=a/s,o=Mt({inputs:{x:n},backend:r,attrs:{shape:[i,s]}}),l=LI(o,!1,r),u=Mt({inputs:{x:l},backend:r,attrs:{shape:n.shape}});return r.disposeIntermediateTensorInfo(o),r.disposeIntermediateTensorInfo(l),u}var ZX={kernelName:Xf,backendName:"cpu",kernelFunc:XX};function Qx(e){let{backend:t,attrs:r}=e,{shape:n,value:a,dtype:s}=r,i=s||v.inferDtype(a),o=v.getArrayFromDType(i,v.sizeFromShape(n));return JX(o,a,i),t.makeTensorInfo(n,i,o)}var YX={kernelName:Wu,backendName:"cpu",kernelFunc:Qx};function JX(e,t,r){e.fill(t)}var QX={kernelName:Go,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:r})=>{let{image:n}=e,a=r,s=v.getTypedArrayFromDType(n.dtype,v.sizeFromShape(n.shape)),[i,o,l,u]=n.shape,d=a.data.get(n.dataId).values;for(let h=0;h<i;h++){let p=h*l*o*u;for(let c=0;c<o;c++){let f=c*(l*u);for(let m=0;m<l;m++){let g=m*u;for(let y=0;y<u;y++){let A=Math.round(l-m-1),x=p+f+g+y,b=d[x];if(A>=0&&A<l){let w=A*u,T=p+f+w+y;b=d[T]}s[x]=b}}}}return{dataId:a.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},eZ=Zt((e,t)=>Math.floor(e/t)),tZ=yr(si,eZ,null,"int32"),rZ={kernelName:si,backendName:"cpu",kernelFunc:tZ};function nZ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:d,dilations:h,dimRoundingMode:p,activation:c,leakyreluAlpha:f}=n,m=OI({inputs:{x:a,filter:s},backend:r,attrs:{strides:l,pad:u,dataFormat:d,dilations:h,dimRoundingMode:p}});if(i){let g=m;m=Ih({inputs:{a:m,b:i},backend:r}),r.disposeIntermediateTensorInfo(g)}if(c){let g=m;m=Zx(r,m,c,o,f),r.disposeIntermediateTensorInfo(g)}return m}var aZ={kernelName:Es,backendName:"cpu",kernelFunc:nZ};function sZ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:d,dilations:h,dimRoundingMode:p,activation:c,leakyreluAlpha:f}=n,m=DI({inputs:{x:a,filter:s},backend:r,attrs:{strides:l,pad:u,dataFormat:d,dilations:h,dimRoundingMode:p}});if(i){let g=m;m=Ih({inputs:{a:m,b:i},backend:r}),r.disposeIntermediateTensorInfo(g)}if(c){let g=m;m=Zx(r,m,c,o,f),r.disposeIntermediateTensorInfo(g)}return m}var iZ={kernelName:Rs,backendName:"cpu",kernelFunc:sZ};function oZ(e){let{inputs:t,backend:r}=e,{params:n,indices:a}=t,s=v.sizeFromShape(n.shape),i=a.shape,o=i[i.length-1],[l,u,d,h]=N.prepareAndValidate(n,a);if(u===0)return r.makeTensorInfo(l,n.dtype,[]);let p=r.data.get(a.dataId).values,c=r.bufferSync(n),f=tI(p,c,n.dtype,u,o,d,h,n.shape,s);return r.makeTensorInfo(l,n.dtype,f.values)}var lZ={kernelName:Ho,backendName:"cpu",kernelFunc:oZ};function uZ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,indices:s}=t,{axis:i,batchDims:o}=n;Te([a,s],"gatherV2");let l=v.parseAxisParam(i,a.shape)[0],u=r.data.get(s.dataId).values,d=a.shape[l];for(let b=0;b<u.length;++b){let w=u[b];v.assert(w<=d-1&&w>=0,()=>`GatherV2: the index value ${w} is not in [0, ${d-1}]`)}let h=o;o==null&&(h=0);let p=v.sizeFromShape(s.shape),c=N.segment_util.collectGatherOpShapeInfo(a,s,l,h),f=Mt({inputs:{x:a},backend:r,attrs:{shape:[c.batchSize,c.outerSize,c.dimSize,c.sliceSize]}}),m=Mt({inputs:{x:s},backend:r,attrs:{shape:[c.batchSize,p/c.batchSize]}}),g=[c.batchSize,c.outerSize,p/c.batchSize,c.sliceSize],y=r.bufferSync(m),A=r.bufferSync(f),x=rI(A,y,g);return r.disposeIntermediateTensorInfo(f),r.disposeIntermediateTensorInfo(m),r.makeTensorInfo(c.outputShape,x.dtype,x.values)}var dZ={kernelName:jo,backendName:"cpu",kernelFunc:uZ};function pZ(e){let{inputs:t,backend:r}=e,{input:n}=t,a=v.sizeFromShape(n.shape),s=n.shape[n.shape.length-1],i=a/s,o=Mt({inputs:{x:n},backend:r,attrs:{shape:[i,s]}}),l=LI(o,!0,r),u=Mt({inputs:{x:l},backend:r,attrs:{shape:n.shape}});return r.disposeIntermediateTensorInfo(o),r.disposeIntermediateTensorInfo(l),u}var hZ={kernelName:Zf,backendName:"cpu",kernelFunc:pZ},cZ=mt(Vu,e=>Number.isFinite(e)?1:0,"bool"),fZ={kernelName:Vu,backendName:"cpu",kernelFunc:cZ},mZ=mt(Uu,e=>Math.abs(e)===1/0?1:0,"bool"),gZ={kernelName:Uu,backendName:"cpu",kernelFunc:mZ},yZ=mt(Gu,e=>Number.isNaN(e)?1:0,"bool"),AZ={kernelName:Gu,backendName:"cpu",kernelFunc:yZ};function xZ(e){let{backend:t,attrs:r}=e,{start:n,stop:a,num:s}=r,i=oI(n,a,s);return t.makeTensorInfo([i.length],"float32",i)}var bZ={kernelName:Yf,backendName:"cpu",kernelFunc:xZ},vZ=mt(ju,e=>Math.log1p(e)),wZ={kernelName:ju,backendName:"cpu",kernelFunc:vZ},kZ=Zt((e,t)=>e&&t),IZ=yr(Zo,kZ,null,"bool"),SZ={kernelName:Zo,backendName:"cpu",kernelFunc:IZ},TZ=mt(Hu,e=>e?0:1,"bool"),NZ={kernelName:Hu,backendName:"cpu",kernelFunc:TZ},CZ=Zt((e,t)=>e||t),EZ=yr(Hp,CZ,null,"bool"),RZ={kernelName:Hp,backendName:"cpu",kernelFunc:EZ};function MZ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;Te(a,"LRN");let u=a.shape[3],d=u-1,h=r.data.get(a.dataId).values,p=v.sizeFromShape(a.shape),c=new Float32Array(p);function f(m){let g=m%u,y=m-g+Math.max(0,g-s),A=m-g+Math.min(g+s,d),x=0;for(;y<=A;y++){let b=h[y];x+=b*b}return x}for(let m=0;m<p;m++){let g=f(m),y=h[m]*Math.pow(i+o*g,-l);c[m]=y}return r.makeTensorInfo(a.shape,a.dtype,c)}var FZ={kernelName:qp,backendName:"cpu",kernelFunc:MZ};function $Z(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:d}=n;Te(i,"LRNGrad");let h=v.sizeFromShape(i.shape),p=i.shape[3],c=r.data.get(i.dataId).values,f=r.data.get(a.dataId).values,m=r.data.get(s.dataId).values,g=new Float32Array(h),y=h;for(let A=0;A<y;A++){let x=A%p,b=A-x+Math.max(0,x-o),w=A-x+Math.min(p,x+o+1),T=0;for(let S=b;S<w;S++)T+=Math.pow(f[S],2);T=u*T+l;for(let S=b;S<w;S++){let E=-2*u*d*f[S]*m[A]/T;A===S&&(E+=Math.pow(T,-d)),E*=c[A],g[S]+=E}}return r.makeTensorInfo(i.shape,a.dtype,g)}var PZ={kernelName:Jf,backendName:"cpu",kernelFunc:$Z};function BI(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{reductionIndices:s,keepDims:i}=n,o=r,l=a.shape,u=l.length,d=v.parseAxisParam(s,l),h=d,p=N.getAxesPermutation(h,u),c=o.data.get(a.dataId).values;if(p!=null){let b=new Array(u);for(let w=0;w<b.length;w++)b[w]=l[p[w]];c=Hx(c,l,a.dtype,p,b),h=N.getInnerMostAxes(h.length,u),l=b}Te(a,"max"),N.assertAxesAreInnerMostDims("max",h,u);let[f,m]=N.computeOutAndReduceShapes(l,h),g=v.sizeFromShape(m),y=uI(c,g,f,a.dtype),A=o.write(y,f,a.dtype),x=f;return i&&(x=N.expandShapeToKeepDim(f,d)),{dataId:A,shape:x,dtype:a.dtype}}var _Z={kernelName:pi,backendName:"cpu",kernelFunc:BI};function zZ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t;Te(a,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n,u=1;v.assert(N.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let d=N.computePool2DInfo(a.shape,s,i,u,o,l),h;if(d.filterWidth===1&&d.filterHeight===1&&v.arraysEqual(d.inShape,d.outShape))h=Ma({inputs:{x:a},backend:r});else{let p=r.data.get(a.dataId).values,c=v.computeStrides(a.shape),f=Yx(p,a.shape,a.dtype,c,d,"max");h=r.makeTensorInfo(d.outShape,a.dtype,f.values)}return h}var OZ={kernelName:ci,backendName:"cpu",kernelFunc:zZ};function DZ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=n;Te(a,"maxPool3d");let d=N.computePool3DInfo(a.shape,s,i,1,o,l,u),h=r.data.get(a.dataId).values,p=zI(h,a.shape,a.dtype,v.computeStrides(a.shape),d,"max");return r.makeTensorInfo(p.shape,"float32",p.values)}var LZ={kernelName:Kp,backendName:"cpu",kernelFunc:DZ};function BZ(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n;Te([a,s],"maxPool3DGrad");let d=N.computePool3DInfo(s.shape,i,o,1,l,u),h=r.bufferSync(s),p=NK(h,d),c=d.strideDepth,f=d.strideHeight,m=d.strideWidth,g=d.dilationDepth,y=d.dilationHeight,A=d.dilationWidth,x=d.effectiveFilterDepth,b=d.effectiveFilterHeight,w=d.effectiveFilterWidth,T=x-1-d.padInfo.front,S=w-1-d.padInfo.left,E=b-1-d.padInfo.top,R=We(s.shape,"float32"),_=r.bufferSync(a);for(let M=0;M<d.batchSize;++M)for(let I=0;I<d.inChannels;++I)for(let O=0;O<d.inDepth;++O)for(let z=0;z<d.inHeight;++z)for(let j=0;j<d.inWidth;++j){let X=O-T,D=z-E,Q=j-S,V=0;for(let ee=0;ee<x;ee+=g){let J=(X+ee)/c;if(!(J<0||J>=d.outDepth||Math.floor(J)!==J))for(let se=0;se<b;se+=y){let Z=(D+se)/f;if(!(Z<0||Z>=d.outHeight||Math.floor(Z)!==Z))for(let ae=0;ae<w;ae+=A){let de=(Q+ae)/m;if(de<0||de>=d.outWidth||Math.floor(de)!==de)continue;let Ae=x*b*w-1-p.get(M,J,Z,de,I),be=ee*b*w+se*w+ae,Ee=Ae===be?1:0;Ee!==0&&(V+=_.get(M,J,Z,de,I)*Ee)}}}R.set(V,M,O,z,j,I)}return r.makeTensorInfo(R.shape,R.dtype,R.values)}var WZ={kernelName:em,backendName:"cpu",kernelFunc:BZ};function VZ(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,input:s,output:i}=t,o=s;Te([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:d,dimRoundingMode:h}=n,p=N.computePool2DInfo(o.shape,l,u,1,d,h),c=r.data.get(o.dataId).values,f=We(p.outShape,o.dtype,_I(c,o.shape,o.dtype,p).values),m=p.strideHeight,g=p.strideWidth,y=p.dilationHeight,A=p.dilationWidth,x=p.effectiveFilterHeight,b=p.effectiveFilterWidth,w=b-1-p.padInfo.left,T=x-1-p.padInfo.top,S=We(o.shape,"float32"),E=r.data.get(a.dataId).values,R=We(a.shape,"float32",E);for(let _=0;_<p.batchSize;++_)for(let M=0;M<p.inChannels;++M)for(let I=0;I<p.inHeight;++I)for(let O=0;O<p.inWidth;++O){let z=I-T,j=O-w,X=0;for(let D=0;D<x;D+=y){let Q=(z+D)/m;if(!(Q<0||Q>=p.outHeight||Math.floor(Q)!==Q))for(let V=0;V<b;V+=A){let ee=(j+V)/g;if(ee<0||ee>=p.outWidth||Math.floor(ee)!==ee)continue;let J=x*b-1-f.get(_,Q,ee,M),se=D*b+V,Z=J===se?1:0;Z!==0&&(X+=R.get(_,Q,ee,M)*Z)}}S.set(X,_,I,O,M)}return r.makeTensorInfo(S.shape,S.dtype,S.values)}var UZ={kernelName:Qf,backendName:"cpu",kernelFunc:VZ};function GZ(e,t,r,n,a){let s=v.computeStrides(t),i=Yx(e,t,r,s,a,"max"),o=_I(e,t,r,a,!0,n);return[i.values,o.values]}var jZ={kernelName:tm,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:r})=>{let{x:n}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=r;Te(n,"MaxPoolWithArgmax");let u=l.data.get(n.dataId).values,d=N.computePool2DInfo(n.shape,a,s,[1,1],i),[h,p]=GZ(u,n.shape,n.dtype,o,d),c=l.write(h,d.outShape,n.dtype),f=l.write(p,d.outShape,n.dtype);return[{dataId:c,shape:d.outShape,dtype:n.dtype},{dataId:f,shape:d.outShape,dtype:"int32"}]}};function HZ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n,o=v.parseAxisParam(s,a.shape),l=N.computeOutAndReduceShapes(a.shape,o)[1],u=v.sizeFromShape(l),d=[],h=r.makeTensorInfo([],"float32",new Float32Array([u]));d.push(h);let p=Ws({inputs:{x:a},backend:r,attrs:{dtype:"float32"}});d.push(p);let c=Jx({inputs:{a:p,b:h},backend:r});d.push(c);let f=Sh({inputs:{x:c},backend:r,attrs:{axis:s,keepDims:i}});return d.forEach(m=>r.disposeIntermediateTensorInfo(m)),f}var qZ={kernelName:fi,backendName:"cpu",kernelFunc:HZ};function KZ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n;Te(a,"min");let o=v.parseAxisParam(s,a.shape),l=o,u=N.getAxesPermutation(l,a.shape.length),d=a;u!=null&&(d=rn({inputs:{x:a},backend:r,attrs:{perm:u}}),l=N.getInnerMostAxes(l.length,a.shape.length)),N.assertAxesAreInnerMostDims("min",l,d.shape.length);let[h,p]=N.computeOutAndReduceShapes(d.shape,l),c=v.sizeFromShape(p),f=v.makeZerosTypedArray(v.sizeFromShape(h),d.dtype),m=r.data.get(d.dataId).values;for(let y=0;y<f.length;++y){let A=y*c,x=m[A];for(let b=0;b<c;++b){let w=m[A+b];(Number.isNaN(w)||w<x)&&(x=w)}f[y]=x}u!=null&&r.disposeIntermediateTensorInfo(d);let g=r.makeTensorInfo(h,d.dtype,f);if(i){let y=N.expandShapeToKeepDim(h,o),A=Mt({inputs:{x:g},backend:r,attrs:{shape:y}});return r.disposeIntermediateTensorInfo(g),A}return g}var XZ={kernelName:mi,backendName:"cpu",kernelFunc:KZ};function ZZ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{paddings:s,mode:i}=n;Te(a,"mirrorPad");let o=s.map((A,x)=>A[0]+a.shape[x]+A[1]),l=s.map(A=>A[0]),u=s.map((A,x)=>A[0]+a.shape[x]),d=i==="reflect"?0:1,h=r.data.get(a.dataId).values,p=a.shape.length,c=v.computeStrides(a.shape),f=v.sizeFromShape(o),m=o.length,g=v.computeStrides(o),y=v.getTypedArrayFromDType(a.dtype,f);for(let A=0;A<f;A++){let x=v.indexToLoc(A,m,g);for(let w=0;w<m;w++)x[w]<l[w]?x[w]=l[w]*2-x[w]-d:x[w]>=u[w]&&(x[w]=(u[w]-1)*2-x[w]+d);x=x.map((w,T)=>w-l[T]);let b=v.locToIndex(x,p,c);y[A]=h[b]}return{dataId:r.write(y,o,a.dtype),shape:o,dtype:a.dtype}}var YZ={kernelName:yi,backendName:"cpu",kernelFunc:ZZ},JZ=Zt((e,t)=>{let r=e%t;return e<0&&t<0||e>=0&&t>=0?r:(r+t)%t}),QZ=yr(qu,JZ),eY={kernelName:qu,backendName:"cpu",kernelFunc:QZ},tY=$o(Pf());function WI(e){let{inputs:t,backend:r,attrs:n}=e,{logits:a}=t,{dim:s}=n,i=a.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=v.parseAxisParam([o],a.shape),u=BI({inputs:{x:a},backend:r,attrs:{reductionIndices:l,keepDims:!1}}),d=N.expandShapeToKeepDim(u.shape,l),h=Mt({inputs:{x:u},backend:r,attrs:{shape:d}}),p=Xx({inputs:{a,b:h},backend:r}),c=J6({inputs:{x:p},backend:r}),f=Sh({inputs:{x:c},backend:r,attrs:{axis:l,keepDims:!1}}),m=Mt({inputs:{x:f},backend:r,attrs:{shape:d}}),g=Jx({inputs:{a:c,b:m},backend:r});return r.disposeIntermediateTensorInfo(u),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(f),r.disposeIntermediateTensorInfo(m),g}var rY={kernelName:Ri,backendName:"cpu",kernelFunc:WI};function nY(e){let{inputs:t,backend:r,attrs:n}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=n;Te(a,"multinomial");let l=o?a:WI({inputs:{logits:a},backend:r,attrs:{dim:-1}}),u=l.shape[0],d=l.shape[1],h=r.data.get(l.dataId).values,p=[u,s],c=v.makeZerosTypedArray(v.sizeFromShape(p),"int32");for(let f=0;f<u;++f){let m=f*d,g=new Float32Array(d-1);g[0]=h[m];for(let x=1;x<g.length;++x)g[x]=g[x-1]+h[m+x];let y=tY.alea(i.toString()),A=f*s;for(let x=0;x<s;++x){let b=y();c[A+x]=g.length;for(let w=0;w<g.length;w++)if(b<g[w]){c[A+x]=w;break}}}return o||r.disposeIntermediateTensorInfo(l),r.makeTensorInfo(p,"int32",c)}var aY={kernelName:rm,backendName:"cpu",kernelFunc:nY},sY=jn.nonMaxSuppressionV3Impl;function iY(e){let{inputs:t,backend:r,attrs:n}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=n;Te(a,"NonMaxSuppression");let u=r.data.get(a.dataId).values,d=r.data.get(s.dataId).values,{selectedIndices:h}=sY(u,d,i,o,l);return r.makeTensorInfo([h.length],"int32",new Int32Array(h))}var oY={kernelName:Qo,backendName:"cpu",kernelFunc:iY},lY=jn.nonMaxSuppressionV4Impl;function uY(e){let{inputs:t,backend:r,attrs:n}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=n;Te(a,"NonMaxSuppressionPadded");let d=r.data.get(a.dataId).values,h=r.data.get(s.dataId).values,{selectedIndices:p,validOutputs:c}=lY(d,h,i,o,l,u);return[r.makeTensorInfo([p.length],"int32",new Int32Array(p)),r.makeTensorInfo([],"int32",new Int32Array([c]))]}var dY={kernelName:Ku,backendName:"cpu",kernelFunc:uY},pY=jn.nonMaxSuppressionV5Impl;function hY(e){let{inputs:t,backend:r,attrs:n}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=n;Te(a,"NonMaxSuppressionWithScore");let d=r.data.get(a.dataId).values,h=r.data.get(s.dataId).values,p=i,c=o,f=l,m=u,{selectedIndices:g,selectedScores:y}=pY(d,h,p,c,f,m);return[r.makeTensorInfo([g.length],"int32",new Int32Array(g)),r.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var cY={kernelName:el,backendName:"cpu",kernelFunc:hY};function fY(e){let{inputs:t,backend:r,attrs:n}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=n;Te(a,"oneHot");let l=v.sizeFromShape(a.shape),u=new Float32Array(l*s);u.fill(o);let d=r.data.get(a.dataId).values;for(let h=0;h<l;++h)d[h]>=0&&d[h]<s&&(u[h*s+d[h]]=i);return r.makeTensorInfo([...a.shape,s],"int32",u)}var mY={kernelName:rl,backendName:"cpu",kernelFunc:fY};function Cf(e){let{inputs:t,backend:r}=e,{x:n}=t;if(n.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(n.dtype==="complex64"){let a=Co({inputs:{input:n},backend:r}),s=Cf({inputs:{x:a},backend:r}),i=Iu({inputs:{input:n},backend:r}),o=Cf({inputs:{x:i},backend:r}),l=dn({inputs:{real:s,imag:o},backend:r});return r.disposeIntermediateTensorInfo(a),r.disposeIntermediateTensorInfo(s),r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}else return Qx({backend:r,attrs:{shape:n.shape,value:0,dtype:n.dtype}})}var gY={kernelName:xl,backendName:"cpu",kernelFunc:Cf};function VI(e){let{inputs:t,backend:r}=e,{x:n}=t;if(n.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(n.dtype==="complex64"){let a=Co({inputs:{input:n},backend:r}),s=VI({inputs:{x:a},backend:r}),i=Iu({inputs:{input:n},backend:r}),o=Cf({inputs:{x:i},backend:r}),l=dn({inputs:{real:s,imag:o},backend:r});return r.disposeIntermediateTensorInfo(a),r.disposeIntermediateTensorInfo(s),r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}else return Qx({backend:r,attrs:{shape:n.shape,value:1,dtype:n.dtype}})}var yY={kernelName:tl,backendName:"cpu",kernelFunc:VI};function UI(e){let{inputs:t,backend:r,attrs:n}=e,{axis:a}=n;if(t.length===1)return Nf({inputs:{input:t[0]},backend:r,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(d=>{v.assertShapesMatch(s,d.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===d.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(d=>{let h=Nf({inputs:{input:d},backend:r,attrs:{dim:a}});return o.push(h),h}),u=Su({inputs:l,backend:r,attrs:{axis:a}});return o.forEach(d=>r.disposeIntermediateTensorInfo(d)),u}var AY={kernelName:nl,backendName:"cpu",kernelFunc:UI};function xY(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{paddings:s,constantValue:i}=n;Te(a,"pad");let o=s.map((y,A)=>y[0]+a.shape[A]+y[1]),l=s.map(y=>y[0]),u=r.data.get(a.dataId).values,d=v.sizeFromShape(a.shape),h=a.shape.length,p=v.computeStrides(a.shape),c=v.sizeFromShape(o),f=o.length,m=v.computeStrides(o),g=v.getTypedArrayFromDType(a.dtype,c);i!==0&&g.fill(i);for(let y=0;y<d;y++){let A=v.indexToLoc(y,h,p).map((b,w)=>b+l[w]),x=v.locToIndex(A,f,m);g[x]=u[y]}return{dataId:r.write(g,o,a.dtype),shape:o,dtype:a.dtype}}var GI={kernelName:xi,backendName:"cpu",kernelFunc:xY},bY=Zt((e,t)=>Math.pow(e,t)),vY=yr(bi,bY),wY={kernelName:bi,backendName:"cpu",kernelFunc:vY};function kY(e){let{backend:t,attrs:r}=e,{start:n,stop:a,dtype:s,step:i}=r,o=qx(n,a,i,s);return t.makeTensorInfo([o.length],s,o)}var IY={kernelName:Xu,backendName:"cpu",kernelFunc:kY},SY=mt(Zu,e=>1/e),TY={kernelName:Zu,backendName:"cpu",kernelFunc:SY};function NY(e){let{inputs:t,backend:r,attrs:n}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=n;Te(a,"resizeBilinear");let l=v.computeStrides(a.shape),[u,d]=o,[h,p,c,f]=a.shape,m=r.data.get(a.dataId).values,g=new Float32Array(v.sizeFromShape([h,u,d,f])),y=[s&&u>1?p-1:p,s&&d>1?c-1:c],A=[s&&u>1?u-1:u,s&&d>1?d-1:d],x=0,b=y[0]/A[0],w=y[1]/A[1];for(let T=0;T<h;T++)for(let S=0;S<u;S++){let E;i?E=b*(S+.5)-.5:E=b*S;let R=Math.max(0,Math.floor(E)),_=E-R,M=Math.min(p-1,Math.ceil(E)),I=T*l[0]+R*l[1],O=T*l[0]+M*l[1];for(let z=0;z<d;z++){let j;i?j=w*(z+.5)-.5:j=w*z;let X=Math.max(0,Math.floor(j)),D=j-X,Q=Math.min(c-1,Math.ceil(j)),V=I+X*l[2],ee=O+X*l[2],J=I+Q*l[2],se=O+Q*l[2];for(let Z=0;Z<f;Z++){let ae=m[V+Z],de=m[ee+Z],Ae=m[J+Z],be=m[se+Z],Ee=ae+(Ae-ae)*D,Me=de+(be-de)*D,De=Ee+(Me-Ee)*_;g[x++]=De}}}return r.makeTensorInfo([h,u,d,f],"float32",g)}var CY={kernelName:ki,backendName:"cpu",kernelFunc:NY};function EY(e){let{inputs:t,backend:r,attrs:n}=e,{images:a,dy:s}=t,{alignCorners:i}=n;Te([s,a],"resizeBilinearGrad");let o=v.computeStrides(a.shape),[l,u,d,h]=a.shape,[,p,c]=s.shape,f=new Float32Array(l*u*d*h),m=[i&&p>1?u-1:u,i&&c>1?d-1:d],g=[i&&p>1?p-1:p,i&&c>1?c-1:c],y=m[0]/g[0],A=m[1]/g[1],x=r.data.get(s.dataId).values,b=0;for(let w=0;w<l;w++){let T=w*o[0];for(let S=0;S<p;S++){let E=S*y,R=Math.floor(E),_=Math.min(Math.ceil(E),u-1),M=T+R*o[1],I=T+_*o[1],O=E-R,z=1-O;for(let j=0;j<c;j++){let X=j*A,D=Math.floor(X),Q=Math.min(Math.ceil(X),d-1),V=X-D,ee=1-V,J=M+D*o[2],se=M+Q*o[2],Z=I+D*o[2],ae=I+Q*o[2],de=z*ee,Ae=z*V,be=O*ee,Ee=O*V;for(let Me=0;Me<h;Me++){let De=x[b++];f[J+Me]+=De*de,f[se+Me]+=De*Ae,f[Z+Me]+=De*be,f[ae+Me]+=De*Ee}}}}return r.makeTensorInfo([l,d,u,h],"float32",f)}var RY={kernelName:am,backendName:"cpu",kernelFunc:EY};function MY(e){let{inputs:t,backend:r,attrs:n}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=n;Te(a,"resizeNearestNeighbor");let l=v.computeStrides(a.shape),[u,d]=o,[h,p,c,f]=a.shape,m=r.data.get(a.dataId).values,g=new Float32Array(h*u*d*f),y=[s&&u>1?p-1:p,s&&d>1?c-1:c],A=[s&&u>1?u-1:u,s&&d>1?d-1:d],x=y[0]/A[0],b=y[1]/A[1],w=0;for(let T=0;T<h;T++){let S=T*l[0];for(let E=0;E<u;E++){let R=i?x*(E+.5):x*E,_=Math.min(p-1,s?Math.round(R):Math.floor(R));i&&(_=Math.max(0,_));let M=S+_*l[1];for(let I=0;I<d;I++){let O=i?b*(I+.5):b*I,z=Math.min(c-1,s?Math.round(O):Math.floor(O));i&&(z=Math.max(0,z));let j=M+z*l[2];for(let X=0;X<f;X++){let D=m[j+X];g[w++]=D}}}}return r.makeTensorInfo([h,u,d,f],a.dtype,g)}var FY={kernelName:Yu,backendName:"cpu",kernelFunc:MY};function $Y(e){let{inputs:t,backend:r,attrs:n}=e,{images:a,dy:s}=t,{alignCorners:i}=n;Te([s,a],"resizeNearestNeighborGrad");let o=v.computeStrides(a.shape),l=v.computeStrides(s.shape),[u,d,h,p]=a.shape,[,c,f]=s.shape,m=new Float32Array(u*d*h*p),g=r.data.get(s.dataId).values,y=[i&&c>1?d-1:d,i&&f>1?h-1:h],A=[i&&c>1?c-1:c,i&&f>1?f-1:f],x=y[0]/A[0],b=y[1]/A[1],w=1/x,T=1/b,S=Math.ceil(w)*2+2,E=Math.ceil(T)*2+2;for(let R=0;R<u;R++){let _=R*o[0];for(let M=0;M<d;M++){let I=_+M*o[1],O=Math.floor(M*w),z=Math.floor(O-S/2);for(let j=0;j<h;j++){let X=I+j*o[2],D=Math.floor(j*T),Q=Math.floor(D-E/2);for(let V=0;V<p;V++){let ee=0;for(let J=0;J<S;J++){let se=J+z;if(se<0||se>=c)continue;let Z=_+se*l[1],ae=se*x,de=Math.min(d-1,i?Math.round(ae):Math.floor(ae));if(M===de)for(let Ae=0;Ae<E;Ae++){let be=Ae+Q;if(be<0||be>=f)continue;let Ee=Z+be*l[2],Me=be*b,De=Math.min(h-1,i?Math.round(Me):Math.floor(Me));j===De&&(ee+=g[Ee+V])}}m[X+V]=ee}}}}return r.makeTensorInfo(a.shape,a.dtype,m)}var PY={kernelName:nm,backendName:"cpu",kernelFunc:$Y};function _Y(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{dims:s}=n;Te(a,"reverse");let i=a.shape.length,o=v.parseAxisParam(s,a.shape);if(i===0)return Ma({inputs:{x:a},backend:r});let l=new rr(a.shape,a.dtype),u=r.bufferSync(a);for(let d=0;d<l.size;d++){let h=l.indexToLoc(d),p=h.slice();o.forEach(c=>p[c]=a.shape[c]-1-p[c]),l.set(u.get(...p),...h)}return r.makeTensorInfo(l.shape,l.dtype,l.values)}var zY={kernelName:il,backendName:"cpu",kernelFunc:_Y},OY={kernelName:bl,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:r})=>{let{image:n}=e,{radians:a,fillValue:s,center:i}=t,o=r,l=v.getTypedArrayFromDType(n.dtype,v.sizeFromShape(n.shape)),[u,d,h,p]=n.shape,[c,f]=N.getImageCenter(i,d,h),m=255,g=Math.sin(a),y=Math.cos(a),A=o.data.get(n.dataId).values;for(let x=0;x<u;x++){let b=x*h*d*p;for(let w=0;w<d;w++){let T=w*(h*p);for(let S=0;S<h;S++){let E=S*p;for(let R=0;R<p;R++){let _=[u,w,S,R],M=_[2],I=_[1],O=(M-c)*y-(I-f)*g,z=(M-c)*g+(I-f)*y;O=Math.round(O+c),z=Math.round(z+f);let j=s;if(typeof s!="number"&&(R===3?j=m:j=s[R]),O>=0&&O<h&&z>=0&&z<d){let D=z*(h*p),Q=O*p,V=b+D+Q+R;j=A[V]}let X=b+T+E+R;l[X]=j}}}}return{dataId:o.write(l,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},DY=mt(ol,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2===0?t:t+1}),LY={kernelName:ol,backendName:"cpu",kernelFunc:DY};function jI(e,t,r,n,a,s,i,o,l,u){let d=[n/a,a],h=e.values,p=t.values;if(n===0)return We(r,t.dtype);let c=We(d,t.dtype);c.values.fill(l);for(let f=0;f<s;f++){let m=[],g=0;for(let y=0;y<i;y++){let A=h[f*i+y];m.push(A),g+=A*o[y]}if(g<0||g>=n/a)throw new Error(`Invalid indices: ${m} does not index into ${r}`);for(let y=0;y<a;y++)u?c.values[g*a+y]+=p[f*a+y]:c.values[g*a+y]=t.rank===0?p[0]:p[f*a+y]}return c}function BY(e){let{inputs:t,backend:r,attrs:n}=e,{indices:a,updates:s}=t,{shape:i}=n,{sliceRank:o,numUpdates:l,sliceSize:u,strides:d,outputSize:h}=N.calculateShapes(s,a,i),p=!0,c=r.bufferSync(a),f=r.bufferSync(s),m=jI(c,f,i,h,u,l,o,d,0,p);return r.makeTensorInfo(i,m.dtype,m.values)}var WY={kernelName:ll,backendName:"cpu",kernelFunc:BY};function VY(e){let{inputs:t,backend:r}=e,{condition:n,t:a,e:s}=t;Te([n,a,s],"select");let i=n.shape.length,o=r.data.get(n.dataId).values,l=r.data.get(a.dataId).values,u=r.data.get(s.dataId).values,d=Nr(a.dtype,s.dtype),h=v.makeZerosTypedArray(v.sizeFromShape(a.shape),d),p=0,c=i===0||i>1||a.shape.length===1?1:v.sizeFromShape(a.shape.slice(1));for(let f=0;f<o.length;f++)for(let m=0;m<c;m++)o[f]===1?h[p++]=l[f]:h[p++]=u[f];return r.makeTensorInfo(a.shape,d,h)}var UY={kernelName:ul,backendName:"cpu",kernelFunc:VY},GY=N.SELU_SCALEALPHA,jY=N.SELU_SCALE,HY=mt(Ju,e=>e>=0?jY*e:GY*(Math.exp(e)-1)),qY={kernelName:Ju,backendName:"cpu",kernelFunc:HY},KY=mt(Qu,e=>e<0?-1:e>0?1:0),XY={kernelName:Qu,backendName:"cpu",kernelFunc:KY},ZY=mt(Ti,e=>Math.sin(e)),YY={kernelName:Ti,backendName:"cpu",kernelFunc:ZY},JY=mt(pl,e=>Math.sinh(e)),QY={kernelName:pl,backendName:"cpu",kernelFunc:JY},eJ=11920928955078125e-23,Iv=Math.log(eJ)+2,tJ=mt(ed,e=>{let t=e>-Iv,r=e<Iv,n=Math.exp(e),a;return r?a=n:t?a=e:a=Math.log(1+n),a}),rJ={kernelName:ed,backendName:"cpu",kernelFunc:tJ};function nJ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockShape:s,paddings:i}=n;Te([a],"spaceToBatchND");let o=v.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let g=1+s.length;g<a.shape.length;++g)l.push([0,0]);let u=GI.kernelFunc({inputs:{x:a},backend:r,attrs:{paddings:l,constantValue:0}}),d=N.getReshaped(u.shape,s,o,!1),h=N.getPermuted(d.length,s.length,!1),p=N.getReshapedPermuted(u.shape,s,o,!1),c=Mt({inputs:{x:u},backend:r,attrs:{shape:d}}),f=rn({inputs:{x:c},backend:r,attrs:{perm:h}}),m=Mt({inputs:{x:f},backend:r,attrs:{shape:p}});return r.disposeIntermediateTensorInfo(u),r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(f),m}var aJ={kernelName:hl,backendName:"cpu",kernelFunc:nJ};function sJ(e){let{inputs:t,backend:r}=e,{indices:n,values:a,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${s.shape}`);if(n.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${n.shape}`);if(a.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${a.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${i.shape}`);let o=r.data.get(n.dataId).values,l=r.data.get(a.dataId).values,u=r.data.get(s.dataId).values,d=r.data.get(i.dataId).values[0],[h,p,c,f,m]=yI(o,n.shape,n.dtype,l,a.dtype,u,d);return[r.makeTensorInfo(p,n.dtype,h),r.makeTensorInfo([p[0]],a.dtype,c),r.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),r.makeTensorInfo([m.length],n.dtype,new Int32Array(m))]}var iJ={kernelName:Zp,backendName:"cpu",kernelFunc:sJ};function oJ(e){let{inputs:t,backend:r}=e,{inputIndices:n,inputShape:a,newShape:s}=t;if(n.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${n.shape}`);if(a.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${a.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(r.data.get(a.dataId).values),o=r.data.get(n.dataId).values,l=Array.from(r.data.get(s.dataId).values),[u,d,h]=AI(o,n.shape,n.dtype,i,l);return[r.makeTensorInfo(d,n.dtype,u),r.makeTensorInfo([h.length],s.dtype,new Int32Array(h))]}var lJ={kernelName:td,backendName:"cpu",kernelFunc:oJ};function uJ(e){let{inputs:t,backend:r}=e,{data:n,indices:a,segmentIds:s}=t;if(n.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(a.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${a.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);if(a.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let i=r.data.get(n.dataId).values,o=r.data.get(a.dataId).values,l=r.data.get(s.dataId).values,[u,d]=Kx(i,n.shape,n.dtype,o,l,!0);return r.makeTensorInfo(d,n.dtype,u)}var dJ={kernelName:Yp,backendName:"cpu",kernelFunc:uJ};function pJ(e){let{inputs:t,backend:r}=e,{data:n,indices:a,segmentIds:s}=t;if(n.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(a.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${a.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);if(a.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let i=r.data.get(n.dataId).values,o=r.data.get(a.dataId).values,l=r.data.get(s.dataId).values,[u,d]=Kx(i,n.shape,n.dtype,o,l);return r.makeTensorInfo(d,n.dtype,u)}var hJ={kernelName:Jp,backendName:"cpu",kernelFunc:pJ};function cJ(e){let{inputs:t,backend:r,attrs:n}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=n,{sliceRank:l,numUpdates:u,sliceSize:d,strides:h,outputSize:p}=N.calculateShapes(s,a,o),c=!1,f=r.bufferSync(a),m=r.bufferSync(s),g=r.data.get(i.dataId).values[0],y=jI(f,m,o,p,d,u,l,h,g,c);return r.makeTensorInfo(o,y.dtype,y.values)}var fJ={kernelName:Qp,backendName:"cpu",kernelFunc:cJ};function mJ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=n,o=v.parseAxisParam(i,a.shape)[0],l=N.prepareSplitSize(a,s,o),u=new Array(a.shape.length).fill(0),d=a.shape.slice();return l.map(h=>{let p=[...d];p[o]=h;let c=Eo({inputs:{x:a},backend:r,attrs:{begin:u,size:p}});return u[o]+=h,c})}var gJ={kernelName:cl,backendName:"cpu",kernelFunc:mJ},yJ={kernelName:rd,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:r}=e,n=t;Te(r,"square");let a=n.data.get(r.dataId).values,s=new Float32Array(a.length);for(let i=0;i<a.length;++i){let o=a[i];s[i]=o*o}return{dataId:n.write(s,r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},AJ=mt(_i,(e,t)=>{let r=t;return isNaN(e)?NaN:e>0?1:r.alpha}),xJ={kernelName:_i,backendName:"cpu",kernelFunc:AJ};function bJ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:d,newAxisMask:h,shrinkAxisMask:p}=n;Te(a,"stridedSlice");let{finalShapeSparse:c,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:y,begin:A,end:x,strides:b}=_t.sliceInfo(a.shape,s,i,o,l,u,d,h,p),w;if(m)w=Mt({inputs:{x:a},backend:r,attrs:{shape:f}});else if(g||y){v.assert(a.shape.length>=1,()=>`Input must have rank at least 1, got: ${a.shape.length}`);let T=_t.computeOutShape(A,x,b),S=Eo({inputs:{x:a},backend:r,attrs:{begin:A,size:T}});w=Mt({inputs:{x:S},backend:r,attrs:{shape:f}}),r.disposeIntermediateTensorInfo(S)}else{let T=r.bufferSync(a),S=bI(c,T,b,A);w=r.makeTensorInfo(f,S.dtype,S.values)}return w}var vJ={kernelName:fl,backendName:"cpu",kernelFunc:bJ};function wJ(e){let{inputs:t,backend:r,attrs:n}=e,{separator:a,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=n,{data:d,dataSplits:h}=t,p=r.data.get(d.dataId).values,c=r.data.get(h.dataId).values,[f,m]=vI(p,c,a,s,i,o,l,u);return[r.makeTensorInfo([f.length],"string",f),r.makeTensorInfo(h.shape,"int32",m)]}var kJ={kernelName:eh,backendName:"cpu",kernelFunc:wJ};function IJ(e){let{inputs:t,backend:r,attrs:n}=e,{skipEmpty:a}=n,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=r.data.get(s.dataId).values,l=r.data.get(i.dataId).values[0],[u,d,h]=wI(o,l,a),p=d.length;return[r.makeTensorInfo([p,2],"int32",u),r.makeTensorInfo([p],"string",d),r.makeTensorInfo([2],"int32",new Int32Array(h))]}var SJ={kernelName:sm,backendName:"cpu",kernelFunc:IJ};function TJ(e){let{inputs:t,backend:r,attrs:n}=e,{numBuckets:a}=n,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(a<=0)throw new Error("Number of buckets must be at least 1");let i=r.data.get(s.dataId).values,o=kI(i,a);return r.makeTensorInfo(s.shape,"int32",o)}var NJ={kernelName:im,backendName:"cpu",kernelFunc:TJ},CJ=mt(ml,e=>Math.tan(e)),EJ={kernelName:ml,backendName:"cpu",kernelFunc:CJ},RJ=mt($i,e=>Math.tanh(e)),MJ={kernelName:$i,backendName:"cpu",kernelFunc:RJ};function FJ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{reps:s}=n;Te(a,"tile");let i=SI(r.bufferSync(a),s);return r.makeTensorInfo(i.shape,i.dtype,i.values)}var $J={kernelName:Xa,backendName:"cpu",kernelFunc:FJ};function PJ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{k:s,sorted:i}=n;Te(a,"topk");let o=r.data.get(a.dataId).values,[l,u]=NI(o,a.shape,a.dtype,s,i);return[r.makeTensorInfo(l.shape,l.dtype,l.values),r.makeTensorInfo(u.shape,u.dtype,u.values)]}var _J={kernelName:gl,backendName:"cpu",kernelFunc:PJ};function zJ(e){let{inputs:t,attrs:r,backend:n}=e,{image:a,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=r,[d,h,p,c]=a.shape,[f,m]=u!=null?u:[h,p],g=[d,f,m,c],y=v.computeStrides(a.shape),A=y[0],x=y[1],b=y[2],w=v.getTypedArrayFromDType(a.dtype,v.sizeFromShape(g));w.fill(l);let T=n.data.get(a.dataId).values,S=n.data.get(s.dataId).values;for(let E=0;E<d;++E){let R=s.shape[0]===1?S:S.subarray(E*8,E*8+8);for(let _=0;_<f;++_)for(let M=0;M<m;++M)for(let I=0;I<c;++I){let O,z=R[6]*M+R[7]*_+1;if(z===0)continue;let j=(R[0]*M+R[1]*_+R[2])/z,X=(R[3]*M+R[4]*_+R[5])/z,D=Sv(j,p,o),Q=Sv(X,h,o);switch(i){case"nearest":O=VJ(T,h,p,A,x,b,E,Q,D,I,l);break;case"bilinear":O=UJ(T,h,p,A,x,b,E,Q,D,I,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${i}`)}let V=E*A+_*x+M*b+I;w[V]=O}return n.makeTensorInfo(g,a.dtype,w)}return{dataId:n.write(w,g,a.dtype),shape:a.shape,dtype:a.dtype}}var OJ={kernelName:yl,backendName:"cpu",kernelFunc:zJ};function Sv(e,t,r){switch(r){case"reflect":return DJ(e,t);case"wrap":return LJ(e,t);case"nearest":return WJ(e,t);case"constant":default:return BJ(e,t)}}function DJ(e,t){let r=e;if(r<0)if(t<=1)r=0;else{let n=2*t;r<n&&(r=n*Math.trunc(-r/n)+r),r=r<-t?r+n:-r-1}else if(r>t-1)if(t<=1)r=0;else{let n=2*t;r-=n*Math.trunc(r/n),r>=t&&(r=n-r-1)}return v.clamp(0,r,t-1)}function LJ(e,t){let r=e;if(r<0)if(t<=1)r=0;else{let n=t-1;r+=t*(Math.trunc(-r/n)+1)}else if(r>t-1)if(t<=1)r=0;else{let n=t-1;r-=t*Math.trunc(r/n)}return v.clamp(0,r,t-1)}function BJ(e,t){return e}function WJ(e,t){return v.clamp(0,e,t-1)}function mp(e,t,r,n,a,s,i,o,l,u,d){let h=i*n+o*a+l*s+u;return 0<=o&&o<t&&0<=l&&l<r?e[h]:d}function VJ(e,t,r,n,a,s,i,o,l,u,d){let h=Math.round(o),p=Math.round(l);return mp(e,t,r,n,a,s,i,h,p,u,d)}function UJ(e,t,r,n,a,s,i,o,l,u,d){let h=Math.floor(o),p=Math.floor(l),c=h+1,f=p+1,m=(f-l)*mp(e,t,r,n,a,s,i,h,p,u,d)+(l-p)*mp(e,t,r,n,a,s,i,h,f,u,d),g=(f-l)*mp(e,t,r,n,a,s,i,c,p,u,d)+(l-p)*mp(e,t,r,n,a,s,i,c,f,u,d);return(c-o)*m+(o-h)*g}function GJ(e){let{inputs:t,attrs:r,backend:n}=e,{axis:a}=r,{x:s}=t;Te(s,"unique");let i=n.data.get(s.dataId).values,{outputValues:o,outputShape:l,indices:u}=CI(i,a,s.shape,s.dtype);return[n.makeTensorInfo(l,s.dtype,o),n.makeTensorInfo([u.length],"int32",u)]}var jJ={kernelName:om,backendName:"cpu",kernelFunc:GJ};function HJ(e){let{inputs:t,backend:r,attrs:n}=e,{value:a}=t,{axis:s}=n;s<0&&(s+=a.shape.length);let i=a.shape.length,o=a.shape[s],l=new Array(i-1),u=0;for(let c=0;c<i;c++)c!==s&&(l[u++]=a.shape[c]);let d=new Array(i).fill(0),h=a.shape.slice();h[s]=1;let p=new Array(o);for(let c=0;c<p.length;c++){d[s]=c;let f=Eo({inputs:{x:a},backend:r,attrs:{begin:d,size:h}});p[c]=Mt({inputs:{x:f},backend:r,attrs:{shape:l}}),r.disposeIntermediateTensorInfo(f)}return p}var qJ={kernelName:Al,backendName:"cpu",kernelFunc:HJ};function KJ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,segmentIds:s}=t,{numSegments:i}=n;Te(a,"unsortedSegmentSum");let o=a.shape.length,l=s.shape.length,u=[],d=[],h=o-l,p=s;for(let f=0;f<h;++f){let m=Nf({inputs:{input:p},backend:r,attrs:{dim:f+1}});p=m,d.push(m)}for(let f=0;f<i;++f){let m=v.createScalarValue(f,"int32"),g=r.makeTensorInfo([],"int32",m),y=Z6({inputs:{a:g,b:p},backend:r}),A=Ws({inputs:{x:y},backend:r,attrs:{dtype:"float32"}}),x=i0({inputs:{a:A,b:a},backend:r}),b=Sh({inputs:{x},backend:r,attrs:{axis:0,keepDims:!1}});u.push(b),d.push(g),d.push(y),d.push(A),d.push(x),d.push(b)}let c=UI({inputs:u,backend:r,attrs:{axis:0}});return d.forEach(f=>r.disposeIntermediateTensorInfo(f)),c}var XJ={kernelName:th,backendName:"cpu",kernelFunc:KJ},ZJ=[tK,qH,nK,sK,QH,oK,uK,pK,cK,mK,yK,xK,vK,IK,TK,EK,MK,$K,_K,Qq,OK,LK,WK,UK,YH,tq,jK,KH,qK,XK,ZK,JK,eX,rX,aX,iX,lX,dX,hX,fX,gX,AX,bX,vX,kX,SX,NX,CX,EX,RX,$X,Hq,_X,rq,UX,nq,GX,sq,ZX,YX,QX,oq,rZ,aZ,iZ,lZ,dZ,uq,pq,XH,hZ,KK,fZ,gZ,AZ,qq,cq,mq,bZ,yq,wZ,SZ,NZ,RZ,FZ,PZ,_Z,xq,OZ,LZ,WZ,UZ,jZ,qZ,XZ,vq,YZ,eY,aY,kq,Sq,oY,dY,cY,Nq,mY,yY,AY,GI,wY,Xq,Rq,IY,ZH,B1,TY,Zq,Yq,Jq,CY,RY,FY,PY,zY,OY,LY,Fq,WY,UY,qY,Pq,XY,YY,QY,_q,rY,rJ,aJ,iJ,lJ,dJ,hJ,fJ,gJ,Dq,yJ,Bq,xJ,vJ,kJ,SJ,NJ,Gq,MX,EJ,MJ,$J,_J,OJ,Cq,jJ,qJ,XJ,gY];for(let e of ZJ)Vn(e);var HI={};Le(HI,{assertNotComplex:()=>gd,bindCanvasToFramebuffer:()=>oQ,bindColorTextureToFramebuffer:()=>Yc,bindTextureToProgramUniformSampler:()=>oS,bindTextureUnit:()=>aS,bindVertexBufferToProgramAttribute:()=>V1,callAndCheck:()=>we,canBeRepresented:()=>qI,createFragmentShader:()=>ZI,createFramebuffer:()=>nS,createProgram:()=>YI,createStaticIndexBuffer:()=>eS,createStaticVertexBuffer:()=>QI,createTexture:()=>tS,createVertexShader:()=>XI,getBatchDim:()=>Ro,getExtensionOrThrow:()=>gp,getFramebufferErrorMessage:()=>lS,getMaxTexturesInShader:()=>hS,getNumChannels:()=>sQ,getProgramUniformLocation:()=>iS,getProgramUniformLocationOrThrow:()=>sS,getRowsCols:()=>Mo,getShapeAs3D:()=>Jc,getTextureShapeFromLogicalShape:()=>dS,getWebGLDisjointQueryTimerVersion:()=>cS,getWebGLErrorMessage:()=>KI,getWebGLMaxTextureSize:()=>pS,hasExtension:()=>Tn,isCapableOfRenderingToFloatTexture:()=>fS,isDownloadFloatTextureEnabled:()=>mS,isReshapeFree:()=>zp,isWebGLFenceEnabled:()=>gS,isWebGLVersionEnabled:()=>G1,linkProgram:()=>JI,logShaderSourceAndInfoLog:()=>tb,resetMaxTextureSize:()=>lQ,resetMaxTexturesInShader:()=>uQ,unbindColorTextureFromFramebuffer:()=>U1,unbindTextureUnit:()=>iQ,validateFramebuffer:()=>yp,validateProgram:()=>Zc,validateTextureSize:()=>rS});var fo={},e1={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function o0(e,t){fo[e]=t}function ma(e,t){if(!(e in fo)||t!=null){let n=JJ(e,t);if(n!==null)fo[e]=n;else return console.log("Could not get context for WebGL version",e),null}let r=fo[e];return r==null||r.isContextLost()?(delete fo[e],ma(e)):(r.disable(r.DEPTH_TEST),r.disable(r.STENCIL_TEST),r.disable(r.BLEND),r.disable(r.DITHER),r.disable(r.POLYGON_OFFSET_FILL),r.disable(r.SAMPLE_COVERAGE),r.enable(r.SCISSOR_TEST),r.enable(r.CULL_FACE),r.cullFace(r.BACK),fo[e])}function YJ(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function JJ(e,t){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let r=t==null?YJ(e):t;return r.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete fo[e]},!1),e===1?r.getContext("webgl",e1)||r.getContext("experimental-webgl",e1):r.getContext("webgl2",e1)}function Th(e,t){return[t,e]}function QJ(e,t){return e*t}function Uc(e){let t=v.sizeFromShape(e),r=Math.ceil(t/4);return v.sizeToSquarishShape(r)}function md(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function eQ(e,t){let[r,n]=md(e,t);return r*n*4}function eb(e,t){let r=e,n,a,s,i,o,l,u,d,h,p;return Y().getNumber("WEBGL_VERSION")===2?(n=r.R32F,a=r.R16F,s=r.RGBA16F,i=r.RGBA32F,o=r.RED,u=4,d=1,h=r.HALF_FLOAT,p=r.FLOAT,l=r.RGBA8):(n=e.RGBA,a=e.RGBA,s=e.RGBA,i=r.RGBA,o=e.RGBA,u=4,d=4,h=t!=null?t.HALF_FLOAT_OES:null,p=e.FLOAT,l=e.RGBA),{internalFormatFloat:n,internalFormatHalfFloat:a,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:d,textureTypeHalfFloat:h,textureTypeFloat:p}}function we(e,t){let r=t();return Y().getBool("DEBUG")&&tQ(e),r}function tQ(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+KI(e,t))}var rQ=596e-10,nQ=65504;function qI(e){return!!(Y().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||rQ<Math.abs(e)&&Math.abs(e)<nQ)}function KI(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function gp(e,t){return es(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function XI(e,t){let r=es(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(we(e,()=>e.shaderSource(r,t)),we(e,()=>e.compileShader(r)),e.getShaderParameter(r,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(r)),new Error("Failed to compile vertex shader.");return r}function ZI(e,t){let r=es(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(we(e,()=>e.shaderSource(r,t)),we(e,()=>e.compileShader(r)),Y().get("ENGINE_COMPILE_ONLY"))return r;if(e.getShaderParameter(r,e.COMPILE_STATUS)===!1)throw tb(t,e.getShaderInfoLog(r)),new Error("Failed to compile fragment shader.");return r}var aQ=/ERROR: [0-9]+:([0-9]+):/g;function tb(e,t){let r=aQ.exec(t);if(r==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let n=+r[1],a=e.split(`
|
|
`),s=a.length.toString().length+2,i=a.map((h,p)=>v.rightPad((p+1).toString(),s)+h),o=0;for(let h=0;h<i.length;h++)o=Math.max(i[h].length,o);let l=i.slice(0,n-1),u=i.slice(n-1,n),d=i.slice(n);console.log(l.join(`
|
|
`)),console.log(t.split(`
|
|
`)[0]),console.log(`%c ${v.rightPad(u[0],o)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(d.join(`
|
|
`))}function YI(e){return es(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function JI(e,t){if(we(e,()=>e.linkProgram(t)),!Y().get("ENGINE_COMPILE_ONLY")&&e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function Zc(e,t){if(we(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function QI(e,t){let r=es(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return we(e,()=>e.bindBuffer(e.ARRAY_BUFFER,r)),we(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),r}function eS(e,t){let r=es(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return we(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,r)),we(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),r}function sQ(){return Y().getNumber("WEBGL_VERSION")===2?1:4}function tS(e){return es(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function rS(e,t){let r=Y().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let n=`[${e}x${t}]`;throw new Error("Requested texture size "+n+" is invalid.")}if(e>r||t>r){let n=`[${e}x${t}]`,a=`[${r}x${r}]`;throw new Error("Requested texture size "+n+" greater than WebGL maximum on this browser / GPU "+a+".")}}function nS(e){return es(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function V1(e,t,r,n,a,s,i){let o=e.getAttribLocation(t,r);return o===-1?!1:(we(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),we(e,()=>e.vertexAttribPointer(o,a,e.FLOAT,!1,s,i)),we(e,()=>e.enableVertexAttribArray(o)),!0)}function aS(e,t,r){uS(e,r),we(e,()=>e.activeTexture(e.TEXTURE0+r)),we(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function iQ(e,t){uS(e,t),we(e,()=>e.activeTexture(e.TEXTURE0+t)),we(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function sS(e,t,r){return es(e,()=>e.getUniformLocation(t,r),'uniform "'+r+'" not present in program.')}function iS(e,t,r){return e.getUniformLocation(t,r)}function oS(e,t,r,n){we(e,()=>aS(e,t,n)),we(e,()=>e.uniform1i(r,n))}function oQ(e){we(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),we(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),we(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function Yc(e,t,r){we(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,r)),we(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function U1(e,t){we(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),we(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function yp(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+lS(e,t))}function lS(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function es(e,t,r){let n=we(e,()=>t());if(n==null)throw new Error(r);return n}function uS(e,t){let r=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,n=t+e.TEXTURE0;if(n<e.TEXTURE0||n>r){let a=`[gl.TEXTURE0, gl.TEXTURE${r}]`;throw new Error(`textureUnit must be in ${a}.`)}}function Ro(e,t=2){return v.sizeFromShape(e.slice(0,e.length-t))}function Mo(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function Jc(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[Ro(e),...Mo(e)]),t}function dS(e,t=!1){let r=Y().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(r=r*2,e=e.map((a,s)=>s>=e.length-2?v.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=v.squeezeShape(e).newShape);let n=v.sizeFromShape(e);if(e.length<=1&&n<=r)return[1,n];if(e.length===2&&e[0]<=r&&e[1]<=r)return e;if(e.length===3&&e[0]*e[1]<=r&&e[2]<=r)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=r&&e[1]*e[2]<=r)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=r&&e[3]<=r)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=r&&e[1]*e[2]*e[3]<=r)return[e[0],e[1]*e[2]*e[3]];if(t){let a=Ro(e),s=2,i=2;return e.length&&([s,i]=Mo(e)),n=a*(s/2)*(i/2),v.sizeToSquarishShape(n).map(o=>o*2)}return v.sizeToSquarishShape(n)}function Gc(e){return e%2===0}function zp(e,t){if(e=e.slice(-2),t=t.slice(-2),v.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let r=e.slice(-1)[0],n=t.slice(-1)[0];if(r===n||Gc(r)&&Gc(n)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&Gc(e[0])&&Gc(t[0])}var Qc,ef;function pS(e){if(Qc==null){let t=ma(e);Qc=t.getParameter(t.MAX_TEXTURE_SIZE)}return Qc}function lQ(){Qc=null}function uQ(){ef=null}function hS(e){if(ef==null){let t=ma(e);ef=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,ef)}function cS(e){if(e===0)return 0;let t,r=ma(e);return Tn(r,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:Tn(r,"EXT_disjoint_timer_query")?t=1:t=0,t}function Tn(e,t){return e.getExtension(t)!=null}function G1(e){try{if(ma(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function fS(e){if(e===0)return!1;let t=ma(e);if(e===1){if(!Tn(t,"OES_texture_float"))return!1}else if(!Tn(t,"EXT_color_buffer_float"))return!1;return j1(t)}function mS(e){if(e===0)return!1;let t=ma(e);if(e===1){if(!Tn(t,"OES_texture_float")||!Tn(t,"WEBGL_color_buffer_float"))return!1}else{if(Tn(t,"EXT_color_buffer_float"))return j1(t);let r="EXT_color_buffer_half_float";if(Tn(t,r)){let n=t.getExtension(r);return dQ(t,n)}return!1}return j1(t)}function j1(e){let t=eb(e),r=e.createTexture();e.bindTexture(e.TEXTURE_2D,r);let n=1,a=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,n,a,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,r,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(r),e.deleteFramebuffer(s),i}function dQ(e,t){let r=eb(e,t),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let a=1,s=1;e.texImage2D(e.TEXTURE_2D,0,r.internalFormatHalfFloat,a,s,0,r.textureFormatFloat,r.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(i),o}function gS(e){return e!==2?!1:ma(e).fenceSync!=null}function gd(e,t){Array.isArray(e)||(e=[e]),e.forEach(r=>{r!=null&&v.assert(r.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Fe=Y();Fe.registerFlag("HAS_WEBGL",()=>Fe.getNumber("WEBGL_VERSION")>0);Fe.registerFlag("WEBGL_VERSION",()=>G1(2)?2:G1(1)?1:0);Fe.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Fe.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Fe.get("WEBGL_VERSION")===2);Fe.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Fe.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Fe.registerFlag("WEBGL_PACK",()=>Fe.getBool("HAS_WEBGL"));Fe.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_CLIP",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_REDUCE",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_LAZILY_UNPACK",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_CONV_IM2COL",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>pS(Fe.getNumber("WEBGL_VERSION")));Fe.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>hS(Fe.getNumber("WEBGL_VERSION")));Fe.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Fe.getNumber("WEBGL_VERSION");return e===0?0:cS(e)});Fe.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Fe.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!sh.isMobile());Fe.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>fS(Fe.getNumber("WEBGL_VERSION")));Fe.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Fe.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Fe.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Fe.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>mS(Fe.getNumber("WEBGL_VERSION")));Fe.registerFlag("WEBGL_FENCE_API_ENABLED",()=>gS(Fe.getNumber("WEBGL_VERSION")));Fe.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Fe.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Fe.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Fe.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>sh.isMobile()?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});Fe.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);Fe.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);Fe.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);Fe.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);function Ur(){let e,t,r,n,a,s,i,o,l,u;return Y().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",r="out",n="in",a="texture",s="outputColor",i="out vec4 outputColor;",o=`
|
|
bool isnan_custom(float val) {
|
|
uint floatToUint = floatBitsToUint(val);
|
|
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
|
|
}
|
|
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan_custom(val.x),
|
|
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
|
|
}
|
|
|
|
#define isnan(value) isnan_custom(value)
|
|
`,l="",u=`
|
|
#define round(value) newRound(value)
|
|
int newRound(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 newRound(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`):(e="",t="attribute",r="varying",n="varying",a="texture2D",s="gl_FragColor",i="",o=`
|
|
#define isnan(value) isnan_custom(value)
|
|
bool isnan_custom(float val) {
|
|
return (val > 0. || val < 1. || val == 0.) ? false : true;
|
|
}
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
|
|
}
|
|
`,l=`
|
|
uniform float INFINITY;
|
|
|
|
bool isinf(float val) {
|
|
return abs(val) == INFINITY;
|
|
}
|
|
bvec4 isinf(vec4 val) {
|
|
return equal(abs(val), vec4(INFINITY));
|
|
}
|
|
`,u=`
|
|
int round(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 round(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`),{version:e,attribute:t,varyingVs:r,varyingFs:n,texture2D:a,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:u}}function El(e,t,r="index"){let n=v.computeStrides(t);return n.map((a,s)=>{let i=`int ${e[s]} = ${r} / ${a}`,o=s===n.length-1?`int ${e[s+1]} = ${r} - ${e[s]} * ${a}`:`index -= ${e[s]} * ${a}`;return`${i}; ${o};`}).join("")}function l0(e,t,r="index"){let n=v.computeStrides(t);return n.map((a,s)=>{let i=`int ${e[s]} = ${r} / outShapeStrides[${s}]`,o=s===n.length-1?`int ${e[s+1]} = ${r} - ${e[s]} * outShapeStrides[${s}]`:`index -= ${e[s]} * outShapeStrides[${s}]`;return`${i}; ${o};`}).join("")}function pQ(e,t){let r=e.length,n=e.map(s=>`${t}[${s}]`),a=new Array(r-1);a[r-2]=n[r-1];for(let s=r-3;s>=0;--s)a[s]=`(${a[s+1]} * ${n[s+1]})`;return a}function hQ(e,t,r="index"){let n=e.map((s,i)=>i),a=pQ(n,t);return a.map((s,i)=>{let o=`int ${e[i]} = ${r} / ${a[i]}`,l=i===a.length-1?`int ${e[i+1]} = ${r} - ${e[i]} * ${a[i]}`:`index -= ${e[i]} * ${a[i]}`;return`${o}; ${l};`}).join("")}function rb(e){let t=v.computeStrides(e).map(r=>r.toString());return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
|
|
}
|
|
`}function nb(){return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
|
|
}
|
|
`}var yS=`
|
|
const float FLOAT_MAX = 1.70141184e38;
|
|
const float FLOAT_MIN = 1.17549435e-38;
|
|
|
|
lowp vec4 encode_float(highp float v) {
|
|
if (isnan(v)) {
|
|
return vec4(255, 255, 255, 255);
|
|
}
|
|
|
|
highp float av = abs(v);
|
|
|
|
if(av < FLOAT_MIN) {
|
|
return vec4(0.0, 0.0, 0.0, 0.0);
|
|
} else if(v > FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
|
|
} else if(v < -FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
|
|
}
|
|
|
|
highp vec4 c = vec4(0,0,0,0);
|
|
|
|
highp float e = floor(log2(av));
|
|
highp float m = exp2(fract(log2(av))) - 1.0;
|
|
|
|
c[2] = floor(128.0 * m);
|
|
m -= c[2] / 128.0;
|
|
c[1] = floor(32768.0 * m);
|
|
m -= c[1] / 32768.0;
|
|
c[0] = floor(8388608.0 * m);
|
|
|
|
highp float ebias = e + 127.0;
|
|
c[3] = floor(ebias / 2.0);
|
|
ebias -= c[3] * 2.0;
|
|
c[2] += floor(ebias) * 128.0;
|
|
|
|
c[3] += 128.0 * step(0.0, -v);
|
|
|
|
return c / 255.0;
|
|
}
|
|
`,{getBroadcastDims:AS}=N;function cQ(e,t,r){let n=[];if(e.forEach(p=>{let c=v.sizeFromShape(p.shapeInfo.logicalShape);if(p.shapeInfo.isUniform?n.push(`uniform float ${p.name}${c>1?`[${c}]`:""};`):(n.push(`uniform sampler2D ${p.name};`),n.push(`uniform int offset${p.name};`)),r.enableShapeUniforms){let{uniformShape:f}=ab(r.packedInputs,p.shapeInfo.logicalShape,p.shapeInfo.texShape);switch(f.length){case 1:n.push(`uniform int ${p.name}Shape;`);break;case 2:n.push(`uniform ivec2 ${p.name}Shape;`);break;case 3:n.push(`uniform ivec3 ${p.name}Shape;`);break;case 4:n.push(`uniform ivec4 ${p.name}Shape;`);break;default:break}n.push(`uniform ivec2 ${p.name}TexShape;`)}}),r.enableShapeUniforms){switch(t.logicalShape.length){case 1:n.push("uniform int outShape;");break;case 2:n.push("uniform ivec2 outShape;"),n.push("uniform int outShapeStrides;");break;case 3:n.push("uniform ivec3 outShape;"),n.push("uniform ivec2 outShapeStrides;");break;case 4:n.push("uniform ivec4 outShape;"),n.push("uniform ivec3 outShapeStrides;");break;default:break}n.push("uniform ivec2 outTexShape;")}r.customUniforms&&r.customUniforms.forEach(p=>{n.push(`uniform ${p.type} ${p.name}${p.arrayIndex?`[${p.arrayIndex}]`:""};`)});let a=n.join(`
|
|
`),s=e.map(p=>fQ(p,t,r.packedInputs,r.enableShapeUniforms)).join(`
|
|
`),i=t.texShape,o=Ur(),l=yQ(o),u,d,h=bQ(o);return t.isPacked?(u=mQ(t.logicalShape,i,r.enableShapeUniforms),d=xQ(o)):(u=gQ(t.logicalShape,i,r.enableShapeUniforms),d=AQ(o)),r.packedInputs&&(h+=IQ),[h,l,d,a,u,s,r.userCode].join(`
|
|
`)}function yd(e,t=!1){let r=e.shapeInfo.logicalShape;switch(r.length){case 0:return zQ(e,t);case 1:return DQ(e,t);case 2:return BQ(e,t);case 3:return VQ(e,t);case 4:return GQ(e,t);case 5:return jQ(e);case 6:return HQ(e);default:throw new Error(`${r.length}-D input sampling is not yet supported`)}}function xS(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return _Q(e);case 1:return OQ(e,t);case 2:return LQ(e,t);case 3:return WQ(e,t);default:return UQ(e,t)}}function fQ(e,t,r=!1,n){let a="";r?a+=xS(e,n):a+=yd(e,n);let s=e.shapeInfo.logicalShape,i=t.logicalShape;return s.length<=i.length&&(r?a+=qQ(e,t):a+=KQ(e,t)),a}function mQ(e,t,r){switch(e.length){case 0:return bS();case 1:return SQ(e,t,r);case 2:return $Q(e,t,r);case 3:return NQ(e,t,r);default:return EQ(e,t,r)}}function gQ(e,t,r){switch(e.length){case 0:return bS();case 1:return TQ(e,t,r);case 2:return PQ(e,t,r);case 3:return CQ(e,t,r);case 4:return RQ(e,t,r);case 5:return MQ(e,t);case 6:return FQ(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function yQ(e){return`
|
|
float sampleTexture(sampler2D textureSampler, vec2 uv) {
|
|
return ${e.texture2D}(textureSampler, uv).r;
|
|
}
|
|
`}function AQ(e){return`
|
|
void setOutput(float val) {
|
|
${e.output} = vec4(val, 0, 0, 0);
|
|
}
|
|
`}function xQ(e){return`
|
|
void setOutput(vec4 val) {
|
|
${e.output} = val;
|
|
}
|
|
`}function bQ(e){return`${e.version}
|
|
precision highp float;
|
|
precision highp int;
|
|
precision highp sampler2D;
|
|
${e.varyingFs} vec2 resultUV;
|
|
${e.defineOutput}
|
|
const vec2 halfCR = vec2(0.5, 0.5);
|
|
|
|
struct ivec5
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
};
|
|
|
|
struct ivec6
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
int v;
|
|
};
|
|
|
|
uniform float NAN;
|
|
${e.defineSpecialNaN}
|
|
${e.defineSpecialInf}
|
|
${e.defineRound}
|
|
|
|
int imod(int x, int y) {
|
|
return x - y * (x / y);
|
|
}
|
|
|
|
int idiv(int a, int b, float sign) {
|
|
int res = a / b;
|
|
int mod = imod(a, b);
|
|
if (sign < 0. && mod != 0) {
|
|
res -= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//Based on the work of Dave Hoskins
|
|
//https://www.shadertoy.com/view/4djSRW
|
|
#define HASHSCALE1 443.8975
|
|
float random(float seed){
|
|
vec2 p = resultUV * seed;
|
|
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
|
|
p3 += dot(p3, p3.yzx + 19.19);
|
|
return fract((p3.x + p3.y) * p3.z);
|
|
}
|
|
|
|
${vQ}
|
|
${wQ}
|
|
${kQ}
|
|
`}var vQ=`
|
|
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
|
|
int texelIndex = index / 2;
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,wQ=`
|
|
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
|
|
int texNumC, int row, int col) {
|
|
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,kQ=`
|
|
vec2 packedUVfrom3D(int texNumR, int texNumC,
|
|
int texelsInBatch, int texelsInLogicalRow, int b,
|
|
int row, int col) {
|
|
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,IQ=`
|
|
float getChannel(vec4 frag, vec2 innerDims) {
|
|
vec2 modCoord = mod(innerDims, 2.);
|
|
return modCoord.x == 0. ?
|
|
(modCoord.y == 0. ? frag.r : frag.g) :
|
|
(modCoord.y == 0. ? frag.b : frag.a);
|
|
}
|
|
float getChannel(vec4 frag, int dim) {
|
|
float modCoord = mod(float(dim), 2.);
|
|
return modCoord == 0. ? frag.r : frag.g;
|
|
}
|
|
`;function bS(){return`
|
|
int getOutputCoords() {
|
|
return 0;
|
|
}
|
|
`}function SQ(e,t,r){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?r?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ${n[1]}.0);
|
|
}
|
|
`:n[1]===1?r?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ${n[0]}.0);
|
|
}
|
|
`:r?`
|
|
int getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
return 2 * (resTexRC.x * ${n[1]} + resTexRC.y);
|
|
}
|
|
`}function TQ(e,t,r){return t[0]===1?r?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * float(outTexShape[1]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * ${t[1]}.0);
|
|
}
|
|
`:t[1]===1?r?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * float(outTexShape[0]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * ${t[0]}.0);
|
|
}
|
|
`:r?`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
return resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
return resTexRC.x * ${t[1]} + resTexRC.y;
|
|
}
|
|
`}function NQ(e,t,r){if(r)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`;let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],a=Math.ceil(e[2]/2),s=a*Math.ceil(e[1]/2);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
|
|
int b = index / ${s};
|
|
index -= b * ${s};
|
|
|
|
int r = 2 * (index / ${a});
|
|
int c = imod(index, ${a}) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`}function CQ(e,t,r){if(r)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${l0(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`;let n=El(["r","c","d"],e);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${n}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}function EQ(e,t,r){if(r)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatchN = texelsInBatch * outShape[1];
|
|
|
|
int b2 = index / texelsInBatchN;
|
|
index -= b2 * texelsInBatchN;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec4(b2, b, r, c);
|
|
}
|
|
`;let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],a=Math.ceil(e[e.length-1]/2),s=a*Math.ceil(e[e.length-2]/2),i=s,o="",l="b, r, c";for(let u=2;u<e.length-1;u++)i*=e[e.length-u-1],o=`
|
|
int b${u} = index / ${i};
|
|
index -= b${u} * ${i};
|
|
`+o,l=`b${u}, `+l;return`
|
|
ivec${e.length} getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
|
|
${o}
|
|
|
|
int b = index / ${s};
|
|
index -= b * ${s};
|
|
|
|
int r = 2 * (index / ${a});
|
|
int c = imod(index, ${a}) * 2;
|
|
|
|
return ivec${e.length}(${l});
|
|
}
|
|
`}function RQ(e,t,r){if(r)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${l0(["r","c","d","d2"],e)}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`;let n=El(["r","c","d","d2"],e);return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${n}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`}function MQ(e,t){let r=El(["r","c","d","d2","d3"],e);return`
|
|
ivec5 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
|
|
${t[1]}));
|
|
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${r}
|
|
|
|
ivec5 outShape = ivec5(r, c, d, d2, d3);
|
|
return outShape;
|
|
}
|
|
`}function FQ(e,t){let r=El(["r","c","d","d2","d3","d4"],e);return`
|
|
ivec6 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${r}
|
|
|
|
ivec6 result = ivec6(r, c, d, d2, d3, d4);
|
|
return result;
|
|
}
|
|
`}function $Q(e,t,r){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(v.arraysEqual(e,t))return r?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return 2 * ivec2(resultUV.yx * vec2(${n[0]}, ${n[1]}));
|
|
}
|
|
`;let a=Math.ceil(e[1]/2);return r?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
int r = 2 * (index / ${a});
|
|
int c = imod(index, ${a}) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`}function PQ(e,t,r){return v.arraysEqual(e,t)?r?`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
|
|
}
|
|
`:e[1]===1?r?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:e[0]===1?r?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:r?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
int r = index / outShape[1];
|
|
int c = index - r * outShape[1];
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
int r = index / ${e[1]};
|
|
int c = index - r * ${e[1]};
|
|
return ivec2(r, c);
|
|
}
|
|
`}function Rl(e){return`offset${e}`}function _Q(e){let t=e.name,r="get"+t.charAt(0).toUpperCase()+t.slice(1),n=Ur();return`
|
|
vec4 ${r}() {
|
|
return ${n.texture2D}(${t}, halfCR);
|
|
}
|
|
`}function zQ(e,t){let r=e.name,n="get"+r.charAt(0).toUpperCase()+r.slice(1);if(e.shapeInfo.isUniform)return`float ${n}() {return ${r};}`;let[a,s]=e.shapeInfo.texShape;if(a===1&&s===1)return`
|
|
float ${n}() {
|
|
return sampleTexture(${r}, halfCR);
|
|
}
|
|
`;let i=Rl(r);if(t)return`
|
|
float ${n}() {
|
|
vec2 uv = uvFromFlat(${r}TexShape[0], ${r}TexShape[1], ${i});
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`;let[o,l]=e.shapeInfo.texShape;return`
|
|
float ${n}() {
|
|
vec2 uv = uvFromFlat(${o}, ${l}, ${i});
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`}function OQ(e,t){let r=e.name,n="get"+r.charAt(0).toUpperCase()+r.slice(1),a=e.shapeInfo.texShape,s=Ur();if(t)return`
|
|
vec4 ${n}(int index) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${r}TexShape[0]) / 2.0), ceil(float(${r}TexShape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom1D(
|
|
packedTexShape[0], packedTexShape[1], index);
|
|
return ${s.texture2D}(${r}, uv);
|
|
}
|
|
`;let i=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)];return`
|
|
vec4 ${n}(int index) {
|
|
vec2 uv = packedUVfrom1D(
|
|
${i[0]}, ${i[1]}, index);
|
|
return ${s.texture2D}(${r}, uv);
|
|
}
|
|
`}function DQ(e,t){let r=e.name,n="get"+r.charAt(0).toUpperCase()+r.slice(1);if(e.shapeInfo.isUniform)return`
|
|
float ${n}(int index) {
|
|
${Ad(e)}
|
|
}
|
|
`;let a=e.shapeInfo.texShape,s=a[0],i=a[1];if(i===1&&s===1)return`
|
|
float ${n}(int index) {
|
|
return sampleTexture(${r}, halfCR);
|
|
}
|
|
`;let o=Rl(r);return i===1?t?`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${o}) + 0.5) / float(${r}TexShape[0]));
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`:`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${o}) + 0.5) / ${s}.0);
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`:s===1?t?`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2((float(index + ${o}) + 0.5) / float(${r}TexShape[1]), 0.5);
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`:`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2((float(index + ${o}) + 0.5) / ${i}.0, 0.5);
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`:t?`
|
|
float ${n}(int index) {
|
|
vec2 uv = uvFromFlat(${r}TexShape[0], ${r}TexShape[1], index + ${o});
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`:`
|
|
float ${n}(int index) {
|
|
vec2 uv = uvFromFlat(${s}, ${i}, index + ${o});
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`}function LQ(e,t){let r=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),s=e.shapeInfo.texShape,i=s[0],o=s[1],l=Ur();if(s!=null&&v.arraysEqual(r,s))return t?`
|
|
vec4 ${a}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${n}TexShape[1], ${n}TexShape[0]);
|
|
|
|
return ${l.texture2D}(${n}, uv);
|
|
}
|
|
`:`
|
|
vec4 ${a}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${o}.0, ${i}.0);
|
|
|
|
return ${l.texture2D}(${n}, uv);
|
|
}
|
|
`;if(t)return`
|
|
vec4 ${a}(int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${n}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
|
|
return ${l.texture2D}(${n}, uv);
|
|
}
|
|
`;let u=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],d=Math.ceil(r[1]/2);return`
|
|
vec4 ${a}(int row, int col) {
|
|
vec2 uv = packedUVfrom2D(${d}, ${u[0]}, ${u[1]}, row, col);
|
|
return ${l.texture2D}(${n}, uv);
|
|
}
|
|
`}function BQ(e,t){let r=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),s=e.shapeInfo.texShape;if(s!=null&&v.arraysEqual(r,s)){if(t)return`
|
|
float ${a}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${n}TexShape[1], ${n}TexShape[0]);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let p=s[0],c=s[1];return`
|
|
float ${a}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${c}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}let{newShape:i,keptDims:o}=v.squeezeShape(r),l=i;if(l.length<r.length){let p=xd(e,l),c=["row","col"];return`
|
|
${yd(p,t)}
|
|
float ${a}(int row, int col) {
|
|
return ${a}(${bd(c,o)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col) {
|
|
int index = round(dot(vec2(row, col), vec2(${r[1]}, 1)));
|
|
${Ad(e)}
|
|
}
|
|
`;let u=s[0],d=s[1],h=Rl(n);return d===1?t?`
|
|
float ${a}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${h}), vec3(${n}Shape[1], 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / float(${n}TexShape[0]));
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${h}), vec3(${r[1]}, 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / ${u}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:u===1?t?`
|
|
float ${a}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${h}), vec3(${n}Shape[1], 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / float(${n}TexShape[1]), 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${h}), vec3(${r[1]}, 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / ${d}.0, 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:t?`
|
|
float ${a}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${n}Shape[1] + col + ${h};
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${r[1]} + col + ${h};
|
|
vec2 uv = uvFromFlat(${u}, ${d}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function WQ(e,t){let r=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),s=e.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)];if(r[0]===1){let p=r.slice(1),c=[1,2],f=xd(e,p),m=["b","row","col"];return`
|
|
${xS(f,t)}
|
|
vec4 ${a}(int b, int row, int col) {
|
|
return ${a}(${bd(m,c)});
|
|
}
|
|
`}let o=Ur();if(t)return`
|
|
vec4 ${a}(int b, int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${n}Shape[2]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom3D(
|
|
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
|
|
return ${o.texture2D}(${n}, uv);
|
|
}
|
|
`;let l=i[0],u=i[1],d=Math.ceil(r[2]/2),h=d*Math.ceil(r[1]/2);return`
|
|
vec4 ${a}(int b, int row, int col) {
|
|
vec2 uv = packedUVfrom3D(
|
|
${l}, ${u}, ${h}, ${d}, b, row, col);
|
|
return ${o.texture2D}(${n}, uv);
|
|
}
|
|
`}function VQ(e,t){let r=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),s=r[1]*r[2],i=r[2],{newShape:o,keptDims:l}=v.squeezeShape(r),u=o;if(u.length<r.length){let m=xd(e,u),g=["row","col","depth"];return`
|
|
${yd(m,t)}
|
|
float ${a}(int row, int col, int depth) {
|
|
return ${a}(${bd(g,l)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth) {
|
|
int index = round(dot(vec3(row, col, depth),
|
|
vec3(${s}, ${i}, 1)));
|
|
${Ad(e)}
|
|
}
|
|
`;let d=e.shapeInfo.texShape,h=d[0],p=d[1],c=e.shapeInfo.flatOffset;if(p===s&&c==null)return t?`
|
|
float ${a}(int row, int col, int depth) {
|
|
int stride1 = ${n}Shape[2];
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(stride1, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${n}TexShape[1], ${n}TexShape[0]);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int row, int col, int depth) {
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(${i}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${p}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(p===i&&c==null)return t?`
|
|
float ${a}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${n}Shape[1], 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${n}TexShape[1], ${n}TexShape[0]);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${r[1]}, 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let f=Rl(n);return t?`
|
|
float ${a}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int stride0 = ${n}Shape[1] * ${n}Shape[2];
|
|
int stride1 = ${n}Shape[2];
|
|
int index = row * ${s} + col * ${i} + depth + ${f};
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${s} + col * ${i} + depth + ${f};
|
|
vec2 uv = uvFromFlat(${h}, ${p}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function UQ(e,t){let r=e.name,n="get"+r.charAt(0).toUpperCase()+r.slice(1),a=Ur();if(t)return`
|
|
vec4 ${n}(int b2, int b, int row, int col) {
|
|
int valuesPerRow = int(ceil(float(${r}Shape[3]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${r}Shape[2]) / 2.0));
|
|
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
|
|
texelsInBatch *= ${r}Shape[1];
|
|
index = b2 * texelsInBatch + index;
|
|
ivec2 packedTexShape = ivec2(ceil(float(${r}TexShape[0]) / 2.0), ceil(float(${r}TexShape[1]) / 2.0));
|
|
int texR = index / packedTexShape[1];
|
|
int texC = index - texR * packedTexShape[1];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${a.texture2D}(${r}, uv);
|
|
}
|
|
`;let s=e.shapeInfo.logicalShape,i=s.length,o=e.shapeInfo.texShape,l=[Math.ceil(o[0]/2),Math.ceil(o[1]/2)],u=l[0],d=l[1],h=Math.ceil(s[i-1]/2),p=h*Math.ceil(s[i-2]/2),c="int b, int row, int col",f=`b * ${p} + (row / 2) * ${h} + (col / 2)`;for(let m=2;m<i-1;m++)c=`int b${m}, `+c,p*=s[i-m-1],f=`b${m} * ${p} + `+f;return`
|
|
vec4 ${n}(${c}) {
|
|
int index = ${f};
|
|
int texR = index / ${d};
|
|
int texC = index - texR * ${d};
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${d}, ${u});
|
|
return ${a.texture2D}(${r}, uv);
|
|
}
|
|
`}function GQ(e,t){let r=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),s=r[3],i=r[2]*s,o=r[1]*i,{newShape:l,keptDims:u}=v.squeezeShape(r);if(l.length<r.length){let A=xd(e,l),x=["row","col","depth","depth2"];return`
|
|
${yd(A,t)}
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
return ${a}(${bd(x,u)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
int index = round(dot(vec4(row, col, depth, depth2),
|
|
vec4(${o}, ${i}, ${s}, 1)));
|
|
${Ad(e)}
|
|
}
|
|
`;let d=e.shapeInfo.flatOffset,h=e.shapeInfo.texShape,p=h[0],c=h[1],f=`int stride2 = ${n}Shape[3];`,m=`int stride1 = ${n}Shape[2] * stride2;`,g=`int stride0 = ${n}Shape[1] * stride1;`;if(c===o&&d==null)return t?`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
${f}
|
|
${m}
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(stride1, stride2, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${n}TexShape[1], ${n}TexShape[0]);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(${i}, ${s}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${c}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(c===s&&d==null)return t?`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${n}Shape[1] * ${n}Shape[2], ${n}Shape[2], 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${n}TexShape[1], ${n}TexShape[0]);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${r[1]*r[2]}, ${r[2]}, 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${c}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let y=Rl(n);return t?`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
${f}
|
|
${m}
|
|
${g}
|
|
int index = row * stride0 + col * stride1 +
|
|
depth * stride2 + depth2;
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${y});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${o} + col * ${i} +
|
|
depth * ${s} + depth2;
|
|
vec2 uv = uvFromFlat(${p}, ${c}, index + ${y});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function jQ(e){let t=e.shapeInfo.logicalShape,r=e.name,n="get"+r.charAt(0).toUpperCase()+r.slice(1),a=t[4],s=t[3]*a,i=t[2]*s,o=t[1]*i,{newShape:l,keptDims:u}=v.squeezeShape(t);if(l.length<t.length){let m=xd(e,l),g=["row","col","depth","depth2","depth3"];return`
|
|
${yd(m)}
|
|
float ${n}(int row, int col, int depth, int depth2, int depth3) {
|
|
return ${n}(${bd(g,u)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${n}(int row, int col, int depth, int depth2, int depth3) {
|
|
float index = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${o}, ${i}, ${s}, ${a})) +
|
|
depth3;
|
|
${Ad(e)}
|
|
}
|
|
`;let d=e.shapeInfo.flatOffset,h=e.shapeInfo.texShape,p=h[0],c=h[1];if(c===o&&d==null)return`
|
|
float ${n}(int row, int col, int depth, int depth2, int depth3) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${i}, ${s}, ${a}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${c}.0, ${p}.0);
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`;if(c===a&&d==null)return`
|
|
float ${n}(int row, int col, int depth, int depth2, int depth3) {
|
|
float texR = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]},
|
|
${t[2]*t[3]}, ${t[3]}, 1));
|
|
int texC = depth3;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${c}.0, ${p}.0);
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`;let f=Rl(r);return`
|
|
float ${n}(int row, int col, int depth, int depth2, int depth3) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${o} + col * ${i} + depth * ${s} +
|
|
depth2 * ${a} + depth3 + ${f};
|
|
vec2 uv = uvFromFlat(${p}, ${c}, index);
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`}function HQ(e){let t=e.shapeInfo.logicalShape,r=e.name,n="get"+r.charAt(0).toUpperCase()+r.slice(1),{newShape:a,keptDims:s}=v.squeezeShape(t);if(a.length<t.length){let g=xd(e,a),y=["row","col","depth","depth2","depth3","depth4"];return`
|
|
${yd(g)}
|
|
float ${n}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
return ${n}(${bd(y,s)});
|
|
}
|
|
`}let i=t[5],o=t[4]*i,l=t[3]*o,u=t[2]*l,d=t[1]*u;if(e.shapeInfo.isUniform)return`
|
|
float ${n}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int index = round(dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${d}, ${u}, ${l}, ${o})) +
|
|
dot(
|
|
vec2(depth3, depth4),
|
|
vec2(${i}, 1)));
|
|
${Ad(e)}
|
|
}
|
|
`;let h=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,c=p[0],f=p[1];if(f===d&&h==null)return`
|
|
float ${n}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${u}, ${l}, ${o}, ${i})) +
|
|
float(depth4);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${c}.0);
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`;if(f===i&&h==null)return`
|
|
float ${n}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
float texR = dot(vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]*t[4]},
|
|
${t[2]*t[3]*t[4]},
|
|
${t[3]*t[4]},
|
|
${t[4]})) + float(depth3);
|
|
int texC = depth4;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${c}.0);
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`;let m=Rl(r);return`
|
|
float ${n}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${d} + col * ${u} + depth * ${l} +
|
|
depth2 * ${o} + depth3 * ${i} + depth4 + ${m};
|
|
vec2 uv = uvFromFlat(${c}, ${f}, index);
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`}function Ad(e){let t=e.name,r=v.sizeFromShape(e.shapeInfo.logicalShape);return r<2?`return ${t};`:`
|
|
for (int i = 0; i < ${r}; i++) {
|
|
if (i == index) {
|
|
return ${t}[i];
|
|
}
|
|
}
|
|
`}function qQ(e,t){let r=e.name,n=r.charAt(0).toUpperCase()+r.slice(1),a="get"+n+"AtOutCoords",s=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=AS(e.shapeInfo.logicalShape,t.logicalShape),l=gt(i),u=i-s,d,h=["x","y","z","w","u","v"];s===0?d="":i<2&&o.length>=1?d="coords = 0;":d=o.map(g=>`coords.${h[g+u]} = 0;`).join(`
|
|
`);let p="";i<2&&s>0?p="coords":p=e.shapeInfo.logicalShape.map((g,y)=>`coords.${h[y+u]}`).join(", ");let c="return outputValue;",f=v.sizeFromShape(e.shapeInfo.logicalShape)===1,m=v.sizeFromShape(t.logicalShape)===1;if(s===1&&!f&&!m)c=`
|
|
return vec4(outputValue.xy, outputValue.xy);
|
|
`;else if(f&&!m)i===1?c=`
|
|
return vec4(outputValue.x, outputValue.x, 0., 0.);
|
|
`:c=`
|
|
return vec4(outputValue.x);
|
|
`;else if(o.length){let g=s-2,y=s-1;o.indexOf(g)>-1&&o.indexOf(y)>-1?c="return vec4(outputValue.x);":o.indexOf(g)>-1?c="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(y)>-1&&(c="return vec4(outputValue.xx, outputValue.zz);")}return`
|
|
vec4 ${a}() {
|
|
${l} coords = getOutputCoords();
|
|
${d}
|
|
vec4 outputValue = get${n}(${p});
|
|
${c}
|
|
}
|
|
`}function KQ(e,t){let r=e.name,n=r.charAt(0).toUpperCase()+r.slice(1),a="get"+n+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&v.arraysEqual(i,s))return`
|
|
float ${a}() {
|
|
return sampleTexture(${r}, resultUV);
|
|
}
|
|
`;let u=gt(l),d=AS(e.shapeInfo.logicalShape,t.logicalShape),h=l-o,p,c=["x","y","z","w","u","v"];o===0?p="":l<2&&d.length>=1?p="coords = 0;":p=d.map(m=>`coords.${c[m+h]} = 0;`).join(`
|
|
`);let f="";return l<2&&o>0?f="coords":f=e.shapeInfo.logicalShape.map((m,g)=>`coords.${c[g+h]}`).join(", "),`
|
|
float ${a}() {
|
|
${u} coords = getOutputCoords();
|
|
${p}
|
|
return get${n}(${f});
|
|
}
|
|
`}function gt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function ab(e,t,r){let{newShape:n,keptDims:a}=v.squeezeShape(t),s=t.length,i=e&&s===3&&t[0]===1,o=i?t.slice(1):n,l=!e&&s>1&&!v.arraysEqual(t,r)&&n.length<s||i;return{useSqueezeShape:l,uniformShape:l?o:t,keptDims:a}}function xd(e,t){let r=JSON.parse(JSON.stringify(e));return r.shapeInfo.logicalShape=t,r}function bd(e,t){return t.map(r=>e[r]).join(", ")}function XQ(e,t,r,n){let a=r.map((d,h)=>{let p={logicalShape:d.shape,texShape:d.isUniform?null:d.texData.texShape,isUniform:d.isUniform,isPacked:d.isUniform?!1:d.texData.isPacked,flatOffset:null};return d.texData!=null&&d.texData.slice!=null&&d.texData.slice.flatOffset>0&&(p.flatOffset=d.texData.slice.flatOffset),{name:t.variableNames[h],shapeInfo:p}}),s=a.map(d=>d.shapeInfo),i={logicalShape:n.shape,texShape:n.texData.texShape,isUniform:!1,isPacked:n.texData.isPacked,flatOffset:null},o=cQ(a,i,t),l=ZI(e.gl,o),u=e.createProgram(l);return Y().get("ENGINE_COMPILE_ONLY")?{program:t,fragmentShader:l,source:o,webGLProgram:u,inShapeInfos:s,outShapeInfo:i,uniformLocations:null,customUniformLocations:null,infLoc:null,nanLoc:null,inShapesLocations:null,inTexShapesLocations:null,outShapeLocation:null,outShapeStridesLocation:null,outTexShapeLocation:null}:{program:t,fragmentShader:l,source:o,webGLProgram:u,inShapeInfos:s,outShapeInfo:i,...vS(e,t,u)}}function vS(e,t,r){let n={},a={},s={},i=[],o,l,u,d=null,h=null;h=e.getUniformLocation(r,"NAN",!1),Y().getNumber("WEBGL_VERSION")===1&&(d=e.getUniformLocation(r,"INFINITY",!1));let p=!1;for(let c=0;c<t.variableNames.length;c++){let f=t.variableNames[c];n[f]=e.getUniformLocation(r,f,p),n[`offset${f}`]=e.getUniformLocation(r,`offset${f}`,p),t.enableShapeUniforms&&(a[`${f}Shape`]=e.getUniformLocation(r,`${f}Shape`,p),s[`${f}TexShape`]=e.getUniformLocation(r,`${f}TexShape`,p))}return t.enableShapeUniforms&&(o=e.getUniformLocation(r,"outShape",p),u=e.getUniformLocation(r,"outShapeStrides",p),l=e.getUniformLocation(r,"outTexShape",p)),t.customUniforms&&t.customUniforms.forEach((c,f)=>{i[f]=e.getUniformLocation(r,c.name,p)}),{uniformLocations:n,customUniformLocations:i,infLoc:d,nanLoc:h,inShapesLocations:a,inTexShapesLocations:s,outShapeLocation:o,outShapeStridesLocation:u,outTexShapeLocation:l}}function Tv(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((r,n)=>{let a=r.logicalShape,s=t[n],i=s.shape;if(!v.arraysEqual(a,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${a} and ${i} must match`);if(r.isUniform&&s.isUniform)return;let o=r.texShape,l=s.isUniform?null:s.texData.texShape;if(!v.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function ZQ(e,t,r,n,a){t.program.enableShapeUniforms||(Tv(t.inShapeInfos,r),Tv([t.outShapeInfo],[n]));let s=n.texData.texture,i=n.texData.texShape;n.texData.isPacked?e.setOutputPackedMatrixTexture(s.texture,i[0],i[1]):e.setOutputMatrixTexture(s.texture,i[0],i[1]),e.setProgram(t.webGLProgram),Y().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),r.forEach((l,u)=>{let d=t.program.variableNames[u],h=t.uniformLocations[d],p=t.uniformLocations[`offset${d}`],c=t.inShapesLocations[`${d}Shape`],f=t.inTexShapesLocations[`${d}TexShape`];if(c){let{uniformShape:m}=ab(t.program.packedInputs,l.shape,l.texData.texShape);switch(m.length){case 1:e.gl.uniform1iv(c,new Int32Array(m));break;case 2:e.gl.uniform2iv(c,new Int32Array(m));break;case 3:e.gl.uniform3iv(c,new Int32Array(m));break;case 4:e.gl.uniform4iv(c,new Int32Array(m));break;default:break}}if(f&&e.gl.uniform2i(f,l.texData.texShape[0],l.texData.texShape[1]),h!=null){if(l.isUniform){if(v.sizeFromShape(l.shape)<2)e.gl.uniform1f(h,l.uniformValues[0]);else{let m=l.uniformValues;m instanceof Float32Array||(m=new Float32Array(m)),e.gl.uniform1fv(h,m)}return}l.texData.slice!=null&&p!=null&&e.gl.uniform1i(p,l.texData.slice.flatOffset),e.setInputMatrixTexture(l.texData.texture.texture,h,u)}});let o=t.outShapeLocation;if(o)switch(n.shape.length){case 1:e.gl.uniform1iv(o,new Int32Array(n.shape));break;case 2:e.gl.uniform2iv(o,new Int32Array(n.shape));break;case 3:e.gl.uniform3iv(o,new Int32Array(n.shape));break;case 4:e.gl.uniform4iv(o,new Int32Array(n.shape));break;default:break}if(t.outShapeStridesLocation){let l=v.computeStrides(n.shape);switch(n.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(l));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(l));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(l));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,n.texData.texShape[0],n.texData.texShape[1]),t.program.customUniforms&&a&&t.program.customUniforms.forEach((l,u)=>{let d=t.customUniformLocations[u],h=a[u];if(l.type==="float")e.gl.uniform1fv(d,h);else if(l.type==="vec2")e.gl.uniform2fv(d,h);else if(l.type==="vec3")e.gl.uniform3fv(d,h);else if(l.type==="vec4")e.gl.uniform4fv(d,h);else if(l.type==="int")e.gl.uniform1iv(d,h);else if(l.type==="ivec2")e.gl.uniform2iv(d,h);else if(l.type==="ivec3")e.gl.uniform3iv(d,h);else if(l.type==="ivec4")e.gl.uniform4iv(d,h);else throw Error(`uniform type ${l.type} is not supported yet.`)}),e.executeProgram()}function YQ(e,t,r){let n="";t.concat(r).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!i.isUniform){let l=i.texData.texShape,{useSqueezeShape:u,uniformShape:d,keptDims:h}=ab(e.packedInputs,i.shape,l),p="",c="",f="";if(d.length===1&&e.packedInputs){let w=[Math.ceil(l[0]/2),Math.ceil(l[1]/2)];p=`${w[0]>1}_${w[1]>1}`}else if(d.length===2&&!e.packedInputs)c=`${d[0]>1}_${d[1]>1}`;else if(d.length>2&&!e.packedInputs){let w=v.computeStrides(d);f=`${w[0]===l[1]}_${w[w.length-1]===l[1]}`}let m=i.shape.length,g=d.length===2&&v.arraysEqual(i.shape,l),y=v.sizeFromShape(i.shape)===1,A=N.getBroadcastDims(i.shape,r.shape),x=!e.packedInputs&&m===r.shape.length&&v.arraysEqual(l,r.texData.texShape),b=e.packedInputs||d.length>2?"":`${l[0]>1}_${l[1]>1}`;n+=`${m}_${x}_${u?h:""}_${d.length}_${y}_${A}_${g}_${p}_${c}_${f}_${b}_${o}`}else{let l=i.isUniform?"uniform":i.texData.texShape;n+=`${i.shape}_${l}_${o}`}});let a=e.userCode,s=e.constructor.name;return s+="_"+n+"_"+a+`${Y().getNumber("WEBGL_VERSION")}`,s}function on(e){return Y().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var JQ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=Ur();this.outputShape=e,this.enableShapeUniforms=on(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?l0(["r","c","d"],e):El(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getA(rc.x, rc.y, rc.z);
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},QQ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=Ur();this.outputShape=e,this.enableShapeUniforms=on(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?l0(["r","c","d"],e):El(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},eee=class{constructor(e){this.variableNames=["A"],this.outTexUsage=3;let t=Ur();this.outputShape=e,this.userCode=`
|
|
${yS}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},tee=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=3;let t=Ur();this.outputShape=e,this.userCode=`
|
|
${yS}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},ree=class{constructor(e,t=!1){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let r=Ur();this.outputShape=e,this.enableShapeUniforms=on(this.outputShape.length);let n="result";t&&(n="floor(result * 255. + 0.5)"),this.userCode=`
|
|
${this.enableShapeUniforms?nb():rb(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
int flatIndex = getFlatIndex(coords);
|
|
int offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
vec4 values = ${r.texture2D}(A, uv);
|
|
|
|
float result;
|
|
|
|
if(offset == 0) {
|
|
result = values[0];
|
|
} else if(offset == 1) {
|
|
result = values[1];
|
|
} else if(offset == 2) {
|
|
result = values[2];
|
|
} else {
|
|
result = values[3];
|
|
}
|
|
|
|
${r.output} = vec4(${n}, 0., 0., 0.);
|
|
}
|
|
`}},nee=class{constructor(e,t=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let r=Ur();this.outputShape=e,this.enableShapeUniforms=on(this.outputShape.length);let n="",a="result";t&&(a="floor(result * 255. + 0.5)");for(let s=0;s<=1;s++)for(let i=0;i<=1;i++){let o=s*2+i;n+=`
|
|
localCoords = coords;
|
|
if(localCoords[2] + ${i} < ${this.enableShapeUniforms?"outShape[2]":`${e[2]}`}) {
|
|
localCoords[2] += ${i};
|
|
if (localCoords[1] + ${s} < ${this.enableShapeUniforms?"outShape[1]":`${e[1]}`}) {
|
|
localCoords[1] += ${s};
|
|
|
|
flatIndex = getFlatIndex(localCoords);
|
|
offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
values = ${r.texture2D}(A, uv);
|
|
|
|
if (offset == 0) {
|
|
result[${o}] = values[0];
|
|
} else if (offset == 1) {
|
|
result[${o}] = values[1];
|
|
} else if (offset == 2) {
|
|
result[${o}] = values[2];
|
|
} else {
|
|
result[${o}] = values[3];
|
|
}
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
${this.enableShapeUniforms?nb():rb(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
int flatIndex, r, c, offset;
|
|
ivec3 localCoords;
|
|
vec2 uv;
|
|
vec4 values;
|
|
|
|
${n}
|
|
|
|
${r.output} = ${a};
|
|
}
|
|
`}},wS={};Le(wS,{bindVertexProgramAttributeStreams:()=>MS,createBufferFromOutputTexture:()=>PS,createFloat16MatrixTexture:()=>NS,createFloat16PackedMatrixTexture:()=>RS,createFloat32MatrixTexture:()=>TS,createIndexBuffer:()=>SS,createPackedMatrixTexture:()=>ES,createUnsignedBytesMatrixTexture:()=>CS,createVertexBuffer:()=>IS,createVertexShader:()=>kS,downloadByteEncodedFloatMatrixFromOutputTexture:()=>zS,downloadFloat32MatrixFromBuffer:()=>_S,downloadMatrixFromPackedOutputTexture:()=>DS,downloadPackedMatrixFromBuffer:()=>OS,getInternalFormatForFloat16MatrixTexture:()=>ib,getInternalFormatForFloat16PackedMatrixTexture:()=>ub,getInternalFormatForFloat32MatrixTexture:()=>sb,getInternalFormatForPackedMatrixTexture:()=>lb,getInternalFormatForUnsignedBytesMatrixTexture:()=>ob,uploadDenseMatrixToTexture:()=>FS,uploadPixelDataToTexture:()=>$S});function kS(e){let t=Ur(),r=`${t.version}
|
|
precision highp float;
|
|
${t.attribute} vec3 clipSpacePos;
|
|
${t.attribute} vec2 uv;
|
|
${t.varyingVs} vec2 resultUV;
|
|
|
|
void main() {
|
|
gl_Position = vec4(clipSpacePos, 1);
|
|
resultUV = uv;
|
|
}`;return XI(e,r)}function IS(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return QI(e,t)}function SS(e){let t=new Uint16Array([0,1,2,2,1,3]);return eS(e,t)}function Nh(e,t,r,n,a,s){rS(t,r);let i=tS(e),o=e.TEXTURE_2D;return we(e,()=>e.bindTexture(o,i)),we(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),we(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),we(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),we(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),Y().getNumber("WEBGL_VERSION")===1?we(e,()=>e.texImage2D(o,0,n,t,r,0,a,s,null)):we(e,()=>e.texStorage2D(o,1,n,t,r)),we(e,()=>e.bindTexture(e.TEXTURE_2D,null)),{texture:i,texShape:[r,t]}}function sb(e){return e.internalFormatFloat}function TS(e,t,r,n){let[a,s]=Th(t,r);return Nh(e,a,s,sb(n),n.textureFormatFloat,e.FLOAT)}function ib(e){return e.internalFormatHalfFloat}function NS(e,t,r,n){let[a,s]=Th(t,r);return Nh(e,a,s,ib(n),n.textureFormatFloat,n.textureTypeHalfFloat)}function ob(e){return e.downloadTextureFormat}function CS(e,t,r,n){let[a,s]=Th(t,r);return Nh(e,a,s,ob(n),e.RGBA,e.UNSIGNED_BYTE)}function lb(e){return e.internalFormatPackedFloat}function ES(e,t,r,n){let[a,s]=md(t,r);return Nh(e,a,s,lb(n),e.RGBA,e.FLOAT)}function ub(e){return e.internalFormatPackedHalfFloat}function RS(e,t,r,n){let[a,s]=md(t,r);return Nh(e,a,s,ub(n),e.RGBA,n.textureTypeHalfFloat)}function MS(e,t,r){return we(e,()=>e.bindBuffer(e.ARRAY_BUFFER,r)),V1(e,t,"clipSpacePos",r,3,20,0)&&V1(e,t,"uv",r,2,20,12)}function FS(e,t,r,n,a,s){we(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;a instanceof Uint8Array?(i=new Uint8Array(r*n*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(r*n*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(a),Y().getNumber("WEBGL_VERSION")===2?we(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,r,n,e.RGBA,o,i)):we(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,r,n,0,e.RGBA,o,i)),we(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function $S(e,t,r){we(e,()=>e.bindTexture(e.TEXTURE_2D,t)),r.data instanceof Uint8Array?Y().getNumber("WEBGL_VERSION")===2?we(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,r.width,r.height,e.RGBA,e.UNSIGNED_BYTE,r.data)):we(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,r.width,r.height,0,e.RGBA,e.UNSIGNED_BYTE,r.data)):Y().getNumber("WEBGL_VERSION")===2?we(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,e.RGBA,e.UNSIGNED_BYTE,r)):we(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,r)),we(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function PS(e,t,r,n){let a=e.createBuffer();we(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,a));let s=4*4*t*r;return we(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),we(e,()=>e.readPixels(0,0,r,t,e.RGBA,e.FLOAT,0)),we(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),a}function _S(e,t,r){let n=e,a=new Float32Array(r);return n.bindBuffer(n.PIXEL_PACK_BUFFER,t),n.getBufferSubData(n.PIXEL_PACK_BUFFER,0,a),n.bindBuffer(n.PIXEL_PACK_BUFFER,null),a}function zS(e,t,r,n){let[a,s]=Th(t,r),i=4,o=new Uint8Array(QJ(t*r,i));return we(e,()=>e.readPixels(0,0,a,s,n.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function OS(e,t,r,n,a,s,i,o){let l=e,u=new Float32Array(eQ(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function DS(e,t,r){let n=new Float32Array(t*r*4);return we(e,()=>e.readPixels(0,0,r,t,e.RGBA,e.FLOAT,n)),n}var hu=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=Y().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,o0(t,e)):this.gl=ma(t);let r="WEBGL_color_buffer_float",n="EXT_color_buffer_half_float";if(this.parallelCompilationExtension=this.gl.getExtension("KHR_parallel_shader_compile"),Y().getNumber("WEBGL_VERSION")===1){let a="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=gp(this.gl,a),Tn(this.gl,s))this.textureHalfFloatExtension=gp(this.gl,s);else if(Y().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(r),Tn(this.gl,n))this.colorBufferHalfFloatExtension=gp(this.gl,n);else if(Y().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(r="EXT_color_buffer_float",Tn(this.gl,r))this.colorBufferFloatExtension=this.gl.getExtension(r);else if(Tn(this.gl,n))this.colorBufferHalfFloatExtension=this.gl.getExtension(n);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=IS(this.gl),this.indexBuffer=SS(this.gl),this.framebuffer=nS(this.gl),this.textureConfig=eb(this.gl,this.textureHalfFloatExtension)}get debug(){return Y().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;we(e,()=>e.finish()),we(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),we(e,()=>e.deleteFramebuffer(this.framebuffer)),we(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),we(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),we(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),TS(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),NS(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),CS(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),$S(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,r,n){this.throwIfDisposed(),FS(this.gl,e,t,r,n,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),RS(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),ES(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(U1(this.gl,this.framebuffer),this.outputTexture=null),we(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,r){return this.downloadMatrixDriver(e,()=>zS(this.gl,t,r,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,r,n,a,s){return OS(this.gl,e,t,r,n,a,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return _S(this.gl,e,t)}createBufferFromTexture(e,t,r){this.bindTextureToFrameBuffer(e);let n=PS(this.gl,t,r,this.textureConfig);return this.unbindTextureToFrameBuffer(),n}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,r;if(Y().getBool("WEBGL_FENCE_API_ENABLED")){let n=e,a=n.fenceSync(n.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),r=()=>{let s=n.clientWaitSync(a,0,0);return s===n.ALREADY_SIGNALED||s===n.CONDITION_SATISFIED},t=a}else Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),r=()=>this.isQueryAvailable(t,Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):r=()=>!0;return{query:t,isFencePassed:r}}downloadMatrixFromPackedTexture(e,t,r){return this.downloadMatrixDriver(e,()=>DS(this.gl,t,r))}createProgram(e){this.throwIfDisposed();let t=this.gl;this.vertexShader==null&&(this.vertexShader=kS(t));let r=YI(t);return we(t,()=>t.attachShader(r,this.vertexShader)),we(t,()=>t.attachShader(r,e)),JI(t,r),this.debug&&Zc(t,r),this.vertexAttrsAreBound||(this.setProgram(r),this.vertexAttrsAreBound=MS(t,this.program,this.vertexBuffer)),r}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&we(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&Zc(this.gl,this.program),we(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,r=!0){return this.throwIfDisposed(),r?sS(this.gl,e,t):iS(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),we(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,r){this.throwIfDisposed(),this.throwIfNoProgram(),oS(this.gl,e,t,r)}setOutputMatrixTexture(e,t,r){this.setOutputMatrixTextureDriver(e,r,t)}setOutputPackedMatrixTexture(e,t,r){this.throwIfDisposed();let[n,a]=md(t,r);this.setOutputMatrixTextureDriver(e,n,a)}setOutputMatrixWriteRegion(e,t,r,n){this.setOutputMatrixWriteRegionDriver(r,e,n,t)}setOutputPackedMatrixWriteRegion(e,t,r,n){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&Zc(this.gl,this.program),yp(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),we(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),we(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=gp(this.gl,Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let r=this.gl,n=this.getQueryTimerExtensionWebGL2(),a=r.createQuery();return r.beginQuery(n.TIME_ELAPSED_EXT,a),a}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,r=this.getQueryTimerExtensionWebGL2();t.endQuery(r.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await v.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let r=this.gl;return r.getQueryParameter(e,r.QUERY_RESULT)/1e6}else{let r=this.getQueryTimerExtensionWebGL1();return r.getQueryObjectEXT(e,r.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let r=this.gl,n=this.getQueryTimerExtensionWebGL2(),a=r.getQueryParameter(e,r.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),a&&!this.disjoint}else{let r=this.getQueryTimerExtensionWebGL1(),n=r.getQueryObjectEXT(e,r.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(r.GPU_DISJOINT_EXT)),n&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=aee(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:r}=this.itemsToPoll[t];r()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&v.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),Yc(this.gl,e,this.framebuffer),this.debug&&yp(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(Yc(this.gl,this.outputTexture,this.framebuffer),this.debug&&yp(this.gl)):U1(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let r=t();return this.unbindTextureToFrameBuffer(),r}setOutputMatrixTextureDriver(e,t,r){this.throwIfDisposed();let n=this.gl;Yc(n,e,this.framebuffer),this.debug&&yp(n),this.outputTexture=e,we(n,()=>n.viewport(0,0,t,r)),we(n,()=>n.scissor(0,0,t,r))}setOutputMatrixWriteRegionDriver(e,t,r,n){this.throwIfDisposed(),we(this.gl,()=>this.gl.scissor(e,t,r,n))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function aee(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{addImpl:see,bincountImpl:LS,bincountReduceImpl:iee,ceilImpl:oee,concatImpl:lee,equalImpl:uee,expImpl:dee,expm1Impl:pee,floorImpl:hee,gatherNdImpl:cee,gatherV2Impl:fee,greaterImpl:mee,greaterEqualImpl:gee,lessImpl:yee,lessEqualImpl:Aee,linSpaceImpl:xee,logImpl:bee,maxImpl:vee,maximumImpl:wee,minimumImpl:kee,multiplyImpl:Iee,negImpl:See,notEqualImpl:Tee,prodImpl:Nee,rangeImpl:Cee,rsqrtImpl:Eee,sigmoidImpl:Ree,simpleAbsImpl:BS,sliceImpl:Mee,sparseFillEmptyRowsImpl:Fee,sparseReshapeImpl:$ee,sparseSegmentReductionImpl:WS,sqrtImpl:Pee,stridedSliceImpl:_ee,stringNGramsImpl:zee,stringSplitImpl:Oee,stringToHashBucketFastImpl:Dee,subImpl:Lee,tileImpl:Bee,topKImpl:Wee,transposeImpl:db,uniqueImpl:Vee}=s0;function VS(e,t){return["x","y","z","w","u","v"].slice(0,t).map(r=>`${e}.${r}`)}function Dr(e,t){return t===1?[e]:VS(e,t)}function Uee(e,t){if(e===1)return"rc";let r="";for(let n=0;n<e;n++)r+=t[n],n<e-1&&(r+=",");return r}var Gee=class{constructor(e){if(this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.enableShapeUniforms=on(this.outputShape.length),this.rank===0)this.userCode=`
|
|
void main() {
|
|
setOutput(vec4(getA(), 0., 0., 0.));
|
|
}
|
|
`;else{let t=Dr("rc",this.rank),r=gt(this.rank),n=this.getOutOfBoundsCondition(t),a=this.getSetup(t),s=this.getOutput(t);this.userCode=`
|
|
void main() {
|
|
${r} rc = getOutputCoords();
|
|
|
|
if(${n}) {
|
|
setOutput(vec4(0));
|
|
} else {
|
|
${a}
|
|
|
|
setOutput(vec4(${s}));
|
|
}
|
|
}
|
|
`}}getSourceCoordsArr(e){let t=[];for(let r=0;r<=1;r++)for(let n=0;n<=1;n++){let a=`${r===0?"r":"rp1"}, ${n===0?"c":"cp1"}`;for(let s=2;s<this.rank;s++)a=`${e[e.length-1-s]},`+a;t.push(a)}return t}getOutOfBoundsCondition(e){if(this.rank===1)return`rc > ${this.enableShapeUniforms?"outShape":this.outputShape[0]}`;let t="";for(let r=this.rank-2;r<this.rank;r++)t+=`${e[r]} >= ${this.enableShapeUniforms?`outShape[${r}]`:this.outputShape[r]}`,r<this.rank-1&&(t+="||");return t}getSetup(e){if(this.rank===1)return"";let t=e.slice(-2),r=this.enableShapeUniforms?`outShape[${this.rank} - 1]`:this.outputShape[this.rank-1],n=this.enableShapeUniforms?`outShape[${this.rank} - 2]`:this.outputShape[this.rank-2];return`
|
|
int r = ${t[0]};
|
|
int c = ${t[1]};
|
|
int rp1 = r + 1;
|
|
int cp1 = c + 1;
|
|
|
|
bool cEdge = cp1 >= ${r};
|
|
bool rEdge = rp1 >= ${n};
|
|
`}getOutput(e){let t=this.getSourceCoordsArr(e);return this.rank===1?`getA(rc), (rc + 1 >= ${this.enableShapeUniforms?"outShape":this.outputShape[0]} ? 0. : getA(rc + 1)), 0, 0`:`getA(${t[0]}),
|
|
cEdge ? 0. : getA(${t[1]}),
|
|
rEdge ? 0. : getA(${t[2]}),
|
|
rEdge || cEdge ? 0. : getA(${t[3]})`}},US=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=on(this.outputShape.length);let r="";for(let n=0;n<4;n++){let a="thisRC = rc;";n%2===1&&(a+="thisRC.z += 1;"),n>1&&(a+="thisRC.y += 1;"),r+=`
|
|
${a}
|
|
${n>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
|
|
int flatIndex = getFlatIndex(thisRC);
|
|
|
|
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
|
|
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
|
|
|
|
result[${n}] =
|
|
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
|
|
${n>0?"}":""}
|
|
`}this.userCode=`
|
|
${jee(t,this.enableShapeUniforms)}
|
|
${this.enableShapeUniforms?nb():rb(e)}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
ivec3 thisRC;
|
|
int rows = ${this.enableShapeUniforms?"outShape[1]":e[1]};
|
|
int cols = ${this.enableShapeUniforms?"outShape[2]":e[2]};
|
|
|
|
${r}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function jee(e,t){return`
|
|
ivec3 inputCoordsFromReshapedOutCoords(int index) {
|
|
${t?hQ(["r","c","d"],"inputShape"):El(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}var Hee=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,r){let n=Cv(t,r),a=Ev(e,n,r);a in this.freeTextures||(this.freeTextures[a]=[]),a in this.usedTextures||(this.usedTextures[a]=[]);let s=Nv(e,n,this.gpgpu.gl,this.gpgpu.textureConfig,r);if(this.freeTextures[a].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[a].shift();return this.usedTextures[a].push(o),o}let i;return n===3?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):n===4?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):n===1?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):n===0?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):n===2&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[a].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,r,n){if(this.freeTextures==null)return;let a=Cv(r,n),s=Ev(t,a,n);s in this.freeTextures||(this.freeTextures[s]=[]);let i=Nv(t,a,this.gpgpu.gl,this.gpgpu.textureConfig,n),o=Y().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e.texture),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],u=l.indexOf(e);if(u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(u,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function qee(e,t){let r=e;if(t===r.R32F)return 4;if(t===r.R16F)return 2;if(t===r.RGBA32F||t===e.RGBA)return 16;if(t===r.RGBA16F)return 8;if(t===r.RGBA8)return 4;throw new Error(`Unknown internal format ${t}`)}function Nv(e,t,r,n,a){let s=Kee(t,n),i;if(a){let[l,u]=md(e[0],e[1]);i=l*u}else{let[l,u]=Th(e[0],e[1]);i=l*u}let o=qee(r,s);return i*o}function Kee(e,t){switch(e){case 3:return lb(t);case 4:return ub(t);case 1:return sb(t);case 0:return ib(t);case 2:return ob(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function Xee(e){return Y().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?3:1:e?4:0}function Cv(e,t){if(e===1)return 3;if(e===0||e==null)return Xee(t);if(e===3||e===2)return 2;throw new Error(`Unknown logical texture type ${e}`)}function Ev(e,t,r){return`${e[0]}_${e[1]}_${t}_${r}`}var Ga=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=on(this.outputShape.length),this.userCode=`
|
|
float unaryOperation(float x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
float y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},qn="if (isnan(x)) return x;",Zee="return x;",Rv="return abs(x);",Yee="return (x >= 0.0) ? x : (exp(x) - 1.0);",Jee=qn+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,Qee=qn+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,tu="return x;",ete="return 1.0 / (1.0 + exp(-1.0 * x));",tte="return x;",rte=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,nte=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,ate=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,ste="return 1.0 / (1.0 + exp(-1.0 * x));",yo=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=on(this.outputShape.length),this.userCode=`
|
|
vec4 unaryOperation(vec4 x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
vec4 x = getAAtOutCoords();
|
|
vec4 y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},ite=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e,this.enableShapeUniforms=on(this.outputShape.length);let t=e.length,r=Dr("rc",t),n=gt(t),a=Uee(t,r),s=r.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=`
|
|
void main() {
|
|
${n} rc = getOutputCoords();
|
|
vec4 packedInput = getA(${a});
|
|
|
|
setOutput(getChannel(packedInput, ${i}));
|
|
}
|
|
`}},ote=jn.whereImpl,lte=1e-7,ute=1e-4,t1={};function dte(e){return e in t1||(t1[e]={}),t1[e]}var pte=Y().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),hte=600;function cte(){return Y().global.screen==null?1024:Y().global.screen.height*Y().global.screen.width*window.devicePixelRatio*hte/1024/1024}var GS=class extends Nu{constructor(e){if(super(),this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!Y().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");let t;if(e!=null){if(e instanceof hu)t=e;else{let r=ma(Y().getNumber("WEBGL_VERSION"),e);t=new hu(r)}this.binaryCache={},this.gpgpuCreatedLocally=!1}else{let r=ma(Y().getNumber("WEBGL_VERSION"));t=new hu(r),this.binaryCache=dte(Y().getNumber("WEBGL_VERSION")),this.gpgpuCreatedLocally=!0}this.gpgpu=t,this.canvas=this.gpgpu.gl.canvas,this.textureManager=new Hee(this.gpgpu),this.numMBBeforeWarning=cte(),this.texData=new Dp(this,Ar())}nextDataId(){return GS.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,r){if((Y().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||Y().getBool("DEBUG"))&&this.checkNumericalProblems(e),r==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let n={id:this.nextDataId()};return this.texData.set(n,{shape:t,dtype:r,values:e,usage:1,refCount:1}),n}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,r,n,a){if(Y().getBool("DEBUG")&&this.checkNumericalProblems(t),n==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:r,dtype:n,values:t,usage:1,refCount:a})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:r,dtype:n,complexTensorInfos:a,slice:s,shape:i,isPacked:o}=t;if(s!=null){let h;o?h=new yo(i,tu):h=new Ga(i,tu);let p=this.runWebGLProgram(h,[{dataId:e,shape:i,dtype:n}],n),c=this.readSync(p.dataId);return this.disposeIntermediateTensorInfo(p),c}if(r!=null)return this.convertAndCacheOnCPU(e);if(n==="string")return r;let l=this.activeTimers!=null,u;l&&(u=v.now());let d;if(n==="complex64"){let h=this.readSync(a.real.dataId),p=this.readSync(a.imag.dataId);d=N.mergeRealAndImagArrays(h,p)}else d=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=v.now()-u),this.convertAndCacheOnCPU(e,d)}async read(e){if(this.pendingRead.has(e)){let c=this.pendingRead.get(e);return new Promise(f=>c.push(f))}let t=this.texData.get(e),{values:r,shape:n,slice:a,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(a!=null){let c;o?c=new yo(n,tu):c=new Ga(n,tu);let f=this.runWebGLProgram(c,[{dataId:e,shape:n,dtype:s}],s),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(r!=null)return this.convertAndCacheOnCPU(e);if(Y().getBool("DEBUG")&&!Y().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&Y().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(s!=="complex64"&&Y().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let c=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(c.texture.texture,...Uc(n))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let d;if(s==="complex64"){let c=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),f=c[0],m=c[1];d=N.mergeRealAndImagArrays(f,m)}else if(l==null)d=this.getValuesFromTexture(e);else{let c=v.sizeFromShape(n);d=this.gpgpu.downloadFloat32MatrixFromBuffer(l,c)}if(u!=null&&this.disposeIntermediateTensorInfo(u),l!=null){let c=this.gpgpu.gl;we(c,()=>c.deleteBuffer(l))}let h=this.convertAndCacheOnCPU(e,d),p=this.pendingRead.get(e);return this.pendingRead.delete(e),p.forEach(c=>c(h)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&Ar().removeDataId(e,this),this.pendingDeletes--),h}readToGPU(e,t={}){let r=this.texData.get(e),{values:n,shape:a,slice:s,dtype:i,isPacked:o,texture:l}=r;if(i==="complex64")throw new Error("Does not support reading texture for complex64 dtype.");if(s!=null){let p;o?p=new yo(a,tu):p=new Ga(a,tu);let c=this.runWebGLProgram(p,[{dataId:e,shape:a,dtype:i}],i),f=this.readToGPU(c,t);return this.disposeIntermediateTensorInfo(c),f}if(l==null)throw n!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let u=this.decode(e,t.customTexShape),d=Ar().makeTensorFromDataId(u.dataId,u.shape,u.dtype),h=this.texData.get(u.dataId);return{tensorRef:d,...h.texture}}bufferSync(e){let t=this.readSync(e.dataId),r=t;if(e.dtype==="string")try{r=t.map(n=>v.decodeString(n))}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,r)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let r=e[t];if(!qI(r))throw Y().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${r} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${r} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:r,isPacked:n}=this.texData.get(e),a=v.sizeFromShape(t);if(Y().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let h=this.decode(e),p=this.texData.get(h.dataId),c=this.gpgpu.downloadMatrixFromPackedTexture(p.texture.texture,...Uc(t)).subarray(0,a);return this.disposeIntermediateTensorInfo(h),c}let s=Y().getBool("WEBGL_PACK")&&n===!0,i=s?Jc(t):t,o=s?new tee(i):new eee(i),l=this.runWebGLProgram(o,[{shape:i,dtype:r,dataId:e}],"float32"),u=this.texData.get(l.dataId),d=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(u.texture.texture,u.texShape[0],u.texShape[1]).subarray(0,a);return this.disposeIntermediateTensorInfo(l),d}timerAvailable(){return Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}time(e){let t=this.activeTimers,r=[],n=!1;this.programTimersStack==null?(this.programTimersStack=r,n=!0):this.activeTimers.push(r),this.activeTimers=r,e();let a=v.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=v.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,n&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};return(async()=>{if(Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(a);i.kernelMs=v.sum(o),i.getExtraProfileInfo=()=>o.map((l,u)=>({name:s[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i})()}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:v.now(),endMs:null}}endTimer(e){return Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=v.now(),e)}async getQueryTime(e){if(Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:r}=this.texData.get(e);return r!=null&&(this.disposeData(r.real.dataId,t),this.disposeData(r.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:r,texShape:n,usage:a,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(n,r),this.textureManager.releaseTexture(t,n,a,s)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture.texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=pte){return Y().getBool("WEBGL_CPU_FORWARD")&&e.every(r=>this.texData.get(r.dataId).texture==null&&v.sizeFromShape(r.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){N.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return ote(e.shape,t)}packedUnaryOp(e,t,r){let n=new yo(e.shape,t),a=this.compileAndRun(n,[e],r);return Ar().makeTensorFromDataId(a.dataId,a.shape,a.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let n=BS(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,n)}if(Y().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,Rv,e.dtype);let t=new Ga(e.shape,Rv),r=this.compileAndRun(t,[e]);return Ar().makeTensorFromDataId(r.dataId,r.shape,r.dtype)}makeTensorInfo(e,t,r){let n;if(t==="string"&&r!=null&&r.length>0&&v.isString(r[0])){let a=r.map(s=>v.encodeString(s));n=this.write(a,e,t)}else n=this.write(r,e,t);return this.texData.get(n).usage=null,{dataId:n,shape:e,dtype:t}}makeOutput(e,t,r){let{dataId:n}=this.makeTensorInfo(e,t,r);return Ar().makeTensorFromDataId(n,e,t,this)}unpackTensor(e){let t=new ite(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new Gee(e.shape),r=!0;return this.runWebGLProgram(t,[e],e.dtype,null,r)}packedReshape(e,t){let r=[Ro(e.shape),...Mo(e.shape)],n={dtype:e.dtype,shape:r,dataId:e.dataId},a=[Ro(t),...Mo(t)],s=new US(a,r),i=!0,o=[r],l=this.runWebGLProgram(s,[n],e.dtype,o,i);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e,t){let r=this.texData.get(e),{isPacked:n,shape:a,dtype:s}=r;if(t!=null){let h=v.sizeFromShape(a),p=t[0]*t[1]*4;v.assert(h<=p,()=>"customTexShape is too small. Row * Column * 4 should be equal or larger than the size of the tensor data.")}let i=Jc(a),o;n?o=new QQ(i):o=new JQ(i);let l=!0,u=[t!=null?t:Uc(i)],d=this.runWebGLProgram(o,[{shape:i,dtype:s,dataId:e}],s,u,l,t);return{dtype:s,shape:a,dataId:d.dataId}}runWebGLProgram(e,t,r,n,a=!1,s){let i=this.makeTensorInfo(e.outputShape,r),o=this.texData.get(i.dataId);if(e.packedOutput&&(o.isPacked=!0),e.outPackingScheme===0){let g=s!=null?s:Uc(e.outputShape);o.texShape=g.map(y=>y*2)}if(e.outTexUsage!=null&&(o.usage=e.outTexUsage),v.sizeFromShape(i.shape)===0)return o.values=v.getTypedArrayFromDType(i.dtype,0),i;let l=[],u=t.map(g=>{if(g.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let y=this.texData.get(g.dataId);if(y.texture==null){if(!e.packedInputs&&v.sizeFromShape(g.shape)<=Y().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:g.shape,texData:null,isUniform:!0,uniformValues:y.values};e.packedInputs&&(y.isPacked=!0,y.shape=g.shape)}if(this.uploadToGPU(g.dataId),!!y.isPacked!=!!e.packedInputs)g=y.isPacked?this.unpackTensor(g):this.packTensor(g),l.push(g),y=this.texData.get(g.dataId);else if(y.isPacked&&!zp(y.shape,g.shape)){let A=g,x=g.shape;g.shape=y.shape,g=this.packedReshape(g,x),l.push(g),y=this.texData.get(g.dataId),A.shape=x}return{shape:g.shape,texData:y,isUniform:!1}});this.uploadToGPU(i.dataId);let d={shape:i.shape,texData:o,isUniform:!1},h=YQ(e,u,d),p=this.getAndSaveBinary(h,()=>XQ(this.gpgpu,e,u,d)),c=this.activeTimers!=null,f;c&&(f=this.startTimer()),Y().get("ENGINE_COMPILE_ONLY")||ZQ(this.gpgpu,p,u,d,n),l.forEach(g=>this.disposeIntermediateTensorInfo(g)),c&&(f=this.endTimer(f),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(f)}));let m=Y().get("WEBGL_FLUSH_THRESHOLD");if(m>0){let g=v.now();g-this.lastGlFlushTime>m&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=g)}if(!Y().getBool("WEBGL_LAZILY_UNPACK")&&o.isPacked&&a===!1){let g=this.unpackTensor(i);return this.disposeIntermediateTensorInfo(i),g}return i}compileAndRun(e,t,r,n,a=!1){return r=r||t[0].dtype,this.runWebGLProgram(e,t,r,n,a)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(Y().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=K(()=>{if(!Y().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=Y().getBool("DEBUG");Y().set("DEBUG",!1);let t=this.abs(Se(1e-8)).dataSync()[0];if(Y().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?lte:ute}uploadToGPU(e){let t=this.texData.get(e),{shape:r,dtype:n,values:a,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,u;l&&(u=v.now());let d=t.texShape;if(d==null&&(d=dS(r,o),t.texShape=d),a!=null){let h=Jc(r),p,c=d[1],f=d[0],m=a instanceof Uint8Array||a instanceof Uint8ClampedArray;(o||!m)&&([c,f]=md(d[0],d[1])),o?p=new nee(h,m):p=new ree(h,m);let g=m?[f,c]:d,y=this.makeTensorInfo(g,n),A=this.texData.get(y.dataId);m?A.usage=2:A.usage=1,A.texShape=g,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(y.dataId),c,f,a);let x=[[f,c]],b=!0,w=this.runWebGLProgram(p,[y],n,x,b),T=this.texData.get(w.dataId);t.texShape=T.texShape,t.isPacked=T.isPacked,t.usage=T.usage,Y().get("ENGINE_COMPILE_ONLY")?this.disposeData(w.dataId):(t.texture=T.texture,t.values=null,this.texData.delete(w.dataId)),this.disposeIntermediateTensorInfo(y),l&&(this.uploadWaitMs+=v.now()-u)}else{let h=this.acquireTexture(d,i,n,o);t.texture=h}}convertAndCacheOnCPU(e,t){let r=this.texData.get(e),{dtype:n}=r;return this.releaseGPUData(e),t!=null&&(r.values=fte(t,n)),r.values}acquireTexture(e,t,r,n){if(this.numBytesInGPU+=this.computeBytes(e,r),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let a=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${a} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,n)}computeBytes(e,t){return e[0]*e[1]*v.bytesPerElement(t)}checkCompileCompletion(){for(let[,e]of Object.entries(this.binaryCache))this.checkCompletion_(e)}async checkCompileCompletionAsync(){let e=[];if(this.gpgpu.parallelCompilationExtension){for(let[,t]of Object.entries(this.binaryCache))e.push(this.checkCompletionAsync_(t));return Promise.all(e)}else{for(let[,t]of Object.entries(this.binaryCache)){let r=new Promise(n=>{try{this.checkCompletion_(t),n(!0)}catch(a){throw a}});e.push(r)}return Promise.all(e)}}async checkCompletionAsync_(e){return this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.parallelCompilationExtension.COMPLETION_STATUS_KHR)?this.checkCompletion_(e):(await lA(),this.checkCompletionAsync_(e))}checkCompletion_(e){if(this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.gl.LINK_STATUS)===!1)throw console.log(this.gpgpu.gl.getProgramInfoLog(e.webGLProgram)),this.gpgpu.gl.getShaderParameter(e.fragmentShader,this.gpgpu.gl.COMPILE_STATUS)===!1?(tb(e.source,this.gpgpu.gl.getShaderInfoLog(e.fragmentShader)),new Error("Failed to compile fragment shader.")):new Error("Failed to link vertex and fragment shaders.");return!0}getUniformLocations(){for(let[,e]of Object.entries(this.binaryCache)){let{uniformLocations:t,customUniformLocations:r,infLoc:n,nanLoc:a,inShapesLocations:s,inTexShapesLocations:i,outShapeLocation:o,outShapeStridesLocation:l,outTexShapeLocation:u}=vS(this.gpgpu,e.program,e.webGLProgram);e.uniformLocations=t,e.customUniformLocations=r,e.infLoc=n,e.nanLoc=a,e.inShapesLocations=s,e.inTexShapesLocations=i,e.outShapeLocation=o,e.outShapeStridesLocation=l,e.outTexShapeLocation=u}}},Ch=GS;Ch.nextDataId=0;function fte(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let r=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let n=0;n<r.length;++n)r[n]=Math.round(e[n]);return r}else throw new Error(`Unknown dtype ${t}`)}var mte="0.0.0";function jS(){Y().set("WEBGL_FORCE_F16_TEXTURES",!0)}sh.isBrowser()&&wl("webgl",()=>new Ch,2);var gte={forceHalfFloat:jS},HS=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,Tu=class{constructor(e,t,r){this.variableNames=["A","B"],this.outputShape=N.assertAndGetBroadcastShape(t,r),this.enableShapeUniforms=on(this.outputShape.length),this.userCode=`
|
|
float binaryOperation(float a, float b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float a = getAAtOutCoords();
|
|
float b = getBAtOutCoords();
|
|
setOutput(binaryOperation(a, b));
|
|
}
|
|
`}},u0=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`,Eh=class{constructor(e,t,r,n=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=N.assertAndGetBroadcastShape(t,r);let a=this.outputShape.length;this.enableShapeUniforms=on(a);let s="";if(n)if(a===0||v.sizeFromShape(this.outputShape)===1)s=`
|
|
result.y = 0.;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else if(s=`
|
|
${gt(a)} coords = getOutputCoords();
|
|
`,a===1)this.enableShapeUniforms?s+=`
|
|
result.y = (coords + 1) >= outShape ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`:s+=`
|
|
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else{let i=Dr("coords",a);this.enableShapeUniforms?s+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[a-2]} + 1) >= outShape[${a} - 2];
|
|
bool nextColOutOfBounds =
|
|
(${i[a-1]} + 1) >= outShape[${a} - 1];
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`:s+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[a-2]} + 1) >= ${this.outputShape[a-2]};
|
|
bool nextColOutOfBounds =
|
|
(${i[a-1]} + 1) >= ${this.outputShape[a-1]};
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`}this.userCode=`
|
|
vec4 binaryOperation(vec4 a, vec4 b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
vec4 a = getAAtOutCoords();
|
|
vec4 b = getBAtOutCoords();
|
|
|
|
vec4 result = binaryOperation(a, b);
|
|
${s}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function nn(e){let{inputs:t,backend:r}=e,{x:n}=t;return r.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var yte={kernelName:li,backendName:"webgl",kernelFunc:nn};function Li(e){let{inputs:t,backend:r}=e,{real:n,imag:a}=t,s=r.makeTensorInfo(n.shape,"complex64"),i=r.texData.get(s.dataId),o=nn({inputs:{x:n},backend:r}),l=nn({inputs:{x:a},backend:r});return i.complexTensorInfos={real:o,imag:l},s}var Ate={kernelName:Bp,backendName:"webgl",kernelFunc:Li},qS="return (a < 0.) ? b * a : a;",KS=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function xte(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{alpha:s}=n,i=r.makeTensorInfo([],"float32",v.createScalarValue(s,"float32")),o=Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Eh(KS,a.shape,i.shape):new Tu(qS,a.shape,i.shape),l=r.runWebGLProgram(o,[a,i],"float32");return r.disposeIntermediateTensorInfo(i),l}var bte={kernelName:ui,backendName:"webgl",kernelFunc:xte},XS="return (a < 0.) ? b * a : a;",ZS=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function vte(e){let{inputs:t,backend:r}=e,{x:n,alpha:a}=t,s=Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Eh(ZS,n.shape,a.shape):new Tu(XS,n.shape,a.shape);return r.runWebGLProgram(s,[n,a],"float32")}var wte={kernelName:vi,backendName:"webgl",kernelFunc:vte},vd="if (isnan(x)) return x;",kte=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,Ite=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`;function it({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:r,dtype:n}){return({inputs:a,backend:s})=>{let{x:i}=a,o=s,l=n||i.dtype;if(o.shouldExecuteOnCPU([i])&&r!=null){let h=o.texData.get(i.dataId),p=r(h.values,l);return o.makeTensorInfo(i.shape,l,p)}let u=Y().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,d;return u?d=new yo(i.shape,t):d=new Ga(i.shape,e),o.runWebGLProgram(d,[i],l)}}function br({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:r=!1,supportsComplex:n=!1,cpuKernelImpl:a,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:u}=i,d=o;if(n&&l.dtype==="complex64"){let f=d.texData.get(l.dataId),m=d.texData.get(u.dataId),[g,y]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(x=>{let[b,w]=x,T={dataId:b.dataId,dtype:b.dtype,shape:l.shape},S={dataId:w.dataId,dtype:w.dtype,shape:u.shape},E=new Tu(e,l.shape,u.shape);return d.runWebGLProgram(E,[T,S],Nr(b.dtype,w.dtype))}),A=Li({inputs:{real:g,imag:y},backend:d});return d.disposeIntermediateTensorInfo(g),d.disposeIntermediateTensorInfo(y),A}let h=s||Nr(l.dtype,u.dtype);if((l.dtype==="string"||u.dtype==="string"||d.shouldExecuteOnCPU([l,u]))&&a!=null){let f=d.texData.get(l.dataId).values,m=d.texData.get(u.dataId).values,g=l.dtype==="string"?N.fromUint8ToStringArray(f):f,y=l.dtype==="string"?N.fromUint8ToStringArray(m):m,[A,x]=a(l.shape,u.shape,g,y,h),b=d.makeTensorInfo(x,h),w=d.texData.get(b.dataId);return w.values=A,b}let p=Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,c;return p?c=new Eh(t,l.shape,u.shape,r):c=new Tu(e,l.shape,u.shape),d.runWebGLProgram(c,[l,u],h)}}function d0(e,t=!1){if(e==="linear")return t?tte:Zee;if(e==="relu")return t?nte:Jee;if(e==="elu")return t?rte:Yee;if(e==="relu6")return t?ate:Qee;if(e==="prelu")return t?ZS:XS;if(e==="leakyrelu")return t?KS:qS;if(e==="sigmoid")return t?ste:ete;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var YS=class{constructor(e,t,r,n=!1,a=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=r,this.enableShapeUniforms=on(this.outputShape.length);let u=n?e[1]:e[2],d=Math.ceil(u/2),h=n?"i * 2, rc.y":"rc.y, i * 2",p=a?"rc.z, i * 2":"i * 2, rc.z",c=n?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=a?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",g="";i&&(o?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${i}
|
|
}`:l?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${i}
|
|
}`:m=`vec4 activation(vec4 x) {
|
|
${i}
|
|
}`,g="result = activation(result);");let y=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let A="rc.x",x="rc.x";e[0]<t[0]?A=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(x=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
|
|
${m}
|
|
// Don't use uniform for sharedDimensionPacked for performance.
|
|
const float sharedDimension = ${d}.0;
|
|
|
|
vec4 dot2x2ARowBCol(ivec3 rc) {
|
|
vec4 result = vec4(0);
|
|
for (int i = 0; i < ${d}; i++) {
|
|
int batchA = ${A};
|
|
int batchB = ${x};
|
|
vec4 a = getMatrixA(batchA, ${h});
|
|
vec4 b = getMatrixB(batchB, ${p});
|
|
|
|
// These swizzled products need to be separately added.
|
|
// See: https://github.com/tensorflow/tfjs/issues/1735
|
|
result += (${c[0]} * ${f[0]});
|
|
result += (${c[1]} * ${f[1]});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
vec4 result = dot2x2ARowBCol(rc);
|
|
|
|
${y}
|
|
|
|
${g}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}},Mv={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},Fv=class{constructor(e,t,r){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=N.assertAndGetBroadcastShape(t,r),this.userCode=`
|
|
float binaryOpComplex(
|
|
float areal, float aimag, float breal, float bimag) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float areal = getARealAtOutCoords();
|
|
float aimag = getAImagAtOutCoords();
|
|
float breal = getBRealAtOutCoords();
|
|
float bimag = getBImagAtOutCoords();
|
|
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
`}},$v="return a * b;";function pb(e){let{inputs:t,backend:r}=e,{a:n,b:a}=t,s=N.upcastType(n.dtype,a.dtype);if(n.dtype==="complex64"){let o=r.texData.get(n.dataId),l=r.texData.get(a.dataId),u=new Fv(Mv.REAL,n.shape,a.shape),d=new Fv(Mv.IMAG,n.shape,a.shape),h=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:n.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:n.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:a.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:a.shape}],p=r.runWebGLProgram(u,h,"float32"),c=r.runWebGLProgram(d,h,"float32"),f=Li({inputs:{real:p,imag:c},backend:r});return r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(c),f}if(r.shouldExecuteOnCPU([n,a])){let o=r.texData.get(n.dataId),l=r.texData.get(a.dataId),[u,d]=Iee(n.shape,a.shape,o.values,l.values,s),h=r.makeTensorInfo(d,s),p=r.texData.get(h.dataId);return p.values=u,h}let i;return Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new Eh($v,n.shape,a.shape):i=new Tu($v,n.shape,a.shape),r.runWebGLProgram(i,[n,a],s)}var Ste={kernelName:Ai,backendName:"webgl",kernelFunc:pb};function Tte(e,t,r){let n=[Ro(e.shape),...Mo(e.shape)],a={dtype:e.dtype,shape:n,dataId:e.dataId},s=[Ro(t),...Mo(t)],i=new US(s,n),o=!0,l=[n],u=r.runWebGLProgram(i,[a],e.dtype,l,o);return{dataId:u.dataId,shape:t,dtype:u.dtype}}function ve(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{shape:s}=n,i=r,o=v.sizeFromShape(a.shape),l=v.inferFromImplicitShape(s,o),u=v.sizeFromShape(l);v.assert(o===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${a.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let d=i.texData.get(a.dataId);return d.isPacked&&!zp(a.shape,l)&&!(d.texture!==null&&zp(d.shape,l))?Tte(a,l,i):(i.incRef(a.dataId),{dataId:a.dataId,shape:l,dtype:a.dtype})}var Nte={kernelName:sl,backendName:"webgl",kernelFunc:ve},Pv=class{constructor(e,t){this.variableNames=["x"];let{windowSize:r,batchSize:n,inSize:a,outSize:s}=e;this.outputShape=[n,s];let i=Math.floor(r/4)*4,o=r%4,l="sumValue += dot(values, ones);";if(t!=null){let d=1/t;l=`sumValue += dot(values * ${v.isInt(d)?d.toPrecision(2):d}, ones);`}let u="";a%r>0&&(u=`
|
|
if (inIdx < 0 || inIdx >= ${a}) {
|
|
return 0.0;
|
|
}
|
|
`),this.userCode=`
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${u}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${r};
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${i}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${l}
|
|
}
|
|
|
|
int inIdx = inOffset + ${i};
|
|
if (${o===1}) {
|
|
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${o===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1), 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${o===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2), 0.0);
|
|
|
|
${l}
|
|
}
|
|
setOutput(sumValue);
|
|
}
|
|
`}},Cte=class{constructor(e,t){this.variableNames=["x"];let{windowSize:r,batchSize:n,inSize:a,outSize:s}=e;this.outputShape=[n,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(r/4)*4,d=r%4,h=`
|
|
if (${t==="sum"}) {
|
|
sumValue += dot(values, ones);
|
|
} else if (${t==="prod"}) {
|
|
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
|
|
prodValue *= tmp[0] * tmp[1];
|
|
} else {
|
|
minMaxValue = ${o}(values, minMaxValue);
|
|
if (${t==="min"} || ${t==="max"}) {
|
|
minMaxValue = ${o}(values, minMaxValue);
|
|
bvec4 isNaN = isnan(values);
|
|
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
|
|
minMaxValue = vec4(NAN);
|
|
}
|
|
}
|
|
}
|
|
`,p="vec4";t==="all"?(i="1.0",h=`
|
|
bool reducedAllValue = all(values);
|
|
float floatedReducedAllValue = float(reducedAllValue);
|
|
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
|
|
`,p="bvec4"):t==="any"&&(i="0.0",h=`
|
|
bool reducedAnyValue = any(values);
|
|
float floatedReducedAnyValue = float(reducedAnyValue);
|
|
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
|
|
`,p="bvec4");let c="";a%r>0&&(c=`
|
|
if (inIdx < 0 || inIdx >= ${a}) {
|
|
return initializationValue;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${i};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${c}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${r};
|
|
|
|
vec4 minMaxValue = vec4(${i});
|
|
float prodValue = 1.0;
|
|
float sumValue = 0.0;
|
|
float allValue = 1.0;
|
|
float anyValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${h}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${d===1}) {
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${h}
|
|
} else if (${d===2}) {
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${h}
|
|
} else if (${d===3}) {
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
${h}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function Ete(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let r=t.length?t[t.length-1].outSize:e[1],n=N.computeOptimalWindowSize(r);t.push({inSize:r,windowSize:n,outSize:Math.ceil(r/n)})}return t}function Ml(e,t,r,n){let a=Ete(e.shape),s=e;for(let i=0;i<a.length;i++){let{inSize:o,windowSize:l,outSize:u}=a[i],d,h;r==="mean"?d=i===0?new Pv({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},o):new Pv({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u}):d=new Cte({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},r),h=s,s=n.runWebGLProgram(d,[s],t),h.dataId!==e.dataId&&n.disposeIntermediateTensorInfo(h)}return s}var Rte=class{constructor(e,t){this.variableNames=["A"];let r=new Array(e.length);for(let s=0;s<r.length;s++)r[s]=e[t[s]];this.outputShape=r,this.rank=r.length;let n=gt(this.rank),a=Mte(t);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
setOutput(getA(${a}));
|
|
}
|
|
`}};function Mte(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let r=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],n=new Array(t);for(let a=0;a<e.length;a++)n[e[a]]=r[a];return n.join()}var Fte=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let r=new Array(e.length);for(let u=0;u<r.length;u++)r[u]=e[t[u]];if(this.outputShape=r,this.rank=r.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let n=gt(this.rank),a=VS("rc",this.rank),s=new Array(this.rank);for(let u=0;u<t.length;u++)s[t[u]]=a[u];let i=`vec2(${s.slice(-2).join()})`,o=`++${a[this.rank-1]} < ${r[this.rank-1]}`,l=`getChannel(getA(${s.join()}), ${i})`;this.userCode=`
|
|
void main() {
|
|
${n} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result[0] = ${l};
|
|
if(${o}) {
|
|
result[1] = ${l};
|
|
}
|
|
--${a[this.rank-1]};
|
|
if(++${a[this.rank-2]} < ${r[this.rank-2]}) {
|
|
result[2] = ${l};
|
|
if(${o}) {
|
|
result[3] = ${l};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function p0(e,t,r){let n=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Fte(e.shape,t):new Rte(e.shape,t);return r.runWebGLProgram(n,[e],e.dtype)}function $te(e,t,r,n){let a=t,s=e.shape.length,i=v.parseAxisParam(a,e.shape),o=i,l=N.getAxesPermutation(o,s),u=l!=null,d=e;u&&(d=p0(e,l,n),o=N.getInnerMostAxes(o.length,s)),N.assertAxesAreInnerMostDims("sum",o,s);let[h,p]=N.computeOutAndReduceShapes(d.shape,o),c=h;r&&(c=N.expandShapeToKeepDim(h,i));let f=v.sizeFromShape(p),m=v.sizeFromShape(e.shape)/f,g=ve({inputs:{x:d},attrs:{shape:[m,f]},backend:n}),y=ah(e.dtype),A=Ml(g,y,"sum",n),x=ve({inputs:{x:A},attrs:{shape:c},backend:n});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(A),u&&n.disposeIntermediateTensorInfo(d),x}function h0(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n;return $te(a,s,i,r)}var Pte={kernelName:Ei,backendName:"webgl",kernelFunc:h0};function xr(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{perm:s}=n,i=r,o=a.shape.length,l=new Array(o);for(let d=0;d<l.length;d++)l[d]=a.shape[s[d]];let u;if(i.shouldExecuteOnCPU([a])){let d=i.texData.get(a.dataId).values,h=db(d,a.shape,a.dtype,s,l);u=i.makeTensorInfo(l,a.dtype);let p=i.texData.get(u.dataId);p.values=h}else u=p0(a,s,i);return u}var _te={kernelName:Pi,backendName:"webgl",kernelFunc:xr},JS=1e3;function Ef({a:e,b:t,transposeA:r,transposeB:n,backend:a,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:l=null}){let u=e.shape.length,d=t.shape.length,h=r?e.shape[u-2]:e.shape[u-1],p=n?t.shape[d-1]:t.shape[d-2],c=r?e.shape[u-1]:e.shape[u-2],f=n?t.shape[d-2]:t.shape[d-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),y=v.sizeFromShape(m),A=v.sizeFromShape(g),x=vl.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([c,f]);v.assert(h===p,()=>`Error in matMul: inner shapes (${h}) and (${p}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${r} and transposeB=${n} must match.`);let b=r?[y,h,c]:[y,c,h],w=n?[A,f,p]:[A,p,f],T=ve({inputs:{x:e},backend:a,attrs:{shape:b}}),S=ve({inputs:{x:t},backend:a,attrs:{shape:w}}),E=[T,S],R=Math.max(y,A),_=r?T.shape[1]:T.shape[2],M=s!=null,I=i!=null,O=l==="leakyrelu",z=l!=null?d0(l,!0):null,j=M||I||O||z!=null,X;if((c===1||f===1)&&_>JS&&j===!1){let Q=T,V=S;r&&(Q=xr({inputs:{x:T},backend:a,attrs:{perm:[0,2,1]}}),E.push(Q)),n&&(V=xr({inputs:{x:S},backend:a,attrs:{perm:[0,2,1]}}),E.push(V));let ee=f!==1,J=f===1,se=Q;ee&&(se=ve({inputs:{x:Q},backend:a,attrs:{shape:[R,_,1]}}),E.push(se));let Z=f===1?2:1,ae=V;J&&(ae=ve({inputs:{x:V},backend:a,attrs:{shape:[R,1,_]}}),E.push(ae));let de=pb({inputs:{a:se,b:ae},backend:a});X=h0({inputs:{x:de},backend:a,attrs:{axis:Z,keepDims:!0}}),E.push(de)}else{let Q=Nr(e.dtype,t.dtype),V=new YS(b,w,[R,c,f],r,n,M,z,I,O),ee=[T,S];if(s!=null&&ee.push(s),I&&ee.push(i),O){let J=a.makeTensorInfo([],"float32",v.createScalarValue(o,"float32"));ee.push(J),E.push(J)}X=a.runWebGLProgram(V,ee,Q)}let D=ve({inputs:{x:X},backend:a,attrs:{shape:x}});E.push(X);for(let Q of E)a.disposeIntermediateTensorInfo(Q);return D}function zte(e){let{inputs:t,backend:r,attrs:n}=e,{a,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:d,leakyreluAlpha:h}=n;return Ef({a,b:s,transposeA:l,transposeB:u,backend:r,bias:i,preluActivationWeights:o,leakyreluAlpha:h,activation:d})}var Ote={kernelName:Cs,backendName:"webgl",kernelFunc:zte},_v="return abs(x);";function Dte(e){let{inputs:t,backend:r}=e,{x:n}=t;if(r.shouldExecuteOnCPU([n])&&n.dtype!=="complex64"){let s=r.texData.get(n.dataId),i=BS(s.values);return r.makeTensorInfo(n.shape,n.dtype,i)}let a;return Y().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new yo(n.shape,_v):a=new Ga(n.shape,_v),r.runWebGLProgram(a,[n],n.dtype)}var Lte={kernelName:_o,backendName:"webgl",kernelFunc:Dte},Bte=qn+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return acos(x);
|
|
`,Wte=it({opSnippet:Bte}),Vte={kernelName:Eu,backendName:"webgl",kernelFunc:Wte},Ute=qn+`
|
|
if (x < 1.0) return NAN;
|
|
return log(x + sqrt(x * x - 1.0));`,Gte=it({opSnippet:Ute}),jte={kernelName:Ru,backendName:"webgl",kernelFunc:Gte},zv="return a + b;",Hte=br({opSnippet:zv,packedOpSnippet:zv,supportsComplex:!0,cpuKernelImpl:see}),qte={kernelName:qa,backendName:"webgl",kernelFunc:Hte},Kte=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let r=[];this.variableNames.forEach(a=>{r.push(`float v${a} = get${a}AtOutCoords();`)});let n=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${r.join(`
|
|
`)}
|
|
|
|
float result = ${n};
|
|
setOutput(result);
|
|
}
|
|
`}},Xte=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let r=[];this.variableNames.forEach(a=>{r.push(`vec4 v${a} = get${a}AtOutCoords();`)});let n=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${r.join(`
|
|
`)}
|
|
|
|
vec4 result = ${n};
|
|
setOutput(result);
|
|
}
|
|
`}};function tf(e){let{inputs:t,backend:r}=e,n=t;if(n.length===1)return nn({inputs:{x:n[0]},backend:r});if(n.length>Y().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(n.length/2),l=tf({inputs:n.slice(0,o),backend:r}),u=tf({inputs:n.slice(o),backend:r});return tf({inputs:[l,u],backend:r})}let a=n.map(o=>o.dtype).reduce((o,l)=>Nr(o,l)),s=n.map(o=>o.shape),i=Y().getBool("WEBGL_PACK")?new Xte(n[0].shape,s):new Kte(n[0].shape,s);return r.runWebGLProgram(i,n,a)}var Zte={kernelName:Gs,backendName:"webgl",kernelFunc:tf};function Yte(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n,o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=l,d=N.getAxesPermutation(u,o),h=a;d!=null&&(h=xr({inputs:{x:a},backend:r,attrs:{perm:d}}),u=N.getInnerMostAxes(u.length,o)),N.assertAxesAreInnerMostDims("all",u,o);let[p,c]=N.computeOutAndReduceShapes(h.shape,u),f=v.sizeFromShape(c),m=ve({inputs:{x:h},backend:r,attrs:{shape:[-1,f]}}),g=Ml(m,m.dtype,"all",r),y;if(i){let A=N.expandShapeToKeepDim(p,l);y=ve({inputs:{x:g},backend:r,attrs:{shape:A}})}else y=ve({inputs:{x:g},backend:r,attrs:{shape:p}});return r.disposeIntermediateTensorInfo(m),r.disposeIntermediateTensorInfo(g),d!=null&&r.disposeIntermediateTensorInfo(h),y}var Jte={kernelName:Mu,backendName:"webgl",kernelFunc:Yte};function Qte(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n,o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=l,d=N.getAxesPermutation(u,o),h=a;d!=null&&(h=xr({inputs:{x:a},backend:r,attrs:{perm:d}}),u=N.getInnerMostAxes(u.length,o)),N.assertAxesAreInnerMostDims("any",u,o);let[p,c]=N.computeOutAndReduceShapes(h.shape,u),f=v.sizeFromShape(c),m=ve({inputs:{x:h},backend:r,attrs:{shape:[-1,f]}}),g=Ml(m,m.dtype,"any",r),y;if(i){let A=N.expandShapeToKeepDim(p,l);y=ve({inputs:{x:g},backend:r,attrs:{shape:A}})}else y=ve({inputs:{x:g},backend:r,attrs:{shape:p}});return r.disposeIntermediateTensorInfo(m),r.disposeIntermediateTensorInfo(g),d!=null&&r.disposeIntermediateTensorInfo(h),y}var ere={kernelName:Fu,backendName:"webgl",kernelFunc:Qte},tre=class{constructor(e,t,r){this.variableNames=["A"];let{windowSize:n,batchSize:a,outSize:s}=e;r||this.variableNames.push("bestIndicesA"),this.outputShape=[a,s];let i=t==="max"?">":"<",o=r?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
int bestIndex = inOffset;
|
|
float bestValue = getA(batch, bestIndex);
|
|
|
|
for (int i = 0; i < ${n}; i++) {
|
|
int inIdx = ${o};
|
|
float candidate = getA(batch, inIdx);
|
|
if (candidate ${i} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = inIdx;
|
|
}
|
|
}
|
|
setOutput(float(bestIndex));
|
|
}
|
|
`}},rre=class{constructor(e,t,r,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,v.assert(e.length>2,()=>`Packed arg${r.charAt(0).toUpperCase()+r.slice(1)} supports only inputs with rank above 2.`);let a=e[e.length-1],s=Math.ceil(a/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),n||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=gt(o),u=Dr("coords",o),d,h;if(s===1){h=o+1;let S=gt(h);d=`
|
|
${S} sourceLocR = ${S}(${u.join()}, 0);
|
|
++${u[o-1]};
|
|
${S} sourceLocG = ${S}(${u.join()}, 0);
|
|
++${u[o-2]};
|
|
${S} sourceLocA = ${S}(${u.join()}, 0);
|
|
--${u[o-1]};
|
|
${S} sourceLocB = ${S}(${u.join()}, 0);
|
|
--${u[o-2]};`}else h=o,d=`
|
|
${l} sourceLocR = coords;
|
|
++${u[o-1]};
|
|
${l} sourceLocG = coords;
|
|
++${u[o-2]};
|
|
${l} sourceLocA = coords;
|
|
--${u[o-1]};
|
|
${l} sourceLocB = coords;
|
|
--${u[o-2]};`;let p=["x","y","z","w","u","v"].slice(0,h),c="."+p[h-1],f=p.map(S=>"int "+S),m=Dr("sourceLocR",h-1).concat("inIdx.r"),g=Dr("sourceLocG",h-1).concat("inIdx.g"),y=Dr("sourceLocB",h-1).concat("inIdx.b"),A=Dr("sourceLocA",h-1).concat("inIdx.a"),x=r==="max"?"greaterThan":"lessThan",b=n?"":`
|
|
inIdx = round(vec4(getBestIndicesAChannel(${m.join()}),
|
|
getBestIndicesAChannel(${g.join()}),
|
|
getBestIndicesAChannel(${y.join()}),
|
|
getBestIndicesAChannel(${A.join()})));`,w=`vec4(
|
|
getAChannel(${m.join()}),
|
|
hasNextCol ? getAChannel(${g.join()}) : 0.,
|
|
hasNextRow ? getAChannel(${y.join()}) : 0.,
|
|
hasNextRow && hasNextCol ? getAChannel(${A.join()}) : 0.)`,T=n?"":`
|
|
float getBestIndicesAChannel(${f.join()}) {
|
|
return getChannel(getBestIndicesA(${p.join()}),
|
|
vec2(${p.slice(-2).join()}));
|
|
}`;this.userCode=`
|
|
float getAChannel(${f.join()}) {
|
|
return getChannel(getA(${p.join()}),
|
|
vec2(${p.slice(-2).join()}));
|
|
}
|
|
${T}
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
bool hasNextCol = ${u[o-1]} < ${i[o-1]-1};
|
|
bool hasNextRow = ${u[o-2]} < ${i[o-2]-1};
|
|
${d}
|
|
ivec4 srcIdx = ivec4(sourceLocR${c}, sourceLocG${c},
|
|
sourceLocB${c}, sourceLocA${c}) * ${t};
|
|
ivec4 inIdx = srcIdx;
|
|
vec4 bestIndex = vec4(inIdx);
|
|
vec4 bestValue = ${w};
|
|
|
|
for (int i = 0; i < ${t}; i++) {
|
|
inIdx = srcIdx;
|
|
${b}
|
|
vec4 candidate = ${w};
|
|
bvec4 nan = isnan(candidate);
|
|
bvec4 replace = bvec4(
|
|
vec4(${x}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
|
|
|
|
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
|
|
replace.y ? candidate.y : bestValue.y,
|
|
replace.z ? candidate.z : bestValue.z,
|
|
replace.w ? candidate.w : bestValue.w);
|
|
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
|
|
srcIdx++;
|
|
}
|
|
setOutput(bestIndex);
|
|
}
|
|
`}};function QS(e,t,r,n=null){let a=t.shape[0],s=t.shape[1];n!=null&&(a=n.shape[0],s=n.shape[1]);let i=N.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:a,outSize:Math.ceil(s/i)},l=new tre(o,r,n==null),u=[t];n!=null&&u.push(n);let d=e.runWebGLProgram(l,u,"int32");if(d.shape[1]===1)return d;let h=QS(e,t,r,d);return e.disposeIntermediateTensorInfo(d),h}function e8(e,t,r,n=null){let a=n!=null?n.shape:t.shape,s=a[a.length-1],i=N.computeOptimalWindowSize(s),o=new rre(a,i,r,n==null),l=n==null?[t]:[t,n],u=e.runWebGLProgram(o,l,"int32");if(u.shape.length===t.shape.length){let d=e8(e,t,r,u);return e.disposeIntermediateTensorInfo(u),d}return u}function t8(e,t,r,n){let a=[r];if(N.assertAxesAreInnerMostDims("arg"+n.charAt(0).toUpperCase()+n.slice(1),a,t.shape.length),!Y().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],i=e.texData.get(t.dataId),o=i!==null&&i.isPacked,l=t;o&&(l=e.unpackTensor(t),s.push(l));let[u,d]=N.computeOutAndReduceShapes(l.shape,a),h=v.sizeFromShape(d),p=ve({inputs:{x:l},backend:e,attrs:{shape:[-1,h]}});s.push(p);let c=QS(e,p,n);s.push(c);let f=ve({inputs:{x:c},backend:e,attrs:{shape:u}});return s.forEach(m=>e.disposeIntermediateTensorInfo(m)),f}return e8(e,t,n)}function nre(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s}=n,i=v.parseAxisParam(s,a.shape),o=N.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=xr({inputs:{x:a},backend:r,attrs:{perm:o}}),u.push(l),i=N.getInnerMostAxes(i.length,l.shape.length)),N.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let d=t8(r,l,i[0],"max");return u.forEach(h=>r.disposeIntermediateTensorInfo(h)),d}var are={kernelName:js,backendName:"webgl",kernelFunc:nre};function sre(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s}=n,i=v.parseAxisParam(s,a.shape),o=N.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=xr({inputs:{x:a},backend:r,attrs:{perm:o}}),u.push(l),i=N.getInnerMostAxes(i.length,l.shape.length)),N.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let d=t8(r,l,i[0],"min");return u.forEach(h=>r.disposeIntermediateTensorInfo(h)),d}var ire={kernelName:$u,backendName:"webgl",kernelFunc:sre},ore=qn+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return asin(x);
|
|
`,lre=it({opSnippet:ore}),ure={kernelName:Pu,backendName:"webgl",kernelFunc:lre},dre=qn+"return log(x + sqrt(x * x + 1.0));",pre=it({opSnippet:dre}),hre={kernelName:_u,backendName:"webgl",kernelFunc:pre},cre=qn+`
|
|
return atan(x);
|
|
`,fre=it({opSnippet:cre}),mre={kernelName:zu,backendName:"webgl",kernelFunc:fre},gre=kte+`
|
|
return atan(a, b);
|
|
`,yre=`
|
|
vec4 result = atan(a, b);
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+Ite+`
|
|
return result;
|
|
`,Are=br({opSnippet:gre,packedOpSnippet:yre}),xre={kernelName:Du,backendName:"webgl",kernelFunc:Are},bre=qn+`
|
|
if ((x < -1.0) || (x > 1.0)) return NAN;
|
|
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vre=it({opSnippet:bre}),wre={kernelName:Ou,backendName:"webgl",kernelFunc:vre},Op=class{constructor(e,t,r,n=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&r)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,d=e.effectiveFilterHeight,h=e.effectiveFilterWidth,p=e.padInfo.top,c=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(f||(y="-1.0 / 1e-20"),r){let S=">=";this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${p}, ${c});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
float avgValue = 0.0;
|
|
|
|
for (int wR = 0; wR < ${d};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${h};
|
|
wC += ${u}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xR, xC, d);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${S} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${n?a?m:g:`wR * ${h} + wC`};
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let A="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let b=Math.floor(s/4)*4,w=s%4,T=`
|
|
if (${f}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${A}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${p}, ${c});
|
|
const float initializationValue = ${y};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xR, int xC, int d) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xR, xC, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${y});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wR = 0; wR < ${d};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${b}; wC += 4) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
getValue(batch, xR, xC + 3 * ${u}, d)
|
|
);
|
|
|
|
${T}
|
|
}
|
|
|
|
int xC = xCCorner + ${b};
|
|
if (${w===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
} else if (${w===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
} else if (${w===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
}
|
|
}
|
|
setOutput(${x});
|
|
}
|
|
`}},hb=class{constructor(e,t,r,n=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&r)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,d=e.dilationHeight,h=e.dilationWidth,p=e.effectiveFilterDepth,c=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,g=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let A=t==="avg",x="0.0";if(A||(x="-1.0 / 1e-20"),r){let R=">=";this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${l});
|
|
const ivec3 pads = ivec3(${m}, ${g}, ${y});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
|
|
for (int wD = 0; wD < ${p};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${c};
|
|
wR += ${d}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${f};
|
|
wC += ${h}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xD, xR, xC, ch);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${R} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${n?a?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${c} * ${f} +
|
|
wR * ${f} + wC`};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let b="max",w=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(w="avgValue / count");let T=Math.floor(s/4)*4,S=s%4,E=`
|
|
if (${A}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${b}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${l});
|
|
const ivec3 pads = ivec3(${m}, ${g}, ${y});
|
|
const float initializationValue = ${x};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xD, int xR, int xC, int ch) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xD, xR, xC, ch);
|
|
}
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${x});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wD = 0; wD < ${p};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${c};
|
|
wR += ${d}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${T}; wC += 4) {
|
|
int xC = xCCorner + wC * ${h};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${h}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${h}, ch),
|
|
getValue(batch, xD, xR, xC + 3 * ${h}, ch)
|
|
);
|
|
|
|
${E}
|
|
}
|
|
|
|
int xC = xCCorner + ${T};
|
|
if (${S===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${E}
|
|
} else if (${S===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${h}, ch),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${E}
|
|
} else if (${S===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${h}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${h}, ch),
|
|
initializationValue
|
|
);
|
|
|
|
${E}
|
|
}
|
|
}
|
|
setOutput(${w});
|
|
}
|
|
}
|
|
`}};function kre(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t;gd(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n,u=1;v.assert(N.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let d=N.computePool2DInfo(a.shape,s,i,u,o,l);if(d.filterWidth===1&&d.filterHeight===1&&v.arraysEqual(d.inShape,d.outShape))return nn({inputs:{x:a},backend:r});let h=new Op(d,"avg",!1);return r.runWebGLProgram(h,[a],"float32")}var Ire={kernelName:Hs,backendName:"webgl",kernelFunc:kre};function Sre(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=n,d=[1,1,1],h=N.computePool3DInfo(a.shape,s,i,d,o,l,u),p=new hb(h,"avg",!1);return r.runWebGLProgram(p,[a],"float32")}var Tre={kernelName:Lp,backendName:"webgl",kernelFunc:Sre},Nre=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,r=e.filterWidth,n=e.strideHeight,a=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=o-1-e.padInfo.top,d=l-1-e.padInfo.left,h=1/(t*r);this.userCode=`
|
|
const ivec2 pads = ivec2(${u}, ${d});
|
|
const float avgMultiplier = float(${h});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${o};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${l};
|
|
wC+= ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${a}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},Cre=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,r=e.filterHeight,n=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,d=e.effectiveFilterDepth,h=e.effectiveFilterHeight,p=e.effectiveFilterWidth,c=d-1-e.padInfo.front,f=h-1-e.padInfo.top,m=p-1-e.padInfo.left,g=1/(t*r*n);this.userCode=`
|
|
const ivec3 pads = ivec3(${c}, ${f}, ${m});
|
|
const float avgMultiplier = float(${g});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${d};
|
|
wD += ${o}) {
|
|
float dyD = float(dyDCorner + wD) / ${a}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${l}) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${p};
|
|
wC += ${u}) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function Ere(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:d}=n,h=[1,1,1],p=N.computePool3DInfo(i.shape,o,l,h,u,d),c=new Cre(p);return r.runWebGLProgram(c,[a],i.dtype)}var Rre={kernelName:Df,backendName:"webgl",kernelFunc:Ere};function Mre(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,input:s}=t,i=s;gd([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=n,d=N.computePool2DInfo(i.shape,o,l,1,u),h=new Nre(d);return r.runWebGLProgram(h,[a],i.dtype)}var Fre={kernelName:Of,backendName:"webgl",kernelFunc:Mre};function $re(e){let{inputs:t,backend:r,attrs:n}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=n;return Ef({a,b:s,transposeA:i,transposeB:o,backend:r})}var Pre={kernelName:qs,backendName:"webgl",kernelFunc:$re},_re=class{constructor(e,t,r,n,a,s){this.outputShape=[],this.variableNames=["x","mean","variance"],N.assertAndGetBroadcastShape(e,t),N.assertAndGetBroadcastShape(e,r);let i="0.0";n!=null&&(N.assertAndGetBroadcastShape(e,n),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";a!=null&&(N.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float x = getXAtOutCoords();
|
|
float mean = getMeanAtOutCoords();
|
|
float variance = getVarianceAtOutCoords();
|
|
float offset = ${i};
|
|
float scale = ${o};
|
|
float inv = scale * inversesqrt(variance + float(${s}));
|
|
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
|
|
}
|
|
`}},zre=class{constructor(e,t,r,n,a,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],N.assertAndGetBroadcastShape(e,t),N.assertAndGetBroadcastShape(e,r);let i="vec4(0.0)";n!=null&&(N.assertAndGetBroadcastShape(e,n),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";a!=null&&(N.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 offset = ${i};
|
|
vec4 scale = ${o};
|
|
|
|
vec4 x = getXAtOutCoords();
|
|
vec4 mean = getMeanAtOutCoords();
|
|
vec4 variance = getVarianceAtOutCoords();
|
|
|
|
vec4 inv = scale * inversesqrt(variance + vec4(${s}));
|
|
|
|
setOutput((x - mean) * inv + offset);
|
|
}
|
|
`}},Ore=({inputs:e,backend:t,attrs:r})=>{let{x:n,mean:a,variance:s,offset:i,scale:o}=e;v.assert(a.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(i==null||a.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(o==null||a.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=r;l==null&&(l=.001);let u=[n,a,s],d=null;i!=null&&(d=i.shape,u.push(i));let h=null;o!=null&&(h=o.shape,u.push(o));let p=Y().getBool("WEBGL_PACK_NORMALIZATION")?new zre(n.shape,a.shape,s.shape,d,h,l):new _re(n.shape,a.shape,s.shape,d,h,l);return t.runWebGLProgram(p,u,u[0].dtype)},Dre={kernelName:ii,backendName:"webgl",kernelFunc:Ore},Lre=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=gt(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let r=Bre(this.rank),n,a=e.map((s,i)=>`sourceLoc.${H1[i]} = start[${i}] + coords.${H1[i]};`);n=`
|
|
${t} sourceLoc;
|
|
${t} coords = getOutputCoords();
|
|
${a.join(`
|
|
`)}
|
|
`,this.userCode=`
|
|
void main() {
|
|
${n}
|
|
setOutput(getSource(${r}));
|
|
}
|
|
`}},H1=["x","y","z","w","u","v"];function Bre(e){if(e===1)return"sourceLoc";if(e<=6)return H1.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var Wre=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=gt(this.rank),r=Dr("coords",this.rank),n=Dr("sourceLoc",this.rank),a=this.rank===1?"sourceLoc":`vec2(${n.slice(-2).join()})`,s=`getChannel(getSource(${n.join()}), ${a})`,i=`
|
|
result.x = ${s};
|
|
if (++${r[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${n[this.rank-1]};
|
|
result.y = ${s};
|
|
--${n[this.rank-1]};
|
|
}
|
|
`,o=this.rank===1?"":`
|
|
--${r[this.rank-1]};
|
|
if (++${r[this.rank-2]} < ${e[this.rank-2]}) {
|
|
++${n[this.rank-2]};
|
|
result.z = ${s};
|
|
if (++${r[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${n[this.rank-1]};
|
|
result.w = ${s};
|
|
}
|
|
}
|
|
`,l=this.rank<=4?`sourceLoc = coords +
|
|
${t}(${e.map((u,d)=>`start[${d}]`).join()});`:e.map((u,d)=>`${n[d]} = ${r[d]} + start[${d}];`).join(`
|
|
`);this.userCode=`
|
|
void main() {
|
|
${t} coords = getOutputCoords();
|
|
${t} sourceLoc;
|
|
${l}
|
|
vec4 result = vec4(0.);
|
|
${i}
|
|
${o}
|
|
setOutput(result);
|
|
}
|
|
`}};function Vre(e,t,r,n){let a=n.texData.get(e.dataId),s=n.makeTensorInfo(r,e.dtype),i=n.texData.get(s.dataId);Object.assign(i,a),i.refCount=1,i.shape=r,i.dtype=e.dtype;let o=_t.computeFlatOffset(t,v.computeStrides(e.shape));a.slice&&(o+=a.slice.flatOffset),i.slice={flatOffset:o,origDataId:a.slice&&a.slice.origDataId||e.dataId};let l=n.dataRefCount.get(i.slice.origDataId)||1;return n.dataRefCount.set(i.slice.origDataId,l+1),s}function wd(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{begin:s,size:i}=n,[o,l]=_t.parseSliceParams(a,s,i);if(_t.assertParamsValid(a,o,l),v.sizeFromShape(l)===0)return r.makeTensorInfo(l,a.dtype,[]);if(r.shouldExecuteOnCPU([a])||a.dtype==="string"){let h=r.texData.get(a.dataId),p=Mee(h.values,o,l,a.shape,a.dtype);return r.makeTensorInfo(l,a.dtype,p)}let{isPacked:u}=r.texData.get(a.dataId),d=_t.isSliceContinous(a.shape,o,l);if(u||!d){let h=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Wre(l):new Lre(l),p=[o];return r.runWebGLProgram(h,[a],a.dtype,p)}return r.uploadToGPU(a.dataId),Vre(a,o,l,r)}var Ure={kernelName:dl,backendName:"webgl",kernelFunc:wd},Gre=e=>{let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockShape:s,crops:i}=n;v.assert(a.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((A,x)=>A*x),l=N.getReshaped(a.shape,s,o),u=N.getPermuted(l.length,s.length),d=N.getReshapedPermuted(a.shape,s,o),h=N.getSliceBeginCoords(i,s.length),p=N.getSliceSize(d,i,s.length),c=[],f=ve({inputs:{x:a},backend:r,attrs:{shape:l}}),m=xr({inputs:{x:f},backend:r,attrs:{perm:u}}),g=ve({inputs:{x:m},backend:r,attrs:{shape:d}}),y=wd({inputs:{x:g},backend:r,attrs:{begin:h,size:p}});return c.push(f),c.push(m),c.push(g),c.forEach(A=>r.disposeIntermediateTensorInfo(A)),y},jre={kernelName:zo,backendName:"webgl",kernelFunc:Gre};function Hre(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,weights:s}=t,{size:i}=n,o=r.readSync(a.dataId),l=r.readSync(s.dataId),u=LS(o,l,s.dtype,s.shape,i);return r.makeTensorInfo([i],s.dtype,u)}var qre={kernelName:Lf,backendName:"webgl",kernelFunc:Hre};function Kre(e){let{inputs:t,backend:r}=e,{s0:n,s1:a}=t,s=r.readSync(n.dataId),i=r.readSync(a.dataId),o=N.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return r.makeTensorInfo([o.length],"int32",Int32Array.from(o))}var Xre={kernelName:Bf,backendName:"webgl",kernelFunc:Kre},Zre="return float(a != b);",r8=br({opSnippet:Zre,cpuKernelImpl:Tee,dtype:"bool"}),Yre={kernelName:Jo,backendName:"webgl",kernelFunc:r8};function Rh(e){let{inputs:t,backend:r}=e,{input:n}=t,a=r.texData.get(n.dataId);return nn({inputs:{x:a.complexTensorInfos.real},backend:r})}var Jre={kernelName:Xp,backendName:"webgl",kernelFunc:Rh},Qre="return float(int(x));";function ene(e,t){let r=new Ga(e.shape,Qre),n=t.runWebGLProgram(r,[e],"int32");return{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}function q1(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{dtype:s}=n;if(s==="complex64"){if(a.dtype==="complex64")return nn({inputs:{x:a},backend:r});let i=Wt(a.shape),o=q1({inputs:{x:a},backend:r,attrs:{dtype:"float32"}}),l=Li({inputs:{real:o,imag:i},backend:r});return i.dispose(),r.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=Rh({inputs:{input:a},backend:r}),o=q1({inputs:{x:i},backend:r,attrs:{dtype:s}});return r.disposeIntermediateTensorInfo(i),o}if(!v.hasEncodingLoss(a.dtype,s)){let i=nn({inputs:{x:a},backend:r});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return ene(a,r);if(s==="bool"){let i=r.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),o=r8({inputs:{a,b:i},backend:r});return r.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var tne={kernelName:Ks,backendName:"webgl",kernelFunc:q1},Ov="return ceil(x);",rne=it({opSnippet:Ov,packedOpSnippet:Ov,cpuKernelImpl:oee}),nne={kernelName:Xs,backendName:"webgl",kernelFunc:rne},ane=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
|
|
void main() {
|
|
float value = getAAtOutCoords();
|
|
if (isnan(value)) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, minVal, maxVal));
|
|
}
|
|
`}},sne=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 value = getAAtOutCoords();
|
|
|
|
if (any(isnan(value))) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
|
|
}
|
|
`}};function ine(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=n,o;Y().getBool("WEBGL_PACK_CLIP")?o=new sne(a.shape):o=new ane(a.shape);let l=[[s],[i]];return r.runWebGLProgram(o,[a],a.dtype,l)}var one={kernelName:Ka,backendName:"webgl",kernelFunc:ine},lne=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float re = abs(getRealAtOutCoords());
|
|
float im = abs(getImagAtOutCoords());
|
|
float mx = max(re, im);
|
|
|
|
// sadly the length function in glsl is not underflow-safe
|
|
// (at least not on Intel GPUs). So the safe solution is
|
|
// to ensure underflow-safety in all cases.
|
|
setOutput(
|
|
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
|
|
);
|
|
}
|
|
`}};function Dv(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function une(e){let{inputs:t,backend:r}=e,{x:n}=t,a=r.texData.get(n.dataId),s=new lne(n.shape),i=[Dv(n,a.complexTensorInfos.real),Dv(n,a.complexTensorInfos.imag)];return r.runWebGLProgram(s,i,i[0].dtype)}var dne={kernelName:Wp,backendName:"webgl",kernelFunc:une},pne=class{constructor(e){this.outputShape=[],this.outputShape=N.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s<t.length;s++)t[s]=t[s-1]+e[s][1];let r=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let s=1;s<t.length;s++){let i=t[s-1];r.push(`else if (yC < ${t[s]}) setOutput(getT${s}(yR, yC-${i}));`)}let n=t.length,a=t[t.length-1];r.push(`else setOutput(getT${n}(yR, yC-${a}));`),this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int yR = coords.x;
|
|
int yC = coords.y;
|
|
|
|
${r.join(`
|
|
`)}
|
|
}
|
|
`}},hne=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=N.computeOutShape(e,t);let r=this.outputShape,n=r.length,a=gt(n),s=Dr("coords",n),i=["x","y","z","w","u","v"].slice(0,n);this.variableNames=e.map((f,m)=>`T${m}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let f=1;f<o.length;f++)o[f]=o[f-1]+e[f][t];let l=i[t],u=i.slice(-2),d=i.join(),h=`if (${l} < ${o[0]}) {
|
|
return getChannel(
|
|
getT0(${d}), vec2(${u.join()}));
|
|
}`;for(let f=1;f<o.length;f++){let m=o[f-1];h+=`
|
|
if (${l} < ${o[f]} && ${l} >= ${o[f-1]}) {
|
|
return getChannel(
|
|
getT${f}(${jc(i,l,m)}),
|
|
vec2(${jc(u,l,m)}));
|
|
}`}let p=o.length,c=o[o.length-1];h+=`
|
|
return getChannel(
|
|
getT${p}(${jc(i,l,c)}),
|
|
vec2(${jc(u,l,c)}));`,this.userCode=`
|
|
float getValue(${i.map(f=>"int "+f)}) {
|
|
${h}
|
|
}
|
|
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
vec4 result = vec4(getValue(${s}), 0., 0., 0.);
|
|
|
|
${s[n-1]} = ${s[n-1]} + 1;
|
|
if (${s[n-1]} < ${r[n-1]}) {
|
|
result.g = getValue(${s});
|
|
}
|
|
|
|
${s[n-2]} = ${s[n-2]} + 1;
|
|
if (${s[n-2]} < ${r[n-2]}) {
|
|
result.a = getValue(${s});
|
|
}
|
|
|
|
${s[n-1]} = ${s[n-1]} - 1;
|
|
if (${s[n-2]} < ${r[n-2]} &&
|
|
${s[n-1]} < ${r[n-1]}) {
|
|
result.b = getValue(${s});
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function jc(e,t,r){let n=e.indexOf(t);return e.map((a,s)=>s===n?`${a} - ${r}`:a).join()}function c0(e){let{inputs:t,backend:r}=e,{input:n}=t,a=r.texData.get(n.dataId);return nn({inputs:{x:a.complexTensorInfos.imag},backend:r})}var cne={kernelName:jp,backendName:"webgl",kernelFunc:c0};function ou(e,t,r){let n=e[0].dtype;if(n==="complex64"){let d=e.map(m=>Rh({inputs:{input:m},backend:r})),h=e.map(m=>c0({inputs:{input:m},backend:r})),p=ou(d,t,r),c=ou(h,t,r),f=Li({inputs:{real:p,imag:c},backend:r});return d.forEach(m=>r.disposeIntermediateTensorInfo(m)),h.forEach(m=>r.disposeIntermediateTensorInfo(m)),r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(c),f}let a=r.shouldExecuteOnCPU(e);if(n==="string"&&(a=!0),a){let d=e.map(y=>{let A=v.sizeFromShape(y.shape.slice(t));return ve({inputs:{x:y},backend:r,attrs:{shape:[-1,A]}})}),h=d.map(y=>({vals:r.readSync(y.dataId),shape:y.shape})),p=N.computeOutShape(d.map(y=>y.shape),1),c=d[0].shape[0]===1,f=lee(h,p,n,c),m=N.computeOutShape(e.map(y=>y.shape),t),g=r.makeTensorInfo(m,n,f);return d.forEach(y=>r.disposeIntermediateTensorInfo(y)),g}if(e.length>Y().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let d=Math.floor(e.length/2),h=ou(e.slice(0,d),t,r),p=ou(e.slice(d),t,r),c=ou([h,p],t,r);return r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(p),c}if(Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let d=new hne(e.map(h=>h.shape),t);return r.runWebGLProgram(d,e,n)}let{tensors2D:s,outShape:i}=fne(e,t,r),o=new pne(s.map(d=>d.shape)),l=r.runWebGLProgram(o,s,n);s.forEach(d=>r.disposeIntermediateTensorInfo(d));let u=ve({inputs:{x:l},attrs:{shape:i},backend:r});return r.disposeIntermediateTensorInfo(l),u}function fne(e,t,r){let n=N.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>ve({inputs:{x:a},attrs:{shape:[-1,v.sizeFromShape(a.shape.slice(t))]},backend:r})),outShape:n}}function n8(e){let{inputs:t,backend:r,attrs:n}=e,{axis:a}=n,s=v.parseAxisParam(a,t[0].shape)[0],i=N.computeOutShape(t.map(u=>u.shape),s);if(v.sizeFromShape(i)===0)return r.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(u=>v.sizeFromShape(u.shape)>0);if(o.length===1)return nn({inputs:{x:o[0]},backend:r});let l=o.map(u=>u.shape);return N.assertParamsConsistent(l,s),ou(o,s,r)}var mne={kernelName:Oo,backendName:"webgl",kernelFunc:n8},a8=class{constructor(e,t=!1,r=null,n=!1,a=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,d=e.dilationWidth,h=e.filterHeight,p=e.filterWidth,c=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",g=m?1:2,y=m?2:3,A=m?3:1,x="",b="";r&&(n?x=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${r}
|
|
}`:a?x=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${r}
|
|
}`:x=`
|
|
float activation(float x) {
|
|
${r}
|
|
}
|
|
`,b="result = activation(result);");let w=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${x}
|
|
|
|
const ivec2 strides = ivec2(${o}, ${l});
|
|
const ivec2 pads = ivec2(${s}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d2 = coords[${A}];
|
|
|
|
ivec2 xRCCorner =
|
|
ivec2(coords[${g}], coords[${y}]) * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${h}; wR++) {
|
|
int xR = xRCorner + wR * ${u};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${p}; wC++) {
|
|
int xC = xCCorner + wC * ${d};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${c}; d1 += 4) {
|
|
vec4 wValues = vec4(
|
|
getW(wR, wC, d1, d2),
|
|
getW(wR, wC, d1 + 1, d2),
|
|
getW(wR, wC, d1 + 2, d2),
|
|
getW(wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xR, xC, d1),
|
|
getX(batch, xR, xC, d1 + 1),
|
|
getX(batch, xR, xC, d1 + 2),
|
|
getX(batch, xR, xC, d1 + 3)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec4 xValues = vec4(
|
|
getX(batch, d1, xR, xC),
|
|
getX(batch, d1 + 1, xR, xC),
|
|
getX(batch, d1 + 2, xR, xC),
|
|
getX(batch, d1 + 3, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
|
|
if (${f===1}) {
|
|
|
|
if (${m}) {
|
|
dotProd +=
|
|
getX(batch, xR, xC, ${c}) *
|
|
getW(wR, wC, ${c}, d2);
|
|
} else {
|
|
dotProd +=
|
|
getX(batch, ${c}, xR, xC) *
|
|
getW(wR, wC, ${c}, d2);
|
|
}
|
|
|
|
} else if (${f===2}) {
|
|
vec2 wValues = vec2(
|
|
getW(wR, wC, ${c}, d2),
|
|
getW(wR, wC, ${c} + 1, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xR, xC, ${c}),
|
|
getX(batch, xR, xC, ${c} + 1)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec2 xValues = vec2(
|
|
getX(batch, ${c}, xR, xC),
|
|
getX(batch, ${c} + 1, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
} else if (${f===3}) {
|
|
vec3 wValues = vec3(
|
|
getW(wR, wC, ${c}, d2),
|
|
getW(wR, wC, ${c} + 1, d2),
|
|
getW(wR, wC, ${c} + 2, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xR, xC, ${c}),
|
|
getX(batch, xR, xC, ${c} + 1),
|
|
getX(batch, xR, xC, ${c} + 2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec3 xValues = vec3(
|
|
getX(batch, ${c}, xR, xC),
|
|
getX(batch, ${c} + 1, xR, xC),
|
|
getX(batch, ${c} + 2, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${w}
|
|
${b}
|
|
setOutput(result);
|
|
}
|
|
`}},gne=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,r=e.padInfo.top,n=e.padInfo.left,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,d=e.filterDepth,h=e.filterHeight,p=e.filterWidth,c=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=`
|
|
const ivec3 strides = ivec3(${a}, ${s}, ${i});
|
|
const ivec3 pads = ivec3(${t}, ${r}, ${n});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d2 = coords.u;
|
|
|
|
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xFCorner = xFRCCorner.x;
|
|
int xRCorner = xFRCCorner.y;
|
|
int xCCorner = xFRCCorner.z;
|
|
|
|
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
|
|
// y(yF, yR, yC, d2). ? = to be determined. : = across all
|
|
// values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${d}; wF++) {
|
|
int xF = xFCorner + wF * ${o};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h}; wR++) {
|
|
int xR = xRCorner + wR * ${l};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${p}; wC++) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${c}; d1 += 4) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xF, xR, xC, d1),
|
|
getX(batch, xF, xR, xC, d1 + 1),
|
|
getX(batch, xF, xR, xC, d1 + 2),
|
|
getX(batch, xF, xR, xC, d1 + 3)
|
|
);
|
|
vec4 wValues = vec4(
|
|
getW(wF, wR, wC, d1, d2),
|
|
getW(wF, wR, wC, d1 + 1, d2),
|
|
getW(wF, wR, wC, d1 + 2, d2),
|
|
getW(wF, wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
if (${f===1}) {
|
|
dotProd +=
|
|
getX(batch, xF, xR, xC, ${c}) *
|
|
getW(wF, wR, wC, ${c}, d2);
|
|
} else if (${f===2}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xF, xR, xC, ${c}),
|
|
getX(batch, xF, xR, xC, ${c} + 1)
|
|
);
|
|
vec2 wValues = vec2(
|
|
getW(wF, wR, wC, ${c}, d2),
|
|
getW(wF, wR, wC, ${c} + 1, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else if (${f===3}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xF, xR, xC, ${c}),
|
|
getX(batch, xF, xR, xC, ${c} + 1),
|
|
getX(batch, xF, xR, xC, ${c} + 2)
|
|
);
|
|
vec3 wValues = vec3(
|
|
getW(wF, wR, wC, ${c}, d2),
|
|
getW(wF, wR, wC, ${c} + 1, d2),
|
|
getW(wF, wR, wC, ${c} + 2, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},yne=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=e,this.enableShapeUniforms=on(this.outputShape.length);let{dataFormat:r}=t,n=Ur(),a=r==="channelsLast",s=a?0:1,i=a?1:2,o=this.enableShapeUniforms?"if(blockIndex < outShape[1] && pos < outShape[0]) {":`if(blockIndex < ${e[1]} && pos < ${e[0]}) {`,l="";for(let u=0;u<=1;u++)for(let d=0;d<=1;d++)l+=`
|
|
blockIndex = rc.y + ${d};
|
|
pos = rc.x + ${u};
|
|
|
|
${o}
|
|
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
|
|
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
|
|
|
|
if(d0 < inputShape[${s}] && d0 >= 0) {
|
|
// Use custom imod instead mod. On Intel GPU, mod may generate
|
|
// unexpected value.
|
|
// https://github.com/tensorflow/tfjs/issues/5447
|
|
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
|
|
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
|
|
inChannels);
|
|
|
|
if(d1 < inputShape[${i}] && d1 >= 0) {
|
|
|
|
ch = imod(pos, inChannels);
|
|
|
|
if (${a}) {
|
|
innerDims = vec2(d1, ch);
|
|
result[${u*2+d}] = getChannel(
|
|
getA(d0, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
} else {
|
|
innerDims = vec2(d0, d1);
|
|
result[${u*2+d}] = getChannel(
|
|
getA(ch, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`;this.userCode=`
|
|
void main() {
|
|
ivec2 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0);
|
|
|
|
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
|
|
vec2 innerDims;
|
|
|
|
${l}
|
|
|
|
${n.output} = result;
|
|
}
|
|
`}};function s8({x:e,filter:t,convInfo:r,backend:n,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,u=n.texData.get(e.dataId),d=r.inChannels,h=l[0]*l[1]*l[2],p=r.outChannels,c=r.dataFormat==="channelsLast",f=!1,m=!1,g,y=[];if(!((h===1||p===1)&&d>JS)&&u.isPacked&&c&&u.texture!=null&&l[2]%2!==0&&v.arraysEqual(u.shape.slice(-3),l.slice(-3))){let A=l[0]*l[1]*(l[2]+1),x={dataId:e.dataId,shape:[1,A,r.inChannels],dtype:e.dtype},b=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,v.assert(zp(u.shape,x.shape),()=>`packed reshape ${u.shape} to ${x.shape} isn't free`);let w=ve({inputs:{x:t},backend:n,attrs:{shape:[1,r.inChannels,r.outChannels]}});y.push(w);let T=Ef({a:x,b:w,backend:n,transposeA:f,transposeB:m,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),S=n.texData.get(T.dataId);v.assert(S.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=b,S.shape=r.outShape,g=nn({inputs:{x:T},backend:n}),g.shape=r.outShape,y.push(T)}else{let A=c?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],x=ve({inputs:{x:e},backend:n,attrs:{shape:[1,A,r.inChannels]}}),b=ve({inputs:{x:t},backend:n,attrs:{shape:[1,r.inChannels,r.outChannels]}}),w=Ef({a:x,b,transposeA:f,transposeB:m,backend:n,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i});g=ve({inputs:{x:w},backend:n,attrs:{shape:r.outShape}}),y.push(x),y.push(b),y.push(w)}for(let A of y)n.disposeIntermediateTensorInfo(A);return g}function i8({x:e,filter:t,convInfo:r,backend:n,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:u,inChannels:d,outWidth:h,outHeight:p,dataFormat:c}=r,f=c==="channelsLast",m=l*u*d,g=p*h,y=[m,g],A=!0,x=!1,b=[],w=ve({inputs:{x:e},backend:n,attrs:{shape:e.shape.slice(1)}}),T=ve({inputs:{x:t},backend:n,attrs:{shape:[1,m,v.sizeFromShape(t.shape)/m]}});b.push(w),b.push(T);let S=new yne(y,r),E=[w.shape,[r.padInfo.top,r.padInfo.left],[r.strideHeight,r.strideWidth],[r.dilationHeight,r.dilationWidth],[r.inChannels],[r.filterWidth*r.inChannels],[r.outWidth]],R=n.runWebGLProgram(S,[w],"float32",E),_=ve({inputs:{x:R},backend:n,attrs:{shape:[1,y[0],y[1]]}});b.push(R),b.push(_);let M=a!=null,I=s!=null,O=o==="leakyrelu",z=o?d0(o,!0):null,j=new YS(_.shape,T.shape,[1,g,r.outChannels],A,x,M,z,I,O),X=[_,T];if(a&&X.push(a),I&&X.push(s),O){let ee=n.makeTensorInfo([],"float32",v.createScalarValue(i,"float32"));X.push(ee),b.push(ee)}let D=n.runWebGLProgram(j,X,"float32"),Q=f?[1,p,h,r.outChannels]:[1,r.outChannels,p,h],V=ve({inputs:{x:D},backend:n,attrs:{shape:Q}});b.push(D);for(let ee of b)n.disposeIntermediateTensorInfo(ee);return V}function Ane(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:d}=n,h=N.convertConv2DDataFormat(l),p=N.computeConv2DInfo(a.shape,s.shape,i,u,o,d,!1,h),c;if(p.filterHeight===1&&p.filterWidth===1&&p.dilationHeight===1&&p.dilationWidth===1&&p.strideHeight===1&&p.strideWidth===1&&(p.padInfo.type==="SAME"||p.padInfo.type==="VALID"))c=s8({x:a,filter:s,convInfo:p,backend:r});else if(Y().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)c=i8({x:a,filter:s,convInfo:p,backend:r});else{let m=new a8(p);c=r.runWebGLProgram(m,[a,s],"float32")}let f=ve({inputs:{x:c},backend:r,attrs:{shape:p.outShape}});return r.disposeIntermediateTensorInfo(c),f}var xne={kernelName:Zs,backendName:"webgl",kernelFunc:Ane},bne=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,r=e.strideWidth,n=e.padInfo.top,a=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int d2 = coords.w;
|
|
|
|
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${n};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${r} - ${a};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
if (${s}) {
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
} else {
|
|
float dyValue = getDy(b, d2, yR, yC);
|
|
float xValue = getX(b, d1, xR, xC);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},vne=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,r=e.filterWidth,n=e.strideHeight,a=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=r-1-e.padInfo.left,l=s?1:2,u=s?2:3,d=s?3:1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[${d}];
|
|
|
|
ivec2 dyCorner = ivec2(coords[${l}], coords[${u}]) - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${r}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${a}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${r} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
|
|
if (${s}) {
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
} else {
|
|
float xValue = getDy(batch, d2, idyR, idyC);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},wne=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,r=e.strideHeight,n=e.strideWidth,a=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=`
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int wF = coords.x;
|
|
int wR = coords.y;
|
|
int wC = coords.z;
|
|
int d1 = coords.w;
|
|
int d2 = coords.u;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yF = 0; yF < ${e.outDepth}; yF++) {
|
|
int xF = wF + yF * ${t} - ${a};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${r} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${i};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yF, yR, yC, d2);
|
|
float xValue = getX(b, xF, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},kne=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,r=e.filterHeight,n=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=r-1-e.padInfo.top,u=n-1-e.padInfo.left;this.userCode=`
|
|
const ivec3 pads = ivec3(${o}, ${l}, ${u});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.u;
|
|
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyFCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${t}; wF++) {
|
|
float dyF = float(dyFCorner + wF) / ${a}.0;
|
|
|
|
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyF = int(dyF);
|
|
|
|
int wFPerm = ${t} - 1 - wF;
|
|
|
|
for (int wR = 0; wR < ${r}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${r} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
float xValue = getDy(batch, idyF, idyR, idyC, d2);
|
|
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function Ine(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:d}=n,h=N.convertConv2DDataFormat(l),p=N.computeConv2DInfo(a.shape,d,i,1,o,u,!1,h),c=new bne(p);return r.runWebGLProgram(c,[a,s],"float32")}var Sne={kernelName:Wf,backendName:"webgl",kernelFunc:Ine};function Tne(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:d}=n,h=N.convertConv2DDataFormat(u),p=N.computeConv2DInfo(i,s.shape,o,1,l,d,!1,h),c=new vne(p);return r.runWebGLProgram(c,[a,s],"float32")}var Nne={kernelName:Ys,backendName:"webgl",kernelFunc:Tne};function Cne(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=n,u=N.computeConv3DInfo(a.shape,s.shape,i,l,o),d=new gne(u);return r.runWebGLProgram(d,[a,s],"float32")}var Ene={kernelName:Vp,backendName:"webgl",kernelFunc:Cne};function Rne(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,dy:s}=t,{strides:i,pad:o,filterShape:l}=n,u=N.computeConv3DInfo(a.shape,l,i,1,o),d=new wne(u);return r.runWebGLProgram(d,[a,s],"float32")}var Mne={kernelName:Vf,backendName:"webgl",kernelFunc:Rne};function Fne(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,filter:s}=t,{pad:i,strides:o,inputShape:l}=n,u=N.computeConv3DInfo(l,s.shape,o,1,i),d=new kne(u);return r.runWebGLProgram(d,[a,s],"float32")}var $ne={kernelName:Uf,backendName:"webgl",kernelFunc:Fne},Pne=vd+`
|
|
return cos(x);
|
|
`,_ne=it({opSnippet:Pne}),zne={kernelName:Js,backendName:"webgl",kernelFunc:_ne},One=`
|
|
float e2x = exp(-x);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,Dne=it({opSnippet:One}),Lne={kernelName:Qs,backendName:"webgl",kernelFunc:Dne},Bne=class{constructor(e,t,r,n,a){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[u]=t,[d,h]=r;this.outputShape=[u,d,h,l];let p=n==="bilinear"?1:0,[c,f]=[`${i-1}.0`,`${o-1}.0`],[m,g,y]=d>1?[`${(i-1)/(d-1)}`,"(y2-y1) * height_ratio",`y1*${c} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${c}`],[A,x,b]=h>1?[`${(o-1)/(h-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=`
|
|
const float height_ratio = float(${m});
|
|
const float width_ratio = float(${A});
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int y = coords[1];
|
|
int x = coords[2];
|
|
int d = coords[3];
|
|
|
|
// get box vals
|
|
float y1 = getBoxes(b,0);
|
|
float x1 = getBoxes(b,1);
|
|
float y2 = getBoxes(b,2);
|
|
float x2 = getBoxes(b,3);
|
|
|
|
// get image in batch index
|
|
int bInd = round(getBoxInd(b));
|
|
if(bInd < 0 || bInd >= ${s}) {
|
|
return;
|
|
}
|
|
|
|
float height_scale = ${g};
|
|
float width_scale = ${x};
|
|
|
|
float in_y = ${y};
|
|
if( in_y < 0.0 || in_y > ${c} ) {
|
|
setOutput(float(${a}));
|
|
return;
|
|
}
|
|
float in_x = ${b};
|
|
if( in_x < 0.0 || in_x > ${f} ) {
|
|
setOutput(float(${a}));
|
|
return;
|
|
}
|
|
|
|
vec2 sourceFracIndexCR = vec2(in_x,in_y);
|
|
if(${p} == 1) {
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
|
|
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
|
|
|
|
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
|
|
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
float newValue = top + (bottom - top) * fracCR.y;
|
|
setOutput(newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestCR = ivec2(floor(
|
|
sourceFracIndexCR + vec2(0.5,0.5)));
|
|
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutput(newValue);
|
|
}
|
|
}
|
|
`}},Wne=e=>{let{inputs:t,backend:r,attrs:n}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=n,d=new Bne(a.shape,s.shape,o,l,u);return r.runWebGLProgram(d,[a,s,i],"float32")},Vne={kernelName:Lo,backendName:"webgl",kernelFunc:Wne},Lv=class{constructor(e,t,r){this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}],this.outputShape=e;let n=e.length,a=t?"1.0":`getX(${Bv(n,"coords")})`,s=e[e.length-1],i="",o="";t?(i=r?`end != ${s-1}`:"end != 0",o=r?"end + 1":"end - 1"):(i=r?`end + pow2 < ${s}`:"end >= pow2",o=r?"end + pow2":"end - pow2"),this.userCode=`
|
|
void main() {
|
|
${gt(n)} coords = getOutputCoords();
|
|
int end = ${Wv(n,"coords")};
|
|
float val = ${a};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${i}) {
|
|
int idx = ${o};
|
|
${Wv(n,"coords")} = idx;
|
|
val *= getX(${Bv(n,"coords")});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}};function Bv(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative product for rank ${e} is not yet supported`)}function Wv(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative product for rank ${e} is not yet supported`)}function Une(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=n,l=a.shape.length,u=N.getAxesPermutation([s],l),d=a;u!=null&&(d=xr({inputs:{x:a},backend:r,attrs:{perm:u}}));let h=N.getInnerMostAxes(1,l)[0];if(h!==l-1)throw new Error(`WebGL cumprod shader expects an inner-most axis=${a.shape.length-1} but got axis=${s}`);let p=d.shape[h],c=nn({inputs:{x:d},backend:r});for(let f=0;f<=Math.ceil(Math.log2(p))-1;f++){let m=new Lv(d.shape,!1,o),g=[[f]],y=c;c=r.runWebGLProgram(m,[c],c.dtype,g),r.disposeIntermediateTensorInfo(y)}if(i){let f=new Lv(d.shape,i,o),m=c;c=r.runWebGLProgram(f,[c],c.dtype),r.disposeIntermediateTensorInfo(m)}if(u!=null){let f=N.getUndoAxesPermutation(u),m=xr({inputs:{x:c},backend:r,attrs:{perm:f}});return r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(d),m}return c}var Gne={kernelName:Lu,backendName:"webgl",kernelFunc:Une},Vv=class{constructor(e,t,r){this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}],this.outputShape=e;let n=e.length,a=t?"0.0":`getX(${Uv(n,"coords")})`,s=e[e.length-1],i="",o="";t?(i=r?`end != ${s-1}`:"end != 0",o=r?"end + 1":"end - 1"):(i=r?`end + pow2 < ${s}`:"end >= pow2",o=r?"end + pow2":"end - pow2"),this.userCode=`
|
|
void main() {
|
|
${gt(n)} coords = getOutputCoords();
|
|
int end = ${Gv(n,"coords")};
|
|
float val = ${a};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${i}) {
|
|
int idx = ${o};
|
|
${Gv(n,"coords")} = idx;
|
|
val += getX(${Uv(n,"coords")});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}};function Uv(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function Gv(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function jne(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=n,l=a.shape.length,u=N.getAxesPermutation([s],l),d=a;u!=null&&(d=xr({inputs:{x:a},backend:r,attrs:{perm:u}}));let h=N.getInnerMostAxes(1,l)[0];if(h!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${a.shape.length-1} but got axis=${s}`);let p=d.shape[h],c=nn({inputs:{x:d},backend:r});for(let f=0;f<=Math.ceil(Math.log2(p))-1;f++){let m=new Vv(d.shape,!1,o),g=[[f]],y=c;c=r.runWebGLProgram(m,[c],c.dtype,g),r.disposeIntermediateTensorInfo(y)}if(i){let f=new Vv(d.shape,i,o),m=c;c=r.runWebGLProgram(f,[c],c.dtype),r.disposeIntermediateTensorInfo(m)}if(u!=null){let f=N.getUndoAxesPermutation(u),m=xr({inputs:{x:c},backend:r,attrs:{perm:f}});return r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(d),m}return c}var Hne={kernelName:Do,backendName:"webgl",kernelFunc:jne};function qne(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,weights:s}=t,{size:i,binaryOutput:o}=n;if(a.shape.length===1){let l=r.readSync(a.dataId),u=r.readSync(s.dataId),d=LS(l,u,s.dtype,s.shape,i);return r.makeTensorInfo([i],s.dtype,d)}else if(a.shape.length===2){let l=r.bufferSync(a),u=r.bufferSync(s),d=iee(l,u,i,o);return r.makeTensorInfo(d.shape,s.dtype,d.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${a.shape.length}.`)}var Kne={kernelName:Gf,backendName:"webgl",kernelFunc:qne},Xne=class{constructor(e,t,r){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=r,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int h = ${this.getHeightCoordString()};
|
|
int w = ${this.getWidthCoordString()};
|
|
int d = ${this.getDepthCoordString()};
|
|
|
|
int in_h = h / ${t};
|
|
int offset_h = imod(h, ${t});
|
|
int in_w = w / ${t};
|
|
int offset_w = imod(w, ${t});
|
|
int offset_d = (offset_h * ${t} + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
int in_d = d + offset_d;
|
|
|
|
float result = ${this.getInputSamplingString()};
|
|
setOutput(result);
|
|
}
|
|
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function Zne(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockSize:s,dataFormat:i}=n,o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],u=i==="NHWC"?a.shape[2]:a.shape[3],d=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,p=u*s,c=d/(s*s),f=i==="NHWC"?[o,h,p,c]:[o,c,h,p],m=new Xne(f,s,i);return r.runWebGLProgram(m,[a],a.dtype)}var Yne={kernelName:Bo,backendName:"webgl",kernelFunc:Zne},o8=class{constructor(e,t=!1,r=null,n=!1,a=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=on(this.outputShape.length);let s=e.filterHeight,i=e.filterWidth,o=e.outChannels/e.inChannels,l="",u="";r&&(n?l=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${r}
|
|
}`:a?l=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${r}
|
|
}`:l=`
|
|
float activation(float x) {
|
|
${r}
|
|
}
|
|
`,u="result = activation(result);");let d=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${l}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${o};
|
|
int q = d2 - d1 * ${o};
|
|
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
|
|
for (int wR = 0; wR < ${s}; wR++) {
|
|
int xR = xRCorner + wR * dilations[0];
|
|
|
|
if (xR < 0 || xR >= inDims[0]) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${i}; wC++) {
|
|
int xC = xCCorner + wC * dilations[1];
|
|
|
|
if (xC < 0 || xC >= inDims[1]) {
|
|
continue;
|
|
}
|
|
|
|
float xVal = getX(batch, xR, xC, d1);
|
|
float wVal = getW(wR, wC, d1, q);
|
|
dotProd += xVal * wVal;
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${d}
|
|
${u}
|
|
setOutput(result);
|
|
}
|
|
`}},l8=class{constructor(e,t=!1,r=null,n=!1,a=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=on(this.outputShape.length);let s=e.outChannels/e.inChannels,i=e.padInfo.left,o=e.strideWidth,l=e.dilationWidth,u=e.filterHeight,d=e.filterWidth,h=d,p=`
|
|
int xR; int xC; int xCOffset;
|
|
vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g<d;g++)p+=`
|
|
vec4 xTexelC${g*2};
|
|
int xTexelC${g*2}Ready;
|
|
vec4 xTexelC${g*2+1};
|
|
int xTexelC${g*2+1}Ready;
|
|
vec4 xC${g};`;p+=`
|
|
for (int r = 0; r < ${u}; r++) {
|
|
`;for(let g=0;g<d;g++)p+=`
|
|
xTexelC${g*2} = vec4(0.0);
|
|
xTexelC${g*2}Ready = 0;
|
|
xTexelC${g*2+1} = vec4(0.0);
|
|
xTexelC${g*2+1}Ready = 0;
|
|
xC${g} = vec4(0.0);`;p+=`
|
|
xR = xRCorner + r * dilations[0];
|
|
if (xR >=0 && xR < inDims[0]) {
|
|
`;for(let g=0;g<(h+1)/2;g++){let y=g*2;if(p+=`
|
|
xC = xCCorner + ${y*l};
|
|
`,o===1){if(y<d&&(i%2===1?(p+=`
|
|
xCOffset = xC + 1;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
`,l===1&&y>0?p+=`
|
|
xC${y} = vec4(xTexelC${y-2}.zw, xTexelC${y}.xy);
|
|
`:p+=`
|
|
xCOffset = xC + 1 - 2;
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
previous.zw = vec2(0.0);
|
|
}
|
|
|
|
xC${y} = vec4(previous.zw, xTexelC${y}.xy);
|
|
} else {
|
|
xC${y} = vec4(0.0, 0.0, xTexelC${y}.xy);
|
|
}
|
|
`):p+=`
|
|
if (xC >= 0 && xC < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
|
|
xC${y} = xTexelC${y};
|
|
`,y+1<d)){let A=i%2===0?v.nearestLargerEven(l):l;l%2===0&&i%2===1||l%2!==0&&i%2!==1?(p+=`
|
|
xCOffset = xC + imod(pads[1], 2) + ${A};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
`,l>1&&(p+=`
|
|
xCOffset -= 2;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xCOffset, d1);
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
`),p+=`
|
|
xC${y+1} = vec4(xTexelC${y}.zw, xTexelC${y+1}.xy);
|
|
`):A===1?p+=`
|
|
xC${y+1} = xTexelC${y};
|
|
`:p+=`
|
|
xCOffset = xC + ${A};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
|
|
xC${y+1} = xTexelC${y+1};
|
|
`}}else y<d&&(i%2===1?(p+=`
|
|
xCOffset = xC + 1 - strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xCOffset, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xC + 1, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xC + 2 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
|
|
xC${y} = vec4(xTexelC${y}.zw, xTexelC${y+1}.zw);
|
|
`,y+1<d&&(p+=`
|
|
final = vec4(0.0);
|
|
xCOffset = xC + 1 + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xC${y+1} = vec4(xTexelC${y+1}.xy, final.xy);
|
|
`)):(p+=`
|
|
if(xC >= 0 && xC < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
|
|
xCOffset = xC + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
|
|
xC${y} = vec4(
|
|
xTexelC${y}.xy, xTexelC${y+1}.xy);
|
|
`,y+1<d&&(p+=`
|
|
xC${y+1} = vec4(xTexelC${y}.zw, xTexelC${y+1}.zw);
|
|
`)));y<d&&(p+=`
|
|
wTexel = getW(r, ${y}, d1, q);
|
|
dotProd += xC${y} * vec4(wTexel.xz, wTexel.xz);
|
|
`,y+1<d&&(p+=`
|
|
wTexel = getW(r, ${y+1}, d1, q);
|
|
dotProd += xC${y+1} * vec4(wTexel.xz, wTexel.xz);
|
|
`))}p+=`
|
|
}
|
|
`,p+=`
|
|
}
|
|
`;let c="",f="";r&&(n?c=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${r}
|
|
}`:a?c=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${r}
|
|
}`:c=`vec4 activation(vec4 x) {
|
|
${r}
|
|
}`,f="result = activation(result);");let m=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${c}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${s};
|
|
int q = d2 - d1 * ${s};
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
|
|
vec4 dotProd = vec4(0.000000000000001);
|
|
|
|
${p}
|
|
|
|
vec4 result = dotProd - vec4(0.000000000000001);
|
|
${m}
|
|
${f}
|
|
setOutput(result);
|
|
}
|
|
`}};function Jne(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=n,d=l;d==null&&(d=[1,1]),v.assert(N.eitherStridesOrDilationsAreOne(i,d),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let h=N.computeConv2DInfo(a.shape,s.shape,i,d,o,u,!0),p;Y().getBool("WEBGL_PACK_DEPTHWISECONV")&&h.strideWidth<=2&&h.outChannels/h.inChannels===1?p=new l8(h):p=new o8(h);let c=[[h.padInfo.top,h.padInfo.left],[h.strideHeight,h.strideWidth],[h.dilationHeight,h.dilationWidth],[h.inHeight,h.inWidth]];return r.runWebGLProgram(p,[a,s],"float32",c)}var Qne={kernelName:ei,backendName:"webgl",kernelFunc:Jne},eae=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,r=e.strideWidth,n=e.padInfo.top,a=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int dm = coords.w;
|
|
int d2 = d1 * ${s} + dm;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
// TO DO: Vec4 over the batch size
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${n};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${r} - ${a};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},tae=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,r=e.filterWidth,n=e.strideHeight,a=e.strideWidth,s=t-1-e.padInfo.top,i=r-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=`
|
|
const ivec2 pads = ivec2(${s}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[3];
|
|
ivec2 dyCorner = coords.yz - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${r}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${a}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${r} - 1 - wC;
|
|
|
|
// TO DO: Vec4 over the channelMul
|
|
for (int dm = 0; dm < ${o}; dm++) {
|
|
int d2 = d1 * ${o} + dm;
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, dm);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function rae(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:d}=n,h=N.computeConv2DInfo(a.shape,d,i,o,l,u,!0),p=new eae(h);return r.runWebGLProgram(p,[a,s],"float32")}var nae={kernelName:jf,backendName:"webgl",kernelFunc:rae};function aae(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:d}=n,h=N.computeConv2DInfo(d,s.shape,i,o,l,u,!0),p=new tae(h);return r.runWebGLProgram(p,[a,s],"float32")}var sae={kernelName:Hf,backendName:"webgl",kernelFunc:aae},iae=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
|
|
setOutput(val);
|
|
}
|
|
`}};function oae(e){let{inputs:t,backend:r}=e,{x:n}=t,a=[...n.shape,...n.shape],s=v.sizeFromShape(n.shape),i=ve({inputs:{x:n},backend:r,attrs:{shape:[s]}}),o=new iae(s),l=r.runWebGLProgram(o,[i],i.dtype),u=ve({inputs:{x:l},backend:r,attrs:{shape:a}});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(l),u}var lae={kernelName:qf,backendName:"webgl",kernelFunc:oae},uae=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:r,padInfo:n,strideHeight:a,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:u}=e,{top:d,left:h}=n;this.userCode=`
|
|
const ivec2 strides = ivec2(${a}, ${s});
|
|
const ivec2 pads = ivec2(${d}, ${h});
|
|
const float neg_infinity = -3.4e38;
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.w;
|
|
ivec2 outTopLeftCorner =
|
|
coords.yz * strides - pads;
|
|
int hBeg = outTopLeftCorner.x;
|
|
int wBeg = outTopLeftCorner.y;
|
|
|
|
float curVal = neg_infinity;
|
|
for (int h = 0; h < ${i}; h++) {
|
|
int hIn = hBeg + h * ${l};
|
|
|
|
if (hIn >= 0 && hIn < ${t}) {
|
|
for (int w = 0; w < ${o}; w++) {
|
|
int wIn = wBeg + w * ${u};
|
|
|
|
if (wIn >= 0 && wIn < ${r}) {
|
|
float xVal = getX(batch, hIn, wIn, d1);
|
|
float wVal = getW(h, w, d1);
|
|
|
|
float val = xVal + wVal;
|
|
if (val > curVal) {
|
|
curVal = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = curVal;
|
|
setOutput(result);
|
|
}
|
|
`}};function dae(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=n,u=N.computeDilation2DInfo(a.shape,s.shape,i,o,"NHWC",l),d,h=new uae(u);d=r.runWebGLProgram(h,[a,s],"float32");let p=ve({inputs:{x:d},backend:r,attrs:{shape:u.outShape}});return r.disposeIntermediateTensorInfo(d),p}var pae={kernelName:Up,backendName:"webgl",kernelFunc:dae};function hae(e){let{inputs:t,backend:r,attrs:n}=e,{equation:a}=n,s=t,{allDims:i,summedDims:o,idDims:l}=N.decodeEinsumEquation(a,s.length);N.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:d}=N.getEinsumComputePath(o,l),h=d.length,p=null,c=i.length,f=[];for(let m=0;m<h;++m){for(let g of d[m]){let{permutationIndices:y,expandDims:A}=N.getEinsumPermutation(c,l[g]),x;N.isIdentityPermutation(y)?x=s[g]:(x=xr({inputs:{x:s[g]},backend:r,attrs:{perm:y}}),f.push(x));let b=x.shape.slice();for(let w=0;w<A.length;++w)b.splice(A[w],0,1);v.arraysEqual(x.shape,b)||(x=ve({inputs:{x},backend:r,attrs:{shape:b}}),f.push(x)),p===null?p=x:(p=pb({inputs:{a:x,b:p},backend:r}),f.push(p))}m<h-1&&(u[m]>=0&&(p=h0({inputs:{x:p},backend:r,attrs:{axis:u[m]-(i.length-c),keepDims:!1}}),f.push(p)),c--)}for(let m of f)m!==p&&r.disposeIntermediateTensorInfo(m);return p}var cae={kernelName:Gp,backendName:"webgl",kernelFunc:hae},fae="return (x >= 0.0) ? x : (exp(x) - 1.0);",mae=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,gae=it({opSnippet:fae,packedOpSnippet:mae}),yae={kernelName:ri,backendName:"webgl",kernelFunc:gae},Aae="return (b >= 1.0) ? a : a * (b + 1.0);",xae=`
|
|
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
|
|
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
|
|
`,bae=e=>{let{inputs:t,backend:r}=e,{dy:n,y:a}=t,s=Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Eh(xae,n.shape,a.shape):new Tu(Aae,n.shape,a.shape);return r.runWebGLProgram(s,[n,a],n.dtype)},vae={kernelName:Kf,backendName:"webgl",kernelFunc:bae},wae=`
|
|
return vec4(equal(a, b));
|
|
`,kae="return float(a == b);",Iae=br({opSnippet:kae,packedOpSnippet:wae,dtype:"bool",cpuKernelImpl:uee}),Sae={kernelName:Wo,backendName:"webgl",kernelFunc:Iae},Tae=`
|
|
// Error function is calculated approximately with elementary function.
|
|
// See "Handbook of Mathematical Functions with Formulas,
|
|
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
|
|
float p = ${N.ERF_P};
|
|
float a1 = ${N.ERF_A1};
|
|
float a2 = ${N.ERF_A2};
|
|
float a3 = ${N.ERF_A3};
|
|
float a4 = ${N.ERF_A4};
|
|
float a5 = ${N.ERF_A5};
|
|
|
|
float sign = sign(x);
|
|
x = abs(x);
|
|
float t = 1.0 / (1.0 + p * x);
|
|
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
|
|
`,Nae=it({opSnippet:Tae}),Cae={kernelName:Bu,backendName:"webgl",kernelFunc:Nae},Eae=vd+`
|
|
return exp(x);
|
|
`,Rae=`
|
|
vec4 result = exp(x);
|
|
bvec4 isNaN = isnan(x);
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,u8=it({opSnippet:Eae,packedOpSnippet:Rae,cpuKernelImpl:dee,dtype:"float32"}),Mae={kernelName:ni,backendName:"webgl",kernelFunc:u8};function K1(e){let{inputs:t,attrs:r,backend:n}=e,{dim:a}=r,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=a;return a<0&&(v.assert(-(i+1)<=a,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+a+1),o.splice(l,0,1),ve({inputs:{x:s},backend:n,attrs:{shape:o}})}var Fae={kernelName:Vo,backendName:"webgl",kernelFunc:K1},jv="return exp(x) - 1.0;",$ae=it({opSnippet:jv,packedOpSnippet:jv,cpuKernelImpl:pee}),Pae={kernelName:Uo,backendName:"webgl",kernelFunc:$ae},Hv=class{constructor(e,t,r){this.variableNames=["real","imag"];let n=t[1];this.outputShape=t;let a=r?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=r?`${n}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
|
|
const float exponentMultiplier = ${a};
|
|
|
|
float unaryOpComplex(float real, float expR, float imag, float expI) {
|
|
${i}
|
|
}
|
|
|
|
float mulMatDFT(int batch, int index) {
|
|
float indexRatio = float(index) / float(${n});
|
|
float exponentMultiplierTimesIndexRatio =
|
|
exponentMultiplier * indexRatio;
|
|
|
|
float result = 0.0;
|
|
|
|
for (int i = 0; i < ${n}; i++) {
|
|
// x = (-2|2 * PI / N) * index * i;
|
|
float x = exponentMultiplierTimesIndexRatio * float(i);
|
|
float expR = cos(x);
|
|
float expI = sin(x);
|
|
float real = getReal(batch, i);
|
|
float imag = getImag(batch, i);
|
|
|
|
result +=
|
|
unaryOpComplex(real, expR, imag, expI) / ${s};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
setOutput(mulMatDFT(coords[0], coords[1]));
|
|
}
|
|
`}};function d8(e,t,r){let n=r.texData.get(e.dataId),a=v.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=a/s,o=ve({inputs:{x:e},backend:r,attrs:{shape:[i,s]}}),l=o.shape,u=new Hv("real",l,t),d=new Hv("imag",l,t),h=[{dataId:n.complexTensorInfos.real.dataId,dtype:n.complexTensorInfos.real.dtype,shape:l},{dataId:n.complexTensorInfos.imag.dataId,dtype:n.complexTensorInfos.imag.dtype,shape:l}],p=r.runWebGLProgram(u,h,"float32"),c=r.runWebGLProgram(d,h,"float32"),f=Li({inputs:{real:p,imag:c},backend:r});r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(c);let m=ve({inputs:{x:f},backend:r,attrs:{shape:e.shape}});return r.disposeIntermediateTensorInfo(o),r.disposeIntermediateTensorInfo(f),m}function _ae(e){let{inputs:t,backend:r}=e,{input:n}=t;return d8(n,!1,r)}var zae={kernelName:Xf,backendName:"webgl",kernelFunc:_ae},Oae=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Input can be obtained from uniform value.
|
|
setOutput(value);
|
|
}
|
|
`}};function Mh(e){let{backend:t,attrs:r}=e,{shape:n,value:a}=r,{dtype:s}=r;if(s=s||v.inferDtype(a),s==="string"){let i=v.getArrayFromDType(s,v.sizeFromShape(n));return i.fill(a),t.makeTensorInfo(n,s,i)}else{let i=new Oae(n,a),o=[[a]];return t.runWebGLProgram(i,[],s,o)}}var Dae={kernelName:Wu,backendName:"webgl",kernelFunc:Mh},Lae=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
|
|
int coordX = ${t} - x - 1;
|
|
float outputValue;
|
|
if(coordX >= 0 && coordX < ${t}) {
|
|
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
|
|
} else {
|
|
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},Bae={kernelName:Go,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:r}=e,n=t,a=new Lae(r.shape);return n.runWebGLProgram(a,[r],r.dtype)}},qv="return floor(x);",Wae=it({opSnippet:qv,packedOpSnippet:qv,cpuKernelImpl:hee}),Vae={kernelName:ai,backendName:"webgl",kernelFunc:Wae},Uae=`
|
|
float s = sign(a) * sign(b);
|
|
int ia = round(a);
|
|
int ib = round(b);
|
|
if (ib != 0) {
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
return float(idiv(ia, ib, s));
|
|
} else {
|
|
return NAN;
|
|
}
|
|
`,Gae=`
|
|
ivec4 ia = round(a);
|
|
ivec4 ib = round(b);
|
|
bvec4 cond = notEqual(ib, ivec4(0));
|
|
ivec4 result = ivec4(0);
|
|
vec4 s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
result[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
result[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
result[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
result[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4(result);
|
|
`,jae=br({opSnippet:Uae,packedOpSnippet:Gae,dtype:"int32"}),Hae={kernelName:si,backendName:"webgl",kernelFunc:jae},qae=class{constructor(e){this.variableNames=["A"];let t=Ur(),[r,n]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${n}.0, ${r}.0);
|
|
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
setOutput(floor(value * 255.0 + 0.5));
|
|
}
|
|
`}},Kae=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=Ur(),[r,n]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for(int row=0; row<=1; row++) {
|
|
for(int col=0; col<=1; col++) {
|
|
texC = coords[1] + row;
|
|
depth = coords[2] + col;
|
|
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${n}.0, ${r}.0);
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
result[row * 2 + col] = floor(value * 255.0 + 0.5);
|
|
}
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},Xae={kernelName:Sp,backendName:"webgl",kernelFunc:Zae},ru;function Zae(e){let{inputs:t,backend:r,attrs:n}=e,{pixels:a}=t,{numChannels:s}=n,i=typeof HTMLVideoElement!="undefined"&&a instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&a instanceof HTMLImageElement,[l,u]=i?[a.videoWidth,a.videoHeight]:[a.width,a.height],d=[u,l],h=[u,l,s];(o||i)&&(ru==null&&(ru=document.createElement("canvas").getContext("2d")),ru.canvas.width=l,ru.canvas.height=u,ru.drawImage(a,0,0,l,u),a=ru.canvas);let p=r.makeTensorInfo(d,"int32");r.texData.get(p.dataId).usage=2,r.gpgpu.uploadPixelDataToTexture(r.getTexture(p.dataId),a);let c=Y().getBool("WEBGL_PACK")?new Kae(h):new qae(h),f=r.runWebGLProgram(c,[p],"int32");return r.disposeData(p.dataId),f}function Yae(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:d,dilations:h,dimRoundingMode:p,activation:c,leakyreluAlpha:f}=n,m=N.convertConv2DDataFormat(d),g=N.computeConv2DInfo(a.shape,s.shape,l,h,u,p,!1,m),y,A=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))y=s8({x:a,filter:s,convInfo:g,backend:r,bias:i,activation:c,preluActivationWeights:o,leakyreluAlpha:f});else if(Y().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)y=i8({x:a,filter:s,convInfo:g,backend:r,bias:i,activation:c,preluActivationWeights:o,leakyreluAlpha:f});else{let b=i!=null,w=o!=null,T=c==="leakyrelu",S=c?d0(c,!1):null,E=new a8(g,b,S,w,T),R=[a,s];if(i&&R.push(i),o&&R.push(o),T){let _=r.makeTensorInfo([],"float32",v.createScalarValue(f,"float32"));R.push(_),A.push(_)}y=r.runWebGLProgram(E,R,"float32")}let x=ve({inputs:{x:y},backend:r,attrs:{shape:g.outShape}});return A.push(y),A.forEach(b=>r.disposeIntermediateTensorInfo(b)),x}var Jae={kernelName:Es,backendName:"webgl",kernelFunc:Yae};function Qae(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:d,dimRoundingMode:h,activation:p,leakyreluAlpha:c}=n,f=[],m=d;m==null&&(m=[1,1]),v.assert(N.eitherStridesOrDilationsAreOne(l,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${m}'`);let g=N.computeConv2DInfo(a.shape,s.shape,l,m,u,h,!0),y=Y().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels===1,A=p?d0(p,y):null,x=[a,s],b=i!=null,w=o!=null,T=p==="leakyrelu";if(b&&x.push(i),w&&x.push(o),T){let _=r.makeTensorInfo([],"float32",v.createScalarValue(c,"float32"));x.push(_),f.push(_)}let S;y?S=new l8(g,b,A,w,T):S=new o8(g,b,A,w,T);let E=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],R=r.runWebGLProgram(S,x,"float32",E);return f.forEach(_=>r.disposeIntermediateTensorInfo(_)),R}var ese={kernelName:Rs,backendName:"webgl",kernelFunc:Qae},tse=class{constructor(e,t,r){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=r;let n=gt(t.length),a=gt(r.length),s=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
|
|
${n} strides = ${n}(${this.strides});
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
int flattenIndex = 0;
|
|
for (int j = 0; j < ${this.sliceDim}; j++) {
|
|
int index = round(getIndices(coords[0], j));
|
|
flattenIndex += index * ${s};
|
|
}
|
|
setOutput(getX(flattenIndex, coords[1]));
|
|
}
|
|
`}};function rse(e){let{inputs:t,backend:r}=e,{params:n,indices:a}=t,s=a.shape,i=s[s.length-1],o=v.sizeFromShape(n.shape),[l,u,d,h]=N.prepareAndValidate(n,a),p=ve({inputs:{x:a},backend:r,attrs:{shape:[u,i]}}),c=ve({inputs:{x:n},backend:r,attrs:{shape:[v.sizeFromShape(n.shape)/d,d]}});if(r.shouldExecuteOnCPU([n,a])||n.dtype==="string"){let y=r.readSync(a.dataId),A=r.bufferSync(n),x=cee(y,A,n.dtype,u,i,d,h,n.shape,o);return r.makeTensorInfo(l,n.dtype,x.values)}let f=new tse(i,h,[u,d]),m=r.runWebGLProgram(f,[c,p],c.dtype),g=ve({inputs:{x:m},backend:r,attrs:{shape:l}});return r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(m),g}var nse={kernelName:Ho,backendName:"webgl",kernelFunc:rse},ase=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let r=gt(this.rank),n=sse(e,2);this.userCode=`
|
|
void main() {
|
|
${r} resRC = getOutputCoords();
|
|
int index = int(getIndices(resRC.x, resRC.z));
|
|
float inBounds = (index >= 0) && (index < ${e[2]}) ? 1.0 : 0.0;
|
|
setOutput(inBounds * getA(${n}));
|
|
}
|
|
`}};function sse(e,t){let r=["resRC.x","resRC.y","resRC.z","resRC.w"],n=[];for(let a=0;a<e.length;a++)a===2?n.push("index"):n.push(`${r[a]}`);return n.join()}function p8(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,indices:s}=t,{axis:i,batchDims:o}=n,l=v.parseAxisParam(i,a.shape)[0];if(Y().get("DEBUG")){let A=r.readSync(s.dataId),x=a.shape[l];for(let b=0;b<A.length;++b){let w=A[b];v.assert(w<=x-1&&w>=0,()=>`GatherV2: the index value ${w} is not in [0, ${x-1}]`)}}let u=N.segment_util.collectGatherOpShapeInfo(a,s,l,o),d=v.sizeFromShape(s.shape),h=[],p=ve({inputs:{x:a},backend:r,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),c=ve({inputs:{x:s},backend:r,attrs:{shape:[u.batchSize,d/u.batchSize]}});h.push(p),h.push(c);let f=[u.batchSize,u.outerSize,d/u.batchSize,u.sliceSize];if(r.shouldExecuteOnCPU([a,s])||a.dtype==="string"){let A=r.bufferSync(c),x=r.bufferSync(p),b=fee(x,A,f);return h.forEach(w=>r.disposeIntermediateTensorInfo(w)),r.makeTensorInfo(u.outputShape,b.dtype,b.values)}let m=new ase(p.shape,f),g=r.runWebGLProgram(m,[p,c],p.dtype);h.push(g);let y=ve({inputs:{x:g},backend:r,attrs:{shape:u.outputShape}});return h.forEach(A=>r.disposeIntermediateTensorInfo(A)),y}var ise={kernelName:jo,backendName:"webgl",kernelFunc:p8},ose="return float(a > b);",lse=`
|
|
return vec4(greaterThan(a, b));
|
|
`,use=br({opSnippet:ose,packedOpSnippet:lse,cpuKernelImpl:mee,dtype:"bool"}),dse={kernelName:qo,backendName:"webgl",kernelFunc:use},pse="return float(a >= b);",hse=`
|
|
return vec4(greaterThanEqual(a, b));
|
|
`,cse=br({opSnippet:pse,packedOpSnippet:hse,dtype:"bool",cpuKernelImpl:gee}),fse={kernelName:oi,backendName:"webgl",kernelFunc:cse};function mse(e){let{inputs:t,backend:r}=e,{input:n}=t;return d8(n,!0,r)}var gse={kernelName:Zf,backendName:"webgl",kernelFunc:mse},yse="return float(!isnan(x) && !isinf(x));",Ase=it({opSnippet:yse,dtype:"bool"}),xse={kernelName:Vu,backendName:"webgl",kernelFunc:Ase},bse="return float(isinf(x));",vse=it({opSnippet:bse,dtype:"bool"}),wse={kernelName:Uu,backendName:"webgl",kernelFunc:vse},kse="return float(isnan(x));",Ise=it({opSnippet:kse,dtype:"bool"}),Sse={kernelName:Gu,backendName:"webgl",kernelFunc:Ise},Tse="return float(a < b);",Nse=`
|
|
return vec4(lessThan(a, b));
|
|
`,Cse=br({opSnippet:Tse,packedOpSnippet:Nse,cpuKernelImpl:yee,dtype:"bool"}),Ese={kernelName:Ko,backendName:"webgl",kernelFunc:Cse},Rse="return float(a <= b);",Mse=`
|
|
return vec4(lessThanEqual(a, b));
|
|
`,Fse=br({opSnippet:Rse,packedOpSnippet:Mse,cpuKernelImpl:Aee,dtype:"bool"}),$se={kernelName:Xo,backendName:"webgl",kernelFunc:Fse};function Pse(e){let{backend:t,attrs:r}=e,{start:n,stop:a,num:s}=r,i=xee(n,a,s);return t.makeTensorInfo([i.length],"float32",i)}var _se={kernelName:Yf,backendName:"webgl",kernelFunc:Pse},zse=vd+`
|
|
return x < 0.0 ? 0./0. : log(x);
|
|
`,Ose=`
|
|
vec4 result = log(x);
|
|
bvec4 isNaN = isnan(x);
|
|
result.r = isNaN.r ? x.r : (x.r < 0.0 ? 0./0. : result.r);
|
|
result.g = isNaN.g ? x.g : (x.g < 0.0 ? 0./0. : result.g);
|
|
result.b = isNaN.b ? x.b : (x.b < 0.0 ? 0./0. : result.b);
|
|
result.a = isNaN.a ? x.a : (x.a < 0.0 ? 0./0. : result.a);
|
|
return result;
|
|
`,Dse=it({opSnippet:zse,packedOpSnippet:Ose,cpuKernelImpl:bee}),Lse={kernelName:di,backendName:"webgl",kernelFunc:Dse},Bse=vd+`
|
|
return log(1.0 + x);
|
|
`,Wse=it({opSnippet:Bse}),Vse={kernelName:ju,backendName:"webgl",kernelFunc:Wse},Use="return float(a >= 1.0 && b >= 1.0);",Gse=`
|
|
return vec4(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) *
|
|
vec4(greaterThanEqual(b, vec4(1.0))));
|
|
`,jse=br({opSnippet:Use,packedOpSnippet:Gse,dtype:"bool"}),Hse={kernelName:Zo,backendName:"webgl",kernelFunc:jse},qse="return float(!(x >= 1.0));",Kse=it({opSnippet:qse}),Xse={kernelName:Hu,backendName:"webgl",kernelFunc:Kse},Zse="return float(a >= 1.0 || b >= 1.0);",Yse=`
|
|
return min(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) +
|
|
vec4(greaterThanEqual(b, vec4(1.0))),
|
|
vec4(1.0));
|
|
`,Jse=br({opSnippet:Zse,packedOpSnippet:Yse,dtype:"bool"}),Qse={kernelName:Hp,backendName:"webgl",kernelFunc:Jse},eie=class{constructor(e,t,r,n,a){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${r}) + float(${n}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
int d = coords[3];
|
|
float x = getX(b, r, c, d);
|
|
float sum = 0.0;
|
|
for (int j = -${s}; j <= ${s}; j++) {
|
|
int idx = d + j;
|
|
if (idx >= 0 && idx <= ${i}) {
|
|
float z = getX(b, r, c, idx);
|
|
sum += z * z;
|
|
}
|
|
}
|
|
float val = x * ${o};
|
|
setOutput(val);
|
|
}
|
|
`}},tie=class{constructor(e,t,r,n,a){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${r}) + float(${n}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords.x;
|
|
int r = coords.y;
|
|
int c = coords.z;
|
|
int d = coords.w;
|
|
|
|
bool hasNextCol = d < ${this.outputShape[3]};
|
|
bool hasNextRow = c < ${this.outputShape[2]};
|
|
|
|
vec4 sum = vec4(0.);
|
|
vec4 xFragAtOutputCoords = getX(b, r, c, d);
|
|
|
|
vec4 xAtOutputCoords = vec4(
|
|
getChannel(xFragAtOutputCoords, vec2(c, d)),
|
|
hasNextCol ?
|
|
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
|
|
hasNextRow ?
|
|
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
|
|
);
|
|
|
|
int firstChannel = d - ${s};
|
|
vec2 cache = vec2(0.);
|
|
if(firstChannel >= 0){
|
|
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
|
|
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
|
|
if(hasNextRow){
|
|
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
|
|
}
|
|
}
|
|
|
|
ivec2 depth = ivec2(d, d + 1);
|
|
for (int j = - ${s}; j <= ${s}; j++) {
|
|
ivec2 idx = depth + j;
|
|
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
|
|
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
|
|
|
|
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
|
|
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
|
|
|
|
if(depthInRange || depthPlusOneInRange){
|
|
vec4 z = vec4(0.);
|
|
vec4 xFragAtCurrentDepth;
|
|
z.xz = cache.xy;
|
|
if(depthPlusOneInRange && hasNextCol){
|
|
xFragAtCurrentDepth = idx.y != d ?
|
|
getX(b, r, c, idx.y) : xFragAtOutputCoords;
|
|
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
|
|
if(hasNextRow){
|
|
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
|
|
}
|
|
}
|
|
cache.xy = z.yw;
|
|
sum += z * z;
|
|
}
|
|
}
|
|
vec4 result = xAtOutputCoords * ${o};
|
|
setOutput(result);
|
|
}
|
|
`}},rie=e=>{let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n,u=Y().getBool("WEBGL_PACK_NORMALIZATION")?new tie(a.shape,s,i,o,l):new eie(a.shape,s,i,o,l);return r.runWebGLProgram(u,[a],a.dtype)},nie={kernelName:qp,backendName:"webgl",kernelFunc:rie},aie=class{constructor(e,t,r,n,a){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=r,this.alpha=n,this.beta=a,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float result = 0.0;
|
|
for (int d = 0; d < ${this.depth}; ++d) {
|
|
int depthBegin = int(max(0.0, float(d - ${t})));
|
|
int depthEnd = int(min(float(${this.depth}),
|
|
float(d + ${t} + 1)));
|
|
|
|
const int MIN_DEPTH_BEGIN = 0;
|
|
const int MAX_DEPTH_END = ${this.depth};
|
|
|
|
float norm = 0.0;
|
|
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd) {
|
|
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
norm = float(${n}) * norm + float(${r});
|
|
|
|
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd){
|
|
float dyi = -2.0 * float(${n})
|
|
* float(${a})
|
|
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
|
|
/ norm;
|
|
if (k == d) {
|
|
dyi += pow(norm, -1.0 * ${a});
|
|
}
|
|
if (k == coords[3]) {
|
|
dyi *= getDy(b, r, c, d);
|
|
result += dyi;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}},sie=e=>{let{inputs:t,backend:r,attrs:n}=e,{x:a,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:d}=n,h=new aie(a.shape,o,l,u,d);return r.runWebGLProgram(h,[a,s,i],a.dtype)},iie={kernelName:Jf,backendName:"webgl",kernelFunc:sie};function oie(e,t,r,n){let a=v.sizeFromShape(t),s=v.sizeFromShape(e.shape)/a,i=ve({inputs:{x:e},attrs:{shape:[s,a]},backend:n}),o=Ml(i,e.dtype,"max",n),l=ve({inputs:{x:o},attrs:{shape:r},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}function h8(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{reductionIndices:s,keepDims:i}=n,o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=l,d=N.getAxesPermutation(u,o),h=d!=null,p=r.shouldExecuteOnCPU([a]),c=a;if(h){if(p){let A=r.texData.get(c.dataId).values,x=new Array(o);for(let T=0;T<x.length;T++)x[T]=a.shape[d[T]];let b=db(A,a.shape,a.dtype,d,x);c=r.makeTensorInfo(x,a.dtype);let w=r.texData.get(c.dataId);w.values=b}else c=p0(a,d,r);u=N.getInnerMostAxes(u.length,o)}N.assertAxesAreInnerMostDims("max",u,o);let[f,m]=N.computeOutAndReduceShapes(c.shape,u),g=f;i&&(g=N.expandShapeToKeepDim(f,l));let y;if(p){let A=r.texData.get(c.dataId).values,x=vee(A,v.sizeFromShape(m),g,a.dtype);y=r.makeTensorInfo(g,a.dtype);let b=r.texData.get(y.dataId);b.values=x}else y=oie(c,m,g,r);return h&&r.disposeIntermediateTensorInfo(c),y}var lie={kernelName:pi,backendName:"webgl",kernelFunc:h8},uie=HS+`
|
|
return max(a, b);
|
|
`,die=`
|
|
vec4 result = vec4(max(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+u0+`
|
|
return result;
|
|
`,pie=br({opSnippet:uie,packedOpSnippet:die,cpuKernelImpl:wee}),hie={kernelName:hi,backendName:"webgl",kernelFunc:pie};function cie(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t;gd(a,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n,u=1;v.assert(N.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let d=N.computePool2DInfo(a.shape,s,i,u,o,l);if(d.filterWidth===1&&d.filterHeight===1&&v.arraysEqual(d.inShape,d.outShape))return nn({inputs:{x:a},backend:r});let h=new Op(d,"max",!1);return r.runWebGLProgram(h,[a],a.dtype)}var fie={kernelName:ci,backendName:"webgl",kernelFunc:cie};function mie(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:u}=n,d=[1,1,1],h=N.computePool3DInfo(a.shape,s,i,d,o,u,l),p=new hb(h,"max",!1);return r.runWebGLProgram(p,[a],a.dtype)}var gie={kernelName:Kp,backendName:"webgl",kernelFunc:mie},yie=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,r=e.strideWidth,n=e.dilationHeight,a=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=a-1-e.padInfo.top,o=s-1-e.padInfo.left,l=a*s-1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${a};
|
|
wR += ${n}) {
|
|
float dyR = float(dyRCorner + wR) / ${t}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${s}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue = wR * ${s} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},Aie=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,r=e.strideHeight,n=e.strideWidth,a=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,d=o-1-e.padInfo.front,h=l-1-e.padInfo.top,p=u-1-e.padInfo.left,c=o*l*u-1;this.userCode=`
|
|
const ivec3 pads = ivec3(${d}, ${h}, ${p});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${o};
|
|
wD += ${a}) {
|
|
float dyD = float(dyDCorner + wD) / ${t}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${l};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${r}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${u};
|
|
wC += ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${n}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
int maxPosValue = ${c} -
|
|
int(getMaxPos(batch, idyD, idyR, idyC, ch));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue =
|
|
wD * ${l} * ${u} +
|
|
wR * ${u} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function xie(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:d}=n,h=[1,1,1],p=N.computePool3DInfo(i.shape,o,l,h,u,d),c=new hb(p,"max",!0),f=r.runWebGLProgram(c,[i],i.dtype),m=new Aie(p),g=r.runWebGLProgram(m,[a,f],i.dtype);return r.disposeIntermediateTensorInfo(f),g}var bie={kernelName:em,backendName:"webgl",kernelFunc:xie};function vie(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,input:s,output:i}=t,o=s;gd([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:d,dimRoundingMode:h}=n,p=N.computePool2DInfo(o.shape,l,u,1,d,h),c=!0,f=new Op(p,"max",c),m=r.runWebGLProgram(f,[o],o.dtype),g=new yie(p),y=r.runWebGLProgram(g,[a,m],o.dtype);return r.disposeIntermediateTensorInfo(m),y}var wie={kernelName:Qf,backendName:"webgl",kernelFunc:vie};function kie(e,t,r,n){let a=new Op(r,"max",!1),s=n.runWebGLProgram(a,[e],"float32");a=new Op(r,"max",!0,!0,t);let i=n.runWebGLProgram(a,[e],"float32");return[s,i]}var Iie={kernelName:tm,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:r})=>{let{x:n}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=r;v.assert(n.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${n.shape.length}.`);let u=[1,1];v.assert(N.eitherStridesOrDilationsAreOne(s,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${u}'`);let d=N.computePool2DInfo(n.shape,a,s,u,i),[h,p]=kie(n,o,d,l);return[h,p]}};function Sie(e,t,r,n){let a=v.sizeFromShape(t),s=v.sizeFromShape(e.shape)/a,i=ve({inputs:{x:e},attrs:{shape:[s,a]},backend:n}),o=Ml(i,"float32","mean",n),l=ve({inputs:{x:o},attrs:{shape:r},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}var Tie={kernelName:fi,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:r})=>{let{x:n}=e,{keepDims:a,axis:s}=t,i=r,o=n.shape.length,l=v.parseAxisParam(s,n.shape),u=l,d=N.getAxesPermutation(u,o),h=d!=null,p=i.shouldExecuteOnCPU([n]),c=[],f=n;if(h){if(p){let x=i.texData.get(f.dataId).values,b=new Array(o);for(let S=0;S<b.length;S++)b[S]=n.shape[d[S]];let w=db(x,n.shape,n.dtype,d,b);f=i.makeTensorInfo(b,n.dtype);let T=i.texData.get(f.dataId);T.values=w}else f=p0(n,d,i);c.push(f),u=N.getInnerMostAxes(u.length,o)}N.assertAxesAreInnerMostDims("sum",u,o);let[m,g]=N.computeOutAndReduceShapes(f.shape,u),y=m;a&&(y=N.expandShapeToKeepDim(m,l));let A=Sie(f,g,y,i);for(let x of c)i.disposeIntermediateTensorInfo(x);return A}};function Nie(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n,o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=l,d=N.getAxesPermutation(u,o),h=a;d!=null&&(h=xr({inputs:{x:a},backend:r,attrs:{perm:d}}),u=N.getInnerMostAxes(u.length,a.shape.length)),N.assertAxesAreInnerMostDims("min",u,o);let[p,c]=N.computeOutAndReduceShapes(h.shape,u),f=v.sizeFromShape(c),m=ve({inputs:{x:h},backend:r,attrs:{shape:[-1,f]}}),g=Ml(m,m.dtype,"min",r),y;if(i){let A=N.expandShapeToKeepDim(p,l);y=ve({inputs:{x:g},backend:r,attrs:{shape:A}})}else y=ve({inputs:{x:g},backend:r,attrs:{shape:p}});return r.disposeIntermediateTensorInfo(m),r.disposeIntermediateTensorInfo(g),d!=null&&r.disposeIntermediateTensorInfo(h),y}var Cie={kernelName:mi,backendName:"webgl",kernelFunc:Nie},Eie=HS+`
|
|
return min(a, b);
|
|
`,Rie=`
|
|
vec4 result = vec4(min(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+u0+`
|
|
return result;
|
|
`,Mie=br({opSnippet:Eie,packedOpSnippet:Rie,cpuKernelImpl:kee}),Fie={kernelName:gi,backendName:"webgl",kernelFunc:Mie},$ie=class{constructor(e,t,r){this.variableNames=["x"],this.outputShape=t.map((u,d)=>u[0]+e[d]+u[1]);let n=e.length,a=gt(n),s=t.map(u=>u[0]).join(","),i=t.map((u,d)=>u[0]+e[d]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,n),l=r==="reflect"?0:1;if(n===1){this.userCode=`
|
|
int start = ${s};
|
|
int end = ${i};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start) {
|
|
outC = start * 2 - outC - ${l};
|
|
} else if(outC >= end) {
|
|
outC = (end - 1) * 2 - outC + ${l};
|
|
}
|
|
setOutput(getX(outC - start));
|
|
}
|
|
`;return}this.userCode=`
|
|
${a} start = ${a}(${s});
|
|
${a} end = ${a}(${i});
|
|
|
|
void main() {
|
|
${a} outC = getOutputCoords();
|
|
for (int i = 0; i < ${n}; i++) {
|
|
if (outC[i] < start[i]) {
|
|
outC[i] = start[i] * 2 - outC[i] - ${l};
|
|
} else if(outC[i] >= end[i]) {
|
|
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
|
|
}
|
|
}
|
|
${a} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
`}},Pie=class{constructor(e,t,r){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((c,f)=>c[0]+e[f]+c[1]);let n=e.length,a=gt(n),s=t.map(c=>c[0]).join(","),i=t.map((c,f)=>c[0]+e[f]).join(","),o=Dr("rc",n),l=Dr("source",n),u=`${o[n-1]} < ${this.outputShape[n-1]}`,d=n===1?"source":`vec2(${l.slice(-2).join()})`,h=r==="reflect"?0:1,p="";if(n===1){let c=`
|
|
${a} source = rc;
|
|
if (source < start) {
|
|
source = start * 2 - source - ${h};
|
|
} else if (source >= end) {
|
|
source = (end - 1) * 2 - source + ${h};
|
|
}
|
|
source -= start;
|
|
`;p=`
|
|
${a} rc = outputLoc;
|
|
${c}
|
|
result[0] = getChannel(getX(${l.join()}), ${d});
|
|
${o[n-1]} += 1;
|
|
if(${u}) {
|
|
${c}
|
|
result[1] = getChannel(getX(${l.join()}), ${d});
|
|
}
|
|
`}else{let c=`
|
|
${a} source = rc;
|
|
${a} lt = ${a}(lessThan(source, start));
|
|
${a} gte = ${a}(greaterThanEqual(source, end));
|
|
${a} orig = 1 - (lt + gte);
|
|
source = orig * source +
|
|
lt * (start * 2 - source - ${h}) +
|
|
gte * ((end - 1) * 2 - source + ${h});
|
|
source -= start;
|
|
`;p=`
|
|
${a} rc = outputLoc;
|
|
${c}
|
|
result[0] = getChannel(getX(${l.join()}), ${d});
|
|
${o[n-1]} += 1;
|
|
if(${u}) {
|
|
${c}
|
|
result[1] = getChannel(getX(${l.join()}), ${d});
|
|
}
|
|
rc = outputLoc;
|
|
${o[n-2]} += 1;
|
|
if(${o[n-2]} < ${this.outputShape[n-2]}) {
|
|
${c}
|
|
result[2] = getChannel(getX(${l.join()}), ${d});
|
|
${o[n-1]} += 1;
|
|
if(${u}) {
|
|
${c}
|
|
result[3] = getChannel(getX(${l.join()}), ${d});
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
const ${a} start = ${a}(${s});
|
|
const ${a} end = ${a}(${i});
|
|
|
|
void main() {
|
|
${a} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${p}
|
|
setOutput(result);
|
|
}
|
|
`}},_ie=({inputs:e,backend:t,attrs:r})=>{let{x:n}=e,{paddings:a,mode:s}=r,i=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Pie(n.shape,a,s):new $ie(n.shape,a,s);return t.runWebGLProgram(i,[n],n.dtype)},zie={kernelName:yi,backendName:"webgl",kernelFunc:_ie},Oie=`if (b == 0.0) return NAN;
|
|
return mod(a, b);`,Die=`
|
|
vec4 result = mod(a, b);
|
|
vec4 isNaN = vec4(equal(b, vec4(0.0)));
|
|
`+u0+`
|
|
return result;
|
|
`,Lie=br({opSnippet:Oie,packedOpSnippet:Die}),Bie={kernelName:qu,backendName:"webgl",kernelFunc:Lie},Wie=class{constructor(e,t,r){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,r],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
|
|
float r = random(seed);
|
|
float cdf = 0.0;
|
|
|
|
for (int i = 0; i < ${t-1}; i++) {
|
|
cdf += getProbs(batch, i);
|
|
|
|
if (r < cdf) {
|
|
setOutput(float(i));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If no other event happened, last event happened.
|
|
setOutput(float(${t-1}));
|
|
}
|
|
`}},Vie=`
|
|
if (a == b) {
|
|
return 1.0;
|
|
};
|
|
return a / b;`,Uie=`
|
|
// vec4 one = vec4(equal(a, b));
|
|
// return one + (vec4(1.0) - one) * a / b;
|
|
vec4 result = a / b;
|
|
if(a.x == b.x) {
|
|
result.x = 1.;
|
|
}
|
|
if(a.y == b.y) {
|
|
result.y = 1.;
|
|
}
|
|
if(a.z == b.z) {
|
|
result.z = 1.;
|
|
}
|
|
if(a.w == b.w) {
|
|
result.w = 1.;
|
|
}
|
|
|
|
return result;
|
|
`,c8=br({opSnippet:Vie,packedOpSnippet:Uie,checkOutOfBounds:!0}),Gie={kernelName:ti,backendName:"webgl",kernelFunc:c8},Kv="return a - b;",f8=br({opSnippet:Kv,packedOpSnippet:Kv,supportsComplex:!0,cpuKernelImpl:Lee}),jie={kernelName:Fi,backendName:"webgl",kernelFunc:f8};function m8(e){let{inputs:t,backend:r,attrs:n}=e,{logits:a}=t,{dim:s}=n,i=v.parseAxisParam([s],a.shape),o=h8({inputs:{x:a},backend:r,attrs:{reductionIndices:i,keepDims:!1}}),l=N.expandShapeToKeepDim(o.shape,i),u=ve({inputs:{x:o},backend:r,attrs:{shape:l}}),d=f8({inputs:{a,b:u},backend:r}),h=u8({inputs:{x:d},backend:r}),p=h0({inputs:{x:h},backend:r,attrs:{axis:i,keepDims:!1}}),c=ve({inputs:{x:p},backend:r,attrs:{shape:l}}),f=c8({inputs:{a:h,b:c},backend:r});return r.disposeIntermediateTensorInfo(o),r.disposeIntermediateTensorInfo(u),r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(c),f}var Hie={kernelName:Ri,backendName:"webgl",kernelFunc:m8};function qie(e){let{inputs:t,backend:r,attrs:n}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=n,l=o?a:m8({inputs:{logits:a},backend:r,attrs:{dim:a.shape.length-1}}),u=l.shape[0],d=l.shape[1],h=new Wie(u,d,s),p=[[i]],c=r.runWebGLProgram(h,[l],"int32",p);return o||r.disposeIntermediateTensorInfo(l),c}var Kie={kernelName:rm,backendName:"webgl",kernelFunc:qie},Xie=qn+`
|
|
return -x;
|
|
`,Zie=`
|
|
vec4 result = -x;
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`;function Yie(e){let{inputs:t,backend:r}=e,{x:n}=t;if(r.shouldExecuteOnCPU([n])){let s=r.texData.get(n.dataId),[i,o]=See(s.values,n.shape,n.dtype);return r.makeTensorInfo(o,n.dtype,i)}let a;return Y().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new yo(n.shape,Zie):a=new Ga(n.shape,Xie),r.runWebGLProgram(a,[n],n.dtype)}var Jie={kernelName:Yo,backendName:"webgl",kernelFunc:Yie},Qie=jn.nonMaxSuppressionV3Impl;function eoe(e){N.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:r,attrs:n}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=n,u=r.readSync(a.dataId),d=r.readSync(s.dataId),{selectedIndices:h}=Qie(u,d,i,o,l);return r.makeTensorInfo([h.length],"int32",new Int32Array(h))}var toe={kernelName:Qo,backendName:"webgl",kernelFunc:eoe},roe=jn.nonMaxSuppressionV4Impl;function noe(e){N.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:r,attrs:n}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=n,d=r.readSync(a.dataId),h=r.readSync(s.dataId),{selectedIndices:p,validOutputs:c}=roe(d,h,i,o,l,u);return[r.makeTensorInfo([p.length],"int32",new Int32Array(p)),r.makeTensorInfo([],"int32",new Int32Array([c]))]}var aoe={kernelName:Ku,backendName:"webgl",kernelFunc:noe},soe=jn.nonMaxSuppressionV5Impl;function ioe(e){N.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:r,attrs:n}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=n,d=r.readSync(a.dataId),h=r.readSync(s.dataId),p=i,c=o,f=l,m=u,{selectedIndices:g,selectedScores:y}=soe(d,h,p,c,f,m);return[r.makeTensorInfo([g.length],"int32",new Int32Array(g)),r.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var ooe={kernelName:el,backendName:"webgl",kernelFunc:ioe},loe=class{constructor(e,t,r,n){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int index = round(getIndices(coords.x));
|
|
setOutput(mix(float(${n}), float(${r}),
|
|
float(index == coords.y)));
|
|
}
|
|
`}},uoe=e=>{let{inputs:t,backend:r,attrs:n}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=n,l=v.sizeFromShape(a.shape),u=new loe(l,s,i,o),d=ve({inputs:{x:a},backend:r,attrs:{shape:[l]}}),h=r.runWebGLProgram(u,[d],a.dtype);r.disposeIntermediateTensorInfo(d);let p=[...a.shape,s],c=ve({inputs:{x:h},backend:r,attrs:{shape:p}});return r.disposeIntermediateTensorInfo(h),c},doe={kernelName:rl,backendName:"webgl",kernelFunc:uoe};function Rf(e){let{inputs:t,backend:r}=e,{x:n}=t;if(n.dtype==="complex64"){let a=Rh({inputs:{input:n},backend:r}),s=Rf({inputs:{x:a},backend:r}),i=c0({inputs:{input:n},backend:r}),o=Rf({inputs:{x:i},backend:r}),l=Li({inputs:{real:s,imag:o},backend:r});return r.disposeIntermediateTensorInfo(a),r.disposeIntermediateTensorInfo(s),r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}else return Mh({attrs:{shape:n.shape,dtype:n.dtype,value:n.dtype==="string"?"":0},backend:r})}var poe={kernelName:xl,backendName:"webgl",kernelFunc:Rf};function g8(e){let{inputs:t,backend:r}=e,{x:n}=t;if(n.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(n.dtype==="complex64"){let a=Rh({inputs:{input:n},backend:r}),s=g8({inputs:{x:a},backend:r}),i=c0({inputs:{input:n},backend:r}),o=Rf({inputs:{x:i},backend:r}),l=Li({inputs:{real:s,imag:o},backend:r});return r.disposeIntermediateTensorInfo(a),r.disposeIntermediateTensorInfo(s),r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}else return Mh({attrs:{shape:n.shape,dtype:n.dtype,value:1},backend:r})}var hoe={kernelName:tl,backendName:"webgl",kernelFunc:g8};function coe(e){let{inputs:t,backend:r,attrs:n}=e,{axis:a}=n;if(t.length===1)return K1({inputs:{input:t[0]},backend:r,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(d=>{v.assertShapesMatch(s,d.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===d.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(d=>{let h=K1({inputs:{input:d},backend:r,attrs:{dim:a}});return o.push(h),h}),u=n8({inputs:l,backend:r,attrs:{axis:a}});return o.forEach(d=>r.disposeIntermediateTensorInfo(d)),u}var foe={kernelName:nl,backendName:"webgl",kernelFunc:coe},moe=class{constructor(e,t,r){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let n=e.length,a=gt(n),s=t.map(l=>l[0]).join(","),i=t.map((l,u)=>l[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,n);if(n===1){this.userCode=`
|
|
int start = ${s};
|
|
int end = ${i};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start || outC >= end) {
|
|
setOutput(value);
|
|
} else {
|
|
setOutput(getX(outC - start));
|
|
}
|
|
}
|
|
`;return}this.userCode=`
|
|
${a} start = ${a}(${s});
|
|
${a} end = ${a}(${i});
|
|
|
|
void main() {
|
|
${a} outC = getOutputCoords();
|
|
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
|
|
setOutput(value);
|
|
} else {
|
|
${a} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
}
|
|
`}},goe=class{constructor(e,t,r){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let n=e.length,a=gt(n),s=t.map(f=>f[0]).join(","),i=t.map((f,m)=>f[0]+e[m]).join(","),o=Dr("rc",n),l=Dr("source",n),u=`${o[n-1]} < ${this.outputShape[n-1]}`,d=n===1?"source":`vec2(${l.slice(-2).join()})`,h=[`${a} rc = outputLoc;`,`${o[n-1]} += 1;
|
|
if(${u}) {
|
|
`,n===1?"":`}
|
|
rc = outputLoc;
|
|
${o[n-2]} += 1;
|
|
if(${o[n-2]} < ${this.outputShape[n-2]}) {`,n===1?"":` ${o[n-1]} += 1;
|
|
if(${u}) {`],p=n===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",c="";for(let f=0,m=n===1?2:4;f<m;f++)c+=`
|
|
${h[f]}
|
|
if (${p}) {
|
|
result[${f}] = float(value);
|
|
} else {
|
|
${a} source = rc - start;
|
|
result[${f}] = getChannel(getX(${l.join()}), ${d});
|
|
}
|
|
`;c+=n===1?"} ":"}}",this.userCode=`
|
|
const ${a} start = ${a}(${s});
|
|
const ${a} end = ${a}(${i});
|
|
|
|
void main() {
|
|
${a} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${c}
|
|
setOutput(result);
|
|
}
|
|
`}},y8=e=>{let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{paddings:s,constantValue:i}=n;if(v.sizeFromShape(a.shape)===0){let u=s.map((d,h)=>d[0]+a.shape[h]+d[1]);return Mh({backend:r,attrs:{shape:u,value:i,dtype:a.dtype}})}let o=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new goe(a.shape,s,i):new moe(a.shape,s,i),l=[[i]];return r.runWebGLProgram(o,[a],a.dtype,l)},yoe={kernelName:xi,backendName:"webgl",kernelFunc:y8},Aoe=`
|
|
if(a < 0.0 && floor(b) < b){
|
|
return NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
return (round(mod(b, 2.0)) != 1) ?
|
|
pow(abs(a), b) : sign(a) * pow(abs(a), b);
|
|
`,xoe=`
|
|
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
|
|
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
|
|
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
|
|
vec4 result = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
bvec4 isExpZero = equal(b, vec4(0.0));
|
|
result.r = isExpZero.r ? 1.0 : result.r;
|
|
result.g = isExpZero.g ? 1.0 : result.g;
|
|
result.b = isExpZero.b ? 1.0 : result.b;
|
|
result.a = isExpZero.a ? 1.0 : result.a;
|
|
|
|
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
|
|
`+u0+`
|
|
return result;
|
|
`,boe=br({opSnippet:Aoe,packedOpSnippet:xoe}),voe={kernelName:bi,backendName:"webgl",kernelFunc:boe};function woe(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n,o=a.shape.length,l=[],u=v.parseAxisParam(s,a.shape),d=u,h=N.getAxesPermutation(d,o),p=a;h!=null&&(p=xr({inputs:{x:a},backend:r,attrs:{perm:h}}),d=N.getInnerMostAxes(d.length,o),l.push(p)),N.assertAxesAreInnerMostDims("prod",d,o);let c;if(r.shouldExecuteOnCPU([p])){let f=r.texData.get(p.dataId).values,{outVals:m,outShape:g,outDtype:y}=Nee(p.shape,p.dtype,f,d);c=r.makeTensorInfo(g,y,m)}else{let[f,m]=N.computeOutAndReduceShapes(p.shape,d),g=v.sizeFromShape(m),y=ve({inputs:{x:p},backend:r,attrs:{shape:[-1,g]}}),A=ah(a.dtype),x=Ml(y,A,"prod",r);c=ve({inputs:{x},backend:r,attrs:{shape:f}}),l.push(y),l.push(x)}if(i){l.push(c);let f=N.expandShapeToKeepDim(c.shape,u);c=ve({inputs:{x:c},backend:r,attrs:{shape:f}})}return l.forEach(f=>r.disposeIntermediateTensorInfo(f)),c}var koe={kernelName:al,backendName:"webgl",kernelFunc:woe},A8=e=>{let{backend:t,attrs:r}=e,{start:n,stop:a,step:s,dtype:i}=r,o=Cee(n,a,s,i);return t.makeTensorInfo([o.length],i,o)},Ioe={kernelName:Xu,backendName:"webgl",kernelFunc:A8},Soe="return 1.0 / x;",Toe=it({opSnippet:Soe}),Noe={kernelName:Zu,backendName:"webgl",kernelFunc:Toe},Coe=qn+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,Eoe=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,Roe=it({opSnippet:Coe,packedOpSnippet:Eoe}),Moe={kernelName:wi,backendName:"webgl",kernelFunc:Roe},Foe=qn+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,$oe=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,Poe=it({opSnippet:Foe,packedOpSnippet:$oe}),_oe={kernelName:Ii,backendName:"webgl",kernelFunc:Poe},zoe=class{constructor(e,t,r,n,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,r,l];let u=[n&&t>1?i-1:i,n&&r>1?o-1:o],d=[n&&t>1?t-1:t,n&&r>1?r-1:r],h;a?h="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":h="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/d[0]},
|
|
${u[1]/d[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${h};
|
|
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
|
|
ivec2 sourceCeilRC = ivec2(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
float newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},Ooe=class{constructor(e,t,r,n,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,r,l];let u=[n&&t>1?i-1:i,n&&r>1?o-1:o],d=[n&&t>1?t-1:t,n&&r>1?r-1:r],h;a?h="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":h="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/d[0]},
|
|
${u[1]/d[1]},
|
|
${u[1]/d[1]});
|
|
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
|
|
${o}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${h};
|
|
|
|
// Compute the four integer indices.
|
|
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
|
|
ivec3 sourceCeilRC = ivec3(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${r-1};
|
|
|
|
// In parallel, construct four corners for all four components in
|
|
// packed 2x2 cell.
|
|
vec4 topLeft = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomLeft = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 topRight = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomRight = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
|
|
|
|
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
|
|
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
|
|
vec4 newValue = mix(top, bottom, fracRC.x);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function Doe(e){let{inputs:t,backend:r,attrs:n}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=n,[l,u]=o,d=Y().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Ooe(a.shape,l,u,s,i):new zoe(a.shape,l,u,s,i);return r.runWebGLProgram(d,[a],"float32")}var Loe={kernelName:ki,backendName:"webgl",kernelFunc:Doe},Boe=class{constructor(e,t,r){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,n,a]=t,[,s,i]=e,o=[r&&s>1?n-1:n,r&&i>1?a-1:a],l=[r&&s>1?s-1:s,r&&i>1?i-1:i],u=o[0]/l[0],d=o[1]/l[1],h=1/u,p=1/d,c=Math.ceil(h)*2+2,f=Math.ceil(p)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${d});
|
|
|
|
const float invHeightScale = float(${h});
|
|
const float invWidthScale = float(${p});
|
|
|
|
const int winHeight = int(${c});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(startRLerp - float(winHeight / 2));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(startCLerp - float(winWidth / 2));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float dxR = float(dyR) * heightScale;
|
|
int topDxRIndex = int(floor(dxR));
|
|
int bottomDxRIndex = int(min(ceil(dxR), ${n-1}.0));
|
|
float dxRLerp = dxR - float(topDxRIndex);
|
|
float inverseDxRLerp = 1.0 - dxRLerp;
|
|
|
|
float dxC = float(dyC) * widthScale;
|
|
int leftDxCIndex = int(floor(dxC));
|
|
int rightDxCIndex = int(min(ceil(dxC), ${a-1}.0));
|
|
float dxCLerp = dxC - float(leftDxCIndex);
|
|
float inverseDxCLerp = 1.0 - dxCLerp;
|
|
|
|
if (r == topDxRIndex && c == leftDxCIndex) {
|
|
// topLeft
|
|
accumulator +=
|
|
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == topDxRIndex && c == rightDxCIndex) {
|
|
// topRight
|
|
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == leftDxCIndex) {
|
|
// bottomLeft
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == rightDxCIndex) {
|
|
// bottomRight
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function Woe(e){let{inputs:t,backend:r,attrs:n}=e,{images:a,dy:s}=t,{alignCorners:i}=n,o=new Boe(s.shape,a.shape,i);return r.runWebGLProgram(o,[s],s.dtype)}var Voe={kernelName:am,backendName:"webgl",kernelFunc:Woe},Uoe=class{constructor(e,t,r,n,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,r,l];let u=[n&&t>1?i-1:i,n&&r>1?o-1:o],d=[n&&t>1?t-1:t,n&&r>1?r-1:r],h=n?"0.5":"0.0",p;a?p="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":p="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/d[0]},
|
|
${u[1]/d[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestRC = ivec2(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${h})));
|
|
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},Goe=class{constructor(e,t,r,n,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,r,l];let u=[n&&t>1?i-1:i,n&&r>1?o-1:o],d=[n&&t>1?t-1:t,n&&r>1?r-1:r],h=n?"0.5":"0.0",p;a?p="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":p="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/d[0]},
|
|
${u[1]/d[1]},
|
|
${u[1]/d[1]});
|
|
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
|
|
${o}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec3 sourceNearestRC = ivec3(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${h})));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${r-1};
|
|
|
|
vec4 newValue = vec4(
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function joe(e){let{inputs:t,backend:r,attrs:n}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=n,[l,u]=o,d=Y().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Goe(a.shape,l,u,s,i):new Uoe(a.shape,l,u,s,i);return r.runWebGLProgram(d,[a],a.dtype)}var Hoe={kernelName:Yu,backendName:"webgl",kernelFunc:joe},qoe=class{constructor(e,t,r){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,n,a]=t,[,s,i]=e,o=[r&&s>1?n-1:n,r&&i>1?a-1:a],l=[r&&s>1?s-1:s,r&&i>1?i-1:i],u=o[0]/l[0],d=o[1]/l[1],h=1/u,p=1/d,c=Math.ceil(h)*2+2,f=Math.ceil(p)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${d});
|
|
|
|
const float invHeightScale = float(${h});
|
|
const float invWidthScale = float(${p});
|
|
|
|
const int winHeight = int(${c});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float sourceFracRow =
|
|
float(${o[0]}) *
|
|
(float(dyR) / float(${l[0]}));
|
|
|
|
float sourceFracCol =
|
|
float(${o[1]}) *
|
|
(float(dyC) / float(${l[1]}));
|
|
|
|
int sourceNearestRow = int(min(
|
|
float(int(${n}) - 1),
|
|
${r} ? float(round(sourceFracRow)) :
|
|
float(floor(sourceFracRow))));
|
|
|
|
int sourceNearestCol = int(min(
|
|
float(int(${a}) - 1),
|
|
${r} ? float(round(sourceFracCol)) :
|
|
float(floor(sourceFracCol))));
|
|
|
|
if (r == sourceNearestRow && c == sourceNearestCol) {
|
|
accumulator += getDy(b, dyR, dyC, d);
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function Koe(e){let{inputs:t,backend:r,attrs:n}=e,{images:a,dy:s}=t,{alignCorners:i}=n,o=new qoe(s.shape,a.shape,i);return r.runWebGLProgram(o,[s],s.dtype)}var Xoe={kernelName:nm,backendName:"webgl",kernelFunc:Koe},Zoe=class{constructor(e,t){this.variableNames=["x"];let r=e.length;if(r>4)throw new Error(`WebGL backend: Reverse of rank-${r} tensor is not yet supported`);if(this.outputShape=e,r===1){this.userCode=`
|
|
void main() {
|
|
int coord = getOutputCoords();
|
|
setOutput(getX(${e[0]} - coord - 1));
|
|
}
|
|
`;return}let n=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,a=e.map((i,o)=>n(o)).join(","),s=gt(r);this.userCode=`
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
setOutput(getX(${a}));
|
|
}
|
|
`}},Yoe=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let r=e.length;if(r>4)throw new Error(`WebGL backend: Reverse of rank-${r} tensor is not yet supported`);this.outputShape=e;let n=Dr("rc",r),a=`${n[r-1]} + 1 < ${this.outputShape[r-1]}`,s=`${n[r-2]} + 1 < ${this.outputShape[r-2]}`,i=gt(r);r===1?this.userCode=`
|
|
void main(){
|
|
int rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = getChannel(getX(${e[0]} - rc - 1),
|
|
${e[0]} - rc - 1);
|
|
if(${a}){
|
|
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
|
|
${e[0]} - (rc + 1) - 1);
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`:this.userCode=`
|
|
void main() {
|
|
${i} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = ${o(n.slice())};
|
|
if(${a}){
|
|
result.g = ${l(n.slice())};
|
|
}
|
|
if(${s}) {
|
|
result.b = ${u(n.slice())};
|
|
if(${a}) {
|
|
result.a = ${d(n.slice())};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`;function o(c){return h(c)}function l(c){return c[r-1]="("+c[r-1]+" + 1)",h(c)}function u(c){return c[r-2]="("+c[r-2]+" + 1)",h(c)}function d(c){return c[r-1]="("+c[r-1]+" + 1)",c[r-2]="("+c[r-2]+" + 1)",h(c)}function h(c){let f=e.map((y,A)=>p(A,c)),m=f.join(","),g=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${g}))`}function p(c,f){return t.indexOf(c)!==-1&&e[c]!==1?`${e[c]} - ${f[c]} - 1`:`${f[c]}`}}};function Joe(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{dims:s}=n,i=a.shape.length,o=v.parseAxisParam(s,a.shape);if(i===0)return nn({inputs:{x:a},backend:r});let l=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Yoe(a.shape,o):new Zoe(a.shape,o);return r.runWebGLProgram(l,[a],a.dtype)}var Qoe={kernelName:il,backendName:"webgl",kernelFunc:Joe},ele=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let r=e[1],n=e[2];this.outputShape=e;let a="";typeof t=="number"?a=`float outputValue = ${t.toFixed(2)};`:a=`
|
|
vec3 fill = vec3(${t.join(",")});
|
|
float outputValue = fill[coords[3]];`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
float coordXFloat = (float(x) - params[0]) * params[3] -
|
|
(float(y) - params[1]) * params[2];
|
|
float coordYFloat = (float(x) - params[0]) * params[2] +
|
|
(float(y) - params[1]) * params[3];
|
|
int coordX = int(round(coordXFloat + params[0]));
|
|
int coordY = int(round(coordYFloat + params[1]));
|
|
${a}
|
|
if(coordX >= 0 && coordX < ${n} && coordY >= 0 && coordY < ${r}) {
|
|
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},tle={kernelName:bl,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:r})=>{let{image:n}=e,{radians:a,fillValue:s,center:i}=t,o=r,l=new ele(n.shape,s),[u,d]=N.getImageCenter(i,n.shape[1],n.shape[2]),h=[[u,d,Math.sin(a),Math.cos(a)]];return o.runWebGLProgram(l,[n],n.dtype,h)}},rle=`
|
|
// OpenGL ES does not support round function.
|
|
// The algorithm is based on banker's rounding.
|
|
float base = floor(x);
|
|
if ((x - base) < 0.5) {
|
|
return floor(x);
|
|
} else if ((x - base) > 0.5) {
|
|
return ceil(x);
|
|
} else {
|
|
if (mod(base, 2.0) == 0.0) {
|
|
return base;
|
|
} else {
|
|
return base + 1.0;
|
|
}
|
|
}
|
|
`,nle=it({opSnippet:rle}),ale={kernelName:ol,backendName:"webgl",kernelFunc:nle},sle="return inversesqrt(x);",ile=it({opSnippet:sle,cpuKernelImpl:Eee}),ole={kernelName:Si,backendName:"webgl",kernelFunc:ile},x8=class{constructor(e,t,r,n,a,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=gt(a.length),l=gt(s.length),u="";r===1?u="i":r===2&&(u="i, j");let d=`getIndices(${u})`,h="";n===1?h="i":n===2&&(h="i, coords[1]");let p=`getUpdates(${h})`,c=t>1?"strides[j]":"strides";this.userCode=`
|
|
${o} strides = ${o}(${a});
|
|
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
float sum = 0.0;
|
|
bool found = false;
|
|
for (int i = 0; i < ${e}; i++) {
|
|
int flattenedIndex = 0;
|
|
for (int j = 0; j < ${t}; j++) {
|
|
int index = round(${d});
|
|
flattenedIndex += index * ${c};
|
|
}
|
|
if (flattenedIndex == coords[0]) {
|
|
sum += ${p};
|
|
found = true;
|
|
}
|
|
}
|
|
setOutput(mix(getDefaultValue(), sum, float(found)));
|
|
}
|
|
`}};function lle(e){let{inputs:t,backend:r,attrs:n}=e,{indices:a,updates:s}=t,{shape:i}=n,{sliceRank:o,numUpdates:l,sliceSize:u,strides:d,outputSize:h}=N.calculateShapes(s,a,i),p=[h/u,u];if(h===0)return r.makeTensorInfo(i,a.dtype);let c=ve({inputs:{x:a},backend:r,attrs:{shape:[l,o]}}),f=ve({inputs:{x:s},backend:r,attrs:{shape:[l,u]}}),m=r.makeTensorInfo([],"float32",new Float32Array([0])),g=new x8(l,o,c.shape.length,f.shape.length,d,p),y=r.runWebGLProgram(g,[f,c,m],f.dtype),A=ve({inputs:{x:y},backend:r,attrs:{shape:i}});return r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(f),r.disposeIntermediateTensorInfo(y),r.disposeIntermediateTensorInfo(m),A}var ule={kernelName:ll,backendName:"webgl",kernelFunc:lle},dle=class{constructor(e,t,r){this.variableNames=["c","a","b"],this.outputShape=t;let n,a;if(r>4)throw Error(`Where for rank ${r} is not yet supported`);if(r===1)a="resRC",n="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let u=0;u<t.length;u++)l.push(`${i[u]}`),u<e&&o.push(`${i[u]}`);n=o.join(),a=l.join()}let s=gt(r);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
float cVal = getC(${n});
|
|
if (cVal >= 1.0) {
|
|
setOutput(getA(${a}));
|
|
} else {
|
|
setOutput(getB(${a}));
|
|
}
|
|
}
|
|
`}};function ple(e){let{inputs:t,backend:r}=e,{condition:n,t:a,e:s}=t,i=new dle(n.shape.length,a.shape,a.shape.length);return r.runWebGLProgram(i,[n,a,s],Nr(a.dtype,s.dtype))}var hle={kernelName:ul,backendName:"webgl",kernelFunc:ple},cle=`
|
|
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
|
|
// see: https://arxiv.org/abs/1706.02515
|
|
float scaleAlpha = ${N.SELU_SCALEALPHA};
|
|
float scale = ${N.SELU_SCALE};
|
|
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
|
|
`,fle=it({opSnippet:cle}),mle={kernelName:Ju,backendName:"webgl",kernelFunc:fle},gle=vd+`
|
|
return 1.0 / (1.0 + exp(-1.0 * x));
|
|
`,yle=`
|
|
vec4 result = 1.0 / (1.0 + exp(-1.0 * x));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,Ale=it({opSnippet:gle,packedOpSnippet:yle,cpuKernelImpl:Ree}),xle={kernelName:Ni,backendName:"webgl",kernelFunc:Ale},ble=`
|
|
if (isnan(x)) { return 0.0; }
|
|
return sign(x);
|
|
`,vle=it({opSnippet:ble}),wle={kernelName:Qu,backendName:"webgl",kernelFunc:vle},kle=vd+`
|
|
return sin(x);
|
|
`,Ile=it({opSnippet:kle}),Sle={kernelName:Ti,backendName:"webgl",kernelFunc:Ile},Tle=`
|
|
float e2x = exp(x);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,Nle=it({opSnippet:Tle}),Cle={kernelName:pl,backendName:"webgl",kernelFunc:Nle},Ele=`
|
|
float epsilon = 1.1920928955078125e-7;
|
|
float threshold = log(epsilon) + 2.0;
|
|
|
|
bool too_large = x > -threshold;
|
|
bool too_small = x < threshold;
|
|
|
|
float result;
|
|
float exp_x = exp(x);
|
|
|
|
if (too_large){
|
|
result = x;
|
|
}
|
|
else if (too_small){
|
|
result = exp_x;
|
|
}
|
|
else{
|
|
result = log(exp_x + 1.0);
|
|
}
|
|
return result;
|
|
`,Rle=it({opSnippet:Ele}),Mle={kernelName:ed,backendName:"webgl",kernelFunc:Rle},Fle=e=>{let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockShape:s,paddings:i}=n;v.assert(a.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,A)=>y*A),l=[[0,0]];l.push(...i);for(let y=1+s.length;y<a.shape.length;++y)l.push([0,0]);let u=[],d=y8({inputs:{x:a},backend:r,attrs:{paddings:l,constantValue:0}}),h=N.getReshaped(d.shape,s,o,!1),p=N.getPermuted(h.length,s.length,!1),c=N.getReshapedPermuted(d.shape,s,o,!1),f=ve({inputs:{x:d},backend:r,attrs:{shape:h}}),m=xr({inputs:{x:f},backend:r,attrs:{perm:p}}),g=ve({inputs:{x:m},backend:r,attrs:{shape:c}});return u.push(d),u.push(f),u.push(m),u.forEach(y=>r.disposeIntermediateTensorInfo(y)),g},$le={kernelName:hl,backendName:"webgl",kernelFunc:Fle};function Ple(e){let{inputs:t,backend:r}=e,{indices:n,values:a,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${s.shape}`);if(n.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${n.shape}`);if(a.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${a.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${i.shape}`);let o=r.readSync(n.dataId),l=r.readSync(a.dataId),u=r.readSync(s.dataId),d=r.readSync(i.dataId)[0],[h,p,c,f,m]=Fee(o,n.shape,n.dtype,l,a.dtype,u,d);return[r.makeTensorInfo(p,n.dtype,h),r.makeTensorInfo([p[0]],a.dtype,c),r.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),r.makeTensorInfo([m.length],n.dtype,new Int32Array(m))]}var _le={kernelName:Zp,backendName:"webgl",kernelFunc:Ple};function zle(e){let{inputs:t,backend:r}=e,{inputIndices:n,inputShape:a,newShape:s}=t;if(n.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${n.shape}`);if(a.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${a.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(r.readSync(a.dataId)),o=r.readSync(n.dataId),l=Array.from(r.readSync(s.dataId)),[u,d,h]=$ee(o,n.shape,n.dtype,i,l);return[r.makeTensorInfo(d,n.dtype,u),r.makeTensorInfo([h.length],s.dtype,new Int32Array(h))]}var Ole={kernelName:td,backendName:"webgl",kernelFunc:zle};function Dle(e){let{inputs:t,backend:r}=e,{data:n,indices:a,segmentIds:s}=t;if(n.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(a.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${a.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);let i=r.readSync(n.dataId),o=r.readSync(a.dataId),l=r.readSync(s.dataId),[u,d]=WS(i,n.shape,n.dtype,o,l,!0);return r.makeTensorInfo(d,n.dtype,u)}var Lle={kernelName:Yp,backendName:"webgl",kernelFunc:Dle};function Ble(e){let{inputs:t,backend:r}=e,{data:n,indices:a,segmentIds:s}=t;if(n.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(a.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${a.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);let i=r.readSync(n.dataId),o=r.readSync(a.dataId),l=r.readSync(s.dataId),[u,d]=WS(i,n.shape,n.dtype,o,l);return r.makeTensorInfo(d,n.dtype,u)}var Wle={kernelName:Jp,backendName:"webgl",kernelFunc:Ble};function Vle(e){let{inputs:t,backend:r,attrs:n}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=n,{sliceRank:l,numUpdates:u,strides:d,outputSize:h}=N.calculateShapes(s,a,o),p=!1,c=new x8(u,l,a.shape.length,s.shape.length,d,[h,1],p),f=r.runWebGLProgram(c,[s,a,i],s.dtype),m=ve({inputs:{x:f},backend:r,attrs:{shape:o}});return r.disposeIntermediateTensorInfo(f),m}var Ule={kernelName:Qp,backendName:"webgl",kernelFunc:Vle};function Gle(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=n,o=v.parseAxisParam(i,a.shape)[0],l=N.prepareSplitSize(a,s,o),u=a.shape.length,d=new Array(u).fill(0),h=a.shape.slice();return l.map(p=>{let c=[...h];c[o]=p;let f=wd({inputs:{x:a},backend:r,attrs:{begin:d,size:c}});return d[o]+=p,f})}var jle={kernelName:cl,backendName:"webgl",kernelFunc:Gle},Xv="return sqrt(x);",Hle=it({opSnippet:Xv,packedOpSnippet:Xv,cpuKernelImpl:Pee}),qle={kernelName:Ci,backendName:"webgl",kernelFunc:Hle},Kle="return x * x;",Xle=it({opSnippet:Kle}),Zle={kernelName:rd,backendName:"webgl",kernelFunc:Xle},Zv="return (a - b) * (a - b);",Yle=br({opSnippet:Zv,packedOpSnippet:Zv}),Jle={kernelName:Mi,backendName:"webgl",kernelFunc:Yle};function Qle({inputs:e,attrs:t,backend:r}){let{x:n}=e,a=qn+`
|
|
return x > 0.0 ? 1.0 : float(${t.alpha});
|
|
`,s=new Ga(n.shape,a);return r.runWebGLProgram(s,[n],n.dtype)}var eue={kernelName:_i,backendName:"webgl",kernelFunc:Qle},tue=class{constructor(e,t,r){this.variableNames=["x"],this.outputShape=r;let n=r.length,a=gt(r.length),s=gt(r.length),i="";if(n===1)i="coords * strides + begin";else{let o=0;i=r.map((l,u)=>(o++,r.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${o-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=`
|
|
${a} begin = ${a}(${e});
|
|
${a} strides = ${a}(${t});
|
|
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
setOutput(getX(${i}));
|
|
}
|
|
`}};function rue(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:d,newAxisMask:h,shrinkAxisMask:p}=n,{finalShapeSparse:c,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:y,begin:A,end:x,strides:b}=_t.sliceInfo(a.shape,s,i,o,l,u,d,h,p),w;if(m)w=ve({inputs:{x:a},backend:r,attrs:{shape:f}});else if(g||y){v.assert(a.shape.length>=1,()=>`Input must have rank at least 1, got: ${a.shape.length}`);let S=_t.computeOutShape(A,x,b),E=wd({inputs:{x:a},backend:r,attrs:{begin:A,size:S}});w=ve({inputs:{x:E},backend:r,attrs:{shape:f}}),r.disposeIntermediateTensorInfo(E)}else if(r.shouldExecuteOnCPU([a])){let S=r.readSync(a.dataId),E=We(a.shape,a.dtype,S),R=_ee(c,E,b,A);w=r.makeTensorInfo(f,a.dtype,R.values)}else{let S=new tue(A,b,c);w=r.runWebGLProgram(S,[a],a.dtype)}let T=ve({inputs:{x:w},backend:r,attrs:{shape:f}});return r.disposeIntermediateTensorInfo(w),T}var nue={kernelName:fl,backendName:"webgl",kernelFunc:rue};function aue(e){let{inputs:t,backend:r,attrs:n}=e,{separator:a,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=n,{data:d,dataSplits:h}=t,p=r.readSync(d.dataId),c=r.readSync(h.dataId),[f,m]=zee(p,c,a,s,i,o,l,u);return[r.makeTensorInfo([f.length],"string",f),r.makeTensorInfo(h.shape,"int32",m)]}var sue={kernelName:eh,backendName:"webgl",kernelFunc:aue};function iue(e){let{inputs:t,backend:r,attrs:n}=e,{skipEmpty:a}=n,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=r.readSync(s.dataId),l=r.readSync(i.dataId)[0],[u,d,h]=Oee(o,l,a),p=d.length;return[r.makeTensorInfo([p,2],"int32",u),r.makeTensorInfo([p],"string",d),r.makeTensorInfo([2],"int32",new Int32Array(h))]}var oue={kernelName:sm,backendName:"webgl",kernelFunc:iue};function lue(e){let{inputs:t,backend:r,attrs:n}=e,{numBuckets:a}=n,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(a<=0)throw new Error("Number of buckets must be at least 1");let i=r.readSync(s.dataId),o=Dee(i,a);return r.makeTensorInfo(s.shape,"int32",o)}var uue={kernelName:im,backendName:"webgl",kernelFunc:lue},due="return tan(x);",pue=it({opSnippet:due}),hue={kernelName:ml,backendName:"webgl",kernelFunc:pue},cue=`
|
|
float e2x = exp(-2.0 * abs(x));
|
|
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,fue=it({opSnippet:cue}),mue={kernelName:$i,backendName:"webgl",kernelFunc:fue},gue=class{constructor(e,t){this.variableNames=["A"];let r=new Array(e.length);for(let s=0;s<r.length;s++)r[s]=e[s]*t[s];this.outputShape=r,this.rank=r.length;let n=gt(this.rank),a=yue(e);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
setOutput(getA(${a}));
|
|
}
|
|
`}};function yue(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let r=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],n=[];for(let a=0;a<e.length;a++)n.push(`imod(${r[a]}, ${e[a]})`);return n.join()}function b8(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{reps:s}=n;if(a.dtype==="string"||a.shape.length>5){let o=r.readSync(a.dataId),l=a.dtype==="string"?o.map(h=>v.decodeString(h)):o,u=We(a.shape,a.dtype,l),d=Bee(u,s);return r.makeTensorInfo(d.shape,d.dtype,d.values)}let i=new gue(a.shape,s);return r.runWebGLProgram(i,[a],a.dtype)}var Aue={kernelName:Xa,backendName:"webgl",kernelFunc:b8},xue=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// We compare elements pair-wise within a group of size 2 * inc.
|
|
// The comparing rule for each group alternates between ascending
|
|
// and descending. Within each group, we compare each pair at
|
|
// positions i and i+inc. To decide whether an element at position i
|
|
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
|
|
// inc, it is in the first half of the group, we denote it as x0,
|
|
// otherwise we denote it as x1.
|
|
// For example, as shown in the Bitonic top K paper referenced above,
|
|
// Figure5(a) shows that element[1] is in the
|
|
// second half of the group when group size is 2, but it is in the
|
|
// first half of the group when group size is 4.
|
|
|
|
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
|
|
int i = isFirstInPair ? elemIdx : elemIdx - inc;
|
|
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
|
|
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
|
|
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
|
|
|
|
// Denotes which direction indices are in (ascending or descending).
|
|
bool reverse = imod(elemIdx, 2 * dir) >= dir;
|
|
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
|
|
if (reverse == isGreater) { // Elements in opposite order of direction
|
|
int iTemp = i0;
|
|
i0 = i1;
|
|
i1 = iTemp;
|
|
}
|
|
if (isFirstInPair) {
|
|
setOutput(float(i0));
|
|
} else {
|
|
setOutput(float(i1));
|
|
}
|
|
}
|
|
`}},bue=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// The output size is half of the previous size.
|
|
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
|
|
// we only need to output the indices at positions |, the indices at
|
|
// positions _ can be thrown away, see Figure5(b) After Phase 2
|
|
// (Merge phase) in the Bitonic Top K paper referenced above.
|
|
// For example, the paper shows we only need to output the orange bars.
|
|
// The output sequence should look like this | | | | | | | |.
|
|
// Because the sequence is halved, to map the output index back
|
|
// to the previous sequence to find the corresponding value,
|
|
// we need to double the index. When we double the index,
|
|
// we basically interpolate a position, so 2i looks like
|
|
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
|
|
// of each 2k positions by - elemIdx % k. E.g. for output at
|
|
// index 4,5,6,7, we want to get the corresponding element at
|
|
// original index 8,9,10,11, for output at index 8,9,10,11,
|
|
// we want to get the corresponding element at original index
|
|
// 16,17,18,19, so on and so forth.
|
|
|
|
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
|
|
|
|
float x0 = getX(batch, i0);
|
|
float x1 = i1 < n ? getX(batch, i1) : x0;
|
|
|
|
setOutput(x0 >= x1 ? float(i0) : float(i1));
|
|
}
|
|
`}};function io(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function Yv(e){let t=1;for(;t<e;)t*=2;return t}function vue(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{k:s,sorted:i}=n,o=Y().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),l=Y().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),u=a.shape,d=u[u.length-1];if(r.shouldExecuteOnCPU([a])||d<o||s>l){let R=r.readSync(a.dataId),[_,M]=Wee(R,u,a.dtype,s,i);return[r.makeTensorInfo(_.shape,_.dtype,_.values),r.makeTensorInfo(M.shape,M.dtype,M.values)]}if(s===0)return u[u.length-1]=0,[r.makeTensorInfo(u,a.dtype,[]),r.makeTensorInfo(u,"int32",[])];if(d===1)return[a,Mh({attrs:{shape:u,dtype:"int32",value:0},backend:r})];let h=r.texData.get(a.dataId),p=h!==null&&h.isPacked,c=p?r.unpackTensor(a):a,f=v.sizeFromShape(u)/d,m=ve({inputs:{x:c},attrs:{shape:[f,d]},backend:r});p&&io(r,c);let g=Yv(s),y=Yv(d),A=null,x=()=>A===null?[m,m]:[m,A],b=(R,_,M)=>{let I=x(),O=new xue(M),z=[[d],[A===null?1:0],[Number.NEGATIVE_INFINITY],[R],[_]],j=A;A=r.runWebGLProgram(O,I,"int32",z),io(r,j)};for(let R=1;R<g;R*=2){let _=R*2;for(let M=R;M>=1;M/=2)b(_,M,[f,y])}for(let R=y;R>g;R/=2){let _=x(),M=new bue([f,R/2]),I=[[d],[A===null?1:0],[g]],O=A;A=r.runWebGLProgram(M,_,"int32",I),io(r,O);let z=g/2,j=z*2;for(let X=z;X>=1;X/=2)b(j,X,A.shape)}let w=A;A=wd({inputs:{x:A},backend:r,attrs:{begin:0,size:[f,s]}}),io(r,w);let T=p8({inputs:{x:m,indices:A},backend:r,attrs:{axis:1,batchDims:1}});io(r,m);let S=u.slice(0,-1);S.push(s),w=A,A=ve({inputs:{x:A},attrs:{shape:S},backend:r}),io(r,w);let E=T;return T=ve({inputs:{x:T},attrs:{shape:S},backend:r}),io(r,E),[T,A]}var wue={kernelName:gl,backendName:"webgl",kernelFunc:vue},kue=class{constructor(e,t,r,n,a,s){this.variableNames=["Image","Transforms"],this.outputShape=s;let i=r==="nearest"?1:2,o;switch(n){case"constant":o=1;break;case"reflect":o=2;break;case"wrap":o=3;break;case"nearest":o=4;break;default:o=1;break}this.userCode=`
|
|
float mapCoord(float outCoord, float len) {
|
|
float inCoord = outCoord;
|
|
if(${o} == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
inCoord -= sz2 * float(int(float(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${o} == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord -= len * float(int(float(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${o} == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
} else {
|
|
return outCoord;
|
|
}
|
|
}
|
|
|
|
float readWithFillValue(int batch, int coordY, int coordX,
|
|
int channel) {
|
|
float outputValue;
|
|
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = float(${a});
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
float outputValue;
|
|
int batch = coords[0];
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
int channel = coords[3];
|
|
float xf = float(x);
|
|
float yf = float(y);
|
|
float a1 = getTransforms(batch, 0);
|
|
float a2 = getTransforms(batch, 1);
|
|
float a3 = getTransforms(batch, 2);
|
|
float b1 = getTransforms(batch, 3);
|
|
float b2 = getTransforms(batch, 4);
|
|
float b3 = getTransforms(batch, 5);
|
|
float c1 = getTransforms(batch, 6);
|
|
float c2 = getTransforms(batch, 7);
|
|
float projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = float(${a});
|
|
} else {
|
|
float inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
float inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
float mapX = mapCoord(inX, float(${t}));
|
|
float mapY = mapCoord(inY, float(${e}));
|
|
|
|
if (${i} == 1) {
|
|
int coordY = int(round(mapY));
|
|
int coordX = int(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
float yFloor = floor(mapY);
|
|
float xFloor = floor(mapX);
|
|
float yCeil = yFloor + 1.0;
|
|
float xCeil = xFloor + 1.0;
|
|
float valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
|
|
float valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}};function Iue(e){let{inputs:t,backend:r,attrs:n}=e,{image:a,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=n,[d,h,p,c]=a.shape,[f,m]=u!=null?u:[h,p],g=[d,f,m,c],y=new kue(h,p,i,o,l,g);return r.runWebGLProgram(y,[a,s],"float32")}var Sue={kernelName:yl,backendName:"webgl",kernelFunc:Iue};function Tue(e){let{inputs:t,attrs:r,backend:n}=e,{axis:a}=r,{x:s}=t;gd(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=n.readSync(s.dataId),{outputValues:o,outputShape:l,indices:u}=Vee(i,a,s.shape,s.dtype);return[n.makeTensorInfo(l,s.dtype,o),n.makeTensorInfo([u.length],"int32",u)]}var Nue={kernelName:om,backendName:"webgl",kernelFunc:Tue};function Cue(e){let{inputs:t,backend:r,attrs:n}=e,{value:a}=t,{axis:s}=n;s<0&&(s+=a.shape.length);let i=a,o=i.shape.length,l=a.shape[s],u=new Array(o-1),d=0;for(let m=0;m<o;m++)m!==s&&(u[d++]=i.shape[m]);let h=[],p=new Array(o).fill(0),c=i.shape.slice();c[s]=1;let f=new Array(l);for(let m=0;m<f.length;m++){p[s]=m;let g=wd({inputs:{x:i},backend:r,attrs:{begin:p,size:c}}),y=ve({inputs:{x:g},backend:r,attrs:{shape:u}});f[m]=y,h.push(g)}return h.forEach(m=>r.disposeIntermediateTensorInfo(m)),f}var Eue={kernelName:Al,backendName:"webgl",kernelFunc:Cue},Rue=class{constructor(e,t){this.variableNames=["x","segmentIds"];let r=e.windowSize,n=e.batchSize,a=e.inSize,s=e.numSegments,i=s*Math.ceil(a/r);this.outputShape=[n,i];let o="0.0",l="sumValue",u=Math.floor(r/4)*4,d=r%4,h=`
|
|
sumValue += dot(values, segFilter);
|
|
`,p="";a%r>0&&(p=`
|
|
if (inIdx < 0 || inIdx >= ${a}) {
|
|
return initializationValue;
|
|
}
|
|
`);let c="";a%r>0&&(c=`
|
|
if (inIdx < 0 || inIdx >= ${a}) {
|
|
return -1.0;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${o};
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${p}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
float getSegmentIdAtIndex(int inIdx) {
|
|
${c}
|
|
return getSegmentIds(inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = int(floor(float(outIdx) / float(
|
|
${s})) * float(${r}));
|
|
int currentSeg = int(mod(float(outIdx), float(${s})));
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
|
|
);
|
|
|
|
${h}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${d===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${h}
|
|
} else if (${d===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${h}
|
|
} else if (${d===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
0
|
|
);
|
|
|
|
${h}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function Mue(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,segmentIds:s}=t,{numSegments:i}=n,o=a.shape.length,l=[],u=0,d=N.getAxesPermutation([u],o),h=a;d!=null&&(h=xr({inputs:{x:a},backend:r,attrs:{perm:d}}),l.push(h),u=N.getInnerMostAxes(1,o)[0]);let p=N.segment_util.computeOutShape(h.shape,u,i),c=v.sizeFromShape([h.shape[u]]),f=ve({inputs:{x:h},backend:r,attrs:{shape:[-1,c]}});l.push(f);let m=ah(a.dtype),g=(b,w,T,S,E)=>{let R=b.shape[0],_=b.shape[1],M=N.segment_util.segOpComputeOptimalWindowSize(_,E),I={windowSize:M,inSize:_,batchSize:R,numSegments:E},O=new Rue(I,w),z=r.compileAndRun(O,[b,T],S);if(l.push(z),z.shape[1]===E)return z;let j=A8({backend:r,attrs:{start:0,stop:E,step:1,dtype:"float32"}}),X=b8({inputs:{x:j},backend:r,attrs:{reps:[_/M]}});return l.push(j),l.push(X),g(z,w,X,S,E)},y=g(f,"unsortedSegmentSum",s,m,i),A=ve({inputs:{x:y},backend:r,attrs:{shape:p}}),x=A;if(d!=null){l.push(A);let b=N.getUndoAxesPermutation(d);x=xr({inputs:{x},backend:r,attrs:{perm:b}})}return l.forEach(b=>r.disposeIntermediateTensorInfo(b)),x}var Fue={kernelName:th,backendName:"webgl",kernelFunc:Mue},$ue=[Ote,Lte,Vte,jte,qte,Zte,Jte,ere,are,ire,ure,hre,mre,xre,wre,Ire,Tre,Rre,Fre,Pre,Dre,jre,qre,Xre,tne,nne,one,Ate,dne,mne,xne,Sne,Nne,Ene,Mne,$ne,zne,Lne,Vne,Gne,Hne,Kne,Yne,Qne,nae,sae,lae,pae,cae,yae,vae,Sae,Cae,Mae,Fae,Pae,zae,Dae,Bae,Vae,Hae,Xae,Jae,ese,nse,ise,dse,fse,yte,gse,cne,xse,wse,Sse,bte,Ese,$se,_se,Lse,Vse,Hse,Xse,Qse,nie,iie,lie,hie,fie,gie,bie,wie,Iie,Tie,Cie,Fie,zie,Bie,Kie,Ste,Jie,toe,aoe,ooe,Yre,doe,hoe,foe,yoe,voe,wte,koe,Ioe,Jre,Gie,Noe,Moe,_oe,Nte,Loe,Voe,Hoe,Xoe,Qoe,tle,ale,ole,ule,hle,mle,xle,wle,Sle,Cle,Ure,Hie,Mle,$le,_le,Ole,Lle,Wle,Ule,jle,qle,Zle,Jle,eue,nue,sue,oue,uue,jie,Pte,hue,mue,Aue,wue,Sue,_te,Nue,Eue,Fue,poe];for(let e of $ue)Vn(e);var Pa=Y();Pa.registerFlag("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE",()=>15);Pa.registerFlag("WEBGPU_CPU_FORWARD",()=>!0);Pa.registerFlag("WEBGPU_MATMUL_WORK_PER_THREAD",()=>4);Pa.registerFlag("WEBGPU_USE_NAIVE_CONV2D",()=>!1);Pa.registerFlag("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE",()=>!1);Pa.registerFlag("WEBGPU_CONV_SEPARATE_IM2COL_SHADER",()=>!1);Pa.registerFlag("WEBGPU_USE_LOW_POWER_GPU",()=>!1);Pa.registerFlag("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e3);Pa.registerFlag("WEBGPU_USE_PROFILE_TOOL",()=>!1);Pa.registerFlag("WEBGPU_USE_IMPORT",()=>!1);var Pue="return a + b;",_ue="return areal * breal - aimag * bimag;",zue="return areal * bimag + aimag * breal;",Oue="return a / b;",Due="return a * b;",Lue="return (a - b) * (a - b);",Bue="return a - b;",Wue="return f32(a == b);",Vue="return vec4<f32>(a == b);",Uue="return f32(a > b);",Gue="return vec4<f32>(a > b);",jue="return f32(a >= b);",Hue="return vec4<f32>(a >= b);",que="return f32(a < b);",Kue="return vec4<f32>(a < b);",Xue="return f32(a <= b);",Zue="return vec4<f32>(a <= b);",Yue="return f32(f32(a) >= 1.0 && f32(b) >= 1.0);",Jue=`return (vec4<f32>(a >= vec4<f32>(1.0)) *
|
|
vec4<f32>(b >= vec4<f32>(1.0)));`,Que=`
|
|
if (isnan(a)) { return a; }
|
|
if (isnan(b)) { return b; }
|
|
`,v8=`
|
|
if (isNaN.r) {
|
|
resultTemp.r = uniforms.NAN;
|
|
}
|
|
if (isNaN.g) {
|
|
resultTemp.g = uniforms.NAN;
|
|
}
|
|
if (isNaN.b) {
|
|
resultTemp.b = uniforms.NAN;
|
|
}
|
|
if (isNaN.a) {
|
|
resultTemp.a = uniforms.NAN;
|
|
}
|
|
`,ede=`
|
|
let s = sign(a) * sign(b);
|
|
let ia = i32(round(a));
|
|
let ib = i32(round(b));
|
|
return f32(idiv(ia, ib, s));
|
|
`,tde=`
|
|
let ia = vec4<i32>(round(a));
|
|
let ib = vec4<i32>(round(b));
|
|
let cond = ib != vec4<i32>(0);
|
|
var resultTemp = vec4<i32>(0);
|
|
let s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
resultTemp[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
resultTemp[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
resultTemp[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
resultTemp[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4<f32>(resultTemp);
|
|
`,rde="return f32(a != b);",nde="return vec4<f32>(a != b);",ade=`
|
|
if(a < 0.0 && floor(b) < b) {
|
|
return uniforms.NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
if (round(abs(b) % 2.0) != 1.0) {
|
|
return pow(abs(a), b);
|
|
}
|
|
return sign(a) * pow(abs(a), b);
|
|
`,sde=`
|
|
let isModRound1Bool = vec4<i32>(round(abs(b) % vec4<f32>(2.0))) == vec4<i32>(1);
|
|
let isModRound1 = vec4<f32>(isModRound1Bool);
|
|
let multiplier = sign(a) * isModRound1 + (vec4<f32>(1.0) - isModRound1);
|
|
var resultTemp = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
let isExpZero = b == vec4<f32>(0.0);
|
|
if (isExpZero.r) {
|
|
resultTemp.r = 1.0;
|
|
}
|
|
if (isExpZero.g) {
|
|
resultTemp.g = 1.0;
|
|
}
|
|
if (isExpZero.b) {
|
|
resultTemp.b = 1.0;
|
|
}
|
|
if (isExpZero.a) {
|
|
resultTemp.a = 1.0;
|
|
}
|
|
let isNaN = a < vec4<f32>(0.0) & floor(b) < b;
|
|
${v8}
|
|
return resultTemp;
|
|
`,ide="if (a < 0.0) { return b * a; } return a;",ode=`
|
|
let aLessThanZero = vec4<f32>(a < vec4<f32>(0.0));
|
|
return (aLessThanZero * (b * a)) + ((vec4<f32>(1.0) - aLessThanZero) * a);
|
|
`;function Jv(e,t){let r=t?v8:Que;return t?`
|
|
var resultTemp = vec4<f32>(${e}(a, b));
|
|
let isNaN = isnanVec4(a) | isnanVec4(b);
|
|
`+r+`
|
|
return resultTemp;
|
|
`:r+`
|
|
return ${e}(a, b);
|
|
`}function Fh(e,t){switch(e){case 0:return Due;case 1:return Pue;case 2:return Bue;case 3:return Oue;case 4:return t?Vue:Wue;case 5:return t?Gue:Uue;case 6:return t?Hue:jue;case 7:return t?Kue:que;case 8:return t?Zue:Xue;case 9:return t?Jue:Yue;case 10:return t?nde:rde;case 11:return Lue;case 12:return t?tde:ede;case 14:return t?ode:ide;case 15:return Jv("max",t);case 16:return Jv("min",t);case 13:return t?sde:ade;case 17:return _ue;case 18:return zue;default:throw new Error(`BinaryType ${e} is not implemented!`)}}var lde="return abs(a);",ude="return ceil(a);",dde="return cos(a);",pde=`
|
|
let e2x = exp(-a);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,hde="return exp(a) - 1.0;",cde="if (a >= 0.0) { return a; } return (exp(a) - 1.0);",fde=`
|
|
var resFloat = exp(a) - vec4<f32>(1.0);
|
|
if (a.r >= 0.0) {
|
|
resFloat.r = a.r;
|
|
}
|
|
if (a.g >= 0.0) {
|
|
resFloat.g = a.g;
|
|
}
|
|
if (a.b >= 0.0) {
|
|
resFloat.b = a.b;
|
|
}
|
|
if (a.a >= 0.0) {
|
|
resFloat.a = a.a;
|
|
}
|
|
return resFloat;
|
|
`,mde="return exp(a);",gde="return floor(a);",yde="return a;",Ade=`if (a < 0.0) { return 1.0/0.0; }
|
|
return log(a);`,xde="return f32(!(a >= 1.0));",bde="return -a;",vde="if (a < 0.0) { return uniforms.alpha * a; } return a;",wde=`
|
|
let aLessThanZero = vec4<f32>(a < vec4<f32>(0.0));
|
|
return (aLessThanZero * (uniforms.alpha * a)) + ((vec4<f32>(1.0) - aLessThanZero) * a);
|
|
`,kde="if(a < 0.0) { return 0.0; } return a;",Ide="return clamp(a, 0.0, 6.0);",Sde="return clamp(a, vec4<f32>(0.0, 0.0, 0.0, 0.0), vec4<f32>(6.0, 6.0, 6.0, 6.0));",Tde=`
|
|
var resFloat = a * vec4<f32>(a >= vec4<f32>(0.0));
|
|
let isNaN = isnanVec4(a);
|
|
|
|
if (isNaN.r) {
|
|
resFloat.r = a.r;
|
|
}
|
|
if (isNaN.g) {
|
|
resFloat.g = a.g;
|
|
}
|
|
if (isNaN.b) {
|
|
resFloat.b = a.b;
|
|
}
|
|
if (isNaN.a) {
|
|
resFloat.a = a.a;
|
|
}
|
|
return resFloat;
|
|
`,Nde="return 1.0/sqrt(a);",Cde="return 1.0 / (1.0 + exp(-1.0 * a));",Ede="return sin(a);",Rde=`
|
|
let e2x = exp(a);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,Mde="return sqrt(a);",Fde="return a * a;",$de=`
|
|
let e2x = exp(-2.0 * abs(a));
|
|
return sign(a) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,Pde="return f32(i32((a)));";function uo(e,t){switch(e){case 0:return lde;case 2:return dde;case 3:return pde;case 1:return ude;case 4:return t?fde:cde;case 5:return mde;case 6:return hde;case 7:return gde;case 8:return yde;case 9:return Ade;case 10:return xde;case 11:return bde;case 14:return t?wde:vde;case 12:return t?Tde:kde;case 13:return t?Sde:Ide;case 15:return Nde;case 18:return Cde;case 16:return Ede;case 17:return Rde;case 19:return Mde;case 20:return Fde;case 21:return $de;case 22:return Pde;default:throw new Error(`BinaryType ${e} is not implemented!`)}}function ts(e,t=!1){if(e===null)return null;if(e==="linear")return uo(8);if(e==="relu")return uo(12,t);if(e==="elu")return uo(4,t);if(e==="relu6")return uo(13,t);if(e==="prelu")return Fh(14,t);if(e==="sigmoid")return uo(18,t);if(e==="leakyrelu")return uo(14,t);throw new Error(`Activation ${e} has not been implemented for the WebGPU backend.`)}function _de(e,t){if(Math.max(...e)>3)throw new Error("Cannot symbolically compute strides for rank > 4 tensor.");let r=e.length,n=e.map(s=>`${t}[${s}]`),a=new Array(r-1);a[r-2]=n[r-1];for(let s=r-3;s>=0;--s)a[s]=`(${a[s+1]} * ${n[s+1]})`;return a}function mr(e){if(e<=1)return"i32";if(e===2)return"vec2<i32>";if(e===3)return"vec3<i32>";if(e===4)return"vec4<i32>";throw Error(`GPU for rank ${e} is not yet supported`)}function rf(e,t){return e==="float32"?t?"vec4<f32>":"f32":e==="int32"||e==="bool"?t?"vec4<i32>":"i32":e}function cb(){return`
|
|
@stage(compute) @workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ)
|
|
`}function Bi(){return`
|
|
${cb()}
|
|
fn main(@builtin(local_invocation_id) LocalId : vec3<u32>,
|
|
@builtin(global_invocation_id) GlobalId : vec3<u32>,
|
|
@builtin(num_workgroups) NumWorkgroups: vec3<u32>) {
|
|
localId = LocalId;
|
|
globalId = GlobalId;
|
|
numWorkgroups = NumWorkgroups;
|
|
`}function tt(){return`
|
|
${Bi()}
|
|
let index = getGlobalIndex();
|
|
`}function zde(e,t,r,n=!1){let a=[];if(a.push(`
|
|
let workGroupSizeX = ${r.workGroupSize[0]}u;
|
|
let workGroupSizeY = ${r.workGroupSize[1]}u;
|
|
let workGroupSizeZ = ${r.workGroupSize[2]}u;
|
|
|
|
var<private> localId: vec3<u32>;
|
|
var<private> globalId: vec3<u32>;
|
|
var<private> numWorkgroups: vec3<u32>;
|
|
|
|
// Only used when the y/z dimension of workgroup size is 1.
|
|
fn getGlobalIndex() -> i32 {
|
|
if (numWorkgroups.y == 1u && numWorkgroups.z == 1u) {
|
|
return i32(globalId.x);
|
|
}
|
|
|
|
let localInvocationIndex = localId.z * workGroupSizeX * workGroupSizeY +
|
|
localId.y * workGroupSizeX + localId.x;
|
|
let workGroupID = (globalId - localId)/vec3<u32>(
|
|
workGroupSizeX, workGroupSizeY, workGroupSizeZ);
|
|
|
|
return i32((workGroupID.z * numWorkgroups.x * numWorkgroups.y +
|
|
workGroupID.y * numWorkgroups.x + workGroupID.x) *
|
|
(workGroupSizeX * workGroupSizeY * workGroupSizeZ) +
|
|
localInvocationIndex);
|
|
}
|
|
`),n===!0)return a.push(`
|
|
struct Uniform {
|
|
size : i32,
|
|
numChannels : i32,
|
|
outShapeStrides : vec2<i32>,
|
|
dispatchSize : vec3<u32>,
|
|
};
|
|
|
|
@group(0) @binding(0) var<storage, write> result: array<${rf(t.dtype,r.isVec4)}>;
|
|
@group(0) @binding(2) var<uniform> uniforms: Uniform;
|
|
`),[Qv,a.join(`
|
|
`),ew(t.shape),r.getUserCode()].join(`
|
|
`);let s="struct Uniforms { NAN : f32, ";r.variableNames.forEach((d,h)=>{s+=`${d.charAt(0).toLowerCase()+d.slice(1)}Shape : ${mr(e[h].shape.length)}, `}),s+=`outShape : ${mr(t.shape.length)}, `;let i=t.shape.length-1;s+=`
|
|
outShapeStrides: ${mr(i)}, `,r.size&&(s+="size : i32, "),r.uniforms&&(s+=r.uniforms),s+="};",a.push(s),r.atomic?a.push(`
|
|
@group(0) @binding(0) var<storage, read_write> result: array<atomic<i32>>;
|
|
`):a.push(`
|
|
@group(0) @binding(0) var<storage, write> result: array<${rf(t.dtype,r.isVec4)}>;
|
|
`),r.variableNames.forEach((d,h)=>{a.push(`
|
|
@group(0) @binding(${1+h}) var<storage, read> ${d}: array<${rf(e[h].dtype,r.isVec4)}>;
|
|
`)}),s!==""&&a.push(`
|
|
@group(0) @binding(${1+r.variableNames.length}) var<uniform> uniforms: Uniforms;
|
|
`);let[o,l]=Vde(t.shape,r.dispatchLayout),u=[Qv,a.join(`
|
|
`),ew(t.shape),o,Ode(t.shape.length)];if(r.atomic||u.push(Dde(t.shape,t.dtype,r.isVec4)),l===t.shape.length){let d=e.map(h=>Lde(h,t.shape,r.isVec4,r.dispatchLayout.x.length===t.shape.length)).join(`
|
|
`);u.push(d)}return u.push(r.getUserCode()),u.join(`
|
|
`)}var Qv=`
|
|
// Checks whether coordinates lie within the bounds of the shape.
|
|
fn coordsInBounds2D(coord : vec2<i32>, shape : vec2<i32>) -> bool {
|
|
return all(coord >= vec2<i32>(0)) && all(coord < shape);
|
|
}
|
|
fn coordsInBounds3D(coord : vec3<i32>, shape : vec3<i32>) -> bool {
|
|
return all(coord >= vec3<i32>(0)) && all(coord < shape);
|
|
}
|
|
fn coordsInBounds4D(coord : vec4<i32>, shape : vec4<i32>) -> bool {
|
|
return all(coord >= vec4<i32>(0)) && all(coord < shape);
|
|
}
|
|
|
|
fn getIndexFromCoords1D(coord : i32, shape : i32) -> i32 {
|
|
return coord;
|
|
}
|
|
fn getIndexFromCoords2D(coords : vec2<i32>, shape : vec2<i32>) -> i32 {
|
|
return dot(coords, vec2<i32>(shape.y, 1));
|
|
}
|
|
fn getIndexFromCoords3D(coords : vec3<i32>, shape : vec3<i32>) -> i32 {
|
|
return dot(coords, vec3<i32>(shape.y * shape.z, shape.z, 1));
|
|
}
|
|
fn getIndexFromCoords4D(coords : vec4<i32>, shape : vec4<i32>) -> i32 {
|
|
return dot(coords, vec4<i32>(
|
|
shape.y * shape.z * shape.w, shape.z * shape.w, shape.w, 1));
|
|
}
|
|
|
|
fn idiv(a: i32, b: i32, sign: f32) -> i32 {
|
|
var res: i32 = a / b;
|
|
let mod: i32 = a % b;
|
|
if (sign < 0. && mod != 0) {
|
|
res = res - 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
// NaN defination in IEEE 754-1985 is :
|
|
// - sign = either 0 or 1.
|
|
// - biased exponent = all 1 bits.
|
|
// - fraction = anything except all 0 bits (since all 0 bits represents infinity).
|
|
// https://en.wikipedia.org/wiki/IEEE_754-1985#Representation_of_non-numbers
|
|
fn isnan(val: f32) -> bool {
|
|
let floatToUint: u32 = bitcast<u32>(val);
|
|
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
|
|
}
|
|
fn isnanVec4(val : vec4<f32>) -> vec4<bool> {
|
|
return vec4<bool>(isnan(val[0]), isnan(val[1]), isnan(val[2]), isnan(val[3]));
|
|
}
|
|
`;function Ode(e){let t="";switch(e){case 0:case 1:t+=`
|
|
fn getOutputIndexFromCoords(coords : i32) -> i32 {
|
|
return coords;
|
|
}
|
|
`;break;case 2:t+=`
|
|
fn getOutputIndexFromCoords(coords : vec2<i32>) -> i32 {
|
|
return dot(coords, vec2<i32>(uniforms.outShapeStrides, 1));
|
|
}
|
|
`;break;case 3:t+=`
|
|
fn getOutputIndexFromCoords(coords : vec3<i32>) -> i32 {
|
|
return dot(coords, vec3<i32>(uniforms.outShapeStrides.x, uniforms.outShapeStrides.y, 1));
|
|
}
|
|
`;break;case 4:t+=`
|
|
fn getOutputIndexFromCoords(coords : vec4<i32>) -> i32 {
|
|
return dot(coords, vec4<i32>(
|
|
uniforms.outShapeStrides.x, uniforms.outShapeStrides.y, uniforms.outShapeStrides.z, 1));
|
|
}
|
|
`;break;default:v.assert(!1,()=>`Unsupported ${e}D shape`);break}return t}function Dde(e,t,r){let n=e.length,a=rf(t,r),s;if(r?s=`fn setOutputAtIndex(flatIndex : i32, value : vec4<f32>) {
|
|
result[flatIndex] = ${a}(value);
|
|
}
|
|
fn setOutputAtIndexI32(flatIndex : i32, value : vec4<i32>) {
|
|
result[flatIndex] = ${a}(value);
|
|
}`:s=`fn setOutputAtIndex(flatIndex : i32, value : f32) {
|
|
result[flatIndex] = ${a}(value);
|
|
}
|
|
fn setOutputAtIndexI32(flatIndex : i32, value : i32) {
|
|
result[flatIndex] = ${a}(value);
|
|
}`,n>=2){let i=["d0","d1","d2","d3"].slice(0,n),o=mr(n);r?s+=`
|
|
fn setOutputAtCoords(${i.map(l=>`${l} : i32`).join(", ")}, value : vec4<f32>) {
|
|
let flatIndex = getOutputIndexFromCoords(${o}(${i.join(", ")}));
|
|
setOutputAtIndex(flatIndex / 4, value);
|
|
}
|
|
fn setOutputAtCoordsI32(${i.map(l=>`${l} : i32`).join(", ")}, value : vec4<i32>) {
|
|
let flatIndex = getOutputIndexFromCoords(${o}(${i.join(", ")}));
|
|
setOutputAtIndexI32(flatIndex / 4, value);
|
|
}
|
|
`:s+=`
|
|
fn setOutputAtCoords(${i.map(l=>`${l} : i32`).join(", ")}, value : f32) {
|
|
let flatIndex = getOutputIndexFromCoords(${o}(${i.join(", ")}));
|
|
setOutputAtIndex(flatIndex, value);
|
|
}
|
|
fn setOutputAtCoordsI32(${i.map(l=>`${l} : i32`).join(", ")}, value : i32) {
|
|
let flatIndex = getOutputIndexFromCoords(${o}(${i.join(", ")}));
|
|
setOutputAtIndexI32(flatIndex, value);
|
|
}
|
|
`}return s}function Lde(e,t,r,n){let a=Bde(e,r);return e.shape.length<=t.length&&(a+=Wde(e,t,r,n)),a}function Bde(e,t){let r=e.name,n=e.shape.length,a=mr(n),s="get"+r.charAt(0).toUpperCase()+r.slice(1),i=["d0","d1","d2","d3"].slice(0,n),o=i.map(d=>`${d} : i32`).join(", ");if(n<1)return t?`
|
|
fn ${s}() -> vec4<f32> {
|
|
return vec4<f32>(${r}[0]);
|
|
}
|
|
`:`
|
|
fn ${s}() ->f32 {
|
|
return f32(${r}[0]);
|
|
}
|
|
`;let l=`uniforms.${r.charAt(0).toLowerCase()+r.slice(1)}Shape`,u=`${n}D`;return n===0&&(u="1D"),t?`
|
|
fn ${s}(${o}) -> vec4<f32> {
|
|
return vec4<f32>(${r}[getIndexFromCoords${u}(${a}(${i.join(",")}),
|
|
${l}) / 4]);
|
|
}
|
|
`:`
|
|
fn ${s}(${o}) -> f32 {
|
|
return f32(${r}[getIndexFromCoords${u}(${a}(${i.join(",")}),
|
|
${l})]);
|
|
}
|
|
`}function Wde(e,t,r,n){let a=e.name,s=a.charAt(0).toUpperCase()+a.slice(1),i="get"+s+"ByOutput",o=e.shape.length,l=t.length,u=mr(l);if(v.arraysEqual(e.shape,t)&&n)return r?`
|
|
fn ${i}Index(globalIndex : i32) -> vec4<f32> {
|
|
return vec4<f32>(${a}[globalIndex]);
|
|
}
|
|
|
|
fn ${i}Coords(coords : ${u}) -> vec4<f32> {
|
|
return vec4<f32>(${a}[${l>1?"getOutputIndexFromCoords(coords)":"coords"} / 4]);
|
|
}
|
|
`:`
|
|
fn ${i}Index(globalIndex : i32) -> f32 {
|
|
return f32(${a}[globalIndex]);
|
|
}
|
|
|
|
fn ${i}Coords(coords : ${u}) -> f32 {
|
|
return f32(${a}[${l>1?"getOutputIndexFromCoords(coords)":"coords"}]);
|
|
}
|
|
`;let d=N.getBroadcastDims(e.shape,t),h=l-o,p="";if(o===0)return r?`
|
|
fn ${i}Index(globalIndex : i32) -> vec4<f32> {
|
|
return get${s}();
|
|
}
|
|
|
|
fn ${i}Coords(coords : ${u}) -> vec4<f32> {
|
|
return get${s}();
|
|
}
|
|
`:`
|
|
fn ${i}Index(globalIndex : i32) -> f32{
|
|
return get${s}();
|
|
}
|
|
|
|
fn ${i}Coords(coords : ${u}) -> f32{
|
|
return get${s}();
|
|
}
|
|
`;l<2&&d.length>=1?p="coords = 0;":p=d.map(g=>`coords[${g+h}] = 0;`).join(`
|
|
`);let c="";if(l<2&&o>0)c="coords";else if(l>1){let g=mr(o),y=e.shape.map((A,x)=>`coords[${x+h}]`).join(", ");c=`${g}(${y})`}else c="coords";let f=`uniforms.${a.charAt(0).toLowerCase()+a.slice(1)}Shape`,m=`${o}D`;return r?`
|
|
fn ${i}Index(globalIndex : i32) -> vec4<f32> {
|
|
var coords = getCoordsFromIndex(globalIndex);
|
|
${p}
|
|
return ${a}[getIndexFromCoords${m}(${c}, ${f}) / 4];
|
|
}
|
|
|
|
fn ${i}Coords(coordsIn : ${u}) -> vec4<f32> {
|
|
var coords = coordsIn;
|
|
${p}
|
|
return ${a}[getIndexFromCoords${m}(${c}, ${f}) / 4];
|
|
}
|
|
`:`
|
|
fn ${i}Index(globalIndex : i32) -> f32 {
|
|
var coords = getCoordsFromIndex(globalIndex);
|
|
${p}
|
|
return f32(${a}[getIndexFromCoords${m}(${c}, ${f})]);
|
|
}
|
|
|
|
fn ${i}Coords(coordsIn : ${u}) -> f32 {
|
|
var coords = coordsIn;
|
|
${p}
|
|
return f32(${a}[getIndexFromCoords${m}(${c}, ${f})]);
|
|
}
|
|
`}function Vde(e,t){let{x:r,y:n=[],z:a=[]}=t,s=e.length;if(r.length===s)return[`fn getOutputCoords() -> ${mr(s)}{
|
|
let globalIndex = getGlobalIndex();
|
|
return getCoordsFromIndex(globalIndex);
|
|
}
|
|
`,s];let i="",o=[r,n,a],l=0;for(let p=0;p<o.length;p++){let c=o[p];if(c.length!==0)if(l+=c.length,c.length===1)i+=`let d${c[0]} = i32(globalId[${p}]);`;else{let f=_de(c,"uniforms.outShape");i+=`var index${p} = i32(globalId[${p}]);`;for(let m=0;m<f.length;m++)i+=`let d${c[m]} = index${p} / ${f[m]};`,m===f.length-1?i+=`let d${c[m+1]} = index${p} - d${c[m]} * ${f[m]};`:i+=`index${p} = index${p} - d${c[m]} * ${f[m]};`}}let u=[];for(let p=0;p<l;p++)u.push(`d${p}`);let d=mr(l),h=`fn getOutputCoords() -> ${d} {
|
|
${i}
|
|
`;return u.length===0?h+=`return ${d}(0); }`:h+=`return ${d}(${u.join(",")}); }`,[h,l]}function ew(e){let t=e.length;if(t<=1)return"fn getCoordsFromIndex(index : i32) -> i32 { return index; }";let r=v.computeStrides(e),n=mr(t),a=[];for(let i=0;i<t;i++)a.push(`d${i}`);if(r.length===1)return` fn getCoordsFromIndex(index : i32) -> vec2<i32> {
|
|
let d0 = index / uniforms.outShapeStrides; let d1 = index - d0 * uniforms.outShapeStrides;
|
|
return vec2<i32>(d0, d1);
|
|
}`;let s="var index2 = index;"+r.map((i,o)=>{let l=`let ${a[o]} = index2 / uniforms.outShapeStrides[${o}]`,u=o===r.length-1?`let ${a[o+1]} = index2 - ${a[o]} * uniforms.outShapeStrides[${o}]`:`index2 = index2 - ${a[o]} * uniforms.outShapeStrides[${o}]`;return`${l}; ${u};`}).join("");return`
|
|
fn getCoordsFromIndex(index : i32) -> ${n} {
|
|
${s}
|
|
return ${n}(${a.join(",")});
|
|
}
|
|
`}var w8={};Le(w8,{ArrayBufferToTypedArray:()=>I8,GPUBytesPerElement:()=>X1,computeDispatch:()=>Oe,computeWorkGroupSizeForConv2d:()=>fb,computeWorkGroupSizeForMatMul:()=>k8,computeWorkPerThreadForConv2d:()=>mb,flatDispatchLayout:()=>Xe,isWebGPUSupported:()=>gb,tilesFitEvenlyIntoShape:()=>Ha});var vo=e=>{let t=1;for(let r=0;r<e.length;r++)t*=e[r];return t};function Ha(e,t){if(e.length!==t.length)throw new Error(`Cannot compute whether rank ${e.length} tiles fit evenly into rank ${t.length} shape - ranks must match.`);return t.every((r,n)=>r%e[n]===0)}function Oe(e,t,r=[1,1,1],n=[1,1,1]){let[a,s,i]=[Math.ceil(vo(e.x.map(o=>t[o]))/(r[0]*n[0])),e.y?Math.ceil(vo(e.y.map(o=>t[o]))/(r[1]*n[1])):1,e.z?Math.ceil(vo(e.z.map(o=>t[o]))/(r[2]*n[2])):1];return[a,s,i]}function fb(e,t){let r=vo(e.x.map(a=>t[a])),n=vo(e.y.map(a=>t[a]));return r<=4?[4,16,1]:n<=4?[16,4,1]:[16,16,1]}function k8(e,t,r){return e===1?[32,1,1]:r===1?[1,32,1]:[8,8,1]}function mb(e,t){let r=vo(e.x.map(a=>t[a])),n=vo(e.y.map(a=>t[a]));return r<=4?[1,2,1]:n<=4?[2,1,1]:[2,2,1]}function Xe(e){return{x:e.map((t,r)=>r)}}function X1(e){if(e==="float32"||e==="int32"||e==="bool"||e==="string")return 4;if(e==="complex64")return 8;throw new Error(`Unknown dtype ${e}`)}function I8(e,t){if(t==="float32")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"||t==="string")return Uint8Array.from(new Int32Array(e));throw new Error(`Unknown dtype ${t}`)}function gb(){return(typeof window!="undefined"||typeof WorkerGlobalScope!="undefined")&&!!navigator.gpu}function S8(e,t,r,n){return v.assert(n%4===0&&e[0]===4,()=>"tileInner must be divisible by 4. And ColPerThread must be 4"),`
|
|
var<workgroup> mm_Asub : array<array<vec4<f32>, ${n/e[0]}>, ${t}>;
|
|
var<workgroup> mm_Bsub : array<array<vec4<f32>, ${r/e[0]}>, ${n}>;
|
|
|
|
let RowPerThread = ${e[1]};
|
|
let ColPerThread = ${e[0]};
|
|
let TileInner = ${n};
|
|
|
|
${Bi()}
|
|
|
|
let tileRow = ${t===1?"0":"i32(localId.y) * RowPerThread"};
|
|
let tileCol = i32(localId.x);
|
|
|
|
let globalRow = ${t===1?"0":"i32(globalId.y) * RowPerThread"};
|
|
let globalCol = i32(globalId.x);
|
|
let numTiles = (uniforms.dimInner - 1) / TileInner + 1;
|
|
|
|
var acc: array<vec4<f32>, RowPerThread>;
|
|
var ACached : vec4<f32>;
|
|
var BCached : array<vec4<f32>, 4>;
|
|
|
|
// Loop over shared dimension.
|
|
var globalColA = tileCol;
|
|
let RowPerThreadB = TileInner / i32(workGroupSizeY);
|
|
let tileRowB = i32(localId.y) * RowPerThreadB;
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
// Load one tile of A into local memory.
|
|
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
|
|
let inputRow = tileRow + innerRow;
|
|
let inputCol = tileCol;
|
|
mm_Asub[inputRow][inputCol] = mm_readA(globalRow + innerRow, globalColA, globalId);
|
|
}
|
|
globalColA = globalColA + TileInner / ColPerThread;
|
|
|
|
// Load one tile of B into local memory.
|
|
for (var innerRow = 0; innerRow < RowPerThreadB; innerRow = innerRow + 1) {
|
|
let inputRow = tileRowB + innerRow;
|
|
let inputCol = tileCol;
|
|
mm_Bsub[inputRow][inputCol] = mm_readB(t * TileInner + inputRow, globalCol, globalId);
|
|
}
|
|
|
|
workgroupBarrier();
|
|
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < TileInner / ColPerThread; k = k + 1) {
|
|
BCached[0] = mm_Bsub[k * ColPerThread][tileCol];
|
|
BCached[1] = mm_Bsub[k * ColPerThread + 1][tileCol];
|
|
BCached[2] = mm_Bsub[k * ColPerThread + 2][tileCol];
|
|
BCached[3] = mm_Bsub[k * ColPerThread + 3][tileCol];
|
|
|
|
for (var i = 0; i < RowPerThread; i = i + 1) {
|
|
ACached = mm_Asub[tileRow + i][k];
|
|
acc[i] = BCached[0] * ACached.x + acc[i];
|
|
acc[i] = BCached[1] * ACached.y + acc[i];
|
|
acc[i] = BCached[2] * ACached.z + acc[i];
|
|
acc[i] = BCached[3] * ACached.w + acc[i];
|
|
}
|
|
}
|
|
|
|
workgroupBarrier();
|
|
}
|
|
|
|
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
|
|
mm_write(globalRow + innerRow,
|
|
globalCol,
|
|
acc[innerRow], globalId);
|
|
}
|
|
}`}var Ude=class{constructor(e,t,r,n=null,a=null,s=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[8,8,1],this.isVec4=!0,this.outputShape=t,this.dispatchLayout={x:[2],y:[1],z:[0]},t[1]===1?this.elementsPerThread=[4,1,1]:this.elementsPerThread=[4,4,1],this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread);let i=n!=null,o=s!=null;i&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),this.tileAOuter=t[1]===1?1:this.workGroupSize[1]*this.elementsPerThread[1],this.tileBOuter=this.workGroupSize[0]*this.elementsPerThread[0],this.tileInner=this.tileBOuter,this.aShape=e,this.addBias=i,this.activation=a,this.hasPreluActivationWeights=o,[this.fitA,this.fitB]=this.getShapeFit(),this.shaderKey=`matMulPackedVec4_${this.activation}_${this.fitA}_${this.fitB}_${this.elementsPerThread}`}getShapeFit(){let e=this.aShape[2],t=this.outputShape[2],r=[this.outputShape[0],e,t],n=[this.tileAOuter,this.tileInner],a=[this.tileInner,this.tileBOuter];return[Ha(n,this.aShape.slice(1)),Ha(a,r.slice(1))]}getUserCode(){let e=this.fitA?"return A[batch * batchASize + row * uniforms.dimInner / 4 + col]":`if (coordsInBounds2D(vec2<i32>(row, col * 4), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
|
|
return A[batch * batchASize + row * uniforms.dimInner / 4 + col];
|
|
}
|
|
return vec4<f32>(0.0)`,t=this.fitB?"return B[batch * batchBSize + row * uniforms.dimBOuter / 4 + col]":`if(coordsInBounds2D(vec2<i32>(row, col * 4), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return B[batch * batchBSize + row * uniforms.dimBOuter / 4 + col];
|
|
}
|
|
return vec4<f32>(0.0)`,r="",n="";if(this.activation){let s=ts(this.activation,this.isVec4);this.hasPreluActivationWeights?r=`fn activation(a : vec4<f32>, outCoord : vec3<i32>) -> vec4<f32> {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${s}
|
|
}`:r=`
|
|
fn activation(a : vec4<f32>, outCoord : vec3<i32>) -> vec4<f32> {
|
|
${s}
|
|
}`,n="value = activation(value, outCoord);"}let a=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${r}
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
|
|
let batchASize = uniforms.aShape[1] * uniforms.aShape[2] / 4;
|
|
let batch = i32(globalId.z);
|
|
${e};
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
|
|
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2] / 4;
|
|
let batch = i32(globalId.z);
|
|
${t};
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueIn : vec4<f32>, globalId : vec3<u32>) {
|
|
if (row < uniforms.aShape[1] && col * 4 < uniforms.bShape[2])
|
|
{
|
|
var value = valueIn;
|
|
let batch = i32(globalId.z);
|
|
let outCoord = vec3<i32>(batch, row, col * 4);
|
|
${a}
|
|
${n}
|
|
setOutputAtCoords(outCoord[0], outCoord[1], outCoord[2], value);
|
|
}
|
|
}
|
|
${S8(this.elementsPerThread,this.tileAOuter,this.tileBOuter,this.tileInner)}
|
|
`}};function yb(e,t){let r=t[1]*e[1],n=t[0]*e[0],a=r>n?r:n;return`
|
|
var<workgroup> mm_Asub : array<array<f32, ${a}>, ${r}>;
|
|
var<workgroup> mm_Bsub : array<array<f32, ${n}>, ${a}>;
|
|
${Bi()}
|
|
let tileRow = i32(localId.y) * ${e[1]};
|
|
let tileCol = i32(localId.x) * ${e[0]};
|
|
|
|
let globalRow = i32(globalId.y) * ${e[1]};
|
|
let globalCol = i32(globalId.x) * ${e[0]};
|
|
|
|
let numTiles = (uniforms.dimInner - 1) / ${a} + 1;
|
|
|
|
var acc : array<array<f32, ${e[0]}>, ${e[1]}>;
|
|
var ACached : f32;
|
|
var BCached : array<f32, ${e[0]}>;
|
|
|
|
// Without this initialization strange values show up in acc.
|
|
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
|
|
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
|
|
acc[innerRow][innerCol] = 0.0;
|
|
}
|
|
}
|
|
|
|
let ColPerThreadA = ${a} / ${t[0]};
|
|
let tileColA = i32(localId.x) * ColPerThreadA;
|
|
let RowPerThreadB = ${a} / ${t[1]};
|
|
let tileRowB = i32(localId.y) * RowPerThreadB;
|
|
|
|
// Loop over shared dimension.
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
// Load one tile of A into local memory.
|
|
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
|
|
for (var innerCol = 0; innerCol < ColPerThreadA; innerCol = innerCol + 1) {
|
|
let inputRow = tileRow + innerRow;
|
|
let inputCol = tileColA + innerCol;
|
|
|
|
mm_Asub[inputRow][inputCol] = mm_readA(
|
|
globalRow + innerRow,
|
|
t * ${a} + inputCol, globalId);
|
|
}
|
|
}
|
|
// Load one tile of B into local memory.
|
|
for (var innerRow = 0; innerRow < RowPerThreadB; innerRow = innerRow + 1) {
|
|
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
|
|
let inputRow = tileRowB + innerRow;
|
|
let inputCol = tileCol + innerCol;
|
|
|
|
mm_Bsub[inputRow][inputCol] = mm_readB(
|
|
t * ${a} + inputRow,
|
|
globalCol + innerCol, globalId);
|
|
}
|
|
}
|
|
|
|
workgroupBarrier();
|
|
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < ${a}; k = k + 1) {
|
|
for (var inner = 0; inner < ${e[0]}; inner = inner + 1) {
|
|
BCached[inner] = mm_Bsub[k][tileCol + inner];
|
|
}
|
|
|
|
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
|
|
ACached = mm_Asub[tileRow + innerRow][k];
|
|
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
|
|
acc[innerRow][innerCol] = acc[innerRow][innerCol] + ACached * BCached[innerCol];
|
|
}
|
|
}
|
|
}
|
|
|
|
workgroupBarrier();
|
|
}
|
|
|
|
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
|
|
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
|
|
|
|
if ((globalCol + innerCol) < uniforms.dimBOuter &&
|
|
(globalRow + innerRow) < uniforms.dimAOuter) {
|
|
mm_write(globalRow + innerRow,
|
|
globalCol + innerCol,
|
|
acc[innerRow][innerCol], globalId);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`}function Gde(e){return`
|
|
let TileSize = ${e[0]*4};
|
|
var<workgroup> mm_Asub : array<vec4<f32>, ${e[0]}>;
|
|
|
|
${Bi()}
|
|
let tileCol = i32(localId.x);
|
|
let globalCol = i32(globalId.x);
|
|
let globalRow = i32(globalId.y);
|
|
|
|
let numTiles = (uniforms.dimInner - 1) / TileSize + 1;
|
|
|
|
// Without this initialization strange values show up in acc.
|
|
var acc = 0.0;
|
|
|
|
// Loop over shared dimension.
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
// Load one tile of A into local memory.
|
|
let colA = t * TileSize + tileCol * 4;
|
|
mm_Asub[tileCol] = vec4<f32>(mm_readA(globalRow, colA, globalId),
|
|
mm_readA(globalRow, colA + 1, globalId),
|
|
mm_readA(globalRow, colA + 2, globalId),
|
|
mm_readA(globalRow, colA + 3, globalId));
|
|
workgroupBarrier();
|
|
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < TileSize / 4; k = k + 1) {
|
|
let rowB = t * TileSize + k * 4;
|
|
let BCached = vec4<f32>(mm_readB(rowB, globalCol, globalId),
|
|
mm_readB(rowB + 1, globalCol, globalId),
|
|
mm_readB(rowB + 2, globalCol, globalId),
|
|
mm_readB(rowB + 3, globalCol, globalId));
|
|
|
|
let ACached = mm_Asub[k];
|
|
acc = acc + dot(ACached, BCached);
|
|
}
|
|
|
|
workgroupBarrier();
|
|
}
|
|
|
|
if (globalRow < uniforms.dimAOuter && globalCol < uniforms.dimBOuter) {
|
|
mm_write(globalRow, globalCol, acc, globalId);
|
|
}
|
|
}
|
|
`}var T8=class{constructor(e,t,r,n=!1,a=!1,s=null,i=null,o=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[16,16,1],this.outputShape=t,this.dispatchLayout={x:[2],y:[1],z:[0]};let l=n?e[1]:e[2];this.workGroupSize=k8(t[1],l,t[2]),(t[1]===1||t[2]===1)&&(r=1),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[r,r,1]),v.arraysEqual(this.dispatch,[1,1,1])&&(r=1,this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[r,r,1]));let u=s!=null,d=o!=null;u&&this.variableNames.push("bias"),d&&this.variableNames.push("preluActivationWeights"),this.workPerThread=r,this.aShape=e,this.transposeA=n,this.transposeB=a,this.addBias=u,this.activation=i,this.hasPreluActivationWeights=d;let h=this.outputShape[2],p=this.transposeB?[this.outputShape[0],h,l]:[this.outputShape[0],l,h];[this.fitA,this.fitB]=this.getShapeFit(p),this.shaderKey=`matMulPacked_${this.workPerThread}_${n}_${a}_${this.activation}_${this.fitA}_${this.fitB}_${this.outputShape[1]>1}`}getShapeFit(e){let t=this.workGroupSize[1]*this.workPerThread,r=this.workGroupSize[0]*this.workPerThread,n=t>r?t:r;this.outputShape[1]===1&&(n*=4),v.assert(n%this.workGroupSize[0]===0&&n%this.workGroupSize[1]===0,()=>"tileInner must be multiple of workgroupsize.x and workgroupsize.y");let a=[t,n],s=[n,r];return[Ha(a,this.aShape.slice(1)),Ha(s,e.slice(1))]}getUserCode(){let e;this.transposeA===!1?e=this.fitA?"return A[batch * batchASize + row * uniforms.dimInner + col];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
|
|
return A[batch * batchASize + row * uniforms.dimInner + col];
|
|
}
|
|
return 0.0;`:e=this.fitA?"return A[batch * batchASize + col * uniforms.dimAOuter + row];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
|
|
return A[batch* batchASize + col * uniforms.dimAOuter + row];
|
|
}
|
|
return 0.0;`;let t;this.transposeB===!1?t=this.fitB?"return B[batch * batchBSize + row * uniforms.dimBOuter + col];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return B[batch * batchBSize + row * uniforms.dimBOuter + col];
|
|
}
|
|
return 0.0;`:t=this.fitB?"return B[batch * batchBSize + col * uniforms.dimInner + row];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return B[batch * batchBSize + col * uniforms.dimInner + row];
|
|
}
|
|
return 0.0;`;let r="",n="";if(this.activation){let s=ts(this.activation,!1);this.hasPreluActivationWeights?r=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${s}
|
|
}`:r=`
|
|
fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
${s}
|
|
}
|
|
`,n="value = activation(value, outCoord);"}let a=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${r}
|
|
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
|
|
let batch = i32(globalId.z);
|
|
${e}
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
let batch = i32(globalId.z);
|
|
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
|
|
${t}
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueIn : f32, globalId : vec3<u32>) {
|
|
var value = valueIn;
|
|
let batch = i32(globalId.z);
|
|
let outCoord = vec3<i32>(batch, row, col);
|
|
${a}
|
|
${n}
|
|
setOutputAtCoords(batch, row, col, value);
|
|
}
|
|
${this.outputShape[1]>1?yb([this.workPerThread,this.workPerThread,1],this.workGroupSize):Gde(this.workGroupSize)}
|
|
`}};function jde(){return`
|
|
var<workgroup> sumValues : array<f32, workGroupSizeX>;
|
|
${Bi()}
|
|
let coords = getOutputCoords();
|
|
let batch = coords[0];
|
|
let row = coords[1];
|
|
let col = coords[2];
|
|
var sum = 0.0;
|
|
let Length = uniforms.dimInner;
|
|
for (var k = i32(localId.x); k < Length; k = k + i32(workGroupSizeX)) {
|
|
let dataA = mm_readA(batch, row, k);
|
|
let dataB = mm_readB(batch, k, col);
|
|
sum = sum + dataA * dataB;
|
|
}
|
|
sumValues[localId.x] = sum;
|
|
workgroupBarrier();
|
|
|
|
for(var currentSize = workGroupSizeX / 2u; currentSize > 1u;
|
|
currentSize = currentSize / 2u) {
|
|
if (localId.x < currentSize)
|
|
{
|
|
sumValues[localId.x] = sumValues[localId.x] + sumValues[localId.x + currentSize];
|
|
}
|
|
workgroupBarrier();
|
|
}
|
|
|
|
if (localId.x == 0u) {
|
|
sum = sumValues[0] + sumValues[1];
|
|
mm_write(batch, row, col, sum);
|
|
}
|
|
}
|
|
`}var Hde=class{constructor(e,t=!1,r=!1,n=null,a=null,s=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[256,1,1],this.outputShape=e,this.dispatchLayout={x:[],y:[1,2],z:[0]},this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize);let i=n!=null,o=s!=null;i&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),this.transposeA=t,this.transposeB=r,this.addBias=i,this.activation=a,this.hasPreluActivationWeights=o,this.shaderKey=`matMulReduce_${this.activation}_${t}_${r}`}getUserCode(){let e;this.transposeA===!1?e="return A[batch * batchASize + row * uniforms.dimInner + col];":e="return A[batch * batchASize + col * uniforms.dimAOuter + row];";let t;this.transposeB===!1?t="return B[batch * batchBSize + row * uniforms.dimBOuter + col];":t="return B[batch * batchBSize + col * uniforms.dimInner + row];";let r="",n="";if(this.activation){let s=ts(this.activation,!1);this.hasPreluActivationWeights?r=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${s}
|
|
}`:r=`
|
|
fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
${s}
|
|
}
|
|
`,n="value = activation(value, outCoord);"}let a=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${r}
|
|
|
|
fn mm_readA(batch: i32, row : i32, col : i32) -> f32 {
|
|
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
|
|
${e}
|
|
}
|
|
|
|
fn mm_readB(batch: i32, row : i32, col : i32) -> f32 {
|
|
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
|
|
${t}
|
|
}
|
|
|
|
fn mm_write(batch: i32, row : i32, col : i32, valueIn : f32) {
|
|
var value = valueIn;
|
|
let outCoord = vec3<i32>(batch, row, col);
|
|
${a}
|
|
${n}
|
|
setOutputAtCoords(batch, row, col, value);
|
|
}
|
|
${jde()}
|
|
`}};function qde(e){let t=e[1]/2,r=e[0],n=t>r?t:r;return`
|
|
var<workgroup> mm_Asub1 : array<array<f32, ${n}>, ${t}>;
|
|
var<workgroup> mm_Bsub1 : array<array<f32, ${r}>, ${n}>;
|
|
var<workgroup> mm_Asub2 : array<array<f32, ${n}>, ${t}>;
|
|
var<workgroup> mm_Bsub2 : array<array<f32, ${r}>, ${n}>;
|
|
|
|
// If the output size is small for matrix multiplication, avoid to use vec4
|
|
// and handle some elements per thread to optimally utilize the ALU.
|
|
// Introduces two shared memory buffers, some logical threads could handle
|
|
// arithmetic operations and others handle IO operations between barrier api,
|
|
// makes ALUs and load/store units work simultaneously, could improves
|
|
// the performance.
|
|
${Bi()}
|
|
let tileRow = i32(localId.y);
|
|
let tileCol = i32(localId.x);
|
|
let globalRow = i32(globalId.y);
|
|
let globalCol = i32(globalId.x);
|
|
|
|
// uniforms.dimInner should be greater than 0.
|
|
let numTiles = (uniforms.dimInner - 1) / ${n} + 1;
|
|
var acc = 0.0;
|
|
|
|
var globalColA = tileCol;
|
|
var globalRowB = tileRow;
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
if (t == 0) {
|
|
if (tileRow < ${t}) {
|
|
// Load one tile of A and B into local memory.
|
|
// globalRow is always greater than or equal tileRow.
|
|
mm_Asub1[tileRow][tileCol] =
|
|
mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId);
|
|
globalColA = globalColA + ${n};
|
|
mm_Bsub1[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId);
|
|
globalRowB = globalRowB + ${n};
|
|
}
|
|
} else {
|
|
if (tileRow < ${t}) {
|
|
// Load one tile of A and B into local memory.
|
|
// globalRow is always greater than or equal tileRow.
|
|
mm_Asub1[tileRow][tileCol] =
|
|
mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId);
|
|
globalColA = globalColA + ${n};
|
|
mm_Bsub1[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId);
|
|
globalRowB = globalRowB + ${n};
|
|
} else {
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < ${n}; k = k + 1) {
|
|
let subRow = tileRow - ${t};
|
|
if (subRow < 0) {
|
|
continue;
|
|
}
|
|
acc = acc + mm_Asub2[subRow][k] * mm_Bsub2[k][tileCol];
|
|
}
|
|
}
|
|
}
|
|
workgroupBarrier();
|
|
if (t != 0) {
|
|
t = t + 1;
|
|
}
|
|
|
|
if (t < numTiles) {
|
|
if (tileRow < ${t}) {
|
|
// Load one tile of A and B into local memory.
|
|
// globalRow is always greater than or equal tileRow.
|
|
mm_Asub2[tileRow][tileCol] =
|
|
mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId);
|
|
globalColA = globalColA + ${n};
|
|
mm_Bsub2[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId);
|
|
globalRowB = globalRowB + ${n};
|
|
} else {
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < ${n}; k = k + 1) {
|
|
let subRow = tileRow - ${t};
|
|
if (subRow < 0) {
|
|
continue;
|
|
}
|
|
acc = acc + mm_Asub1[subRow][k] * mm_Bsub1[k][tileCol];
|
|
}
|
|
}
|
|
}
|
|
workgroupBarrier();
|
|
}
|
|
let writeCol = (globalRow - tileRow) / 2 + tileRow - ${t};
|
|
if (tileRow >= ${t} && writeCol >= 0) {
|
|
mm_write(writeCol, globalCol, acc, globalId);
|
|
}
|
|
}
|
|
`}var Kde=class{constructor(e,t,r,n=null,a=null,s=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[8,16,1],v.assert(e[1]<=16||t[2]<=16,()=>"This program can be only used when A width or B Height are small"),this.outputShape=r,this.dispatchLayout={x:[2],y:[1],z:[0]},this.dispatch=[Math.ceil(r[2]/this.workGroupSize[0]),Math.ceil(r[1]*2/this.workGroupSize[1]),r[0]];let i=n!=null;i&&this.variableNames.push("bias");let o=s!=null;o&&this.variableNames.push("preluActivationWeights"),this.addBias=i,this.activation=a,this.hasPreluActivationWeights=o,this.shaderKey=`matMulSmallOutputSize_${this.activation}`}getUserCode(){let e=`if (coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
|
|
return A[batch * batchASize + row * uniforms.dimInner + col];
|
|
}
|
|
return 0.0;`,t=`if (coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return B[batch * batchBSize + row * uniforms.dimBOuter + col];
|
|
}
|
|
return 0.0;`,r="",n="";if(this.activation){let s=ts(this.activation,!1);this.hasPreluActivationWeights?r=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${s}
|
|
}`:r=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
${s}
|
|
}`,n="value = activation(value, outCoord);"}let a=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${r}
|
|
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
|
|
let batch = i32(globalId.z);
|
|
${e}
|
|
}
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
let batch = i32(globalId.z);
|
|
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
|
|
${t}
|
|
}
|
|
fn mm_write(row : i32, col : i32, valueIn : f32, globalId : vec3<u32>) {
|
|
if (coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimBOuter))) {
|
|
let batch = i32(globalId.z);
|
|
let outCoord = vec3<i32>(batch, row, col);
|
|
var value = valueIn;
|
|
${a}
|
|
${n}
|
|
setOutputAtCoords(batch, row, col, value);
|
|
}
|
|
}
|
|
${qde(this.workGroupSize)}
|
|
`}};function qe(e){let{inputs:t,attrs:r}=e,{x:n}=t,{shape:a}=r,s=v.sizeFromShape(n.shape),i=v.inferFromImplicitShape(a,s),o=v.sizeFromShape(i);return v.assert(s===o,()=>`The new shape (${i}) has ${o} elements and the old shape (${n.shape}) has ${s} elements. The new shape and old shape must have the same number of elements.`),e.backend.incRef(n.dataId),{dataId:n.dataId,shape:i,dtype:n.dtype}}var Xde={kernelName:sl,backendName:"webgpu",kernelFunc:qe};function Ab({a:e,b:t,transposeA:r,transposeB:n,backend:a,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:l=null}){let u=e.shape.length,d=t.shape.length,h=r?e.shape[u-2]:e.shape[u-1],p=n?t.shape[d-1]:t.shape[d-2],c=r?e.shape[u-1]:e.shape[u-2],f=n?t.shape[d-2]:t.shape[d-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),y=v.sizeFromShape(m),A=v.sizeFromShape(g),x=vl.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([c,f]);v.assert(h===p,()=>`Error in matMul: inner shapes (${h}) and (${p}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${r} and transposeB=${n} must match.`);let b=r?[y,h,c]:[y,c,h],w=n?[A,f,p]:[A,p,f],T=qe({inputs:{x:e},backend:a,attrs:{shape:b}}),S=qe({inputs:{x:t},backend:a,attrs:{shape:w}}),E=[T,S],R=Math.max(y,A),_=h%4===0&&f%4===0&&!r&&!n&&f>=32,M;c*f<=32?M=new Hde([R,c,f],r,n,s,l,i):!r&&!n&&(c<=16&&(f<=512||p>=2*f)||f<=16&&(c<=512||h>=2*c))?M=new Kde(b,w,[R,c,f],s,l,i):_?M=new Ude(b,[R,c,f],Y().get("WEBGPU_MATMUL_WORK_PER_THREAD"),s,l,i):M=new T8(b,[R,c,f],Y().get("WEBGPU_MATMUL_WORK_PER_THREAD"),r,n,s,l,i);let I=[T,S];s&&I.push(s),i&&I.push(i);let O=[{type:"int32",data:[c]},{type:"int32",data:[f]},{type:"int32",data:[h]}];l==="leakyrelu"&&(O.push({type:"float32",data:[o]}),M.uniforms+=" alpha : f32,");let z=a.runWebGPUProgram(M,I,e.dtype,O),j=qe({inputs:{x:z},backend:a,attrs:{shape:x}});E.push(z);for(let X of E)a.disposeData(X.dataId);return j}function Zde(e){let{inputs:t,backend:r,attrs:n}=e,{a,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:d,leakyreluAlpha:h}=n;return Ab({a,b:s,transposeA:l,transposeB:u,backend:r,bias:i,preluActivationWeights:o,leakyreluAlpha:h,activation:d})}var Yde={kernelName:Cs,backendName:"webgpu",kernelFunc:Zde},tw=class{constructor(e,t,r){this.variableNames=["AReal","AImag","BReal","BImag"],this.workGroupSize=[128,1,1],this.size=!0,this.outputShape=N.assertAndGetBroadcastShape(t,r),this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`binaryOpComplex_${e}`,this.op=e}getUserCode(){return`
|
|
fn binaryOpComplex(
|
|
areal : f32, aimag : f32, breal : f32, bimag : f32) -> f32 {
|
|
${Fh(this.op,!1)}
|
|
}
|
|
|
|
${tt()}
|
|
if(index < uniforms.size) {
|
|
let areal = getARealByOutputIndex(index);
|
|
let aimag = getAImagByOutputIndex(index);
|
|
let breal = getBRealByOutputIndex(index);
|
|
let bimag = getBImagByOutputIndex(index);
|
|
setOutputAtIndex(index, binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
}
|
|
`}},Jde=class{constructor(e,t,r,n){this.variableNames=["A","B"],this.size=!0;let a=256;this.workGroupSize=[a,1,1],this.outputShape=N.assertAndGetBroadcastShape(t,r),this.dispatchLayout=Xe(this.outputShape),this.lastDimensionSize=n?r[0]:t[0],this.lastDimensionSize<256?this.workPerThread=1:this.lastDimensionSize<512?this.workPerThread=2:this.workPerThread=4,this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.useSharedMemoryWithB=n,this.op=e,this.shaderKey=`binaryShared_${e}_${this.lastDimensionSize}_${this.useSharedMemoryWithB}`}getUserCode(){let e=this.lastDimensionSize>1?`coords[${this.outputShape.length-1}]`:"0",t=this.useSharedMemoryWithB?`let a = getAByOutputCoords(coords);
|
|
let b = sharedBuf[${e}];`:`let a = sharedBuf[${e}];
|
|
let b = getBByOutputCoords(coords);`;return`
|
|
fn binaryOperation(a : f32, b : f32) -> f32 {
|
|
${Fh(this.op,!1)}
|
|
}
|
|
var<workgroup> sharedBuf : array<f32, ${this.lastDimensionSize}>;
|
|
${tt()}
|
|
|
|
// Fill in the shared memory buffer. Here we need a loop to make sure
|
|
// that all data in A|B are uploaded when |sharedMemorySize| is larger
|
|
// than work group size.
|
|
for(var localIndex = i32(localId.x); localIndex < ${this.lastDimensionSize}; localIndex = localIndex + ${this.workGroupSize[0]}) {
|
|
sharedBuf[localIndex] = f32(${this.useSharedMemoryWithB?"B":"A"}[localIndex]);
|
|
}
|
|
workgroupBarrier();
|
|
|
|
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
if(flatIndex < uniforms.size) {
|
|
let coords = getCoordsFromIndex(flatIndex);
|
|
|
|
${t}
|
|
setOutputAtIndex(flatIndex, binaryOperation(a, b));
|
|
}
|
|
}
|
|
}
|
|
`}},Qde=class{constructor(e,t,r){this.variableNames=["A","B"],this.workPerThread=4,this.isVec4=!0,this.size=!0;let n=128;this.workGroupSize=[n,1,1],this.outputShape=N.assertAndGetBroadcastShape(t,r),this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.op=e,this.shaderKey=`binaryVec4_${e}`}getUserCode(){return`
|
|
fn binaryOperation(a : vec4<f32>, b : vec4<f32>) -> vec4<f32> {
|
|
${Fh(this.op,this.isVec4)}
|
|
}
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let a = getAByOutputIndex(index);
|
|
let b = getBByOutputIndex(index);
|
|
setOutputAtIndex(index, binaryOperation(a, b));
|
|
}
|
|
}
|
|
`}},N8=class{constructor(e,t,r){this.variableNames=["A","B"],this.size=!0;let n=128;this.workGroupSize=[n,1,1],this.outputShape=N.assertAndGetBroadcastShape(t,r),this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`binary_${e}`,this.op=e}getUserCode(){return`
|
|
fn binaryOperation(a : f32, b : f32) -> f32 {
|
|
${Fh(this.op,!1)}
|
|
}
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let a = getAByOutputIndex(index);
|
|
let b = getBByOutputIndex(index);
|
|
setOutputAtIndex(index, binaryOperation(a, b));
|
|
}
|
|
}
|
|
`}};function rw(e,t,r){if(v.arraysEqual(t,r)&&v.sizeFromShape(t)%4===0)return new Qde(e,t,r);let n=t.length===1&&r.length>1&&t[0]<1024,a=r.length===1&&t.length>1&&r[0]<1024;return n||a?new Jde(e,t,r,a):new N8(e,t,r)}function Bn(e){let{inputs:t}=e,{x:r}=t;return e.backend.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var epe={kernelName:li,backendName:"webgpu",kernelFunc:Bn};function kd(e){let{inputs:t,backend:r}=e,{real:n,imag:a}=t,s=r.makeTensorInfo(n.shape,"complex64"),i=r.tensorMap.get(s.dataId),o=Bn({inputs:{x:n},backend:r}),l=Bn({inputs:{x:a},backend:r});return i.complexTensorInfos={real:o,imag:l},s}var tpe={kernelName:Bp,backendName:"webgpu",kernelFunc:kd},$h=class{constructor(e,t){this.variableNames=["A"],this.size=!0;let r=128;this.workGroupSize=[r,1,1],this.outputShape=e,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.op=t,this.shaderKey=`unary_${t}`}getUserCode(){return`
|
|
fn unaryOperation(a : f32) -> f32 {
|
|
${uo(this.op,!1)}
|
|
}
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let a = getAByOutputIndex(index);
|
|
setOutputAtIndex(index, unaryOperation(a));
|
|
}
|
|
}
|
|
`}};function vr({opType:e,cpuKernelImpl:t,dtype:r}){return({inputs:n,backend:a})=>{let{x:s}=n,i=a,o=r||s.dtype;if(i.shouldExecuteOnCPU([s])&&t!=null){let u=i.tensorMap.get(s.dataId),d=t(u.values,o);return i.makeTensorInfo(s.shape,o,d)}let l=new $h(s.shape,e);return i.runWebGPUProgram(l,[s],o)}}function Gr({opSnippet:e,cpuKernelImpl:t,supportsComplex:r=!1,dtype:n}){return({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;if(r&&i.dtype==="complex64"){let h=l.tensorMap.get(i.dataId),p=l.tensorMap.get(o.dataId),c,f;if(e!==0)[c,f]=[[h.complexTensorInfos.real,p.complexTensorInfos.real],[h.complexTensorInfos.imag,p.complexTensorInfos.imag]].map(g=>{let[y,A]=g,x={dataId:y.dataId,dtype:y.dtype,shape:i.shape},b={dataId:A.dataId,dtype:A.dtype,shape:o.shape},w=rw(e,i.shape,o.shape);return l.runWebGPUProgram(w,[x,b],Nr(y.dtype,A.dtype))});else{let g=new tw(17,i.shape,o.shape),y=new tw(18,i.shape,o.shape),A=[{dataId:h.complexTensorInfos.real.dataId,dtype:h.complexTensorInfos.real.dtype,shape:i.shape},{dataId:h.complexTensorInfos.imag.dataId,dtype:h.complexTensorInfos.imag.dtype,shape:i.shape},{dataId:p.complexTensorInfos.real.dataId,dtype:p.complexTensorInfos.real.dtype,shape:o.shape},{dataId:p.complexTensorInfos.imag.dataId,dtype:p.complexTensorInfos.imag.dtype,shape:o.shape}];c=l.runWebGPUProgram(g,A,"float32"),f=l.runWebGPUProgram(y,A,"float32")}let m=kd({inputs:{real:c,imag:f},backend:l});return l.disposeData(c.dataId),l.disposeData(f.dataId),m}let u=n||Nr(i.dtype,o.dtype);if((i.dtype==="string"||o.dtype==="string"||l.shouldExecuteOnCPU([i,o]))&&t!=null){let h=l.tensorMap.get(i.dataId).values,p=l.tensorMap.get(o.dataId).values,c=i.dtype==="string"?N.fromUint8ToStringArray(h):h,f=i.dtype==="string"?N.fromUint8ToStringArray(p):p,[m,g]=t(i.shape,o.shape,c,f,u);return l.makeTensorInfo(g,u,m)}let d=rw(e,i.shape,o.shape);return l.runWebGPUProgram(d,[i,o],u)}}var{addImpl:rpe,ceilImpl:npe,concatImpl:ape,equalImpl:spe,expImpl:ipe,expm1Impl:ope,floorImpl:lpe,gatherNdImpl:upe,gatherV2Impl:dpe,greaterEqualImpl:ppe,greaterImpl:hpe,lessEqualImpl:cpe,lessImpl:fpe,logImpl:mpe,maxImpl:gpe,maximumImpl:ype,minimumImpl:Ape,multiplyImpl:xpe,negImpl:bpe,notEqualImpl:vpe,prodImpl:wpe,rangeImpl:kpe,rsqrtImpl:Ipe,simpleAbsImpl:Spe,sliceImpl:Tpe,stridedSliceImpl:Npe,stringNGramsImpl:Cpe,subImpl:Epe,tileImpl:Rpe,topKImpl:Mpe,transposeImpl:Fpe,uniqueImpl:zAe}=s0,$pe=vr({opType:0,cpuKernelImpl:Spe}),Ppe={kernelName:_o,backendName:"webgpu",kernelFunc:$pe},_pe=Gr({opSnippet:1,cpuKernelImpl:rpe,supportsComplex:!0}),zpe={kernelName:qa,backendName:"webgpu",kernelFunc:_pe},Ope=class{constructor(e){this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e[0],this.variableNames=e.map((t,r)=>`T${r}`),this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey="addN"}getUserCode(){let e=[];this.variableNames.forEach(r=>{e.push(`let v${r} = get${r}ByOutputCoords(coords);`)});let t=this.variableNames.map(r=>`v${r}`).join(" + ");return`
|
|
${tt()}
|
|
for (var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
if (flatIndex < uniforms.size) {
|
|
let coords = getCoordsFromIndex(flatIndex);
|
|
${e.join(`
|
|
`)}
|
|
setOutputAtIndex(flatIndex, ${t});
|
|
}
|
|
}
|
|
}
|
|
`}};function Dpe(e){let{inputs:t,backend:r}=e,n=t;if(n.length===1)return Bn({inputs:{x:n[0]},backend:r});let a=n.map(o=>o.dtype).reduce((o,l)=>Nr(o,l)),s=n.map(o=>o.shape),i=new Ope(s);return r.runWebGPUProgram(i,n,a)}var Lpe={kernelName:Gs,backendName:"webgpu",kernelFunc:Dpe},C8=class{constructor(e,t,r){this.workGroupSize=[64,1,1],this.variableNames=["x"],this.uniforms="axis : i32, infinityValue : f32,",this.size=!0;let n=[t];N.assertAxesAreInnerMostDims("arg"+r.charAt(0).toUpperCase()+r.slice(1),n,e.length),this.op=r==="min"?"<":">";let[a]=N.computeOutAndReduceShapes(e,n);this.outputShape=a.length===0?[1]:a,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,[1,1,1]),this.inputShape=e,this.shaderKey=`argMinMax${this.op}`}getUserCode(){let e=`
|
|
var<workgroup> xBestIndices : array<i32, ${this.workGroupSize[0]}>;
|
|
var<workgroup> xBestValues : array<f32, ${this.workGroupSize[0]}>;
|
|
`,t=(n,a)=>this.outputShape.length===1?n:`${n}[${a}]`,r=n=>this.inputShape.length===1?"uniforms.xShape":`uniforms.xShape[${n}]`;return`
|
|
fn DIV_CEIL(a : u32, b : u32) -> u32 {
|
|
return ((a - 1u) / b + 1u);
|
|
}
|
|
|
|
${e}
|
|
|
|
// In order to get a flattened index into the input tensor, we need to
|
|
// add back the index along the reduced dimension to |outputCoords|.
|
|
// This function outputs the offset to the first value along
|
|
// |axis| and the stride to get the next value of the input along |axis|.
|
|
fn getInputCoordInfo(outputIndex : i32) -> vec2<i32>{
|
|
let outputCoords = getCoordsFromIndex(outputIndex);
|
|
var i = ${this.outputShape.length-1};
|
|
|
|
var stride = 1;
|
|
var inputStride = 1;
|
|
var offset = 0;
|
|
|
|
for (var r = 1; r <= ${this.inputShape.length}; r = r + 1) {
|
|
let length = ${r(`${this.inputShape.length} - r`)};
|
|
if (${this.inputShape.length} - r == uniforms.axis) {
|
|
inputStride = stride;
|
|
} else {
|
|
offset = offset + ${t("outputCoords","i")} * stride;
|
|
i = i - 1;
|
|
}
|
|
stride = stride * length;
|
|
}
|
|
|
|
return vec2<i32>(offset, inputStride);
|
|
}
|
|
|
|
fn getInputIndex(coordInfo : vec2<i32>, index : i32) -> i32{
|
|
return coordInfo[0] + coordInfo[1] * index;
|
|
}
|
|
|
|
${tt()}
|
|
let outputIndex = index / i32(workGroupSizeX);
|
|
let coordInfo = getInputCoordInfo(outputIndex);
|
|
let Length = ${r("uniforms.axis")};
|
|
|
|
var bestIndex = i32(localId.x);
|
|
var bestValue = uniforms.infinityValue;
|
|
|
|
for (var k = i32(localId.x); k < Length && outputIndex < uniforms.size;
|
|
k = k + i32(workGroupSizeX)) {
|
|
let candidate = f32(x[getInputIndex(coordInfo, k)]);
|
|
if (!isnan(candidate) && candidate ${this.op} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = k;
|
|
}
|
|
}
|
|
xBestValues[localId.x] = bestValue;
|
|
xBestIndices[localId.x] = bestIndex;
|
|
workgroupBarrier();
|
|
|
|
var reduceSize = min(u32(Length), workGroupSizeX);
|
|
for (var currentSize = reduceSize / 2u; reduceSize > 1u;
|
|
currentSize = reduceSize / 2u) {
|
|
let interval = DIV_CEIL(reduceSize, 2u);
|
|
if (localId.x < currentSize) {
|
|
let candidate = xBestValues[localId.x + interval];
|
|
if (candidate ${this.op} bestValue) {
|
|
bestValue = candidate;
|
|
xBestValues[localId.x] = bestValue;
|
|
xBestIndices[localId.x] = xBestIndices[localId.x + interval];
|
|
}
|
|
}
|
|
reduceSize = interval;
|
|
workgroupBarrier();
|
|
}
|
|
|
|
if (localId.x == 0u && outputIndex < uniforms.size) {
|
|
setOutputAtIndexI32(outputIndex, xBestIndices[localId.x]);
|
|
}
|
|
}
|
|
`}},Bpe=class{constructor(e,t){this.variableNames=["A"],this.workGroupSize=[16,16,1];let r=new Array(e.length);for(let n=0;n<r.length;n++)r[n]=e[t[n]];this.outputShape=r,this.dispatchLayout={x:[0],y:[1]},this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[1,1,1]),this.shaderKey="transposeShared"}getUserCode(){return`
|
|
let TILE_DIM = ${this.workGroupSize[0]};
|
|
var<workgroup> tile : array<array<f32, ${this.workGroupSize[0]+1}>, ${this.workGroupSize[0]}>;
|
|
${cb()}
|
|
fn main(@builtin(local_invocation_id) localId : vec3<u32>,
|
|
@builtin(workgroup_id) workgroupId : vec3<u32>) {
|
|
var x = i32(workgroupId.x) * TILE_DIM + i32(localId.x);
|
|
var y = i32(workgroupId.y) * TILE_DIM + i32(localId.y);
|
|
let width = uniforms.outShape[0];
|
|
let height = uniforms.outShape[1];
|
|
if (x < width && y < height) {
|
|
tile[localId.y][localId.x] = A[y * width + x];
|
|
}
|
|
workgroupBarrier();
|
|
|
|
x = i32(workgroupId.y) * TILE_DIM + i32(localId.x);
|
|
y = i32(workgroupId.x) * TILE_DIM + i32(localId.y);
|
|
if (x < height && y < width) {
|
|
setOutputAtIndex((y * height + x), tile[localId.x]
|
|
[localId.y]);
|
|
}
|
|
}
|
|
`}},Wpe=class{constructor(e,t){this.variableNames=["A"],this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0;let r=new Array(e.length);for(let n=0;n<r.length;n++)r[n]=e[t[n]];this.outputShape=r,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.newDim=t,this.shaderKey=`transpose_${t}`}getUserCode(){let e=mr(this.outputShape.length),t=Vpe(this.newDim);return`
|
|
${tt()}
|
|
|
|
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
if(flatIndex < uniforms.size) {
|
|
let resRC = getCoordsFromIndex(flatIndex);
|
|
setOutputAtIndex(flatIndex, A[getIndexFromCoords${this.outputShape.length}D(
|
|
${e}(${t}), uniforms.aShape)]);
|
|
}
|
|
}
|
|
}
|
|
`}};function Vpe(e){let t=e.length;if(t>4)throw Error(`Transpose for rank ${t} is not yet supported`);let r=new Array(t);for(let n=0;n<e.length;n++)r[e[n]]=`resRC[${n}]`;return r.join()}function Fl(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{perm:s}=n,i=r,o=a.shape.length,l=new Array(o);for(let d=0;d<l.length;d++)l[d]=a.shape[s[d]];if(r.shouldExecuteOnCPU([a])){let d=i.tensorMap.get(a.dataId).values,h=Fpe(d,a.shape,a.dtype,s,l);return r.makeTensorInfo(l,a.dtype,h)}if(a.shape.length===2&&v.arraysEqual(s,[1,0])){let d=new Bpe(a.shape,s);return i.runWebGPUProgram(d,[a],a.dtype)}let u=new Wpe(a.shape,s);return i.runWebGPUProgram(u,[a],a.dtype)}var Upe={kernelName:Pi,backendName:"webgpu",kernelFunc:Fl};function Gpe(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s}=n,i=v.parseAxisParam(s,a.shape),o=N.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=Fl({inputs:{x:a},backend:r,attrs:{perm:o}}),u.push(l),i=N.getInnerMostAxes(i.length,l.shape.length)),N.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let d=new C8(l.shape,i[0],"max"),h=[{type:"int32",data:[i[0]]},{type:"float32",data:[Number.NEGATIVE_INFINITY]}],p=r.runWebGPUProgram(d,[l],"int32",h);return u.forEach(c=>r.disposeData(c.dataId)),p}var jpe={kernelName:js,backendName:"webgpu",kernelFunc:Gpe};function Hpe(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s}=n,i=v.parseAxisParam(s,a.shape),o=N.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=Fl({inputs:{x:a},backend:r,attrs:{perm:o}}),u.push(l),i=N.getInnerMostAxes(i.length,l.shape.length)),N.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let d=new C8(l.shape,i[0],"min"),h=[{type:"int32",data:[i[0]]},{type:"float32",data:[Number.POSITIVE_INFINITY]}],p=r.runWebGPUProgram(d,[l],"int32",h);return u.forEach(c=>r.disposeData(c.dataId)),p}var qpe={kernelName:$u,backendName:"webgpu",kernelFunc:Hpe},E8=class{constructor(e,t){this.variableNames=["x"],this.uniforms="stride : vec2<i32>, pad : vec2<i32>, dilation : vec2<i32>, convDims : vec2<i32>, filterDims : vec2<i32>,",this.workGroupSize=[128,1,1],this.size=!0,this.outputShape=e.outShape,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`pool2D_${t}`,this.poolType=t}getUserCode(){let e="resultValue = max(value, resultValue);";this.poolType==="avg"&&(e="resultValue = resultValue + value; count = count + 1.0;");let t="resultValue";return this.poolType==="avg"&&(t="resultValue / count"),`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let batch = coords[0];
|
|
let xRCCorner = vec2<i32>(coords.yz) * uniforms.stride - uniforms.pad;
|
|
let xRCorner = xRCCorner.x;
|
|
let xCCorner = xRCCorner.y;
|
|
|
|
var resultValue = ${this.poolType==="avg"?"0.0":"-1.0 / pow(10.0, -20.0)"};
|
|
var count = 0.0;
|
|
|
|
for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + uniforms.dilation.x) {
|
|
let xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= uniforms.convDims.x) {
|
|
continue;
|
|
}
|
|
|
|
for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + uniforms.dilation.y) {
|
|
let xC = xCCorner + wC;
|
|
if (xC < 0 || xC >= uniforms.convDims.y) {
|
|
continue;
|
|
}
|
|
|
|
let value = getX(batch, xR, xC, coords[3]);
|
|
${e}
|
|
}
|
|
}
|
|
|
|
setOutputAtIndex(index, ${t});
|
|
}
|
|
}
|
|
`}},R8=class{constructor(e){this.variableNames=["x"],this.uniforms="stride : vec2<i32>,",this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e.outShape,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="poolWithFilterSizeEqualsOne"}getUserCode(){return`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let batch = coords[0];
|
|
let d = coords[3];
|
|
|
|
let xRCCorner = coords.yz * uniforms.stride;
|
|
let xRCorner = xRCCorner.x;
|
|
let xCCorner = xRCCorner.y;
|
|
|
|
let value = getX(batch, xRCorner, xCCorner, d);
|
|
setOutputAtIndex(index, value);
|
|
}
|
|
}
|
|
`}};function Kpe(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n,u=1,d=N.computePool2DInfo(a.shape,s,i,u,o,l);if(d.filterWidth===1&&d.filterHeight===1&&v.arraysEqual(d.inShape,d.outShape))return Bn({inputs:{x:a},backend:r});let h,p=[{type:"int32",data:[d.strideHeight,d.strideWidth]}];return d.filterHeight===1&&d.filterWidth===1?h=new R8(d):(h=new E8(d,"avg"),p.push({type:"int32",data:[d.padInfo.top,d.padInfo.left]},{type:"int32",data:[d.dilationHeight,d.dilationWidth]},{type:"int32",data:[d.inHeight,d.inWidth]},{type:"int32",data:[d.effectiveFilterHeight,d.effectiveFilterWidth]})),r.runWebGPUProgram(h,[a],a.dtype,p)}var Xpe={kernelName:Hs,backendName:"webgpu",kernelFunc:Kpe};function Zpe(e){let{inputs:t,backend:r,attrs:n}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=n;return Ab({a,b:s,transposeA:i,transposeB:o,backend:r})}var Ype={kernelName:qs,backendName:"webgpu",kernelFunc:Zpe},Jpe=class{constructor(e,t){this.variableNames=["source"],this.workPerThread=1,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.rank=t.length,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.start=e,this.uniforms=`start : ${mr(e.length)}, `,this.shaderKey="slice"}getUserCode(){let e=mr(this.rank),t=Qpe(this.rank),r;return this.start.length===1?r=this.outputShape.map((n,a)=>"sourceLoc = uniforms.start + coords;"):r=this.outputShape.map((n,a)=>`sourceLoc.${Z1[a]} = uniforms.start[${a}] + coords.${Z1[a]};`),`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
var sourceLoc : ${e};
|
|
let coords = getCoordsFromIndex(index);
|
|
${r.join(`
|
|
`)}
|
|
setOutputAtIndex(index, getSource(${t}));
|
|
}
|
|
}
|
|
`}},Z1=["x","y","z","w","u","v"];function Qpe(e){if(e===1)return"sourceLoc";if(e<=6)return Z1.slice(0,e).map(t=>`sourceLoc.${t}`).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}function Id(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{begin:s,size:i}=n,[o,l]=_t.parseSliceParams(a,s,i);if(_t.assertParamsValid(a,o,l),r.shouldExecuteOnCPU([a])||a.dtype==="string"){let h=r.tensorMap.get(a.dataId),p=Tpe(h.values,o,l,a.shape,a.dtype);return r.makeTensorInfo(l,a.dtype,p)}if(v.sizeFromShape(l)===0)return r.makeTensorInfo(l,a.dtype,[]);let u=new Jpe(o,l),d=[{type:"int32",data:o}];return r.runWebGPUProgram(u,[a],a.dtype,d)}var ehe={kernelName:dl,backendName:"webgpu",kernelFunc:Id},the=e=>{let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockShape:s,crops:i}=n;v.assert(a.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGPU backend not implemented yet");let o=s.reduce((A,x)=>A*x),l=N.getReshaped(a.shape,s,o),u=N.getPermuted(l.length,s.length),d=N.getReshapedPermuted(a.shape,s,o),h=N.getSliceBeginCoords(i,s.length),p=N.getSliceSize(d,i,s.length),c=[],f=qe({inputs:{x:a},backend:r,attrs:{shape:l}}),m=Fl({inputs:{x:f},backend:r,attrs:{perm:u}}),g=qe({inputs:{x:m},backend:r,attrs:{shape:d}}),y=Id({inputs:{x:g},backend:r,attrs:{begin:h,size:p}});return c.push(f),c.push(m),c.push(g),c.forEach(A=>r.disposeData(A.dataId)),y},rhe={kernelName:zo,backendName:"webgpu",kernelFunc:the},M8=Gr({opSnippet:10,dtype:"bool",cpuKernelImpl:vpe}),nhe={kernelName:Jo,backendName:"webgpu",kernelFunc:M8};function Ph(e){let{inputs:t,backend:r}=e,{input:n}=t,a=r.tensorMap.get(n.dataId);return Bn({inputs:{x:a.complexTensorInfos.real},backend:r})}var ahe={kernelName:Xp,backendName:"webgpu",kernelFunc:Ph};function she(e,t){let r=new $h(e.shape,22),n=t.runWebGPUProgram(r,[e],"int32");return{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}function Y1(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{dtype:s}=n;if(s==="complex64"){if(a.dtype==="complex64")return Bn({inputs:{x:a},backend:r});let i=Wt(a.shape),o=Y1({inputs:{x:a},backend:r,attrs:{dtype:"float32"}}),l=kd({inputs:{real:o,imag:i},backend:r});return i.dispose(),r.disposeData(o.dataId),l}if(a.dtype==="complex64"){let i=Ph({inputs:{input:a},backend:r}),o=Y1({inputs:{x:i},backend:r,attrs:{dtype:s}});return r.disposeData(i.dataId),o}if(!v.hasEncodingLoss(a.dtype,s)){let i=Bn({inputs:{x:a},backend:r});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return she(a,r);if(s==="bool"){let i=r.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),o=M8({inputs:{a,b:i},backend:r});return r.disposeData(i.dataId),o}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var ihe={kernelName:Ks,backendName:"webgpu",kernelFunc:Y1},ohe=vr({opType:1,cpuKernelImpl:npe}),lhe={kernelName:Xs,backendName:"webgpu",kernelFunc:ohe},uhe=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32, maxVal : f32,",this.workPerThread=4,this.workGroupSize=[64,1,1],this.isVec4=!0,this.size=!0,this.outputShape=e,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey="clipVec4"}getUserCode(){return`
|
|
${tt()}
|
|
if(index < uniforms.size) {
|
|
let value = getAByOutputIndex(index);
|
|
var clampedValue : vec4<f32>;
|
|
for (var i = 0; i < 4; i = i + 1) {
|
|
if (isnan(value[i])) {
|
|
clampedValue[i] = value[i];
|
|
} else {
|
|
clampedValue[i] = clamp(value[i], uniforms.minVal, uniforms.maxVal);
|
|
}
|
|
}
|
|
|
|
setOutputAtIndex(index, clampedValue);
|
|
}
|
|
}
|
|
`}},dhe=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32, maxVal : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="clip"}getUserCode(){return`
|
|
${tt()}
|
|
if(index < uniforms.size) {
|
|
let value = getAByOutputIndex(index);
|
|
if (isnan(value)) {
|
|
setOutputAtIndex(index, value);
|
|
return;
|
|
}
|
|
setOutputAtIndex(index, clamp(value, uniforms.minVal, uniforms.maxVal));
|
|
}
|
|
}
|
|
`}};function phe(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=n,o,l=[{type:"float32",data:[s]},{type:"float32",data:[i]}];return v.sizeFromShape(a.shape)%4===0?o=new uhe(a.shape):o=new dhe(a.shape),r.runWebGPUProgram(o,[a],a.dtype,l)}var hhe={kernelName:Ka,backendName:"webgpu",kernelFunc:phe},che=class{constructor(e){this.uniforms="",this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=N.computeOutShape(e,1),this.variableNames=e.map((t,r)=>`T${r}`),this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.offsetLength=e.length-1;for(let t=0;t<this.offsetLength;t++)this.uniforms+=`offset${t} : i32,`;this.shaderKey="concat"}getUserCode(){let e=[];if(this.offsetLength>0){e.push("if (yC < uniforms.offset0){ setOutputAtCoords(coords.x, coords.y, getT0(yR, yC)); }");for(let n=1;n<this.offsetLength;n++)e.push(`else if (yC < uniforms.offset${[n]}){ setOutputAtCoords(coords.x, coords.y, getT${n}(yR, yC - uniforms.offset${n-1})); }`);let t=this.offsetLength,r=this.offsetLength-1;e.push(`else { setOutputAtCoords(coords.x, coords.y, getT${t}(yR, yC - uniforms.offset${r})); }`)}else e.push("setOutputAtCoords(coords.x, coords.y, getT0(yR, yC));");return`
|
|
${tt()}
|
|
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
if(flatIndex < uniforms.size) {
|
|
let coords = getCoordsFromIndex(flatIndex);
|
|
let yR = coords.x;
|
|
let yC = coords.y;
|
|
|
|
${e.join(`
|
|
`)}
|
|
}
|
|
}
|
|
}
|
|
`}};function f0(e){let{inputs:t,backend:r}=e,{input:n}=t,a=r.tensorMap.get(n.dataId);return Bn({inputs:{x:a.complexTensorInfos.imag},backend:r})}var fhe={kernelName:jp,backendName:"webgpu",kernelFunc:f0};function J1(e,t,r){let n=e[0].dtype;if(n==="complex64"){let c=e.map(A=>Ph({inputs:{input:A},backend:r})),f=e.map(A=>f0({inputs:{input:A},backend:r})),m=J1(c,t,r),g=J1(f,t,r),y=kd({inputs:{real:m,imag:g},backend:r});return c.forEach(A=>r.disposeData(A.dataId)),f.forEach(A=>r.disposeData(A.dataId)),r.disposeData(m.dataId),r.disposeData(g.dataId),y}let a=r.shouldExecuteOnCPU(e);if(n==="string"&&(a=!0),a){let c=e.map(b=>{let w=v.sizeFromShape(b.shape.slice(t));return qe({inputs:{x:b},backend:r,attrs:{shape:[-1,w]}})}),f=c.map(b=>({vals:r.readSync(b.dataId),shape:b.shape})),m=N.computeOutShape(c.map(b=>b.shape),1),g=c[0].shape[0]===1,y=ape(f,m,n,g),A=N.computeOutShape(e.map(b=>b.shape),t),x=r.makeTensorInfo(A,n,y);return c.forEach(b=>r.disposeData(b.dataId)),x}let{tensors2D:s,outShape:i}=mhe(e,t,r),o=s.map(c=>c.shape),l=new che(o),u=[],d=new Array(o.length-1);if(d.length>0){d[0]=o[0][1],u.push({type:"int32",data:[d[0]]});for(let c=1;c<d.length;c++)d[c]=d[c-1]+o[c][1],u.push({type:"int32",data:[d[c]]})}let h=r.runWebGPUProgram(l,s,s[0].dtype,u);s.forEach(c=>r.disposeData(c.dataId));let p=qe({inputs:{x:h},backend:r,attrs:{shape:i}});return r.disposeData(h.dataId),p}function mhe(e,t,r){let n=N.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>qe({inputs:{x:a},backend:r,attrs:{shape:[v.sizeFromShape(a.shape.slice(0,t)),v.sizeFromShape(a.shape.slice(t))]}})),outShape:n}}function F8(e){let{inputs:t,backend:r,attrs:n}=e,{axis:a}=n,s=v.parseAxisParam(a,t[0].shape)[0],i=N.computeOutShape(t.map(u=>u.shape),s);if(v.sizeFromShape(i)===0)return r.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(u=>v.sizeFromShape(u.shape)>0);if(o.length===1)return Bn({inputs:{x:o[0]},backend:r});let l=o.map(u=>u.shape);return N.assertParamsConsistent(l,s),J1(o,s,r)}var ghe={kernelName:Oo,backendName:"webgpu",kernelFunc:F8},yhe=class{constructor(e,t=!1,r=null,n=!1,a=!1){this.variableNames=["x","W"],this.uniforms=`filterDims : vec2<i32>, pad : vec2<i32>, stride : vec2<i32>, dilation : vec2<i32>,
|
|
dimAOuter : i32, dimBOuter : i32, dimInner : i32,`,this.workGroupSize=[8,8,1],this.isVec4=!0,this.outputShape=e.outShape,v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.outputShape[1]===1?this.elementsPerThread=[4,1,1]:this.elementsPerThread=[4,4,1],this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),this.convInfo=e,this.addBias=t,this.activation=r,this.hasPreluActivationWeights=n,this.hasLeakyreluAlpha=a,this.addBias&&this.variableNames.push("bias"),this.hasPreluActivationWeights&&this.variableNames.push("preluActivationWeights"),this.hasLeakyreluAlpha&&this.variableNames.push("leakyreluAlpha"),this.tileAOuter=this.outputShape[1]===1?1:this.workGroupSize[1]*this.elementsPerThread[1],this.tileBOuter=this.workGroupSize[0]*this.elementsPerThread[0],this.tileInner=this.tileBOuter,[this.fitA,this.fitB]=this.getShapeFit(),this.shaderKey=`conv2DMMVec4_${this.activation}_${this.fitA}_${this.fitB}_${this.elementsPerThread}`}getShapeFit(){let e=[this.tileAOuter,this.tileInner],t=[this.tileInner,this.tileBOuter],r=this.outputShape[1]*this.outputShape[2],n=this.outputShape[3],a=this.convInfo.filterHeight*this.convInfo.filterWidth*this.convInfo.inChannels;return[Ha(e,[r,a]),Ha(t,[a,n])]}getSampleAWithRemainder(e){return`let flatIndex${e} = getIndexFromCoords4D(coord, uniforms.xShape);
|
|
let divBy4Remainder${e} = flatIndex${e} % 4;
|
|
let divBy4Index${e} = flatIndex${e} / 4;
|
|
let curData${e} = x[divBy4Index${e}];
|
|
if (divBy4Remainder${e} == 0) {
|
|
temp = curData${e};
|
|
} else {
|
|
// TODO: This could end up being a redundant load with another one in
|
|
// the same shader invocation. Perhaps there's an opportunity for
|
|
// optimization
|
|
let nextData${e} = x[divBy4Index${e} + 1];
|
|
if (divBy4Remainder${e} == 1) {
|
|
temp = vec4<f32>(curData${e}.yzw, nextData${e}.x);
|
|
} else if (divBy4Remainder${e} == 2) {
|
|
temp = vec4<f32>(curData${e}.zw, nextData${e}.xy);
|
|
} else if (divBy4Remainder${e} == 3) {
|
|
temp = vec4<f32>(curData${e}.w, nextData${e}.xyz);
|
|
}
|
|
}
|
|
`}getUserCode(){let e=S8(this.elementsPerThread,this.tileAOuter,this.tileBOuter,this.tileInner),t=`let outRow = r / uniforms.outShape[2];
|
|
let outCol = r % uniforms.outShape[2];
|
|
let WRow = c / (uniforms.filterDims[1] * uniforms.xShape[3]);
|
|
let WCol = c / uniforms.xShape[3] % uniforms.filterDims[1];
|
|
let inChCoord = c % uniforms.xShape[3];
|
|
var coord = vec4<i32>(
|
|
batch,
|
|
outRow * uniforms.stride[0] + uniforms.dilation[0] * WRow - uniforms.pad[0],
|
|
outCol * uniforms.stride[1] + uniforms.dilation[1] * WCol - uniforms.pad[1],
|
|
inChCoord);
|
|
var resData = vec4<f32>(0.0);
|
|
${this.convInfo.inChannels%4===0?`// The bounds checking is always needed since we use it to pad zero for
|
|
// the 'same' padding type.
|
|
if (coordsInBounds4D(coord, uniforms.xShape)) {
|
|
resData = x[getIndexFromCoords4D(coord, uniforms.xShape) / 4];
|
|
} else {
|
|
resData = vec4<f32>(0.0); }`:`var temp = vec4<f32>(0.0);
|
|
${this.getSampleAWithRemainder(1)}
|
|
resData = temp;
|
|
if (WCol == (uniforms.filterDims[1] - 1)) {
|
|
coord = vec4<i32>(
|
|
coord.x, coord.y + 1, coord.z + 1 - uniforms.filterDims[1], 0);
|
|
${this.getSampleAWithRemainder(2)}
|
|
if (inChCoord == 0) {
|
|
resData = vec4<f32>(resData.xyz, temp.x);
|
|
} else if (inChCoord == 1) {
|
|
resData = vec4<f32>(resData.xy, temp.xy);
|
|
} else {
|
|
resData = vec4<f32>(resData.x, temp.xyz);
|
|
}
|
|
}
|
|
`}
|
|
return resData;`,r=this.fitA?`${t}`:`if (r < uniforms.dimAOuter && c < uniforms.dimInner) {
|
|
${t}
|
|
}
|
|
return vec4<f32>(0.0);
|
|
`,n=this.fitB?"return W[row * uniforms.dimBOuter / 4 + col];":`if(coordsInBounds2D(vec2<i32>(row, col * 4), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return W[row * uniforms.dimBOuter / 4 + col];
|
|
}
|
|
return vec4<f32>(0.0);
|
|
`,a="",s="";if(this.activation){let o=ts(this.activation,this.isVec4);if(this.hasPreluActivationWeights)a=`fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${o}
|
|
}`;else{if(this.hasLeakyreluAlpha)throw a=`fn activation(outCoord: vec4<f32>) -> vec4<f32> {
|
|
let b = getLeakyreluAlphaByOutputCoords(outCoord);
|
|
${o}
|
|
}`,new Error("Leakyrelu is not supported.");a=`
|
|
fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
|
|
${o}
|
|
}`}s="value = activation(value, outCoord);"}let i=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${a}
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
|
|
let r = row;
|
|
let c = col * 4;
|
|
var batch = i32(globalId.z);
|
|
${r}
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
|
|
${n}
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueInput : vec4<f32>, globalId : vec3<u32>) {
|
|
var batch = i32(globalId.z);
|
|
var value = valueInput;
|
|
if (row < uniforms.dimAOuter && col * 4 < uniforms.dimBOuter)
|
|
{
|
|
let outCoord = vec4<i32>(
|
|
batch,
|
|
row / uniforms.outShape[2],
|
|
row % uniforms.outShape[2],
|
|
col * 4);
|
|
${i}
|
|
${s}
|
|
setOutputAtCoords(outCoord[0], outCoord[1], outCoord[2], outCoord[3],
|
|
value);
|
|
}
|
|
}
|
|
${e}
|
|
`}},Ahe=class{constructor(e,t=!1,r=null,n=!1){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>, pad : vec2<i32>, stride : vec2<i32>, dilation : vec2<i32>, dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.outputShape=e.outShape,v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.workGroupSize=fb(this.dispatchLayout,this.outputShape),this.elementsPerThread=mb(this.dispatchLayout,this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=r,this.hasPreluActivationWeights=n,[this.fitA,this.fitB]=this.getShapeFit(),this.shaderKey=`conv2DMM_${this.elementsPerThread}_${this.activation}_${this.fitA}_${this.fitB}`}getShapeFit(){let e=this.workGroupSize[1]*this.elementsPerThread[1],t=this.workGroupSize[0]*this.elementsPerThread[0],r=e>t?e:t;v.assert(r%this.workGroupSize[0]===0&&r%this.workGroupSize[1]===0,()=>"tileInner must be multiple of workgroupsize.x and workgroupsize.y");let n=[e,r],a=[r,t],s=this.outputShape[1]*this.outputShape[2],i=this.outputShape[3],o=this.convInfo.filterHeight*this.convInfo.filterWidth*this.convInfo.inChannels;return[Ha(n,[s,o]),Ha(a,[o,i])]}getUserCode(){let e=yb(this.elementsPerThread,this.workGroupSize),t=`
|
|
let outRow = row / uniforms.outShape[2];
|
|
let outCol = row % uniforms.outShape[2];
|
|
|
|
let WRow = col / (uniforms.filterDims[1] * uniforms.xShape[3]);
|
|
let WCol = col / uniforms.xShape[3] % uniforms.filterDims[1];
|
|
let coord = vec4<i32>(
|
|
batch,
|
|
outRow * uniforms.stride[0] + uniforms.dilation[0] * WRow - uniforms.pad[0],
|
|
outCol * uniforms.stride[1] + uniforms.dilation[1] * WCol - uniforms.pad[1],
|
|
col % uniforms.xShape[3]);
|
|
// The bounds checking is always needed since we use it to pad zero for the
|
|
// 'same' padding type.
|
|
if(coordsInBounds4D(coord, uniforms.xShape)) {
|
|
return x[getIndexFromCoords4D(coord, uniforms.xShape)];
|
|
}
|
|
return 0.0;`,r=this.fitA?`${t}`:`if (row < uniforms.dimAOuter && col < uniforms.dimInner) {
|
|
${t}
|
|
}
|
|
return 0.0;
|
|
`,n=this.fitB?"return W[row * uniforms.dimBOuter + col];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return W[row * uniforms.dimBOuter + col];
|
|
}
|
|
return 0.0;
|
|
`,a="",s="";if(this.activation){let o=ts(this.activation,!1);this.hasPreluActivationWeights?a=`fn activation(a: f32, outCoord : vec4<i32>) -> f32 {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${o}
|
|
}`:a=`
|
|
fn activation(a : f32, outCoord : vec4<i32>) -> f32 {
|
|
${o}
|
|
}
|
|
`,s="value = activation(value, outCoord);"}let i=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${a}
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
var batch = i32(globalId.z);
|
|
${r}
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
${n}
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueInput : f32, globalId : vec3<u32>) {
|
|
var batch = i32(globalId.z);
|
|
var value = valueInput;
|
|
let outCoord = vec4<i32>(
|
|
batch,
|
|
row / uniforms.outShape[2],
|
|
row % uniforms.outShape[2],
|
|
col);
|
|
${i}
|
|
${s}
|
|
result[getIndexFromCoords4D(outCoord, uniforms.outShape)] = value;
|
|
}
|
|
${e}
|
|
`}},xhe=class{constructor(e,t=!1,r=null,n=!1){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>, pad : vec2<i32>, stride : vec2<i32>, dilation : vec2<i32>,",this.workGroupSize=[128,1,1],this.outputShape=e.outShape,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=r,this.hasPreluActivationWeights=n,this.shaderKey=`conv2DNaive_${this.activation}`}getUserCode(){let e="",t="";if(this.activation){let n=ts(this.activation);this.hasPreluActivationWeights?e=`fn activation(a : f32, outCoord : vec4<i32>) -> f32{
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${n}
|
|
}`:e=`
|
|
fn activation(a : f32, outCoord : vec4<i32>) -> f32{
|
|
${n}
|
|
}
|
|
`,t="value = activation(value, outCoord);"}let r=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${e}
|
|
fn readInp(batch : i32, row : i32, col : i32, chan : i32) -> f32 {
|
|
let coord = vec4<i32>(batch, row, col, chan);
|
|
if(coordsInBounds4D(coord, uniforms.xShape)) {
|
|
return getX(batch, row, col, chan);
|
|
}
|
|
return 0.0;
|
|
}
|
|
|
|
fn readFilt(row : i32, col : i32, xChannel : i32, outChannel : i32) -> f32{
|
|
let coord = vec4<i32>(row, col, xChannel, outChannel);
|
|
if(coordsInBounds4D(coord, uniforms.wShape)) {
|
|
return getW(row, col, xChannel, outChannel);
|
|
}
|
|
return 0.0;
|
|
}
|
|
|
|
fn writeResult(batch : i32, row : i32, col : i32, chan : i32, value : f32) {
|
|
let coord = vec4<i32>(batch, row, col, chan);
|
|
if (coordsInBounds4D(coord, uniforms.outShape)) {
|
|
${r}
|
|
${t}
|
|
setOutputAtCoords(batch, row, col, chan, value);
|
|
}
|
|
}
|
|
|
|
${Bi()}
|
|
let coords = getOutputCoords();
|
|
let batch = coords[0];
|
|
let outChannel = coords[3];
|
|
|
|
var acc = 0.0;
|
|
|
|
for (var row = 0; row < uniforms.filterDims[0]; row = row + 1) {
|
|
for (var col = 0; col < uniforms.filterDims[1]; col = col + 1) {
|
|
for (var xChannel = 0; xChannel < uniforms.xShape[3]; xChannel = xChannel + 1) {
|
|
let coordRow = coords[1] * uniforms.stride[0] + uniforms.dilation[0] * row - uniforms.pad[0];
|
|
let coordCol = coords[2] * uniforms.stride[1] + uniforms.dilation[1] * col - uniforms.pad[1];
|
|
let v = readInp(batch, coordRow, coordCol, xChannel);
|
|
let f = readFilt(row, col, xChannel, outChannel);
|
|
acc = acc + v * f;
|
|
}
|
|
}
|
|
}
|
|
|
|
writeResult(batch, coords[1], coords[2], outChannel, acc);
|
|
}
|
|
`}},bhe=class{constructor(e,t){this.variableNames=["A"],this.uniforms=`pad : vec2<i32>, stride : vec2<i32>, dilation : vec2<i32>, outWidth : i32, itemsPerBlockRow : i32,
|
|
inChannels : i32,`,this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.isChannelsLast=t,this.shaderKey=`im2col_${this.isChannelsLast}`}getUserCode(){let e=this.isChannelsLast?0:1,t=this.isChannelsLast?1:2;return`
|
|
${tt()}
|
|
|
|
for(var i = 0; i<${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
|
|
let rc = getCoordsFromIndex(flatIndex);
|
|
|
|
if(flatIndex < uniforms.size) {
|
|
let blockIndex = rc[0];
|
|
let pos = rc[1];
|
|
|
|
let offsetY = blockIndex / uniforms.outWidth * uniforms.stride[1] - uniforms.pad[1];
|
|
let d0 = offsetY + uniforms.dilation[1] * pos / uniforms.itemsPerBlockRow;
|
|
var value = 0.0;
|
|
if(d0 < uniforms.aShape[${e}] && d0 >= 0) {
|
|
let offsetX = (blockIndex % uniforms.outWidth) * uniforms.stride[0] -
|
|
uniforms.pad[0];
|
|
let d1 = offsetX + uniforms.dilation[0] * ((pos %
|
|
uniforms.itemsPerBlockRow) / uniforms.inChannels);
|
|
let ch = pos % uniforms.inChannels;
|
|
if(d1 < uniforms.aShape[${t}] && d1 >= 0) {
|
|
value = getA(d0, d1, ch);
|
|
}
|
|
}
|
|
setOutputAtIndex(flatIndex, value);
|
|
}
|
|
}
|
|
}
|
|
`}};function vhe({x:e,filter:t,convInfo:r,backend:n,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,u=r.dataFormat==="channelsLast",d=!1,h=!1,p=r.filterHeight===r.inHeight&&r.filterWidth===r.inWidth&&r.padInfo.type==="VALID",c,f;if(p){let y=r.inHeight*r.inWidth*r.inChannels;c=qe({inputs:{x:e},backend:n,attrs:{shape:[1,r.batchSize,y]}}),f=qe({inputs:{x:t},backend:n,attrs:{shape:[1,y,r.outChannels]}})}else{let y=u?l[0]*l[1]*l[2]:l[0]*l[2]*l[3];c=qe({inputs:{x:e},backend:n,attrs:{shape:[1,y,r.inChannels]}}),f=qe({inputs:{x:t},backend:n,attrs:{shape:[1,r.inChannels,r.outChannels]}})}let m=Ab({a:c,b:f,transposeA:d,transposeB:h,backend:n,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),g=qe({inputs:{x:m},backend:n,attrs:{shape:r.outShape}});return n.disposeData(c.dataId),n.disposeData(f.dataId),n.disposeData(m.dataId),g}function whe({x:e,filter:t,convInfo:r,backend:n,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:u,inChannels:d,strideWidth:h,strideHeight:p,padInfo:c,outWidth:f,outHeight:m,dilationWidth:g,dilationHeight:y,dataFormat:A}=r,x=A==="channelsLast",b=l*u*d,w=m*f,T=[w,b],S=!1,E=!1,R=[],_=qe({inputs:{x:e},backend:n,attrs:{shape:e.shape.slice(1)}}),M=qe({inputs:{x:t},backend:n,attrs:{shape:[1,b,-1]}});R.push(_),R.push(M);let I=new bhe(T,x),O=[{type:"int32",data:[c.left,c.top]},{type:"int32",data:[h,p]},{type:"int32",data:[g,y]},{type:"int32",data:[f]},{type:"int32",data:[d*l]},{type:"int32",data:[d]}],z=n.runWebGPUProgram(I,[_],_.dtype,O),j=qe({inputs:{x:z},backend:n,attrs:{shape:[1,T[0],T[1]]}});R.push(z),R.push(j);let X=[1,T[0],T[1]],D=new T8(X,[1,w,r.outChannels],Y().get("WEBGPU_MATMUL_WORK_PER_THREAD"),S,E,a,o,s),Q=X[1],V=X[2],ee=r.outChannels,J=[{type:"int32",data:[Q]},{type:"int32",data:[ee]},{type:"int32",data:[V]}],se=[j,M];a&&se.push(a),s&&se.push(s),o==="leakyrelu"&&(O.push({type:"float32",data:[i]}),D.uniforms+=" alpha : f32,");let Z=n.runWebGPUProgram(D,se,j.dtype,J),ae=x?[1,m,f,r.outChannels]:[1,r.outChannels,m,f],de=qe({inputs:{x:Z},backend:n,attrs:{shape:ae}});R.push(Z);for(let Ae of R)n.disposeData(Ae.dataId);return de}function $8({x:e,filter:t,convInfo:r,backend:n,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=a!=null,u=s!=null,d;if(r.filterHeight===r.inHeight&&r.filterWidth===r.inWidth&&r.padInfo.type==="VALID"||r.filterHeight===1&&r.filterWidth===1&&r.dilationHeight===1&&r.dilationWidth===1&&r.strideHeight===1&&r.strideWidth===1&&(r.padInfo.type==="SAME"||r.padInfo.type==="VALID"))return vhe({x:e,filter:t,convInfo:r,backend:n,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i});if(Y().getBool("WEBGPU_CONV_SEPARATE_IM2COL_SHADER")&&e.shape[0]===1)return whe({x:e,filter:t,convInfo:r,backend:n,bias:a,preluActivationWeights:s,leakyreluAlpha:i,activation:o});let h=Y().getBool("WEBGPU_USE_NAIVE_CONV2D"),p=(r.inChannels%4===0||r.inChannels===3&&r.padInfo.type==="VALID")&&r.outChannels%4===0,c=[r.padInfo.top,r.padInfo.left],f=[{type:"int32",data:[r.filterHeight,r.filterWidth]},{type:"int32",data:[...c]},{type:"int32",data:[r.strideHeight,r.strideWidth]},{type:"int32",data:[r.dilationHeight,r.dilationWidth]}];if(h)d=new xhe(r,l,o,u);else{p?d=new yhe(r,l,o,u):d=new Ahe(r,l,o,u);let g=r.outShape[1]*r.outShape[2],y=r.outShape[3],A=r.filterHeight*r.filterWidth*r.inShape[3];f.push({type:"int32",data:[g]},{type:"int32",data:[y]},{type:"int32",data:[A]})}let m=[e,t];return l&&m.push(a),u&&m.push(s),o==="leakyrelu"&&(f.push({type:"float32",data:[i]}),d.uniforms+=" alpha : f32,"),n.runWebGPUProgram(d,m,e.dtype,f)}function khe(e){let{inputs:t,attrs:r,backend:n}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:d}=r,h=N.convertConv2DDataFormat(l),p=N.computeConv2DInfo(a.shape,s.shape,i,u,o,d,!1,h);return $8({x:a,filter:s,convInfo:p,backend:n})}var Ihe={kernelName:Zs,backendName:"webgpu",kernelFunc:khe},She=class{constructor(e){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>, pads : vec2<i32>, stride : vec2<i32>, outBackprop : vec4<i32>, dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.outputShape=e.inShape,v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.workGroupSize=fb(this.dispatchLayout,this.outputShape),this.elementsPerThread=mb(this.dispatchLayout,this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),this.shaderKey=`conv2DDerInputMM_${this.elementsPerThread}`}getUserCode(){return`
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
var batch = i32(globalId.z);
|
|
if (row < uniforms.dimAOuter && col < uniforms.dimInner) {
|
|
|
|
let outRow = row / uniforms.outShape[2];
|
|
let outCol = row % uniforms.outShape[2];
|
|
|
|
let WRow = col / (uniforms.filterDims[1] * uniforms.outBackprop[3]);
|
|
let WCol = col / uniforms.outBackprop[3] % uniforms.filterDims[1];
|
|
let xR = f32(outRow - uniforms.pads[0] + WRow) / f32(uniforms.stride[0]);
|
|
let xC = f32(outCol - uniforms.pads[1] + WCol) / f32(uniforms.stride[1]);
|
|
if (xR < 0.0 || xR >= f32(uniforms.outBackprop[1]) || fract(xR) > 0.0) {
|
|
return 0.0;
|
|
}
|
|
if (xC < 0.0 || xC >= f32(uniforms.outBackprop[2]) || fract(xC) > 0.0) {
|
|
return 0.0;
|
|
}
|
|
let coord = vec4<i32>(
|
|
batch,
|
|
i32(xR),
|
|
i32(xC),
|
|
col % uniforms.outBackprop[3]);
|
|
return x[getIndexFromCoords4D(coord, uniforms.xShape)];
|
|
}
|
|
return 0.0;
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
let coordX = uniforms.filterDims.x - 1 -
|
|
row / (uniforms.filterDims[1] * uniforms.outBackprop[3]);
|
|
let coordY = uniforms.filterDims.y - 1 -
|
|
(row / uniforms.outBackprop[3]) % uniforms.filterDims[1];
|
|
if (row < uniforms.dimInner && col < uniforms.dimBOuter &&
|
|
coordX >= 0 && coordY >= 0) {
|
|
let coord = vec4<i32>(coordX, coordY, col,
|
|
row % uniforms.outBackprop[3]);
|
|
return W[getIndexFromCoords4D(coord, uniforms.wShape)];
|
|
}
|
|
return 0.0;
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueInput : f32, globalId : vec3<u32>) {
|
|
var batch = i32(globalId.z);
|
|
var value = valueInput;
|
|
let outCoord = vec4<i32>(
|
|
batch,
|
|
row / uniforms.outShape[2],
|
|
row % uniforms.outShape[2],
|
|
col);
|
|
result[getIndexFromCoords4D(outCoord, uniforms.outShape)] = value;
|
|
}
|
|
|
|
${yb(this.elementsPerThread,this.workGroupSize)}
|
|
`}},The=class{constructor(e){this.variableNames=["dy","W"],this.uniforms="filterDims : vec2<i32>, pads : vec2<i32>, stride : vec2<i32>, outBackprop : vec4<i32>,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e.inShape,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.isChannelsLast=e.dataFormat==="channelsLast",this.shaderKey=`conv2DDerInput_${this.isChannelsLast}`}getUserCode(){let e=this.isChannelsLast?1:2,t=this.isChannelsLast?2:3,r=this.isChannelsLast?3:1;return`
|
|
${tt()} {
|
|
if(index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let batch = coords[0];
|
|
let d1 = coords[${r}];
|
|
|
|
let dyCorner = vec2<i32>(coords[${e}]), coords[${t}]) - uniforms.pads;
|
|
let dyRCorner = dyCorner.x;
|
|
let dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
var dotProd = 0.0;
|
|
for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + 1) {
|
|
let dyR = (f32(dyRCorner) + f32(wR)) / f32(uniforms.stride.x);
|
|
let wRPerm = uniforms.filterDims.x - 1 - wR;
|
|
if (dyR < 0.0 || dyR >= f32(uniforms.outBackprop[1]) || fract(dyR) > 0.0 ||
|
|
wRPerm < 0) {
|
|
continue;
|
|
}
|
|
let idyR = dyR;
|
|
|
|
for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + 1) {
|
|
let dyC = (f32(dyCCorner) + f32(wC)) / f32(uniforms.stride.y);
|
|
let wCPerm = uniforms.filterDims.y - 1 - wC;
|
|
if (dyC < 0.0 || dyC >= f32(uniforms.outBackprop[2]) ||
|
|
fract(dyC) > 0.0 || wCPerm < 0) {
|
|
continue;
|
|
}
|
|
let idyC = dyC;
|
|
|
|
for (var d2 = 0; d2 < uniforms.outBackprop[3]; d2 = d2 + 1) {
|
|
if (${this.isChannelsLast}) {
|
|
let xValue = getDy(batch, idyR, idyC, d2);
|
|
let wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd = dotProd + xValue * wValue;
|
|
} else {
|
|
let xValue = getDy(batch, d2, idyR, idyC);
|
|
let wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd = dotProd + xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutputAtIndex(index, dotProd);
|
|
}
|
|
}
|
|
`}};function Nhe(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:d}=n,h=N.convertConv2DDataFormat(u),p=N.computeConv2DInfo(i,s.shape,o,1,l,d,!1,h),c=[{type:"int32",data:[p.filterHeight,p.filterWidth]},{type:"int32",data:[p.filterHeight-1-p.padInfo.top,p.filterWidth-1-p.padInfo.left]},{type:"int32",data:[p.strideHeight,p.strideWidth]},{type:"int32",data:[p.batchSize,p.outHeight,p.outWidth,p.outChannels]}],f;if(Y().getBool("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE"))f=new The(p);else{f=new She(p);let m=p.inShape[1]*p.inShape[2],g=p.inShape[3],y=p.filterHeight*p.filterWidth*p.outChannels;c.push({type:"uint32",data:[m]},{type:"uint32",data:[g]},{type:"uint32",data:[y]})}return r.runWebGPUProgram(f,[a,s],"float32",c)}var Che={kernelName:Ys,backendName:"webgpu",kernelFunc:Nhe},Ehe=vr({opType:2}),Rhe={kernelName:Js,backendName:"webgpu",kernelFunc:Ehe},Mhe=vr({opType:3}),Fhe={kernelName:Qs,backendName:"webgpu",kernelFunc:Mhe},$he=class{constructor(e,t,r,n){this.variableNames=["Image","Boxes","BoxInd"],this.uniforms="extrapolationValue : f32,",this.workGroupSize=[64,1,1],this.size=!0;let[a]=t;this.outputShape=[a,r[0],r[1],e],this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.methodId=n==="bilinear"?1:0,this.cropHeightBiggerThan1=this.outputShape[1]>1,this.cropWidthBiggerThan1=this.outputShape[2]>1,this.shaderKey=`cropAndResize_${this.methodId}_${this.cropHeightBiggerThan1}_${this.cropWidthBiggerThan1}`}getUserCode(){let[e,t]=["f32(uniforms.imageShape[1] - 1)","f32(uniforms.imageShape[2] - 1)"],[r,n,a]=this.cropHeightBiggerThan1?[`(${e} / f32(uniforms.outShape[1] - 1))`,"(y2-y1) * height_ratio",`y1*${e} + f32(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${e}`],[s,i,o]=this.cropWidthBiggerThan1?[`(${t} / f32(uniforms.outShape[2] - 1))`,"(x2-x1) * width_ratio",`x1*${t} + f32(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${t}`];return`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let height_ratio = f32(${r});
|
|
let width_ratio = f32(${s});
|
|
let b = coords[0];
|
|
let y = coords[1];
|
|
let x = coords[2];
|
|
let d = coords[3];
|
|
// get box vals
|
|
let y1 = getBoxes(b, 0);
|
|
let x1 = getBoxes(b, 1);
|
|
let y2 = getBoxes(b, 2);
|
|
let x2 = getBoxes(b, 3);
|
|
// get image in batch index
|
|
let bInd = i32(round(getBoxInd(b)));
|
|
if(bInd < 0 || bInd >= uniforms.outShape[0]) {
|
|
return;
|
|
}
|
|
let height_scale = ${n};
|
|
let width_scale = ${i};
|
|
let in_y = ${a};
|
|
if( in_y < 0.0 || in_y > ${e} ) {
|
|
setOutputAtIndex(index, uniforms.extrapolationValue);
|
|
return;
|
|
}
|
|
let in_x = ${o};
|
|
if( in_x < 0.0 || in_x > ${t} ) {
|
|
setOutputAtIndex(index, uniforms.extrapolationValue);
|
|
return;
|
|
}
|
|
let sourceFracIndexCR = vec2<f32>(in_x,in_y);
|
|
if(${this.methodId} == 1) {
|
|
// Compute the four integer indices.
|
|
let sourceFloorCR = vec2<i32>(sourceFracIndexCR);
|
|
let sourceCeilCR = vec2<i32>(ceil(sourceFracIndexCR));
|
|
let topLeft = getImage(bInd, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
let bottomLeft = getImage(bInd, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
let topRight = getImage(bInd, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
let bottomRight = getImage(bInd, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
let fracCR = sourceFracIndexCR - vec2<f32>(sourceFloorCR);
|
|
let top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
let bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
let newValue = top + (bottom - top) * fracCR.y;
|
|
setOutputAtIndex(index, newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
let sourceNearestCR = vec2<i32>(floor(
|
|
sourceFracIndexCR + vec2<f32>(0.5,0.5)));
|
|
let newValue = getImage(
|
|
bInd, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutputAtIndex(index, newValue);
|
|
}
|
|
}
|
|
}
|
|
`}},Phe=e=>{let{inputs:t,backend:r,attrs:n}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=n,d=new $he(a.shape[3],s.shape,o,l),h=[{type:"float32",data:[u]}];return r.runWebGPUProgram(d,[a,s,i],"float32",h)},_he={kernelName:Lo,backendName:"webgpu",kernelFunc:Phe},zhe=class{constructor(e,t){this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.uniforms="blockSize : i32,",this.outputShape=e,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`depthToSpace_${t}`,this.dataFormat=t}getUserCode(){return`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let b = coords[0];
|
|
let h = ${this.getHeightCoordString()};
|
|
let w = ${this.getWidthCoordString()};
|
|
let d = ${this.getDepthCoordString()};
|
|
|
|
let in_h = h / uniforms.blockSize;
|
|
let offset_h = h % uniforms.blockSize;
|
|
let in_w = w / uniforms.blockSize;
|
|
let offset_w = w % uniforms.blockSize;
|
|
let offset_d = (offset_h * uniforms.blockSize + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
let in_d = d + offset_d;
|
|
|
|
let rlt = ${this.getInputSamplingString()};
|
|
setOutputAtIndex(index, rlt);
|
|
}
|
|
}`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?"uniforms.outShape[3]":"uniforms.outShape[1]"}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function Ohe(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockSize:s,dataFormat:i}=n,o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],u=i==="NHWC"?a.shape[2]:a.shape[3],d=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,p=u*s,c=d/(s*s),f=i==="NHWC"?[o,h,p,c]:[o,c,h,p],m=[{type:"int32",data:[s]}],g=new zhe(f,i);return r.runWebGPUProgram(g,[a],a.dtype,m)}var Dhe={kernelName:Bo,backendName:"webgpu",kernelFunc:Ohe},P8=class{constructor(e,t=!1,r=null,n=!1){this.variableNames=["x","W"],this.uniforms="pad : vec2<i32>, stride : vec2<i32>, dilation : vec2<i32>, inDims : vec2<i32>,",this.workGroupSize=[4,4,4],this.isVec4=!0,this.outputShape=e.outShape,this.dispatchLayout={x:[0,1],y:[2],z:[3]},this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[1,4,4]),v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=r,this.hasPreluActivation=n,this.shaderKey=`depthwise3x3_${r}`}getUserCode(){let e="",t="";if(this.activation){let n=ts(this.activation,this.isVec4);this.hasPreluActivation?e=`fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${n}
|
|
}`:e=`
|
|
fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
|
|
${n}
|
|
}
|
|
`,t="dotProd[i] = activation(dotProd[i], coords);"}let r=this.addBias?"dotProd[i] = dotProd[i] + getBiasByOutputCoords(coords);":"";return`
|
|
${e}
|
|
|
|
${cb()}
|
|
fn main(@builtin(global_invocation_id) globalId: vec3<u32>) {
|
|
let batch = 0;
|
|
let r = i32(globalId.x);
|
|
let c = i32(globalId.y) * 4;
|
|
let d2 = i32(globalId.z) * 4;
|
|
let xRCCorner = vec2<i32>(r, c) * uniforms.stride - uniforms.pad;
|
|
let d1 = d2;
|
|
let q = 0;
|
|
|
|
let xRCorner = xRCCorner.x;
|
|
let xCCorner = xRCCorner.y;
|
|
|
|
var wVals : array<vec4<f32>, 9>;
|
|
wVals[0] = getW(0, 0, d1, q);
|
|
wVals[1] = getW(0, 1, d1, q);
|
|
wVals[2] = getW(0, 2, d1, q);
|
|
wVals[3] = getW(1, 0, d1, q);
|
|
wVals[4] = getW(1, 1, d1, q);
|
|
wVals[5] = getW(1, 2, d1, q);
|
|
wVals[6] = getW(2, 0, d1, q);
|
|
wVals[7] = getW(2, 1, d1, q);
|
|
wVals[8] = getW(2, 2, d1, q);
|
|
|
|
var xVals : array<array<vec4<f32>, 6>, 3>;
|
|
for (var wR = 0; wR < 3; wR = wR + 1) {
|
|
let xR = xRCorner + wR * uniforms.dilation[0];
|
|
for (var wC = 0; wC < 6; wC = wC + 1) {
|
|
let xC = xCCorner + wC * uniforms.dilation[1];
|
|
if (xR < 0 || xR >= uniforms.inDims[0] || xC < 0 || xC >= uniforms.inDims[1]) {
|
|
xVals[wR][wC] = vec4<f32>(0.0);
|
|
} else {
|
|
xVals[wR][wC] = getX(batch, xR, xC, d1);
|
|
}
|
|
}
|
|
}
|
|
|
|
var dotProd : array<vec4<f32>, 4>;
|
|
dotProd[0] = vec4<f32>(0.0);
|
|
dotProd[1] = vec4<f32>(0.0);
|
|
dotProd[2] = vec4<f32>(0.0);
|
|
dotProd[3] = vec4<f32>(0.0);
|
|
|
|
for (var wR = 0; wR < 3; wR = wR + 1) {
|
|
for (var wC = 0; wC < 3; wC = wC + 1) {
|
|
let indexW = wR * 3 + wC;
|
|
dotProd[0] = dotProd[0] + xVals[wR][0 + wC] * wVals[indexW];
|
|
dotProd[1] = dotProd[1] + xVals[wR][1 + wC] * wVals[indexW];
|
|
dotProd[2] = dotProd[2] + xVals[wR][2 + wC] * wVals[indexW];
|
|
dotProd[3] = dotProd[3] + xVals[wR][3 + wC] * wVals[indexW];
|
|
}
|
|
}
|
|
|
|
for (var i = 0; i < 4; i = i + 1) {
|
|
let coords = vec4<i32>(batch, r, c + i, d2);
|
|
if (coordsInBounds4D(coords, uniforms.outShape)) {
|
|
${r}
|
|
${t}
|
|
setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], dotProd[i]);
|
|
}
|
|
}
|
|
}
|
|
`}},_8=class{constructor(e,t=!1,r=null,n=!1){this.variableNames=["x","W"],this.uniforms=`pad : vec2<i32>, stride : vec2<i32>, dilation : vec2<i32>,
|
|
inDims : vec2<i32>, filterHeight : i32, filterWidth : i32,
|
|
channelMul : i32,`,this.workGroupSize=[256,1,1],this.outputShape=e.outShape,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=r,this.hasPreluActivation=n,this.shaderKey=`depthwise_${this.activation}`}getUserCode(){let e="",t="";if(this.activation){let n=ts(this.activation,!1);this.hasPreluActivation?e=`fn activation(a : f32, outCoord : vec4<i32>) -> f32 {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${n}
|
|
}`:e=`
|
|
fn activation(a : f32, outCoord : vec4<i32>) -> f32 {
|
|
${n}
|
|
}
|
|
`,t="dotProd = activation(dotProd, coords);"}let r=this.addBias?"dotProd = dotProd + getBiasByOutputCoords(coords);":"";return`
|
|
${e}
|
|
|
|
fn writeResult(batch : i32, row : i32, col : i32, chan : i32,
|
|
value : f32) {
|
|
let coord = vec4<i32>(batch, row, col, chan);
|
|
if (coordsInBounds4D(coord, uniforms.outShape)) {
|
|
setOutputAtCoords(batch, row, col, chan, value);
|
|
}
|
|
}
|
|
|
|
${Bi()}
|
|
let coords = getOutputCoords();
|
|
let batch = coords[0];
|
|
let xRCCorner = vec2<i32>(coords.yz) * uniforms.stride - uniforms.pad;
|
|
let d2 = coords[3];
|
|
let d1 = d2 / uniforms.channelMul;
|
|
let q = d2 - d1 * uniforms.channelMul;
|
|
|
|
let inputRowStart = xRCCorner.x;
|
|
let inputColStart = xRCCorner.y;
|
|
let inputRowEnd = inputRowStart + uniforms.filterHeight *
|
|
uniforms.dilation[0];
|
|
let inputColEnd = inputColStart + uniforms.filterWidth *
|
|
uniforms.dilation[1];
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
var dotProd = 0.0;
|
|
|
|
// Extract if checking out of for loop for performance.
|
|
if (inputRowStart >= 0 && inputColStart >= 0 &&
|
|
inputRowEnd < uniforms.inDims[0] &&
|
|
inputColEnd < uniforms.inDims[1]) {
|
|
// Here using a constant value |this.convInfo.filterHeight| instead
|
|
// of uniform value is in order to loop unrolling.
|
|
for (var wR = 0; wR < uniforms.filterHeight; wR = wR + 1) {
|
|
let xR = inputRowStart + wR * uniforms.dilation[0];
|
|
|
|
for (var wC = 0; wC < uniforms.filterWidth; wC = wC + 1) {
|
|
let xC = inputColStart + wC * uniforms.dilation[1];
|
|
|
|
let xVal = getX(batch, xR, xC, d1);
|
|
let wVal = getW(wR, wC, d1, q);
|
|
dotProd = dotProd + xVal * wVal;
|
|
}
|
|
}
|
|
} else {
|
|
for (var wR = 0; wR < uniforms.filterHeight; wR = wR + 1) {
|
|
let xR = inputRowStart + wR * uniforms.dilation[0];
|
|
|
|
if (xR < 0 || xR >= uniforms.inDims[0]) {
|
|
continue;
|
|
}
|
|
|
|
for (var wC = 0; wC < uniforms.filterWidth; wC = wC + 1) {
|
|
let xC = inputColStart + wC * uniforms.dilation[1];
|
|
|
|
if (xC < 0 || xC >= uniforms.inDims[1]) {
|
|
continue;
|
|
}
|
|
|
|
let xVal = getX(batch, xR, xC, d1);
|
|
let wVal = getW(wR, wC, d1, q);
|
|
dotProd = dotProd + xVal * wVal;
|
|
}
|
|
}
|
|
}
|
|
|
|
${r}
|
|
${t}
|
|
writeResult(batch, coords[1], coords[2], d2, dotProd);
|
|
}
|
|
`}};function Lhe(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=n,d=l;d==null&&(d=[1,1]);let h=N.computeConv2DInfo(a.shape,s.shape,i,d,o,u,!0),p=[{type:"int32",data:[h.padInfo.top,h.padInfo.left]},{type:"int32",data:[h.strideHeight,h.strideWidth]},{type:"int32",data:[h.dilationHeight,h.dilationWidth]},{type:"int32",data:[h.inHeight,h.inWidth]}],c;return h.batchSize===1&&h.inHeight===h.outHeight&&h.inWidth===h.outWidth&&h.strideHeight===1&&h.strideWidth===1&&h.filterHeight===h.filterWidth&&h.inChannels===h.outChannels&&h.dilationHeight===1&&h.dilationWidth===1&&h.filterHeight===3&&h.inChannels%4===0?c=new P8(h):(c=new _8(h),p.push({type:"int32",data:[h.filterHeight]},{type:"int32",data:[h.filterWidth]},{type:"int32",data:[h.outChannels/h.inChannels]})),r.runWebGPUProgram(c,[a,s],a.dtype,p)}var Bhe={kernelName:ei,backendName:"webgpu",kernelFunc:Lhe},z8=Gr({opSnippet:0,cpuKernelImpl:xpe,supportsComplex:!0}),Whe={kernelName:Ai,backendName:"webgpu",kernelFunc:z8},Vhe=class{constructor(e,t){this.workGroupSize=[64,1,1],this.variableNames=["x"],this.uniforms="reduceSize : i32,",this.size=!0,this.inputShape=[e.batchSize,e.inSize];let[r]=N.computeOutAndReduceShapes(this.inputShape,[1]);this.outputShape=r.length===0?[1]:r,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,[1,1,1]),this.reduceType=t,this.shaderKey=`reduce_${t}`}getUserCode(){let e="",t="0.0";this.reduceType==="min"||this.reduceType==="max"?(e=`
|
|
if (isnan(candidate)) {
|
|
bestValue = uniforms.NAN;
|
|
} else if (!isnan(bestValue) && candidate ${this.reduceType==="min"?"<":">"} bestValue)
|
|
{ bestValue = candidate; }`,t="f32(x[offset])"):this.reduceType==="sum"||this.reduceType==="mean"?e=" bestValue = bestValue + candidate; ":this.reduceType==="prod"&&(e=" bestValue = bestValue * candidate; ",t="1.0");let r=this.reduceType==="mean"?"setOutputAtIndex(outputIndex, bestValue / f32(uniforms.reduceSize));":"setOutputAtIndex(outputIndex, bestValue);";return`
|
|
fn DIV_CEIL(a : u32, b : u32) -> u32 {
|
|
return ((a - 1u) / b + 1u);
|
|
}
|
|
|
|
${`
|
|
var<workgroup> xBestValues : array<f32, ${this.workGroupSize[0]}>;
|
|
`}
|
|
fn getOffset(outputIndex : i32) -> i32 {
|
|
let outputCoords = getCoordsFromIndex(outputIndex);
|
|
let offset = ${this.outputShape.length===1?"outputCoords":"outputCoords[0]"} * uniforms.reduceSize;
|
|
return offset;
|
|
}
|
|
${tt()}
|
|
let outputIndex = index / i32(workGroupSizeX);
|
|
let offset = getOffset(outputIndex);
|
|
var bestValue = ${t};
|
|
let Length = uniforms.reduceSize;
|
|
let WorkPerThread = DIV_CEIL(u32(Length), workGroupSizeX);
|
|
for (var k = i32(localId.x); k < Length && outputIndex < uniforms.size;
|
|
k = k + i32(workGroupSizeX)) {
|
|
let candidate = f32(x[offset + k]);
|
|
${e}
|
|
}
|
|
xBestValues[localId.x] = bestValue;
|
|
workgroupBarrier();
|
|
|
|
var reduceSize = min(u32(Length), workGroupSizeX);
|
|
for (var currentSize = reduceSize / 2u; reduceSize > 1u;
|
|
currentSize = reduceSize / 2u) {
|
|
let interval = DIV_CEIL(reduceSize, 2u);
|
|
if (localId.x < currentSize) {
|
|
let candidate = xBestValues[localId.x + interval];
|
|
${e}
|
|
xBestValues[localId.x] = bestValue;
|
|
}
|
|
reduceSize = interval;
|
|
workgroupBarrier();
|
|
}
|
|
|
|
if (localId.x == 0u && outputIndex < uniforms.size) {
|
|
${r}
|
|
}
|
|
}
|
|
`}};function _h(e,t,r,n,a){let s=e.shape.length,i=[],o=v.parseAxisParam(t,e.shape),l=o,u=N.getAxesPermutation(l,s),d=e;u!=null&&(d=Fl({inputs:{x:e},attrs:{perm:u},backend:a}),l=N.getInnerMostAxes(l.length,s),i.push(d)),N.assertAxesAreInnerMostDims(n,l,s);let[h,p]=N.computeOutAndReduceShapes(d.shape,l),c=h;r&&(c=N.expandShapeToKeepDim(h,o));let f;if((n==="max"||n==="prod")&&a.shouldExecuteOnCPU([d])){let m=a.tensorMap.get(d.dataId).values;switch(n){case"max":let g=gpe(m,v.sizeFromShape(p),c,e.dtype);f=a.makeTensorInfo(c,e.dtype,g);break;case"prod":let{outVals:y,outShape:A,outDtype:x}=wpe(d.shape,d.dtype,m,l);f=a.makeTensorInfo(A,x,y);break;default:throw new Error(`${n} CPU implementation is not yet supported.`)}}else{let m=v.sizeFromShape(p),g=v.sizeFromShape(d.shape)/m,y={windowSize:m,inSize:m,batchSize:g,outSize:1},A=n==="mean"?"float32":ah(e.dtype),x=[{type:"int32",data:[m]}],b=new Vhe(y,n),w=a.runWebGPUProgram(b,[d],A,x);i.push(w),f=qe({inputs:{x:w},attrs:{shape:c},backend:a})}return i.forEach(m=>a.disposeData(m.dataId)),f}function xb(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n;return _h(a,s,i,"sum",r)}var Uhe={kernelName:Ei,backendName:"webgpu",kernelFunc:xb};function Ghe(e){let{inputs:t,backend:r,attrs:n}=e,{equation:a}=n,s=t,{allDims:i,summedDims:o,idDims:l}=N.decodeEinsumEquation(a,s.length);N.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:d}=N.getEinsumComputePath(o,l),h=d.length,p=null,c=i.length,f=[];for(let m=0;m<h;++m){for(let g of d[m]){let{permutationIndices:y,expandDims:A}=N.getEinsumPermutation(c,l[g]),x;N.isIdentityPermutation(y)?x=s[g]:(x=Fl({inputs:{x:s[g]},backend:r,attrs:{perm:y}}),f.push(x));let b=x.shape.slice();for(let w=0;w<A.length;++w)b.splice(A[w],0,1);v.arraysEqual(x.shape,b)||(x=qe({inputs:{x},backend:r,attrs:{shape:b}}),f.push(x)),p===null?p=x:(p=z8({inputs:{a:x,b:p},backend:r}),f.push(p))}m<h-1&&(u[m]>=0&&(p=xb({inputs:{x:p},backend:r,attrs:{axis:u[m]-(i.length-c),keepDims:!1}}),f.push(p)),c--)}for(let m of f)m!==p&&r.disposeData(m.dataId);return p}var jhe={kernelName:Gp,backendName:"webgpu",kernelFunc:Ghe},Hhe=vr({opType:4}),qhe={kernelName:ri,backendName:"webgpu",kernelFunc:Hhe},Khe=Gr({opSnippet:4,dtype:"bool",cpuKernelImpl:spe}),Xhe={kernelName:Wo,backendName:"webgpu",kernelFunc:Khe},O8=vr({opType:5,cpuKernelImpl:ipe,dtype:"float32"}),Zhe={kernelName:ni,backendName:"webgpu",kernelFunc:O8};function Q1(e){let{inputs:t,attrs:r,backend:n}=e,{dim:a}=r,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=a;return a<0&&(v.assert(-(i+1)<=a,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+a+1),o.splice(l,0,1),qe({inputs:{x:s},backend:n,attrs:{shape:o}})}var Yhe={kernelName:Vo,backendName:"webgpu",kernelFunc:Q1},Jhe=vr({opType:6,cpuKernelImpl:ope}),Qhe={kernelName:Uo,backendName:"webgpu",kernelFunc:Jhe},ece=class{constructor(e){this.variableNames=[],this.outputShape=[],this.uniforms="value : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="fill"}getUserCode(){return`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
setOutputAtIndex(index, uniforms.value);
|
|
}
|
|
}
|
|
`}};function Sd(e){let{backend:t,attrs:r}=e,{shape:n,value:a}=r,{dtype:s}=r;if(s=s||v.inferDtype(a),s==="string"){let i=v.getArrayFromDType(s,v.sizeFromShape(n));return i.fill(a),t.makeTensorInfo(n,s,i)}else{let i=new ece(n),o=[{type:"float32",data:[a]}];return t.runWebGPUProgram(i,[],s,o)}}var tce={kernelName:Wu,backendName:"webgpu",kernelFunc:Sd},rce=class{constructor(e){this.outputShape=[],this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="flipLeftRight"}getUserCode(){return`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let coordX = uniforms.xShape[2] - coords[2] - 1;
|
|
let outputValue = getX(coords[0], coords[1], coordX, coords[3]);
|
|
setOutputAtIndex(index, outputValue);
|
|
}
|
|
}
|
|
`}},nce={kernelName:Go,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{image:r}=e,n=t,a=new rce(r.shape);return n.runWebGPUProgram(a,[r],r.dtype)}},ace=vr({opType:7,cpuKernelImpl:lpe}),sce={kernelName:ai,backendName:"webgpu",kernelFunc:ace},ice=Gr({opSnippet:12,dtype:"int32"}),oce={kernelName:si,backendName:"webgpu",kernelFunc:ice},lce=(e,t,r,n,a)=>{let s=[n,...r];return a&&s.push(a),e.createBindGroup({layout:t,entries:s.map((i,o)=>({binding:o,resource:i}))})},D8=(e,t,r,n,a,s=!1)=>{let i={dtype:a.dtype,shape:a.shape},o=zde(n,i,t,s),l=e.createShaderModule({code:o,label:t.constructor.name});return e.createComputePipeline({layout:r,compute:{module:l,entryPoint:"main"},label:t.constructor.name})};function L8(e,t,r,n="",a=""){return e.shaderKey+"_"+(e.workGroupSize?e.workGroupSize.join(","):"")+t.map(s=>s.length).join(",")+r.join(",")+e.variableNames.join(",")+n+a}function nw(e){let{externalImage:t,backend:r,attrs:n,outShape:a,useImport:s}=e,{numChannels:i}=n,o=v.sizeFromShape(a),l=v.computeStrides(a),u=r.makeTensorInfo(a,"int32"),d=r.getFromPixelsProgram(s?"import":"copyExternal");d.updateOutputShape(a);let h=[u.shape],p=[u.dtype,s?"import":"copyExternal"],c=L8(d,h,p),f=d.getLayout(r.device),m=r.getAndSavePipeline(c,()=>D8(r.device,d,f.pipelineLayout,[],u,!0));d.setPipeline(m),s||r.queue.copyExternalImageToTexture({source:t,origin:{x:0,y:0}},{texture:d.makeInputTexture(r.device,a[1],a[0])},[a[1],a[0]]);let g=r.tensorMap.get(u.dataId);g.bufferInfo.buffer=r.acquireBuffer(g.bufferInfo.byteSize);let y=[o,i,...l,...d.dispatch];d.setUniform(r.device,y);let A;if(s){let x={source:t};A=r.device.importExternalTexture(x)}else A=d.inputTexture.createView();return r.runFromPixelsProgram(d,g.bufferInfo.buffer,f,A,u.dataId),u}var uce={kernelName:Sp,backendName:"webgpu",kernelFunc:dce},nu;function dce(e){let{inputs:t,backend:r,attrs:n}=e,{pixels:a}=t,{numChannels:s}=n;if(a==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let i=typeof HTMLVideoElement!="undefined"&&a instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&a instanceof HTMLImageElement,l=typeof HTMLCanvasElement!="undefined"&&a instanceof HTMLCanvasElement||typeof OffscreenCanvas!="undefined"&&a instanceof OffscreenCanvas,u=typeof ImageBitmap!="undefined"&&a instanceof ImageBitmap,[d,h]=i?[a.videoWidth,a.videoHeight]:[a.width,a.height],p=[h,d,s];if(Y().getBool("WEBGPU_USE_IMPORT")&&i)return nw({externalImage:a,backend:r,attrs:n,outShape:p,useImport:!0});if((i||o)&&(nu==null&&(nu=document.createElement("canvas").getContext("2d")),nu.canvas.width=d,nu.canvas.height=h,nu.drawImage(a,0,0,d,h),a=nu.canvas),u||l||i||o)return nw({externalImage:a,backend:r,attrs:n,outShape:p,useImport:!1});let c=a.data,f=c;if(s!=null&&s!==4){f=new Uint8Array(a.width*a.height*s);let y=c.length,A=0;for(let x=0;x<y;x++)x%4<s&&(f[A++]=c[x])}let m=r.makeTensorInfo(p,"int32"),g=r.tensorMap.get(m.dataId);return g.values=new Int32Array(f),r.maybeReleaseBuffer(m.dataId),r.uploadToGPU(m.dataId),m}var pce=class{constructor(e,t,r,n,a){this.uniforms="varianceEpsilon : f32,",this.workGroupSize=[128,1,1],this.size=!0,this.variableNames=["x","mean","variance"],N.assertAndGetBroadcastShape(e,t),N.assertAndGetBroadcastShape(e,r),this.outputShape=e,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),n!=null&&(N.assertAndGetBroadcastShape(e,n),this.variableNames.push("offset")),a!=null&&(N.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale")),this.offsetShape=n,this.scaleShape=a,this.shaderKey="batchNorm"}getUserCode(){let e="0.0";this.offsetShape!=null&&(e="getOffsetByOutputIndex(index)");let t="1.0";return this.scaleShape!=null&&(t="getScaleByOutputIndex(index)"),`
|
|
${tt()}
|
|
if (index < uniforms.size)
|
|
{
|
|
let xValue = getXByOutputIndex(index);
|
|
let meanValue = getMeanByOutputIndex(index);
|
|
let varianValue = getVarianceByOutputIndex(index);
|
|
let offsetValue = ${e};
|
|
let scaleValue = ${t};
|
|
let inv = scaleValue * inverseSqrt(varianValue + f32(uniforms.varianceEpsilon));
|
|
setOutputAtIndex(index,dot(vec3<f32>(xValue, -meanValue, offsetValue), vec3<f32>(inv, inv, 1.0)));
|
|
}
|
|
}
|
|
`}},hce={kernelName:ii,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:r})=>{let{x:n,scale:a,offset:s,mean:i,variance:o}=e,{varianceEpsilon:l}=t,u=r,d=[n,i,o],h=null;s!=null&&(h=s.shape,d.push(s));let p=null;a!=null&&(p=a.shape,d.push(a));let c=new pce(n.shape,i.shape,o.shape,h,p),f=[{type:"float32",data:[l]}];return u.runWebGPUProgram(c,d,n.dtype,f)}};function cce(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:d,dilations:h,dimRoundingMode:p,activation:c,leakyreluAlpha:f}=n,m=N.convertConv2DDataFormat(d),g=N.computeConv2DInfo(a.shape,s.shape,l,h,u,p,!1,m);return $8({x:a,filter:s,convInfo:g,backend:r,bias:i,preluActivationWeights:o,leakyreluAlpha:f,activation:c})}var fce={kernelName:Es,backendName:"webgpu",kernelFunc:cce};function mce(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:d,dimRoundingMode:h,activation:p,leakyreluAlpha:c}=n,f=d;f==null&&(f=[1,1]),v.assert(N.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let m=N.computeConv2DInfo(a.shape,s.shape,l,f,u,h,!0),g=[a,s],y=i!=null,A=o!=null;y&&g.push(i),A&&g.push(o);let x=[{type:"int32",data:[m.padInfo.top,m.padInfo.left]},{type:"int32",data:[m.strideHeight,m.strideWidth]},{type:"int32",data:[m.dilationHeight,m.dilationWidth]},{type:"int32",data:[m.inHeight,m.inWidth]}],b;return m.batchSize===1&&m.inHeight===m.outHeight&&m.inWidth===m.outWidth&&m.strideHeight===1&&m.strideWidth===1&&m.filterHeight===m.filterWidth&&m.inChannels===m.outChannels&&m.dilationHeight===1&&m.dilationWidth===1&&m.filterHeight===3&&m.inChannels%4===0?b=new P8(m,y,p,A):(b=new _8(m,y,p,A),x.push({type:"int32",data:[m.filterHeight]},{type:"int32",data:[m.filterWidth]},{type:"int32",data:[m.outChannels/m.inChannels]})),p==="leakyrelu"&&(x.push({type:"float32",data:[c]}),b.uniforms+=" alpha : f32,"),r.runWebGPUProgram(b,g,"float32",x)}var gce={kernelName:Rs,backendName:"webgpu",kernelFunc:mce},yce=class{constructor(e,t){this.variableNames=["A","indices"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`gathernd_${e}`,this.sliceDim=e,this.uniforms=`sliceDim : i32, strides : ${mr(e)},`}getUserCode(){let e;return this.sliceDim>1?e="uniforms.strides[j]":e="uniforms.strides",`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
var flattenIndex = 0;
|
|
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
|
|
let indexTemp = i32(round(getIndices(coords[0], j)));
|
|
let strideNum = ${e};
|
|
flattenIndex = flattenIndex + indexTemp * strideNum;
|
|
}
|
|
|
|
setOutputAtIndex(index, getA(flattenIndex, coords[1]));
|
|
}
|
|
}
|
|
`}};function Ace(e){let{inputs:t,backend:r}=e,{params:n,indices:a}=t,s=a.shape,i=s[s.length-1],o=v.sizeFromShape(n.shape),[l,u,d,h]=N.prepareAndValidate(n,a),p=qe({inputs:{x:a},backend:r,attrs:{shape:[u,i]}}),c=qe({inputs:{x:n},backend:r,attrs:{shape:[v.sizeFromShape(n.shape)/d,d]}});if(r.shouldExecuteOnCPU([n,a])||n.dtype==="string"){let A=r.readSync(a.dataId),x=r.bufferSync(n),b=upe(A,x,n.dtype,u,i,d,h,n.shape,o);return r.makeTensorInfo(l,n.dtype,b.values)}let f=new yce(i,[u,d]),m=[{type:"int32",data:[i]},{type:"int32",data:h}],g=r.runWebGPUProgram(f,[c,p],c.dtype,m),y=qe({inputs:{x:g},backend:r,attrs:{shape:l}});return r.disposeData(p.dataId),r.disposeData(c.dataId),r.disposeData(g.dataId),y}var xce={kernelName:Ho,backendName:"webgpu",kernelFunc:Ace},bce=class{constructor(e,t){this.variableNames=["A","indices"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e.slice(),this.aShape=e,this.outputShape=t,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="gather"}getUserCode(){let e=vce(this.aShape);return`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let resRC = getCoordsFromIndex(index);
|
|
let indexZ = i32(getIndices(resRC.x, resRC.z));
|
|
let inBounds = select(0.0, 1.0, indexZ >= 0 && indexZ < uniforms.aShape[2]);
|
|
setOutputAtIndex(index, inBounds * getA(${e}));
|
|
}
|
|
}
|
|
`}};function vce(e){let t=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[];for(let n=0;n<e.length;n++)n===2?r.push("indexZ"):r.push(`${t[n]}`);return r.join()}function B8(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,indices:s}=t,{axis:i,batchDims:o}=n,l=v.parseAxisParam(i,a.shape)[0],u=N.segment_util.collectGatherOpShapeInfo(a,s,l,o),d=v.sizeFromShape(s.shape),h=[],p=qe({inputs:{x:a},backend:r,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),c=qe({inputs:{x:s},backend:r,attrs:{shape:[u.batchSize,d/u.batchSize]}});h.push(p),h.push(c);let f=[u.batchSize,u.outerSize,d/u.batchSize,u.sliceSize];if(r.shouldExecuteOnCPU([a,s])){let A=r.tensorMap.get(c.dataId).values,x=We(c.shape,c.dtype,A),b=r.tensorMap.get(p.dataId).values,w=We(p.shape,p.dtype,b),T=dpe(w,x,f);return h.forEach(S=>r.disposeData(S.dataId)),r.makeTensorInfo(u.outputShape,T.dtype,T.values)}let m=new bce(p.shape,f),g=r.runWebGPUProgram(m,[p,c],p.dtype);h.push(g);let y=qe({inputs:{x:g},backend:r,attrs:{shape:u.outputShape}});return h.forEach(A=>r.disposeData(A.dataId)),y}var wce={kernelName:jo,backendName:"webgpu",kernelFunc:B8},kce=Gr({opSnippet:5,cpuKernelImpl:hpe,dtype:"bool"}),Ice={kernelName:qo,backendName:"webgpu",kernelFunc:kce},Sce=Gr({opSnippet:6,dtype:"bool",cpuKernelImpl:ppe}),Tce={kernelName:oi,backendName:"webgpu",kernelFunc:Sce};function Nce(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{alpha:s}=n,i=[{type:"float32",data:[s]}],o=new $h(a.shape,14);return o.uniforms="alpha : f32,",r.runWebGPUProgram(o,[a],"float32",i)}var Cce={kernelName:ui,backendName:"webgpu",kernelFunc:Nce},Ece=Gr({opSnippet:7,dtype:"bool",cpuKernelImpl:fpe}),Rce={kernelName:Ko,backendName:"webgpu",kernelFunc:Ece},Mce=Gr({opSnippet:8,dtype:"bool",cpuKernelImpl:cpe}),Fce={kernelName:Xo,backendName:"webgpu",kernelFunc:Mce},$ce=vr({opType:9,cpuKernelImpl:mpe}),Pce={kernelName:di,backendName:"webgpu",kernelFunc:$ce},_ce=Gr({opSnippet:9,dtype:"bool"}),zce={kernelName:Zo,backendName:"webgpu",kernelFunc:_ce},Oce=vr({opType:10}),Dce={kernelName:Hu,backendName:"webgpu",kernelFunc:Oce};function W8(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{reductionIndices:s,keepDims:i}=n;return _h(a,s,i,"max",r)}var Lce={kernelName:pi,backendName:"webgpu",kernelFunc:W8},Bce=Gr({opSnippet:15,cpuKernelImpl:ype}),Wce={kernelName:hi,backendName:"webgpu",kernelFunc:Bce};function Vce(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n,u=1,d=N.computePool2DInfo(a.shape,s,i,u,o,l),h,p=[];if(d.filterHeight===1&&d.filterWidth===1){if(v.arraysEqual(d.inShape,d.outShape))return Bn({inputs:{x:a},backend:r});h=new R8(d),p.push({type:"int32",data:[d.strideHeight,d.strideWidth]})}else h=new E8(d,"max"),p.push({type:"int32",data:[d.strideHeight,d.strideWidth]},{type:"int32",data:[d.padInfo.top,d.padInfo.left]},{type:"int32",data:[d.dilationHeight,d.dilationWidth]},{type:"int32",data:[d.inHeight,d.inWidth]},{type:"int32",data:[d.effectiveFilterHeight,d.effectiveFilterWidth]});return r.runWebGPUProgram(h,[a],a.dtype,p)}var Uce={kernelName:ci,backendName:"webgpu",kernelFunc:Vce};function Gce(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{keepDims:s,axis:i}=n;return _h(a,i,s,"mean",r)}var jce={kernelName:fi,backendName:"webgpu",kernelFunc:Gce};function Hce(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n;return _h(a,s,i,"min",r)}var qce={kernelName:mi,backendName:"webgpu",kernelFunc:Hce},Kce=Gr({opSnippet:16,cpuKernelImpl:Ape}),Xce={kernelName:gi,backendName:"webgpu",kernelFunc:Kce},Zce=class{constructor(e,t,r){this.uniforms="",this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t.map((n,a)=>n[0]+e[a]+n[1]),this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.xShape=e,t.map((n,a)=>{this.uniforms+=` pad${a} : vec2<i32>,`}),this.offset=r==="reflect"?0:1,this.shaderKey=`mirrorPad_${r}`}getUserCode(){let e=this.xShape.length,t=this.xShape.map((l,u)=>`uniforms.pad${u}[0]`).join(","),r=this.xShape.map((l,u)=>`uniforms.pad${u}[0] + uniforms.xShape${e>1?`[${u}]`:""}`).join(","),n=e===1?"start":"start[i]",a=e===1?"end":"end[i]",s=e===1?"outC":"outC[i]",i=mr(e),o=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let start = ${i}(${t});
|
|
let end = ${i}(${r});
|
|
var outC = getCoordsFromIndex(index);
|
|
for (var i = 0; i < ${e}; i = i + 1) {
|
|
if (${s} < ${n}) {
|
|
${s} = ${n} * 2 - ${s} - ${this.offset};
|
|
} else if(${s} >= ${a}) {
|
|
${s} = (${a} - 1) * 2 - ${s} + ${this.offset};
|
|
}
|
|
}
|
|
let coords = outC - start;
|
|
setOutputAtIndex(index, getX(${o}));
|
|
}
|
|
}
|
|
`}},Yce={kernelName:yi,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:r})=>{let{x:n}=e,{paddings:a,mode:s}=t,i=r,o=a.map(u=>({type:"int32",data:[u[0],u[1]]})),l=new Zce(n.shape,a,s);return i.runWebGPUProgram(l,[n],n.dtype,o)}};function Jce(e){let{inputs:t,backend:r}=e,{x:n}=t;if(r.shouldExecuteOnCPU([n])){let s=r.tensorMap.get(n.dataId),[i,o]=bpe(s.values,n.shape,n.dtype);return r.makeTensorInfo(o,n.dtype,i)}let a=new $h(n.shape,11);return r.runWebGPUProgram(a,[n],n.dtype)}var Qce={kernelName:Yo,backendName:"webgpu",kernelFunc:Jce};function efe(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:r,attrs:n}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=n,u=r.readSync(a.dataId),d=r.readSync(s.dataId),{selectedIndices:h}=jn.nonMaxSuppressionV3Impl(u,d,i,o,l);return r.makeTensorInfo([h.length],"int32",new Int32Array(h))}var tfe={kernelName:Qo,backendName:"webgpu",kernelFunc:efe};function rfe(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:r,attrs:n}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=n,d=r.readSync(a.dataId),h=r.readSync(s.dataId),p=i,c=o,f=l,m=u,{selectedIndices:g,selectedScores:y}=jn.nonMaxSuppressionV5Impl(d,h,p,c,f,m);return[r.makeTensorInfo([g.length],"int32",new Int32Array(g)),r.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var nfe={kernelName:el,backendName:"webgpu",kernelFunc:rfe};function Mf(e){let{inputs:t,backend:r}=e,{x:n}=t;if(n.dtype==="complex64"){let a=Ph({inputs:{input:n},backend:r}),s=Mf({inputs:{x:a},backend:r}),i=f0({inputs:{input:n},backend:r}),o=Mf({inputs:{x:i},backend:r}),l=kd({inputs:{real:s,imag:o},backend:r});return r.disposeData(a.dataId),r.disposeData(s.dataId),r.disposeData(i.dataId),r.disposeData(o.dataId),l}else return Sd({attrs:{shape:n.shape,dtype:n.dtype,value:n.dtype==="string"?"":0},backend:r})}var afe={kernelName:xl,backendName:"webgpu",kernelFunc:Mf};function V8(e){let{inputs:t,backend:r}=e,{x:n}=t;if(n.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(n.dtype==="complex64"){let a=Ph({inputs:{input:n},backend:r}),s=V8({inputs:{x:a},backend:r}),i=f0({inputs:{input:n},backend:r}),o=Mf({inputs:{x:i},backend:r}),l=kd({inputs:{real:s,imag:o},backend:r});return r.disposeData(a.dataId),r.disposeData(s.dataId),r.disposeData(i.dataId),r.disposeData(o.dataId),l}else return Sd({attrs:{shape:n.shape,dtype:n.dtype,value:1},backend:r})}var sfe={kernelName:tl,backendName:"webgpu",kernelFunc:V8};function ife(e){let{inputs:t,backend:r,attrs:n}=e,{axis:a}=n;if(t.length===1)return Q1({inputs:{input:t[0]},backend:r,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(d=>{v.assertShapesMatch(s,d.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===d.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(d=>{let h=Q1({inputs:{input:d},backend:r,attrs:{dim:a}});return o.push(h),h}),u=F8({inputs:l,backend:r,attrs:{axis:a}});return o.forEach(d=>r.disposeData(d.dataId)),u}var ofe={kernelName:nl,backendName:"webgpu",kernelFunc:ife},lfe=class{constructor(e,t){this.variableNames=["x"],this.uniforms="constantValue : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t.map((r,n)=>r[0]+e[n]+r[1]),this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),t.map((r,n)=>{this.uniforms+=` pad${n} : vec2<i32>,`}),this.xShape=e,this.shaderKey="pad"}getUserCode(){let e=this.xShape.length,t=mr(e),r=this.xShape.map((u,d)=>`uniforms.pad${d}[0]`).join(","),n=this.xShape.map((u,d)=>`uniforms.pad${d}[0] + uniforms.xShape${e>1?`[${d}]`:""}`).join(","),a=e>1?`${t}(${r})`:`${r}`,s=e>1?`${t}(${n})`:`${n}`,i=e>1?"any(outC < start)":"outC < start",o=e>1?"any(outC >= end)":"outC >= end",l=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let start = ${a};
|
|
let end = ${s};
|
|
let outC = getCoordsFromIndex(index);
|
|
|
|
if (${i} || ${o}) {
|
|
setOutputAtIndex(index, uniforms.constantValue);
|
|
} else {
|
|
let coords = outC - start;
|
|
setOutputAtIndex(index, getX(${l}));
|
|
}
|
|
}
|
|
}
|
|
`}},U8=e=>{let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{paddings:s,constantValue:i}=n;if(s.every(u=>v.arraysEqual(u,[0,0])))return Bn({inputs:{x:a},backend:r});if(v.sizeFromShape(a.shape)===0){let u=s.map((d,h)=>d[0]+a.shape[h]+d[1]);return Sd({backend:r,attrs:{shape:u,value:i,dtype:a.dtype}})}let o=[{type:"float32",data:[i]}];s.map(u=>o.push({type:"int32",data:[u[0],u[1]]}));let l=new lfe(a.shape,s);return r.runWebGPUProgram(l,[a],a.dtype,o)},ufe={kernelName:xi,backendName:"webgpu",kernelFunc:U8},dfe=Gr({opSnippet:13}),pfe={kernelName:bi,backendName:"webgpu",kernelFunc:dfe};function hfe(e){let{inputs:t,backend:r}=e,{x:n,alpha:a}=t,s=new N8(14,n.shape,a.shape);return r.runWebGPUProgram(s,[n,a],"float32")}var cfe={kernelName:vi,backendName:"webgpu",kernelFunc:hfe};function ffe(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n;return _h(a,s,i,"prod",r)}var mfe={kernelName:al,backendName:"webgpu",kernelFunc:ffe},gfe=e=>{let{backend:t,attrs:r}=e,{start:n,stop:a,step:s,dtype:i}=r,o=kpe(n,a,s,i);return t.makeTensorInfo([o.length],i,o)},yfe={kernelName:Xu,backendName:"webgpu",kernelFunc:gfe},G8=Gr({opSnippet:3}),Afe={kernelName:ti,backendName:"webgpu",kernelFunc:G8},xfe=vr({opType:12}),bfe={kernelName:wi,backendName:"webgpu",kernelFunc:xfe},vfe=vr({opType:13}),wfe={kernelName:Ii,backendName:"webgpu",kernelFunc:vfe},kfe=class{constructor(e,t,r){this.variableNames=["x"],this.uniforms="adjustHeightWidth : vec2<f32>, halfPixelCenters : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=[e[0],t,r,e[3]],this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="resizeBilinear"}getUserCode(){return`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let b = coords[0];
|
|
let d = coords[3];
|
|
let rc = coords.yz;
|
|
|
|
let effectiveInSize = vec2<f32>(
|
|
f32(uniforms.xShape.y) - uniforms.adjustHeightWidth[0],
|
|
f32(uniforms.xShape.z) - uniforms.adjustHeightWidth[1]);
|
|
|
|
let effectiveOutSize = vec2<f32>(
|
|
f32(uniforms.outShape.y) - uniforms.adjustHeightWidth[0],
|
|
f32(uniforms.outShape.z) - uniforms.adjustHeightWidth[1]);
|
|
|
|
let effectiveInputOverOutputRatioRC =
|
|
effectiveInSize / effectiveOutSize;
|
|
|
|
// Fractional source index
|
|
let sourceFracIndexRC =
|
|
(vec2<f32>(rc) + vec2<f32>(uniforms.halfPixelCenters)) *
|
|
effectiveInputOverOutputRatioRC - vec2<f32>(uniforms.halfPixelCenters);
|
|
|
|
// Compute the four integer indices.
|
|
let sourceFloorRC = vec2<i32>(sourceFracIndexRC);
|
|
let sourceCeilRC = vec2<i32>(
|
|
min(vec2<f32>(uniforms.xShape.yz) - vec2<f32>(1.0), ceil(sourceFracIndexRC)));
|
|
|
|
let topLeft = getX(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
let bottomLeft = getX(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
let topRight = getX(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
let bottomRight = getX(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
let fracRC = sourceFracIndexRC - vec2<f32>(sourceFloorRC);
|
|
|
|
let top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
let bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
let newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutputAtIndex(index, newValue);
|
|
}
|
|
}
|
|
`}};function Ife(e){let{inputs:t,backend:r,attrs:n}=e,{images:a}=t,{alignCorners:s,size:i,halfPixelCenters:o}=n,[l,u]=i,d=s&&l>1?1:0,h=s&&u>1?1:0,p=[{type:"float32",data:[d,h]},{type:"float32",data:[o?.5:0]}],c=new kfe(a.shape,l,u);return r.runWebGPUProgram(c,[a],"float32",p)}var Sfe={kernelName:ki,backendName:"webgpu",kernelFunc:Ife},Tfe=class{constructor(e,t,r,n){this.variableNames=["x"],this.uniforms="adjustHeightWidth : vec2<f32>, roundBase : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=[e[0],t,r,e[3]],this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.halfPixelCenters=n,this.shaderKey=`resizeNearest_${n}`}getUserCode(){let e;return this.halfPixelCenters?e="max((vec2<f32>(rc) + vec2<f32>(0.5)) * effectiveInputOverOutputRatioRC, vec2<f32>(0.0))":e="vec2<f32>(rc) * effectiveInputOverOutputRatioRC",`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let b = coords[0];
|
|
let d = coords[3];
|
|
let rc = coords.yz;
|
|
|
|
let effectiveInSize = vec2<f32>(
|
|
f32(uniforms.xShape.y) - uniforms.adjustHeightWidth[0],
|
|
f32(uniforms.xShape.z) - uniforms.adjustHeightWidth[1]);
|
|
|
|
let effectiveOutSize = vec2<f32>(
|
|
f32(uniforms.outShape.y) - uniforms.adjustHeightWidth[0],
|
|
f32(uniforms.outShape.z) - uniforms.adjustHeightWidth[1]);
|
|
|
|
let effectiveInputOverOutputRatioRC =
|
|
effectiveInSize / effectiveOutSize;
|
|
|
|
// Fractional source index
|
|
let sourceFracIndexRC = ${e};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
let inputShapeRC = vec2<f32>(f32(uniforms.xShape.y), f32(uniforms.xShape.z));
|
|
let sourceNearestRC = vec2<i32>(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + uniforms.roundBase)));
|
|
let newValue = getX(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutputAtIndex(index, newValue);
|
|
}
|
|
}
|
|
`}};function Nfe(e){let{inputs:t,backend:r,attrs:n}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=n,[l,u]=o,d=s&&l>1?1:0,h=s&&u>1?1:0,p=[{type:"float32",data:[d,h]},{type:"float32",data:[s?.5:0]}],c=new Tfe(a.shape,l,u,i);return r.runWebGPUProgram(c,[a],a.dtype,p)}var Cfe={kernelName:Yu,backendName:"webgpu",kernelFunc:Nfe},Efe=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms=`centerX : f32, centerY : f32, sinRadians : f32,
|
|
cosRadians : f32,`,this.shaderKey="rotate",this.outputShape=e,typeof t=="number"?(this.uniforms+=" fillValue : f32,",this.fillSnippet="var outputValue = uniforms.fillValue;",this.shaderKey+="_float"):(this.uniforms+=" fillValue : vec3<f32>,",this.fillSnippet="var outputValue = uniforms.fillValue[coords[3]];",this.shaderKey+="_vec3")}getUserCode(){return`
|
|
${tt()}
|
|
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let coordXFloat = (f32(coords[2]) - uniforms.centerX) *
|
|
uniforms.cosRadians - (f32(coords[1]) - uniforms.centerY) *
|
|
uniforms.sinRadians;
|
|
let coordYFloat = (f32(coords[2]) - uniforms.centerX) *
|
|
uniforms.sinRadians + (f32(coords[1]) - uniforms.centerY) *
|
|
uniforms.cosRadians;
|
|
let coordX = i32(round(coordXFloat + uniforms.centerX));
|
|
let coordY = i32(round(coordYFloat + uniforms.centerY));
|
|
${this.fillSnippet}
|
|
if(coordX >= 0 && coordX < uniforms.xShape[2] && coordY >= 0 &&
|
|
coordY < uniforms.xShape[1]) {
|
|
outputValue = getX(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutputAtIndex(index, outputValue);
|
|
}
|
|
}
|
|
`}},Rfe={kernelName:bl,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:r})=>{let{image:n}=e,{radians:a,fillValue:s,center:i}=t,o=r,l=new Efe(n.shape,s),[u,d]=N.getImageCenter(i,n.shape[1],n.shape[2]),h=[{type:"float32",data:[u]},{type:"float32",data:[d]},{type:"float32",data:[Math.sin(a)]},{type:"float32",data:[Math.cos(a)]}];return typeof s=="number"?h.push({type:"float32",data:[Number.parseFloat(s.toFixed(2))]}):h.push({type:"float32",data:s}),o.runWebGPUProgram(l,[n],n.dtype,h)}},Mfe=vr({opType:15,cpuKernelImpl:Ipe}),Ffe={kernelName:Si,backendName:"webgpu",kernelFunc:Mfe},$fe=class{constructor(e,t,r,n,a,s,i){this.variableNames=["updates","indices"],this.workGroupSize=[64,1,1],this.atomic=!0,this.outputShape=s,this.type=i,this.dispatchLayout=Xe(e),this.dispatch=Oe(this.dispatchLayout,e,this.workGroupSize),this.sliceDimGreaterThanOne=t>1,this.shaderKey=`scatter_${r}_${n}_${this.sliceDimGreaterThanOne}_${i}`;let o=mr(a.length);this.uniforms=`sliceDim : i32, strides: ${o}, size: i32,`,this.updatesRank=n,this.indicesRank=r}getUserCode(){let e="";this.indicesRank===1?e="coords[0]":this.indicesRank===2&&(e="coords[0], j");let t=`getIndices(${e})`,r=this.sliceDimGreaterThanOne?"uniforms.strides[j]":"uniforms.strides",n="",a="",s="";this.updatesRank===1?(n="coords[0]",a="flattenedIndex",s=`
|
|
fn getUpdatesCoordsFromFlatIndex(index : i32) -> i32 {
|
|
return index;
|
|
}
|
|
`):this.updatesRank===2&&(n="coords[0], coords[1]",a="vec2<i32>(flattenedIndex, coords[1])",s=`
|
|
fn getUpdatesCoordsFromFlatIndex(index : i32) -> vec2<i32> {
|
|
let d0 = index / uniforms.updatesShape[1];
|
|
let d1 = index - d0 * uniforms.updatesShape[1];
|
|
return vec2<i32>(d0, d1);
|
|
}
|
|
`);let i=`getUpdates(${n})`,o=this.type==="int32"?"atomicAdd(&(result[flatIndex]), i32(updateValue));":`
|
|
var assumed = atomicLoad(&(result[flatIndex]));
|
|
var success = 0;
|
|
for (; success == 0;) {
|
|
let new = bitcast<f32>(assumed) + updateValue;
|
|
let newI32 = bitcast<i32>(new);
|
|
let resValue = atomicCompareExchangeWeak(&(result[flatIndex]), assumed, newI32);
|
|
assumed = resValue[0];
|
|
success = resValue[1];
|
|
}
|
|
`;return`
|
|
${s}
|
|
|
|
${tt()}
|
|
|
|
if (index < uniforms.size) {
|
|
let coords = getUpdatesCoordsFromFlatIndex(index);
|
|
var flattenedIndex = 0;
|
|
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
|
|
let indexInside = i32(round(${t}));
|
|
flattenedIndex = flattenedIndex + indexInside * ${r};
|
|
}
|
|
let updateValue = ${i};
|
|
let flatIndex = getOutputIndexFromCoords(${a});
|
|
|
|
${o}
|
|
}
|
|
}`}};function Pfe(e){let{inputs:t,backend:r,attrs:n}=e,{indices:a,updates:s}=t,{shape:i}=n,{sliceRank:o,numUpdates:l,sliceSize:u,strides:d,outputSize:h}=N.calculateShapes(s,a,i),p=[h/u,u];if(h===0)return r.makeTensorInfo(i,a.dtype);let c=qe({inputs:{x:a},backend:r,attrs:{shape:[l,o]}}),f=qe({inputs:{x:s},backend:r,attrs:{shape:[l,u]}}),m=f.dtype,g=Sd({backend:r,attrs:{shape:p,value:0,dtype:m}}),y=v.sizeFromShape(f.shape),A=[{type:"int32",data:[o]},{type:"int32",data:d},{type:"int32",data:[y]}],x=new $fe(f.shape,o,c.shape.length,f.shape.length,d,p,m),b=r.runWebGPUProgram(x,[f,c],m,A,g),w=qe({inputs:{x:b},backend:r,attrs:{shape:i}});return r.disposeData(c.dataId),r.disposeData(f.dataId),r.disposeData(b.dataId),w}var _fe={kernelName:ll,backendName:"webgpu",kernelFunc:Pfe},zfe=class{constructor(e,t,r){this.variableNames=["c","a","b"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.cRank=e,this.rank=r,this.shaderKey="select"}getUserCode(){let e,t;if(this.rank>4)throw Error(`Where for rank ${this.rank} is not yet supported`);if(this.rank===1)t="resRC",e="resRC";else{let r=["resRC.x","resRC.y","resRC.z","resRC.w"],n=[],a=[];for(let s=0;s<this.outputShape.length;s++)a.push(`${r[s]}`),s<this.cRank&&n.push(`${r[s]}`);e=n.join(),t=a.join()}return`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let resRC = getCoordsFromIndex(index);
|
|
let cVal = getC(${e});
|
|
if (cVal >= 1.0) {
|
|
setOutputAtIndex(index, getA(${t}));
|
|
} else {
|
|
setOutputAtIndex(index, getB(${t}));
|
|
}
|
|
}
|
|
}
|
|
`}};function Ofe(e){let{inputs:t,backend:r}=e,{condition:n,t:a,e:s}=t,i=new zfe(n.shape.length,a.shape,a.shape.length);return r.runWebGPUProgram(i,[n,a,s],Nr(a.dtype,s.dtype))}var Dfe={kernelName:ul,backendName:"webgpu",kernelFunc:Ofe},Lfe=vr({opType:18}),Bfe={kernelName:Ni,backendName:"webgpu",kernelFunc:Lfe},Wfe=vr({opType:16}),Vfe={kernelName:Ti,backendName:"webgpu",kernelFunc:Wfe},Ufe=vr({opType:17}),Gfe={kernelName:pl,backendName:"webgpu",kernelFunc:Ufe},j8=Gr({opSnippet:2,cpuKernelImpl:Epe,supportsComplex:!0}),jfe={kernelName:Fi,backendName:"webgpu",kernelFunc:j8};function Hfe(e){let{inputs:t,backend:r,attrs:n}=e,{logits:a}=t,{dim:s}=n,i=v.parseAxisParam([s],a.shape),o=W8({inputs:{x:a},backend:r,attrs:{reductionIndices:i,keepDims:!1}}),l=N.expandShapeToKeepDim(o.shape,i),u=qe({inputs:{x:o},backend:r,attrs:{shape:l}}),d=j8({inputs:{a,b:u},backend:r}),h=O8({inputs:{x:d},backend:r}),p=xb({inputs:{x:h},backend:r,attrs:{axis:i,keepDims:!1}}),c=qe({inputs:{x:p},backend:r,attrs:{shape:l}}),f=G8({inputs:{a:h,b:c},backend:r});return r.disposeData(o.dataId),r.disposeData(u.dataId),r.disposeData(d.dataId),r.disposeData(h.dataId),r.disposeData(p.dataId),r.disposeData(c.dataId),f}var qfe={kernelName:Ri,backendName:"webgpu",kernelFunc:Hfe},Kfe=e=>{let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockShape:s,paddings:i}=n;v.assert(a.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGPU backend not implemented yet");let o=s.reduce((y,A)=>y*A),l=[[0,0]];l.push(...i);for(let y=1+s.length;y<a.shape.length;++y)l.push([0,0]);let u=[],d=U8({inputs:{x:a},backend:r,attrs:{paddings:l,constantValue:0}}),h=N.getReshaped(d.shape,s,o,!1),p=N.getPermuted(h.length,s.length,!1),c=N.getReshapedPermuted(d.shape,s,o,!1),f=qe({inputs:{x:d},backend:r,attrs:{shape:h}}),m=Fl({inputs:{x:f},backend:r,attrs:{perm:p}}),g=qe({inputs:{x:m},backend:r,attrs:{shape:c}});return u.push(d),u.push(f),u.push(m),u.forEach(y=>r.disposeData(y.dataId)),g},Xfe={kernelName:hl,backendName:"webgpu",kernelFunc:Kfe},Zfe=class{constructor(e,t,r,n,a,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.workGroupSize=[64,1,1],this.workPerThread=4,this.size=!0,this.outputShape=s,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]);let o=t>1;this.shaderKey=`scatter_${r}_${n}_${o}`;let l=mr(a.length);this.uniforms=`updateSize : i32, sliceDim : i32, strides: ${l},`;let u="";r===1?u="i":r===2&&(u="i, j"),this.indicesSnippet=`getIndices(${u})`;let d="";n===1?d="i":n===2&&(d="i, coords[1]"),this.updatesSnippet=`getUpdates(${d})`,this.strideString=o?"uniforms.strides[j]":"uniforms.strides"}getUserCode(){return`
|
|
${tt()}
|
|
|
|
let globalIndex = index * ${this.workPerThread};
|
|
if (globalIndex < uniforms.size) {
|
|
var sum = vec4<f32>(0.0);
|
|
var found = vec4<bool>(false);
|
|
for (var i = 0; i < uniforms.updateSize; i = i + 1) {
|
|
var flattenedIndex = 0;
|
|
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
|
|
let indexInside = i32(round(${this.indicesSnippet}));
|
|
flattenedIndex = flattenedIndex + indexInside * ${this.strideString};
|
|
}
|
|
for (var innerIndex = 0; innerIndex < ${this.workPerThread}; innerIndex = innerIndex + 1) {
|
|
let curIndex = globalIndex + innerIndex;
|
|
let coords = getCoordsFromIndex(curIndex);
|
|
if (flattenedIndex == coords[0]) {
|
|
sum[innerIndex] = sum[innerIndex] + ${this.updatesSnippet};
|
|
found[innerIndex] = true;
|
|
}
|
|
}
|
|
}
|
|
for (var innerIndex = 0; innerIndex < ${this.workPerThread}; innerIndex = innerIndex + 1) {
|
|
let curIndex = globalIndex + innerIndex;
|
|
if (curIndex < uniforms.size)
|
|
{
|
|
setOutputAtIndex(curIndex, mix(getDefaultValue(), sum[innerIndex], f32(found[innerIndex])));
|
|
}
|
|
}
|
|
}
|
|
}`}};function Yfe(e){let{inputs:t,backend:r,attrs:n}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=n,{sliceRank:l,numUpdates:u,strides:d,outputSize:h}=N.calculateShapes(s,a,o),p=!1,c=[{type:"int32",data:[u]},{type:"int32",data:[l]},{type:"int32",data:d}],f=new Zfe(u,l,a.shape.length,s.shape.length,d,[h,1],p),m=r.runWebGPUProgram(f,[s,a,i],s.dtype,c),g=qe({inputs:{x:m},backend:r,attrs:{shape:o}});return r.disposeData(m.dataId),g}var Jfe={kernelName:Qp,backendName:"webgpu",kernelFunc:Yfe};function Qfe(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=n,o=v.parseAxisParam(i,a.shape)[0],l=N.prepareSplitSize(a,s,o),u=a.shape.length,d=new Array(u).fill(0),h=a.shape.slice();return l.map(p=>{let c=[...h];c[o]=p;let f=Id({inputs:{x:a},backend:r,attrs:{begin:d,size:c}});return d[o]+=p,f})}var eme={kernelName:cl,backendName:"webgpu",kernelFunc:Qfe},tme=vr({opType:19}),rme={kernelName:Ci,backendName:"webgpu",kernelFunc:tme},nme={kernelName:rd,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{x:r}=e,n=t,a=new $h(r.shape,20);return n.runWebGPUProgram(a,[r],r.dtype)}},ame=Gr({opSnippet:11}),sme={kernelName:Mi,backendName:"webgpu",kernelFunc:ame},ime=class{constructor(e){this.variableNames=["x"],this.workPerThread=1,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]);let t=mr(this.outputShape.length);this.uniforms=`begin : ${t}, strides : ${t}, `,this.shaderKey="stridedSlice"}getUserCode(){let e=this.outputShape.length,t="";if(e===1)t="coords * uniforms.strides + uniforms.begin";else{let r=0;t=this.outputShape.map((n,a)=>(r++,this.outputShape.length===1?`coords * uniforms.strides[${a}] + uniforms.begin[${a}]`:`coords[${r-1}] * uniforms.strides[${a}] + uniforms.begin[${a}]`)).join(",")}return`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
setOutputAtIndex(index, getX(${t}));
|
|
}
|
|
}
|
|
`}};function ome(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:d,newAxisMask:h,shrinkAxisMask:p}=n,{finalShapeSparse:c,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:y,begin:A,end:x,strides:b}=_t.sliceInfo(a.shape,s,i,o,l,u,d,h,p),w;if(m)w=qe({inputs:{x:a},backend:r,attrs:{shape:f}});else if(g||y){v.assert(a.shape.length>=1,()=>`Input must have rank at least 1, got: ${a.shape.length}`);let T=_t.computeOutShape(A,x,b),S=Id({inputs:{x:a},backend:r,attrs:{begin:A,size:T}});w=qe({inputs:{x:S},backend:r,attrs:{shape:f}}),r.disposeData(S.dataId)}else if(r.shouldExecuteOnCPU([a])){let T=r.readSync(a.dataId),S=We(a.shape,a.dtype,T),E=Npe(c,S,b,A);w=r.makeTensorInfo(f,a.dtype,E.values)}else{let T=new ime(c),S=[{type:"int32",data:A},{type:"int32",data:b}],E=r.runWebGPUProgram(T,[a],a.dtype,S);w=qe({inputs:{x:E},backend:r,attrs:{shape:f}}),r.disposeData(E.dataId)}return w}var lme={kernelName:fl,backendName:"webgpu",kernelFunc:ome};function ume(e){let{inputs:t,backend:r,attrs:n}=e,{separator:a,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=n,{data:d,dataSplits:h}=t,p=r.readSync(d.dataId),c=r.readSync(h.dataId),[f,m]=Cpe(p,c,a,s,i,o,l,u);return[r.makeTensorInfo([f.length],"string",f),r.makeTensorInfo(h.shape,"int32",m)]}var dme={kernelName:eh,backendName:"webgpu",kernelFunc:ume},pme=vr({opType:21}),hme={kernelName:$i,backendName:"webgpu",kernelFunc:pme},cme=class{constructor(e,t){this.variableNames=["A"],this.workGroupSize=[64,1,1],this.size=!0;let r=new Array(e.length);for(let n=0;n<r.length;n++)r[n]=e[n]*t[n];this.outputShape=r,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.rank=this.outputShape.length,this.shaderKey="tile"}getUserCode(){let e=fme(this.rank,"uniforms.");return`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let resRC = getCoordsFromIndex(index);
|
|
setOutputAtIndex(index, getA(${e}));
|
|
}
|
|
}
|
|
`}};function fme(e,t=""){if(e>=5)throw Error(`Tile for rank ${e} is not yet supported`);if(e===1)return`(resRC % ${t}aShape)`;let r=["resRC.x","resRC.y","resRC.z","resRC.w"],n=[];for(let a=0;a<e;a++)n.push(`(${r[a]} % ${t}aShape[${a}])`);return n.join()}function mme(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{reps:s}=n;if(r.shouldExecuteOnCPU([a])||a.dtype==="string"||a.shape.length>=5){let o=r.readSync(a.dataId),l=a.dtype==="string"?o.map(h=>v.decodeString(h)):o,u=We(a.shape,a.dtype,l),d=Rpe(u,s);return r.makeTensorInfo(d.shape,d.dtype,d.values)}let i=new cme(a.shape,s);return r.runWebGPUProgram(i,[a],a.dtype)}var gme={kernelName:Xa,backendName:"webgpu",kernelFunc:mme},yme=class{constructor(e){this.variableNames=["x","indices"],this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms=`inputSize : i32, firstPass : i32, negativeInf : f32,
|
|
dir : i32, inc : i32,`,this.shaderKey="swap"}getUserCode(){return`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let outC = getCoordsFromIndex(index);
|
|
let batch = outC[0];
|
|
let elemIdx = outC[1];
|
|
// We compare elements pair-wise within a group of size 2 * inc.
|
|
// The comparing rule for each group alternates between ascending
|
|
// and descending. Within each group, we compare each pair at
|
|
// positions i and i+inc. To decide whether an element at position i
|
|
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
|
|
// inc, it is in the first half of the group, we denote it as x0,
|
|
// otherwise we denote it as x1.
|
|
// For example, as shown in the Bitonic top K paper referenced
|
|
// above, Figure5(a) shows that element[1] is in the second half of
|
|
// the group when group size is 2, but it is in the first half of
|
|
// the group when group size is 4.
|
|
let isFirstInPair = elemIdx % (2 * uniforms.inc) < uniforms.inc;
|
|
var i = 0;
|
|
if (isFirstInPair) {
|
|
i = elemIdx;
|
|
} else {
|
|
i = elemIdx - uniforms.inc;
|
|
}
|
|
|
|
var i0 = 0;
|
|
if (uniforms.firstPass == 1) {
|
|
i0 = i;
|
|
} else {
|
|
i0 = i32(getIndices(batch, i));
|
|
}
|
|
|
|
var i1 = 0;
|
|
if (uniforms.firstPass == 1) {
|
|
i1 = i + uniforms.inc;
|
|
} else {
|
|
i1 = i32(getIndices(batch, i + uniforms.inc));
|
|
}
|
|
|
|
var x0 = f32(0.0);
|
|
var x1 = f32(0.0);
|
|
if (i0 < uniforms.inputSize) {
|
|
x0 = getX(batch, i0);
|
|
} else {
|
|
x0 = uniforms.negativeInf;
|
|
}
|
|
if (i1 < uniforms.inputSize) {
|
|
x1 = getX(batch, i1);
|
|
} else {
|
|
x1 = uniforms.negativeInf;
|
|
}
|
|
|
|
let reverse = elemIdx % (2 * uniforms.dir) >= uniforms.dir;
|
|
let isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
|
|
if (reverse == isGreater) {
|
|
// Elements in opposite order of direction
|
|
let iTemp = i0;
|
|
i0 = i1;
|
|
i1 = iTemp;
|
|
}
|
|
if (isFirstInPair) {
|
|
setOutputAtIndex(index, f32(i0));
|
|
} else {
|
|
setOutputAtIndex(index, f32(i1));
|
|
}
|
|
}
|
|
}
|
|
`}},Ame=class{constructor(e){this.variableNames=["x","indices"],this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms="inputSize : i32, firstPass : i32, k : i32,",this.shaderKey="merge"}getUserCode(){return`
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let outC = getCoordsFromIndex(index);
|
|
let batch = outC[0];
|
|
let elemIdx = outC[1];
|
|
// The output size is half of the previous size.
|
|
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _
|
|
// (k=4), we only need to output the indices at positions |, the
|
|
// indices at positions _ can be thrown away, see Figure5(b) After
|
|
// Phase 2 (Merge phase) in the Bitonic Top K paper referenced
|
|
// above.
|
|
// For example, the paper shows we only need to output the orange
|
|
// bars. The output sequence should look like this | | | | | | | |.
|
|
// Because the sequence is halved, to map the output index back to
|
|
// the previous sequence to find the corresponding value, we need
|
|
// to double the index. When we double the index, we basically
|
|
// interpolate a position, so 2i looks like
|
|
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k
|
|
// position of each 2k positions by - elemIdx % k. E.g. for output
|
|
// at index 4,5,6,7, we want to get the corresponding element at
|
|
// original index 8,9,10,11, for output at index 8,9,10,11,
|
|
// we want to get the corresponding element at original index
|
|
// 16,17,18,19, so on and so forth.
|
|
|
|
var i = 0;
|
|
if (elemIdx < uniforms.k) {
|
|
i = elemIdx;
|
|
} else {
|
|
i = elemIdx * 2 - elemIdx % uniforms.k;
|
|
}
|
|
var i0 = 0;
|
|
if (uniforms.firstPass == 1) {
|
|
i0 = i;
|
|
} else {
|
|
i0 = i32(getIndices(batch, i));
|
|
}
|
|
var i1 = 0;
|
|
if (uniforms.firstPass == 1) {
|
|
i1 = i + uniforms.k;
|
|
} else {
|
|
i1 = i32(getIndices(batch, i + uniforms.k));
|
|
}
|
|
|
|
let x0 = getX(batch, i0);
|
|
var x1 = f32(0.0);
|
|
if (i1 < uniforms.inputSize) {
|
|
x1 = getX(batch, i1);
|
|
} else {
|
|
x1 = x0;
|
|
}
|
|
|
|
if (x0 >= x1) {
|
|
setOutputAtIndex(index, f32(i0));
|
|
} else {
|
|
setOutputAtIndex(index, f32(i1));
|
|
}
|
|
}
|
|
}
|
|
`}};function au(e,t){t!==null&&e.disposeData(t.dataId)}function aw(e){let t=1;for(;t<e;)t*=2;return t}function xme(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{k:s,sorted:i}=n,o=a.shape,l=o[o.length-1];if(r.shouldExecuteOnCPU([a])){let b=r.readSync(a.dataId),[w,T]=Mpe(b,o,a.dtype,s,i);return[r.makeTensorInfo(w.shape,w.dtype,w.values),r.makeTensorInfo(T.shape,T.dtype,T.values)]}if(s===0)return o[o.length-1]=0,[r.makeTensorInfo(o,a.dtype,[]),r.makeTensorInfo(o,"int32",[])];if(l===1)return[a,Sd({attrs:{shape:o,dtype:"int32",value:0},backend:r})];let u=v.sizeFromShape(o)/l,d=qe({inputs:{x:a},attrs:{shape:[u,l]},backend:r}),h=aw(s),p=aw(l),c=null,f=()=>c===null?[d,d]:[d,c],m=(b,w,T)=>{let S=f(),E=new yme(T),R=[{type:"int32",data:[l]},{type:"int32",data:[c===null?1:0]},{type:"float32",data:[Number.NEGATIVE_INFINITY]},{type:"int32",data:[b]},{type:"int32",data:[w]}],_=c;c=r.runWebGPUProgram(E,S,"int32",R),au(r,_)};for(let b=1;b<h;b*=2){let w=b*2;for(let T=b;T>=1;T/=2)m(w,T,[u,p])}for(let b=p;b>h;b/=2){let w=f(),T=new Ame([u,b/2]),S=[{type:"int32",data:[l]},{type:"int32",data:[c===null?1:0]},{type:"int32",data:[h]}],E=c;c=r.runWebGPUProgram(T,w,"int32",S),au(r,E);let R=h/2,_=R*2;for(let M=R;M>=1;M/=2)m(_,M,c.shape)}let g=c;c=Id({inputs:{x:c},backend:r,attrs:{begin:0,size:[u,s]}}),au(r,g);let y=B8({inputs:{x:d,indices:c},backend:r,attrs:{axis:1,batchDims:1}});au(r,d);let A=o.slice(0,-1);A.push(s),g=c,c=qe({inputs:{x:c},attrs:{shape:A},backend:r}),au(r,g);let x=y;return y=qe({inputs:{x:y},attrs:{shape:A},backend:r}),au(r,x),[y,c]}var bme={kernelName:gl,backendName:"webgpu",kernelFunc:xme},vme=class{constructor(e){this.variableNames=["Image","Transforms"],this.uniforms="interpolationModeId : i32, fillModeId : i32, fillValue : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="transform"}getUserCode(){return`
|
|
fn mapCoord(outCoord : f32, len : f32) -> f32{
|
|
var inCoord = outCoord;
|
|
if(uniforms.fillModeId == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * f32(i32(f32(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
if (inCoord < -len) {
|
|
inCoord = inCoord + sz2;
|
|
} else {
|
|
inCoord = -inCoord - 1.0;
|
|
}
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz2 = 2.0 * len;
|
|
inCoord = inCoord - sz2 * f32(i32(f32(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (uniforms.fillModeId == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz = len - 1.0;
|
|
inCoord = inCoord + len * (f32(i32(f32(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz = len - 1.0;
|
|
inCoord = inCoord - len * f32(i32(f32(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (uniforms.fillModeId == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
}
|
|
return outCoord;
|
|
}
|
|
fn readWithFillValue(batch : i32, coordY : i32, coordX : i32,
|
|
channel : i32) -> f32 {
|
|
var outputValue : f32;
|
|
if (0 <= coordY && coordY < uniforms.imageShape[1] && 0 <= coordX && coordX < uniforms.imageShape[2]) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = uniforms.fillValue;
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
${tt()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
var outputValue : f32;
|
|
let batch = coords[0];
|
|
let x = coords[2];
|
|
let y = coords[1];
|
|
let channel = coords[3];
|
|
let xf = f32(x);
|
|
let yf = f32(y);
|
|
let a1 = getTransforms(batch, 0);
|
|
let a2 = getTransforms(batch, 1);
|
|
let a3 = getTransforms(batch, 2);
|
|
let b1 = getTransforms(batch, 3);
|
|
let b2 = getTransforms(batch, 4);
|
|
let b3 = getTransforms(batch, 5);
|
|
let c1 = getTransforms(batch, 6);
|
|
let c2 = getTransforms(batch, 7);
|
|
let projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = uniforms.fillValue;
|
|
} else {
|
|
let inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
let inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
let mapX = mapCoord(inX, f32(uniforms.imageShape[2]));
|
|
let mapY = mapCoord(inY, f32(uniforms.imageShape[1]));
|
|
|
|
if (uniforms.interpolationModeId == 1) {
|
|
let coordY = i32(round(mapY));
|
|
let coordX = i32(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
let yFloor = floor(mapY);
|
|
let xFloor = floor(mapX);
|
|
let yCeil = yFloor + 1.0;
|
|
let xCeil = xFloor + 1.0;
|
|
let valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, i32(yFloor), i32(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, i32(yFloor), i32(xCeil), channel);
|
|
let valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, i32(yCeil), i32(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, i32(yCeil), i32(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutputAtIndex(index, outputValue);
|
|
}
|
|
}
|
|
`}};function wme(e){let{inputs:t,backend:r,attrs:n}=e,{image:a,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=n,[d,h,p,c]=a.shape,[f,m]=u!=null?u:[h,p],g=[d,f,m,c],y=new vme(g),A=i==="nearest"?1:2,x;switch(o){case"constant":x=1;break;case"reflect":x=2;break;case"wrap":x=3;break;case"nearest":x=4;break;default:x=1;break}let b=[{type:"int32",data:[A]},{type:"int32",data:[x]},{type:"float32",data:[l]}];return r.runWebGPUProgram(y,[a,s],"float32",b)}var kme={kernelName:yl,backendName:"webgpu",kernelFunc:wme};function Ime(e){let{inputs:t,backend:r,attrs:n}=e,{value:a}=t,{axis:s}=n;s<0&&(s+=a.shape.length);let i=a,o=i.shape.length,l=a.shape[s],u=new Array(o-1),d=0;for(let m=0;m<o;m++)m!==s&&(u[d++]=i.shape[m]);let h=[],p=new Array(o).fill(0),c=i.shape.slice();c[s]=1;let f=new Array(l);for(let m=0;m<f.length;m++){p[s]=m;let g=Id({inputs:{x:i},backend:r,attrs:{begin:p,size:c}}),y=qe({inputs:{x:g},backend:r,attrs:{shape:u}});f[m]=y,h.push(g)}return h.forEach(m=>r.disposeData(m.dataId)),f}var Sme={kernelName:Al,backendName:"webgpu",kernelFunc:Ime},Tme=[Yde,Ppe,zpe,Lpe,jpe,qpe,Xpe,Ype,rhe,ihe,lhe,hhe,tpe,ghe,Ihe,Che,Rhe,Fhe,_he,Dhe,Bhe,jhe,qhe,Xhe,Zhe,Yhe,Qhe,tce,nce,uce,sce,oce,hce,fce,gce,xce,wce,Ice,Tce,epe,fhe,Cce,Rce,Fce,Pce,zce,Dce,Lce,Wce,Uce,jce,qce,Xce,Yce,Whe,Qce,tfe,nfe,nhe,sfe,ofe,ufe,pfe,cfe,mfe,yfe,ahe,Afe,bfe,wfe,Xde,Sfe,Cfe,Rfe,Ffe,_fe,Dfe,Bfe,Vfe,Gfe,ehe,lme,dme,qfe,Xfe,Jfe,eme,rme,nme,sme,jfe,Uhe,hme,gme,bme,kme,Upe,Sme,afe];for(let e of Tme)Vn(e);var Nme=class{constructor(e){this.device=e,this.numUsedBuffers=0,this.numFreeBuffers=0,this.freeBuffers=new Map,this.usedBuffers=new Map,this.numBytesUsed=0,this.numBytesAllocated=0}acquireUploadBuffer(e,t){return this.acquireBuffer(e,t,!0)}acquireBuffer(e,t,r=!1){let n=sw(e,t);if(this.freeBuffers.has(n)||this.freeBuffers.set(n,[]),this.usedBuffers.has(n)||this.usedBuffers.set(n,[]),this.numBytesUsed+=e,this.numUsedBuffers++,this.freeBuffers.get(n).length>0){this.numFreeBuffers--;let s=this.freeBuffers.get(n).shift();return this.usedBuffers.get(n).push(s),s}this.numBytesAllocated+=e;let a=this.device.createBuffer({mappedAtCreation:r,size:e,usage:t});return this.usedBuffers.get(n).push(a),a}releaseBuffer(e,t,r){if(this.freeBuffers.size===0)return;let n=sw(t,r);this.freeBuffers.has(n)||this.freeBuffers.set(n,[]),this.freeBuffers.get(n).push(e),this.numFreeBuffers++,this.numUsedBuffers--;let a=this.usedBuffers.get(n),s=a.indexOf(e);if(s<0)throw new Error("Cannot release a buffer that was never provided by this buffer manager");a.splice(s,1),this.numBytesUsed-=t}releaseUploadBuffer(e,t,r){e.mapAsync(GPUMapMode.WRITE).then(()=>{this.releaseBuffer(e,t,r)},n=>{})}getNumUsedBuffers(){return this.numUsedBuffers}getNumFreeBuffers(){return this.numFreeBuffers}dispose(){this.freeBuffers.forEach((e,t)=>{e.forEach(r=>{r.destroy()})}),this.usedBuffers.forEach((e,t)=>{e.forEach(r=>{r.destroy()})}),this.freeBuffers=new Map,this.usedBuffers=new Map,this.numUsedBuffers=0,this.numFreeBuffers=0,this.numBytesUsed=0,this.numBytesAllocated=0}};function sw(e,t){return`${e}_${t}`}var H8=class{constructor(){this.outputShape=[0],this.variableNames=[],this.workGroupSize=[256,1,1],this.lastUniformData=[],this.inputTexture=null,this.layout=null,this.lastPixelSize={width:0,height:0},this.disposed=!1,this.shaderKey="fromPixels",this.useImport=!1}updateOutputShape(e){v.arraysEqual(this.outputShape,e)||(this.outputShape=e,this.workPerThread=e[2],this.dispatchLayout=Xe(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]))}makeFromPixelsSource(){let e=this.useImport?"textureLoad(src, vec2<i32>(coords.yx));":"textureLoad(src, vec2<i32>(coords.yx), 0)";return`
|
|
@binding(1) @group(0) var src: ${this.useImport?"texture_external":"texture_2d<f32>"};
|
|
|
|
${tt()}
|
|
let flatIndexBase = index * uniforms.numChannels;
|
|
for (var i = 0; i < uniforms.numChannels; i = i + 1) {
|
|
let flatIndex = flatIndexBase + i;
|
|
if (flatIndex < uniforms.size) {
|
|
let coords = getCoordsFromIndex(flatIndexBase);
|
|
let values = ${e};
|
|
result[flatIndex] = i32(floor(255.0 * values[i]));
|
|
}
|
|
}
|
|
}
|
|
`}getUserCode(){return this.makeFromPixelsSource()}setPipeline(e){this.pipeline=e}setUniform(e,t){if(!this.uniform){let r=e.createBuffer({size:t.length*4,usage:GPUBufferUsage.UNIFORM|GPUBufferUsage.COPY_DST});this.uniform=r}!t||t.length===this.lastUniformData.length&&t.every((r,n)=>r===this.lastUniformData[n])||(e.queue.writeBuffer(this.uniform,0,new Uint32Array(t)),this.lastUniformData=t)}makeInputTexture(e,t,r){return(!this.inputTexture||this.lastPixelSize.width!==t||this.lastPixelSize.height!==r)&&(this.inputTexture&&this.inputTexture.destroy(),this.inputTexture=e.createTexture({size:[t,r],format:"rgba8unorm",usage:GPUTextureUsage.COPY_DST|GPUTextureUsage.RENDER_ATTACHMENT|GPUTextureUsage.TEXTURE_BINDING}),this.lastPixelSize.width=t,this.lastPixelSize.height=r),this.inputTexture}dispose(){this.disposed||(this.uniform&&this.uniform.destroy(),this.inputTexture&&this.inputTexture.destroy(),this.disposed=!0)}getLayout(e){return this.layout===null&&(this.layout=this.createTextureLayout(e)),this.layout}createTextureLayout(e){let t=[];t.push({binding:0,visibility:GPUShaderStage.COMPUTE,buffer:{type:"storage"}}),t.push({binding:1,visibility:GPUShaderStage.COMPUTE,texture:{}}),t.push({binding:2,visibility:GPUShaderStage.COMPUTE,buffer:{}});let r=e.createBindGroupLayout({entries:t}),n=e.createPipelineLayout({bindGroupLayouts:[r]});return{bindGroupLayout:r,pipelineLayout:n}}},Cme=class extends H8{constructor(){super(...arguments),this.layout=null,this.useImport=!0}getUserCode(){return this.makeFromPixelsSource()}getLayout(e){return this.layout===null&&(this.layout=this.createTextureImportLayout(e)),this.layout}createTextureImportLayout(e){let t=[];t.push({binding:0,visibility:GPUShaderStage.COMPUTE,buffer:{type:"storage"}}),t.push({binding:1,visibility:GPUShaderStage.COMPUTE,externalTexture:{}}),t.push({binding:2,visibility:GPUShaderStage.COMPUTE,buffer:{}});let r=e.createBindGroupLayout({entries:t}),n=e.createPipelineLayout({bindGroupLayouts:[r]});return{bindGroupLayout:r,pipelineLayout:n}}},Eme=Y().getNumber("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD"),iw=(e,t)=>{let r=e.limits.maxComputeWorkgroupsPerDimension,n=t.dispatchLayout,a=t.dispatch;if(a.every(i=>i<=r))return a;v.assert(a[0]>r&&n.y===void 0&&n.z===void 0,()=>"Dispatch size exceeds WebGPU limits in Y or Z dimension.");let s=Math.ceil(Math.sqrt(a[0]));return s>r?(s=Math.ceil(Math.cbrt(a[0])),v.assert(s<=r,()=>"Total dispatch size exceeds WebGPU maximum."),[s,s,s]):[s,s,1]},q8=class extends Nu{constructor(e,t=!1){if(super(),this.commandQueueOwnedIds=new WeakSet,this.tensorDisposalQueue=[],this.uniformDisposalQueue=[],this.stagingDisposalQueue=[],this.disposed=!1,this.uploadWaitMs=0,this.downloadWaitMs=0,this.dispatchNumberInEncoder=0,!gb())throw new Error("WebGPU is not supported on this device");this.layoutCache={},this.pipelineCache={},this.device=e,this.queue=e.queue,this.currentCommandEncoder=null,this.currentComputePass=null,this.supportTimeQuery=t,this.bufferManager=new Nme(this.device),this.tensorMap=new Dp(this,Ar()),this.supportTimeQuery&&(this.querySet=this.device.createQuerySet({type:"timestamp",count:2})),Y().getBool("WEBGPU_USE_PROFILE_TOOL")&&(this.dummyCanvas=document.createElement("canvas"),this.dummyCanvas.width=1,this.dummyCanvas.height=1,this.dummyContext=this.dummyCanvas.getContext("webgpu"),this.dummyContext.configure({device:e,format:"bgra8unorm"}),document.body.appendChild(this.dummyCanvas))}nextDataId(){return q8.nextDataId++}floatPrecision(){return 32}defaultGpuBufferUsage(){return GPUBufferUsage.STORAGE|GPUBufferUsage.COPY_SRC|GPUBufferUsage.COPY_DST}flushDisposalQueue(){this.tensorDisposalQueue.forEach(e=>{this.maybeReleaseBuffer(e),this.tensorMap.delete(e)}),this.uniformDisposalQueue.forEach(e=>this.bufferManager.releaseBuffer(e.buffer,e.byteSize,e.usage)),this.stagingDisposalQueue.forEach(e=>this.bufferManager.releaseUploadBuffer(e.buffer,e.byteSize,e.usage)),this.tensorDisposalQueue=[],this.uniformDisposalQueue=[],this.stagingDisposalQueue=[]}disposeData(e,t=!1){if(this.tensorMap.has(e)){let r=this.tensorMap.get(e);if(r.refCount--,!t&&r.refCount>0)return!1;if(this.commandQueueOwnedIds.has(e))return this.tensorDisposalQueue.push(e),!1;this.maybeReleaseBuffer(e);let{complexTensorInfos:n}=this.tensorMap.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.tensorMap.delete(e)}return!0}memory(){return{numBytesInGPU:this.bufferManager.numBytesUsed,numBytesAllocatedInGPU:this.bufferManager.numBytesAllocated,unreliable:!1}}getBufferManager(){return this.bufferManager}acquireBuffer(e,t=this.defaultGpuBufferUsage()){return this.bufferManager.acquireBuffer(e,t)}maybeReleaseBuffer(e){let t=this.tensorMap.get(e);t!=null&&t.bufferInfo.buffer!=null&&(this.bufferManager.releaseBuffer(t.bufferInfo.buffer,t.bufferInfo.byteSize,t.bufferInfo.usage),t.bufferInfo.buffer=null)}refCount(e){return this.tensorMap.has(e)?this.tensorMap.get(e).refCount:0}incRef(e){let t=this.tensorMap.get(e);t.refCount++}decRef(e){if(this.tensorMap.has(e)){let t=this.tensorMap.get(e);t.refCount--}}write(e,t,r){if(r==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let n={id:this.nextDataId()},a=v.sizeFromShape(t)*X1(r);return this.tensorMap.set(n,{dtype:r,values:e,bufferInfo:{byteSize:a,usage:this.defaultGpuBufferUsage()},refCount:1}),n}move(e,t,r,n,a){if(n==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s=v.sizeFromShape(r)*X1(n);this.tensorMap.set(e,{dtype:n,values:t,bufferInfo:{byteSize:s,usage:this.defaultGpuBufferUsage()},refCount:a})}submitQueue(){this.ensureComputePassEnded(),this.queue.submit([this.currentCommandEncoder.finish()]),this.currentCommandEncoder=null,this.dispatchNumberInEncoder=0,this.commandQueueOwnedIds=new WeakSet,this.flushDisposalQueue()}getBuffer(e){return this.uploadToGPU(e),this.tensorMap.get(e).bufferInfo.buffer}getFromPixelsProgram(e){switch(e){case"copyExternal":return this.fromPixelProgram||(this.fromPixelProgram=new H8),this.fromPixelProgram;case"import":return this.fromPixelImportProgram||(this.fromPixelImportProgram=new Cme),this.fromPixelImportProgram;default:v.assert(!1,()=>"Unsupported fromPixels shape");return}}ensureCommandEncoderReady(){this.currentCommandEncoder||(this.currentCommandEncoder=this.device.createCommandEncoder())}ensureComputePassEnded(){this.currentComputePass&&(this.currentComputePass.endPass(),this.currentComputePass=null)}getComputePass(){return this.currentComputePass||(this.currentComputePass=this.currentCommandEncoder.beginComputePass()),this.currentComputePass}async getBufferData(e){if(e.values!=null)return e.values;let t=this.acquireBuffer(e.bufferInfo.byteSize,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(e.bufferInfo.buffer,0,t,0,e.bufferInfo.byteSize),this.submitQueue(),await t.mapAsync(GPUMapMode.READ);let r=t.getMappedRange().slice(0);return t.unmap(),t!=null&&this.bufferManager.releaseBuffer(t,e.bufferInfo.byteSize,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ),Y().getBool("WEBGPU_USE_PROFILE_TOOL")&&(v.assert(this.dummyContext!==void 0,()=>"Fail to get context for profiling tool"),this.dummyContext.getCurrentTexture()),r}convertAndCacheOnCPU(e,t){let r=this.tensorMap.get(e);return this.maybeReleaseBuffer(e),r.values=t,r.values}readSync(e){let t=this.tensorMap.get(e),{values:r}=t;if(r==null)throw new Error("WebGPU readSync is only available for CPU-resident tensors.");return r}async read(e){if(!this.tensorMap.has(e))throw new Error(`Tensor ${e} was not registered!`);let t=this.tensorMap.get(e),{values:r}=t;if(r!=null)return this.convertAndCacheOnCPU(e,r);let n;if(t.dtype==="complex64"){let a=await Promise.all([this.read(t.complexTensorInfos.real.dataId),this.read(t.complexTensorInfos.imag.dataId)]),s=a[0],i=a[1];n=N.mergeRealAndImagArrays(s,i)}else{let a=await this.getBufferData(t);n=I8(a,t.dtype)}return this.convertAndCacheOnCPU(e,n),n}bufferSync(e){let t=this.readSync(e.dataId),r=t;if(e.dtype==="string")try{r=t.map(n=>v.decodeString(n))}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,r)}async time(e){let t=this.activeTimers,r=[],n=!1;this.programTimersStack==null?(this.programTimersStack=r,n=!0):this.activeTimers.push(r),this.activeTimers=r,e();let a=v.flatten(this.activeTimers.map(l=>l.query)).filter(l=>l!=null),s=v.flatten(this.activeTimers.map(l=>l.name)).filter(l=>l!=null);this.activeTimers=t,n&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null},o=await Promise.all(a);return i.kernelMs=v.sum(o),i.getExtraProfileInfo=()=>o.map((l,u)=>({name:s[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", "),this.uploadWaitMs=0,this.downloadWaitMs=0,i}getAndSavePipeline(e,t){return e in this.pipelineCache||(this.pipelineCache[e]=t()),this.pipelineCache[e]}makeTensorInfo(e,t,r){let n;if(t==="string"&&r!=null&&r.length>0&&v.isString(r[0])){let a=r.map(s=>v.encodeString(s));n=this.write(a,e,t)}else n=this.write(r,e,t);return{dataId:n,shape:e,dtype:t}}tensorToBinding(e){if(!e)return null;let t=this.tensorMap.get(e.dataId);return{offset:0,size:t.bufferInfo.byteSize,buffer:t.bufferInfo.buffer}}async getQueryTime(e){return this.supportTimeQuery?this.getTimeFromQuerySet(e):0}uploadToGPU(e){let t=this.tensorMap.get(e);if(t.bufferInfo.buffer==null&&(t.bufferInfo.buffer=this.acquireBuffer(t.bufferInfo.byteSize),t.values)){let r=this.bufferManager.acquireUploadBuffer(t.bufferInfo.byteSize,GPUBufferUsage.MAP_WRITE|GPUBufferUsage.COPY_SRC),n=r.getMappedRange();t.dtype==="int32"||t.dtype==="bool"?new Int32Array(n).set(t.values):new Float32Array(n).set(t.values),r.unmap(),this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(r,0,t.bufferInfo.buffer,0,t.bufferInfo.byteSize);let a={byteSize:t.bufferInfo.byteSize,usage:GPUBufferUsage.MAP_WRITE|GPUBufferUsage.COPY_SRC,buffer:r};this.stagingDisposalQueue.push(a)}}makeUniforms(e){let t=0,r=[];e.forEach(s=>{s.data.length===0&&(s.data=[1]);let i;switch(s.data.length){case 1:i=4;break;case 2:i=8;break;case 3:i=16;break;case 4:i=16;break;default:v.assert(!1,()=>`Unsupported ${s.data.length}D shape`)}t=Math.ceil(t/i)*i,r.push(t),t+=s.data.length*4});let n=new ArrayBuffer(t);e.forEach((s,i)=>{let o=r[i];s.type==="int32"?new Int32Array(n,o,s.data.length).set(s.data):s.type==="uint32"?new Uint32Array(n,o,s.data.length).set(s.data):new Float32Array(n,o,s.data.length).set(s.data)});let a=this.acquireBuffer(t,GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM);return this.queue.writeBuffer(a,0,n,0,t),{offset:0,size:t,buffer:a}}createLayout(e){let t=[];t.push({binding:0,visibility:GPUShaderStage.COMPUTE,buffer:{type:"storage"}});for(let a=0;a<e;a++)t.push({binding:a+1,visibility:GPUShaderStage.COMPUTE,buffer:{type:"read-only-storage"}});t.push({binding:e+1,visibility:GPUShaderStage.COMPUTE,buffer:{type:"uniform"}});let r=this.device.createBindGroupLayout({entries:t}),n=this.device.createPipelineLayout({bindGroupLayouts:[r]});return{bindGroupLayout:r,pipelineLayout:n}}getCachedOrCreateLayout(e){return e in this.layoutCache||(this.layoutCache[e]=this.createLayout(e)),this.layoutCache[e]}runWebGPUProgram(e,t,r,n,a){if(!a){if(a=this.makeTensorInfo(e.outputShape,r),v.sizeFromShape(a.shape)===0){let S=this.tensorMap.get(a.dataId);return S.values=v.getTypedArrayFromDType(a.dtype,0),a}this.uploadToGPU(a.dataId)}e.dispatch=iw(this.device,e);let s=[{type:"float32",data:[NaN]}],i=t.concat(a).map(S=>S.shape),o="int32";i.map(S=>{s.push({type:o,data:S})});let l=v.computeStrides(a.shape);if(s.push({type:o,data:l}),e.size){let S=v.sizeFromShape(e.outputShape);s.push({type:o,data:[e.isVec4?S/4:S]})}n&&(s=[...s,...n]);let u=this.makeUniforms(s),d=t.map((S,E)=>{if(S.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");return this.uploadToGPU(S.dataId),{dtype:this.tensorMap.get(S.dataId).dtype,shape:S.shape,name:e.variableNames[E]}}),h=d.map(S=>S.dtype).concat(a.dtype),p=d.map(S=>N.getBroadcastDims(S.shape,a.shape)),c=d.map(S=>v.arraysEqual(S.shape,a.shape)).join("_"),f=p.map(S=>S.join("_")).join(";"),m=L8(e,i,h,f,c),{bindGroupLayout:g,pipelineLayout:y}=this.getCachedOrCreateLayout(e.variableNames.length),A=this.getAndSavePipeline(m,()=>D8(this.device,e,y,d,a)),x=this.activeTimers!=null,b=lce(this.device,g,t.map(S=>this.tensorToBinding(S)),this.tensorToBinding(a),u);this.ensureCommandEncoderReady();let w=this.getComputePass();x&&this.supportTimeQuery&&w.writeTimestamp(this.querySet,0),w.setPipeline(A),w.setBindGroup(0,b),w.dispatch(e.dispatch[0],e.dispatch[1],e.dispatch[2]),x&&this.supportTimeQuery&&w.writeTimestamp(this.querySet,1),this.dispatchNumberInEncoder++,t.forEach(S=>{this.commandQueueOwnedIds.add(S.dataId)}),this.commandQueueOwnedIds.add(a.dataId);let T={byteSize:u.size,usage:GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM,buffer:u.buffer};return this.uniformDisposalQueue.push(T),Y().get("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE")<=this.dispatchNumberInEncoder&&this.submitQueue(),x&&this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(this.querySet)}),a}runFromPixelsProgram(e,t,r,n,a){e.dispatch=iw(this.device,e);let s=this.device.createBindGroup({layout:r.bindGroupLayout,entries:[{binding:0,resource:{buffer:t}},{binding:1,resource:n},{binding:2,resource:{buffer:e.uniform}}]});this.ensureCommandEncoderReady();let i=this.getComputePass(),o=this.activeTimers!=null;o&&this.supportTimeQuery&&i.writeTimestamp(this.querySet,0),i.setPipeline(e.pipeline),i.setBindGroup(0,s),i.dispatch(e.dispatch[0],e.dispatch[1],e.dispatch[2]),o&&this.supportTimeQuery&&i.writeTimestamp(this.querySet,1),this.commandQueueOwnedIds.add(a),this.submitQueue(),o&&this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(this.querySet)})}async getTimeFromQuerySet(e){let t=this.acquireBuffer(16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),r=this.acquireBuffer(16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.resolveQuerySet(e,0,2,t,0),this.currentCommandEncoder.copyBufferToBuffer(t,0,r,0,16),this.submitQueue(),await r.mapAsync(GPUMapMode.READ);let n=new BigUint64Array(r.getMappedRange()),a=Number(n[1]-n[0]);return r.unmap(),this.bufferManager.releaseBuffer(r,16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST),this.bufferManager.releaseBuffer(t,16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),a/1e6}shouldExecuteOnCPU(e,t=Eme){return Y().getBool("WEBGPU_CPU_FORWARD")&&e.every(r=>this.tensorMap.get(r.dataId).bufferInfo.buffer==null&&v.sizeFromShape(r.shape)<t)}numDataIds(){return this.tensorMap.numDataIds()-this.tensorDisposalQueue.length}dispose(){this.disposed||(this.bufferManager.dispose(),this.fromPixelProgram&&this.fromPixelProgram.dispose(),this.fromPixelImportProgram&&this.fromPixelImportProgram.dispose(),this.disposed=!0)}},bb=q8;bb.nextDataId=0;var K8={};Le(K8,{WebGPUBackend:()=>bb,webgpu_util:()=>w8});gb()&&wl("webgpu",async()=>{Y().set("CHECK_COMPUTATION_FOR_ERRORS",!1);let e={powerPreference:Y().get("WEBGPU_USE_LOW_POWER_GPU")?"low-power":"high-performance"},t=await navigator.gpu.requestAdapter(e),r=t.limits,n={},a=t.features.has("timestamp-query");n.requiredLimits={maxComputeWorkgroupStorageSize:r.maxComputeWorkgroupStorageSize,maxComputeWorkgroupsPerDimension:r.maxComputeWorkgroupsPerDimension},a?n.requiredFeatures=["timestamp-query"]:console.warn("This device doesn't support timestamp-query extension. Start Chrome browser with flag --disable-dawn-features=disallow_unsafe_apis then try again. Or zero will shown for the kernel time when profiling mode isenabled. Using performance.now is not workable for webgpu sinceit doesn't support synchronously to read data from GPU.");let s=await t.requestDevice(n);return new bb(s,a)},3);var Vt=(e=>(e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64",e))(Vt||{}),m0=(e=>(e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu",e))(m0||{}),X8;function Rme(e){X8=e.wasm.cwrap(Cs,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function Mme(e){let{inputs:t,backend:r,attrs:n}=e,{a,b:s,bias:i,preluActivationWeights:o}=t;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:d,leakyreluAlpha:h}=n,p=r.dataIdMap.get(a.dataId).id,c=r.dataIdMap.get(s.dataId).id,f=0;if(i!=null){let E=r.dataIdMap.get(i.dataId);if(E.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${E.shape.length}.`);f=E.id}let m=o==null?0:r.dataIdMap.get(o.dataId).id,g=m0[d];if(g==null)throw new Error(`${d} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?a.shape[2]:a.shape[1],A=u?s.shape[1]:s.shape[2],x=vl.assertAndGetBroadcastShape(a.shape.slice(0,-2),s.shape.slice(0,-2)),b=r.makeOutput([...x,y,A],a.dtype),w=r.dataIdMap.get(b.dataId).id,T=new Uint8Array(new Int32Array(a.shape).buffer),S=new Uint8Array(new Int32Array(s.shape).buffer);return X8(p,T,a.shape.length,c,S,s.shape.length,l,u,g,f,m,h||0,w),b}var Fme={kernelName:Cs,backendName:"wasm",setupFunc:Rme,kernelFunc:Mme};function wr(e,t){let r;function n(s){r=s.wasm.cwrap(e,null,["number","number","number"])}function a(s){let{backend:i,inputs:{x:o}}=s,l=i.dataIdMap.get(o.dataId).id,u=i.makeOutput(o.shape,t||o.dtype),d=i.dataIdMap.get(u.dataId).id;return v.sizeFromShape(u.shape)===0||r(l,Vt[o.dtype],d),u}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:a}}var $me=wr(_o);function jr(e,t,r){let n;function a(i){n=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:u,b:d}=l,h=o.dataIdMap.get(u.dataId).id,p=o.dataIdMap.get(d.dataId).id,c=r!=null?r:u.dtype,f=N.assertAndGetBroadcastShape(u.shape,d.shape),m=o.makeOutput(f,c);if(v.sizeFromShape(f)===0)return m;let g=new Uint8Array(new Int32Array(u.shape).buffer),y=new Uint8Array(new Int32Array(d.shape).buffer),A=o.dataIdMap.get(m.dataId).id;return n(h,g,u.shape.length,p,y,d.shape.length,Vt[u.dtype],A),m}return{kernelName:e,backendName:"wasm",setupFunc:a,kernelFunc:s}}var Pme=!0,_me=jr(qa,Pme),Z8;function zme(e){Z8=e.wasm.cwrap(Gs,null,["array","number","number","number"])}function Ome(e){let{inputs:t,backend:r}=e,n=r.makeOutput(t[0].shape,t[0].dtype);if(v.sizeFromShape(n.shape)===0)return n;let a=t.map(o=>r.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(a).buffer),i=r.dataIdMap.get(n.dataId).id;return Z8(s,a.length,Vt[n.dtype],i),n}var Dme={kernelName:Gs,backendName:"wasm",setupFunc:zme,kernelFunc:Ome};function g0(e){let{inputs:{x:t},backend:r}=e,n=r.makeOutput(t.shape,t.dtype),a=r.typedArrayFromHeap(t);return r.typedArrayFromHeap(n).set(a),n}var Lme={kernelName:li,backendName:"wasm",kernelFunc:g0},Y8;function Bme(e){Y8=e.wasm.cwrap(Pi,null,["number","array","number","number","number","array","number"])}function Vs(e){let{inputs:t,backend:r,attrs:n}=e,[a,s]=Vme(t.x.shape,n.perm),i=!0;for(let f=0;f<s.length;f++)s[f]!==f&&(i=!1);let o=Wme(t.x.shape,n.perm),l={dataId:t.x.dataId,shape:a,dtype:t.x.dtype};if(i){let f=g0({inputs:t,backend:r});return f.shape=o,f}let u=r.makeOutput(o,l.dtype),d=r.dataIdMap.get(l.dataId).id,h=r.dataIdMap.get(u.dataId).id,p=new Uint8Array(new Int32Array(s).buffer),c=new Uint8Array(new Int32Array(l.shape).buffer);return Y8(d,c,l.shape.length,Vt[l.dtype],h,p,s.length),u}function Wme(e,t){let r=new Array(e.length);for(let n=0;n<r.length;n++)r[n]=e[t[n]];return r}function Vme(e,t){let r=[],n=[];for(let a=0;a<e.length;++a)e[a]!==1&&r.push(e[a]),e[t[a]]!==1&&n.push(t[a]);for(let a=0;a<n.length;++a){let s=-1;for(let i=0;i<n.length;++i)n[i]>=a&&(s===-1||n[s]>n[i])&&(s=i);n[s]=a}return[r,n]}var Ume={kernelName:Pi,backendName:"wasm",kernelFunc:Vs,setupFunc:Bme};function Wi(e,t,r){let n=e.shape,a=e.shape.length,s=v.parseAxisParam(t,n),i=s,o=N.getAxesPermutation(i,a),l=null,u=!1;if(o!=null){let d=new Array(a);for(let p=0;p<d.length;p++)d[p]=n[o[p]];i=N.getInnerMostAxes(i.length,a),l=Vs({inputs:{x:e},attrs:{perm:o},backend:r});let h=r.dataIdMap.get(e.dataId).id;r.dataIdMap.get(l.dataId).id!==h&&(u=!0)}return{transposed:l,originalAxes:s,axes:i,inputWasTransposed:u}}var J8;function Gme(e){J8=e.wasm.cwrap(Mu,null,["number, number, number"])}function jme(e){let{backend:t,inputs:r,attrs:n}=e,{axis:a,keepDims:s}=n,{x:i}=r,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:d,originalAxes:h,inputWasTransposed:p}=Wi(i,a,t);if(p){let A=t.dataIdMap.get(u.dataId).id;l=u,o=A}let c=l.shape.length;N.assertAxesAreInnerMostDims("all",d,c);let[f,m]=N.computeOutAndReduceShapes(l.shape,d),g=v.sizeFromShape(m),y=t.makeOutput(f,i.dtype);if(v.sizeFromShape(l.shape)!==0){let A=t.dataIdMap.get(y.dataId).id;J8(o,g,A)}if(p&&t.disposeData(u.dataId),s){let A=N.expandShapeToKeepDim(y.shape,h);y.shape=A}return y}var Hme={kernelName:Mu,backendName:"wasm",setupFunc:Gme,kernelFunc:jme},Q8;function qme(e){Q8=e.wasm.cwrap(Fu,null,["number, number, number"])}function Kme(e){let{backend:t,inputs:r,attrs:n}=e,{axis:a,keepDims:s}=n,{x:i}=r,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:d,originalAxes:h,inputWasTransposed:p}=Wi(i,a,t);if(p){let A=t.dataIdMap.get(u.dataId).id;l=u,o=A}let c=l.shape.length;N.assertAxesAreInnerMostDims("any",d,c);let[f,m]=N.computeOutAndReduceShapes(l.shape,d),g=v.sizeFromShape(m),y=t.makeOutput(f,i.dtype);if(v.sizeFromShape(l.shape)!==0){let A=t.dataIdMap.get(y.dataId).id;Q8(o,g,A)}if(p&&t.disposeData(u.dataId),s){let A=N.expandShapeToKeepDim(y.shape,h);y.shape=A}return y}var Xme={kernelName:Fu,backendName:"wasm",setupFunc:qme,kernelFunc:Kme},eT;function Zme(e){eT=e.wasm.cwrap(js,null,["number","number","number","number","number"])}function Yme(e){let{backend:t,inputs:r,attrs:n}=e,{axis:a}=n,{x:s}=r,i=t.dataIdMap.get(s.dataId).id,o=i,l=s,{transposed:u,axes:d,inputWasTransposed:h}=Wi(s,a,t);if(h){let y=t.dataIdMap.get(u.dataId).id;y!==i&&(l=u,o=y)}let p=l.shape.slice(0,-1),c=t.makeOutput(p,"int32"),f=t.dataIdMap.get(c.dataId).id,m=v.sizeFromShape(c.shape),g=l.shape[d[0]];return eT(o,Vt[l.dtype],m,g,f),h&&t.disposeData(u.dataId),c}var Jme={kernelName:js,backendName:"wasm",kernelFunc:Yme,setupFunc:Zme},tT;function Qme(e){tT=e.wasm.cwrap(Hs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function e0e(e){let{inputs:t,attrs:r,backend:n}=e,a=t.x,s=n.dataIdMap.get(a.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=r,d=N.computePool2DInfo(a.shape,i,o,1,l,u),h=d.filterHeight,p=d.filterWidth,c=d.padInfo.top,f=d.padInfo.right,m=d.padInfo.bottom,g=d.padInfo.left,y=d.strideHeight,A=d.strideWidth,x=d.inChannels;if(d.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${d.dataFormat}'. Please use 'channelsLast'.`);if(d.dilationWidth!==1||d.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${d.dilationHeight}, ${d.dilationWidth}].`);let b=n.makeOutput(d.outShape,"float32"),w=n.dataIdMap.get(b.dataId).id;return tT(s,a.shape[0],a.shape[1],a.shape[2],h,p,c,f,m,g,y,A,x,w),b}var t0e={kernelName:Hs,backendName:"wasm",setupFunc:Qme,kernelFunc:e0e};function Qr(e){let{inputs:t,attrs:r}=e,{x:n}=t,{shape:a}=r,s=v.sizeFromShape(n.shape),i=v.inferFromImplicitShape(a,s);return v.assert(s===v.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${n.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(n.dataId),{dataId:n.dataId,shape:i,dtype:n.dtype}}var r0e={kernelName:sl,backendName:"wasm",kernelFunc:Qr},rT;function n0e(e){rT=e.wasm.cwrap(qs,null,["number","array","number","number","array","number","number","number","number"])}function a0e(e){let{inputs:t,backend:r,attrs:n}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=n;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=a.shape.length,u=s.shape.length,d=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[u-1]:s.shape[u-2],p=i?a.shape[l-1]:a.shape[l-2],c=o?s.shape[u-2]:s.shape[u-1],f=a.shape.slice(0,-2),m=s.shape.slice(0,-2),g=v.sizeFromShape(f),y=v.sizeFromShape(m),A=vl.assertAndGetBroadcastShape(a.shape.slice(0,-2),s.shape.slice(0,-2)).concat([p,c]);v.assert(d===h,()=>`Error in matMul: inner shapes (${d}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,d,p]:[g,p,d],b=o?[y,c,h]:[y,h,c],w=Qr({inputs:{x:a},backend:r,attrs:{shape:x}}),T=Qr({inputs:{x:s},backend:r,attrs:{shape:b}}),S=r.dataIdMap.get(w.dataId).id,E=r.dataIdMap.get(T.dataId).id,R=i?w.shape[2]:w.shape[1],_=o?T.shape[1]:T.shape[2],M=Math.max(g,y),I=r.makeOutput([M,R,_],w.dtype),O=r.dataIdMap.get(I.dataId).id,z=new Uint8Array(new Int32Array(w.shape).buffer),j=new Uint8Array(new Int32Array(T.shape).buffer);return rT(S,z,w.shape.length,E,j,T.shape.length,i,o,O),r.disposeData(w.dataId),r.disposeData(T.dataId),I.shape=A,I}var s0e={kernelName:qs,backendName:"wasm",setupFunc:n0e,kernelFunc:a0e};function Fo(e){let{inputs:{x:t},attrs:{begin:r,size:n},backend:a}=e,[s,i]=_t.parseSliceParams(t,r,n),o=_t.isSliceContinous(t.shape,s,i),l=a.readSync(t.dataId),u=a.makeOutput(i,t.dtype),d=v.computeStrides(t.shape),h=a.dataIdMap.get(u.dataId);if(o){let f=_t.computeFlatOffset(s,d);return t.dtype==="string"?h.stringBytes=l.slice(f,f+v.sizeFromShape(i)):a.typedArrayFromHeap(u).set(l.subarray(f,f+v.sizeFromShape(i))),u}if(t.dtype==="string"){let f=Tf(l,s,i,t.shape,t.dtype);return h.stringBytes=f,u}let p=a.typedArrayFromHeap(u),c=t.shape.length;if(c===2)i0e(l,d[0],p,s,i);else if(c===3)o0e(l,d[0],d[1],p,s,i);else if(c===4)l0e(l,d[0],d[1],d[2],p,s,i);else{let f=Tf(l,s,i,t.shape,t.dtype);p.set(f)}return u}function i0e(e,t,r,n,a){let s=0,i=n[0],o=n[1],l=i+a[0];for(let u=i;u<l;u++){let d=u*t+o;r.set(e.subarray(d,d+a[1]),s),s+=a[1]}}function o0e(e,t,r,n,a,s){let i=0,o=a[0],l=a[1],u=a[2],d=o+s[0],h=l+s[1];for(let p=o;p<d;p++)for(let c=l;c<h;c++){let f=p*t+c*r+u;n.set(e.subarray(f,f+s[2]),i),i+=s[2]}}function l0e(e,t,r,n,a,s,i){let o=0,l=s[0],u=s[1],d=s[2],h=l+i[0],p=u+i[1],c=d+i[2],f=s[3];for(let m=l;m<h;m++)for(let g=u;g<p;g++)for(let y=d;y<c;y++){let A=m*t+g*r+y*n+f;a.set(e.subarray(A,A+i[3]),o),o+=i[3]}}var u0e={kernelName:dl,backendName:"wasm",kernelFunc:Fo};function d0e(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockShape:s,crops:i}=n,o=s.reduce((y,A)=>y*A),l=N.getReshaped(a.shape,s,o),u=N.getPermuted(l.length,s.length),d=N.getReshapedPermuted(a.shape,s,o),h=N.getSliceBeginCoords(i,s.length),p=N.getSliceSize(d,i,s.length),c=Qr({inputs:{x:a},backend:r,attrs:{shape:l}}),f=Vs({inputs:{x:c},backend:r,attrs:{perm:u}}),m=Qr({inputs:{x:f},backend:r,attrs:{shape:d}}),g=Fo({inputs:{x:m},backend:r,attrs:{begin:h,size:p}});return r.disposeData(c.dataId),r.disposeData(f.dataId),r.disposeData(c.dataId),g}var p0e={kernelName:zo,backendName:"wasm",kernelFunc:d0e};function zh(e){let{inputs:{x:t},attrs:{dtype:r},backend:n}=e,a=n.makeOutput(t.shape,r),s=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(a).set(s),a}var h0e={kernelName:Ks,backendName:"wasm",kernelFunc:zh},c0e=wr(Xs),nT;function f0e(e){nT=e.wasm.cwrap(Ka,null,["number","number","number","number"])}function m0e(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=n,o=r.dataIdMap.get(a.dataId).id,l=r.makeOutput(a.shape,a.dtype),u=r.dataIdMap.get(l.dataId).id;return nT(o,s,i,u),l}var g0e={kernelName:Ka,backendName:"wasm",setupFunc:f0e,kernelFunc:m0e};function aT(e){let{inputs:t,backend:r}=e,n=v.parseAxisParam(e.attrs.axis,t[0].shape)[0],a=N.computeOutShape(t.map(c=>c.shape),n),s=t.filter(c=>v.sizeFromShape(c.shape)>0);if(s.length===1)return g0({inputs:{x:s[0]},backend:r});let i=r.makeOutput(a,t[0].dtype);if(v.sizeFromShape(a)===0)return i;let o=s.map(c=>c.shape);if(N.assertParamsConsistent(o,n),s[0].dtype==="string"){let c=s.map(x=>{let b=v.sizeFromShape(x.shape.slice(n));return Qr({inputs:{x},backend:r,attrs:{shape:[-1,b]}})}),f=c.map(x=>({vals:r.readSync(x.dataId),shape:x.shape}));a=N.computeOutShape(c.map(x=>x.shape),1);let m=c[0].shape[0]===1,g=Gx(f,a,t[0].dtype,m),y=N.computeOutShape(s.map(x=>x.shape),n);i.shape=y;let A=r.dataIdMap.get(i.dataId);return A.stringBytes=N.fromStringArrayToUint8(g),c.forEach(x=>r.disposeData(x.dataId)),i}let l=v.sizeFromShape(s[0].shape.slice(0,n)),u=0,d=s.map(c=>{let f=v.sizeFromShape(c.shape.slice(n));return u+=f,f}),h=s.map(c=>r.typedArrayFromHeap(c)),p=r.typedArrayFromHeap(i);for(let c=0;c<l;c++){let f=c*u;for(let m=0;m<h.length;m++){let g=d[m],y=c*g,A=h[m].subarray(y,y+g);p.set(A,f),f+=g}}return i}var y0e={kernelName:Oo,backendName:"wasm",kernelFunc:aT},sT;function A0e(e){sT=e.wasm.cwrap(Zs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function x0e(e){let{inputs:t,attrs:r,backend:n}=e,{x:a,filter:s}=t,i=n.dataIdMap.get(a.dataId).id,o=n.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:d,dimRoundingMode:h,dataFormat:p}=r,c=N.convertConv2DDataFormat(p),f=N.computeConv2DInfo(a.shape,s.shape,l,u,d,h,!1,c),m=f.filterHeight,g=f.filterWidth,y=f.padInfo.top,A=f.padInfo.right,x=f.padInfo.bottom,b=f.padInfo.left,w=f.dilationHeight,T=f.dilationWidth,S=f.strideHeight,E=f.strideWidth,R=f.inChannels,_=f.outChannels,M=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let I=n.makeOutput(f.outShape,"float32"),O=n.dataIdMap.get(I.dataId).id;return sT(i,a.shape[0],a.shape[1],a.shape[2],o,m,g,y,A,x,b,M,w,T,S,E,R,_,O),I}var b0e={kernelName:Zs,backendName:"wasm",setupFunc:A0e,kernelFunc:x0e},iT;function v0e(e){iT=e.wasm.cwrap(Ys,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function w0e(e){let{backend:t,inputs:r,attrs:n}=e,{dy:a,filter:s}=r,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,inputShape:d}=n,h=1,p=N.convertConv2DDataFormat(l),c=N.computeConv2DInfo(d,s.shape,i,h,o,u,!1,p),{batchSize:f,filterHeight:m,filterWidth:g,inChannels:y,inHeight:A,inWidth:x,outChannels:b,outHeight:w,outWidth:T,strideHeight:S,strideWidth:E}=c,R=m-1-c.padInfo.top,_=g-1-c.padInfo.left,M=c.dataFormat==="channelsLast",I=v.computeStrides(c.inShape),O=v.computeStrides(a.shape),[z,j,X]=v.computeStrides(s.shape),D=I[0],Q=M?I[1]:I[2],V=M?I[2]:1,ee=M?1:I[1],J=O[0],se=M?O[1]:O[2],Z=M?O[2]:1,ae=M?1:O[1],de=t.makeOutput(c.inShape,"float32"),Ae=t.dataIdMap.get(de.dataId).id,be=t.dataIdMap.get(a.dataId).id,Ee=t.dataIdMap.get(s.dataId).id;return iT(be,Ee,f,m,g,A,x,y,w,T,b,S,E,R,_,z,j,X,D,Q,V,ee,J,se,Z,ae,Ae),de}var k0e={kernelName:Ys,backendName:"wasm",setupFunc:v0e,kernelFunc:w0e},I0e=wr(Js),S0e=wr(Qs),oT=(e=>(e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest",e))(oT||{}),lT;function T0e(e){lT=e.wasm.cwrap(Lo,null,["number","number","number","number","array","number","number","number","number","number"])}function N0e(e){let{backend:t,inputs:r,attrs:n}=e,{method:a,extrapolationValue:s,cropSize:i}=n,{image:o,boxes:l,boxInd:u}=r,d=l.shape[0],[h,p]=i,c=[d,h,p,o.shape[3]],f=t.dataIdMap.get(o.dataId),m;o.dtype!=="float32"&&(m=zh({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(m.dataId));let g=f.id,y=t.dataIdMap.get(l.dataId).id,A=t.dataIdMap.get(u.dataId).id,x=t.makeOutput(c,"float32"),b=t.dataIdMap.get(x.dataId).id,w=new Uint8Array(new Int32Array(o.shape).buffer);return lT(g,y,A,d,w,h,p,oT[a],s,b),m!=null&&t.disposeData(m.dataId),x}var C0e={kernelName:Lo,backendName:"wasm",setupFunc:T0e,kernelFunc:N0e},uT;function E0e(e){uT=e.wasm.cwrap(Lu,null,["number","number","number","number","number","number"])}function R0e(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=n,l=a.shape.length;v.assert(a.dtype==="float32"||a.dtype==="int32",()=>`cumprod does not support ${a.dtype} tensors in the WASM backend`);let u=N.getAxesPermutation([s],l),d=a;u!==null&&(d=Vs({inputs:{x:a},attrs:{perm:u},backend:r}));let h=N.getInnerMostAxes(1,l)[0];N.assertAxesAreInnerMostDims("cumprod",[h],l);let p=r.makeOutput(d.shape,d.dtype),c=d.shape[h],f=r.dataIdMap.get(d.dataId).id,m=r.dataIdMap.get(p.dataId).id;uT(f,i?1:0,o?1:0,c,m,Vt[a.dtype]);let g=p;if(u!==null){let y=N.getUndoAxesPermutation(u);g=Vs({inputs:{x:p},attrs:{perm:y},backend:r}),r.disposeData(d.dataId),r.disposeData(p.dataId)}return g}var M0e={kernelName:Lu,backendName:"wasm",setupFunc:E0e,kernelFunc:R0e},dT;function F0e(e){dT=e.wasm.cwrap(Do,null,["number","number","number","number","number","number"])}function $0e(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=n,l=a.shape.length;v.assert(a.dtype==="float32"||a.dtype==="int32",()=>`cumsum does not support ${a.dtype} tensors in the WASM backend`);let u=N.getAxesPermutation([s],l),d=a;u!==null&&(d=Vs({inputs:{x:a},attrs:{perm:u},backend:r}));let h=N.getInnerMostAxes(1,l)[0];N.assertAxesAreInnerMostDims("cumsum",[h],l);let p=r.makeOutput(d.shape,d.dtype),c=d.shape[h],f=r.dataIdMap.get(d.dataId).id,m=r.dataIdMap.get(p.dataId).id;dT(f,i?1:0,o?1:0,c,m,Vt[a.dtype]);let g=p;if(u!==null){let y=N.getUndoAxesPermutation(u);g=Vs({inputs:{x:p},attrs:{perm:y},backend:r}),r.disposeData(d.dataId),r.disposeData(p.dataId)}return g}var P0e={kernelName:Do,backendName:"wasm",setupFunc:F0e,kernelFunc:$0e},pT;function _0e(e){pT=e.wasm.cwrap(Bo,null,["number","number","number","array","number","array","array","number","number"])}function z0e(e){let{backend:t,inputs:r,attrs:n}=e,{x:a}=r,{blockSize:s,dataFormat:i}=n,o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],u=i==="NHWC"?a.shape[2]:a.shape[3],d=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,p=u*s,c=d/(s*s),f=i==="NHWC"?[o,h,p,c]:[o,c,h,p],m=t.makeOutput(f,"float32"),g=t.dataIdMap.get(a.dataId).id,y=new Uint8Array(new Int32Array(v.computeStrides(a.shape)).buffer),A=new Uint8Array(new Int32Array(f).buffer),x=new Uint8Array(new Int32Array(v.computeStrides(f)).buffer),b=t.dataIdMap.get(m.dataId).id;return pT(g,s,i==="NHWC"?1:0,y,a.shape.length-1,A,x,f.length,b),m}var O0e={kernelName:Bo,backendName:"wasm",setupFunc:_0e,kernelFunc:z0e},hT;function D0e(e){hT=e.wasm.cwrap(ei,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function L0e(e){let{inputs:t,attrs:r,backend:n}=e,{x:a,filter:s}=t,i=n.dataIdMap.get(a.dataId).id,o=n.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:d,dimRoundingMode:h}=r,p=u==null?[1,1]:u,c=N.computeConv2DInfo(a.shape,s.shape,l,p,d,h,!0),f=c.filterHeight,m=c.filterWidth,g=c.padInfo.top,y=c.padInfo.right,A=c.padInfo.bottom,x=c.padInfo.left,b=c.dilationHeight,w=c.dilationWidth,T=c.strideHeight,S=c.strideWidth,E=c.inChannels,R=c.outChannels,_=c.padInfo.type==="SAME"?1:0;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let M=n.makeOutput(c.outShape,"float32"),I=n.dataIdMap.get(M.dataId).id;return hT(i,a.shape[0],a.shape[1],a.shape[2],o,f,m,g,y,A,x,_,b,w,T,S,E,R,I),M}var B0e={kernelName:ei,backendName:"wasm",setupFunc:D0e,kernelFunc:L0e},W0e=wr(ri),V0e=!1,U0e=jr(Wo,V0e,"bool"),G0e=wr(ni,"float32");function e2(e){let{inputs:t,attrs:r,backend:n}=e,{input:a}=t,{dim:s}=r,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(v.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),Qr({inputs:{x:a},backend:n,attrs:{shape:o}})}var j0e={kernelName:Vo,backendName:"wasm",kernelFunc:e2};function cT(e){let{attrs:{shape:t,value:r,dtype:n},backend:a}=e,s=a.makeOutput(t,n);return a.typedArrayFromHeap(s).fill(r),s}var H0e={kernelName:Wu,backendName:"wasm",kernelFunc:cT},fT;function q0e(e){fT=e.wasm.cwrap(Go,null,["number","number","number","number","number","number"])}function K0e(e){let{inputs:t,backend:r}=e,{image:n}=t,a=r.makeOutput(n.shape,n.dtype),s=r.dataIdMap.get(n.dataId).id,i=r.dataIdMap.get(a.dataId).id,[o,l,u,d]=n.shape;return fT(s,o,l,u,d,i),a}var X0e={kernelName:Go,backendName:"wasm",kernelFunc:K0e,setupFunc:q0e},Z0e=wr(ai),Y0e=!1,J0e=jr(si,Y0e),mT;function Q0e(e){mT=e.wasm.cwrap(ii,null,["number","number","number","number","number","number","number"])}function ege(e){let{backend:t,inputs:r,attrs:n}=e,{varianceEpsilon:a}=n,{x:s,mean:i,variance:o,offset:l,scale:u}=r,d=t.dataIdMap.get(s.dataId).id,h=t.dataIdMap.get(i.dataId).id,p=t.dataIdMap.get(o.dataId).id,c=l!=null?t.dataIdMap.get(l.dataId).id:0,f=u!=null?t.dataIdMap.get(u.dataId).id:0,m=t.makeOutput(s.shape,s.dtype);if(v.sizeFromShape(s.shape)===0)return m;let g=t.dataIdMap.get(m.dataId).id;return mT(d,h,p,c,f,a,g),m}var tge={kernelName:ii,backendName:"wasm",setupFunc:Q0e,kernelFunc:ege},gT;function rge(e){gT=e.wasm.cwrap(Es,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function nge(e){let{inputs:t,attrs:r,backend:n}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:d,dataFormat:h,dimRoundingMode:p,activation:c,leakyreluAlpha:f}=r,m=N.computeConv2DInfo(a.shape,s.shape,l,d,u,p),g=m0[c];if(g==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let y=n.dataIdMap.get(a.dataId).id,A=n.dataIdMap.get(s.dataId).id,x=m.outChannels,b=0;if(i!=null){let Z=n.dataIdMap.get(i.dataId);if(Z.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${Z.shape.length}.`);if(Z.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${Z.shape}) does not match the number of output channels (${x})`);b=Z.id}let w=m.filterHeight,T=m.filterWidth,S=m.padInfo.top,E=m.padInfo.right,R=m.padInfo.bottom,_=m.padInfo.left,M=m.dilationHeight,I=m.dilationWidth,O=m.strideHeight,z=m.strideWidth,j=m.inChannels,X=m.padInfo.type==="SAME"?1:0,D=m.batchSize,Q=m.inHeight,V=m.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let ee=n.makeOutput(m.outShape,"float32"),J=n.dataIdMap.get(ee.dataId).id,se=o==null?0:n.dataIdMap.get(o.dataId).id;return gT(y,D,Q,V,A,w,T,b,S,E,R,_,X,M,I,O,z,j,x,g,se,f||0,J),ee}var age={kernelName:Es,backendName:"wasm",setupFunc:rge,kernelFunc:nge},yT;function sge(e){yT=e.wasm.cwrap(Rs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function ige(e){let{inputs:t,attrs:r,backend:n}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:d,dataFormat:h,dimRoundingMode:p,activation:c,leakyreluAlpha:f}=r,m=N.computeConv2DInfo(a.shape,s.shape,l,d,u,p,!0),g=m0[c];if(g==null)throw new Error(`${c} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=n.dataIdMap.get(a.dataId).id,A=n.dataIdMap.get(s.dataId).id,x=m.outChannels,b=0;if(i!=null){let Z=n.dataIdMap.get(i.dataId);if(Z.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${Z.shape.length}.`);if(Z.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${Z.shape}) does not match the number of output channels (${x})`);b=Z.id}let w=m.filterHeight,T=m.filterWidth,S=m.padInfo.top,E=m.padInfo.right,R=m.padInfo.bottom,_=m.padInfo.left,M=m.dilationHeight,I=m.dilationWidth,O=m.strideHeight,z=m.strideWidth,j=m.inChannels,X=m.padInfo.type==="SAME"?1:0,D=m.batchSize,Q=m.inHeight,V=m.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let ee=n.makeOutput(m.outShape,"float32"),J=n.dataIdMap.get(ee.dataId).id,se=o==null?0:n.dataIdMap.get(o.dataId).id;return yT(y,D,Q,V,A,w,T,b,S,E,R,_,X,M,I,O,z,j,x,g,se,f||0,J),ee}var oge={kernelName:Rs,backendName:"wasm",setupFunc:sge,kernelFunc:ige},AT;function lge(e){AT=e.wasm.cwrap(Ho,null,["number","number","number","number","number","number","array","number"])}function uge(e){let{backend:t,inputs:r}=e,{params:n,indices:a}=r,[s,i,o,l]=g2.prepareAndValidate(n,a),u=t.makeOutput(s,n.dtype);if(i===0)return u;let d=a.shape,h=d[d.length-1],p=t.dataIdMap.get(n.dataId).id,c=t.dataIdMap.get(a.dataId).id,f=new Uint8Array(new Int32Array(l).buffer),m=t.dataIdMap.get(u.dataId).id;return AT(p,Vt[n.dtype],c,i,h,o,f,m),u}var dge={kernelName:Ho,backendName:"wasm",setupFunc:lge,kernelFunc:uge},xT;function pge(e){xT=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function hge(e){let{backend:t,inputs:r,attrs:n}=e,{x:a,indices:s}=r,{axis:i,batchDims:o}=n,l=v.parseAxisParam(i,a.shape)[0],u=t.readSync(s.dataId),d=a.shape[l];for(let S=0;S<u.length;++S){let E=u[S];v.assert(E<=d-1&&E>=0,()=>`GatherV2: the index value ${E} is not in [0, ${d-1}]`)}let h=N.segment_util.collectGatherOpShapeInfo(a,s,l,o),p=Qr({inputs:{x:a},attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]},backend:t}),c=v.sizeFromShape(s.shape),f=Qr({inputs:{x:s},attrs:{shape:[h.batchSize,c/h.batchSize]},backend:t}),m=[h.batchSize,h.outerSize,c/h.batchSize,h.sliceSize],g=t.makeOutput(m,a.dtype);if(v.sizeFromShape(a.shape)===0)return g;let y=p.shape.length-1,A=t.dataIdMap.get(p.dataId).id,x=t.dataIdMap.get(f.dataId).id,b=t.dataIdMap.get(g.dataId).id,w=new Uint8Array(new Int32Array(v.computeStrides(p.shape)).buffer),T=new Uint8Array(new Int32Array(v.computeStrides(m)).buffer);return xT(A,Vt[a.dtype],w,y,x,h.batchSize,T,b),t.disposeData(p.dataId),t.disposeData(f.dataId),g.shape=h.outputShape,g}var cge={kernelName:jo,backendName:"wasm",setupFunc:pge,kernelFunc:hge},fge=!1,mge=jr(qo,fge,"bool"),gge=!1,yge=jr(oi,gge,"bool"),bT;function Age(e){bT=e.wasm.cwrap(ui,null,["number","number","number","number"])}function xge(e){let{inputs:{x:t},attrs:{alpha:r},backend:n}=e,a=n.dataIdMap.get(t.dataId).id,s=n.makeOutput(t.shape,"float32");if(v.sizeFromShape(t.shape)!==0){let i=n.dataIdMap.get(s.dataId).id;bT(a,Vt[t.dtype],r,i)}return s}var bge={kernelName:ui,backendName:"wasm",setupFunc:Age,kernelFunc:xge},vge=!1,wge=jr(Ko,vge,"bool"),kge=!1,Ige=jr(Xo,kge,"bool"),Sge=wr(di),Tge=!1,Nge=jr(Zo,Tge,"bool"),vT;function Cge(e){vT=e.wasm.cwrap(pi,null,["number","number","number","number"])}function Ege(e){let{backend:t,inputs:r,attrs:n}=e,{reductionIndices:a,keepDims:s}=n,{x:i}=r,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:d,originalAxes:h,inputWasTransposed:p}=Wi(i,a,t);if(p){let A=t.dataIdMap.get(u.dataId).id;l=u,o=A}let c=l.shape.length;N.assertAxesAreInnerMostDims("max",d,c);let[f,m]=N.computeOutAndReduceShapes(l.shape,d),g=v.sizeFromShape(m),y=t.makeOutput(f,i.dtype);if(v.sizeFromShape(l.shape)!==0){let A=t.dataIdMap.get(y.dataId).id;vT(o,Vt[i.dtype],g,A)}if(p&&t.disposeData(u.dataId),s){let A=N.expandShapeToKeepDim(y.shape,h);y.shape=A}return y}var Rge={kernelName:pi,backendName:"wasm",setupFunc:Cge,kernelFunc:Ege},Mge=!1,Fge=jr(hi,Mge),wT;function $ge(e){wT=e.wasm.cwrap(ci,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Pge(e){let{inputs:t,attrs:r,backend:n}=e,a=t.x,s=n.dataIdMap.get(a.dataId).id;v.assert(a.dtype==="float32",()=>`Error in MaxPool: only float32 input is supported. Got ${a.dtype}.`);let{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=r,d=N.computePool2DInfo(a.shape,i,o,1,l,u),h=d.filterHeight,p=d.filterWidth,c=d.padInfo.top,f=d.padInfo.right,m=d.padInfo.bottom,g=d.padInfo.left,y=d.dilationHeight,A=d.dilationWidth,x=d.strideHeight,b=d.strideWidth,w=d.inChannels,T=d.outChannels;if(d.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${d.dataFormat}'. Please use 'channelsLast'.`);let S=n.makeOutput(d.outShape,"float32"),E=n.dataIdMap.get(S.dataId).id;return wT(s,a.shape[0],a.shape[1],a.shape[2],h,p,c,f,m,g,y,A,x,b,w,T,E),S}var _ge={kernelName:ci,backendName:"wasm",setupFunc:$ge,kernelFunc:Pge},kT;function zge(e){kT=e.wasm.cwrap(fi,null,["number, number, number"])}function Oge(e){let{backend:t,inputs:r,attrs:n}=e,{axis:a,keepDims:s}=n,{x:i}=r,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:d,axes:h,originalAxes:p,inputWasTransposed:c}=Wi(i,a,t),f=h;if(c){let b=t.dataIdMap.get(d.dataId).id;b!==o&&(u=d,l=b,f=N.getInnerMostAxes(f.length,u.shape.length))}N.assertAxesAreInnerMostDims("mean",f,u.shape.length);let[m,g]=N.computeOutAndReduceShapes(u.shape,f),y=v.sizeFromShape(g),A=u;u.dtype!=="float32"&&(A=zh({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(A.dataId).id);let x=t.makeOutput(m,"float32");if(v.sizeFromShape(u.shape)!==0){let b=t.dataIdMap.get(x.dataId).id;kT(l,y,b)}if(c&&t.disposeData(d.dataId),s){let b=N.expandShapeToKeepDim(x.shape,p);x.shape=b}return u.dtype!=="float32"&&t.disposeData(A.dataId),x}var Dge={kernelName:fi,backendName:"wasm",setupFunc:zge,kernelFunc:Oge},IT;function Lge(e){IT=e.wasm.cwrap(mi,null,["number","number","number","number"])}function Bge(e){let{backend:t,inputs:r,attrs:n}=e,{axis:a,keepDims:s}=n,{x:i}=r,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:d,axes:h,originalAxes:p,inputWasTransposed:c}=Wi(i,a,t);if(c){let x=t.dataIdMap.get(d.dataId).id;x!==o&&(u=d,l=x)}let f=u.shape.length;N.assertAxesAreInnerMostDims("min",h,f);let[m,g]=N.computeOutAndReduceShapes(u.shape,h),y=v.sizeFromShape(g),A=t.makeOutput(m,u.dtype);if(v.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(A.dataId).id;IT(l,Vt[i.dtype],y,x)}if(c&&t.disposeData(d.dataId),s){let x=N.expandShapeToKeepDim(A.shape,p);A.shape=x}return A}var Wge={kernelName:mi,backendName:"wasm",setupFunc:Lge,kernelFunc:Bge},Vge=!1,Uge=jr(gi,Vge),ST=(e=>(e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric",e))(ST||{}),TT;function Gge(e){TT=e.wasm.cwrap(yi,null,["number","array","number","number","array","array","number","number"])}function jge(e){let{inputs:{x:t},backend:r,attrs:{paddings:n,mode:a}}=e,s=n.map((f,m)=>f[0]+t.shape[m]+f[1]),i=r.dataIdMap.get(t.dataId).id,o=r.makeOutput(s,t.dtype),l=r.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),d=n.map(f=>f[0]),h=n.map(f=>f[1]),p=new Uint8Array(new Int32Array(d).buffer),c=new Uint8Array(new Int32Array(h).buffer);return TT(i,u,t.shape.length,Vt[t.dtype],p,c,ST[a],l),o}var Hge={kernelName:yi,backendName:"wasm",kernelFunc:jge,setupFunc:Gge},qge=!0,Kge=jr(Ai,qge),Xge=wr(Yo);function vb(e,t){let r=new Int32Array(e.wasm.HEAPU8.buffer,t,4),n=r[0],a=r[1],s=r[2],i=r[3];return e.wasm._free(t),{pSelectedIndices:n,selectedSize:a,pSelectedScores:s,pValidOutputs:i}}var NT;function Zge(e){NT=e.wasm.cwrap(Qo,"number",["number","number","number","number","number"])}function Yge(e){let{backend:t,inputs:r,attrs:n}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i}=n,{boxes:o,scores:l}=r,u=t.dataIdMap.get(o.dataId).id,d=t.dataIdMap.get(l.dataId).id,h=NT(u,d,s,a,i),{pSelectedIndices:p,selectedSize:c,pSelectedScores:f,pValidOutputs:m}=vb(t,h);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([c],"int32",p)}var Jge={kernelName:Qo,backendName:"wasm",setupFunc:Zge,kernelFunc:Yge},CT;function Qge(e){CT=e.wasm.cwrap(Ku,"number",["number","number","number","number","number","bool"])}function eye(e){let{backend:t,inputs:r,attrs:n}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=n,{boxes:l,scores:u}=r,d=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(u.dataId).id,p=CT(d,h,s,a,i,o),{pSelectedIndices:c,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=vb(t,p);t.wasm._free(m);let y=t.makeOutput([f],"int32",c),A=t.makeOutput([],"int32",g);return[y,A]}var tye={kernelName:Ku,backendName:"wasm",setupFunc:Qge,kernelFunc:eye},ET;function rye(e){ET=e.wasm.cwrap(el,"number",["number","number","number","number","number","number"])}function nye(e){let{backend:t,inputs:r,attrs:n}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=n,{boxes:l,scores:u}=r,d=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(u.dataId).id,p=ET(d,h,s,a,i,o),{pSelectedIndices:c,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=vb(t,p);t.wasm._free(g);let y=t.makeOutput([f],"int32",c),A=t.makeOutput([f],"float32",m);return[y,A]}var aye={kernelName:el,backendName:"wasm",setupFunc:rye,kernelFunc:nye},sye=!1,iye=jr(Jo,sye,"bool"),RT;function oye(e){RT=e.wasm.cwrap(rl,null,["number","number","number","number","number"])}function lye(e){let{inputs:t,backend:r,attrs:n}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=n,l=r.makeOutput([...a.shape,s],"int32"),u=r.dataIdMap.get(l.dataId).id,d=r.dataIdMap.get(a.dataId).id;return RT(d,s,i,o,u),l}var uye={kernelName:rl,backendName:"wasm",setupFunc:oye,kernelFunc:lye};function dye(e){let{inputs:{x:t},backend:r}=e,n=r.makeOutput(t.shape,t.dtype);return r.typedArrayFromHeap(n).fill(1),n}var pye={kernelName:tl,backendName:"wasm",kernelFunc:dye};function hye(e){let{inputs:t,backend:r,attrs:n}=e,{axis:a}=n;if(t.length===1)return e2({inputs:{input:t[0]},backend:r,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(d=>{v.assertShapesMatch(s,d.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===d.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(d=>{let h=e2({inputs:{input:d},backend:r,attrs:{dim:a}});return o.push(h),h}),u=aT({inputs:l,backend:r,attrs:{axis:a}});return o.forEach(d=>r.disposeData(d.dataId)),u}var cye={kernelName:nl,backendName:"wasm",kernelFunc:hye},MT;function fye(e){MT=e.wasm.cwrap(xi,null,["number","array","number","number","array","array","number","number"])}function mye(e){let{inputs:{x:t},backend:r,attrs:{paddings:n,constantValue:a}}=e,s=n.map((f,m)=>f[0]+t.shape[m]+f[1]);if(v.sizeFromShape(t.shape)===0)return cT({backend:r,attrs:{shape:s,value:a,dtype:t.dtype}});let i=r.dataIdMap.get(t.dataId).id,o=r.makeOutput(s,t.dtype),l=r.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),d=n.map(f=>f[0]),h=n.map(f=>f[1]),p=new Uint8Array(new Int32Array(d).buffer),c=new Uint8Array(new Int32Array(h).buffer);return MT(i,u,t.shape.length,Vt[t.dtype],p,c,a,l),o}var FT={kernelName:xi,backendName:"wasm",kernelFunc:mye,setupFunc:fye},gye=!1,yye=jr(bi,gye),$T;function Aye(e){$T=e.wasm.cwrap(vi,null,["number","number","number"])}function xye(e){let{inputs:t,backend:r}=e,{x:n,alpha:a}=t,s=r.dataIdMap.get(n.dataId).id,i=r.dataIdMap.get(a.dataId).id,o=s,l=n,u=l;l.dtype!=="float32"&&(u=zh({backend:r,inputs:{x:n},attrs:{dtype:"float32"}}),o=r.dataIdMap.get(u.dataId).id);let d=r.makeOutput(n.shape,"float32"),h=r.dataIdMap.get(d.dataId).id;return $T(o,i,h),l.dtype!=="float32"&&r.disposeData(u.dataId),d}var bye={kernelName:vi,backendName:"wasm",setupFunc:Aye,kernelFunc:xye},PT;function vye(e){PT=e.wasm.cwrap(al,null,["number","number","number","number"])}function wye(e){let{backend:t,inputs:r,attrs:n}=e,{axis:a,keepDims:s}=n,{x:i}=r,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:d,axes:h,originalAxes:p,inputWasTransposed:c}=Wi(i,a,t),f=h;if(c){let x=t.dataIdMap.get(d.dataId).id;x!==o&&(u=d,l=x,f=N.getInnerMostAxes(f.length,u.shape.length))}N.assertAxesAreInnerMostDims("prod",f,u.shape.length);let[m,g]=N.computeOutAndReduceShapes(u.shape,f),y=v.sizeFromShape(g),A=t.makeOutput(m,u.dtype);if(v.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(A.dataId).id;PT(l,y,Vt[A.dtype],x)}if(c&&t.disposeData(d.dataId),s){let x=N.expandShapeToKeepDim(A.shape,p);A.shape=x}return A}var kye={kernelName:al,backendName:"wasm",setupFunc:vye,kernelFunc:wye},Iye=e=>{let{backend:t,attrs:r}=e,{start:n,stop:a,step:s,dtype:i}=r,o=qx(n,a,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},Sye={kernelName:Xu,backendName:"wasm",kernelFunc:Iye},Tye=!0,Nye=jr(ti,Tye),Cye=wr(wi),Eye=wr(Ii),_T;function Rye(e){_T=e.wasm.cwrap(ki,null,["number","number","number","number","number","number","number","number","number","number"])}function Mye(e){let{backend:t,inputs:r,attrs:n}=e,{images:a}=r,{alignCorners:s,halfPixelCenters:i,size:o}=n,[l,u]=o,[d,h,p,c]=a.shape,f=[d,l,u,c],m=t.dataIdMap.get(a.dataId),g;m.dtype!=="float32"&&(g=zh({backend:t,inputs:{x:a},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(g.dataId));let y=m.id,A=t.makeOutput(f,"float32");if(v.sizeFromShape(a.shape)===0)return A;let x=t.dataIdMap.get(A.dataId).id;return _T(y,d,h,p,c,l,u,s?1:0,i?1:0,x),g!=null&&t.disposeData(g.dataId),A}var Fye={kernelName:ki,backendName:"wasm",setupFunc:Rye,kernelFunc:Mye},zT;function $ye(e){zT=e.wasm.cwrap(il,null,["number","array","number","array","number","number"])}function Pye(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{dims:s}=n,i=v.parseAxisParam(s,a.shape);if(a.shape.length===0)return g0({inputs:{x:a},backend:r});let o=r.makeOutput(a.shape,a.dtype),l=r.dataIdMap.get(a.dataId).id,u=r.dataIdMap.get(o.dataId).id,d=new Uint8Array(new Int32Array(i).buffer),h=new Uint8Array(new Int32Array(a.shape).buffer);zT(l,d,i.length,h,a.shape.length,u);let p=Qr({inputs:{x:o},attrs:{shape:a.shape},backend:r});return r.disposeData(o.dataId),p}var _ye={kernelName:il,backendName:"wasm",kernelFunc:Pye,setupFunc:$ye},OT;function zye(e){OT=e.wasm.cwrap(bl,null,["number","number","number","number","number","number","number","number","array","number","number"])}function Oye(e){let{inputs:t,backend:r,attrs:n}=e,{image:a}=t,{radians:s,fillValue:i,center:o}=n,l=r.makeOutput(a.shape,a.dtype),u=r.dataIdMap.get(a.dataId).id,d=r.dataIdMap.get(l.dataId).id,[h,p,c,f]=a.shape,[m,g]=N.getImageCenter(o,p,c),y=i===0,A=255,x=typeof i=="number"?[i,i,i,y?0:A]:[...i,A],b=new Uint8Array(new Int32Array(x).buffer);return OT(u,h,p,c,f,s,m,g,b,x.length,d),l}var Dye={kernelName:bl,backendName:"wasm",kernelFunc:Oye,setupFunc:zye},Lye=wr(ol),Bye=wr(Si),DT;function Wye(e){DT=e.wasm.cwrap(ll,null,["number","number","number","number","number","number","array","number","number"])}function Vye(e){let{backend:t,inputs:r,attrs:n}=e,{indices:a,updates:s}=r,{shape:i}=n,o=t.makeOutput(i,s.dtype);if(v.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:u,sliceSize:d,strides:h,outputSize:p}=y2.calculateShapes(s,a,i),c=t.dataIdMap.get(a.dataId).id,f=t.dataIdMap.get(s.dataId).id,m=new Uint8Array(new Int32Array(h).buffer),g=t.dataIdMap.get(o.dataId).id;return DT(c,f,Vt[s.dtype],l,u,d,m,p,g),o}var Uye={kernelName:ll,backendName:"wasm",setupFunc:Wye,kernelFunc:Vye},LT;function Gye(e){LT=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function jye(e){let{inputs:t,backend:r}=e,{condition:n,t:a,e:s}=t,i=r.dataIdMap.get(n.dataId).id,o=r.dataIdMap.get(a.dataId).id,l=r.dataIdMap.get(s.dataId).id,u=r.makeOutput(a.shape,a.dtype),d=r.dataIdMap.get(u.dataId).id,h=n.shape.length,p=a.shape.length,c=h===0||h>1||p===1?1:v.sizeFromShape(a.shape.slice(1));return LT(i,o,l,c,d),u}var Hye={kernelName:ul,backendName:"wasm",kernelFunc:jye,setupFunc:Gye},BT;function qye(e){BT=e.wasm.cwrap(Ni,null,["number","number"])}function Kye(e){let{backend:t,inputs:{x:r}}=e,n=t.dataIdMap.get(r.dataId).id,a=t.makeOutput(r.shape,r.dtype),s=t.dataIdMap.get(a.dataId).id;return v.sizeFromShape(a.shape)===0||BT(n,s),a}var Xye={kernelName:"Sigmoid",backendName:"wasm",setupFunc:qye,kernelFunc:Kye},Zye=wr(Ti),WT;function Yye(e){WT=e.wasm.cwrap(Ri,null,["number","number","number","number"])}function Jye(e){let{backend:t,inputs:{logits:r},attrs:{dim:n}}=e,a=t.dataIdMap.get(r.dataId).id,s=t.makeOutput(r.shape,r.dtype),i=t.dataIdMap.get(s.dataId).id,o=r.shape[n],l=v.sizeFromShape(r.shape)/o;return v.sizeFromShape(s.shape)===0||WT(a,i,o,l),s}var Qye={kernelName:Ri,backendName:"wasm",setupFunc:Yye,kernelFunc:Jye};function e1e(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockShape:s,paddings:i}=n,o=v.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let g=1+s.length;g<a.shape.length;++g)l.push([0,0]);let u=FT.kernelFunc({inputs:{x:a},backend:r,attrs:{paddings:l,constantValue:0}}),d=N.getReshaped(u.shape,s,o,!1),h=N.getPermuted(d.length,s.length,!1),p=N.getReshapedPermuted(u.shape,s,o,!1),c=Qr({inputs:{x:u},backend:r,attrs:{shape:d}}),f=Vs({inputs:{x:c},backend:r,attrs:{perm:h}}),m=Qr({inputs:{x:f},backend:r,attrs:{shape:p}});return r.disposeData(u.dataId),r.disposeData(c.dataId),r.disposeData(f.dataId),m}var t1e={kernelName:hl,backendName:"wasm",kernelFunc:e1e},VT;function r1e(e){VT=e.wasm.cwrap("SparseFillEmptyRows","number",["number","number","number","number","number","number","number","number","number","number","number","number"])}function n1e(e){let{backend:t,inputs:r}=e,{indices:n,values:a,denseShape:s,defaultValue:i}=r,o=n.shape[0],l=n.shape[1],u=t.readSync(s.dataId)[0],d=[o+u,l],h=t.dataIdMap.get(n.dataId).id,p=t.dataIdMap.get(a.dataId).id,c=t.dataIdMap.get(i.dataId).id,f=t.makeOutput(d,n.dtype),m=t.dataIdMap.get(f.dataId).id,g=t.makeOutput(d.slice(0,1),a.dtype),y=t.dataIdMap.get(g.dataId).id,A=t.makeOutput([u],"bool"),x=t.dataIdMap.get(A.dataId).id,b=t.makeOutput([o],n.dtype),w=t.dataIdMap.get(b.dataId).id,T=t.makeOutput([4],"int32"),S=t.dataIdMap.get(T.dataId).id,E=VT(h,p,Vt[a.dtype],o,u,l,c,m,y,x,w,S),R=t.readSync(T.dataId),_;switch(R[0]){case 1:{_=N.getSparseFillEmptyRowsIndicesDenseShapeMismatch(R[1]);break}case 2:{_=N.getSparseFillEmptyRowsNegativeIndexErrorMessage(R[1],R[2]);break}case 3:_=N.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(R[1],R[2],R[3]);break;default:_=""}if(t.disposeData(T.dataId),_)throw t.disposeData(f.dataId),t.disposeData(g.dataId),t.disposeData(A.dataId),t.disposeData(b.dataId),new Error(_);let M=f,I=g;return E!==d[0]&&(M=Fo({inputs:{x:f},attrs:{begin:0,size:[E,l]},backend:t}),I=Fo({inputs:{x:g},attrs:{begin:0,size:E},backend:t}),t.disposeData(f.dataId),t.disposeData(g.dataId)),[M,I,A,b]}var a1e={kernelName:Zp,backendName:"wasm",setupFunc:r1e,kernelFunc:n1e},UT;function s1e(e){UT=e.wasm.cwrap(td,null,["number","number","number","number","number","number","number"])}function i1e(e){let{backend:t,inputs:r}=e,{inputIndices:n,inputShape:a,newShape:s}=r;if(n.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${n.shape}`);if(a.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${a.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=t.dataIdMap.get(n.dataId).id,o=t.dataIdMap.get(a.dataId).id,l=t.dataIdMap.get(s.dataId).id,u=n.shape[0],d=v.sizeFromShape(s.shape),h=t.makeOutput([u,d],n.dtype),p=t.dataIdMap.get(h.dataId).id,c=t.makeOutput([d],s.dtype),f=t.dataIdMap.get(c.dataId).id,m=t.makeOutput([3],"int32"),g=t.dataIdMap.get(m.dataId).id;UT(i,o,l,u,p,f,g);let y=t.readSync(m.dataId),A;switch(y[0]){case 0:{A=N.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(y[1],y[2]);break}case 1:{A=N.getSparseReshapeNegativeOutputDimErrorMessage(y[1],y[2]);break}case 2:A=N.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage();break;case 3:{let x=Array.from(t.readSync(a.dataId)),b=Array.from(t.readSync(c.dataId));A=N.getSparseReshapeInputOutputMultipleErrorMessage(x,b);break}case 4:{let x=Array.from(t.readSync(a.dataId)),b=Array.from(t.readSync(c.dataId));A=N.getSparseReshapeInputOutputMismatchErrorMessage(x,b);break}default:A=""}if(t.disposeData(m.dataId),A)throw t.disposeData(h.dataId),t.disposeData(c.dataId),new Error(A);return[h,c]}var o1e={kernelName:td,backendName:"wasm",setupFunc:s1e,kernelFunc:i1e},GT;function jT(e){GT=e.wasm.cwrap("SparseSegmentReduction",null,["number","number","number","number","number","number","number","number","number"])}function HT(e,t){let{backend:r,inputs:n}=e,{data:a,indices:s,segmentIds:i}=n,o=s.shape[0],l=r.readSync(i.dataId,o-1,o)[0],u=o>0?l+1:0;if(u<0)throw new Error(N.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let d=a.shape.slice();d[0]=u;let h=r.dataIdMap.get(a.dataId).id,p=r.dataIdMap.get(s.dataId).id,c=r.dataIdMap.get(i.dataId).id,f=r.makeOutput(d,a.dtype),m=r.dataIdMap.get(f.dataId).id,g=r.makeOutput([4],"int32"),y=r.dataIdMap.get(g.dataId).id;GT(h,Vt[a.dtype],a.shape[0],p,c,m,y,t,0);let A=r.readSync(g.dataId),x;switch(A[0]){case 0:{x=N.getSparseSegmentReductionNegativeSegmentIdsErrorMessage();break}case 1:{x=N.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage();break}case 2:x=N.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(A[1],A[2]);break;case 3:x=N.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(A[1],A[2],A[3]);break;default:x=""}if(r.disposeData(g.dataId),x)throw r.disposeData(f.dataId),new Error(x);return f}function l1e(e){return HT(e,!0)}var u1e={kernelName:Yp,backendName:"wasm",setupFunc:jT,kernelFunc:l1e};function d1e(e){return HT(e,!1)}var p1e={kernelName:Jp,backendName:"wasm",setupFunc:jT,kernelFunc:d1e};function h1e(e){let{inputs:t,attrs:r,backend:n}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=r,o=v.parseAxisParam(i,a.shape)[0],l=N.prepareSplitSize(a,s,o),u=new Array(a.shape.length).fill(0),d=a.shape.slice();return l.map(h=>{let p=[...d];p[o]=h;let c=Fo({inputs:{x:a},attrs:{begin:u,size:p},backend:n});return u[o]+=h,c})}var c1e={kernelName:cl,backendName:"wasm",kernelFunc:h1e},f1e=wr(Ci),m1e=wr(rd),g1e=!0,y1e=jr(Mi,g1e),qT;function A1e(e){qT=e.wasm.cwrap(_i,null,["number","number","number","number"])}function x1e(e){let{backend:t,inputs:r,attrs:n}=e,{alpha:a}=n,{x:s}=r,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return qT(i,a,Vt[s.dtype],l),o}var b1e={kernelName:_i,backendName:"wasm",setupFunc:A1e,kernelFunc:x1e},KT;function v1e(e){KT=e.wasm.cwrap(fl,null,["number","array","number","array","array","array","array","array","number","number"])}function w1e(e){let{backend:t,inputs:r,attrs:n}=e,{x:a}=r,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:d,newAxisMask:h,shrinkAxisMask:p}=n,{finalShapeSparse:c,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:y,begin:A,end:x,strides:b}=_t.sliceInfo(a.shape,s,i,o,l,u,d,h,p),w;if(m)w=Qr({inputs:{x:a},backend:t,attrs:{shape:f}});else if(g||y){v.assert(a.shape.length>=1,()=>`Input must have rank at least 1, got: ${a.shape.length}`);let T=_t.computeOutShape(A,x,b),S=Fo({inputs:{x:a},backend:t,attrs:{begin:A,size:T}});w=Qr({inputs:{x:S},backend:t,attrs:{shape:f}}),t.disposeData(S.dataId)}else{let T=t.makeOutput(c,"float32"),S=t.dataIdMap.get(a.dataId).id,E=new Uint8Array(new Int32Array(v.computeStrides(a.shape)).buffer),R=new Uint8Array(new Int32Array(A).buffer),_=new Uint8Array(new Int32Array(x).buffer),M=new Uint8Array(new Int32Array(b).buffer),I=new Uint8Array(new Int32Array(c).buffer),O=new Uint8Array(new Int32Array(v.computeStrides(c)).buffer),z=t.dataIdMap.get(T.dataId).id;KT(S,E,a.shape.length,R,_,M,I,O,c.length,z),w=Qr({inputs:{x:T},backend:t,attrs:{shape:f}}),t.disposeData(T.dataId)}return w}var k1e={kernelName:fl,backendName:"wasm",setupFunc:v1e,kernelFunc:w1e},I1e=!0,S1e=jr(Fi,I1e),XT;function T1e(e){XT=e.wasm.cwrap(Ei,null,["number","number","number","number"])}function N1e(e){let{backend:t,inputs:r,attrs:n}=e,{axis:a,keepDims:s}=n,{x:i}=r,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:d,axes:h,originalAxes:p,inputWasTransposed:c}=Wi(i,a,t),f=h;if(c){let x=t.dataIdMap.get(d.dataId).id;x!==o&&(u=d,l=x,f=N.getInnerMostAxes(f.length,u.shape.length))}N.assertAxesAreInnerMostDims("sum",f,u.shape.length);let[m,g]=N.computeOutAndReduceShapes(u.shape,f),y=v.sizeFromShape(g),A=t.makeOutput(m,u.dtype);if(v.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(A.dataId).id;XT(l,y,Vt[A.dtype],x)}if(c&&t.disposeData(d.dataId),s){let x=N.expandShapeToKeepDim(A.shape,p);A.shape=x}return A}var C1e={kernelName:Ei,backendName:"wasm",setupFunc:T1e,kernelFunc:N1e},E1e=wr(ml),R1e=wr($i),ZT;function M1e(e){ZT=e.wasm.cwrap(Xa,null,["number","array","number","array","number","number"])}function F1e(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,s=r.dataIdMap.get(a.dataId).id,{reps:i}=n,o=new Array(a.shape.length);for(let p=0;p<o.length;p++)o[p]=a.shape[p]*i[p];let l=new Uint8Array(new Int32Array(a.shape).buffer),u=new Uint8Array(new Int32Array(o).buffer),d=r.makeOutput(o,a.dtype),h=r.dataIdMap.get(d.dataId).id;return ZT(s,l,a.shape.length,u,o.length,Vt[d.dtype],h),d}var $1e={kernelName:Xa,backendName:"wasm",setupFunc:M1e,kernelFunc:F1e},YT;function P1e(e){YT=e.wasm.cwrap(gl,null,["number","array","number","number","number","bool","number","number"])}var _1e=({inputs:e,backend:t,attrs:r})=>{let{x:n}=e,{k:a,sorted:s}=r,i=t.dataIdMap.get(n.dataId).id,o=new Uint8Array(new Int32Array(n.shape).buffer),l=n.shape.slice();l[l.length-1]=a;let u=t.makeOutput(l,n.dtype),d=t.dataIdMap.get(u.dataId).id,h=t.makeOutput(l,"int32"),p=t.dataIdMap.get(h.dataId).id;return YT(i,o,n.shape.length,Vt[n.dtype],a,s,d,p),[u,h]},z1e={kernelName:gl,backendName:"wasm",setupFunc:P1e,kernelFunc:_1e},JT;function O1e(e){JT=e.wasm.cwrap(yl,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function D1e(e){let{backend:t,inputs:r,attrs:n}=e,{image:a,transforms:s}=r,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=n,[d,h,p,c]=a.shape,[f,m]=u!=null?u:[h,p],g=[d,f,m,c],y=new Uint8Array(new Int32Array(v.computeStrides(a.shape)).buffer),A=t.makeOutput(g,a.dtype),x=t.dataIdMap.get(A.dataId).id,b=t.dataIdMap.get(a.dataId).id,w=t.dataIdMap.get(s.dataId).id,T=i==="nearest"?1:2,S;switch(o){case"constant":S=1;break;case"reflect":S=2;break;case"wrap":S=3;break;case"nearest":S=4;break;default:S=1;break}return JT(b,w,s.shape[0]>1,d,f,m,c,p,h,y,a.shape.length-1,T,S,l,x),A}var L1e={kernelName:yl,backendName:"wasm",setupFunc:O1e,kernelFunc:D1e};function B1e(e){let{inputs:t,backend:r,attrs:n}=e,{value:a}=t,{axis:s}=n;s<0&&(s+=a.shape.length);let i=a.shape[s],o=a.shape.length,l=new Array(o-1),u=0;for(let c=0;c<o;c++)c!==s&&(l[u++]=a.shape[c]);let d=new Array(i),h=new Array(o).fill(0),p=a.shape.slice();p[s]=1;for(let c=0;c<d.length;c++)h[s]=c,d[c]=Fo({inputs:{x:a},attrs:{begin:h,size:p},backend:r});return d.map(({dataId:c,dtype:f})=>({dataId:c,dtype:f,shape:l}))}var W1e={kernelName:Al,backendName:"wasm",kernelFunc:B1e};function V1e(e){let{inputs:{x:t},backend:r}=e,n=r.makeOutput(t.shape,t.dtype);return r.typedArrayFromHeap(n).fill(0),n}var U1e={kernelName:xl,backendName:"wasm",kernelFunc:V1e},G1e=[Fme,$me,_me,Dme,Hme,Xme,Jme,t0e,s0e,p0e,h0e,c0e,g0e,y0e,b0e,k0e,I0e,S0e,C0e,M0e,P0e,O0e,B0e,W0e,U0e,G0e,j0e,H0e,X0e,Z0e,J0e,tge,age,oge,dge,cge,mge,yge,Lme,bge,wge,Ige,Sge,Nge,Rge,Fge,_ge,Dge,Wge,Uge,Hge,Kge,Xge,Jge,tye,aye,iye,uye,pye,cye,FT,yye,bye,kye,Sye,Nye,Cye,Eye,r0e,Fye,_ye,Dye,Lye,Bye,Uye,Hye,Xye,Zye,u0e,Qye,t1e,a1e,o1e,u1e,p1e,c1e,f1e,m1e,y1e,b1e,k1e,S1e,C1e,E1e,R1e,$1e,z1e,L1e,Ume,W1e,U1e];for(let e of G1e)Vn(e);var t2=Y();t2.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));t2.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(t2.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var ow=$o(tR()),j1e=`"use strict";var Module={};var ENVIRONMENT_IS_NODE=typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require("worker_threads");var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var fs=require("fs");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:function(f){(0,eval)(fs.readFileSync(f,"utf8"))},postMessage:function(msg){parentPort.postMessage(msg)},performance:global.performance||{now:function(){return Date.now()}}})}function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+"
|
|
");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;self.alert=threadAlert;Module["instantiateWasm"]=((info,receiveInstance)=>{var instance=new WebAssembly.Instance(Module["wasmModule"],info);receiveInstance(instance);Module["wasmModule"]=null;return instance.exports});self.onmessage=(e=>{try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance})}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0,1);Module["establishStackSpace"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].threadInit();try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(Module["keepRuntimeAlive"]()){Module["PThread"].setExitStatus(result)}else{Module["__emscripten_thread_exit"](result)}}catch(ex){if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["keepRuntimeAlive"]()){}else{Module["__emscripten_thread_exit"](ex.status)}}else{throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["__emscripten_thread_exit"](-1)}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else if(e.data.cmd==="processProxyingQueue"){if(Module["_pthread_self"]()){Module["_emscripten_proxy_execute_queue"](e.data.queue)}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);if(Module["__emscripten_thread_crashed"]){Module["__emscripten_thread_crashed"]()}throw ex}});`,H1e=$o(rR()),QT=class extends Nu{constructor(e){super(),this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(eN),r2=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new Dp(this,Ar())}write(e,t,r){let n={id:this.dataIdNextNumber++};return this.move(n,e,t,r,1),n}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}move(e,t,r,n,a){let s=this.dataIdNextNumber++;if(n==="string"){let u=t;this.dataIdMap.set(e,{id:s,stringBytes:u,shape:r,dtype:n,memoryOffset:null,refCount:a});return}let i=v.sizeFromShape(r),o=i*v.bytesPerElement(n),l=this.wasm._malloc(o);this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:r,dtype:n,refCount:a}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e,t,r){let{memoryOffset:n,dtype:a,shape:s,stringBytes:i}=this.dataIdMap.get(e);if(a==="string")return(t==null||t===0)&&(r==null||r>=i.length)?i:i.slice(t,r);t=t||0,r=r||v.sizeFromShape(s);let o=v.bytesPerElement(a),l=this.wasm.HEAPU8.slice(n+t*o,n+r*o);return X1e(l.buffer,a)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let r=this.dataIdMap.get(e);if(r.refCount--,!t&&r.refCount>0)return!1;this.wasm._free(r.memoryOffset),this.wasm.tfjs.disposeData(r.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,r){let n;if(r==null)n=this.write(null,e,t);else{let a=this.dataIdNextNumber++;n={id:a},this.dataIdMap.set(n,{id:a,memoryOffset:r,shape:e,dtype:t,refCount:1});let s=v.sizeFromShape(e);this.wasm.tfjs.registerTensor(a,s,r)}return{dataId:n,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:r}){let n=this.wasm.HEAPU8.buffer,{memoryOffset:a}=this.dataIdMap.get(r),s=v.sizeFromShape(e);switch(t){case"float32":return new Float32Array(n,a,s);case"int32":return new Int32Array(n,a,s);case"bool":return new Uint8Array(n,a,s);default:throw new Error(`Unknown dtype ${t}`)}}};function q1e(e){return(t,r)=>(v.fetch(e,{credentials:"same-origin"}).then(n=>{n.ok||t.env.a(`failed to load wasm binary file at '${e}'`),n.arrayBuffer().then(a=>{WebAssembly.instantiate(a,t).then(s=>{r(s.instance,s.module)})})}),{})}function lw(e,t,r){if(Ff!=null)return Ff;let n="tfjs-backend-wasm.wasm";return e&&t?n="tfjs-backend-wasm-threaded-simd.wasm":e&&(n="tfjs-backend-wasm-simd.wasm"),wp!=null&&wp[n]!=null?wp[n]:r+n}async function K1e(){let[e,t]=await Promise.all([Y().getAsync("WASM_HAS_SIMD_SUPPORT"),Y().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((r,n)=>{let a={};a.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let u=j1e.replace(/\n/g,"\\n"),d=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(d)}return o.endsWith(".wasm")?lw(e,t,Ap!=null?Ap:l):l+o},wb&&(a.instantiateWasm=q1e(lw(e,t,Ap!=null?Ap:"")));let s=!1;a.onAbort=()=>{s||kp||(kp=!0,n({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&Ff==null?(a.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+ow.default.toString()],{type:"text/javascript"}),i=(0,ow.default)(a)):i=(0,H1e.default)(a),i.then(o=>{s=!0,kp=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),initWithThreadsCount:o.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:o.cwrap("get_threads_count","number",[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},r({wasm:o})})})}function X1e(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var Z1e=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Ff=null,Ap=null,wp={},kp=!1,wb=!1;function Y1e(e,t=!1){if(I2("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),kp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Ff=e,wb=t}function kb(e,t=!1){if(kp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")Ap=e;else{wp=e;let r=Z1e.filter(n=>wp[n]==null);if(r.length>0)throw new Error(`There were no entries found for the following binaries: ${r.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}wb=t}var eN=-1,r2=-1;function J1e(e){eN=e}function Q1e(){if(r2===-1)throw new Error("WASM backend not initialized.");return r2}var e2e="0.0.0",t2e=2;wl("wasm",async()=>{let{wasm:e}=await K1e();return new QT(e)},t2e);var As="3.15.0-20220405",Oh={tfjs:As,"tfjs-core":As,"tfjs-data":As,"tfjs-layers":As,"tfjs-converter":As,"tfjs-backend-cpu":As,"tfjs-backend-webgl":As,"tfjs-backend-wasm":As};var tN=`
|
|
precision highp float;
|
|
attribute vec2 pos;
|
|
attribute vec2 uv;
|
|
varying vec2 vUv;
|
|
uniform float flipY;
|
|
void main(void) {
|
|
vUv = uv;
|
|
gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);
|
|
}
|
|
`;var rN=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform float m[20];
|
|
void main(void) {
|
|
vec4 c = texture2D(texture, vUv);
|
|
gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];
|
|
gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];
|
|
gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];
|
|
gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];
|
|
}
|
|
`,nN=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform float m[20];
|
|
void main(void) {
|
|
vec4 c = texture2D(texture, vUv);
|
|
gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];
|
|
gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];
|
|
gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];
|
|
gl_FragColor.a = c.a;
|
|
}
|
|
`,aN=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform vec2 size;
|
|
uniform sampler2D texture;
|
|
vec2 pixelate(vec2 coord, vec2 size) {
|
|
return floor( coord / size ) * size;
|
|
}
|
|
void main(void) {
|
|
gl_FragColor = vec4(0.0);
|
|
vec2 coord = pixelate(vUv, size);
|
|
gl_FragColor += texture2D(texture, coord);
|
|
}
|
|
`,sN=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform vec2 px;
|
|
void main(void) {
|
|
gl_FragColor = vec4(0.0);
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;
|
|
gl_FragColor += texture2D(texture, vUv )*0.159576912161;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;
|
|
}
|
|
`,iN=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform vec2 px;
|
|
uniform float m[9];
|
|
void main(void) {
|
|
vec4 c11 = texture2D(texture, vUv - px); // top left
|
|
vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y)); // top center
|
|
vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y)); // top right
|
|
vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) ); // mid left
|
|
vec4 c22 = texture2D(texture, vUv); // mid center
|
|
vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) ); // mid right
|
|
vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) ); // bottom left
|
|
vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) ); // bottom center
|
|
vec4 c33 = texture2D(texture, vUv + px ); // bottom right
|
|
gl_FragColor =
|
|
c11 * m[0] + c12 * m[1] + c22 * m[2] +
|
|
c21 * m[3] + c22 * m[4] + c23 * m[5] +
|
|
c31 * m[6] + c32 * m[7] + c33 * m[8];
|
|
gl_FragColor.a = c22.a;
|
|
}
|
|
`;var Ib=(e,t,r)=>{let n=new RegExp("\\b"+t+" \\w+ (\\w+)","ig");e.replace(n,(a,s)=>(r[s]=0,a))},Sb=class{constructor(t,r,n){fe(this,"uniform",{});fe(this,"attribute",{});fe(this,"gl");fe(this,"id");fe(this,"compile",(t,r)=>{let n=this.gl.createShader(r);return n?(this.gl.shaderSource(n,t),this.gl.compileShader(n),this.gl.getShaderParameter(n,this.gl.COMPILE_STATUS)?n:(ie(`filter: gl compile failed: ${this.gl.getShaderInfoLog(n)}`),null)):(ie("filter: could not create shader"),null)});this.gl=t;let a=this.compile(r,this.gl.VERTEX_SHADER),s=this.compile(n,this.gl.FRAGMENT_SHADER);if(this.id=this.gl.createProgram(),!(!a||!s)){if(!this.id){ie("filter: could not create webgl program");return}if(this.gl.attachShader(this.id,a),this.gl.attachShader(this.id,s),this.gl.linkProgram(this.id),!this.gl.getProgramParameter(this.id,this.gl.LINK_STATUS)){ie(`filter: gl link failed: ${this.gl.getProgramInfoLog(this.id)}`);return}this.gl.useProgram(this.id),Ib(r,"attribute",this.attribute);for(let i in this.attribute)this.attribute[i]=this.gl.getAttribLocation(this.id,i);Ib(r,"uniform",this.uniform),Ib(n,"uniform",this.uniform);for(let i in this.uniform)this.uniform[i]=this.gl.getUniformLocation(this.id,i)}}};function oN(){let e=0,t=null,r=!1,n=-1,a=[null,null],s=[],i=null,o=null,l=Hr(100,100),u={},d={INTERMEDIATE:1},h=l.getContext("webgl");if(this.gl=h,!h){ie("filter: cannot get webgl context");return}function p(A,x){if(!(A===l.width&&x===l.height)){if(l.width=A,l.height=x,!i){let b=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);i=h.createBuffer(),h.bindBuffer(h.ARRAY_BUFFER,i),h.bufferData(h.ARRAY_BUFFER,b,h.STATIC_DRAW),h.pixelStorei(h.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}h.viewport(0,0,l.width,l.height),a=[null,null]}}function c(A,x){let b=h.createFramebuffer();h.bindFramebuffer(h.FRAMEBUFFER,b);let w=h.createRenderbuffer();h.bindRenderbuffer(h.RENDERBUFFER,w);let T=h.createTexture();return h.bindTexture(h.TEXTURE_2D,T),h.texImage2D(h.TEXTURE_2D,0,h.RGBA,A,x,0,h.RGBA,h.UNSIGNED_BYTE,null),h.texParameteri(h.TEXTURE_2D,h.TEXTURE_MAG_FILTER,h.LINEAR),h.texParameteri(h.TEXTURE_2D,h.TEXTURE_MIN_FILTER,h.LINEAR),h.texParameteri(h.TEXTURE_2D,h.TEXTURE_WRAP_S,h.CLAMP_TO_EDGE),h.texParameteri(h.TEXTURE_2D,h.TEXTURE_WRAP_T,h.CLAMP_TO_EDGE),h.framebufferTexture2D(h.FRAMEBUFFER,h.COLOR_ATTACHMENT0,h.TEXTURE_2D,T,0),h.bindTexture(h.TEXTURE_2D,null),h.bindFramebuffer(h.FRAMEBUFFER,null),{fbo:b,texture:T}}function f(A){return a[A]=a[A]||c(l.width,l.height),a[A]}function m(A=0){if(!o)return;let x=null,b=null,w=!1;e===0?x=t:x=f(n).texture||null,e++,r&&!(A&d.INTERMEDIATE)?(b=null,w=e%2===0):(n=(n+1)%2,b=f(n).fbo||null),h.bindTexture(h.TEXTURE_2D,x),h.bindFramebuffer(h.FRAMEBUFFER,b),h.uniform1f(o.uniform.flipY,w?-1:1),h.drawArrays(h.TRIANGLES,0,6)}function g(A){if(u[A])return o=u[A],h.useProgram((o?o.id:null)||null),o;if(o=new Sb(h,tN,A),!o)return ie("filter: could not get webgl program"),null;let x=Float32Array.BYTES_PER_ELEMENT,b=4*x;return h.enableVertexAttribArray(o.attribute.pos),h.vertexAttribPointer(o.attribute.pos,2,h.FLOAT,!1,b,0*x),h.enableVertexAttribArray(o.attribute.uv),h.vertexAttribPointer(o.attribute.uv,2,h.FLOAT,!1,b,2*x),u[A]=o,o}let y={colorMatrix:A=>{let x=new Float32Array(A);x[4]/=255,x[9]/=255,x[14]/=255,x[19]/=255;let b=x[18]===1&&x[3]===0&&x[8]===0&&x[13]===0&&x[15]===0&&x[16]===0&&x[17]===0&&x[19]===0?nN:rN,w=g(b);!w||(h.uniform1fv(w.uniform.m,x),m())},brightness:A=>{let x=(A||0)+1;y.colorMatrix([x,0,0,0,0,0,x,0,0,0,0,0,x,0,0,0,0,0,1,0])},saturation:A=>{let x=(A||0)*2/3+1,b=(x-1)*-.5;y.colorMatrix([x,b,b,0,0,b,x,b,0,0,b,b,x,0,0,0,0,0,1,0])},desaturate:()=>{y.saturation(-1)},contrast:A=>{let x=(A||0)+1,b=-128*(x-1);y.colorMatrix([x,0,0,0,b,0,x,0,0,b,0,0,x,0,b,0,0,0,1,0])},negative:()=>{y.contrast(-2)},hue:A=>{A=(A||0)/180*Math.PI;let x=Math.cos(A),b=Math.sin(A),w=.213,T=.715,S=.072;y.colorMatrix([w+x*(1-w)+b*-w,T+x*-T+b*-T,S+x*-S+b*(1-S),0,0,w+x*-w+b*.143,T+x*(1-T)+b*.14,S+x*-S+b*-.283,0,0,w+x*-w+b*-(1-w),T+x*-T+b*T,S+x*(1-S)+b*S,0,0,0,0,0,1,0])},desaturateLuminance:()=>{y.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},sepia:()=>{y.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},brownie:()=>{y.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},vintagePinhole:()=>{y.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},kodachrome:()=>{y.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},technicolor:()=>{y.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},polaroid:()=>{y.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},shiftToBGR:()=>{y.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},convolution:A=>{let x=new Float32Array(A),b=1/l.width,w=1/l.height,T=g(iN);!T||(h.uniform1fv(T.uniform.m,x),h.uniform2f(T.uniform.px,b,w),m())},detectEdges:()=>{y.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},sobelX:()=>{y.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},sobelY:()=>{y.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},sharpen:A=>{let x=A||1;y.convolution.call(this,[0,-1*x,0,-1*x,1+4*x,-1*x,0,-1*x,0])},emboss:A=>{let x=A||1;y.convolution.call(this,[-2*x,-1*x,0,-1*x,1,1*x,0,1*x,2*x])},blur:A=>{let x=A/7/l.width,b=A/7/l.height,w=g(sN);!w||(h.uniform2f(w.uniform.px,0,b),m(d.INTERMEDIATE),h.uniform2f(w.uniform.px,x,0),m())},pixelate:A=>{let x=A/l.width,b=A/l.height,w=g(aN);!w||(h.uniform2f(w.uniform.size,x,b),m())}};this.add=function(A){let x=Array.prototype.slice.call(arguments,1),b=y[A];s.push({func:b,args:x})},this.reset=function(){s=[]},this.get=function(){return s},this.apply=function(A){p(A.width,A.height),e=0,t||(t=h.createTexture()),h.bindTexture(h.TEXTURE_2D,t),h.texParameteri(h.TEXTURE_2D,h.TEXTURE_WRAP_S,h.CLAMP_TO_EDGE),h.texParameteri(h.TEXTURE_2D,h.TEXTURE_WRAP_T,h.CLAMP_TO_EDGE),h.texParameteri(h.TEXTURE_2D,h.TEXTURE_MIN_FILTER,h.NEAREST),h.texParameteri(h.TEXTURE_2D,h.TEXTURE_MAG_FILTER,h.NEAREST),h.texImage2D(h.TEXTURE_2D,0,h.RGBA,h.RGBA,h.UNSIGNED_BYTE,A);for(let x=0;x<s.length;x++){r=x===s.length-1;let b=s[x];b.func.apply(this,b.args||[])}return l},this.draw=function(A){return this.add("brightness",0),this.apply(A)}}async function y0(e){let t=e.shape.length===4?et(e):e,r=Kt(t,3,2),n=[Ps(r[0]),Ps(r[1]),Ps(r[2])],a=[fr(r[0]),fr(r[1]),fr(r[2])],s=await Promise.all(a.map(c=>c.data())),i=.99*Math.max(s[0][0],s[1][0],s[2][0]),o=[he(r[0],n[0]),he(r[1],n[1]),he(r[2],n[2])],l=[he(a[0],n[0]),he(a[1],n[1]),he(a[2],n[2])],u=[pe(i,l[0]),pe(i,l[1]),pe(i,l[2])],d=[L(o[0],u[0]),L(o[1],u[1]),L(o[2],u[2])],h=sr([d[0],d[1],d[2]],2),p=G(h,[1,t.shape[0],t.shape[1],3]);return re([...r,...n,...a,...o,...l,...u,...d,h,t]),p}var A0=2048,ut=null,or=null,Td=null,Nt,rs={inputSum:0,cacheDiff:1,sumMethod:0,inputTensor:void 0};function Hr(e,t){let r;if(ce.browser)if(ce.worker){if(typeof OffscreenCanvas=="undefined")throw new Error("canvas error: attempted to run in web worker but OffscreenCanvas is not supported");r=new OffscreenCanvas(e,t)}else{if(typeof document=="undefined")throw new Error("canvas error: attempted to run in browser but DOM is not defined");r=document.createElement("canvas"),r.width=e,r.height=t}else typeof ce.Canvas!="undefined"?r=new ce.Canvas(e,t):typeof globalThis.Canvas!="undefined"&&(r=new globalThis.Canvas(e,t));return r}function Tb(e,t){let r=t||Hr(e.width,e.height);return r.getContext("2d").drawImage(e,0,0),r}async function Nd(e,t,r=!0){if(!e)return t.debug&&ie("input error: input is missing"),{tensor:null,canvas:null};if(!(e instanceof rt)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof ce.Canvas!="undefined"&&e instanceof ce.Canvas)&&!(typeof globalThis.Canvas!="undefined"&&e instanceof globalThis.Canvas)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("input error: type is not recognized");if(e instanceof rt){let n=null;if(e.isDisposedInternal)throw new Error("input error: attempted to use tensor but it is disposed");if(!e.shape)throw new Error("input error: attempted to use tensor without a shape");if(e.shape.length===3){if(e.shape[2]===3)n=Ht(e,0);else if(e.shape[2]===4){let a=Sl(e,[0,0,0],[-1,-1,3]);n=Ht(a,0),re(a)}}else e.shape.length===4&&(e.shape[3]===3?n=Lr(e):e.shape[3]===4&&(n=To(e,[0,0,0,0],[-1,-1,-1,3])));if(n==null||n.shape.length!==4||n.shape[0]!==1||n.shape[3]!==3)throw new Error(`input error: attempted to use tensor with unrecognized shape: ${e.shape}`);if(n.dtype==="int32"){let a=me(n,"float32");re(n),n=a}return{tensor:n,canvas:t.filter.return?or:null}}else{if(typeof e.readyState!="undefined"&&e.readyState<=2)return t.debug&&ie("input stream is not ready"),{tensor:null,canvas:ut};let n=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,a=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0;if(!n||!a)return t.debug&&ie("cannot determine input dimensions"),{tensor:null,canvas:ut};let s=n,i=a;if(s>A0&&(s=A0,i=Math.trunc(s*a/n)),i>A0&&(i=A0,s=Math.trunc(i*n/a)),(t.filter.width||0)>0?s=t.filter.width:(t.filter.height||0)>0&&(s=n*((t.filter.height||0)/a)),(t.filter.height||0)>0?i=t.filter.height:(t.filter.width||0)>0&&(i=a*((t.filter.width||0)/n)),!s||!i)throw new Error("input error: cannot determine dimension");(!ut||(ut==null?void 0:ut.width)!==s||(ut==null?void 0:ut.height)!==i)&&(ut=Hr(s,i));let o=ut.getContext("2d");if(typeof ImageData!="undefined"&&e instanceof ImageData?o.putImageData(e,0,0):t.filter.flip&&typeof o.translate!="undefined"?(o.translate(n,0),o.scale(-1,1),o.drawImage(e,0,0,n,a,0,0,ut==null?void 0:ut.width,ut==null?void 0:ut.height),o.setTransform(1,0,0,1,0,0)):o.drawImage(e,0,0,n,a,0,0,ut==null?void 0:ut.width,ut==null?void 0:ut.height),(!or||ut.width!==or.width||(ut==null?void 0:ut.height)!==(or==null?void 0:or.height))&&(or=Hr(ut.width,ut.height)),t.filter.enabled&&ce.webgl.supported){if(Nt||(Nt=ce.browser?new oN:null),ce.filter=!!Nt,!Nt||!Nt.add)return t.debug&&ie("input process error: cannot initialize filters"),{tensor:null,canvas:ut};Nt.reset(),t.filter.brightness!==0&&Nt.add("brightness",t.filter.brightness),t.filter.contrast!==0&&Nt.add("contrast",t.filter.contrast),t.filter.sharpness!==0&&Nt.add("sharpen",t.filter.sharpness),t.filter.blur!==0&&Nt.add("blur",t.filter.blur),t.filter.saturation!==0&&Nt.add("saturation",t.filter.saturation),t.filter.hue!==0&&Nt.add("hue",t.filter.hue),t.filter.negative&&Nt.add("negative"),t.filter.sepia&&Nt.add("sepia"),t.filter.vintage&&Nt.add("brownie"),t.filter.sepia&&Nt.add("sepia"),t.filter.kodachrome&&Nt.add("kodachrome"),t.filter.technicolor&&Nt.add("technicolor"),t.filter.polaroid&&Nt.add("polaroid"),t.filter.pixelate!==0&&Nt.add("pixelate",t.filter.pixelate),Nt.get()>0?or=Nt.apply(ut):or=Nt.draw(ut)}else Tb(ut,or),Nt&&(Nt=null),ce.filter=!!Nt;if(!r)return{tensor:null,canvas:or};if(!or)throw new Error("canvas error: cannot create output");let l,u=3;if(typeof ImageData!="undefined"&&e instanceof ImageData||e.data&&e.width&&e.height)if(ce.browser&&$n)l=$n?$n.fromPixels(e):null;else{u=e.data.length/e.height/e.width;let p=new Uint8Array(e.data.buffer);l=ct(p,[e.height,e.width,u],"int32")}else if((!Td||or.width!==Td.width||or.height!==Td.height)&&(Td=Hr(or.width,or.height)),$n&&ce.browser)t.backend==="webgl"||t.backend==="humangl"||t.backend==="webgpu"?l=$n.fromPixels(or):(Td=Tb(or),l=$n.fromPixels(Td));else{let f=Tb(or).getContext("2d").getImageData(0,0,s,i);u=f.data.length/s/i;let m=new Uint8Array(f.data.buffer);l=ct(m,[s,i,u])}if(u===4){let p=Sl(l,[0,0,0],[-1,-1,3]);re(l),l=p}if(!l)throw new Error("input error: cannot create tensor");let d=me(l,"float32"),h=t.filter.equalization?await y0(d):Ht(d,0);return re([l,d]),{tensor:h,canvas:t.filter.return?or:null}}}async function lN(e,t){let r=!1;if(e.cacheSensitivity===0||!t.shape||t.shape.length!==4||t.shape[1]>2048||t.shape[2]>2048)return r;if(!rs.inputTensor)rs.inputTensor=Lr(t);else if(rs.inputTensor.shape[1]!==t.shape[1]||rs.inputTensor.shape[2]!==t.shape[2])re(rs.inputTensor),rs.inputTensor=Lr(t);else{let n={};n.diff=he(t,rs.inputTensor),n.squared=L(n.diff,n.diff),n.sum=ke(n.squared);let s=(await n.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;re([rs.inputTensor,n.diff,n.squared,n.sum]),rs.inputTensor=Lr(t),r=s<=(e.cacheSensitivity||0)}return r}async function uN(e,t,r){let n={};if(!t||!r||t.shape.length!==4||t.shape.length!==r.shape.length)return e.debug||ie("invalid input tensor or tensor shapes do not match:",t.shape,r.shape),0;if(t.shape[0]!==1||r.shape[0]!==1||t.shape[3]!==3||r.shape[3]!==3)return e.debug||ie("input tensors must be of shape [1, height, width, 3]:",t.shape,r.shape),0;n.input1=Lr(t),n.input2=t.shape[1]!==r.shape[1]||t.shape[2]!==r.shape[2]?Ie.resizeBilinear(r,[t.shape[1],t.shape[2]]):Lr(r),n.diff=he(n.input1,n.input2),n.squared=L(n.diff,n.diff),n.sum=ke(n.squared);let s=(await n.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;return re([n.input1,n.input2,n.diff,n.squared,n.sum]),s}var Nb=class{constructor(){fe(this,"browser");fe(this,"node");fe(this,"worker");fe(this,"platform","");fe(this,"agent","");fe(this,"backends",[]);fe(this,"initial");fe(this,"filter");fe(this,"tfjs");fe(this,"offscreen");fe(this,"perfadd",!1);fe(this,"wasm",{supported:void 0,backend:void 0,simd:void 0,multithread:void 0});fe(this,"webgl",{supported:void 0,backend:void 0,version:void 0,renderer:void 0});fe(this,"webgpu",{supported:void 0,backend:void 0,adapter:void 0});fe(this,"cpu",{model:void 0,flags:[]});fe(this,"kernels",[]);fe(this,"Canvas");fe(this,"Image");fe(this,"ImageData");if(this.browser=typeof navigator!="undefined",this.node=typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined",this.tfjs={version:Oh["tfjs-core"]},this.offscreen=typeof OffscreenCanvas!="undefined",this.initial=!0,this.worker=this.browser&&this.offscreen?typeof WorkerGlobalScope!="undefined":void 0,typeof navigator!="undefined"){let t=navigator.userAgent.match(/\(([^()]+)\)/g);if(t&&t[0]){let r=t[0].match(/\(([^()]+)\)/g);this.platform=r&&r[0]?r[0].replace(/\(|\)/g,""):"",this.agent=navigator.userAgent.replace(t[0],""),this.platform[1]&&(this.agent=this.agent.replace(t[1],"")),this.agent=this.agent.replace(/ /g," ")}}else typeof process!="undefined"&&(this.platform=`${process.platform} ${process.arch}`,this.agent=`NodeJS ${process.version}`)}async updateBackend(){this.backends=Object.keys(Ar().registryFactory),this.wasm.supported=typeof WebAssembly!="undefined",this.wasm.backend=this.backends.includes("wasm"),this.wasm.supported&&this.wasm.backend&&an()==="wasm"&&(this.wasm.simd=await Y().getAsync("WASM_HAS_SIMD_SUPPORT"),this.wasm.multithread=await Y().getAsync("WASM_HAS_MULTITHREAD_SUPPORT"));let t=Hr(100,100),r=t?t.getContext("webgl2"):void 0;if(this.webgl.supported=typeof r!="undefined",this.webgl.backend=this.backends.includes("webgl"),this.webgl.supported&&this.webgl.backend&&(an()==="webgl"||an()==="humangl")){let n=Un().gpgpu!=="undefined"?await Un().getGPGPUContext().gl:null;n&&(this.webgl.version=n.getParameter(n.VERSION),this.webgl.renderer=n.getParameter(n.RENDERER))}this.webgpu.supported=this.browser&&typeof navigator.gpu!="undefined",this.webgpu.backend=this.backends.includes("webgpu");try{this.webgpu.supported&&(this.webgpu.adapter=(await navigator.gpu.requestAdapter()).name)}catch(n){this.webgpu.supported=!1}try{this.kernels=Ca(an()).map(n=>n.kernelName.toLowerCase())}catch(n){}}async updateCPU(){let t={model:"",flags:[]};this.node&&this.platform.startsWith("linux"),this.cpu?this.cpu=t:Object.defineProperty(this,"cpu",{value:t})}},ce=new Nb;var ns={cacheModels:!1,verbose:!0,debug:!1,modelBasePath:""};async function s2e(e,t){return ns.debug&&ie("load model fetch:",e,t),fetch(e,t)}function dN(e){ns.cacheModels=e.cacheModels,ns.verbose=e.debug,ns.modelBasePath=e.modelBasePath}async function je(e){let t=I3(ns.modelBasePath,e||""),r=t.split("/"),n="indexeddb://"+r[r.length-1].replace(".json",""),a=await Sr.listModels(),s=ns.cacheModels&&Object.keys(a).includes(n),i=typeof fetch=="undefined"?{}:{fetchFunc:(u,d)=>s2e(u,d)},o=new a0(s?n:t,i),l=!1;try{o.findIOHandler(),ns.debug&&ie("model load handler:",o.handler);let u=await o.handler.load();o.loadSync(u),ns.verbose&&ie("load model:",o.modelUrl),l=!0}catch(u){ie("error loading model:",t,u)}if(l&&ns.cacheModels&&!s)try{let u=await o.save(n);ie("model saved:",n,u)}catch(u){ie("error saving model:",t,u)}return o}var Cb="2.6.5";var Q0={};gs(Q0,{Models:()=>qh,load:()=>W5,reset:()=>J0,validate:()=>V5});var Kn,Eb=[],l2e=["white","black","asian","indian","other"],u2e=[15,23,28,35.5,45.5,55.5,65],pN=0,hN=0,Rb=Number.MAX_SAFE_INTEGER;async function cN(e){return ce.initial&&(Kn=null),Kn?e.debug&&ie("cached model:",Kn.modelUrl):Kn=await je(e.face.gear),Kn}async function Mb(e,t,r,n){var i,o;if(!Kn)return{age:0,gender:"unknown",genderScore:0,race:[]};let a=Rb<(((i=t.face.gear)==null?void 0:i.skipFrames)||0),s=(((o=t.face.gear)==null?void 0:o.skipTime)||0)>oe()-hN;return t.skipAllowed&&s&&a&&pN===n&&Eb[r]?(Rb++,Eb[r]):(Rb=0,new Promise(async l=>{var y,A;if(!(Kn!=null&&Kn.inputs[0].shape))return;let u={},d=[[0,.1,.9,.9]];u.resize=Ie.cropAndResize(e,d,[0],[Kn.inputs[0].shape[2],Kn.inputs[0].shape[1]]);let h={age:0,gender:"unknown",genderScore:0,race:[]};(y=t.face.gear)!=null&&y.enabled&&([u.age,u.gender,u.race]=Kn.execute(u.resize,["age_output","gender_output","race_output"]));let p=await u.gender.data();h.gender=p[0]>p[1]?"male":"female",h.genderScore=Math.round(100*(p[0]>p[1]?p[0]:p[1]))/100;let c=await u.race.data();for(let x=0;x<c.length;x++)c[x]>(((A=t.face.gear)==null?void 0:A.minConfidence)||.2)&&h.race.push({score:Math.round(100*c[x])/100,race:l2e[x]});h.race.sort((x,b)=>b.score-x.score);let m=Array.from(await u.age.data()).map((x,b)=>[u2e[b],x]).sort((x,b)=>b[1]-x[1]),g=m[0][0];for(let x=1;x<m.length;x++)g+=m[x][1]*(m[x][0]-g);h.age=Math.round(10*g)/10,Object.keys(u).forEach(x=>re(u[x])),Eb[r]=h,pN=n,hN=oe(),l(h)}))}var Qe={tf255:255,tf1:1,tf2:2,tf05:.5,tf127:127.5,rgb:[.2989,.587,.114]};function mN(){Qe.tf255=Se(255,"float32"),Qe.tf1=Se(1,"float32"),Qe.tf2=Se(2,"float32"),Qe.tf05=Se(.5,"float32"),Qe.tf127=Se(127.5,"float32"),Qe.rgb=St([.2989,.587,.114],"float32")}var fn,x0=[],gN=0,yN=0,Fb=Number.MAX_SAFE_INTEGER;async function AN(e){return ce.initial&&(fn=null),fn?e.debug&&ie("cached model:",fn.modelUrl):fn=await je(e.face.ssrnet.modelPathAge),fn}async function $b(e,t,r,n){var i,o,l,u;if(!fn)return{age:0};let a=Fb<(((i=t.face.ssrnet)==null?void 0:i.skipFrames)||0),s=(((o=t.face.ssrnet)==null?void 0:o.skipTime)||0)>oe()-yN;return t.skipAllowed&&a&&s&&gN===n&&((l=x0[r])==null?void 0:l.age)&&((u=x0[r])==null?void 0:u.age)>0?(Fb++,x0[r]):(Fb=0,new Promise(async d=>{if(!(fn!=null&&fn.inputs)||!fn.inputs[0]||!fn.inputs[0].shape)return;let h={};h.resize=Ie.resizeBilinear(e,[fn.inputs[0].shape[2],fn.inputs[0].shape[1]],!1),h.enhance=L(h.resize,Qe.tf255);let p={age:0};if(t.face.ssrnet.enabled&&(h.age=fn.execute(h.enhance)),h.age){let c=await h.age.data();p.age=Math.trunc(10*c[0])/10}Object.keys(h).forEach(c=>re(h[c])),x0[r]=p,gN=n,yN=oe(),d(p)}))}var Xn,b0=[],bN=0,vN=0,Pb=Number.MAX_SAFE_INTEGER,_b=[.2989,.587,.114];async function wN(e){return ce.initial&&(Xn=null),Xn?e.debug&&ie("cached model:",Xn.modelUrl):Xn=await je(e.face.ssrnet.modelPathGender),Xn}async function zb(e,t,r,n){var i,o,l,u;if(!Xn)return{gender:"unknown",genderScore:0};let a=Pb<(((i=t.face.ssrnet)==null?void 0:i.skipFrames)||0),s=(((o=t.face.ssrnet)==null?void 0:o.skipTime)||0)>oe()-vN;return t.skipAllowed&&a&&s&&bN===n&&((l=b0[r])==null?void 0:l.gender)&&((u=b0[r])==null?void 0:u.genderScore)>0?(Pb++,b0[r]):(Pb=0,new Promise(async d=>{if(!(Xn!=null&&Xn.inputs[0].shape))return;let h={};h.resize=Ie.resizeBilinear(e,[Xn.inputs[0].shape[2],Xn.inputs[0].shape[1]],!1),h.enhance=K(()=>{let[f,m,g]=Kt(h.resize,3,3),y=L(f,_b[0]),A=L(m,_b[1]),x=L(g,_b[2]),b=um([y,A,x]);return L(he(b,Qe.tf05),2)});let p={gender:"unknown",genderScore:0};t.face.ssrnet.enabled&&(h.gender=Xn.execute(h.enhance));let c=await h.gender.data();p.gender=c[0]>c[1]?"female":"male",p.genderScore=c[0]>c[1]?Math.trunc(100*c[0])/100:Math.trunc(100*c[1])/100,Object.keys(h).forEach(f=>re(h[f])),b0[r]=p,bN=n,vN=oe(),d(p)}))}var Er,v0=[],Ob=Number.MAX_SAFE_INTEGER,IN=0,SN=0;async function TN(e){var t;return ce.initial&&(Er=null),Er?e.debug&&ie("cached model:",Er.modelUrl):Er=await je((t=e.face.antispoof)==null?void 0:t.modelPath),Er}async function Db(e,t,r,n){var i,o;if(!Er)return 0;let a=(((i=t.face.antispoof)==null?void 0:i.skipTime)||0)>oe()-SN,s=Ob<(((o=t.face.antispoof)==null?void 0:o.skipFrames)||0);return t.skipAllowed&&a&&s&&IN===n&&v0[r]?(Ob++,v0[r]):(Ob=0,new Promise(async l=>{let u=Ie.resizeBilinear(e,[Er!=null&&Er.inputs[0].shape?Er.inputs[0].shape[2]:0,Er!=null&&Er.inputs[0].shape?Er.inputs[0].shape[1]:0],!1),d=Er==null?void 0:Er.execute(u),h=(await d.data())[0];v0[r]=Math.round(100*h)/100,IN=n,SN=oe(),re([u,d]),l(v0[r])}))}var Zn={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},Lb={count:468,mouth:13,symmetryLine:[13,Zn.midwayBetweenEyes[0]]},Lh={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},Bb=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]}],Bh=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],$l=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var p2e=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],h2e=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],c2e=[33,133,362,263,1,78,308],Uke=p2e.map(e=>Bh[e]),Gke=h2e.map(e=>Bh[e]),jke=c2e.map(e=>Bh[e]);var Cd=e=>[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])],w0=e=>[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2,1],Gb=(e,t)=>e?[Math.trunc(Math.max(0,e.startPoint[0])),Math.trunc(Math.max(0,e.startPoint[1])),Math.trunc(Math.min(t.shape[2]||0,e.endPoint[0])-Math.max(0,e.startPoint[0])),Math.trunc(Math.min(t.shape[1]||0,e.endPoint[1])-Math.max(0,e.startPoint[1]))]:[0,0,0,0],jb=(e,t)=>e?[e.startPoint[0]/(t.shape[2]||0),e.startPoint[1]/(t.shape[1]||0),(e.endPoint[0]-e.startPoint[0])/(t.shape[2]||0),(e.endPoint[1]-e.startPoint[1])/(t.shape[1]||0)]:[0,0,0,0],RN=(e,t)=>{let r=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],n=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:r,endPoint:n,landmarks:e.landmarks,confidence:e.confidence}},Vb=(e,t,r)=>{let n=t.shape[1],a=t.shape[2],s=[e.startPoint[1]/n,e.startPoint[0]/a,e.endPoint[1]/n,e.endPoint[0]/a],i=Ie.cropAndResize(t,[s],[0],r),o=pe(i,Qe.tf255);return re(i),o},k0=(e,t)=>{let r=w0(e),n=Cd(e),a=[t*n[0]/2,t*n[1]/2];return{startPoint:[r[0]-a[0],r[1]-a[1]],endPoint:[r[0]+a[0],r[1]+a[1]],landmarks:e.landmarks,confidence:e.confidence}},I0=e=>{let t=w0(e),r=Cd(e),n=Math.max(...r)/2;return{startPoint:[Math.round(t[0]-n),Math.round(t[1]-n)],endPoint:[Math.round(t[0]+n),Math.round(t[1]+n)],landmarks:e.landmarks,confidence:e.confidence}},MN=e=>{let t=e.map(n=>n[0]),r=e.map(n=>n[1]);return{startPoint:[Math.min(...t),Math.min(...r)],endPoint:[Math.max(...t),Math.max(...r)],landmarks:e}},Ub=[[1,0,0],[0,1,0],[0,0,1]],f2e=e=>e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI)),m2e=(e,t)=>f2e(Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]));var CN=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]],Pl=(e,t)=>{let r=0;for(let n=0;n<e.length;n++)r+=e[n]*t[n];return r},g2e=(e,t)=>{let r=[];for(let n=0;n<e.length;n++)r.push(e[n][t]);return r},EN=(e,t)=>{let r=[],n=e.length;for(let a=0;a<n;a++){r.push([]);for(let s=0;s<n;s++)r[a].push(Pl(e[a],g2e(t,s)))}return r},FN=(e,t)=>{let r=Math.cos(e),n=Math.sin(e),a=[[r,-n,0],[n,r,0],[0,0,1]],s=CN(t[0],t[1]),i=EN(s,a),o=CN(-t[0],-t[1]);return EN(i,o)},y2e=e=>{let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],r=[e[0][2],e[1][2]],n=[-Pl(t[0],r),-Pl(t[1],r)];return[t[0].concat(n[0]),t[1].concat(n[1]),[0,0,1]]},A2e=(e,t)=>[Pl(e,t[0]),Pl(e,t[1])];function $N(e){let t={strides:[e/16,e/8],anchors:[2,6]},r=[];for(let n=0;n<t.strides.length;n++){let a=t.strides[n],s=Math.floor((e+a-1)/a),i=Math.floor((e+a-1)/a),o=t.anchors[n];for(let l=0;l<s;l++){let u=a*(l+.5);for(let d=0;d<i;d++){let h=a*(d+.5);for(let p=0;p<o;p++)r.push([h,u])}}}return r}function PN(e,t,r,n,a){let s=Cd(t),i=e.map(c=>[s[0]/a*(c[0]-a/2),s[1]/a*(c[1]-a/2),c[2]||0]),o=r&&r!==0&&Math.abs(r)>.2,l=o?FN(r,[0,0]):Ub,u=o?i.map(c=>[...A2e(c,l),c[2]]):i,d=o?y2e(n):Ub,h=w0(t),p=[Pl(h,d[0]),Pl(h,d[1])];return u.map(c=>[Math.trunc(c[0]+p[0]),Math.trunc(c[1]+p[1]),Math.trunc(c[2]||0)])}function _N(e,t,r,n){let a=t.landmarks.length>=Lb.count?Lb.symmetryLine:Lh.symmetryLine,s=0,i=Ub,o;if(e&&ce.kernels.includes("rotatewithoffset"))if(s=m2e(t.landmarks[a[0]],t.landmarks[a[1]]),s&&s!==0&&Math.abs(s)>.2){let u=w0(t),d=[u[0]/r.shape[2],u[1]/r.shape[1]],h=Ie.rotateWithOffset(r,s,0,d);i=FN(-s,u),o=Vb(t,h,[n,n]),re(h)}else o=Vb(t,r,[n,n]);else o=Vb(t,r,[n,n]);return[s,i,o]}var x2e=e=>{let t=e.map(n=>n[0]),r=e.map(n=>n[1]);return[Math.min(...t)+(Math.max(...t)-Math.min(...t))/2,Math.min(...r)+(Math.max(...r)-Math.min(...r))/2]},zN=(e,t)=>{let r=x2e(e),n=Cd(t);return{startPoint:[r[0]-n[0]/2,r[1]-n[1]/2],endPoint:[r[0]+n[0]/2,r[1]+n[1]/2]}};var ON=6,b2e=1.2,_a,DN=null,Vi=0,Wh=null,S0=()=>Vi;async function LN(e){var t;return ce.initial&&(_a=null),_a?e.debug&&ie("cached model:",_a.modelUrl):_a=await je((t=e.face.detector)==null?void 0:t.modelPath),Vi=_a.inputs[0].shape?_a.inputs[0].shape[2]:0,Wh=Se(Vi,"int32"),DN=ua($N(Vi)),_a}function v2e(e){let t={};t.boxStarts=Pe(e,[0,1],[-1,2]),t.centers=le(t.boxStarts,DN),t.boxSizes=Pe(e,[0,3],[-1,2]),t.boxSizesNormalized=pe(t.boxSizes,Wh),t.centersNormalized=pe(t.centers,Wh),t.halfBoxSize=pe(t.boxSizesNormalized,Qe.tf2),t.starts=he(t.centersNormalized,t.halfBoxSize),t.ends=le(t.centersNormalized,t.halfBoxSize),t.startNormalized=L(t.starts,Wh),t.endNormalized=L(t.ends,Wh);let r=ad([t.startNormalized,t.endNormalized],1);return Object.keys(t).forEach(n=>re(t[n])),r}async function BN(e,t){var o,l,u,d;if(!e||e.isDisposedInternal||e.shape.length!==4||e.shape[1]<1||e.shape[2]<1)return[];let r={};r.resized=Ie.resizeBilinear(e,[Vi,Vi]),r.div=pe(r.resized,Qe.tf127),r.normalized=he(r.div,Qe.tf05);let n=_a==null?void 0:_a.execute(r.normalized);if(Array.isArray(n)){let h=n.sort((p,c)=>p.size-c.size);r.concat384=kt([h[0],h[2]],2),r.concat512=kt([h[1],h[3]],2),r.concat=kt([r.concat512,r.concat384],1),r.batch=et(r.concat,0)}else r.batch=et(n);re(n),r.boxes=v2e(r.batch),r.logits=Pe(r.batch,[0,0],[-1,1]),r.sigmoid=Tr(r.logits),r.scores=et(r.sigmoid),r.nms=await Ie.nonMaxSuppressionAsync(r.boxes,r.scores,((o=t.face.detector)==null?void 0:o.maxDetected)||0,((l=t.face.detector)==null?void 0:l.iouThreshold)||0,((u=t.face.detector)==null?void 0:u.minConfidence)||0);let a=await r.nms.array(),s=[],i=await r.scores.data();for(let h=0;h<a.length;h++){let p=i[a[h]];if(p>(((d=t.face.detector)==null?void 0:d.minConfidence)||0)){let c={};c.bbox=Pe(r.boxes,[a[h],0],[1,-1]),c.slice=Pe(r.batch,[a[h],ON-1],[1,-1]),c.squeeze=et(c.slice),c.landmarks=G(c.squeeze,[ON,-1]);let f=await c.bbox.data(),m={startPoint:[f[0],f[1]],endPoint:[f[2],f[3]],landmarks:await c.landmarks.array(),confidence:p},g=RN(m,[(e.shape[2]||0)/Vi,(e.shape[1]||0)/Vi]),y=k0(g,t.face.scale||b2e),A=I0(y);s.push(A),Object.keys(c).forEach(x=>re(c[x]))}}return Object.keys(r).forEach(h=>re(r[h])),s}var T0={};gs(T0,{connected:()=>Kb,kpt:()=>qb});var qb=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPinky","rightPinky","leftIndex","rightIndex","leftThumb","rightThumb","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","bodyCenter","bodyTop","leftPalm","leftHand","rightPalm","rightHand"],Kb={shoulders:["leftShoulder","rightShoulder"],hips:["rightHip","leftHip"],mouth:["leftMouth","rightMouth"],leftLegUpper:["leftHip","leftKnee"],leftLegLower:["leftKnee","leftAnkle"],leftFoot:["leftAnkle","leftHeel","leftFoot"],leftTorso:["leftShoulder","leftHip"],leftArmUpper:["leftShoulder","leftElbow"],leftArmLower:["leftElbow","leftWrist"],leftHand:["leftWrist","leftPalm"],leftHandPinky:["leftPalm","leftPinky"],leftHandIndex:["leftPalm","leftIndex"],leftHandThumb:["leftPalm","leftThumb"],leftEyeOutline:["leftEyeInside","leftEyeOutside"],rightLegUpper:["rightHip","rightKnee"],rightLegLower:["rightKnee","rightAnkle"],rightFoot:["rightAnkle","rightHeel","rightFoot"],rightTorso:["rightShoulder","rightHip"],rightArmUpper:["rightShoulder","rightElbow"],rightArmLower:["rightElbow","rightWrist"],rightHand:["rightWrist","rightPalm"],rightHandPinky:["rightPalm","rightPinky"],rightHandIndex:["rightPalm","rightIndex"],rightHandThumb:["rightPalm","rightThumb"],rightEyeOutline:["rightEyeInside","rightEyeOutside"]};var VN=224,w2e,k2e=5,N0=[8,16,32,32,32];async function UN(){let e=[],t=0;for(;t<k2e;){let r=0,n=t;for(;n<N0.length&&N0[n]===N0[t];)r+=2,n++;let a=N0[t],s=Math.ceil(VN/a),i=Math.ceil(VN/a);for(let o=0;o<s;++o)for(let l=0;l<i;++l)for(let u=0;u<r;++u)e.push({x:(l+.5)/i,y:(o+.5)/s});t=n}w2e={x:St(e.map(r=>r.x)),y:St(e.map(r=>r.y))}}function as(e,t=[1,1]){let r=[e.map(o=>o[0]),e.map(o=>o[1])],n=[Math.min(...r[0]),Math.min(...r[1])],a=[Math.max(...r[0]),Math.max(...r[1])],s=[n[0],n[1],a[0]-n[0],a[1]-n[1]],i=[s[0]/t[0],s[1]/t[1],s[2]/t[0],s[3]/t[1]];return{box:s,boxRaw:i}}function GN(e,t=[1,1]){let r=[e.map(u=>u[0]),e.map(u=>u[1])],n=[Math.min(...r[0]),Math.min(...r[1])],a=[Math.max(...r[0]),Math.max(...r[1])],s=[(n[0]+a[0])/2,(n[1]+a[1])/2],i=Math.max(s[0]-n[0],s[1]-n[1],-s[0]+a[0],-s[1]+a[1]),o=[Math.trunc(s[0]-i),Math.trunc(s[1]-i),Math.trunc(2*i),Math.trunc(2*i)],l=[o[0]/t[0],o[1]/t[1],o[2]/t[0],o[3]/t[1]];return{box:o,boxRaw:l}}function C0(e,t){let r=[e[2]*t,e[3]*t];return[e[0]-(r[0]-e[2])/2,e[1]-(r[1]-e[3])/2,r[0],r[1]]}var qN={initial:!0},mn={detector:null,landmarks:null},Ed={detector:[224,224],landmarks:[256,256]},Xb=Number.MAX_SAFE_INTEGER,S2e={landmarks:["ld_3d","activation_segmentation","activation_heatmap","world_3d","output_poseflag"],detector:[]},R0=null,Vh,Ui=[[0,0],[0,0],[0,0],[0,0]],jN=0,HN=e=>1-1/(1+Math.exp(e));async function KN(e){if(qN.initial&&(mn.detector=null),!mn.detector&&e.body.detector&&e.body.detector.modelPath){mn.detector=await je(e.body.detector.modelPath);let t=Object.values(mn.detector.modelSignature.inputs);Ed.detector[0]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[1].size):0,Ed.detector[1]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0}else e.debug&&mn.detector&&ie("cached model:",mn.detector.modelUrl);return await UN(),mn.detector}async function XN(e){if(qN.initial&&(mn.landmarks=null),mn.landmarks)e.debug&&ie("cached model:",mn.landmarks.modelUrl);else{mn.landmarks=await je(e.body.modelPath);let t=Object.values(mn.landmarks.modelSignature.inputs);Ed.landmarks[0]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[1].size):0,Ed.landmarks[1]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0}return mn.landmarks}async function T2e(e,t){let r={};if(!e.shape||!e.shape[1]||!e.shape[2])return e;let n;if(Vh&&(r.cropped=Ie.cropAndResize(e,[Vh],[0],[e.shape[1],e.shape[2]])),e.shape[1]!==e.shape[2]){let a=[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],s=[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0];Ui=[[0,0],a,s,[0,0]],r.pad=Gn(r.cropped||e,Ui),r.resize=Ie.resizeBilinear(r.pad,[t,t]),n=pe(r.resize,Qe.tf255)}else e.shape[1]!==t?(r.resize=Ie.resizeBilinear(r.cropped||e,[t,t]),n=pe(r.resize,Qe.tf255)):n=pe(r.cropped||e,Qe.tf255);return Object.keys(r).forEach(a=>re(r[a])),n}function N2e(e,t){for(let r of e)r.position=[Math.trunc(r.position[0]*(t[0]+Ui[2][0]+Ui[2][1])/t[0]-Ui[2][0]),Math.trunc(r.position[1]*(t[1]+Ui[1][0]+Ui[1][1])/t[1]-Ui[1][0]),r.position[2]],r.positionRaw=[r.position[0]/t[0],r.position[1]/t[1],2*r.position[2]/(t[0]+t[1])];if(Vh)for(let r of e)r.positionRaw=[r.positionRaw[0]+Vh[1],r.positionRaw[1]+Vh[0],r.positionRaw[2]],r.position=[Math.trunc(r.positionRaw[0]*t[0]),Math.trunc(r.positionRaw[1]*t[1]),r.positionRaw[2]];return e}async function C2e(e){let t=e.find(o=>o.part==="leftPalm"),r=e.find(o=>o.part==="leftWrist"),n=e.find(o=>o.part==="leftIndex");t.position[2]=((r.position[2]||0)+(n.position[2]||0))/2;let a=e.find(o=>o.part==="rightPalm"),s=e.find(o=>o.part==="rightWrist"),i=e.find(o=>o.part==="rightIndex");a.position[2]=((s.position[2]||0)+(i.position[2]||0))/2}async function E2e(e,t,r){var f;let n={};[n.ld,n.segmentation,n.heatmap,n.world,n.poseflag]=(f=mn.landmarks)==null?void 0:f.execute(e,S2e.landmarks);let a=(await n.poseflag.data())[0],s=await n.ld.data(),i=await n.world.data();Object.keys(n).forEach(m=>re(n[m]));let o=[],l=5;for(let m=0;m<s.length/l;m++){let g=HN(s[l*m+3]),y=HN(s[l*m+4]),A=Math.trunc(100*g*y*a)/100,x=[s[l*m+0]/Ed.landmarks[0],s[l*m+1]/Ed.landmarks[1],s[l*m+2]+0],b=[Math.trunc(r[0]*x[0]),Math.trunc(r[1]*x[1]),x[2]],w=[i[l*m+0],i[l*m+1],i[l*m+2]+0];o.push({part:qb[m],positionRaw:x,position:b,distance:w,score:A})}if(a<(t.body.minConfidence||0))return null;C2e(o);let u=N2e(o,r),d=u.map(m=>m.position),h=as(d,[r[0],r[1]]),p={};for(let[m,g]of Object.entries(Kb)){let y=[];for(let A=0;A<g.length-1;A++){let x=u.find(w=>w.part===g[A]),b=u.find(w=>w.part===g[A+1]);x&&b&&y.push([x.position,b.position])}p[m]=y}return{id:0,score:Math.trunc(100*a)/100,box:h.box,boxRaw:h.boxRaw,keypoints:u,annotations:p}}async function Zb(e,t){let r=[e.shape[2]||0,e.shape[1]||0],n=(t.body.skipTime||0)>oe()-jN,a=Xb<(t.body.skipFrames||0);if(t.skipAllowed&&n&&a&&R0!==null)Xb++;else{let s={};s.landmarks=await T2e(e,256),R0=await E2e(s.landmarks,t,r),Object.keys(s).forEach(i=>re(s[i])),jN=oe(),Xb=0}return R0?[R0]:[]}var Rd=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var ss,_l=0,Yb=[],YN=0,Jb=Number.MAX_SAFE_INTEGER;async function JN(e){if(ce.initial&&(ss=null),ss)e.debug&&ie("cached model:",ss.modelUrl);else{ss=await je(e.object.modelPath);let t=Object.values(ss.modelSignature.inputs);_l=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0}return ss}async function R2e(e,t,r){if(!e)return[];let n={},a=[],s=await e.array();n.squeeze=et(e);let i=Kt(n.squeeze,6,1);n.stack=sr([i[1],i[0],i[3],i[2]],1),n.boxes=et(n.stack),n.scores=et(i[4]),n.classes=et(i[5]),re([e,...i]),n.nms=await Ie.nonMaxSuppressionAsync(n.boxes,n.scores,r.object.maxDetected,r.object.iouThreshold,r.object.minConfidence||0);let o=await n.nms.data(),l=0;for(let u of Array.from(o)){let d=Math.trunc(100*s[0][u][4])/100,h=s[0][u][5],p=Rd[h].label,[c,f]=[s[0][u][0]/_l,s[0][u][1]/_l],m=[c,f,s[0][u][2]/_l-c,s[0][u][3]/_l-f],g=[Math.trunc(m[0]*t[0]),Math.trunc(m[1]*t[1]),Math.trunc(m[2]*t[0]),Math.trunc(m[3]*t[1])];a.push({id:l++,score:d,class:h,label:p,box:g,boxRaw:m})}return Object.keys(n).forEach(u=>re(n[u])),a}async function Qb(e,t){let r=(t.object.skipTime||0)>oe()-YN,n=Jb<(t.object.skipFrames||0);return t.skipAllowed&&r&&n&&Yb.length>0?(Jb++,Yb):(Jb=0,new Promise(async a=>{let s=[e.shape[2]||0,e.shape[1]||0],i=Ie.resizeBilinear(e,[_l,_l]),o=t.object.enabled?ss==null?void 0:ss.execute(i,["tower_0/detections"]):null;YN=oe(),re(i);let l=await R2e(o,s,t);Yb=l,a(l)}))}var M0={};gs(M0,{connected:()=>t5,kpt:()=>e5});var e5=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","bodyCenter","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"],t5={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var Rr,eC=0,qr={id:0,keypoints:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,annotations:{}},r5=Number.MAX_SAFE_INTEGER;async function tC(e){return ce.initial&&(Rr=null),Rr?e.debug&&ie("cached model:",Rr.modelUrl):Rr=await je(e.body.modelPath),Rr}async function M2e(e,t){let[r,n]=e.shape,a=G(e,[n*r]),s=fr(a,0),i=(await s.data())[0];if(re([a,s]),i>t){let o=Nn(a,0),l=od(o,r),u=(await l.data())[0],d=pe(o,Se(r,"int32")),h=(await d.data())[0];return re([l,d]),[u,h,i]}return[0,0,i]}async function n5(e,t){let r=(t.body.skipTime||0)>oe()-eC,n=r5<(t.body.skipFrames||0);return t.skipAllowed&&r&&n&&Object.keys(qr.keypoints).length>0?(r5++,[qr]):(r5=0,new Promise(async a=>{var h;let s=K(()=>{if(!(Rr!=null&&Rr.inputs[0].shape))return null;let p=Ie.resizeBilinear(e,[Rr.inputs[0].shape[2],Rr.inputs[0].shape[1]],!1),c=L(p,Qe.tf2);return he(c,Qe.tf1)}),i;if(t.body.enabled&&(i=Rr==null?void 0:Rr.execute(s)),eC=oe(),re(s),i){qr.keypoints.length=0;let p=i.squeeze();re(i);let c=p.unstack(2);re(p);for(let f=0;f<c.length;f++){let[m,g,y]=await M2e(c[f],t.body.minConfidence);y>(((h=t.body)==null?void 0:h.minConfidence)||0)&&qr.keypoints.push({score:Math.round(100*y)/100,part:e5[f],positionRaw:[m/Rr.inputs[0].shape[2],g/Rr.inputs[0].shape[1]],position:[Math.round(e.shape[2]*m/Rr.inputs[0].shape[2]),Math.round(e.shape[1]*g/Rr.inputs[0].shape[1])]})}c.forEach(f=>re(f))}qr.score=qr.keypoints.reduce((p,c)=>c.score>p?c.score:p,0);let o=qr.keypoints.map(p=>p.position[0]),l=qr.keypoints.map(p=>p.position[1]);qr.box=[Math.min(...o),Math.min(...l),Math.max(...o)-Math.min(...o),Math.max(...l)-Math.min(...l)];let u=qr.keypoints.map(p=>p.positionRaw[0]),d=qr.keypoints.map(p=>p.positionRaw[1]);qr.boxRaw=[Math.min(...u),Math.min(...d),Math.max(...u)-Math.min(...u),Math.max(...d)-Math.min(...d)];for(let[p,c]of Object.entries(t5)){let f=[];for(let m=0;m<c.length-1;m++){let g=qr.keypoints.find(A=>A.part===c[m]),y=qr.keypoints.find(A=>A.part===c[m+1]);g&&y&&g.score>(t.body.minConfidence||0)&&y.score>(t.body.minConfidence||0)&&f.push([g.position,y.position])}qr.annotations[p]=f}a([qr])}))}var F2e=["angry","disgust","fear","happy","sad","surprise","neutral"],_n,F0=[],nC=0,aC=0,a5=Number.MAX_SAFE_INTEGER;async function sC(e){var t;return ce.initial&&(_n=null),_n?e.debug&&ie("cached model:",_n.modelUrl):_n=await je((t=e.face.emotion)==null?void 0:t.modelPath),_n}async function s5(e,t,r,n){var i,o;if(!_n)return[];let a=a5<(((i=t.face.emotion)==null?void 0:i.skipFrames)||0),s=(((o=t.face.emotion)==null?void 0:o.skipTime)||0)>oe()-aC;return t.skipAllowed&&s&&a&&nC===n&&F0[r]&&F0[r].length>0?(a5++,F0[r]):(a5=0,new Promise(async l=>{var d,h;let u=[];if((d=t.face.emotion)!=null&&d.enabled){let p={},c=_n!=null&&_n.inputs[0].shape?_n.inputs[0].shape[2]:0;p.resize=Ie.resizeBilinear(e,[c,c],!1),p.channels=L(p.resize,Qe.rgb),p.grayscale=ke(p.channels,3,!0),p.grayscaleSub=he(p.grayscale,Qe.tf05),p.grayscaleMul=L(p.grayscaleSub,Qe.tf2),p.emotion=_n==null?void 0:_n.execute(p.grayscaleMul),aC=oe();let f=await p.emotion.data();for(let m=0;m<f.length;m++)f[m]>(((h=t.face.emotion)==null?void 0:h.minConfidence)||0)&&u.push({score:Math.min(.99,Math.trunc(100*f[m])/100),emotion:F2e[m]});u.sort((m,g)=>g.score-m.score),Object.keys(p).forEach(m=>re(p[m]))}F0[r]=u,nC=n,l(u)}))}var gn,i5=[],oC=0,lC=0,uC=Number.MAX_SAFE_INTEGER;async function dC(e){return ce.initial&&(gn=null),gn?e.debug&&ie("cached model:",gn.modelUrl):gn=await je(e.face.mobilefacenet.modelPath),gn}async function o5(e,t,r,n){var i,o;if(!gn)return[];let a=uC<(((i=t.face.embedding)==null?void 0:i.skipFrames)||0),s=(((o=t.face.embedding)==null?void 0:o.skipTime)||0)>oe()-lC;return t.skipAllowed&&s&&a&&oC===n&&i5[r]?(uC++,i5[r]):new Promise(async l=>{var d;let u=[];if(((d=t.face.embedding)==null?void 0:d.enabled)&&(gn==null?void 0:gn.inputs[0].shape)){let h={};h.crop=Ie.resizeBilinear(e,[gn.inputs[0].shape[2],gn.inputs[0].shape[1]],!1),h.data=gn==null?void 0:gn.execute(h.crop);let p=await h.data.data();u=Array.from(p)}i5[r]=u,oC=n,lC=oe(),l(u)})}var is,Gi=0,$2e=2.3,l5=Zn.leftEyeLower0,u5=Zn.rightEyeLower0,Md={leftBounds:[l5[0],l5[l5.length-1]],rightBounds:[u5[0],u5[u5.length-1]]},Fd={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};async function mC(e){var t;return ce.initial&&(is=null),is?e.debug&&ie("cached model:",is.modelUrl):is=await je((t=e.face.iris)==null?void 0:t.modelPath),Gi=is.inputs[0].shape?is.inputs[0].shape[2]:0,Gi===-1&&(Gi=64),is}function $0(e,t,r,n){for(let a=0;a<Bb.length;a++){let{key:s,indices:i}=Bb[a],o=Zn[`${r}${s}`];if(!n||n.includes(s))for(let l=0;l<i.length;l++){let u=i[l];e[o[l]]=[t[u][0],t[u][1],(t[u][2]+e[o[l]][2])/2]}}}var P2e=e=>{let t=e[Md.leftBounds[0]][2],r=e[Md.rightBounds[0]][2];return t-r},hC=(e,t,r,n,a,s=!1)=>{let i=I0(k0(MN([e[r],e[n]]),$2e)),o=Cd(i),l=Ie.cropAndResize(t,[[i.startPoint[1]/a,i.startPoint[0]/a,i.endPoint[1]/a,i.endPoint[0]/a]],[0],[Gi,Gi]);if(s&&ce.kernels.includes("flipleftright")){let u=Ie.flipLeftRight(l);re(l),l=u}return{box:i,boxSize:o,crop:l}},cC=(e,t,r,n=!1)=>{let a=[];for(let s=0;s<Fd.numCoordinates;s++){let i=e[s*3],o=e[s*3+1],l=e[s*3+2];a.push([(n?1-i/Gi:i/Gi)*r[0]+t.startPoint[0],o/Gi*r[1]+t.startPoint[1],l])}return{rawCoords:a,iris:a.slice(Fd.index)}},fC=(e,t,r)=>{let n=e[Zn[`${r}EyeUpper0`][Fd.upperCenter]][2],a=e[Zn[`${r}EyeLower0`][Fd.lowerCenter]][2],s=(n+a)/2;return t.map((i,o)=>{let l=s;return o===2?l=n:o===4&&(l=a),[i[0],i[1],l]})};async function gC(e,t,r,n){if(!is)return r.debug&&ie("face mesh iris detection requested, but model is not loaded"),e;let{box:a,boxSize:s,crop:i}=hC(e,t,Md.leftBounds[0],Md.leftBounds[1],n,!0),{box:o,boxSize:l,crop:u}=hC(e,t,Md.rightBounds[0],Md.rightBounds[1],n,!0),d=kt([i,u]);re(i),re(u);let h=is.execute(d);re(d);let p=await h.data();re(h);let c=p.slice(0,Fd.numCoordinates*3),{rawCoords:f,iris:m}=cC(c,a,s,!0),g=p.slice(Fd.numCoordinates*3),{rawCoords:y,iris:A}=cC(g,o,l),x=P2e(e);Math.abs(x)<30?($0(e,f,"left",null),$0(e,y,"right",null)):x<1?$0(e,f,"left",["EyeUpper0","EyeLower0"]):$0(e,y,"right",["EyeUpper0","EyeLower0"]);let b=fC(e,m,"left"),w=fC(e,A,"right");return e.concat(b).concat(w)}var za={boxes:[],skipped:Number.MAX_SAFE_INTEGER,timestamp:0},os=null,$d=0;async function AC(e,t){var o,l,u,d,h,p,c,f,m;let r=(((o=t.face.detector)==null?void 0:o.skipTime)||0)>oe()-za.timestamp,n=za.skipped<(((l=t.face.detector)==null?void 0:l.skipFrames)||0);!t.skipAllowed||!r||!n||za.boxes.length===0?(za.boxes=await BN(e,t),za.timestamp=oe(),za.skipped=0):za.skipped++;let a=[],s=[],i=0;for(let g=0;g<za.boxes.length;g++){let y=za.boxes[g],A=0,x,b={id:i++,mesh:[],meshRaw:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,boxScore:0,faceScore:0,annotations:{}};if([A,x,b.tensor]=_N((u=t.face.detector)==null?void 0:u.rotation,y,e,(d=t.face.mesh)!=null&&d.enabled?$d:S0()),(h=t==null?void 0:t.filter)!=null&&h.equalization){let w=await y0(b.tensor);re(b.tensor),b.tensor=w}if(b.boxScore=Math.round(100*y.confidence)/100,(p=t.face.mesh)!=null&&p.enabled)if(!os)t.debug&&ie("face mesh detection requested, but model is not loaded");else{let[w,T,S]=os.execute(b.tensor),E=await T.data();b.faceScore=Math.round(100*E[0])/100;let R=G(S,[-1,3]),_=await R.array();if(re([S,R,T,w]),b.faceScore<(((c=t.face.detector)==null?void 0:c.minConfidence)||1))y.confidence=b.faceScore;else{(f=t.face.iris)!=null&&f.enabled&&(_=await gC(_,b.tensor,t,$d)),b.mesh=PN(_,y,A,x,$d),b.meshRaw=b.mesh.map(I=>[I[0]/(e.shape[2]||0),I[1]/(e.shape[1]||0),(I[2]||0)/$d]);for(let I of Object.keys(Zn))b.annotations[I]=Zn[I].map(O=>b.mesh[O]);b.score=b.faceScore;let M={...zN(b.mesh,y),confidence:y.confidence,landmarks:y.landmarks};b.box=Gb(M,e),b.boxRaw=jb(M,e),s.push(M)}}else{b.box=Gb(y,e),b.boxRaw=jb(y,e),b.score=b.boxScore,b.mesh=y.landmarks.map(w=>[(y.startPoint[0]+y.endPoint[0])/2+(y.endPoint[0]+y.startPoint[0])*w[0]/S0(),(y.startPoint[1]+y.endPoint[1])/2+(y.endPoint[1]+y.startPoint[1])*w[1]/S0()]),b.meshRaw=b.mesh.map(w=>[w[0]/(e.shape[2]||0),w[1]/(e.shape[1]||0),(w[2]||0)/$d]);for(let w of Object.keys(Lh))b.annotations[w]=[b.mesh[Lh[w]]]}b.score>(((m=t.face.detector)==null?void 0:m.minConfidence)||1)?a.push(b):re(b.tensor)}return za.boxes=s,a}async function xC(e){var t;return ce.initial&&(os=null),os?e.debug&&ie("cached model:",os.modelUrl):os=await je((t=e.face.mesh)==null?void 0:t.modelPath),$d=os.inputs[0].shape?os.inputs[0].shape[2]:0,os}var bC=$l,vC=Bh;var yn,P0=[],wC=0,kC=0,p5=Number.MAX_SAFE_INTEGER;async function IC(e){var t;return ce.initial&&(yn=null),yn?e.debug&&ie("cached model:",yn.modelUrl):yn=await je((t=e.face.description)==null?void 0:t.modelPath),yn}function h5(e){let t=e.image||e.tensor||e;if(!(yn!=null&&yn.inputs[0].shape))return t;let r=Ie.resizeBilinear(t,[yn.inputs[0].shape[2],yn.inputs[0].shape[1]],!1),n=L(r,Qe.tf255);return re(r),n}async function c5(e,t,r,n){var i,o,l,u;if(!yn)return{age:0,gender:"unknown",genderScore:0,descriptor:[]};let a=p5<(((i=t.face.description)==null?void 0:i.skipFrames)||0),s=(((o=t.face.description)==null?void 0:o.skipTime)||0)>oe()-wC;return t.skipAllowed&&a&&s&&kC===n&&((l=P0[r])==null?void 0:l.age)&&((u=P0[r])==null?void 0:u.age)>0?(p5++,P0[r]):(p5=0,new Promise(async d=>{var p,c;let h={age:0,gender:"unknown",genderScore:0,descriptor:[]};if((p=t.face.description)!=null&&p.enabled){let f=h5(e),m=yn==null?void 0:yn.execute(f);wC=oe(),re(f);let y=await(await m.find(R=>R.shape[1]===1)).data(),A=Math.trunc(200*Math.abs(y[0]-.5))/100;A>(((c=t.face.description)==null?void 0:c.minConfidence)||0)&&(h.gender=y[0]<=.5?"female":"male",h.genderScore=Math.min(.99,A));let x=Nn(m.find(R=>R.shape[1]===100),1),b=(await x.data())[0];re(x);let T=await m.find(R=>R.shape[1]===100).data();h.age=Math.round(T[b-1]>T[b+1]?10*b-100*T[b-1]:10*b+100*T[b+1])/10;let S=m.find(R=>R.shape[1]===1024),E=S?await S.data():[];h.descriptor=Array.from(E),m.forEach(R=>re(R))}P0[r]=h,kC=n,d(h)}))}function _0(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function Uh(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function NC(e,t,r){let n=t.shape[1],a=t.shape[2],s=[[e.startPoint[1]/n,e.startPoint[0]/a,e.endPoint[1]/n,e.endPoint[0]/a]];return Ie.cropAndResize(t,s,[0],r)}function CC(e,t){let r=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],n=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],a=e.palmLandmarks.map(s=>[s[0]*t[0],s[1]*t[1]]);return{startPoint:r,endPoint:n,palmLandmarks:a,confidence:e.confidence}}function z0(e,t=1.5){let r=Uh(e),n=_0(e),a=[t*n[0]/2,t*n[1]/2],s=[r[0]-a[0],r[1]-a[1]],i=[r[0]+a[0],r[1]+a[1]];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}function O0(e){let t=Uh(e),r=_0(e),a=Math.max(...r)/2,s=[t[0]-a,t[1]-a],i=[t[0]+a,t[1]+a];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}function _2e(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function EC(e,t){let r=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return _2e(r)}var SC=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function ji(e,t){let r=0;for(let n=0;n<e.length;n++)r+=e[n]*t[n];return r}function z2e(e,t){let r=[];for(let n=0;n<e.length;n++)r.push(e[n][t]);return r}function TC(e,t){let r=[],n=e.length;for(let a=0;a<n;a++){r.push([]);for(let s=0;s<n;s++)r[a].push(ji(e[a],z2e(t,s)))}return r}function m5(e,t){let r=Math.cos(e),n=Math.sin(e),a=[[r,-n,0],[n,r,0],[0,0,1]],s=SC(t[0],t[1]),i=TC(s,a),o=SC(-t[0],-t[1]);return TC(i,o)}function RC(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],r=[e[0][2],e[1][2]],n=[-ji(t[0],r),-ji(t[1],r)];return[t[0].concat(n[0]),t[1].concat(n[1]),[0,0,1]]}function g5(e,t){return[ji(e,t[0]),ji(e,t[1])]}var FC=[{x:.015625,y:.015625},{x:.015625,y:.015625},{x:.046875,y:.015625},{x:.046875,y:.015625},{x:.078125,y:.015625},{x:.078125,y:.015625},{x:.109375,y:.015625},{x:.109375,y:.015625},{x:.140625,y:.015625},{x:.140625,y:.015625},{x:.171875,y:.015625},{x:.171875,y:.015625},{x:.203125,y:.015625},{x:.203125,y:.015625},{x:.234375,y:.015625},{x:.234375,y:.015625},{x:.265625,y:.015625},{x:.265625,y:.015625},{x:.296875,y:.015625},{x:.296875,y:.015625},{x:.328125,y:.015625},{x:.328125,y:.015625},{x:.359375,y:.015625},{x:.359375,y:.015625},{x:.390625,y:.015625},{x:.390625,y:.015625},{x:.421875,y:.015625},{x:.421875,y:.015625},{x:.453125,y:.015625},{x:.453125,y:.015625},{x:.484375,y:.015625},{x:.484375,y:.015625},{x:.515625,y:.015625},{x:.515625,y:.015625},{x:.546875,y:.015625},{x:.546875,y:.015625},{x:.578125,y:.015625},{x:.578125,y:.015625},{x:.609375,y:.015625},{x:.609375,y:.015625},{x:.640625,y:.015625},{x:.640625,y:.015625},{x:.671875,y:.015625},{x:.671875,y:.015625},{x:.703125,y:.015625},{x:.703125,y:.015625},{x:.734375,y:.015625},{x:.734375,y:.015625},{x:.765625,y:.015625},{x:.765625,y:.015625},{x:.796875,y:.015625},{x:.796875,y:.015625},{x:.828125,y:.015625},{x:.828125,y:.015625},{x:.859375,y:.015625},{x:.859375,y:.015625},{x:.890625,y:.015625},{x:.890625,y:.015625},{x:.921875,y:.015625},{x:.921875,y:.015625},{x:.953125,y:.015625},{x:.953125,y:.015625},{x:.984375,y:.015625},{x:.984375,y:.015625},{x:.015625,y:.046875},{x:.015625,y:.046875},{x:.046875,y:.046875},{x:.046875,y:.046875},{x:.078125,y:.046875},{x:.078125,y:.046875},{x:.109375,y:.046875},{x:.109375,y:.046875},{x:.140625,y:.046875},{x:.140625,y:.046875},{x:.171875,y:.046875},{x:.171875,y:.046875},{x:.203125,y:.046875},{x:.203125,y:.046875},{x:.234375,y:.046875},{x:.234375,y:.046875},{x:.265625,y:.046875},{x:.265625,y:.046875},{x:.296875,y:.046875},{x:.296875,y:.046875},{x:.328125,y:.046875},{x:.328125,y:.046875},{x:.359375,y:.046875},{x:.359375,y:.046875},{x:.390625,y:.046875},{x:.390625,y:.046875},{x:.421875,y:.046875},{x:.421875,y:.046875},{x:.453125,y:.046875},{x:.453125,y:.046875},{x:.484375,y:.046875},{x:.484375,y:.046875},{x:.515625,y:.046875},{x:.515625,y:.046875},{x:.546875,y:.046875},{x:.546875,y:.046875},{x:.578125,y:.046875},{x:.578125,y:.046875},{x:.609375,y:.046875},{x:.609375,y:.046875},{x:.640625,y:.046875},{x:.640625,y:.046875},{x:.671875,y:.046875},{x:.671875,y:.046875},{x:.703125,y:.046875},{x:.703125,y:.046875},{x:.734375,y:.046875},{x:.734375,y:.046875},{x:.765625,y:.046875},{x:.765625,y:.046875},{x:.796875,y:.046875},{x:.796875,y:.046875},{x:.828125,y:.046875},{x:.828125,y:.046875},{x:.859375,y:.046875},{x:.859375,y:.046875},{x:.890625,y:.046875},{x:.890625,y:.046875},{x:.921875,y:.046875},{x:.921875,y:.046875},{x:.953125,y:.046875},{x:.953125,y:.046875},{x:.984375,y:.046875},{x:.984375,y:.046875},{x:.015625,y:.078125},{x:.015625,y:.078125},{x:.046875,y:.078125},{x:.046875,y:.078125},{x:.078125,y:.078125},{x:.078125,y:.078125},{x:.109375,y:.078125},{x:.109375,y:.078125},{x:.140625,y:.078125},{x:.140625,y:.078125},{x:.171875,y:.078125},{x:.171875,y:.078125},{x:.203125,y:.078125},{x:.203125,y:.078125},{x:.234375,y:.078125},{x:.234375,y:.078125},{x:.265625,y:.078125},{x:.265625,y:.078125},{x:.296875,y:.078125},{x:.296875,y:.078125},{x:.328125,y:.078125},{x:.328125,y:.078125},{x:.359375,y:.078125},{x:.359375,y:.078125},{x:.390625,y:.078125},{x:.390625,y:.078125},{x:.421875,y:.078125},{x:.421875,y:.078125},{x:.453125,y:.078125},{x:.453125,y:.078125},{x:.484375,y:.078125},{x:.484375,y:.078125},{x:.515625,y:.078125},{x:.515625,y:.078125},{x:.546875,y:.078125},{x:.546875,y:.078125},{x:.578125,y:.078125},{x:.578125,y:.078125},{x:.609375,y:.078125},{x:.609375,y:.078125},{x:.640625,y:.078125},{x:.640625,y:.078125},{x:.671875,y:.078125},{x:.671875,y:.078125},{x:.703125,y:.078125},{x:.703125,y:.078125},{x:.734375,y:.078125},{x:.734375,y:.078125},{x:.765625,y:.078125},{x:.765625,y:.078125},{x:.796875,y:.078125},{x:.796875,y:.078125},{x:.828125,y:.078125},{x:.828125,y:.078125},{x:.859375,y:.078125},{x:.859375,y:.078125},{x:.890625,y:.078125},{x:.890625,y:.078125},{x:.921875,y:.078125},{x:.921875,y:.078125},{x:.953125,y:.078125},{x:.953125,y:.078125},{x:.984375,y:.078125},{x:.984375,y:.078125},{x:.015625,y:.109375},{x:.015625,y:.109375},{x:.046875,y:.109375},{x:.046875,y:.109375},{x:.078125,y:.109375},{x:.078125,y:.109375},{x:.109375,y:.109375},{x:.109375,y:.109375},{x:.140625,y:.109375},{x:.140625,y:.109375},{x:.171875,y:.109375},{x:.171875,y:.109375},{x:.203125,y:.109375},{x:.203125,y:.109375},{x:.234375,y:.109375},{x:.234375,y:.109375},{x:.265625,y:.109375},{x:.265625,y:.109375},{x:.296875,y:.109375},{x:.296875,y:.109375},{x:.328125,y:.109375},{x:.328125,y:.109375},{x:.359375,y:.109375},{x:.359375,y:.109375},{x:.390625,y:.109375},{x:.390625,y:.109375},{x:.421875,y:.109375},{x:.421875,y:.109375},{x:.453125,y:.109375},{x:.453125,y:.109375},{x:.484375,y:.109375},{x:.484375,y:.109375},{x:.515625,y:.109375},{x:.515625,y:.109375},{x:.546875,y:.109375},{x:.546875,y:.109375},{x:.578125,y:.109375},{x:.578125,y:.109375},{x:.609375,y:.109375},{x:.609375,y:.109375},{x:.640625,y:.109375},{x:.640625,y:.109375},{x:.671875,y:.109375},{x:.671875,y:.109375},{x:.703125,y:.109375},{x:.703125,y:.109375},{x:.734375,y:.109375},{x:.734375,y:.109375},{x:.765625,y:.109375},{x:.765625,y:.109375},{x:.796875,y:.109375},{x:.796875,y:.109375},{x:.828125,y:.109375},{x:.828125,y:.109375},{x:.859375,y:.109375},{x:.859375,y:.109375},{x:.890625,y:.109375},{x:.890625,y:.109375},{x:.921875,y:.109375},{x:.921875,y:.109375},{x:.953125,y:.109375},{x:.953125,y:.109375},{x:.984375,y:.109375},{x:.984375,y:.109375},{x:.015625,y:.140625},{x:.015625,y:.140625},{x:.046875,y:.140625},{x:.046875,y:.140625},{x:.078125,y:.140625},{x:.078125,y:.140625},{x:.109375,y:.140625},{x:.109375,y:.140625},{x:.140625,y:.140625},{x:.140625,y:.140625},{x:.171875,y:.140625},{x:.171875,y:.140625},{x:.203125,y:.140625},{x:.203125,y:.140625},{x:.234375,y:.140625},{x:.234375,y:.140625},{x:.265625,y:.140625},{x:.265625,y:.140625},{x:.296875,y:.140625},{x:.296875,y:.140625},{x:.328125,y:.140625},{x:.328125,y:.140625},{x:.359375,y:.140625},{x:.359375,y:.140625},{x:.390625,y:.140625},{x:.390625,y:.140625},{x:.421875,y:.140625},{x:.421875,y:.140625},{x:.453125,y:.140625},{x:.453125,y:.140625},{x:.484375,y:.140625},{x:.484375,y:.140625},{x:.515625,y:.140625},{x:.515625,y:.140625},{x:.546875,y:.140625},{x:.546875,y:.140625},{x:.578125,y:.140625},{x:.578125,y:.140625},{x:.609375,y:.140625},{x:.609375,y:.140625},{x:.640625,y:.140625},{x:.640625,y:.140625},{x:.671875,y:.140625},{x:.671875,y:.140625},{x:.703125,y:.140625},{x:.703125,y:.140625},{x:.734375,y:.140625},{x:.734375,y:.140625},{x:.765625,y:.140625},{x:.765625,y:.140625},{x:.796875,y:.140625},{x:.796875,y:.140625},{x:.828125,y:.140625},{x:.828125,y:.140625},{x:.859375,y:.140625},{x:.859375,y:.140625},{x:.890625,y:.140625},{x:.890625,y:.140625},{x:.921875,y:.140625},{x:.921875,y:.140625},{x:.953125,y:.140625},{x:.953125,y:.140625},{x:.984375,y:.140625},{x:.984375,y:.140625},{x:.015625,y:.171875},{x:.015625,y:.171875},{x:.046875,y:.171875},{x:.046875,y:.171875},{x:.078125,y:.171875},{x:.078125,y:.171875},{x:.109375,y:.171875},{x:.109375,y:.171875},{x:.140625,y:.171875},{x:.140625,y:.171875},{x:.171875,y:.171875},{x:.171875,y:.171875},{x:.203125,y:.171875},{x:.203125,y:.171875},{x:.234375,y:.171875},{x:.234375,y:.171875},{x:.265625,y:.171875},{x:.265625,y:.171875},{x:.296875,y:.171875},{x:.296875,y:.171875},{x:.328125,y:.171875},{x:.328125,y:.171875},{x:.359375,y:.171875},{x:.359375,y:.171875},{x:.390625,y:.171875},{x:.390625,y:.171875},{x:.421875,y:.171875},{x:.421875,y:.171875},{x:.453125,y:.171875},{x:.453125,y:.171875},{x:.484375,y:.171875},{x:.484375,y:.171875},{x:.515625,y:.171875},{x:.515625,y:.171875},{x:.546875,y:.171875},{x:.546875,y:.171875},{x:.578125,y:.171875},{x:.578125,y:.171875},{x:.609375,y:.171875},{x:.609375,y:.171875},{x:.640625,y:.171875},{x:.640625,y:.171875},{x:.671875,y:.171875},{x:.671875,y:.171875},{x:.703125,y:.171875},{x:.703125,y:.171875},{x:.734375,y:.171875},{x:.734375,y:.171875},{x:.765625,y:.171875},{x:.765625,y:.171875},{x:.796875,y:.171875},{x:.796875,y:.171875},{x:.828125,y:.171875},{x:.828125,y:.171875},{x:.859375,y:.171875},{x:.859375,y:.171875},{x:.890625,y:.171875},{x:.890625,y:.171875},{x:.921875,y:.171875},{x:.921875,y:.171875},{x:.953125,y:.171875},{x:.953125,y:.171875},{x:.984375,y:.171875},{x:.984375,y:.171875},{x:.015625,y:.203125},{x:.015625,y:.203125},{x:.046875,y:.203125},{x:.046875,y:.203125},{x:.078125,y:.203125},{x:.078125,y:.203125},{x:.109375,y:.203125},{x:.109375,y:.203125},{x:.140625,y:.203125},{x:.140625,y:.203125},{x:.171875,y:.203125},{x:.171875,y:.203125},{x:.203125,y:.203125},{x:.203125,y:.203125},{x:.234375,y:.203125},{x:.234375,y:.203125},{x:.265625,y:.203125},{x:.265625,y:.203125},{x:.296875,y:.203125},{x:.296875,y:.203125},{x:.328125,y:.203125},{x:.328125,y:.203125},{x:.359375,y:.203125},{x:.359375,y:.203125},{x:.390625,y:.203125},{x:.390625,y:.203125},{x:.421875,y:.203125},{x:.421875,y:.203125},{x:.453125,y:.203125},{x:.453125,y:.203125},{x:.484375,y:.203125},{x:.484375,y:.203125},{x:.515625,y:.203125},{x:.515625,y:.203125},{x:.546875,y:.203125},{x:.546875,y:.203125},{x:.578125,y:.203125},{x:.578125,y:.203125},{x:.609375,y:.203125},{x:.609375,y:.203125},{x:.640625,y:.203125},{x:.640625,y:.203125},{x:.671875,y:.203125},{x:.671875,y:.203125},{x:.703125,y:.203125},{x:.703125,y:.203125},{x:.734375,y:.203125},{x:.734375,y:.203125},{x:.765625,y:.203125},{x:.765625,y:.203125},{x:.796875,y:.203125},{x:.796875,y:.203125},{x:.828125,y:.203125},{x:.828125,y:.203125},{x:.859375,y:.203125},{x:.859375,y:.203125},{x:.890625,y:.203125},{x:.890625,y:.203125},{x:.921875,y:.203125},{x:.921875,y:.203125},{x:.953125,y:.203125},{x:.953125,y:.203125},{x:.984375,y:.203125},{x:.984375,y:.203125},{x:.015625,y:.234375},{x:.015625,y:.234375},{x:.046875,y:.234375},{x:.046875,y:.234375},{x:.078125,y:.234375},{x:.078125,y:.234375},{x:.109375,y:.234375},{x:.109375,y:.234375},{x:.140625,y:.234375},{x:.140625,y:.234375},{x:.171875,y:.234375},{x:.171875,y:.234375},{x:.203125,y:.234375},{x:.203125,y:.234375},{x:.234375,y:.234375},{x:.234375,y:.234375},{x:.265625,y:.234375},{x:.265625,y:.234375},{x:.296875,y:.234375},{x:.296875,y:.234375},{x:.328125,y:.234375},{x:.328125,y:.234375},{x:.359375,y:.234375},{x:.359375,y:.234375},{x:.390625,y:.234375},{x:.390625,y:.234375},{x:.421875,y:.234375},{x:.421875,y:.234375},{x:.453125,y:.234375},{x:.453125,y:.234375},{x:.484375,y:.234375},{x:.484375,y:.234375},{x:.515625,y:.234375},{x:.515625,y:.234375},{x:.546875,y:.234375},{x:.546875,y:.234375},{x:.578125,y:.234375},{x:.578125,y:.234375},{x:.609375,y:.234375},{x:.609375,y:.234375},{x:.640625,y:.234375},{x:.640625,y:.234375},{x:.671875,y:.234375},{x:.671875,y:.234375},{x:.703125,y:.234375},{x:.703125,y:.234375},{x:.734375,y:.234375},{x:.734375,y:.234375},{x:.765625,y:.234375},{x:.765625,y:.234375},{x:.796875,y:.234375},{x:.796875,y:.234375},{x:.828125,y:.234375},{x:.828125,y:.234375},{x:.859375,y:.234375},{x:.859375,y:.234375},{x:.890625,y:.234375},{x:.890625,y:.234375},{x:.921875,y:.234375},{x:.921875,y:.234375},{x:.953125,y:.234375},{x:.953125,y:.234375},{x:.984375,y:.234375},{x:.984375,y:.234375},{x:.015625,y:.265625},{x:.015625,y:.265625},{x:.046875,y:.265625},{x:.046875,y:.265625},{x:.078125,y:.265625},{x:.078125,y:.265625},{x:.109375,y:.265625},{x:.109375,y:.265625},{x:.140625,y:.265625},{x:.140625,y:.265625},{x:.171875,y:.265625},{x:.171875,y:.265625},{x:.203125,y:.265625},{x:.203125,y:.265625},{x:.234375,y:.265625},{x:.234375,y:.265625},{x:.265625,y:.265625},{x:.265625,y:.265625},{x:.296875,y:.265625},{x:.296875,y:.265625},{x:.328125,y:.265625},{x:.328125,y:.265625},{x:.359375,y:.265625},{x:.359375,y:.265625},{x:.390625,y:.265625},{x:.390625,y:.265625},{x:.421875,y:.265625},{x:.421875,y:.265625},{x:.453125,y:.265625},{x:.453125,y:.265625},{x:.484375,y:.265625},{x:.484375,y:.265625},{x:.515625,y:.265625},{x:.515625,y:.265625},{x:.546875,y:.265625},{x:.546875,y:.265625},{x:.578125,y:.265625},{x:.578125,y:.265625},{x:.609375,y:.265625},{x:.609375,y:.265625},{x:.640625,y:.265625},{x:.640625,y:.265625},{x:.671875,y:.265625},{x:.671875,y:.265625},{x:.703125,y:.265625},{x:.703125,y:.265625},{x:.734375,y:.265625},{x:.734375,y:.265625},{x:.765625,y:.265625},{x:.765625,y:.265625},{x:.796875,y:.265625},{x:.796875,y:.265625},{x:.828125,y:.265625},{x:.828125,y:.265625},{x:.859375,y:.265625},{x:.859375,y:.265625},{x:.890625,y:.265625},{x:.890625,y:.265625},{x:.921875,y:.265625},{x:.921875,y:.265625},{x:.953125,y:.265625},{x:.953125,y:.265625},{x:.984375,y:.265625},{x:.984375,y:.265625},{x:.015625,y:.296875},{x:.015625,y:.296875},{x:.046875,y:.296875},{x:.046875,y:.296875},{x:.078125,y:.296875},{x:.078125,y:.296875},{x:.109375,y:.296875},{x:.109375,y:.296875},{x:.140625,y:.296875},{x:.140625,y:.296875},{x:.171875,y:.296875},{x:.171875,y:.296875},{x:.203125,y:.296875},{x:.203125,y:.296875},{x:.234375,y:.296875},{x:.234375,y:.296875},{x:.265625,y:.296875},{x:.265625,y:.296875},{x:.296875,y:.296875},{x:.296875,y:.296875},{x:.328125,y:.296875},{x:.328125,y:.296875},{x:.359375,y:.296875},{x:.359375,y:.296875},{x:.390625,y:.296875},{x:.390625,y:.296875},{x:.421875,y:.296875},{x:.421875,y:.296875},{x:.453125,y:.296875},{x:.453125,y:.296875},{x:.484375,y:.296875},{x:.484375,y:.296875},{x:.515625,y:.296875},{x:.515625,y:.296875},{x:.546875,y:.296875},{x:.546875,y:.296875},{x:.578125,y:.296875},{x:.578125,y:.296875},{x:.609375,y:.296875},{x:.609375,y:.296875},{x:.640625,y:.296875},{x:.640625,y:.296875},{x:.671875,y:.296875},{x:.671875,y:.296875},{x:.703125,y:.296875},{x:.703125,y:.296875},{x:.734375,y:.296875},{x:.734375,y:.296875},{x:.765625,y:.296875},{x:.765625,y:.296875},{x:.796875,y:.296875},{x:.796875,y:.296875},{x:.828125,y:.296875},{x:.828125,y:.296875},{x:.859375,y:.296875},{x:.859375,y:.296875},{x:.890625,y:.296875},{x:.890625,y:.296875},{x:.921875,y:.296875},{x:.921875,y:.296875},{x:.953125,y:.296875},{x:.953125,y:.296875},{x:.984375,y:.296875},{x:.984375,y:.296875},{x:.015625,y:.328125},{x:.015625,y:.328125},{x:.046875,y:.328125},{x:.046875,y:.328125},{x:.078125,y:.328125},{x:.078125,y:.328125},{x:.109375,y:.328125},{x:.109375,y:.328125},{x:.140625,y:.328125},{x:.140625,y:.328125},{x:.171875,y:.328125},{x:.171875,y:.328125},{x:.203125,y:.328125},{x:.203125,y:.328125},{x:.234375,y:.328125},{x:.234375,y:.328125},{x:.265625,y:.328125},{x:.265625,y:.328125},{x:.296875,y:.328125},{x:.296875,y:.328125},{x:.328125,y:.328125},{x:.328125,y:.328125},{x:.359375,y:.328125},{x:.359375,y:.328125},{x:.390625,y:.328125},{x:.390625,y:.328125},{x:.421875,y:.328125},{x:.421875,y:.328125},{x:.453125,y:.328125},{x:.453125,y:.328125},{x:.484375,y:.328125},{x:.484375,y:.328125},{x:.515625,y:.328125},{x:.515625,y:.328125},{x:.546875,y:.328125},{x:.546875,y:.328125},{x:.578125,y:.328125},{x:.578125,y:.328125},{x:.609375,y:.328125},{x:.609375,y:.328125},{x:.640625,y:.328125},{x:.640625,y:.328125},{x:.671875,y:.328125},{x:.671875,y:.328125},{x:.703125,y:.328125},{x:.703125,y:.328125},{x:.734375,y:.328125},{x:.734375,y:.328125},{x:.765625,y:.328125},{x:.765625,y:.328125},{x:.796875,y:.328125},{x:.796875,y:.328125},{x:.828125,y:.328125},{x:.828125,y:.328125},{x:.859375,y:.328125},{x:.859375,y:.328125},{x:.890625,y:.328125},{x:.890625,y:.328125},{x:.921875,y:.328125},{x:.921875,y:.328125},{x:.953125,y:.328125},{x:.953125,y:.328125},{x:.984375,y:.328125},{x:.984375,y:.328125},{x:.015625,y:.359375},{x:.015625,y:.359375},{x:.046875,y:.359375},{x:.046875,y:.359375},{x:.078125,y:.359375},{x:.078125,y:.359375},{x:.109375,y:.359375},{x:.109375,y:.359375},{x:.140625,y:.359375},{x:.140625,y:.359375},{x:.171875,y:.359375},{x:.171875,y:.359375},{x:.203125,y:.359375},{x:.203125,y:.359375},{x:.234375,y:.359375},{x:.234375,y:.359375},{x:.265625,y:.359375},{x:.265625,y:.359375},{x:.296875,y:.359375},{x:.296875,y:.359375},{x:.328125,y:.359375},{x:.328125,y:.359375},{x:.359375,y:.359375},{x:.359375,y:.359375},{x:.390625,y:.359375},{x:.390625,y:.359375},{x:.421875,y:.359375},{x:.421875,y:.359375},{x:.453125,y:.359375},{x:.453125,y:.359375},{x:.484375,y:.359375},{x:.484375,y:.359375},{x:.515625,y:.359375},{x:.515625,y:.359375},{x:.546875,y:.359375},{x:.546875,y:.359375},{x:.578125,y:.359375},{x:.578125,y:.359375},{x:.609375,y:.359375},{x:.609375,y:.359375},{x:.640625,y:.359375},{x:.640625,y:.359375},{x:.671875,y:.359375},{x:.671875,y:.359375},{x:.703125,y:.359375},{x:.703125,y:.359375},{x:.734375,y:.359375},{x:.734375,y:.359375},{x:.765625,y:.359375},{x:.765625,y:.359375},{x:.796875,y:.359375},{x:.796875,y:.359375},{x:.828125,y:.359375},{x:.828125,y:.359375},{x:.859375,y:.359375},{x:.859375,y:.359375},{x:.890625,y:.359375},{x:.890625,y:.359375},{x:.921875,y:.359375},{x:.921875,y:.359375},{x:.953125,y:.359375},{x:.953125,y:.359375},{x:.984375,y:.359375},{x:.984375,y:.359375},{x:.015625,y:.390625},{x:.015625,y:.390625},{x:.046875,y:.390625},{x:.046875,y:.390625},{x:.078125,y:.390625},{x:.078125,y:.390625},{x:.109375,y:.390625},{x:.109375,y:.390625},{x:.140625,y:.390625},{x:.140625,y:.390625},{x:.171875,y:.390625},{x:.171875,y:.390625},{x:.203125,y:.390625},{x:.203125,y:.390625},{x:.234375,y:.390625},{x:.234375,y:.390625},{x:.265625,y:.390625},{x:.265625,y:.390625},{x:.296875,y:.390625},{x:.296875,y:.390625},{x:.328125,y:.390625},{x:.328125,y:.390625},{x:.359375,y:.390625},{x:.359375,y:.390625},{x:.390625,y:.390625},{x:.390625,y:.390625},{x:.421875,y:.390625},{x:.421875,y:.390625},{x:.453125,y:.390625},{x:.453125,y:.390625},{x:.484375,y:.390625},{x:.484375,y:.390625},{x:.515625,y:.390625},{x:.515625,y:.390625},{x:.546875,y:.390625},{x:.546875,y:.390625},{x:.578125,y:.390625},{x:.578125,y:.390625},{x:.609375,y:.390625},{x:.609375,y:.390625},{x:.640625,y:.390625},{x:.640625,y:.390625},{x:.671875,y:.390625},{x:.671875,y:.390625},{x:.703125,y:.390625},{x:.703125,y:.390625},{x:.734375,y:.390625},{x:.734375,y:.390625},{x:.765625,y:.390625},{x:.765625,y:.390625},{x:.796875,y:.390625},{x:.796875,y:.390625},{x:.828125,y:.390625},{x:.828125,y:.390625},{x:.859375,y:.390625},{x:.859375,y:.390625},{x:.890625,y:.390625},{x:.890625,y:.390625},{x:.921875,y:.390625},{x:.921875,y:.390625},{x:.953125,y:.390625},{x:.953125,y:.390625},{x:.984375,y:.390625},{x:.984375,y:.390625},{x:.015625,y:.421875},{x:.015625,y:.421875},{x:.046875,y:.421875},{x:.046875,y:.421875},{x:.078125,y:.421875},{x:.078125,y:.421875},{x:.109375,y:.421875},{x:.109375,y:.421875},{x:.140625,y:.421875},{x:.140625,y:.421875},{x:.171875,y:.421875},{x:.171875,y:.421875},{x:.203125,y:.421875},{x:.203125,y:.421875},{x:.234375,y:.421875},{x:.234375,y:.421875},{x:.265625,y:.421875},{x:.265625,y:.421875},{x:.296875,y:.421875},{x:.296875,y:.421875},{x:.328125,y:.421875},{x:.328125,y:.421875},{x:.359375,y:.421875},{x:.359375,y:.421875},{x:.390625,y:.421875},{x:.390625,y:.421875},{x:.421875,y:.421875},{x:.421875,y:.421875},{x:.453125,y:.421875},{x:.453125,y:.421875},{x:.484375,y:.421875},{x:.484375,y:.421875},{x:.515625,y:.421875},{x:.515625,y:.421875},{x:.546875,y:.421875},{x:.546875,y:.421875},{x:.578125,y:.421875},{x:.578125,y:.421875},{x:.609375,y:.421875},{x:.609375,y:.421875},{x:.640625,y:.421875},{x:.640625,y:.421875},{x:.671875,y:.421875},{x:.671875,y:.421875},{x:.703125,y:.421875},{x:.703125,y:.421875},{x:.734375,y:.421875},{x:.734375,y:.421875},{x:.765625,y:.421875},{x:.765625,y:.421875},{x:.796875,y:.421875},{x:.796875,y:.421875},{x:.828125,y:.421875},{x:.828125,y:.421875},{x:.859375,y:.421875},{x:.859375,y:.421875},{x:.890625,y:.421875},{x:.890625,y:.421875},{x:.921875,y:.421875},{x:.921875,y:.421875},{x:.953125,y:.421875},{x:.953125,y:.421875},{x:.984375,y:.421875},{x:.984375,y:.421875},{x:.015625,y:.453125},{x:.015625,y:.453125},{x:.046875,y:.453125},{x:.046875,y:.453125},{x:.078125,y:.453125},{x:.078125,y:.453125},{x:.109375,y:.453125},{x:.109375,y:.453125},{x:.140625,y:.453125},{x:.140625,y:.453125},{x:.171875,y:.453125},{x:.171875,y:.453125},{x:.203125,y:.453125},{x:.203125,y:.453125},{x:.234375,y:.453125},{x:.234375,y:.453125},{x:.265625,y:.453125},{x:.265625,y:.453125},{x:.296875,y:.453125},{x:.296875,y:.453125},{x:.328125,y:.453125},{x:.328125,y:.453125},{x:.359375,y:.453125},{x:.359375,y:.453125},{x:.390625,y:.453125},{x:.390625,y:.453125},{x:.421875,y:.453125},{x:.421875,y:.453125},{x:.453125,y:.453125},{x:.453125,y:.453125},{x:.484375,y:.453125},{x:.484375,y:.453125},{x:.515625,y:.453125},{x:.515625,y:.453125},{x:.546875,y:.453125},{x:.546875,y:.453125},{x:.578125,y:.453125},{x:.578125,y:.453125},{x:.609375,y:.453125},{x:.609375,y:.453125},{x:.640625,y:.453125},{x:.640625,y:.453125},{x:.671875,y:.453125},{x:.671875,y:.453125},{x:.703125,y:.453125},{x:.703125,y:.453125},{x:.734375,y:.453125},{x:.734375,y:.453125},{x:.765625,y:.453125},{x:.765625,y:.453125},{x:.796875,y:.453125},{x:.796875,y:.453125},{x:.828125,y:.453125},{x:.828125,y:.453125},{x:.859375,y:.453125},{x:.859375,y:.453125},{x:.890625,y:.453125},{x:.890625,y:.453125},{x:.921875,y:.453125},{x:.921875,y:.453125},{x:.953125,y:.453125},{x:.953125,y:.453125},{x:.984375,y:.453125},{x:.984375,y:.453125},{x:.015625,y:.484375},{x:.015625,y:.484375},{x:.046875,y:.484375},{x:.046875,y:.484375},{x:.078125,y:.484375},{x:.078125,y:.484375},{x:.109375,y:.484375},{x:.109375,y:.484375},{x:.140625,y:.484375},{x:.140625,y:.484375},{x:.171875,y:.484375},{x:.171875,y:.484375},{x:.203125,y:.484375},{x:.203125,y:.484375},{x:.234375,y:.484375},{x:.234375,y:.484375},{x:.265625,y:.484375},{x:.265625,y:.484375},{x:.296875,y:.484375},{x:.296875,y:.484375},{x:.328125,y:.484375},{x:.328125,y:.484375},{x:.359375,y:.484375},{x:.359375,y:.484375},{x:.390625,y:.484375},{x:.390625,y:.484375},{x:.421875,y:.484375},{x:.421875,y:.484375},{x:.453125,y:.484375},{x:.453125,y:.484375},{x:.484375,y:.484375},{x:.484375,y:.484375},{x:.515625,y:.484375},{x:.515625,y:.484375},{x:.546875,y:.484375},{x:.546875,y:.484375},{x:.578125,y:.484375},{x:.578125,y:.484375},{x:.609375,y:.484375},{x:.609375,y:.484375},{x:.640625,y:.484375},{x:.640625,y:.484375},{x:.671875,y:.484375},{x:.671875,y:.484375},{x:.703125,y:.484375},{x:.703125,y:.484375},{x:.734375,y:.484375},{x:.734375,y:.484375},{x:.765625,y:.484375},{x:.765625,y:.484375},{x:.796875,y:.484375},{x:.796875,y:.484375},{x:.828125,y:.484375},{x:.828125,y:.484375},{x:.859375,y:.484375},{x:.859375,y:.484375},{x:.890625,y:.484375},{x:.890625,y:.484375},{x:.921875,y:.484375},{x:.921875,y:.484375},{x:.953125,y:.484375},{x:.953125,y:.484375},{x:.984375,y:.484375},{x:.984375,y:.484375},{x:.015625,y:.515625},{x:.015625,y:.515625},{x:.046875,y:.515625},{x:.046875,y:.515625},{x:.078125,y:.515625},{x:.078125,y:.515625},{x:.109375,y:.515625},{x:.109375,y:.515625},{x:.140625,y:.515625},{x:.140625,y:.515625},{x:.171875,y:.515625},{x:.171875,y:.515625},{x:.203125,y:.515625},{x:.203125,y:.515625},{x:.234375,y:.515625},{x:.234375,y:.515625},{x:.265625,y:.515625},{x:.265625,y:.515625},{x:.296875,y:.515625},{x:.296875,y:.515625},{x:.328125,y:.515625},{x:.328125,y:.515625},{x:.359375,y:.515625},{x:.359375,y:.515625},{x:.390625,y:.515625},{x:.390625,y:.515625},{x:.421875,y:.515625},{x:.421875,y:.515625},{x:.453125,y:.515625},{x:.453125,y:.515625},{x:.484375,y:.515625},{x:.484375,y:.515625},{x:.515625,y:.515625},{x:.515625,y:.515625},{x:.546875,y:.515625},{x:.546875,y:.515625},{x:.578125,y:.515625},{x:.578125,y:.515625},{x:.609375,y:.515625},{x:.609375,y:.515625},{x:.640625,y:.515625},{x:.640625,y:.515625},{x:.671875,y:.515625},{x:.671875,y:.515625},{x:.703125,y:.515625},{x:.703125,y:.515625},{x:.734375,y:.515625},{x:.734375,y:.515625},{x:.765625,y:.515625},{x:.765625,y:.515625},{x:.796875,y:.515625},{x:.796875,y:.515625},{x:.828125,y:.515625},{x:.828125,y:.515625},{x:.859375,y:.515625},{x:.859375,y:.515625},{x:.890625,y:.515625},{x:.890625,y:.515625},{x:.921875,y:.515625},{x:.921875,y:.515625},{x:.953125,y:.515625},{x:.953125,y:.515625},{x:.984375,y:.515625},{x:.984375,y:.515625},{x:.015625,y:.546875},{x:.015625,y:.546875},{x:.046875,y:.546875},{x:.046875,y:.546875},{x:.078125,y:.546875},{x:.078125,y:.546875},{x:.109375,y:.546875},{x:.109375,y:.546875},{x:.140625,y:.546875},{x:.140625,y:.546875},{x:.171875,y:.546875},{x:.171875,y:.546875},{x:.203125,y:.546875},{x:.203125,y:.546875},{x:.234375,y:.546875},{x:.234375,y:.546875},{x:.265625,y:.546875},{x:.265625,y:.546875},{x:.296875,y:.546875},{x:.296875,y:.546875},{x:.328125,y:.546875},{x:.328125,y:.546875},{x:.359375,y:.546875},{x:.359375,y:.546875},{x:.390625,y:.546875},{x:.390625,y:.546875},{x:.421875,y:.546875},{x:.421875,y:.546875},{x:.453125,y:.546875},{x:.453125,y:.546875},{x:.484375,y:.546875},{x:.484375,y:.546875},{x:.515625,y:.546875},{x:.515625,y:.546875},{x:.546875,y:.546875},{x:.546875,y:.546875},{x:.578125,y:.546875},{x:.578125,y:.546875},{x:.609375,y:.546875},{x:.609375,y:.546875},{x:.640625,y:.546875},{x:.640625,y:.546875},{x:.671875,y:.546875},{x:.671875,y:.546875},{x:.703125,y:.546875},{x:.703125,y:.546875},{x:.734375,y:.546875},{x:.734375,y:.546875},{x:.765625,y:.546875},{x:.765625,y:.546875},{x:.796875,y:.546875},{x:.796875,y:.546875},{x:.828125,y:.546875},{x:.828125,y:.546875},{x:.859375,y:.546875},{x:.859375,y:.546875},{x:.890625,y:.546875},{x:.890625,y:.546875},{x:.921875,y:.546875},{x:.921875,y:.546875},{x:.953125,y:.546875},{x:.953125,y:.546875},{x:.984375,y:.546875},{x:.984375,y:.546875},{x:.015625,y:.578125},{x:.015625,y:.578125},{x:.046875,y:.578125},{x:.046875,y:.578125},{x:.078125,y:.578125},{x:.078125,y:.578125},{x:.109375,y:.578125},{x:.109375,y:.578125},{x:.140625,y:.578125},{x:.140625,y:.578125},{x:.171875,y:.578125},{x:.171875,y:.578125},{x:.203125,y:.578125},{x:.203125,y:.578125},{x:.234375,y:.578125},{x:.234375,y:.578125},{x:.265625,y:.578125},{x:.265625,y:.578125},{x:.296875,y:.578125},{x:.296875,y:.578125},{x:.328125,y:.578125},{x:.328125,y:.578125},{x:.359375,y:.578125},{x:.359375,y:.578125},{x:.390625,y:.578125},{x:.390625,y:.578125},{x:.421875,y:.578125},{x:.421875,y:.578125},{x:.453125,y:.578125},{x:.453125,y:.578125},{x:.484375,y:.578125},{x:.484375,y:.578125},{x:.515625,y:.578125},{x:.515625,y:.578125},{x:.546875,y:.578125},{x:.546875,y:.578125},{x:.578125,y:.578125},{x:.578125,y:.578125},{x:.609375,y:.578125},{x:.609375,y:.578125},{x:.640625,y:.578125},{x:.640625,y:.578125},{x:.671875,y:.578125},{x:.671875,y:.578125},{x:.703125,y:.578125},{x:.703125,y:.578125},{x:.734375,y:.578125},{x:.734375,y:.578125},{x:.765625,y:.578125},{x:.765625,y:.578125},{x:.796875,y:.578125},{x:.796875,y:.578125},{x:.828125,y:.578125},{x:.828125,y:.578125},{x:.859375,y:.578125},{x:.859375,y:.578125},{x:.890625,y:.578125},{x:.890625,y:.578125},{x:.921875,y:.578125},{x:.921875,y:.578125},{x:.953125,y:.578125},{x:.953125,y:.578125},{x:.984375,y:.578125},{x:.984375,y:.578125},{x:.015625,y:.609375},{x:.015625,y:.609375},{x:.046875,y:.609375},{x:.046875,y:.609375},{x:.078125,y:.609375},{x:.078125,y:.609375},{x:.109375,y:.609375},{x:.109375,y:.609375},{x:.140625,y:.609375},{x:.140625,y:.609375},{x:.171875,y:.609375},{x:.171875,y:.609375},{x:.203125,y:.609375},{x:.203125,y:.609375},{x:.234375,y:.609375},{x:.234375,y:.609375},{x:.265625,y:.609375},{x:.265625,y:.609375},{x:.296875,y:.609375},{x:.296875,y:.609375},{x:.328125,y:.609375},{x:.328125,y:.609375},{x:.359375,y:.609375},{x:.359375,y:.609375},{x:.390625,y:.609375},{x:.390625,y:.609375},{x:.421875,y:.609375},{x:.421875,y:.609375},{x:.453125,y:.609375},{x:.453125,y:.609375},{x:.484375,y:.609375},{x:.484375,y:.609375},{x:.515625,y:.609375},{x:.515625,y:.609375},{x:.546875,y:.609375},{x:.546875,y:.609375},{x:.578125,y:.609375},{x:.578125,y:.609375},{x:.609375,y:.609375},{x:.609375,y:.609375},{x:.640625,y:.609375},{x:.640625,y:.609375},{x:.671875,y:.609375},{x:.671875,y:.609375},{x:.703125,y:.609375},{x:.703125,y:.609375},{x:.734375,y:.609375},{x:.734375,y:.609375},{x:.765625,y:.609375},{x:.765625,y:.609375},{x:.796875,y:.609375},{x:.796875,y:.609375},{x:.828125,y:.609375},{x:.828125,y:.609375},{x:.859375,y:.609375},{x:.859375,y:.609375},{x:.890625,y:.609375},{x:.890625,y:.609375},{x:.921875,y:.609375},{x:.921875,y:.609375},{x:.953125,y:.609375},{x:.953125,y:.609375},{x:.984375,y:.609375},{x:.984375,y:.609375},{x:.015625,y:.640625},{x:.015625,y:.640625},{x:.046875,y:.640625},{x:.046875,y:.640625},{x:.078125,y:.640625},{x:.078125,y:.640625},{x:.109375,y:.640625},{x:.109375,y:.640625},{x:.140625,y:.640625},{x:.140625,y:.640625},{x:.171875,y:.640625},{x:.171875,y:.640625},{x:.203125,y:.640625},{x:.203125,y:.640625},{x:.234375,y:.640625},{x:.234375,y:.640625},{x:.265625,y:.640625},{x:.265625,y:.640625},{x:.296875,y:.640625},{x:.296875,y:.640625},{x:.328125,y:.640625},{x:.328125,y:.640625},{x:.359375,y:.640625},{x:.359375,y:.640625},{x:.390625,y:.640625},{x:.390625,y:.640625},{x:.421875,y:.640625},{x:.421875,y:.640625},{x:.453125,y:.640625},{x:.453125,y:.640625},{x:.484375,y:.640625},{x:.484375,y:.640625},{x:.515625,y:.640625},{x:.515625,y:.640625},{x:.546875,y:.640625},{x:.546875,y:.640625},{x:.578125,y:.640625},{x:.578125,y:.640625},{x:.609375,y:.640625},{x:.609375,y:.640625},{x:.640625,y:.640625},{x:.640625,y:.640625},{x:.671875,y:.640625},{x:.671875,y:.640625},{x:.703125,y:.640625},{x:.703125,y:.640625},{x:.734375,y:.640625},{x:.734375,y:.640625},{x:.765625,y:.640625},{x:.765625,y:.640625},{x:.796875,y:.640625},{x:.796875,y:.640625},{x:.828125,y:.640625},{x:.828125,y:.640625},{x:.859375,y:.640625},{x:.859375,y:.640625},{x:.890625,y:.640625},{x:.890625,y:.640625},{x:.921875,y:.640625},{x:.921875,y:.640625},{x:.953125,y:.640625},{x:.953125,y:.640625},{x:.984375,y:.640625},{x:.984375,y:.640625},{x:.015625,y:.671875},{x:.015625,y:.671875},{x:.046875,y:.671875},{x:.046875,y:.671875},{x:.078125,y:.671875},{x:.078125,y:.671875},{x:.109375,y:.671875},{x:.109375,y:.671875},{x:.140625,y:.671875},{x:.140625,y:.671875},{x:.171875,y:.671875},{x:.171875,y:.671875},{x:.203125,y:.671875},{x:.203125,y:.671875},{x:.234375,y:.671875},{x:.234375,y:.671875},{x:.265625,y:.671875},{x:.265625,y:.671875},{x:.296875,y:.671875},{x:.296875,y:.671875},{x:.328125,y:.671875},{x:.328125,y:.671875},{x:.359375,y:.671875},{x:.359375,y:.671875},{x:.390625,y:.671875},{x:.390625,y:.671875},{x:.421875,y:.671875},{x:.421875,y:.671875},{x:.453125,y:.671875},{x:.453125,y:.671875},{x:.484375,y:.671875},{x:.484375,y:.671875},{x:.515625,y:.671875},{x:.515625,y:.671875},{x:.546875,y:.671875},{x:.546875,y:.671875},{x:.578125,y:.671875},{x:.578125,y:.671875},{x:.609375,y:.671875},{x:.609375,y:.671875},{x:.640625,y:.671875},{x:.640625,y:.671875},{x:.671875,y:.671875},{x:.671875,y:.671875},{x:.703125,y:.671875},{x:.703125,y:.671875},{x:.734375,y:.671875},{x:.734375,y:.671875},{x:.765625,y:.671875},{x:.765625,y:.671875},{x:.796875,y:.671875},{x:.796875,y:.671875},{x:.828125,y:.671875},{x:.828125,y:.671875},{x:.859375,y:.671875},{x:.859375,y:.671875},{x:.890625,y:.671875},{x:.890625,y:.671875},{x:.921875,y:.671875},{x:.921875,y:.671875},{x:.953125,y:.671875},{x:.953125,y:.671875},{x:.984375,y:.671875},{x:.984375,y:.671875},{x:.015625,y:.703125},{x:.015625,y:.703125},{x:.046875,y:.703125},{x:.046875,y:.703125},{x:.078125,y:.703125},{x:.078125,y:.703125},{x:.109375,y:.703125},{x:.109375,y:.703125},{x:.140625,y:.703125},{x:.140625,y:.703125},{x:.171875,y:.703125},{x:.171875,y:.703125},{x:.203125,y:.703125},{x:.203125,y:.703125},{x:.234375,y:.703125},{x:.234375,y:.703125},{x:.265625,y:.703125},{x:.265625,y:.703125},{x:.296875,y:.703125},{x:.296875,y:.703125},{x:.328125,y:.703125},{x:.328125,y:.703125},{x:.359375,y:.703125},{x:.359375,y:.703125},{x:.390625,y:.703125},{x:.390625,y:.703125},{x:.421875,y:.703125},{x:.421875,y:.703125},{x:.453125,y:.703125},{x:.453125,y:.703125},{x:.484375,y:.703125},{x:.484375,y:.703125},{x:.515625,y:.703125},{x:.515625,y:.703125},{x:.546875,y:.703125},{x:.546875,y:.703125},{x:.578125,y:.703125},{x:.578125,y:.703125},{x:.609375,y:.703125},{x:.609375,y:.703125},{x:.640625,y:.703125},{x:.640625,y:.703125},{x:.671875,y:.703125},{x:.671875,y:.703125},{x:.703125,y:.703125},{x:.703125,y:.703125},{x:.734375,y:.703125},{x:.734375,y:.703125},{x:.765625,y:.703125},{x:.765625,y:.703125},{x:.796875,y:.703125},{x:.796875,y:.703125},{x:.828125,y:.703125},{x:.828125,y:.703125},{x:.859375,y:.703125},{x:.859375,y:.703125},{x:.890625,y:.703125},{x:.890625,y:.703125},{x:.921875,y:.703125},{x:.921875,y:.703125},{x:.953125,y:.703125},{x:.953125,y:.703125},{x:.984375,y:.703125},{x:.984375,y:.703125},{x:.015625,y:.734375},{x:.015625,y:.734375},{x:.046875,y:.734375},{x:.046875,y:.734375},{x:.078125,y:.734375},{x:.078125,y:.734375},{x:.109375,y:.734375},{x:.109375,y:.734375},{x:.140625,y:.734375},{x:.140625,y:.734375},{x:.171875,y:.734375},{x:.171875,y:.734375},{x:.203125,y:.734375},{x:.203125,y:.734375},{x:.234375,y:.734375},{x:.234375,y:.734375},{x:.265625,y:.734375},{x:.265625,y:.734375},{x:.296875,y:.734375},{x:.296875,y:.734375},{x:.328125,y:.734375},{x:.328125,y:.734375},{x:.359375,y:.734375},{x:.359375,y:.734375},{x:.390625,y:.734375},{x:.390625,y:.734375},{x:.421875,y:.734375},{x:.421875,y:.734375},{x:.453125,y:.734375},{x:.453125,y:.734375},{x:.484375,y:.734375},{x:.484375,y:.734375},{x:.515625,y:.734375},{x:.515625,y:.734375},{x:.546875,y:.734375},{x:.546875,y:.734375},{x:.578125,y:.734375},{x:.578125,y:.734375},{x:.609375,y:.734375},{x:.609375,y:.734375},{x:.640625,y:.734375},{x:.640625,y:.734375},{x:.671875,y:.734375},{x:.671875,y:.734375},{x:.703125,y:.734375},{x:.703125,y:.734375},{x:.734375,y:.734375},{x:.734375,y:.734375},{x:.765625,y:.734375},{x:.765625,y:.734375},{x:.796875,y:.734375},{x:.796875,y:.734375},{x:.828125,y:.734375},{x:.828125,y:.734375},{x:.859375,y:.734375},{x:.859375,y:.734375},{x:.890625,y:.734375},{x:.890625,y:.734375},{x:.921875,y:.734375},{x:.921875,y:.734375},{x:.953125,y:.734375},{x:.953125,y:.734375},{x:.984375,y:.734375},{x:.984375,y:.734375},{x:.015625,y:.765625},{x:.015625,y:.765625},{x:.046875,y:.765625},{x:.046875,y:.765625},{x:.078125,y:.765625},{x:.078125,y:.765625},{x:.109375,y:.765625},{x:.109375,y:.765625},{x:.140625,y:.765625},{x:.140625,y:.765625},{x:.171875,y:.765625},{x:.171875,y:.765625},{x:.203125,y:.765625},{x:.203125,y:.765625},{x:.234375,y:.765625},{x:.234375,y:.765625},{x:.265625,y:.765625},{x:.265625,y:.765625},{x:.296875,y:.765625},{x:.296875,y:.765625},{x:.328125,y:.765625},{x:.328125,y:.765625},{x:.359375,y:.765625},{x:.359375,y:.765625},{x:.390625,y:.765625},{x:.390625,y:.765625},{x:.421875,y:.765625},{x:.421875,y:.765625},{x:.453125,y:.765625},{x:.453125,y:.765625},{x:.484375,y:.765625},{x:.484375,y:.765625},{x:.515625,y:.765625},{x:.515625,y:.765625},{x:.546875,y:.765625},{x:.546875,y:.765625},{x:.578125,y:.765625},{x:.578125,y:.765625},{x:.609375,y:.765625},{x:.609375,y:.765625},{x:.640625,y:.765625},{x:.640625,y:.765625},{x:.671875,y:.765625},{x:.671875,y:.765625},{x:.703125,y:.765625},{x:.703125,y:.765625},{x:.734375,y:.765625},{x:.734375,y:.765625},{x:.765625,y:.765625},{x:.765625,y:.765625},{x:.796875,y:.765625},{x:.796875,y:.765625},{x:.828125,y:.765625},{x:.828125,y:.765625},{x:.859375,y:.765625},{x:.859375,y:.765625},{x:.890625,y:.765625},{x:.890625,y:.765625},{x:.921875,y:.765625},{x:.921875,y:.765625},{x:.953125,y:.765625},{x:.953125,y:.765625},{x:.984375,y:.765625},{x:.984375,y:.765625},{x:.015625,y:.796875},{x:.015625,y:.796875},{x:.046875,y:.796875},{x:.046875,y:.796875},{x:.078125,y:.796875},{x:.078125,y:.796875},{x:.109375,y:.796875},{x:.109375,y:.796875},{x:.140625,y:.796875},{x:.140625,y:.796875},{x:.171875,y:.796875},{x:.171875,y:.796875},{x:.203125,y:.796875},{x:.203125,y:.796875},{x:.234375,y:.796875},{x:.234375,y:.796875},{x:.265625,y:.796875},{x:.265625,y:.796875},{x:.296875,y:.796875},{x:.296875,y:.796875},{x:.328125,y:.796875},{x:.328125,y:.796875},{x:.359375,y:.796875},{x:.359375,y:.796875},{x:.390625,y:.796875},{x:.390625,y:.796875},{x:.421875,y:.796875},{x:.421875,y:.796875},{x:.453125,y:.796875},{x:.453125,y:.796875},{x:.484375,y:.796875},{x:.484375,y:.796875},{x:.515625,y:.796875},{x:.515625,y:.796875},{x:.546875,y:.796875},{x:.546875,y:.796875},{x:.578125,y:.796875},{x:.578125,y:.796875},{x:.609375,y:.796875},{x:.609375,y:.796875},{x:.640625,y:.796875},{x:.640625,y:.796875},{x:.671875,y:.796875},{x:.671875,y:.796875},{x:.703125,y:.796875},{x:.703125,y:.796875},{x:.734375,y:.796875},{x:.734375,y:.796875},{x:.765625,y:.796875},{x:.765625,y:.796875},{x:.796875,y:.796875},{x:.796875,y:.796875},{x:.828125,y:.796875},{x:.828125,y:.796875},{x:.859375,y:.796875},{x:.859375,y:.796875},{x:.890625,y:.796875},{x:.890625,y:.796875},{x:.921875,y:.796875},{x:.921875,y:.796875},{x:.953125,y:.796875},{x:.953125,y:.796875},{x:.984375,y:.796875},{x:.984375,y:.796875},{x:.015625,y:.828125},{x:.015625,y:.828125},{x:.046875,y:.828125},{x:.046875,y:.828125},{x:.078125,y:.828125},{x:.078125,y:.828125},{x:.109375,y:.828125},{x:.109375,y:.828125},{x:.140625,y:.828125},{x:.140625,y:.828125},{x:.171875,y:.828125},{x:.171875,y:.828125},{x:.203125,y:.828125},{x:.203125,y:.828125},{x:.234375,y:.828125},{x:.234375,y:.828125},{x:.265625,y:.828125},{x:.265625,y:.828125},{x:.296875,y:.828125},{x:.296875,y:.828125},{x:.328125,y:.828125},{x:.328125,y:.828125},{x:.359375,y:.828125},{x:.359375,y:.828125},{x:.390625,y:.828125},{x:.390625,y:.828125},{x:.421875,y:.828125},{x:.421875,y:.828125},{x:.453125,y:.828125},{x:.453125,y:.828125},{x:.484375,y:.828125},{x:.484375,y:.828125},{x:.515625,y:.828125},{x:.515625,y:.828125},{x:.546875,y:.828125},{x:.546875,y:.828125},{x:.578125,y:.828125},{x:.578125,y:.828125},{x:.609375,y:.828125},{x:.609375,y:.828125},{x:.640625,y:.828125},{x:.640625,y:.828125},{x:.671875,y:.828125},{x:.671875,y:.828125},{x:.703125,y:.828125},{x:.703125,y:.828125},{x:.734375,y:.828125},{x:.734375,y:.828125},{x:.765625,y:.828125},{x:.765625,y:.828125},{x:.796875,y:.828125},{x:.796875,y:.828125},{x:.828125,y:.828125},{x:.828125,y:.828125},{x:.859375,y:.828125},{x:.859375,y:.828125},{x:.890625,y:.828125},{x:.890625,y:.828125},{x:.921875,y:.828125},{x:.921875,y:.828125},{x:.953125,y:.828125},{x:.953125,y:.828125},{x:.984375,y:.828125},{x:.984375,y:.828125},{x:.015625,y:.859375},{x:.015625,y:.859375},{x:.046875,y:.859375},{x:.046875,y:.859375},{x:.078125,y:.859375},{x:.078125,y:.859375},{x:.109375,y:.859375},{x:.109375,y:.859375},{x:.140625,y:.859375},{x:.140625,y:.859375},{x:.171875,y:.859375},{x:.171875,y:.859375},{x:.203125,y:.859375},{x:.203125,y:.859375},{x:.234375,y:.859375},{x:.234375,y:.859375},{x:.265625,y:.859375},{x:.265625,y:.859375},{x:.296875,y:.859375},{x:.296875,y:.859375},{x:.328125,y:.859375},{x:.328125,y:.859375},{x:.359375,y:.859375},{x:.359375,y:.859375},{x:.390625,y:.859375},{x:.390625,y:.859375},{x:.421875,y:.859375},{x:.421875,y:.859375},{x:.453125,y:.859375},{x:.453125,y:.859375},{x:.484375,y:.859375},{x:.484375,y:.859375},{x:.515625,y:.859375},{x:.515625,y:.859375},{x:.546875,y:.859375},{x:.546875,y:.859375},{x:.578125,y:.859375},{x:.578125,y:.859375},{x:.609375,y:.859375},{x:.609375,y:.859375},{x:.640625,y:.859375},{x:.640625,y:.859375},{x:.671875,y:.859375},{x:.671875,y:.859375},{x:.703125,y:.859375},{x:.703125,y:.859375},{x:.734375,y:.859375},{x:.734375,y:.859375},{x:.765625,y:.859375},{x:.765625,y:.859375},{x:.796875,y:.859375},{x:.796875,y:.859375},{x:.828125,y:.859375},{x:.828125,y:.859375},{x:.859375,y:.859375},{x:.859375,y:.859375},{x:.890625,y:.859375},{x:.890625,y:.859375},{x:.921875,y:.859375},{x:.921875,y:.859375},{x:.953125,y:.859375},{x:.953125,y:.859375},{x:.984375,y:.859375},{x:.984375,y:.859375},{x:.015625,y:.890625},{x:.015625,y:.890625},{x:.046875,y:.890625},{x:.046875,y:.890625},{x:.078125,y:.890625},{x:.078125,y:.890625},{x:.109375,y:.890625},{x:.109375,y:.890625},{x:.140625,y:.890625},{x:.140625,y:.890625},{x:.171875,y:.890625},{x:.171875,y:.890625},{x:.203125,y:.890625},{x:.203125,y:.890625},{x:.234375,y:.890625},{x:.234375,y:.890625},{x:.265625,y:.890625},{x:.265625,y:.890625},{x:.296875,y:.890625},{x:.296875,y:.890625},{x:.328125,y:.890625},{x:.328125,y:.890625},{x:.359375,y:.890625},{x:.359375,y:.890625},{x:.390625,y:.890625},{x:.390625,y:.890625},{x:.421875,y:.890625},{x:.421875,y:.890625},{x:.453125,y:.890625},{x:.453125,y:.890625},{x:.484375,y:.890625},{x:.484375,y:.890625},{x:.515625,y:.890625},{x:.515625,y:.890625},{x:.546875,y:.890625},{x:.546875,y:.890625},{x:.578125,y:.890625},{x:.578125,y:.890625},{x:.609375,y:.890625},{x:.609375,y:.890625},{x:.640625,y:.890625},{x:.640625,y:.890625},{x:.671875,y:.890625},{x:.671875,y:.890625},{x:.703125,y:.890625},{x:.703125,y:.890625},{x:.734375,y:.890625},{x:.734375,y:.890625},{x:.765625,y:.890625},{x:.765625,y:.890625},{x:.796875,y:.890625},{x:.796875,y:.890625},{x:.828125,y:.890625},{x:.828125,y:.890625},{x:.859375,y:.890625},{x:.859375,y:.890625},{x:.890625,y:.890625},{x:.890625,y:.890625},{x:.921875,y:.890625},{x:.921875,y:.890625},{x:.953125,y:.890625},{x:.953125,y:.890625},{x:.984375,y:.890625},{x:.984375,y:.890625},{x:.015625,y:.921875},{x:.015625,y:.921875},{x:.046875,y:.921875},{x:.046875,y:.921875},{x:.078125,y:.921875},{x:.078125,y:.921875},{x:.109375,y:.921875},{x:.109375,y:.921875},{x:.140625,y:.921875},{x:.140625,y:.921875},{x:.171875,y:.921875},{x:.171875,y:.921875},{x:.203125,y:.921875},{x:.203125,y:.921875},{x:.234375,y:.921875},{x:.234375,y:.921875},{x:.265625,y:.921875},{x:.265625,y:.921875},{x:.296875,y:.921875},{x:.296875,y:.921875},{x:.328125,y:.921875},{x:.328125,y:.921875},{x:.359375,y:.921875},{x:.359375,y:.921875},{x:.390625,y:.921875},{x:.390625,y:.921875},{x:.421875,y:.921875},{x:.421875,y:.921875},{x:.453125,y:.921875},{x:.453125,y:.921875},{x:.484375,y:.921875},{x:.484375,y:.921875},{x:.515625,y:.921875},{x:.515625,y:.921875},{x:.546875,y:.921875},{x:.546875,y:.921875},{x:.578125,y:.921875},{x:.578125,y:.921875},{x:.609375,y:.921875},{x:.609375,y:.921875},{x:.640625,y:.921875},{x:.640625,y:.921875},{x:.671875,y:.921875},{x:.671875,y:.921875},{x:.703125,y:.921875},{x:.703125,y:.921875},{x:.734375,y:.921875},{x:.734375,y:.921875},{x:.765625,y:.921875},{x:.765625,y:.921875},{x:.796875,y:.921875},{x:.796875,y:.921875},{x:.828125,y:.921875},{x:.828125,y:.921875},{x:.859375,y:.921875},{x:.859375,y:.921875},{x:.890625,y:.921875},{x:.890625,y:.921875},{x:.921875,y:.921875},{x:.921875,y:.921875},{x:.953125,y:.921875},{x:.953125,y:.921875},{x:.984375,y:.921875},{x:.984375,y:.921875},{x:.015625,y:.953125},{x:.015625,y:.953125},{x:.046875,y:.953125},{x:.046875,y:.953125},{x:.078125,y:.953125},{x:.078125,y:.953125},{x:.109375,y:.953125},{x:.109375,y:.953125},{x:.140625,y:.953125},{x:.140625,y:.953125},{x:.171875,y:.953125},{x:.171875,y:.953125},{x:.203125,y:.953125},{x:.203125,y:.953125},{x:.234375,y:.953125},{x:.234375,y:.953125},{x:.265625,y:.953125},{x:.265625,y:.953125},{x:.296875,y:.953125},{x:.296875,y:.953125},{x:.328125,y:.953125},{x:.328125,y:.953125},{x:.359375,y:.953125},{x:.359375,y:.953125},{x:.390625,y:.953125},{x:.390625,y:.953125},{x:.421875,y:.953125},{x:.421875,y:.953125},{x:.453125,y:.953125},{x:.453125,y:.953125},{x:.484375,y:.953125},{x:.484375,y:.953125},{x:.515625,y:.953125},{x:.515625,y:.953125},{x:.546875,y:.953125},{x:.546875,y:.953125},{x:.578125,y:.953125},{x:.578125,y:.953125},{x:.609375,y:.953125},{x:.609375,y:.953125},{x:.640625,y:.953125},{x:.640625,y:.953125},{x:.671875,y:.953125},{x:.671875,y:.953125},{x:.703125,y:.953125},{x:.703125,y:.953125},{x:.734375,y:.953125},{x:.734375,y:.953125},{x:.765625,y:.953125},{x:.765625,y:.953125},{x:.796875,y:.953125},{x:.796875,y:.953125},{x:.828125,y:.953125},{x:.828125,y:.953125},{x:.859375,y:.953125},{x:.859375,y:.953125},{x:.890625,y:.953125},{x:.890625,y:.953125},{x:.921875,y:.953125},{x:.921875,y:.953125},{x:.953125,y:.953125},{x:.953125,y:.953125},{x:.984375,y:.953125},{x:.984375,y:.953125},{x:.015625,y:.984375},{x:.015625,y:.984375},{x:.046875,y:.984375},{x:.046875,y:.984375},{x:.078125,y:.984375},{x:.078125,y:.984375},{x:.109375,y:.984375},{x:.109375,y:.984375},{x:.140625,y:.984375},{x:.140625,y:.984375},{x:.171875,y:.984375},{x:.171875,y:.984375},{x:.203125,y:.984375},{x:.203125,y:.984375},{x:.234375,y:.984375},{x:.234375,y:.984375},{x:.265625,y:.984375},{x:.265625,y:.984375},{x:.296875,y:.984375},{x:.296875,y:.984375},{x:.328125,y:.984375},{x:.328125,y:.984375},{x:.359375,y:.984375},{x:.359375,y:.984375},{x:.390625,y:.984375},{x:.390625,y:.984375},{x:.421875,y:.984375},{x:.421875,y:.984375},{x:.453125,y:.984375},{x:.453125,y:.984375},{x:.484375,y:.984375},{x:.484375,y:.984375},{x:.515625,y:.984375},{x:.515625,y:.984375},{x:.546875,y:.984375},{x:.546875,y:.984375},{x:.578125,y:.984375},{x:.578125,y:.984375},{x:.609375,y:.984375},{x:.609375,y:.984375},{x:.640625,y:.984375},{x:.640625,y:.984375},{x:.671875,y:.984375},{x:.671875,y:.984375},{x:.703125,y:.984375},{x:.703125,y:.984375},{x:.734375,y:.984375},{x:.734375,y:.984375},{x:.765625,y:.984375},{x:.765625,y:.984375},{x:.796875,y:.984375},{x:.796875,y:.984375},{x:.828125,y:.984375},{x:.828125,y:.984375},{x:.859375,y:.984375},{x:.859375,y:.984375},{x:.890625,y:.984375},{x:.890625,y:.984375},{x:.921875,y:.984375},{x:.921875,y:.984375},{x:.953125,y:.984375},{x:.953125,y:.984375},{x:.984375,y:.984375},{x:.984375,y:.984375},{x:.03125,y:.03125},{x:.03125,y:.03125},{x:.09375,y:.03125},{x:.09375,y:.03125},{x:.15625,y:.03125},{x:.15625,y:.03125},{x:.21875,y:.03125},{x:.21875,y:.03125},{x:.28125,y:.03125},{x:.28125,y:.03125},{x:.34375,y:.03125},{x:.34375,y:.03125},{x:.40625,y:.03125},{x:.40625,y:.03125},{x:.46875,y:.03125},{x:.46875,y:.03125},{x:.53125,y:.03125},{x:.53125,y:.03125},{x:.59375,y:.03125},{x:.59375,y:.03125},{x:.65625,y:.03125},{x:.65625,y:.03125},{x:.71875,y:.03125},{x:.71875,y:.03125},{x:.78125,y:.03125},{x:.78125,y:.03125},{x:.84375,y:.03125},{x:.84375,y:.03125},{x:.90625,y:.03125},{x:.90625,y:.03125},{x:.96875,y:.03125},{x:.96875,y:.03125},{x:.03125,y:.09375},{x:.03125,y:.09375},{x:.09375,y:.09375},{x:.09375,y:.09375},{x:.15625,y:.09375},{x:.15625,y:.09375},{x:.21875,y:.09375},{x:.21875,y:.09375},{x:.28125,y:.09375},{x:.28125,y:.09375},{x:.34375,y:.09375},{x:.34375,y:.09375},{x:.40625,y:.09375},{x:.40625,y:.09375},{x:.46875,y:.09375},{x:.46875,y:.09375},{x:.53125,y:.09375},{x:.53125,y:.09375},{x:.59375,y:.09375},{x:.59375,y:.09375},{x:.65625,y:.09375},{x:.65625,y:.09375},{x:.71875,y:.09375},{x:.71875,y:.09375},{x:.78125,y:.09375},{x:.78125,y:.09375},{x:.84375,y:.09375},{x:.84375,y:.09375},{x:.90625,y:.09375},{x:.90625,y:.09375},{x:.96875,y:.09375},{x:.96875,y:.09375},{x:.03125,y:.15625},{x:.03125,y:.15625},{x:.09375,y:.15625},{x:.09375,y:.15625},{x:.15625,y:.15625},{x:.15625,y:.15625},{x:.21875,y:.15625},{x:.21875,y:.15625},{x:.28125,y:.15625},{x:.28125,y:.15625},{x:.34375,y:.15625},{x:.34375,y:.15625},{x:.40625,y:.15625},{x:.40625,y:.15625},{x:.46875,y:.15625},{x:.46875,y:.15625},{x:.53125,y:.15625},{x:.53125,y:.15625},{x:.59375,y:.15625},{x:.59375,y:.15625},{x:.65625,y:.15625},{x:.65625,y:.15625},{x:.71875,y:.15625},{x:.71875,y:.15625},{x:.78125,y:.15625},{x:.78125,y:.15625},{x:.84375,y:.15625},{x:.84375,y:.15625},{x:.90625,y:.15625},{x:.90625,y:.15625},{x:.96875,y:.15625},{x:.96875,y:.15625},{x:.03125,y:.21875},{x:.03125,y:.21875},{x:.09375,y:.21875},{x:.09375,y:.21875},{x:.15625,y:.21875},{x:.15625,y:.21875},{x:.21875,y:.21875},{x:.21875,y:.21875},{x:.28125,y:.21875},{x:.28125,y:.21875},{x:.34375,y:.21875},{x:.34375,y:.21875},{x:.40625,y:.21875},{x:.40625,y:.21875},{x:.46875,y:.21875},{x:.46875,y:.21875},{x:.53125,y:.21875},{x:.53125,y:.21875},{x:.59375,y:.21875},{x:.59375,y:.21875},{x:.65625,y:.21875},{x:.65625,y:.21875},{x:.71875,y:.21875},{x:.71875,y:.21875},{x:.78125,y:.21875},{x:.78125,y:.21875},{x:.84375,y:.21875},{x:.84375,y:.21875},{x:.90625,y:.21875},{x:.90625,y:.21875},{x:.96875,y:.21875},{x:.96875,y:.21875},{x:.03125,y:.28125},{x:.03125,y:.28125},{x:.09375,y:.28125},{x:.09375,y:.28125},{x:.15625,y:.28125},{x:.15625,y:.28125},{x:.21875,y:.28125},{x:.21875,y:.28125},{x:.28125,y:.28125},{x:.28125,y:.28125},{x:.34375,y:.28125},{x:.34375,y:.28125},{x:.40625,y:.28125},{x:.40625,y:.28125},{x:.46875,y:.28125},{x:.46875,y:.28125},{x:.53125,y:.28125},{x:.53125,y:.28125},{x:.59375,y:.28125},{x:.59375,y:.28125},{x:.65625,y:.28125},{x:.65625,y:.28125},{x:.71875,y:.28125},{x:.71875,y:.28125},{x:.78125,y:.28125},{x:.78125,y:.28125},{x:.84375,y:.28125},{x:.84375,y:.28125},{x:.90625,y:.28125},{x:.90625,y:.28125},{x:.96875,y:.28125},{x:.96875,y:.28125},{x:.03125,y:.34375},{x:.03125,y:.34375},{x:.09375,y:.34375},{x:.09375,y:.34375},{x:.15625,y:.34375},{x:.15625,y:.34375},{x:.21875,y:.34375},{x:.21875,y:.34375},{x:.28125,y:.34375},{x:.28125,y:.34375},{x:.34375,y:.34375},{x:.34375,y:.34375},{x:.40625,y:.34375},{x:.40625,y:.34375},{x:.46875,y:.34375},{x:.46875,y:.34375},{x:.53125,y:.34375},{x:.53125,y:.34375},{x:.59375,y:.34375},{x:.59375,y:.34375},{x:.65625,y:.34375},{x:.65625,y:.34375},{x:.71875,y:.34375},{x:.71875,y:.34375},{x:.78125,y:.34375},{x:.78125,y:.34375},{x:.84375,y:.34375},{x:.84375,y:.34375},{x:.90625,y:.34375},{x:.90625,y:.34375},{x:.96875,y:.34375},{x:.96875,y:.34375},{x:.03125,y:.40625},{x:.03125,y:.40625},{x:.09375,y:.40625},{x:.09375,y:.40625},{x:.15625,y:.40625},{x:.15625,y:.40625},{x:.21875,y:.40625},{x:.21875,y:.40625},{x:.28125,y:.40625},{x:.28125,y:.40625},{x:.34375,y:.40625},{x:.34375,y:.40625},{x:.40625,y:.40625},{x:.40625,y:.40625},{x:.46875,y:.40625},{x:.46875,y:.40625},{x:.53125,y:.40625},{x:.53125,y:.40625},{x:.59375,y:.40625},{x:.59375,y:.40625},{x:.65625,y:.40625},{x:.65625,y:.40625},{x:.71875,y:.40625},{x:.71875,y:.40625},{x:.78125,y:.40625},{x:.78125,y:.40625},{x:.84375,y:.40625},{x:.84375,y:.40625},{x:.90625,y:.40625},{x:.90625,y:.40625},{x:.96875,y:.40625},{x:.96875,y:.40625},{x:.03125,y:.46875},{x:.03125,y:.46875},{x:.09375,y:.46875},{x:.09375,y:.46875},{x:.15625,y:.46875},{x:.15625,y:.46875},{x:.21875,y:.46875},{x:.21875,y:.46875},{x:.28125,y:.46875},{x:.28125,y:.46875},{x:.34375,y:.46875},{x:.34375,y:.46875},{x:.40625,y:.46875},{x:.40625,y:.46875},{x:.46875,y:.46875},{x:.46875,y:.46875},{x:.53125,y:.46875},{x:.53125,y:.46875},{x:.59375,y:.46875},{x:.59375,y:.46875},{x:.65625,y:.46875},{x:.65625,y:.46875},{x:.71875,y:.46875},{x:.71875,y:.46875},{x:.78125,y:.46875},{x:.78125,y:.46875},{x:.84375,y:.46875},{x:.84375,y:.46875},{x:.90625,y:.46875},{x:.90625,y:.46875},{x:.96875,y:.46875},{x:.96875,y:.46875},{x:.03125,y:.53125},{x:.03125,y:.53125},{x:.09375,y:.53125},{x:.09375,y:.53125},{x:.15625,y:.53125},{x:.15625,y:.53125},{x:.21875,y:.53125},{x:.21875,y:.53125},{x:.28125,y:.53125},{x:.28125,y:.53125},{x:.34375,y:.53125},{x:.34375,y:.53125},{x:.40625,y:.53125},{x:.40625,y:.53125},{x:.46875,y:.53125},{x:.46875,y:.53125},{x:.53125,y:.53125},{x:.53125,y:.53125},{x:.59375,y:.53125},{x:.59375,y:.53125},{x:.65625,y:.53125},{x:.65625,y:.53125},{x:.71875,y:.53125},{x:.71875,y:.53125},{x:.78125,y:.53125},{x:.78125,y:.53125},{x:.84375,y:.53125},{x:.84375,y:.53125},{x:.90625,y:.53125},{x:.90625,y:.53125},{x:.96875,y:.53125},{x:.96875,y:.53125},{x:.03125,y:.59375},{x:.03125,y:.59375},{x:.09375,y:.59375},{x:.09375,y:.59375},{x:.15625,y:.59375},{x:.15625,y:.59375},{x:.21875,y:.59375},{x:.21875,y:.59375},{x:.28125,y:.59375},{x:.28125,y:.59375},{x:.34375,y:.59375},{x:.34375,y:.59375},{x:.40625,y:.59375},{x:.40625,y:.59375},{x:.46875,y:.59375},{x:.46875,y:.59375},{x:.53125,y:.59375},{x:.53125,y:.59375},{x:.59375,y:.59375},{x:.59375,y:.59375},{x:.65625,y:.59375},{x:.65625,y:.59375},{x:.71875,y:.59375},{x:.71875,y:.59375},{x:.78125,y:.59375},{x:.78125,y:.59375},{x:.84375,y:.59375},{x:.84375,y:.59375},{x:.90625,y:.59375},{x:.90625,y:.59375},{x:.96875,y:.59375},{x:.96875,y:.59375},{x:.03125,y:.65625},{x:.03125,y:.65625},{x:.09375,y:.65625},{x:.09375,y:.65625},{x:.15625,y:.65625},{x:.15625,y:.65625},{x:.21875,y:.65625},{x:.21875,y:.65625},{x:.28125,y:.65625},{x:.28125,y:.65625},{x:.34375,y:.65625},{x:.34375,y:.65625},{x:.40625,y:.65625},{x:.40625,y:.65625},{x:.46875,y:.65625},{x:.46875,y:.65625},{x:.53125,y:.65625},{x:.53125,y:.65625},{x:.59375,y:.65625},{x:.59375,y:.65625},{x:.65625,y:.65625},{x:.65625,y:.65625},{x:.71875,y:.65625},{x:.71875,y:.65625},{x:.78125,y:.65625},{x:.78125,y:.65625},{x:.84375,y:.65625},{x:.84375,y:.65625},{x:.90625,y:.65625},{x:.90625,y:.65625},{x:.96875,y:.65625},{x:.96875,y:.65625},{x:.03125,y:.71875},{x:.03125,y:.71875},{x:.09375,y:.71875},{x:.09375,y:.71875},{x:.15625,y:.71875},{x:.15625,y:.71875},{x:.21875,y:.71875},{x:.21875,y:.71875},{x:.28125,y:.71875},{x:.28125,y:.71875},{x:.34375,y:.71875},{x:.34375,y:.71875},{x:.40625,y:.71875},{x:.40625,y:.71875},{x:.46875,y:.71875},{x:.46875,y:.71875},{x:.53125,y:.71875},{x:.53125,y:.71875},{x:.59375,y:.71875},{x:.59375,y:.71875},{x:.65625,y:.71875},{x:.65625,y:.71875},{x:.71875,y:.71875},{x:.71875,y:.71875},{x:.78125,y:.71875},{x:.78125,y:.71875},{x:.84375,y:.71875},{x:.84375,y:.71875},{x:.90625,y:.71875},{x:.90625,y:.71875},{x:.96875,y:.71875},{x:.96875,y:.71875},{x:.03125,y:.78125},{x:.03125,y:.78125},{x:.09375,y:.78125},{x:.09375,y:.78125},{x:.15625,y:.78125},{x:.15625,y:.78125},{x:.21875,y:.78125},{x:.21875,y:.78125},{x:.28125,y:.78125},{x:.28125,y:.78125},{x:.34375,y:.78125},{x:.34375,y:.78125},{x:.40625,y:.78125},{x:.40625,y:.78125},{x:.46875,y:.78125},{x:.46875,y:.78125},{x:.53125,y:.78125},{x:.53125,y:.78125},{x:.59375,y:.78125},{x:.59375,y:.78125},{x:.65625,y:.78125},{x:.65625,y:.78125},{x:.71875,y:.78125},{x:.71875,y:.78125},{x:.78125,y:.78125},{x:.78125,y:.78125},{x:.84375,y:.78125},{x:.84375,y:.78125},{x:.90625,y:.78125},{x:.90625,y:.78125},{x:.96875,y:.78125},{x:.96875,y:.78125},{x:.03125,y:.84375},{x:.03125,y:.84375},{x:.09375,y:.84375},{x:.09375,y:.84375},{x:.15625,y:.84375},{x:.15625,y:.84375},{x:.21875,y:.84375},{x:.21875,y:.84375},{x:.28125,y:.84375},{x:.28125,y:.84375},{x:.34375,y:.84375},{x:.34375,y:.84375},{x:.40625,y:.84375},{x:.40625,y:.84375},{x:.46875,y:.84375},{x:.46875,y:.84375},{x:.53125,y:.84375},{x:.53125,y:.84375},{x:.59375,y:.84375},{x:.59375,y:.84375},{x:.65625,y:.84375},{x:.65625,y:.84375},{x:.71875,y:.84375},{x:.71875,y:.84375},{x:.78125,y:.84375},{x:.78125,y:.84375},{x:.84375,y:.84375},{x:.84375,y:.84375},{x:.90625,y:.84375},{x:.90625,y:.84375},{x:.96875,y:.84375},{x:.96875,y:.84375},{x:.03125,y:.90625},{x:.03125,y:.90625},{x:.09375,y:.90625},{x:.09375,y:.90625},{x:.15625,y:.90625},{x:.15625,y:.90625},{x:.21875,y:.90625},{x:.21875,y:.90625},{x:.28125,y:.90625},{x:.28125,y:.90625},{x:.34375,y:.90625},{x:.34375,y:.90625},{x:.40625,y:.90625},{x:.40625,y:.90625},{x:.46875,y:.90625},{x:.46875,y:.90625},{x:.53125,y:.90625},{x:.53125,y:.90625},{x:.59375,y:.90625},{x:.59375,y:.90625},{x:.65625,y:.90625},{x:.65625,y:.90625},{x:.71875,y:.90625},{x:.71875,y:.90625},{x:.78125,y:.90625},{x:.78125,y:.90625},{x:.84375,y:.90625},{x:.84375,y:.90625},{x:.90625,y:.90625},{x:.90625,y:.90625},{x:.96875,y:.90625},{x:.96875,y:.90625},{x:.03125,y:.96875},{x:.03125,y:.96875},{x:.09375,y:.96875},{x:.09375,y:.96875},{x:.15625,y:.96875},{x:.15625,y:.96875},{x:.21875,y:.96875},{x:.21875,y:.96875},{x:.28125,y:.96875},{x:.28125,y:.96875},{x:.34375,y:.96875},{x:.34375,y:.96875},{x:.40625,y:.96875},{x:.40625,y:.96875},{x:.46875,y:.96875},{x:.46875,y:.96875},{x:.53125,y:.96875},{x:.53125,y:.96875},{x:.59375,y:.96875},{x:.59375,y:.96875},{x:.65625,y:.96875},{x:.65625,y:.96875},{x:.71875,y:.96875},{x:.71875,y:.96875},{x:.78125,y:.96875},{x:.78125,y:.96875},{x:.84375,y:.96875},{x:.84375,y:.96875},{x:.90625,y:.96875},{x:.90625,y:.96875},{x:.96875,y:.96875},{x:.96875,y:.96875},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375}];var D0=class{constructor(t){fe(this,"model");fe(this,"anchors");fe(this,"anchorsTensor");fe(this,"inputSize");fe(this,"inputSizeTensor");fe(this,"doubleInputSizeTensor");this.model=t,this.anchors=FC.map(r=>[r.x,r.y]),this.anchorsTensor=ua(this.anchors),this.inputSize=this.model&&this.model.inputs&&this.model.inputs[0].shape?this.model.inputs[0].shape[2]:0,this.inputSizeTensor=St([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=St([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){let r={};r.boxOffsets=Pe(t,[0,0],[-1,2]),r.boxSizes=Pe(t,[0,2],[-1,2]),r.div=pe(r.boxOffsets,this.inputSizeTensor),r.boxCenterPoints=le(r.div,this.anchorsTensor),r.halfBoxSizes=pe(r.boxSizes,this.doubleInputSizeTensor),r.sub=he(r.boxCenterPoints,r.halfBoxSizes),r.startPoints=L(r.sub,this.inputSizeTensor),r.add=le(r.boxCenterPoints,r.halfBoxSizes),r.endPoints=L(r.add,this.inputSizeTensor);let n=ad([r.startPoints,r.endPoints],1);return Object.keys(r).forEach(a=>re(r[a])),n}normalizeLandmarks(t,r){let n={};n.reshape=G(t,[-1,7,2]),n.div=pe(n.reshape,this.inputSizeTensor),n.landmarks=le(n.div,this.anchors[r]);let a=L(n.landmarks,this.inputSizeTensor);return Object.keys(n).forEach(s=>re(n[s])),a}async predict(t,r){let n={};n.resize=Ie.resizeBilinear(t,[this.inputSize,this.inputSize]),n.div=pe(n.resize,Qe.tf127),n.image=he(n.div,Qe.tf1),n.batched=this.model.execute(n.image),n.predictions=et(n.batched),n.slice=Pe(n.predictions,[0,0],[-1,1]),n.sigmoid=Tr(n.slice),n.scores=et(n.sigmoid);let a=await n.scores.data();n.boxes=Pe(n.predictions,[0,1],[-1,4]),n.norm=this.normalizeBoxes(n.boxes),n.nms=await Ie.nonMaxSuppressionAsync(n.norm,n.scores,3*r.hand.maxDetected,r.hand.iouThreshold,r.hand.minConfidence);let s=await n.nms.array(),i=[];for(let o of s){let l={};l.box=Pe(n.norm,[o,0],[1,-1]),l.slice=Pe(n.predictions,[o,5],[1,14]),l.norm=this.normalizeLandmarks(l.slice,o),l.palmLandmarks=G(l.norm,[-1,2]);let u=await l.box.data(),d=u.slice(0,2),h=u.slice(2,4),p=await l.palmLandmarks.array(),c={startPoint:d,endPoint:h,palmLandmarks:p,confidence:a[o]},f=CC(c,[t.shape[2]/this.inputSize,t.shape[1]/this.inputSize]);i.push(f),Object.keys(l).forEach(m=>re(l[m]))}return Object.keys(n).forEach(o=>re(n[o])),i}};var L2e=5,$C=1.65,PC=[0,5,9,13,17,1,2],B2e=0,W2e=2,_C=0,L0=class{constructor(t,r){fe(this,"handDetector");fe(this,"handPoseModel");fe(this,"inputSize");fe(this,"storedBoxes");fe(this,"skipped");fe(this,"detectedHands");this.handDetector=t,this.handPoseModel=r,this.inputSize=this.handPoseModel&&this.handPoseModel.inputs[0].shape?this.handPoseModel.inputs[0].shape[2]:0,this.storedBoxes=[],this.skipped=Number.MAX_SAFE_INTEGER,this.detectedHands=0}calculateLandmarksBoundingBox(t){let r=t.map(i=>i[0]),n=t.map(i=>i[1]),a=[Math.min(...r),Math.min(...n)],s=[Math.max(...r),Math.max(...n)];return{startPoint:a,endPoint:s}}getBoxForPalmLandmarks(t,r){let n=t.map(s=>g5([...s,1],r)),a=this.calculateLandmarksBoundingBox(n);return z0(O0(a),L2e)}getBoxForHandLandmarks(t){let r=this.calculateLandmarksBoundingBox(t),n=z0(O0(r),$C);n.palmLandmarks=[];for(let a=0;a<PC.length;a++)n.palmLandmarks.push(t[PC[a]].slice(0,2));return n}transformRawCoords(t,r,n,a){let s=_0(r),i=[s[0]/this.inputSize,s[1]/this.inputSize,(s[0]+s[1])/this.inputSize/2],o=t.map(c=>[i[0]*(c[0]-this.inputSize/2),i[1]*(c[1]-this.inputSize/2),i[2]*c[2]]),l=m5(n,[0,0]),u=o.map(c=>[...g5(c,l),c[2]]),d=RC(a),h=[...Uh(r),1],p=[ji(h,d[0]),ji(h,d[1])];return u.map(c=>[Math.trunc(c[0]+p[0]),Math.trunc(c[1]+p[1]),Math.trunc(c[2])])}async estimateHands(t,r){let n=!1,a,s=(r.hand.skipTime||0)>oe()-_C,i=this.skipped<(r.hand.skipFrames||0);r.skipAllowed&&s&&i&&(a=await this.handDetector.predict(t,r),this.skipped=0),r.skipAllowed&&this.skipped++,a&&a.length>0&&(a.length!==this.detectedHands&&this.detectedHands!==r.hand.maxDetected||!r.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...a],this.storedBoxes.length>0&&(n=!0));let o=[];for(let l=0;l<this.storedBoxes.length;l++){let u=this.storedBoxes[l];if(!!u)if(r.hand.landmarks){let d=r.hand.rotation?EC(u.palmLandmarks[B2e],u.palmLandmarks[W2e]):0,h=Uh(u),p=[h[0]/t.shape[2],h[1]/t.shape[1]],c=r.hand.rotation&&ce.kernels.includes("rotatewithoffset")?Ie.rotateWithOffset(t,d,0,p):t.clone(),f=m5(-d,h),m=n?this.getBoxForPalmLandmarks(u.palmLandmarks,f):u,g=NC(m,c,[this.inputSize,this.inputSize]),y=pe(g,Qe.tf255);re(g),re(c);let[A,x]=this.handPoseModel.execute(y);_C=oe(),re(y);let b=(await A.data())[0];if(re(A),b>=r.hand.minConfidence/4){let w=G(x,[-1,3]),T=await w.array();re(x),re(w);let S=this.transformRawCoords(T,m,d,f),E=this.getBoxForHandLandmarks(S);this.storedBoxes[l]={...E,confidence:b};let R={landmarks:S,confidence:b,boxConfidence:u.confidence,fingerConfidence:b,box:{topLeft:E.startPoint,bottomRight:E.endPoint}};o.push(R)}else this.storedBoxes[l]=null;re(x)}else{let d=z0(O0(u),$C),h={confidence:u.confidence,boxConfidence:u.confidence,fingerConfidence:0,box:{topLeft:d.startPoint,bottomRight:d.endPoint},landmarks:[]};o.push(h)}}return this.storedBoxes=this.storedBoxes.filter(l=>l!==null),this.detectedHands=o.length,o.length>r.hand.maxDetected&&(o.length=r.hand.maxDetected),o}};var Kr={thumb:0,index:1,middle:2,ring:3,pinky:4,all:[0,1,2,3,4],nameMapping:{0:"thumb",1:"index",2:"middle",3:"ring",4:"pinky"},pointsMapping:{0:[[0,1],[1,2],[2,3],[3,4]],1:[[0,5],[5,6],[6,7],[7,8]],2:[[0,9],[9,10],[10,11],[11,12]],3:[[0,13],[13,14],[14,15],[15,16]],4:[[0,17],[17,18],[18,19],[19,20]]},getName:e=>Kr.nameMapping[e],getPoints:e=>Kr.pointsMapping[e]},qi={none:0,half:1,full:2,nameMapping:{0:"none",1:"half",2:"full"},getName:e=>qi.nameMapping[e]},Dt={verticalUp:0,verticalDown:1,horizontalLeft:2,horizontalRight:3,diagonalUpRight:4,diagonalUpLeft:5,diagonalDownRight:6,diagonalDownLeft:7,nameMapping:{0:"verticalUp",1:"verticalDown",2:"horizontalLeft",3:"horizontalRight",4:"diagonalUpRight",5:"diagonalUpLeft",6:"diagonalDownRight",7:"diagonalDownLeft"},getName:e=>Dt.nameMapping[e]},Hi=class{constructor(t){fe(this,"name");fe(this,"curls");fe(this,"directions");fe(this,"weights");fe(this,"weightsRelative");this.name=t,this.curls={},this.directions={},this.weights=[1,1,1,1,1],this.weightsRelative=[1,1,1,1,1]}curl(t,r,n){typeof this.curls[t]=="undefined"&&(this.curls[t]=[]),this.curls[t].push([r,n])}direction(t,r,n){this.directions[t]||(this.directions[t]=[]),this.directions[t].push([r,n])}weight(t,r){this.weights[t]=r;let n=this.weights.reduce((a,s)=>a+s,0);this.weightsRelative=this.weights.map(a=>a*5/n)}matchAgainst(t,r){let n=0;for(let a in t){let s=t[a],i=this.curls[a];if(typeof i=="undefined"){n+=this.weightsRelative[a];continue}for(let[o,l]of i)if(s===o){n+=l*this.weightsRelative[a];break}}for(let a in r){let s=r[a],i=this.directions[a];if(typeof i=="undefined"){n+=this.weightsRelative[a];continue}for(let[o,l]of i)if(s===o){n+=l*this.weightsRelative[a];break}}return n/10}};var{thumb:Aa,index:ls,middle:us,ring:zl,pinky:Ol}=Kr,{none:xa,half:U2e,full:ba}=qi,{verticalUp:Pd,verticalDown:P7e,horizontalLeft:y5,horizontalRight:G2e,diagonalUpRight:j2e,diagonalUpLeft:_d,diagonalDownRight:_7e,diagonalDownLeft:z7e}=Dt,Ki=new Hi("thumbs up");Ki.curl(Aa,xa,1);Ki.direction(Aa,Pd,1);Ki.direction(Aa,_d,.25);Ki.direction(Aa,j2e,.25);for(let e of[Kr.index,Kr.middle,Kr.ring,Kr.pinky])Ki.curl(e,ba,1),Ki.direction(e,y5,1),Ki.direction(e,G2e,1);var Yt=new Hi("victory");Yt.curl(Aa,U2e,.5);Yt.curl(Aa,xa,.5);Yt.direction(Aa,Pd,1);Yt.direction(Aa,_d,1);Yt.curl(ls,xa,1);Yt.direction(ls,Pd,.75);Yt.direction(ls,_d,1);Yt.curl(us,xa,1);Yt.direction(us,Pd,1);Yt.direction(us,_d,.75);Yt.curl(zl,ba,1);Yt.direction(zl,Pd,.2);Yt.direction(zl,_d,1);Yt.direction(zl,y5,.2);Yt.curl(Ol,ba,1);Yt.direction(Ol,Pd,.2);Yt.direction(Ol,_d,1);Yt.direction(Ol,y5,.2);Yt.weight(ls,2);Yt.weight(us,2);var Xi=new Hi("point");Xi.curl(Aa,ba,1);Xi.curl(ls,xa,.5);Xi.curl(us,ba,.5);Xi.curl(zl,ba,.5);Xi.curl(Ol,ba,.5);Xi.weight(ls,2);Xi.weight(us,2);var Zi=new Hi("middle finger");Zi.curl(Aa,xa,1);Zi.curl(ls,ba,.5);Zi.curl(us,ba,.5);Zi.curl(zl,ba,.5);Zi.curl(Ol,ba,.5);Zi.weight(ls,2);Zi.weight(us,2);var zd=new Hi("open palm");zd.curl(Aa,xa,.75);zd.curl(ls,xa,.75);zd.curl(us,xa,.75);zd.curl(zl,xa,.75);zd.curl(Ol,xa,.75);var zC=[Ki,Yt,Xi,Zi,zd];var H2e=.7,Dl={HALF_CURL_START_LIMIT:60,NO_CURL_START_LIMIT:130,DISTANCE_VOTE_POWER:1.1,SINGLE_ANGLE_VOTE_POWER:.9,TOTAL_ANGLE_VOTE_POWER:1.6};function OC(e,t,r,n){let a=(t-n)/(e-r),s=Math.atan(a)*180/Math.PI;return s<=0?s=-s:s>0&&(s=180-s),s}function LC(e,t){if(!e||!t)return[0,0];let r=OC(e[0],e[1],t[0],t[1]);if(e.length===2)return r;let n=OC(e[1],e[2],t[1],t[2]);return[r,n]}function DC(e,t=1){let r=0,n=0,a=0;return e>=75&&e<=105?r=1*t:e>=25&&e<=155?n=1*t:a=1*t,[r,n,a]}function q2e(e,t,r){let n=e[0]-t[0],a=e[0]-r[0],s=t[0]-r[0],i=e[1]-t[1],o=e[1]-r[1],l=t[1]-r[1],u=e[2]-t[2],d=e[2]-r[2],h=t[2]-r[2],p=Math.sqrt(n*n+i*i+u*u),c=Math.sqrt(a*a+o*o+d*d),f=Math.sqrt(s*s+l*l+h*h),m=(f*f+p*p-c*c)/(2*f*p);m>1?m=1:m<-1&&(m=-1);let g=Math.acos(m);g=57.2958*g%180;let y;return g>Dl.NO_CURL_START_LIMIT?y=qi.none:g>Dl.HALF_CURL_START_LIMIT?y=qi.half:y=qi.full,y}function BC(e,t,r,n){let a;return n===Math.abs(e)?e>0?a=Dt.horizontalLeft:a=Dt.horizontalRight:n===Math.abs(t)?t>0?a=Dt.horizontalLeft:a=Dt.horizontalRight:r>0?a=Dt.horizontalLeft:a=Dt.horizontalRight,a}function WC(e,t,r,n){let a;return n===Math.abs(e)?e<0?a=Dt.verticalDown:a=Dt.verticalUp:n===Math.abs(t)?t<0?a=Dt.verticalDown:a=Dt.verticalUp:r<0?a=Dt.verticalDown:a=Dt.verticalUp,a}function K2e(e,t,r,n,a,s,i,o){let l,u=WC(e,t,r,n),d=BC(a,s,i,o);return u===Dt.verticalUp?d===Dt.horizontalLeft?l=Dt.diagonalUpLeft:l=Dt.diagonalUpRight:d===Dt.horizontalLeft?l=Dt.diagonalDownLeft:l=Dt.diagonalDownRight,l}function X2e(e,t,r,n){let a=e[0]-t[0],s=e[0]-r[0],i=t[0]-r[0],o=e[1]-t[1],l=e[1]-r[1],u=t[1]-r[1],d=Math.max(Math.abs(a),Math.abs(s),Math.abs(i)),h=Math.max(Math.abs(o),Math.abs(l),Math.abs(u)),p=0,c=0,f=0,m=h/(d+1e-5);m>1.5?p+=Dl.DISTANCE_VOTE_POWER:m>.66?c+=Dl.DISTANCE_VOTE_POWER:f+=Dl.DISTANCE_VOTE_POWER;let g=Math.sqrt(a*a+o*o),y=Math.sqrt(s*s+l*l),A=Math.sqrt(i*i+u*u),x=Math.max(g,y,A),b=e[0],w=e[1],T=r[0],S=r[1];x===g?(T=r[0],S=r[1]):x===A&&(b=t[0],w=t[1]);let _=LC([b,w],[T,S]),M=DC(_,Dl.TOTAL_ANGLE_VOTE_POWER);p+=M[0],c+=M[1],f+=M[2];for(let O of n){let z=DC(O,Dl.SINGLE_ANGLE_VOTE_POWER);p+=z[0],c+=z[1],f+=z[2]}let I;return p===Math.max(p,c,f)?I=WC(l,o,u,h):f===Math.max(c,f)?I=BC(s,a,i,d):I=K2e(l,o,u,h,s,a,i,d),I}function VC(e){let t=[],r=[],n=[],a=[];if(!e)return{curls:n,directions:a};for(let s of Kr.all){let i=Kr.getPoints(s),o=[],l=[];for(let u of i){let d=e[u[0]],h=e[u[1]],p=LC(d,h),c=p[0],f=p[1];o.push(c),l.push(f)}t.push(o),r.push(l)}for(let s of Kr.all){let i=s===Kr.thumb?1:0,o=Kr.getPoints(s),l=e[o[i][0]],u=e[o[i+1][1]],d=e[o[3][1]],h=q2e(l,u,d),p=X2e(l,u,d,t[s].slice(i));n[s]=h,a[s]=p}return{curls:n,directions:a}}function B0(e){if(!e||e.length===0)return null;let t=VC(e),r={};for(let n of Kr.all)r[Kr.getName(n)]={curl:qi.getName(t.curls[n]),direction:Dt.getName(t.directions[n])};return r}function UC(e){let t=[];if(!e||e.length===0)return t;let r=VC(e);for(let n of zC){let a=n.matchAgainst(r.curls,r.directions);a>=H2e&&t.push({name:n.name,confidence:a})}return t}var GC={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]},Od,Dd,jC;async function x5(e,t){let r=await jC.estimateHands(e,t);if(!r)return[];let n=[];for(let a=0;a<r.length;a++){let s={};if(r[a].landmarks)for(let d of Object.keys(GC))s[d]=GC[d].map(h=>r[a].landmarks[h]);let i=r[a].landmarks,o=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],l=[0,0,0,0];if(i&&i.length>0){for(let d of i)d[0]<o[0]&&(o[0]=d[0]),d[1]<o[1]&&(o[1]=d[1]),d[0]>o[2]&&(o[2]=d[0]),d[1]>o[3]&&(o[3]=d[1]);o[2]-=o[0],o[3]-=o[1],l=[o[0]/(e.shape[2]||0),o[1]/(e.shape[1]||0),o[2]/(e.shape[2]||0),o[3]/(e.shape[1]||0)]}else o=r[a].box?[Math.trunc(Math.max(0,r[a].box.topLeft[0])),Math.trunc(Math.max(0,r[a].box.topLeft[1])),Math.trunc(Math.min(e.shape[2]||0,r[a].box.bottomRight[0])-Math.max(0,r[a].box.topLeft[0])),Math.trunc(Math.min(e.shape[1]||0,r[a].box.bottomRight[1])-Math.max(0,r[a].box.topLeft[1]))]:[0,0,0,0],l=[r[a].box.topLeft[0]/(e.shape[2]||0),r[a].box.topLeft[1]/(e.shape[1]||0),(r[a].box.bottomRight[0]-r[a].box.topLeft[0])/(e.shape[2]||0),(r[a].box.bottomRight[1]-r[a].box.topLeft[1])/(e.shape[1]||0)];let u=B0(i);n.push({id:a,score:Math.round(100*r[a].confidence)/100,boxScore:Math.round(100*r[a].boxConfidence)/100,fingerScore:Math.round(100*r[a].fingerConfidence)/100,label:"hand",box:o,boxRaw:l,keypoints:i,annotations:s,landmarks:u})}return n}async function b5(e){var r,n;ce.initial&&(Od=null,Dd=null),!Od||!Dd?[Od,Dd]=await Promise.all([e.hand.enabled?je((r=e.hand.detector)==null?void 0:r.modelPath):null,e.hand.landmarks?je((n=e.hand.skeleton)==null?void 0:n.modelPath):null]):(e.debug&&ie("cached model:",Od.modelUrl),e.debug&&ie("cached model:",Dd.modelUrl));let t=new D0(Od);return jC=new L0(t,Dd),[Od,Dd]}var lr=[null,null],Z2e=["StatefulPartitionedCall/Postprocessor/Slice","StatefulPartitionedCall/Postprocessor/ExpandDims_1"],Yi=[[0,0],[0,0]],Y2e=["hand","fist","pinch","point","face","tip","pinchtip"],qC=4,KC=1.6,J2e=512,Q2e=1.4,W0=Number.MAX_SAFE_INTEGER,v5=0,ds=[0,0],Gt={boxes:[],hands:[]},XC={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],base:[0],palm:[0,17,13,9,5,1,0]};async function ZC(e){var t;if(ce.initial&&(lr[0]=null),lr[0])e.debug&&ie("cached model:",lr[0].modelUrl);else{V0(["tensorlistreserve","enter","tensorlistfromtensor","merge","loopcond","switch","exit","tensorliststack","nextiteration","tensorlistsetitem","tensorlistgetitem","reciprocal","shape","split","where"],e),lr[0]=await je((t=e.hand.detector)==null?void 0:t.modelPath);let r=Object.values(lr[0].modelSignature.inputs);Yi[0][0]=Array.isArray(r)?parseInt(r[0].tensorShape.dim[1].size):0,Yi[0][1]=Array.isArray(r)?parseInt(r[0].tensorShape.dim[2].size):0}return lr[0]}async function YC(e){var t;if(ce.initial&&(lr[1]=null),lr[1])e.debug&&ie("cached model:",lr[1].modelUrl);else{lr[1]=await je((t=e.hand.skeleton)==null?void 0:t.modelPath);let r=Object.values(lr[1].modelSignature.inputs);Yi[1][0]=Array.isArray(r)?parseInt(r[0].tensorShape.dim[1].size):0,Yi[1][1]=Array.isArray(r)?parseInt(r[0].tensorShape.dim[2].size):0}return lr[1]}async function eAe(e,t){let r=[];if(!e||!lr[0])return r;let n={},a=(e.shape[2]||1)/(e.shape[1]||1),s=Math.min(Math.round((e.shape[1]||0)/8)*8,J2e),i=Math.round(s*a/8)*8;n.resize=Ie.resizeBilinear(e,[s,i]),n.cast=me(n.resize,"int32"),[n.rawScores,n.rawBoxes]=await lr[0].executeAsync(n.cast,Z2e),n.boxes=et(n.rawBoxes,[0,2]),n.scores=et(n.rawScores,[0]);let o=en(n.scores,1);re(o[qC]),o.splice(qC,1),n.filtered=sr(o,1),re(o),n.max=fr(n.filtered,1),n.argmax=Nn(n.filtered,1);let l=0;n.nms=await Ie.nonMaxSuppressionAsync(n.boxes,n.max,(t.hand.maxDetected||0)+1,t.hand.iouThreshold||0,t.hand.minConfidence||1);let u=await n.nms.data(),d=await n.max.data(),h=await n.argmax.data();for(let p of Array.from(u)){let c=Pe(n.boxes,p,1),f=await c.data();re(c);let m=[f[1],f[0],f[3]-f[1],f[2]-f[0]],g=C0(m,Q2e),y=[Math.trunc(m[0]*ds[0]),Math.trunc(m[1]*ds[1]),Math.trunc(m[2]*ds[0]),Math.trunc(m[3]*ds[1])],A=d[p],x=Y2e[h[p]],b={id:l++,score:A,box:y,boxRaw:g,label:x};r.push(b)}return Object.keys(n).forEach(p=>re(n[p])),r.sort((p,c)=>c.score-p.score),r.length>(t.hand.maxDetected||1)&&(r.length=t.hand.maxDetected||1),r}async function w5(e,t,r){let n={id:t.id,score:Math.round(100*t.score)/100,boxScore:Math.round(100*t.score)/100,fingerScore:0,box:t.box,boxRaw:t.boxRaw,label:t.label,keypoints:[],landmarks:{},annotations:{}};if(e&&lr[1]&&r.hand.landmarks&&t.score>(r.hand.minConfidence||0)){let a={},s=[t.boxRaw[1],t.boxRaw[0],t.boxRaw[3]+t.boxRaw[1],t.boxRaw[2]+t.boxRaw[0]];a.crop=Ie.cropAndResize(e,[s],[0],[Yi[1][0],Yi[1][1]],"bilinear"),a.div=pe(a.crop,Qe.tf255),[a.score,a.keypoints]=lr[1].execute(a.div,["Identity_1","Identity"]);let i=(await a.score.data())[0],o=(100-Math.trunc(100/(1+Math.exp(i))))/100;if(o>=(r.hand.minConfidence||0)){n.fingerScore=o,a.reshaped=G(a.keypoints,[-1,3]);let d=(await a.reshaped.array()).map(h=>[h[0]/Yi[1][1],h[1]/Yi[1][0],h[2]||0]).map(h=>[h[0]*t.boxRaw[2],h[1]*t.boxRaw[3],h[2]||0]);n.keypoints=d.map(h=>[ds[0]*(h[0]+t.boxRaw[0]),ds[1]*(h[1]+t.boxRaw[1]),h[2]||0]),n.landmarks=B0(n.keypoints);for(let h of Object.keys(XC))n.annotations[h]=XC[h].map(p=>n.landmarks&&n.keypoints[p]?n.keypoints[p]:null)}Object.keys(a).forEach(l=>re(a[l]))}return n}async function k5(e,t){var a,s;if(!lr[0]||!lr[1]||!((a=lr[0])!=null&&a.inputs[0].shape)||!((s=lr[1])!=null&&s.inputs[0].shape))return[];ds=[e.shape[2]||0,e.shape[1]||0],W0++;let r=(t.hand.skipTime||0)>oe()-v5,n=W0<(t.hand.skipFrames||0);return t.skipAllowed&&r&&n?Gt.hands:new Promise(async i=>{let o=3*(t.hand.skipTime||0)>oe()-v5,l=W0<3*(t.hand.skipFrames||0);t.skipAllowed&&Gt.hands.length===t.hand.maxDetected?Gt.hands=await Promise.all(Gt.boxes.map(d=>w5(e,d,t))):t.skipAllowed&&o&&l&&Gt.hands.length>0?Gt.hands=await Promise.all(Gt.boxes.map(d=>w5(e,d,t))):(Gt.boxes=await eAe(e,t),v5=oe(),Gt.hands=await Promise.all(Gt.boxes.map(d=>w5(e,d,t))),W0=0);let u=[...Gt.boxes];if(Gt.boxes.length=0,t.cacheSensitivity>0)for(let d=0;d<Gt.hands.length;d++){let h=GN(Gt.hands[d].keypoints,ds);if(h.box[2]/(e.shape[2]||1)>.05&&h.box[3]/(e.shape[1]||1)>.05&&Gt.hands[d].fingerScore&&Gt.hands[d].fingerScore>(t.hand.minConfidence||0)){let p=C0(h.box,KC),c=C0(h.boxRaw,KC);Gt.boxes.push({...u[d],box:p,boxRaw:c})}}for(let d=0;d<Gt.hands.length;d++){let h=as(Gt.hands[d].keypoints,ds);Gt.hands[d].box=h.box,Gt.hands[d].boxRaw=h.boxRaw}i(Gt.hands)})}var Mr,U0=[],I5=Number.MAX_SAFE_INTEGER,QC=0,e9=0;async function t9(e){var t;return ce.initial&&(Mr=null),Mr?e.debug&&ie("cached model:",Mr.modelUrl):Mr=await je((t=e.face.liveness)==null?void 0:t.modelPath),Mr}async function S5(e,t,r,n){var i,o;if(!Mr)return 0;let a=(((i=t.face.liveness)==null?void 0:i.skipTime)||0)>oe()-e9,s=I5<(((o=t.face.liveness)==null?void 0:o.skipFrames)||0);return t.skipAllowed&&a&&s&&QC===n&&U0[r]?(I5++,U0[r]):(I5=0,new Promise(async l=>{let u=Ie.resizeBilinear(e,[Mr!=null&&Mr.inputs[0].shape?Mr.inputs[0].shape[2]:0,Mr!=null&&Mr.inputs[0].shape?Mr.inputs[0].shape[1]:0],!1),d=Mr==null?void 0:Mr.execute(u),h=(await d.data())[0];U0[r]=Math.round(100*h)/100,QC=n,e9=oe(),re([u,d]),l(U0[r])}))}var Gh={};gs(Gh,{connected:()=>j0,horizontal:()=>T5,kpt:()=>G0,relative:()=>C5,vertical:()=>N5});var G0=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],T5=[["leftEye","rightEye"],["leftEar","rightEar"],["leftShoulder","rightShoulder"],["leftElbow","rightElbow"],["leftWrist","rightWrist"],["leftHip","rightHip"],["leftKnee","rightKnee"],["leftAnkle","rightAnkle"]],N5=[["leftKnee","leftShoulder"],["rightKnee","rightShoulder"],["leftAnkle","leftKnee"],["rightAnkle","rightKnee"]],C5=[[["leftHip","rightHip"],["leftShoulder","rightShoulder"]],[["leftElbow","rightElbow"],["leftShoulder","rightShoulder"]]],j0={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var n9=.005,An={keypoints:[],padding:[[0,0],[0,0],[0,0],[0,0]]};function E5(e){for(let t of T5){let r=e.keypoints.findIndex(a=>a.part===t[0]),n=e.keypoints.findIndex(a=>a.part===t[1]);if(e.keypoints[r]&&e.keypoints[n]&&e.keypoints[r].position[0]<e.keypoints[n].position[0]){let a=e.keypoints[r];e.keypoints[r]=e.keypoints[n],e.keypoints[n]=a}}for(let t of N5){let r=e.keypoints.findIndex(a=>a&&a.part===t[0]),n=e.keypoints.findIndex(a=>a&&a.part===t[1]);e.keypoints[r]&&e.keypoints[n]&&e.keypoints[r].position[1]<e.keypoints[n].position[1]&&e.keypoints.splice(r,1)}for(let[t,r]of C5){let n=e.keypoints.findIndex(u=>u&&u.part===t[0]),a=e.keypoints.findIndex(u=>u&&u.part===t[1]),s=e.keypoints.findIndex(u=>u&&u.part===r[0]),i=e.keypoints.findIndex(u=>u&&u.part===r[1]);if(!e.keypoints[s]||!e.keypoints[i])continue;let o=e.keypoints[n]?[Math.abs(e.keypoints[s].position[0]-e.keypoints[n].position[0]),Math.abs(e.keypoints[i].position[0]-e.keypoints[n].position[0])]:[0,0],l=e.keypoints[a]?[Math.abs(e.keypoints[i].position[0]-e.keypoints[a].position[0]),Math.abs(e.keypoints[s].position[0]-e.keypoints[a].position[0])]:[0,0];if(o[0]>o[1]||l[0]>l[1]){let u=e.keypoints[n];e.keypoints[n]=e.keypoints[a],e.keypoints[a]=u}}}function a9(e){for(let t=0;t<e.length;t++)if(e[t]&&An.keypoints[t]){let r=[Math.abs(e[t].positionRaw[0]-An.keypoints[t].positionRaw[0]),Math.abs(e[t].positionRaw[1]-An.keypoints[t].positionRaw[1])];r[0]<n9&&r[1]<n9?e[t]=An.keypoints[t]:An.keypoints[t]=e[t]}else An.keypoints[t]=e[t];return e}function s9(e,t){let r={};if(!e.shape||!e.shape[1]||!e.shape[2])return e;An.padding=[[0,0],[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0],[0,0]],r.pad=Gn(e,An.padding),r.resize=Ie.resizeBilinear(r.pad,[t,t]);let n=me(r.resize,"int32");return Object.keys(r).forEach(a=>re(r[a])),n}function i9(e,t){e.keypoints=e.keypoints.filter(n=>n&&n.position);for(let n of e.keypoints)n.position=[n.position[0]*(t[0]+An.padding[2][0]+An.padding[2][1])/t[0]-An.padding[2][0],n.position[1]*(t[1]+An.padding[1][0]+An.padding[1][1])/t[1]-An.padding[1][0]],n.positionRaw=[n.position[0]/t[0],n.position[1]/t[1]];let r=as(e.keypoints.map(n=>n.position),t);return e.box=r.box,e.boxRaw=r.boxRaw,e}var xn,H0=0,R5=Number.MAX_SAFE_INTEGER,Ll={boxes:[],bodies:[],last:0};async function o9(e){return ce.initial&&(xn=null),xn?e.debug&&ie("cached model:",xn.modelUrl):(V0(["size"],e),xn=await je(e.body.modelPath)),H0=xn.inputs[0].shape?xn.inputs[0].shape[2]:0,H0<64&&(H0=256),xn}async function rAe(e,t,r){let n=e[0][0],a=[],s=0;for(let d=0;d<n.length;d++)if(s=n[d][2],s>t.body.minConfidence){let h=[n[d][1],n[d][0]];a.push({score:Math.round(100*s)/100,part:G0[d],positionRaw:h,position:[Math.round((r.shape[2]||0)*h[0]),Math.round((r.shape[1]||0)*h[1])]})}s=a.reduce((d,h)=>h.score>d?h.score:d,0);let i=[],o=as(a.map(d=>d.position),[r.shape[2],r.shape[1]]),l={};for(let[d,h]of Object.entries(j0)){let p=[];for(let c=0;c<h.length-1;c++){let f=a.find(g=>g.part===h[c]),m=a.find(g=>g.part===h[c+1]);f&&m&&f.score>(t.body.minConfidence||0)&&m.score>(t.body.minConfidence||0)&&p.push([f.position,m.position])}l[d]=p}let u={id:0,score:s,box:o.box,boxRaw:o.boxRaw,keypoints:a,annotations:l};return E5(u),i.push(u),i}async function nAe(e,t,r){let n=[];for(let a=0;a<e[0].length;a++){let s=e[0][a],i=Math.round(100*s[51+4])/100;if(i>t.body.minConfidence){let o=[];for(let h=0;h<17;h++){let p=s[3*h+2];if(p>t.body.minConfidence){let c=[s[3*h+1],s[3*h+0]];o.push({part:G0[h],score:Math.round(100*p)/100,positionRaw:c,position:[Math.round((r.shape[2]||0)*c[0]),Math.round((r.shape[1]||0)*c[1])]})}}let l=as(o.map(h=>h.position),[r.shape[2],r.shape[1]]),u={};for(let[h,p]of Object.entries(j0)){let c=[];for(let f=0;f<p.length-1;f++){let m=o.find(y=>y.part===p[f]),g=o.find(y=>y.part===p[f+1]);m&&g&&m.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&c.push([m.position,g.position])}u[h]=c}let d={id:a,score:i,box:l.box,boxRaw:l.boxRaw,keypoints:[...o],annotations:u};E5(d),n.push(d)}}return n.sort((a,s)=>s.score-a.score),n.length>t.body.maxDetected&&(n.length=t.body.maxDetected),n}async function M5(e,t){if(!xn||!(xn!=null&&xn.inputs[0].shape))return[];t.skipAllowed||(Ll.boxes.length=0),R5++;let r=(t.body.skipTime||0)>oe()-Ll.last,n=R5<(t.body.skipFrames||0);return t.skipAllowed&&r&&n?Ll.bodies:new Promise(async a=>{let s={};R5=0,s.input=s9(e,H0),s.res=xn==null?void 0:xn.execute(s.input),Ll.last=oe();let i=await s.res.array();Ll.bodies=s.res.shape[2]===17?await rAe(i,t,e):await nAe(i,t,e);for(let o of Ll.bodies)i9(o,[e.shape[2]||1,e.shape[1]||1]),a9(o.keypoints);Object.keys(s).forEach(o=>re(s[o])),a(Ll.bodies)})}var Ld,q0=[],u9=0,F5=Number.MAX_SAFE_INTEGER,X0=0,K0=2.5;async function d9(e){if(!Ld||ce.initial){Ld=await je(e.object.modelPath);let t=Object.values(Ld.modelSignature.inputs);X0=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0}else e.debug&&ie("cached model:",Ld.modelUrl);return Ld}async function aAe(e,t,r){let n=0,a=[];for(let l of[1,2,4])K(async()=>{let u=l*13,d=et(e.find(m=>m.shape[1]===u**2&&(m.shape[2]||0)===Rd.length)),h=et(e.find(m=>m.shape[1]===u**2&&(m.shape[2]||0)<Rd.length)),c=await h.reshape([-1,4,h.shape[1]/4]).argMax(2).array(),f=await d.array();for(let m=0;m<d.shape[0];m++)for(let g=0;g<d.shape[1];g++){let y=f[m][g];if(y>(r.object.minConfidence||0)&&g!==61){let A=(.5+Math.trunc(m%u))/u,x=(.5+Math.trunc(m/u))/u,b=c[m].map(I=>I*(u/l/X0)),[w,T]=[A-K0/l*b[0],x-K0/l*b[1]],[S,E]=[A+K0/l*b[2]-w,x+K0/l*b[3]-T],R=[w,T,S,E];R=R.map(I=>Math.max(0,Math.min(I,1)));let _=[R[0]*t[0],R[1]*t[1],R[2]*t[0],R[3]*t[1]],M={id:n++,score:Math.round(100*y)/100,class:g+1,label:Rd[g].label,box:_.map(I=>Math.trunc(I)),boxRaw:R};a.push(M)}}});e.forEach(l=>re(l));let s=a.map(l=>[l.boxRaw[1],l.boxRaw[0],l.boxRaw[3],l.boxRaw[2]]),i=a.map(l=>l.score),o=[];if(s&&s.length>0){let l=await Ie.nonMaxSuppressionAsync(s,i,r.object.maxDetected,r.object.iouThreshold,r.object.minConfidence);o=await l.data(),re(l)}return a=a.filter((l,u)=>o.includes(u)).sort((l,u)=>u.score-l.score),a}async function $5(e,t){let r=(t.object.skipTime||0)>oe()-u9,n=F5<(t.object.skipFrames||0);return t.skipAllowed&&r&&n&&q0.length>0?(F5++,q0):(F5=0,!ce.kernels.includes("mod")||!ce.kernels.includes("sparsetodense")?q0:new Promise(async a=>{let s=[e.shape[2]||0,e.shape[1]||0],i=Ie.resizeBilinear(e,[X0,X0],!1),o=pe(i,Qe.tf255),l=o.transpose([0,3,1,2]);re(o),re(i);let u;t.object.enabled&&(u=Ld.execute(l)),u9=oe(),re(l);let d=await aAe(u,s,t);q0=d,a(d)}))}var Hh=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],sAe=Hh.length,jh=Hh.reduce((e,t,r)=>(e[t]=r,e),{}),iAe=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],i4e=iAe.map(([e,t])=>[jh[e],jh[t]]),h9=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function c9(e){let t=e.reduce(({maxX:r,maxY:n,minX:a,minY:s},{position:{x:i,y:o}})=>({maxX:Math.max(r,i),maxY:Math.max(n,o),minX:Math.min(a,i),minY:Math.min(s,o)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function f9(e,[t,r],[n,a]){let s=t/n,i=r/a,o=(u,d)=>({id:d,score:u.score,boxRaw:[u.box[0]/a,u.box[1]/n,u.box[2]/a,u.box[3]/n],box:[Math.trunc(u.box[0]*i),Math.trunc(u.box[1]*s),Math.trunc(u.box[2]*i),Math.trunc(u.box[3]*s)],keypoints:u.keypoints.map(({score:h,part:p,position:c})=>({score:h,part:p,position:[Math.trunc(c.x*i),Math.trunc(c.y*s)],positionRaw:[c.x/n,c.y/n]})),annotations:{}});return e.map((u,d)=>o(u,d))}var Z0=class{constructor(t,r){fe(this,"priorityQueue");fe(this,"numberOfElements");fe(this,"getElementValue");this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=r}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let r=2*t;if(r<this.numberOfElements&&this.less(r,r+1)&&r++,!this.less(t,r))break;this.exchange(t,r),t=r}}getValueAt(t){return this.getElementValue(this.priorityQueue[t])}less(t,r){return this.getValueAt(t)<this.getValueAt(r)}exchange(t,r){let n=this.priorityQueue[t];this.priorityQueue[t]=this.priorityQueue[r],this.priorityQueue[r]=n}};function P5(e,t,r,n){return{y:n.get(e,t,r),x:n.get(e,t,r+sAe)}}function _5(e,t,r){let{heatmapY:n,heatmapX:a,id:s}=e,{y:i,x:o}=P5(n,a,s,r);return{x:e.heatmapX*t+o,y:e.heatmapY*t+i}}function z5(e,t,r){return e<t?t:e>r?r:e}function m9(e,t,r,n){let a=r-e,s=n-t;return a*a+s*s}function O5(e,t){return{x:e.x+t.x,y:e.y+t.y}}var va,lAe=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"],Y0=1,Bd=16,uAe=50**2;function g9(e,t,r,n,a,s,i=2){let o=y=>({y:s.get(y.y,y.x,e),x:s.get(y.y,y.x,s.shape[2]/2+e)}),l=(y,A,x)=>({y:z5(Math.round(y.y/Bd),0,A-1),x:z5(Math.round(y.x/Bd),0,x-1)}),[u,d]=n.shape,h=l(t.position,u,d),p=o(h),f=O5(t.position,p);for(let y=0;y<i;y++){let A=l(f,u,d),x=P5(A.y,A.x,r,a);f=O5({x:A.x*Bd,y:A.y*Bd},{x:x.x,y:x.y})}let m=l(f,u,d),g=n.get(m.y,m.x,r);return{position:f,part:Hh[r],score:g}}function dAe(e,t,r,n,a){let s=h9.map(([p,c])=>[jh[p],jh[c]]),i=s.map(([,p])=>p),o=s.map(([p])=>p),l=t.shape[2],u=i.length,d=new Array(l),h=_5(e.part,Bd,r);d[e.part.id]={score:e.score,part:Hh[e.part.id],position:h};for(let p=u-1;p>=0;--p){let c=i[p],f=o[p];d[c]&&!d[f]&&(d[f]=g9(p,d[c],f,t,r,a))}for(let p=0;p<u;++p){let c=o[p],f=i[p];d[c]&&!d[f]&&(d[f]=g9(p,d[c],f,t,r,n))}return d}function pAe(e,t,r,n,a){let[s,i]=a.shape,o=!0,l=Math.max(r-Y0,0),u=Math.min(r+Y0+1,s);for(let d=l;d<u;++d){let h=Math.max(n-Y0,0),p=Math.min(n+Y0+1,i);for(let c=h;c<p;++c)if(a.get(d,c,e)>t){o=!1;break}if(!o)break}return o}function hAe(e,t){let[r,n,a]=t.shape,s=new Z0(r*n*a,({score:i})=>i);for(let i=0;i<r;++i)for(let o=0;o<n;++o)for(let l=0;l<a;++l){let u=t.get(i,o,l);u<e||pAe(l,u,i,o,t)&&s.enqueue({score:u,part:{heatmapY:i,heatmapX:o,id:l}})}return s}function y9(e,{x:t,y:r},n){return e.some(({keypoints:a})=>{var i;let s=(i=a[n])==null?void 0:i.position;return s?m9(r,t,s.y,s.x)<=uAe:!1})}function cAe(e,t){return t.reduce((n,{position:a,score:s},i)=>(y9(e,a,i)||(n+=s),n),0)/t.length}function fAe(e,t,r,n,a,s){let i=[],o=hAe(s,t);for(;i.length<a&&!o.empty();){let l=o.dequeue(),u=_5(l.part,Bd,e);if(y9(i,u,l.part.id))continue;let d=dAe(l,t,e,r,n);d=d.filter(c=>c.score>s);let h=cAe(i,d),p=c9(d);h>s&&i.push({keypoints:d,box:p,score:Math.round(100*h)/100})}return i}async function D5(e,t){let r=K(()=>{if(!va.inputs[0].shape)return[];let i=Ie.resizeBilinear(e,[va.inputs[0].shape[2],va.inputs[0].shape[1]]),o=he(pe(me(i,"float32"),127.5),1),u=va.execute(o,lAe).map(d=>et(d,[0]));return u[1]=Tr(u[1]),u}),n=await Promise.all(r.map(i=>i.buffer()));for(let i of r)re(i);let a=await fAe(n[0],n[1],n[2],n[3],t.body.maxDetected,t.body.minConfidence);return va.inputs[0].shape?f9(a,[e.shape[1],e.shape[2]],[va.inputs[0].shape[2],va.inputs[0].shape[1]]):[]}async function A9(e){return!va||ce.initial?va=await je(e.body.modelPath):e.debug&&ie("cached model:",va.modelUrl),va}var Oa,L5=!1;async function B5(e){return!Oa||ce.initial?Oa=await je(e.segmentation.modelPath):e.debug&&ie("cached model:",Oa.modelUrl),Oa}async function b9(e,t,r){var m,g;if(L5)return{data:[],canvas:null,alpha:null};L5=!0,Oa||await B5(r);let n=await Nd(e,r),a=((m=n.tensor)==null?void 0:m.shape[2])||0,s=((g=n.tensor)==null?void 0:g.shape[1])||0;if(!n.tensor)return{data:[],canvas:null,alpha:null};let i={};i.resize=Ie.resizeBilinear(n.tensor,[Oa.inputs[0].shape?Oa.inputs[0].shape[1]:0,Oa.inputs[0].shape?Oa.inputs[0].shape[2]:0],!1),re(n.tensor),i.norm=pe(i.resize,Qe.tf255),i.res=Oa.execute(i.norm),i.squeeze=et(i.res,0),i.squeeze.shape[2]===2?(i.softmax=ud(i.squeeze),[i.bg,i.fg]=en(i.softmax,2),i.expand=Ht(i.fg,2),i.pad=Ht(i.expand,0),i.crop=Ie.cropAndResize(i.pad,[[0,0,.5,.5]],[0],[a,s]),i.data=et(i.crop,0)):i.data=Ie.resizeBilinear(i.squeeze,[s,a]);let o=Array.from(await i.data.data());if(ce.node&&!ce.Canvas&&typeof ImageData=="undefined")return r.debug&&ie("canvas support missing"),Object.keys(i).forEach(y=>re(i[y])),{data:o,canvas:null,alpha:null};let l=Hr(a,s);$n&&await $n.toPixels(i.data,l);let u=l.getContext("2d");r.segmentation.blur&&r.segmentation.blur>0&&(u.filter=`blur(${r.segmentation.blur}px)`);let d=u.getImageData(0,0,a,s),h=Hr(a,s),p=h.getContext("2d");n.canvas&&p.drawImage(n.canvas,0,0),p.globalCompositeOperation="darken",r.segmentation.blur&&r.segmentation.blur>0&&(p.filter=`blur(${r.segmentation.blur}px)`),p.drawImage(l,0,0),p.globalCompositeOperation="source-over",p.filter="none";let c=p.getImageData(0,0,a,s);for(let y=0;y<a*s;y++)c.data[4*y+3]=d.data[4*y+0];p.putImageData(c,0,0);let f=null;if(t&&h){f=Hr(a,s);let y=await Nd(t,r);re(y.tensor);let A=f.getContext("2d");A.drawImage(y.canvas,0,0,f.width,f.height),A.drawImage(h,0,0)}return Object.keys(i).forEach(y=>re(i[y])),L5=!1,{data:o,canvas:h,alpha:l}}var qh=class{constructor(){fe(this,"ssrnetage",null);fe(this,"gear",null);fe(this,"blazeposedetect",null);fe(this,"blazepose",null);fe(this,"centernet",null);fe(this,"efficientpose",null);fe(this,"mobilefacenet",null);fe(this,"emotion",null);fe(this,"facedetect",null);fe(this,"faceiris",null);fe(this,"facemesh",null);fe(this,"faceres",null);fe(this,"ssrnetgender",null);fe(this,"handpose",null);fe(this,"handskeleton",null);fe(this,"handtrack",null);fe(this,"liveness",null);fe(this,"movenet",null);fe(this,"nanodet",null);fe(this,"posenet",null);fe(this,"segmentation",null);fe(this,"antispoof",null)}};function J0(e){for(let t of Object.keys(e.models))e.models[t]=null}async function W5(e){var t,r,n,a,s,i,o,l,u,d,h,p,c,f,m,g,y,A,x,b,w,T,S,E,R,_,M,I,O,z;ce.initial&&J0(e),e.config.hand.enabled&&(!e.models.handpose&&((r=(t=e.config.hand.detector)==null?void 0:t.modelPath)==null?void 0:r.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await b5(e.config)),!e.models.handskeleton&&e.config.hand.landmarks&&((a=(n=e.config.hand.detector)==null?void 0:n.modelPath)==null?void 0:a.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await b5(e.config))),e.config.body.enabled&&!e.models.blazepose&&((i=(s=e.config.body)==null?void 0:s.modelPath)==null?void 0:i.includes("blazepose"))&&(e.models.blazepose=XN(e.config)),e.config.body.enabled&&!e.models.blazeposedetect&&e.config.body.detector&&e.config.body.detector.modelPath&&(e.models.blazeposedetect=KN(e.config)),e.config.body.enabled&&!e.models.efficientpose&&((l=(o=e.config.body)==null?void 0:o.modelPath)==null?void 0:l.includes("efficientpose"))&&(e.models.efficientpose=tC(e.config)),e.config.body.enabled&&!e.models.movenet&&((d=(u=e.config.body)==null?void 0:u.modelPath)==null?void 0:d.includes("movenet"))&&(e.models.movenet=o9(e.config)),e.config.body.enabled&&!e.models.posenet&&((p=(h=e.config.body)==null?void 0:h.modelPath)==null?void 0:p.includes("posenet"))&&(e.models.posenet=A9(e.config)),e.config.face.enabled&&!e.models.facedetect&&(e.models.facedetect=LN(e.config)),e.config.face.enabled&&((c=e.config.face.antispoof)==null?void 0:c.enabled)&&!e.models.antispoof&&(e.models.antispoof=TN(e.config)),e.config.face.enabled&&((f=e.config.face.liveness)==null?void 0:f.enabled)&&!e.models.liveness&&(e.models.liveness=t9(e.config)),e.config.face.enabled&&((m=e.config.face.description)==null?void 0:m.enabled)&&!e.models.faceres&&(e.models.faceres=IC(e.config)),e.config.face.enabled&&((g=e.config.face.emotion)==null?void 0:g.enabled)&&!e.models.emotion&&(e.models.emotion=sC(e.config)),e.config.face.enabled&&((y=e.config.face.iris)==null?void 0:y.enabled)&&!e.models.faceiris&&(e.models.faceiris=mC(e.config)),e.config.face.enabled&&((A=e.config.face.mesh)==null?void 0:A.enabled)&&!e.models.facemesh&&(e.models.facemesh=xC(e.config)),e.config.face.enabled&&((x=e.config.face.gear)==null?void 0:x.enabled)&&!e.models.gear&&(e.models.gear=cN(e.config)),e.config.face.enabled&&((b=e.config.face.ssrnet)==null?void 0:b.enabled)&&!e.models.ssrnetage&&(e.models.ssrnetage=AN(e.config)),e.config.face.enabled&&((w=e.config.face.ssrnet)==null?void 0:w.enabled)&&!e.models.ssrnetgender&&(e.models.ssrnetgender=wN(e.config)),e.config.face.enabled&&((T=e.config.face.mobilefacenet)==null?void 0:T.enabled)&&!e.models.mobilefacenet&&(e.models.mobilefacenet=dC(e.config)),e.config.hand.enabled&&!e.models.handtrack&&((E=(S=e.config.hand.detector)==null?void 0:S.modelPath)==null?void 0:E.includes("handtrack"))&&(e.models.handtrack=ZC(e.config)),e.config.hand.enabled&&e.config.hand.landmarks&&!e.models.handskeleton&&((_=(R=e.config.hand.detector)==null?void 0:R.modelPath)==null?void 0:_.includes("handtrack"))&&(e.models.handskeleton=YC(e.config)),e.config.object.enabled&&!e.models.centernet&&((I=(M=e.config.object)==null?void 0:M.modelPath)==null?void 0:I.includes("centernet"))&&(e.models.centernet=JN(e.config)),e.config.object.enabled&&!e.models.nanodet&&((z=(O=e.config.object)==null?void 0:O.modelPath)==null?void 0:z.includes("nanodet"))&&(e.models.nanodet=d9(e.config)),e.config.segmentation.enabled&&!e.models.segmentation&&(e.models.segmentation=B5(e.config));for await(let j of Object.keys(e.models))e.models[j]&&typeof e.models[j]!="undefined"&&(e.models[j]=await e.models[j])}async function V5(e){let t=["const","placeholder","noop","pad","squeeze","add","sub","mul","div"];for(let r of Object.keys(e.models)){let n=e.models[r];if(!n)continue;let a=[],s=n==null?void 0:n.executor;if(s&&s.graph.nodes)for(let o of Object.values(s.graph.nodes)){let l=o.op.toLowerCase();a.includes(l)||a.push(l)}else!s&&e.config.debug&&ie("model signature not determined:",r);let i=[];for(let o of a)!t.includes(o)&&!e.env.kernels.includes(o)&&!e.env.kernels.includes(o.replace("_",""))&&!e.env.kernels.includes(o.replace("native",""))&&!e.env.kernels.includes(o.replace("v2",""))&&i.push(o);e.config.debug&&i.length>0&&ie("model validation failed:",r,i)}}var Ct={name:"humangl",priority:999,canvas:null,gl:null,extensions:[],webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function mAe(){let e=Ct.gl;!e||(Ct.extensions=e.getSupportedExtensions())}async function w9(e){var t;if(e.config.backend==="humangl"&&(Ct.name in Ar().registry&&(!Ct.gl||!Ct.gl.getParameter(Ct.gl.VERSION))&&(ie("error: humangl backend invalid context"),J0(e)),!T2(Ct.name))){try{Ct.canvas=await Hr(100,100)}catch(n){ie("error: cannot create canvas:",n);return}try{if(Ct.gl=(t=Ct.canvas)==null?void 0:t.getContext("webgl2",Ct.webGLattr),!Ct.gl.getParameter(Ct.gl.VERSION).includes("2.0")){ie("override: using fallback webgl backend as webgl 2.0 is not detected"),e.config.backend="webgl";return}Ct.canvas&&(Ct.canvas.addEventListener("webglcontextlost",async a=>{throw ie("error: humangl:",a.type),ie("possible browser memory leak using webgl or conflict with multiple backend registrations"),e.emit("error"),new Error("backend error: webgl context lost")}),Ct.canvas.addEventListener("webglcontextrestored",a=>{ie("error: humangl context restored:",a)}),Ct.canvas.addEventListener("webglcontextcreationerror",a=>{ie("error: humangl context create:",a)}))}catch(n){ie("error: cannot get WebGL context:",n);return}try{o0(2,Ct.gl)}catch(n){ie("error: cannot set WebGL context:",n);return}try{let n=new hu(Ct.gl);wl(Ct.name,()=>new Ch(n),Ct.priority)}catch(n){ie("error: cannot register WebGL backend:",n);return}try{Ca("webgl").forEach(a=>{let s={...a,backendName:Ct.name};Vn(s)})}catch(n){ie("error: cannot update WebGL backend registration:",n);return}let r=Un().getGPGPUContext?Un().getGPGPUContext().gl:null;if(r)ie(`humangl webgl version:${r.getParameter(r.VERSION)} renderer:${r.getParameter(r.RENDERER)}`);else{ie("error: no current gl context:",r,Ct.gl);return}try{ga.set("WEBGL_VERSION",2)}catch(n){ie("error: cannot set WebGL backend flags:",n);return}mAe(),ie("backend registered:",Ct.name)}}function gAe(){if(!ce.kernels.includes("mod")){let e={kernelName:"Mod",backendName:an(),kernelFunc:t=>K(()=>he(t.inputs.a,L(pe(t.inputs.a,t.inputs.b),t.inputs.b)))};Vn(e),ce.kernels.push("mod")}if(!ce.kernels.includes("floormod")){let e={kernelName:"FloorMod",backendName:an(),kernelFunc:t=>K(()=>oh(t.inputs.a/t.inputs.b)*t.inputs.b+od(t.inputs.a,t.inputs.b))};Vn(e),ce.kernels.push("floormod")}}async function eg(e,t=!1){if(e.state="backend",t||ce.initial||e.config.backend&&e.config.backend.length>0&&an()!==e.config.backend){let r=oe();if(e.config.backend&&e.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&e.config.debug&&e.config.debug&&ie("running inside web worker"),ce.browser&&e.config.backend==="tensorflow"&&(e.config.debug&&ie("override: backend set to tensorflow while running in browser"),e.config.backend="humangl"),ce.node&&(e.config.backend==="webgl"||e.config.backend==="humangl")&&(e.config.debug&&ie(`override: backend set to ${e.config.backend} while running in nodejs`),e.config.backend="tensorflow"),ce.browser&&e.config.backend==="webgpu")if(typeof navigator=="undefined"||typeof navigator.gpu=="undefined")ie("override: backend set to webgpu but browser does not support webgpu"),e.config.backend="humangl";else{let a=await navigator.gpu.requestAdapter();e.config.debug&&ie("enumerated webgpu adapter:",a)}e.config.backend==="humangl"&&await w9(e);let n=Object.keys(Ar().registryFactory);if(e.config.debug&&ie("available backends:",n),n.includes(e.config.backend)||(ie(`error: backend ${e.config.backend} not found in registry`),e.config.backend=ce.node?"tensorflow":"webgl",e.config.debug&&ie(`override: setting backend ${e.config.backend}`)),e.config.debug&&ie("setting backend:",e.config.backend),e.config.backend==="wasm"){if(e.config.debug&&ie("wasm path:",e.config.wasmPath),typeof(Ue==null?void 0:Ue.setWasmPaths)!="undefined")await kb(e.config.wasmPath,e.config.wasmPlatformFetch);else throw new Error("backend error: attempting to use wasm backend but wasm path is not set");let a=await Y().getAsync("WASM_HAS_SIMD_SUPPORT"),s=await Y().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");e.config.debug&&ie(`wasm execution: ${a?"SIMD":"no SIMD"} ${s?"multithreaded":"singlethreaded"}`),e.config.debug&&!a&&ie("warning: wasm simd support is not enabled")}try{await S2(e.config.backend),await nd(),mN()}catch(a){return ie("error: cannot set backend:",e.config.backend,a),!1}}if(an()==="humangl"&&(ga.set("CHECK_COMPUTATION_FOR_ERRORS",!1),ga.set("WEBGL_CPU_FORWARD",!0),ga.set("WEBGL_USE_SHAPES_UNIFORMS",!0),ga.set("CPU_HANDOFF_SIZE_THRESHOLD",256),typeof e.config.deallocate!="undefined"&&e.config.deallocate&&(ie("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),ga.set("WEBGL_DELETE_TEXTURE_THRESHOLD",0)),Un().getGPGPUContext)){let n=await Un().getGPGPUContext().gl;e.config.debug&&ie(`gl version:${n.getParameter(n.VERSION)} renderer:${n.getParameter(n.RENDERER)}`)}an(),k2(),await nd(),e.performance.initBackend=Math.trunc(oe()-r),e.config.backend=an(),await ce.updateBackend(),gAe()}return!0}function V0(e,t){for(let r of e){let n={kernelName:r,backendName:t.backend,kernelFunc:()=>{t.debug&&ie("kernelFunc",r,t.backend)}};Vn(n)}ce.kernels=Ca(an()).map(r=>r.kernelName.toLowerCase())}var K5={};gs(K5,{all:()=>q5,body:()=>ng,canvas:()=>H5,face:()=>rg,gesture:()=>tg,hand:()=>ag,object:()=>sg,options:()=>Da,person:()=>j5});var Da={color:"rgba(173, 216, 230, 0.6)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 16px "Segoe UI"',lineHeight:18,lineWidth:4,pointSize:2,roundRect:8,drawPoints:!1,drawLabels:!0,drawBoxes:!0,drawGestures:!0,drawPolygons:!0,drawGaze:!0,fillPolygons:!1,useDepth:!0,useCurves:!1},U5=0,Bl=e=>{if(!e)ie("draw error: invalid canvas");else if(!e.getContext)ie("draw error: canvas context not defined");else{let t=e.getContext("2d");if(!t)ie("draw error: cannot get canvas context");else return t}return null},Wd=e=>Math.round(e*180/Math.PI);function G5(e,t,r,n,a){n=n||0,e.fillStyle=a.useDepth&&n?`rgba(${127.5+2*n}, ${127.5-2*n}, 255, 0.3)`:a.color,e.beginPath(),e.arc(t,r,a.pointSize,0,2*Math.PI),e.fill()}function Kh(e,t,r,n,a,s){if(e.beginPath(),e.lineWidth=s.lineWidth,s.useCurves){let i=(t+t+n)/2,o=(r+r+a)/2;e.ellipse(i,o,n/2,a/2,0,0,2*Math.PI)}else e.moveTo(t+s.roundRect,r),e.lineTo(t+n-s.roundRect,r),e.quadraticCurveTo(t+n,r,t+n,r+s.roundRect),e.lineTo(t+n,r+a-s.roundRect),e.quadraticCurveTo(t+n,r+a,t+n-s.roundRect,r+a),e.lineTo(t+s.roundRect,r+a),e.quadraticCurveTo(t,r+a,t,r+a-s.roundRect),e.lineTo(t,r+s.roundRect),e.quadraticCurveTo(t,r,t+s.roundRect,r),e.closePath();e.stroke()}function S9(e,t,r){if(!(t.length<2)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let n of t){let a=n[2]||0;e.strokeStyle=r.useDepth&&a!==0?`rgba(${127.5+2*a}, ${127.5-2*a}, 255, 0.3)`:r.color,e.fillStyle=r.useDepth&&a!==0?`rgba(${127.5+2*a}, ${127.5-2*a}, 255, 0.3)`:r.color,e.lineTo(n[0],Math.round(n[1]))}e.stroke(),r.fillPolygons&&(e.closePath(),e.fill())}}function AAe(e,t,r){if(!(t.length<2)){if(e.lineWidth=r.lineWidth,!r.useCurves||t.length<=2){S9(e,t,r);return}e.moveTo(t[0][0],t[0][1]);for(let n=0;n<t.length-2;n++){let a=(t[n][0]+t[n+1][0])/2,s=(t[n][1]+t[n+1][1])/2;e.quadraticCurveTo(t[n][0],t[n][1],a,s)}e.quadraticCurveTo(t[t.length-2][0],t[t.length-2][1],t[t.length-1][0],t[t.length-1][1]),e.stroke(),r.fillPolygons&&(e.closePath(),e.fill())}}function I9(e,t,r,n=5){let a,s,i;e.beginPath(),e.moveTo(t[0],t[1]),e.lineTo(r[0],r[1]),a=Math.atan2(r[1]-t[1],r[0]-t[0]),s=n*Math.cos(a)+r[0],i=n*Math.sin(a)+r[1],e.moveTo(s,i),a+=1/3*(2*Math.PI),s=n*Math.cos(a)+r[0],i=n*Math.sin(a)+r[1],e.lineTo(s,i),a+=1/3*(2*Math.PI),s=n*Math.cos(a)+r[0],i=n*Math.sin(a)+r[1],e.lineTo(s,i),e.closePath(),e.stroke(),e.fill()}async function tg(e,t,r){let n=kr(Da,r);if(!(!t||!e)&&n.drawGestures){let a=Bl(e);if(!a)return;a.font=n.font,a.fillStyle=n.color;let s=1;for(let i=0;i<t.length;i++){let o=[],l=[];if([o,l]=Object.entries(t[i]),l.length>1&&l[1].length>0){let u=o[1]>0?`#${o[1]}`:"",d=`${o[0]} ${u}: ${l[1]}`;n.shadowColor&&n.shadowColor!==""&&(a.fillStyle=n.shadowColor,a.fillText(d,8,2+s*n.lineHeight)),a.fillStyle=n.labelColor,a.fillText(d,6,0+s*n.lineHeight),s+=1}}}}async function rg(e,t,r){var s,i,o,l,u;let n=kr(Da,r);if(!t||!e)return;let a=Bl(e);if(!!a)for(let d of t){if(a.font=n.font,a.strokeStyle=n.color,a.fillStyle=n.color,n.drawBoxes&&Kh(a,d.box[0],d.box[1],d.box[2],d.box[3],n),n.drawLabels){let h=[];if(h.push(`face: ${Math.trunc(100*d.score)}%`),d.genderScore&&h.push(`${d.gender||""} ${Math.trunc(100*d.genderScore)}%`),d.age&&h.push(`age: ${d.age||""}`),d.iris&&h.push(`distance: ${d.iris}`),d.real&&h.push(`real: ${Math.trunc(100*d.real)}%`),d.live&&h.push(`live: ${Math.trunc(100*d.live)}%`),d.emotion&&d.emotion.length>0){let p=d.emotion.map(c=>`${Math.trunc(100*c.score)}% ${c.emotion}`);p.length>3&&(p.length=3),h.push(p.join(" "))}d.rotation&&d.rotation.angle&&d.rotation.gaze&&(d.rotation.angle.roll&&h.push(`roll: ${Wd(d.rotation.angle.roll)}\xB0 yaw:${Wd(d.rotation.angle.yaw)}\xB0 pitch:${Wd(d.rotation.angle.pitch)}\xB0`),d.rotation.gaze.bearing&&h.push(`gaze: ${Wd(d.rotation.gaze.bearing)}\xB0`)),h.length===0&&h.push("face"),a.fillStyle=n.color;for(let p=h.length-1;p>=0;p--){let c=Math.max(d.box[0],0),f=p*n.lineHeight+d.box[1];n.shadowColor&&n.shadowColor!==""&&(a.fillStyle=n.shadowColor,a.fillText(h[p],c+5,f+16)),a.fillStyle=n.labelColor,a.fillText(h[p],c+4,f+15)}}if(a.lineWidth=2,d.mesh&&d.mesh.length>0){if(n.drawPoints)for(let h of d.mesh)G5(a,h[0],h[1],h[2],n);if(n.drawPolygons){if(d.mesh.length>450)for(let h=0;h<$l.length/3;h++){let p=[$l[h*3+0],$l[h*3+1],$l[h*3+2]].map(c=>d.mesh[c]);S9(a,p,n)}if(d.annotations&&d.annotations.leftEyeIris&&d.annotations.leftEyeIris[0]){a.strokeStyle=n.useDepth?"rgba(255, 200, 255, 0.3)":n.color,a.beginPath();let h=Math.abs(d.annotations.leftEyeIris[3][0]-d.annotations.leftEyeIris[1][0])/2,p=Math.abs(d.annotations.leftEyeIris[4][1]-d.annotations.leftEyeIris[2][1])/2;a.ellipse(d.annotations.leftEyeIris[0][0],d.annotations.leftEyeIris[0][1],h,p,0,0,2*Math.PI),a.stroke(),n.fillPolygons&&(a.fillStyle=n.useDepth?"rgba(255, 255, 200, 0.3)":n.color,a.fill())}if(d.annotations&&d.annotations.rightEyeIris&&d.annotations.rightEyeIris[0]){a.strokeStyle=n.useDepth?"rgba(255, 200, 255, 0.3)":n.color,a.beginPath();let h=Math.abs(d.annotations.rightEyeIris[3][0]-d.annotations.rightEyeIris[1][0])/2,p=Math.abs(d.annotations.rightEyeIris[4][1]-d.annotations.rightEyeIris[2][1])/2;a.ellipse(d.annotations.rightEyeIris[0][0],d.annotations.rightEyeIris[0][1],h,p,0,0,2*Math.PI),a.stroke(),n.fillPolygons&&(a.fillStyle=n.useDepth?"rgba(255, 255, 200, 0.3)":n.color,a.fill())}if(n.drawGaze&&((s=d.rotation)==null?void 0:s.angle)&&typeof Path2D!="undefined"){a.strokeStyle="pink";let h=d.box[0]+d.box[2]/2-d.box[3]*Wd(d.rotation.angle.yaw)/90,p=d.box[1]+d.box[3]/2+d.box[2]*Wd(d.rotation.angle.pitch)/90,c=new Path2D(`
|
|
M ${d.box[0]+d.box[2]/2} ${d.box[1]}
|
|
C
|
|
${h} ${d.box[1]},
|
|
${h} ${d.box[1]+d.box[3]},
|
|
${d.box[0]+d.box[2]/2} ${d.box[1]+d.box[3]}
|
|
`),f=new Path2D(`
|
|
M ${d.box[0]} ${d.box[1]+d.box[3]/2}
|
|
C
|
|
${d.box[0]} ${p},
|
|
${d.box[0]+d.box[2]} ${p},
|
|
${d.box[0]+d.box[2]} ${d.box[1]+d.box[3]/2}
|
|
`);a.stroke(f),a.stroke(c)}if(n.drawGaze&&((o=(i=d.rotation)==null?void 0:i.gaze)==null?void 0:o.strength)&&((u=(l=d.rotation)==null?void 0:l.gaze)==null?void 0:u.bearing)&&d.annotations.leftEyeIris&&d.annotations.rightEyeIris&&d.annotations.leftEyeIris[0]&&d.annotations.rightEyeIris[0]){a.strokeStyle="pink",a.fillStyle="pink";let h=[d.annotations.leftEyeIris[0][0]+Math.sin(d.rotation.gaze.bearing)*d.rotation.gaze.strength*d.box[3],d.annotations.leftEyeIris[0][1]+Math.cos(d.rotation.gaze.bearing)*d.rotation.gaze.strength*d.box[2]];I9(a,[d.annotations.leftEyeIris[0][0],d.annotations.leftEyeIris[0][1]],[h[0],h[1]],4);let p=[d.annotations.rightEyeIris[0][0]+Math.sin(d.rotation.gaze.bearing)*d.rotation.gaze.strength*d.box[3],d.annotations.rightEyeIris[0][1]+Math.cos(d.rotation.gaze.bearing)*d.rotation.gaze.strength*d.box[2]];I9(a,[d.annotations.rightEyeIris[0][0],d.annotations.rightEyeIris[0][1]],[p[0],p[1]],4)}}}}}async function ng(e,t,r){var s;let n=kr(Da,r);if(!t||!e)return;let a=Bl(e);if(!!a){a.lineJoin="round";for(let i=0;i<t.length;i++){if(a.strokeStyle=n.color,a.fillStyle=n.color,a.lineWidth=n.lineWidth,a.font=n.font,n.drawBoxes&&t[i].box&&((s=t[i].box)==null?void 0:s.length)===4&&(Kh(a,t[i].box[0],t[i].box[1],t[i].box[2],t[i].box[3],n),n.drawLabels&&(n.shadowColor&&n.shadowColor!==""&&(a.fillStyle=n.shadowColor,a.fillText(`body ${100*t[i].score}%`,t[i].box[0]+3,1+t[i].box[1]+n.lineHeight,t[i].box[2])),a.fillStyle=n.labelColor,a.fillText(`body ${100*t[i].score}%`,t[i].box[0]+2,0+t[i].box[1]+n.lineHeight,t[i].box[2]))),n.drawPoints&&t[i].keypoints)for(let o=0;o<t[i].keypoints.length;o++)!t[i].keypoints[o].score||t[i].keypoints[o].score===0||(a.fillStyle=n.useDepth&&t[i].keypoints[o].position[2]?`rgba(${127.5+2*(t[i].keypoints[o].position[2]||0)}, ${127.5-2*(t[i].keypoints[o].position[2]||0)}, 255, 0.5)`:n.color,G5(a,t[i].keypoints[o].position[0],t[i].keypoints[o].position[1],0,n));if(n.drawLabels&&t[i].keypoints){a.font=n.font;for(let o of t[i].keypoints)!o.score||o.score===0||(a.fillStyle=n.useDepth&&o.position[2]?`rgba(${127.5+2*o.position[2]}, ${127.5-2*o.position[2]}, 255, 0.5)`:n.color,a.fillText(`${o.part} ${Math.trunc(100*o.score)}%`,o.position[0]+4,o.position[1]+4))}if(n.drawPolygons&&t[i].keypoints&&t[i].annotations)for(let o of Object.values(t[i].annotations))for(let l of o)AAe(a,l,n)}}}async function ag(e,t,r){let n=kr(Da,r);if(!t||!e)return;let a=Bl(e);if(!!a){a.lineJoin="round",a.font=n.font;for(let s of t){if(n.drawBoxes&&(a.strokeStyle=n.color,a.fillStyle=n.color,Kh(a,s.box[0],s.box[1],s.box[2],s.box[3],n),n.drawLabels&&(n.shadowColor&&n.shadowColor!==""&&(a.fillStyle=n.shadowColor,a.fillText(`hand:${Math.trunc(100*s.score)}%`,s.box[0]+3,1+s.box[1]+n.lineHeight,s.box[2])),a.fillStyle=n.labelColor,a.fillText(`hand:${Math.trunc(100*s.score)}%`,s.box[0]+2,0+s.box[1]+n.lineHeight,s.box[2])),a.stroke()),n.drawPoints&&s.keypoints&&s.keypoints.length>0)for(let i of s.keypoints)a.fillStyle=n.useDepth?`rgba(${127.5+2*(i[2]||0)}, ${127.5-2*(i[2]||0)}, 255, 0.5)`:n.color,G5(a,i[0],i[1],0,n);if(n.drawLabels&&s.annotations){let i=(o,l)=>{if(!o||o.length===0||!o[0])return;let u=o[o.length-1][2]||0;a.fillStyle=n.useDepth?`rgba(${127.5+2*u}, ${127.5-2*u}, 255, 0.5)`:n.color,a.fillText(l,o[o.length-1][0]+4,o[o.length-1][1]+4)};a.font=n.font,i(s.annotations.index,"index"),i(s.annotations.middle,"middle"),i(s.annotations.ring,"ring"),i(s.annotations.pinky,"pinky"),i(s.annotations.thumb,"thumb"),i(s.annotations.palm,"palm")}if(n.drawPolygons&&s.annotations){let i=o=>{if(!(!o||o.length===0||!o[0]))for(let l=0;l<o.length;l++){a.beginPath();let u=o[l][2]||0;a.strokeStyle=n.useDepth?`rgba(${127.5+l*u}, ${127.5-l*u}, 255, 0.5)`:n.color,a.moveTo(o[l>0?l-1:0][0],o[l>0?l-1:0][1]),a.lineTo(o[l][0],o[l][1]),a.stroke()}};a.lineWidth=n.lineWidth,i(s.annotations.index),i(s.annotations.middle),i(s.annotations.ring),i(s.annotations.pinky),i(s.annotations.thumb)}}}}async function sg(e,t,r){let n=kr(Da,r);if(!t||!e)return;let a=Bl(e);if(!!a){a.lineJoin="round",a.font=n.font;for(let s of t)if(n.drawBoxes){if(a.strokeStyle=n.color,a.fillStyle=n.color,Kh(a,s.box[0],s.box[1],s.box[2],s.box[3],n),n.drawLabels){let i=`${s.label} ${Math.round(100*s.score)}%`;n.shadowColor&&n.shadowColor!==""&&(a.fillStyle=n.shadowColor,a.fillText(i,s.box[0]+3,1+s.box[1]+n.lineHeight,s.box[2])),a.fillStyle=n.labelColor,a.fillText(i,s.box[0]+2,0+s.box[1]+n.lineHeight,s.box[2])}a.stroke()}}}async function j5(e,t,r){let n=kr(Da,r);if(!t||!e)return;let a=Bl(e);if(!!a){a.lineJoin="round",a.font=n.font;for(let s=0;s<t.length;s++)if(n.drawBoxes){if(a.strokeStyle=n.color,a.fillStyle=n.color,Kh(a,t[s].box[0],t[s].box[1],t[s].box[2],t[s].box[3],n),n.drawLabels){let i=`person #${s}`;n.shadowColor&&n.shadowColor!==""&&(a.fillStyle=n.shadowColor,a.fillText(i,t[s].box[0]+3,1+t[s].box[1]+n.lineHeight,t[s].box[2])),a.fillStyle=n.labelColor,a.fillText(i,t[s].box[0]+2,0+t[s].box[1]+n.lineHeight,t[s].box[2])}a.stroke()}}}async function H5(e,t){if(!e||!t)return;let r=Bl(t);!r||r.drawImage(e,0,0)}async function q5(e,t,r){if(!t||!t.performance||!t||!e)return null;let n=oe(),a=kr(Da,r),s=Promise.all([rg(e,t.face,a),ng(e,t.body,a),ag(e,t.hand,a),sg(e,t.object,a),tg(e,t.gesture,a)]);return U5=ce.perfadd?U5+Math.round(oe()-n):Math.round(oe()-n),t.performance.draw=U5,s}var Vd=.1,X5=.5;function xAe(e,t,r){let n=!1,a=r.length-1;for(let s=0;s<r.length;a=s++)r[s].y>t!=r[a].y>t&&e<(r[a].x-r[s].x)*(t-r[s].y)/(r[a].y-r[s].y)+r[s].x&&(n=!n);return n}async function T9(e){if(!e.tensor||!e.mesh||e.mesh.length<100)return e.tensor;let t=e.tensor.shape[2]||0,r=e.tensor.shape[1]||0,n=await e.tensor.buffer(),a=[];for(let i of Zn.silhouette)a.push({x:(e.mesh[i][0]-e.box[0])/e.box[2],y:(e.mesh[i][1]-e.box[1])/e.box[3]});Vd&&Vd>0&&(a=a.map(i=>({x:i.x>.5?i.x+Vd:i.x-Vd,y:i.y>.5?i.y+Vd:i.y-Vd})));for(let i=0;i<t;i++)for(let o=0;o<r;o++)xAe(i/t,o/t,a)||(n.set(X5*n.get(0,o,i,0),0,o,i,0),n.set(X5*n.get(0,o,i,1),0,o,i,1),n.set(X5*n.get(0,o,i,2),0,o,i,2));let s=n.toTensor();return re(n),s}var vAe=e=>{let t=(h,p)=>Math.atan2(h[1]-p[1],h[0]-p[0]);if(!e.annotations.rightEyeIris||!e.annotations.leftEyeIris)return{bearing:0,strength:0};let r=[0,-.1],n=1,a=(e.mesh[33][2]||0)>(e.mesh[263][2]||0),s=a?e.mesh[473]:e.mesh[468],i=a?[(e.mesh[133][0]+e.mesh[33][0])/2,(e.mesh[133][1]+e.mesh[33][1])/2]:[(e.mesh[263][0]+e.mesh[362][0])/2,(e.mesh[263][1]+e.mesh[362][1])/2],o=a?[e.mesh[133][0]-e.mesh[33][0],e.mesh[23][1]-e.mesh[27][1]]:[e.mesh[263][0]-e.mesh[362][0],e.mesh[253][1]-e.mesh[257][1]],l=[(i[0]-s[0])/o[0]-r[0],n*(s[1]-i[1])/o[1]-r[1]],u=Math.sqrt(l[0]*l[0]+l[1]*l[1]);return u=Math.min(u,e.boxRaw[2]/2,e.boxRaw[3]/2),{bearing:(t([0,0],l)+Math.PI/2)%Math.PI,strength:u}},N9=(e,t)=>{let r=m=>{let g=Math.sqrt(m[0]*m[0]+m[1]*m[1]+m[2]*m[2]);return m[0]/=g,m[1]/=g,m[2]/=g,m},n=(m,g)=>{let y=m[0]-g[0],A=m[1]-g[1],x=m[2]-g[2];return[y,A,x]},a=(m,g)=>{let y=m[1]*g[2]-m[2]*g[1],A=m[2]*g[0]-m[0]*g[2],x=m[0]*g[1]-m[1]*g[0];return[y,A,x]},s=m=>{let[g,y,A,x,b,w,T,S,E]=m,R,_,M;return x<1?x>-1?(M=Math.asin(x),_=Math.atan2(-T,g),R=Math.atan2(-w,b)):(M=-Math.PI/2,_=-Math.atan2(S,E),R=0):(M=Math.PI/2,_=Math.atan2(S,E),R=0),isNaN(R)&&(R=0),isNaN(_)&&(_=0),isNaN(M)&&(M=0),{pitch:2*-R,yaw:2*-_,roll:2*-M}},i=e.meshRaw;if(!i||i.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let o=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,l=[i[10],i[152],i[234],i[454]].map(m=>[m[0]*t[0]/o,m[1]*t[1]/o,m[2]]),u=r(n(l[1],l[0])),d=r(n(l[3],l[2])),h=r(a(d,u));d=a(u,h);let p=[d[0],d[1],d[2],u[0],u[1],u[2],h[0],h[1],h[2]],c=s(p),f=i.length===478?vAe(e):{bearing:0,strength:0};return{angle:c,matrix:p,gaze:f}};var Z5=async(e,t)=>{var c,f,m,g,y,A,x,b,w,T,S,E,R,_,M,I,O,z,j,X,D,Q;let r=oe(),n,a,s,i,o,l,u,d,h=[];e.state="run:face";let p=await AC(t,e.config);if(e.performance.face=ce.perfadd?(e.performance.face||0)+Math.trunc(oe()-r):Math.trunc(oe()-r),!t.shape||t.shape.length!==4)return[];if(!p)return[];for(let V=0;V<p.length;V++){if(e.analyze("Get Face"),!p[V].tensor||p[V].tensor.isDisposedInternal){ie("Face object is disposed:",p[V].tensor);continue}if((c=e.config.face.detector)!=null&&c.mask){let ae=await T9(p[V]);re(p[V].tensor),p[V].tensor=ae}let ee=p[V].mesh&&p[V].mesh.length>200?N9(p[V],[t.shape[2],t.shape[1]]):null;e.analyze("Start Emotion:"),e.config.async?i=(f=e.config.face.emotion)!=null&&f.enabled?s5(p[V].tensor||ct([]),e.config,V,p.length):[]:(e.state="run:emotion",r=oe(),i=(m=e.config.face.emotion)!=null&&m.enabled?await s5(p[V].tensor||ct([]),e.config,V,p.length):[],e.performance.emotion=ce.perfadd?(e.performance.emotion||0)+Math.trunc(oe()-r):Math.trunc(oe()-r)),e.analyze("End Emotion:"),e.analyze("Start AntiSpoof:"),e.config.async?l=(g=e.config.face.antispoof)!=null&&g.enabled?Db(p[V].tensor||ct([]),e.config,V,p.length):0:(e.state="run:antispoof",r=oe(),l=(y=e.config.face.antispoof)!=null&&y.enabled?await Db(p[V].tensor||ct([]),e.config,V,p.length):0,e.performance.antispoof=ce.perfadd?(e.performance.antispoof||0)+Math.trunc(oe()-r):Math.trunc(oe()-r)),e.analyze("End AntiSpoof:"),e.analyze("Start Liveness:"),e.config.async?u=(A=e.config.face.liveness)!=null&&A.enabled?S5(p[V].tensor||ct([]),e.config,V,p.length):0:(e.state="run:liveness",r=oe(),u=(x=e.config.face.liveness)!=null&&x.enabled?await S5(p[V].tensor||ct([]),e.config,V,p.length):0,e.performance.liveness=ce.perfadd?(e.performance.antispoof||0)+Math.trunc(oe()-r):Math.trunc(oe()-r)),e.analyze("End Liveness:"),e.analyze("Start GEAR:"),e.config.async?a=(b=e.config.face.gear)!=null&&b.enabled?Mb(p[V].tensor||ct([]),e.config,V,p.length):null:(e.state="run:gear",r=oe(),a=(w=e.config.face.gear)!=null&&w.enabled?await Mb(p[V].tensor||ct([]),e.config,V,p.length):null,e.performance.gear=Math.trunc(oe()-r)),e.analyze("End GEAR:"),e.analyze("Start SSRNet:"),e.config.async?(n=(T=e.config.face.ssrnet)!=null&&T.enabled?$b(p[V].tensor||ct([]),e.config,V,p.length):null,s=(S=e.config.face.ssrnet)!=null&&S.enabled?zb(p[V].tensor||ct([]),e.config,V,p.length):null):(e.state="run:ssrnet",r=oe(),n=(E=e.config.face.ssrnet)!=null&&E.enabled?await $b(p[V].tensor||ct([]),e.config,V,p.length):null,s=(R=e.config.face.ssrnet)!=null&&R.enabled?await zb(p[V].tensor||ct([]),e.config,V,p.length):null,e.performance.ssrnet=Math.trunc(oe()-r)),e.analyze("End SSRNet:"),e.analyze("Start MobileFaceNet:"),e.config.async?o=(_=e.config.face.mobilefacenet)!=null&&_.enabled?o5(p[V].tensor||ct([]),e.config,V,p.length):null:(e.state="run:mobilefacenet",r=oe(),o=(M=e.config.face.mobilefacenet)!=null&&M.enabled?await o5(p[V].tensor||ct([]),e.config,V,p.length):null,e.performance.mobilefacenet=Math.trunc(oe()-r)),e.analyze("End MobileFaceNet:"),e.analyze("Start Description:"),e.config.async?d=(I=e.config.face.description)!=null&&I.enabled?c5(p[V].tensor||ct([]),e.config,V,p.length):null:(e.state="run:description",r=oe(),d=(O=e.config.face.description)!=null&&O.enabled?await c5(p[V].tensor||ct([]),e.config,V,p.length):null,e.performance.description=ce.perfadd?(e.performance.description||0)+Math.trunc(oe()-r):Math.trunc(oe()-r)),e.analyze("End Description:"),e.config.async&&([n,s,i,o,d,a,l,u]=await Promise.all([n,s,i,o,d,a,l,u])),e.analyze("Finish Face:"),((z=e.config.face.ssrnet)==null?void 0:z.enabled)&&n&&s&&(d={...d,age:n.age,gender:s.gender,genderScore:s.genderScore}),((j=e.config.face.gear)==null?void 0:j.enabled)&&a&&(d={...d,age:a.age,gender:a.gender,genderScore:a.genderScore,race:a.race}),((X=e.config.face.mobilefacenet)==null?void 0:X.enabled)&&o&&(d.descriptor=o),(D=e.config.face.iris)!=null&&D.enabled;let J=p[V].annotations&&p[V].annotations.leftEyeIris&&p[V].annotations.leftEyeIris[0]&&p[V].annotations.rightEyeIris&&p[V].annotations.rightEyeIris[0]&&p[V].annotations.leftEyeIris.length>0&&p[V].annotations.rightEyeIris.length>0&&p[V].annotations.leftEyeIris[0]!==null&&p[V].annotations.rightEyeIris[0]!==null?Math.max(Math.abs(p[V].annotations.leftEyeIris[3][0]-p[V].annotations.leftEyeIris[1][0]),Math.abs(p[V].annotations.rightEyeIris[4][1]-p[V].annotations.rightEyeIris[2][1]))/t.shape[2]:0,se=(Q=e.config.face.detector)!=null&&Q.return?et(p[V].tensor):null;re(p[V].tensor),p[V].tensor&&delete p[V].tensor;let Z={...p[V],id:V};d!=null&&d.age&&(Z.age=d.age),d!=null&&d.gender&&(Z.gender=d.gender),d!=null&&d.genderScore&&(Z.genderScore=d==null?void 0:d.genderScore),d!=null&&d.descriptor&&(Z.embedding=d==null?void 0:d.descriptor),d!=null&&d.race&&(Z.race=d==null?void 0:d.race),i&&(Z.emotion=i),l&&(Z.real=l),u&&(Z.live=u),J&&J!==0&&(Z.iris=Math.trunc(500/J/11.7)/100),ee&&(Z.rotation=ee),se&&(Z.tensor=se),h.push(Z),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.performance.face&&delete e.performance.face,e.performance.age&&delete e.performance.age,e.performance.gender&&delete e.performance.gender,e.performance.emotion&&delete e.performance.emotion),h};var C9=e=>{if(!e)return[];let t=[];for(let r=0;r<e.length;r++){let n=e[r].keypoints.find(l=>l.part==="leftWrist"),a=e[r].keypoints.find(l=>l.part==="rightWrist"),s=e[r].keypoints.find(l=>l.part==="nose");s&&n&&a&&n.position[1]<s.position[1]&&a.position[1]<s.position[1]?t.push({body:r,gesture:"i give up"}):s&&n&&n.position[1]<s.position[1]?t.push({body:r,gesture:"raise left hand"}):s&&a&&a.position[1]<s.position[1]&&t.push({body:r,gesture:"raise right hand"});let i=e[r].keypoints.find(l=>l.part==="leftShoulder"),o=e[r].keypoints.find(l=>l.part==="rightShoulder");i&&o&&Math.abs(i.positionRaw[1]-o.positionRaw[1])>.1&&t.push({body:r,gesture:`leaning ${i.position[1]>o.position[1]?"left":"right"}`})}return t},E9=e=>{if(!e)return[];let t=[];for(let r=0;r<e.length;r++)if(e[r].mesh&&e[r].mesh.length>450){let n=(e[r].mesh[33][2]||0)-(e[r].mesh[263][2]||0),a=e[r].mesh[33][0]-e[r].mesh[263][0];Math.abs(n/a)<=.15?t.push({face:r,gesture:"facing center"}):t.push({face:r,gesture:`facing ${n<0?"left":"right"}`}),Math.abs(e[r].mesh[374][1]-e[r].mesh[386][1])/Math.abs(e[r].mesh[443][1]-e[r].mesh[450][1])<.2&&t.push({face:r,gesture:"blink left eye"}),Math.abs(e[r].mesh[145][1]-e[r].mesh[159][1])/Math.abs(e[r].mesh[223][1]-e[r].mesh[230][1])<.2&&t.push({face:r,gesture:"blink right eye"});let o=Math.min(100,500*Math.abs(e[r].mesh[13][1]-e[r].mesh[14][1])/Math.abs(e[r].mesh[10][1]-e[r].mesh[152][1]));o>10&&t.push({face:r,gesture:`mouth ${Math.trunc(o)}% open`});let l=e[r].mesh[152][2]||0;Math.abs(l)>10&&t.push({face:r,gesture:`head ${l<0?"up":"down"}`})}return t},R9=e=>{if(!e)return[];let t=[];for(let r=0;r<e.length;r++){if(!e[r].annotations||!e[r].annotations.leftEyeIris||!e[r].annotations.leftEyeIris[0]||!e[r].annotations.rightEyeIris||!e[r].annotations.rightEyeIris[0])continue;let n=e[r].annotations.leftEyeIris[3][0]-e[r].annotations.leftEyeIris[1][0],a=e[r].annotations.leftEyeIris[4][1]-e[r].annotations.leftEyeIris[2][1],s=Math.abs(n*a),i=e[r].annotations.rightEyeIris[3][0]-e[r].annotations.rightEyeIris[1][0],o=e[r].annotations.rightEyeIris[4][1]-e[r].annotations.rightEyeIris[2][1],l=Math.abs(i*o),u=!1;Math.abs(s-l)/Math.max(s,l)<.25&&(u=!0,t.push({iris:r,gesture:"facing center"}));let h=Math.abs(e[r].mesh[263][0]-e[r].annotations.leftEyeIris[0][0])/e[r].box[2],p=Math.abs(e[r].mesh[33][0]-e[r].annotations.rightEyeIris[0][0])/e[r].box[2];(h>.06||p>.06)&&(u=!1),h>p?h>.05&&t.push({iris:r,gesture:"looking right"}):p>.05&&t.push({iris:r,gesture:"looking left"});let c=Math.abs(e[r].mesh[145][1]-e[r].annotations.rightEyeIris[0][1])/e[r].box[3],f=Math.abs(e[r].mesh[374][1]-e[r].annotations.leftEyeIris[0][1])/e[r].box[3];(f<.01||c<.01||f>.022||c>.022)&&(u=!1),(f<.01||c<.01)&&t.push({iris:r,gesture:"looking down"}),(f>.022||c>.022)&&t.push({iris:r,gesture:"looking up"}),u&&t.push({iris:r,gesture:"looking center"})}return t},M9=e=>{if(!e)return[];let t=[];for(let r=0;r<e.length;r++){let n=[];if(e[r].annotations)for(let[a,s]of Object.entries(e[r].annotations))a!=="palmBase"&&Array.isArray(s)&&s[0]&&n.push({name:a.toLowerCase(),position:s[0]});if(n&&n.length>0){let a=n.reduce((i,o)=>(i.position[2]||0)<(o.position[2]||0)?i:o);t.push({hand:r,gesture:`${a.name} forward`});let s=n.reduce((i,o)=>i.position[1]<o.position[1]?i:o);t.push({hand:r,gesture:`${s.name} up`})}if(e[r].keypoints){let a=UC(e[r].keypoints);for(let s of a)t.push({hand:r,gesture:s.name})}}return t};var Ce={face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0,error:null},Y5=0;function F9(e,t){var i,o,l,u,d,h,p,c,f,m,g,y,A,x,b,w,T,S,E,R,_,M,I,O,z,j,X;let r=oe();if(!e)return{face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0,error:null};let n=Date.now()-e.timestamp,a=n<1e3?8-Math.log(n+1):1;if(e.canvas&&(Ce.canvas=e.canvas),e.error&&(Ce.error=e.error),!Ce.body||e.body.length!==Ce.body.length)Ce.body=JSON.parse(JSON.stringify(e.body));else for(let D=0;D<e.body.length;D++){let Q=e.body[D].box.map((Z,ae)=>((a-1)*Ce.body[D].box[ae]+Z)/a),V=e.body[D].boxRaw.map((Z,ae)=>((a-1)*Ce.body[D].boxRaw[ae]+Z)/a),ee=e.body[D].keypoints.map((Z,ae)=>{var de,Ae,be,Ee,Me,De,Be,Ze,ot;return{score:Z.score,part:Z.part,position:[Ce.body[D].keypoints[ae]?((a-1)*(Ce.body[D].keypoints[ae].position[0]||0)+(Z.position[0]||0))/a:Z.position[0],Ce.body[D].keypoints[ae]?((a-1)*(Ce.body[D].keypoints[ae].position[1]||0)+(Z.position[1]||0))/a:Z.position[1],Ce.body[D].keypoints[ae]?((a-1)*(Ce.body[D].keypoints[ae].position[2]||0)+(Z.position[2]||0))/a:Z.position[2]],positionRaw:[Ce.body[D].keypoints[ae]?((a-1)*(Ce.body[D].keypoints[ae].positionRaw[0]||0)+(Z.positionRaw[0]||0))/a:Z.positionRaw[0],Ce.body[D].keypoints[ae]?((a-1)*(Ce.body[D].keypoints[ae].positionRaw[1]||0)+(Z.positionRaw[1]||0))/a:Z.positionRaw[1],Ce.body[D].keypoints[ae]?((a-1)*(Ce.body[D].keypoints[ae].positionRaw[2]||0)+(Z.positionRaw[2]||0))/a:Z.positionRaw[2]],distance:[Ce.body[D].keypoints[ae]?((a-1)*(((de=Ce.body[D].keypoints[ae].distance)==null?void 0:de[0])||0)+(((Ae=Z.distance)==null?void 0:Ae[0])||0))/a:(be=Z.distance)==null?void 0:be[0],Ce.body[D].keypoints[ae]?((a-1)*(((Ee=Ce.body[D].keypoints[ae].distance)==null?void 0:Ee[1])||0)+(((Me=Z.distance)==null?void 0:Me[1])||0))/a:(De=Z.distance)==null?void 0:De[1],Ce.body[D].keypoints[ae]?((a-1)*(((Be=Ce.body[D].keypoints[ae].distance)==null?void 0:Be[2])||0)+(((Ze=Z.distance)==null?void 0:Ze[2])||0))/a:(ot=Z.distance)==null?void 0:ot[2]]}}),J={},se={connected:{}};(o=(i=t.body)==null?void 0:i.modelPath)!=null&&o.includes("efficientpose")?se=M0:(u=(l=t.body)==null?void 0:l.modelPath)!=null&&u.includes("blazepose")?se=T0:(h=(d=t.body)==null?void 0:d.modelPath)!=null&&h.includes("movenet")&&(se=Gh);for(let[Z,ae]of Object.entries(se.connected)){let de=[];for(let Ae=0;Ae<ae.length-1;Ae++){let be=ee.find(Me=>Me.part===ae[Ae]),Ee=ee.find(Me=>Me.part===ae[Ae+1]);be&&Ee&&de.push([be.position,Ee.position])}J[Z]=de}Ce.body[D]={...e.body[D],box:Q,boxRaw:V,keypoints:ee,annotations:J}}if(!Ce.hand||e.hand.length!==Ce.hand.length)Ce.hand=JSON.parse(JSON.stringify(e.hand));else for(let D=0;D<e.hand.length;D++){let Q=e.hand[D].box.map((se,Z)=>((a-1)*Ce.hand[D].box[Z]+se)/a),V=e.hand[D].boxRaw.map((se,Z)=>((a-1)*Ce.hand[D].boxRaw[Z]+se)/a);Ce.hand[D].keypoints.length!==e.hand[D].keypoints.length&&(Ce.hand[D].keypoints=e.hand[D].keypoints);let ee=e.hand[D].keypoints&&e.hand[D].keypoints.length>0?e.hand[D].keypoints.map((se,Z)=>se.map((ae,de)=>((a-1)*(Ce.hand[D].keypoints[Z][de]||1)+(ae||0))/a)):[],J={};if(Object.keys(Ce.hand[D].annotations).length!==Object.keys(e.hand[D].annotations).length)Ce.hand[D].annotations=e.hand[D].annotations,J=Ce.hand[D].annotations;else if(e.hand[D].annotations)for(let se of Object.keys(e.hand[D].annotations))J[se]=e.hand[D].annotations[se]&&e.hand[D].annotations[se][0]?e.hand[D].annotations[se].map((Z,ae)=>Z.map((de,Ae)=>((a-1)*Ce.hand[D].annotations[se][ae][Ae]+de)/a)):null;Ce.hand[D]={...e.hand[D],box:Q,boxRaw:V,keypoints:ee,annotations:J}}if(!Ce.face||e.face.length!==Ce.face.length)Ce.face=JSON.parse(JSON.stringify(e.face));else for(let D=0;D<e.face.length;D++){let Q=e.face[D].box.map((ee,J)=>((a-1)*Ce.face[D].box[J]+ee)/a),V=e.face[D].boxRaw.map((ee,J)=>((a-1)*Ce.face[D].boxRaw[J]+ee)/a);if(e.face[D].rotation){let ee={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};ee.matrix=(p=e.face[D].rotation)==null?void 0:p.matrix,ee.angle={roll:((a-1)*(((f=(c=Ce.face[D].rotation)==null?void 0:c.angle)==null?void 0:f.roll)||0)+(((g=(m=e.face[D].rotation)==null?void 0:m.angle)==null?void 0:g.roll)||0))/a,yaw:((a-1)*(((A=(y=Ce.face[D].rotation)==null?void 0:y.angle)==null?void 0:A.yaw)||0)+(((b=(x=e.face[D].rotation)==null?void 0:x.angle)==null?void 0:b.yaw)||0))/a,pitch:((a-1)*(((T=(w=Ce.face[D].rotation)==null?void 0:w.angle)==null?void 0:T.pitch)||0)+(((E=(S=e.face[D].rotation)==null?void 0:S.angle)==null?void 0:E.pitch)||0))/a},ee.gaze={bearing:((a-1)*(((_=(R=Ce.face[D].rotation)==null?void 0:R.gaze)==null?void 0:_.bearing)||0)+(((I=(M=e.face[D].rotation)==null?void 0:M.gaze)==null?void 0:I.bearing)||0))/a,strength:((a-1)*(((z=(O=Ce.face[D].rotation)==null?void 0:O.gaze)==null?void 0:z.strength)||0)+(((X=(j=e.face[D].rotation)==null?void 0:j.gaze)==null?void 0:X.strength)||0))/a},Ce.face[D]={...e.face[D],rotation:ee,box:Q,boxRaw:V}}Ce.face[D]={...e.face[D],box:Q,boxRaw:V}}if(!Ce.object||e.object.length!==Ce.object.length)Ce.object=JSON.parse(JSON.stringify(e.object));else for(let D=0;D<e.object.length;D++){let Q=e.object[D].box.map((ee,J)=>((a-1)*Ce.object[D].box[J]+ee)/a),V=e.object[D].boxRaw.map((ee,J)=>((a-1)*Ce.object[D].boxRaw[J]+ee)/a);Ce.object[D]={...e.object[D],box:Q,boxRaw:V}}if(e.persons){let D=e.persons;if(!Ce.persons||D.length!==Ce.persons.length)Ce.persons=JSON.parse(JSON.stringify(D));else for(let Q=0;Q<D.length;Q++)Ce.persons[Q].box=D[Q].box.map((V,ee)=>((a-1)*Ce.persons[Q].box[ee]+V)/a)}e.gesture&&(Ce.gesture=e.gesture);let s=oe();return Y5=ce.perfadd?Y5+Math.round(s-r):Math.round(s-r),e.performance&&(Ce.performance={...e.performance,interpolate:Y5}),Ce}var e3={};gs(e3,{distance:()=>Xh,match:()=>Q5,similarity:()=>J5});function Xh(e,t,r={order:2,multiplier:25}){let n=0;for(let a=0;a<e.length;a++){let s=!r.order||r.order===2?e[a]-t[a]:Math.abs(e[a]-t[a]);n+=!r.order||r.order===2?s*s:s**r.order}return(r.multiplier||20)*n}var $9=(e,t,r,n)=>{if(e===0)return 1;let a=t===2?Math.sqrt(e):e**(1/t),s=(1-a/100-r)/(n-r);return Math.max(Math.min(s,1),0)};function J5(e,t,r={order:2,multiplier:25,min:.2,max:.8}){let n=Xh(e,t,r);return $9(n,r.order||2,r.min||0,r.max||1)}function Q5(e,t,r={order:2,multiplier:25,threshold:0,min:.2,max:.8}){if(!Array.isArray(e)||!Array.isArray(t)||e.length<64||t.length===0||e.length!==t[0].length)return{index:-1,distance:Number.POSITIVE_INFINITY,similarity:0};let n=Number.MAX_SAFE_INTEGER,a=-1;for(let i=0;i<t.length;i++){let o=Xh(e,t[i],r);if(o<n&&(n=o,a=i),n<(r.threshold||0))break}let s=$9(n,r.order||2,r.min||0,r.max||1);return{index:a,distance:n,similarity:s}}function P9(e,t,r,n,a){var o,l,u,d,h,p,c,f,m,g,y,A,x,b,w,T;let s=0,i=[];for(let S of e){let E={id:s++,face:S,body:null,hands:{left:null,right:null},gestures:[],box:[0,0,0,0]};for(let z of t)S.box[0]>z.box[0]&&S.box[0]<z.box[0]+z.box[2]&&S.box[1]+S.box[3]>z.box[1]&&S.box[1]+S.box[3]<z.box[1]+z.box[3]&&(E.body=z);if(E.body)for(let z of r)z.box[0]+z.box[2]>E.body.box[0]&&z.box[0]+z.box[2]<E.body.box[0]+E.body.box[2]&&z.box[1]+z.box[3]>E.body.box[1]&&z.box[1]+z.box[3]<E.body.box[1]+E.body.box[3]&&E.hands&&(E.hands.left=z),z.box[0]<E.body.box[0]+E.body.box[2]&&z.box[0]>E.body.box[0]&&z.box[1]+z.box[3]>E.body.box[1]&&z.box[1]+z.box[3]<E.body.box[1]+E.body.box[3]&&E.hands&&(E.hands.right=z);for(let z of n)z.face!==void 0&&z.face===S.id?(o=E.gestures)==null||o.push(z):z.iris!==void 0&&z.iris===S.id?(l=E.gestures)==null||l.push(z):z.body!==void 0&&z.body===((u=E.body)==null?void 0:u.id)?(d=E.gestures)==null||d.push(z):z.hand!==void 0&&z.hand===((p=(h=E.hands)==null?void 0:h.left)==null?void 0:p.id)?(c=E.gestures)==null||c.push(z):z.hand!==void 0&&z.hand===((m=(f=E.hands)==null?void 0:f.right)==null?void 0:m.id)&&((g=E.gestures)==null||g.push(z));let R=[],_=[],M=z=>{z&&z.length===4&&(R.push(z[0],z[0]+z[2]),_.push(z[1],z[1]+z[3]))};M((y=E.face)==null?void 0:y.box),M((A=E.body)==null?void 0:A.box),M((b=(x=E.hands)==null?void 0:x.left)==null?void 0:b.box),M((T=(w=E.hands)==null?void 0:w.right)==null?void 0:T.box);let I=Math.min(...R),O=Math.min(..._);E.box=[I,O,Math.max(...R)-I,Math.max(..._)-O],a&&a[1]&&a[2]&&(E.boxRaw=[E.box[0]/a[2],E.box[1]/a[1],E.box[2]/a[2],E.box[3]/a[1]]),i.push(E)}return i}var ig=`
|
|
/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA
|
|
AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu
|
|
bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob
|
|
IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo
|
|
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E
|
|
AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE
|
|
EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH
|
|
SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1
|
|
tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB
|
|
AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET
|
|
IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla
|
|
Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG
|
|
x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML
|
|
Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF
|
|
PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/
|
|
AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z
|
|
5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9
|
|
zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO
|
|
tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6
|
|
8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W
|
|
wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk
|
|
EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6
|
|
GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT
|
|
A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep
|
|
rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb
|
|
LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ
|
|
ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K
|
|
KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l
|
|
pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x
|
|
UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4
|
|
HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr
|
|
xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS
|
|
NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD
|
|
1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX
|
|
+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3
|
|
GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K
|
|
q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0
|
|
nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm
|
|
uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH
|
|
ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV
|
|
wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8
|
|
87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P
|
|
FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD
|
|
YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv
|
|
JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ
|
|
QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el
|
|
UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681
|
|
ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly
|
|
CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc
|
|
UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF
|
|
63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x
|
|
XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2
|
|
ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk
|
|
Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK
|
|
cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef
|
|
eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4
|
|
/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5
|
|
rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru
|
|
/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A
|
|
zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO
|
|
I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1
|
|
jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ
|
|
GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG
|
|
cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb
|
|
WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis
|
|
ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH
|
|
ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi
|
|
lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO
|
|
xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK
|
|
JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX
|
|
PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c
|
|
W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t
|
|
C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk
|
|
4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn
|
|
xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW
|
|
vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi
|
|
qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV
|
|
hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F
|
|
j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6
|
|
wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm
|
|
oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ
|
|
k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg
|
|
nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP
|
|
1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1
|
|
H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ
|
|
1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx
|
|
zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt
|
|
fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp
|
|
Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj
|
|
VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy
|
|
rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe
|
|
5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D
|
|
d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69
|
|
MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ
|
|
Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ
|
|
MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP
|
|
ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn
|
|
0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU
|
|
yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is
|
|
pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz
|
|
TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu
|
|
uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem
|
|
gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk
|
|
HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy
|
|
s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu
|
|
m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb
|
|
0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz
|
|
9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN
|
|
DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n
|
|
R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk
|
|
nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu
|
|
6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd
|
|
9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb
|
|
Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S
|
|
MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz
|
|
FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8
|
|
VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx
|
|
Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ
|
|
mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+
|
|
5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh
|
|
05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd
|
|
ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ
|
|
5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR
|
|
Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8
|
|
1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4
|
|
B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag
|
|
Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA
|
|
3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn
|
|
3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx
|
|
1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU
|
|
tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6
|
|
f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA
|
|
bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ
|
|
zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup
|
|
6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM
|
|
350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0
|
|
/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a
|
|
YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ
|
|
agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO
|
|
mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl
|
|
mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR
|
|
nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo
|
|
EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt
|
|
4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ
|
|
ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p
|
|
iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj
|
|
PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l
|
|
c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1
|
|
8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3
|
|
ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY
|
|
euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,og=`
|
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk
|
|
JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF
|
|
RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA
|
|
AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA
|
|
AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA
|
|
AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA
|
|
AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj
|
|
+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt
|
|
Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR
|
|
PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl
|
|
mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp
|
|
+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa
|
|
zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D
|
|
h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2
|
|
ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67
|
|
d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y
|
|
Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP
|
|
Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC
|
|
vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi
|
|
eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/
|
|
Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+
|
|
r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO
|
|
O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s
|
|
tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN
|
|
TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc
|
|
0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj
|
|
q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w
|
|
+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s
|
|
d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t
|
|
cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4
|
|
Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe
|
|
bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi
|
|
KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6
|
|
rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ
|
|
9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf
|
|
Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V
|
|
bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q
|
|
Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM
|
|
lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/
|
|
/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme
|
|
E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv
|
|
fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6
|
|
jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN
|
|
+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk
|
|
Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK
|
|
cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop
|
|
yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn
|
|
E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX
|
|
12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW
|
|
iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS
|
|
RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf
|
|
0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx
|
|
DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL
|
|
G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK
|
|
xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ
|
|
a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4
|
|
ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6
|
|
tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+
|
|
fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE
|
|
erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR
|
|
Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9
|
|
lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD
|
|
j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV
|
|
5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt
|
|
Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/
|
|
+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c
|
|
vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p
|
|
jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0
|
|
77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP
|
|
Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8
|
|
5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe
|
|
Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R
|
|
Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV
|
|
rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU
|
|
z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8
|
|
to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X
|
|
y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt
|
|
stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/
|
|
w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT
|
|
DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l
|
|
XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t
|
|
ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS
|
|
34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX
|
|
e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn
|
|
26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf
|
|
3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q
|
|
6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P
|
|
NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO
|
|
yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN
|
|
3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8
|
|
2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h
|
|
dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx
|
|
kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t
|
|
DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb
|
|
eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc
|
|
1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka
|
|
c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE
|
|
xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu
|
|
s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK
|
|
0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9
|
|
dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt
|
|
PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T
|
|
Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T
|
|
adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b
|
|
SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt
|
|
pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm
|
|
vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr
|
|
EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N
|
|
vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh
|
|
ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I
|
|
tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW
|
|
d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe
|
|
N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218
|
|
8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG
|
|
PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY
|
|
V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw
|
|
w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT
|
|
Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1
|
|
axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/
|
|
tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I
|
|
mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe
|
|
XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1
|
|
izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2
|
|
crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4
|
|
OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2
|
|
r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx
|
|
zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz
|
|
+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v
|
|
Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu
|
|
ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095
|
|
YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE
|
|
9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8
|
|
mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O
|
|
uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O
|
|
fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6
|
|
Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT
|
|
uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3
|
|
6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1
|
|
Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF
|
|
feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq
|
|
xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v
|
|
ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ
|
|
mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz
|
|
mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP
|
|
B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0
|
|
5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1
|
|
mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt
|
|
mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO
|
|
1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq
|
|
ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q
|
|
ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7
|
|
ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK
|
|
GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i
|
|
tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T
|
|
+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+
|
|
O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO
|
|
esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es
|
|
vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz
|
|
XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1
|
|
+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY
|
|
36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL
|
|
q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY
|
|
3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz
|
|
p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr
|
|
1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV
|
|
xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt
|
|
pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS
|
|
fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH
|
|
mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z
|
|
1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+
|
|
n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d
|
|
MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df
|
|
zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl
|
|
J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs
|
|
zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH
|
|
DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ
|
|
dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR
|
|
tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j
|
|
admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC
|
|
b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X
|
|
qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh
|
|
ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O
|
|
8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L
|
|
T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0
|
|
Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr
|
|
vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer
|
|
rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL
|
|
oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq
|
|
j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh
|
|
odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8
|
|
8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1
|
|
lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+
|
|
oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL
|
|
knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK
|
|
EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N
|
|
mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm
|
|
9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N
|
|
IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W
|
|
MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2
|
|
+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql
|
|
o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37
|
|
O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE
|
|
TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1
|
|
L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4
|
|
izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt
|
|
1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb
|
|
V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum
|
|
L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12
|
|
CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE
|
|
ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo
|
|
Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu
|
|
L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh
|
|
5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3
|
|
6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9
|
|
XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM
|
|
feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj
|
|
SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF
|
|
XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr
|
|
79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h
|
|
yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT
|
|
OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223
|
|
2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt
|
|
adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y
|
|
cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX
|
|
DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p
|
|
7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso
|
|
S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l
|
|
bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe
|
|
vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG
|
|
H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7
|
|
x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz
|
|
5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY
|
|
q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn
|
|
vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2
|
|
IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK
|
|
z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ
|
|
YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON
|
|
ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW
|
|
ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf
|
|
cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c
|
|
biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO
|
|
CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw
|
|
y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi
|
|
QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E
|
|
bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r
|
|
tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t
|
|
LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP
|
|
RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm
|
|
s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el
|
|
XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1
|
|
vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq
|
|
qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v
|
|
VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0
|
|
ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q
|
|
mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm
|
|
6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG
|
|
f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo
|
|
dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22
|
|
gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M
|
|
MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb
|
|
c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX
|
|
6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn
|
|
1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK
|
|
fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ
|
|
EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u
|
|
7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT
|
|
qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa
|
|
S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf
|
|
Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU
|
|
IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O
|
|
8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c
|
|
vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx
|
|
5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V
|
|
KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm
|
|
2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu
|
|
j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB
|
|
TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9
|
|
RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL
|
|
CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA
|
|
AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8
|
|
cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj
|
|
qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF
|
|
0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK
|
|
ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK
|
|
66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu
|
|
XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9
|
|
XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN
|
|
M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv
|
|
VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK
|
|
7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI
|
|
3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m
|
|
XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m
|
|
1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A
|
|
JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC
|
|
EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9
|
|
8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL
|
|
OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H
|
|
M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA
|
|
TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8
|
|
elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp
|
|
BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS
|
|
CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r
|
|
rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY
|
|
jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW
|
|
UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB
|
|
KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb
|
|
Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL
|
|
+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v
|
|
T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM
|
|
sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj
|
|
FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl
|
|
5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q
|
|
7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv
|
|
6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa
|
|
0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/
|
|
AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM
|
|
d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5
|
|
6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP
|
|
bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu
|
|
LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy
|
|
wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX
|
|
0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK
|
|
3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn
|
|
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0
|
|
vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t
|
|
zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps
|
|
uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi
|
|
Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2
|
|
O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z
|
|
aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz
|
|
0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb
|
|
T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l
|
|
qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t
|
|
trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn
|
|
mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa
|
|
eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe
|
|
PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of
|
|
TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O
|
|
1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG
|
|
f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi
|
|
0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY
|
|
5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc
|
|
V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L
|
|
/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM
|
|
t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd
|
|
VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD
|
|
KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R
|
|
fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3
|
|
Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ
|
|
DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ
|
|
3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv
|
|
x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD
|
|
weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI
|
|
6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew
|
|
PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk
|
|
j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm
|
|
OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/
|
|
AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez
|
|
N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ
|
|
92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp
|
|
+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue
|
|
V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv
|
|
avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0
|
|
vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP
|
|
8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt
|
|
n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw
|
|
nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3
|
|
7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P
|
|
0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U
|
|
x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG
|
|
0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L
|
|
faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ
|
|
QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA
|
|
BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A
|
|
tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv
|
|
9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr
|
|
jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm
|
|
b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB
|
|
ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk
|
|
dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1
|
|
rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+
|
|
x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA
|
|
AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr
|
|
YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4
|
|
5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V
|
|
kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg
|
|
BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA
|
|
AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g
|
|
Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx
|
|
OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2
|
|
H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF
|
|
+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V
|
|
h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA
|
|
EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu
|
|
ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml
|
|
HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl
|
|
n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN
|
|
3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi
|
|
/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00
|
|
+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC
|
|
UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2
|
|
M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp
|
|
5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn
|
|
N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS
|
|
OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL
|
|
/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo
|
|
stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3
|
|
GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA
|
|
AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4
|
|
qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy
|
|
WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a
|
|
fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI
|
|
rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2
|
|
rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc
|
|
3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3
|
|
Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA
|
|
AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx
|
|
skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F
|
|
o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx
|
|
NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h
|
|
2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te
|
|
pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7
|
|
cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7
|
|
mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA
|
|
AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA
|
|
hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J
|
|
qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI
|
|
XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy
|
|
RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX
|
|
qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX
|
|
kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P
|
|
ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC
|
|
ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA
|
|
lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA
|
|
AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o
|
|
b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP
|
|
y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae
|
|
kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu
|
|
9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ
|
|
k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1
|
|
8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp
|
|
DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh
|
|
nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ
|
|
AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA
|
|
AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO
|
|
yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5
|
|
PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii
|
|
IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r
|
|
O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE
|
|
yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX
|
|
6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2
|
|
JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS
|
|
AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA
|
|
AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx
|
|
Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI
|
|
6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5
|
|
K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7
|
|
Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id
|
|
PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ
|
|
2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4
|
|
eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7
|
|
piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR
|
|
ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ
|
|
JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i
|
|
UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61
|
|
rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq
|
|
ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2
|
|
f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO
|
|
IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts
|
|
bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA
|
|
AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA
|
|
BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2
|
|
SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T
|
|
lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/
|
|
2Q==`;async function NAe(e){let t=(a,s="application/octet-stream")=>fetch(`data:${s};base64,${a}`).then(i=>i.blob()),r,n;switch(e.config.warmup){case"face":r=await t(ig);break;case"body":case"full":r=await t(og);break;default:r=null}if(r){let a=await createImageBitmap(r);n=await e.detect(a,e.config),a.close()}return n}async function CAe(e){return new Promise(t=>{let r;switch(e.config.warmup){case"face":r="data:image/jpeg;base64,"+ig;break;case"full":case"body":r="data:image/jpeg;base64,"+og;break;default:r=null}let n;if(typeof Image!="undefined")n=new Image;else if(ce.Image)n=new ce.Image;else return;n.onload=async()=>{let a=Hr(n.naturalWidth,n.naturalHeight);if(!a)ie("Warmup: Canvas not found"),t(void 0);else{let s=a.getContext("2d");s&&s.drawImage(n,0,0);let i=await e.image(a),o=await e.detect(i.tensor,e.config);t(o)}},r?n.src=r:t(void 0)})}async function EAe(e){let t=a=>Buffer.from(a,"base64"),r;e.config.warmup==="face"?r=t(ig):r=t(og);let n;if("node"in Ue){let a=(void 0).decodeJpeg(r),s=a.expandDims(0);e.tf.dispose(a),n=await e.detect(s,e.config),e.tf.dispose(s)}else e.config.debug&&ie("Warmup tfjs-node not loaded");return n}async function RAe(e){let t;return typeof createImageBitmap=="function"?t=await NAe(e):typeof Image!="undefined"||ce.Canvas!==void 0?t=await CAe(e):t=await EAe(e),t}async function _9(e,t){let r=oe();return e.state="warmup",t&&(e.config=kr(e.config,t)),!e.config.warmup||e.config.warmup.length===0||e.config.warmup==="none"?{face:[],body:[],hand:[],gesture:[],object:[],performance:e.performance,timestamp:oe(),persons:[],error:null}:new Promise(async n=>{let a=await RAe(e),s=oe();e.config.debug&&ie("warmup",e.config.warmup,Math.round(s-r),"ms"),e.emit("warmup"),n(a)})}var Ud,Zh,Yh,lg,t3=class{constructor(t){fe(this,"version");fe(this,"config");fe(this,"result");fe(this,"state");fe(this,"process");fe(this,"tf");fe(this,"env");fe(this,"draw");fe(this,"models");fe(this,"events");fe(this,"faceTriangulation");fe(this,"faceUVMap");fe(this,"performance");np(this,Ud,void 0);np(this,Zh,void 0);np(this,Yh,void 0);fe(this,"gl");fe(this,"analyze",(...t)=>{if(!rp(this,Zh))return;let r=this.tf.engine().state.numTensors,n=rp(this,Ud);ap(this,Ud,r);let a=r-n;a!==0&&ie(...t,a)});np(this,lg,t=>{if(!rp(this,Yh))return null;if(!t)return"input is not defined";if(this.env.node&&!(t instanceof rt))return"input must be a tensor";try{this.tf.getBackend()}catch(r){return"backend not loaded"}return null});fe(this,"similarity",J5);fe(this,"distance",Xh);fe(this,"match",Q5);fe(this,"emit",t=>{var r;this.events&&this.events.dispatchEvent&&((r=this.events)==null||r.dispatchEvent(new Event(t)))});this.env=ce,ys.wasmPath=Oh["tfjs-core"].includes("-")?"https://vladmandic.github.io/tfjs/dist/":`https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${w2}/dist/`,ys.modelBasePath=ce.browser?"../models/":"file://models/",ys.backend=ce.browser?"humangl":"tensorflow",this.version=Cb,Object.defineProperty(this,"version",{value:Cb}),this.config=JSON.parse(JSON.stringify(ys)),Object.seal(this.config),this.config.cacheModels=typeof indexedDB!="undefined",t&&(this.config=kr(this.config,t)),dN(this.config),this.tf=Ue,this.state="idle",ap(this,Ud,0),ap(this,Zh,!1),ap(this,Yh,!1),this.performance={},this.events=typeof EventTarget!="undefined"?new EventTarget:void 0,this.models=new qh,this.draw={options:Da,canvas:(r,n)=>H5(r,n),face:(r,n,a)=>rg(r,n,a),body:(r,n,a)=>ng(r,n,a),hand:(r,n,a)=>ag(r,n,a),gesture:(r,n,a)=>tg(r,n,a),object:(r,n,a)=>sg(r,n,a),person:(r,n,a)=>j5(r,n,a),all:(r,n,a)=>q5(r,n,a)},this.result={face:[],body:[],hand:[],gesture:[],object:[],performance:{},timestamp:0,persons:[],error:null},this.process={tensor:null,canvas:null},this.faceTriangulation=bC,this.faceUVMap=vC,this.gl=Ct,this.emit("create")}reset(){let t=this.config.backend;this.config=JSON.parse(JSON.stringify(ys)),this.config.backend=t}validate(t){return By(ys,t||this.config)}now(){return oe()}image(t,r=!0){return Nd(t,this.config,r)}async segmentation(t,r){return b9(t,r,this.config)}enhance(t){return h5(t)}compare(t,r){return uN(this.config,t,r)}async init(){await eg(this,!0),await this.tf.ready()}async load(t){this.state="load";let r=oe(),n=Object.values(this.models).filter(i=>i).length;t&&(this.config=kr(this.config,t)),this.env.initial&&(this.config.debug&&ie(`version: ${this.version}`),this.config.debug&&ie(`tfjs version: ${this.tf.version["tfjs-core"]}`),await eg(this)||ie("error: backend check failed"),await nd(),this.env.browser&&(this.config.debug&&ie("configuration:",this.config),this.config.debug&&ie("environment:",this.env),this.config.debug&&ie("tf flags:",this.tf.ENV.flags))),await W5(this),this.env.initial&&this.config.debug&&ie("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),this.env.initial=!1,Object.values(this.models).filter(i=>i).length!==n&&(await V5(this),this.emit("load"));let s=Math.trunc(oe()-r);s>(this.performance.loadModels||0)&&(this.performance.loadModels=this.env.perfadd?(this.performance.loadModels||0)+s:s)}next(t=this.result){return F9(t,this.config)}async warmup(t){let r=oe(),n=await _9(this,t),a=oe();return this.performance.warmup=Math.trunc(a-r),n}async profile(t,r){let n=await this.tf.profile(()=>this.detect(t,r)),a={};for(let o of n.kernels)a[o.name]?a[o.name]+=o.kernelTimeMs:a[o.name]=o.kernelTimeMs;let s=[];Object.entries(a).forEach(o=>s.push({name:o[0],ms:o[1]})),s.sort((o,l)=>l.ms-o.ms),s.length=20;let i={};for(let o of s)i[o.name]=o.ms;return i}async detect(t,r){return this.state="detect",new Promise(async n=>{var g,y,A,x,b,w,T,S,E,R,_,M,I,O,z,j,X,D,Q,V,ee,J;this.state="config";let a;this.config=kr(this.config,r),this.state="check";let s=rp(this,lg).call(this,t);s&&(ie(s,t),this.emit("error"),n({face:[],body:[],hand:[],gesture:[],object:[],performance:this.performance,timestamp:oe(),persons:[],error:s}));let i=oe();await eg(this),await this.load(),a=oe(),this.state="image";let o=await Nd(t,this.config);if(this.process=o,this.performance.inputProcess=this.env.perfadd?(this.performance.inputProcess||0)+Math.trunc(oe()-a):Math.trunc(oe()-a),this.analyze("Get Image:"),!o.tensor){this.config.debug&&ie("could not convert input to tensor"),this.emit("error"),n({face:[],body:[],hand:[],gesture:[],object:[],performance:this.performance,timestamp:oe(),persons:[],error:"could not convert input to tensor"});return}this.emit("image"),a=oe(),this.config.skipAllowed=await lN(this.config,o.tensor),this.performance.totalFrames||(this.performance.totalFrames=0),this.performance.cachedFrames||(this.performance.cachedFrames=0),this.performance.totalFrames++,this.config.skipAllowed&&this.performance.cachedFrames++,this.performance.cacheCheck=this.env.perfadd?(this.performance.cacheCheck||0)+Math.trunc(oe()-a):Math.trunc(oe()-a),this.analyze("Check Changed:");let l=[],u=[],d=[],h=[];this.state="detect:face",this.config.async?(l=this.config.face.enabled?Z5(this,o.tensor):[],this.performance.face&&delete this.performance.face):(a=oe(),l=this.config.face.enabled?await Z5(this,o.tensor):[],this.performance.face=this.env.perfadd?(this.performance.face||0)+Math.trunc(oe()-a):Math.trunc(oe()-a)),this.config.async&&(this.config.body.maxDetected===-1||this.config.hand.maxDetected===-1)&&(l=await l),this.analyze("Start Body:"),this.state="detect:body";let p=this.config.body.maxDetected===-1?kr(this.config,{body:{maxDetected:this.config.face.enabled?1*l.length:1}}):this.config;this.config.async?((g=this.config.body.modelPath)!=null&&g.includes("posenet")?u=this.config.body.enabled?D5(o.tensor,p):[]:(y=this.config.body.modelPath)!=null&&y.includes("blazepose")?u=this.config.body.enabled?Zb(o.tensor,p):[]:(A=this.config.body.modelPath)!=null&&A.includes("efficientpose")?u=this.config.body.enabled?n5(o.tensor,p):[]:(x=this.config.body.modelPath)!=null&&x.includes("movenet")&&(u=this.config.body.enabled?M5(o.tensor,p):[]),this.performance.body&&delete this.performance.body):(a=oe(),(b=this.config.body.modelPath)!=null&&b.includes("posenet")?u=this.config.body.enabled?await D5(o.tensor,p):[]:(w=this.config.body.modelPath)!=null&&w.includes("blazepose")?u=this.config.body.enabled?await Zb(o.tensor,p):[]:(T=this.config.body.modelPath)!=null&&T.includes("efficientpose")?u=this.config.body.enabled?await n5(o.tensor,p):[]:(S=this.config.body.modelPath)!=null&&S.includes("movenet")&&(u=this.config.body.enabled?await M5(o.tensor,p):[]),this.performance.body=this.env.perfadd?(this.performance.body||0)+Math.trunc(oe()-a):Math.trunc(oe()-a)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.state="detect:hand";let c=this.config.hand.maxDetected===-1?kr(this.config,{hand:{maxDetected:this.config.face.enabled?2*l.length:1}}):this.config;this.config.async?((R=(E=this.config.hand.detector)==null?void 0:E.modelPath)!=null&&R.includes("handdetect")?d=this.config.hand.enabled?x5(o.tensor,c):[]:(M=(_=this.config.hand.detector)==null?void 0:_.modelPath)!=null&&M.includes("handtrack")&&(d=this.config.hand.enabled?k5(o.tensor,c):[]),this.performance.hand&&delete this.performance.hand):(a=oe(),(O=(I=this.config.hand.detector)==null?void 0:I.modelPath)!=null&&O.includes("handdetect")?d=this.config.hand.enabled?await x5(o.tensor,c):[]:(j=(z=this.config.hand.detector)==null?void 0:z.modelPath)!=null&&j.includes("handtrack")&&(d=this.config.hand.enabled?await k5(o.tensor,c):[]),this.performance.hand=this.env.perfadd?(this.performance.hand||0)+Math.trunc(oe()-a):Math.trunc(oe()-a)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.state="detect:object",this.config.async?((X=this.config.object.modelPath)!=null&&X.includes("nanodet")?h=this.config.object.enabled?$5(o.tensor,this.config):[]:(D=this.config.object.modelPath)!=null&&D.includes("centernet")&&(h=this.config.object.enabled?Qb(o.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(a=oe(),(Q=this.config.object.modelPath)!=null&&Q.includes("nanodet")?h=this.config.object.enabled?await $5(o.tensor,this.config):[]:(V=this.config.object.modelPath)!=null&&V.includes("centernet")&&(h=this.config.object.enabled?await Qb(o.tensor,this.config):[]),this.performance.object=this.env.perfadd?(this.performance.object||0)+Math.trunc(oe()-a):Math.trunc(oe()-a)),this.analyze("End Object:"),this.state="detect:await",this.config.async&&([l,u,d,h]=await Promise.all([l,u,d,h])),this.state="detect:gesture";let f=[];this.config.gesture.enabled&&(a=oe(),f=[...E9(l),...C9(u),...M9(d),...R9(l)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=this.env.perfadd?(this.performance.gesture||0)+Math.trunc(oe()-a):Math.trunc(oe()-a)),this.performance.total=this.env.perfadd?(this.performance.total||0)+Math.trunc(oe()-i):Math.trunc(oe()-i);let m=((J=(ee=this.process)==null?void 0:ee.tensor)==null?void 0:J.shape)||[];this.result={face:l,body:u,hand:d,gesture:f,object:h,performance:this.performance,canvas:this.process.canvas,timestamp:Date.now(),error:null,get persons(){return P9(l,u,d,f,m)}},re(o.tensor),this.emit("detect"),this.state="idle",n(this.result)})}};Ud=new WeakMap,Zh=new WeakMap,Yh=new WeakMap,lg=new WeakMap;return PE(FAe);})();
|
|
/**
|
|
* @license
|
|
* Copyright 2017 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use backend file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* https://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2022 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2022 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the 'License');
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an 'AS IS' BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* Human main module
|
|
* @default Human Library
|
|
* @summary <https://github.com/vladmandic/human>
|
|
* @author <https://github.com/vladmandic>
|
|
* @copyright <https://github.com/vladmandic>
|
|
* @license MIT
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/** @license See the LICENSE file. */
|